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Cover image: Aerial photo of the toe of East Cliff, Whitby, UK, taken during an airborne 
LiDAR survey in 2014. The rock armour revetment and foreshore platform are visible at low 
tide, with a ramp that leads onto East Pier at the top of the photo. At the end of this pier 
stands the lighthouse that houses the 4D monitoring system presented in this research.  



 

Abstract 

 

Current understanding of the nature of rockfall and their controls stems from the capabilities of 

slope monitoring. These capabilities are fundamentally limited by the frequency and resolution 

of data that can be captured. Various assumptions have therefore arisen, including that the 

mechanisms that underlie rockfall are instantaneous. Clustering of rockfall across rock faces and 

sequencing through time have been observed, sometimes with an increase in pre-failure 

deformation and pre-failure rockfall activity prior to catastrophic failure. An inherent 

uncertainty, however, lies in whether the behaviour of rockfall monitored over much shorter 

time intervals (Tint) is consistent with that previously monitored at monthly intervals, including 

observed failure mechanisms, their response to external drivers, and pre-failure deformation.  

To address the limitations of previous studies on this topic, 8 987 terrestrial laser scans 

have been acquired over 10 months from continuous near-real time monitoring of an actively 

failing coastal rock slope (Tint = 0.5 h). A workflow has been devised that automatically resolves 

depth changes at the surface to 0.03 m. This workflow filters points with high positional 

uncertainty and detects change in 3D, with both approaches tailored to natural rock faces, 

which commonly feature sharp edges and partially occluded areas.  

Analysis of the resulting rockfall inventory, which includes > 180 000 detachments, 

shows that the proportion of rockfall < 0.1 m3 increases with more frequent surveys for 

Tint < ca. 100 h, but this trend does not continue for surface comparison over longer time 

intervals. Therefore, and advantageously, less frequent surveys will derive the same rockfall 

magnitude-frequency distribution if captured at ca. 100 h intervals as compared to one month or 

even longer intervals. The shape and size of detachments shows that they are more shallow and 

smaller than observable rock mass structure, but appear to be limited in size and extent by 

jointing. Previously explored relationships between rockfall timing and environmental and 

marine conditions do not appear to apply to this inventory, however, significant relationships 

between rockfall and rainfall, temperature gradient and tides are demonstrated over short 

timescales.  

Pre-failure deformation and rockfall activity is observed in the footprint of incipient 

rockfall. Rockfall activity occurs predominantly within the same ca. 100 h timescale observed in 

the size-distribution analysis, and accelerated deformation is common for the largest rockfall 

during the final 2 h before block detachment. This study provides insights into the nature and 

development of rockfall during the period prior to detachment, and the controls upon it.  This 

holds considerable implications for our understanding of rockfall and the improvement of future 

rockfall monitoring.  
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Chapter 1 

Introduction 
 

 

1.1 Rationale for research 
 

Brittle failure in tension or in shear that occurs through rockfall is normally viewed as a near-

instantaneous phenomenon (Rose and Hungr, 2007). However, the ability to monitor hard rock 

slopes, particularly from a face-on perspective, has yielded an increasing body of evidence that 

indicates precursors to final rockfall failure, bringing into question the treatment of failure as 

instantaneous. Such evidence includes acoustic emissions due to internal cracking (Eberhardt et 

al., 1999; Netaji and Ghazvinian, 2014), microseismic ground motions recorded by 

accelerometers or seismometers (Amitrano et al., 2005; Helmstetter and Garambois, 2010; 

Burjánek et al., 2012), joint dilation that induces pre-failure deformation (Travelletti et al., 

2008; Oppikofer et al., 2009; Abellán et al., 2010; Royán et al., 2015; Collins and Stock, 2016), 

and pre-failure rockfall activity within the footprint of incipient rockfall scars (Rosser et al., 

2007a,b; Pedrazzini et al., 2010; Stock et al., 2012; Royán et al., 2015). Pre-failure deformation 

and pre-failure rockfall activity have been identified using repeat photography from both 

terrestrial and airborne platforms, as well as terrestrial LiDAR.  

In the laboratory, pre-failure deformation of samples has been observed through a 

process of brittle cracking, which increases in rate as microfractures coalesce and the area of 

unsheared material at the shear zone deceases exponentially (Kilburn and Petley, 2003; Petley 

et al., 2005; 2008). This suggests that pre-failure deformation in brittle materials can develop in 

a time-dependent, progressive manner rather than instantaneously. The progression of a slope 

towards failure can therefore be considered as much a function of strain as it is of stress, which 

emphasises the importance of developing an understanding of strain that includes time as a 

critical parameter. Similar time-dependent behaviour has been observed prior to large rockfall, 

in which both the size and frequency of rockfall increase prior to failure. This process may 

indicate either accelerated deformation towards catastrophic failure (Rosser et al., 2007a), or a 

process through which accumulated strain is released and the slope reverts to a new equilibrium 

state (Leroueil, 2001; Pedrazzini et al., 2010).  

While anecdotal observations of precursory rockfall activity have been captured in 

videos during the final minutes before failure, this is unlikely to capture the full evolution of pre-

failure deformation and quantifying this pattern remains complex. A number of studies have 

opted to use terrestrial laser scanning (TLS) to measure the evolution of rockfall, however, due 
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to technical, logistical, and financial constraints, such studies rarely survey slopes within a 

month of the previous survey (Abellán et al., 2014). Since exponential accelerations in brittle 

failure have been observed in the laboratory, accurately capturing the path to failure not only 

requires monitoring over a sustained period, but also over short time intervals. While processes 

such as microcrack growth are observed in lab testing or through the analysis of acoustic 

emissions from the rock mass, these processes occur at depth. However, if the surface expression 

of deformation is assumed to have propagated through brittle materials from the rupture plane, 

then monitoring at high precision becomes critical in relating rock slope deformation to in situ 

damage accumulation. 

Drivers that are external to the slope can prepare it for failure by inducing strength 

changes within the rock mass. These include, but are not limited to, thermal cycling, which may 

induce permanent damage to the rock mass (Gunzburger et al., 2005; Gischig et al., 2011a; 

Collins and Stock, 2016; Eppes et al., 2016), and changing pore water pressure, which can 

weaken the rock mass itself and induce permanent, irreversible deformation. If small 

detachments of material are assumed to constitute part of the progressive failure of hard rock 

slopes, then external drivers may act as both triggers of small rockfall, and factors that prepare 

the slope for failure in the longer-term (Iverson, 2000; Schuster and Wieczorek, 2002; Selby, 

2005). In order to examine these drivers as triggers of rockfall, rockfall should be detected at a 

rate that is consistent with the timescales of variability in external driving forces. 

 

1.2 A novel approach to slope monitoring 
 

Frequent and precise monitoring enables the identification of rockfall over timescales 

that are sufficiently short to overcome coalescence and superimposition when rockfall are 

spatially contiguous. This in turn enables a more realistic appraisal of the size distribution of 

rockfall events, which holds implications for the prediction of future rates of erosion, 

understanding of the mechanisms of failure evolution, and the sensitivity of the size distribution 

to scale of the discontinuity network. In addition to controls that are in situ in the rock mass, 

continuous high frequency monitoring (≤ 1 h) may provide the additional benefit of relating the 

timing of rockfall, which may or may not precede larger incipient failures, to external forcing 

such as environmental or marine conditions. While previous studies have attempted to establish 

relationships between the two, these have required considerable time-averaging of conditions and 

assume that: (a) a linear relationship between rockfall and environmental conditions is most 

appropriate; (b) the average conditions, or some measure of the distribution of conditions during 

a monitoring epoch, are those which are best placed to explain rockfall occurrence; and (c) such 

relationships can be resolved by treating the datasets as a direct cause-effect relationship. High 

frequency monitoring enables rockfall to be examined with respect to chronological sequences of 
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weather conditions, but also allows rockfall timings to be resampled relative to any cyclical 

occurrence in the environmental factors, such as diurnal temperature cycles and tide cycles.  

 

1.3 Aim, research questions, and objectives 
 

The overarching aim of this research is to use high frequency continuous monitoring to 

understand the mechanisms and nature of rockfall. The conceptual basis that underpins this aim 

is that precursory displacement and rockfall constitute part of the progressive failure of rock 

slopes. Within this model, failure is not exclusively driven by external conditions; instead, 

damage accumulation within the rock mass dictates catastrophic failure (Rosser et al., 2007a; 

Petley et al., 2008). A series of research questions has been designed in order to achieve this 

aim: 

 

(1) Does the observed power-law behaviour of rockfall extend to its occurrence 

over short timescales? 

 

This question has been formulated in response to the uncertainties around the influence of 

rockfall coalescence and superimposition on the size distribution of rockfall from actively failing 

slopes. This holds implications for the accurate estimation of cliff retreat, the actual probability 

of rockfall of any given size, as well as understanding the relative significance of small rockfall in 

the progression of a slope towards catastrophic failure. This question also highlights the need to 

understand rockfall size distributions, in order to more accurately categorise the relationships 

between rockfall, environmental drivers and structural controls by rockfall size. 

  

(2) To what extent does the visible persistence of discontinuities determine the 

permissible size of failures? 

 

Knowledge of the shape and size of rockfall enables insight into their release relative to the 

geometry of the rock surface and, therefore, the control that it exerts on failures that occur. 

Interpreting this relationship requires measurements of rockfall, and the rock mass, that are 

precise and of high spatial resolution. 

 

(3) Are environmental conditions significant as triggers of rockfall occurrence 

and, if so, which conditions promote failure? 

 

External drivers of rock slope failure can include environmental conditions and, depending on its 

setting, marine conditions and seismicity. These conditions vary at a range of timescales, with 
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environmental and marine conditions at the sub-daily, daily and seasonal timescales. Previous 

studies have presented variable correlation strengths between such variables and the timing of 

rockfall, which themselves may relate to variations in the lithology, structure, and local climate 

of the rock slope, or the spatial and temporal resolution of monitoring.  Monitoring at a high 

frequency and a high spatial resolution allows the nature of the response of hard rock slopes to 

be examined, including whether this response is lagged, without the uncertainty attributed to 

the frequency of monitoring and the time-averaging of weather conditions that this necessitates. 

 

(4) Can 4D monitoring detect precursory rockfall or deformation of the rock 

mass at timescales below those previously observed for rockfall? 

 

This research question has been devised to examine the patterns of precursory rockfall that 

precede larger scale failure, here considered as those with volumes > 0.1 m3. This provides a 

means to assess whether rockfall promote or stabilise the rock face for further failure, the 

conditions under which they may do so, and whether patterns of accelerated rockfall activity 

previously observed at time intervals of one month to several months are valid over shorter 

timescales.  

 

In order to answer these research questions. The following objectives have been established: 

 

(1) To develop a method capable of handling large numbers (103 - 104) of sequential 

terrestrial laser scans, which involves pre-processing them to increase their precision, 

and accurate 3D change detection. 

(2) To assess the use of 4D data in providing reliable volume estimates for erosion 

prediction. 

(3) To develop an understanding of the size distribution of rockfall, necessary to categorise 

analysis on the role of external drivers and the visible persistence of discontinuities. 

(4) To examine failure of the slope over a range of monitoring intervals, in order to identify 

the benefit of near-real time monitoring and examine the temporal scales of failure 

based on varying rockfall size distributions.   

(5) To develop techniques to examine rockfall timing with respect to environmental 

conditions. 

(6) To examine patterns of both rockfall and precursory creep within incipient failure scars 

prior to failure, and in relation to environmental conditions. 
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1.4 Thesis structure 
 

This thesis comprises nine chapters. Their relation to the objectives and research 

questions are presented in Figure 1.1.  

 

 

 
 

Chapter 2 reviews current understanding of the development of failure through brittle 

mechanisms of microcrack growth, and introduces literature surrounding the concept of 

progressive, time-dependent failure. The final stage of failure, commonly referred to as the 

tertiary phase, is related to both deformation of rock slopes and rockfall from them, and is 

shown to follow accelerating, and potentially predictable patterns. Previous research into the 

role that environmental conditions play in triggering rockfall is also examined, highlighting the 

importance of monitoring their occurrence at a similar interval to environmental data. 

Background literature that considers the magnitude-frequency distribution of rockfall and 

landslides is also presented, which introduces the scale invariant nature of mass-movements but 

also the fact that this pattern appears to break down for the smallest monitored events. A brief 

summary of current approaches to slope instability monitoring is then provided. This chapter 

highlights the need to advance slope deformation monitoring beyond current practices of data 

processing and analysis, in order to provide a more robust understanding of the nature of 

rockfall. 

Figure 1.1: Schematic overview of the thesis structure with respect to the research questions and 

their objectives. 
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Chapter 3 introduces the rock slope that is monitored in this study, including its setting, 

lithology, previous observations of rockfall and erosion at the site, and local environmental and 

marine conditions. The second half of this chapter concerns the installation of the continuous 

near-real time monitoring system. This includes a system design as well as details of the system 

setup, including scan schedule and point spacing.  

Chapter 4 begins with a review of current techniques and workflows for processing TLS-

acquired point cloud data to derive surface change. The chapter outlines the methods and 

workflows adopted in order to pre-process the large number of scans and, in doing so, to increase 

the precision of each scan for the detection of change. This comprises the filtering of unreliable 

points between successive scans, based on their topographic position and radiometric return, and 

accurate batch alignment. This is followed by the development of an adaptation of the widely 

adopted Multiscale Model-to-Model Cloud Comparison algorithm (M3C2; Lague et al., 2013), 

which reduces uncertainty in detection of change between scan pairs. 

Chapter 5 is the first of three chapters of results. It builds on Chapter 4 by addressing 

the uncertainty attached to volume estimates within the acquired rockfall inventory. This 

highlights the importance of the magnitude-frequency distribution of rockfall events in 

determining the overall uncertainty in material loss estimates, since small events have the 

highest volumetric uncertainty. The magnitude-frequency distribution is also used to infer the 

timescales over which the process of rockfall occurs, and hence the potential uses for monitoring 

over different timescales. The chapter ends with an examination of the scale of rockfall with 

respect to the scale of visible persistence of joints in the cliff rock mass, derived in 3D from the 

scan data. This compliments an analysis of the shape of rockfall in suggesting that rockfall are 

both shallow and below the scale of persistent discontinuities. 

Chapter 6 examines the temporal distribution of rockfall through the 10-month 

monitoring period, providing a general assessment of the relationship between rockfall and 

stormy conditions throughout the period. This is followed by a linear regression approach that 

has previously been adopted to establish the strength of a cause-effect relationship between 

environmental conditions as triggers and the occurrence of rockfall. The chapter concludes with 

a number of analyses designed to examine the occurrence of rockfalls with respects to cycles of 

environmental and marine conditions, at the sub-daily (tide cycle) and daily (temperature cycle) 

scales.  

Chapter 7 draws upon the combined high spatial and temporal resolution of the dataset 

in order to observe both pre-failure deformation and pre-failure rockfall before catastrophic 

failure, here defined as failure that follows an exponential increase in activity within its 

footprint. Due to the size of the inventory, this is undertaken for a small proportion of the 

recorded detachments. This chapter builds upon Chapter 5, by examining the timescales over 
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which pre-failure rockfall occur, and Chapter 6 by examining the onset of final failure with 

respect to environmental conditions. 

Chapter 8 discusses the key findings made through the thesis. Initially, this constitutes 

an appraisal of the key considerations that are required in undertaking a continuous near-real 

time monitoring campaign. Following this, the implications of some of the novel and key 

findings in this study are discussed with regard to the insight that can be gained from high 

frequency monitoring. A conceptual model of the path to failure that rockfalls can take is 

discussed.  

Chapter 9 presents the major findings of the study in relation to the research questions 

outlined above. Here, the most novel findings are identified alongside areas of future research 

and development of the project. 
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Chapter 2 

Rock Slope Deformation and 
Monitoring

 
 

2.1 Introduction 
 

Chapter 1 introduced the concept of progressive failure, which is commonly used to describe 

time-dependent failure mechanisms that act within unstable rock masses, and the insights into 

the nature and controls upon this process that may be drawn from high-resolution, near-

constant rock slope monitoring. These relate to: (1) the timescales and mechanisms through 

which rockfall evolve; (2) the controls on this evolution (both structural and exogenic); and (3) 

the nature of accelerated rockfall activity prior to failure. These themes have conventionally 

been examined for landslides and large rock slope failures to a greater extent than for rockfall 

(for example, Eberhardt et al., 2004; Gischig et al., 2011a;b). This is due in part to the 

comparative ease with which larger landslides can be discerned from aerial and satellite sensors, 

as well as with which they are instrumented in situ at the surface (such as extensometers) and 

at depth via boreholes (such as piezometers, inclinometers, and calipers). However, with the 

advent of new remote monitoring technology, in particular those from ground-based platforms, 

rockfall from near-vertical rock faces have been recorded with increasing frequency and precision 

(Abellán et al., 2014; 2016; Eitel et al., 2016). 

 This study focuses upon rockfall monitoring; however, in order to define the underlying 

rationale and technical specification of the monitoring approach that is developed, an 

examination of progressive rockfall failure is required. The chapter therefore reviews existing 

understanding concerning the failure mechanics and dynamics of rockfall, and does not seek to 

review the technologies of monitoring this process, with the exception of a short description at 

the end. A thorough appraisal of the slope instability monitoring techniques is provided by 

Jaboyedoff et al. (2012) and Abellán et al. (2014). The chapter begins with a review of first-time 

progressive failure in brittle slopes, and highlights examples of this process in material shedding 

prior to catastrophic rockfall. This is the most-likely failure mechanism that underpins the 

rockfall observed in this study, and has been previously inferred on similar slopes (Rosser et al., 

2007a;b; Lim et al., 2010; Rosser et al., 2013; Brain et al., 2014). Failure-time prediction, which 

makes use of patterns of increasing strain-rate during the final phases of failure, or derivatives 

therein, is then discussed. Section 2.3 reviews the relationship between exogenic controls, viewed 
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both as preparatory factors and triggers, and the timing of landslides and rockfall. Section 2.4 

highlights the importance of quantifying the size distribution of rockfall in inventories, and then 

examines the role of new monitoring technologies in capturing these distributions. The chapter 

concludes by identifying current deficits in the understanding of rockfall development, 

interpreted from the size distribution of detachments, the influence of environmental conditions 

on failure, and the applicability of strain-rate based acceleration to failure models. 

  

2.2 Progressive failure 
 

The setting of the rock slope monitored within this study is the North Yorkshire 

coastline, UK. Failures that develop through time have previously been observed in the setting 

of this study (Rosser et al., 2007a;b;2013). However, the nature and controls of this development 

are not clearly understood. A review of the potential mechanisms, controls and paths to failure 

is therefore provided below with the aim of devising a monitoring approach that is tailored to 

progressive rockfall failure. There is widespread recognition that first-time brittle slope failures 

develop in three discrete phases of movement (Petley et al., 2002). These are commonly referred 

to as primary, secondary and tertiary creep (Varnes, 1978) and are characterised by a gradual 

equalisation of the ratio of resisting forces to driving forces known as the Factor of Safety 

(Bjerrum, 1967; Main, 2000; Zavodni, 2000). The time-dependent nature of this behaviour is 

defined in this study as deformation that follows a characteristic pattern through time, which is 

independent of everything but time. This time-dependence is often termed progressive failure 

and can be observed in the surface and subsurface deformation of many natural (e.g. Eberhardt 

et al., 2004) and engineered slopes (e.g. Zavodni, 2000), as well as underground excavations (e.g. 

Kemeny, 2005). Micro-mechanical changes that occur in each phase play a distinct role in failure 

evolution, ultimately allowing failure without the shear surface mobilising peak strength 

(Bjerrum, 1967; Scholz, 1968; Martin and Chandler, 1994). An understanding of this process is 

integral to the prediction of likely surface deformation and acceleration prior to collapse. Two 

mechanisms have been proposed for the observed failure evolution: (1) the slider block friction 

model (Helmstetter et al., 2004); and (2) damage accumulation by microcrack growth (Main, 

2000; Petley et al., 2005). 

 

2.2.1 The slider block friction model 
 

The slider block friction model proposed by Helmstetter et al. (2004) assumes a rigid 

landslide block governed by the state- and rate-dependent friction law (Dietrich, 1978; Ruina, 

1983; Scholz, 1998), in which resistance to movement is predicted to decrease with strain-rate 

(Figure 2.1). When the block is at an incline, the shear strength τ (kPa) is: 
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 𝜏𝜏 =  𝜎𝜎 ∙ tan𝜙𝜙 + 𝑐𝑐 [Eq. 2.1] 

 

where σ is the effective normal stress, tan𝜙𝜙 defines the friction of coefficient at a slope incline of  

𝜙𝜙, and c is the cohesion (Selby, 2005). However, the force necessary to cause sliding between 

solid surfaces in (dry) frictional contact typically exceeds the force required to sustain sliding 

(Putelat and Dawes, 2015). This behaviour requires a distinction to be made between the static 

and dynamic coefficients of friction. The concept of rate-and-state friction considers the complex 

evolution of asperities during sliding by drawing upon the logarithmic time variation of the 

static coefficient of friction and variation of the dynamic coefficient with velocity (Putelat and 

Dawes, 2015). The solid friction coefficient, μ, between the block and surface is state- and rate-

dependent, determined by the slip velocity V and the state variable θ: 

 

 𝜇𝜇 = 𝜇𝜇0 + 𝐴𝐴 ln
𝑉𝑉
𝑉𝑉0

+ 𝐵𝐵 ln
𝑉𝑉0𝜃𝜃
𝐷𝐷𝐶𝐶

 [Eq. 2.2] 

  

where μ0 is the steady-state friction at a reference sliding velocity V0. DC is the critical slip 

distance, which usually reflects the size of asperities and is related to the evolution of the state 

variable through time by: 

 

 
𝛿𝛿𝜃𝜃
𝛿𝛿𝛿𝛿

= 1 −
𝜃𝜃𝑉𝑉
𝐷𝐷𝐶𝐶

 [Eq. 2.3] 

 

As reviewed by Scholz (1998), the transition between an initial velocity 𝑉𝑉0 and a higher velocity, 

VA yields an increased frictional response of A.  

 

 

 

Figure 2.1: Experimentally observed frictional response to an exponential increase in sliding velocity, 

followed by an exponential decrease in sliding velocity. During the initial velocity increase, a direct 

increase in friction (A) occurs, known as the direct velocity effect. An evolutionary decrease in friction 

(B) then occurs. Adapted from Scholz (1998:37). 
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At a constant velocity of VA, there is a decrease in friction, B, with displacement of the 

material. At steady-state, the friction μS is: 

 

 𝜇𝜇𝑠𝑠 = 𝜇𝜇0 + (𝐴𝐴 − 𝐵𝐵) ln
𝑉𝑉
𝑉𝑉0

 [Eq. 2.4] 

 

A–B is therefore the derivative of μS with respect to the log of the reduced slip velocity. When 

A>B, friction increases with slip velocity resulting in a stable slide. When A<B, however, 

unstable acceleration can occur as friction decreases with velocity. In a landslide, the shearing of 

gouge at the sliding surface is such that A is greater than B if the material is poorly 

consolidated, though this difference decreases as the material is subjected to higher pressures 

(Helmstetter et al., 2004; Handwerger et al., 2016). Sornette et al. (2004) showed that a gradual 

decrease in frictional resistance with strain-rate could provide a physical explanation for the 

hyperbolic acceleration of the 1963 Vaiont failure. However, this model does not account for 

fluctuations in friction associated with variable pore-water pressure (Iverson, 2005) or the 

development of Coulomb stress at asperities (Brückl and Parotidis, 2005).  

 

2.2.2 Microcrack growth 
 

An alternative mechanism that can explain the presence of time-dependent failure 

evolution, as well as discrepancies in this development by brittle and ductile failure mechanisms, 

is microcrack growth. Bjerrum (1967) suggested that, for a shear surface to grow in cohesive 

materials, the shear zone must undergo a shift from peak to residual strength, resulting in a 

drop in resistance and the redistribution of shear stresses from the base of an incipient landslide. 

A landslide may therefore fail without the shear surface mobilising peak strength (Scholz, 1968; 

Martin and Chandler, 1994). This model assumes the existence of ‘recoverable strain energy’, 

which is released from elastic materials at the landslide base as interparticle bonds break under 

stress, instigating localised plastic deformation. In a uniform material under tension, stress is 

passed from one atom to another in a series of parallel lines orientated in the stress direction 

(Selby, 2005). Strain energy is diffused evenly within the material and, if it is held by 

surrounding bodies, no strain energy can escape. If a crack is initiated, however, stress 

trajectories gather at the crack tip and the material on either side relaxes, releasing its stored 

energy, which becomes available for crack propagation. This gradual loss of shear resistance 

with increasing strain after peak strength, also known as strain-softening, occurs in both rupture 

surface and microcrack growth. Strain-hardening mechanisms represent reduced strain-rates due 

to dislocating movements within the crystal lattice (Callister and Rethwisch, 2007; Figure 2.2). 

Main (2000) developed a hybrid model relating subcritical crack growth to the existence 

of primary and tertiary creep, mediated by a phase of ‘steady-state’ secondary creep (Figure 
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2.2). During primary creep, strain hardening dominates and causes crack lengths to increase 

while inducing stress reduction at crack tips, a negative feedback manifest by initially high but 

decreasing strain rates. During secondary creep, the superimposition of both hardening and 

softening mechanisms produces a relatively constraint strain-rate, with the overall increase in 

strain-rate reflecting a gradual shift towards the latter process. At a critical inflection point, this 

shift marks the beginning of the tertiary phase in which strain softening mechanisms induce a 

hyperbolic acceleration towards final failure (Petley et al., 2008). Reches and Lockner (1994) 

suggested that this inflection point reflects the interaction of adjacent microcracks when a 

critical crack density is reached, further dilating each crack. The interaction of multiple cracks 

propagates into adjacent intact rock, eventually resulting in shear surface development at the 

Figure 2.2: Schematic plot of the time-dependent strain component on a rock sample, exhibiting three 

phases of movement known as transient, steady-state and accelerating. Parameters A, B and X of the 

slider block friction model account for observed variation (top). Microcrack growth (bottom) in 

conjunction with strain hardening and softening is also displayed. 
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centre of the damaged rock mass. Petley et al. (2005) developed a more synthesised 

understanding of this process, noting that Bjerrum’s (1967) shear surface growth is achieved by 

brittle cracking that can be described in similar terms to the Varnes (1978) three-stage creep 

model (Table 2.1) and so-called ‘Saito’ linearity or acceleration (see Section 2.3).  

 If the growing crack in Bjerrum’s (1967) model is replaced with the progressive growth 

of a shear surface, a zone of stress concentration is created within the unsheared material 

(Figure 2.3). As the area of this zone reduces to zero, the shear stress acting upon it (the force 

exerted by the weight of the failing material divided by the unit area) tends to infinity, thereby 

explaining a hyperbolic ‘Saito’ acceleration (Petley et al., 2008). Conversely, an asymptotic 

trend is exhibited by ductile deformation along existing rupture surfaces (with already destroyed 

interparticle bonds) in plastic materials (Kilburn and Petley, 2003), a difference that is not 

explained by the rate-dependent friction proposed by Helmstetter et al. (2004).  

A positive feedback defines the growth of shear cracks by their interaction and 

nucleation through stress concentrations around crack tips. Based on this, the time-dependent 

crack-growth models by Main (2000) and Petley et al. (2005) are synonymous with a progressive 

failure mechanism. This section therefore raises two key points: (1) final failure can be 

characterised by a precursory period of slope deformation; and (2) such deformation operates in 

a time-dependent manner and is therefore independent of exogenic forcing. Assuming that such 

deformation propagates to, and can be monitored at, the slope surface, which is probable in a 

rigid material such as rock, it is this latter tertiary period of progressive failure that offers 

opportunities for strain-rate based failure prediction. 

 

Table 2.1: The three phases of creep identified by Varnes (1978) and modified by Petley et al. (2005) 

in relation to brittle cracking. Of note is the influence of pore-water pressure that, although triggering 

microcrack development, becomes increasingly unconnected to landslide development especially within 

the tertiary phase where microcracks accelerate towards full shear surface growth. 

Varnes (1978) Petley et al. 
(2005) 

Description of Microcrack Growth by Petley et 
al. (2005) 

Primary Creep 1 

Varying pore-pressures cause FoS fluctuation. At a 
critical FoS, shear surface begins to develop due to 
stress concentrations on, and growth of, microcracks. 
Slope is stable. 

Secondary Creep 2 
Microcrack interaction begins at a critical density, 
leading to crack coalescence and shear surface growth. 

Tertiary Creep 

3 
Shear stress is loaded on unsheared area of shear zone, 
the rate of which increases exponentially at the 
beginning of the tertiary phase. 

4 
Hyperbolic acceleration causes a catastrophic 
acceleration to failure. 



Chapter 2: Rock Slope Deformation and Monitoring 

 

15 

 

2.3 Accelerating strain rates prior to failure 
 

The final stage of time-dependent failure presented above has previously been 

characterised by a hyperbolic acceleration in strain rate. As discussed in this section, however, 

this acceleration can take the form of both pre-failure deformation (creep), and of pre-failure 

rockfall activity. Examining the nature of this activity prior to rockfall is necessary in order to 

establish a monitoring system tailored to the failure mechanism.  

Three approaches have been implemented to examine creep within geological materials 

(Crosta and Agliardi, 2003). Micromechanical approaches (e.g. Mitchell et al., 1968; Kuhn and 

Mitchell, 1993; Murad et al., 2001) observe changes in particle-level processes that accompany 

and promote creep. Kuhn and Mitchell (1993) showed that strain rate is partially defined by 

particle rearrangement that occurs with movement of the mass along the shear surface. Rapid 

decreases in strain rate were observed when particles were rearranged, such that a greater 

proportion of deviatoric stress was accommodated by forces normal to particle contacts, rather 

than tangential forces (Kuhn and Mitchell, 1993). Rheological-mechanical approaches create 

models of the deformation behaviour of specific materials by fitting numerical constants that 

correspond with idealised models, such as viscous, elastic, plastic and combinations of each 

(Shea and Kronengburg, 1992; Vauchez et al., 1998). Tests are conducted in the laboratory, 

often using soil shear box and triaxial compression apparatus, which can be used to quantify the 

conditions under which materials fail. The final approach is the empirical measurement of strain 

rates in laboratory tests, scale models or through site-specific monitoring of the slope itself. 

Unlike the above approaches, empirical approaches based on monitoring directly address failure 

timing. In practice, surface displacements are recorded over time and examined to identify 

Figure 2.3: Modified Bjerrum (1967) model to account for Saito linearity. A proposed explanation for 

shear surface growth is one in which microcrack growth reduces the area of unsheared material (stress 

concentration) to zero. This growth is shown by the red arrow and induces a hyperbolic increase in 

shear stress responsible for Saito acceleration. Petley et al. (2008) suggest that a tension crack, or a 

shear surface moving towards the surface, creates the zone of stress concentration in the unsheared 

material that ultimately develops into the growing crack proposed by Bjerrum (1967). Adapted from 

Figure 12 in Petley et al. (2008:870). 
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accelerations that may precede final failure. This approach is adopted here and assumes that 

surface deformation is directly proportional to subsurface deformation at the shear surface. 

Owing to the hard rock composition of the slope in question and the shallow depth of previously 

observed failures (Rosser et al., 2007a), this assumption is considered likely to be valid. 

 

2.3.1 Pre-failure deformation 
 

Saito (1965) first quantified pre-failure accelerations during the tertiary phase of 

landslide movement, observing linearity in log time-log strain rate immediately prior to collapse:  

 

 ε̇�𝛿𝛿𝑓𝑓 − 𝛿𝛿� = 𝑎𝑎 [Eq. 2.4] 

 

where ε̇ is the strain rate, tf is the time of failure, t is the time of the strain rate measurement, 

and α is a dimensionless parameter, typically in the range of 1.7 – 2.2. Equation 2.4 shows that 

the strain rate is inversely proportional to the time to failure at which it is measured. If the 

initial strain ε0 at t0 is zero, integrating the above equation provides the strain measurement ε at 

t: 

 

 ε = 𝑎𝑎 ∙ ln
𝛿𝛿𝑓𝑓 − 𝛿𝛿0
𝛿𝛿𝑓𝑓 − 𝛿𝛿

 [Eq. 2.5] 

 

The time to failure is hence: 

 

 𝛿𝛿𝑓𝑓 =
0.5(𝛿𝛿2 − 𝛿𝛿1) 2

(𝛿𝛿2 − 𝛿𝛿1) − 0.5(𝛿𝛿3 − 𝛿𝛿1) + 𝛿𝛿1 [Eq. 2.6] 

Figure 2.4: Left. Hyperbolic acceleration of surface displacements prior to failure. Here velocity is 

measured using the displacement at each measurement interval. Right: For the same displacement, the 

reciprocal of velocity, Λ, also termed ‘Inverse Velocity’ is shown. Extrapolating to the point where 1/V 

is approximately zero provides an estimate of failure time. 
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where t3 is the time of the last survey, and t2 and t1 are time values selected at the same 

displacement interval as t3 and t2 (Federico et al., 2012; Figure 2.4). Based upon the observation 

of accelerating creep, Fukuzono (1985) described this acceleration in terms of displacement: 

 

 𝑑𝑑2𝑥𝑥
𝑑𝑑𝑡𝑡2

= 𝐴𝐴 �𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡
�
𝛼𝛼
  [Eq. 2.7] 

 

where x is displacement, (dx/dt) is velocity, and acceleration is (d2x/dt2). A is a dimensionless 

parameter, typically 1 × 10-4 – 1 × 10-3. Using this differential function, Saito’s (1965) 

observation can be represented using the reciprocal of velocity, Λ, which is manifest by a 

straight line in Λ-t space (Fukuzono, 1985) and elsewhere termed ‘Saito’ linearity: 

 

 Λ =  [𝐴𝐴(𝛼𝛼 − 1)](𝛼𝛼−1)−1(𝛿𝛿𝑓𝑓 − 𝛿𝛿)(𝛼𝛼−1)−1  [Eq. 2.8] 

 

where Λ is conventionally termed ‘inverse velocity’ ((dx/dt)-1). Failure timing can therefore be 

predicted by extrapolation to the point where Λ ≈ 0, where the slope deformation velocity 

approaches infinity.  

The approach has been applied retrospectively in a number of studies with varying 

degrees of success (for example, Zvelebill, 1985; Suwa et al., 1991; Hungr and Kent, 1995; Rose 

and Hungr, 2007). Figure 2.5 illustrates the variability in pre-failure deformation for a range of 

published failures. The significant deviation away from linearity in Λ-t space, including 

asymptotic trends, restricts the application of this technique and indicates both brittle and 

ductile failure. The exponential increases in strain-rate associated with ductile failures prevents 

Figure 2.5: Comparison of published pre-failure deformation data. Normalised time and inverse-

velocity values allow direct comparison between sites. The solid black line represents a perfectly linear 

trend in Λ-t, expected in first-time brittle failures. Asymptotic trends characterise ductile failure, or 

failure along existing sliding surfaces. Source: Froude (2011:121). 
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them developing into catastrophic failures; hence they are unlikely to develop very high rates of 

deformation as compared to brittle failures. 

 

2.3.2 Pre-failure rockfall activity 
 

Terzaghi (1950) proposed that the amount of downslope movement prior to failure is 

determined by the thickness of the basal shear zone, defined as the zone where the ratio of 

shearing resistance to shear strength decreases. Thin shear zones are therefore likely to yield 

millimetre scale movements, whereas thicker zones, in clay for example, may experience 

movements of the order of several metres or more. However, laboratory analysis has shown that 

pre-failure strains in brittle rock masses may reach ca. 3% of the rupture surface length (Petley 

et al., 2008). For example, a 1 m long shear surface mass may creep by up to 0.03 m. Assuming 

that a slope comprises a rigid body of geologic material, it follows that deformation resulting 

from the developing failure may propagate through it to define deformation patterns at the 

surface, providing an opportunity to monitor derivatives of strain accumulation beyond 

displacement alone.  

Voight (1989) suggested that seismic energy release could be measured to determine 

subsurface failure mechanisms. Amitrano et al. (2005) used a power-law to characterise the 

acceleration of seismic energy release prior to failure of the Mesnil-Val chalk cliffs, Normandy, a 

phenomena widely observed in laboratory testing. Though seismic monitoring of rock mass 

degradation has been applied to a number of failing cliffs (e.g. Helmstetter and Garambois, 

2010), studies are limited by the ability to install, maintain and interpolate within adequately 

dense seismic networks. Such networks also do not provide information of rockfall volume or 

geometry. However, Burjánek et al. (2012) deployed a network of 12 three-component velocity 

sensors and nine digital seismic systems to record ambient vibrations of a potentially unstable 

rock slope in the Swiss Alps. The resulting amplification data showed a significant orientation 

orthogonal to open tension cracks at the surface, highlighting the potential to characterise the 

response of slopes to multidirectional loading during earthquakes.  

Many observations and videos of rock slope collapse (see, for example, 

https://www.youtube.com/watch?v=ZVjr4mii3cE), especially within open-pit mines (e.g. Hoek 

and Bray, 1981; Suwa et al., 2008; Doyle and Reese, 2011), show crumbling prior to slope 

collapse, yet the quantification or predictive interpretation of this phenomenon has remained 

difficult until recently (Harries et al., 2009). Zvelebill and Moser (2001) examined three large 

individual failures and showed that time-dependent models of tension crack widening could be 

used to predict rockfall timing over a range of timescales. Using monthly TLS comparisons, 

Rosser et al. (2007a) found accelerated rockfall activity, defined as a combination of failure size 

and frequency, within the footprint of an incipient sandstone failure. The reciprocal of this 

https://www.youtube.com/watch?v=ZVjr4mii3cE


Chapter 2: Rock Slope Deformation and Monitoring 

 

19 

acceleration showed significant resemblance to inverse velocity plots applied to hillslope failures. 

Royán et al. (2015) also observed that spatially contiguous failures occurred at the periphery of 

a large toppling failure from a cliff. Again the reciprocal of rockfall activity was plotted, here 

yielding an approximation of failure time to within a matter of days. This approach has also 

been used to infer the stabilisation of rock slopes by observing a decrease in precursory events in 

the monitoring area (Pedrazzini et al., 2010). In this study, monitoring is applied to examine the 

presence and nature of pre-failure deformation but also, for a heavily fragmented rock mass, for 

the potential to observe precursors in the form of small rockfall 

 

2.3.3 Complexity in deformation rate measurement 
 

Approaches to the prediction of failure timing using observed linearity in log time-log 

strain rate relationships remain limited in a number of respects. In terms of the extrapolation of 

observed trends, there is significant ambiguity in the choice of regression used. Petley et al. 

(2002), for example, found that the brittle fracturing used by Fukuzono in a linear interpolation 

through log time-log strain rate space can only be applied to failures that occur through shear 

plane development in previously unsheared material. The choice of the time interval over which 

deformation rates are examined is also significant. Daily deformation rates may provide less 

variability between successive estimates than hourly deformation rates, owing to an increased 

signal-to-noise ratio. However, large time intervals are also less suited to capturing short-term 

variability in deformation rates characteristic of rapid accelerations towards failure, and are 

hence less likely to provide a precise estimate for the time of failure (Crosta and Agliardi, 2003; 

Royán et al., 2015). The area over which measurements are taken also remains ambiguous. Dick 

et al. (2014) showed that averaging deformation measurements over a larger area presented a 

smoother trend to failure, which proved more useful for analysing the underlying failure 

mechanisms than the use of single pixels (e.g. Harries et al., 2009).  

 The transition between the use of the inverse velocity for slope failure prediction and 

the prediction of precursory rockfall activity is also one that, at present, has little underlying 

mechanical rationale. Both Suwa et al. (1991) and Rosser et al. (2007a) have shown that a 

positive relationship exists between precursory activity and the size of final failure. When 

considering the movement of large volumes of material, final failure can be considered as full 

failure of the slope. However, for rockfall this deformation is more ambiguous, and defining the 

type or size of failure that constitutes a final or largest possible failure is subjective. 

Furthermore, variability in patterns of precursory acceleration based upon the size of final 

failure remains unclear. Rosser et al. (2007a;b) showed that the amount of precursory rockfall 

activity was proportional to final failure size. For fragmented rockfall of the order of 1 m3, the 

existence of this activity was difficult to identify. By implication, even smaller rockfall may be of 
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insufficient size to exhibit precursory activity. Several mechanical theories can be proposed to 

explain this: very small rockfall may be of insufficient volume to fragment prior to failure, 

possible as the failure size approaches that of coherent uniform blocks; a minimum block weight 

and hence stress may be required to exceed the intact strength of the rock mass; or, if the scale 

of final failure is approximately equal to the scale of persistence/jointing, then precursors to 

failure may not be permissible beneath the scale of individual discontinuities. From a 

methodological perspective, this pattern may also represent the scale at which precursory 

deformation is comparable with the study’s monitoring precision (10-3-10-2 m), and hence 

highlights the importance of accurate and precise measurement of deformation. 

Inverse velocity approaches reduce a multitude of surface displacements and controls 

into a single log time-log deformation plot (Federico et al., 2012). In general, examinations of 

creep and the use of inverse velocity during the tertiary phase rarely attribute observed patterns 

to external environmental conditions. Rosser et al. (2007a) captured a dataset that allowed the 

relationship between environmental conditions and rockfall timing to be assessed; however, no 

relationships between environmental conditions and patterns of increased rockfall activity prior 

to failure were examined. Increases in rockfall activity were noted within the footprints of the 

majority of failures analysed. For failures < ca. 100 m3 this pattern was not observed. 

Furthermore, while failures > ca. 100 m3 showed an increase in rockfall activity, no 

distinguishable transition from secondary to tertiary creep was evident. This suggests that a 

hyperbolic acceleration may have occurred at a sub-monthly timescale and retains the 

possibility that smaller failures undergo accelerations in precursory activity over a similar 

timescale. This therefore highlights the importance of monitoring intervals below those 

conventionally used, typically no less than one month.  

This section has described current understanding of the temporal progression of a failing 

slope. In relation to this study, the rate-dependency of movement within the tertiary creep 

phase allows failure-time prediction via the Saito method and similar approaches. In rigid slope 

bodies, measurements of surface displacement and rockfall are assumed to reflect movement 

patterns at the shear surface, induced by microcrack growth, which have exhibited linearity and 

predictability in a laboratory setting (Petley et al., 2005). As is discussed in the following 

section, linear relationships between rockfall timing and environmental conditions have been 

developed in a number of previous studies outside of the laboratory. In part as a function of 

data acquisition, however, these regressions consider rockfall as a static occurrence, and have 

rarely characterised the time-dependent failure development with respect to external conditions. 

The collection of rockfall data over short return intervals therefore holds implications for 

characterising the presence and nature of pre-failure activity, as well as its relationship with 

environmental conditions. 
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2.4 External controls on failure evolution 
 

Analysing the relationship between rockfall occurrence and drivers that are external to 

the rock face requires a distinction to be made between factors that prepare the slope for failure, 

and factors that trigger failure. The former can be considered to exert a slow, cumulative effect 

on the rock mass, whereas the latter constitutes a near-instantaneous influence (Gischig, 2011). 

In Figure 2.6, progressive failure occurs when the resistance of the rock mass is exceeded by the 

driving forces. Gunzburger et al. (2005) note that this scenario can occur uniquely due to: 

weathering (point 1) over 104 – 106 a; over-steepening of the slope due to erosion over 102 –

 104 a (point 2); or through sudden seismic or rainfall events (points 3 and 4), which may act to 

either reduce the resistance of the slope to failure, or increase the magnitude of driving forces. 

Long- to medium-term effects can be considered as preparatory factors. While the individual 

impacts of such factors may be infinitesimally small, their cumulative effect can result in 

progressive deformation of the rock mass. Below, the occurrence of a rockfall is examined as the 

culmination of a complex interplay between numerous interrelated preparatory stresses and, in 

some cases, triggers. This review emphasises that rockfall can therefore never be considered 

purely as a function of a single trigger (Gunzburger et al., 2005; Krautblatter and Dikau, 2007).  

 

 2.4.1 Preparatory factors that accumulate rock mass 
damage 

 

Weathering of the rock mass acts over a wide range of temporal and spatial scales, and 

is responsible for the production of disintegrated, rockfall-prone material that has mostly been 

Figure 2.6: Conceptual figure showing the timescales and roles played by preparatory and triggering 

factors in landslide evolution. Red dots indicate when progressive failure can occur due to the 

equalisation of driving and resisting forces. Modified from Gunzburger et al. (2005, Figure 2) and 

Gischig (2011, Figure 1.1). 
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detached by the breaking of cohesive rock bridges. The effects of this disintegration are 

superimposed upon lithological and topographic controls exerted by the rock slope, which hold 

considerable influence over the rate of erosion (Krautblatter and Dikau, 2007; Viles and Goudie, 

2003). A comprehensive examination of the role of weathering is provided by Viles (2013), 

comprising biological, chemical, and mechanical, all of which can act to lower both the cohesion 

and frictional resistance of the slope. Chemical weathering, for example, has previously been 

examined as a preparatory factor with respect to the Randa rockslide (Sartori et al., 2003; 

Jaboyedoff et al., 2004). Jaboyedoff et al. (2004) proposed that chemical weathering of granite-

gneisses, and subsequent formation of smectite, resulted from precipitation. This degraded shear 

resistance along joints and induced accelerations of movement by progressive failure of rock 

bridges without the development of pore water pressure.  

 
Table 2.2: Meteorological factors and triggering mechanisms, created using information from 

Gunzburger et al. (2005:333) and d’Amato et al. (2016:720). 

 Predisposition 
factors 

Preparatory 
factors External Event 

Processes 
proposed for 

rockfall 
triggering 

Mechanical 

Steep sided valley 

Rise in slope 
steepness due to 
valley incision 
 

Freezing and 
thawing of water in 
fractures 
 

Increasing pressure 
in joints due to ice 
formation (confined 
dilatation) and 
sealing of cracks 
leading to water 
pressure 

Well-developed 
fracture network 

Regular seismicity 
 

Neotectonic stresses 
Damage 
accumulation 
 

High-magnitude 
earthquake 

Ice thermal 
wedging due to 
confined thermal 
dilation 

Cold environments, 
e.g. Alpine, 
permafrost and 
glaciated 

Frost shattering 

Hydrological 
and 

Meteorological 

Climate with a 
high precipitation 
rate 

Regular rainfall 
regime 

Rainfall (intense or 
prolonged) 

Clay swelling in 
rock joint 
 
Loss of cohesion 
 
Increased water 
pressure in rock 
joint 

Rapid snow and ice 
melt 

Thermal 
Climate with sharp 
temperature 
contrast 

Thermal stresses 
that propagate 
cracks 

Daily and seasonal 
surface temperature 
oscillations 

Permanent 
deformation of 
sheeting joints 
through fracture 
tip propagation 
induced at depths 
< 1 m 

Geochemical 

Mineralogical 
content of the rocks 
prone to 
weathering 

Progressive 
weathering 

Rainfall  
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Weathering of material can act to both prepare and trigger rockfall under certain 

conditions (Viles, 2013). For example, weakening of the rock mass by weathering can trigger 

rockfall if a cavernous feature is developed that exceeds the material strength. Even once a 

weathered rock particle is detached from the rock mass through rock bridge failure, it may 

reside on the slope, and therefore not constitute a rockfall. However. this preparation for failure 

can constitute a trigger if there is no toe support for the dissected rock mass, such as at an 

overhang or in steeply dipping joint networks, depending on particle geometry and joint 

roughness (Krautblatter and Dikau, 2007).  

Frost action is the most important cause of rock mass disintegration in permafrost and 

glaciated environments, and is considered as a form of mechanical weathering. A detailed review 

of the surrounding literature is provided by Matsuoka and Murton (2008). Freeze-thaw action, 

often referred to as frost action, can occur due to the ca. 9% volumetric expansion that occurs 

during water-to-ice transition. In a fully saturated sandstone block, this can exert pressures up 

to two orders of magnitude greater than the tensile strength, assuming that all pores and voids 

are fully saturated and become frozen (Hallet et al., 1996). Volumetric expansion can also result 

in weathering by hydrofracture of pores and microcracks, and the breakup of individual mineral 

particles within microcracks (Hallet, 2006). Growing evidence suggests that ice segregation, 

rather than expansion, is critical a critical process in the mechanical weathering of moist, porous 

rocks. This occurs when water travels through a rock mass by temperature-gradient induced 

suction, towards freezing areas of the mass. Ice lenses subsequently form, which increase tensile 

stresses at the boundary between frozen and unfrozen conditions. This process has been 

replicated in lab experiments of sandstone (Hallet et al., 1996) and limestone (Murton et al., 

2006), and is widespread in environments with low temperature gradients and where sub-zero 

temperatures are sustained for significant periods of time. In addition to mechanical weathering 

of the rock mass, the warming of ice even below freezing also reduces shear strength along 

discontinuities, thereby predisposing blocks to fail that are constrained by ice-filled joints 

(Davies et al., 2001).  

Phillips et al. (2016) examined the Piz Kesch rock slope failure, Swiss Alps, with respect 

to freeze-thaw conditions and glacial debutressing. Photogrammetry surveys of the failure scar 

showed that it was likely to have been controlled by fracture propagation and failure of intact 

rock bridges. Large temperature variation, resulting in above average cumulative freezing and 

thawing days, was proposed as a mechanism for both. The role of ice wedging in a pre-existing 

tension crack was also evident, however, the presence of 6 000-year-old organic matter in this 

crack was drawn upon to infer long-term progressive failure and highlight the importance of 

phases of loading and unloading due to glacial retreat and advance. 

In a non-glaciated and non-permafrost setting, Gunzburger et al. (2005) examined the 

role of diurnal surface temperature fluctuations following a rockfall along a transport corridor in 
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southern France. Results from a 2D numerical model showed that, if the characterised joint 

network exhibited perfect elastoplastic behaviour, diurnal surface temperature changes would 

have been sufficient to expand and induce downward creep of the failed block. Total Station 

measurements of the remaining unstable mass showed displacements of up to -4 × 10-4 m with 

slow cooling during the night, and up to 8 × 10-4 m during rapid warming at sunrise. Although 

this study was undertaken for an individual block, it suggests that failure potential can be 

enhanced by progressive loosening of material assemblage by differential displacement of blocks 

and joint openings. 

Collins and Stock (2016) monitored the thermally induced displacements of a fracturing 

granitic exfoliation sheet in Yosemite National Park. Exfoliation occurred when thermally driven 

stresses resulted in joint creation parallel to the rock surface, allowing sheets or slabs of rock to 

detach. Over a three-year period, this showed a daily cycle of temperature variation on the 

exfoliation surface in response to insolation. The crack widened most in the afternoon during the 

hottest period of the day, though not when the rate of temperature increase was highest 

(sunrise). During cooling towards the late afternoon and sunset, the crack contracted, with a 

mean total displacement of the order of ca. 0.008 m d-1. The deformation through multiple daily 

cycles was shown to result in permanent deformation of the rock mass, with an incremental 

widening of ca. 0.001 m d-1. Permanent deformation was 0.021 m greater during summer months 

than winter months suggesting that rockfall may be more likely during summer months when 

sheet discontinuities are at the maximum outward position from cliffs.  

Eppes et al. (2016) characterised solar induced thermal stresses that contributed to 

mechanical weathering of a granite boulder on open ground. This study highlighted that diurnal 

insolation can introduce elevated tensile stress, which causes rock to become more susceptible to 

cracking. An 11-month dataset of cracking, measured using acoustic emissions, was combined 

with measurements of rock temperature and strain. Maximum cracking coincided with 

maximum insolation driven thermal stresses, and when storms caused perturbations in 

temperature, suggesting that thermal stress are enough to generate subcritical crack growth that 

can prepare a slope for failure. The timing of cracking showed significant clustering in the three 

hours around 13.00 and 18.30, relating to the maximum daily temperature and average timing of 

the sunset, respectively. Cracking during the middle of the day was the result of tension that 

developed in the interior of the rock due to volumetric expansion, whereas cracking at sunset 

related to tension that developed at the near surface due to cooling. Storm events produced 

thermal stress distributions that were superimposed on background stresses from diurnal 

insolation. In such instances, tensile stress developments were often a function of dampening of 

the rock surface, which triggered rapid cooling of the rock surface (Viles et al., 2010). However, 

no correlation was found between cracking and previously proposed ‘thermal shocks’ of 

2 °C min-1 within a single temperature cycle (Hall and Thorn, 2014).  
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 2.4.2 Triggers of rockfall 
 

 The main triggering mechanisms of rockfall are meteorological, including rainfall and 

temperature, and, for marine cliffs, wave action at the cliff base (Duperret et al., 2004). 

Krautblatter and Dikau (2007) identify two distinct forms of triggering mechanism: (1) external 

causes, which can produce an increase in shear stress on unaltered shear resistance; or (2) 

internal causes, which decrease the resistance to shear. Increasing shear stress can arise by 

steepening of the sliding plane, including through erosion of the rockface, as well as by an 

increase in stress due to increased overburden, mechanical impact, or water pressure. The 

shearing resistance can be lowered by physical and chemical weathering of asperities, or a 

temporary loss of resistance to frictional sliding such as by ice or water (Krautblatter and 

Dikau, 2007). 

 Ice melting is a commonly described rockfall trigger that lowers the cohesion of joints. 

Strunden et al. (2015) correlated temperature, precipitation and seismicity with the monthly 

occurrence of rockfall on deglaciated calcareous cliffs in the Lauterbrunnen Valley, Switzerland. 

Over the 18-month monitoring period, only a weak coefficient of determination (r2 < 0.2) was 

found between peaks in rainfall and rockfall occurrence. However, an r2 value of 0.6 was found 

between the onset of freeze-thaw conditions and rockfall that occurred after a two-month lag, 

suggesting that many rockfall are triggered during thawing and snowmelt. This relationship was 

strongest for events up to 1 m3, and can be explained by the larger temperature variations at 

the rock surface that prevent frost wedging of fractures deeper into the rock mass. 

For a limestone cliff, D’Amato et al. (2016) monitored rockfall through a combination of 

ten-minute photo collection using a wide angle lens (> 0.1 m3 rockfall observed), monthly photo 

collection using a telephoto lens (> 0.01 m3 rockfall observed), and annual TLS surveys. 

Monitoring at this high frequency allowed a distinction to be observed between the warming and 

cooling phases that constitute freeze-thaw conditions. Rockfall occurred more frequently during 

warming and thawing than during cooling. Rockfall frequency in this study was also found to be 

up to seven times greater during freeze-thaw conditions than the mean background rate, and 26 

times greater when mean rainfall intensity exceeded 5 mm h-1. 

 For landslides and debris-flows, which often occur as the combined effect of intense 

rainfall and wet antecedent conditions, empirical models of precursory rainfall characteristics 

have been developed (Caine, 1980). Rainfall can be defined as antecedent in the days preceding 

a landslide event, or critical at the time of failure (Rahardjo et al., 2001). The true impact of 

antecedent rainfall on failure susceptibility is difficult to quantify, as much of the soil moisture 

is routed into river networks through drainage, or is lost from the slope through 

evapotranspiration. The rate of decrease in regolith moisture is dependent on the catchment 

shape and size, relief, slope gradient, vegetation and lithology. Debris-flow initiation on slopes 
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that are covered by coarse colluviums, for example, is less sensitive to antecedent conditions 

because of the large, highly permeable interparticle voids (Badoux et al., 2008).  

Critical rainfall of a higher intensity typically requires a short duration to initiate slope 

failure, although the opposite is also true. Intensity-duration plots, proposed by Caine (1980), 

illustrate this relationship with the general form: 

 

 𝐼𝐼 = 𝛼𝛼𝐷𝐷−𝛽𝛽 [Eq. 2.7] 

 

where I is mean rainfall intensity, D is rainfall duration, and α and β are constants. Equation 2.7 

provides an empirical threshold, in this case the minimum level of intensity and duration 

required for failure (Reichenbach et al., cited in Aleotti, 2004), with the straight-line form: 

 

 log 𝐼𝐼 = log𝛼𝛼 − 𝛽𝛽 log𝐷𝐷 [Eq. 2.8] 

 

where β represents the exponent, or gradient in log I-log D space. Empirical thresholds such as 

this are based on back analysis of landslide-inducing rainfall events (e.g. Caine, 1980; Guzzetti 

et al., 2008) and have been defined on local, regional and global scales (Guzzetti et al., 2007). 

For rockfall, however, this form of analysis, alongside the relative importance of rainfall 

accumulation versus intensity, has seldom been explored. 

 

 2.4.3 Summary of external forcing 
 

Krautblatter and Moser (2006) showed that rainfall intensities up to 9-13 mm h-1 

yielded none or very small increases in rockfall behaviour, but intensities exceeding this 

significantly increased the rate of secondary rockfall events. As such, Krautblatter and Dikau 

(2007) note that defining a trigger event is an example of non-linear behaviour, since small 

changes in a parameter can induce large changes in the qualitative and quantitative behaviour 

of a system. Given that non-linarites are an inherent attribute of rockfall triggering, there is 

arguably no reason to suggest that linear relationships between rockfall timing and 

environmental conditions exist, despite the fact that such relationships are frequently drawn 

upon.  

It is perhaps unsurprising, therefore, that previous research in the setting of this study 

has yielded weak relationships between rockfall and environmental conditions (Rosser et al., 

2007a, Lim et al., 2010; Rosser et al. 2013). However, these studies have emphasised that the 

timing of a rockfall must be related to its path to failure, which represents damage that is 

accumulated within the rock mass.  
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Figure 2.7 is based on observations of rockfall from an actively failing coastal rock slope 

(Rosser et al., 2007a). The model satisfies several observations that highlight the role of spalling 

of material from a rock slope undergoing progressive failure, and the relationship of this activity 

with environmental conditions. First, failure triggers are often absent or are not coincident with 

the failure itself. This implies that a slope may reside close to a critical state, and may only 

require an infinitesimally small increases in stress to enter the final failure period. Second, some 

slopes may not collapse despite experiencing a large stress. Many studies have sought to 

characterise landslide patterns after earthquakes (e.g. Harp et al., 1996; Meunier et al., 2008; 

Owen et al., 2008; Collins and Jibson, 2015) and rainstorms (e.g. Dai et al., 2001; Guzzetti et 

al., 2008; Kirschbaum et al., 2011), but often in such events many slopes remain intact despite 

experiencing an apparently identical stress state to those which do collapse. By implication 

those slopes which do not fail may accumulate damage, yet may not collapse. This implies that 

rock masses must accrue a sufficient or critical amount of damage, often before the trigger 

Figure 2.7: Schematic model of the development of a large slope failure. Slopes accrue damage 

through shedding of surface material by rockfall. Note the hyperbolic acceleration towards final failure 

and the variable response to environmental forcing. A: slope undergoes background rate of detachment 

due to weathering. B: Irreversible damage accumulation begins due to storm occurrence, which 

accelerates the rate of small rockfall. C: Periods of external forcing that vary in intensity and duration 

act to increase damage accumulation within the rock mass towards a critical strain. D: At this stage, 

the slope can remain in a state close to failure, where only an infinitesimally small trigger may be 

required to initiate the onset of final failure. E: The control on deformation shifts from external forcing 

to internal drivers, resulting in a hyperbolic increase in strain rate towards failure. Reproduced from 

Figure 8 in Rosser et al. (2007a). 
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event, to instigate final collapse. Third, event-driven landsliding has been observed to adhere to 

a power-law magnitude-frequency distribution in which the many small events may be 

precursors to larger subsequent, but yet to fail events. Fourth, a hyperbolic increase in rockfall 

activity, if detectable and distinguishable from background noise before collapse, may be 

conducive to failure prediction.  

The model draws upon empirical relationships between the timing of energetic 

environmental conditions and rockfall occurrence at a monthly resolution. As a result, the 

temporal correspondence between energetic storm events and failure timing requires validation. 

Furthermore, while equal intervals are depicted between phases A-E, in reality, the acceleration 

towards final failure in the tertiary phase is likely to be much shorter, particularly if the final 

failure size is small. Since laboratory investigations tend only to monitor the deformation of 

materials under simulated stress conditions, the disparity between the durations of these stages 

also requires validation. It is therefore clear that a database of accelerations at a high frequency, 

and one that is supplemented by environmental and lithological datasets, would be ideally 

suited.  

 

2.4.4 Summary of methods to assess the relationship 
between external forcing and rockfall occurrence 

 

At present, while weather variables can now be recorded at very high frequency 

(1 min – 1 h), at low-cost, and with relatively little difficulty, the same does not apply to 

rockfall monitoring. Due primarily to the logistics involved in monitoring, campaigns typically 

comprise monthly surveys and environmental conditions must be downsampled to monthly 

average statistics for comparison. Relationships between the timing of rockfall and the onset of 

short-term (e.g. hourly) environmental perturbations are therefore impossible to identify.  

Laboratory tests provide a means of damage accumulation measurement at a frequency 

that corresponds to the rate of simulated environmental forcing (e.g. Lajtai et al., 1987; Hallet et 

al., 1991; Murton et al., 2006). In the field, however, monitoring damage accumulation within 

the rock mass, manifest as weathering or material detachment, is typically undertaken over time 

intervals that are orders of magnitude greater than those of climate data measurement. In situ 

monitoring apparatus have provided highly accurate measurements of rock mass response at 

frequencies that are comparable to the durations of environmental forcing (Collins and Stock, 

2016; Eppes et al., 2016). However, the degree to which these analyses can be extrapolated 

beyond the local scale conditions (individual boulders, or individual unstable blocks) in question 

remains unclear. Although rockfall can be measured at high spatial resolutions, monthly or 

weekly monitoring of rock masses requires weather conditions that are averaged over timescales 

often far greater than the variability of environmental controls. This requires the ability to 
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attribute small material detachments, which may be superimposed by or coalesce into larger 

failures over the month, to individual climatic events that fall below the monitoring interval. 

Improved monitoring capabilities have enabled measurement of the response of entire rock 

slopes (e.g. Rosser et al., 2007a; Lim et al., 2010; Delonca et al., 2014), as well multiple rock 

slopes within an induvial valley or coastline (e.g. Strunden et al., 2015; Vann Jones et al., 2015). 

In order to bridge these deficits, a system is required that records change to the entire slope, at 

a time interval comparable to that of the timescales of exogenic forcing.  

 

2.5 Magnitude-frequency distribution of rockfall 
  

The interplay between preparatory and triggering factors emphasises the need to 

consider the path to failure that may occur prior to a rockfall. As described in Figure 2.7, 

preparatory factors may act to induce damage to the rock mass through the occurrence of 

smaller rockfall within the footprint of larger, yet-to-fail events. In order to interpret this 

mechanism, the size distribution of rockfall events that occur must be quantified.  

Characterising the size distribution of landslide inventories has been undertaken for a 

range of purposes, including susceptibility, hazard and risk estimation (Hungr et al., 1999; 

Crozier, 2005; Guzzetti et al., 2005; Fell et al., 2008; Guzzetti et al., 2008; Van Westen et al., 

2008) and the development of empirical models of landscape evolution (Hovius et al., 1997; 

Densmore et al., 1998; Hovius et al., 2000; Dussauge-Peisser et al., 2002; Turcotte et al., 2002; 

Dussauge et al., 2003; Turcotte and Malamud, 2004; Korup, 2005; Guthrie and Evans, 2007; 

Parker et al., 2011; Barlow et al., 2012; Li et al., 2016). A variety of failure types induced by 

specific triggers are often characterised, including fatal landslide events within global disaster 

inventories (Petley et al., 2007; Petley, 2012), submarine landslides (Issler et al., 2005; Ten 

Brink et al., 2006; Chaytor et al., 2009), rainfall induced landslides and debris-flows (Fuyii, 

1969; Pelletier et al., 1997; Dai and Lee, 2001; Brardinoni and Church 2004; Hungr et al., 2008; 

Guzzetti et al., 2009), co-seismic landslides (Keefer, 2000; Dai et al., 2011; Gorum et al., 2011; Li 

et al., 2014; Xu et al., 2014; 2015; Bucci et al., 2016; Robinson et al., 2016), and rockfall (Hungr 

et al., 1999; Matusoka and Sakai, 1999; Dussauge-Peisser et al., 2002; Rosser et al., 2007a; 

Marques, 2008; Lim et al., 2010; Barlow et al., 2012; Vallianatos, 2013; Valagussa et al., 2014; 

Strunden et al., 2015).  

 Conventional approaches to landslide inventory compilation have drawn upon failures 

mapped using aerial and satellite imagery, whereby failures are assumed to be triggered by a 

single large event, or are accumulated over an extensive period of time. In order to estimate 

erosion rates from this data, where volume cannot be measured directly, the volume of material 

is estimated using area-volume scaling relationships (Larsen et al., 2010). For rockfall, however, 

estimating change in this way is only possible if the rockfall yields deposits that are large 
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enough, and have a long enough residence time, to be observed from above. The use of airborne 

or terrestrial LiDAR enables 3D measurement of rockfall volumes, therefore avoiding 

uncertainties in applying area-volume relationships to the entire range of measured rockfall 

shapes. Young et al. (2011) measured rockfall events in a coastal setting using airborne LiDAR, 

however, the reduced coverage of the cliff face that is possible and the limited frequency of 

flights increases the likelihood that deposits will be moved, or rockfall scars will be superimposed 

by larger contiguous failures (Abellán et al., 2014).  

 Once the magnitude of landslides has been estimated, a relationship between the 

magnitude and frequency of failures can be defined. Magnitude-frequency curves stem from the 

observed power-law relationship between the size and frequency of earthquakes (Gutenberg and 

Richter, 1954). Wolman and Miller (1960) proposed that the frequency distribution of 

geomorphic events is log-normally distributed, and that the geomorphic effectiveness of events 

(the product of magnitude and frequency) is greatest for frequent (though not the most 

frequent), moderately sized events. Sandpile models have been used to explain this relationship 

with the concept of self-organised criticality (Bak et al., 1987), reflecting the scale-invariant 

response of hillslopes to failure and yielding a linear relationship between magnitude and 

frequency in log-log space. Fundamentally, this fractal response suggests that for every large 

landslide event there are more medium sized events. For every medium sized event there are 

many more small events, and for every small event there are even more very small events. The 

ratio between these frequencies of different event sizes remains constant. 

 Hergarten (2003) noted that this ratio, the exponent of a power-law relationship β, is 

similar for earthquakes as it is for gravity-driven landslides. However, the exponents for rockfall 

data were lower than for landslide data, suggesting that smaller rockfall contribute less to the 

total volumetric loss. In practice, this is likely to relate to the fact that smaller rockfall are hard 

to measure and, in general, are considerably smaller than landslides. The use of self-organised-

criticality models was shown to overestimate these large events. The consideration of a time-

dependent weakening of materials, such as the coalescence of microcracks described in Section 

2.2.2, has been proposed to improve such models by providing a means to generate the observed 

frequencies of the smallest events (Rosser et al., 2007a). 

  

 2.5.1 Magnitude-frequency analysis undertaken on the 
North Yorkshire coastline 

 

A developed understanding of the magnitude-frequency characteristics of rockfall has 

arisen from previous research in the setting of the rock slope examined in this study. Lim et al. 

(2010) observed that the magnitude-frequency distribution of rockfall, from a site 12 km north 

of this study, resembled that of non-marine rock slopes, where 75% of recorded events were 
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< 0.001 m3. The exponential nature of this distribution, in which the log of frequency 

distribution decreases linearly with the log of rockfall volume, supported a hypothesis that 

rockfall evolve as a continuum of small-scale fragmentation of the rock mass whereby large 

individual rockfall are in fact the sum of smaller, more frequent detachments. Both Lim et al. 

and Rosser et al. (2007a) found that the lithology of the rock face had a considerable influence 

over the exponent of the magnitude frequency distribution and hence estimated erosion rates for 

each (β = 1.43 – 1.91). The intact strength and depth of bedding also showed significant 

correlations with the permissible dimensions of failure. Mudstones, for example, yielded higher 

than average exponents, which represented a high proportion of small rockfall events, due to the 

relatively low material competence and closely jointed structure.  

