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  Volume Abstract 

Do Glaciers Enhance Organic Carbon Burial? :  

An Isotopic Approach Linking Continental Weathering,          

Iron-(oxhydr)oxides and Climate Change. 

 

Scott Hawley 

 

This thesis explores continental weathering patterns in glacial and non-glacial river catchments 

in Iceland and Greenland. Specific attention is placed on characterizing the relative iron 

(oxyhydr)oxide export rates of glacial and non-glacial catchments to the ocean. Total element 

concentration and iron stable isotope measurements indicate that chemical weathering 

differences do exist between glacial and non-glacial catchments. The differences appear 

primarily related to variations in soil formation and organic matter availability between the 

environments. Physical, rather than chemical, differences between glacial and non-glacial 

catchments however dominate the relative differences in (oxyhyr)oxide export rates. Glacial and 

non-glacial river sediments from otherwise analogous terrains contain about the same quantity 

of iron (oxyhyr)oxide on a weight normalized basis. This equates to glacial rivers exporting far 

more iron (oxyhyr)oxides on a discharge weighted basis, because glacial rivers contain far 

higher suspended sediment concentrations that non-glacial rivers. Existing research shows that 

organic carbon accumulation and burial in marine environments scale directly with iron 

(oxyhydr)oxide accumulation. This means that shifts in continental weathering over glacial-

interglacial cycles drive further changes in marine carbon burial creating a global climate 

feedback loop. 
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Chapter 1- 

 

Marine Sedimentation and Organic Carbon Burial: Linking 

Continental Weathering and the Organic Carbon Cycle 
 

Abstract 

 River deltas and estuaries are key environments of organic carbon preservation and 

coastal sedimentation. This may or may not be coincidental. Some theories propose organic 

matter preservation has nothing to do with inorganic sediments (i.e. geopolymerization) while 

other theories suggest organic matter preservation is intrinsically linked to inorganic 

sedimentation (i.e. mineral surface protection). If there is a causal mechanism linking organic 

carbon preservation and sedimentation rates in nearshore marine environments, then 

terrestrial weathering drives a climate feedback mechanism. Over glacial-interglacial cycles 

total sediment accumulation in coastal environments changes significantly due to the 

interplay of climate change and terrestrial erosion. If these changes alter organic carbon 

preservation they will also modulate Earth’s climate. This chapter summarizes the dominant 

theories currently proposed to explain organic carbon preservation in coastal sediments as 

they relate to sediment accumulation. Based on the existing data we propose that two 

parameters - total sedimentation export rates and iron (oxyhydr)oxide deposition rates - can 

be used in combination to provide a reliable indication of how climatically driven weathering 

changes will alter marine organic carbon accumulation. 

1.1 Terrestrial Weathering and Carbon. 

 Silicate mineral weathering is a significant inorganic carbon sink (Berner and 

Kothvala 2001; Misra and Freolich 2012). As a result, changes in continental weathering 

rates throughout Earth’s history have been intrinsically linked to long-term climate variability 

(Berner and Kothvala 2001). The time-scales involved with silicate weathering however have 

led many to discount the viability of continental weathering to account for rapid climate 

changes such as glacial-interglacial cycles (Caisis et al., 2013). More than 25 years ago 

John Martin proposed that continental weathering was in fact relevant over glacial-

interglacial climate cycle by shifting the focus from inorganic to organic carbon. Martin 

proposed changes in continental weathering patterns modulate organic carbon preservation 

in the Southern Ocean as part of idea which became known as the Iron Hypothesis or ‘iron 

fertilization’ (Martin 1990). The idea has subsequently been extensively studied, and the 

theory that primary production in the Southern Ocean is dependent on continental 
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weathering has been largely confirmed (e.g. Coale et al., 2004; Brietbarth et al., 2011). 

Recently Ocean Drilling Program site 1090 (Gersonde et al., 1999) was specifically sampled 

to further investigate iron fertilization in the Southern Ocean (e.g. Jaccard et al., 2013; 

Marino et al., 2013; Martinez-Garcia et al., 2014), and data from this core clearly indicates 

that iron deposition, primary production, organic carbon preservation and global atmospheric 

carbon dioxide (CO2) changes are correlated in the Southern Ocean.  

The corollary relationships between climate, iron deposition, primary production and 

carbon preservation at ODP site 1090 are illustrated on Figure 1.1 by highlighting the peaks 

in alkenone concentrations from Marino et al., (2013). Alkenone concentrations are 

interpreted as a proxy for primary production. The Alkenone peak also correspond to troughs 

in sediment organic carbon content, peaks in sediment inorganic carbon content, peaks in 

iron accumulation rates and troughs in atmospheric CO2 concentrations. It is impossible from 

the core data alone to determine which, if any, of these relationships trends reflect directly 

dependencies. Any of variables could be strongly correlated because they are both 

dependent on some other parameter in the system rather than eachother. There is however 

ample outside evidence to help distinguish the relationships between these parameters. 

The relationship between atmospheric CO2 concentrations and iron accumulation is 

almost certainly a direct dependency related to continental weathering (Coale et al., 2004). 

The direct dependency between climate changes and continental weathering also explains 

why sediment inorganic carbon concentrations follow the same pattern; inorganic carbon 

originates from marine biogenic sediment production which on a bulk normalized basis is 

inversely related to lithogenic sediment deposition. The correlation between iron 

accumulation and primary production is also almost certainly a result of direct dependency 

(Brietbarth et al., 2004). Iron is the limiting nutrient in the Southern Ocean and primary 

production does increase following iron fertilization (Brietbarth et al., 2010). There is 

significant reason to suspect the correlation between continental weathering and organic 

carbon preservation is also characterized by direct dependency. Inorganic sediments, 

specifically iron (oxyhydr)oxide bearing minerals, enhance organic carbon preservation in 

marine sediments (Canfield 1994; Hedges and Kiel 1995; Lalonde et al., 2012). Therefore, 

increasing the proportion of terrestrial material relative to marine biogenic carbonates in 

marine sediments will increase sediment organic carbon concentrations. These dependent 

relationships explain 100% of the data. In other words, nothing in the data from ODP site 

1090 implies primary production and/or carbon burial in the Southern Ocean have any direct 

relationship with atmospheric CO2 concentrations. This raises the question of if primary 

production is truly related to the larger climate signal commonly associated with iron 

fertilization. 
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Figure 1.1. Core Data from ODP Site 1090 modified from Marino et al., (2013) and Jaccard et al., 

(2013). Alkenone concentrations are interpreted as reflecting absolute primary productivity rates with 

peaks in alkenone concentrations highlighted by the red lines. The peaks in primary production 

correspond to peaks in iron accumulation, peaks in sediment organic carbon concentrations, troughs 

in sediment inorganic carbon concentrations, and troughs in atmospheric CO2 concentrations. 

There is significant reason to believe that organic matter production and organic matter 

preservation are independent parameters in most other marine environments. Numerous 

review studies on marine OM preservation have concluded primary production is not a 

dominant control of OM preservation and have not been able to account for marine OM 

preservation patterns by changing primary production rates between environments (see 

reviews by Hedge and Kiel 1995; Burdige 2005; Burdige 2007; Blair and Aller 2013). The 

three direct attempts to link primary production in the Southern Ocean to carbon 

sequestration have been equally ambivalent (see review by Buessler and Boyd 2003). 

During 13-day and 21-day iron enrichment experiments in the Southern Ocean increases in 

primary production were found to have no impact of carbon export to the sediment (Buessler 

and Boyd 2003). A longer 28-day study found particulate carbon export rates in the Southern 

Ocean (below 50 and 100m) increase slightly following an iron fertilization in the region 

(Buessler et al., 2004). However, microbial remineralization during sediment maturation 

would be expected to reduce the impact of carbon export on carbon preservation, and the 

absolute magnitude of the identified export change was small relative to the background 

natural system. There are regions of the ocean characterized by high primary production and 

high OM accumulation rates but the co-existance of the two patterns doesn’t mean they are 
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related. The remainder of this chapter establishes the grounds for linking organic carbon 

preservation directly to continental weathering without invoking primary productivity. 

1.2 Linking Organic Carbon Accumulation and Total Sediment 

Accumulation  

 The preservation of organic matter (OM) in nearshore marine environments is a 

climatically significant carbon sink accounting for the sequestration of 250 Tg C yr-1 (Burdige 

2007; Caisis et al., 2014). This is 6% of the rate at which anthropogenic activity is increasing 

carbon concentrations in the atmosphere (4 Pg C yr-1, Caisis 2014), and is 25 times greater 

than the carbon exchange rate needed to drive the atmosphere from the Last Glacial 

Maximum to pre-industrial conditions (9.4 Tg C yr-1, Martin 1990). Therefore, even relatively 

small changes in global marine organic carbon preservation have the potential to 

significantly influence Earth’s climate over geologic timescales. However, organic carbon 

burial in marine sediments is an inefficient process, and there is limited scientific consensus 

of the factor or factors controlling the process (Burdige et al., 2007).  

Sediment oxygenation state is the most widely proposed control of OM preservation, 

but the actual relationship between sediment oxygenation is complex due to the interplay of 

physical geography and sediment exposure (Canfield 1994; Blair and Aller 2013). Of the 

other parameters which correlate with organic carbon preservation in marine sediments, total 

sedimentation accumulation rate appears to be the most consistent (Hedges and Kiel 1995). 

The relationship between organic carbon and total sediment accumulation rate, as well as 

the interplay of environmental redox and organic carbon preservation is highlighted on 

Figure 1.2 which is a compilation of data from studies of a range of marine environments. 

Across open marine and coastal environments there is a strong and significantly significant 

positive correlation between total sediment and organic carbon accumulation rates (shown 

by the dashed line).  
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Figure 1.2: Sediment and organic carbon accumulation. Organic carbon accumulation in marine 

environments adheres to strong linear relationship with total sediment accumulation. Open ocean 

locations tend to fall below this line while estuarine locations tend to fall above the line consistent 

different environments having different relative carbon burial efficiencies. The data in the figure is from 

Talwani et al., (1976); Lyendyk et al., (1978); Barker et al., (1990); Barron et al., (1991); Eadie et al., 

(1994); Saunders et al., (1998); Barker et al., (1999); Raymo et al., (1999); Flemmings et al., (2006); 

Kao et al., (2006); Aller et al., (2008); Brackley et al., (2010); Dale et al., (2015) and Peketi et al., 

(2015).  

Two patterns standout against the global (dashed) trend line. If the data is separated into 

open marine and coastal samples the two environments are offset on the graph. Coastal 

sediments accumulate more OM at a given sedimentation rate than open marine sediments 

(illustrated by the solid lines). Additionally, in both coastal and open marine environments 

sediment overlain by anoxic and/or low oxygen bottom waters has a greater OM burial rate 

than its well oxygenated equivalence.  