Many landslide distributions are characterised by a decrease in the frequency 

distribution of the smallest failure events, leading to a rollover in log magnitude–log frequency 

space. Explanations for this effect for landslides have been physical, for example, where 

minimum landslide sizes are controlled by the scale at which well-defined channel networks 

develop, or the possible transition from cohesion controlled failures to failures controlled by 

basal friction (Guzzetti et al., 2002). More often, these rollovers reflect the level of completeness 

of the inventory, which is limited by the spatial resolution of monitoring. Relatively little 

research has been undertaken into the effects of the temporal resolution of monitoring, as this 

requires data collected at regular intervals over a long duration, usually encompassing the effects 

of seasonal variations in rockfall occurrence. Using a three-year dataset of change for North 

Yorkshire coastline, Barlow et al. (2012) showed that the tail of rockfall magnitude-frequency 

distributions is sensitive to the return interval of monitoring. Inventories acquired beneath the 

timescale of seasonal variations in rockfall activity produced unstable estimates of the frequency 

density of large events. However, inventories recorded with larger sampling intervals 

underestimated the frequency distribution of small rockfall events that were superimposed by, or 

coalesced into, larger, contiguous rockfall. Monthly monitoring inventories were proposed to 

provide magnitude-frequency relationships that corresponded with observed cliff retreat. For 

months that contained high magnitude events, however, seasonal inventories were more 

appropriate. Rosser et al. (2007a) noted that the duration of monitoring may be small in 

comparison to the return period of all possible event magnitudes. While resulting inventories 

may only capture a limited range of failure sizes, an individual rock face may comprise areas 

that each reside at a single position on a continuum of stability, which could be considered at 

different stages of progressive failure. A representative distribution of failure sizes may therefore 

be captured below the maximum return period of failure sizes.  

 Abellán et al. (2014) suggest that the spatial resolution of monitoring should be 

sufficient to discretise the smallest rockfall events in a magnitude-frequency distribution, and 

that the recording frequency should fall below the timescale of superimposition and coalescence. 
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In practice, defining the timescales over which failures coalesce is complex and requires the 

ability to monitor the rockface over a sustained period in (near) real-time. A priori, therefore, 

defining the optimum monitoring design is challenging. In order to do so, this study requires a 

dataset that records rockfall over short time intervals, but over a duration that includes several 

seasons. 

 

2.6 The spatial development of rockfall 
 

High-resolution monitoring of progressive rock slope failure has provided substantial 

insights into the spatial patterns of rockfall. Stock et al. (2011) observed that precursory rockfall 

sequences from the Rhombus Wall, Yosemite National Park, propagated upward and laterally 

along near vertical sheeting joints. Stresses that drive the propagation of such joints are tensile, 

perpendicular to the cliff face and located primarily at the surface, whereas compressive stresses 

are dominant at greater depths depending on slope concavity (Martel, 2011). Since rocks are 

generally weaker in tension than compression (Selby, 2005), sustained tension near to the 

surface may enhance joint propagation and hence failure along it. Stock et al. (2011) also 

highlighted the role of existing discontinuities and slope convexity in governing the spatial 

pattern of failure. Failed slabs were bounded by pre-existing discontinuities. At these 

intersections, including alcoves, sharp topographic corners tend to form with high stress 

concentrations, promoting the development of new joints and failures. More recent studies by 

Rohmer and Dewez (2015) and Royán et al. (2015) have shown that rockfall between 10-3 –

 10-2 m3 occur at the peripheries of larger, incipient failures that later develop.  

In coastal settings, Styles et al. (2011) used a numerical simulation constrained by limit 

equilibrium models to back-analyse a landslide that occurred at Joss Bay chalk cliff, Kent, UK. 

This event occurred after the removal of a wave-cut notch initiated progressive failure upslope. 

At a critical depth, strain concentrations and compressive stresses at the wave-cut notch 

resulted in the upward migration of shear strain, causing tensile failure and crack growth at the 

cliff top. As a cluster of failure events progresses across the cliff surface tangential to the 

subsurface deformation, stress concentrations associated with existing failures tend to spread, 

predisposing the slope to further failure.  

For predominantly sandstone cliffs along the North Yorkshire coastline (the setting of 

this study), Rosser et al. (2013) found a redistribution of marine erosion driven stress up the 

cliff face through sequencing of contiguous material detachments. Lim et al. (2011) and Vann 

Jones et al. (2015) examined the relationship between environmental drivers and erosion of the 

coastline, drawing upon datasets from terrestrial laser scanning, weather stations, 

accelerometers, and more recently seismometers continuously recording cliff microseismic 

movements. Lim et al. (2011) found that statistically significant relationships were obtained 
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between rockfall occurrence and shaking detected using accelerometers. This relationship was 

strongest between concurrent energetic marine conditions and high fetch winds, and rockfall 

from across the cliff face. Vann Jones et al. (2015) found that similar relationships appeared 

stronger for rockfall from the entire cliff than for rockfall sourced only from the inundated zone 

at the cliff base. This is despite the zone being inundated by water at high-tide, and the 

integration of variable inundation durations and tide heights into the analysis. This supports the 

observed linkage between failures that initiate at the base of the cliff and propagate upward 

(Rosser et al., 2013), and suggests that microseismic shaking of the cliff has an impact upon the 

spatial distribution of rockfall (Lim et al., 2011; Vann Jones et al., 2015). However, the role of 

seismicity in this setting has been shown to be insufficient as a stand-alone driver of failure 

(Brain et al., 2014). With regard to Section 2.4, therefore, this suggests that microseismicity can 

be regarded as a proxy variable for environmental forcing of the cliff. While the above studies 

represent significant advancements in our knowledge of progressive rock slope failure, we lack 

sufficient data to describe this process in general or more widely applicable terms. 

 This section has highlighted the importance of monitoring deformation across the entire 

rock face in order to elucidate rockfall propagation across it. The progression can take the form 

of spatially contiguous rockfall, or rockfall at varying elevations that are connected in time by 

the upward migration of shear strain from the base of marine cliffs to the cliff top. Combined 

with the previous sections, this highlights the importance of monitoring across wide areas at 

high spatial and temporal resolutions. These characteristics are summarised below, alongside 

descriptions of potential monitoring apparatus.  

 

2.7 Rockfall monitoring requirements in this study 
 

Based on the nature and controls upon time-dependent failure reviewed above, 

uncertainty persists regarding the detailed mechanisms of slope failure development and their 

manifestation as surface deformation. The reasons behind this are reviewed from a monitoring 

perspective in depth within Chapter 4, but are described in brief below: 

 

(1) The scale of small rockfall, which may constitute precursors to larger, yet-to-fail events, 

is often below or beyond the spatial resolution of monitoring. The power-law 

distribution of rockfall discussed in Section 2.5 suggests that failure in some settings 

could be the result of fragmentation of the rock mass during, or as a result of, wider 

failure. Hence, monitoring is required at a high spatial resolution that is beneath the 

scale of structural discontinuities, in order to explore this idea. For large-scale slope 

deformation, the spatial resolution is arguably less important than the precision of 

depth estimates. For rockfall, however, the spatial resolution is critical as it determines 
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the minimum aerial extent that can be defined. For LiDAR applications, this spatial 

resolution is in part determined by the point spacing of acquisition. Depending on the 

adopted processing approach, the point spacing further determines the cell size that 

results from interpolation of the point cloud into a fixed grid.  

 

(2) As discussed in Section 2.3.1, critical levels of pre-failure strain believed to be necessary 

to enable final catastrophic failure, have been shown to be only ca. 3% of the final shear 

surface length (Petley et al., 2008). These can be accommodated along the entire 

rupture, generating low localised strains and deformation on the surface. Repeated 

surveying of unchanged, nadir surfaces using LiDAR produces a Gaussian distribution of 

range estimates. The width of this distribution defines the monitoring precision, such 

that a narrower distribution implies that range estimates are more consistent. This is an 

inherent characteristic of LiDAR monitoring that determines the minimum detectable 

deformation. Precision is often quoted by manufacturers for tests in controlled 

conditions, typically ca. 10-3 m, but is often larger and more complex to define over 

natural topography. The complexity is increased by cyclical changes, such as 

wetting/drying of the slope and temperature/pressure variations that act between the 

instrument and the rockface. These can invoke false decimetre scale movements between 

surveys. Ultimately, monitoring should have the lowest possible precision. For rockfall, 

this determines the minimum resolvable rockfall depth.  

 

(3) The temporal resolution of monitoring should be sufficient to capture non-linear 

movement patterns coupled with rapid accelerations during tertiary creep. By definition, 

most movement also occurs during the final phases of failure, and so may fall below the 

frequency of monitoring. The timescales over which small rockfall coalesce into, and can 

be superimposed by, larger rockfall scars remain broadly unconstrained. Monitoring at 

low temporal resolutions may therefore underrepresent the frequency density of small 

events, possibly discernible as a rollover in magnitude-frequency distributions (Section 

2.5). Equally as important, the temporal resolution also has considerable implications 

for the understanding rockfall occurrence in relation to exogenic forcing (Section 2.4). 

Rockfall data should be acquired at a rate and duration that is as close as possible to 

those factors that may control rockfall occurrence, such as environmental and marine 

conditions.  

 

(4) The surface geometry relative to the direction of monitoring is important, in particular 

if data projection angles are normal to the direction of movement. Rosser et al. (2008) 

showed that, for a point cloud of a deforming slope inclined at 23°, measured 
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deformation increased by nearly an order of magnitude for every 5° of deviation from 

viewing angles normal to the face. Deformation that is orthogonal to the view direction 

of remote monitoring is therefore difficult to capture. This is more significant for 

monitoring pre-failure deformation than for monitoring pre-failure detachments of 

material. For the purposes of this study, it highlights the importance of scanning as 

close to nadir as possible.  

 

Automated monitoring systems hold significant potential for minimising the impact of these 

factors on the measurement of movement and resulting failure inventories. By characterising 

change precisely and at high spatial- and temporal-resolutions, rockfall can be examined that 

occur across a range of sizes and frequencies, with some related to trends in overall progressive 

damage accumulation and others to localised stress-triggering mechanisms. At present, the 

deployment of such methods has been restricted to partially stable open-pit mine high-walls, 

supported by significant associated investment (Abellán et al., 2014). The key attributes of 

widely applied techniques to monitor surface deformation remotely are outlined below, with 

state-of-the-art appraisals provided by Petley (2012), Jaboyedoff et al. (2012) and Abellán et al. 

(2014). 

 

2.7.1 Electronic distance measurement 
 

Electronic Distance Measurement (EDM) using total stations provides remote 

displacement measurements for prisms that are installed on the slope. Prisms offer very high, 

sub-millimetre precision and can be distributed throughout the slope. The results are 3D 

measurements of the movement of a known point on the slope, providing a significant advantage 

over one-dimensional instruments, such as extensometers. However, in situ apparatus 

installation is hazardous and can incur high costs (Eberhardt, 2012). In many cases prisms are 

destroyed by the movements that they are trying to monitor. In the Bingham Canyon mine, 

Utah, for instance, 200 of 201 installed prisms were damaged beyond repair over a 13-month 

period (Doyle and Reese, 2011). In general, while accurate, total station measurements 

necessitate a degree of interpolation within the displacement field, thereby adding uncertainty to 

estimates of overall slope degradation emphasised in progressive failure literature.  

 

2.7.2 Ground-based radar 
 

Ground-based radar sensors record the phase of both the transmitted and received 

signals in a radar image. The use of microwaves enables cloud penetration and the ability to 

operate during the day and night without the need for prisms (Froese et al., 2012). Relative to 
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satellite-based radar, ground-based platforms also eradicate issues of low revisiting periods 

(minimum of four days with the COSMO-SkyMed satellite constellation) and geometric 

distortion due to near vertical line-of-sight (Farina et al., 2011). In pulse radar systems, range 

measurement, ρ, is based on the time-of-flight, Δt, of the radio wave to travel to and reflect 

from the surface object: 

 

 𝜌𝜌 = 𝑐𝑐 ∙ ∆𝛿𝛿/2 [Eq. 2.9]  

 

where c is the speed of travel. This can be rearranged to show that the total travel time, ttotal, is: 

 

 𝛿𝛿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 2𝜌𝜌/𝑐𝑐 [Eq. 2.10]  

 

In practice, emitted pulses are separated by a time TPRF (s), which determines the 

obtainable temporal resolution of the time-of-flight. Because many radar systems transmit a 

series of pulses, however, emitted signals are not returned until after the subsequent pulse is 

transmitted. In essence, an ambiguity is created as there is no way of associating the first 

received pulse with the first transmitted pulse. An ambiguous range for pulse-systems, Ramb, is 

therefore: 

 𝑅𝑅𝑡𝑡𝑎𝑎𝑎𝑎 = 𝑐𝑐 ∙ 𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃/2  [Eq. 2.11]  

 

Continuous wave radar transmits a continuous signal, requiring emission and detection 

antennas. A phase difference ϕd can be determined from a predetermined phase of the 

transmitted signal and the measured phase of the received signal. With wavelength λm of the 

signal, a corresponding range can be calculated by:  

 

 𝑟𝑟 = 𝜆𝜆𝑎𝑎 ∙ Φ𝑑𝑑/4𝜋𝜋 [Eq. 2.12]  

 

Ambiguity of the range measurement will therefore occur at ranges below λm/2 (Wehr, 2009). 

Interferometric Synthetic Aperture Radar (InSAR) uses radar imagery to map surface 

deformation over time, and is mainly dedicated to the detection and quantification of small 

displacements over entire slopes (Jaboyedoff et al., 2012). Differential interferometry compares 

two radar images taken at different times from the same position. Satellite-based techniques 

compare the phase component of each image, acquired as either repeat pass (two acquisitions 

from the same antenna) or single pass (one acquisition from two antennas). Ground-based 

techniques feature two antennas that slide horizontally to form a synthetic aperture, detecting 

phase change along the line-of-sight. The IBIS-M radar sensor, used for example by Farina et al. 

(2011), detects range variations along the line-of-sight at 1 × 10-4 – 2 × 10-4 m precision within 
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0.5 m × 4.3 m cells at ranges of 1 km. This high resolution, in addition to a wide coverage 

capacity, allows bench-scale instability detection with several pixels of measurement. 

 There are, however, some critical limitations to the use of InSAR. Most importantly, 

measurements are spatially averaged across large footprints despite high deformation 

measurement accuracy. This often results in rockfall volumes > 1 m3, in comparison to 

terrestrial LiDAR datasets that can provide volumes as small as 1 × 10-6 m3. While small 

magnitude changes that occur across large areas can be accurately characterised, detecting the 

spatial progression of rockfall activity and its relationship to the surrounding rock mass 

structure is therefore compromised. Furthermore, deformation monitored by this technique is 

along the line-of-sight. This severely limits the ability to characterise deformation that is 

orthogonal to the line-of-sight. Relative to terrestrial LiDAR, and other 3D techniques such as 

total stations and GPS monitoring, this represents a significant limitation in interpreting the 

mechanisms and kinematics of failure (Monserrat et al., 2014). In addition, ambiguity in 

interferometric phases can induce bias into deformation estimates and is unsuited to the 

detection of very large, rapid detachments of material (Crosetto et al., 2014). A further 

limitation of such systems is their cost, which significantly exceeds any other form of 

deformation monitoring technology.   

 

2.7.3 Terrestrial laser scanning 
 

This section highlights they key characteristics of TLS that make it suited to 

characterising rockfall volumes. TLS is adopted in this study, and a detailed review of 

techniques to process Terrestrial Laser Scanning (TLS) data is provided in Chapter 4. 

TLS is an evolution of the EDM that has seen growing usage in applied 

geomorphological studies. Instruments can be classified according to the way in which they 

measure both the range of an object and the associated angle in vertical and horizontal planes 

(Petrie and Toth, 2008). The primary distinction is the means of range measurement, which, 

similar to radar, comprises either Time-of-Flight (ToF) or phase difference. The latter enables 

rapid collection of highly accurate measurements but at limited distances of tens of metres due 

to the range ambiguity related to wavelength, outlined in the context of radar above.  

ToF operates at slower but nonetheless rapid rates of up to ca. 500 000 points per 

second for ranges up to 6 km. These systems operate with much lower beam divergences than 

ground-based InSAR, providing a higher spatial resolution and increasing their suitability to the 

characterisation of rockfall size distributions. Operating in the near-visible spectrum, however, 

increases their sensitivity to fog, rain, and changes in day/night conditions that are common in 

many mountain environments (Froese et al., 2012). TLS is also subjected to shadowing or 

occlusion in rugged topography (Jaboyedoff et al., 2012), which can only be overcome by 
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scanning from multiple oblique fixed positions. The resulting datasets are 3D point clouds, 

provided in either Polar or Cartesian coordinate systems with spacing between points typically 

no more than 0.1 m. For rock slope analysis, these point clouds are generally manipulated to 

characterise the rock mass structure, and to detect and measure deformation. A comprehensive 

review of both is provided by Abellán et al. (2014; Table 2).  

 

2.7.4 Structure from Motion 
 

Point cloud generation for slope monitoring has been supplemented in recent years by 

the development of new photogrammetric techniques, in particular Structure from Motion (SfM; 

Niethammer et al., 2011; Lucieer et al., 2013; Turner et al., 2015; Carrivick et al., 2016). This 

relies on overlapping images of the surveyed slope captured from different viewpoints in order to 

reconstruct the point cloud. Image features are detected, described and aligned between different 

photographs using feature recognition algorithms. These are then drawn upon to identify the 3D 

position and orientation of the camera and the xyz position of the feature, in what is known as a 

bundle block adjustment (Snavely et al., 2008). Imagery is increasingly acquired from 

Unmanned Aerial Vehicles (UAVs). In such instances, SfM has the advantage of being available 

at far lower costs than TLS, minimising areas of occlusion that occur from ground-level 

monitoring, and providing highly dense point clouds due to the potentially small distances 

between the UAV and the slope. The need for near-real time constant monitoring, however, 

necessitates the use of TLS over SfM for a number of reasons. First, SfM relies on photographs 

using visible light, and cannot therefore operate in dark or low-light conditions. No published 

studies exist that assess the suitability of SfM for monitoring, particularly under variability 

lighting conditions and with the presence of shadows across the monitored surface. Second, while 

new packages enable automated flight path generation, photo acquisition, and auto-piloting, no 

existing are deployable (and rechargeable) at high frequency, without some form of user 

intervention.  

The rapid acquisition rate of TLS enables accurate, high-resolution datasets to be 

acquired with sub-hourly return intervals. As such, the permanent deployment of these systems 

offers a unique opportunity to characterise the spatial and size distribution of rockfall, the 

relationship between failure timing and environmental forcing, and the evolution of failure. For 

rockfall characterisation, the systems are uniquely suited relative to the alternative monitoring 

systems discussed above. While radar systems provide precisions that are an order-of-magnitude 

higher, their spatial resolution and precision is better suited to the monitoring of larger-scale 

deformation than it is to delineating small rockfall. Owing to the fractal nature of rockfall, such 

events constitute a significant proportion of observed failures. 
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2.8 Summary 
 

First-time landslides and rockfall in brittle slopes have been presented as the 

culmination of three discrete phases of movement (transient, steady-state and tertiary), rather 

than instantaneous event that occur in response to discrete triggering conditions. This concept 

of progressive failure forms the basis for this study, and underpins the research questions 

outlined in Section 1.3.  

The occurrence and nature of rockfall may be partially dictated by damage 

accumulation within the slope, which occurs through microcrack growth or sheeting joint 

propagation, and is manifest as a series of detachments that may propagate into larger 

contiguous failures. Consequently, while stress redistribution plays a significant role in 

predisposing a slope to failure, the process of damage accumulation is viewed here primarily as a 

function of damage, or strain. Viewing these detachments as part of the progressive failure of 

slopes underlines the significance of accurate high-resolution deformation monitoring, in 

particular during the final phase of acceleration. During this phase, assuming that surficial 

deformation rates represent movements at the shear surface, the rate dependency of failure has 

lent itself to prediction of failure timing in a number of examples. In both the laboratory and 

partially stable open-pit slopes, generic strain-rate behaviour that is applicable without being 

tailored to specific slope characteristics has been used to successfully predict the time of failure. 

This application remains understudied for catastrophic rockfall events, and has previously only 

been attempted using irregularly spaced monitoring data collected at intervals that may fall 

below the timescale of rockfall acceleration. 

 If microcrack growth is assumed to drive rock slope instability, the relationship between 

rockfall and energetic environmental conditions becomes arguably more complex to discern 

(Vann Jones et al., 2015), to the point that attributing a rockfall to a specific trigger may 

actually be impossible. A number of studies have characterised the relationship between rockfall 

and environmental conditions, with a considerable focus on rock slopes in glaciated and 

permafrost landscapes. These have highlighted the importance of temperature, in particular 

when freeze-thaw conditions are introduced. In situ monitoring of non-glaciated or permafrost 

slopes have expanded this understanding by measuring thermally induced tensile stresses within 

the slope. However, the validity of these findings cannot yet be extrapolated to other slopes 

using current monitoring datasets, the return intervals of which often falls below the timescales 

of variability in the driving conditions under investigation. At present, therefore, the relatively 

weak correlations in all but glaciated and permafrost environments suggest that brittle rock 

slopes respond to complex interactions between preparatory factors and triggers, or that current 

monitoring data is of insufficient resolution to capture this behaviour (Vann Jones et al., 2015).  

 Capturing sequences of material spalling prior to failure provides insights into the 
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mechanisms of progressive failure, and highlights the importance of characterising the size 

distribution of detachments. If different areas of a slope are assumed to reside at varying points 

along a continuum of progressive failure, an accurate appraisal of the magnitude-frequency 

distribution can be generated. The accelerations in microcrack growth described in Section 2.2.2, 

and the accelerations in rockfall activity prior to failure described in Section 2.3.2, suggest that 

the power-law magnitude-frequency distribution may be a product of fragmentation of the rock 

mass. The degree to which this process is defined by pre-existing structural discontinuities 

requires a combination of high resolution of monitoring and accurate rock mass characterisation. 

Many studies that have characterised monthly rockfall activity have also highlighted an 

underrepresentation of the smallest rockfall, exhibited as a rollover in the frequency distribution 

of smallest events. This has been attributed to superimposition by larger, more recent 

contiguous rockfall; however, the sensitivity of the overall magnitude-frequency distribution to 

variability in the return interval of monitoring remains unclear. Analysing the magnitude-

frequency distributions of rockfall over different return intervals may be an effective tool for 

constraining the timescales over which failures occur. The development of a near real-time 

monitoring system that is designed to address the uncertainties identified this chapter is 

presented in Chapter 3. 
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Chapter 3 

Development of a 4D 
Rockfall Monitoring System 

 
 

3.1 Introduction 
 

In Chapter 2, our current understanding of the nature and controls of rockfall evolution was 

presented in the context of existing slope monitoring techniques. It was argued that if rockfall 

are considered as time-dependent evolving phenomena, rather than as instantaneous events, 

then it is necessary to implement monitoring that is capable of capturing precursors to failure. 

Three primary attributes of the proposed methodology have been identified. First, the spatial 

resolution, or point spacing for LiDAR instruments, should be dense enough to capture a range 

of rockfall volumes. These include small-scale detachments of the order of 0.001 – 0.1 m3, which 

translate to edge lengths of a cube no more than 0.1 – 0.2 m. Such events occur most frequently 

according the fractal distribution of rockfall sizes, may or may not relate to exogenic conditions, 

and may represent ongoing deformation that precedes larger yet-to-fail rockfall. Second, the 

precision of range estimates, and hence the accuracy of change detections, should be as high as 

possible. While the point spacing determines the aerial extent of detectable rockfall on the rock 

face, the precision of range estimates determines the accuracy of depth and change in depth 

measurements. This should be no more than several centimetres in order to characterise both 

creep of the rock mass and small detachments that may precede a larger rockfall. Third, the 

time interval between surveys should be low enough to detect and distinguish short-term, sub-

hourly movements that have previously been observed before catastrophic brittle failure using 

radar (for example, Dick, 2013). This frequency should also be comparable to the timescales of 

changes in environmental forcing, and therefore sufficient for monitoring cumulative and 

instantaneous responses of the rock slope to drivers. Finally, the monitoring should be constant 

through time to ensure that all events are captured, many of which are episodic and remain 

uncertain. These events are required to develop a thorough appraisal of the path to failure, and 

to detect deviation from background conditions. 

The focus of this chapter is the development of a near-constant slope monitoring 

system, defined here as repeated surveying without movement of the instrument or interruption 

of a pre-defined scan schedule. The system is installed to detect rockfall from a coastal rock 

slope at Whitby, North Yorkshire, UK. Scans have been acquired since March 2015 at sub-
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hourly intervals, providing a terrestrial LiDAR dataset unprecedented in both consistency and 

resolution. This thesis reports results up to the end of 2015, a period of 10 months. The chapter 

begins with a description of the site where this system has been developed, before outlining 

previous research undertaken on rockfall in the area in addition to the research described in 

Chapter 2. This identifies the site as an ideal location for a study into rockfall mechanisms. A 

detailed specification of the system is then presented, which also includes an overview of the 

environmental data collection and highlights the significance of considering the spatial resolution 

of constant monitoring relative its temporal resolution. The data analysis approach used to 

process the resulting LiDAR surveys is presented in Chapter 4. 

 

3.2 Site description 
 

In this study, constant monitoring has been undertaken at East Cliff, an actively 

Figure 3.1: Map of Whitby with the area scanned delineated with red lines. The Riegl VZ-1000 scanner 

used in this study is installed within East Pier Lighthouse, located at the end of East Pier. The targets 

installed for the SiteMonitor4D system, in addition to the weather stations, are illustrated (T1 – T6). 

Whitby Abbey lies 180 m from the cliff top. Map produced using shapefiles from Ordnance Survey © 

Crown Copyright and Database Right 2016. Ordnance Survey (Digimap Licence). 
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eroding coastal cliff that is located east of the town of Whitby, North Yorkshire, UK (Figures 

3.1 and 3.2). The near-vertical cliff face reaches up to 60 m high and forms part of the Whitby 

to Saltwick Site of Special Scientific Interest, designated as such due its geological significance. 

In front of the cliff, a near-planar, low angle (< 2°) wave-cut platform extends ca. 150 – 200 m 

seaward. While exposed at low tide, the platform can be covered by high tides up to 6 m in 

height (Vann Jones et al., 2015) with significant nearshore wave heights (the mean of the 

highest one-third of waves from trough to crest) up to ca. 3 m. These waves often strike the cliff 

base. The western 300 m of the monitored site is fronted by rock armour, which acts to limit 

marine erosion.  

Small fragments of the cliff face can be regularly observed and are heard falling almost 

continually. While the cliff is actively eroding, in previous work and in this study, complete 

removal of failed material is assumed given the near vertical profile of the cliff and its reworking 

by marine action (Lim et al., 2010). Retreat of the cliff has been studied intensively in recent 

years, in part due to the cultural significance of Whitby Abbey, which stands 180 m from the 

Figure 3.2: Infoterra aerial imagery of Whitby (2009), acquired from Google Earth within the same 

area as Figure 3.1. Here, the foreshore platform in front of East Cliff is partially inundated. Previous 

LiDAR surveys of the cliff have been undertaken from this platform. The scale here is the same as that 

applied in Figure 3.1. 
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present cliff top location. Although this is not acutely at risk from cliff top recession, a 

considerable number of artefacts are buried within the headland and its vicinity as a result of 

prolonged human settlement. As noted by Miller (2007), following a substantial slope failure in 

October 2000, a salvage excavation was undertaken near the cliff-top to prevent the loss of such 

artefacts. In 2006, a television mast measuring approximately the same height as the cliff itself, 

ca. 60 m, was dismantled and moved further inland due to the risk of erosion, having previously 

been positioned 12 m from the cliff edge. Initial monitoring by Rosser et al. (2005) was 

commissioned to inform the decision-making process for its relocation (see Section 3.4).  

As a result of prolonged wet weather during late 2012 and early 2013, a landslip on 26th 

November 2012 caused irreparable damage to a row of five cottages on the same cliff escarpment 

further inland up the Esk Valley, ca. 300 m south of the sea cliff face (Whitby Gazette, 2012). 

In January 2013, failures across the rock slope beneath St Mary’s Church (see Figure 3.1) 

threatened cottages below and also resulted in the exhumation of human remains from the 

churchyard (BBC, 2013). A rockfall protection barrier currently exists beneath this portion of 

cliff, and extends up to the seaward section of cliff monitored in this study, which is delineated 

in red in Figure 3.1.  

 

3.3 Geology 
 

East Cliff lies on the footwall of the Whitby Fault, a normal fault with a north-south 

trend and downthrow of ca. 12 m to the west (Hemingway et al., 1968; Alexander and 

Gawthorpe, 1993). The rock cliff exhibits near-horizontally bedded strata (Figure 3.3), with the 

upper 30 m near-vertical and the lower 25 m forming a buttress that fronts the majority of the 

rock face (Figure 3.4). In 2000, a 4 m high granite rock armour revetment, designed to reduce 

the impact of marine erosion of the cliff-toe, was placed in front of the cliff. From East Pier, this 

extends east along the base of the cliff for 300 m. The cliff toe itself comprises grey, fissile shales 

of the Whitby Mudstone Formation (Upper Lias), which are overlain by yellow-brown siderite 

sandstone and phosphatic pebbles of the Dogger Formation, outcropping ca. 13 m up the cliff 

(Powell et al., 2010; Barron et al., 2012). The buttress is sparsely vegetated and collects material 

from rockfall further up the cliff. While the buttress itself comprises intact rock, rockfall deposits 

from above are lodged on its surface close to a critical angle of repose, such that new material 

may either continue to build or runout further onto the foreshore. Much of this zone is also 

covered with a drape of silt derived from fragmented deposits that have fallen from the 

interbedded siltstones and carbonaceous mudstones above. As a result, neither the structure of 

the intact geology beneath nor change in this region is easily discernible by observation alone.  

At elevations of ca. 14 – 50 m in Figure 3.4, non-marine fine-grained Middle Jurassic 

sandstones are interbedded with clays and siltstone known as the Saltwick Formation (Barron et 
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al., 2012). Within this formation, layers of bedded sandstone protrude beyond the weaker 

interbedded sandstone and siltstone between them, as represented in the stratigraphic log 

(Figure 3.4). The fine-grained, sub-horizontally bedded sandstones vary considerably in 

structure from the alluvial sandstone apparent in West Cliff, on the opposite side of the Esk 

River. At the top of the rock cliff, there is a band of widely jointed marine sandstone of the 

Ellerbeck Formation. This is capped with a soft variable thickness Late Devensian glacial till, 

ca. 5 m in depth, from which downslope results in a slight orange staining of the sandstone and 

cliff face below.  

 

 

 
A range of rock types and rock strengths has resulted in the cliff’s non-vertical profile 

(Figure 3.4). Failure styles include small-scale wedges, failure along joints, and rock bridge 

breakage, which can be inferred from exposed fresh fracture surfaces observed after failure. 

Rockfall from the cliff leave a range of scar geometries, which have shown variability according 

to rock type and joint structure of each bed. The mudstones, shales and siltstone that comprise 

the buttress and lower half of the cliff are fissile laminated deposits. These deposits 

characteristically abrade, releasing small rockfall in which the width is approximately equal to 

the height, and hence appears to reflect the dense joint network from which it originates. Joint 

width generally increases with increasing elevation up the cliff. At the cliff top, more widely 

jointed sandstone has previously produced more elongated failures, reflecting the relatively 

shallow bed depths and wider joint spacing (Rosser et al., 2005). The rockfall height therefore 

tends to be more variable than width, suggesting that bed depth (the height of each bed) may 

Figure 3.3: Image of the cliff taken 1 h before high tide on 25h November 2015. The cliff extent 

photographed here matches that in planform in Figure 3.1, delineated by the red lines. Horizontally 

bedded strata are evident, with upper beds stained orange from downslope wash from glacial till of 

variable depth. The lower buttress comprises shales and some sandstone, while the near-vertical upper 

portion of the cliff comprises outcropping sandstone, and sandstone interbedded with carbonaceous 

muds.  
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act to constrain the permissible dimensions of released material. For all areas of the rock face, 

previous monitoring has suggested that rockfall are shallower than they are wide and high.  

 
 

3.4 Rates of erosion and previous research 
 

Monitoring at East Cliff builds upon a large body of ongoing research into the nature of 

hard rock erosion along the North Yorkshire coast (including, but not limited to, Rosser et al., 

2005; 2007a;b; Lim et al., 2010; 2011; Barlow et al., 2012; Rosser et al., 2013; Brain et al., 2014; 

Vann Jones et al., 2015). Having conventionally received less attention than more visibly 

eroding soft cliffs, the ongoing research has monitored numerous hard rock cliff sections at 

monthly intervals since 2002, over a 25 km stretch of coastline. In order to monitor change over 

this scale and at this frequency, both airborne and terrestrial LiDAR have been employed 

extensively, generating a large, long-term dataset of varying failure types. These are outlined by 

Rosser et al. (2013) and include slumps, rockfall, and spalling of material. A key finding of this 

research has been the notable absence of cliff notch development and subsequent cantilever 

Figure 3.4: (a)  Photo illustrates the near horizontal bedding of sandstone and sandstone interbedded 

with siltstone. The cliffs are capped with glacial till, ca. 2 m - 3 m in height. (b) Stratigraphic log of 

the Early to Middle Jurassic sequence at East Cliff. (c) TLS-derived cliff profile taken through (a). The 

stratigraphic units have been extrapolated inland based on the absence of visible dip in the bedding. A 

transition from a concave to convex slope profile occurs at the buttress, ca. 20 m elevation, with rock 

armouring evident at the very base of the cliff. Log modified from Figure 3 in Rosser et al. (2005:365). 
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failure, despite being a well-documented mechanism of cliff line retreat (see, for example, 

Trenhaile, 1987; Bird, 2011).  

The recession of East Cliff was first examined by Agar (1960), who noted that the upper 

slopes underwent greater sub-aerial erosion compared to wave action at the cliff toe, with an 

overall erosion rate of 0.19 m a-1. Miller (2007) used the cliff as site upon which to test a robust 

least squares surface matching algorithm, designed to enable change detection between multi-

temporal, multi-sensor datasets. Archive aerial photography and airborne LiDAR were used to 

create Digital Elevation Models (DEMs) that, once aligned, were subtracted to derive DEMs of 

Difference (DoDs). Between March 1994 and May 2006, a net loss of 59 326 m3 was recorded 

(Miller, 2007). This study underlined a significant contrast between erosion rates on the upper 

and lower parts of the cliff, at 0.50 m a-1 and 0.15 m a-1 respectively, with 0.216 m a-1 for the 

cliff face as a whole. Using DoDs derived from monthly terrestrial LiDAR surveys, Rosser et al. 

(2005) recorded an inventory totalling 810 rockfall events between September 2003 and 

December 2004. Retreat across the cliff during this period ranged from 0.00 – 57.70 m with a 

mean retreat rate of 0.18 m a-1 for the entire cliff face. This study also characterised the 

dependence of rockfall size and spatial distribution upon the geology and structure of East Cliff. 

The lowest rates of detachment were found in the widely jointed sandstone band at the cliff top, 

typically no more than 0.06 m over the 16-month survey period. In contrast, removal of ca. 

1.5 m of material was identified in the interbedded sandstone and siltstone bands of the 

Saltwick formation, between 38 – 48 m elevation. In this zone, rockfall clusters were observed 

along the horizontal bedding and were constrained by bed-depth. The largest failure captured 

during the period of monitoring was a ca. 200 m3 slump, initiating on the buttress and 

depositing material on the rock armour below.  

These observations support the hypothesis that spatial linkages exist between failures, 

beginning with erosion of the cliff toe through wave action and propagating upwards by means 

of small failures along bedding planes, which in turn predispose blocks above to failure. At 

several sites further north along the same stretch of coastline, upward propagation of instability 

moderated by intact rock strength and time-dependent rock fracture has been measured from 

over a decade of monitoring. Rosser et al. (2013) observed only one instance in which retreat of 

the cliff top occurred due to undercutting at the cliff toe. In most other instances, cliff line 

retreat was only observed when rockfall propagated up the cliff, where kinematically feasible, 

and extended towards the crest. In settings subject to intense sub-aerial processes, such as 

rainfall and wind, Rosser et al. (2013) suggested that marine driven erosion may be subsumed 

by quasi-continuous spalling of the rock mass. The incremental removal of material in turn 

reduces the probability of larger-scale cantilever failure. 

The research undertaken along this coastline has highlighted the sensitivity of 

magnitude frequency distributions to the timescale of monitoring (Barlow et al., 2012), the 
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evolution of rockfall through time-dependent rock fracture and subsequent propagation of small 

detachments that is independent of marine action (Rosser et al., 2007a; 2013; Vann Jones et al., 

2015), and varying strengths of relationship between the timing of environmental variables and 

rockfall (Lim et al., 2011; Vann Jones et al., 2015). However, similar to other studies that adopt 

TLS, the datasets drawn upon in previous research have been acquired at monthly intervals. 

Amongst other outputs, constant monitoring at sub-hourly intervals has the potential to further 

examine many of these relationships. The knowledge base that currently exists surrounding 

failures in this setting makes this site an ideal setting to test the ability of 4D monitoring to 

help develop our understanding of the nature and evolution of rockfall. 

 

3.5 Environmental conditions during the monitoring period 
 

In this section, the environmental conditions that occurred during the 10-month 

monitoring period are examined, based on data recorded by weather stations installed at East 

Cliff. This serves as a general assessment of the external drivers that may act on the cliff face, 

with the acquisition of data outlined in more detail in Section 3.9.2 and its analysis in Chapter 

6. While previous research has shown that rockfall geometry is strongly dependent upon geology, 

the relationship between failure timing and energetic environmental conditions is poorly 

constrained for hard rock cliffs in both marine and non-marine environments (Rosser et al., 

2007a; Lim et al., 2010).  

Tide heights were recorded using the Whitby tide gauge, operated by the British 

Oceanographic Data Centre (BODC; Figure 3.5). Spring high tides monitored by the gauge, 

which occur twice a month, ranged from 5.40 – 6.30 m (Ordnance Datum). The mean high tide 

during the same period was 5.29 m. Wave climate data was acquired from the Channel Coastal 

Observatory (CCO) wave buoy, with a maximum recorded significant wave height of 14.36 m 

(representing the mean height of the highest third of waves from trough to crest). These 

measurements are recorded 1 600 m offshore and hence their height and energy will change on 

reaching the cliff. Despite this, offshore data serves as a useful proxy for marine forcing since 

most waves will impact on the cliff base during a high tide, notwithstanding attenuation and 

shoaling across the foreshore platform (Vann Jones et al., 2015).  

The aspect of East Cliff exposes it to easterly and northerly storm surges while 

protecting it from the prevailing south-westerly winds. Based on weather data recorded by the 

weather stations used in this study (Section 3.9.2), winds were onshore for 43% of the 

monitoring period, with a median speed of 2.7 km h-1 and maximum recorded speed of 

114.84 km h-1 delivered to the rock face. Three significant storms occurred during the 

monitoring period, all of which occurred in quick succession during a single month and were 

named by the Met Office as they had the potential to cause substantial impacts: 
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(1) Storm Desmond, 5th – 6th December 2015, resulted in widespread flooding in Cumbria, 

where the UK’s highest 24 h rainfall was recorded (341.4 mm; Met Office, 2015). The 

North East of England also experienced significant rainfall and strong gusts, with 

151 mm rainfall recorded by the weather station installed at East Cliff, and 75.6 km h-1 

wind speeds. 

 

(2) Storm Eva, 24th December 2015, resulted in strong gusts in the UK, with onshore wind 

speeds reaching 95.8 km h-1 at East Cliff. 

 

(3) Storm Frank, 29th – 30th December 2015, resulted in extensive flooding across the UK. 

31.2 mm of rainfall was recorded at East Cliff with the year’s highest onshore wind 

speed, 114.8 km h-1 recorded on the final day of monitoring reported here, 30th 

December. 

 
Minimum air temperatures, recorded by the Met Office at Whitby since 1962, are 

moderated by Whitby’s coastal setting and the relatively warm seawater temperatures. The 

Figure 3.5: Tide height data from British Oceanographic Data Centre (BODC) and significant wave 

height data from Channel Coastal Observatory (CCO) during 2015. A gap in wave climate data lasted 

approximately two months and ended as the six-week gap in scanning from July to August began. 
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coldest air temperatures occur in January and February, where mean monthly air temperatures 

are 1.6 °C. The highest average monthly temperatures are recorded in July and August, at 

18.6 °C. Within this study’s monitoring campaign, the maximum air temperature was 25.1 °C, 

recorded on 4th July, and the minimum recorded air temperature was -0.6 °C, measured on 22nd 

November. Based on longer term records, minimum air temperatures occur in January, with 

daily temperatures of -2.0 °C sustained for multiple days. In this study, however, temperatures 

below freezing were not sustained beyond an hour, minimising the potential for frost action. In 

historic records acquired from the Met Office and presented in Figure 3.6b, March is the driest 

month with a mean rainfall of 38.7 mm, while November and December are the wettest with 

61.7 mm. 

 

3.6 Design of constant slope monitoring system 
 

Installation of the slope monitoring system began in December 2014 and was completed 

in February 2015 (Figure 3.7). The main system is housed inside the former lantern room at the 

top of East Pier lighthouse (Figure 3.8a) and was powered by two batteries charged by 

methanol fuel cells (Figure 3.8d). These fuel cells have since been replaced with mains power 

supplied to the lighthouse, minimising the risk of low battery voltages that interrupt scanning 

and removing the need for return visits to replace the fuel. The terrestrial laser scanner used is a 

Riegl VZ-1000, with a measurement range of 2.5 – 1 400 m, an accuracy of 0.008 m, and an 

0.005 m precision (Riegl, 2015). This precision is quoted as the standard deviation of repeated 

range estimates at 100 m, onto an idealised target surface under test conditions. The TLS 

Figure 3.6: (a) Mean monthly rainfall and temperature for Whitby, presented as annual averages 

from 1962-2015. The overall rise in both rainfall and temperature are indicative of increased 

storminess and climate extremes in this area (b) Mean monthly rainfall and temperature, presented as 

monthly averages over the same period. Source: Whitby meteorological station data published by the 

Met Office, available from data.gov.uk. 
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survey schedule is managed using SiteMonitor4D, a software package provided by 3D Laser 

Mapping Ltd. Originally designed for use in open-pit high-wall monitoring, the SiteMonitor4D 

data acquisition module enables scheduled scanning of a user-defined area and the ability to 

switch the scanner on and off between scans to preserve power.  

The scanner was secured to a steel base plate within a custom-built metal housing, fixed 

to a custom-built hardwood doorframe, facing south back towards the rock face. A small pane of 

laser permissible glass was installed within the door, through which the laser can pass without 

distortion. The steel base plate was adjusted to ensure that the scanner orientation was never 

more than 0.005° in either tilt or yaw. Despite this, small movements of the scanner were 

recorded through each day as a result of temperature variations. Combined with variable 

Figure 3.7: System diagram of the constant monitoring setup. Weather stations, powered using the 

solar panels, are located on East Cliff and the lighthouse. The fuel cells were used to power the 

webcam, tablet and scanner and Wi-Max connection; however, this is now powered by mains supply. 

The tablet runs SiteMonitor (3D Laser Mapping Ltd.), and saves the scan data to a Dropbox™ folder 

for upload through the yacht-club broadband. Summary statistics of the scanning schedule along with 

the weather station data are uploaded to GeoServer using the broadband connection, where it can be 

accessed through GeoExplorer (NavStar Geomatics). Diagram modified from an original concept design 

created alongside NavStar Geomatics. 
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atmospheric and lighting conditions between scans, this resulted in millimetre offsets between 

successive point clouds. In order to correct for this, SiteMonitor4D also provides a range 

correction factor (RCF) to compensate for drift between sequential point clouds and an affine 

rigid-body rotation matrix to compensate for tilt and yaw variation. Six stable targets (high 

reflectivity, blank 0.6 × 0.4 m street signs) were mounted along the periphery of the monitoring 

area and scanned at 3 h intervals between scans of the cliff (Figure 3.1), enabling RCF 

estimation and its application to each point in the point cloud. RCF values used in repositioning 

each scan dataset were typically 1 × 10-5, equating to ca. 0.0034 m at the closest point to the 

scanner on the monitored cliff (342 m). As such, the data was not subject to atmospheric 

distortion effects and is considered consistent and rigid through time.  

Data collected from the scanner is transferred via a long-range Wi-Max antenna link 

between the lighthouse and the local yacht club, alongside the weather station and webcam data 

described in Section 3.9.2, where it is subsequently uploaded to a Durham University server 

through a broadband connection via Dropbox™ . The process of converting the uploaded data 

into change detections is described in Chapter 4. The weather station data and webcam imagery 

(Section 3.9), and up to date information on the scanning schedule (including target scans) were 

recorded and accessible within GeoExplorer. This is a software package created by NavStar 

Geomatics  (NavStar, 2015) that compiles, analyses and graphs live datasets from a wide range 

of slope monitoring instruments that record simultaneously. 

 

 

 
 

3.7 Scan schedule and point spacing 
 

The size and type of movement that can be detected is a function of the spatial 

resolution of scanning, its precision, and the time interval between scans. Scans with higher 

Figure 3.8: (a) Image of East Pier Lighthouse at the end of East Pier before the installation took 

place. This side of the lighthouse faces towards the cliff, (b-c) A Riegl VZ-1000 is mounted within an 

aluminium frame with a secure removable panel at the back. The scanner measures the cliff through a 

glass panel suited to allowing the laser to pass through with minimal interference, and (d) Two 

batteries are used to power the system, charged by methanol fuel cells. 
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spatial resolutions provide small point spacings and hence are able to delineate smaller 

detachments through measurement of scars. The precision of monitoring, here referring to the 

offset in range estimates between scans, determines the depth of detachments that can be 

accurately resolved. As a result, this also determines the ability to resolve deformation of the 

rock mass that occurs without material detachment. These attributes hold implications for the 

analysis of failure size distribution, the response of the slope to changes in environmental 

conditions at hourly and sub-hourly timescales, and patterns of precursory deformation.  

In conventional monitoring campaigns, the temporal resolution, which is determined by 

the frequency of scanning, is limited by the feasibility, cost and logistics associated with scan 

data acquisition (Abellán et al., 2014). Monitoring in coastal settings, for example, is normally 

only possible during the lowest tides of each month when the foreshore is accessible (Lim et al., 

2005). Even in semi-permanent installations in open-pit environments, scanning is restricted 

during blasting, and instruments are often moved between survey positions to monitor multiple 

slopes. Given that high-frequency scanning is not a primary objective of most studies, the time 

taken to acquire each scan is not limited by the time interval between scans. Hence, users can 

take advantage of the significant improvements to the angular resolution and ranging accuracy 

of instruments by collecting point spacings on the rock surface between 0.02 – 0.10 m, within a 

reasonable timeframe (sub-hour). Using a Riegl VZ-1000, for example, it is possible to capture 1 

× 106 points from across a cliff face at ca. 100 m range, within 20 minutes.  

The spatial resolution of TLS has a limit imposed by a combination of target geometry 

relative to the sensor, namely range and incidence angle (Soudarissanane et al., 2011), and the 

sensor’s vertical and horizontal angular step-width. An increase in any of these properties 

increases the minimum possible point spacing that can be attained on the rock face, increasing 

the minimum detectable rockfall size. The actual resolution of each scan, where each point gives 

a unique measurement of the surface at a specific location, is determined by the laser spot 

diameter on the surface and point spacing, both of which will be discussed in detail in Section 

4.2. The laser spot diameter increases as a function of beam divergence with range as TLS lasers 

are not perfectly collinear. Pesci et al. (2011) showed that, for controlled tests on a planar 

board, topographic features smaller than one third of the beam divergence could not be 

identified. In practice, however, users of modern scanners impose lower bounds on the point 

spacing, with the aim of reducing the number of points collected to ease data handling while 

maintaining a point density sufficient to create a high enough resolution topographic surface. 

Lichti and Jamthsho (2006) suggested that the optimum point spacing is 0.859 times the beam 

width; if the point spacing is much below this width, fine details become blurred (Jaboyedoff et 

al., 2012). This ratio enables the characterisation of the rock surface and the detection of small 

scale movements without the generation of impractically large datasets. Consideration of the 

appropriate point spacing becomes increasingly important if scans are required from multiple 
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positions, which considerably increases the number of points to store and post-process. 

A system that is able to scan both frequently and permanently introduces a number of 

additional variables into this decision-making process, ultimately resulting in a trade-off between 

the spatial resolution of the point clouds and the frequency at which they are acquired. 

Providing the point spacing is lower than the size of the rockfall to be detected, the emphasis 

should shift towards the duration of scans and their time interval. Scanning at a very low point 

spacing, for example 0.02 – 0.03 m at ranges of > 100 m, will increase the scan duration 

proportional to target range and the area to be scanned. While the scanning frequency should 

also be consistent with the timescales of movements being detected, a higher scan frequency 

results in more time spent scanning. Both of these factors use power, which can be problematic 

where a mains supply is not available. Ensuring that the scanner is able to complete each scan 

and switch off prior to the next scan will also increase the life of the instrument, many of which 

have service intervals more suited to conventional surveying rather than constant monitoring. 

Some of the results in this study are used to help define the significance of a small point spacing 

relative to the frequency of scanning for monitoring change to a rock slope.  

In this study, the point spacing and frequency of scanning is determined by: 

 

(1) The spatial scales of rockfall. Large rockfall up to 200 m3 have been recorded at 

East Cliff in the past. However, the magnitude-frequency distribution of rockfall 

volumes along this coastline, recorded at comparable spatial resolutions to the 

monitoring system here, have shown that rockfall smaller than 0.01 m3 (ca. 0.2 m in 

length) account for > 97% of observed events (Rosser et al., 2007a; Benjamin et al., 

2016). The exponential increase in rockfall frequency with decreasing volume 

underpins the need to capture the surface with low point spacings, in this case no 

more than 0.2 m, if a representative distribution of rockfall sizes is to be observed. 

In order to assess the spatial variability of failure controls, the point spacing should 

also fall below the spacing of discontinuities. On East Cliff, joints are spaced 

predominantly at the decametric scale. The point spacing of scans is set below this 

to prevent aliasing artefacts within the point cloud, where the scan line spacing is 

insufficient to resolve local surface relief. 

 

(2) The spatial and temporal scales of precursors. Video footage of rockfall often shows 

that precursors to failure increase in size and frequency in the period immediately 

prior to (minutes and seconds) final failure. As discussed in Section 2.3.2, Rosser et 

al. (2007a) showed an acceleration in monthly rockfall activity prior to failure. 

However, no hyperbolic increase was observed, which was suggested to be a function 

of limited survey frequency in the immediate run-up to each rockfall. Assuming that 
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rockfall activity accelerates to the point of failure, in accordance with strain 

accumulation in other brittle landslide masses, this suggests that a more 

representative quantification of precursory activity can be gained through much 

more frequent, sub-monthly monitoring. Royán et al. (2015) presented data that 

showed an acceleration of rockfall activity mass in the weeks prior to a 1 012 m3 

rockfall; however, the degree to which interpolation between these change 

measurements accurately represents failure evolution can only be ascertained 

through sub-daily, or ideally more frequent, monitoring. Using TLS data acquired at 

weekly intervals, Kromer et al. (2015a) observed deformation in the seven months 

prior to a 2 600 m3 rockslide at White Canyon, British Columbia. This monitoring 

frequency also enabled the detection of a hyperbolic acceleration in pre-failure 

deformation during the final 28 days before failure, which included rockfall. More 

recent work by Kromer et al. (2017) has identified accelerated deformation prior to 

an 80 m3 rockfall from the Séchilienne landslide, France, using TLS data acquired at 

30 minute intervals. This work has been undertaken concurrently with the research 

presented within this study, and emphasises the importance of high frequency 

surface monitoring in order to describe pre-failure mechanisms.  

 

(3) The timing and duration of potential drivers of rockfall triggering and the controls 

on rock slope failure, which present an upper-limit on the scan interval. 

Environmental drivers, such as storms, heavy rainfall and fluctuations in 

temperature, operate over timescales from minutes to hours to days. Storm events 

typically last for hours, with variable conditions within these periods. In order to 

define the triggers of rockfall and relate this specifically to the environmental 

conditions at the time of failure, the frequency of monitoring must be as close to an 

hourly rate of monitoring as possible or practical.  

 

(4) The longevity of the monitoring system. As discussed above, a combination of the 

scan duration and scan interval determines the amount of time that the scanner is 

powered off, and hence not using power. This is critical for management of the 

power supply and to ensure that the scanner does not fail as a result of burning out 

due to continuous operation. A balance is required between frequent scanning for 

the purpose of failure evolution monitoring and significant periods where the 

scanner is idle. 
 

Point clouds of ca. 1.9 million points were collected (Figure 3.9), starting at intervals 

between 20 minutes and 30 minutes, depending on power availability from the fuel cells. The 
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duration of each scan was eight minutes, allowing the scanner to remain switched off for 

approximately ten minutes between scans. Eight minute scans provide a minimum point spacing 

of ca. 0.05 m at the minimum instrument-target range (342 m), and ca. 0.14 m at the distal 

portion of the monitored cliff (533 m). Calculations in Section 4.3 show that the beam width is 

ca. 0.10 - 0.17 m as it strikes the surface of East Cliff; hence, the point spacings acquired meet 

the point spacing to beam width ratio of 0.859, recommended by Lichti and Jamthsho (2006).  

 

3.8 Area of interest and scan geometry 
 

The Area of Interest (AOI) was defined as the seaward cliff, which has little or no 

vegetation (Figure 3.10). While the AOI originally covered the entire cliff face down to the rock 

armour, the lowest 10 m of cliff face was eliminated from scans from early December. This was 

due to low reflectivity measurements, which often accompany a reduced range precision, and 

inconsistency in data capture between successive scans within each tide window due to wetting 

of the cliff, which resulted in changing reflectivity. This provided the additional benefits of 

reduced point spacing on the vertical slopes further up the cliff and an increase in scanning 

frequency to 20 minutes during the winter storm period. 

Figure 3.9: Point cloud of East Cliff acquired from the lighthouse, and coloured by the reflectance of 

the returned measurements. Cool colours indicate the lowest reflectance values, whereas warm 

temperatures indicate the highest reflectance. These colours are cycled multiple times to aid visual 

interpretation of disparity across the surface. Structural features, such as individual blocks and 

protrusions, are readily identifiable alongside the sub-horizontal bedding of varying lithologies. At the 

base of the cliff, the 4 m high rock armour revetment is visible. Rotation of the point cloud to view the 

cliff face-on exposes areas of occlusion across the cliff face (see Figure 3.11). 
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Figure 3.10:  (a) Panorama photo taken at high tide, 5.7 m. East Cliff is left-of-centre, with targets positioned along the rockfall protection barrier right-of-centre. St. Mary’s 

Church is also visible.   (b) 0.10 m slope model acquired from the lighthouse in February 2015. Red line denotes scanned area during monitoring campaign. 
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A considerable drawback associated with automated monitoring from a permanent 

installation is the inability to monitor surfaces from multiple positions. The variable relief and 

orientation of rough surfaces relative to the scanner produce patterns of occlusion in the 

resulting point cloud (Girardeau-Montaut et al., 2005). The bedded and interbedded sandstones 

at East Cliff present a significant obstacle to measurement from a single position due to 

protrusion of sections of the rock, and the resulting shadowing of areas behind. During previous 

monitoring of the cliff face, the scanner was operated from multiple positions on the foreshore 

platform, commonly from a more truly nadir position, which were subsequently aligned to fill 

areas of occlusion. In this study, however, areas of occlusion were unable to be scanned from a 

different viewing point. As a result, only 8 561 m2 was measured during repeat scans of the 

9 592 m2 cliff face defined by the AOI (ca. 89%). As the surface changes, the occluded areas will 

also change, with new areas becoming visible and previously visible areas becoming shadowed.  

Figure 3.11 represents a slope model of the cliff face acquired from multiple scan 

positions on the foreshore platform. The area of returned measurements from scans conducted 

only from the lighthouse is shaded red, with areas of occlusion visible around the small ‘bights’ 

and buttress at the base of the cliff. The proportion of the surface that is occluded increases 

with incidence angle relative to the scanner (Lichti, 2007). As such, the loss of surface 

measurement due to the inability to move the scanner is exacerbated by the high incidence 

angle of parts of East Cliff relative to the lighthouse, as can be seen in Figures 3.1 and 3.2. The 

closest point on the cliff is 342 m from the scanner, at the right (west) of the surface model in 

Figure 3.11, with an incidence angle of ca. 25°. The furthest point is 533 m from the scanner, to 

the far left (east) of Figure 3.11, with an incidence angle of ca. 42°. In previous monitoring 

campaigns, incidence angles and occlusion levels at these magnitudes would be apportioned to 

poorly planned survey setups (Sturzenegger et al., 2007; Stock et al., 2011), the importance of 

which is discussed in several studies (Bonnaffe et al., 2007; Kemeny and Turner, 2008; Lim et 

Figure 3.11: Area scanned by the permanent monitoring system used in this study (red) draped over 

a complete slope model of the entire cliff captured from multiple positions along the foreshore. The 

total area measured is 8 561 m2, 89% of the cliff face total (9 592 m2). 
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al., 2010; Abellán et al., 2014). The implications of this are discussed in Section 4.10.2 in 

relation to the method of change detection, and Section 5.3 in relation to failure volume 

statistics. 

 

3.9 Acquired datasets 
 

3.9.1 TLS data 
 

In total, 8 987 scans were collected during the period 5th March 2015 – 30th December 

2015 (Figure 3.12). Almost all scans were acquired with intervals of 20 minutes or 30 minutes, 

although maintenance and failure of the system extended a number of these intervals over days 

or weeks. The largest data gap occurred between 14th July and 2nd September due to a technical 

fault with the scanner. Between the end of November and beginning of December, the failure of 

one of the two fuel cells increased the time required to recharge the batteries to a sufficient 

voltage for scanning (Table 3.1). This is reflected in the lower and less consistent rate of scan 

acquisition from 18th November to 15th December.  

 

Figure 3.12: Cumulative number of scans collected between 5th March 2015 and 30th December 2015. 

The gradient of the line reflects the acquisition rate, either 20 minutes or 30 minutes. Breaks in the 

gradient reflect system maintenance difficulties discussed in Section 3.10. 
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3.9.2 Environmental data 
 

Deterministic approaches that examine rockfall occurrence in relation to environmental 

conditions rely on accurate weather data alongside a reliable rockfall inventory. Inventories that 

span large areas often draw on individual weather stations to represent the conditions at any 

given time across the examined area. Previous research on this coastline (for example, Rosser et 

al., 2007a; Rosser et al., 2013; Vann Jones et al., 2015) has proposed that smaller rockfall 

(< 0.1 m3) show dependence on environmental drivers, whereas larger events do not; however, 

these studies have used weather data from stations ca. 3 km from the monitored rock face. In 

contrast, the monitoring system at Whitby draws on data from two weather stations; one 

installed on the cliff top and one installed alongside the VZ-1000 at the top of the lighthouse 

(Figure 3.1). The frequencies of data collection are outlined in Table 3.1. Each weather station 

recorded information on the air temperature, humidity, air pressure, wind speed, wind direction, 

rainfall accumulation and rainfall intensity at one minute intervals. The weather station on the 

rock face also hosted a pyrometer that was directed at an exposed area of bare rock in order to 

measure the temperature of the rock face itself. On analysis of the rockfall dataset with respect 

to environmental conditions, a fault was identified in the measurement procedure for both rain 

gauges. As an alternative, rainfall data was acquired from a privately-owned weather station 

2 km from East Cliff. This was recorded at five minute intervals and provided as total rainfall 

and mean and maximum intensity at 30 minute intervals, equivalent to the rate of scanning.  

 

Table 3.1: Summary of the scan data collected during the monitoring period. 

Monitoring period 
Number of scans: 8 987 

Start date: 05-Mar-2015 16:48:51 

End date: 30-Dec-2015 15:27:39 

Scan interval 
hh:mm:ss 

Mode: 00:20:00 

Minimum: 00:11:19. Maximum: 43 days 

0.25 quantile: 00:21:41 

0.50 quantile: 00:30:00 

0.75 quantile: 00:30:26 

Measured points 
Minimum: 106 285 

Mean: 1 896 386 

Maximum: 1 939 853 

Data gaps (start/end) 

06/03/2015 13:00 10/03/2015 12:00 

23/05/2015 07:00 31/05/2015 12:00 

14/07/2015 11:00 02/09/2015 10:00 

09/09/2015 14:00 23/09/2015 11:00 

27/09/2015 11:00 29/09/2015 14:00 

10/10/2015 20:00 14/10/2015 11:00 

15/11/2015 05:00 18/11/2015 15:00 

21/11/2015 16:00 23/11/2015 22:00 
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 In addition to the weather stations, a webcam facing towards the cliff was installed at 

the top of the lighthouse. The webcam recorded images at 1 h intervals and provided a live-feed 

that was accessible online. The webcam imagery proved to be a useful supplement to assess the 

marine and weather conditions during hours of daylight. At times, waves can be observed 

overtopping East Pier itself and subsequently striking the buttress up to 5 m in Figure 3.4. The 

imagery also helped to identify periods of data loss due to adverse weather conditions, in which 

the acquired point cloud was either incomplete or contained artefacts in the range estimates. 

The consequences of this data loss are examined in Section 4.12. The coastal setting of Whitby 

can promote high atmospheric moisture, particularly between April and September when warm 

air from inland intersects cool and moist air above the North Sea. The resulting fog, referred to 

locally as Haar, may last up to several days. The Riegl VZ-1000 operates in the near-infrared 

(NIR; λ = 1 604 nm) and is therefore scattered by atmospheric moisture, rendering the scanner 

ineffective during foggy conditions. The webcam helps to explain such artefacts in the point 

clouds that cannot be elucidated using the weather station data alone.  

In addition to the datasets collected by the monitoring system above, subsidiary data 

were acquired for tide height, wave climate and hours of sunlight. For tide height, 15-minute 

quality-checked surface elevation data from the Whitby tide gauge have been obtained (BODC; 

Figure 3.5). A linear interpolation has been applied in order to present tide-heights at one-

minute intervals, comparable with the weather station variables. Wave climate data was 

acquired from the CCO wave buoy. The buoy came adrift three times in 2015, resulting in a 

large gap in measurements between 17th May and 23rd July (Figure 3.5); however, data was 

acquired at 30-minute intervals for 217 of the 302 days of monitoring reported here. This data 

includes the significant wave height, maximum wave height, peak wave period (the time 

separating successive wave crests), average wave period (the time taken for the buoy to undergo 

a full cycle of movement above and below zero amplitude), and the peak direction of swell.  

A database containing all of the environmental variables recorded in 2015 was compiled 

at one-minute intervals. This enabled resampling in which the environmental data were 

attributed to each of the corresponding 8 987 laser scans. This combination of rockfall from the 

scans and environmental data is as close to contemporaneous and continuous monitoring as is 

currently possible using the equipment in Table 3.2. Although the conditions at the time of 

scanning are important for analysing the conditions that coincide with the triggering of rockfall, 

changes in these conditions between scans in the run-up to failure are equally significant. Here, 

the timestamp for each scan is recorded as the time that the scan was initiated. For every scan, 

the time interval to the next scan was recorded (this includes time spent scanning and time 

spent idle) and used to provide a time window over which to provide average statistics for the 

environmental variables. Derivatives were therefore created; including the mean, standard 

deviation, minimum and maximum of each of the weather and marine variables during the scan 
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Table 3.2: Primary datasets collected by the permanent monitoring system. Methanol fuel cells were 

used to power the scanner, weather station and webcam at the lighthouse and a solar panel was used to 

power the weather station on east cliff. The weather station on East Cliff also included a pyrometer 

directed towards the rockface used to measure rock temperature. 

Location Instrument Make / Model Outputs Frequency 

East Cliff Weather station Vaisala WXT520 

Temperature 

1 min 
Relative humidity 

Rainfall 
Wind speed / 

direction 

Lighthouse 

Weather station Vaisala WXT520 

Temperature 

1 min 
Relative humidity 

Rainfall 
Wind speed / 

direction 

Webcam Mobotix M25 Image of Cliff 
Live feed 

JPEG @ 1 h 

TLS Riegl VZ-1000 
XYZ 

20 – 30 mins Reflectance 
Deviation 

 

window, and the shift in mean conditions (rates of change) since the time of the previous scan. 

Binary values were also created to ascertain whether certain conditions had been met, including 

whether the temperature had fallen below freezing, whether the scan was collected during hours 

of daylight and whether winds were onshore at the time of failure. In total 98 different metrics 

of environmental conditions at failure were produced for each of the 8 987 scans (Table 3.3). 

 
Table 3.3: Summary of the environmental variables compiled and resampled to be attributed to each of 

the 8 987 TLS scans. 

Variable Location Attributes Derivatives Binaries 
Scan ID     

Date and Time     

Weather 
Rock face and 

Lighthouse 

Temp 

Mean 
Standard Deviation 

Min. 
Max. 

Δ Mean Since Last Scan 
Epoch 

Below Freezing 

Pressure  

Humidity  

Wind Direction Onshore Wind 

Wind Speed  

Rain Intensity  

Rain Accumulation  

Whitby Hours of Sunlight  Daylight 

Tide Data Whitby Harbour Tide Height   

Wave Climate Offshore Buoy 

Significant Wave Height   

Max. Wave Height   

Peak Time Period   

Average Wave Period   

Direction   
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3.10 Practicalities of constant monitoring 
 

Continuous running of the system presented a number of challenges. First, there was no 

mains power supply to the lighthouse. For the majority of the project, this did not affect the 

frequency of scanning; however, scans had to be restricted to between 1 h and 6 h during late 

November and early December due to the failure of one of the two fuel cells. This had 

implications for the analysis of precursory movement prior to some of the largest failures. At its 

peak rate of scanning, the system required a full fuel refill approximately every four weeks. 

While fuel level telemetry (fuel/no fuel) were accessible online, maintaining enough fuel for the 

system to operate required numerous visits through the monitoring period.  

 The SiteMontor4D software used to schedule the scanning operates on a tablet 

computer. This tablet also served to transfer the data to an online cloud storage. The 

approximately six-week hiatus in scan acquisition during July and August was a result of 

complete failure of the tablet hard disk, which meant that the scanner could not acquire data 

autonomously. A solid state hard drive is recommended for such applications where near-

constant read and write of data to and from the hard drive is required. 

 

3.11 Summary  
 

A permanent monitoring system has been developed and used to collect a large number 

of scans at a spatial and temporal resolution sufficient to provide a unique insight into the 

nature of rockfall. Both the number of scans and the scan frequency are approximately two-

orders of magnitude higher than previously used to generate TLS-derived rockfall inventories. 

Analysis of these previous rockfall inventories based on less rich scan data has had limited 

success in deriving significant relationships between external environmental drivers and the 

onset of rockfall. It follows that in brittle materials, final failures of this type occur either 

independently of environmental forcing, as the culmination of a lagged response to damage 

accumulation, or at finer timescales as a result of variations in environmental conditions below 

the monitoring resolution (Vann Jones et al., 2015). Recent studies have captured accelerations 

in rockfall activity prior to final failure; however, these rely on trends that interpolate between 

intervals of 24 hours up to one month. The frequency of rockfall monitoring here, which 

captures deformation of the whole slope, is matched only by Interferometric Synthetic Aperture 

Radar (InSAR) systems, deployed mainly within open-pit mines. However, as discussed in 

Chapter 2, the spatial resolution of these systems falls short in comparison with the range 

precision (Farina et al., 2011), and as compared to TLS.  

 The acquisition of a 4D dataset of this nature requires an automated means of rockfall 

detection and inventory extraction, given the volumes of data generated. The system described 
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above generates ca. 1 GB of raw compressed point cloud data per day, totalling ca. 96 million 

points. Significant technological advances in the acquisition of TLS data have enhanced our 

ability to capture larger datasets in less time. Until recently, these advances have outstripped 

developments in the efficiency of processing, such that it is far easier to collect scan data than it 

is to process it. Datasets that take minutes to acquire may require hours of manual processing in 

order to filter redundant information, align them with previous scans, isolate regions of interest, 

quantify their geometry and to perform change detection. Rockfall inventories are now 

increasingly acquired using techniques that take advantage of the true-3D nature of the original 

point clouds, rather than 2.5D analysis of change between successive DEMs (Lague et al., 2013). 

Although a number of commercial and open-source packages exist for point cloud processing and 

visualisation, these are only able to provide semi-automated data processing at best. An 

automated approach to change detection has therefore been developed and is presented in 

Chapter 4 as a means of extracting an accurate rockfall inventory from such a large dataset.  
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Chapter 4 

4D Analysis of Rockfall using 
Continuous TLS Data 

 
 

4.1 Introduction 
 

In Chapter 3, the development of a near-real time slope monitoring system was presented. The 

spatial and temporal resolution of data acquisition was selected to address the knowledge gaps 

identified in Chapter 2; in particular, the degree to which rockfall can be defined as 

instantaneous, and the spatial-temporal relation between the onset of failure and environmental 

drivers, joint characteristics, and pre-failure deformation of the rock mass. This chapter outlines 

the methods applied to this dataset in order to compile a rockfall inventory that included the 

size and shape of each rockfall alongside the environmental conditions at the time of failure. 

 The minimum detectable movement obtained using TLS is a function of the absolute 

accuracy of measured topography within a survey and the precision of range measurements 

between surveys. Analysis of scan pairs can propagate and amplify uncertainties in the absolute 

position of a surface, as well as introducing relative uncertainties between each scan. These 

relative uncertainties arise because of systematic errors in range precision and the fact that the 

exact same point on a surface can never be rescanned. Comparison of scans is critically not 

comparing like with like. Reducing the measurement error between scans is required to lower the 

number of small-scale rockfall detachments, or small scales of surface deformation, that are 

censored. This therefore has implications for analysing magnitude-frequency distributions, and 

the precursors to and drivers of the onset of final rockfall failure. 

 The data processing workflow described in this chapter aims to minimise the impact of 

epistemic error upon the size of rockfall reported in the final inventory by first optimising the 

raw point clouds prior to change detection. This pre-processing step filters points with low range 

precision, such as those located along topographic edges, before 3D cloud-to-cloud change 

detection is undertaken using an adaptation of the M3C2 algorithm (Lague et al., 2013). The 

resulting change is rasterised and individual failures are extracted and compiled into an 

inventory. It is shown that, while the geometry of the surface relative to the scanner raises some 

uncertainty in the relative position of multiple point clouds, the method of change detection 

adopted yields a level of detection of 0.03 m at ca. 300 m – 500 m, which is considerably lower 

than that produced using methods such as DEMs of Difference and M3C2. 
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4.2 Sources of error within individual surveys 
 

Terrestrial laser scanning of rock slopes comprises individual surveys, which can be used 

to characterise discontinuities for input into stress-based modelling of slope failure (Slob et al., 

2002; Sturzenegger and Stead, 2009a; Sturzenegger and Stead, 2009b; Lato et al., 2010; Gigli 

and Casagli, 2011; Lato and Vöge, 2012; Vöge et al., 2013; Assali et al., 2014), and repeat 

surveys for monitoring change (Rosser et al., 2007a; 2007b; Teza et al., 2007; Oppikofer et al., 

2008; 2009; Abellán et al., 2009; Lim et al., 2010; Viero et al., 2010; Rosser et al., 2013; Royán et 

al., 2015; Vann Jones et al., 2015). For any one survey, the accuracy of the scan data is limited 

by instrument errors, point spacing, target geometry, atmospheric conditions and surface 

characteristics. When measuring deformation between two surfaces, assuming that those surfaces 

may have moved rather than a block having been detached, the scale of movement that can be 

detected is determined by measurement accuracy within each individual survey and the 

amplification and propagation of these inaccuracies between surveys. For a rockfall, while the 

precision of depth estimate is critical in estimating its depth and size, its aerial extent is 

determined by the locational accuracy of the point measurement on the surface. When 

generating a large volume of scans, there is a need to understand both the individual scan error 

and the error between scan pairs in order to minimise the overall error in the resulting rockfall 

inventory. These errors are summarised in Table 4.1. 

  

4.2.1 Instrument error 
 

Systematic errors in TLS measurement exist because of imperfections in instrument 

hardware, combined with the beam width divergence and angular resolution of the scanner 

(Soudarissanane et al., 2011). Similar to theodolites, the vertical axis (around which the scanner 

rotates), the trunnion axis (which moves with the instrument and pivots up and down) and the 

collimation axis (the line of sight) of scanners are assumed to be orthogonal to one another and 

to intersect a common point (Lichti and Skaloud, 2010). However, this is rarely the case and 

therefore produces uncertainty in the horizontal and vertical angular position of the scanner at 

any given moment during scanning. Corrective adjustments can be applied to range estimates 

(Rüeger, 2003; Kersten et al., 2005; Lichti and Franke, 2005; Lichti, 2007; Lichti and Lampard, 

2008; Salo et al., 2008; Schneider and Schwalber, 2008) but the direct impact upon resulting 

point positions in 3D remains difficult to quantify. Rotating mirror systems, such as the Riegl 

VZ-1000, result in additional uncertainties in the direction of scanning due to the positional 

offset of each mirror facet from the rotation axis of the scanner. Accounting for these 

uncertainties, the estimated angular resolution EA of the Riegl VZ-1000 is approximately 

0.0005 ° (Riegl, 2015). The position offset of the centre line of each laser beam EP can therefore 
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Table 4.1: Sources of epistemic error between successive surveys, including the magnitude of their 

influence upon the level of detection. Pre-processing approaches applied to the point clouds to minimise 

the resulting change errors are detailed on the right-hand side in red. Here, filtering is applied. An 

approach to 4D smoothing was not, but is detailed in both Section 8.2 and Appendix F. 
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be estimated by: 

 

 𝐸𝐸𝑃𝑃 = 𝑅𝑅 ∙ sin𝐸𝐸𝐴𝐴 [Eq. 4.1] 

 

where R is the range. At the closest point on East Cliff, 342 m, this translates to a 0.003 m 

uncertainty in the location of the centre point of the beam, and a 0.0047 m uncertainty at the 

distal portion of the cliff, at 533 m range. The above factors have a direct impact on the 

uncertainty of the position of each point in 3D space. For rockfall monitoring, this is important, 

as the minimum detectable size of the rockfall is reliant upon the accuracy to which its aerial 

extent is resolved. The magnitude and spatial variability of this uncertainty are impossible to 

determine for surfaces of varying complexity surveyed under varying atmospheric conditions, 

and the inability to quantify this uncertainty is therefore compounded between surveys. The 

magnitude of this error (millimetre scale), however, is small in comparison with the dimensions 

of the rockfall that are sought to be detected here, which are in the region of 0.15 m in length at 

the smallest.  

 

4.2.2 Atmospheric conditions 
 

 Atmospheric conditions have an effect upon the total number, precision and signal-to-

noise ratio (SNR) of the returned measurements. Fluctuations in temperature, humidity and 

pressure determine the air density through which the laser travels, thereby affecting the speed of 

light. For the target ranges at East Cliff, this has no significant impact upon the accuracy and 

precision of range estimates (Boehler et al., 2003). Rises in atmospheric temperature, however, 

can exacerbate already high temperatures within the instrument itself, resulting in the 

expansion of components and increased deviations in range estimates. Direct sunlight onto the 

scanner can also increase the uncertainty in range estimates and therefore the SNR of 

measurements if the ambient light energy is comparable to that of the returned signal (Voisin et 

al., 2007). At East Cliff, the scanner faces the sun; however, any shifts in the position of the 

point cloud were unnoticeable. This can be attributed to the range correction factor that is 

acquired through target scanning, the positioning of the scanner behind a white-painted wooden 

door to prevent direct insolation of the instrument, and the absence of noticeable temperature 

variations within the lighthouse. Published empirical relations between atmospheric conditions 

and range estimates do not currently exist, primarily due to the inherent difficulties in isolating 

and varying a single aspect of the climate in controlled tests. As such, quantitative estimation of 

the influence of atmospheric variables on the point clouds is not undertaken here. The 

importance of weather conditions, including rainfall and fog, is discussed in Section 4.11. 
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4.2.3 Target properties 
 

The anisotropy of light reflected by an object, which is determined by its reflectivity 

and microscale roughness relative to the scanner wavelength, can affect the accuracy of the 

returned measurements (Baltsavias, 1999; Pesci et al., 2008; Soudarissanane et al., 2011; 2016). 

Moisture delivered by the tide resulted in data loss at the cliff toe even after the tide had 

retreated. For this reason, the lowest 2 m of cliff face above the rock armour revetment was 

removed from the study. Variations in the colour of reflected surfaces are also likely to affect the 

accuracy of range estimation across the cliff face, since darker surfaces produce lower energy 

returns (Clark and Robson, 2004), particularly for beds of shale and siltstone. Conversely, 

surfaces with high reflectivity can result in saturation of the detector, in particular for metal 

objects or prisms that may be present on the monitored slope. For the VZ series of Riegl 

scanners, this can result in a loss of data within scan lines where highly reflective objects are 

present. Neither of these effects occurred within this study.   

 

4.2.4 Scan geometry and point distribution 
 

The scanning geometry (the position of the scanner relative to the monitored surface) 

affects both the accuracy of individual scans, by directly influencing the size of the laser 

footprint on the monitored surface, and comparisons between scans, by determining the point 

spacing and thus the likelihood that the same location on the surface will be rescanned in 

successive surveys. The geometry comprises target range and incidence angle relative to the 

scanner, with an increase in either attribute causing an increase in the footprint of the beam as 

it strikes the surface due to the beam divergence (Bae et al., 2005; Křemen et al., 2006; Lichti, 

2007; Soudarissanane et al., 2009; 2011).  

 On leaving the scanner, the laser beam diverges to create a circular footprint on a 

perfect nadir, planar surface and an elliptical footprint on an oblique planar surface, the width 

of which is referred to as the spot dimension (Petrie and Toth, 2008). If the beam hits the 

surface perfectly nadir, the footprint will be circular and the distribution of energy within this 

footprint is Gaussian (Lichti et al., 2002; Alda, 2003). As the footprint spreads with range, the 

uncertainty in the location of the recorded measurement increases and the returned signal is 

weaker. The influence of target range on spot dimension can be defined as: 

 

 𝑆𝑆𝑆𝑆 =  ��𝑑𝑑𝑎𝑎
2 + 𝑅𝑅2𝜃𝜃2� [Eq. 4.2] 

 

where SD is the spot diameter (m), da is the initial diameter or beam aperture (m), R is the 
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instrument-object range (m) and θ is the beam divergence (rad). Beam divergence is typically 

specified by the manufacturer; for example, the Riegl VZ-1000 has an aperture width of 0.008 m 

and a divergence of 0.3 mrad, corresponding to a beam-widening of 0.030 m per 100 m of flight 

assuming a circular beam (Riegl, 2015). At East Cliff, the spot diameter ranges from 0.1029 m 

at the closest point on the cliff (342 m) to 0.1601 m at the furthest (533 m) assuming a surface 

that is orthogonal to the incident beam.   

 If the laser beam strikes the surface with a non-zero incidence angle, the resulting 

footprint is elliptical, spreading the energy distribution over a greater target surface area. The 

angle of incidence α is defined as the angle between the laser beam and the vector normal to the 

surface and may change with deformation of the rock slope. It can be related to spot dimension 

by: 

 

 𝑆𝑆𝑆𝑆 = 𝑅𝑅 ∙ tan 𝛼𝛼 + 𝑑𝑑𝑎𝑎 [Eq. 4.3] 

 

where α is the angle of incidence. Greater range and incidence angles have been shown to 

decrease the SNR of resulting point clouds as less intense signals are less likely to be detected. 

Soudarissanane et al. (2011) undertook controlled experiments and determined that the SNR of 

a laser return deteriorates with the cosine of the incidence angle. Moreover, SNR deterioration is 

inversely proportional to the square of range.  

While object geometries in most published studies are generally planar and produce low 

target incidence angles (Schürch et al., 2011; Brodu and Lague, 2012), the incidence angle of the 

surface strike of East Cliff relative to the scanner is between 25° and 42° (Section 3.7). 

Combined with a moderate target range, this results in spot dimensions of ca. 0.10 – 0.17 m in 

diameter assuming the surface to be planar at scales comparable to the spot size (Equation 4.2). 

Despite divergences < 1 mrad, multiple adjacent surfaces belonging to protruding, widely 

jointed sandstone blocks may be intersected within a single line of sight, creating a smearing 

effect sometimes referred to as mixed pixels. Here the estimated range is a function of the 

distance between the scanner and each reflection returned from any surface in the laser footprint 

which might be at different ranges, observed from a single laser pulse. In instances where the 

beam intersects a single surface and the footprint is close to the edge of this surface, the position 

of the point may be attributed to the centre of the beam when in fact the range measurement 

corresponds to the edge of the surface, or a surface beyond. As such, the object may appear 

larger in the point cloud than in reality (Lichti et al., 2005; Hodge et al., 2009).  
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4.3 Sources of epistemic error between surveys 
 

The sources of error in surface comparison can be divided into errors associated with 

individual component scans, alignment error between successive scans (discussed in detail in 

Section 4.7) and uncertainties in the method of change detection (Teza et al., 2007).  

 

4.3.1 Target geometry and error amplification 
 

The scan geometry determines the heterogeneity of point spacing across each scan and 

therefore the consistency of point distributions captured in multiple scans. A single position on a 

surface cannot be rescanned with certainty, and the likelihood of being able to scan the exact 

same point twice decreases with increased point spacing and variations in point spacing across 

each scan. In the scanner’s Polar coordinate system, points are acquired and stored at fixed 

vertical, θ, and horizontal, φ, intervals alongside the range between the scanner and the object 

R (Vosselman et al., 2004; Girardeau-Montaut et al., 2005; Durrieu et al., 2008). Translation of 

the resulting φ, θ, R coordinates into an x, y, z Cartesian system imposes a spatial-variation in 

point density throughout the 3D point cloud (Belton and Lichti, 2006). These variations 

increase given unfavourable target geometry, whereby fewer points are collected on surfaces 

according to the inverse of the square of range and the cosine of the incidence angle (Pesci et al., 

2008; Soudarissanane et al., 2011). The angle of incidence in this study and the presence of 

sharp edges on the cliff face mean that it is impossible to acquire a truly uniform point density 

that is consistent between scans. For a complex debris-flow channel, Schürch et al. (2011) found 

that the overall quality of 3D point clouds was determined by difficulties in the registration of 

multiple scan stations, rather than the intersection of multiple surfaces within a single line-of-

sight. While Schürch et al. (2011) highlighted the impact of heterogeneous point distributions on 

scan registration within a single time epoch, it follows that the alignment of successive scan 

surveys also suffers given that the same point can never be scanned twice.  

 

4.3.2 Change detection methods 
 

Three types of change detection technique are commonly applied in geomorphological 

research, each of which introduces methodological uncertainties into measured surface change. 

To date, the most common of these is the gridding and interpolation of point clouds to create 

Digital Elevation Models (DEMs) that are subsequently subtracted on a pixel-by-pixel basis to 

provide a DEM of Difference (DoD). This technique has been used to monitor debris flows 

(Scheidl et al., 2008; McCoy et al., 2010; Blasone et al., 2014); rock avalanches (Kasperski et al., 

2010); rock glaciers (Avian et al., 2009); diffuse erosion (Schürch et al., 2011) and precursors to 
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slope failure (Rosser et al., 2007; Abellán et al., 2009). This approach is advantageous in many 

respects, particularly when dealing with near-planar horizontal or vertical surfaces. This 

approach also negates computationally intensive processing of point cloud data, and can easily 

be used to produce topographic or hydrologic derivatives. However, the production of DoDs can 

amplify errors associated with the creation of the original DEM surface. In particular, the 

interpolation of 3D point cloud data into a pseudo-3D (2.5D) surface results in a loss of true 3D 

detail and measures change exclusively along a user-defined depth axis. Loss of detail increases 

with slope (Vosselman et al., 2004), introducing a bias in change detection towards planar 

surfaces. Features such as overhangs and surface inflections, which are often of vital mechanical 

importance on a rock face, often remain poorly resolved (Martel, 2006; 2011; Stock et al., 2011). 

The determination of a fixed grid spacing also limits the resolution of rough surfaces (Hodge, 

2010) and fine-scaled features within regions of high point density (Lague et al., 2013).  

A number of approaches quantify error in DEMs and apply this as a threshold when 

interpreting DoDs. The minimum Level of Detection (LoD) can be estimated from the root sum 

square of errors associated with each of the component DEMs. Wheaton et al. (2010) found that 

aerial and volumetric estimates of change are highly sensitive to the chosen LoD, with a loss of 

real change occurring below this threshold. Other studies thus apply a confidence error based on 

the error distribution across the entire surface, typically 1.96 times the standard deviation 

(Brasington et al. 2003; Lane and Chandler, 2003). However, these assume that there is a 

normal distribution of errors across the surface, and that the errors in successive DEMs are 

similarly distributed. Other approaches incorporate the spatial variability in uncertainty across 

the component DEMs (Wheaton et al., 2010; Milan et al., 2011; Bangen et al., 2016). Wheaton 

et al. (2010) applied a fuzzy inference that incorporates different topographic attributes 

associated with error. Using local slope, point density, and GPS error, each DEM cell is 

ultimately assigned a weighted error value that can be incorporated into DoDs to define an 

acceptable LoD on a pixel-by-pixel basis. This approach succeeded in retaining greater volumes 

of erosion and deposition compared to the use of a single LoD across the entire surface. 

However, its application is tailored to monitoring large areas in which DEM cells are unlikely to 

contain more than one point. Schürch et al. (2011) highlighted the importance of incorporating a 

large number of range measurements within each cell in order to accurately constrain range 

uncertainty.  

A second common approach to change detection is the calculation of surface change as 

the distance between a point cloud and a reference surface (Lague et al., 2013). The reference 

surface used can be derived by meshing or view-dependent triangulation (Monserrat and 

Crosetto, 2008; Abellán et al., 2009; Olsen et al., 2010) and is well-suited to smooth structures 

such as dams (e.g. Alba et al., 2006). For rough surfaces, however, surface construction is more 

computationally intensive and necessitates a large amount of smoothing (Kromer et al., 2015b).  
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More recently, a number of studies have directly compared successive point clouds 

without the need to grid or mesh either of the surfaces; this technique is also known as cloud-to-

cloud comparison (Teza et al., 2007; Monserrat and Crosetto, 2008; Oppikofer et al., 2009; Viero 

et al., 2010; Lague et al., 2013; Kromer et al., 2015a;b; Stumpf et al., 2015). In its simplest form, 

change between two point clouds S and S’ can be computed as the Hausdorff distance d, which 

is the distance between each point p in cloud S and its closest neighbour in cloud S’: 

 

 𝑑𝑑(𝑝𝑝, 𝑆𝑆′) = min
𝑝𝑝′∈𝑆𝑆′

‖𝑝𝑝 − 𝑝𝑝′‖2 [Eq. 4.4] 

 

This method has several drawbacks. First, as it operates over all points in the point cloud, the 

approach can be time consuming if the point cloud is not organised to allow rapid 

neighbourhood searches; for example, within an Octree or K-D tree structure (Girardeau-

Montaut et al., 2005). Second, the change estimates that are produced are highly dependent 

upon point density. In areas of low point density, Hausdorff distances are inevitably larger than 

in areas of high point density (Girardeau-Montaut et al., 2005), and are therefore more 

accurately estimated as a point to surface distance. Third, a point will always have a closest 

neighbour in the next scan. As the same location of a surface will never be rescanned, a change 

value will be recorded regardless of whether or not movement has occurred in reality. Fourth, 

the distances produced are unsigned; without detailed a priori knowledge of the movement style, 

this technique is therefore unsuited to landslide masses in that they exhibit both forward and 

backward movements relative to the scanner. For analysing rockfall detachments over monthly 

survey periods, this may not be a significant drawback. In this study, however, signed distances 

are crucial for the examination of precursory movements, which can be both forwards and 

backwards, as well as for quantifying the size of the final detachment. Accumulation of material 

on the buttress at the toe of the slope at East Cliff, combined with the potential for slumping, 

further necessitates an approach that generates signed distances. 

An extension of the Hausdorff approach is the creation of distance vectors by manual 

matching of particular point pairs. Oppikofer et al. (2008) examined the collapse of the eastern 

Eiger flank in the Swiss Alps, noting that the front failing block underwent toppling with higher 

velocities at its top relative to its toe. Point pairs were defined using topographic features 

distinguishable in both clouds, such as spurs and the summits of blocks. For each point i of the 

point cloud, a shortest-distance algorithm was used to search for its nearest neighbour j and 

compute the shortest distance vector vi: 

 
 

𝑣𝑣𝑖𝑖 =  �
∆𝑋𝑋𝑖𝑖
∆𝑌𝑌𝑖𝑖
∆𝑍𝑍𝑖𝑖

� =  �
𝑋𝑋𝑖𝑖.𝑟𝑟𝑟𝑟𝑟𝑟
𝑌𝑌𝑖𝑖.𝑟𝑟𝑟𝑟𝑟𝑟
𝑍𝑍𝑖𝑖.𝑟𝑟𝑟𝑟𝑟𝑟

� −  �
𝑋𝑋𝑖𝑖.𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎
𝑌𝑌𝑖𝑖.𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎
𝑍𝑍𝑖𝑖.𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎

� [Eq. 4.5]  

 



Chapter 4: 4D Analysis of Rockfall using Continuous TLS Data 

 

74 

where positive values indicate that the points are moving towards the scanner and away from 

the reference cloud, representing advancement of the mass. Conversely, negative values tend to 

indicate removal of mass through rockfall. In addition to the Euclidian distance |vi|, this method 

also yielded the 3D orientation of the movement vector, indicating vertical, horizontal, and 

oblique differences. Similar to the Hausdorff distance, however, the point distribution had a 

significant effect on the accuracy of this technique by determining the minimum physical 

proximity between selected point pairs. This resulted in movement errors of 0.05 – 0.20 m.  

 A more automated approach is to isolate and triangulate points belonging to a single 

discontinuity or object of interest and register them to the same surface in the next scan 

(Monserrat and Crosetto, 2008; Oppikofer et al., 2009; Viero et al., 2010). As discussed by Teza 

et al. (2007), the registration uses an affine rigid-body transformation, and hence assumes no 

deformation of the moving mass, that expresses the translation of the centre point from its 

initial to final state, followed by a sequence of three rotations about three axes (non-

commutative). Typically, a 3-2-1 combination is used such that the overall rotation R and 

translation (the column [0;0;0;1]) is represented by: 

 

 𝑅𝑅 =  𝑅𝑅𝑥𝑥(𝜙𝜙)𝑅𝑅𝑦𝑦(𝜃𝜃)𝑅𝑅𝑧𝑧(𝜓𝜓) [Eq. 4.6] 
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This technique relies on the presence of corresponding elements and structures between 

sequential point clouds for accurate registration. Prior to this the point clouds must be 

accurately aligned using stable surfaces present within the scene. This cannot be guaranteed for 

geomorphic surfaces that are frequently subject to the erosion and removal of material, for 

example river or debris-flow channels and hard rock cliffs. 

A more recent approach for cloud-to-cloud comparison is the M3C2 algorithm (Lague et 

al., 2013; Earlie et al., 2013; Stumpf et al., 2015), which is a freely avaialble function in 

CloudCompare. A normal vector is defined for each core point in the cloud by fitting a plane 

through a neighbourhood within a radius D/2 from the core point. D is the normal scale and is 

related to local roughness of the cloud, represented by the standard deviation of distances 

between the neighbourhood points and the plane. Once the normal is computed, it is used to 

create a cylinder of radius d/2 that runs through the core point. The projection scale, d, 

determines the size of the neighbourhood that is enclosed within the cylinder for each point 

cloud. The distance between the two point clouds is defined as the distance between the centres 
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of each neighbourhood, along the normal vector. This method operates in 3D and is robust to 

fluctuations in point density and noise across the point cloud, and returns a signed measure of 

change. 

 

4.4 Processing structure 
 

 In the remainder of this chapter, a series of codes created and applied to acquire an 

accurate rockfall inventory is outlined. This analysis has been undertaken in MATLAB, in order 

to take advantage of its parallel computing capacity, which allows multiple scan pairs to be 

examined simultaneously (Mathworks, 2017). In addition, it permits handling of three-

dimensional datasets, interpolation into two dimensional rasters and statistical analysis of 

resulting rockfall inventories, all without the need to import and export data between separate 

software packages. The workflow is the result of multiple iterations using subsets of the scan 

data as well as the entire dataset (Figure 4.1). It generates a rockfall inventory containing the 

size, shape and environmental conditions at the time of failure. For a number of largest rockfall, 

plots and videos of the pre- and-post-failure movement within the event scar are also created.  

 

4.5 Rotation 
 

An example of the raw point cloud data was provided in Section 3.7. Depth, the 

distance between the lighthouse and the cliff, runs approximately along the y-axis of the raw 

point cloud. The x-axis runs across the slope, and the z-axis represents the vertical axis. Due to 

the high surface incline of the cliff relative to the scanner, the cliff itself is not planar within the 

x-z plane. In addition to East Cliff, the point cloud includes returns from the pier, foreshore 

platform, St Mary’s Church and Whitby Abbey, such that East Cliff accounts for 82% of 

returned measurements (ca. 1.9 million of a total ca. 2.3 million collected). In order to minimise 

the effects of the above upon change detection between scan pairs, rotation and filtering of the 

point cloud were undertaken. 

DEM creation requires a point cloud to be rotated prior to rasterisation. This rotation 

ensures the most planar surface possible, meaning that the depth or elevation of each point is 

measured along a new arbitrary axis normal to the dominant strike of the surface, rather than 

along the original line of sight or a global coordinate system (e.g. OSGB’02). Given that the 

subtraction of successive DEMs yields change along this depth axis only, the rotation of the 

point cloud is therefore critical for determining the degree to which changes measured using 

DoDs represents true 3D deformation of the slope (Rosser et al., 2008; Benjamin et al., 2016). 

For example, Rosser et al. (2008) showed that the observed deformation of a synthetic slope 

increased by nearly an order of magnitude for every 5° deviation from viewing angles normal to 
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Figure 4.1: Flow diagram representing each phase of the rockfall inventory compilation. All stages 

following ASCII to MAT conversion were written in MATLAB. ICP alignment used the pcregrigid 

function, and rockfall vectorisation used the bwboundaries function. 
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the rock face. Cloud-to-cloud techniques overcome this bias by maintaining the 3D nature of the 

raw point clouds, measuring change along adaptive surface normals, rather than a single axis. 

Here, point clouds were rotated prior to change detection for the following reasons: 

 

(1) Filtering of the point clouds required an automated approach (Section 4.6). As an 

initial step, a fixed clockwise rotation of 220° was applied to each point cloud until it 

became approximately planar across the x-z plane. The rotation was undertaken around 

the central point of the cliff, defined using the first collected point cloud. This rotation 

allowed the creation of a tight bounding box around the cliff that was used to filter 

extraneous measurements, such as birds or dust captured close to the lighthouse 

scanner.  

 
(2) The estimation of surface normal vectors at each point is fundamental to the change 

detection process as it determines the positions on the original and new surface between 

which a length is calculated. However, the direction of each vector exhibits a sign 

ambiguity whereby the fitted plane has a normal in each direction (Mitra and Nguyen, 

2003; Ioannou et al., 2012). When calculating change along the normal, the direction of 

the normal vector was used to determine whether the monitored movement was forward 

or backward relative to the rotated coordinate system. This can typically be resolved 

using the position of the query point q relative to the sensor position s, as follows: 

 

 �̂�𝑐 = [𝑋𝑋𝑠𝑠,𝑌𝑌𝑠𝑠 ,𝑍𝑍𝑠𝑠] − [𝑋𝑋𝑞𝑞 ,𝑌𝑌𝑞𝑞 ,𝑍𝑍𝑞𝑞] [Eq.4.8] 

   

 In ℝ3: 𝛼𝛼 = arctan(‖�̂�𝑐 × 𝑐𝑐�‖2) [Eq.4.9] 

 

where × denotes the vector cross product and ∥ denotes the Euclidean norm of the cross 

product. α denotes the angle between the unit normal vector 𝑐𝑐� at q and the vector 

between q and s, �̂�𝑐. If 𝛼𝛼 >  𝜋𝜋
2
 or 𝛼𝛼 <  −𝜋𝜋

2
, i.e. if the angle between the direction of the 

normal vector and the vector between the surface and the sensor is not within 

± 0.5π rad, the normal direction 𝑐𝑐� is reversed: 

 

 𝑐𝑐�𝑟𝑟𝑟𝑟𝑟𝑟〈𝑢𝑢, 𝑣𝑣,𝑤𝑤〉 =  𝑐𝑐�〈−𝑢𝑢,−𝑣𝑣,−𝑤𝑤〉 [Eq. 4.10] 

 

Here, once the point clouds were rotated, the axis orthogonal to the surface was 

introduced as a string of either ‘X’ or ‘Y’. With this information, the relevant 

component of the unit vector was used to determine whether the vector should be 

reversed in order to minimise the computation time required in Equations 4.8 and 4.9. 
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For example, range in the rotated cloud was measured along the y-axis; if  𝑐𝑐� =

 〈−𝑢𝑢, +𝑣𝑣,−𝑤𝑤〉. This meant that the vector 𝑐𝑐� pointed into the surface and should be 

reversed using equation 4.10. For each normal, this provided a ca. 50% reduction in the 

time taken for sign correction.    

 

(3) While deformation estimates were calculated in 3D, and are therefore unaffected by 

rotation of the point cloud, the point clouds of change were rasterised to delineate 

individual failures and calculate their area and volume. Maximising the planarity of the 

surface through rotation ensured that changes belonging to different points were not 

assigned to the same pixel in the resulting raster. 

 

4.6 Filtering 
 

Scan data collected outside of the monitoring area can provide useful information for 

scan-to-scan registration, especially if it is stable, covers a wider geographical and more three-

dimensional area, and if the monitored slope is moving. To avoid false change estimates, 

however, this area must be removed alongside any objects that are temporarily introduced into 

the scene, such as birds, vehicles or people (Kemeny and Turner, 2008). For datasets containing 

a small number of scans (< 20), the data is often cleaned by manually delineating and erasing 

these points. In order to automate this procedure for the 8 987 scans used here, a rectangular 

bounding box was initially used to mask each rotated point cloud, allowing removal of 

extraneous points. This removed parts of the pier, structures on the cliff top, exposed areas of 

the foreshore platform and spurious measurements returned from birds, fog and heavy rain. 

Applying this mask reduced the raw point cloud sizes from ca. 1.9 million points to ca. 1.1 

million points, thereby increasing the speed of subsequent filtering algorithms. 

 Extraneous points within the area of interest can include those belonging to vegetation, 

or those that are scattered around the true value of the surface due to measurement noise 

(Kemeny et al., 2011; Abellán et al., 2014). Two filters were applied to eliminate points with 

high range uncertainties, with the ultimate aim of enhancing the accuracy of point cloud used in 

the change detection. As the change detection used in Section 4.10 draws on a point and its 

surrounding neighbours, the measurement quality of all points is critical for correctly 

determining the direction of the normal vector and the distance between neighbourhoods within 

successive point clouds. As a consequence, rather than filtering erroneous change measurements 

after the change detection, points with uncertain range estimates were removed first to prevent 

them from influencing the change detection of the surrounding points. Two filters were therefore 

applied to eliminate points with high range uncertainties, with the aim of enhancing the 

accuracy of the later change detection. These were an edge and hole filter (Section 4.6.1) and a 
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filter based on the radiometric return of the signal (Section 4.6.2).  

  

4.6.1 Edge and hole filter 
 

Edges present unique uncertainties for laser measurement that are exacerbated by high 

target ranges and steep incidence angles, such as those at East Cliff. These uncertainties arise 

from the averaging, or smearing, of multiple returns within the same beam footprint, alteration 

of the size of the discontinuity owing to uncertainty in the lateral position of the point of 

measurement within the footprint (Lichti et al., 2005; Hodge et al., 2009), and the tendency for 

scan lines to include or omit edges between scans when the scan-line spacing exceeds the scale of 

surface relief (aliasing). A code to detect the presence of edges and holes in the point cloud was 

developed and applied to each point cloud. 

 For each point, its neighbours within a fixed radius were identified and the CoG, the 

central location within the neighbourhood, was calculated as follows: 

 

 𝐶𝐶𝑐𝑐𝐶𝐶 =  �
∑ 𝑥𝑥𝑛𝑛
𝑖𝑖=1

𝑐𝑐
,
∑ 𝑦𝑦𝑛𝑛
𝑖𝑖=1

𝑐𝑐
,
∑ 𝑧𝑧𝑛𝑛
𝑖𝑖=1

𝑐𝑐
,� [Eq. 4.11]  

 

where n is the number of neighbouring points. The 3D Euclidean distance, ED, between the 

query point, q, and the CoG was then calculated: 

 

 𝐸𝐸𝑆𝑆 = �(𝑋𝑋𝑞𝑞 − 𝑋𝑋𝐶𝐶𝐶𝐶𝐶𝐶)2 + (𝑌𝑌𝑞𝑞 − 𝑌𝑌𝐶𝐶𝐶𝐶𝐶𝐶)2 + (𝑍𝑍𝑞𝑞 − 𝑍𝑍𝐶𝐶𝐶𝐶𝐶𝐶)2 [Eq. 4.12] 

 

For a point on the edge of a surface, the distribution of its neighbours is skewed towards the 

interior of the surface and the resulting CoG is further away from the query point. The distance 

ED is larger than that of a query point that does not belong to an edge. Before using ED as a 

threshold to remove points, the distance between the query point and the CoG must account for 

the varying point density across the cloud. In regions of low point density, ED will always be 

larger than regions of high point density regardless of the point’s positon relative to an edge. In 

order to compensate for this, the value EH assigned to each point is reported as a ratio of the 

distance ED to the number of points in a spherical domain centred on each point: 

 

 𝐸𝐸𝐸𝐸 =
𝐸𝐸𝑆𝑆
𝑐𝑐

 [Eq. 4.13] 

 

Incorporating the point density ensures that this filter removes points that are surrounded by 

very few neighbours, such as single returns from birds or partial reflections from atmospheric 
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moisture. Points belonging to surfaces with only very low point densities are also removed; such 

surfaces have the potential to produce unrealistically high values of change as points are 

significantly less likely to be measured in similar physical locations between successive scans. 

Change detection in these locations is therefore unreliable.  

 

Figure 4.2a demonstrates the role played by points attached to high EH values in 

increasing the error in change detection between scan pairs. Two successive unfiltered point 

clouds were compared using the 3D distance estimation in Section 4.10. No observable changes 

occurred between these two point clouds and, therefore, 3D distance estimation serves as an 

indicator of the level of measurement noise between them. EH values were then calculated for 

all points in the first point cloud. If the EH threshold (x-axis in Figure 4.2) is set high, a greater 

proportion of edges and holes are retained within the point cloud. The standard deviation of 

change that is preserved is also higher, owing to the uncertainty attached to high EH points 

(discussed in more detail in Section 4.10.3). The red line indicates the threshold that is applied 

in this study; while the standard deviation of change increases with points of higher EH, this 

metric does not provide a clear value of EH to apply as a threshold. In Figure 4.2b, the 

Figure 4.2: (a) A change detection is undertaken between two point clouds where no observable 

movement occurred. The standard deviation for a single point cloud therefore indicates the level of 

noise between the two. This value is estimated by first including only points with the lowest edge/hole 

values (EH 10-4), and then including points with increasingly large edge/hole values (up to EH 10-2).   

When high EH values are retained, the total error, defined by the standard deviation of change, 

increases. Edge and hole values for the point cloud are retained below the position of the threshold (red 

dashed line). (b) The cumulative proportion of EH values within an entire point cloud. Each line 

represents a different neighbourhood radius search. For the same points, EH values are lower using a 

larger search radius because more neighbouring points (n in Equation 4.13) are found. An inflection in 

the number of points retained is used to define the threshold at 95%. This ensures that artefacts such 

as holes are not introduced into the point cloud by removing too many points. 
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distribution of EH values within the point cloud is presented. Using a search radius of 1 m (blue 

line) the threshold of 5 × 10-4 retains 95% of the points within the point cloud while removing 

the 5% of points that are attributed to errors > 0.5 m in Figure 4.2a. The grayscale 

distributions illustrate the influence of varying the search radius at each query point. While the 

EH values change, their distribution across the point cloud remains the same due to the 

normalisation by point density. A 1 m radius was chosen to ensure that a minimum of four 

points, the minimum needed to estimate the CoG in addition to the query point, would always 

be found. 

Figure 4.3b shows an example point cloud coloured by the point density, defined as the 

number of points within a 1 m radius. The 95th percentile, 80, is shaded red. In Figure 4.3a, the 

point cloud is coloured by EH with filtered points > 5 × 10-4 shaded in red. This metric 

comprises the zones of red in Figure 4.3b but also accurately delineates zones of occlusion, or 

‘holes’, along with edges across the cliff face. 

 

4.6.2 Deviation filter 
 

A major drawback of TLS systems is the inability to identify unreliable point 

measurements, as each does not have a measured reliability. The introduction of new systems, 

which record the energy characteristics of reflected returns, offers a means of estimating the 

quality of recorded measurements. In this section, the use of such measures in removing 

unreliable data prior to change detection is examined. Here, characteristics of the returned 

signal are used to filter out regions of vegetation and edges in order to reduce noise in point 

cloud comparisons. This is undertaken with respect to a recorded average of the energy return, 

referred to in Riegl systems as the deviation. 

The Riegl VZ-1000 records the intensity of each returned signal in addition to the time-

of-flight. Here, point clouds were filtered based on comparisons between the measured reflection 

intensity of each point and an associated 3D change value between scan pairs. Previous studies 

have used intensity measurements for surface characterisation alone. Akca (2007) used the 

common intensity of reflected surfaces in industrial settings to provide a weighting to least 

squares alignment of sequential point clouds, such as pipes and walls. Pesci et al. (2008) 

characterised the stratigraphy and deposits within the Vesuvius crater using the intensity of the 

returned signal combined with RGB values derived from imagery. Kurz et al. (2011; 2013) 

combined hyperspectral imagery with TLS data to classify outcrops of limestone and dolomite, 

including the presence of fractures within the rock mass.  

In conventional TLS systems, range is estimated using the time at which an undisclosed 

feature of the reflected waveform, which may vary between manufacturers, is detected; this can 

be a threshold of the reflected energy or the maximum amplitude returned. Recently introduced 
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Figure 4.3: (a) Edge/hole values across the cliff face shown from an aerial (top), x-z plane (middle), and rotated perspective similar to the scanner look angle (bottom). 

Edge detections above the applied threshold are coloured in red and occur predominantly around holes but also along sandstone protrusions 30 m up the scanned cliff.  (b) 

Point density across the cliff face from the same perspectives. This metric is more sensitive to low density areas, including areas with numerous holes, than it is to edges. 
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systems have been equipped with the ability to capture and digitise the full structure (energy-

time distribution) of the waveform of the reflected laser pulse, providing measures of change in 

the laser reflection beyond the range alone. A Riegl VZ-1000 with ‘full-waveform’ capacity 

records the energy of the received waveform at 2.01005 ns intervals, providing 15-70 amplitude 

measurements per pulse. The energy of the received laser pulse structure depends on the spatial 

energy distribution of the emitted beam, and the geometric and reflectance properties of the 

surface (Stilla and Jutzi, 2008). Since pulses may encounter multiple objects during flight, the 

full-waveform of the backscattered pulse in airborne LiDAR systems has enabled filtering of 

vegetation based on first, intermediate and last pulses (Fowler et al., 2011; Jaboyedoff et al., 

2012). Though a number of studies have successfully characterised the waveform in airborne 

LiDAR systems, use in terrestrial platforms has remained limited. Williams et al. (2013) 

observed that shifts in the geometry of a series of boards, analogous to deformation of a rock 

slope surface, could be measured using observations of change to the received waveform’s total 

and maximum energy. In reality, observing these changes to derive movement of natural slopes 

requires the effect of variable atmospheric conditions, surface roughness and surface moisture to 

be normalised (Kaasalainen et al., 2010). Since the same point on a surface can never be 

rescanned, this method also relies on the assumption that local variations in reflectance 

properties across the surface have less impact on the waveform than geometric surface change. 

This is exacerbated on complex surfaces that yield non-uniform point distributions between 

scans. The use of full-waveform technology for slope monitoring thus remains in its early stages.  

 Riegl instruments, including those without full-waveform capacity, provide simple 

metrics that describe the received waveform structure including the maximum amplitude and 

deviation. The deviation, δ, of the waveform describes the change in shape of the received 

waveform relative to a reference Gaussian waveform (Figure 4.4) according to: 

 

 𝛿𝛿 = �|𝑐𝑐𝑖𝑖 − 𝑝𝑝𝑖𝑖|
𝑁𝑁

𝑖𝑖=1

 [Eq. 4.14] 

 

where N is the number of energy-time values si matched to the reference values pi. A value of 0, 

for example, indicates that the received waveform is identical in shape to the reference 

waveform, as would be expected in a single return from a perfectly nadir planar specular 

reflector. 

Experiments have shown that the deviation value is far less sensitive to target range 

than incidence angle, as is apparent in the deviation distribution across East Cliff (Figure 4.5). 

To test this, a 1.5 m × 1.5 m target was positioned indoors, with controlled atmospheric and 

lighting conditions, at a fixed distance from the scanner (20 m). The board was rotated in 5° 

increments from an incidence angle of 0° (orthogonal to the direction of scanning) to 60°, and 
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was scanned three times at each position. Figure 4.6 shows the distribution of deviation values 

returned from the board, illustrating that the proportion of high deviation values increases with 

incidence angle, as the board is rotated off-nadir. This is attributed to the spreading of the beam 

cross-section as it intersects the surface, reducing the returned energy and increasing the period 

of time over which the backscattered pulse is returned.  

 

Figure 4.5 shows the variation of deviation values across the cliff face. The deviation value is 

capable of identifying differences in surface topography attributed to different rock layers, edges, 

and multi-returns from vegetation.  

 

 

Figure 4.4: Comparison of the reference waveform structure to the received waveform, with each 

measurement separated by ca. 2 ns. High target incidence angles relative to the beam incidence angle 

can spread and skew the distribution of the received waveform. Increased target range also attenuates 

the returned signal. If multiple discontinuities are intersected within a single line-of-sight, multiple 

peaks are created. Deviations of zero indicate identical waveform structures.  

Figure 4.5: Distribution of deviation values across the cliff face. The highest values coincide with the 

presence of multiple surfaces within a single line of sight, in particular at the near-horizontally bedded 

sandstone protrusions and vegetation. While deviation increases with target range, this effect is small 

relative to the incidence angle.  
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As with Figure 4.2a in the previous section, Figure 4.7a represents data from a change 

detection between non-filtered clouds. Again, no observable change occurred between these point 

clouds, and so the difference between them is representative of the offset between them. Here, 

the mean absolute change is presented for points belonging to each deviation class, recorded as 

integer values. The mean estimated change rises from ca. 0.02 – 0.03 m for points with deviation 

values ≤ 25. Points with deviation > ca. 25 exhibit significant scatter that often corresponds to 

change estimates two to three times the level of noise presented elsewhere in the cloud. There is 

therefore a need to remove these points in order to provide more reliable change detection. The 

position of the applied threshold indicates the deviation value above which points are removed. 

Using a threshold of 25 for data collected at this site, Figure 4.7b shows that 98% of points in 

the dataset are retained, which accounted for a standard deviation of error between point clouds 

of 0.18 m. As with the edge and hole filter, removing only those points associated with high 

levels of uncertainty removes artefacts that are often on the periphery of the point cloud but if 

Figure 4.6: Kernel density estimate of the returned deviations for a board rotated between 0° and 

60°. Small deviations values (< 5) account for a higher proportion of reflected returns when the board 

is facing the scanner. A higher proportion of deviations > 5 is found when the board is inclined. This 

is shown by both the mean (μ) and standard deviation (σ) of deviation values, which increase with 

surface incline. This highlights the sensitivity of the deviation value to the spreading of the laser 

footprint when the surface is increasingly inclined with respect to the scanner.  
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not removed hold a significant influence on the overall reliability of the change detection. Figure 

4.8 illustrates the distribution of deviation value across the cliff face. 

The filters described in this section were applied with the aim of removing points with 

inherent uncertainty attached. Both filters remove many of the same points and, typically, no 

more than 15% of points were removed from a point cloud. When combined, the filters reduce 

the standard deviation of change measurements between two stable scans from 0.078 m to 

0.055 m, thereby lowering the LoD that can be applied during rockfall or deformation 

identification by 30%. Once filtering has occurred, the remaining points are aligned between 

successive point clouds. By filtering the points before this process, measurements that are 

spatially unreliable and have the potential to move between scans, such as edges and vegetation, 

are not used during the alignment process.  

 

 

Figure 4.7: (a) Mean absolute distance between two point clouds with no observable change. Similar 

to Figure 4.2, this indicates the comparison uncertainty between both scans. The mean distance is 

calculated for change estimates attributed to points with each deviation, from 1 – 50.  Error increases 

from ca. 0.03 – 0.06 m at values > 25. The variability in error also increases such that the selection of 

an appropriate threshold > 25 is not possible. (b) The number of points removed (blue) alongside the 

cumulative distribution of deviation values. A threshold of 25 ensures that only 2% o points are 

removed.  



Chapter 4: 4D Analysis of Rockfall using Continuous TLS Data 

 

87 

 

4.7 Alignment 
 

While range correction factors derived from target scanning were applied to each point 

cloud, the position of each cloud has the potential to drift due to variable atmospheric 

conditions and small shifts in the position of the scanner. On two occasions, the scanner was 

also removed from the lighthouse for servicing, and was therefore not replaced in its exact 

original position. As such, a method was required to align successive scans based on the 

positions of points that were collected. Point cloud alignment, or registration, refers to the co-

registration of two point clouds. This is most often expressed as a rigid Euclidean 

Figure 4.8: Deviation across the cliff with values > 25 coloured red and removed from each point 

cloud prior to change detection. (a) Aerial perspective showing the sensitivity of vegetation at the cliff 

top and on top of the buttress to deviation.  (b) x-z plane directly viewing the cliff. Holes in the point 

cloud are now apparent, with their edges delineated in red. (c) View from the angle of scanning. 
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transformation that combines a 3D rotation and a translation of a single point to a fixed 

reference. Registration is used for a number of purposes, including the creation of a single 

surface from multiple scan positions, registration of the dataset to a reference coordinate system, 

and the alignment of sequential scans. As discussed by Abellán et al. (2014), this process can 

align scans using common targets that are fine-scanned and then modelled, and measured in 

global coordinates (Teza et al., 2007; Olsen et al., 2010); feature based registration based on the 

planarity and curvature of surfaces (e.g. Besl and Jain, 1988; Belton and Lichti, 2006; Rabbani 

et al., 2006); and point-to-point and point-to-surface methods, that use iterative closest point 

(ICP) alignment to progressively reduce the distance between two clouds (Besl and McKay, 

1992; Chen and Medioni, 1992; Zhang, 1994).   

 Alignment using targets would have enabled projection of the datasets into a global 

coordinate system, such as OSGB ’36. However, by preserving x,y,z coordinates in a local 

project coordinate system defined after rotation, file sizes were halved due to the shortening of 

multi-digit coordinates. The scale of the point cloud here (< 1 000 m), means coordinates in 

each axis are seven digits maximum, as opposed to 12 digits in OSGB ’36. In this study, ICP 

registration was undertaken using MATLAB’s pcregrigid function. This method searches for the 

closest point in the reference scan, p, for each point in the moving scan, q, and estimates the 

combination of rigid rotation and translation, α, that best aligns them (Mitra et al., 2004). This 

process is applied iteratively until a user-defined convergence distance is reached. This is 

typically the mean squared distance, ε, between the two closest points: 

 

 𝜀𝜀(𝛼𝛼) = �𝑑𝑑2(𝛼𝛼(𝑞𝑞𝑖𝑖), 𝑝𝑝𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 [Eq. 4.15] 

 

where d is either the point-to-point distance (Besl and McKay, 1992) or the point-to-plane 

distance (Chen and Medioni, 2004). For the point-to-plane metric, the error can be defined as: 

 

 𝜀𝜀 = �((𝑅𝑅𝑝𝑝𝑖𝑖 + 𝑡𝑡 − 𝑞𝑞𝑖𝑖) ∙ 𝑐𝑐�𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

 [Eq. 4.16] 

 

where R is the rotation, t is the translation vector and 𝑐𝑐� is the normal direction. Pottman and 

Hofer (2003) showed that for point clouds that are approximately aligned, as in this study, 

minimising the point-to-plane distance provided the best estimate of convergence. Point-to-point 

distances are better suited to point clouds that are further apart but, unlike point-to-plane 

minimisation, they are susceptible to local minima due to noise in the point cloud (Gelfand et 
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al., 2003). The rate of convergence of ICP methods is determined by the choice of distance 

function and the number of points, with point-to-point distance typically the slower of the two 

metrics. Reducing the number of points to match can be achieved by downsampling the point 

cloud. Downsampling also benefits the accuracy of the alignment, since the influence of point 

density variations and outliers can be reduced and the point distribution becomes more 

consistent between scans if fixed interval downsampling is applied. 

 In order to validate the relative benefits of point-to-plane matching and point-to-point 

matching, both were tested on two point clouds between which no large rockfall events had 

occurred. The influence of the downsampling into a regular fixed grid was also examined. The 

two point clouds were registered using Riegl’s RiSCAN PRO, providing a benchmark alignment 

error of 0.005 m, defined as the mean absolute distance between the resulting datasets. 

Registration using RiSCAN PRO, which is referred to as Multi Station Adjustment (MSA), 

downsamples the point clouds by determining a least-squares plane for each neighbourhood of 

points. Here, the neighbourhood is subdivided if the distance between the points and the fitted 

plane is beyond a user-defined error. Point pairs are then aligned using least squares fitting. For 

each alignment, the distance between the two point clouds was estimated, with a theoretical 

distance approaching zero being most desirable. 

 
 Figure 4.9 illustrates change between two point clouds that are unregistered. Despite 

the scanner being securely installed in the lighthouse, small shifts in its angular position produce 

offsets at distance of 350 m – 550 m away from the scanner that are equivalent to 0.004 m at 

maximum range (assuming a single 0.0005° angular shift in the scanner rotation). The negative 

Figure 4.9: Change between two stable scans that are unregistered. While the scanner is securely 

installed, small variations in its orientation propagate the offset in measured point positions at targets 

distances from 350 m – 550 m. Regions of positive and negative change can be observed on surfaces 

that are inclined towards and away from the scanner position, indicating that a small rotation of the 

scanner may have occurred. 
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change can be attributed to surfaces oriented towards the scanner, while the positive change 

occurs on areas facing away; this is symptomatic of small shifts around the scanner’s vertical 

axis. The results of the point-to-point matching of two non-downsampled scans are shown as a 

DoD in Figure 4.10, with the alignment process exacerbating error in the unregistered dataset. 

Figure 4.11 shows that this performance occurs because point-to-point methods are susceptible 

to outliers and require similarity in the point distributions between scans, which can be attained 

by downsampling each point cloud. While high levels of downsampling bring the distribution of 

change closer to the results of MSA, the mean change is still an order of magnitude greater at 

ca. 0.07 m when downsampled to 1.25 m. 

 

The results of point-to-plane alignment are far closer to the performance of MSA 

(Figure 4.13). As can be seen in Figure 4.12, excessive downsampling of the point cloud had the 

effect of increasing the error in change detection. However, when the point cloud was reduced 

into a 0.25 m fixed grid, the mean error was within 0.001 m of the MSA, at 0.0052 m. 

Figure 4.14 compares the change error between scans aligned using non-downsampled 

point-to-plane ICP (red), 0.25 m downsampled point-to-plane ICP (blue) and MSA (black). The 

absolute value of the mean obtained using MATLAB (ca. 0.0053 m) is almost identical to that 

obtained using RiSCAN PRO (ca. 0.0052 m). For both MATLAB and RiSCAN PRO, the mean 

values in Figure 4.14 also equate to a standard deviation of change of 0.055 m. Having 

undertaken a sensitivity analysis on point cloud alignment through MATLAB, this process could 

be automated for all of the 8 987 filtered scans. 

 

Figure 4.10: Change between two stable scans that are registered using ICP to minimise the point-to-

point distance. Here, no downsampling is applied to either point cloud. As such, inconsistences in the 

point distribution between scans compromise the accuracy of the alignment procedure. The colour 

scheme here is the same as that applied in Figure 4.9; point-to-point ICP therefore exacerbates the 

small offset in the position of the scans around the vertical axis. 
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Figure 4.11: Cumulative distribution of the change for each point between two scans aligned using 

ICP (point-to-point). Since no observable change occurred between the scans, the distribution should 

approach zero across the point cloud. MSA using RiSCAN PRO (black) produces a mean absolute 

distance (μ) of 0.005 m, significantly lower than point-to-point ICP. An increase in the spacing of the 

downsampled point clouds benefits the alignment. 

Figure 4.12: Change between two stable scans that are registered using ICP to minimise the point-to-

plane distance. Here, 0.25 m downsampling was applied. The dependence of alignment accuracy on 

surface orientation exhibited in Figure 4.10 and Figure 4.11 is removed. The colour scale here is the 

same as that applied in Figure 4.10. 
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An important consideration for registering time-series of scans is the designation of the 

reference, or ‘fixed’, model. At present, there is no established protocol for this decision, which 

determines whether scans are aligned to the first scan of the entire dataset or the first scan of 

each scan pair, or treated all previous scans as the reference. Schürch et al. (2011) aligned scans 

to the previous scan, rather than the first of the monitoring campaign, in order to gain more 

precise change estimates between surveys. As such, the absolute accuracy of the fit to a carefully 

projected initial point cloud was lower than the relative accuracy between scans. This procedure 

is advantageous as it ensures that the shape of a rapidly deforming mass can be matched to the 

previous survey, rather than one captured days, weeks, or months earlier. However, the scans in 

this study were matched to the first survey for a number of reasons. First, this type of 

alignment minimised the point-to-plane distance of point clouds that were downsampled, such 

that individual rockfall events over time did not have an effect on the quality of the alignment. 

Second, even with low alignment errors between scan pairs, the potential of the point clouds to 

drift over time increases with the number of scans collected. While Schürch et al. (2011) only 

assessed pairwise change, the rich temporal resolution of the dataset used here allows for change 

detection at multiple timescales, such as daily, weekly and monthly. It is therefore critical to 

ensure that all scans are consistently aligned. Third, automated interpolation of the point clouds 

Figure 4.13: Cumulative distribution of the change for every point between two scans aligned using 

ICP (point-to-plane). Each coloured line represents a different scale of downsampling. A downsampling 

of 0.25 m produces the same mean absolute error (μ) value 0.005 m as MSA through RiSCAN PRO. 
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of change was simplified when points occupied similar positions in x-z space. Finally, since the 

point clouds were segmented by octrees (Section 4.8.1), it was possible to create only one octree 

structure using the reference scan and rapidly assign subsequent clouds to this structure. No 

differences in the quality of the alignment were observed when scans were aligned to the first 

scan of the series, even after nine months. However, the occurrence of a single large event, such 

as a 200 m3 failure observed by Rosser et al. (2005) at this site, or the continued spalling of 

material over time, would considerably alter the surface topography. In order to maintain the 

accuracy of alignment, a new more representative point cloud would be required as a reference 

for subsequent alignment, and a new octree structure (described in the next section) would have 

to be generated. 

 The accuracy of alignment is one of the key sources of error when detecting change 

between two point clouds (Teza et al., 2007). The results above suggest that the scans have 

been aligned in accordance with what is capable with current leading software that relies upon 

user intervention to optimise the alignment. It is noted, however, that the values of error 

provided by RiSCAN PRO’s MSA were significantly lower than the standard deviation of 3D 

change measured between point clouds in this section. For the scans used in Figure 4.15, for 

example, the reported alignment was 0.0028 m, which is an order of magnitude below the 0.055 

Figure 4.14: Cumulative distribution of the change for the unregistered point clouds, MATLAB 

aligned and RiSCAN PRO MSA aligned. While the mean offset in the unregistered point cloud data is 

0.0059 m, this is reduced to similar levels using with ICP using both MATLAB and RiSCAN PRO. 
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m standard deviation calculated here. This difference can be explained by the fact that the MSA 

reports error as a Hausdorff distance (and therefore the minimum distance) between pairs of 

downsampled points used in the registration. For a typical cliff scan in this setting, this 

constitutes ca. 1 000 – 5 000 point pairs. 

 

4.8 Segmentation and structuring of point clouds 
 

Segmentation refers to the labelling of each measurement in a point cloud such that 

points belonging to the same surface will be given the same label (Hoover et al., 1996). More 

generally, the process partitions a point cloud into meaningful regions or features of similar 

geometry (Woo et al., 2002) and, in rock slope analysis, segmentation plays an important role in 

3D classification and efficient processing. In geomorphology, this has previously focussed on 

vegetation modelling for fluid dynamics (Tymkow et al., 2010; Rutzinger et al., 2011; Boothroyd 

et al., 2016), the classification of geomorphic elements (Brodu and Lague, 2012); and rock slope 

discontinuity characterisation (Slob et al., 2004; Jaboyedoff et al., 2007; Sturzenegger and Stead, 

2009a; Sturzenegger and Stead 2009b; Lato et al., 2010; Gigli and Casagli, 2011; Sturzenegger et 

al., 2011a; Assali et al., 2014; Riquelme et al., 2014). 

Discontinuities are planes within a rock mass. They exhibit lower tensile strengths 

adjacent to, and shear strengths along, the discontinuity relative to surrounding material (Assali 

et al., 2014). Since most large rockslides creep and/or fail along such structures, (Varnes, 1978; 

Agliardi et al., 2001; Jaboyedoff et al., 2009) the identification and description of discontinuity 

sets is a crucial first phase in risk assessment and hazard-mitigation. These datasets can be used 

as accurate inputs for stress-based failure models; however, they are seldom used to characterise 

shifts in strike and dip in repeat monitoring of the rock mass. In this study, an initial approach 

was to segment the rockface into a series of cubes, with each cube containing a set of points that 

fall on a planar surface, with a minimum length of 1.4 m to ensure that at least 10 points could 

be used for Principal Component Analysis. This segmentation was initially designed both to 

increase the efficiency of subsequent point cloud processing, and to enable change in the dip and 

strike of points within each cube to be monitored. As is described below, however, this technique 

was ultimately used only for the former. 

 

4.8.1 Voxels and octrees 
 

The division of a point cloud into cubes can be done using a voxel structure or an octree 

structure. A voxel is a small cube that partitions a point cloud domain, equivalent to a three-

dimensional pixel in a raster image (Roth-Tabak and Jain, 1989). A voxel space is constructed 

by adding voxels in a constant horizontal and vertical spacing in a Cartesian coordinate system 
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(Bienert et al., 2010). Voxels have a fixed length scale, d, similar to the cell size in a raster, that 

determines the resolution of the voxel space. Empty voxels may occur if d is too small, creating 

holes in the resulting domain. Conversely, if the scale is too coarse, too few voxels will be 

created and they will therefore be indistinguishable (Gorte and Pfeifer, 2004). The number of 

divisions that occur along all three dimensions is determined by d, and so a major drawback for 

processing using this segmentation is that the number of voxels increases as d reduces (Hornung 

et al., 2013). For example, d/2 results in eight (23) more voxels and a proportional increase in 

the computation times of operations within the voxel domain. Using a fixed voxel resolution of d 

also assumes a degree of homogeneity of the point cloud structure across the surface. For the 

purpose of rock mass characterisation, Gigli and Casagli (2011) divided a point cloud of a rock 

cut slope into voxels and fitted a plane to each point cluster. Once the strike and dip were 

plotted onto a stereonet, clusters of similarly oriented surfaces were defined in order to identify 

individual discontinuities.  

An alternative approach to voxel creation is hierarchical clustering through octrees 

(Pauly et al., 2002; Woo et al., 2002; Bienert et al., 2013; Hornung et al., 2013), which describes 

the recursive division of 3D space without the use of a fixed grid spacing (Figure 4.15). During 

this process, the point cloud is divided into a series of cuboids, typically cubes, if the 

neighbourhood size, N, is greater than a user-defined maximum. The process results in a tree-

like data structure that can be used to index data, known as an octree. As a data structure, 

octrees have been used as a memory efficient means of rendering in computer graphics (Laine 

and Karras, 2011) as well as in photogrammetry and LiDAR to store and address large point 

clouds (Frisken and Perry, 2002; Girardeau-Montaut et al., 2005; Elsberg et al. 2011; 2013; 

Figure 4.15: Principle of octree subdivision, where the location of a point within the cloud (red) is 

identified by an m×8-bit code, where m is the number of subdivisions. Here, there are two 

subdivisions, which generate a 2×8 identifier for the point. Adapted from Figure 2 in Girardeau-

Montaut (2005). 
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Hornung et al., 2013), including within CloudCompare and the topographic analysis software 

Coltop-3D (Jaboyedoff et al., 2007; 2009). 

Subdivision begins with a bounding cuboid that contains the entire point cloud and is 

recursively split into eight sub-cuboids. The subdivision stops when no more points lie within a 

cube, a minimum threshold of points is reached, or a maximum depth (the number of 

subdivisions a cube has undergone) is reached. In this study, division is halted if the number of 

points within the cubes falls below 15, a threshold identified by Riquelme et al. (2014) as the 

minimum number required for accurate estimation of normal vectors. In order to maintain the 

planarity of the surfaces being analysed, subdivision is also stopped when the surface curvature 

exceeds threshold of 20%, defined in detail for normal vector estimation in Section 4.9.1 

(Equation 4.21). The resulting octree structure applied in this study contained 3 421 cubes 

(Figure 4.16). Every point is assigned a 3×n bit code, where n is the maximum number of 

subdivisions that occurred. The combination of 0 and 1’s that arises from the three bits 

represents an integer between 0 and 7, giving a code that is unique to the cube to which each 

point belongs (Figure 4.15). This enables rapid searching of points and identification of point 

neighbourhoods. Since all point clouds are aligned to the first point cloud of the series, each 

cloud can be assigned to a pre-defined octree structure to increase the speed of change detection.  

 

4.8.2 Change detection by octree 
 

Although octree structures have been used in surface segmentation and, by extension, 

the extraction of discontinuities, their use in change detection between surfaces has remained 

Figure 4.16: Octree structure created for the first scan of East Cliff. This structure is a reference to 

which subsequent point clouds are assigned. Unlike voxels, this approach to segmentation is robust to 

variations in point density across the cliff face. Since no major alteration to the topographic structure 

of the rock face occurred, all points in subsequent point clouds were assigned to this same structure.  
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limited. Girardeau-Montaut et al. (2005) suggested that when two point clouds are assigned to 

the same octree structure, change can be measured on a cube-by-cube basis as the mean 

distance between the points in each cloud. Although this technique is robust to noise and 

variations in point density, and illustrative of change to groups of planar surfaces, this metric 

provides a coarse ‘patchwork’ change detection at far lower spatial resolution than the original 

point cloud. This is shown in Figure 4.17 for an open-pit high-wall, where distance is measured 

along the normal vector of each surface. This method has proved useful for monitoring creep of 

an entire slope by providing precise estimates of change to each surface; however, it inhibits the 

detection of smaller scale failures, such as small rockfall. 

Teza et al. (2007) used a regular voxel grid in order to segment point clouds for change 

detection. Two point clouds were initially aligned using stable structures within the scene. 3D 

movement vectors were subsequently generated by calculating the ICP transformation that 

aligned the moving point cloud to the reference point cloud on a cube-by-cube basis. In order to 

test this approach, scans of East Cliff were aligned through ICP using only the positions of the 

pier and the control targets. An area of the buttress was then isolated and a forward movement 

of 0.10 m, simulating a slump, was applied (Figure 4.18). The movement vector for each cube 

did not accurately depict the simulated movement. On closer inspection, as depicted in the 

aerial perspective (centre panel), movement vectors are dominated by a bias orthogonal to the 

scan line spacing and direction of scanner view. This is attributed to the scale of movement, 

which falls below the scan line spacing, and the orientation of movement, which is not oriented 

towards the direction of scanning. As the point spacing at East Cliff cannot be decreased 

without compromising the temporal resolution of scanning, this technique is thus limited in its 

ability to detect fine-scale movements. Due to the complexity and loss of spatial resolution 

attributed to scan comparison within octree structures, the use of the octree structure was 

limited in this analysis to efficient point cloud handling alone. Change was therefore estimated 

on a point-by-point basis, rather than cube-by-cube. 
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Figure 4.17: Top: Image of open-pit slope. Bottom: An example of cube-by-cube change detection of the high wall. Here, each cube represents the average distance along the 

normal for all the points that it contains. A patchwork effect occurs because of the coarse subdivision of octrees. Due to the averaging of change within each cube, the overall 

accuracy of change is higher than for individual points. For monitoring deformation over a large surface, this is desirable; however, for the purpose of rockfall identification, the 

spatial resolution is insufficient. 
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Figure 4.18: An isolated area of the buttress, viewed from the scanner position (left), above (middle), and from above in greater detail (right). A forward simulated movement 

of 0.10 m is introduced along the along the y-axis. Each arrow represents the affine 3D transformation that best aligns the two point clouds within each octree cube (estimated 

using least-squares). The length of the arrow represents the magnitude of the translation. Since the surface is not completely planar, uniformly aligned arrows of 0.1 m would not 

be expected. However, on close observation, a bias in direction of arrows is found orthogonal to the scan lines. With both point-to-point and point-to-plane matching, a best-fit 

was produced when alignment corrected for this offset. 
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4.9 Normal estimation 
 

For this dataset, the distance between successive clouds is measured along the normal 

vector of each point in a similar approach to the M3C2 algorithm discussed in Section 4.3.2. 

Accurate estimation of each normal vector is therefore critical in determining the magnitude and 

direction of movement. A normal vector cannot be derived from a single point alone, but only 

from an appropriately sized cluster of neighbouring points that adds topological context to each 

point. Normal directions can be estimated by triangulating point clouds and calculating the 

normal direction for each face (Slob et al., 2002; Woo et al., 2002). Woo et al. (2002) adapted 

the triangulation fitting to operate between scan lines; thus for a point P the normal value N 

can be estimated by averaging the normal direction, 𝑐𝑐�i, of the surrounding six edge pairs. 

 

 𝑁𝑁�𝑃𝑃𝑖𝑖,𝑗𝑗 =  
∑ 𝑐𝑐�𝑖𝑖𝐾𝐾
𝑖𝑖=1

6
  [Eq. 4.17] 

 

where K is the number of edge-pairs. Although the vector for each point is the mean of the 

vectors of the surrounding 6 triangles (Figure 4.19), these individual vectors are derived from 

single edge pairs that are created using only three points, and are therefore susceptible to noise 

in range estimates. The creation of a Delaunay Triangulation is also time-consuming and 

unsuited to the point clouds of East Cliff, which contain regions of occlusion. 

 

 A more common approach is to estimate the surface normal of a plane that is 

constructed through a neighbourhood of points surrounding the query point (e.g. Jaboyedoff et 

al., 2009; Lague et al., 2013; Riquelme et al., 2014). This neighbourhood can be selected using 

either the Fixed Distance Neighbours (FDN) or k Nearest Neighbours (KNN; Rabbani et al., 

2006). The FDN approach selects all points within a user-defined Euclidean distance from the 

Figure 4.19: Normal estimation by averaging the normal directions of six triangles that surround the 

query point (centre). This method is optimised for scans with very low point spacing and uniform scan 

line spacing. 
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query point. This is unsuited to scans acquired using fixed resolution angle scanners that 

produce an uneven distribution of points and spatial variations in point density. In regions of 

low point density, for example, few points may constitute neighbours and the estimation of 

surface normals is more susceptible to noise (Lato et al., 2010). KNN provides a more robust 

means of defining neighbourhoods. For each query point, the k most proximal neighbours are 

selected. By fixing the number of points, this method adapts the volume of the neighbourhood 

according to local point density, such that fewer points result in a larger volume. Consequently, 

a consistent degree of accuracy in normal estimation can be maintained across the point cloud.  

 

4.9.1 Neighbourhood size in normal estimation 
 

The neighbourhood size strongly determines the direction of surface normals (Mitra and 

Nguyen, 2003; Lalonde et al., 2005; Bae et al., 2009; Lague et al., 2013). If the size of the 

neighbourhood is below the scale of surface roughness, the resulting normals will fluctuate in 

direction across the surface and are less likely to be consistent between scans. In certain cases, 

the difference in normals at multiple scales can be used to classify structures within a point 

cloud (Ioannou et al., 2012). For this study, however, incorrect estimation of normals has the 

potential to overestimate change between point clouds. 

 Riquelme et al. (2014) have shown that the number of points, k, determines the 

curvature of the neighbourhood. Values of k < 15 result in much greater variability in the strike 

and dip of a single discontinuity as a consequence of high curvature, whereas values of k > 30 

over-smoothed adjacent surfaces; 15 < k < 30 was therefore recommended. In a similar 

approach, Lague et al. (2013) selected the scale at which the neighbourhood of points could best 

be approximated by a plane.  

A covariance matrix can be used to describe the statistical properties of the point 

distribution in a neighbourhood, and is the first step required to test the planarity of a surface. 