Nearly all the theories surrounding the mechanism(s) which sets the relationship 

between total sediment and organic carbon accumulation can be classified into one of three 

models. The first model assumes organic matter recalcitrance controls the carbon 

preservation efficiency of sediments e.g. Westrich and Berner (1984). The second model 

assumes environmental redox, as modulated by geographic and environmental conditions, 

controls the carbon preservation efficiency of sediments e.g. Canfield (1994). The final 

model assumes inorganic/continental sediment inputs are the key to OM preservation e.g 

Mayer (1994). When it comes to addressing how changing sedimentation rates will alter 
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organic matter preservation rates these models come to very different conclusions. It is 

therefore important to understand the relative merits of each of these theories and how well 

each is supported by existing data. 

1.3 Organic Carbon Preservation and Organic Carbon Recalcitrance 

From a pure biologic standpoint, OM preservation should be controlled by the 

recalcitrance of the organic compounds present in the environment. In the laboratory, 

organic compounds vary significantly in terms of their susceptibility towards microbial 

remineralization, and a logical conclusion is that the same should apply to environmental 

samples. On this basis one might expect that OM preservation rates are strongly dependent 

on the type of organic compounds which are delivered into the sediment at any location. 

There is some evidence that OM composition influences OM burial, but overall OM 

composition appears to be no more than a minor control of organic carbon accumulation 

(see review by Burdige 2007).  

Most of the specific research on the relationship between OM composition and OM 

preservation has focused on the difference between open marine and coastal marine 

environments. Terrestrial organic matter (TOM) is considered more recalcitrant than marine 

organic matter (MOM), and coastal settings receive significantly more TOM than open 

marine environments (Burdige 2005). As previously shown on Figure 1.2, coastal sediments 

are more efficient at preserving OM than marine sediments creating a logical bridge between 

OM preservation and OM recalcitrance. However, data shows the relationship between TOM 

inputs and marine OM accumulation rates are globally inconsistent (Blair and Aller 2013). 

Carbon isotope work has also shown that in many marine environments TOM is 

preferentially degraded while MOM is preserved (Burdige 2007). There are a few specific 

settings, namely Taiwan, which receive large quantities of fossil organic carbon and in these 

settings recalcitrant organic compounds do appear to be preferentially preserved during 

marine sediment maturation (Hilton et al., 2010). However, sedimentation style also appears 

to play a big role in the OM preservation dynamics of these fossil organic carbon rich 

systems (Blair and Aller 2013).  

Geopolymerization is the dominant theory proposed to rebut all the objections to organic 

recalcitrance being a minor control over OM preservation. Geopolymerization proposes that 

simple organic compounds interact and combine during physical sediment transport creating 

more complex organic coagulates. The coagulates are proposed to be significantly more 

recalcitrant towards remineralization than their individual components which enhances the 

preservation of apparently labile organic compounds. Complex organic coagulates do exist 

in marine sediment (Ransom et al., 1997), and geopolymerization is a direct extension of 

humification which has been potentially shown to occur in soils (Zech et al., 1997). The 
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biggest issue with geopolymerization is that there is essentially no direct evidence that it is 

an important process in marine sediments (see review by Burdige 2007). Moreover, the 

importance of humification (on which geopolymerization is based) on OM stabilization in 

soils is being increasingly questioned. Inorganic mineral stabilization appears to be far more 

important in terms of stabilizing labile OM in soils than humification (Mikkuta et al., 2006; 

Schrumpf et al., 2014). 

The suggestions that inorganic mineral stabilization is important for preserving OM in 

soils highlights that fact that OM recalcitrance can arise from factors other than organic 

composition. The physio-chemical accessibility of OM to microbes is affected by more than 

just the organic structure of a compound, and in natural environments these other factors 

need to be considered. 

1.4 Redox Controlled Sediment Maturation 

 From a theoretical perspective, redox conditions exert at least as much control on 

natural OM remineralization rates as OM recalcitrance (Westrich and Berner 1984). There is 

ample evidence that highly reducing marine environments are more efficient at preserving 

OM than well oxygenated marine environments (Burdige 2007), but the detailed relationship 

between environmental redox state and OM preservation is complex (Blair and Aller 2013). 

In many cases the length of time sediment is exposed to oxygen is dependent on both redox 

state and total sedimentation rate of an environment (Hedges and Kiel 1995). This means 

that sedimentation dynamics need to be considered alongside absolute environmental redox 

conditions when investigating sediment redox dynamics. This raises the question of to what 

degree the relationship between total sediment and OM accumulation rates is a function of 

integrated redox dynamics. 

The traditional way to estimate the interplay of sedimentation rates and redox 

controlled OM preservation rates is to compare the ‘organic carbon preservation efficiencies’ 

of locations with different absolute oxygen saturations and sedimentation rates. If 

sedimentation is enhancing OM preservation by a redox mechanism then increasing 

sedimentation environmental sedimentation rates and decreasing environmental oxygen 

saturation should have similar impacts of organic carbon preservation efficiencies. To 

estimate the organic carbon preservation efficiency of any sediment it is first necessary to 

determine either: 1) the total amount of OM which has already been degraded (denoted G 

for historic reasons) which from here-on-in will be referred to as the G-based approach or; 2) 

the organic carbon content of the sediment before it started to be buried (Ci) which from here 

on we will refer to as the Ci-based approach.  
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The mathematically basis for each of these approaches is fundamentally different 

which significantly complicates how figures must be interpreted if G-based and Ci-based 

data is shown side-by-side. The important aspect of all G-based organic carbon preservation 

data is that sedimentation rates and OM preservation rates are dependent variables related 

by the function: 𝑦 =
𝑥

𝑥+𝐺′  where G’=G/sediment organic carbon concentration (Canfield 

1994). When it comes to Ci-based data sedimentation rates and OM preservation rates are 

independent variable. Ideally the data sets needed to be plotted differently, such that each 

reflects the relationship between independent variables, but recent reviews have chosen to 

published figures mixing data from the two approaches (e.g. Burdige 2005; Burdige 2007; 

Blair and Aller 2013). Figure 1.3 modified from Blair and Aller (2013) is one such mixed 

figure, and we have superimposed patterns need to accurately interpret the figure ontop of 

the original data. 

Sedimentation rates and OM preservation rates are dependent variables when 

calculated based on G values because the method assumes that total organic matter 

degradation (G) is independent of sedimentation rates but that total OM deposition is 

dependent on sedimentation rates. The calculated OM preservation rates are a function of 

OM deposition and therefore dependent on the measured sedimentation rates. The Ci-based 

approach makes no attempt to directly quantify total organic matter degradation but rather 

only looks are the relative difference bulk normalized sediment OM concentrations (Corg) and 

an idealized initial bulk normalized sediment OM concentration (Ci). In other words, all the G-

data needs to be normalized for sedimentation rates in order to compare the data with Ci-

based data. This requires looking at a G-data as a function of G’ values where G’ is the ratio 

of (G) to the bulk normalize OM concentration of the residual sediment (Corg) (See Figure 

1.3). Overall if sedimentation promotes OM preservation through a redox mechanism: i) in 

the G-based data increases in sedimentation should be affiliated with a clear shift towards 

lower G’ values as lower G’ values indicate higher sediment normalized OM preservation 

rates; and ii) in the Ci-based data increases in sedimentation rates should drive significant 

positive increases in organic carbon preservation rates. The data does not appear to follow 

this trend. All the coloured data is Ci based data. The lack of a correlation between OM 

preservation efficiencies and sedimentation rates is in the Ci data also indicates increased 

sedimentation does not increase OM preservation via a redox mechanism. Clearly 

environmental redox state effects relative or sediment normalized OM preservation rates, but 

sediment normalized preservation rates do not appear to be a function of sedimentation 

rates.  
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Figure 1.3 Modified from Blair and Aller (2013). All the coloured data points were determined using a 

method which assumes organic matter deposition is a function of total sediment deposition 

(%𝐶𝑜𝑟𝑔𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 =
𝐶𝑜𝑟𝑔

𝐶𝑖
∗ 100). The three distinct groupings suggest environmental redox controlled 

OM burial is not a simple function of sedimentation rates. The black and white data points were 

determined based on measurements of total OM remineralization (G): %𝐶𝑜𝑟𝑔𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑 =
𝐶𝑜𝑟𝑔∗𝑥

(𝐶𝑜𝑟𝑔∗𝑥)+𝐺
∗

100 ≡
𝑥

𝑥+𝐺′ ∗ 100. This data appear to be best explained by constant G’ values within normal marine 

and O2 depleted environments indicating sediment OM accumulation scales directly with sediment 

accumulation rates. 

Blair and Aller (2013) came to a similar conclusion and proposed that this is because 

the relationship between sedimentation rates and sediment burial is highly geographically 

dependent. Resuspension, bioturbation and/or lateral deposition significantly affect the 

relationship between sedimentation and sediment burial especially at high sedimentation 

rates. At low sedimentation rates oxygen diffusion, rather than sedimentation, dictates the 

redox burial history of marine sediments (Canfield 1994). Sedimentation rates are therefore 

a much less straightforward control of sediment redox history than linear burial models e.g. 

Canfield (1994) might suggest. As a result the relationship between sediment accumulation 

rates and OM accumulation rates can’t be written off a product of redox preservation. This 

leads into the idea that sediments might directly promote OM preservation with redox 

conditions acting a secondary process i.e. Hedges and Kiel (1995). 
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1.5 Inorganic Mineral Protection and the Rusty Carbon Sink. 

Mayer (1994) was the first study to present a clear argument that inorganic minerals 

directly protect organic matter from remineralization in marine sediments. Mayer (1994)’s 

original ‘surface adsorption protection’ theory has subsequently undergone several iterations 

but it is now broadly accepted that physio-chemical interactions between inorganic minerals 

and OM promote OM preservation (Kiel et al., 1994; Hedges and Kiel 1995; Kennedy et al., 

2002; Kennedy and Wagner 2011). Accepting mineral-OM interactions as a primary control 

of OM preservation makes it relatively straightforward to account for why OM and total 

sediment accumulation rates are so strongly correlated in marine sediments (Figure 1.2). 

Minerals protect-OM therefore mineral and OM accumulation rates are intrinsically linked. 

This raises the possibility of using total sedimentation rates alone to relate changes in 

continental weathering to changes in marine OM accumulation. Several of the subsequent 

chapters will consider this possibility. However, recent research indicates a more accurate 

approach is available which is much more able to account for the differences in OM burial 

rates between aquatic environments. This better approach involves tracing iron 

(oxyhydr)oxide deposition rather than total sediment deposition. 

There is still no universal scientific consensus on the exact mechanism which promotes 

OM stabilization by inorganic minerals (Greathouse et al., 2014). What is clear, however, is 

that iron (oxyhydr)oxide concentrations provide an accurate measure of mineral-OM 

stabilization interactions. For logistical reasons iron (oxyhydr)oxides are not measured 

directly but are estimated using selective chemical extractions (see review by Raiswell and 

Canfield 2012). Figure 1.4 summarizes published data relating extractable iron 

concentrations to total organic carbon concentrations in terrestrial soils and aquatic 

sediments. While different environments are characterized by different slopes relating total 

organic carbon and extractable iron the two variables are significantly correlated across all 

the environments. (It should be noted that comparing reducing and oxidizing environments in 

this manner is potentially misleading. Pyritization reactions selectively reduce 

(oxyhydr)oxides (Berner 1970) such that iron sulphide concentrations need to be added to 

extractablve iron concentrations to accurately compare iron-OM dynamics between reducing 

and oxidizing environments). The prevalence of this correlation across the range of marine 

and terrestrial sedimentary environments makes iron (oxyhydr)oxide concentrations a 

uniquely powerful indicator of organic carbon burial. In a review of soil OM preservation 

research Schrumpf et al., (2013) concluded that “the association with [(oxyhydr(oxide)] 

minerals is the most important factor in stabilization (sic) of OC in soils, irrespective of 

vegetation, soil type and land use.” Lalonde et al., (2012) named this pool of iron-bound 

organic carbon in marine sediment the ‘The Rusty Carbon Sink’. In many ways the Rusty 
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Carbon Sink provides a new name for a process that has been extensively studied for some 

time under a variety of names. 