More specifically, covariance measures the extent to which the dimensions of a dataset vary 

from the mean with respect to one another, in this case by summing the squared distances of 

points to the neighbourhood centroid (Pauly et al., 2002). Since covariance is measured between 

two dimensions, for a series of x,y,z Cartesian coordinates the covariance should be measured 

between the x and y dimensions, x and z dimensions, and the y and z dimensions, with the 

covariance between each dimension and itself representing the variance. This can be represented 

in the matrix, C (Pauly et al., 2002; Belton and Lichti, 2006): 

 

 𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑋𝑋) =  �
𝜎𝜎𝑥𝑥𝑥𝑥 𝜎𝜎𝑦𝑦𝑥𝑥 𝜎𝜎𝑥𝑥𝑧𝑧
𝜎𝜎𝑥𝑥𝑦𝑦 𝜎𝜎𝑦𝑦𝑦𝑦 𝜎𝜎𝑦𝑦𝑧𝑧
𝜎𝜎𝑥𝑥𝑧𝑧 𝜎𝜎𝑦𝑦𝑧𝑧 𝜎𝜎𝑧𝑧𝑧𝑧

� [Eq. 4.18] 
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where σ is the variance (e.g. of x and x) and the covariance (e.g. of x and y). The entries for a 

neighbourhood containing k points are defined as: 

   

 𝜎𝜎𝑥𝑥𝑥𝑥 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥) 

𝜎𝜎𝑥𝑥𝑥𝑥 = 𝐸𝐸(𝑥𝑥2) − 𝐸𝐸(𝑥𝑥)2 

𝜎𝜎𝑥𝑥𝑥𝑥 =  
1
𝑘𝑘
�(𝑥𝑥𝑖𝑖 − �̅�𝑥)2
𝑘𝑘

𝑖𝑖=1

 

[Eq. 4.19] 

 

 

𝜎𝜎𝑥𝑥𝑦𝑦 = 𝑐𝑐𝑐𝑐𝑣𝑣(𝑥𝑥, 𝑦𝑦) 

𝜎𝜎𝑥𝑥𝑦𝑦 = 𝐸𝐸(𝑥𝑥𝑦𝑦) − 𝐸𝐸(𝑥𝑥)𝐸𝐸(𝑦𝑦) 

𝜎𝜎𝑥𝑥𝑦𝑦 =  
1
𝑘𝑘
�(𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)
𝑘𝑘

𝑗𝑗=1

 

[Eq. 4.20] 

 

Since C is square (Pauly et al., 2002), covariance analysis is followed by calculating the 

eigenvalues 𝜆𝜆 and eigenvectors 𝑣𝑣 using Principal Component Analysis (PCA). Three 

eigenvectors exist for a 3 × 3 matrix, each of which is orthogonal to the other and is presented 

as a unit vector. The eigenvectors (𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3) represent the principal components, or directions, 

of the neighbourhood, while the eigenvalues (𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3) indicate the variance (Equation 4.20) of 

the corresponding eigenvector (Riquelme et al., 2014).  

When all three eigenvalues are equal, the points cloud is perfectly 3D, and any line or 

plane passing through the centroid shares the same dimensionality. In contrast, assuming 

that 𝜆𝜆1 ≥ 𝜆𝜆2 ≥ 𝜆𝜆3 ≥ 0, the first two components form a basis for a plane as they explain the 

majority of the variability in the first two dimensions. In this case, the planarity can be defined 

as: 

 

 
𝜆𝜆3

𝜆𝜆1 + 𝜆𝜆2 + 𝜆𝜆3
 [Eq. 4.21] 

 

If the third eigenvalue represents more than 20% of the variance, the surface is no longer planar, 

and instead approaches a 3D point distribution. 

 

4.9.2 Plane and normal vector estimation: overview 
 

In order to calculate the normal direction of each neighbourhood, a tangent plane must 

be fitted to every point and its neighbours, with each being considered as a potential plane 

subset. A total least squares adjustment may be fitted as follows (Nurunnabi et al., 2012; 

Riquelme et al., 2014): 
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 𝐴𝐴𝑥𝑥 +  𝐵𝐵𝑦𝑦 +  𝐶𝐶𝑧𝑧 +  𝑆𝑆 =  0 [Eq. 4.22] 

 

where A, B, and C are the three components of the unit normal vector to the plane and D gives 

the perpendicular distance from the origin to the plane. 

 In the total least squares approach, the sum of square distances is orthogonal between 

each point and plane, since the plane passes through the centroid �̅�𝑝. In ordinary least squares 

methods, data points are expressed as (𝑥𝑥, 𝑦𝑦 𝑓𝑓(𝑥𝑥, 𝑦𝑦) ≈ 𝑧𝑧) where z is considered a function of x and 

y such that error is only measured in the z-direction. The method thus minimises the sum of 

square residuals r as follows: 

 

 �𝑣𝑣𝑖𝑖2
𝑘𝑘

𝑖𝑖=1

= 𝑚𝑚𝑐𝑐𝑐𝑐�(𝑧𝑧𝑖𝑖 − 𝑧𝑧�̅�𝑖)2
𝑘𝑘

𝑖𝑖=1

 [Eq. 4.23] 

 

where r is the distance between points and the plane considered only in the z-direction 

(Nurunnabi et al., 2012).  

 Using the eigenvectors calculated by PCA, the eigenvector 𝑣𝑣3 with the smallest 

associated eigenvalue is orthogonal to the plane, and therefore defines the normal (Hoppe et al., 

1992). It so follows that the plane minimises the sum of squared distances to the neighbours of 

query point, p: 

 

 (𝑝𝑝𝑖𝑖 − �̅�𝑝) ∙ 𝑣𝑣3 = 0 [Eq. 4.24] 

 

and passes through the centroid, �̅�𝑝: 

 

 �̅�𝑝 =  
∑ 𝑝𝑝𝑖𝑖𝑘𝑘
𝑖𝑖=1

𝑘𝑘
 [Eq. 4.25] 

 

where k is the number of neighbours in the neighbourhood, and 𝑝𝑝𝑖𝑖 represents the Cartesian 

coordinates of each point within the neighbourhood (Pauly et al., 2002). The identification of a 

local surface normal using the third eigenvector is the equivalent to forming a total least squares 

fitting plane. However, in a total least squares fitting the entities in the covariance matrix are 

not divided by k, and the smallest eigenvalue is equal to the sum of the residuals, squared 

(Pauly et al., 2002; Belton and Lichti, 2006). 
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4.9.3 Application of normal estimation 
 

The above review of normal estimation highlights the effectiveness of using PCA for 

normal estimation and suggests that the use of raw point cloud data, rather than a triangulated 

surface, produces the most accurate results. In particular, the neighbourhood should be allowed 

to vary in size to accommodate non-uniform point distributions and variations in point density, 

producing a planar surface from which to estimate the normal. These techniques are applied in 

this study, producing normal vectors such as those displayed in Figure 4.20. 

 

By varying the size of the neighbourhood radius for each point between 0.1 m and 

2.5 m, the radius that produced the most planar surface was identified and mapped. This is 

shown in Figure 4.21a, with Figure 4.21b illustrating the planarity across the rock face. This 

figure shows clear similarities with the distribution of point density shown in Figure 4.3b, such 

that the search radius is increased in regions of low point density. The mean search radius used 

here was ca. 1 m. The computational cost of identifying the optimum neighbourhood radius 

made it unfeasible to apply this procedure to all change detections. As a compromise, the 

neighbourhood radius of each point was determined by the value of its closest point in the 

reference cloud in Figure 4.21a. This is only applicable in scenarios where the scanner position 

and point spacing have not changed, and so an alternative method is used here (Figure 4.22). 

Figure 4.20: An example of the normal vectors estimated for at an interbedded sandstone protrusion 

20 m up the cliff face. Normal estimation is robust to variations in the density and distribution of 

points within this area. 
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Figure 4.21: (a) The radius for each point on the cliff at which the point clouds is most planar, with 

a mean value of 1.1 m, used to estimate the normal vector prior to change detection. This point cloud 

was used as a reference model, such that the normal radius of points in subsequent scans was assigned 

based on the radius of closest point in this scan, (b) Surface planarity at a radius of 1 m, where higher 

values indicate a more 3D neighbourhood. These occur at inflections in slope profile and in areas of 

high local relief, such as the sandstone beds near the cliff-top. 

Figure 4.22: The normal direction estimated using a planar, post-failure surface (cloud #2) more 

accurately represents the direction of change than the post-failure surface vector (cloud #1), due to 

the complexity of the pre-failure surface. The difference in vector lengths also illustrates the sensitivity 

of the 3D change measurements to the normal estimation. Dashed lines indicate that normal directions 

are subject to sign ambiguity. The cylinders used in the change detection (next section) are 

represented by the solid arrow. 
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The normal for each point estimated here uses the second point cloud, such that change 

is accurately measured along the normal of a planar, post-failure surface, rather than a more 

complex yet-to-fail surface (Figure 4.22). The sign ambiguity of each vector is also corrected as 

outlined in Section 4.5. It is important to note that the boundaries of any neighbourhood search 

calculations should not be restricted to a single cube in the octree structure. For operations such 

as normal vector estimation, points from each individual cube as well as the surrounding 26 

cubes are drawn upon to avoid errors along the cube boundaries. The subdivision level at which 

normal estimation and change detection is performed influences only the computation time, and 

not the result (Girardeau-Montaut et al., 2005). 

 

4.10 Distance calculation 
 

The distance calculation used here is based upon the M3C2 approach, developed by 

Lague et al. (2013) and made freely available within CloudCompare. Some variations have been 

incorporated in order to improve the overall accuracy of the change detections and to streamline 

the workflow for large time series datasets. In Figure 4.23, the change detection process is 

summarised for a 1 m wide transect of points taken through East Cliff following a rockfall event. 

Once the normal vector is estimated, a bounding cylinder with a user-defined radius is created 

along the normal running through the query point (see Section 4.10.1). In order to enforce the 

boundaries of this cylinder, the orthogonal distance between every point within the 27 octree 

cubes and the normal vector was estimated as follows: 

 

 �̂�𝑑 = [𝑋𝑋𝑛𝑛 ,𝑌𝑌𝑛𝑛,𝑍𝑍𝑛𝑛] − [𝑋𝑋𝑝𝑝,𝑌𝑌𝑝𝑝 ,𝑍𝑍𝑝𝑝] [Eq. 4.26] 

 

where �̂�𝑑 is a vector that connects each neighbour point, p, to a point on the normal vector 𝑐𝑐�, 

such as the query point, q. The projection of each point onto the normal, P, is therefore: 

 

 

𝑃𝑃 = 𝑞𝑞 × �̂�𝑑, or 

𝑃𝑃 =  𝑞𝑞 + �
�̂�𝑑 ∙ 𝑐𝑐�
𝑐𝑐� ∙ 𝑐𝑐�

� × 𝑐𝑐� 
[Eq. 4.27] 

 

and the orthogonal distance is: 

 

 𝑑𝑑𝐶𝐶𝑟𝑟𝑑𝑑ℎ = �(𝑋𝑋𝑛𝑛 − 𝑋𝑋𝑃𝑃)2 + (𝑌𝑌𝑛𝑛 − 𝑌𝑌𝑃𝑃)2 + (𝑍𝑍𝑛𝑛 − 𝑍𝑍𝑛𝑛)2 [Eq. 4.28] 

 

Given that the position of each neighbouring point and its orthogonal distance to the normal 
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Figure 4.23: (a) A 2 m wide transect taken mid-way up East Cliff. The black points are taken from Cloud 1 and the grey from Cloud 2, with a 1.75 m high rockfall clearly 

shown. Points within the cylinder radius, which intersects the two clouds, are shown as red and blue. The cylinder axis, which travels through the query point, is also shown, 

(b) Area of intersect selected from (a) the centroids of each point cloud are determined and their orthogonal projection onto the normal vector (cylinder axis) is estimated 

(dashed lines). The distance measured in this study is between these projections, along the normal. 
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vector are known, the cylinder boundaries can be enforced using the user-defined cylinder radius 

r, retaining only points where 𝑑𝑑𝐶𝐶𝑟𝑟𝑑𝑑ℎ ≤ 𝑣𝑣. Once the points n in the cylinder are isolated for both 

point clouds, the mean point CP is estimated as follows: 

 

 𝐶𝐶𝑃𝑃 =  �
∑ 𝑥𝑥𝑛𝑛
𝑖𝑖=1

𝑐𝑐
,
∑ 𝑦𝑦𝑛𝑛
𝑖𝑖=1

𝑐𝑐
,
∑ 𝑧𝑧𝑛𝑛
𝑖𝑖=1

𝑐𝑐
,� [Eq. 4.29] 

 

and projected onto the normal vector using Equation 4.26 and 4.27. The mean points of each 

sub-cloud are subtracted to give a distance vector, 𝑣𝑣�: 

 

 𝑣𝑣� = 𝐶𝐶𝑃𝑃2 − 𝐶𝐶𝑃𝑃1 [Eq. 4.30] 

 

If the vector of change is along the direction of the normal vector (forward movement), the dot 

product of both vectors is > 0. If it is against the normal direction (backward movement), the 

dot product is < 0 and the vector is inverted.  

Although the M3C2 algorithm has been rigorously tested in a gravel-bed river setting 

(Lague et al., 2013), other works that have applied this technique to rockfall analysis have 

tended to overlook the influence of both the cylinder radius and length on the change detected 

(for example, Earlie, 2015). The discussion below illustrates the importance of these parameters 

for governing the change measured using distance along the normal methods of change 

detection. 

 

4.10.1 Cylinder radius 
 

The cylinder radius determines the degree of spatial averaging over change 

measurements and, as such, should be informed by the movements being monitored. In theory, 

the smaller the radius, the finer the spatial detail that can be established. However, this comes 

with a compromise in that the increase in accuracy by accounting for neighbouring points is 

reduced, the likelihood of intersecting points in the second point cloud is reduced, and the 

statistical significance of calculations is reduced by only drawing on a small number of points. 

Lague et al. (2013) suggest a minimum of 20 points should be included within the cylinder for 

each point cloud. 

In Figure 4.24, the distribution of change along the normal is estimated for two scans in 

which no apparent change has occurred. In theory, the distribution should be as close to zero as 

possible, although the background noise between scans makes this impossible (Section 4.2). As 

the cylinder radius increases, the deviation of the distribution reduces. The noise in the 



Chapter 4: 4D Analysis of Rockfall using Continuous TLS Data 

 

109 

measured change is greatest at a radius of 0.15 m, as this value approaches the point spacing in 

some regions of the cliff. At 0.25 m, the error is similar to the largest projection radii; indicating 

an optimum balance where enough points are included to yield accurate change measurements 

but not enough to introduce false change incorporated from wider areas of the cliff.  

Figure 4.24: Cumulative distribution function of change between two point clouds, between which no 

observable change occurred. As such, the distribution of points should be as close to 0 m change as 

possible. Each line represents a different cylinder radius that is used. 0.15 m exhibits the highest 

deviation away from change values close to zero.  

Figure 4.25: Hausdorff distance estimation between two point clouds where a rockfall occurred. This 

metric yields change between scan lines, highlighted by the striping effect, and change that is sensitive 

to point density, highlighted by the distance decay from left (distal) to right (proximal). However, this 

provides an accurate measure of the scar shape that is useful for refining the parameters used in the 

change detection in this research.  
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While noise reduction is critical for determining the scale of movement that can be 

detected, increasing the cylinder radius has the potential to inhibit accurate delineation of a 

rockfall scar as spatial resolution is lost. In order to estimate the most appropriate cylinder size, 

the shape of a rockfall obtained using this technique was compared with that of the same 

rockfall obtained using a Hausdorff comparison. In Figure 4.25, a Hausdorff distance was 

calculated for two scans taken on 10 March 2015. The small black box marks a rockfall event 

that occurred and is presented in Figure 4.25 above. The Hausdorff distance measure itself is 

influenced considerably by the scan line spacing and the local point density but, for this 

purpose, it provides a good indication of rockfall geometry. 

 

 

Figure 4.26: Distance along the normal approximated using a variety of cylinder radii from 0.15 –

 1.55 m. These are compared to an unsigned Hausdorff distance in the top-left. As the cylinder radius 

increases, the rockfall scar expands by averaging change across a wider area. This also has the effect 

of introducing forward movement (blue) into the rockfall scar.  
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In Figure 4.26, the Hausdorff distance is compared with the distance along the normal, 

calculated using a range of search radiuses. The colours for the Hausdorff distance differ 

compared to subsequent tiles as the Hausdorff distance is unsigned. As the projection radius 

increases, the difference in shape relative to the Hausdorff approximation also increases. Above a 

radius of 0.25 m, negative change is incorporated into the rockfall as the neighbourhood begins 

to incorporate points from outside of the failure scar. While a radius of 0.15 m best 

approximates the size and shape of the rockfall, this value is too close to the scan line spacing at 

the distal portion of the cliff face. A search radius of 0.25 m was therefore selected. 

 

4.10.2 Cylinder length 
 

The M3C2 algorithm imposes a maximum cylinder length in order to decrease 

processing times (Lague et al., 2013). It is shown here that the cylinder length is critically 

important for determining the accuracy of change estimation at edges in the point cloud. Edges 

are far more prominent in the point clouds of East Cliff than in most published surveys, due to 

the absence of multiple scan positions, high incidence angles and protruding section of rock on 

the cliff face. However, given their complex morphology, edges are a ubiquitous feature of rock 

slopes as they remain difficult to scan entirely, even from multiple viewing angles. A method to 

reduce the effect of edge uncertainty in the change detection processing is therefore required. 

 As an example, Figure 4.27 shows a typical change detection using the planarity 

optimised normal radius and 0.25 m cylinder radius outlined above. Change occurs 

predominantly along the edges of the point cloud. Although uncertain range estimates were 

removed during filtering, the absence of scans from alternative viewing angles requires a change 

detection approach that overcomes the difference in point distributions between scans. 

Figure 4.28 is a subset of the point cloud shown as the black box in Figure 4.27. The 

point cloud is coloured according to the normal vector (𝑐𝑐�〈𝑢𝑢, 𝑣𝑣,𝑤𝑤〉 = 〈𝑅𝑅𝑅𝑅𝑑𝑑,𝐵𝐵𝐵𝐵𝑢𝑢𝑅𝑅,𝐶𝐶𝑣𝑣𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐〉) of each 

Figure 4.27: Distance along the normal between two scans. Edges present a significant uncertainty 

even after the filtering process. The black box indicates the example area used in subsequent figures.  
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point, which highlights three planar surfaces in red. The right-hand plot is viewed orthogonal to 

the surfaces, highlighting a scattered point distribution between scan lines that is inconsistent 

between scans. As a result, the range estimates for these points appear smeared. 

In Figure 4.29, the influence of the cylinder length is illustrated with respect to these 

surfaces. The plots take a zoomed view of Figure 4.28 and illustrate variation in measured 

change for a single point belonging to the largest surface in this region. When the cylinder 

extends 0.25 m in both directions, only points from this surface are included in the cylinder; as 

such, the centroid positions of each point cloud are both fitted onto that surface. The measured 

distance for this point, the distance between the two centroids is +0.0011 m. With a cylinder 

extending ± 0.50 m, points that lie between surfaces are included in the change detection. Since 

the distribution of points between surfaces is rarely consistent between scans, the position of the 

centroids of each neighbourhood differs considerably from the centroids estimated using a 

shorter cylinder and the resulting change estimate is -0.1460 m. At a length of ±10 m, the 

cylinder intersects multiple surfaces and the centroid positions are between these surfaces. The 

inclusion of a greater number of points over a wider area increases the similarity of the mean 

position in both point clouds, but the resulting vector of change is +0.0938 m; a difference of 

0.24 m from the 0.50 m cylinder length and significantly higher than the true change estimate. 

 
To address this problem, a variable length cylinder was introduced for each point, 

referred to below as DAN VCL, beginning with a cylinder that extends ± 0.10 m. If fewer than 

four points are found, the minimum number to accurately estimate a centroid, the cylinder 

extends. This process is recursive and accepts a user-defined array of possible cylinder lengths. 

By using this method, the standard deviation and error in change measurements drops 

significantly across the point cloud, as illustrated in the following section.  

Figure 4.28: (a) Subset of bedded sandstone, coloured by the surface normal. Red points define 

planes orthogonal to the scanning direction. (b) When rotated away from the scanning direction, 

points that are incoherent within and between scans, and averaged between surfaces, become evident. 
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Figure 4.29: Inputs used for distance estimation with varying cylinder lengths. No appreciable change 

occurred between these two scans. Here, the same subset of points as in Figure 4.28 is used. As the 

cylinder length increases (from 0.25 m to 0.50 m to 10 m), the number of surfaces that the cylinder 

intersects increases (direction equal to the normal vector). All points within a 0.25 m radius would be 

included as cylinder points (circles), and the distance between their mean positions (squares) 

calculated. From top to bottom, this distance is 0.0011 m to -0.1460 m to 0.0938 m. Longer cylinders 

intersect multiple surfaces and therefore measure the distance between projected centroids that do not 

accurately represent the surface to which the query point belongs.  



Chapter 4: 4D Analysis of Rockfall using Continuous TLS Data 

 

114 

4.10.3 Distance along the normal 
 

To complete a single change detection between two point clouds of ca. 1 × 106 points, a 

machine with 32 GB RAM and a 2.40 GHz processor took approximately ten minutes running 

in MATLAB. The code was written to allow multiple change detections to be executed in 

parallel. On a machine with 12 CPU’s, 12 change detections could be undertaken within this 

time.  

 

The resulting rockfall appear in the point cloud as depicted by the subset shown in 

Figure 4.30. For each scan, the LoD can be determined as 1.96 times the standard deviation of 

the change estimates. This represents the 95th percentile of data (Abellán et al., 2009) assuming 

that no physical change occurred. With this in mind, the standard deviation was acquired for a 

series of stable scan pairs in which no detectable rockfall were observed. By combining the 

distance along the normal for each of these scan pairs, the standard deviation used to calculate 

the LoD is 0.015 m and the LoD is 0.03 m. As shown in Figure 4.31, this is considerably lower 

than the same pairs of scans that were rasterised at 0.25 m, such that each pixel contained > 1 

Figure 4.30: An example of a rockfall calculated using the distance along the normal. 
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point, and subtracted to create DoDs. They are also significantly lower than the M3C2 

algorithm. This ultimately yields a six-fold improvement in the final LoD value, from 0.18 m to 

0.03 m, and, by extension, a six-fold decrease in the depth of rockfall that can be identified. 

 

4.11 Failure extraction 
 

In recent years, the development of visualisation and 3D change detection techniques 

has not been matched by their translation into usable products. Analysis of 3D change is often 

limited to the observation of movement patterns across the point cloud or by rasterising the 

dataset, with the exception of more recent research that clusters change estimates into 

individual 3D rockfall (Carrea et al., 2012; Benjamin et al., 2016). At present, the algorithms 

presented in this body of research are computationally intensive and hence unsuited to repeated 

application over a high number of multiple scans. In this study, therefore, 3D change estimates 

were rasterised and the rockfall then delineated using the LoD. 

 Rasterising point clouds of change differs to DEM generation in that multiple points are 

not required for each pixel. In DEM creation, cell sizes should typically include at least two 

Figure 4.31: Cumulative distribution function for the change detections of multiple pairs of stable 

scans, such that the theoretical distribution of distance along normal values should be zero. The 

methods used are DEMs of Difference (DOD; blue line), M3C2 (red line) and Distance Along the 

Normal, Variable Cylinder Length (DAN VCL; black line).  
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points (Hengl, 2006) to minimise the impact of local minima or maxima on the resulting raster. 

Here, points were gridded at 0.15 m intervals. This approaches the maximum point spacing and 

maintains the spatial resolution of the dataset. Although some cells are left empty, these can be 

identified and masked. By stacking the resulting change images, pixels that exhibit forward and 

backwards movement between scans over sustained intervals can also be removed, typically 

along the sharp edges created by the widely jointed sandstone at the cliff top.  

In order to delineate rockfall, a binary image of erosional values was first created and a 

threshold applied based on the measurement precision. A threshold of 1.96σ of change along the 

normal was selected, thereby defining a rockfall as any cluster of cells > 0.03 m using 

MATLAB’s bwboundaries. In many instances, the boundaries created using the LoD binary 

over-constrained the failure extent when compared with an unthresholded change image. In 

Figure 4.32, the largest rockfall volume identified using this technique is illustrated in red. The 

true area of failure on the cliff face (blue) was identified by vectorising changes greater than the 

quoted instrument precision (0.005 m) illustrating that in some areas of the cliff the localised 

accuracy of the change detection was < 0.03 m.  

To account for this, binaries were created using the 0.03 m LoD alongside binaries 

created using the 0.005 m instrument precision (IP). For each rockfall detected in the LoD 

mask, a ratio R was created to describe its pixel count NLoD (defined by the polygon in Figure 

4.32a), relative to the pixel count of the extended area in the IP binary (the difference between 

the polygons in Figure 4.32a and Figure 4.32b): 

 

 𝑅𝑅 =  
𝑁𝑁𝐿𝐿𝐶𝐶𝐿𝐿

𝑁𝑁𝐼𝐼𝑃𝑃 − 𝑁𝑁𝐿𝐿𝐶𝐶𝐿𝐿
 [Eq. 4.31] 

 

where NIP is the pixel count for the same rockfall in the IP binary and NIP > NLoD.  If R > 0.5, 

the LoD rockfall is more than twice the size of its extension in the IP binary. In this instance, 

the pixels of the instrument precision binary are incorporated. This enabled the automatic 

delineation of the rockfall in Figure 4.32. Conversely, when R < 0.5, the adjacent IP rockfall is 

more than twice the size of the LoD failure. When NLoD = 1 and R < 0.5, LoD failures were 

extensions along the periphery of holes in the change raster and were removed.  

Wheaton et al. (2010) proposed that uncertainty in the change value of a cell can be 

partially determined by the spatial coherence of erosion and deposition surrounding the cell. A 

single cell of deposition surrounded by cells of erosion, for example, is deemed unlikely to 

represent true-erosion of the surface. On a rockface, however, the presence of erosion cells 

surrounded by forward movement could represent a number of processes operating at fine 

spatial scales; for example, the loss of small amounts of material from the surface of a larger 

forward moving wedge. This approach was not used in order to preserve this detail.
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Figure 4.32: A section of the cliff buttress, with the largest failure in the study superimposed. The 

red polygon is shown in detail in (a) and the blue polygon in (b). (a) A still taken from the video of 

pre- and post-failure movement that is automatically created for each failure. Here, the polygon (red) 

is created using the LoD, and significantly underestimates the failure size relative to the unthresholded 

change map beneath it, (b) Rockfall polygon (blue) created using by extending the polygon to include 

change above the instrument precision, using the criterion in Equation 4.31. 
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4.11.1 Systematic error in segmentation and rockfall 
volume estimation 

 

Using the resulting change images, the rockfall volume VRF is calculated as: 

 

 
𝐶𝐶𝑅𝑅𝑅𝑅 =  �𝑑𝑑𝑖𝑖 × 𝐴𝐴𝑐𝑐

𝑁𝑁

𝑖𝑖=1

 [Eq. 4.32] 

 
where N is the number of cells within the estimated failure scar, di is the depth of cell i and AC 

is the area of each cell. Error estimation is rarely undertaken with regard to this equation, with 

most studies ignoring any cells with a depth change below the instrument precision and 

accepting that failures with an aerial extent less than AC will not be detected (e.g. Rosser et al., 

2005; Abellán et al., 2006). Rockfall with areas less than Ac are acknowledged when examining 

the presence of rollovers in magnitude-frequency distributions (e.g. Dussauge et al., 2003), 

however, uncertainty in volume estimates derived using Equation 4.32 are seldom quantified for 

rockfall with areas greater than AC. Assessing the volume error associated with rockfall 

identification requires basic assumptions about how the uncertainty in its aerial extent 

propagates into volumetric uncertainty, in particular for failures of varying shapes and sizes. 

This is of critical importance considering the low spatial resolution of raster cells relative to the 

accuracy of the raw measurements recorded by TLS.  

In this study, for example, the spatial resolution of change images is determined by the 

point spacing of the point cloud. Since the change images are rasterised from point clouds of 

change, the point spacing and pixel size are more closely related than for conventional DoDs. In 

these comparisons, the construction of representative cell depths in each DEM requires a cell 

size large enough to draw on multiple points, which is not the case in this study. Cell sizes of 

0.15 m across a 200 m wide cliff thus yield an accuracy of approximately 1 in 1 000. Conversely, 

the scanner’s range estimation, combined with the pre-processing and change detection 

procedures outlined above, provides change depths accurate to a minimum of 0.03 m over 500 m 

and in some cases as small as 0.005 m. This translates to an accuracy of 1 in 10 000 or 1 in 

100 000 at best, an order-of-magnitude higher than the spatial accuracy of the DoD.  

 Assuming any cell that lies on the boundary of the rockfall contains any fraction of the 

true rockfall scar, the maximum area of the rockfall ARF_max approaches: 

 

 𝐴𝐴𝑅𝑅𝑅𝑅_𝑚𝑚𝑎𝑎𝑥𝑥 = 𝐴𝐴𝐶𝐶 × 𝑁𝑁 [Eq. 4.33] 

 

In reality, however, this equation represents the largest possible area because the likelihood that 

border cells are entirely covered by the true rockfall scar is small. Conversely, the theoretical 
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minimum area ARF_min approaches: 

 

 𝐴𝐴𝑅𝑅𝑅𝑅_𝑚𝑚𝑖𝑖𝑛𝑛 = 𝐴𝐴𝐶𝐶(𝑁𝑁 − 𝑁𝑁𝑏𝑏) [Eq. 4.34] 

 

where Nb is the number of boundary cells. The maximum error associated with the area estimate 

of the rockfall scar is then: 

 

 𝐴𝐴𝑚𝑚𝑎𝑎𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟 = 𝐴𝐴𝑅𝑅𝑅𝑅_𝑚𝑚𝑎𝑎𝑥𝑥 − 𝐴𝐴𝑅𝑅𝑅𝑅_𝑚𝑚𝑖𝑖𝑛𝑛 [Eq. 4.35] 

 

This value can be applied as a threshold to the rockfall inventory, such that failure areas below 

𝐴𝐴𝑚𝑚𝑎𝑎𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟 are removed. Using Amaxerror as a threshold reduces the number of failures in the 

inventory from 1 885 482 to 135 186. This threshold, however, represents the maximum possible 

error associated with the rockfall area. 

Jahne (2000) defined the variance 𝜎𝜎𝑥𝑥2 of the position of a single point in an image, 

introduced by the pixel length dx, as: 

 

 
𝜎𝜎𝑥𝑥2 =  

1
∆𝑥𝑥

� (𝑥𝑥 − 𝑥𝑥𝑛𝑛)2𝑑𝑑𝑥𝑥 =  
(∆𝑥𝑥)2

12

𝑥𝑥𝑛𝑛+∆𝑥𝑥/2

𝑥𝑥𝑛𝑛−∆𝑥𝑥/2

 [Eq. 4.36] 

 

assuming a constant probability density function within the length of a pixel, i.e. all positions 

within the cell are equally probable. The standard deviation 𝜎𝜎𝑥𝑥 is approximately 1
√12

≈ 0.3 times 

the cell size. Therefore, to accommodate for uncertainty in the position of the rockfall scar 

within each boundary cell as a function of cell size, 2σ can be used as a threshold as follows: 

 

 𝐴𝐴𝑅𝑅𝑅𝑅_𝑚𝑚𝑎𝑎𝑥𝑥 = 𝐴𝐴𝐶𝐶 �𝑁𝑁 +
1
√12

𝑁𝑁𝑏𝑏� 

𝐴𝐴𝑅𝑅𝑅𝑅_𝑚𝑚𝑖𝑖𝑛𝑛 = 𝐴𝐴𝐶𝐶 �𝑁𝑁 −
1
√12

𝑁𝑁𝑏𝑏� 

𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟 = 𝐴𝐴𝑅𝑅𝑅𝑅_𝑚𝑚𝑎𝑎𝑥𝑥 − 𝐴𝐴𝑅𝑅𝑅𝑅_𝑚𝑚𝑖𝑖𝑛𝑛 

[Eq. 4.37] 

The volumetric error is thus: 

 

 
𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝐶𝐶𝑟𝑟 =  �𝑑𝑑𝑖𝑖 ×

2
√12

𝐴𝐴𝑐𝑐

𝑁𝑁𝑏𝑏

𝑖𝑖=1

 [Eq. 4.38] 

 

The number of border cells relative to the total number of cells is critical in determining the 

estimated area error relative to the total area of the rockfall cluster, whereby a higher ratio of 

border cells to total number of cells will result in a greater error. A simple descriptor of this is 
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the eccentricity of the cluster (Figure 4.33), where 0 is a square and 1 is an infinite line, 

resembled by an elongated rectangle. By extension, the volumes of square shaped rockfall are 

therefore more precisely defined than elongated shapes. The relation between eccentricity and 

the number of boundary pixels of rockfall clusters in this rockfall inventory is illustrated below. 

 

 
 

At the edges of a rockfall scar, the depth of change is lowest and bears the greatest 

degree of uncertainty as the laser footprint averages both the edge of the original surface and 

the failure surface itself. While this influence upon depth change estimates is small, it is 

increased by an order of magnitude when converted to volume using AC further highlighting the 

influence of the shape’s perimeter relative to its area. In the next chapter, the implications of 

the number of edges of a rockfall scar, relative to its area is described in relation to the overall 

volume estimates yielded in this study. 

 

4.12 Inclusion of partial scans 
 

As discussed in Chapter 3, inclement weather conditions can prevent scanning of the 

cliff. If the number of points fell below 500 000, which is approximately half of the number of 

points in an unimpeded scan of East Cliff, the scan was removed from the inventory and 

pairwise detection was instead undertaken between the previous scan and the subsequent scan. 

As a result of this process, 8 596 change detections out of a possible 8 986 were completed, 

equating to a loss of 380 (4%).  

Figure 4.33: Eccentricity of failures measured against the number of boundary pixels. A higher ratio 

of boundary cells relative to the total number of cells in the failure (eccentricity) results in a greater 

volumetric uncertainty. 
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 Figure 4.34 and Figure 4.35 show the distribution of rockfall events from the cliff during 

storms from 24th December – 26th December. In Figure 4.34a, rockfall are derived from 120 

pairwise change detections during the three day period. In Figure 4.34b, rockfall are derived 

from daily change detections between midnight on each of the three days. In Section 7.3, the 

influence of the time interval between surveys is examined with respect to the ability detect and 

monitor precursory rockfall activity. Small, precursory events are less easily discerned when the 

monitoring interval is increased, due in part to their superimposition by larger, subsequent 

events. However, over the same period of monitoring, the shape of the rockfall scar should be 

identical, irrespective of the time interval of monitoring. On close examination of Figure 4.34, 

however, there are significant discrepancies in the spatial pattern of failures between the two 

epochs, in particular within the failure cluster delimited by the square box. Here, a 4.9979 m3 

rockfall that is observed with Figure 4.34b is not observed within Figure 4.34a. By analysing the 

pairwise change detections individually, this discrepancy was attributed to the inclusion of 

partially complete scans. Due to the frequency of scanning and duration of each scan, inclement 

weather conditions often interrupted the beginning or ending of the eight minute scan period. As 

such, a number of scans contained more than the 500 000 point threshold but with some areas 

of the point cloud left empty.  

 Figure 4.36 describes a scenario in which a rockfall occurs between 12.00 and 12.30 

during adverse weather, which partially obscures the impending scan at 12.30. While some areas 

of this scan allow accurate change detection of the surface, if the rockfall occurs in an obscured 

area, it is missed from the inventory entirely. However, if surfaces are compared between 12.00 

and the following scan at 13.00, with both captured during fair conditions, the rockfall will be 

observed and included in the inventory. At present, no automated means of detecting partial 

scans has been developed. The point distribution was therefore manually examined by creating a 

video of every point cloud prior to reanalysis of the dataset. While the maximum possible 

number of change detections was 8 986, these were reduced to 8 596 as a result of poor weather 

conditions and finally to 8 270 as a result of partial scan removal. The reduction in the number 

of scans has a direct impact on the time interval between scans and hence deformation analysis 

prior to failures that occur during bad weather. However, as illustrated in Figure 4.35, the 

rockfall that occurred within the square box are now closer to the size and shape of those 

collected by the scan-by-scan detection. Of particular note is the fact that this rockfall, while 

identified as a single event in the daily change detections, appears to comprise multiple failures 

that occurred at different times before the 4.9979 m3 event, though this is beyond the scope of 

this chapter. 

 



C
ha

pt
er

 4
: 4

D
 A

na
ly

si
s 

of
 R

oc
kf

al
l u

si
ng

 C
on

tin
uo

us
 T

LS
 D

at
a 

 

12
2 

 

Figure 4.34: (a) Rockfall derived from pairwise change detection of 120 scans. This fails to detect many of the individual rockfall events that occurred within the square box, 

including a 4.9979 m3 event. This is caused by the omission of this area of cliff within partial-scans due to rainfall. (b) Rockfall derived from daily change detections over the 

same storm period. 
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Figure 4.35: (a) Rockfall derived from pairwise change detection of a scan database that includes only point clouds with entire cliff coverage. This includes numerous small 

rockfall within the square box that are depicted as a single event in the daily change images. (b) Rockfall derived from daily change detections over the same storm period.  
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4.13 Summary 
 

 The collection of thousands of point clouds requires a novel, automated approach to 

change detection that is capable of minimising the epistemic error between scans, such that the 

derived time-series of rockfall activity do not reflect the aggregation of multiple false change 

estimates. Regions of epistemic error between stable scans coincide with edges and holes, areas 

of low point density, and areas in which the returned radiometric signal deviates significantly 

from a reference waveform. Here, a range of filtering techniques has been applied to reduce the 

effects of these uncertainties from ca. 0.07 – 0.05 m. Following alignment of the scan data, the 

method of change detection used is critical for determining the scale of movements that can be 

detected. 3D change detection methods retain the raw point cloud data and are therefore robust 

to variations in point density. They also have the potential to both reduce the Level of 

Detection (LoD) between scans and provide distances that are consistent with the direction of 

failure. The method of change detection developed and presented here shows a significant 

reduction in the LoD to 0.03 m at ca. 300 m – 500 m. This more than halves the LoD available 

using the M3C2 algorithm. Although these estimates are then reduced to 2.5D rasters, the 

combined accuracy of change estimates and techniques to extract rockfall in 2D produces a 

rockfall inventory that contains > 180 000 rockfall events. A simple method for extending the 

rockfall polygons into regions below the defined LoD when appropriate is also presented. A 

description of the frequency distribution of failure sizes and the distribution of failures in time 

and space is presented in the following chapter.  

Figure 4.36: Conceptual illustration of the significance of removing partial scans. While parts of 

these scans provide accurate estimates of surface change, if a rockfall occurs in an area of no data, the 

failure will be missed using pairwise change. These scans must therefore be removed prior to change 

detection of the scan database. 
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Chapter 5 

Spatial and Size Distributions 
of Rockfall from Near Real-
Time Constant Monitoring 

 
 

5.1 Introduction 
 

In Chapter 4, the development of a methodology to process constant near-real time TLS data 

was outlined. As error is accumulative and proportional to the number of scans used to derive 

an inventory, the collection of 8 987 scans required a methodology capable of enhancing the 

accuracy of cloud-to-cloud comparison, and subsequent rasterising and delineation of rockfall. 

The rockfall inventory that is drawn upon in this chapter comprises 183 363 detachments, and is 

described in terms of their spatial and size distribution. 

The size distribution of rockfall and landslides has often been quantified using 

magnitude-frequency analysis, which in turn can be used to estimate and predict erosion rates at 

a range of spatial and temporal scales (Guzzetti, 2005). The use of such models requires an 

understanding of the scaling behaviours of mass wasting, and has been drawn upon in instances 

where failure volumes could not be measured directly (Larsen et al., 2010). The resulting size 

distributions have been used to infer underlying failure mechanisms and the efficacy of large-

scale perturbations, such as large (MW > 7.0) earthquakes and extreme rainfall events, in 

removing sediment from orogens (for example, Hovius et al., 1997). One characteristic of most 

distributions is the presence of a rollover (reduction) in the frequency of the smallest failures. 

Explanations for this effect for landslides have been physical, for example, where minimum 

landslide sizes are controlled by the scale at which well-defined channel networks develop 

(Brardinoni and Church, 2004), or the possible transition from cohesion controlled failures to 

failures controlled by basal friction (Pelletier et al., 1997; Guzzetti et al., 2002). Furthermore, in 

some cases these rollovers reflect the level of completeness of the failure inventory, which has 

been limited by the spatial and temporal resolution of monitoring. Relatively little research has 

been undertaken into the effects of the temporal resolution of monitoring. This requires 

monitoring at frequent intervals over a sufficient duration to capture a sample size that is 

representative of the global behaviour of the rock slope in question. This usually encompasses 

the effects of seasonal variations in event occurrence or longer term responses to perturbations. 
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Barlow et al. (2012) used a three-year dataset of rockfall to establish an appropriate monitoring 

window for estimating rockfall-driven erosion from coastal cliffs over decadal timescales. 

Superimposition of rockfall events, whereby single rockfall may actually be the sum of multiple 

smaller, more frequently occurring rockfall, has the effect of reducing the frequency of the 

smallest rockfall. The average rockfall return period is thereby increased if the sampling 

resolution if insufficient to minimise this effect (Rosser et al., 2007a; Lim et al., 2010; Barlow et 

al., 2012). 

In this chapter, the magnitude-frequency distribution of rockfall is examined over a 

range of sampling intervals, referred to herein as Tint, from < 1 h to 90 d (the monitoring epoch, 

and temporal resolution), by conducting pairwise comparisons between surveys to generate 

increasingly low temporal-resolution inventories. This analysis shows that the frequency of small 

rockfall in the inventory is inversely proportional to the monitoring epoch length. With 

increasingly high frequency monitoring (short epochs ≈ 1 h to 1 week), the proportion of small 

rockfall events increases, while the frequency of the medium and largest volume rockfall reduces. 

By implication, a portion of rockfall events captured at anything greater than the finest 

monitoring frequency may be the sum of multiple smaller events. Put simply, the more often 

you survey the surface, the more rockfall you record.  

This relationship has some further complexity. While the data show a marked alteration 

in the size distribution of rockfall captured when monitoring more frequently than every 4 d to 

7 d, over longer monitoring epochs the frequency distribution is insensitive to monitoring epoch 

length.  This is reflected in both the dependence of the exponent of a power law fitted to the 

non-cumulative magnitude-frequency distribution, and the least squares fit of the data to this 

power law. This is also reflected by shifts in the intensity or severity of the rollover for smaller 

rockfall volumes, where fewer rockfall are captured than would be expected if the inventory were 

to adhere to a power law. This suggests that rockfall in this location are highly fragmented, and 

result in the production of small detachments over periods of 4 d to 7 d, until the unstable, 

incipient scar has fully developed. The size distribution of rockfall is similar for all return 

intervals > 7 d. This suggests that ‘single’ rockfall fail over a period < 7 d, and that increasing 

the scanning frequency in this setting could reveal further characteristics of rockfall 

fragmentation during a period of detachment.  

A comparison of rockfall sizes with the dimensions of planar exposed joints (facets) that 

together constitute the cliff face, suggests that rockfall dimensions are both smaller than those of 

individual facets, and are limited in size by these structural discontinuities. Geometric analysis 

of the shape of rockfall shows that they are primarily surface parallel slabs, and therefore have a 

geometry that is largely independent of the overall structure of the rock mass.  

This chapter considers the use of magnitude-frequency distributions collected over a 

variety of timescales as a means of constraining the processes by which rockfall evolve. The 
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chapter begins with an error assessment that highlights the importance of rockfall size in 

determining the accuracy of its estimated volume. As higher frequency monitoring yields an 

increase in the proportion of small rockfall in an inventory, the total volumetric uncertainty is 

also higher. This has implications for the accurate use of high frequency monitoring for 

quantifying long-term erosion and rockslope evolution. 

 

5.2 Inventory Description 
 

Multiple rockfall inventories were compiled using pairwise change detection between 

point clouds separated by 11 monitoring epochs: < 1 h, 3 h, 6 h, 12 h, 24 h, 96 h, 7 d, 14 d, 21 

d, 30 d and 90 d. The first inventory, sub-hourly, draws on the entire dataset of scans, in which 

return intervals were typically between 20 min and 30 min. This dataset has formed the basis of 

the analyses presented in this chapter, along with Chapter 6 and Chapter 7. However, for 

comparisons between inventories of different Tint, any rockfall identified between scans separated 

by more than 1 h (for example, due to bad weather) were removed. For each rockfall, the 

parameters detailed in Table 5.1 were recorded, including the timing of the first scan of the 

change detection pair, properties of the rock mass from which it failed, and failure geometry. 

 

Table 5.1: Summary of the geometric and lithological properties recorded for each rockfall. Geometric 

properties were extracted by connecting contiguous pixels within binary images of detectable change 

(<= -0.03 m LoD) and accumulation and undetectable change (> -0.03 m LoD). Structural properties, 

described in Section 5.9, were extracted using the CloudCompare Facets plug-in, combined with a high-

resolution (0.03 m) slope model and image of the cliff in ArcMap. 

Date and time properties Geometric properties 
Date and time Area (m2) 
Scan ID Volume (m3) 
Time since last scan (hh:mm:ss) Volumetric error (m3) 
 Perimeter (m) 

Structural properties Depth (m) 
Bed number (Figure 5.29) Centroid (m / Pixel ID) 
Horizontal joint spacing (m) Minor axis length (m) 
Vertical joint spacing (m) Major axis length (m) 
 Pixel ID list 
 Boundary pixels 

 

Table 5.2 shows the total recorded rockfall volumes for the period 5th March to 30th 

November, comparable between each Tint database, alongside average statistics for the rockfall 

volumes. The non-bracketed volumes are curtailed at 30th November. This limit was applied to 

account for the fact that only three 90 d change detections (between four scans) could be 

applied within the 10-month period of monitoring. The last of these was measured between 

scans captured on 2nd September 2015 and 30th November 2015. As such, in analyses that 
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compare datasets from different Tint, only rockfall up to this end date are used.  The more often 

the cliff is monitored, the higher the number of rockfall observed. Interestingly, the size of 

detachments is proportional to Tint, such that small rockfall volumes on average are recorded at 

more frequent sampling intervals. The implications for failure evolution that can be drawn from 

this are discussed in Section 5.8, in the context of variations in the magnitude-frequency 

distribution of rockfall.  

 

Table 5.2: Summary statistics of rockfall inventories, acquired using change detections with different 

Tint. Tint < 1 h comprises Tint of ca. 20 mins – 30 mins, with some removed due to inclement weather 

conditions. The number of recorded rockfall is greater when the cliff is monitored more frequently. 

Values reflect the number of rockfall up to 29th November, as the month of December is not included by 

the last 90 d change detection. Bracketed values show the total recorded up to 30th December.  

Tint 
Recorded 
Rockfall 

Mean Volume 
(m3) 

Median Volume 
(m3) σ Volume (m3) 

< 1 h 170 965 (183 363) 0.0169 0.0054 0.1060 
3 h 46 689 (52 235) 0.0169 0.0055 0.1291 
6 h 26 064 (28 857) 0.0152 0.0041 0.1263 
12 h 13 674 (15 392) 0.0210 0.0046 0.1663 
24 h 8 027 (9 197) 0.0280 0.0052 0.1946 
96 h 4 403 (4 898) 0.0407 0.0067 0.2590 
7 d 3 288 (3 635) 0.0446 0.0075 0.2734 
14 d 2 939 (3 043) 0.0391 0.0078 0.2442 
21 d 2 679 (3 145) 0.0409 0.0078 0.2570 
30 d 2 346 (2 855) 0.0344 0.0085 0.1704 
90 d 1 796 (1 796) 0.0438 0.0100 0.1993 

 

5.3 Volumetric Error 
 

Techniques developed to reduce uncertainty in 3D change estimation were presented in 

Chapter 4. The data collected were converted into raster form though linear interpolation prior 

to rockfall delineation. This requires an error assessment of the resulting change images in order 

to determine the applicability of the chosen Level of Detection (LoD). Analysis of the first 

inventory compiled showed that many reported rockfall occurred in the same locations on the 

cliff face, resulting in an inventory of > 700 000 discrete events. Inspection of the rasters of 

change showed that pixels adjacent to holes in the original scan data exhibited forward and 

backward movements, greater than the 0.03 m LoD (Section 4.10.2). To overcome this, for the 

first 100 change images of the dataset, the standard deviation of change for each pixel was 

calculated (Figure 5.1). Pixels with a 99.87th percentile deviation (3σ), > 0.02 m in Figure 5.1, 

were identified and used to create a binary mask that prevented these pixels from being 

identified as rockfall in the subsequent inventory. This threshold percentile was selected to 

prevent pixels that appeared to be rockfall, identified visually, from being included in the mask. 
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The distances attributed to each pixel in this subset of images, ignoring the masked 

pixels described above, are shown in Figure 5.2. The distances follow a Gaussian distribution, 

which is characteristic of errors in measured point cloud data, and those presented in Chapter 4 

for this dataset. This shows that, although change is measured in 3D, its interpolation into 2D 

does not impact upon the accuracy of rockfall identification. Only 0.34% of pixels fell outside of 

the ±0.03 m LoD. These pixels were not masked as they did not fall close to holes or edges in 

the dataset and themselves appeared to resemble rockfall. 

Tests conducted in Section 4.7 (Figure 4.14) showed an average registration error of 

0.005 m between successive point clouds (n to n+1), and that this error was independent of 

whether the scan (ni) was registered to the first of the database (ni to n1), or to the previous 

scan (ni to ni-1). To ensure that no increase in registration or epistemic error occurred though 

the monitoring period, the LoD was calculated for every scan and plotted in Figure 5.3. This 

value lies consistently between 0.01 m – 0.03 m, representing the 95% confidence level of each 

point cloud. Residuals are attributed to scans in which significant rockfall events occurred, or 

when significant numbers of rockfall occurred. The latter scenario represents change detections 

taken during inclement weather conditions, or change detections that span a longer than average 

period where the system was not scanning, periods delineated by the grey dashed lines. A small 

but appreciable increase in the LoD estimates can be observed during December. This is 

attributed to the heightened rockfall activity during this month, which is discussed in Chapter 6. 

Figure 5.1: 1.96 σ of the first 100 change rasters (0.0005 m bin widths). These values fall below the 

0.03 m LoD used to mask rockfall. This shows that the accuracy of the 3D change detection techniques, 

developed in Chapter 4, is not reduced though interpolation.  
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However, the consistency in error distribution shows that patterns of rockfall occurrence though 

time, discussed in Chapter 6, are not influenced by methodological errors. Moreover, the 0.03 m 

LoD can be applied to each point cloud, in order to prevent erroneous pixels from being 

recorded in the resulting rockfall inventory.  

In this section and in Section 5.8, patterns of rockfall occurrence are examined across the 

different Tint inventories. Figure 5.4 shows the LoD estimates for every change detection of the 

11 different Tint. For change detections < 7 d, the average LoD distribution is broadly consistent 

with that of the sub-hourly scans in Figure 5.3, suggesting that a 0.03 m LoD is again applicable 

for rockfall delineation. For larger Tint, however, the standard deviation of change estimates 

increases beyond a 0.03 m LoD. This increase in measured rockfall is most apparent during the 

autumn and winter months of September to December. No changes to the point cloud 

registration were implemented for change detections at different Tint. This pattern appears to 

reflect a positive relationship between Tint and measured rockfall activity, as well as an increase 

in the rate of rockfall activity though the monitoring period. To ensure that none of the change 

detections exhibited noise, for example due to rainfall, a 2 h long video of every change 

detection was compiled and manually examined.  

Rockfall occurred throughout the monitoring period, with a minimum of one rockfall 

measured in a < 1 h change detection, a maximum of 32 rockfall, a mean of 9.9, and a mode of 

15 rockfall per scan. In Figure 5.5, all individual rockfall volumes are plotted though the 

Figure 5.2: The distances along the normal direction in resulting change rasters form a Gaussian 

distribution, as described in published examples of error assessment from LiDAR. 
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monitoring period. The minimum recorded rockfall volume was twice that of the minimum 

detectable volume, Vmin: 

 

 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐿𝐿𝐿𝐿𝐿𝐿 ∙ 𝐴𝐴𝐶𝐶 [Eq. 5.1] 

 

where LoD is 0.03 m, and AC is the cell size (0.0225 m2). Volumes therefore range from 

1.3 × 10-3 m3 to a maximum of 7.2536 m3. The individual rockfall volumes show an increase in 

activity though the calendar year as represented by the LoD estimates in Figure 5.4. This is 

discussed further in Chapter 6. In relation to the size of events, all 18 rockfall > 1 m3 that 

occurred during the monitoring period did so from September onwards.  

Cumulative rockfall volumes though time are represented in Figure 5.6. In this chapter, 

discrepancies in these volumes are compared between different Tint values for the purpose of 

error quantification. The nature of the increased rockfall activity though time is discussed in 

Chapter 6 in relation to environmental conditions. Cumulative rockfall volumes show significant 

discrepancy between Tint, such that more frequent monitoring produces higher accumulated 

Figure 5.3: LoD for individual change detections though time, measured at sub-hourly intervals. A 

background level of noise of 0.01 m – 0.03 m is apparent. Values above this correspond to increased 

measurement of rockfall. This is sometimes caused by change detections over longer time periods, 

caused by gaps in scanning (vertical dashed lines).  
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volume estimates. There are two possible explanations for this, both of which relate to the 

increased proportion (97.7%) of small detachments of the order of 0.001 – 0.010 m3, which are 

recorded at lower Tint (Table 5.2). First, a 0.15 m cell size has the potential to exceed the scale 

of small fragmentation of the rock mass though spalling. Since 0.15 m is equivalent to the 

maximum point spacing, detachments smaller than this may be recorded in regions of higher 

point density across the cliff face. In such instances, while the depth of the detachment is 

maintained during rasterization, the aerial extent and therefore volume is overestimated. 

Second, the error attributed to volume estimation is proportional to the size of the measured 

detachment, as is discussed below. Their more frequent occurrence within the low Tint dataset, 

possibly because of superimposition within high Tint datasets, therefore increases the overall 

uncertainty in total volume estimates.  

 

Figure 5.4: LoD for change detections at different Tint though time. As the scan interval increases, 

the standard deviation (σ) of change measurements also increases though time. This reflects an 

increase in measured rockfall owing to the larger time between scans of the cliff. For scan intervals 

below and including 7 d, the mean background rate (µ) is below the LoD used to identify rockfall from 

the change rasters. As with Figure 5.3, dashed lines indicate monitoring gaps. 
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In order to model the errors that are present in this dataset, the error estimation 

procedure outlined in Section 4.11.1 was applied to a synthetic dataset of rockfall volumes 

(Figure 5.7). The mean rockfall shape for this study, described in Section 5.7, is a hypothetical 

slab with a depth of 0.156 times the horizontal and vertical extents (m), or 0.201 times the 

cross-sectional area (m2). The synthetic rockfall volumes are created by varying the horizontal 

and vertical dimensions at 0.15 m intervals, in order to replicate a cell-by-cell increase in volume 

while maintaining the mean rockfall shape. This synthetic dataset assumes that all rockfall are 

slabs with four edges. As the rockfall area, and hence volume, increases, so too does the number 

of edge pixels. These edge pixels represent the highest source of volumetric error of each rockfall 

since, as discussed in Section 4.11.1, they may have up to 50% error in their aerial extent. In 

this study, this error is added to error of pixels within the rockfall that do not belong to an 

edge, referred to as ‘internal’ pixels: 

 

 𝑉𝑉𝐼𝐼𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = �𝐿𝐿𝐿𝐿𝐿𝐿 ∙ 𝐴𝐴𝐶𝐶

𝑁𝑁

𝑚𝑚=1

 [Eq. 5.2] 

Figure 5.5: Individual rockfall volumes accumulated for each change detection measured though the 

monitoring period. Rockfall events > 0.1 m3 occur throughout the monitoring period, increasing in 

frequency towards the Autumn and Winter months.  An appraisal of the temporal patterns of rockfall 

occurrence is provided in Section 6.2. Within this chapter, rockfall though the monitoring period are 

presented in the context of error estimation.  
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where N is the number of internal pixels. While the number of edge pixels increases with the 

synthetic rockfall volume, the proportion relative to the total number of rockfall pixels 

decreases. As a result, smaller rockfall have a higher volumetric error as a proportion of the 

total estimated volume. The highest theoretical error is for rockfall of a single pixel. In such 

instances, the volume error is calculated as four times the error of a single edge pixel. This 

concept is outlined in Figure 5.7, which illustrates the smallest and largest theoretical areas that 

a rockfall may occupy in relation to its size in a rasterised image of change.  

For all of the rockfall in the sub-hourly inventory, this pattern was replicated using the 

estimated volume of each rockfall, combined with the total number of edge pixels and the 

number of internal pixels, modelled using the mean rockfall geometry (Figure 5.9). Larger 

rockfall volumes exhibit a smaller percentage volume error; however, for the majority of rockfall 

volumes that lie between 0.001 m3 (a minimum of two pixels) and 0.01 m3 (a minimum of 14 

Figure 5.6 Cumulative rockfall volumes measured though the monitoring period, using data from all 

11 monitoring intervals. The results show that far higher volumes of material, up to twice those 

recorded by 90 d monitoring, are measured at sub-daily intervals. The times of pairwise change 

detections are recorded as the date of the first scan, rather than the second. As a result, although all 

scan intervals record a significantly increased rate of rockfall activity during November; this appears 

earlier on the plot for longer scan intervals. The total estimated volumes are not included for 

comparison as change detections cannot be recorded up to the final day of monitoring for longer time 

intervals (30th December).  
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pixels), the error is between 80% and 160% of the estimated volume. This error value is slightly 

lower than the aerial uncertainty reported in Figure 5.7, because the depth of each rockfall here 

is assumed to be exact for the purpose of the modelling the above figure. Magnitude-frequency 

analysis of the size distribution of rockfall events (Section 5.8) indicates that more frequent 

scanning detects a greater proportion of smaller rockfall events. Consequently, more frequent 

scanning also presents increased uncertainty in cumulative volume, and given that the size 

distribution adheres to a power-law, cumulatively this error can be significant relative to the 

total volume lost though the monitoring period.  

 

 
In addition to the error estimates in Figure 5.8, error estimates were produced for the 

separate Tint inventories. This enabled the creation of an uncertainty envelope for each of the 

total cumulative failure volumes (Figures 5.10 and 5.11). Unlike Figure 5.6, the cumulative 

volumes are curtailed at 30th November to enable comparison between different Tint.  

The resulting error margins show that the uncertainty in volume estimates is greatest 

for the datasets captured at the highest frequencies (Table 5.3). For the sub-hourly dataset, the 

total estimated volume is 110.87 +/- 52.44 m3, while the total estimated volume for the 30 d 

dataset is 72.37 +/- 27.50 m3. As this is primarily a consequence of the higher proportion of 

Figure 5.7: (a) A theoretical grid of pixels, with a single erosion pixel (red). The minimum 

theoretical rockfall area is illustrated, with edge lengths ca. 30% (1/√12) of the erosion pixel edge 

lengths. A theoretical maximum rockfall size is also drawn, using the same principle. NP represents the 

number of erosion pixels, NB represents the number of boundary pixels, and NE represents the number 

of edges. The area of the pixel (Apixel), the area of the minimum theoretical rockfall (Amin), and the 

area of the maximum theoretical rockfall (Amax) are calculated. Uncertainties of each rockfall area, 

relative to the size of the pixel, are provided as a percentage. The single pixel results in the highest 

uncertainty due to the large number of edges relative to its size. (b) As the size of the pixel increases, 

the percentage uncertainty decreases. (c) As the number of edges relative to the number of pixels 

decreases, so too does the uncertainty. (d) A larger rockfall, but with fewer boundary pixels relative to 

its size, results in lower uncertainties than in (b). 
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small rockfall events, one means of reducing this error is to reduce the cell size. A reduction in 

cell size has the effect of increasing the number of internal pixels relative to the number of edge 

pixels, as well as reducing the uncertainty in edge pixel volumes, related to the cell area AC by 

depth × 1
√12

AC. As discussed in Chapter 4, however, pixel sizes cannot be decreased below 0.15 m 

as this approaches the maximum point spacing. While methods of identifying rockfall volumes 

using true-3D techniques overcome certain limitations attributed to the cell size (Lague et al., 

2013), the accuracy of these techniques is still limited by the point spacing of the original point 

clouds relative to the size of the rockfall. Accurate 3D estimation of rockfall shape and volume 

requires a minimum of four points (Besl and McKay, 1992), which is significantly higher than 

the number of points required for linear interpolation into a single cell.  

 

 

 

Figure 5.8: Rockfall volume uncertainty estimated for a range of synthetic rockfall. Rockfall volumes 

are simulated by varying the cross-sectional area and depths of the failure, while maintaining the mean 

rockfall shape measured in the total inventory. The mean rockfall shape is discussed in Section 5.6 and 

has approximately similar horizontal and vertical dimensions with a depth 0.15 times these lengths.  
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Table 5.3: Rockfall volumes estimated by monitoring the cliff face at different frequencies from 5th 

March to 30th November 2015, plotted in Figure 5.10.  

Tint 
Minimum Total 
Volume (m3) 

Estimated Total 
Volume (m3) 

Maximum Total 
Volume (m3) 

< 1 h 58.43 110.87 163.32 
3 h 50.99 100.41 149.82 
6 h 48.13 90.94 133.75 
12 h 45.79 83.9 122.01 
24 h 45.86 73.92 101.99 
96 h 40.04 71.29 102.55 
7 d 43.11 75.44 107.76 
14 d 39.67 71.59 103.51 
21 d 35.77 73.01 110.24 
30 d 44.86 72.37 99.88 

 

Figure 5.9: Rockfall volumes from < 1 h rockfall inventory. Percentage volume error is estimated 

using the LoD, number of internal pixels and number of edge pixels. Frequency densities (kernel density 

estimates) are appended to each axis, showing that rockfall volumes < 0.01 m3 account for the greatest 

proportion of measured rockfall (modal volume = 0.0081 m3). As a result, errors range from ca. 60% 

to ca. 140% for most rockfall (modal error percentage = 109%). Cumulative volume estimations using 

rockfall of this size may vary by at least the actual volume. 
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Figure 5.10: Rockfall volumes from < 1 h rockfall inventory, showing the maximum, estimated and minimum totals. Totals curtail at 30th November for comparability, reflecting 

the fact that change detection at 90 d intervals could not include data from December. The shape of these lines is approximately similar throughout the monitoring period. However, 

during the summer months of May, June and July, the maximum estimated volume for the sub-hourly inventory deviates more from the estimated cumulative volume. This reflects 

the high frequency and proportion of small rockfall events during these months, which provide a higher volumetric uncertainty.  
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By estimating the theoretical maximum volume error, I have shown in this section that 

uncertainty in rockfall volume can range from 20% - 160% of the estimated volume. This 

uncertainty is greatest for the smallest rockfall, in particular those with a high proportion of 

edge pixels, for example shapes that tend away from cubic forms. This suggests that monitoring 

at lower frequencies may provide more accurate estimates of predicted retreat rates over longer 

Figure 5.11: Envelopes of estimated rockfall volumes for the period 5th March 2015 – 30th November 

2015.The envelopes increase in width with decreased Tint as the proportion of the rockfall inventory 

containing small events increases. Bars at the side of each plot represent the final upper and lower 

volume estimates, and generally decrease in size with Tint. 
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time periods where precision is needed. This is not purely because longer time-averaged 

conditions are captured, but also because longer intervals reduce the measurement error relative 

to the change detected, particularly when change is accrued by many small, discrete events. 

Although the net errors in volume estimates can be high using this method, high frequency 

monitoring is critical for enhancing our process understanding of rockfall, such as the cause-

effect relationships between rockfall and triggers, as well as precursory activity. These are 

discussed in Chapter 6 and Chapter 7. However, it is notable that the net errors in volume 

estimates can be high. 

When using any change detection technique, the constituent surface models will have a 

degree of uncertainty in surface topography (elevation). When comparing the datasets used 

here, the resulting uncertainty, EDoD, can therefore be defined as the root sum square of errors 

in each: 

 

 𝐸𝐸𝐷𝐷𝐼𝐼𝐷𝐷 = �𝐸𝐸𝑍𝑍12 + 𝐸𝐸𝑍𝑍22 [Eq. 5.3] 

Figure 5.12: Estimated cumulative rockfall volumes (circles) accompanied by percentage volumetric 

error bars. A linear decrease in the total estimated volume in apparent between 1 h and 96 h, possibly 

signifying that increasingly high proportions of small rockfall are recorded when monitoring frequency 

is increased beyond 96 h. This is reflected in the size of the error bars, which decrease with scan 

interval. These error bars converge at volumes between 60 m3 and 90 m3. 
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If analysis of cumulative datasets is required, the error will increase in proportion to the number 

of change detections undertaken. At present, there is no established method to overcome this 

increase in error, even with the application of 4D smoothing techniques discussed in Chapter 8. 

The size distribution of rockfall adheres to a power law, presented in Section 5.8, which presents 

a considerable obstacle to cumulative change analysis. Rather than the occurrence of individual 

large events, which present a limited volumetric error in only one scan, the power law behaviour 

of rockfall is such that small failures, with high percentage volume errors, occur frequently. As a 

result, high frequency monitoring in this setting is ill suited to examining the net volume that is 

displaced by large numbers of small events. Conversely, rockfall analysis is undertaken here 

using the results of pairwise change detections. As such, it is uniquely applicable for discerning 

the spatial, temporal and size distributions of rockfall events at high frequencies (< 1 h).  

 

5.4 Spatial Distribution of Rockfall 
 

The spatial distribution of rockfall events over the 10 months of the monitoring period 

is shown in Figure 5.13. The general pattern shows that scars are distributed across the entire 

rock face. No rockfall were recorded on the upper slopes of the buttress, which runs across the 

cliff face at ca. 17 m elevation. This area of cliff comprises loose surficial material built up from 

rockfall deposits from the near-vertical rock face above. Residence times of material on the 

buttress are variable, with areas of low gradient that are in direct contact with the upper cliff 

face retaining much of the intercepted debris. For this analysis, all areas of the buttress that 

comprise loose material were removed, allowing a focus on the near-vertical rock face only. By 

far the largest events in both area and volume occur along the top of the seaward snout of the 

buttress. From the snout of the buttress, rockfall occur at a slightly higher frequency than 

elsewhere up the rock face. Rockfall often take place along exposed beds of specific lithologies. 

Small, horizontally aligned clusters of rockfall occur at structural discontinuities, in particular at 

the boundaries between sandstone and interbedded sandstone and siltstone beds. Small rockfall 

also occur at the edges of protruding blocks, despite filtering of edge points from the original 

data, the application of the variable cylinder length 3D change detection, and the filtering of 

empty pixels that occur next to areas of occlusion in the resulting change image. This suggests 

that these small events are not artefacts of the data collection and processing. 

 Over the 10-month period, no net change in the cliff profile occurred. The profile offset 

between the near-vertical slopes of the upper cliff and the face of the buttress prevents any 

direct connectivity between failures in these areas. However, failures that occurred towards the 

end of the monitoring period, which are shown in blue, appear to have propagated upwards. 

Many rockfall are contiguous, with smaller failures preceding larger events. Figure 5.14 

presents an example of contiguous failure that developed over a three-day period. This pattern 



C
ha

pt
er

 5
: S

pa
tia

l a
nd

 S
iz

e 
D

is
tr

ib
ut

io
ns

 o
f R

oc
kf

al
l f

ro
m

 N
ea

r 
R

ea
l-T

im
e 

C
on

st
an

t 
M

on
ito

ri
ng

 

 

14
2 

Figure 5.13: Distribution of rockfall across East Cliff monitored at sub-hourly intervals between 5th March 2015 and 30th December 2015. Rockfall are distributed across the 

entire cliff face, in particular in areas of exposed bedrock. Although the high water mark is below the portion of cliff shown in this figure, the largest and most frequent rockfall 

occur at the base of the cliff. Accumulation and loss of material in the areas of non-exposed bedrock on the cliff buttresses, which runs across the cliff face at ca. 17 m elevation 

in the above figure, were removed. Colours represent the age since 31st December, where red represents the oldest rockfall.   
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of rockfall growth has been observed in previous studies along this coastline (Rosser et al., 

2007a; Lim et al., 2010); however, the presence of this process at far shorter Tint suggests that 

the timescales over which failures occur have not yet been fully characterised.  

Figure 5.15 shows the erosion rate over the 10-month monitoring period, measured 

across discrete lithological exposures up the cliff face. Erosion rates are extrapolated from the 

10-month period to annual retreat rates by multiplying by a factor 1.217, which is the reciprocal 

of the ratio of the number of days monitored (300) to the total number of days in the year. The 

areas of each bed, used to divide the total failed volume, did not include any of the cliff face 

that went unmonitored due to occlusion. The different Tint show a clear discrepancy in retreat 

estimates, as these draw upon cumulative total volume estimates. This discrepancy continues up 

the cliff face. The widely jointed sandstone beds at the cliff top and vertical walls of the buttress 

present the highest rates of retreat, identified as 0.046 m a-1 and 0.047 m a-1 respectively when 

measured over 30 d. This is lower than the 0.18 m a-1 estimated from longer-term monthly 

monitoring undertaken by Rosser et al. (2005), which may be attributed to either previously 

lower precision monitoring, or the lack of large rockfall (100 m3) occurring during this 

monitoring period.  