 

Figure 1.4. Organic Carbon Preservation and Chemically Reactive Iron. A) Aquatic sediment data 

from Berner (1970); Poulton and Raiswell et al., (2005); Lalonde et al., (2012); Sabadini-Santos et al., 

(2014); and Sheng et al., (2015). Chemical reactive iron was defined as HCl extractable iron by 

Berner (1970) and as dithionate extractable iron by the remaining studies. There is a significant 

correlation between extractable iron concentrations and organic carbon concentrations within the 

riverine, oxic marine and reducing marine datasets. B) Modified from (2) Mikkuta and Guggenberg 

(2002) with additional data from (3) Kiem and Kögnel-Knabner (2002) Mikkuta et al., (2006); Xu-hui et 

al.,(2007); von Lutzlow et al.,(2008); and Thompson et al., (2011). All the extractable iron data is 

based on dithionate extractions. Organic carbon concentration and extractable iron are significantly 

correlated across the top and sub-soil samples. 

The mixed iron-OM complex covered by the Rust Carbon Sink can be generally referred 

to as iron-organic colloids (IOCs). These IOCs have been recognized under a number of 
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different names: physically-chemically associated humic-iron river colloids (Sholkovitz et al., 

1977), organo-ferric complexes (Boudot et al., 1989), Fe-C colloids (Ingri et al., 2006), OC-

Fe macromolecular structures (Lalonde et al., 2012), and/or strong iron-OC complexes 

(Barber et al., 2014). The exact structure of IOCs is a matter of debate (Greathouse et al., 

2014) but iron stability (Lyven et al., 2003; Ingri et al., 2006; Andersson et al., 2006; Boye et 

al., 2010; Lalonde et al., 2012; Vasyukova 2012), theoretical bonding (Ilenia 2013), and 

sediment incubation studies (Barber et al., 2014) all suggest that IOCs contain ferro-organic 

bonds. Consequently, the carbon within IOCs is bonded in a way which makes it 

energetically much more difficult to access than carbon within free and/or adsorbed OM. The 

net effect is that organic carbon bound in IOC should be highly recalcitrant towards microbial 

remineralization explaining the near universal correlation between sediment (oxyhydr)oxide 

and organic carbon concentrations. 

Preferential IOC preservation is completely consistent with the known patterns in marine 

sediment and OM accumulation. Continental material, especially very fine grained 

continental material, is the largest source of iron (oxyhydr)oxides to marine sediment 

(Hedges and Kiel 1995, Canfield and Raiswell 2012). As a result (oxyhydr)oxide deposition 

in marine sediment broadly scales with total sedimentation rate in a linear manner, but the 

slope of the linear relationship depends on the (oxyhydr)oxide concentration of sedimentary 

material. Biogenic silca and carbonate will not contain (oxyhydr)oxides and therefore 

sediments derived mainly from marine biologic activity will be relatively poor in 

(oxyhydr)oxide. Coastal environments receive a greater ratio of continental material to 

marine biogenic material than open marine environments (Burdige 2005) such that coastal 

sediment will have a greater bulk normalized iron (oxyhydr)oxide concentration than open 

marine sediment. Iron redox cycling also promotes (oxyhydr)oxide formation and deposition 

(Severmann et al., 2006; Rediel et al., 2014) such that sediments in low-oxygen 

environments will have higher iron (oxyhydr)oxide concentrations than their well-oxygenation 

equivalences. (Oxyhydr)oxide precipitation in the upwelling zone can further supercharge 

bulk normalized sediment iron (oxyhydr)oxide concentrations in areas of upwelling (Hedges 

and Kiel 1994). This means that at a given total sediment deposition rate there should be an 

increase in iron (oxyhydr)oxide accumulation along the trend: open marine<low O2 

marine<coastal marine <low O2 coastal<low O2 upwelling zone. This pattern fits well with 

known patterns of organic matter accumulation (Hedge and Kiel 1994). 

The main argument against the Rusty Carbon Sink is the notion that iron (oxyhydr)oxides 

will enhance OM remineralization through dissimilatory iron reduction (DIR). By enhancing 

DIR (oxyhydr)oxides must therefore be unable to promote OM preservation. In reality, this is 

non-sequitur argument. Bio-physical dynamics control DIR, not (oxyhydr)oxides deposition, 
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such that altering (oxyhydr)oxides depositional rates in a manner consistent with natural 

depositional process will have limited influence on DIR.  

The relationship between DIR and (oxyhydr)oxide deposition is encapsulated in the 

difference Severmann et al., (2006) found between adjacent basins off the coast of 

California. One of the basins preserves little in the way of organic carbon and was found to 

have significant rates of DIR. The other basin was far more efficient in terms of organic 

carbon preservation and far less efficient in terms of DIR. The two basins are at a similar 

depth and receive effectively the same sediment load and sediment composition. The big 

difference between the two basins is that the one with low OM preservation is heavily 

bioturbated while the other basin has little benthic activity. Bioturbation facilitates iron re-

suspension and efficient DIR cycling. It is this resuspension process, not sediment 

deposition, which creates the OM degradation offsets between the basins (Severmann et al., 

2006). The same pattern has been found in shallow coastal sediments where sediment 

bioturbation allows iron atoms to cycle several hundred times during burial process 

promoting efficient DIR (Canfield et al., 1993). Importantly to drive the OM remineralization 

rates of an environment characterized by limited DIR to one characteristized by active DIR, 

there would need to be a two order of magnitude increase in total (oxyhydr)oxide inputs 

without a simultaneous change in total sediment inputs. Such a change is fundamentally 

different in scale from the (oxyhydr)oxide changes proposed for continental weathering 

changes and underscores the physical disconnect between preferential IOC preservation as 

a mechanism for preferential carbon preservation and DIR as a mechanism for carbon 

remineralization.  

1.6 Climate Change Marine Sediment Accumulation Changes. 

Linking marine organic carbon accumulation to changes in total sediment and 

(oxyhydr)oxide accumulation rates requires re-visiting the feedback between continental 

weathering and Earth’s climate over glacial-interglacial cycles. Glaciers significantly enhance 

physical sediment denudation from terrestrial catchments (Anderson et al., 1997). At the 

peak of the Last Glacial Maximum (LGM) the global sediment discharge rate from glacially 

weathered terrains was at least 3 times the current glacial sediment flux rate (Raiswell et al., 

2008). This trebling of glacial sediment discharge equates to a 20-40% increase in global 

marine coastal deposition over the present conditions (Styviski et al., 2005). Marine 

sediments are estimated to account for the preservation of 250 Tg Cyr-1 (Burdige 2007; 

Caisis et al., 2013) therefore a 20-40% increase in marine OM burial equates to a 50-100 Tg 

C yr-1 increase in carbon sequestration. This in not a trivial difference when extrapolated 

over geologic timescales 
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This thesis aims to more accurately characterize the climatic importance glacial-

interglacial continental weathering changes by using (oxyhydr)oxide accumulation to trace 

changes in OM burial. Flux normalized chemical weathering rates of glacial and non-glacial 

catchments are similar (Anderson et al., 1997), therefore much of the glacial sediment being 

deposited in the ocean might be poor in secondary minerals including (oxyhydr)oxides. This 

could greatly reduce the magnitude to glacial-interglacial weathering changes on the carbon 

cycle. The chapters which follow represent the first concrete attempt to firmly link these 

marine sediment discharge changes directly to changes in marine organic accumulations. 

Such a link is of scientific interest not only because it would constitute a novel climate 

feedback mechanism but also because of the potential magnitude of the processes being 

discussed. 

The next four chapters will present data:  

1) Linking terrestrial weathering differences glacial and non-glacial terrains to 

changes in mineral formation rates;  

2) Development of a novel approach to measuring iron (oxyhydr)oxide concentrations 

in aquatic sediments;  

3) Utilizing this novel approach to quantify the climatic implication of glacial-

interglacial weathering changes in Iceland; and  

4) Quantifying the climatic impact of glacial-interglacial weathering changes in 

Greenland.  
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Chapter 2-  

The Relationship between Weathering and (Oxyhydr)oxide 

Formation in Glacial and Non-glacial Catchments in Iceland. 
 

Abstract  

Glaciers enhance terrestrial erosion and sediment export to the ocean. Glaciers can also 

impact mineral specific weathering rates relative to analogous non-glacial terrains. In tandem 

these processes affect continent sediment export to the oceans over glacial-interglacial 

cycles. This study summarizes field data from glacial and non-glacial Icelandic river 

catchments to quantify the impact of weathering regime on iron and aluminium 

(oxyhydr)oxide mineral formation and flux rates. Aluminium and iron (oxyhydr)oxides are 

strong indicators of organic carbon preservation in soils and marine sediments. Tracing 

changes in (oxyhydr)oxide formation and deposition therefore provides a means of 

evaluating potential changes in organic carbon sequestration rates over glacial-interglacial 

cycles. Overall, there are several measurable chemical differences between the studied 

glacial and non-glacial catchments which reflect the key role of soil formation on terrestrial 

weathering. One of the noted chemical difference is that weathering in non-glacial 

catchments is characterized by higher apparent rates of iron and aluminium (oxyhydr)oxide 

formation relative to glacial catchments. However, the offset in (oxyhydr)oxide formation 

does not appear to be transferred into river sediment compositions, and physical weathering 

appears to be the dominant control of river sediment composition and export. Glacial rivers 

export far more total sediment to nearshore marine environments than analogous non-glacial 

rivers suggesting glacial weathering enhances carbon burial by increasing nearshore marine 

(oxyhydr)oxide accumulation. 

2.1 Introduction 

Iron and Al (oxyhydr)oxide (Fe/AlOOH) concentrations are approximated based on 

selective chemical extractions techniques. The pool of dithionate-citrate-bicarbonate (DCB) 

reducible minerals, referred to as ‘highly reactive Fe/Al’ (FeHR/AlHR), is one of the most 

commonly used methods for estimating for both FeOOH and AlOOH (Raiswell and Canfield 

2012). There are strong correlations between the concentrations of FeHR and organic carbon 

in marine sediments and FeHR/AlHR and organic matter in soils (Schrumpf et al., 2013). These 

correlations are thought to reflect the physiochemical protection of organic matter by FeOOH 

and AlOOH (see review by Schrumpf et al., 2013); a process which has been dubbed the 

‘Rusty Carbon Sink’ (Lalonde et al., 2012, Barber et al., 2014).  
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The Rust Carbon Sink is not the first hypothesis to propose FeOOH can have a major 

impact on Earth’s climate cycle. The Iron Hypothesis (Martin, 1990) is the well-studied idea 

that FeOOH accumulation in the Southern Ocean controls primary productivity in the region. 