 When estimated erosion rates include the 90 d dataset, data up to 30th November is 

used. Here, the conversion factor (the ratio between the 270 days of monitoring and the number 

of days in a year) is 1.352. For most units, the erosion rates are approximately similar, however, 

erosion rates on the buttress are considerably lower (0.074 m a-1 compared to 0.098 m a-1 for the  

Figure 5.14: An example of contiguous rockfall over a three-day period. Here, small rockfall occur 

before and after the large rockfall in the centre. Close inspection of many of the largest rockfall showed 

similar patterns, in particular of the accumulation of small rockfall events prior to failure.  



Chapter 5: Spatial and Size Distributions of Rockfall from Near Real-Time Constant Monitoring 

 

144 

 

Figure 5.15: Erosion rate estimations in m a-1 measured from 5th March 2015 – 30th December 

2015 for discrete lithological exposures. As such, rockfall measured using the 90 d scan interval are not 

included. The widely jointed sandstone at the cliff top provides the highest erosion rates, up to 14 cm 

per year. At the base of the cliff, similarly high values of erosion are estimated. A similar pattern to 

Figure 5.9 is evident, whereby lower scan intervals provide the highest estimates of erosion.    

Figure 5.16: Erosion rates measured between 5th March 2015 and 30th November 2015, allowing the 

inclusion of the 90 d dataset. Erosion rates are lower in this figure than in Figure 5.13, reflecting the 

increase in rockfall activity during December 2015.   
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sub-hourly dataset). This reflects the increased activity in this area of the cliff face during 

December, and highlights the complexity in estimating erosion rates using monitoring data that 

does not encompass multiple cycles of seasonal variability in rockfall occurrence.  

In Figure 5.17, the depth of measured change is presented up the cliff face. The 

positions of exposed lithological beds, drawn upon in Section 5.9, are marked in red. While the 

estimated rates of retreat for the widely jointed sandstone are high in Figure 5.15 and Figure 

5.16, the mean depth of change (solid black line) is similar at this elevation to the rest of the 

cliff face. This suggests that, while large events occur on this portion of the cliff face, a high 

proportion of small failure events, with depths < 0.06 m (below the scale of structural 

discontinuities described in Section 5.9), account for a significant proportion of total estimated 

erosion. While retreat rates appear broadly consistent within each lithology, this cannot be 

ascertained with certainty as 10% of the cliff face area is occluded during scanning (Section 3.8). 

 

 

 
  

Although differential rates of erosion have been observed during the 10-month 

monitoring period, these rates must equalise over time in order to permit profile parallel retreat 

of the rock mass. Miller (2007) observed a reduction in overall slope between June 1994 and 

Figure 5.17: Depth of measured change up the cliff (2 m vertical bins), with mean (μ) and standard 

deviation (σ) also added. Colours represent the percentage of the cliff face at each vertical bin that 

failed to each depth. Red lines show the elevation of exposed units examined in Sections 5.6 and 5.8. 
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May 2006, from a consistent angle of ca. 64° across the slope to the creation of differing angular 

units of the upper and lower cliff face. The elevated erosion rates monitored here at the cliff 

base indicate an overall steepening of the cliff profile, possibly towards an angle of repose, from 

55.9° to 56.7°. 

 

5.5 Rockfall Trajectories and Impacts 
 

A noticeable feature of the change map in Figure 5.13 is the presence of clusters of 

rockfall extending up the cliff, occurring simultaneously across the upper-vertical slope. This is 

particularly evident for detachments that occurred from the bedded sandstone at the cliff top. 

Figure 5.18 illustrates this for the rockfall polygons in the sub-hourly inventory. For rockfall 

that occurred on 6th March (top) and 15th June (bottom), the original 3D change detections are 

presented, where red colours represent loss of material and blue colours represent accumulation 

of material. The insets show the resulting rockfall polygons as they appear in Figure 5.13. These 

are interpreted as rockfall paths and impact marks, reflecting the transport of material from the 

cliff top to the cliff toe and buttress via the concave near-vertical portion of slope. Importantly, 

this is not a vertical, structurally controlled feature being exploited by rockfall. 

 For the 6th March event, the rockfall cascades down the slope until it makes contact 

with the buttress. From here, much of the debris appears to have left the cliff along the edge of 

the buttress approximately parallel to the cliff face. The rockfall depth was 0.601 m with a 

volume of 0.4616 m3. This is larger than the trajectory scars, which measured between 0.037 – 

0.081 m in depth and 0.0053 – 0.0151 m3 in volume. For the 15th June event, the rockfall also 

detaches material from the cliff face below on impact, culminating in the accumulation of 

material on top of the buttress where a transition in profile from concave to convex occurs. The 

rockfall depth was 1.160 m with a volume of 0.5979 m3, whereas the trajectory scars measured 

between 0.033 – 0.132 m in depth and 0.0029 – 0.2659 m3 in volume. The small scar volumes 

relative to the original failure volume suggest that these detachments have a negligible influence 

on the overall magnitude-frequency statistics in the inventory presented here. 

Capturing rockfall trajectories highlights a potential use for high frequency scanning 

that is beyond the scope of this research. Matching trajectory scars to the original rockfall is 

complex when scanning an actively failing rockslope over timescales longer than a few hours. 

Using high frequency scanning, the scars can be matched to their original failure, providing a 

useful data source for empirical models of rockfall runout and rebound. Within this study, it is 

likely that this process has an effect on the estimation of rock face resurfacing though time, 

presented in Chapter 6, and on the area-volume relationship for measured rockfall. Prior to both 

analyses, therefore, these scars were manually identified and removed from the dataset. 
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Figure 5.18 (a) Point cloud of change showing rockfall on 6th March 2015. Inset shows the resulting polygons. (b) Point cloud of change showing rockfall 

on 15th June 2015. For both, the trajectory of the rockfall is identifiable as it detaches material from the concave profile below.  
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5.6 Area-Volume Relationship 
 

Empirical scaling relationships that predict the volume V of a measured landslide area 

A have been applied to inventories containing thousands of landslides derived from airborne or 

satellite imagery (Hovius et al., 1997; Guzzetti et al., 2009; Larsen et al., 2010; Yanites et al., 

2010; Parker et al., 2011; Li et al., 2014, 2016). Such inventories are useful for quantifying the 

efficacy of landsliding as a means of transporting soil, rock, and associated biogeochemical 

constituents, such as particulate organic carbon, from and within orogens. However, these 

inventories are two-dimensional in nature and therefore provide no quantification of landslide 

depth. In order to extrapolate ground-truthed depth measurements from individual landslides to 

an entire inventory, scaling factors α and k are estimated from a power law between A and V 

that can be used to calculate total mobilised failure volume. Here, the three-dimensional change 

detection procedure yields measurements of both A and V that can be related using the same 

power-law (Equation 5.3): 

 

 𝑉𝑉 = 𝑘𝑘𝐴𝐴𝛼𝛼 [Eq. 5.3] 

 

where α is 1.152 and k is -1.265. The resulting coefficient of determination (r2) is 0.76. 

  

 

 
  

Equation 5.3 shows that the log of rockfall volume is ca. 1.152 times the log of rockfall area. 

This is comparable to another rockfall exponent quantified by Rosser et al. (2007a; Figure 5.19). 

Figure 5.19: Rockfall area-volume relationship. Vertical stripes at the lower end of the distribution 

reflect the 0.15 m cell size intervals.   
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The higher exponent found here suggests that rockfall are in general deeper relative to their 

overall area; however, since the range of rockfall volumes used here is smaller than that used by 

Rosser et al. (2007a), it is likely that the approximate rockfall geometry is comparable. The 

exponent is lower than those estimated by Guzzetti et al. (2010) and Larsen et al. (2010) for 

landslides mapped using 2D imagery. This suggests that the underlying mechanisms of failure 

here are likely to relate to near-surface tensile stresses in comparison with shear stress 

development along deeper shear planes found in landslides. In the following section, a more 

thorough appraisal of rockfall shape is presented with respect to in situ controls on failure. 

 

5.7 Rockfall Shape 
 

In this section, the shape of rockfall scars is examined in order to partially constrain the 

influence of structural discontinuities. The shape of rockfall scars indicates the permissible 

kinematics of failure and also influences the likely runout of detached material. While the shape 

of large-scale instabilities is often characterised from LiDAR datasets (Oppikofer et al., 2009; 

Viero et al., 2010), the shape of rockfall scars is rarely quantified following visual interpretation.  

Shape comprises four main characteristics that include the form, roundness, irregularity and 

sphericity. Detailed descriptions of these measures are provided by Blott and Pye (2008). In this 

study, the rockfall shape is described as a tri-dimensional characteristic that comprises ratios of 

three orthogonal axes, interpreted as the length, breadth, and thickness of each rockfall, where 

length >> breadth >> thickness (Sneed and Folk, 1958; Benn and Ballatyne, 1993; Graham 

and Midgley, 2000; Lukas et al., 2013). While rockfall geometry is considered independent of the 

cliff face orientation, typically although not always, depth is normal to the rock face, length is 

horizontal, and breadth is vertical. This method of representing the rockfall shape has 

traditionally been applied to the analysis of clasts shaped by glacial erosion, transportation or 

deposition (Barrett, 1980; Illenberger, 1991; Benn and Ballatyne, 1993, Larsen and Piotrowski, 

2005). However, this method has also been used to characterise clast exposure in arid 

environments (Higgitt and Allison, 1999) and fluvial environments (Verrecchia et al., 1997; 

Allan et al., 2006), block geometry in rock masses (Kalenchuk et al., 2006), and the 

reconstruction of mass-movement deposits (Šilhán and Pánek, 2010). Benn and Ballatyne (1993) 

used a ternary plot originally presented by Sneed and Folk (1958), and presented here in Figure 

5.20 (adapted from Blott and Pye, 2008, Figure 3A). In Figure 5.20, ratios of the three axes 

vary linearly, resulting in a continuum of clast shapes. The ratios are as follows: 

 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  
𝐶𝐶
𝐴𝐴
 [Eq. 5.4] 
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 𝐵𝐵𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐵𝐵 =  
𝐴𝐴 − 𝐵𝐵
𝐴𝐴 − 𝐶𝐶

 [Eq. 5.5] 

 𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝐿𝐿 =  
𝐵𝐵
𝐴𝐴

 [Eq. 5.6] 

 

where A, B, and C refer to the length, breadth and depth of the rockfall in size order. As shown 

in Figure 5.20, shapes vary between: (1) prolate spheroids with one long and two short axes, 

referred to here as ‘rods’, (2) oblate spheroids with two long axes and one short axis, referred to 

here as ‘slabs’, and (3) spheres with three equal axes, referred to here as ‘cubes’.  

 

 
Available packages for the creation of ternary plots draw all three axes in a consistent 

clockwise or anticlockwise direction. The Sneed and Folk (1958) diagram, however, arranges the 

left and right axes in ascending order towards the crown of the plot. Graham and Midgley 

(2000) presented a freely available Microsoft Excel spreadsheet that can be used to generate 

Figure 5.20: The Sneed and Folk (1958) ternary plot, adapted and modified from Figure 3 in Blott 

and Pye (2008). Cubes represent shapes where all three axes lengths are similar, often determined by 

the joint structure. Slabs represent shapes with two long axes and one short axis. These shapes can be 

controlled by joint structures within the rock mass, but can also represent small failures that occur on 

fragmented, heavily weathered rock masses. Rods represent shapes with one long axis and two short 

axes. These shapes may occur along topographic edges, which may also represent inaccurate distance 

estimation if measured using LiDAR, or along boundaries between lithological units.  
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these diagrams for larger datasets, avoiding the need to hand draw plots. In this study, however, 

over 180 000 rockfall shapes required plotting. In order to group rockfall by a specified attribute, 

a method was also required to provide each point on the ternary plot with a unique classified 

colour. A MATLAB code was therefore developed for the purpose of this research. The code 

modifies an existing anticlockwise function available from the MATLAB File Exchange 

(Sandrock, 2008). It accepts a variable used to assign individual point colours and plots the 

divisions in shape outlined by Sneed and Folk (1958).  

In Figure 5.21, synthetic rockfall shapes are plotted to provide a general indication of 

the axis length ratios as they appear in the ternary plot. The ratios are provided in percentages. 

Axis lengths are displayed for the A, B, and C axes respectively and are measured in 0.15 m 

increments according to the cell size used in this study. As rockfall move towards the left of the 

plot, the A and B axes (typically the lateral and vertical extents of the rockfall) become 

increasingly similar. As rockfall approach the bottom-left slab zone, the C axis (typically scar 

depth into the rock face) decreases in thickness. Conversely, as the C axis length approaches the 

A and B axes, rockfall are closer to the crown of the plot and a more likely to be cubic in form.  

 
Figure 5.22 shows the rockfall shapes for the entire inventory. While rockfall shapes are 

distributed across the ternary plot, three distinct patterns are evident. First, there is a distinct 

pattern of diagonal striping across the ternary plot. These stripes reflect the resolution of the 

data, which is a function of pixel size and multiples thereof. It is notable that the stripes cover 

the entire range of values of the C:A ratio. From a methodological perspective, this distribution 

Figure 5.21: Synthetic rockfall axes lengths plotted at 0.15 m cell size increments (A and B). 

Increases in C that occur with the same A:B ratio result in diagonal stripes.  
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is perhaps unsurprising. The depth estimation of rockfall, calculated in true-3D with a LoD of 

0.03 m, is of a higher distance resolution than the aerial estimations that are constrained by the 

0.15 m pixel size. Assuming a slab-like particle shape in which the two long axes (A and B) 

constitute length and breadth, and the short axis (C) is depth, this supports the hypothesis that 

the depth estimates can yield a full range of values at a higher precision than the major and 

minor axes, which are rounded to 0.15 m intervals. 

 
Second, there is a paucity of very rod-like features. From a methodological perspective, this 

nullifies the hypothesis that the edges of protruding blocks, which yield inconsistent range 

estimates and point distributions, produce vertical point clusters < −0.03 m that are incorrectly 

recorded as rockfall. From a kinematic perspective, confining stresses that exceed the material 

strength of sandstone are unlikely to permit rockfall that are deeper than they are wide and 

high (assuming a rod-like shape protruding into the cliff). Furthermore, assuming that a rod-like 

shape occurred laterally across the cliff face, this suggests that small rockfall are unlikely to 

occur across multiple discontinuities. Third, there is a considerable concentration of rockfall 

towards the base of the plot, indicating that the majority of shapes were slabs that are highly 

blade- or plate-like. Failures are generally wider than they are deep, with the mean shape 

equating to a ratio of depth to width/height of 0.156.  

Figure 5.22: Distribution of rockfall shapes. Rockfall are predominantly very platy and very bladed 

slabs. The depth of these slabs compared to the length and breadth is not small enough to distribute the 

shapes along the lower axis of the plot. However, some rockfall are distributed along the left axis, 

indicating that the length and breadth are equal. Diagonal stripes of consistent B:A ratios (but varying 

depths) indicate the limited variation in horizontal and vertical dimensions compared with depth.  
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Figure 5.23: Images of the cliff from top (left) to bottom (right), highlighting the units of exposed bedrock that are used to categorise rockfall shape in this 

section, and again in joint structure analysis in Section 5.9. 
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In Figure 5.24, the rockfall shape is plotted by different beds, presented in Figure 5.22. 

The structure of these beds and the control that they exert upon rockfall size is presented in 

Section 5.9, below. In order to assign a mean shape for each bed, the lengths of each rockfall 

axis were normalised against the maximum axis length. This provided A, B and C 

measurements between zero and one, with A always assigned a value of one. The B and C 

measurements therefore represented a proportion of the maximum length that could be 

averaged. These averages were taken for the largest 10 rockfall from each bed (diamonds) and 

for all of the rockfall from each bed (circles).  

 
The distribution of these mean shapes mirrors the overall distribution of rockfall shapes in 

Figure 5.22. The very bladed form illustrates that the A axis is approximately 1.5 times the size 

of the B axis. This corresponds to a tendency for rockfall to be oriented horizontally across the 

cliff, rather than vertically, which may reflect a constraint in failure size by the depth of each 

bed. This is highlighted by the direction of the arrows, which shows that larger rockfall 

(diamonds) tend to be positioned closer to rod-like forms than the mean of all rockfall (circles). 

These arrows also show that, for each bed, the mean of the largest 10 rockfall is always closer to 

a cube-like form than the mean of all rockfall: larger rockfall are therefore always more cube-like 

than smaller rockfall. If the C axis is assumed to correspond to rockfall depth, this suggests that 

larger rockfall are deeper in proportion to their volume than smaller rockfall from the same bed.  

Figure 5.24: Rockfall shape grouped by bed number and plotted as the shape of the 10 largest rockfall 

(diamonds), and the shape of all rockfall (circles) that occurred within each bed. For each bed, the 

larger the rockfall fraction, the more block-like the rockfall shapes. 
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Figure 5.25 shows the distribution of rockfall shapes for the largest 100 rockfall during 

the monitoring period. While there is no distinct pattern based on event size, the largest events 

are again clustered towards slab-like (very bladed and very platy form), with very few rockfall 

of any type of compact form. Figure 5.26 shows the shape of rockfall in bins between the 

minimum and maximum of rockfall volume. There appears to be little change in shape with the 

volume of rockfall. However, while the smallest rockfall, < 0.50 m3, exhibit the greatest spread 

of shapes, there appears to be a gradual increase towards cube-like forms with increased volume.  

Figure 5.25: Rockfall shapes for the largest 100 rockfall, by volume.   

Figure 5.26: Rockfall shape displayed as linearly spaced bins from 0.001 – 10 m3.   

Figure 5.25: Rockfall shapes for the largest 100 rockfall, by volume.   Figure 5.25: Rockfall shapes for the largest 100 rockfall, by volume.   
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5.8 Magnitude-Frequency Distribution of Rockfall Events 
 

To characterise the distribution of rockfall sizes sourced from the cliff face, relationships 

between the magnitude of events and the frequency of their occurrence within the 10-month 

period have been produced. A range of attributes has been used to describe the magnitude of 

rockfall, including the length, area, volume and, where appropriate, the number of fatalities or 

losses (reviewed in Section 2.5). Here, magnitude is described in terms of the measured rockfall 

volume. This removes uncertainties that propagate from modelling the volume of landslides 

using area-volume scaling (Li et al., 2016) because the surface is measured in 3D. Unlike area, 

the use of volume enables a more accurate estimation of erosion rates and a better 

understanding of the forces required to mobilise rockfall of varying size.  

The magnitude-frequency relationship can be reported using either cumulative or non-

cumulative probability density functions that are derived by plotting data as histograms with 

log volume bin widths. Non-cumulative distributions of logarithmic volumes allow a linear trend 

to be observed (Lim et al., 2010). Published examples of such distributions tend to report the 

frequency of rockfall events in a variety of ways, with no single metric identified as being more, 

or less, useful. In this study, therefore, frequency is reported in three different ways, in order to 

provide a comprehensive analysis that is comparable to published examples. These are: (1) 

normalised rockfall frequency, (2) rockfall frequency, and (3) probability density. Based on the 

findings of Malamud et al. (2004), rockfall volumes were divided into logarithmically spaced 

bins, and the number of rockfall was computed for each. In order to examine the timescales over 

which rockfall size distributions vary, magnitude-frequency analysis was undertaken using the 11 

inventories derived for increasingly large survey epochs. To enable comparison, the 

logarithmically spaced bins were consistent between each Tint dataset. The normalised rockfall 

frequency f(VR) for each bin was calculated as: 

 

 𝐿𝐿(𝑉𝑉𝑅𝑅) =
𝛿𝛿𝑁𝑁𝑅𝑅

max 𝛿𝛿𝑁𝑁𝑅𝑅
 [Eq. 5.7] 

 

where δNR is the number of rockfall with volumes that fall within each bin and max δNR is the 

maximum frequency recorded across all bins. By normalising the frequency values, the offset 

between distributions on the magnitude-frequency plot is reduced, but the differences between 

the exponents derived for each inventory (see Equation 5.10) are preserved. The second method 

draws upon the actual frequency of rockfall that fall in each bin, whereby: 

 

 𝐿𝐿(𝑉𝑉𝑅𝑅) = 𝛿𝛿𝑁𝑁𝑅𝑅 [Eq. 5.8] 

 



Chapter 5: Spatial and Size Distributions of Rockfall from Near Real-Time Constant Monitoring 

 

157 

The final method calculates frequency density in accordance with Malamud et al. (2004): 

 

 𝐿𝐿(𝑉𝑉𝑅𝑅) =
𝛿𝛿𝑁𝑁𝑅𝑅
𝛿𝛿𝑉𝑉𝑅𝑅

 [Eq. 5.9] 

 

where δVR is the bin width, measured in m3. For all three descriptors of frequency, the 

distribution of rockfall volume frequency is typically modelled using least-squares regression on 

logarithmically transformed frequency density and magnitude data. As discussed by Barlow et 

al. (2012), least squares regression may be inaccurate at the tails of power law distributed data 

due to this log-log transformation, which results in uneven error distribution within the tails. 

However, least-squares regression yields identical models to the alternative maximum likelihood 

estimator method, provided points from the mid-range of the data are included (Goldstein et al. 

(2004). As with the rockfall inventory presented by Barlow et al. (2012), the data presented here 

is considered complete though the mid-range and adheres to negative power-law scaling that is 

modelled by: 

 

 𝐿𝐿(𝑉𝑉𝑅𝑅) = 𝑠𝑠𝑉𝑉𝑅𝑅−𝛽𝛽 [Eq. 5.10] 

 

where VR is the rockfall magnitude, s is the intercept and β is the exponent (Brunetti et al., 

2009). β indicates the relative frequency of different rockfall volumes, analogous to the ratio of 

small to medium to large rockfall. By plotting this distribution on a plot of log-volume against 

log-frequency, Equation 5.11 represents the straight-line form of Equation 5.10:  

 

 log 𝐿𝐿(𝑉𝑉𝑅𝑅) = log 𝑠𝑠 − 𝛽𝛽 log𝑉𝑉𝑅𝑅 [Eq. 5.11] 

 

The production of these plots yields a number of important attributes. The exponents β reflects 

the overall size distribution of events. For rockfall within the same volume ranges, such as in 

this study, higher exponents (manifest as steeper gradients in log-log space) reflect an increase 

in the proportion of small events relative to large events. Conversely, a lower exponent indicates 

that large rockfall account for a higher proportion of material loss. The total volume of eroded 

material for each inventory can be found by integrating the observed power law, such that the 

area under each curve represents the total volume lost. Many distributions are characterised by 

a ‘rollover’ in the frequency density of the smallest events, where a deviation below the 

predicted trend is apparent (reviewed in Section 2.5). Explanations for this have been both 

physical and methodological. However, since the minimum detected rockfall size here is above a 

measured level of detection, under-representation of the smallest events due to methodological 

error is considered unlikely. 
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Figure 5.27a shows a negative power law-scaling distribution that is characteristic of 

published magnitude-frequency relationships. The volume data are above an imposed size 

threshold, between the minimum detected volume, 0.0014 m3, which is larger than the minimum 

detectable volume of a single cell (6 × 10-4 m3), and the maximum detected volume, 7.2536 m3. 

While the smallest failure volumes are consistent with previous studies undertaken in this 

setting, the maximum rockfall volume is lower than, for example, 12.73 m3 (Vann Jones et al., 

2015), 200.4 m3 (Rosser et al., 2005), and 2 614.88 m3 (Lim et al., 2010; Barlow et al., 2012; 

Rosser et al., 2013), as a function of the events that occurred during the period of monitoring.  

As the Tint decreases from 90 d to < 1 h, the exponent increases from 0.663 to 1.311 

(see Appendix A). This indicates that small rockfall represent a greater proportion of the 

inventory when monitored at low Tint, contributing more towards the overall volume of 

detached material. Uncertainty in volume estimates is highest for small rockfall events (Section 

5.3); Figure 5.27a therefore explains the large uncertainty resulting from a predominance of 

small rockfall in the cumulative volume estimates acquired using low Tint monitoring.  

The different distributions are also characterised by rollovers of varying intensity and direction. 

For the 90 d dataset, a rollover begins to develop at ca. 0.010 m3 and results in a decreased 

proportion of measured rockfall events below this volume relative to power-law behaviour 

(straight line, no rollover). As Tint increases, the rollover becomes less defined as a parabolic 

shape and the volume at which it becomes discernible from power law behaviour (i.e. the point 

at which it deviates from a straight line) reduces (ca. 0.005 m3 for 7 d – 30 d). For high 

frequency monitoring datasets, this rollover appears to invert into an anti-rollover form, 

indicating an increased proportion of small events at these scan intervals as compared to what 

would be expected for power law behaviour (for example, Tint = 3 and 6 h).  The manner in 

which the form of these curves change with Tint is, however, more complex (Figure 5.27b). 
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Figure 5.27: (a) Magnitude-frequency distribution by scan interval, where frequency is measured as the number of rockfall in each volumetric bin, normalised by the maximum-recorded frequency for that scan interval. A steeper exponent for high frequency 

monitoring < 7 d indicates that a higher proportion of small rockfall are detected, which are not captured over larger scan intervals. A shift from a rollover distribution over long scan intervals (signifying the underrepresentation of small rockfall due to 

superimposition) to an anti-rollover distribution (signifying an increasingly high proportion of smaller and smaller events) is evident. (b) The overall r2 values of each distribution are high, but these decrease with scan intervals > 96 h as more large rockfall are 

detected. Below 4 – 7 d, more frequent scanning increases the magnitude frequency exponent, i.e. the proportion of small rockfall. This pattern does not continue for scan intervals > 7 d. (c) Magnitude-frequency distribution by scan interval, using the frequency of 

rockfall in each volumetric bin. A similar pattern to (a) is shown. (d) A decrease in magnitude exponent is again evident between 1 h and 4 d – 7 d. (e) Magnitude-frequency distribution by scan interval, using the frequency density of rockfall in each volumetric 

bin. (f) Again, an increase in scan frequency yields a higher proportion of small rockfall events, for intervals below 4 d – 7 d. 
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Figure 5.27b shows the decrease in the absolute exponent with an increase in Tint, as 

well as the overall decrease in the coefficient of determination of the regression. While a linear 

decrease in the power law exponent is observed for (log) Tint between < 1 h and approximately 

96 h (4 d) to 168 h (7 d), this decrease levels off between 7 d and 90 d. This suggests that below 

approximately 4 – 7 d, more frequent monitoring captures a higher proportion of small rockfall 

adhering to the premise that the more you look the more you see, but for larger values of Tint 

(> 4 – 7 d), here measured at Tint = 14 d, 21 d, 30 d, and 90 d, all Tint capture an effectively 

identical rockfall size distribution. Three interesting observations arise: first, while an 

increasingly short value of Tint shows more and more smaller rockfall are detected, there must 

be a physical limit on the number of smaller fragments that can make up a ‘single large 

rockfall’; rockfall deposits are not composed of just fines. As such, it would be expected that 

with hour to minute to second resolution monitoring, the relationship between the increasing 

proportion of small rockfall and Tint would reduce and perhaps plateau, thereby matching these 

findings with field observations of rockfall collapsing as large discrete blocks as seen in various 

videos of rock slope collapse, which are now available online. Second, the change in behaviour at 

4 to 7 d is indicative of the degree to which this rock mass fragments during periods of 

instability, and we would expect in some instances, perhaps in massive rock masses that do not 

undergo fragmentation during collapse, such as in Yosemite National Park (Stock et al., 2011), 

not to exhibit such behaviour. This inflexion may occur at different values of Tint in different 

settings, and could be a valuable comparative measure to indicate the manner in which rockfall 

fail and evolve. The results are reassuring in that the size distribution of rockfall detected over 

90 d intervals are broadly identical to those captured at 4 d to 7 d intervals, and as such longer 

survey epochs give a good estimation of rockfall magnitude-frequency relations at a wide range 

of time scales. Such results may be useful for capturing erosion rates or seasonal fluctuations in 

rates of activity, but are however not suited to capturing the mechanics of how rockfall fail, or 

how rockfall distributions reflect shorter term forcing, such as single storm events. Finally, the 

change in behaviour may also reflect two different process domains experienced during rockfall 

development. First, the internal deformation experienced during progressive failure, whereby the 

failing mass is collapsing and fragmenting under its own weight. Second, the externally driven 

loss of material from the rock face that exploits previously destabilised rock blocks (for example, 

by energetic weather and seismic conditions), whereby forcing magnitude is essentially 

independent of the resulting rockfall volume.  

Figure 5.27c represents the magnitude-frequency distribution for each monitoring 

interval, with rockfall frequency measured for each volume bin. Here, the frequency of each bin 

is no longer normalised. The integral of each line therefore represents the total amount of eroded 

material. The height of each line in Figure 5.27c reflects the disparity in total estimated volumes 

of each Tint inventory, such that lower Tint results in a higher estimated volume. Once more, 
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Figure 5.27d shows that a decrease in Tint below 4 – 7 d results in a higher proportion of small 

rockfall events. This pattern does not continue beyond 7 d, and the frequency distribution of 

rockfall sizes remains the same. 

 

 
The final magnitude-frequency relationship (Figure 5.27e) draws on the frequency 

density plots used by Malamud et al. (2004; Equation 5.9). In this plot, the rollovers are less 

observable than for the original frequency data in Figure 5.27a. This is because the total number 

of measured rockfall δNR is normalised by the bin width δVR. High frequencies attributed to 

small rockfall volumes are normalised using small bin widths, therefore appearing as a higher 

frequency density relative to larger rockfall. However, the exponents created using this 

procedure fall within the range of exponents in published non-cumulative distributions, from ca. 

1.0 to ca. 2.0 (Figure 5.27f).  

A number of methods exist to characterise the rollover observed in non-cumulative 

magnitude-frequency distributions. Malamud et al. (2004) fitted an inverse Gamma distribution 

to landslide area data that, unlike two-parameter Gamma distributions, includes a third 

parameter to control the exponential decay of small event magnitudes. Here, for each 

distribution, the volume below which the measured frequencies fall consistently below the fitted 

power law (for a rollover), or above the power law (for an anti-rollover) was identified. As a 

Figure 5.28: The intensity and direction of the rollover in Figure 5.27, plotted against scan interval. 

An anti-rollover is indicated by a > 0, whereas a < 0 indicates a rollover. As scan interval (Tint) 

increases, the distribution of small rockfall volumes shifts from an anti-rollover to a rollover effect. The 

value of Tint that marks the boundary between anti-rollover and rollover, i.e. a = 0, is 106 h. 
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simple measure of the power law, a 2nd order polynomial of the form 𝐿𝐿(𝑥𝑥) = 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐 was 

fitted to the logarithm of these volumes. Here, the magnitude of the leading coefficient a 

controls the curvature of the rollover. The sign determines the direction of the rollover, such 

that positive values indicate an upward trend on the magnitude-frequency plot (anti-rollover), 

whereas negative values indicate a downward trend (rollover). The value of a is plotted against 

the Tint of monitoring in Figure 5.28. For Tint less than 96 h (four days), positive a values reflect 

an anti-rollover that decreases in intensity with increasing Tint. For Tint > 7 d, negative a values 

reflect the presence of a rollover that increases in intensity at longer Tint. The Tint that 

intercepts a = 0, marking the transition from rollover to anti-rollover, is 106 h.  

 

5.9 Structural Controls on Rockfall Occurrence 
 

The previous section has indicated that the role of fragmentation of the failing mass is 

vital in defining the magnitude and frequency distribution of rockfall over short timescales. 

Wider literature has suggested the critical role of rock mass structure, and notably pre-existing 

joint structures, in defining both block geometry and size, and failure mode. In this section, 

emphasis is placed upon deriving a detailed quantitative appraisal of the geometry of cliff face 

planar surfaces (for example, the character of the cliff face source material). This is based upon 

the hypothesis that the exposed jointing on the rock face defines what has or what could fall 

from the cliff, and is broadly representative of the wider global rock mass structure for each 

lithological band. Given that the previous analysis implies fragmentation, the similarity between 

rockfall geometry and the structure of the source material will therefore be assessed, both in 

terms of absolute length scale but also in terms of visible persistence of discontinuities and 

rockfall distributions, to explain the degree to which joints relative to fragmentation of intact 

rock may define rockfall size. 

Discontinuities are joints and planes defined by physical interruptions within a rock 

mass. They exhibit lower tensile strengths adjacent to, and shear strengths along, the 

discontinuity relative to surrounding intact material (Assali et al., 2014). Since most large 

rockslides can creep and/or fail along such structures (Varnes, 1978; Agliardi et al., 2001; 

Jaboyedoff et al., 2009), and the intersection of discontinuities defines both (rockfall) block sizes 

and possible failure kinematics, the identification and description of discontinuity sets is a 

crucial first phase in assessing rock slope stability. Although discontinuities can be measured by 

hand in the field, TLS can provide more representative samples of the rock face that are not 

restricted to the accessible base of the slope, and so provide more accurate samples for 

orientation measurements (Slob et al., 2004; Assali et al., 2014). Sturzenegger and Stead (2009b) 

found good agreement between field measurements and TLS-derived dip and dip directions. 

Residuals of 4° and 8° respectively also illustrated that higher residuals stemmed from inherent 
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differences in the scale over which TLS and compass clinometers operate, especially when 

measuring wavy or curved yet persistent discontinuities. One challenge remains with both 

approaches, however, as they can only measure the persistent exposed surfaces of joints, which 

may either be weathered, altered by surface processes, or by chance may not represent the full 

set of jointing that conditions a rock mass for failure.   

In order to extract the dip and dip directions of discontinuities, Slob et al. (2002) 

computed the Delaunay triangulation of the point cloud and calculated the cross product of two 

edges for each triangle in the mesh. The corresponding poles of the triangles were plotted on a 

stereonet and a kernel density estimated to distinguish sets of discontinuities. A similar 

approach was adopted by Gigli and Casagli (2011) and Riquelme et al. (2014), which instead 

used the raw point cloud data to reduce the potential for small features to be neglected and for 

distorted polygonal surfaces to arise from complex surfaces (Gigli and Casagli, 2011). In order to 

analyse the impact of point spacing on the interpretation of discontinuities, Assali et al. (2014) 

plotted the orientation of discontinuities using six different resolutions, between 0.01 m and 

0.50 m point spacing. Smaller clusters of plane orientations were missed at 0.50 m resolution; 

nevertheless, despite some variation, 0.01 m, 0.02 m, 0.05 m and 0.10 m point spacings produced 

similar stereoplots. Downsampling strategies, such as the reduction of a point cloud from 2 cm 

to 5 cm point spacing, still produced comparable results while reducing the dataset to almost a 

sixth of its original size.  

In order to assess the influence of structural controls on the size distribution of rockfall 

in this study, the open source CloudCompare plug-in Facets was used to derive the horizontal 

and vertical width of visually persistent exposed planar discontinuity surfaces (‘facets’) across 

the rock surface (Dewez et al., 2016). The term ‘facets’ is used herein to describe the extracted 

discontinuities, while acknowledging that the joints that separate contiguous discontinuities may 

be too subtle for identification by point cloud data alone. This plug-in performs planar ‘facet’ 

extraction using a Fast Marching algorithm to sub-divide the point cloud. Based on a co-

planarity criterion, defined as the maximum tolerable point-to-plane distance, adjacent voxels 

are merged and a set of planar facets is produced, with each defined by a centroid, normal 

vector, estimated precision and contour. As discussed in Section 3.3, East Cliff comprises a 

number of sub-horizontal sandstone beds, with varying siltstone interbedding. As a result, no 

single co-planarity criterion could be used to extract facets across the entire cliff face. An initial 

approach was to divide the cliff face, in raster form, into exposures of separate lithologies 

(Figure 5.29). This division was prepared by collecting a series of images from the foreshore 

(using a 30.4 MP Canon 5D Mark IV with a 300 mm f/2.8L telephoto lens) and merging these 

images into a single transect image up the cliff while correcting for geometric distortion. To 

orthorectify the imagery, a high resolution TLS point cloud was acquired from the foreshore to 

minimise small scale occlusions on the rockface due to view angle.  The resulting point cloud  
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Figure 5.29: (a) 0.03 m slope model of East Cliff and 0.006 m RGB image used to identify the lithological units.. (b) Lithological units identified across the rock face. These are 

numbered from 01 at the top of the cliff (glacial till) to the buttress at the base of the cliff. The properties of these units are described in Table 5.8. 
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Figure 5.30: (a) Facets for the 7 exposed beds, coloured by facet width (darker colours = greater width). After exporting from CloudCompare, these facets were compared against 

the slope model and image in Figure 5.33a. (b) Zoomed view of facets at the cliff top draped over the slope model and RGB image,.(c) Zoomed view of facets at the cliff top draped 

over the slope model.   
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was resampled to a point spacing of 0.025 m, within the range of points spacings described by 

Assali et al. (2014), and used to create an 0.030 m slope model. The resulting image was 

manually orthorectified in ArcMap, providing a pixel resolution of ca. 0.006 m across the cliff.  

Using a combination of the transect image and slope model, the different lithologies in 

Figure 5.29 were mapped. Seven sandstone and interbedded sandstone beds in which rock 

structure was visible were delineated, and these were used to crop the 0.025 m point cloud data 

as .dxf polygons in RiSCAN PRO. The ‘Facets’ plug-in was applied to the nine separate point 

clouds and the facet polygons exported as .shp files. These were subsequently validated against 

the slope model and transect image in ArcMap (Figure 5.30). Initially, the imported facets 

appeared to have merged across multiple planes on the surface. In these instances, the 

parameters in facets were refined to improve the surface discrimination, which tended to include 

a reduced point-to-plane threshold. Figure 5.31 shows an example of the facet polygons, 

extracted for the widely jointed sandstone of bed 2 at the top of the cliff. 

 

Each lithology was assigned a bed number from 1-18 running from the top of the cliff to 

the bottom. Figure 5.32 shows the distribution of bed depths and the facet density, measured as 

the number of facets per square metre. Facet statistics reflect the characteristics of individual 

beds, rather than position of the bed or order of stacking of the beds within the rockface. Bed 

depths were measured using ten evenly spaced transects across the cliff face. The mean, median 

and standard deviation of facet width and height is recorded for each bed. The widely jointed 

sandstone beds at the cliff top yielded both the largest facet width and the largest facet height, 

reaffirming the success of this approach in quantifying the planarity of the cliff surface. 

Figure 5.31: Example of 3D facets in CloudCompare. These are shown for bed 2 at the cliff top, 

which is also shown in 2D form in Figure 5.34, across 35 m of the cliff face.  
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Lithology Bed 
Number 

Bed 
Depth 
(m) 

Area 
(m² ) 

Facet Width (m) Facet Height (m) Facet 
Density (m-2) Mean Median σ Mean Median σ 

GlacialTill 1 4.357 684.664              

Very widely jt Sst 2 2.173 164.853 0.534 0.377 0.475 0.515 0.369 0.500 3.82 

Widely jt Sst 3 3.033 491.510 0.527 0.373 0.475 0.496 0.377 0.436 3.80 

Intbd Sst/Sltst 4 0.756 64.714              

Intbd Sst/Sltst 5 2.257 437.038              

Closely jt Sst 6 1.013 226.737              

Closely jt Sst 7 2.310 477.830 0.202 0.134 0.236 0.191 0.134 0.210 5.13 

Intbd Sst/Sltst/CarbMud 8 3.231 659.308              

Closely jt Sst 9 1.198 277.192 0.290 0.200 0.248 0.277 0.203 0.231 3.68 

Intbd Sst/Sltst/CarbMud 10 4.770 984.195              

Intbd Sst/Sltst/CarbMud 11 5.918 1.131              

Closely jt Sst 12 2.622 319.005 0.299 0.203 0.272 0.300 0.210 0.276 1.53 

Intbd Sst/Sltst/CarbMud 13 2.730 205.831              

Closely jt Sst 14 1.201 69.501 0.399 0.309 0.261 0.391 0.310 0.235 1.59 

Intbd Sst/Sltst/CarbMud 15 3.946 143.814              

Sid Sst 16 0.970 197.751 0.380 0.272 0.338 0.366 0.256 0.315 3.01 

Calc Sh 17 4.460 0.438              

Buttress 18 Variable 3.057              

 
 

Table 5.4: Geometric properties of each lithology and its facets. Bed depth is presented as the mean of ten vertical profiles drawn at fixed intervals across each bed. The area of 

each bed is estimated without the areas of occlusion of the lighthouse scans, outlined in Chapter 3. The average statistics of facet width and facet height, both of which are 

measured in 3D, show that the largest facets occur in the widely jointed sandstone beds (2 and 3) at the top of the cliff. The smallest are found in bed 7. These are contrasted 

against rockfall dimensions in order to examine the relationship between structural properties of the rock mass and its failure patterns. 
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The resulting facet dimensions are listed in Table 5.4. The cumulative distributions of 

facet widths are shown in Figure 5.33a, and the cumulative distributions of facet heights in 

Figure 5.33b. Here, the blue lines represent beds 2 and 3 at the top of the cliff, which comprise 

the largest facets, whereas bed number 7 (turquoise) has the smallest facets.  

 

The relationship between average statistics of the facet dimensions and average 

statistics of rockfall sizes was also assessed. Rockfall were located according to the bed in which 

they occurred. Initially, rockfall sizes were examined using the major axis length, defined as the 

longest axis running though the centroid of the rasterised rockfall, and the minor axis length. 

The rockfall size distribution appears smaller than the facet size, pointing towards a process of 

rockfall occurring in fragmented or failing masses, in which jointing of the rock mass determines 

an upper limit of rockfall size. Images of the cliff in Figure 5.34 show that the size of rockfall is 

generally less than that of the joint spacing. This is presented for each of the lithological units 

identified in Section 5.7. The smallest yellow boxes indicate the minimum-recorded rockfall area 

in these beds, with the square root taken to estimate the edge length assuming a square shape. 

The suggestion from this simple visual analysis is that the largest events from a single 

lithological exposure reflect the dominant joint spacing, but the smaller events reflect 

fragmenting rockfall scars, damaged rock, or rockfall that are progressively shedding (smaller) 

Figure 5.32: Depth and facet density of each bed. Blue circles represent mean depth, and error bars 

represent the standard deviation of 10 measurements for each bed. Orange squares represent facet 

density, the number of facets per square metre. This is highest for the highly fragmented rock mass of 

bed 7.  
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Figure 5.33: Cumulative distribution plots for the horizontal and vertical facet lengths. Beds 2 and 3 

have the largest dimensions and bed 7 the smallest.   
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material though time. The mean and maximum recorded rockfall areas are also displayed.  The 

rockfall lengths are provided in Table 5.5, along with the percentile of rockfall areas that the 

smallest boxes (0.2121 m edge length) represent. It is shown that the smallest rockfall areas 

contribute between 50% and 60% of the total recorded rockfall, supporting the hypothesis that 

rockfall size is generally constrained by the scale of discontinuities and that the shape may 

therefore be independent of discontinuity geometry, occurring as surficial slab-like detachments 

of damaged rock.   

 

Table 5.5: Rockfall edge lengths for each bed. The percentile of rockfall equal to the minimum edge 

length shows that between 50% and 60% of the rockfall that occur in each bed have the minimum cross-

sectional area. 

Bed Number Minimum Edge 
Length (m) 

Mean Edge 
Length (m) 

Maximum Edge 
Length (m) 

Percentile of 
Rockfall Equal To 
Min. Edge Length 

2 0.2121 0.3013 3.0557 57 
3 0.2121 0.2696 3.0112 54 
7 0.2121 0.2786 2.0730 53 
9 0.2121 0.2573 1.0712 59 
12 0.2121 0.2914 2.0622 58 
14 0.2121 0.3068 2.8421 57 
16 0.2121 0.2765 1.2639 51 
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Figure 5.34: Images of the cliff from the cliff top (a) to base (c), highlighting the unit of exposed 

bedrock. Squares of the minimum, mean and maximum areas are superimposed for comparison with 

facet size, indicating that the smallest rockfall are likely to be contained within individual facets. 
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In Figure 5.35, the relations between the mean, median and standard deviation of rockfall and 

facets are plotted. The colour scheme used in Figure 5.33 is also applied here, with blue 

representing the upper sandstone beds. A line of unity is added to each plot. If, for example, the 

mean length of rockfall major axes was directly related to the mean horizontal facet width, 

points would lie on this line of unity. If, however, the mean length of rockfall major axes is 

below the line of unity, then events are smaller than the facet dimension in the source rock. 

From plots of the mean and median distribution of rockfall and facet dimensions, the 

rockfall data exhibits little variability in axis length. This suggests that, for the majority of 

rockfall events, there is little variation in horizontal and vertical dimensions, possibly due to the 

fixed 0.15 m increments of cell size. For all plots, the positioning of rockfall in beds 2 and 3 

(widely jointed sandstone) is furthest from the line of unity. This shows that rockfall in these 

beds are smallest relative to the facet size in the source rock. Notably, for each bed, the minor 

axis of the rockfall lies further from the line of unity than its major axis. This suggests that the 

minor axis of the rockfall is less dominated by joint spacing than its major axis. Assuming that 

the major axis represents the height of the rockfall, this assumes that the width of the rockfall is 

more constrained by the joint spacing than height. This implies that width may more readily 

relate to the ease with which a block can be kinematically released, whereas the height of the 

rockfall may be more related to the tensile strength of the material. However, there is a 

negligible increase in the mean and median rockfall axes as bed facet size increases. This is 

represented in Table 5.7 as the slope of an ordinary least squares regression, which is 

approximately zero. The lack of variation in mean and median rockfall dimensions between the 

different beds necessitates an alternative measure of the relation between rockfall dimensions 

and facet dimensions. 

 
Table 5.6: r2 values of the least-squares regressions shown in Figure 5.35. 

 Mean Median σ M-F Exponent 
H V H V H V H V 

Rockfall minor 
axis r2  0.891 0.924 0.926 0.829 0.950 0.904 0.413 0.429 

Rockfall major 
axis r2 0.842 0.000 0.048 0.261 0.059 0.111 0.326 0.373 

 

Table 5.7: Slope values of the least-squares regressions in Figure 5.35. While the r2 values are high, 
slope values tend towards 0. This highlights the lack of variability in the facet size that is represented 
using these averages. 

 Mean Median σ M-F Exponent 
H V H V H V H V 

Rockfall minor 
axis gradient 0.00 0.03 0.00 0.00 0.00 0.00 1.57 1.09 

Rockfall major 
axis gradient -0.03 0.00 0.00 0.00 0.00 -0.02 1.91 1.39 
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Figure 5.35: Comparisons of mean (a-b), median (c-d), and standard deviation (e-f) of facet sizes 

with rockfall sizes for each bed. Horizontal facet dimensions are compared with the major and minor 

axis lengths of rockfall in a, c, and e. Vertical facet dimensions are compared with the rockfall in b, d, 

and f. Colours are the same used in Figure 5.33. The positions of these points, which fall below the line 

of unity, suggest that rockfall dimensions are beneath the measured dimensions of the facets. 
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Figures 5.36a-b show that the frequency distribution of facets widths and heights for 

each bed adhere to a power law. Normalised frequencies are plotted in order to account for the 

fact that the number of rockfall in each bed differs from the number of facets, thereby enabling 

direct comparison between the two. Figures 5.36c-d show the magnitude-frequency distributions 

of rockfall for each bed, measured again as the major and minor axis lengths. The exponent is 

smallest for the sandstone beds at the top of the cliff, indicating that larger facets constitute a 

Figure 5.36: (a-b): Magnitude-frequency plots show that the horizontal and vertical facet sizes follow 

a negative power-law scaling distribution. A rollover is evident for facet dimensions in each bed, below 

0.2 m. A similar pattern is evident to the cumulative distribution plots in Figure 5.33. The exponent of 

this distribution offers a more representative description of this distribution than the mean, median and 

standard deviation. (c-d): Magnitude-frequency plots for the rockfall that occurred in each bed, 

separated by the major axis length (c) and minor axis length (d). Note that all four plots use the 

normalised frequency. This enables comparison between the distributions, despite more rockfall being 

recorded than facets, by normalising against the maximum-recorded frequency for each distribution.  
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greater proportion of the size distribution for those beds. Bed number 7 has the largest 

exponent, indicating a higher proportion of small facets. To some extent, this matches the 

distribution of rockfall sizes within each bed, whereby bed number 7 also has the highest 

exponent, indicating that smaller facet dimensions may limit the size of rockfall. When 

exponents are plotted in Figure 5.37, while not a statistically significant relationship, as facet 

width exponent increases, rockfall length exponent increases. There is also more deviation away 

from a 1:1 relationship for higher exponent values (for example, compare facet width exponents 

of 1 – 1.5 as compared to 1.5 to 1.75, to 1.75 to 2.0), therefore, for higher exponents (the most 

fragmented rock layers), the effect on rockfall width exponent is greater. This means that an 

increasingly fragmented rock layer disproportionally generates an even more fragmented rockfall 

distribution. This may be indicative of a cascading process, whereby a rock that is fragmented 

recursively generates rockfall that are even more fragmented. 

 

 

Rockfall depths were then compared with the dimensions of the measured facets on the 

rock face. Depth measurements are measured to a higher degree of accuracy (LoD = 0.03 m) 

than the aerial extent of the rasterised rockfall (0.15 m cell size). Since the facets were acquired 

from a 3D point cloud, and their horizontal and vertical dimensions measured in 3D space, the 

depth of rockfall are more suitable for comparison between layers than the aerial extents. In 

Figure 5.38, the exponents of rockfall in each bed reflect the exponents of facet dimensions for 

each source rock. This suggests that facet dimensions may exert an upper limit on the size of 

rockfall in these beds, as described conceptually in Figure 5.39. The exponents are plotted in 

Figure 5.40, in the space axis of 5.37, and are provided in Table 5.8. Here, if the facet exponent 

value falls below the line of unity, the exponent of rockfall depths is smaller than the exponent 

Figure 5.37: Comparison of the exponents of rockfall axis lengths against facet lengths. All beds lie 

above the line of unity. This suggests that the distribution of rockfall sizes tends towards smaller length 

than the distribution of facet sizes.  
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of the size distribution of facets. This suggests that there is a greater proportion of large 

rockfall, compared with the proportion of large facets. The fact that almost all beds fall above 

this line suggests that rockfall are always smaller in size than the facets, so rockfall dimensions 

are not defined by the joint structure that is exposed at the surface, but rather the 

fragmentation of the rock mass. For bed number 7, however, the exponent is greater for rockfall 

depth than for the facet size and this bed falls below the line of unity. This suggests that in this 

bed, which exhibits the smallest facet dimensions anywhere on the cliff, facets do not introduce 

an upper limit on rockfall size, and so rockfall are rather multiples of the facet size. 

 

Table 5.8: Facet depth exponents and rockfall depth exponents estimated in Figure 5.36 and Figure 

5.38, respectively, and plotted in Figure 5.40.  

Bed Number Horizontal Facet 
Exponent 

Vertical Facet 
Exponent 

Rockfall Depth 
Exponent 

2 -1.378 -1.320 -1.865 
3 -1.446 -1.722 -1.833 
7 -1.916 -2.232 -1.548 
9 -1.711 -1.870 -2.326 
12 -1.628 -1.706 -2.244 
14 -1.093 -1.054 -2.379 
16 -1.470 -1.458 -3.193 

 

 

Figure 5.38: Magnitude-frequency plot of the rockfall depths. Like the facet dimensions, these are 

measured in true-3D and provide a greater range of values.  
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Figure 5.39: Conceptual plot of the relationship between facet width exponent and rockfall depth 

exponent. The higher the rockfall depth exponent, the greater the proportion of small rockfall relative to 

larger events. Similarly, the higher the facet width exponent, the greater the proportion of small facets 

relative to larger facets. Points above the line of unity therefore indicate that the size distribution of 

rockfall tends towards a higher proportion of small depths than the proportion of small facet sizes. By 

maintaining the same length bins, these exponents also provide a comparison of the true size of facets 

and rockfall, rather than simply the distribution. 

Figure 5.40: Rockfall depth exponents relative to facet size exponents. Most beds lie above the line of 

unity (dashed) suggesting that rockfall are likely to be contained within individual planar facets, rather 

than spreading across multiple facets. For bed number 7, however, rockfall appear to have a lower 

exponent than the facet length. As length bins were consistent between facet lengths and rockfall depths, 

and the frequency is normalised to account for discrepancy in the total number of measured features, 

this suggests that rockfall occur across multiple facets in this bed. 
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5.10 Summary 
 

In this chapter, an examination of rockfall shape has indicated that rockfall are 

predominantly slab-like in form. Much of the exposed bedding on this cliff is protruding relative 

to the overall cliff profile, with intervening layers of shale with a less well-defined surface joint 

structure, which is not considered here. Here, the confining stresses are lower than those deeper 

within the cliff, and the rock mass is in general far more weathered. This points towards a 

process of rockfall evolution though fragmentation of surficial material, as opposed to the 

occurrence of large, instantaneous rockfall that exceed the scale of the overall joint structure.  

The errors attributed to high frequency scanning have also been discussed. Monitoring 

at high frequencies, in particular below 4 d – 7 d, results in the detection of more rockfall as the 

superimposition of contiguous events in close spatial and temporal proximity is resolved. As has 

been shown in Section 5.8, the size distribution of these rockfall adheres to a power law, such 

that the increase in observed rockfall with shorter values of Tint comprises many smaller events. 

As discussed in Section 5.3, these smaller events have a higher proportional volumetric 

uncertainty, as a function of the increased number of boundary pixels relative to the number of 

interior pixels used to derive their volume. While this limits the use of high frequency datasets 

in cumulative analysis of rockfall volumes and direct derivatives such as erosion, this study 

identifies small scale rockfall using pairwise change detections to enable insights into the 

timescales over which single rockfall evolve. This holds significant implications for our 

understanding of rockfall, the mechanisms that promote destabilisation and triggering, and the 

relative role of internal versus external forcing. For example, slope stability models of rockfall do 

not simulate the fragmentary nature of the evolution of rockfall scars depicted here, whereby 

smaller events – which invariably require a smaller perturbation to initiate failure - may be 

indicative or may be direct drivers of the larger failures into which they are later subsumed. The 

stress or force needed to drive rockfall therefore needs to be considered in reference to a 

mechanism that evolves though time. The analysis of magnitude-frequency distributions at 

different timescales shows that, for high frequency monitoring datasets, the exponent of the 

distribution changes with the frequency of monitoring, so the more frequently you measure, the 

more rockfall you will capture.  

The gradient of the straight-line form of the log-log magnitude-frequency distribution is 

represented by the parameter β. For each large event, there are more medium sized events, 

many more small events and even more very small events; the ratio between these frequencies, 

β, is constant. The rollover in the distribution that is evident for longer return intervals 

indicates that relatively few small rockfall (< 0.01 m3) are observed with less frequent 

monitoring. Since the bounds of the magnitude-frequency distribution are between 0.00135 m3, 

above the minimum detectable volume (6 × 10-4 m3), and 7.2536 m3, the largest detected 
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volume, this does not represent a limitation in the spatial accuracy of the rockfall measurement. 

Instead, this process appears to reflect the superimposition of small failures by larger, contiguous 

events. By monitoring at very high temporal resolution, it is apparent that this rollover begins 

to reverse over timescales < 106 h, illustrating an increase in the proportion of smallest events. 

This is accompanied by an overall increase in the exponent of the distribution across all 

volumes. Below approximately 4 d to 7 d, there is a clear increase in the exponent with Tint; 

however, at longer timescales (> 7 d) no significant change in the size distribution of rockfall 

events is observed. This suggests that rockfall may evolve as a process of fragmentation over 

timescales up to 4 d to 7 d, rather than as instantaneous events. The effects of perturbations, 

such as storms triggering rockfall, may therefore not just be instantaneous, but there may be a 

period of time where the cliff face settles or returns to background levels, here indicated to be a 

period of 4 d – 7 d. In this setting, therefore, decreasing the TInt of monitoring is unlikely to 

enhance our understanding of net rockfall characteristics and failure evolution unless the TInt 

falls below 4 d – 7 d. 

 In this chapter, magnitude-frequency distributions have been characterised over varying 

timescales to constrain the process of rockfall evolution. This has been accompanied by a 

geometric analysis of the size of rockfall in comparison with the facet dimensions of each source 

rock. By estimating the magnitude-frequency exponents of facet and rockfall sizes (using fixed 

length bins and normalised frequency data), the size distribution and actual sizes of rockfall and 

facets could be compared. The distribution of rockfall sizes appears to be constrained by the 

joint structure, such that most rockfall are smaller than the facet size. This is the case when 

rockfall are measured in terms of the length, breadth and depth but is not the case for the 

highly fragmented bed number 7. This bed exhibits the highest proportion of small facets of any 

bed. Most rockfall occurring in this bed therefore appear to release material across at least one 

(and often more than one) facet.  

 The limited control that the visible persistence of discontinuities appears to exert upon 

the size and shape of rockfall necessitates an examination of the influence of external forcing. In 

Chapter 6, the duration of energetic environmental conditions, as well as the length of time 

between them and the onset of failure, is examined. Since the magnitude-frequency analysis 

above has highlighted the significance of small rockfall in material removal from the slope, 

relationships between environmental drivers and the timing of rockfall are categorised by the 

size of individual failures. Furthermore, following the considerable shift in magnitude-frequency 

distributions of observed rockfall beyond ca. 100 h, in Chapter 7 the evolution of failures from 

the cliff is examined with respect to both precursory rockfall and precursory creep of the mass. 
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Chapter 6 

The Relationship between 
Rockfall Timing and Triggers 

 
 

6.1 Introduction 
 

In Chapter 5, an analysis of the size distribution of rockfall activity showed that rockfall of the 

order of 0.001 – 0.010 m3 accounted for 97.7% of the total number of measured events, manifest 

as an ‘anti-rollover’ when plotted in log volume-log frequency density space. A comparison of 

the aerial extent of these rockfall relative to the visible persistence of discontinuities in the rock 

mass showed that they are smaller than the scale of the observable joint network, suggesting 

that rockfall are the result of fragmentation. The geometry of detachments showed a tendency 

towards cliff face parallel slabs, with rockfall depths considerably smaller than their respective 

height and width. Hence, while the joint network appears to determine the maximum 

permissible rockfall size, the size and shape of by far the majority of rockfall appears to be 

determined by rock mass fragmentation. The shallow depth of these fragments suggests that 

rockfall may arise as the result of the interplay between preparatory exogenic forces, which 

progressively reduce the resistance of the rock mass to failure, as well as a trigger, which may in 

itself be either exogenic or purely the result of in-situ fragmentation. An appraisal of exogenic 

controls is therefore required.  

In this chapter, the nature and timing of rockfall activity is examined with respect to 

external drivers. The rate of rockfall activity and frequency as categorised by volume and shape 

are compared to both weather and marine conditions. These include temperature, rainfall, wind 

speed, tide height, and significant wave height. As discussed in Chapter 2, previous research into 

rockfall triggering by environmental conditions has shown that the timing of rockfall follows the 

timing of environmental conditions that exceed specified thresholds, mostly defined as 

temperatures that are conducive to freeze-thaw action on the rock mass or storm conditions that 

exceed specific rainfall intensity-duration conditions. In-situ apparatus, such as crack gauges and 

acoustic emission nodes, can provide higher frequency, higher precision strain measurements 

than those in this study, and have previously been compared to environmental records of similar 

frequencies (Vlcko et al., 2009; Collins and Stock; 2016; Eppes et al., 2016). However, these 

instruments are often localised, rarely monitor deformation across an entire slope, and are 

unsuited to rockfall detection as discussed in Chapter 2.  
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If rockfall are considered as a manifestation of ongoing deformation and deterioration 

that occur across a slope, capturing their occurrence over an entire slope at a frequency 

consistent with the variability in environmental conditions presents the opportunity to examine 

slope response to external perturbations, over a range of timescales. The review of literature in 

Chapter 2 highlights that final failure cannot be considered as the result of a single trigger, and 

that a slope may reside at varying levels of damage, such that the same two exogenic events 

may or may not trigger failure. The response of a slope to external drivers may, therefore, exist 

beyond cause-effect relationships that are the often cited from datasets of monthly monitoring, 

and related using liner regression (Strunden et al., 2015). Here, the tidal, temperature and 

rainfall conditions that relate to failure are assessed in a number of ways. A first-order 

assessment of the significance of particular environmental conditions at particular timescales is 

first undertaken using a traditional least-squares approach, which draws upon the high-

frequency rockfall and environmental data that are binned by time and summarised by time-

averaged statistics. In addition to time averaging, the high-frequency nature of scanning allows 

the rockfall data to be recentred in order to assess rates of activity by the timing relative to 

each tide cycle, the hour of day, and the proximity to large temperature gradients at sunset. 

Cross-correlation of environmental conditions and rockfall time-series is also used to explore the 

strength of relationships when varying lag times are considered.  

The chapter begins by outlining the environmental and sea surface conditions that 

occurred during the monitoring period, alongside the pattern of rockfall activity and geometry of 

rockfall. Ordinary least square regressions are presented, with the environmental and rockfall 

variables having been averaged across < 1 h, 1 h, 24 h, 7 d, and 30 d intervals. This is followed 

by an analysis of rainfall events that immediately precede rockfall, which shows that a 

significant relationship exists between rockfall activity and rainfall intensity and accumulation. 

The chapter concludes with an assessment of the influence of tidal cycles and fluctuations in 

diurnal temperature. This highlights that, while cause-effect relationships between threshold 

exceedance events and above normal rockfall activity are applicable for some variables, this form 

of analysis is complex for high frequency datasets and does not account for all observed trends 

in rockfall activity through the monitoring period. 

 

6.2 Temporal patterns of rockfall occurrence 
 

 Rockfall activity, presented as both the cumulative volume and the total volume 

measured between each scan pair, is displayed alongside the distributions of weather and tide 

conditions in Figure 6.1. The volume estimates derived from scan-by-scan monitoring contain a 

considerable level of uncertainty because small rockfall, which account for the highest proportion 

of detachments, comprise a greater number of edges relative to the number of pixels that they  
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Figure 6.1: Distribution of rockfall activity, rainfall intensity and cumulative accumulation, mean 

wind speed and maximum wind speed, temperature, tide height and significant wave height. Gaps in 

cumulative volume reflect the data gaps shown in Chapter 3. From visual observation it is clear that no 

single variable has an appreciable impact on rockfall activity, therefore questioning the applicability of 

least squares approaches. However, an increase in both wind speed and rainfall suggests that an onset 

of stormy conditions may be attributed to the increase in rockfall activity towards the end of the year.  
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occupy (see Section 5.2). Despite this, the overall pattern of rockfall occurrence through time is 

consistent even with the addition of the minimum and maximum uncertainty envelopes, and is 

hence a representative metric of failures against which to compare environmental data. The data 

gaps that occurred between July and September result in some uncertainty with regard to this 

pattern. However, as the cumulative rockfall activity after each gap continues at the rate 

previously recorded, this uncertainty may be limited to superimposition of small rockfall events 

rather than seasonal variations in activity. Between March and October, the rate of rockfall 

activity is broadly consistent, ca. 0.17 m3 d-1. Five events > 1 m3 occurred, resulting in small 

steps in the cumulative rockfall activity; however, it is clear that smaller, frequent rockfall 

across the slope account for the majority of activity recorded. The rate of rockfall activity begins 

to accelerate from October onwards, with the most pronounced increase occurring from 8th 

November until the end of the monitoring period on 30th December. Loss of material during this 

period accounted for 54.3% of the total recorded rockfall volume. Abrupt increases in the rate of 

activity during this period coincide with individual large rockfall events, with eight timestamps 

recording > 1 m3 during this period alone. Alongside this, there is an appreciable increase in the 

total rockfall volume recorded between each scan pair made up of small rockfall events, ca. 

0.59 m3, more than three times the previous rate.  

The distribution of rockfall during the monitoring period is broadly coincident with 

rainfall. Three phases of higher levels of rainfall can be distinguished, which are 5th March – 7th 

May, 7th May – 8th November, and 8th November – 30th December. During the latter, rainfall 

intensities are higher than at any other time during the year, and the time-averaged intensity of 

recorded rainfall events also increases from 1.32 mm d-1 to 2.37 mm d-1. The single largest 

rainfall event coincided with a gap in rockfall acquisition during September. While January and 

February are not included within the monitoring period, the highest mean monthly rainfall 

occurs during November followed by July, June, August and December respectively (mean 

calculated using available Met Office rainfall data from Loftus, 1961-2010, 20 km away). Dry 

periods, classified here as a running three-day window without recorded precipitation, seldom 

occur and decrease in frequency throughout the monitoring period. Wind speeds are analysed for 

only those gusts that coincide with a direction of 0° - 180°, and are hence towards the cliff face. 

Both the mean and maximum recorded wind speeds are lowest during the summer and early 

autumn months; however, higher wind speeds (maximum > 25 km h-1) occur most frequently 

during November and December. Temperature records, provided from the weather station on 

the rock face, show that freezing conditions (< 0°C) were only maintained for 1.5 h during the 

monitoring period. While longer periods of sub-zero temperatures were recorded during January 

and February, these fell outside of the rockfall monitoring period. 

It is clear that at this site no single environmental variable has an appreciable impact 

upon the temporal pattern of rockfall activity. The absence of sustained air temperatures below 
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Figure 6.2: Rockfall growth throughout the monitoring period, measured on a scan-by-scan basis and aggregated by calendar month. The final image therefore shows the total rockfall distribution within the monitoring period. The overall 

distribution of rockfall across the upper near-vertical portion of the slope is similar throughout the monitoring period, though the overall size of rockfall increases. An increase in rockfall and slumps is evident across the base of the cliff, with 

substantial slumping during November and December. 
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Figure 6.3: Rockfall growth throughout the monitoring period, measured on a scan-by-scan basis and presented as rockfall that occurred within individual months.  
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freezing also shows that no rockfall were triggered or predisposed by freeze-thaw conditions. A 

combination of high wind speeds and increased rainfall between 8th November and 30th 

December can be considered a proxy for increased stormy conditions during this phase of 

monitoring. While this term is loosely defined here, this period included several named storm 

events such as Desmond, Eva and Frank (see Chapter 3). This period coincides with increased 

rockfall activity and indicates that the relationship between rainfall and rockfall may be of a 

simple cause-effect nature, whereby a threshold of groundwater pressures may be exceeded, 

rainfall may trigger surface flow down the cliff, or that rockfall are sensitive to particular 

combinations of environmental conditions that include rainfall. 

The pattern of increased rockfall activity across the cliff is shown on a monthly basis in 

Figure 6.2 (cumulative rockfall) and Figure 6.3 (individual rockfall). Appendix B shows in video 

format the same data that is recorded in Figures 6.2 and 6.3, but accumulated on a daily basis. 

The spatial distribution of all rockfall, indicated in Figure 6.2 by the month of December, has 

been discussed in Section 5.4. Within each month, the rockfall are distributed almost 

ubiquitously across the upper near-vertical portion of the cliff. While the rate of rockfall 

occurrence in this zone shows a small increase through the year, the overall spatial distribution 

remains consistent. An increase in the size of the largest rockfall per month also occurs, though 

the background rate remains dominated by the smallest events. Although small (a 0.001 m3 

cube has lengths 0.1 m), these events still present a significant hazard.  

During November and December, several rockfall occurred that were contiguous with 

previously recorded failures. As will be explored in Chapter 7, these rockfall were preceded by 

smaller rockfall events. The reason that such patterns are observed in November and December 

is likely to be because (a) only rockfall occurring during these months are large enough to have 

observable precursory events within them due to instrument precision; (b) a critical rockfall 

volume exists, below which a rockfall will not creep due to its mass relative to the rock strength; 

or (c) precursory spalling of material is driven by environmental forcing of the rock mass, which 

becomes increasingly energetic during the winter months.  

The volumes of material lost, presented in Figures 6.2 and 6.3, are detailed in Table 6.1. 

Based on calendar month, 55.6% of material that was eroded during the 10-month monitoring 

period was lost between 1st November and 31st December 2015. The impact of this upon 

resurfacing of the rock face, or the damage that it accumulated, was examined by computing a 

ratio for each month of the area of rock face that failed compared to the total area of rock face. 

This Figure 6.4 shows a conceptual diagram of the evolution of this ratio. If the rate of rockfall 

activity is constant, the cumulative percentage of the area of the rock face that is damaged will 

yield a linear trend through time. While this trend may approach 100% (i.e. the entire cliff is 

damaged), this is unlikely in realty unless an instantaneous failure of the whole rock face, or 

significant proportion, occurs. Deviations from this trend can reflect one of two scenarios. 
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First, a gradient below the line of unity may reflect superimposition of rockfall. In such 

instances, the rate of rockfall activity may remain constant, or even increase, but areas of the 

rock face that have already failed undergo further failure, possibly as part of a sequence of 

increased rockfall activity within developing incipient failure scars. Between the months of 

November and December, this pattern is evident (Figure 6.5a) and corresponds to the observed 

increase in contiguous failures across the rock face during this period. In Figure 6.5b, rockfall 

that occur within individual months exceed the sum of the cumulative percentage area in Figure 

6.5a. This suggests that multiple rockfall below the size of a pixel occur within a 0.15 m area, 

that rockfall occur within the same area of the cliff surface as yet-to-fail events, or a 

combination of the two.  

Second, an increase in gradient, manifest as a deviation above the line of unity, suggests 

an acceleration of rockfall activity across the rock face, which is likely to reflect seasonal 

perturbations in environmental drivers. Such an instance occurs between October and November 

but also between June and July, suggesting that this seasonal variation does not solely represent 

change in the accumulated rainfall. This could also reflect the removal of a thin layer of rock 

close to the surface, which had accrued damage between January and February prior to the 

monitoring campaign. Overall, the total area of rock face that was resurfaced is 1 602 m2, which 

constitutes 18.9% of the total monitored rock slope area.  
 

Table 6.1: Scan-by-scan rockfall estimates presented in Figures 6.2 and 6.3, aggregated into calendar 

months. Both November and December recorded increases > 2·σ that are considerably larger volumes 

than elsewhere during the monitoring period and account for 55.6% of material loss recorded during 

the 10 months. Due to the high proportion of small rockfall that approach the size of a single pixel, the 

volume uncertainty increases in proportion to the monthly-recorded rockfall volume. 

 
 

Volume Loss (m3) 
Cumulative 
Volume Loss 

(m3) 

Volumetric 
Uncertainty (m3) 

Cumulative 
Volumetric 

Uncertainty (m3) 
March 7.2869 7.2869 4.5300 4.5300 
April 7.3621 14.649 4.3469 8.8769 
May 4.6802 19.3292 3.0824 11.9593 
June 5.4514 24.7806 2.9504 14.9097 
July 3.4006 28.1812 2.2420 17.1517 
August 13.6761 41.8573 7.4487 24.6004 
September 8.8993 50.7566 3.5229 28.1233 
October 14.9971 65.7537 9.7716 37.8949 
November 45.1163 110.8777 15.6001 53.4949 
December 37.2825 148.1602 4.3469 65.7554 

 

Figure 6.6 shows the distribution of rockfall shapes categorised by the day of the year in 

which they occurred. A trend through the monitoring period from cube-like shapes to more slab-

like shapes is apparent. An initial hypothesis is that temperature or weather variations  
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Figure 6.4: Conceptual plots of the increased rock face resurfacing through time. (a) A constant rate 

of rockfall activity results in a straight line through eroded area-time space. In reality, this line is 

unlikely to remain straight due to superimposition, whereby rockfall occupy the same aerial location on 

the surface (often as precursors to incipient rockfall scars), resulting in a decreased below the line of 

unity. Seasonal variations, in particular the onset of sustained stormy conditions, may increase the 

rate of material removal from the rock face, raising the resurfacing rate above unity. (b) Not all areas 

of a slope may erode. As a result, the erosion trajectory is likely to plateau before reaching 100% 

resurfacing. 

Figure 6.5: (a) Cumulative failed area, represented in m2 (left-hand axis), and as the percentage of 

the cliff face that has failed after each consecutive month (right-hand axis). Here a pixel that failed is 

only counted once. Increases above a uniform gradient occur during November and July, possibly as a 

result of increased rainfall. In total, 18.9% of the rock face underwent some form of failure. (b) Failed 

area calculated for individual months. The sum of failed area is greater here than for the left-hand plot 

suggesting that rockfall occur below the pixel size and/or that rockfall occur in yet-to-fail areas of the 

rock face. 
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Figure 6.6: (a) Mean rockfall shape by day of year shows an increase towards slab forms through the 

monitoring period. A manual approximation of this trend is applied (black arrow). This plot draws 

uniquely on rockfall collected at Tint less than or equal to 24 h, to ensure that no bias in shape due to 

superimposition or coalescence occurs. (b) Mean rockfall shape by week of year, with a similar 

approximated trend. This plot draws uniquely on rockfall collected at Tint less than or equal to one 

week, again to ensure that no bias in shape due to superimposition or coalescence occurs. 
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determine the mechanism of failure. For example, increased near-surface tensile stresses may 

produce more slab-like rockfall during hot weather. However, such a pattern does not appear in 

during the monitoring period. Increased rainfall and wind speeds may have resulted in the loss 

of surficial, loose material from the rock face or predisposed the rock face to smaller fragmenting 

rockfall. This shift in the mean shape may purely reflect the increase in rockfall size through the 

monitoring period, since it is kinematically more difficult for larger rockfall to fail as cubes, as 

opposed to slabs, from this rock mass. However, it also emphasises the importance of damage 

that is accumulated in a shallow depth zone of the rock mass, or ‘damage skin’, that may 

extend across the cliff face. Periods of higher seasonal damage, such as during the summer and 

winter months, may be manifest as the development and removal of this ‘damage skin’ from the 

rock face, for example, through progressive exfoliation. 

  

6.3 Regression analysis 
 

6.3.1 Data selection and averaging 
 

In this section, a least squares regression analysis is undertaken to establish if 

statistically significant relationships exist between environmental variables and both the 

occurrence and size of rockfall. In line with previous studies reviewed in Chapter 2, an initial 

approach was to bin the high-frequency weather data to provide time-averaged statistics for 

comparison with the rockfall data. While this averaging is normally undertaken to align weather 

data to weekly, monthly, or seasonal scans, both the environmental data and the rockfall data 

were therefore downsampled by varying degrees in order to align with one another. The 

averaging process yields numerous metrics of rockfall activity and environmental conditions, 

with each averaged across hourly, daily, weekly, and monthly timescales. Scan-by-scan patterns 

were also derived such that the fidelity of data on the timing of rockfall data was preserved, but 

the weather data was averaged within each scan interval.  

For each timescale, rockfall activity was summarised as the rockfall volume rate (the 

total volume that occurred), the total number of rockfall, and the number of rockfall as 

categorised by discrete volume fractions (0.001 – 0.01 m3, 0.01 – 0.1 m3, and > 0.1 m3). 

Environmental conditions comprising accumulated rainfall, rainfall intensity, temperature, 

temperature gradient, wind speed, significant wave height, tide height, were also summarised 

using the metrics justified below. 

 The total rain accumulation within each period was used to represent the combined 

intensity and duration of rainfall events, alongside the peak rainfall intensity. Relatively little 

research has been undertaken into the sensitivity of rockfall to patterns of rainfall delivery. Due 

to the 0.2 mm resolution and fixed recording interval, the rain gauge used often recorded similar 
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values of intensity during the monitoring period. As such, the peak rainfall intensity was used to 

represent intense rainfall conditions that would have otherwise been lost using the mean 

intensity. The peak rainfall is therefore used to indicate the occurrence of storm events.  

 The mean, peak and minimum temperatures were all used in the regression analysis. 

While temperatures below freezing were not sustained in this monitoring campaign, maximum 

temperatures have been related to the dislocation of blocks relative to joint openings through 

disparate expansion (Gunzburger et al., 2005). Temperature gradient was also recorded for the 

scan-by-scan, hourly and daily data as the change in degree Celsius, over ca. 30 minutes, one 

hour, and the peak scan-by-scan temperature gradient over the course of a day. All of these 

variables are recorded in °C h-1. The relationship between temperature gradient and very small 

rockfall, in particular those that are interpreted here as constituents of rockfall evolution 

through fragmentation, remains poorly understood. However, as reviewed in Chapter 2, 

temperature gradients above freezing have been related to progressive damage accumulation 

within intact rock and joint openings.  

Both significant wave height and tide height produce mean values that are far from 

their maximum values. The semi-diurnal sinuosity of tide levels is the prime reason for this. The 

minimum value of each gives little information about the rate of energy delivery to the rock face 

and, as such, the maximum tide height and maximum significant wave height were selected for 

analysis. 

 

6.3.2 Gaussian transformations  
 

Linear regression requires that both the dependent and independent variables, or more 

specifically the residuals of each, are normally distributed. While coefficients of determination, 

such as the r2, do not strictly require a normal distribution, this is required for tests of 

statistical significance (UCLA Statistics Consulting Group, 2016). Transformations were 

therefore applied to improve the strength of the correlation between environmental and rockfall 

variables by making each more normally distributed. A range of simple transformations exist 

and, in order to select the most appropriate, a chi-squared goodness-of-fit test was used to 

determine whether the transformed data originated from a Gaussian distribution (Equation 6.1). 

Data was grouped into bins of observed and expected counts: 

 

 
𝜒𝜒2 =  �(𝑂𝑂𝑖𝑖 − 𝐸𝐸𝑖𝑖)2/

𝑁𝑁

𝑖𝑖=1

𝐸𝐸𝑖𝑖 [Eq. 6.1] 

 

where Oi are the observed data and Ei are the predicted data based on a Gaussian distribution 

(Balakrishnan et al., 2013). Retuned values indicated whether the hypothesis of a normal 
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distribution was accepted (zero) or rejected (one) at the 5% significance level. Several 

transformations were tested, including the square (x2), cubic (x3), identity (x), square root (x1/2), 

cube root (x1/3), logarithm (log10x), the inverse-square root (1/x1/2), the inverse (1/x), and the 

inverse square (1/x2).  

Figure 6.7 shows an example of the relationships taken for the daily-accumulated 

rainfall. Of the transformed distributions presented, only the cube root results in a chi goodness 

of fit of 0. While for some variables, other transformations also yielded a value of 0, the cube 

root was selected as a transformation that consistently yielded Χ2 = 0. The cube root, while 

weaker than a log transformation, has a substantial impact on distribution. Unlike logarithms, it 

has the advantage of being used for both positive and negative values, and in this sense has an 

advantage over the square root for certain applications (Cox, 1999).  

Figure 6.7: Kernel density estimates of for the daily rainfall accumulation data after nine different 

transformations were applied. Chi-squared goodness of fit results are displayed, with the bottom-left 

(cube root) accepting the hypothesis that the data fits a Gaussian distribution. The identity 

transformation describes the data in its original form. 
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Normal quantile plots graph the quantiles of a variable against the quantiles of a 

Gaussian distribution. In particular, these plots are sensitive to non-normality at the tails, 

which is characterised as a deviation from the diagnostic line, which represents a perfectly 

normal distribution. In Figure 6.8, while no transformation is aligned throughout the 

distribution, the cube root (CR) is approximately so above the lower tail.  

An example comparison between the raw data and cube root transformed data is 

provided for the daily datasets in Figure 6.9 and Figure 6.10. For each sub-plot, 200 data points 

are graphed representing each day of monitoring. In general, transforming the data using the 

cube root results in higher r2 values, though p-values from student’s t-test are marginal for both, 

ca. 0.05 (Table 6.2).  

 
 

Figure 6.8: Normal quantile plots for the daily rainfall accumulation data after nine different 

transformations were applied. While tails in the distributions never perfectly align to a Gaussian 

distribution, the best overall fit was observed by the cube root (CR).  
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Figure 6.9: Scatter plots of the raw rockfall volumes against the raw environmental variables, 

averaged over a 24 h period.   
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Table 6.2: A comparison of raw and cube root transformed relationships for daily data, including the 

slope r2 and p-value derived from the Student’s t-test. A small but overall increase in all three elements 

of the least squares regression is observable. 

 
Raw Cube Root 

gradient r2 p-value gradient r2 p-value 
Rain Accumulation 0.20 0.04 0.04 0.19 0.04 0.04 
Rain Intensity Max. 0.06 0.09 0.09 0.16 0.09 0.08 
Temperature Max. 0.13 0.08 0.10 0.02 0.09 0.07 
Temperature Min. 0.15 0.02 0.11 0.02 0.05 0.06 
Temperature Mean 0.17 0.06 0.11 0.03 0.08 0.05 
Temperature Gradient 0.05 0.01 0.08 0.02 0.02 0.05 
Significant Wave Height -0.16 0.01 0.05 -0.26 0.03 0.10 
Tide Height Max 0.12 0.00 0.20 0.02 0.00 0.10 
Wind Speed Max -0.03 0.01 0.13 -0.01 0.05 0.04 

Figure 6.10: Scatter plots of the cube root transformed rockfall volumes against the cube root 

environmental variables, averaged over a 24 h period. As in Figure 6.10, marginal t-test results are 

produced but an overall increase in the gradient and r2 of each plot is observed. 
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6.3.3 Results of regression analysis 
 

Insignificant relationships were obtained between almost all environmental variables and 

rockfall, both for weather and sea surface conditions. Of the 200 regression tests undertaken 

(Table 6.3), only 19 showed significant results even after transformations to approximately 

normal distributions (Table 6.4). Significant relationships were obtained predominantly for the 

number of rockfall 0.1 – 10 m3. For this rockfall size, significant relationships were found with 

marine conditions (significant wave height and tide height) using the scan-by-scan, hourly, and 

month datasets; however, the coefficient of determination for these relationships was minimal 

(r2 < 5%). Rainfall accumulation and intensity both showed significant relationships for the 

rockfall volume rate (weekly and monthly) and the number of large rockfall (scan-by-scan, 

hourly, daily, monthly). For these, the significance of the relationship was greater for the 

accumulation than for the intensity. Both marine conditions and rainfall are explored in greater 

depth later in this chapter. Below, each of the five plots in Figure 6.11 are described. 

The rockfall volume rate produces r2 that are almost exclusively below 10%. The scan-

by-scan and hourly weather correlations produced the least significant relationships, with the 

highest correlation strength recorded between the minimum recorded temperature and the 

monthly rockfall volume rate. This can be explained by the fact that the coolest temperatures of 

the monitoring period were recorded in November and December, in which the highest rate of 

rockfall activity was also recorded. Regression strengths were highest for daily averaged 

statistics of maximum temperature, mean temperature, temperature gradient, maximum rainfall 

intensity, and maximum significant wave height.  

The number of rockfall that occurred yields higher r2 than the total rockfall volume, and 

again shows that the overall strength produced by daily averaged datasets is highest, albeit it 

insignificant. The number of rockfall recorded between each scan and at hourly intervals both 

show stronger relationships than for the rockfall volume rate when related to temperature 

variables. This strength is also apparent when temperature data is averaged at the daily 

interval. In relation to sea surface conditions, both weekly and monthly monitoring yields the 

highest strength relationships with the number of rockfall. Similar strengths are observed 

between wind speed and the number of rockfall for daily, weekly and monthly monitoring. These 

relationships are comparatively weak for scan-by-scan and hourly data.  

The number of rockfall of the order of 0.001 m3 – 0.01 m3 produces similar relationships 

to those of the total number of rockfall owing to the high proportion of rockfall within this 

volume range. This suggests that small rockfall are likely to show the strongest response to 

temperature. For medium sized rockfall, here defined as the 0.01 m3 to 0.1 m3 range, the overall 

strength of relationships is considerably weaker. An increase in the sensitivity of monthly 

rockfall patterns to temperature variables may be a result of the data gap that occurred during  
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Figure 6.11: The strength of ordinary least squares regressions, following normal transformation, 

between five different metrics of rockfall activity (each individual plot) and nine different environmental 

variables. Each line on the plot represents data averaged over a variety of timescales. For each rockfall 

metric, daily averaged data appears to show the highest correlation strengths, though these are 

insignificant. 
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Table 6.3: r2 values for relationships between rockfall occurrence and environmental conditions, recorded as percentage values between 0 and 100. Rockfall occurrence is described 

as the rockfall volume rate (the total volume of rockfall within each time interval), the number of rockfall, and the number of rockfall in three discrete size fractions. Environmental 

variables are detailed in the first column. For each combination of rockfall and environmental metric, regression is undertaken for scan-by-scan (S), hourly (H), daily (D), weekly 

(W) and monthly (M) average statistics. 

 
 
 

Rockfall Volume Rate Number of Rockfall N (0.001 – 0.01 m3) N (0.01 – 0.1 m3) N (0.1 – 10 m3) 

S H D W M S H D W M S H D W M S H D W M S H D W M 

Rain Accumulation 1.4 0.1 2.6 11.8 2.0 1.6 6.1 5.2 8.4 11.3 9.9 1.0 21.6 47.0 1.4 0.1 2.6 11.8 2.0 1.6 6.1 5.2 8.4 11.3 9.9 

Peak Rain Intensity 9.0 6.0 1.2 27.7 3.2 15.4 9.5 3.0 7.1 7.5 6.4 3.2 12.8 8.9 9.0 6.0 1.2 27.7 3.2 15.4 9.5 3.0 7.1 7.5 6.4 

Max. Temperature 11.8 22.8 19.9 9.0 0.1 0.1 0.5 2.7 18.3 2.6 1.8 1.3 0.3 14.0 11.8 22.8 19.9 9.0 0.1 0.1 0.5 2.7 18.3 2.6 1.8 

Min. Temperature 10.5 11.2 0.7 3.5 0.1 0.1 0.0 0.8 22.1 3.1 1.5 1.4 2.6 6.7 10.5 11.2 0.7 3.5 0.1 0.1 0.0 0.8 22.1 3.1 1.5 

Mean Temperature 11.0 20.9 7.3 6.9 0.1 0.1 0.4 2.4 18.3 2.7 1.7 1.0 3.3 3.7 11.0 20.9 7.3 6.9 0.1 0.1 0.4 2.4 18.3 2.7 1.7 

Temperature Gradient 0.0 6.3 - - 0.1 0.2 0.1 - - 1.5 1.4 3.6 - - 0.0 6.3 - - 0.1 0.2 0.1 - - 1.5 1.4 

Significant Wave 
Height 

0.6 1.4 3.4 19.9 0.7 0.1 0.2 2.1 63.6 1.4 1.5 1.4 4.1 3.6 0.6 1.4 3.4 19.9 0.7 0.1 0.2 2.1 63.6 1.4 1.5 

Max. Tide Height 0.0 0.0 2.8 11.9 0.4 0.0 0.5 5.6 28.6 0.0 1.0 0.1 0.7 10.1 0.0 0.0 2.8 11.9 0.4 0.0 0.5 5.6 28.6 0.0 1.0 

Max. Wind Speed 2.3 9.1 10.4 9.2 0.3 0.1 0.2 2.6 4.9 1.1 0.0 0.2 19.4 57.4 2.3 9.1 10.4 9.2 0.3 0.1 0.2 2.6 4.9 1.1 0.0 
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Table 6.4: p values for significant relationships at the 5% significance level between rockfall occurrence and environmental conditions. Rockfall occurrence is described as the 

rockfall volume rate (the total volume of rockfall within each time interval), the number of rockfall, and the number of rockfall in three discrete size fractions. Environmental 

variables are detailed in the first column. For each combination of rockfall and environmental metric, regression is undertaken for scan-by-scan (S), hourly (H), daily (D), weekly 

(W) and monthly (M) average statistics. 

 
 
 

Rockfall Volume Rate Number of Rockfall N (0.001 – 0.01 m3) N (0.01 – 0.1 m3) N (0.1 m3 – 10 m3) 

S H D W M S H D W M S H D W M S H D W M S H D W M 

Rain Accumulation - - - - 0.47 - - - - - - - - - - - - - - - 0.88 0.29 - - - 

Peak Rain Intensity - - - 0.38 0.28 - - - - - - - - - - - - - - - - 0.27 0.16 - 0.28 

Max. Temperature - - - 0.48 - - - - - - - - - - - - - - - - - - - - - 

Min. Temperature - - - - - - - - - - - - - - - - - - - - - - - 0.59 0.31 

Mean Temperature - - - - - - - - - - - - - - - - - - - - - - - - 0.16 

Temperature Gradient - - - - - - - - - - - - - - - - - - - - - - - - - 

Significant Wave 
Height 

- - - - - - - - - - - - - - - - - - - - 0.75 0.76 - - 0.92 

Max. Tide Height - - - - - - - - - - - - - - - - - - - - - - - 0.28 0.72 

Max. Wind Speed - - - - - - - - - - - - - - - - - - - - - - - 0.51 0.13 
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July to September, of which the monthly timescale is the only dataset to include. 

Superimposition of rockfall events during this period, where the longer scan intervals result in 

multiple events considered as one, may have increased the proportion of intermediate sized 

rockfall, thereby yielding increased regression strengths for both the peak and mean 

temperatures.  

For the largest rockfall group, 0.1 m3 – 10 m3, temperature appears to have a far less 

appreciable influence on the probability of failure. For all survey intervals, a more significant 

regression is apparent between the rain accumulation, rainfall intensity, significant wave height, 

maximum tide height and maximum wind speed. This may reflect an increase in these event 

occurrences during the period of increased storminess between November and December. 

 

6.3.4 Summary of time-averaged regression approach 
 

A number of insights can be gained by creating time-averaged regressions between 

environmental variables and rockfall, and categorising these regressions by both varying 

timescales and rockfall volumes. Although almost all relationships are statistically insignificant, 

they are strongest when temperature variables are compared against the smallest rockfall. This 

is evident using both the total number of rockfall, and the number of rockfall with volumes 

between 0.001 - 0.01 m3. Although drawing a cause-effect relationship from this requires a 

considerable degree of caution, this may imply that failures that occur through fragmentation of 

the rock mass may be predisposed by variations in temperature. The peak wind speed, rainfall 

intensity and rainfall accumulation are most strongly related to intermediate and larger rockfall 

volume classes. As discussed above, this is likely to reflect the occurrence of these events 

predominantly during the tail-end of the monitoring period, when stormy conditions were most 

prevalent. 

When comparing all rockfall metrics, peak wind speed yields an above average 

correlation strength (mean r2 for all maximum wind speed relationships is 0.07). This 

relationship is stronger for daily, weekly, and monthly average statistics than it is for scan-by-

scan and hourly timescales. This can perhaps be explained by considering the effect that 

averaging has on peak wind speeds, where they become more indicative of the passage of storm 

events when averaged over longer timescales. The timescales over which environmental 

perturbations are effective in inducing damage to the rock mass is also likely to play a 

significant role in the strength of the relationships above. The insignificance of the relationship 

between peak wind speed and hourly and scan-by-scan rockfall metrics may suggest that storm 

events are either not represented by such short intervals, or are effective over longer timescales.  

The over-arching finding of this section is that an insignificant relationship between 

rockfall and environmental conditions exists when the two are time-averaged and related 
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through linear regression. This has been observed in a number of previous studies (e.g. Rosser et 

al., 2007a), with a number of possible explanations. First, this method of assessment assumes 

that environmental conditions are triggers of rockfall. This is contrary to theories described in 

Chapter 2, which suggest that rockfall occur as the result of a complex interplay between 

preparatory factors and triggers. As a result, the same two environmental conditions may or 

may not trigger failure, depending on the history of the rock mass with respect to damage 

accumulation by preparatory factors and the incremental reduction of resistance to failure. 

Second, the time-averaging process does not account for lags in the response of the rock mass to 

exogenic forcing. This pattern of behaviour has been observed in laboratory experiments, in 

which increases in pore water pressure are required to initiate crack growth, but the timing of 

final failure is determined purely as a functional of internal deformation and hyperbolic increases 

in microcrack interactions (Petley et al., 2005). Third, the relationship between environmental 

conditions and rockfall may occur only when specific thresholds of environmental forcing are 

exceeded (Krautblatter and Moser, 2006). In reality, therefore, the analysis presented here is a 

first order approach to understanding the sensitivity of rockfall to environmental variables, 

which provides limited understanding of the nature of the response of rockfall. By plotting more 

than 8 000 measurements (the number of scans used), unless a strong correlation exists, patterns 

are very difficult to decipher where multiple controls may be active. A more tailored approach 

that makes better use of the high-frequency data is therefore required. Below, the influence of 

rainfall, marine conditions, and temperature are explored using alternative approaches. 

 

6.4 Influence of rainfall events 
 

 The dataset presented enables the analysis of rockfall events in relation to discrete 

rainfall events, which remains unreported in the literature to date. Relationships between 

rainfall and slope failure are often focused upon large-scale (> 1 000 m3) catastrophic events 

(Hong et al., 2006; Dahal and Hasegawa, 2008). Even in the context of rapid brittle rock slope 

failures in open-pits, published monitoring results have focused upon movement across 

comparatively large radar footprints relative to those of LiDAR, which are able to delineate 

smaller rockfall. While ordinary least square regressions are commonly used to relate rockfall 

occurrence and rainfall, these have been closer to the monthly scale of monitoring and, as in this 

study, have only yielded weak relationships (Rosser et al., 2007a; Strunden et al., 2015; Vann 

Jones et al., 2015; d’Amato et al., 2016). 

Below, the passage of individual rainfall events is examined with respect to the largest 

1 000 rockfall in the inventory. These rockfall were selected according to their size, as the 

regression between rainfall and rockfall activity was strongest for larger events, as shown above. 

For each rockfall, a search was conducted to identify the closest occurrence of a rainfall event. 
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The time of rainfall with respect to the rockfall was recorded alongside its duration. Duration 

was measured as the number of continuous 30 minute intervals in which any amount of rainfall 

above 0 mm was measured. Had minute resolution rainfall data been used, an on/off criterion 

for defining a single rainfall event is likely to have been overly sensitive to short bursts of 

rainfall. For each rainfall event, the intensity was recorded as the total rainfall accumulation 

divided by the duration of the whole storm. The maximum rainfall intensity measured within 

each rainfall event, represented in 30 minute intervals, was also recorded. The same analysis was 

undertaken for slumps at the top of the buttress. 

Of the 1 000 rockfall, 60% were preceded by rainfall within 24 h of failure, and 78% 

were preceded by rainfall within 48 h (Figure 6.12). For slumps, this value is similar, with 62% 

preceded by rockfall within 24 h and 80% preceded by rainfall within 48 h. It is noted that if 

rainfall occurred during the scan within which a failure occurred, this scan was removed due to 

the influence of rain on the scan data consistency and the rockfall was only detected by a 

change detection between the two nearest scans during which no rainfall occurred. It is possible, 

therefore, that many of the rainfall events that occurred within a few hours before failure may 

actually have occurred during failure. The result is a potential increase in the proportion of 

events that occurred during rainfall. In this study, 11.4% of rockfall occurred during rainfall. 

Figure 6.12: Cumulative distribution of the time between the top 1 000 rockfall and the closest rainfall 

events. 60% of rockfall were preceded by rainfall within 24 h, and ca. 80% within 48 h. While this does 

not confirm a cause-effect relation, it affirms the need to examine rainfall prior to rockfall activity. 

Blue line = rockfall. Orange line = slumps. 
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Assuming that only a limited number of scans were removed due to coincidence with rainfall, 

and based on the fact that the longest recorded rainfall duration was 7.5 h, it is possible that 

due to scan removal the true proportion of rockfall that occurred during rainfall could be 33.0% 

(if all rainfall within this duration is assumed to have occurred at the time of failure). Based on 

the mean rainfall duration (2.5 h), however, a likely upper proportion of rockfall that occurred 

during rainfall is 21.6%. The fact that an increase in intermediate and large rockfall activity 

occurred within the final two months of the monitoring period, which also recorded the greatest 

rainfall, suggests that wetting of the rock face may predispose it to failure.  

Rainfall intensity-duration plots were created for both the estimated and maximum 

rainfall intensities that occurred before each rockfall. This pattern conforms to that of previously 

published datasets for landslides (Caine, 1980; Guzzetti et al., 2008; Kirschbaum et al., 2012), in 

which both short intense bursts of rainfall (ca. 0.5 – 2 h), and longer less intense rainfall 

(ca. 5 - 10 h) occur before failure. Given that 40% of the largest rockfall are not preceded by 

rainfall within 24 h, these are removed from the intensity-duration plots below. For the rockfall 

observed at East Cliff, the intensity-duration relationship is: 

 

 𝐼𝐼 = 2.57 ∙ 𝐷𝐷−0.25 [Eq. 6.2] 

 

where I is intensity (mm h-1) and D is duration (h). Hence, an increase in the log of rainfall 

duration must be met by an 0.25-fold rise in the log of intensity in order to initiate failure. 

Figure 6.13, which is perhaps the highest temporal and spatial resolution analysis of rainfall 

intensity duration to date, reveals a vertical clustering of events at each increment of duration. 

Guzzetti et al. (2008) identified a similar bias at 3 h, which was attributed to a predefined 

measuring interval (3 h) that exceeded the timescale over which many storms occurred. In this 

study, the 30-minute resolution of rainfall data is responsible for the pattern of vertical striping 

that exists in Figure 6.13, though no appreciable increase in clustering is evident at this 

duration, suggesting that rockfall triggering rainfall events occur at timescales greater than this 

monitoring interval. 

The thresholds in Figure 6.13 are positioned below 95% of rockfall-triggering rainfall 

events using a 5% quantile regression. This reflects the minimum rainfall conditions necessary 

for instability, while also eliminating sporadic and therefore unrepresentative data points. 

Though intensity-duration thresholds are well used in the literature, no generic method exists 

for their construction (Aleotti, 2004). Figure 6.14 illustrates variation in threshold position and 

incline based on the quantile used.  

As expected, the maximum-recorded rainfall intensity for each storm increases the value 

of many of the data points up the intensity-duration plot in comparison with the mean-recorded 

rainfall intensity-duration plot. Given that the 5th percentile of rainfall measurements was 



Chapter 6: The Relationship between Rockfall Timing and Triggers 

 

205 

unaffected by this, however, the actual I-D power law remains the same. For slumps, the same 

patterns are observable as with the rockfall. This may be relate to the precision of the rain 

gauge used in this study and the fixed interval over which it records, which is insufficient to 

create subtle differences between the two. 

Intensity-duration exponents typically vary between -2.00 and -0.19 (Cepeda et al., 

2010), and the exponents in this study therefore sit at the lower end of this range. This is 

Figure 6.14: Intensity-Duration relationship for the mean estimated intensity of each storm, with 

thresholds for varying quantile regressions.   

Figure 6.13: Intensity-Duration plots. (a) Rainfall that preceded rockfall using the mean estimated 

intensity. (b) Maximum recorded intensity. Both are sourced from rainfall events that occurred within 

24 h of failure. As the log of intensity decreases, the log of duration must increase to predispose 

failure, assuming that the relationship between rainfall and rockfall is cause-effect.  
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depicted by a lower gradient in Figure 6.15, which also yields a lower than usual intensity 

intercept, suggesting that less intense rainfall is required for failure. Guzzetti et al. (2007) noted 

that exponents may be influenced by variability in rainfall conditions within the region, 

geological or geomorphological differences in setting, or incompleteness in the failure inventory. 

A lower exponent and intercept indicate that, for durations below ca. 10 h, less intense rainfall 

is required to induce rockfall at East Cliff. Comparing these datasets requires caution; while 

some comprise landslides within brittle material, the failure mechanism examined here differs 

considerably in its sensitivity to rainfall. Furthermore, one possible explanation for the relatively 

small y-intercept is that the delineation of rainfall events and the timing of rockfall are both 

accurate to within 30 minutes. As such, they do not suffer from over-averaging of conditions 

through time as in previously published datasets.  

 

Figure 6.15: Intensity-Duration plots compiled from an analysis of published literature. Those in this 

study exhibit a lower exponent value, suggesting that, for durations below ca. 10 h, less intense rainfall 

is required to induce rockfall at East Cliff The line also sits below the majority of other thresholds, 

constructed for landslide volumes several orders of magnitude larger, indicative of the relatively low 

rainfall totals in this region and/or an apparent sensitivity of rockfall to small rainfall events. 
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In order to assess whether the response of rockfall to rainfall intensity and accumulation 

is significant when lagged, cross-correlations were undertaken between rainfall intensity-rockfall 

rate and rainfall accumulation-rockfall rate, with lags introduced between 1 h and 24 h prior to 

failure. This method of analysis was also applied by Delonca et al. (2014) and requires a time 

series of data with a number of measurements that is sufficient for lags to be applied. For 

consistency, and in light of the fact that 60% of rockfall occurred within 24 h of failure, this 

comparison was undertaken for the hourly-averaged rainfall data and hourly-averaged rockfall 

volume rates (Figure 6.16). Confidence bounds of 95% are added, representing two standard 

deviations for the sample cross correlation estimation error, assuming that the two inputs are 

uncorrelated. For both the rainfall intensity and rainfall accumulation, the correlation strength 

increases as the lag decreases. Statistical significance only occurs when the lags are below 5 h, 

suggesting that rockfall are most sensitive to rainfall that occurs within this period. The most 

statistically significant correlation is observed 1 h and 0 h before failure, where the peak for rain 

intensity is 0.0476 and the peak for rain accumulation is 0.0629. This supports the relationship 

significance obtained by linear regression in Section 6.3 (Table 6.4). This disparity in correlation 

strengths, where cross correlation values are higher for rainfall accumulation than they are for 

rainfall intensity, suggests that the rock face may be more responsive to rainfall accumulation 

than rainfall intensity. This is perhaps unsurprising, given that a high proportion of rockfall 

occurred during the storms of November and December. The high permeability and dense 

fracturing of the sandstone therefore points towards a decrease in frictional resistance along 

discontinuities, which increases with rainfall accumulation. Alternatively, it may suggest that a 

‘damage skin’ zone at the surface is developed through weathering and exploitation of 

microcracks below the scale of rockfall volumes.  

Figure 6.16: (a) Cross-correlation for rainfall intensity and rockfall, and (b) rainfall accumulation 

and rockfall. Both show significant positive correlations between 1 h and 0 h before failure, where 

significance is determined as two standard deviations of the sample cross correlation estimation error. 
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6.5 Influence of tidal conditions 
 

In order to examine the influence of the tide, all rockfall recorded in the scan-by-scan 

inventory were recentred based on their position relative to the tide cycle. The timing of the 

closest two low tides was identified for each rockfall, with the oldest of the two low tides 

representing the first low tide and the second representing the most recent low tide. Each low 

tide is separated by a ca. 12 h window; as such, it was possible to identify the timing of each 

rockfall within this 12 h tide period. 0 h therefore represents a rockfall that occurred at exactly 

low tide, 6 h represents a rockfall that occurred at high tide, and 12 h represents a rockfall that 

occurred at the following low tide. Rockfall measured between scan pair intervals greater than 

2 h were removed from this analysis. The cumulative distribution of rockfall, categorised by 

volume fraction, is displayed in Figure 6.17.  

 For rockfall volumes in the order of 0.001 – 0.01 m3, the pattern of rockfall shows no 

sensitivity to the tide height, which supports the regression analysis shown in Figure 6.7. 

Variation from a linear pattern increases with the rockfall volume fraction. For the largest 

rockfall events, a shift towards a Gaussian distribution (represented by an s-shaped curve in a 

cumulative distribution plot) is evident. While only 17 events > 1 m3 occurred, this suggests 

that larger rockfall may be more sensitive to the tide height and that there is an increased 

likelihood of rockfall in this fraction during high tide. Given the low numbers of rockfall within 

this size faction, this distribution is more likely to be a coincidence than the distribution 

generated for events < 1 m3.  

In recentring the data according to a 12 h tide window, the chronology of the dataset is 

lost as its timing becomes essentially circular. Kernel density estimates were used to depict the 

probability distribution of rockfall occurrence by volume fraction during the tide window. 

Rockfall that occur during 0 h are as proximal to those that occur at 12 h, as they are to those 

that occur at 1 h. As such, a circular kernel density function was used that accounts for 24 h 

data (Atanasiu, 2014).  Figure 6.17b shows that, as the rockfall volume fraction increases, it 

becomes increasingly normally distributed. For rockfall > 1 m3, therefore, the probability of a 

rockfall occurring during high tide (P = 0.128) is more than 2.5 times that of a rockfall at low 

tide (P = 0.049). While the sample size in this study is insufficient to suggest that these 

processes are physically driven by, for example, microseismic activity due to cliff shaking at high 

tide (Norman et al., 2013; Brain et al., 2014), the sample size for the smallest rockfall events is 

sufficient to suggest that tide has no bearing on the detachment of very small fragments of rock 

from the rock face. This could indicate, therefore, that the evolution of rockfall through 

fragmentation of the rock mass is independent of this rock slope’s coastal setting. 
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Figure 6.17: (a) Cumulative distribution of rockfall that are distributed according to the position with 

a ca. 12 h tide window, from one low tide to the next. For the small and intermediate size fractions, no 

dominant position is evident. However, for larger rockfall, a skew towards high tide is evident. (b) 

Probability distributions for the same datasets, derived using a circular kernel density estimate. For 

large rockfall, a peak in probability of occurrence at high tide suggests that a rockfall of this size 

fraction is more than twice as likely to occur as one at low tide.  
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6.6 Influence of variations in temperature 
 

 6.6.1 Rockfall frequency 
 

As discussed in Chapter 2, a number of studies have sought to characterise damage 

accumulation within a rock mass as a result of solar-induced thermal stresses (Vlcko et al., 2009; 

Collins and Stock; 2016; Eppes et al., 2016). The collection here of rockfall data at such a high 

frequency presents a unique opportunity to examine this process, and is well placed to draw 

upon material detachment as a direct proxy for rock mass damage, progressive failure, and the 

removal of a ‘damage skin’ of microcracked and weathered intact rock. If final failure is defined 

as failure that is preceded by an acceleration in precursory rockfall events (presented in the 

following chapter), then the significant relationships defined here between temperature and the 

smallest rockfall may suggests that these reflect preparatory stresses within the rock mass. 

To conduct this analysis, timing of rockfall data was recentred, initially by identifying 

the hour of day within which each rockfall occurred. Rockfall were categorised again by size, but 

with rockfall > 1 m3 appended to the 0.1 m3 – 1 m3 data, given that there were now fewer 

rockfall (17) than the number of hours in a day.  The probability of rockfall occurrence averaged 

by all days monitored is presented in Figure 6.18, categorised by the volume fraction. For the 

largest rockfall, the pattern of rockfall shows significant variability, with no appreciable pattern 

in occurrence during the day. For intermediate sized rockfall (0.01 – 0.1 m3), however, an 

increase in rockfall activity occurs through the hours of daylight, with the highest probability, 

0.065, between 17.00 and 18.00. The smallest rockfall (0.001 – 0.01 m3) also show an increase 

through the middle of the day. Peak activity is observed between 05.00 and 06.00, and again 

between 17.00 and 18.00. There is significant variation in sunrise and sunset times throughout 

the monitoring period. The range of observed timings is therefore added (Figure 6.18).  

The peak rockfall activity for all three size fractions occurs during the hours of sunset, 

with increased rates of small and intermediate rockfall activity observed during this period. In 

both the small and intermediate size ranges, despite small peaks in rockfall activity during 

sunrise, an overall increase can be observed through the day towards sunset (Figure 6.18). While 

this does not necessarily reflect temperature or solar-induced thermal stresses, this dataset 

comprises all rockfall in the 183 363 event dataset with a scan interval < 2 h. As such, no bias is 

introduced by change detections that include large numbers of rockfall that occurred over a 

longer period of time. The level of instrument noise can be attributed to the temperature of the 

air mass through which the laser passes. Point clouds acquired using LiDAR can therefore vary 

in distance from the scanner with varying temperatures. In this study, however, this effect was 

removed by applying a range correction factor to each point cloud, as noted in Section 3.6. This, 
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combined with the fact that all change detections fell below the 0.03 m applied LoD, negates the 

possibility that diurnal patterns of rockfall are a result of a methodological error. 

 
In order to assess the sensitivity of the rock mass to changes in air temperature 

throughout the day, a time series of both air temperature (measured from the rock face weather 

station) and rock face temperature (measured by the pyrometer) were cross-correlated. While 

these measurements do not exactly match the 10 month rockfall monitoring period, they provide 

an overall indication of the response of the rock mass to changes in air temperature. The pattern 

of rock face temperatures matches that of the air temperature (Figure 6.19). During the summer 

months, the disparity in temperature between the air and rock mass is greatest, between ca. 5°C 

– 15°C during the daytime, but the overall patterns of rock face temperature match that of the 

air temperature. Diurnal temperature variations within the rock mass are of the order of 1°C – 

3°C, with the greatest variation for both occurring during the summer months.  

Figure 6.18: The occurrence of rockfall, accumulated by the hour of the day within which each 

rockfall occurred. Average positions of sunrise and sunset are shown, highlighting the correspondence 

with peaks in rockfall activity for the small and intermediate size fractions. Overall increases in rockfall 

activity are observed within both of these categories, with the most significant peak corresponding to 

cooling temperatures at sunset. 
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A least squares regression between air temperature and rock face temperature yields a 

direct relationship that includes air temperatures below freezing. A gradient of 0.13 indicates 

that a 10°C air temperature rise is met with an approximately 1°C temperature rise of the rock 

face (Figure 6.20a). At an air temperature of 0°C, the rock face temperature is 6.56°C. While 

this does not account for any moisture that resides within pores and voids within the rock mass, 

this suggests that much lower air temperatures would be required to induce freeze-thaw 

conditions. The strength of the relationship (r2 = 0.94) suggests that changes in air temperature 

directly affect the rock face temperature, and may therefore be used in assessing the influence of 

temperature upon rockfall occurrence. Deviations from a perfectly linear relationship may arise 

due to direct insolation of the rock mass. A cross-correlation analysis between the two variables 

shows that a peak in correlation strength occurs when the time series are offset by 1 h 27 min, 

such that the response of the rock face temperature to air temperature change is lagged. When 

the same approach is used to relate air temperature gradient to hourly resampled rockfall 

throughout the monitoring period, the cross correlation strength is greatest, and becomes 

significant above 2σ, at one hour prior to failure. In addition to the fact that the peak in rockfall 

Figure 6.19: (a) Air temperature and (b) rock face temperature signals used for the cross-correlation 

in Figure 6.20. Weather data began recording on 20th Jan, while the pyrometer ceased to record data 

for a sustained period on 12th September. While these do not correspond exactly to the rockfall 

monitoring period, their relationship to one another is assumed to remain constant. 



C
hapter 6: T

he R
elationship between R

ockfall T
im

ing and T
riggers  

213 

 
 

Figure 6.20: (a) Ordinary least squares regression between air temperature measured by the cliff-top weather station, and rock face temperature, measured by the 

pyrometer. While freezing temperatures are recorded (outside the rockfall monitoring period), the rock face temperature remains above 6.56°C. (b) Cross correlation between 

air temperature and rock face temperature, showing a peak in correlation at 1 h 27 min lag. (c) The cross correlation between air temperature and rockfall activity also 

becomes significant between 2 h and 1 h before failure (hourly resampled data). Moreover, this correlation is negative, indicating that cooling temperatures are responsible 

for significant rockfall activity. 
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occurrence matches the timing of the rockfall response to air temperature change, the negative 

correlation indicates that the relationship between the occurrence of rockfall is most sensitive to 

negative temperature gradients, i.e. cooling, as opposed to heating. While this correlation cannot 

be directly assigned as a cause of rockfall, the relationship between the time series of 

temperatures and rockfall affirms the diurnal variability in rockfall probability that has been 

shown. In these results, cooling air temperatures, and thereby lagged rock face temperatures, 

correspond to an increase in the probability of rockfall occurrence.  

The timing of rockfall were further recentred to examine their response to cooling rock 

face temperatures, providing a similar averaging process to the tidal analysis in Section 6.5. 

Figure 6.21: (a) Rockfall frequency binned by its time in hours from the closest sunset. A deviation of 

20.8% above the average occurs between 1 h and 2 h before sunset. In general, rockfall frequency before 

sunset is above the average frequency, while rockfall activity after sunset is below the average. (b) Air 

temperature cooling is on average greatest one hour before failure. The most pronounced cooling 

occurs before sunset, which may explain the disparity in rockfall activity rates before and after. 
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Here, the time of sunset was recorded for each day of monitoring, and the time between each 

rockfall and the sunset derived. Rockfall were examined within seven hours before and after 

sunset, accounting for the minimum hours of daylight recorded during the study period. This 

prevented bias during winter months, where rockfall could not have occurred more than seven 

hours before sunset in the days and weeks surrounding the winter solstice. When binned by hour 

of occurrence from sunset, a peak in the number of rockfall that is significant (p < 0.05), and is 

20.8% greater than the mean hourly rockfall total, occurs within one and two hours before 

sunset (Figure 6.21a). When compared with rock face pyrometer distributions recentred using 

the same approach (Figure 6.21b), this coincides with the second greatest hourly temperature 

change (cooling) that occurs before sunset. A general transition from rockfall frequencies above 

the mean to rockfall frequencies below the mean occurs before and after sunset (Figure 6.22). 

Although temperatures after sunset continue to lower, this cooling effect is less pronounced than 

immediately before sunset.  

 

Figure 6.22: Box plots showing the same distributions as in Figure 6.21. Rockfall activity, accounting 

for variations in the size of each rockfall that occurred, is presented in addition to the number of 

rockfall that occurred. The dots above each whisker represent measurements that exceed 1.5 times the 

interquartile range, and hence greater than the 75th percentile, which may be considered as outliers. 

The median rockfall activities for each hour, represented by the red lines, show a similar pattern above 

and below the median for the entire dataset. 
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 6.6.2 Rockfall size and shape 
   

In addition to the rate of rockfall activity, the size distribution of rockfall through the 

monitoring period is correlated with temperature. By using the magnitude-frequency exponent 

derived in Section 5.8, the size distribution of rockfall for each week is displayed through the 

monitoring period alongside a plot of air temperature measured at the rock face (Figure 6.23). 

An increase in the exponent is evident towards the summer months, during June and July, 

indicating that a higher proportion of small rockfall events occurred during this time period. 

This increase in small events appears to follow the increasing temperatures that occur towards 

summer, and their return to an original background level suggests that, had scanning not been 

interrupted during August and September, the exponent of the magnitude-frequency distribution 

would have decreased in accordance with temperatures. By examining changes to the 

magnitude-frequency distribution using fixed time intervals through time, seasonality in the size 

distribution of rockfall is evident. This highlights the significance of monitoring across multiple 

seasons for the determination of accurate coastal retreat estimates, as initially proposed by 

Barlow et al. (2012). In relation to the mechanisms of failure, it also suggests that fragmentation 

of the rock mass and microcrack growth may be predisposed by thermal induced stresses. The 

role of temperature gradient has been highlighted above and, since the largest hourly 

temperature gradients occur during the summer months, this suggests that temperature gradient 

may be of significant importance in predisposing rock slopes to large rockfall events.  

 

 

 

Figure 6.23: (a) Magnitude-frequency exponent collected using the 7 d change detection dataset and 

plotted through the monitoring period. (b) Mean temperature distribution (with upper and lower 

bounds) for each day of the monitoring period. The overall increase in the proportion of small events 

appears to coincide with warming during the summer months, and returns to a background level that is 

more variable during the winter months. 
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The shape of rockfall was used as a further metric of rockfall sensitivity to temperature 

variation, categorised in Figure 6.24 by the hour of the day within which the rockfall occurred. 

The mean rockfall shape for each hour shows little variation; however, at night (dark blue and 

yellow), the mean shapes tend towards a slab-like form within the Sneed and Folk (1982) plot 

(this difference cannot be tested for significance). Despite this, the two data points that are 

most slab-like in form, having exhibited a more slab-like form, occur at 18.00 and 19.00 and 

hence are proximal to the average timing of sunset. This may support the idea that near-surface 

tensile stresses are generated by thermal induced forcing. 

 
In summary, the collection of high frequency rockfall data has enabled it to be binned 

according to the hour of the day for the first time. An increase in the total number of rockfall 

from the average sunrise to the average time of sunset shows that rockfall activity increases 

throughout the day, with a significant peak that occurs during the hours of sunset. A cross-

correlation of rock face and air temperature shows that rock face temperatures are most 

sensitive to air temperature change within approximately 1.5 h. When the air temperature is 

related to rockfall, cooling air temperatures showed a significant correlation with rockfall 

activity. When the timing of rockfall is considered in relation to the timing of each sunset, both 

the number of rockfall and the rockfall activity is higher before sunset than after sunset, with a 

considerable increase in rockfall activity between one and two hours beforehand. This decrease 

Figure 6.24: Sneed and Folk (1958) ternary plot. No clear trend in rockfall shape can be observed by 

hour of day; however, more slab-like forms occur between 18.00 and 19.00.  
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relates to the period of greatest cooling. While previous studies have monitored damage 

accumulation by acoustic emission (Eppes et al., 2016) and joint widening (Collins and Stock, 

2016), this analysis represent a similar process over the entire rock slope face, if the detachments 

here are viewed as components of larger, developing failures. 

 

6.7 Summary 
 

The analysis in this chapter supports many relationships that have only previously been 

hypothesised, but equally raises many additional questions and ideas about the controls on 

rockfall, both as preparatory factors and as triggers. A relationship between onset of more 

frequent storms and an increased rate of rockfall activity is apparent in the months of November 

and December. During individual storm events, up to 10% of the total erosion can occur within 

the space of several hours. This suggests a direct link between rainfall and rockfall occurrence; 

however, linear relationships between the two yielded only marginally significant relationships. 

Given the emphasis placed on the interaction between preparatory factors and triggers of failure 

presented in Chapter 2, this is perhaps unsurprising. More significant relationships were 

obtained when the signal of rainfall accumulation and rockfall activity were compared, than 

when the signal of rainfall intensity was used. This suggests that some saturation of the 

sandstone is required to trigger the detachment of material from the rock face, through both 

elevated pressures and a reduction in frictional resistance along discontinuities. Both rockfall 

and slumps of loose material appeared to fail after similar thresholds of rainfall intensity and 

duration were exceeded. While this may reflect the characteristics of rainfall events in this 

setting, it also implies that the response of the rock face to rainfall is non-linear and inherently 

complex.  

In Figure 6.25, the complexity of the response of the rock face to rainfall is evident. 

Here, the rockfall volume recorded in each scan, alongside the number of rockfall is recorded 

alongside rainfall and other exogenic conditions for the period 16th December- 31st December. 

Peaks in rockfall activity can be observed in (a) periods in which no rainfall or apparent 

‘trigger’ occur, (b) times that occur shortly after (hours – days) rainfall events, and (c) rockfall 

that coincide with storm events. The most rockfall activity occurs during 25th – 27th December, 

during rainfall that was less intense than previous events but accumulated ca.  20 mm. This 

reinforces the suggestion that the rock face is more sensitive to accumulation than intensity, 

which may reflect the high porosity of the sandstone beds and the importance of ground water 

flow at depth, but also highlights the complexity in constraining the influence of rainfall.  

The collection of data at sub-hourly time intervals has allowed rockfall to be examined 

with respect to their position within each tidal cycle. For rockfall < 1 m3, the probability of 

failure showed no variation through the tide cycle. This suggests that the influence of marine  
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Figure 6.25: Rockfall can occur during (a) periods in which no rainfall or apparent ‘trigger’ occur, 

(b) times that occur shortly after (hours – days) rainfall events, and (c) rockfall that coincide with 

storm events. Peaks in rockfall events across the cliff face adhere to all three of these timings with 

respect to rainfall. The largest increase in rockfall activity occurs during sustained rainfall that 

accumulates ca. 20 mm within 24 h, suggesting that in this setting, the porosity of sandstone is such 

that rainfall accumulation is of greater importance than its intensity.   
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conditions does not necessarily prepare the slope for failure by damage accumulation of the rock 

mass through small rockfall. However, while only 17 rockfall > 1 m3 were recorded, these events 

showed a probability at high tide that was twice that at low tide. Furthermore, linear 

regressions between the maximum tide height and significant wave height, and the occurrence of 

rockfall > 1 m3, constituted some of the few significant relationships obtained. This may be 

partially explained by the fact that some of the largest rockfall occurred at the base of the cliff.  

The collection of high frequency data has also enabled an examination of rockfall 

activity with respect to the time of the day and, by implication, temperature gradient. While 

similar studies have examined damage that is accumulated through thermomechanically induced 

microcracking (Eppes et al., 2016) and joint widening (Collins and Stock, 2016), this chapter has 

for the first time provided insights into the temporal distribution of rockfall across a cliff face 

with respect to temperature change. This showed a considerable increase in rockfall activity 

(> 20% above the mean hourly rate) during maximum daily cooling between one and two hours 

before sunset. This corresponds to peaks in damage accumulated in both of the aforementioned 

studies. Moreover, Eppes et al. (2016) observed that the high levels of microcracking during 

falling air temperatures occurred at the near-surface. This corresponds to the shallow depth of 

rockfall identified in Chapter 5. Given that slab-like shapes have been found to be most 

predominant for small detachments, near-surface microcracking during cooling may also explain 

why the sunset peak in rockfall timing is apparent for all volume fractions, but is most 

pronounced for rockfall < 0.1 m3.  

The creation of magnitude frequency relationships through time represents the first use 

of such an approach, and supports the suggestion that small rockfall are predisposed by 

temperature variation to a greater extent than large rockfall. The analysis here has shown that 

that the proportion of small rockfall events within the inventory increases towards the summer 

months, and decreases to a background rate during autumn and winter. During June and July, 

the diurnal temperature ranges are higher than during any other month of the year, implying 

that small rockfall are predisposed by above average cooling of the air and rock mass. In 

Chapter 7, the occurrence of small rockfall in the footprints of future, larger events is examined. 

If small rockfall are shown to precede larger failures, then the analysis in this chapter implies 

that thermomechanical forcing of the rock mass predisposes failure by material detachment. 

This may represent fragmentation of the rock mass, including the failure of intact rock bridges. 
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Chapter 7 

Patterns of Pre-Failure 
Deformation and Rockfall

 
 

7.1 Introduction 
 

Chapter 2 presented existing research into rock slope failure forecasting that draws on pre-failure 

displacements, with particular emphasis on the Fukuzono method and ‘Saito’ linearity (Saito, 

1965; Fukuzono, 1985; Federico et al., 2012). In addition to pre-failure displacements, other 

expressions of strain accumulation have been documented (Amitrano et al., 2005; Helmstetter 

and Garambois, 2010; Burjánek et al., 2012). These include precursory rockfall activity, spalling, 

and micro-seismic activity. Royán et al. (2015) observed that both the evolution of rockfall (pre-

failure rockfall activity) and the displacement of a rock face (pre-failure deformation) reflected 

the hyperbolic increase in deformation rates characterised by Saito linearity, prior to a large cliff 

collapse in Catalonia, Spain. However, this was inferred from surveys separated by an average of 

104 days, and therefore requires a developed understanding of the timescales over which 

accelerating strain rates occur, the cumulative displacements and associated velocities involved, 

and more generally the controls over this behaviour. Although this study has recorded relatively 

small rockfall (μ = 0.0169 m3), the application of sub-hourly scanning presents a unique 

opportunity to capture patterns of precursory deformation prior to failure at timescales as fine 

as hourly, daily and weekly. In addition to characterising the tertiary phase of failure, described 

in Chapter 2, measurements of displacement within yet-to-fail rockfall footprints enable a 

comparison between patterns of precursory deformation and contemporaneous weather 

conditions. Assuming that failures in this setting conform to Bjerrum’s (1967) model of time-

dependent strain, this analysis will allow an examination of the causes of, and timescales over 

which, the transition between secondary and tertiary phases of deformation occur.  

In Chapter 6, the timing of rockfall occurrence was examined with respect to both 

marine and weather conditions. Linear regressions using high frequency, time-averaged rockfall 

and weather data yielded low coefficients of determination, highlighting the complexity of the 

relationship between the two. This arises due to the importance of preparatory factors, such as 

thermomechanical stresses, but also because a time lag may exist between the onset of triggers 

and the timing of final failure. In laboratory testing of samples (for example, Petley et al., 2005) 

the offset between fluctuations in pore water pressure and the timing of final failure is 
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punctuated by internal deformation, such as hyperbolic microcrack growth. Prior to rockfall, 

hyperbolic accelerations in strain rate may manifest at the surface through the widening of 

joints or fragmentation of the failing mass. However, due to the spatial and temporal resolutions 

of previous studies, this remains poorly constrained. In this chapter, deformation of the rock 

mass at a temporal resolution of hours and days prior to failure, which incorporate potential lag 

durations, is examined. 

The chapter begins by addressing the influence of the Level of Detection (LoD) in 

monitoring precursory displacement (Section 7.3), before considering its sensitivity to the length 

of the monitoring interval. This analysis shows the significant benefits of high precision, high 

frequency scanning for detecting patterns of accelerating deformation. Based on precursory 

rockfall activity from a selection of the largest rockfall in the database, high frequency 

monitoring at time intervals below four to seven days identifies more precursory rockfall activity 

than monitoring over epochs greater than two weeks. Subsequent analysis on a subset of the 

largest events shows that each rockfall was preceded by at least one detachment within the 

footprint of the final failure within ca. 100 h of failure. The approach developed to analyse 

accelerating displacement and inverse velocity is then described, followed by results attributed 

to two separate failure modes on the cliff; slumps and material detachment through rockfall. 

The chapter concludes by drawing upon environmental data in Chapter 6, in order to assess the 

relationship between the nature and onset of accelerations toward failure, and the timing of 

energetic tide and weather conditions.  

 

7.2 The influence of the Level of Detection 
 

In this section, the ability to detect pre-failure deformation is examined with respect to 

the LoD that has been applied. This LoD censors change beneath ±0.03 m, and therefore has 

the ability to remove pre-failure deformation within the rockfall scar if it is below this scale. 

However, since the applied LoD accounts for the 95th percentile of change observed across each 

surface (> 200 m across), this value is potentially considerably higher than the scale of 

deformation able to be detected across many areas of the cliff. Previous research into 

deformation prior to the failure of vertical rock faces has centred upon back analysis of large 

rockfall events. Rosser et al. (2007b) showed that monthly accelerations were evident prior to 

events of 18.9 - 2 614 m3 in volume. Royán et al. (2015) recorded total displacements of up to 

0.40 m for a 1 012 m3 rockfall. In general, these rockfall are between one and three orders of 

magnitude larger in volume than the maximum-recorded volume in this study. Critical levels of 

pre-failure strain in brittle materials have been estimated at ca. 3% (Petley et al., 2005); it 

therefore follows that for smaller events, the magnitude of precursory deformation reduces, and 

approaches the scale of natural variability in slope movements through dilation and contraction 
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along joints and or the instrument error. As discussed in Section 2.3.3, from a mechanical 

perspective a minimum rockfall size may also exist, below which a rockfall is unable to generate 

strain prior to failure. Rosser et al. (2007) showed a direct relationship between precursory 

rockfall activity within incipient rockfall scars, and the volume of the resulting rockfall.  

In Chapter 4, a methodology was developed to minimise this error and allow the 

delineation of small rockfall events from binary images. These images distinguished areas of 

change greater than the LoD (±0.03 m) from areas of noise. However, the application of this 

single threshold across all of the change detections resulted in the omission of some rockfall 

pixels (Section 4.11). These pixels exhibited displacements below ±0.03 m but were contiguous 

with pixels above the LoD that were delineated as a rockfall. Visual inspection of many such 

instances illustrates that while the 0.03 m LoD is necessary for first-order delineation of rockfall; 

many pixel values below this value also represent change greater than the instrument precision 

or natural variability.  

In order to test the influence of the LoD on the ability to detect precursory deformation, 

a short video clip was made for the largest 30 failures within the inventory, showing change 

within the failure scar leading up to failure, without the application of a LoD. For those failures 

with an observed increase in activity towards failure, an inverse-velocity plot (Rose and Hungr, 

2007; Dick, 2013; Royán et al., 2015) was created using change from within the incipient failure 

scar. This inverse-velocity plot was then created for each failure, but with an increasing LoD 

applied.  

Figure 7.1 shows a series of inverse velocity plots created for the same 6.26 m3 failure on 

the cliff, representative of failures with appreciable precursory activity. For all pixels within the 

incipient failure scar, the mean displacement was recorded at 30-minute intervals over four days. 

Each plot was created using pixels selected based on a varying LoD, beginning with 0.000 m (no 

threshold applied) through 0.006 m increments to 0.030 m (the LoD for rockfall delineation). 

While the nature and physical implications of these inverse velocity plots are discussed in detail 

in Section 7.7, two distinct differences in pattern can be observed. First, as the time to failure 

decreases, the convergence of inverse velocity estimates is greater when lower change detection 

thresholds are applied. This convergence reflects an increasing signal-to-noise ratio whereby 

larger displacements approach and exceed the instrument noise, and is a key indicator of the 

point at which accelerated deformation becomes detectable. Second, inverse velocity estimates 

using no LoD exhibit linearity in the final phases of failure that is not replicated when 

thresholds greater than 0.006 m are applied. This suggests that displacements exceed the true 

level of measurement noise within at least the final hours before failure but remain below the 

0.03 m LoD. For higher LoDs, therefore, gaps in the data occur in which no significant 

movement is detected.  
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Figure 7.1: Inverse velocity plots created for a 6.26 m3 failure, using varying LoD thresholds defined 

by the values at the bottom-left of each plot. Inverse velocity estimates represent the mean of all pixels 

within each failure scar. As the LoD increases, an increase in data gaps occurs as displacement 

measurements fall below the LoD. Convergence and rapid acceleration towards failure is evident when 

the raw measurements are used. The increase in inverse velocity measurements above the abscissa axis 

is likely to reflect a systematic bias in the alignment between surveys. 
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Where displacements are examined within this chapter, the raw measurement data is 

used. While this has the effect of preserving noise within the time series, it enables the 

identification of acceleration patterns in both rockfall and slumps that would otherwise remain 

undetected. Furthermore, convergence in the inverse velocity behaviour can be detected, 

allowing the identification of the time at which strain rates accelerate. 

 

7.3 The influence of monitoring interval 
 

In this section, the influence of monitoring interval upon the ability to detect and 

monitor progressive evolution of rockfall scars is assessed. Rockfall have been examined using 

change detections derived over different time intervals, Tint, drawing on the same change 

detection data that was used for magnitude-frequency analysis in Chapter 5. These intervals are: 

< 1 h, 3 h, 6 h, 12 h, 24 h, 4 d, 7 d, 14 d, and 21 d. The largest 30 rockfall (V > 0.2643 m3) 

were selected from the < 1 h inventory, representing data acquired scan-by-scan, and 

subsequently identified within each database. For each rockfall, a square polygon was 

established with a minimum length greater than the largest rockfall dimension, which fully 

enclosed the final failure scar. All rockfall within this square were recorded for every change 

detection at each Tint. 

While the same square polygon was used to compare change identified at each Tint, 

defining a consistent duration over which to compare pre-failure rockfall activity was more 

complex (Figure 7.2). First, isolating change detections of varying Tint within a fixed time before 

Figure 7.2: Conceptual diagram of the complexity in comparing pre-failure rockfall activity between 

inventories of varying Tint. A fixed time window of 25 days before failure is selected (A). With the 

exception of the very first scan pair of the monitoring period (5th March 2015), the scans that 

constitute the scans pairs of different Tint are not synchronised. As a result, a change detection of 

Tint = 14 d (B) may span a different time period to a change detection of Tint = 21 d (C), even though 

they both begin within the 25 d fixed interval. In this instance, pre-failure rockfall activity has been 

recorded in the Tint = 14 d change detection, but not the Tint = 21 d. For the 21 d inventory, 

recording this precursory activity would require a scan pair that falls outside the 25 days before failure 

(from 9th November to the 4th December).  
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the rockfall event does not ensure that each change detection reports rockfall that occur at 

similar times. For example, considering a rockfall that is identified in the < 1 h dataset on 6th 

December, a fixed duration of 25 d beforehand (11th November) is guaranteed to include at least 

one Tint = 21 d scan pair. However, the first component scan may have occurred at any point 

within this 21 d period. For example, the 21 d change detection may begin on 4th December and 

end 21 days later on 25th December. Conversely, a Tint = 14 d change detection may begin on 

29th November and span until the 13th December. While both the Tint = 14 d and Tint = 21 d 

change detections are found within a fixed number of days before the rockfall event, a direct 

comparison between the pre-failure rockfall captured within these datasets is complex. As a 

compromise, a large 50 d duration was applied to ensure that more than one Tint = 21 d change 

detection was included beforehand. As a result, a Tint = 21 d change detection beginning the 

day before the rockfall, and ending 20 days after the rockfall was not the only dataset for 

comparison. The date of the first 21 d scan of this period was recorded, and only those 

Tint < 21 d change detections that began after this date were used. As such, while this does not 

eliminate variation in the possible dates over which change detections were made, it minimises 

the impact to the greatest possible extent.  

The second complexity is that many of the largest rockfall occurred in the final weeks of 

the monitoring campaign, during December 2015. As a result, it was not possible to capture 

these in the 14 d and 21 d databases. For this reason, neither the 30 d nor 90 d change 

detections were examined. This differs from the magnitude-frequency analysis in Chapter 5, 

which only included rockfall up to the end of November. 

For each measurement interval, rockfall were identified and plotted as shown in Figure 

7.3. The total rockfall area was used to compare the rockfall activity identified by each 

monitoring interval, as this measure accounts for the area of the final failure in addition to 

small, precursory rockfall that are eventually superimposed. Conversely, the combined volume of 

the final rockfall and any precursory rockfall that occurred within its detachment scar is equal 

to the final rockfall volume alone, plus or minus the volumetric uncertainty of each precursor. 

The total volume, therefore, does not serve as a representative indicator of rockfall activity for 

comparison of monitoring over different timescales. For each of the 30 rockfall, the area of 

activity was recorded for the nine monitoring intervals. This was also normalised against the 

maximum-recorded area, producing a value between 0 and 1. The mean normalised area was 

then plotted for each scan interval to provide an indication of the level of rockfall activity 

measured. A sample of the results is described below, with further examples provided in 

Appendix C. 

Figure 7.3 shows precursory detachments measured over different Tint. The final failure 

scar is displayed as the red polygon in the centre of each window. For < 1 h scan interval, many 

small detachments occur within the same pixels through the monitoring period. As these  
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Figure 7.3: Scar growth for a rockfall. The colour bar is applicable to the < 1 h dataset only, given 

that change detections at greater intervals are not synchronised. Pre-failure rockfall activity occurs at 

the upper boundary of the rockfall. This activity is missed for monitoring intervals > 7 d. Successive 

detachments that occupy the same pixels reflect changes to the rock mass that occur beneath the 0.15 m 

cell size, suggesting that the dominant control on failure may be fragmentation of the rock mass. 
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detachments are derived by rasterising point clouds of change, multiple failures within the same 

pixel represent spatially contiguous material release over areas of less than 0.15 × 0.15 m, the 

cell size used to interpolate the point clouds. Many of these detachments occur at the top of the 

incipient rockfall scar and, as such, they may reflect the presence of higher levels of tension in 

than the surrounding rock mass. The overall result is that a considerable increase in the number 

of precursory detachments is recorded using high frequency monitoring. The absence of rockfall 

polygons for the 14 d and 21 d monitoring intervals reflects the fact that the rockfall occurred 

four days before the end of the monitoring period. In instances where the final rockfall scar was 

not detected, data from these monitoring intervals were not considered when estimating 

normalised estimated areas, and therefore have no influence upon the results presented in Figure 

7.6.  

In Figure 7.4, a similar pattern to Figure 7.3 can be observed, in which detachments at 

the top of the rockfall polygons occurred prior to failure. These detachments may indicate a 

release of strain accumulated within the rock mass prior to toppling, and highlight the role of 

rear release surfaces in predisposing wedge failures (Brideau and Stead, 2009). In Figure 7.5, 

precursory basal damage through rockfall (dark red) occurs approximately two weeks before 

erosion breakout (coloured as blue in < 1 h plot). This is detected by monitoring at all but the 

21 d interval, which integrates this rockfall into the scar of the final failure event. 24 hours 

before the final rockfall, however, a 2.38 m high detachment occurred at its base (red). The 

pattern of precursory failures here suggests a redistribution of stress up the rock mass, and a 

progressive loss of support at the base of the failing mass. Due to its occurrence shortly before 

the time of final failure, this event was not observed using rockfall monitoring > 24 hours. 