While much of the research into the Iron Hypothesis has focused on atmospheric dust (e.g. 

Coale et al., 2004; Martinez-Garcia et al., 2014), Martin (1990) proposed the intensity of 

glacial weathering on Antarctica was itsef a major control of iron export to the ocean. Glacial 

weathering has specifically been shown to allow for both the formation and large scale 

export of iron (oxyhydr)oxides to coastal marine environments (Raiswell et al., 2008; 

Hawkins et al., 2014, Eirkisdottir et al 2015). This raises the question of if glacial weathering 

promotes organic carbon burial, in addition to primary production, as a result of enhanced 

marine FeOOH discharge?  

This study re-examines published physical and chemical weathering data from glacial 

and non-glacial catchments in Iceland. River waters, sediment and soils are compared to 

derive generalized patterns of continental weathering in glacial and non-glacial catchments. 

Novel PHREEQC inverse models are also used to approximate the FeOOH and AlOOH 

formation rates based on comprehensive river monitoring datasets. The geologic and 

geographic nature of Iceland limits the impact of bedrock variability and emphasizes the 

impact of continental weathering on sediment composition. This allows a more accurate 

determination of the potential impact of chemical offsets between glacial and non-glacial 

weathering on (oxyhydr)oxide formation.  

2.2 Icelandic Geology, Hydrology and Sample Locations 

Iceland has four characteristics which favour its use as a type locality for linking glacial 

and non-glacial weathering differences to differences in Fe/AlOOH dynamics. Iceland’s 

geologic and geographic history has combined to create river catchments, which are can be 

chemically differentiated based on their extents of soil formation (Gislason et al., 1996). 

Iceland’s human geography ensures that the catchments are not significantly altered by 

anthropogenic activity. Icelandic rivers have been intensively sampled providing a large 

historic chemical database which can be utilized to investigate chemical weathering. Finally, 

existing thermodynamic scientific studies have defined clear expectations of how chemical 

weathering should progress in Iceland.  

Bed rock rheology and chemical composition significantly impact continental 

weathering rates (Syvitski and Milliman 2007). Therefore, geologically similar and well-

characterized catchments are useful when comparing glacial and non-glacial weathering 

rates. Iceland is a geologically young and active island, formed primarily (>80%) of basaltic 
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lavas, with a mixed mid-ocean ridge/ocean island melt source composition. The remainder of 

the island is composed of more acidic/rhyolitic lavas (Jakobsson 1972). Iceland was 

completely covered by a single glacial icesheet ~9 ka ago, which collapsed during the Early 

Holocene stabilizing to near modern conditions about 6 ka ago (Gislason 1996; Norðdhal 

and Petersson et al., 2005). Since the collapse of the icesheet vegetation and soil formation 

processes have created significant chemical differences between glacial and non-glacial 

catchments, reflected in the distribution of Iceland’s major soil/sediment types distributed 

across the island (Figure 2.1). Soil formation has been attributed to as the principle cause of 

a number of chemical differences between the glacial and non-glacial catchments (Gislason 

et al., 1996; Pogge von Strandmann et al., 2006, 2012; Opfergelt et al., 2013; Opfergelt et 

al., 2014). 

 

Figure 2.1. Icelandic soil coverage map as modified from Arnalds and Gretasson (2001). The Central 

Volcanic zone defines the general limits of significant hydrothermal groundwater formation as mapped 

by Kaasalainen and Stefansson (2012). 

A number of previous studies have sampled Icelandic soils, sediments, rivers and 

groundwaters in the context of continental weathering and this study will draw extensity on 

data from: Gislason and Stefansson (1993), Gislason et al., (1996), Stefansson et al., 

(2001), Arnorsson et al., (2002), Pogge von Strandmann et al., (2006), Vigier et al., (2006), 

Vigier et al., (2009), Oskarsson et al., (2012), Pogge von Strandmann et al., (2012), 

Eiriksdottir et al., (2008), Louvat et al., (2008) and Opfergelt et al., (2014). This previously 

published work provides what is likely the most complete and extensive data-set on the 
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interplay of weathering regimes and chemical weathering ever collected on a single geologic 

terrain. Because the chemistry of river waters and sediment can show a high degree of 

temporal and special variability, large sample sets are required to make statistically robust 

conclusions about the chemical weathering process. 

2.3 Methods 

2.3.1 Field sample collection: 

River water and sediment samples from Iceland were collected during September 

2003, August 2005 reported in Pogge von Strandmann et al., (2006) and then again by the 

same methods in August 2012 and August 2013 at locations shown on Figure 2.2. River 

samples were collected from near the water surface in the centre of the flow with access 

facilitated by road bridges. For filtered and suspended sediment samples, 15L of water was 

collected and filtered shortly after sampling through 0.2µm cellulose-acetate Millipore filters, 

using a pressurized PFA unit. To prevent sample cross contamination the units were flushed 

with milli-Q water and at least 2 L of sample which were discarded prior to sample collection. 

Elemental iron and aluminium concentrations within this filtered water will be referred to as 

‘filtered’ iron/aluminium rather than the more commonly used ‘dissolved’ moniker. The filters 

were sealed in petri-dishes for immediate storage and transport to controlled lab conditions 

where the sediment was physically removed with a tephlon spatuala and transferred into 

glass vials. Total suspended sediment (TSS) concentrations were measured separately by 

filtering a known volume of water through a pre-weighted 0.2µm filter. These filters were also 

sealed in petri-dishes for transport to the laboratory where they were dried and re-weighed. 

Total anion samples, utilizing containers cleaned without acids to avoid NO3
2- or Cl- 

contamination, were also collected. Temperature, pH, alkalinity and conductivity were 

measured in the field, and where possible a river bed sediments (RBS) sample was also 

taken.  
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Figure 2.2. Bedrock Map and River Catchments. The middle figure shows the locations of samples 

from Gislason et al., (1996), Arnorsson et al., (2002), Oskarsson et al., (2012), and Opfergelt (2014) 

on a modified version of the Icelandic bedrock map from the Natural History Museum of Iceland. (A) 

Shows sample locations in the Borgarfjörður region and (B) shows the sample locations in the 

Vatnajökull region. 

We will consistently compare our data with Gislason and Arnorsson (1993), Gislason 

et al., (1996) and Arnorsson et al., (2002) who sampled at locations shown on Figure 2.2. 
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The only significant difference between the methods used in these studies and our methods 

is that these previous studies utilized a 0.1µm cut-off size for filtering their water. Waters 

filtered at the 0.2µm and 0.1µm level are predicted to be closely comparable in terms of Fe, 

based on studies of the relationship between particle size and Fe speciation (e.g. Lyven et 

al., 2003, Andersson et al., 2006). 

2.3.1 Major and Trace Element Analysis: 

Samples from the 2003 and 2005 field seasons were analysed by Pogge von 

Strandmann et al., (2006) with methods reported therein. Anions and cations from the 2012 

and 2013 samples were analysed using a Dionex D-500X ion exchange chromatograph at 

Durham University. Iron and aluminium concentrations were measured by a Thermo-Fisher 

X-Series inductively coupled plasma mass spectrometry (ICP-MS) at Durham University, 

calibrated against multi-element synthetic standards prepared from high purity single 

element standards. A collision cell was used to reduce oxide formation and improve 

accuracy. The natural water certified reference material SLRS-5 was used confirm the 

accuracy of the measurements. External reproducibility for all measurements was better 

than ±5%.  

The total carbon concentrations of a selected range of suspended sediment samples 

were measured during stable carbon and nitrogen analysis on an isotope ratio-mass 

spectrometer at Durham University. The total carbon concentrations of river bedload 

sediments were not directly measured but loss-on-ignition values collected during XRD 

analysis by Pogge von Strandmann et al., (2006) are used to reflect maximum potential 

carbon concentrations in these samples. 

2.4. Theory and Model Calculations 

PHREEQC v. 3.0.6 (Parkhurst and Appelo 1999) parameterized with the Bureau de 

Recherches Geologiques et Minieres database (Blanc et al., 2011) was used to build an 

inverse dissolution/precipitation weathering model. The model calculates primary mineral 

specific dissolution rates and secondary mineral precipitation rates. This is done by 

numerically determining the balance of primary mineral dissolution and secondary mineral 

dissolution needed to recreate the measured river water chemistry of a sample from an initial 

idealized rainwater solution. In effect this modelling approach provides a way of utilizing the 

overall chemical patterns of the rivers to investigate chemical weathering rather than 

depending on one or two element comparisons. 

The measured chemical composition (alkalinity, pH Al, Ca, Cl, Fe, K, Mg, NO3, Na, 

Si, SO4) of the river samples was used to define a solution for every filtered water sample. 
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The Cl concentrations of each sample were then used to define an idealized initial rainwater 

solution for each sample according to the method developed by Gislason et al., (1996). The 

idealized Cl derived rainwater solutions are not however perfectly charge balanced so a 5% 

elemental uncertainty was included in the model calculations to account for the charge 

imbalances. The 5% threshold was set by assuming the charge imbalances reflected 

analytic uncertainty. All chemical pathways which reproduce the river solutions from the 

dissolution of primary bedrock phases and precipitating the secondary phases starting from 

the idealized rainwater solutions were calculated. These pathways were then averaged, 

yielding a single set of mineral precipitation and dissolution values characteristic of the 

weathering signature of each sample.  

The primary mineralogy of both the primary basaltic bedrock (excluding basaltic 

glass) and secondary clay and (oxyhydr)oxide phases are well constrained and have been 

defined based on Jackobsson (1972), Gislason and Arnorsson (1993), Stefansson (2001), 

and Opfergelt et al., (2013) as reported in Table 2.1. The inverse models depend on 

stoichiometric calculation, rather than thermodynamic data, preventing the inclusion of 

amorphous phases namely, basaltic glass and allophone, which have no set formula. The 

stoichiometric nature of the model also makes it impossible to differentiate minerals with the 

same chemical formula. Ferrihydrite and boehmite were excluded from the models on this 

basis as these minerals have the same chemical formulas (as defined in the PHREEQC 

database) as goethite and gibbsite, respectively. PHREEQC requires all elements used for 

charge balance during inverse model calculations to be included in model input phases 

requiring the addition of CO2, O2, Cl2, NH3 and SO2 into the model parametrization.  

Table 2.1 Summary of minerals included in PHREEQC inverse-models.  

Charge 
Balance  

Primary Mineral Phase 
(Dissolved Only) 

Secondary Mineral Phases (Precipitate Only) 

CO2 
Forsterite: 
Mg2SiO4 

Hedenbergite: 
CaFe(SiO3)3 Imogolite: Al2SiO3(OH)4 

Goethite: 
FeOOH 

O2 
Fayalite: 
Fe2SiO4 

Ilmentite: 
FeTiO3 

Heulandite: 
Ca1.07Al2.14Si6.86O18:6.17H2O 

Boehemite: 
AlOOH 

Cl2 
Ferrosilite: 
FeSiO3 

Albite: 
NaAlSi3O8 

 Montmorillonite(A): 
Ca0.17Mg0.34Al1.66Si4O10(OH)2 

  

NH3 
Enstatite: 
MgSiO3 

Anorthite: 
CaAl2Si2O8 

Montmorillonite (B): 
Na0.34Mg0.34Al1.66Si4O10(OH)3 

SO2 
Diopside: 
CaMg(SiO3)2 

Sandine: 
KAlSi3O8 Kaolinite: Al2Si2O5(OH)4 

 

The biggest potential problem with utilizing inverse-chemical weathering models is 

that the results are dependent on knowing the exact chemical formulas of all the mineral 
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phases. Ideally every potential mineral phase needs to be precisely and accurately defined 

however this is not possible in the context of Icelandic weathering. Specifically, additional 

consideration needs to be given for the behaviour of basaltic glass and allophane.  

Basaltic glass is the first component of Icelandic basaltic to be chemical weathered in 

most low temperature environments (Stefansson et al., 2001). The thermodynamics of glass 

dissolution in Iceland have been studied but the process has only been defined as a function 

of a theoretical pure SiAl(OH) form i.e. Gislason and Oelkers (2003), Eiriksdottir et al., 

(2015). As our model is dependent on mineral stoichiometry, the inclusion a theoretical glass 

formula, which does not contain Fe, Ca, Mg, etc., would strongly bias the model predicted 

impact of glass dissolution. Glass dissolution is a well quantified source of FeOOH formation 

(Gislason and Arnorsson 1993). The exclusion of basaltic glass in the model is equivalent to 

the assumption that Fe and Al will behave in the same way during glass weathering. That is 

glass weathering is assumed to not lead to preferential FeOOH vs AlOOH formation. A different 

stoichiometric problem prevents the inclusion of allophane, one of the most common 

secondary minerals in Icelandic soils (Oskarsson et al., 2012), in the models. 

Secondary alumina-silica formation in Iceland has been described as involving the 

formation of ‘amorphous sponge-like balls of kaolinite, allophane and imogolite’ which are in 

quasi-equilibrium with gibbsite (Stefansson and Gislason 2001). The precise composition of 

these alumina-silicate agglomerates appears to vary with changing conditions (Stefansson 

and Gislason 2001), making it impossible to define a fixed chemical formula for the species. 

Kaolinite and Imogolite are the endmembers of the kaolinite-allophane-imogolite series so 

they were included in the model and allowed to vary relative to one another. The overall 

uncertainty of the Al/Si ratio of the amorphous alumina-silicates however does limit the 

certainty which can be ascribed to the AlOOH formation rate estimates.  

In other localities, the inclusion of iron in certain clay minerals would also introduce 

uncertainty in terms of the model-predicted Fe/AlOOH formation rates. In Iceland, this does 

not appear to be a significant problem. While Fe-smectites have been identified in mature 

Icelandic soils (Stefansson and Gislason 2001), very little iron appears to be directly 

incorporated into Icelandic clay minerals. Data supporting this assertion will be outlined in 

subsequent sections, but, in short, the most altered Icelandic soil samples from Opfergelt et 

al., (2014) are 82.5 and 98 wt. % clay and organic matter, and the iron within these samples 

is 91% and 95% DCB-extractable, respectively. Consequently, no more than about 5% of 

iron cycling during chemical weathering is affiliated with the formation of iron bearing clays.  
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2.5 Results 

All data is presented in figures containing a mixture of new and published data which are 

cited accordingly. The solid phase concentration data is reported normalized to titanium. 

Titanium is considered to be immobile during basaltic weathering and behaves 

conservatively in basaltic soils (Nesbitt and Wilson 1992) favouring its use to normalize 

against organic matter dilution and/or mobile element leaching.  

2.5.1 Icelandic Bedrock 

Pristine Icelandic basaltic lavas from Jakobsson (1972), Arnorsson et al., (2002), 

Eiriksdottir et al., (2008), Louvat (2008) and Schuessler et al., (2009) are characterized by 

relatively constant Ti normalized elemental ratios shown on Figure 2.3. Icelandic rhyolite 

contains an order of magnitude less total Ti than the basalts, 2.2 mol/kg vs 0.17 mol/kg 

respectively, which significantly offsets the Ti normalized elemental concentrations between 

the basalts and rhyolites. There is limited compositional overlap between the basaltic and 

rhyolitic samples although some of the basaltic samples have [Na+K]/[Ti] values which drift 

towards more evolved values. 
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Figure 2.3. data from Jakobsson (1972), Arnorsson et al., (2002), Eiriksdottir et al., (2008), Louvat 

(2008) and Schuessler et al., (2009). Icelandic basalts display a limited range of variability in Ti 

normalized elemental space characterized by positive correlations between the various elements. 

The compositional range of pristine Iceland basalt can be constrained to statistically 

significant correlations between Ti normalized elemental concentrations, shown as the 

dashed lines on Figure 3. These correlations include elemental pairs such as Mg and Ca, 

which have a similar mobility during chemical weathering, and elemental pairs such as Mg 

and Fe which have significantly different elemental mobilities (Gislason et al., 1996). For the 

remainder of this paper these correlations are used to define the compositional signature of 

pristine basalt, which will be shown as dashed black lines on the subsequent figures. 

2.5.2 River Sediment Compositions 

 The compositions of total suspended sediment (TSS) and river bed sediment (RBS) 

from glacial and non-glacial rivers from Pogge von Strandmann et al., (2006) and Eiriksdottir 

et al., (2008) are reported relative to the basaltic compositional array in Figure 2.4. All the 

sediments have compositions which fall along or near the basaltic compositional array for 

most elements. The non-glacial TSS samples have mobile element patterns near one 

endmember of the basaltic compositional array while the glacial TSS samples have mobile 

element concentrations near the other basaltic endmember. The only potential compositional 



29 
 

deviation of the sediments from basaltic values is apparent in Fe/Al space. A number of the 

glacial samples have lower [Al]/[Ti] ratios relative to their [Fe]/[Ti] ratios than observed in 

pristine basalt. 

 

Figure 2.4. River sediment compositional data from Pogge von Strandmann et al., (2006) and 

Eiriksdottir et al., (2008). All the river sediments have elemental compositions consistent with those 

expected for pristine basalt except in terms of the proportion of [Al]/[Ti] to [Fe]/[Ti] in the glacial 

sediments. 

2.5.3 Soil Formation 

The compositions of Icelandic soil samples from Óskarsson et al., (2012) and Opfergelt 

et al., (2014) are reported relative to the basaltic compositional array on Figure 2.5. All the 

samples are from soil profiles that lie above basaltic bedrock as shown on Figure 2.2. Air 

borne volcanic ash, primary composed of basaltic ash, is also a major component of most 

Icelandic soils (Oskarsson et al., 2012). The samples are colour coded according to their 

Total Reserve in Bases ( 𝑇𝑅𝐵 = ∑ 𝑁𝑎+ + 𝐾+ + 𝐶𝑎2+ + 𝑀𝑔2+ cmolc kg-1). In general soil 

formation leads to the loss of base cations, an increase in organic carbon concentration, and 

the transformation of primary magnetite into secondary (oxhydr)oxides i.e. ferrihydrite and 

goethite. 
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Figure 2.5. Icelandic soil composition data from (Oskarsson et al., 2012; Opfergelt et al., 2014). The 

dashed black lines reflect the compositional range of typical Icelandic basalt as defined in Section 

2.3.2. The soils are colour coded according to their Total Reserve in Bases ( 𝑇𝑅𝐵 = ∑ 𝑁𝑎+ +

𝐾+ + 𝐶𝑎2+ + 𝑀𝑔2+ cmolc kg-1). 

There is a general decrease in soil pore-water pH with decreasing TRB. Magnesium and 

Ca appear to behave similarly and lie on the basaltic compositional array during chemical 

weathering. Nearly all the soils are significantly depleted in [Na+K]/[Ti] relative to basalt. 

Aluminium is preferentially retained in the soils relative to Ca and Mg during chemical 

weathering. Iron is also preferentially retained in soils during chemical weathering relative to 

Mg and Ca. There is no clear and systematic pattern in the behaviour of Fe relative to Al 
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during chemical weathering although the soils with the lower TRB concentrations have 

significantly higher Fe/Al values than pristine basalt. 

The trends in iron behaviour during weathering can be further explored by examining 

changes in iron mineralogy during weathering. Two selective iron extractions, sodium-

dithionate-bicarbonate (FeDCB) and oxalate (Feo), were used to measure iron concentrations 

as a function of iron mineralogy in Icelandic soil by Opfergelt et al., (2014). The important 

difference between the extractions is that FeO includes magnetite but not goethite, while 

FeDCB includes goethite but not magnetite (Poulton and Raiswell 2005). Goethite is a 

common Fe-oxyhydroxide present during basaltic weathering (Stefansson and Gislason 

2001), while magnetite is a common primary mineral phase in Icelandic basalts (Gislason 

and Stefansson 1993). Consequently, FeDCB/Total Iron (FeT) values reflect the proportion of 

iron oxyhydroxides to total iron within a sample. The FeO/FeDCB values reflect the balance of 

magnetite dissolution to goethite formation. 

Soil FeDCB/FeT values show a strong positive correlation with soil clay content, increasing 

to in excess of 0.8 in soils with at least 60 wt.% clay (Figure 2.6A). Soil FeO/FeDCB shows a 

negative correlation with clay content in all but the most weathered soils. A few of the 

strongly weathered samples have unusually low FeO/FeDCB values given their clay content 

and these samples do not follow the correlation between clay content and organic carbon 

defined by others (Figure 2.6 B/C). Field characterizations of the outlaying samples by 

Opfergelt et al., (2014) suggests that they are all from reducing horizons within the soil 

profiles. 
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Figure 2.6. Data from Opfergelt et al., (2014). (A) The FeDCB/Total Iron (FeT) values, reflecting 

the proportion of iron oxyhydroxides to total iron within soil samples, and (B) the FeO/FeDCB values, 

reflecting the balance of magnetite dissolution to goethite formation are plotted versus the clay 

content of soil samples from 1) leptosol, 2) vitrisols, 3) brown and gleyic andosols and 4) 

histosols/histic andosols. (C) The clay content increases with the organic carbon content 

2.5.4 Dissolved Load Concentrations 

 The chemical composition of Icelandic glacial and non-glacial rivers reported by 

Gislason et al., (1996), Arnorsson et al., (2002), Vigier et al., (2006), Pogge von Strandmann 

et al., 2006, Louvat et al., (2008), as well as new measurements (data in Supplementary 

Information) are summarized in Table 2.2. The data in the table includes the measured 

values as well as values that have been corrected for precipitation inputs. Glacial and non-

glacial rivers, on average, have significantly different Cl concentrations (90µM vs. 150µm 

respectively, P<0.05). Icelandic river waters receive nearly all their Cl in affiliation with 

marine aerosols associated with precipitation allowing Cl to be used to correct rivers for 

rainwater inputs (Gislason et al., 1996).  
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Table 2.2. Average River water compositions ±σ. *TSS values were only measured by Pogge von 

Strandmann et al., (2006), Vigier et al., (2006) and in the new samples reported in the this study. As a 

result, only 30 glacial and 30 non-glacial samples were utilized to calculate the pH and TSS values. 