This section has so far shown the existence of precursory rockfall activity prior to some 

of the largest rockfall recorded over the monitoring period. As presented in Figure 7.5, when the 

total failed area is normalised for each rockfall, the activity detected decreases with scan 

interval. Visual inspection shows that this relationship is derived from precursory spalling of 

material that superimposes into the resulting failure scar. For 4 d < Tint < 7 d, more frequent 

monitoring results in the detection of a greater amount of rockfall activity, whereas monitoring 

above this time period yields far less variability in change estimates. This data bears a 

considerable resemblance to the exponent of the magnitude-frequency relationships derived for 

the same range of rockfall inventories in Chapter 5. In Chapter 5, this transition was drawn 

upon to support the concept that rockfall evolve through a process of fragmentation of the rock 

mass over the timescales, rather than as instantaneous events. While the magnitude-frequency 

distributions are representative of the sizes of all rockfall that occurred within the 10-month 

monitoring period. Figure 7.6 instead represents case studies of individual rockfall events, 

showing that the pattern of increased rockfall activity when monitored at higher frequencies 

captures characteristic accelerated rockfall activity prior to failure, only observable at this finer  
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Figure 7.4: Scar growth using change detections over a 5 d period prior to failure. The estimated 

area is lager for the < 1 h and 3 h datasets, than for datasets of larger monitoring intervals. As in 

Figure 7.2, precursory rockfall activity occurs at the periphery of the incipient rockfall but is 

incorporated into the final failure scar > 3 h. 
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Figure 7.5: Scar growth for a rockfall over a 16-day period. A similar pattern emerges whereby the 

estimated area of precursory activity is greatest for more frequent monitoring. A small rockfall at the 

base of the incipient failure occurred two weeks earlier, and was therefore recorded in all but the 21 d 

dataset. An upward propagation of rockfall becomes evident for monitoring intervals < 4 d.  
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timescale of monitoring. While the spatial progression of rockfall activity has been demonstrated 

(Rosser et al., 2007a; Abellán et al., 2010; Royán et al., 2015), the above result suggests that in 

a number of studies at monthly monitoring intervals monitoring over shorter intervals can 

distinguish pre-failure rockfall activity that is otherwise aggregated as a single failure. The 

spatial distribution of pre-failure detachments showed a tendency for deformation at the edges 

of a developing, incipient rockfall. This could indicate the need for rock bridges to be broken to 

provide release. Using high frequency scanning, movements were recorded within these areas, 

often within the same pixel, during multiple monitoring epochs. This suggests that many of 

these detachments are small, below the 0.15 m pixel size, and may represent spalling of material 

from the rock face. The complex shape of each precursory rockfall and the variability in their 

size may reflect rock bridge breakage between different scales of fractures, such as 

microfracturing and jointing), in addition to step-path release mechanisms (Sturzenegger and 

Stead, 2009b). 

 

Figure 7.6: Precursory rockfall activity, measured as the normalised estimated area for each rockfall, 

plotted against the interval of each change detection (log axis). In instances where the incipient rockfall 

was not identified (if it occurred within 21 d of the end of the monitoring period), the estimated area 

was not drawn upon for use in this plot. Below approximately 4 d – 7 d, more frequent scanning yields 

an increase in observable pre-failure activity, indicating that the 30 individual rockfall events examined 

fail within this period of time. This mechanism resembles the variation in size distribution of the entire 

databases, presented in Chapter 5. 
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In addition to rockfall, a number of slumps were observed along the convex upper 

portion of the buttress (Figures 7.7 and 7.8). As with analysis of pre-failure rockfall activity, 

losses of material from these slumps exemplify relationship between monitoring interval and the  

Figure 7.7: Scar growth for the largest observed slump monitored at varying timescales over a six-

week period. Pre-failure activity is again shown to increase when monitored more frequently. Here, 

precursory detachments appear to occur at the base of the incipient failure (red), suggesting a removal 

of support and lowering of resistance to failure.  
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Figure 7.8: Pre-failure detachments from within the third largest slump, monitored at different 

intervals over a six-week period. Spatial clustering of pre-failure activity is evident and much of this 

activity is missed by monitoring at time intervals > 4 d – 7 d.  



Chapter 7: Patterns of Pre-Failure Deformation and Rockfall 

 

234 

detection of precursory displacements. Within the incipient failure scars, precursory activity is 

less preferentially distributed at the edges of the failure scar than for rockfall. Nevertheless, 

these precursors form a similar spatial clustering, again suggesting that the aerial extent of some 

contiguous deformation is below the 0.15 m cell size. The omission of many of the smallest 

events using longer interval monitoring is also evident. 

 

7.4 Inverse velocity analysis 
 

This section outlines the methods used to analyse precursory displacement patterns for 

both rockfall and slumps from the rock slope and the lower edge of the buttress. For each 

failure, the IDs of pixels within its scar were recorded and examined for the previous seven days. 

Dick et al. (2015) proposed a pixel selection criterion, whereby the pixels used for inverse 

velocity regression were those contiguous with the pixel of maximum displacement, as well as 

exhibiting deformation greater than 50% of the maximum displacement. This was applied as an 

alternative to random pixel selection for radar monitoring of bench-scale failures in open-pit 

slopes, with the advantages of decreasing noise in the dataset and increasing the emphasis of 

inverse velocity on the zone of maximum failure likelihood. With far less understanding of the 

timescale and magnitude of displacement that precede smaller rockfall at this site, the 50% 

deformation technique has the potential to average out or omit patterns of precursory 

deformation within some areas of the failure scar. Furthermore, unlike radar, the TLS used in 

this study has enabled far more spatial detail in the delineation of the rockfall scar, here to 

within ±0.15 m for each boundary pixel, reducing uncertainty in the process of pixel selection. 

Indeed, in case studies of rapid brittle failures (defined as events in which acceleration only 

occurred within five hours of failure) inverse velocity analysis using the 50% deformation 

technique failed to yield clear patterns of Saito linearity (Dick, 2013). In this study, the mean 

displacement for each change detection was estimated using the values of change in every pixel 

within the final failure footprint. The mean value was used in order to account for both negative 

change via rockfall occurrence, and positive change via displacement of the surface through, for 

example, tension crack expansion. 

Plots of cumulative displacement were created for each failure scar for seven days and 

24 h before failure, an example of which is shown in Figure 7.9. The time over which successive 

change detections occurred varied between approximately 20 minutes and 30 minutes, but 

increased if scans had been removed due to rainfall. These intervals were used to calculate 

velocity from the non-cumulated displacement data, enabling plots of its reciprocal, inverse 

velocity, against time. As with the cumulative displacement data, these plots were constructed 

for both the 7 d before failure and the 24 h before failure.  
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The onset of acceleration refers to the time step at which accelerated displacements 

begin (Mazzanti et al., 2015). Using the Fukuzono (1985) method, this is typically manifest as 

the beginning of a straight line towards failure in inverse velocity-time space. In order to 

forecast failure timing, this line is extrapolated to the point at which inverse velocity is zero. 

User-selection of this point is subjective and therefore presents uncertainty in the number of 

subsequent measurements through which to regress and, hence, the timing of incipient failure. In 

this study, the onset of acceleration is interpreted as the point of transition from secondary to 

tertiary phases of creep, beginning at the time step at which inverse velocity estimates converge 

Figure 7.9: An example of the plots used to describe deformation through creep prior to failure. (a) 

Cumulative displacement over a seven-day period. By cumulating the displacement, the overall trend in 

strain accumulation is more easily distinguished and the total precursory creep can easily be estimated 

as the difference in cumulative displacement between the onset of acceleration and the final 

measurement before failure. (b-c): Inverse velocity data over a 4 d and 1 d period. (d) Reverse 

cumulative variance used to identify the onset of acceleration and successive phases of varying 

displacement rates for Figure 7.9a. 
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towards linearity. As a statistical indicator of this point, the reverse cumulative variance, RCV, 

of inverse velocity measurements was calculated when points were iteratively added working 

backwards from the time of failure: 
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 [Eq. 7.1] 

 

where V is the variance, N is the number of measurements, and μ is the mean of the sample. 

Figure 7.10 represents synthetic inverse velocity data and the resulting RCV, and assumes that 

the measurement interval between each point is the same. At point A, the large increase in 

RCV between three and eight hours before failure reflects the significant variability in velocity 

estimates relative to the sample mean. Here, the sample mean becomes increasingly 

unrepresentative of the inverse velocity estimates, which vary rapidly during the final phase of 

acceleration. Since variance estimation requires a minimum of three points, the variance cannot 

be calculated for the final two measurement points and, as such, onsets of acceleration that 

occur within the final two measurements cannot be identified. Phase B is characterised by 

increasing RCV of several orders of magnitude. This represents the transition from low strain 

rates (high inverse velocities) to high strain rates (low inverse velocities) that occurs eight hours 

before failure. This transition is evident in the RCV plot for two reasons. First, the inverse 

velocity estimate undergoes a sudden significant increase. Second, the mean of the sample at 

this point is low due to the small inverse velocity measurements close to failure; the deviation 

from the mean for the 9 h inverse velocity value is therefore high. During phase C, the pattern 

is stable as the mean of the sample approaches consistently high inverse velocity measurements. 

In the synthetic inverse velocity data, displacements oscillate above and below zero, which is 

symptomatic of measurements close to the instrument precision. This does not affect the overall 

cumulative variance pattern because the variance of a sample provides only positive values, and 

is therefore suited to small displacements that precede rapid brittle failure. However, the small 

break in gradient is indicative of small increases in velocity (decreased inverse velocity) that are 

sustained towards failure. As presented in Section 7.7, the timing of these small but nonetheless 

appreciable increases in velocity relate to the occurrence of individual rainfall events and are 

identifiable using the RCV.  

 

7.5 Precursory acceleration in slumps 
 

Precursory movements in slumps observed at the top of the buttress are presented in 

Figure 7.11. All of these slumps occurred in the months of November and December 2015 and 

formed resulted in > 1 m3 of material loss. Since no movement was observed between seven days 
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and 24 hours prior to failure, the cumulative displacement for the final 24 h is presented in 

Figure 7.12. In six of the eight events, an increase in total displacement can be observed during 

the final six hours of failure of the order of 0.002 m – 0.012 m. Each individual displacement 

falls below the 0.030 m LoD applied for the delineation of rockfall events, highlighting the 

importance of examining displacements below this threshold.  

 
Inverse velocity data is presented in Figure 7.13 for both the seven day and one day periods. 

The deformation measurements produce both positive and negative inverse velocities that occur 

around zero. While larger displacements and higher precision monitoring may have reduced this 

pattern, it may represent the presence of both backward and forward displacements through 

creep and subsequent material detachment. While some successive measurements shift from 

negative to positive inverse velocity, and sometimes approach zero, the smallest inverse velocity 

values, of the order of 1 × 103 s m-1, are consistently measured at the time of failure. For all 

events, the inverse velocity data is most variable further from failure time; however, as the time 

to failure reduces, the inverse velocity estimates begins to converge.  

To provide a more detailed assessment of the nature of these accelerations, Figure 7.14a 

presents the displacement and inverse velocity data from Slump 2 (defined in Figure 7.11). 

Linearity in the acceleration pattern begins in the final two hours before failure, while inverse 

Figure 7.10: (a) Synthetic inverse velocity data, simulating an acceleration in creep that follows a 

background rate oscillating above and below zero, simulating variation within the instrument noise and 

natural variability in slope displacement. Red line indicates onset of acceleration, as velocity increases 

and inverse velocity converges to linearity. (b) Reverse cumulative variance, RCV, which measures the 

variance of increasing numbers of measurements, working from right to left. The time at which 

cumulative variance decreases over several orders of magnitude is presented represents the onset of 

acceleration. Grey line indicates the cut-off in the number of measurements prior to failure, below 

which reverse cumulative variance cannot be estimated. 
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Figure 7.11: Slumps selected for analysis (> 1 m3). Colours represent the volume of final failure and are replicated in subsequent plots of cumulative displacement, inverse 

velocity, and cumulative variance  
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velocity patterns begin to converge significantly at around 6 h. This duration corresponds with 

other previously published research into cumulative deformation trends in open pits (Rose and 

Hungr, 2007; Dick, 2013). 

 
In Figure 7.14b, the convergence of inverse velocity estimates is approximated by the 

red-dashed line. A number of possible explanations for this convergence exist. First, as 

displacement rates increase, the magnitude of movement in each epoch approaches and 

ultimately exceeds the approximate instrument noise and natural background variability in rock 

face movement. Second, the direction of movement becomes dominant in one particular 

direction, and the resulting mean velocity, which is directional, begins to align. The transition 

from negative to positive inverse velocity measurements, for example, may reflect a shift from 

loosening and removal of material to forward movement of the entire incipient mass prior to 

failure. This may relate to the removal of rock bridges and subsequent release by sliding.  

The RCV plotted in Figure 7.16 is stable between seven and two days for seven of the 

eight events. The onset of failure for each can be identified within the final six hours before 

Figure 7.12: Cumulative displacements for the slumps in Figure 7.11 over a 24 h period Accelerations 

typically occur within the final 6 h of failure, characteristic of rapid brittle failures observed in open pit 

environments. Cumulative displacement drops in Failure 5 (see Figure 7.12) as this event occurred in 

multiple stages, captured over the period of an hour. 
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Figure 7.13: Inverse velocity for material slumps over a seven-day period. While some inverse 

velocity measurements extend outside of the range of the y-axis, these are points in which almost no 

change occurred and hence high magnitude inverse velocity estimates were recorded. Consistent shifts 

between positive and negative inverse velocity values are also indicative of small changes, which may 

fall beneath the monitoring precision. Convergence of inverse velocity estimates, representing an overall 

increase in displacements that approach or exceed the instrument precision, occur after ca. 48 h. 
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Figure 7.14: Inverse velocity for material slumps over 24 h. Numbers refer to failure IDs assigned in 

Figure 7.11. 
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Figure 7.15: (a) Inverse velocity and cumulative displacement for the second largest slump, examined 

over the final four days before failure. The final acceleration occurs within 2 h of the failure time. (b) 

A manually delineated envelope of convergence. 
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Figure 7.16: (a) Reverse cumulative variance estimates for the inverse velocity data, measured over 7 

days prior to failure. In some instances, this reflects a near-constant background rate of displacement, 

followed by a sudden decrease in cumulative variance, representative of inverse velocity data that 

decreases to much lower values, and continues to do so over a period of acceleration typically within 6 

h. Some failures undergo sudden displacements that result in multiple phases of creep. (b) Reverse 

cumulative variance over the final 24 h. The variance shows that the onset of acceleration occurs at a 

maximum of 5 hours before failure. Note that variance requires a minimum of three points prior to 

failure. Slump 7 is monitored at reduced frequency, with the result that this minimum of three points 

fall outside of the window of final acceleration. 
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failure, representing a decrease of several orders of magnitude in RCV. For many of the failures, 

in addition to this decrease it is clear that multiple phases of change in RCV can be identified in 

the period prior to failure. This is interpreted as multiple separate phases of pre-failure 

acceleration, all of which occur within the final 78 h before failure. Since the cumulative 

variance provides only a positive value, these phases of movement cannot be directly attributed 

to material detachment or forward creep. However, their presence suggests that a transition 

from secondary creep to tertiary creep may not be instantaneous; in Slump 2, for example, this 

transition may occur over a period of two to three days. 

  

7.6 Precursory acceleration of rockfall 
 

Figure 7.17 displays six rockfall that have been examined in the detail and a reported 

upon in this section. As shown in the cumulative displacement patterns, the overall 

displacements are smaller than for the slumps above, and are of the order of 0.001 m to 0.038 m 

(Figure 7.18). These were initially examined by creating videos of pre-failure deformation, such 

as that provided in Appendix D. However, four of the six rockfall presented show an accelerated 

pattern of displacement before final failure, bearing some resemblance to the tertiary creep 

phase. The overall displacements exhibit far less variability within the final 24 hours than for 

the slumps. While the material that the slumps comprise is brittle, its failure mechanism may be 

ductile and therefore more likely to exhibit on-going deformation and that does not develop into 

a catastrophic failure. Based on the acceleration pattern prior to rockfall, inverse velocity 

patterns are plotted in Figure 7.19 for four of the rockfall in which accelerated displacements are 

observed.  

RCV plots of the inverse velocity data are plotted in Figure 7.20. While inverse velocity 

plots are useful indicators of displacement prior to failure, the reverse cumulative variance of the 

inverse velocity allows changes as a result of displacement and rockfall to be observed. Rockfall 

3 (defined in Figure 7.17) presents multiple phases of movement in the cumulative displacement 

data. These multiple phases of movement coincide with events shown in a map of precursory 

rockfall activity through time in Figure 7.21. Here, multiple initial phases of small movements, 

dark blue, occur prior to the rockfall, accounting for the multiple phases of decreasing RCV, 

which occur during the final 10 hours before failure. The multiple phases in reverse cumulative 

variance of creep prior to rockfall suggest that either a smooth transitions between secondary 

and tertiary creep does not apply for these failures, or that observed hyperbolic accelerations to 

failure, such as runaway microcrack growth (Petley et al., 2005), actually occur in stages. As has 

been shown for rockfall 3, this represents the detachment of blocks from the failing mass. 

Alternatively, it may represent the failure of intact rock bridges within the rock mass, which 

may in turn induce a shift from its fragmentation to deformation. 



C
hapter 7: P

atterns of P
re-Failure D

eform
ation and R

ockfall  

245 

                        
 

Figure 7.17: Rockfall selected for analysis, again coloured by failure volume. 
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An increase in precursory displacement for both slumps and rockfall has been shown 

during the final hours before failure. Figure 7.22 illustrates this observation, showing a positive 

albeit weak relationship between the final rockfall volume and the total precursory creep. The 

total precursory creep was estimated by integrating plots of displacement against time, after the 

onset of acceleration. Hence, larger rockfall appear to be preceded by larger precursory 

deformations than those preceding small failures. This suggests that precursory deformation is 

scale-dependent, and that, had larger rockfall occurred during the monitoring campaign, these 

would have exhibited a greater amount of creep than the events detected here. The intersect of 

this regression implies that rockfall of all sizes will exhibit creep. In reality, this is unlikely given 

that very small rockfall may be of insufficient volume to fragment prior to failure; a minimum 

weight may be required to exceed the tensile strength of the rock mass; or, if the scale of final 

failure is approximately equal to the scale of persistence, then precursors to failure may not be 

permissible beneath the scale individual discontinuities. 

In Figure 7.23a, precursory rockfall activity, which draws on the scan-by-scan rockfall 

inventory and does not include creep within the rock mass, is presented for the largest 30 

rockfall (V > 0. 2643 m3) drawn upon in Section 7.3. This size distribution was selected to 

ensure that rockfall were large enough to encompass precursory rockfall that are detectable with 

the 0.15 m cell size. Mean rockfall activity, RA, measured as the volume per unit area per hour 

Figure 7.18: Cumulative displacement plots for the rockfall. Far smaller displacements are observed 

than for slumps in the same material. 
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(m h-1) is measured for the 28 days prior to each rockfall. Precursory rockfall were defined as 

detachments that occurred entirely within the incipient rockfall scar, or those that contained at 

least one shared pixel. RA was estimated in six-hour bins until failure, reflecting the fact that 

deformation appears to accelerate within this window before failure, and to enable unbiased 

comparison between events that were monitored at varying scan intervals.  

 

 

 

 

Figure 7.19: Inverse velocity plots for the rockfall data show that rockfall also adhere to accelerated 

forward displacement patterns. However, the onset of acceleration occurs only within a maximum of 

three hours before failure. Numbers indicate rockfall IDs assigned in Figure 7.17. 
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Figure 7.21: An example of contiguous rockfall over a three-day period for rockfall 3. Here, small 

rockfall occur before and after the large rockfall in the centre. Close inspection of many of the largest 

rockfall showed similar patterns, in particular of the accumulation of small rockfall events prior to 

failure. This distribution may explain the reverse cumulative variance pattern for rockfall 3 in Figure 

7.20. 

Figure 7.20: Reverse cumulative variance plots for the selected rockfall, again showing that the onset 

of acceleration for rockfall occurs within approximately 3 hours from failure. Two phases of pre-failure 

acceleration are observed for rockfall 3. 
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The rockfall activity is cumulated and normalised by the total activity of each rockfall 

for comparison: 

 

 𝑅𝑅𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑅𝑅𝐴𝐴

∑ 𝑅𝑅𝐴𝐴𝑁𝑁
𝑖𝑖=1

 [Eq. 7.2] 

 

where Rnorm is the normalised rockfall activity in six hour bins from 0-1, RA is the rockfall 

activity within each six hour bin, and N is the total number size hour bins with the 28 day 

period. Having cumulated the data, the line of unity illustrates the divide between activity rates 

that slow prior to failure (above the line unity), and those that accelerate towards failure (below 

the line of unity). Trajectories along the line of unity show a continuous, uniform rate of rockfall 

activity towards failure. Since not all rockfall exhibited precursory activity during the initial 

stages of the 28 d window, the line of unity would not be applicable if each trajectory was 

plotted on a scale of 1-28 days. For example, if rockfall activity began 14 days before failure, the 

cumulative trajectory would always fall beneath the line of unity. As such, each trajectory  

Figure 7.22: Total precursory creep within the failure scars of rockfall, plotted against the rockfall 

volume. While the relationship is weak (r2 = 0.17) a small increase in rockfall creep is observed with 

volume. 
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Figure 7.23: (a) Cumulative rockfall activity, described as the volume per unit area per hour, 

normalised by the total activity for each event. This is plotted against the normalised time to failure, 

which represents the time from the first rockfall within a 28 d period. The distribution of trajectories 

below the line of unity (dashed line) shows that rockfall activity increases prior to failure. (b) Non-

normalised time between failure and most recent precursory rockfall. More than 70% of the sample 

recorded precursory rockfall within 24 h of failure.  
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begins from the time of the first precursory rockfall that occurred within the 28 d period, and 

the value N in Equation 7.2 adjusted accordingly. When normalised, this becomes time 0. Time 

1 represents 30 minutes before final failure, to ensure that only precursory rockfall activity is 

included. 

While not all Rnorm trajectories indicate precursory rockfall activity immediately before 

failure (t = 1), there is always some precursory rockfall activity within the final 20% of the 

monitoring window. In absolute terms, every rockfall scar experienced some form of precursory 

detachment within ca. 100 h of final failure (Figure 7.23b). Of the subsampled rockfall, 70% 

underwent some form of precursory failure within 24 h. While this data reflects a subsample of 

the largest events, this range of time intervals resembles the size distribution analysis 

undertaken in Chapter 5, which highlighted that rockfall may evolve through a process of 

fragmentation and this process is likely to be apparent only below approximately four to seven 

days. This is also consistent with Section 7.2, where it was shown that there is relatively little 

benefit in monitoring pre-failure rockfall activity after this same period. 

All but five of the Rnorm trajectories fall below the line of unity, indicating that while 

rockfall occur within the incipient scars throughout the 28 d period, accelerated rockfall activity 

generally begins within the final 14 d. The trajectories are not smooth and instead increase 

incrementally towards failure, with intermittent periods of zero rockfall activity manifest as a 

zero gradient. Since no monitoring gaps > 6 h occurred within the analysed trajectories (and 

hence, no precursory rockfall were missed), this suggests that rockfall do not increase in a 

consistent manner towards failure. Accelerations in pre-failure activity resemble the exponential 

increase in time-dependent creep during the tertiary phase, shown above and by others (Royán 

et al. (2015). This may reflect a correspondence between damage accumulation through spalling, 

and strain development prior to failure, which is possible a result of the breaking of intact rock 

bridges, which results in material loss and more freely enables creep of the rock mass. The pre-

failure rockfall activity prior to the largest rockfall (blue) exhibits two important patterns. First, 

the acceleration in rockfall activity is high, indicated by pronounced steepening towards failure. 

Second, during this increase, rockfall activity is recorded in almost every time interval. The 

Rnorm represents the rate of rockfall activity within the developing rockfall footprint (volume per 

unit area per hour), not the total volume per hour. As such, this pattern does not occur because 

of a uniform probability in which larger rockfall footprints are more likely to contain a rockfall. 

Rather, the sharp increase in activity for the largest rockfall event suggests that final rockfall 

size is a function of the activity rate of precursory rockfall. 
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7.7 Environmental conditions at time of failure 
 

In this section, the onset of precursory deformation is examined with respect to weather 

conditions, combining the results of Chapter 6. Using near real-time constant monitoring to 

examine this relationship allows an appraisal of the timescales over which deformation in the 

secondary creep phase progresses into accelerated tertiary creep, as well as the timing of this 

progression relative to inclement weather conditions. In Figure 7.24, the cumulative 

deformation, the inverse velocity, and the RCV of Slump 2 is plotted alongside rainfall, wind 

speed, temperature and sea conditions for the week before failure. As described above, as the 

time to failure approaches zero, the inverse velocity estimates converge due to the increasing 

displacement throughout the monitoring period that approaches and exceeds the measurement 

noise. Given that no LoD is again applied to this data, the overall increase in cumulative 

deformation is likely to reflect some variable displacements that occur beneath the instrument 

resolution. However, increases in the gradient of this displacement curve, representing velocity, 

are evident between separate phases of rainfall, delineated by the black vertical lines. These 

increases, which exclude the initial phase with no rainfall and the final phase of acceleration, 

translate to discrete periods of movement with velocity changes from 0.55 mm h-1 to 0.74 mm h-

1 to 1.11 mm h-1. Rainfall therefore acts to ratchet up the velocity of the rockfall in the period 

prior to failure. In all rockfall, a reduction in velocity is never observed. Between the short-

duration rainfall events, overall displacement rates do not appear to change, suggesting that 

damage accumulation within the rock mass may be more sensitive to short-term larger rainfall 

events as opposed to lower magnitude, sustained rainfall. 

During the final hours before failure, the significant increase in displacement rates 

results in a reduction in inverse velocities that approach zero. In relation to both temperature 

and temperature gradient, no obvious changes appear to coincide with either the onset of 

acceleration or final failure. Mean and maximum wind speeds also do not appear to relate to the 

time of failure but it is noticeable that the highest wind speeds during the seven days coincide 

with the onset of acceleration. This may, however, be coincident with rainfall and storm 

conditions. Both the timing of high tide and the timing of peaks in significant wave height 

correspond to the onset of acceleration and the time of failure, despite the fact that neither are 

of sufficient height to inundate or strike at this elevation up the cliff, but it has previously 

demonstrated that wave impacts result in microseismic excitation of the cliff rock mass (Vann 

Jones et al., 2015).  

A noticeable relationship between rainfall and the onset of final failure is apparent. 

Despite this, no rainfall occurred during failure. While rainfall may have resulted in the onset of 

failure, this rainfall was neither the greatest intensity, nor the greatest accumulation event 

observed in the 7 days prior to failure. Two possible explanations may therefore be proposed. 
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Figure 7.24: Slump 2. While rainfall coincides with failure, it does not match the timing of final 

failure. Black dashed lines indicate rainfall events, between which sustained increases in displacement 

rate occur. Decreases in cumulative variance occur at similar times to rainfall events, but do not 

perfectly coincide, indicating a lagged response of the rockface to instantaneous perturbations. 
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First, the overall increase in velocity throughout the seven days may indicate that, although an 

event is required to force the rockface into a final stage of acceleration, this event does 

necessarily need to be highly energetic. Instead, damage may be accumulated by successive 

rainfall events, and require only a small to induce failure. Second, the rainfall that occurred on 

8th November had the largest accumulation; however, it did not coincide with high wind speeds, 

tide heights and significant wave heights that were as large as those at the onset of failure were 

on 9th November. One implication of this is that a combination of environmental conditions may 

be more important for triggering the onset of acceleration than a single high intensity rainfall 

event. Since high tides occur twice a day, establishing with certainty that a causative 

relationship exists between marine conditions and the onset of acceleration, which is not simply 

coincidence, is complex. Furthermore, such combinations are not possible to assess with only a 

limited number of rockfall of sufficient volume to explore such correlations.  

Figure 7.24 also shows the reverse cumulative variance in addition to the inverse 

velocity. The timing of the onset of acceleration can be related to the significant drop in 

variance over several orders of magnitude. Throughout the seven days, breaks in the gradient of 

the cumulative variance are evident in response to rainfall events, highlighting the sensitivity of 

this metric to small, instantaneous shifts in deformation rates. Noticeably, however, the RCV 

appears to be unrelated to any other the environmental conditions within the final hours of 

failure. This, combined with the multiple phases of movement, suggests that fragmentation of 

the rock mass may be accelerated by external forcing; however, the failure of intact rock bridges 

may promote deformation of the rock mass in phases that are independent of external forcing. 

Slump 3 is presented in Figure 7.25 and exhibits final acceleration over a much shorter 

timescale than slump 2 above. As in Figure 7.24, the cumulative displacement increases through 

the period and is divided into four windows, each separated by an individual rainfall event. 

Rainfall appears to have a similar impact to that in the above example, by increasing the overall 

rate of displacement from 0.20 mm h-1 to 0.27 mm h-1 to 0.21 mm h-1 to 0.30 mm h-1, though a 

slight decrease in displacement rate during the third phase occurs. Again, while rainfall precedes 

failure, the final rainfall event coincides with the onset of acceleration, rather than the failure 

itself. Although no direct relationship appears to exist between wind speed and failure, an 

increase in tide height and significant wave height is again apparent, but with significant wave 

heights nearly twice those of slump 2. Rainfall accumulation in the 24 hours prior to failure is 

18.8 mm, compared with the 4 mm recorded for slump 2.  

For rockfall 2, the pattern of deformation is more variable than that for the slumps 

(Figure 7.26). Again, the rockfall occurs at high tide, following the pattern of increased 

probability of rockfall occurrence (V > 0.1 m3) during high tide presented in Chapter 6. The 

rockfall does not coincide with a single rainfall event; however, with each rainfall event there is 

a clear increase in displacement within the rockfall scar prior to failure. Within the black bars 
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Figure 7.25: Slump 3. Here the reverse cumulative variance provides a more accurate assessment of 
the location of the time at which the onset of acceleration occurs, with an order of magnitude decrease. 
While rainfall occurs closer to the timing of failure, these plots again show that rainfall does not 
directly correspond to the timing of failure, suggesting that internal deformation of the rock mass is 
required for final failure. Rainfall does, however, appear to ratchet up the rate of movement, and 
therefore acts as a preparatory factor that decreases the slope’s resistance to failure. In slumps, this is 
most likely due elevated pore pressures and reduced frictional resistance at the shear plane.   
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Figure 7.26: Rockfall 2. Rainfall acts to increase the rate of deformation, suggesting that rainfall can act to 
prepare the slope for rockfall, although it fails to coincide with the timing of failure. Increased rates of 
precursory deformation occur from 4th November, six days prior to failure. A precursory rockfall that 
occurred during rainfall is responsible for the dip in cumulative deformation measurements on 7th November. 
Failure occurs during high tide, mirroring the distribution of rockfall events > 0.1 m3 at high tide described 
in Chapter 6. However, since high tide occurs twice a day and the sample size of such events is small, it is 
difficult to establish whether this correlation reflects a causative effect. The reverse cumulative variance 
shows several small, discrete phases of failure during the final hours, implying multiple phases of final failure. 
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Figure 7.27: Rockfall 3. Rainfall appears to have little appreciable effect on the cumulative pre-failure 

deformation. The reverse cumulative variance again shows multiple inflections towards failure, 

providing a clear estimate of the onset and phases of acceleration that the inverse velocity does not. 

While subtle, these inflections may represent the breaking of intact rock bridges that trigger failure. 
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after the first rainfall event in Figure 7.26, this increase occurs from 0.21 mm h-1 to 0.68 mm h-1 

to 0.72 mm h-1 to 1.20 mm h-1. This is particularly evident following the last rainfall event 

before failure. For rockfall 3 (Figure 7.27), rainfall appears to have a lower impact on the overall 

pre-failure displacement rate; however, the rockfall occurred during sustained rainfall. 

 

7.8 Summary 
 
In this chapter, several observations have been made that serve to develop our understanding of 

the nature and controls upon the precursory behaviour of rockfall and slumps: 

 

(1) Rockfall activity < 0.1 m3 can be observed to cluster spatially within the footprint of 

larger, yet-to-fail rockfall when monitoring at Tint below ca. 4 d – 7 d. This clustering 

often appears at the periphery of the ultimate detachment, suggesting the development 

of tensile stresses and the removal of support from beneath the unstable mass. The 

small scale of these precursors suggests that they are shallow depth and hence may 

occur in response to exogenic forcing. A proposed explanation for this effect is the 

growth of microcracks at the near-surface as a result of thermomechanical stress 

development induced during periods of cooling (Section 6.6).  

(2) The timescale over which precursory rockfall develop mirrors the timescale of 

fragmentation, inferred from the magnitude-frequency analysis in Chapter 5. However, 

while the magnitude-frequency analysis provides an indication of the distribution of 

rockfall volumes over a defined time interval across the entire rock face, the analysis 

presented here has been undertaken using case studies of the 30 largest rockfall events. 

This further emphasises the importance of monitoring below ca. 100 h in order to 

capture the path to failure of rockfall events. More importantly, it suggests that 

accelerations to failure that are driven by internal mechanisms occur over this timescale. 

(3) The rate of pre-failure rockfall activity is not constant, and instead increases towards 

failure. This has been quantified using the rockfall activity, Rnorm. This mirrors previous 

studies of rockfall at far larger time intervals (monthly by Rosser et al., 2007a;b; and 

104 days by Royán et al., 2015).  

(4) In addition to pre-failure rockfall activity, pre-failure creep has been observed prior to 

rockfall. These magnitudes are lower than for slumps, but reflect laboratory simulations 

of increased microfracture growth in brittle failures (Petley et al., 2005). Deformation 

prior to rockfall has also been observed by Royán et al. (2015), but at far larger scales 

(0.40 m) than in this study (0.001 - 0.038 m) and over far shorter periods (several 

hundred days cf. two hours). This suggests that hyperbolic increases in the rate of 

microcrack growth may occur prior to failure, and raises the question of the relative 



Chapter 7: Patterns of Pre-Failure Deformation and Rockfall 

 

259 

importance of creep and rockfall as derivatives of strain accumulation prior to failure. 

(5) While relatively few events have been recorded that are large enough to fail, the 

increase in final failure size with the amount of creep that precedes it resembles previous 

studies containing larger rockfall (Rosser et al., 2007). 

(6) While hyperbolic accelerations to failure have been observed in previous studies, these 

studies have drawn upon surveys separated by much longer timescales. One implication 

of this is that the nature of the final acceleration towards failure is difficult to resolve. 

The use of the reverse cumulative variance (RCV) has shown that, for both rockfall and 

slumps, this process is not necessarily a smooth acceleration towards failure. Instead, 

internal deformations such as the fracture of rock bridges may act to incrementally 

reduce the resistance of the rock mass to failure. Precursory detachments at the edges of 

incipient rockfall could indicate the need for rock bridges to be broken to provide 

release, with the complexity in shape and size of detachments reflect breakage at a 

range of fracture scales (from microfractures to joints). 

(7) The cumulative deformation and RCV patterns have been related to environmental and 

marine conditions. For both rockfall and slumps, these events occur at high tide. This 

can be explained either in support of the enhanced probability of failure for events 

> 1 m3 presented in Chapter 6 or as coincidence, since two high tides per day occur and 

only 30 events were examined.  

(8) The paths to failure of both rockfall and slumps have also been examined with regard to 

rainfall. In several respects, this provides for the first time data that supports previous 

conceptual models of damage accumulation, preparation for failure, and the triggering of 

failure from datasets of far lower temporal and spatial resolution. The occurrence of 

rainfall has shown to be related to the onset of final failure. In other cases the onset of 

final failure occurs days after the most recent rainfall. This suggests that the same two 

rainfall events may or may not induce failure, and that this is a function of damage 

accumulation in the rock mass. The rate of deformation of the rock mass appears to 

undergo a sustained increase after a rainfall event. Therefore, the occurrence of failure 

cannot be considered purely as a function of a trigger event (Krautblatter and Dikau, 

2007). This supports the weak relationships derived by linear regression in Chapter 6.  

(9) Rainfall often does not appear to trigger failure. Instead, it appears to act only to 

trigger the onset of failure. This supports laboratory analysis of brittle failure, in which 

hyperbolic reduction of the shear zone through microcrack growth is irreversible and 

achieved independently of pore pressures. 

(10)  While the acceleration to final failure appears to occur in phases, a straight line is 

formed in inverse velocity-time space. This occurs over a shorter period than for the 

failure of loose material on the buttress, and indicates that first-time brittle failures in 
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general accelerate over shorter periods but still conform to a predictable pattern of 

deformation towards failure.  

(11)  While the LoD is critical in defining the aerial extent of rockfall (i.e. defining which 

pixels can and cannot be considered as noise, beneath the instrument precision), the 

data derived in this chapter appear to show that a signal-to-noise ratio > 1 can be 

achieved using measurements below the LoD. It is likely that this reflects some 

variability in precision across the cliff face and within the series of scans acquired, above 

which the LoD is set.  
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Chapter 8 

Discussion
 

 

8.1 Introduction 
 

The aim of this thesis was to use high frequency continuous monitoring to understand the 

mechanisms and nature of rock slope failure, in conjunction with the role of structural controls 

and external drivers. This chapter describes advances in 4D slope monitoring and the 

understanding of rockfall evolution developed during the study. The aim of the chapter is to set 

the findings of this study within the wider context of (a) the development of 4D monitoring 

techniques, and (b) current understanding of rockfall occurrence. The chapter begins by 

presenting insights into the development of 4D monitoring in the context of a state-of-the art 

review of slope monitoring using TLS (Abellán et al., 2014; 2016), which forms the justification 

for such a system. The research undertaken in Chapters 3-4 has provided a reference for future 

4D monitoring systems based on acquiring, pre-processing and analysing large volumes of time 

series point cloud data.  

Sections 8.3-8.6 present the contribution of this thesis to the understanding of the 

spatial and size characteristics of rockfall, in addition to their sensitivity to rock mass structure 

and environmental conditions. This is followed by an examination of the findings in relation to 

the timescales over which rockfall occur and evolve, culminating in a new conceptual model of 

the controls on rockfall development. The findings discussed are used to directly address the 

research questions outlined in Chapter 1, and which are repeated below: 

(1) Does the previously observed power-law behaviour of rockfall extend to short 

timescales? 

(2) To what extent does the rock mass structure determine the size of rockfall? 

(3) Are environmental conditions significant as triggers of rockfall occurrence and, if so, 

which conditions promote failure? 

(4) Can 4D monitoring detect precursory rockfall or deformation of the rock mass at 

timescales below those previously observed for rockfall? 

 

8.2 4D monitoring of rock slope failure 
 

In a state-of-the-art review, Abellán et al. (2014) highlighted that datasets of high 

temporal resolution, obtained from frequent surveying, are a necessary area of development for 

studies using terrestrial laser scanning to monitor rock slope instabilities. The use of TLS has 
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seen significant advances in range and coverage, capturing wide areas experiencing failure in 

combination with improvements in the accuracy and efficiency with which rockfall inventories 

can now be acquired. The latter is in part a function of improvements in scanner hardware, but 

is also a function of the increased availability of efficient point cloud handling software and an 

increase in users developing algorithms tailored to rockfall acquisition from their own datasets 

(Tonini and Abellán, 2014). The development of new processing techniques or the extraction of 

original insights into rock slope failure are highlighted by Abellán et al. (2016) as a significant 

requirement for future research. The relative ease with which high-quality point clouds can now 

be acquired reinforces a need to develop novel work flows, data treatment, and the 

interpretation of results that inform our understanding of slope instability. In this research, the 

development of a constant near-real time monitoring system, combined with the development of 

methods to interrogate the data collected, presents a step-forward in data collection and analysis 

that to date remains undocumented. In conjunction with observations of the nature of rockfall 

from an actively failing rock slope, this study builds upon and develops the directions for future 

research described by Abellán et al. (2014; 2016).  

Terrestrial laser scanning has enabled the derivation of magnitude-frequency 

distributions of rockfall volume, such that a power-law can be calculated to describe the 

exponential increase in the numbers of increasingly small detachments (Lim et al., 2010; Barlow 

et al., 2012). Improving the ability to discretise the smallest detachments is required in order to 

quantify the net contribution of these events to mass wasting from slopes and to consider how 

they might relate to larger events. Such an understanding is compromised by the ability to 

discretise these detachments in the temporal domain, as defined by Tint between surveys. Low 

temporal resolution surveys (greater than two weeks, for example) increase the likelihood of 

rockfall coalescence between scans, and their superimposition by larger, yet-to-fail detachments 

(Barlow et al., 2012). The results from this study show that, by reducing the scan interval from 

one hour to three months, the frequency of the largest events recorded reduces by more than 

three orders of magnitude. Both of these effects produce seemingly larger failures, where the net 

volume of material from individual events is actually the sum of many smaller events. This has 

the effect on underplaying the efficacy of small rockfall in eroding the rock face.  

In addition to minimising the effects of coalescence and superimposition, acknowledged 

by Abellán et al. (2014), the need to monitor over short epochs holds several other benefits for 

understanding the controls and mechanisms of rockfall, which were originally considered.  

(1) Given that the frequency (Tint) of environmental monitoring and the timescales over 

which weather variables change is finer than the intervals of normal TLS 

monitoring campaigns, increasing the scan frequency is vital for accurately 

determining the relationship between environmental conditions and the occurrence 

of rockfall. By creating average statistics for both, the rock face’s response to 
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extremes and short-term rates of environmental change, which may logically have 

the greatest influence on rockfall, becomes difficult to discern with confidence. If 

scans are acquired closer to the Tint of weather station data, which is invariably 

more aligned to capturing the timescales over which the weather changes, there is a 

reduced need to time-average datasets and hence overlook potentially important 

short-term detail.  

(2) The use of 4D monitoring allows an examination of the nature of precursory 

deformation of the failing rock mass. The relatively small magnitudes of strain that 

occurs in brittle materials (< 3%), shown in both the field and laboratory (Petley et 

al., 2005; Rose and Hungr, 2007; Oppikofer et al., 2009; Dick, 2013), highlights the 

importance of not only using precise change data, but also frequent measurements 

in order to resolve the development of failure. Frequent and precise measurement 

has the potential to provide an understanding of the kinematics of failure and the 

role of precursory rockfall, in addition to quantifying accelerations towards failure.  

 

8.2.1 Implications of constant TLS deployment 
 

A frequent observation made from monitoring undertaken at Tint ≥ 1 month is that the 

resulting insights into rock slope instability could be achieved if more frequent monitoring was 

possible. However, the findings from this study emphasise the importance of consistency in 

monitoring through time, as well as frequent monitoring. In practice, with the exception of 

slopes that present an immediate risk of collapse, installing a terrestrial laser scanner for a 

prolonged period is costly. However, since rockfall have been shown to be apparently episodic in 

nature (Lim et al., 2010), permanently installing a scanner ensures that rockfall are recorded 

and, as shown in this study, that their spatial and temporal distribution can be examined. This 

allows deviations from a background behaviour to be identified, such as increases in rockfall 

frequency, increases in rockfall size, or changes to rockfall shape. These deviations in rockfall 

properties may arise as the result of a triggering factor, but a long duration of monitoring is also 

necessary in order to quantify the difference between triggers and preparatory factors 

(Gunzburger et al., 2005). In this study, an increase in the volume frequency scaling exponent β 

was observed during June and July, indicating that a higher proportion of small rockfall < ca. 

0.1 m3 occurred. This was higher than the background exponent recorded for previous months, 

and appears to return to this level from September onwards (Figure 6.23, Section 6.6.2). The 

hiatus in scanning during late July and August, however, prevented direct observation of this 

return. 

While not an initial reason for installing the system, it is important to consider the 

implications of creating a system that constantly and frequently monitors a rock face for use in 
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cliff stability management. It is important to note that precursory detachments may scale in 

time and space: smaller rockfall have been previously suggested to generate small precursors 

over a relatively short timeframe, whereas larger events have bigger precursors that are active 

over a longer time period (Rosser et al., 2007b). As is discussed in more detail below, only a 

small number of rockfall captured in the inventory presented here were large enough to generate 

or display any pre-failure deformation or detectable precursory detachments. For reliable 

forecasting, based upon measurement and interpretation of creep and rockfall rate acceleration 

trends to failure, a larger database of observed accelerations is required across a larger range of 

rockfall sizes and settings to assess when and where precursors occur and can be used in 

forecasting. If smaller rockfall perpetuate larger-scale slope failures by releasing stress and/or 

removing load that is necessary for a future rockfall to occur, then their identification and 

monitoring may be informative for potential slope management practices. 

Another potential benefit for rockfall management is the ability to map rockfall 

trajectories by distinguishing a falling block from the material that it detaches when impacting 

the slope surface below. With less frequent monitoring of actively failing slopes, the ability to 

associate an individual rockfall with any impact marks becomes more problematic. This 

information has potential significance for model development in validating predictions of rockfall 

runout, which may not be possible using data obtained from less frequent monitoring. Here, 

rockfall impact marks were shown to be several orders of magnitude less deep than the rockfall 

scar from which the falling block originated, but contemporaneous (Section 5.5). While the 

overall volume loss that these marks represents was small, and therefore will not have affected 

the tails of the resulting magnitude-frequency power law, identifying trajectory scars in this way 

allows them to be removed from future analysis. In this data, there is no conclusive evidence 

that a falling block triggers the release of further blocks from the rock face below. Rockfall from 

this cliff therefore do not appear to trigger cascades of mass wasting. 

 

8.2.2 Considerations for 4D monitoring 
 

The use of constant monitoring has been fundamental to the research undertaken in this 

study. However, its use also presents some unique drawbacks that required consideration. Since 

scanning is frequent and constant, point clouds can only be acquired from a single position. 

While a future, albeit costly, development could be the combination of two scanner positions to 

minimise occlusion on a rough or complex rock face, this would present significant logistical 

difficulty and would require a more sophisticated automated scan alignment procedure. The 

coastal setting of East Cliff prevents such a system layout. The relatively high surface relief on 

the cliff face due to protruding beds of sandstone, in combination with the acute angle between 

the slope and the position of the lighthouse, results in the occlusion of ca. 11% of the rock face 
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in each scan. In a more open setting, the scanner could be positioned closer to a nadir (90°) view 

of the cliff, thereby minimising occlusion. In this study, it is acknowledged that the rockfall 

inventory collected may be smaller than would be possible without the relatively high level of 

occlusion, and that the sizes and shapes of some rockfall close to occluded areas may be 

misrepresented. 

From a single scan position, infinitely small shifts in the scanner zero azimuth angle 

(rotation about the instrument z-axis) can cause the edge of a discontinuity to be measured in a 

scan line of one scan, but the discontinuity behind it to be measured by the same scan line in 

the next scan. At the closest target range observed in this study (342 m), only a 0.0005° shift in 

azimuth (the step-width precision of a Riegl VZ-1000) produces a 0.06 m shift in point position 

on the cliff face at nadir. The heterogeneity of point measurement positions between sequential 

scans can therefore result in unrealistically large change estimates, or the omission of some areas 

of the slope from the change calculation. In addition to the point distribution, the accuracy of 

the individual range estimates that relate to specific feature edges is inherently uncertain. This 

is based upon the fact that the footprint of the diverged laser on the cliff face may intersect 

multiple surfaces or discontinuities that are separated by a topographic edge within the same 

line-of-sight. A single laser footprint may therefore encapsulate a large range in distances from 

the scanner. As a result, the range of a point generated may be the average of two distinct and 

separate surfaces contained within a single footprint. This averaging of range estimates, or so-

called ‘smearing’ or ‘mixed pixels’, is more likely to occur for longer-range targets, due to the 

linear increase in footprint due to beam divergence with range (Lichti et al., 2002; Alda, 2003). 

Multiple laser return ‘echoes’ have been used in airborne and spaceborne LiDAR 

surveys to resolve canopy heights from the ground surface below (for example, Ni-Mesiter et al., 

2001; Lefsky et al., 2005; Simard et al., 2011) and filter low-lying shrubs in order to measure the 

position of the ground surface. A number of new terrestrial LiDAR systems are able to resolve 

multiple returns, or ‘echoes’, using the same approach (Afana et al., 2015). Between pairs of 

scans, this data may offer a means of adjustment such that the ranges of points at the edge of 

discontinuities are allocated to the same surface or deleted where uncertain, thereby avoiding 

‘smearing’ and the resulting uncertainty in change detection. Between large numbers of scan 

pairs, however, a systematic adjustment of this nature is not possible. 

In this study, a means of estimating the proximity of points to edges and holes was 

established. A decrease in the precision of points that are deemed (too) close to edges, inferred 

by detecting change with a subsequent scan over a period with no appreciable surface change, 

has also been presented. Further to this, the use of a statistic that summarises a point’s 

radiometric return, known in Riegl measurement systems as the ‘deviation’ (Riegl, 2015), also 

helped to identify points within each cloud that produced high estimates of change, most often 

around semi-occluded surfaces behind edges but also in areas of vegetation. The automatic 
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removal of these points from successive scans resulted in a 30% lowering of the Level of 

Detection, from 0.078 m to 0.055 m. This highlights that these methods are of considerable 

importance in the reduction of error within large scan series, and can be applied automatically 

to every point cloud in the scan series. In addition to the use of filtering, the presence of holes 

and edges in the dataset necessitated a new approach to optimising data for change detection. 

In this study, computation of the distance along the normal was undertaken using a MATLAB 

code constructed according to the principles of M3C2 (Lague et al., 2013). The abundance of 

edges and holes within the datasets resulted in the omission of discontinuities oriented away 

from the scanner, and produced significant offsets between those oriented towards the scanner. 

The introduction of a variable cylinder length into the distance along the normal calculation 

(DAN VCL) ensured a ca. 400% reduction in the standard deviation of Gaussian-distributed 

noise between scans, from 0.084 m to 0.014 m. 

Another drawback of the use of a single scan position is the inability to perform volume 

and shape estimation in true 3D, as can be performed from multiple scan positions by Carrea et 

al. (2012), and from data collected from a moving airborne platform by Benjamin et al. (2016). 

While potentially highly valuable for understanding the kinematics of individual failures, these 

techniques rely on rockfall scars not to be occluded in order to create a closed hull of points. 

In addition to the considerations related to scanning from a single position, several 

complexities introduced by the constant monitoring setup have been addressed in this study. 

Instability monitoring using LiDAR becomes less reliable in wet atmospheric conditions, here 

caused by rainfall, sea spray, or fog. In open-pit mines, for instance, periods of heavy rain are 

also likely to be the periods that require the most frequent monitoring of large, slope-scale 

instabilities. For monthly rockfall monitoring, however, wet atmospheric conditions are not 

sustained for more than several hours, far below the monitoring interval. For the constant 

monitoring in this study, rainfall and fog often persisted for several hours, far longer than the 

Tint of monitoring (20 – 30 minutes). As a result, the scans collected in this study cannot be 

considered a truly continuous time-series, due to the irregular intervals between them during 

periods of rainfall. Approaches to time-series and spectral analysis, such as Fast Fourier 

Transform and Wavelet Analysis, which could provide significant advances in the ability to 

characterise patterns of rockfall activity at a range of spatial and temporal scales, cannot 

therefore be applied without using either repeated earlier data or synthetic interim data. This 

study has highlighted that if a scan is partially obscured due to rainfall, its inclusion as part of 

the wider scan series introduces the risk of missing rockfall occurrence. This risk arises because 

change is detected between scan pairs, rather than cumulatively; hence, if part of a surface is 

missing in a constituent scan, no change will be recorded between it and the previous scan, or it 

and the next scan (Figure 4.36, Section 4.12). It is therefore recommended that a threshold close 

to the number of expected points under dry atmospheric conditions be used to identify scans 
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with rainfall for exclusion. Scans that are removed could be retained for use in monitoring the 

evolution of an unobscured rockfall; however, their inclusion in the wider dataset was avoided in 

this study. The need to remove scans captured during rainfall adds to the complexity of 

establishing a cause-effect relationship between rainfall and rockfall occurrence, as attempted in 

Chapter 6, since scans taken during rainfall were often removed, with the next scan used to form 

the scan pair for comparison. 

When considering the alignment of scans using iterative closest point (ICP), Schürch et 

al. (2011) noted that the alignment of one scan to a previous scan of the same survey scene, 

rather than a fixed baseline scan, reduces the absolute accuracy of their position, but increases 

the relative accuracy for comparison between them. As discussed in Section 4.7, this is 

advantageous for monitoring a rapidly deforming mass, since the structure of the monitored 

surface is best represented in the most recent scan, and may not reflect the topography of a scan 

hours, days or weeks ago, at the start of monitoring. While the spatial distribution of rockfall 

from East Cliff is almost homogenous in this dataset, the topography of the cliff as a whole 

remains broadly similar when downsampled to a fixed-point spacing. All scans were therefore 

aligned to the first scan. This avoided drifts in the absolute position of scans over time and, 

since the scanner was securely fixed within the lighthouse, did not compromise the relative 

accuracy of the change detection between scans. The occurrence of a large failure over a 

significant portion of the cliff face, or full step-back retreat of the coastline would, however, 

necessitate alignment to a post-failure reference scan. When this becomes necessary is a 

consideration for further research. 

The trade-off between the temporal resolution of scanning and its spatial resolution has 

been identified as a consideration of significant importance prior to establishing a 4D monitoring 

system (Section 3.7). In this study, a half hour scan interval was selected, with a point spacing 

of 0.15 m at the maximum range. By examining the timescales over which creep prior to rockfall 

and slumps were observed to accelerate to failure, a timescale of approximately 6 h during which 

most accelerations can be observed, with most occurring within the final 2 h prior to failure. 

From the perspective of failure evolution monitoring, therefore, the 30 minute scan interval 

could have been reduced to a Tint ≈ 1 h. The fact that many failures occurred within a single 

pixel, in particular those that occurred at the periphery of developing rockfall, suggests that 

many of the rockfall that occurred were below the minimum aerial extent of 0.15 × 0.15 m 

permitted by the linear interpolation of points used in the data processing here. At present, the 

system’s operating schedule therefore comprises 1 h scans with a maximum point spacing of 

0.10 m. This frequency also ensures that the scanner is idle for a greater period, increasing the 

instrument service interval, which is a function of total scan time. The scan schedule defined in 

this study is clearly unique to this setting, with the scanner model and its distance from the 

slope determining the point spacing that is possible to collect within a defined Tint. However, 
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this set-up emphasises the importance of examining the spatial and temporal scales of movement 

in order to define and refine scan schedules that are optimised for the process of failure being 

monitored. 

 

8.2.3 Is constant monitoring fit for purpose? 
 

Constant scanning has the potential to generate a considerable number of point clouds 

(103-104). Here, the total number of scans drawn upon is two orders of magnitude higher than 

previous studies (including, for example, Teza et al., 2007; Abellán et al., 2010; Rosser et al., 

2013; Kromer et al., 2015a;b; Royán et al., 2015). Their use in this study has shown that rockfall 

from East Cliff conform to previously published magnitude-frequency distributions for rockfall 

(Rosser et al., 2005; Lim et al., 2010; Barlow et al., 2012), in which an exponential increase in 

the number of increasingly small rockfall is observed. In addition to this, the time between 

scans, Tint, is inversely related to the rate of increase in the proportion of small rockfall events, 

β. As described in Section 5.3, the aerial extent of rasterised rockfall events relative to their 

perimeter determines the uncertainty in area that it is exhibited relative to their true size. 

Consequently, the power-law behaviour of rockfall when observed at low Tint is such that small 

failures, with high percentage volume errors, account for a significant proportion of the net 

failed volume estimate. The frequent and repeated collection of scans with low Tint therefore has 

the potential to propagate this volumetric uncertainty into long-term estimates of erosion and 

cliff retreat. This is in contrast to the measurement of individual large events, with limited 

proportional volumetric error, between only a single scan pair. While the period between the 

first and last scan may be the same, measurement at lower Tint may result in a lower overall 

certainty.   

By estimating the theoretical maximum volume error, analysis in Chapter 5 has shown 

that uncertainty in the net volume of eroded material can range from 20 - 160%. This implies 

that monitoring at lower frequencies (e.g. monthly) may provide more accurate estimates of 

predicted retreat rates over longer time periods. This is not purely a function of longer time-

averaged conditions drawn upon by Barlow et al. (2012), but is also because longer intervals 

reduce the measurement error relative to the change detected, which in turn over time is more 

likely to represent coalesced or superimposed rockfall events. While high frequency monitoring is 

critical to enhance process understanding and to gain a full insight into rockfall magnitude and 

frequency, the uncertainty in net volumetric loss therefore makes it less suited to longer-term 

erosion estimates.  

Barlow et al. (2012) found that the selection of Tint has a considerable impact upon the 

frequency density of large events. Monthly inventories provided representative magnitude-

frequency relations for inventories of failure volumes similar to those in this study, assuming 
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that no significant rockfall occurred. In order to accurately predict long-term rates of erosion, 

the frequency distribution of inventories that also contain large rockfall, was required; typically 

with a Tint equivalent to the length of an individual season. While Barlow et al. (2012) provide 

an upper limit of Tint in order to accurately estimate long-term rates of retreat, the high 

frequency monitoring here indicates that a Tint of ca. 100 h can be considered as a lower bound 

for monitoring for the same purpose. Any lower than this and the data represents a shift 

towards monitoring the failure process of individual rockfall or clusters of rockfall.  

Despite being based upon simplified step-back retreat mechanisms, present models of 

cliff retreat may derive similar estimates to those derived from face-on, monthly rockfall 

monitoring. Rosser et al. (2013) argued that capturing the timing and scale of episodic events is 

of considerable importance in future erosion modelling. Without an improvement in our ability 

to accurately resolve rockfall volumes, however, the research presented here suggests that 

constant monitoring datasets will remain unsuited to long-term erosion measurement. The 

recent development of 3D volume estimation from point clouds (Carrea et al., 2012; Benjamin et 

al., 2016) may play an important role in the development of 4D monitoring. This reduces 

uncertainty in the aerial extent of rockfall, and enables a comparison between the rockfall shape 

and the joint structure from which it was released. The uncertainty of these techniques is 

determined by the precision of the point cloud; as such, they provide a means of reducing 

uncertainty in the aerial extent of rockfall that arises from linear interpolation into a fixed grid 

in a 2.5D approach. Due to the reliance of these techniques on a minimum of four points to 

create a closed hull, fully 3D techniques are limited in their ability to resolve small, single point 

displacements, but the development of scanners with increasingly small angular step widths and 

increased rates of point acquisition should decrease the minimum resolvable detachment.  

 

8.2.4 4D smoothing 
 

While the uncertainty of detachment volumes has been discussed, a means of reducing 

uncertainty in the depth or deformation measurements between scan pairs, and therefore the 

resulting LoD, is through 4D smoothing, smoothing in both space and time. The collection of a 

rich time-series of scan data has the potential to reduce the distance between successive point 

clouds by drawing on the fact that the points they comprise are neither independent in space 

nor in time. In this study, control targets were scanned at regular 6 h intervals in order to 

derive a range correction factor and transformation matrix that could be used to reduce the 

positional offset of successive point clouds. Repeated nadir scanning of planar surfaces is known 

to produce range estimates that conform to a Gaussian distribution (Abellán et al., 2009; 

Soudarissanane et al., 2011; Williams et al., 2013). The width of this distribution defines the 

precision of monitoring, and is an inherent characteristic of repeat scanning of an unchanging 
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surface. The distribution’s width is affected by a combination of the instrument-target range, 

the incidence angle of scanning, surface roughness, surface reflectance, atmospheric conditions, 

and the heterogeneity of point spacing that results from surface roughness and alignment error. 

Fundamentally, however, it is also a function of inherent uncertainty in the accuracy of range 

estimates from the instrument. Movements of the surface are unable to be distinguished if they 

are below the noise that is characterised by this distribution. Logically, therefore, if the width of 

this Gaussian distribution can be reduced, smaller movements are detectable between scans. 

The collection of large numbers of scans presents an opportunity to characterise the 

distribution of range estimates and average out random noise that results from any combination 

of the factors described above. As noted by Kromer et al. (2015b), this averaging can take the 

form of averaging the 3D position of each point, such as the case of M3C2 (Lague et al., 2013), 

or the averaging of differences between points (Abellán et al., 2009). Kromer et al. (2015b) 

devised a method of averaging the distance between point clouds, whereby the change between 

them was assigned based on the median change for a neighbourhood of points along the normal 

direction. This yielded a reduction in the LoD of between one and two orders of magnitude. In 

this research, an adaptation of the M3C2 algorithm was developed that calculates the distance 

along the normal direction, but for surfaces that are averaged through space and time using a 

Moving Least Squares algorithm. The technique was not employed in the data presented 

because averaging a surface across the temporal domain has the potential to remove small, 

apparently instantaneous detachments and so is unsuited to monitoring the types of rockfall 

observed here. However, since a premise of the permanent monitoring in this study was 

originally centred upon larger scale creep of open-pit high-walls and on the basis that future 

research may attempt to explore this further, a brief overview is provided in Appendix E. 

 While a series of advantages and disadvantages of 4D slope monitoring have been 

discussed above, the insight into the nature and controls on rockfall evolution in this study 

would have been impossible to generate without a step-change improvement in the application 

of terrestrial laser scanning. As presented below, these insights have been made possible by 

aggregating size distributions that are unaffected by superimposition and coalescence of the rock 

mass. Equally, collecting rockfall data at a frequency comparable to weather data acquisition, 

enabling individual cause-effect and aggregated relationships to be derived with external forcing 

and by monitoring the evolution of individual failure scars has been possible. Eitel et al. (2016) 

noted that, due to the relatively small number of studies that use 4D constant monitoring 

LiDAR, a standardised approach for processing and analysis does not currently exist. While 

many of the techniques adopted here have been tailored to the rockface in question and the 

mechanisms of failure under examination, this section has nonetheless presented some aspects of 

4D monitoring that should be considered prior to the development of such a system in the 

future.  
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8.3 The nature of rockfall 
 

8.3.1 Joint control on rockfall size  
 

Controls on erosion mechanism and retreat are locally specific (Naylor et al., 2010) and 

can be attributed to the interaction of rock strength (Collins and Sitar, 2011), structure, and the 

efficacy of environmental forcing. Rock slopes rarely develop under conditions where tensile 

strength is the dominant control on resistance to failure (Lockner, 2013). Rather, resistance to 

failure is determined by the strength of natural discontinuities, which concentrate compressive 

stresses, control the movement of groundwater, allow weathering to permeate the rock mass 

and, if closely spaced, may cause the material to behave in a granular manner (Selby, 2005). As 

such, rock mass strength and the persistence of discontinuities partially determine when and 

how a rockfall may occur (Stead and Wolter, 2015), with stress redistribution at the sub-metre 

scale likely to drive small rockfall that precede large, yet-to-fail blocks.  

Studies that have analysed the magnitude-frequency distribution of rockfall volumes 

have done so by categorising resulting exponents according to lithology (Rosser et al., 2007a; 

Lim et al., 2010; Barlow et al., 2012). While this accounts for a qualitative combination of 

material tensile strength and the persistence of discontinuities, the magnitude-frequency 

exponents derived in this study have been directly related to the measured visible persistence of 

discontinuities in the rock mass, which varies between different beds of similar rock type. 

This analysis has shown that rockfall in general are smaller than the scale of blocks in 

the discrete fracture network from which they originate. This suggests that rockfall size is not 

necessarily defined by the joint structure that is exposed at the surface, but primarily that the 

joint structure likely sets a maximum permissible size for rockfall that fail within one rock type. 

This is in contrast to measured distributions of rockfall in other settings, which have been 

shown to intersect discontinuities, including joint and fault sets (for example, Pedrazzini et al., 

2011). However, it adds weight to the basis for rockfall occurrence on these cliffs through 

fragmentation or disintegration of the cliff face, and suggests that closely jointed rock masses 

may more freely produce small-scale rockfall. Between beds, the magnitude-frequency analysis of 

rockfall produced exponents ranged from 1.48–2.01, with higher exponents found in beds of more 

closely jointed surfaces. Given that the beds for which exposed joint dimensions could be 

identified were predominantly in sandstone, this implies that the possible magnitude of rockfall 

is more likely to be affected by the degree to which the material is fractured than its tensile 

strength. This is logical and conforms to patterns of rockfall volumes observed by Hungr et al. 

(1999), which were higher for more jointed rock (β = 0.65–0.70) than for more massive rock 

(β = 0.40–0.43), and supports the recommendation made by Barlow et al. (2012) that 

magnitude-frequency estimates should be constrained by rock slope properties, in particular 
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when used to forecast erosion.  

It is notable that the visible persistence of discontinuities was only examined where the 

resolution of the point clouds allowed individual discontinuities to be extracted. At the base of 

the cliff, very densely jointed (centimetre scale), weak shales produced some large scale rockfall 

on the footwall of the buttress. This may relate to the removal of material by wave action 

(Kogure and Matsukura, 2010), and the formation of concave slope geometry which predispose 

larger-scale cantilever failure of the rock mass.  

 

8.3.2 Rockfall shape 
 

Rockfall dimensions tend to be a product of the geometry of jointing. The presence of 

three orthogonal joint sets in bedded sedimentary rocks, for example, predisposes the release of 

blocks (Wyllie and Mah, 2004). The dominant failure type from East Cliff is shallow depth 

rockfall, with the ratio of the log of area and the log of volume similar to that established by 

Rosser et al. (2007a) for a nearby site 13 km along the coast. This is lower than for published 

landslide inventories, suggesting that rockfall here are generally shallower in proportion to their 

aerial extent than other types of mass-movement, such as landslides. Similarly, the average form 

of the rockfall observed is a slab, such that the length and breadth of the detachment are 

considerably larger than its depth. As a result, the driving mechanisms that instigate the 

majority of failures from the cliff appear to relate to the exposure of the rock mass at the 

surface, rather than mechanisms at depth that drive deeper failure, which perhaps more relate 

to rock strength and structure normal to the cliff face. This indicates the potential importance 

of subaerial weathering of the rock mass or exposure on the rock face or the possible role of face 

parallel stress relief jointing rather than release along pre-existing (oblique) joints.  

Confining pressures that are exerted on rock masses supress the growth of dilatant 

microcracks, thereby increasing the resistance of the rock mass to failure (Lockner, 2013; Siman-

Tov et al., 2017). The tendency for slab-like block forms therefore suggests that confining 

stresses inhibit the release of blocks that fail to depths in the cliff that are greater than the 

block width or height. However, when rockfall shape was examined for each bed, the shape of 

the ten largest rockfall appeared more block like than the shape of the mean rockfall. For these 

rockfall, the size of failure also approached the scale of the joint network suggesting that, for the 

largest events, an appraisal of strength degradation along joints is required. The densely jointed 

nature of the rock face is such that these rockfall occur at the intersection of discontinuities, and 

therefore can be considered small wedges. It may therefore be the case that the geometry of the 

larger rockfall is more controlled by rock mass structure, but smaller rockfall, which here 

dominate the mean statistics, respond to surface processes that primarily act to release a 

shallow depth of material from across rather than into the cliff face. 
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8.3.3 Spatial progression of rockfall 
 

Vertical progression of rockfall have been observed on both coastal rock slopes (Rosser 

et al., 2007a) and inland rock slopes (Abellán et al., 2010, Stock et al., 2011; Royán et al., 2015). 

Stock et al. (2011) found that precursory rockfall sequences from the Rhombus Wall, Yosemite, 

propagated upward through and laterally along the edges of near vertical sheeting joints, 

highlighting the role of existing discontinuities and slope surface topographic convexity in 

governing the spatial location and sequencing of failure. At the intersections of these 

discontinuities, high stress concentrations promoted the development of new joints and failures.  

Stresses that drive the propagation of such joints are tensile, perpendicular to the cliff face and 

located primarily at the surface, whereas compressive stresses tend to be dominant at greater 

depths depending on slope concavity (Martel, 2011). Given that rocks are generally weaker in 

tension than in compression (Selby, 2005), sustained tension near to the surface can enhance 

joint propagation and hence failure in these locations.  

Analysis in Chapter 7 has shown that the displacement of failing blocks prior to collapse 

is proportional to their size, whereby larger rockfalls experience more displacement. While this 

data also included some of the slumps that were examined, the relationship holds for rockfall 

events. This suggests that either: (1) the active stresses and resultant strains as a block fails are 

also insufficient to generate fragmentation or fracture and, as such, generate pre-failure rockfall; 

or (2) the spatial and temporal scales over which precursors occur are beneath the precision and 

resolution of monitoring; or both. Since relatively few large rockfall (> 1 m3) occurred here, 

failure clustering in space and time has been less readily observable. For the largest rockfall that 

occurred, sequencing of smaller failures falling from within incipient rockfall scars was evident, 

suggesting an incremental failure that is progressive through time. While some precursory 

rockfall occur within the footprint of a developing failure, the most obvious sequencing of 

smaller failures occurs predominantly around the perimeter. This suggests that precursors 

represent a release of accumulated tensile stress at the boundary (i.e. tensile cracking) between 

the intact and failing section of the cliff. However, as noted by Stock et al. (2011), such 

precursors can also drive stress concentrations by the development of new discontinuities across 

the rock mass. This raises the question of whether rockfall precursors induce further failure by 

the redistribution of stress at the intersections of newly created discontinuities, or prevent 

further larger failure by the incremental release of accumulated stresses and strain (Pedrazzini et 

al., 2010; Rosser et al., 2013). 