**Chlorine concentrations were used to correct the river values for precipitation inputs according to 

methods established in Gislason et al., (1996). 

  
Uncorrected Value Cl Corrected value 

Glacial n=50 Nonglacial n=57 Glacial n=50 Nonglacial n=57 

Al (µM) 1.4±1.1 0.5±0.4 1.4±1.1 0.5±0.4 

Ca (µM) 81±40 102±49 80±40 99±49 

Cl (µM) 90±49 150±98 - - 

Fe (µM) 0.4±0.4 0.5±0.5 0.4±0.4 0.5±0.5 

K (µM) 10±6 15±7 8±6 12±8 

Mg (µM) 59±59 75±57 51±60 64±57 

Na (µM) 236±107 280±108 168±86 149±103 

TSS* (mg/L) 980±676 204±213 

 

pH* 8.36±0.95 7.91±0.47 

 

The precipitation corrected values for the individual samples location are shown in 

Figure 2.7. The dashed lines on Figure 2.7 correspond to the elemental ratio of pristine 

basalt, as defined in Section 5.1, such that the bulk dissolution of basalt during chemical 

weathering would result in the river waters having compositions corresponding to the lines. 

Overall the rivers do not have compositions consistent with such bulk dissolution. 

Preferential elemental mobility appears to increase along the trend Fe/Al<Mg, Ca<<Na+K. At 

the immobile end of this trend Fe and Al appear to behave significantly differently in glacial 

and non-glacial catchments. All the glacial samples possess an Al/Fe ratio that is equal to or 

greater than the Al/Fe ratio of basalt. The non-glacial rivers mostly display the opposite trend 

and are characterized by lower Al/Fe ratios than basalts across a range of Fe 

concentrations. 

In addition to the purely chemical differences, glacial and non-glacial rivers are 

physically offset in terms of their total suspended sediment concentrations (TSS). Glacial 

rivers contain on average 4.8 times more TSS than the non-glacial rivers. The average TSS 

offset is consistent with a long-term record of Icelandic River data by Louvat et al., (2008). 

Louvat et al., (2008) found that in rivers which had been sampled a minimum of 23 times 

over a minimum of 7 years, glacial samples contained 923±606 mg/L TSS while non-glacial 

samples contained on average 150±85 mg/L TSS. 
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Figure 2.7. Icelandic rivers composition data from Gislason and Arnorsson (1993), Gislason et al., 

(1996), Arnorsson et al., (2002), Vigier et al., (2006) and Pogge von Strandmann et al., (2006). The 

data has been corrected for precipitation inputs. The dashed lines represent the element ratios of 

pristine basalt. 

2.5.5 Inverse Models and Secondary Mineral Formation Rates. 

The inverse chemical weathering model predicted FeOOH and AlOOH formation rates 

are shown as functions of estimated primary mineral dissolution rates graphically in Figure 8 

for glacial and non-glacial catchments. The rates are shown in molar unit concentrations, 

which encapsulates the general principle that chemical weathering scales with hydrologic 

discharge during continental weathering (e.g. Anderson et al., 1997; Eiriksdottir et al., 2008). 

On average, non-glacial weathering appears to significantly enhance both Fe (P<0.02 two-

tailed t-test) and Al (P<0.05 two-tailed t-test) (oxyhydr)oxide formation relative to glacial 

weathering. The offset in FeOOH formation rates constitutes a 37% increase in iron formation 

in non-glacial catchments relative to glacial catchments: 32µmol/kg to 44µmol/kg.  
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Figure 8. PHREEQC Model calculated reactive oxide formation rates. On average, non-glacial 

weathering significantly enhances FeOOH formation (P<0.02) and AlOOH formation (P<0.05). 

 Sensitivity testing was conducted to determine which chemical factors were most 

important in terms of controlling Fe/AlOOH formations. The model Fe/AlOOH formation 

estimates are not sensitive to the measured Fe or Al concentrations of the samples; either 

doubling or removing the Al and Fe concentrations in the river waters from the model inputs 

changes the Fe/AlOOH formation estimates by less than the rounding uncertainty associated 

with the reported data i.e. <0.1 µmol/kg). The estimates are far more sensitive to the 

concentrations of Mg and Ca. ‘The FeOOH formation estimates effectively scale on a 1:1 basis 

while AlOOH formation estimates scale with Ca. This is because, as shown on Figure 2.8, the 

model predicted FeOOH formation rates are almost entirely controlled by olivine dissolution 

while the AlOOH formation rates are mostly controlled by plagioclase dissolution. 

2.6. Discussion  

2.6.1 pH and Chemical Weathering Patterns. 

Gislason et al., (1996) proposed the relative mobility’s of elements during Icelandic 

weathering decreases along the trend: Na> K>Ca, Mg >Al>Fe. This is not entirely consistent 

with the soil, river sediment or river water data. Figure 2.9 shows the average elemental 

mobility patterns of rivers in the non-glacial Borgarfjörður and glacial Vatnajökull catchment 

regions (see Figure 2.2). In non-glacial catchments iron is at least as mobile as Al, and in the 

glacial catchments the mobility is Ca is much closer to K than Mg. In total, these patterns 

most likely reflect the role soil formation has on continental weathering. 

The mobility of Ca relative to Na decreases from the glacial to the non-glacial 

catchments via a process which does not seem to impact K or Mg. The most plausible 

explanation for the shift in Ca relative to Na is a change in plagioclase weathering. The 
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predicted stabilities of albite (Na-plagioclase) and anorthite (Ca-plagioclase) differ across the 

typical pH range or Icelandic surface and ground waters (Arnorsson et al., 2002). As shown 

on Figure 2.10, anorthite is always significantly under-saturated while albite is near saturated 

above pH values of 7 (Stefansson et al., 2011; Arnorsson et al., 2002). A shift toward more 

acidic conditions would therefore be expected to result in a decrease in the mobility of Ca 

relative to Na. The absolute pHs of the rivers do not cover the appropriate range of values, 

but Iceland soil porewater do span the correct range. Chemical weathering in Icelandic soils 

is associated with decreasing soil pore-water pH (see Figure 5). The pore water in immature 

soils covers a similar pH range to the Icelandic rivers, but mature soils are characterized by 

soil pH values as low as 4 (Opfergelt et al., 2014). If plagioclase weathering is dominantly 

occurring within soils, then the reduction in Ca mobility relative to Na is indicative of the pH 

controlled shift in continental weathering between glacial and non-glacial patterns.  

 

Figure 2.9 Relative mobility of major cations during basalt weathering in the Borgarfjörður 

and Vatnajökull catchments. Rmobility = (Xwater / Nawater) / (XRBS / NaRBS) 

A key aspect of the dynamics of Ca and Na in Icelandic soil and surface water systems 

is that the solubility of the elements is not pH dependent. In other words, once in solution the 

migration of Ca and Na between (sub)glacial, soil, and/or river environments is not highly 

impacted by pH boundaries. This provides a clear contrast when it comes to evaluating the 

environmental behaviour of Al and Fe.  

Temporarily ignoring organic matter dynamics, the solubility’s of Fe and Al are both 

strongly pH dependent. Across the pH range of our river samples, pure Al is about four 

orders of magnitude more soluble than pure Fe (Wesolowski and Palmer 1994; Liu and 

Millero 1999). As pH values decrease towards acidic pore water values, the solubility of Fe 

increases while the solubility of Al decreases (see Figure 2.10). If, like was the case with 

plagioclase, most chemical weathering reactions are expected to occur in affiliation with soil 

formation Al mobility would be expected to be higher than Fe in glacial rivers. Additionally, 

Fe and Al would be expected to be effectively immobile in non-glacial rivers. This is because 
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while acidic pore waters will favour iron dissolution this dissolved iron would be expected to 

precipitate as soon as it entered the rivers. 

 

Figure 2.10. The andsol pH range is defined based on pore-water solutions from Opfergelt et 

al., (2014) and reflects soils typical of non-glacial catchments in Iceland. A) Albite solubility and B) 

Anorthite solubility in Icelandic surface waters modified from Arnorrson et al (2002). At pH>7 

albite is near saturated while anorthite is significant under saturated across the pH spectrum. 

C) Iron solubility curve modified from Liu and Millero (1999) and D) Al solubility curve 

modified from Wesolowski and Palmer (1994). Iron is more soluble in the pH range of soil 

porewater than in the pH range of Icelandic rivers whereas Al solubility follows the opposite 

trend. The arrow on page C underscores the relationship between apparent iron solubility 

and organic ligand availability with non-glacial rivers potentially falling nearer to the ligand 

stabilized values. 

In many surface water environments, the mobility’s of Fe and Al are dominated by 

organic matter availability rather than the actual solubility’s of Fe and Al. (Perdue et al., 
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1976; Liu and Millero 1999). The presence of organic matter would be predicted to drive 

glacial systems to the extremes i.e. high Fe mobility in non-glacial rivers and high Al mobility 

in glacial rivers as organic matter stabilized the preferentially released element. This pattern 

of extremes can be identified within the individual samples reported on Figure 2.7, but on 

average non-glacial rivers do not contain significantly more iron that glacial rivers (see Table 

2.2). Overall, the data appears to be better explained by the aforementioned inorganic 

solubility patterns. The apparent limited influence of organic matter on large scale iron 

mobilization in non-glacial rivers can at least in part be explained by the known relationship 

between organic matter accumulation and soil formation in Iceland. Opfergelt et al., (2011) 

showed the while Al was complexed to organic matter in pore waters of the most organic rich 

soils Al in most soil solutions was un-complexed. In most non-glacial catchments the total 

drainage area associated with organic rich soils is limited (See Figure 2.1) so, at least in 

Iceland, the Al flux associated with soil formation is not necessarily driven by organic matter. 

Additionally the overall organic matter concentrations of both glacial and non-glacial river 

catchments in Iceland are relatively low. Pogge von Strandmann et al., (2008) found 

dissolved organic carbon (DOC) concentrations of 30-50 µmol/L in glacial rivers in Iceland 

and DOC concentrations of 100-141 µmol/L in non-glacial rivers. The higher concentrations 

are very similar to the concentration of humic acid used in the experiments by Liu and Millero 

(1999) shown on Figure 2.10. While organic matter does increase the apparent solubility of 

Fe at this level the overall apparent solubility of Fe remains very low and less than Al. 

The influence on pH-dependent mineral reactions during soil formation on overall 

chemical weathering patterns is also reflected in the inverse-weathering FeOOH and AlOOH 

formation rate estimates. The inverse weathering models predict FeOOH formation is mainly 

coupled to olivine dissolution and AlOOH formation is primarily coupled to plagioclase 

dissolution. This is a key result in terms of validating the models as the pattern is consistent 

with independent predictions of mineral weathering patterns in Iceland e.g. Arnorsson et al., 

(2002). Furthermore, the absolute stabilities of olivine and plagioclase are predicted to 

decrease with decreasing pH (Stefansson et al., 2001). As a result, the higher weathering 

rates in non-glacial catchments are best explained by the increased weathering intensity of 

acidic non-glacial soils relative to alkaline glacial environments. It is worth noting that this is 

not a result of the way the inverse models were parametrized. All the models were 

parametrized with the same initial rainwater pH (5.5 consistent with mean Icelandic 

precipitation; Gislason et al., 1996) and run to their respective final riverine pHs (which aren’t 

significantly different) preventing the introduction of any pH bias during model 

parameterization. Evidently by incorporation the multi-elemental patterns of the rivers the 

PHREEQC calculations are able to detect the larger weathering trends.  
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Overall it would appear that soil formation has a measurable impact continental 

weathering including riverine chemistry. In the case of glacial/non-glacial differences soil 

formation promotes AlOOH and FeOOH formation in non-glacial systems. But this does not 

imply non-glacial weathering increases Fe/AlOOH export to nearshore marine environments.  

2.6.2 Soils and River Sediments. 

There is a fundamental difference between mineral formation and mineral transport. 

Icelandic soils trap FeOOH as it forms (Figure 2.6) opening the possibility that much of the 

FeOOH formed during non-glacial weathering never reaches the ocean. This possibility is 

underscored by the lack of chemical similarity between non-glacial river sediment and 

mature soils.  

Figure 2.11 shows the compositions of the glacial and non-glacial sediments relative 

to the composition of the Icelandic soils. All the river sediments are more chemically similar 

to pristine basalt than to Icelandic soil material. Additionally, the compositions of the river 

sediment cannot be explained through the mixing of soils with different compositions. All the 

river sediments have higher Na+K, Mg, and Ca concentrations relative to their Fe and Al 

concentrations than all the soil samples. This is consistent with physical processes 

controlling both glacial and non-glacial river sediments independently of chemical soil 

formation process. 
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Figure 11 Icelandic river sediment and soil compositions. The river sediment data from Figure 2.5 is 

combined with the soil data from Figure 2.6: RBS=riverbed Sediment; TSS= total suspended 

sediment. The solid black lines reflect the composition of pristine Icelandic basalt. The soils are 

generally depleted in the mobile elements (Na, K, Mg, Ca) relative to the sediments. 

The dominance of physical weathering on river sediment chemistry is not a new idea 

especially in the context of FeOOH. Poulton and Raiswell (2005) and Poulton and Canfield 

(2005) found that the FeOOH concentrations of river sediment from glacial and non-glacial 

catchments from around the world were best explained by physical weathering. Specifically, 

FeOOH concentrations were found to correspond to sediment surface area irrespective of 

bedrock lithology or soil formation intensity. This is consistent with more recent studies which 

have found high FeOOH export from glacial systems characterized by high rates of physical 

weathering e.g. Bhatia et al., (2013); Hawkins et al., (2014). 

2.6.3 Physcial Weathering, FeOOH export and Earth’s Climate 

One important aspect of this study is that, whereas previous studies have shown 

glacial terrains can be a significant source of FeOOH, we have directly compared analogous 

glacial and non-glacial terrains in a way which allows us to conclude glacial terrains export 

more FeOOH than equivalent non-glacial terrains. However, our conclusion has previously 

been implied based on studies of Antarctica (Martin 1990), Greenland (Bhatia et al., 2013) 
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and other terrains (Poulton and Canfield 2005) so the idea isn’t new. Additionally, any 

number of previous studies have stated: chemical weathering patterns do differ between 

glacial and non-glacial catchments in Iceland e.g. Gislason et al., (1996); Pogge von 

Strandmann et al., (2006, 2012); Opfergelt et al., (2013); Opfergelt et al., (2014), but 

because of the environmental behaviour of Fe and Al physical processes control the 

secondary Fe/AlOOH flux rates (Poulton and Canfield 2005). This confirms Martin (1990)’s 27 

year old claim that in general physical sediment erosion by glaciers enhances marine FeOOH 

accumulation. 

What is important to note is a significant new idea has widely gained traction since 

the original proposal of the Iron Hypothesis. It is now widely understood that FeOOH promotes 

not only primary production but also carbon burial. Marine carbon burial accounts for the 

sequestration of about 309 Tg C yr-1 (Burdgie 2007) and it accounts for about half of the total 

annual geologic sink of carbon (Ciais et al., 2013). Its estimated that 20% of organic carbon 

in marine sediments is directly stabilized by FeOOH (Lalonde et al., 2012) so significant 

changes in FeOOH export equate to significant changes in Earth’s climate. This is a statement 

that is worth re-iterating because it demands a significant shift in the importance which can 

be attributed to studying FeOOH fluxes from glacial systems. For example Hawkins et al., 

(2014) concludes: “We contend that the consideration of meltwater Fe fluxes, which 

supplements iron from icebergs, is critical for understanding iron cycling and primary 

productivity in polar waters.” Such a statement falls short of what we are contending as the 

true significant of the work by Hawkins et al., (2014), Raiswell et al., (2008) and others which 

is: we contended that the consideration of meltwater Fe fluxes, which supplements iron from 

icebergs, is critical for understanding carbon burial and Earth’s climate. 

2.7. Summary and Conclusions. 

Direct chemical measurements of Icelandic sediments and soils and inverse 

stoichiometric modelling of chemical weathering in Icelandic catchments support the 

assertion that the chemical weathering process does differ between glacial and non-glacial 

catchments. The differences appear to be bi-products of the soil formation process and, 

more specifically, the relationship between pore-water pH and mineral weathering. However, 

as many authors have concluded before us, these chemical differences don’t appear to have 

a significant effect on FeOOH and AlOOH delivery to the ocean, because physical processes 

are more important in the context of sediment export rates. This allows us to concluded not 

just that glacial weathering is a significant source of (oyxhyr)oxides to the ocean, but that 

glacial weathering promotes the accumulation of significantly more (oyxhyr)oxides in 

nearshore marine environments than analogous non-glacial weathering. We assert that this 
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difference is not tangentially related to climate change via primary productivity but directly 

relates to carbon sequestration via marine carbon burial. 
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Chapter 3- 

 

Developing a New Proxy for Iron-(oxyhydr)oxides: Iron Stable 

Isotope Fractionation 
 

Abstract 

Poorly-crystalline iron-(oxyhydr)oxides (FeOOH) facilitate marine primary production 

and organic carbon burial. Practical challenges in quantifying FeOOH however restrict 

research into these iron-carbon interactions. The most common FeOOH minerals, including 

ferrihydrite and goethite, are difficult to measure by standard analytic techniques, and in 

general their concentrations can only be estimated based on selective chemical extractions. 

This study presents an alternative and novel method for estimating FeOOH concentrations 

based on iron stable isotope measurements. The new method is validated against dithionite-

citrate-bicarbonate (DCB) extractable iron concentrations [a.k.a highly reactive iron (FeHR)] in 

a suite of Icelandic soils. Across the sample suite the new technique systematically 

underestimates FeOOH concentrations by about 30% relative to the FeHR measurements. This 

issue of systematic underestimation can be significantly reduced by altering assumptions 

about the initial composition of the bedrock from which the samples were derived. Overall 

the new technique has the capability to provide a first-order estimates of FeOOH 

concentrations including in sample types such as particulate/colloidal material from aquatic 

environments which cannot be analysed by other techniques. 

3.1 Introduction 

Iron-(oxyhydr)oxides (FeOOH) moderate primary production in the Southern Ocean (Boye 

et al., 2010), organic carbon preservation in soils (Schrumpft et al., 2013) and organic 

carbon burial in marine sediments (Lalonde et al., 2012). These links between the iron and 

organic carbon cycles have spawned significant interest in trying to better understand FeOOH 

dynamics. Unfortunately, the most reactive FeOOH phase(s) tend to be amorphous and nano-

particulate making them difficult to quantify by standard analytic techniques (see review by 

Raiswell and Canfield 2012). As a result, FeOOH concentrations are usually estimated rather 

than directly measured using one of a number of selective chemical extraction processes; 

the most common extraction techniques are dithionate-citrate-bicarbonate dissolution (FeHR), 

Na-acetate dissolution (FeNa) and oxalate dissolution Feox (see review by Raiswell and 

Canfield 2012).  

Utilizing selective extractions to estimate FeOOH has a few distinct advantages. The 

approach has been utilized extensively by soil scientists to explore iron-mineral-carbon 
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interactions, and this research provides key guidance when it comes to interpreting the 

extraction results (see review by Kaiser and Guggenberger 2000). More than 45 years ago 

selective extractions were also pioneered to explore iron-carbon-sulphur dynamics in marine 

environments i.e. Berner (1970). Following on from this early work, the technical details of 

the extractions have been studied and are well understood in relation to basic iron 

mineralogy (see Poulton and Canfield 2005 and Poulton and Raiswell 2005). The techniques 

have proven both flexible and robust to the extent they continue to help researchers push 

the limits of our scientific understanding of iron-carbon-climate dynamics (e.g. Lalonde et al., 

2012; Bhatia et al., 2013). However, the extraction techniques also have clear limitations. 

All the extraction techniques are limited by the complex relationship between the 

chemical reducibility of iron minerals and their real-world chemical reactivity. Maybe Feox is 

the best indicator of reactive FeOOH while FeHR includes the pool of crystalline (and 

unreactive) iron oxides e.g. Mikkuta et al., (2006). Alternatively, maybe FeHR is actually the 

best indicator of FeOOH with only minimal dissolution of highly crystalline iron oxides e.g. 

Lalonde et al (2012); Kogel-Knabner et al., (2008); Kaiser and Guggenberger (2000). Or 

maybe estimating FeOOH requires looking at the pool of iron reduced by hydroxylamine e.g. 

Bhatia et al., (2014). On top of these inorganic mineral complexities there is an issue with 

organically bound iron. None of the selective reduction methods have ever been tested to 

determine their efficiency in extracting iron bound to various forms of organic matter so the 

degree to which organically bound iron is reflected in the extracted iron pools is a significant 

source of uncertainty. These issues are particularly acute when it comes to analysing 

aquatic colloidal/suspended material. Iron present within this type of material is hosted in a 

diverse mixture of organic and inorganic material which is not readily classified into mineral 

assemblages (Lyven et al 2003; Vasyukova et al., 2012). 

The behaviour of iron during aquatic sampling also poses a significant practical 

challenge when it comes to applying the selective extraction techniques to aquatic iron 

samples. Iron has tendency to adsorb onto the equipment used to sample iron as well as the 

bottles used to store aquatic samples. It is well documented that the only way to maintain 

iron mass balance in aquatic sample following ultra-filtration is through the acidification of the 

sample (Reitmeyer et al., 1996; Hoffmann et al., 2000; Schlosser and Croot 2008). To avoid 

this issue, it accepted as good practice to acid rinse iron sampling equipment and to acidify 

aquatic samples for iron analysis even following normal (0.45/0.2µm) filtration. Many studies 

also dissolve filters in acid to ensure complete removal of the sample material from the filters 

(e.g. Ingri et al., 2006, Poitrasson et al., 2014). Sample acidification and selective iron 

extractions are mutually exclusive as the aim of acidification is dissolve all the solid iron 

phases. 
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What is needed is an alternative method for measuring FeOOH concentrations which: 1) is 

accurate; 2) is applicable to a wide range of sediment and soil samples types irrespective of 

mineralogy and; 3) isn’t affected by intentional sample acidification. Iron stable isotope 

fractionation meets the final two criteria. Iron isotope measurements have been made across 

the range soils and sediment types (Beard et al, 2003; Homoky et al., 2009, Kiczka et al., 

2011; John and Adkins 2012). This has included samples from iron poor regions of the 

ocean which were intentionally acidified during the sampling process e.g. Conway and John 

(2014). This study explores the accuracy of using iron isotope measurements to estimate 

FeOOH concentrations. 