Understanding of how rockfall develop spatially is implicitly invoked, or more commonly 

overlooked, in models widely used to assess slope behaviour and evolution. For example, the 

near-continuous removal of mass inferred from the magnitude-frequency analysis (Section 8.4.1) 

reduces the likelihood of larger-scale cantilever failure within the same bed because larger 
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protruding features, of sufficient mass, do not have sufficient chance to develop. In a coastal 

setting, the geometry and mechanism of step-back of a marine cliff face by wave undercutting of 

the toe and cantilever failure of the cliff face above is well understood (Krogu and Matsukura, 

2010), where rock mass strength and/or structure prohibits deep-seated failure. Styles et al. 

(2011) back analysed a chalk cliff failure in Kent, UK, highlighting the importance of wavecut 

notch development in predisposing the slope above to failure. At a critical depth of erosion, 

strain concentrations and compressive stresses at the wave-cut notch resulted in the upward 

migration of shear strain, causing tensile failure and crack growth at the cliff top. Notch-driven 

failure models define an episodic process of coastal cliff retreat, primarily because they are 

mechanically incapable of simulating the small-scale ubiquitous rockfall and the progressive 

processes that often link them that has been observed here. The majority of cliff stability models 

do not consider time-dependent failure and rarely retain the resolution to allow surficial rockfall 

to evolve, exploit inherent structure, and to propagate across the cliff. As noted by Rosser et al. 

(2013) this can be entirely but incorrectly attributed to the fact that analysis of monitoring over 

a single epoch does not elucidate how failures develop through time.  

 

8.4 The timing of rockfall 
 

8.4.1 Rockfall magnitude-frequency 
 

A total of 183 363 detachments were recorded during the 10 month monitoring period. 

Of these, 97.7% were of the order of 0.001 – 0.01 m3 and 2.3% were of the order of 0.01 – 0.1 m3. 

Only 17 detachments (0.01% of the total inventory) were larger than 0.1 m3 and resulted in any 

appreciable change to the cliff profile. The range of rockfall sizes reflects the progress that face-

on slope monitoring techniques, such as photogrammetry and TLS, have yielded. For aerial 

surveys at similar spatial extents, the precision between surveys could be several orders of 

magnitude larger than the scale of retreat (Moore, 2000; Lim et al., 2005). Owing to the high 

cost of surveys, cliff line position has typically been monitored at Tint > 1 a. This misses the 

complexity of failure processes on the rock face below, equating retreat with erosion, and 

implying that retreat originates from single, large rockfall events alone. The high proportion and 

absolute number of small rockfall found here implies that erosion occurs predominantly through 

quasi-continuous mass-wasting of the rock face.  

The analysis of the magnitude-frequency distribution of rockfall has shown that the size 

of detachments adheres to a power law, and indicates that the occurrence of the largest events 

can be estimated by analysing the frequency distribution of those that are smaller, and vice 

versa. This is of considerable importance for estimating future rates of retreat, as shown by 

Guzzetti et al. (2003) for Yosemite National Park and Barlow et al. (2012) for the North 
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Yorkshire coastline. In this study, face-on measurement in true 3D removes error propagation 

that arises from area-volume scaling (Larsen et al., 2010). While the precise magnitude-

frequency exponent reported is specific to East Cliff, the scale-invariant behaviour of rockfall is 

similar to that observed in other rockfall inventories, albeit across a wider range of magnitudes. 

At 30-day survey intervals, the exponent of the frequency density, β = 1.78, is higher than that 

for rockfall suggested by Hergarten (2003), β = 0.4-1.0, but is similar to lithology-dependent 

exponents provided by Rosser et al. (2007a), β = 1.43-1.91, and Barlow et al. (2012), 

β = 1.65-1.76, derived from monthly monitoring in this setting.  

 

8.4.2 Timescales of failure evolution informed by 
magnitude-frequency distributions 

 

Previous research has related the magnitude-frequency exponent to both the lithology 

within which rockfall are sourced and Tint, the length of time that separates surveys, previously 

based on monthly or seasonal inventories. Having performed change detections between scans 

separated by a wide range of Tint, an inverse relationship has been established between Tint and 

the exponent of the magnitude-frequency relationship, β. Two distinct patterns in this 

relationship are apparent: (1) an increase in the exponent with decreasing Tint < ca. 106 h; and, 

(2) a broadly constant exponent at 7 d > Tint > 90 d. This suggests that the progression 

towards final failure may occur over timescales within ca. 4 d – 7 d and that perturbations to 

slope stability, such as storms, may have prolonged effects on the stability of the slope, that 

outlast the storm itself. This timescales supports observations of the timescales over which 

precursory rockfall events occur (Section 7.3), which suggests that rockfall evolve over a period 

of ca. 4 d – 7 d, rather than instantaneously. This period cannot necessarily be related to a 

particular environmental condition, but its onset may occur as a result of a particular external 

trigger. This is discussed in more detail in Section 8.4.3.   

The timescale of failure implies that monitoring at any interval greater than 

approximately seven days is unlikely to yield a significantly different magnitude-frequency 

distribution of rockfall, regardless of changes in Tint. This is advantageous in that less frequent 

monitoring (e.g. 30 to 90 days) can be considered reliable and representative of behaviour 

observed over shorter timescales (e.g. seven days), and so there is little benefit to the increased 

cost of higher frequency monitoring. As a consequence, this study provides confidence in data 

collected with lower frequencies that have the intention of capturing rock face erosion rates. 

Importantly, this advantage does not extend to studies focussed on rockfall mechanisms and the 

analysis of triggers, and highlighting that the frequency of monitoring must be tailored to the 

intended analysis. Within previous studies of rockfall distributions along this coastline, and 

elsewhere, the importance of monitoring at higher frequencies has been emphasised in order to 
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more accurately understand the development of failures both within incipient scars and across 

the cliff face. In turn, higher frequency monitoring minimises the artefacts of rockfall coalescence 

and superimposition within the resulting failure inventory, enabling a greater understanding of 

the mechanisms and kinematics of failure as well as more accurate estimates of retreat.  

A shift in the nature of the rockfall volume frequency rollover accompanies the change 

in exponent, below Tint ≈ 4 d – 7 d. Rollovers in the magnitude-frequency distribution of 

rockfall have been observed in a number of studies, and refer to distributions in which the 

frequency density of the smallest reported events falls below modelled predictions. Both 

methodological (Stark and Hovius, 2001; Dussauge-Peisser et al., 2002; Brardinoni and Church, 

2004; Malamud et al., 2004; Teixeira, 2006) and physical (Guzzetti et al., 2003) explanations 

have been provided for this observation. Methodological reasons focus on the decreasing ability 

to resolve fine-scale changes to a surface, and therefore reflect the level of completeness of the 

inventory. For landslide distributions created by mapping from airborne imagery, estimating 

this minimum detectable landslide area is complicated by the fact that each pixel in the image 

represents a different sized area on the ground, particularly where the topography is of varying 

steepness, and the sensor is off-nadir. Furthermore, while recent satellite-borne sensors can 

provide pixel sizes of 0.5 – 10 m, landslides are rarely mapped at this scale and the minimum 

detectable size is instead determined by the scale of mapping.  

For rockfall distributions created from TLS surveys, however, quantifying the minimum 

detectable rockfall size is less complex than it is from aerial mapping. To do so requires an 

assessment of both the point spacing, which determines the minimum aerial extent of a rockfall, 

and the precision of range estimates, which determines the minimum depth of an observable 

rockfall that can be resolved. Young et al. (2011) noted that the ability to resolve small-scale 

changes should not introduce a rollover, because the smallest reported rockfall should be above 

the minimum detectable event identifiable change mapping. From a statistical perspective, this 

statement holds true as long as the frequency destiny is not estimated using a kernel, which 

enforces an extrapolation of density that extends one kernel half width beyond the range of the 

original data both below the minimum and above the maximum, introducing inflections in the 

frequency density at the tails (Lim et al., 2010). In this study, however, the data was separated 

into logarithmic bins, and a log-log regression performed. Lim et al. (2010) constructed a 

magnitude-frequency plot from rockfall above the minimum detectable size, recorded using a 

TLS. The absence of any rollover in this inventory was interpreted to support the concept that 

previously created rollovers arose from methodological error. Despite this, physical explanations 

for the presence of a rollover in rockfall inventories are scarce. 

While Lim et al. (2010) suggested that a rollover is unlikely to be the result of a 

physical process, here a rollover in the magnitude-frequency distribution is identified for 

inventories where Tint > 21 d. Only rockfall larger than the 0.03 m (LoD) × 0.15 m × 0.15 m 
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(the area of each cell, which exceeds the minimum point spacing) were analysed, which equates 

a volume of to 6.75 × 10-4 m3. This implies that an undersampling of the small rockfall events 

did not occur at any interval due to methodological error and, therefore, undersampling of the 

smallest events at these intervals is likely to be the result of coalescence or superimposition of 

small failures < ca. 0.01 m3. As described in Chapter 5, the rollover shows an inversion with 

decreasing Tint such that an ‘anti-rollover’ becomes evident, in particular for Tint < 3 h. The 

value of Tint at which no rollover is observed is ca. 4 d – 7 d. As expected, monitoring at 

4 d - 7 d resulted in the highest coefficients of determination for the regressions between log 

magnitude-log frequency. However, the fact that the regressions were strongest for monitoring at 

low Tint suggests that the nature of the rockfall size distribution is captured most accurately by 

high frequency monitoring, albeit with a higher percentage volume error.  

The shifts in both the exponent and tail of each magnitude-frequency distribution can 

be used to infer two effects that operate in parallel. First, a power law exists such that the more 

the surface is monitored, the more rockfall are detected. From an anecdotal perspective, this fits 

with observations of the near-continuous sound of falling debris that can be heard when close by 

the rock face. In theory, this implies that an infinitesimally large number of small rockfall occur 

in the minutes and seconds prior to, and during, a collapse. To counter this, however, visual 

observations of rockfall and their deposits show that they retain a range of block sizes, rather 

than undergoing complete disintegration. A second hypothesis, therefore, is that the smaller 

events may in part both precede and relate to larger events. This suggests that rockfall fail by a 

process of fragmentation and that the precursors also scale in size to a power law fit in volume 

frequency. While a portion of rockfall events captured at anything greater than the finest 

monitoring frequency may be the sum of multiple smaller events, this relationship only holds to 

a minimum rockfall size (Figure 8.1).  

The strength of a rock mass reduces with volume, since smaller volumes generally 

contain smaller cracks and the stress intensity at crack tips is proportional to the square root of 

crack length (Lockner, 2013; Siman-Tov et al., 2017). An increase in sample lengths by an order 

of magnitude, for example from 0.1 m to 1 m, may lead to 70% decrease in rock strength for 

weathered diorite (Pratt et al., 1972; Lockner, 2013). By implication, therefore, smaller 

fragments are likely to provide a larger resistance to the driving forces required to initiate 

movement. Furthermore, block strength at smaller scales is increasingly a function of tensile 

strength; this is invariably high as compared to rock mass strength, which typically includes 

jointing. A minimum volume must also exist where the size of a block is insufficient to yield the 

mass required for driving forces to exceed the frictional and cohesional resistance of the 

material, if the blocks we observe here occur as a function of rock failure. These effects may be 

offset by weathering at the surface, whereby block release is less related to conventional 

measures of rock strength. The anti-rollover effect highlights an increasing frequency density of 
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the smallest events, from which it can be inferred that small, more frequent rockfall would be 

detectable by monitoring at higher spatial and temporal resolutions. The minimum rockfall size 

therefore appears to be smaller than the minimum detectable size in this study. The analysis of 

pre-failure rockfall activity in Chapter 7 supports this suggestion, given that multiple precursors 

at the periphery of developing rockfall appear to occupy the same 0.15 m raster cell. 

 

 

Figure 8.1: Conceptual magnitude-frequency plots, based on data from monitoring over varying time 

epochs, Tint. (a) Rockfall monitoring using scan pairs separated by far shorter intervals than an hour. 

The anti-rollover effect highlights the high proportion of small rockfall observed over short intervals. 

The increase in very small events, only extends to a minimum rockfall volume, which represents the 

point at which the failing block is of insufficient mass for driving forces to exceeds the material’s 

resistance to failure. (b) Monitoring with Tint = 7 d is undertaken at the same precision. However, due 

to coalescence and superimposition, the smallest events observed in (a) are not detectable. 

Furthermore, the overall proportion of small events within the detectable range is lower, and the 

proportion of large events is higher, resulting in a reduced value of β. (c) At monthly monitoring 

intervals, a rollover in the frequency density of the smallest events is observed, but the exponent 

remains the same. (d) Plot of the variation in exponent with Tint. With decreasing Tint, there is an 

exponential increase in the exponent (representing a large proportion of small rockfall). This applies 

until a minimum timescale of fragmentation. 
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8.4.3 Rockfall timing in relation to environmental 
conditions 

 

The database presented here is ideally, and arguably uniquely, suited to interpreting the 

nature of rockfall triggering by contemporaneous environmental conditions. While in situ 

instruments and ground-based radar systems can record changes to the slope more frequently, 

and at a frequency that is more comparable to timescales of variability in environmental 

conditions, these are less suited to the characterisation of material detachments from the slope 

than TLS at the scale at which they occur. Many studies have presented correlations between 

rockfall frequency and environmental drivers, often with data that is irregular and widely spaced 

through time, even up to multiple months (Rosser et al., 2007a; Lim et al., 2010; Delonca et al., 

2014; Strunden et al., 2015; Vann Jones et al., 2015; d’Amato et al., 2016). The degree to which 

environmental conditions can be considered as preparatory factors or triggers of rockfall remains 

complex to address without high spatial and temporal resolution data. In this study, the high 

frequency of data collection has enabled an analysis of the degree to which near-

contemporaneous environmental conditions act as triggers of failure. The regression analysis 

undertaken in Chapter 6 shows that no significant relationship can be discerned using relatively 

simple pairwise correlation, even with the dataset presented here. 

A simple explanation for this may be that the slope undergoes a lagged response to the 

effects of inclement weather conditions. However, this does not explain the very low coefficients 

of determination in relationships at all of the timescales considered (from 1 h – 30 d). 

Ultimately, a lagged response also fails to explain why some rainfall events resulted in above 

average rockfall occurrence, yet others of the same magnitude did not. While the strength of 

relationships between rockfall and rainfall, and rockfall and temperature did increase when 

considered at daily and weekly timescales, a significant proportion of rockfall have no apparent 

link to contemporaneous environmental conditions. A clear trend can only be observed when the 

rockfall signal for the entire monitoring period is aggregated at different scales, including diurnal 

and seasonal, which match the timescales of variation in environmental conditions, from storms 

to seasons. This has allowed rockfall to be considered in relation to tidal cycles, the time of day, 

and individual storm events, all of which require rockfall monitoring at low Tint and emphasise 

the importance of conditions in preparing the slope for failure. 

The findings here suggest that no simple relationship may exist between the height of 

the tide and the occurrence of rockfall < 0.1 m3. The probability of occurrence for larger rockfall 

(> 1 m3), however, was more than double at high tide than at low tide. Vann Jones et al. (2015) 

found that the relationship between rockfall from the entire cliff correlated more strongly with 

marine conditions, as compared to rockfall sourced only from the inundated zone at the toe of 

the cliff. This was interpreted to support a hypothesis that the influence of marine-driven 
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erosion extends, albeit indirectly, above the inundated zone. This previous analysis is however 

forced to consider only monthly, and hence seasonal, variability. Here, however, it appears that 

small rockfall do not respond to marine forcing when considered at finer temporal resolution. 

Given that the rockfall inventory is dominated by small and frequent rockfall (minimum number 

of rockfall recorded in a scan here was one), they may be essentially constant and, as such, there 

may be no environmental link. Furthermore, since the cliff profile is not vertical, and the upper 

portion is set back from the foreshore platform and the ability for tension cracks to initiate at 

the cliff toe and propagate upward through the cliff is minimal (Styles et al., 2011). 

While temporal variations in rock slope deformation have been observed to correlate 

with changes in pore water pressure, recent studies have documented increased damage 

accumulated at specific times of the day, in temperatures above freezing. In this study, increased 

rockfall activity occurs through the day from sunset, with a peak in activity that corresponds to 

the greatest rate of air and rock temperature cooling (close to sunset). This bears significant 

resemblance to cracking events of a granite boulder, which showed a significant increase towards 

the mean time of sunset because of thermally induced tensile stress development (Eppes et al., 

2016). 

As described in Chapter 2, the effects of thermomechanical stress on crack widening 

have been examined in a number of slopes (for example, Mufundirwa et al., 2011; Collins and 

Stock, 2016). Gunzburger et al. (2005) showed that cooling during the night induced millimetre 

scale displacements of a block at the surface of a rock slope in southern France. This suggests 

that failure potential may be increased by a reduction in confining stresses during cooling, which 

cause the rock mass surrounding the failing block to contract. Gischig et al. (2011a) modelled a 

simplified slope based on the geometry and discontinuity sets of the Randa instability, 

Switzerland, which is subject to annual temperature cycles. This analysis showed that shear 

dislocation along discontinuities at depth can result in irreversible slip if a sufficient number of 

discontinuities are already critically stressed. Small temporal changes in stress were shown to 

develop by localised brittle damage and slip, resulting in damage that is accrued within the rock 

mass and manifest as apparent continued deformation. In winter, as blocks contract during 

cooling, normal stresses along steeply discontinuities decrease and slip can occur, whereas in 

summer, thermal expansion increases normal stresses, which inhibit slip. The net effect is one of 

fatigue within the rock mass, involving incremental sliding along critically stressed 

discontinuities. This modelling matched observed deformation by crack extensometers, and 

boreholes with inclinometers (Gischig et al., 2011b). The Randa rockslide has a very low water 

table and, therefore, it is possible that thermomechanical stresses are of greater significance than 

in other settings. While the scale and mechanism of failure differs at East Cliff differs to the 

Randa rockslide, much of the exposed rock face exhibits dilated joints that promote drainage. It 

is therefore likely that freeze-thaw conditions during the winter months play a lesser role in 
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fatigue of the rock mass. However, given the low residence time of water on the cliff face, small 

strains due to thermal variation may be sufficient to general small-scale rockfall. The growth of 

microfractures at the near surface, observed by Eppes et al. (2016) during cooling of the rock 

mass, may therefore be significant. By examining the magnitude-frequency distribution of 

rockfall through time, an increase in the proportion of small rockfall events towards the summer 

is evident. During this period, the variations in rock face temperature are highest and, while 

rainfall accumulation is higher than during spring, it is not as high as during the winter. This 

suggests that variations in temperature may have an overriding influence on rockfall, driven by 

microfracture expansion and coalescence at the surface, and subsequent release of material 

through spalling. 

While these conditions may not produce an obvious or instant trigger for rockfall, they 

may reflect the importance of thermal conditions in preparation for failure, by inducing 

irrecoverable widening of cracks or microfracture growth and, therefore, permanent damage to 

the rock mass. Cyclical forcing mechanisms have been shown to correspond to laboratory 

experiments of fatigue in rock samples. This fatigue enables catastrophic brittle fracture below 

the tensile strength, as a result of increasing stress-induced fracturing (Eberhardt et al., 2016). 

While Gischig et al. (2011c) noted the importance of seasonal variations in temperature, this 

study has noted the importance of diurnal variations in temperature, as observed elsewhere 

(Vlcko et al., 2008; Collins and Stock, 2016; Eppes et al., 2016). This may imply that diurnal 

cycles of thermal stress development, and subsequent thermal-induced fragmentation, are 

superimposed on the overall progression of damage accumulation across a failing slope.  

An analysis of the relationship between rockfall timing and the passage of rainfall events 

has shown that up to 30% of the largest 1 000 rockfall occurred during periods of rainfall, and 

60% occurred within 24 h of rainfall. Cross-correlation of the time series of both rockfall and 

rain accumulation showed that rainfall only became significant between 3 h and 0 h in advance 

of the rockfall time series. While the specific nature of the intensity-duration characteristics 

shows that I-D exponents fit within a range of values outlined by Cepeda et al. (2010), the fact 

that the exponents differ very little between failures of loose material at the buttress and 

rockfall from the cliff face above suggests that these may be more closely related to the specific 

nature of rainfall events in this region, than they are to the triggering of different types of 

failure. However, when examined in Chapter 7 with respect to the deformation of individual 

incipient rockfall blocks, the passage of individual rainfall events appears to induce an 

incremental but sustained increase in the rate of displacement. In the instances examined, 

rainfall did not actually occur at the time of failure but did correspond with the onset of 

acceleration towards failure. With respect to Bjerrum’s (1967) model of the tertiary phase of 

failure, this supports the hypothesis that the growth of microcrack fractures within the slope can 

occur independently of environmental forcing and predispose a slope to failure, in this case over 
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a period of two hours. Attributing triggers to block detachment may therefore not be possible 

beyond the apparent correlations that emerge over longer time periods discussed previously. 

The effect of water can be related to either ground water movement or the infiltration 

of rainfall. Water that occupies fractures reduces the effective normal stress acting on it, thereby 

reducing shear strength along the plane (Sjoberg, 1999). Eberhardt et al. (2016) note that 

hydromechanical fatigue of rock masses can be attributed to progressive failure, manifest as  

accelerated behaviour in rockslides following rainfall, even if increases in pore pressure are not 

exceptional relative to those before or after. However, hydromechaincal fatigue requires a 

groundwater flow regime at depth that results in significant pore pressure variation. Similarly, 

Jaboyedoff et al. (2004) noted that, prior to the Randa rockslide, weakening of material along 

discontinuities occurred through chemical weathering, allowing progressive reduction of shear 

resistance along joints without the development of pore pressure. Given that many of the 

rockfall in this study occur within exposed beds, rock mass fatigue could exist if increased water 

pressures are iteratively created and released by rainfall and drainage by seepage along bedding. 

However, since the rockfall are shallow and confining pressures are low, the likelihood of 

hydromechanical fatigue-driven failure is also low at the cliff surface where they primarily occur. 

However, the heavily jointed nature of East Cliff may promote dissolution of the sandstone 

along joints (Siman-Tov et al., 2017) or the reduction of frictional resistance along these joints.  

The density and width of fractures directly affects the infiltration capacity of the rock 

mass (Krähenbühl, 2004). However, the hydraulic conductivity of certain weak sedimentary 

rocks can allow a portion of the seepage through pores (Wyllie and Mah, 2004). The 

permeability of sandstone at East Cliff may result in the saturation of voids at the surface, 

reducing the tensile strength of the material but, more importantly, increasing the mass and 

crack propagation required for tensile failure. This conductivity may explain why a rockfall can 

occur at East Cliff at a scale and size below that defined by the joint network, but also relate to 

the occurrence of storm events. 

Given that the strongest relationships have been observed between rockfall and 

temperature and rockfall and precipitation, it is possible that both may coincide to prepare the 

rock slope for failure, thereby allowing the increased rate and volume of material detachment 

that occurred from 8th November - 30th December. Contraction of the rock mass with cooling, 

while reducing the normal stress may also act to widen joints, allowing the infiltration of water 

and inducing greater spatial variation in pore pressures within the rock mass (Krähenbühl, 

2004). Cooling introduces deviatoric stresses and reduced normal stress, which can result in the 

cracking of rock bridges, continuous loss of cohesion, and eventual failure (Watson et al., 2004). 

A combination of progressive weakening of rock bridges near the surface and reduced resistance 

along joints due to water flow may have prepared the slope for larger failure events prior to the 

onset of stormy conditions at the end of the monitoring campaign. An important consideration 
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is the complex interplay of several factors that may all act to predispose failure. This was 

discussed in Chapter 2 and is reflected in the proposed mechanisms above. The significance of 

external driving forces may change through time and only a more elaborate multivariate 

analysis may be suited to adequately describe the interplay between preparatory factors and 

triggers. The analysis presented in this study has highlighted that, while significant relationships 

can be derived over long-terms scales (e.g. 30 days), these relationships do not hold at finer 

scales and are therefore insufficient to adequately explain failure controls at finer scales.  

 

8.5 Development of rockfall through time 
 

A timescale of failure development of 4 d – 7 d has been inferred from the shift in 

rockfall volume frequency analysis of the entire inventory. However, monitoring of individual 

failures that develop through time is required to interpret the in situ processes that drive final 

failure. Analysis in Chapter 7 provided examples of how the fragmentation of blocks for 30 

rockfall developed through time. This showed that an increase in the number of small events, 

which coalesce and superimpose one another to ultimately form or precede the largest rockfall, 

can be observed over the same 4 d – 7 d timescale at which the inflection in the relationship 

between β and Tint is observed. Individual plots of these rockfall have shown that pre-failure 

rockfall occur at the periphery of incipient scars, typically at either the bottom or top, which 

may be indicative of small-scale failure of intact rock bridges beneath the surface or within the 

failing block itself. This may resemble a surface expression of Terzaghi’s (1962) description of 

progressive failure by stress redistribution, which follows a loss of cohesion at a particular point 

on a slope. For the failure of a single coherent block, the highest stress and strain magnitudes 

would be expected on the perimeter, which may explain these precursor locations. Terzaghi also 

noted that discontinuities in natural settings are limited in persistence (Gischig, 2011c) and that 

some fracture propagation of intact rock bridges may be required for catastrophic failure.  

As noted previously by Rosser et al. (2007b), there is a philosophical question as to 

what defines a precursor and what defines a final, or ‘catastrophic’, rockfall. Here, while rockfall 

are small relatively to comparable studies, final failure may refer to those rockfall that were 

preceded by hyperbolic accelerations in rockfall activity; however, precursors themselves also 

yield hyperbolic increases in activity (Voight, 1989, Crosta and Agliardi, 2003). Some work has 

previously been undertaken on the timing of how individual rock slope failures develop. 

Numerical modelling has elucidated temporal evolution of failures from kinematics (Allison and 

Kimber, 1998), strength degradation, structural control and undercutting (Styles et al., 2011). In 

the field, precursors to final failure have been observed as spalling (Rosser et al., 2007a;b), creep 

displacements (Royán et al., 2015), and microseismicity (Senfaute et al., 2009), which all imply 

an underlying time-dependent failure process. Amitrano et al. (2005) recorded a three order of 
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magnitude increase in seismic energy release in the 2 h leading to failure.  

At East Cliff, both pre-failure deformation (creep) and pre-failure rockfall activity have 

been considered. The data generated implies that a similar pattern of acceleration may be 

manifest in disruptions to a failing slope surface. A hyperbolic increase in activity can often be 

considered similar to a homeostatic self-reinforcing process (Rosser et al., 2013); the extent to 

which any rockfall acts to further destabilise a slope in itself raises questions as to whether the 

precursors presented a product of failure, as opposed to the cause. Pedrazzini et al. (2010) 

observed a decrease in the rate of small rockfall events, which implied that the slope had 

progressively stabilised itself as a result of the release of strain accumulated across it. Leroueil 

(2001) also noted that stress redistribution following local failure may create a new equilibrium 

state within the slope, rather than constituting an acceleration towards final failure. 

Accelerations in rockfall activity appeared to occur in the final hours of failure, similar to the 

seismic energy release monitored by Amitrano et al. (2005) and corresponding to displacement 

monitoring of brittle failure using ground-based radar (Dick, 2013). The period of this 

acceleration is far shorter than that observed by Royán et al. (2015), where the onset of 

acceleration began ca. 200 d prior to failure. The decrease in precursory creep with the size of 

final failure, found in this study, implies that this may be due to the fact that the failure 

observed by Royán et al. (1 012 m3) was three orders-of-magnitude larger than the maximum 

detachment recorded here. However, it is also likely to relate, in part, to the much larger 

average Tint of 105 days. 

Rose and Hungr (2007) presented inverse-velocity as a means of predicting large-scale 

ductile failures. Brittle mechanisms, in particular those within relatively small failures of strong 

rock, were shown to produce almost instantaneous failure and therefore prompted the suggestion 

that they were unsuited to prediction through displacement monitoring. Here, with what is 

arguably far more appropriate data, accelerations in creep observed during the final 2 h of 

failure suggest that while prediction of these failures is impossible using the current system, 

failure is not instantaneous and accelerated deformation is observable. An observation in this 

study, however, is that while pervious applications of this method (Zvelebil and Moser, 2001; 

Crosta and Agliardi, 2003), and specifically prior to rockfall (Royán et al., 2015) have obtained 

best-fits in the tertiary phase of acceleration, even during the final hours of failure, this 

acceleration does not appear to be uniquely or purely hyperbolic. Rather, it appears to occur in 

multiple stages that superimpose onto a longer-term trend approximating a hyperbolic form. 

This is found for both slumping of material on the buttress, and for rockfall from the cliff above 

(for example, Figure 8.2).  

The phases of deformation that occur during the tertiary phase of failure may represent 

the widening of joints, the occurrence of small rockfall events, breakage of rock bridges or self-

reinforcing of failing blocks due to slip and subsequent interlocking of. Under shear, the 
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roughness of joints plays a time-dependent role, as interlocking can occur between asperities 

before microcracks in the asperities cause them to shear, forming a smooth rupture plane. 

Havaej et al. (2015) generated a discrete fracture network from terrestrial photogrammetry 

point clouds in order to simulate pentahedral wedge failures in a slate quarry, Cornwall, UK. 

Using a 3D distinct element simulation, perturbations in the downward trends of inverse 

velocity data, similar to those observed using the Reverse Cumulative Variance, were found 

prior to the failure of certain blocks. This was attributed to confinement and interlocking by 

surrounding blocks, which slow and constrained release. 

Time-dependent deformation of discontinuities may also occur due to time-dependent 

breakage of intact rock bridges (Kemeny, 2005). The persistence of discontinuities contributing 

to slope failure is generally limited, requiring the failure of intact rock bridges to enable 

movement (Tuckey et al., 2012; Havaej et al., 2012; Stead and Wolter, 2015). These separate 

discontinuities and are required to fail in order for a block to become detached from a slope. 

Once failure has occurred, remnants of small previously intact rock are observable (Tuckey et 

al., 2012; Tuckey and Stead, 2016). While the failure of rock bridges depends on the frictional 

and cohesional properties of the material, loading, and the geometry of the rock bridge relative 

to shear stress, their failure has been considered the result of sub-critical microcrack growth, the 

time-dependence of which dictates the timing and development of failure (Kemeny, 2005). 

Hamdi et al. (2015) also found perturbations in inverse velocity trends obtained from finite 

discrete element modelling of cave block failure. Similar to the results obtained by Havaej et al. 

(2015), cycles of acceleration and deceleration occurred prior to the onset of final failure, with 

each attributed to intact rock bridge failure within the model. The repetition of these cycles 

prior to the onset of final failure was suggestive of damage accumulation below the level of 

damage required to initiate final failure, which itself is associated with the continuous 

displacement and fracturing of the failing mass. In relation to this study, the time dependence of 

failure mechanisms, such as microcracking, may explain the hyperbolic increases in creep of a 

failing block. However, the iterative failure of intact rock bridges that occurs as a result of this 

may explain the multiple stages of acceleration that occur prior to failure.  
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Figure 8.2: Reverse cumulative variance shown for the 24 hours prior to a large rockfall. Inflections 

in the RCV appear to relate to pre-failure rockfall (red), but also small regions of forward movement 

(blue). Both may imply internal failure of rock bridges prior to failure, which ultimately result in the 

rock mass undergoing stages of acceleration prior to failure, rather than a simple hyperbolic 

acceleration. The accompanying video can be viewed in Appendix F. 
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8.6 A new model of the controls on rockfall development 
 

While patterns of acceleration prior to failure have been observed in this study, it is 

important to place these events within the context of the power-law behaviour of rockfall. By 

far the majority of rockfall (> 99%) occurred without precursory activity, either because these 

detachments were too small or short-lived to detect, or because the size of the final failure was 

insufficient to yield the mass required for driving forces to exceed resisting forces. In such 

instances, the occurrence of a trigger is followed instantaneously by failure (Figure 8.3a). Here, 

the rockfall does not have the volume to fragment and internally fracture or the external trigger 

is of sufficient force to overcome any progressive mechanism. The result is that the rockfall does 

not exhibit precursors. These events represent quasi-continuous small scale mass wasting of the 

rock face, where rockfall are near-instantaneous, small, and essentially random in time and 

space. The size of these events is still sufficient to present a significant hazard and a significant 

agent in long term mass wasting, however, their timing is likely to be impossible to predict.  

The second mode of observed failure presents an instantaneous rockfall as the result of a 

trigger, but requires some degree of preparation over time for the failure to occur. These rockfall 

are typically of medium size, defined here as 0.01 – 0.1 m3 (Figure 8.3b). Here, the onset of 

rainfall does not necessarily induce failure onset, but does increase the rate of observed 

deformation. This was observed in Section 7.7 and may relate to a gradual reduction shear 

strength along joints; an increase in the mass of blocks that become saturated by rainwater and 

hence increase the driving forces; or the iterative breakage of rock bridges as a result of these 

processes. 

Finally, for the largest events observed here, the onset of a trigger instigates internal 

deformation that is manifest on the surface as either ongoing and accelerating deformation, or 

the release of an increasing rate of precursory rockfall, that results in a distinct lag between the 

trigger and the failure itself (Figure 8.3c). While the fact that this acceleration towards failure 

occurs independently of external forcing supports previously observed relationships in the 

laboratory (for example, Petley et al., 2005), here the calculation of the reverse cumulative 

variance has shown that, while elements of this trend may be hyperbolic, it may also be phased. 

For this type of event, the following observations apply: 

 

(1) Failure triggers often do not necessarily coincide with the timing of the final failure 

itself; this implies that a block may reside close to a critical point and may only require 

infinitesimally small increases in stress to enter the final failure period. In this figure, 

the onset of acceleration occurs after a short period, which need not include any 

environmental forcing, such as rainfall. 

(2) Some unstable parts of the slope may not collapse despite the passage of a large 
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external event. While rainfall events may accelerate the rate of deformation in a slope, 

this may be insufficient to result in failure. This implies that the rock mass must be 

prepared for failure, having accrued a sufficient amount of damage through 

fragmentation and weathering to instigate a later collapse. 

(3) Rockfall from slopes have been shown to adhere to a power-law magnitude-frequency 

distribution, in which the many small events may actually be precursors to larger 

incipient events. Rockfall scars in (c) are preceded by smaller and more frequent rockfall 

in (b), which in turn are characterised by even more rockfall in (a). The ratio between 

these frequencies is apparently constant at any given site. 

(4) The hyperbolic increase in rockfall activity, if detectable and distinguishable from 

background noise before collapse, may be conducive to failure prediction. This has been 

shown by Royán et al. (2015), but over a much longer timescale (several hundred days) 

for a larger rockfall. Here, significant accelerations in the rate of rockfall occur 2 h 

before failure. However, this stage may occur in phases, due to interlocking and 

subsequent shearing of asperities, joint widening, and shedding of material before 

collapse. 

(5) The pattern of hyperbolic increase in deformation is only applicable for larger rockfall, 

which have sufficient volume to fragment and internally fracture. 

 

8.7 Summary 
 

 This chapter has examined the findings produced from 4D monitoring of rockfall from a 

failing rock slope. Although monitoring of this type yields a number of unique considerations, 

these have been addressed in this study to enable the creation of an accurate rockfall inventory 

at sub-hourly intervals. Rockfall appear to develop through a process of fragmentation of the 

rock mass, inferred by examining the rockfall volume-frequency distribution measured at 

different monitoring intervals, and by identifying and characterising the timescales of pre-failure 

rockfall activity. This concept is indicative of quasi-continuous material loss from the rock face, 

which limits the potential for large rockfall to fail instantaneously. As a result, most rockfall at 

East Cliff are beneath the scale of joint persistence, which appears to provide an upper limit on 

failure size in this setting. The spatial and temporal scales of this process are hypothesised to 

extend down to a point where failure is purely driven by tensile strength, in which the mass of a 

block is the smallest required for failure to occur. Fragmentation is evident up to timescales of 

ca. 4 d – 7 d, supporting linear regression analysis that suggests that the relationship between 

the timing of final failure and external drivers is neither linear nor a direct cause-effect.  

Small rockfall are driven by thermomechanically-induced stresses within the rock mass, 

in particular during cooling that occurs in the two hours prior to sunset. The slab-like shape and 
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shallow depth of these events emphasises the importance of near surface stress development that 

is independent of confining stresses. The increased proportion of small rockfall events towards 

the summer months (inferred from increases in the magnitude-frequency exponent of rockfall 

volumes during June and July) also highlights the sensitivity of the rock mass to temperature 

gradient.  

The slope appears to respond to rainfall in a variety of ways. Intensity duration analysis 

and visual inspection of time series of rockfall and rainfall suggests that rainfall can act as a 

trigger, but only if sufficient preparation has occurred or if the rockfall is small (< 0.01 m3). For 

large rockfall, the timing of rainfall is more closely related to the time of failure onset, rather 

than the failure itself, suggesting that rainfall may act to prepare the slope for failure. This is 

supported by the insignificant relationships obtained by linear regression, with the exception of 

some rainfall accumulation relationships, and the fact that rainfall induces a sustained increase 

in the overall rate of pre-failure deformation prior to rockfall. Temperature and rainfall may 

combine to predispose the slope for rockfall. For example, rainfall may reduce shear strength 

along joints, increase the mass of small fragments, but also act to cool the rock face, thereby 

inducing near-surface stress development and microcrack growth. Conversely, cooling may act to 

widen joints and increase infiltration of the rock mass. This enhanced preparation for failure 

may be the reason for the considerable increase in rockfall activity during the storms of 

November and December 2015. 

In addition to pre-failure rockfall activity, pre-failure deformation of failing blocks has 

been detected. The acceleration towards final failure appears to occur in stages, rather than as a 

single hyperbolic acceleration; this is symptomatic of microcrack growth and coalescence. As 

shown in Figure 8.3, this reflects forward movement of the rock mass, which may be indicative 

of incremental, internal fracture of rock bridges, as well as pre-failure rockfall. Here, for the first 

time at such short intervals, both the pre-failure rockfall and pre-failure deformation have been 

shown to be present and accelerate prior to failure.  
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Figure 8.3: Conceptual diagram of the possible paths to failure followed by rockfall observed in this 

study. For small rockfall, failure may occur instantaneously after a triggering event. This may be 

external or in-situ, such as the breaking of intact rock bridges. The culmination of these many, frequent 

rockfall contributes to the failure of larger, medium sized rockfall. These rockfall require preparation by 

weathering and precursory fragmentation, and may occur instantly following a trigger. Both small and 

medium sized rockfall precede larger scale rockfall. The path to failure that these events may take 

requires preparation by fragmentation of the rock mass. The rate of this damage accumulation may be 

increased by the passage of energetic external forcing events, such as rainfall, and may also 

superimpose diurnal cycles in the frequency of fragmentation. The passage of rainfall may act to 

trigger the onset of final failure, but the timing of final failure itself is independent of the timing of 

energetic environmental conditions. The acceleration towards failure may or may not be a hyperbolic 

increase in microfracture growth, since phased acceleration through interlocking and shearing of 

asperities, joint widening, or shedding of material may also occur.  
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Chapter 9 

Conclusions 
 

 

9.1 Summary of thesis 
 

In this chapter, the overarching aim and research questions introduced in Chapter 1 are 

revisited. The development of a novel method, which handles and processes large volumes of 

scan data to create a reliable rockfall inventory, has underpinned the ability to answer the 

research questions posed at the outset of the thesis. These questions are outlined below, 

following a review of the approach to rockfall acquisition from 4D monitoring.  

The method developed takes a series of ASCII files (n = 8 987), which contain the 

position, reflectance and deviation of each point in the point cloud, and proceeds to rotate, crop, 

filter, align, segment and detect change for each sequential scan pair. The resulting inventory 

contains > 180 000 rockfall that occurred over the 10-month monitoring period. While this 

monitoring period is shorter than those in previous studies undertaken over years (for example, 

Royán et al., 2015) and decades (Rosser et al., 2013), the number of scans acquired is between 

two and three orders of magnitude greater. Most importantly, the time interval between scans, 

Tint, is approximately two to three orders of magnitude smaller than previously, averaging ca. 

0.5 hours. 

The nature of these scans, in particular that they are captured from a single fixed 

position, has required a tailored approach to processing the data that minimises uncertainties, 

which have the potential to propagate within the dataset. While many of these arise from 

scanning from a single position, the approach developed to overcome these is also applicable to 

scans collected from multiple positions in other settings. The filters applied here are unique in 

that they estimate the proximity of a point to an edge by drawing on the topographic position 

and radiometric return of that point. Here, points that are close to edges have been shown to 

yield a lower precision between scans. The use of the structure of the radiometric return of the 

signal, or ‘waveform’, represents one of the first usages of this characteristic in applications of 

terrestrial LiDAR for monitoring. A number of approaches were tested to detect change between 

surfaces. The approach adopted compares surfaces in true 3D and is robust to the presence of 

edges in the dataset. The workflow presented here has been tested with subtle variations in the 

parameters and methods presented in Chapter 4, and was deemed to present the most realistic 

rockfall attainable. In this setting, this yielded lower LoDs than DEMs of Difference (DoDs) or 

the Multiscale Model to Model Cloud Comparison (M3C2; Lague et al., 2013). 
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 The results obtained have enabled unique insights into the mechanisms of rockfall 

development, the importance of factors that prepare the slope for failure, the timing of failure 

with respect to triggers, and the nature of the final phase of failure. The research questions in 

Chapter 1 are now considered in light of the research undertaken in this thesis. 

 

(1) Does the observed power-law behaviour of rockfall extend to its occurrence 

over short timescales? 

 

Objectives 2, 3 and 4 have been completed in order to answer this research question. 

These include (a) assessing the use of 4D data in providing reliable volume estimates; (b) 

developing an understanding of the size distribution of rockfall, necessary to analyse the role of 

jointing (RQ2) and external drivers (RQ3) by rockfall volume; and (c) examining rockfall over a 

range of monitoring intervals to identify the timescales over which they evolve. 

The pattern of rockfall adheres to a power law distribution similar to that in other 

studies. The exponent at 30 day intervals, β = 1.78, is within the range of previously observed 

estimates in this setting by Rosser et al. (2007a) and Barlow et al. (2012). In Chapter 5, the 

exponent β has been shown to be inversely proportional to the value of Tint for 1 h < Tint < 

106 h. At 1 h, therefore, the exponent β = 2.27, is higher than for previous studies in this 

setting. An additional consequence of this is that there is a three order of magnitude decrease in 

the frequency density of the largest rockfall events, purely because of more frequent monitoring. 

This has implications for hazard assessment and protection measures, such as rockfall net 

design, given that high frequency monitoring has yielded an increase in the relative probability 

of small rockfall. Deviations from the predicted exponent occur for small rockfall < 0.1 m3. For 

rockfall identified between scan pairs at 30 d < Tint < 90 d, this deviation is observed as a 

rollover in the dataset, in which the proportion of the smallest rockfall fall below the predicted 

frequency density of the power law. Conversely, an ‘anti-rollover’ in the distribution occurs for 

Tint < 4 d, in which the frequency of rockfall in the smallest volume bins is consistently (and 

increasingly) above the predicted density. Here, the same pre-processing and change detection 

techniques were applied to each set of Tint scan pairs, with the result that the LoD was the 

same. The fact that the smallest rockfall are under-represented in inventories where Tint > 21 d, 

suggests that these events do not represent methodological noise. As such, the anti-rollover 

effect observed in inventories where Tint < 106 h is not a function of erroneous pixels of change 

that are accumulated by more frequent scanning. 

From a methodological perspective, the analysis implies that erosion monitoring at 

intervals more frequent than once per month, and the associated increase in cost, is unlikely to 

yield a significantly different pattern or inventory of rockfall. Furthermore, given that the 

uncertainty in volume estimation is largest for small detachments, less frequent monitoring (for 
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example, 30 days) can be considered reliable and representative of long-term erosion. However, 

surveys at Tint < ca. 106 h are required for the purpose of monitoring failure development. The 

results show that a higher proportion of small rockfall are observed when monitoring at 

increasingly high frequencies, as long as this time interval does not exceed ca. 106 h. This 

suggests that failures in this setting occur through a process of fragmentation, in which 

precursors also tend to scale in size to a power law fit. This increase is, however, unlikely to 

extend to disintegration generating infinitesimally small rockfall, given that a sufficient mass is 

required to exceed the material’s tensile strength.  

 

(2) To what extent does the rock mass structure determine the permissible size 

of failures? 

 

The scale of visible persistence have been extracted in 3D, using the recently developed 

CloudCompare plug-in Facets (Dewez et al., 2016). Quantifying their dimensions in 3D has 

enabled a novel statistical approach to identifying their role in determining permissible failure 

size. This approach compares the distributions of facet widths and heights to distributions of 

rockfall depths, both of which are measured over the same range of lengths and are quantified in 

3D. For each bed, the exponent of the distribution of facet lengths is higher than that of the 

rockfall depths. Detachments can therefore be considered to have occurred below the scale of the 

joint network. Nevertheless, when rockfall size distributions are compared, rockfall that originate 

from more closely jointed lithologies (for example, interbedded sandstone and siltstone) are 

dominated by smaller events, implying that the maximum rockfall size is often limited by the 

scale of persistence in the rock mass and that the rockfall monitored are unlikely to have failed 

across multiple discontinuities. This further confirms the concept of progressive fragmentation in 

rock masses. The shape of rockfall suggests that confining stresses are of significance in limiting 

the depth of rockfall; the average rockfall is slab-like, with the depth of the rockfall 0.156 times 

the length and breadth. This is suggestive of the importance of weathering of the surface of the 

cliff rock mass prior to failure, and highlights the potential significance of thermomechanical 

damage at the near-surface due to cooling.  

 

(3) Are environmental conditions significant as triggers of rockfall occurrence 

and, if so, which conditions promote failure? 

 

Analysis of the relationship between rockfall timing and environmental conditions is 

inherently complex. The dataset has presented tentative insights into direct links between 

rockfall and contemporaneous environmental conditions, yet no single control appears to 

dominate. An analysis of the seasonal trend of rockfall using high resolution monitoring suggests 
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that stormy conditions towards the winter months correlate with an overall increase in the rate 

and size of rockfall. An increase in rockfall size yields more block-like shapes, which fail to 

greater depths into the rock face. Their occurrence is therefore likely to reflect in part an 

increase in pore-water pressure within the highly permeable sandstone beds in the cliff studied.  

Monitoring at Tint < 1 h shows that rainfall can act as an immediate trigger to rockfall, 

induce a delayed response, or result in no significant rockfall activity at all. In Chapter 7, the 

passage of rainfall events was shown to increase the rate of deformation within the footprint of 

yet-to-fail rockfall. This implies a reduction of frictional resistance along joints, and highlights 

the importance of weather conditions in preparing the slope for rockfall. For the rockfall 

examined in Chapter 7, rainfall coincided with the onset of accelerated failure but not with the 

timing of failure itself. This supports a hypothesis of exponentially increasing microfracture 

growth within the rock mass, which has been shown in laboratory experiments (Petley et al., 

2005), and which is independent of external conditions. While the infiltration of rain water 

reduces the resistance to failure along joints, saturation of the sandstone may also act to 

increase the mass of small, protruding blocks, which are otherwise of insufficient mass to fail. 

Linear regressions between rockfall timing and single environmental conditions yielded 

insignificant relationships for rockfall of all volumes, and across the range of timescales applied. 

While some relationships were significant when conditions were averaged to a monthly 

timescale, the mechanisms that can be inferred from such relationships are limited, and a 

distinction between preparation and triggering of failure cannot be established. However, when 

rockfall timing was resampled according to the timescales of variability in environmental 

conditions, significant relationships were obtained. Rockfall frequency increased from sunrise 

throughout the day, but peaked for rockfall < 0.1 m3 during the period of greatest cooling rate, 

between 1 h and 2 h before sunset. This implies that a slope may be prepared for failure by the 

occurrence of smaller rockfall, which occur due to thermomechanical stresses induced by cooling 

of the rock mass at the surface. The increase in the magnitude-frequency exponent of rockfall 

towards the summer months indicates that a higher proportion of smaller rockfall coincide with 

an overall increase temperature and an increase in temperature variability through the day. The 

latter is consistent with the sensitivity of rockfall to hourly temperature gradients, as shown in 

Chapter 6. The shallow depth of most failures highlights the importance of damage 

accumulation at the near surface, possibly as the result of microcrack growth and coalescence 

prior to failure. No relationship was found between tidal cycles and small rockfall, which may 

relate to the offset between the lower buttress and the upper near-vertical rock face that is 

located further away from and above the sea. 

The relationships identified between temperature and rainfall, and the occurrence of 

failure may not be independent. The widening of joints at the surface may predispose infiltration 

of water, and hence the reduction of frictional resistance to failure, and the saturation of pores 
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within the material, increasing the probability of small-sale failures. Rainfall may also act to 

cool the rockface; prompting a spike of rockfall activity if this coincides with air temperature 

cooling. Exploring the interactions and combined effects of multiple environmental variables 

using this datasets is clearly an area for further research. 

 

(4) Can 4D monitoring detect pre-failure rockfall or deformation of the rock 

mass at timescales below those previously observed for rockfall? 

 

This research question draws upon the results of Objective 6, which was created with 

the aim of examining patterns of precursory activity within developing rockfall blocks, and 

relating this activity to environmental conditions. Only a small number of rockfall, in addition 

to slips of loose surficial material on the buttress, generated observable pre-failure deformation 

or pre-failure rockfall. An increase in pre-failure deformation with the volume of final failure 

goes some way to explaining this, since only 17 rockfall > 1 m3 occurred. For both rockfall and 

slips on the buttress, pre-failure creep began to accelerate between 2 h and 6 h before failure, 

respectively. While previously considered a hyperbolic acceleration, the use of the reverse 

cumulative variance statistic has shown that this acceleration appears to be punctuated by the 

detachment of material prior to failure, and deformation of the rock mass indicative of 

progressive failure of intact rock bridges. The independence of this stage from environmental 

drivers, such as rainfall, supports previous hypotheses of microcrack growth, in which 

acceleration towards failure is irrecoverable and independent of changes in pore water pressure. 

Pre-failure rockfall activity within the developing rockfall blocks was noticeable over 

timescales similar to the timescale of fragmentation inferred from magnitude-frequency analysis 

(ca. 100 h). For the largest 30 rockfall observed, the rate of rockfall activity showed an 

exponential increase towards final failure, conforming to observations of accelerating strain in 

the tertiary phases of other slope failures, and also to samples tested in the laboratory. In 

relation to rockfall in other settings, the material intact strength and persistence is likely to 

determine the ability to release small, fragmented rockfall in an accelerated pattern towards 

failure. In relation to the use of TLS in instability monitoring, this represents a considerable 

step-forward in the ability to monitor the development of failure.  

 

9.2 Directions for further research 
 

9.2.1 Methodological developments 
 

The major methodological aim of this thesis was to develop a workflow capable of 

processing thousands of point clouds, in order to resolve the smallest possible rockfall. While the 
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minimum aerial extent of rockfall was fixed by the 0.15 m cell size, reducing the LoD determines 

the minimum resolvable depth, thereby influencing the ability to create a binary image of what 

is, and is not, detectable material loss or movement. With the reduction in point spacing, the 

system is now capable of resolving smaller aerial extents; however, an increase in precision of 

depth estimates (below the 0.03 m LoD in this study) can only arise with the application of new 

data treatment techniques. The application of 4D smoothing, either through surface smoothing 

or through smoothing the values of change measured between two point clouds (Section 8.2), is 

a logical next phase for the development of this system. The collection of a high frequency, 

sustained time series of scans makes this dataset suitable for reducing the width of the Gaussian 

distribution shown here, and by Kromer et al. (2015). This has the potential to enable a 

distinction between any creep of the rock mass and small-scale rockfall events.  

A reduction in point spacing also introduces the potential to more finely resolve rockfall 

shapes in 3D. On a cliff scanned at a high incidence angle, this approach will only be a 

applicable for rockfall that are not in close proximity to zones of occlusion, in order to provide a 

closed hull of points and accurately resolve shape. The benefit of this approach is that it reduces 

the uncertainty associated with the interpolation of point data into a fixed grid, and therefore 

increases the suitability of inventories collected at low Tint for forecasting erosion rates in the 

long term. This would provide the additional benefit of drawing upon a representative range of 

rockfall sizes that does not suffer from superimposition or coalescence of small rockfall. 

Extracting the 3D rockfall shape also holds potential for accurate assessment of the kinematics 

of release relative to the joint network (Carrea et al., 2012). Accelerations in pre-failure 

deformation have been observed to occur during the final 2 h before failure, with precursory 

rockfall activity visible in the ca. 106 h before failure. Hence, in this setting, a decrease in 

temporal resolution to 1 h and an increase in point spacing to a maximum of 0.10 m is arguably 

better suited to an understanding of the role of small rockfall in predisposing slope failure and 

the structural and external controls upon them than the current pattern.  

A further methodological development is the developed use of the radiometric return of 

acquired points. Here, this has been used to remove points with high uncertainty based on their 

topographic position. However, monitoring changes to the recorded reflectance through time also 

holds several implications for examining the role of moisture across the rock mass in 

predisposing rockfall. The author has previously estimated the standard deviation of reflectance 

across the rock face through time. Based on monthly scans, this has provided a means of 

delineating the average area of cliff face inundated by the tide (see Appendix G) and for 

identifying points of seepage on the rockface. Half-hourly images of reflectance from a site at 

Staithes, 13 km north of East Cliff, have shown systematic wetting and drying of the rock mass 

within tidal cycles. The identification of the area impacted by tide is critical in accurately 

defining the role of marine conditions in generating shear stresses at the base of the cliff, and 
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their potential for vertical propagation (Wolters and Muller, 2008; Styles et al., 2011). This 

technique has also allowed the identification of seepage from bedding planes, which provides 

some indication of the relative permeability of lithologies across the rock face, and the spatial 

correlation between ground water movement and rockfall occurrence. A final application of 

reflectance analysis is the retention of moisture on the cliff face following the passage of rainfall. 

This holds potential for examining the role of elevated pore pressures, but also the role of 

rainfall in cooling the rockface and generating damage through thermomechanical microfracture 

growth (Eppes et al., 2016). For the database used in this study, the time between the passage 

of rainfall and a running 24 h background reflectance was acquired, highlighting that the 95th 

percentile of rainfall events induced higher than average wetting of the rock face for a 10 h 

period (see Appendix H). Variability in reflectance caused by the time of day, however, was not 

accounted for and would require further examination.  

 

 9.2.2 Developing the understanding of rockfall 
 

Many of the findings in this study serve as a basis for future rockfall research. Beyond 

the visual observation of time series of rockfall and environmental conditions, as well as 

resampling of the rockfall data, limited relationships have been found by considering 

environmental conditions as rockfall triggers. Linear regressions between the two yielded broadly 

insignificant relationships, attributed to the fact that final failure has been observed to be 

apparently independent of external drivers. This analysis could, however, be developed by 

considering combinations of environmental conditions that act either concurrently or in specific 

sequences to promote rockfall occurrence. The relationship between temperature gradient and 

the occurrence of small rockfall, for example, may be enhanced by wetting of the cliff which 

increases the rate of surface cooling (for example, Eppes et al., 2016). Conversely, cooling of the 

rock mass may cause contraction of blocks and subsequent widening of joints, increasing the 

infiltration of discontinuities and promoting slip along joints (for example, Krähenbühl, 2004). 

In essence, the application of statistical analysis techniques that describe more complex 

interactions between given conditions would be beneficial. These include, but are not limited to, 

the integration of decision tress, which identify specific combinations of environmental 

conditions.  

While weather station data has been drawn upon here, there is also considerable 

potential to combine the TLS data with other datasets that have potential to improve the 

understanding of the relationship between environmental controls and rockfall. Thermal imaging 

and reflectance data would enable a spatial correlation to be established between rockfall and 

any regions of ground water seepage across the cliff (similar to Appendix H). It would also allow 

a developed appraisal of the relationship between environmental conditions, thermomechanical 
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stress development, and rockfall occurrence. This could constitute an assessment of the role of 

contemporaneous environmental conditions, such as simultaneous cooling during high tide, 

rainfall, and sunset. Previous relationships between rockfall timing and microseismic shaking, as 

a proxy for external forcing, have yielded significant correlations (Vann Jones et al., 2015). 

However, these have drawn upon rockfall data that is cumulated over timescales considerably 

greater than the variability in cliff shaking and the frequency of microseismic monitoring.  

The derivation of 3D change and its subsequent rasterisation has minimised many of the 

errors associated with DoDs. As such, and in part due to the considerable volumes of data 

already generated within this study, DEMs have not been created for each survey. However, 

DEMs generate the ability to easily interpret rockfall in relation to the topography of pre- and 

post-failure surfaces. This would enable an analysis of the spatial distribution of rockfall with 

respect to stress concentrations at convexities across the rock face, as well as the accentuation of 

these convexities by rockfall.  

While pre-failure rockfall activity is frequently examined due to its relation to failure 

mechanisms and the timing of final failure, a dataset of this nature also has the potential to 

examine failures that occur after a large failure, rather than before. For example, the sudden 

removal of lateral support by large failures may result in elastic rebound, stress relief and 

dilation of the rock mass beneath (Zavodni and Broadbent, 1981). While at small scales this is 

unlikely to result in the creation of a defined surface, it has the potential to induce further 

detachments from the rock mass. Examples of this effect were observed in some instances within 

this research, and require further study. Failures scars in this setting rarely include single failure 

surfaces; rather, they comprise a combination of weathered joints and freshly broken rock, often 

with multiple sets of each. A more detailed analysis of scar fractography, which would be 

possible using the telephoto lens imagery applied in Chapter 5 alongside more dense point cloud 

acquisition, would enable an appraisal of the role of rock bridge fracture prior to failure, and the 

influence of this upon the number of phases of acceleration during final failure.  

 

9.3 Concluding remarks 
 

This thesis has developed a novel workflow for processing large numbers of scans 

(103 - 104) to a high level of precision (LoD = 0.03 m). By detecting rockfall at a high spatial 

resolution and at intervals several orders of magnitude lower than in previous research, the 

significance of fragmentation of the rock mass has been discerned. A novel statistical approach 

for examining the control exerted by the joint network and the shape of the rockfall was 

undertaken, highlighting that rockfall occur beneath the scale of rock mass persistence and that 

rockfall are highly slab-like. Analysis of the relationship between environmental conditions and 

rockfall timing is complex, but the collection of high frequency scan data has shown the 
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potential for resampling the data according to cycles of environmental conditions. A peak in 

rockfall activity occurs in the final hours before sunset, during maximum cooling of the rock 

mass. This, combined with the shallow depth of rockfall, implies that near-surface 

thermomechanical microcrack growth drives many of the failures observed. An increase in the 

magnitude-frequency exponent during the summer months also suggests that high daily 

temperature fluctuations can generate a high proportion of small rockfall events. The generation 

of a high frequency rockfall inventory has shown a seasonal increase in rate and size with the 

onset of storms. When examined over shorter timescales, rainfall relates to rockfall timing in 

several ways. First, it induces a sustained increase in the rate of pre-failure deformation, without 

actually causing failure to occur. This can be considered as a preparation of the slope for failure 

and may constitute a reduction in resistance to shear along joints. Second, rainfall relates to the 

timing of small rockfall events, which may or may not constitute precursors to future, larger 

rockfall. These may occur due to cooling of the rock mass through wetting, or saturation of the 

sandstone to yield a mass sufficient to drive failure. Third, rainfall appears to trigger the onset 

of final failure but frequently does not coincide with the timing of failure. This supports 

laboratory analyses that have emphasised the role of exponential microcrack growth in defining 

the tertiary phase of failure, and the independence of this phase from external forcing. Pre-

failure rockfall activity and pre-failure deformation have showed accelerations prior to rockfall, 

neither of which have been previously observed at such short timescales using TLS. Deformation 

prior to rockfall has presented linearity in inverse-velocity relationships; however, phases also 

appear to occur, which may reflect time-dependent breakage of rock bridges as the mass moves 

forwards. 

The research presents a unique dataset that provides insight into relationships that 

have previously only been conceptualised by extrapolating findings of combined lower spatial 

and temporal resolution. In doing so, more questions have arisen about the controls on the 

nature and timing of rockfall that identify clear routes for future research in this field. 
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Appendices 
 

Appendix A 

 Magnitude-frequency power laws for monitoring over the same period, but with different 

time intervals between scans, Tint.  

 

Table A.1.1: Intercept and exponent data used in Figure 5.27a and Figure 5.27c 
Tint s β 

< 1 h -4.020 -1.311 
3 h -3.445 -1.147 
6 h -3.175 -1.064 
12 h -2.872 -0.984 
24 h -2.641 -0.921 
96 h -2.212 -0.819 
7 d -2.010 -0.777 
14 d -1.988 -0.794 
21 d -1.984 -0.767 
30 d -1.888 -0.769 
90 d -1.652 -0.663 

 

 

Table A.1.2: Intercept and exponent data used in Figure 5.27b and Figure 5.27d 
Tint Tint Tint 

< 1 h 0.671 -1.239 
3 h 0.716 -1.060 
6 h 0.205 -0.990 
12 h 0.704 -0.920 
24 h 0.679 -0.868 
96 h 0.655 -0.812 
7 d 0.661 -0.775 
14 d 0.522 -0.833 
21 d 0.589 -0.794 
30 d 0.479 -0.822 
90 d 0.528 -0.752 
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Table A.1.3: Intercept and exponent data used in Figure 5.27c and Figure 5.27f 
Tint Tint Tint 

< 1 h 1.185 -2.273 
3 h 1.221 -2.090 
6 h 1.224 -2.011 
12 h 1.235 -1.925 
24 h 1.210 -1.868 
96 h 1.184 -1.800 
7 d 1.169 -1.769 
14 d 1.052 -1.806 
21 d 1.065 -1.803 
30 d 1.003 -1.778 
90 d 1.102 -1.695 
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Appendix B 

 Video of failures from the rockface that occurred during the 10-month monitoring 

period. 

https://www.youtube.com/watch?v=K4s_TJS0bAk 

 
 

  

https://www.youtube.com/watch?v=K4s_TJS0bAk
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Appendix C 

 Further examples of the relationship between area of pre-failure activity recorded and 

the Tint of monitoring. Some failures are near-instantaneous and, therefore, the area does not 

change with monitoring interval. For others, pre-failure events are only distinguishable from 

high-frequency monitoring. 
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Appendix D 

 An example of pre-failure deformation. Here, a forward movement of material prior to 

failure is indicative of toppling of failure. 

https://www.youtube.com/watch?v=rWL06JhxYeI 

 

 
 

  

  

https://www.youtube.com/watch?v=rWL06JhxYeI
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Appendix E 

This appendix provides basic details of the 4D smoothing approach that is being 

developed for integration into the DAN VCL change detection described in Chapter 4. 

The code takes a series of ICP-aligned point clouds and stacks them on top of one 

another. For each point in the most recent point cloud, referred to as the query point, qP, a 

neighbourhood of points is defined within a fixed radius. This process is described in simple 

terms in Figure A.E.1. From this neighbourhood, a local reference plane is generated that 

minimises the sum of square distances (Pauly et al., 2002). The orthogonal projection of the 

query point onto the least-squares plane, qH, is then calculated. A bivariate polynomial surface is 

then created using points from all 10 point clouds within a user-defined radius of the projected 

query point. The creation of this surface is weighted by the spatial and temporal position of 

neighbouring points, and the ‘smoothed’ position of the query point is its orthogonal projection 

onto the surface, qMLS.  

The polynomial surface is created by applying two weightings to points that neighbour 

the query point’s projection onto the least-squares plane. First, a spatial weighting is applied 

that is based upon the distance between each point and qH. A Gaussian kernel determines the 

importance of points that are close to qH relative to those that are further away. A sensitivity 

analysis has been undertaken to define this kernel, which can be viewed as a low-pass filter such 

that features smaller than the kernel size will be smoothed out. Second, a weighting was applied 

to each point based on the point cloud to which it belonged, such that a higher weighting is 

given to points belonging to the most recent, and therefore realistic, surface. Both the temporal 

weighting and spatial weighting can be tailored to the timescale and aerial extent of the process 

under examination. As long as the window of temporal averaging (determined by the temporal 

weighting) is below the timescale of change, the noise in change detection estimates can be 

reduced without smoothing out real movement. Similarly, the spatial weighting should ensure 

that the points that are used do not span an area greater than the scale of examined movement. 

The relative importance of a point’s position in the spatial domain, compared to its position in 

time, is also addressed. The effect of this method is not to produce a more realistic surface, 

because it is averaged, or ‘smoothed’, across the topography. However, the surface that is 

produced is optimised for change detection (Figure A.E.2). 
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Figure A.E.1: Schematic diagram of the stages of 3D MLS. For 4D MLS, the neighbourhood of 
points includes the ten previous point clouds.  
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This analysis was first undertaken upon a series of planar boards, positioned at 100 m intervals 

over 1,000 m (Figure A.E.3). Reductions of the order of 30% in the orthogonal distance between 

Figure A.E.2: Top: Example of a 4D MLS smoothed surfaces. While neither surface is as 
topographically realistic once smoothed, the offset between the surfaces is smaller, thereby optimising 
these surfaces for change detection of very small movements over wider areas. Bottom: Averaging 
between multiple scans reduces artefacts in the data that reduce measurement precision, such as the 
triple-striping of Riegl systems, and edges. 
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measured points and a least-squares plane, representative of the board, were recorded (Figures 

A.E.4 and A.E.5). A DAN VCL change detection was subsequently applied to successive scans 

of the board, resulting in a decrease from the centimetre LoD scale, to the millimetre LoD scale 

at all distances. This approach was also shown to reduce the LoD between scans of East Cliff, 

from 0.030 m to 0.005 m. For an open-pit high-wall using a different instrument (Riegl VZ-

4000), the data ensured that the percentage of points within a 10 mm theoretical minimum 

precision, quoted by the manufacturer, increased from 18% to 85% of the point cloud (LoD 

0.053 m to LoD 0.015 m; Figure A.E.6). 

 

 

 

Figure A.E.3: Targets distributed at 100 m intervals between 100 m and 1,000 m on a disused 
former WWII airfield. The targets were repeatedly scanned at 30 minute intervals over a 24 h period. 
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Figure A.E.4: Reduction in the point-to-plane distance for boards using data from multiple scans, 
smoothed using 4D MLS  

Figure A.E.5: Cumulative distribution of cloud-to-cloud change detections show a lower precision 
after 4D MLS is applied.  
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Figure A.E.6: Change detection between two scans of an open-pit high wall, between which no change 
occurred. Here, 3D MLS shows an improvement in precision, such that 85% of the point clouds fall 
within Riegl’s quoted precision under test conditions at the minimum target range (300 m). This is 
increased from 18% using the raw point cloud data. 
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Appendix F 

 Video of reverse cumulative variance, RCV, development during the final 24 h before 

failure alongside point clouds of change. Deformation (forward movement) in blue, is evident 

within the entire developing rockfall block, resulting in inflections in the RCV. This is also 

illustrated in Figure 8.3. Bottom: area of the rockface from which points are used. 

https://www.youtube.com/watch?v=XxB2cbBQVkw 

 

 
 

 
  

  

https://www.youtube.com/watch?v=XxB2cbBQVkw
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A
ppendix G

 

T
his appendix provides basic details of the 4D

 sm
oothing approach that is being 

developed for integration into the D
A

N
 V

C
L change detection described in C

hapter 4. 

 
 

Figure A.G.1: Top: An image of the sum of reflectances from a cliff at Staithes, North Yorkshire. The constituent reflectance images were 
acquired from monthly TLS surveys over an 18-month period. At the base of the cliff, the reduction in the total reflectance provides an estimate of 
the zone that is either inundated by the tide or subjected to wetting by waves. Middle: The same reflectance images have been used to estimate the 
standard deviation of surface reflectance. This again allows a delineation of the tidal zone. Notably, however, an additional feature is the presence 
of zones of high variability. These appear to constitute seepage from sub-horizontally bedded sedimentary rocks. In the lower image, the white 
polygons delineate rockfall that occurred during this period, which bears a considerable spatial correlation to the zones of seepage. Bottom: Slope 
model of the cliff where white colours are face-on to the viewing angle. 
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Appendix H 

This appendix highlights the potential use of the radiometric return of the laser (here 

defined as reflectivity of the surface), in order to understand the time over which the rock face 

remains wet after rainfall. This has the potential to inform the timescale over which rainfall can 

trigger slope failure. 

 

 

Figure A.H.1: (a) Mean reflectance for each of the 8,987 point clouds plotted for the entire 
monitoring period (blue). Troughs are identified based on a user-defined deviation from previous 
reflectances (circles). From visual observation, it is clear that a relationship exists between the timing 
of rainfall events (orange line) and troughs in reflectance. The colour of these circles represents the 
time taken to return to a background rate, defined as the 24 h average. (b) This time taken is plotted 
as a cumulative distribution function for each of the identified troughs. This suggests that the cliff 
remains wet for a maximum of 24 h following a rainfall event. Notably, this is similar to the offset in 
timing of the largest 1,000 rockfall relative to the most recent storm events. However, this technique 
requires more thorough sensitivity analysis and testing.  
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