3.2 Sample Suite Selection 

Four factors were considered when selecting samples for validating the accuracy of our 

new technique. The samples needed to reflect a range of FeOOH concentrations. This range 

needed to be balanced against an ability to understand how the samples were related to one 

another. Additionally, it was considered important to be able to confidently measure the 

FeOOH concentrations of the sample using a traditional extraction technique. Reliable 

independent measurements provide a clear way of assessing the accuracy of the new 

technique. A suite of Icelandic soils collected and characterized by Opfergelt et al., (2014) 

provided a good balance of these factors. 

Iceland is predominately basaltic (>80%, Jakobsson 1972) and the geochemistry of 

Icelandic basalts has been extensively studied. Pristine Icelandic basalt does not contain 

any iron-carbonate minerals and possesses a minimal abundance of primary hematite 

(Gislason and Arnorsson 1993; Stefansson and Gislason 2001). Icelandic weathering also 

results in significant secondary nano-particulate goethite formation (Stefansson et al., 2001). 

This provides excellence coherence between the FeOOH pool expected to form in Icelandic 

sediments during chemical weathering and the nature of the FeHR pool predicted by Poulton 

and Canfield (2005) to form following the application of DCB to Icelandic basalts i.e. 

[FeHR]=[FeOOH]. 

Icelandic soils can also all be related with a high degree of confidence. Iceland was 

completely covered by a single glacial ice sheet ~9 ka ago, which receded during the Early 

Holocene stabilizing to near modern conditions about 6 ka ago (Gislason et al., 1996). As a 

result, soil formation in Iceland is restricted to the recent geologic past. The iron isotope ratio 

of Icelandic basalts is also homogeneous (with respect to analytical uncertainty) (Schuessler 

et al., 2009). This facilitates the assumption that all sediments and soils across Iceland are 
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derived from a bedrock source with a uniform iron isotope composition [indistinguishable to 

that of the BIR-1a international iron stable isotope rock reference standard]. 

Against this backdrop of bedrock homogeneity Icelandic soils do provide significant 

geochemical variability. Since the ice sheets retreated, vegetation and soil formation 

processes have created significant chemical differences across the Island (Gislason et al., 

1996). The chemical variability of Icelandic soils and sediments follows the spatial 

distribution shown on Figure 1. Based on previous studies (e.g. Opfergelt et al., 2014), the 

total degree of chemical weathering increases from: Leptosol<Vitrisol<Brown and Gleyic 

Andosol<Histic Andosol and Histosol. Samples from horizons within each of these main soil 

types therefore provide an ideal initial data set for calibrating iron isotopes for estimating 

FeOOH concentrations. 

3.3 Methods 

3.3.1 Field Sampling and Major Element Analysis 

Six soil profiles were collected during September 2009 at location shown on Figure 

3.1 and characterized by Opfergelt et al., (2014) with methods reported therein. This 

included measuring dithionite reducible iron (FeHR) as well as measuring the bulk normalized 

concentrations of the major and trace elements. 
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Figure 3.1. Soil map and field areas modified from Arnalds and Gretarsson (2001) and Kaaslainen 

and Stefansson (2012). The localities of the soil profiles collected by Opfergelt et al., (2014) are 

shown as stars on the map. 

3.3.2 Stable isotopic analysis 

The soil samples were prepared for iron stable analysis as described in Opfergelt et 

al., (2017). Iron stable isotope compositions are reported in δ56Fe notation, which represents 

the per mil deviation of the measured 56Fe/54Fe ratios relative to that of the bracketing 

standard, IRMM-014. In order to verify mass dependence both δ56Fe and δ57Fe values were 

measured. Iron fractionation factors are reported in Δ56 Fe notation, which represents the 

per-mil offset of two δ56Fe values relative to each other i.e. Δ56 FeA-B= δ56FeA-δ56FeB. 

3.4. Model Development and Calculations 

3.4.1 Linking FeOOH formation and Iron Cycling. 

Inorganic iron is effectively insoluble in oxygenated low temperature environments 

including near surface soils (Nesbitt and Wilson 1999, Stefansson et al., 2001) and aquatic 

environments (Liu and Millero 1999). Organic ligands can stabilize aqueous iron (Johnson 

1997; Millero 1998) creating a ‘dissolved’ iron pool, but iron remains less mobile than nearly 

every other element (see previous chapter for discussion). Iron’s low mobility is primarily a 
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result or rapid FeOOH precipitation following the the dissolution of iron from primary minerals 

(Stefansson et al., 2001) This allows iron cycling during chemical weathering to be simplified 

into three equations which are listed below and illustrated on Figure 3.2. 

1) 𝐹𝑒𝑖 = 𝐹𝑒𝑂𝑂𝐻 + 𝐹𝑒𝑎𝑞 + 𝐹𝑒𝑝 :The sum of the (oxyhydr)oxide iron pool (FeOOH), the 

aqueous iron pool (Feaq) and the primary iron pool (FeP) is determined by the 

concentration of iron initially present in the system (Fei). 

2)  [𝐹𝑒𝑇] =
𝐹𝑒𝑝+𝐹𝑒𝑂𝑂𝐻

1−
𝐹𝑒𝑂𝑂𝐻+𝐹𝑒𝑎𝑞

𝐹𝑒𝑖

: the bulk normalized concentration of iron in a sediment 

sample is the ratio of the sedimentary iron pool (Fep+Feo) and the total composition 

of the sediment following mineral dissolution (1 − (
𝐹𝑒𝑜+𝐹𝑒𝑎𝑞

𝐹𝑒𝑖
). This assumes iron is the 

most immobile element during chemical weathering. 

3)[𝐹𝑒𝑂𝑂𝐻] = [𝐹𝑒𝑇]×
𝐹𝑒𝑂𝑂𝐻

𝐹𝑒𝑂𝑂𝐻+𝐹𝑒𝑝
: the bulk normalized concentration of FeOOH ([FeOOH]) is 

the relative amount of FeOOH to total iron (
𝐹𝑒𝑂𝑂𝐻

𝐹𝑒𝑂𝑂𝐻+𝐹𝑒𝑝
)  multiplied by the total iron 

concentration ([FeT]) 

 

Figure 3.2. Box model of iron isotope fractionation during chemical weathering 

Combining the first two equations makes it possible to determine the ratio of FeOOH to total 

sedimentary iron within any sample given the initial iron concentration of the sample [Fei] 
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and the bulk normalized residual iron concentration of sample [FeT]: ( 
𝐹𝑒𝑂𝑂𝐻

𝐹𝑒𝑂𝑂𝐻+𝐹𝑒𝑝
= 1 −

𝐹𝑒𝑖

𝐹𝑒𝑇
). 

This ratio can then be used in Equation 3 to derive a bulk normalize FeOOH concentration. 

The two key parameters required to solve to the equations are [FeT] and [Fei]. The 

value of [FeT] is just the concentration of iron in the sediment sample so it can be directly 

measured. The value of [Fei], the initial amount of iron in the system, can’t be directly 

measured but it can be back-calculated based on other measurements of the system. The 

most intuitive way to derive a value for Fei value involves measuring the mobile element 

concentrations of the samples. This approach will be shown in the next section to validate 

the conceptual framework of the model. However, there is little if any advantage to this 

approach relative to conducting selective iron extractions. An alternative method of deriving 

Fei values is to measure the iron isotope composition of the sediment phase.  

As illustrated on Figure 3.2 iron isotope fractionation can be directly tied into our 

model of iron cycling. This allows the derivation of the three equations listed below: 

4) 𝛿56𝐹𝑒𝑇 = (
𝐹𝑒𝑝

𝐹𝑒𝑝+𝐹𝑒𝑜
) ∗ (𝛿56𝐹𝑒𝑖) + (

𝐹𝑒𝑜

𝐹𝑒𝑝+𝐹𝑒𝑜
) ∗ (𝛿56𝐹𝑒𝑂): The iron isotope composition 

of the residual bulk sediment pool (δ56FeR) is the mass balanced composition of 

primary iron pool (Fep, δ56Fei) and precipitated iron (oxyhydr)oxide pools (FeO, 

δ56FeO). 

5) ∆56𝐹𝑒𝑎𝑞−𝑠 = 𝛿𝐹𝑒𝑎𝑞 − 𝛿𝐹𝑒𝑠: The iron isotope composition of the aqueous (𝛿𝐹𝑒𝑎𝑞) 

and solid (𝛿𝐹𝑒𝑠) iron pools during chemical weathering differ based on one of the 

fractionation factors derived in the previous section (∆56𝐹𝑒𝑎𝑞−𝑠) 

 6) 𝛿56𝐹𝑒𝑖 = (
𝐹𝑒𝑜

𝐹𝑒𝑎𝑞+𝐹𝑒𝑜
) ∗ (𝛿56𝐹𝑒𝑜) + (

𝐹𝑒𝑎𝑞

𝐹𝑒𝑎𝑞+𝐹𝑒𝑜
) ∗ (𝛿56𝐹𝑒𝑎𝑞): The initial amount of iron 

in a system (Fei) is dependent on the concentration of iron in the bedrock ([Fei]) 

Used in combination with the first three equations these final isotope equations provide a 

constraint on the possible [Fei] value of any given sediment. This allows FeOOH concentration 

estimates to be made based on iron concentration and iron isotope measurements Section 

3.4.2 outlines the isotope approach to estimating Fei and FeOOH. 

3.4.2 Intial model validation 

Model validation was first conducted using total element concentration data for all the 

input values. Our model of iron cycling during chemical weathering assumes that iron is 

immobile relative to the other elements. This assumption dictates that bulk normalized iron 

concentrations always increase during chemical weathering. The increase in bulk normalized 
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iron concentrations is driven by the loss of more mobile elements making it possible to back 

calculate the initial concentration of iron of a sample by tracing the loss of the more mobile 

elements.  

The total reserve in bases (TRB=ΣCa+Na+K+Mg) of a sediment provides a good 

indication of the loss of mobile elements. Opfergelt et al., (2014) measured the TRB of the 

soil samples utilized throughout this study as reported on Table 3.1. If, as we are assuming, 

iron is the least mobile element in the system then the initial iron concentration must equal 

the total iron concentration of the sediment multiplied by the change in TRB i.e. [𝐹𝑒𝑖] =

[𝐹𝑒𝑇]×
𝑇𝑅𝐵

𝑇𝑅𝐵𝑖
 where TRBi is the initial TRB concentration of the sample. Table 3.1 contains 

these calculations for all the Icelandic soil samples as well as the resulting FeOOH estimates. 

Opfergelt et al., 2014 also measured the FeHR concentrations of the soil profiles making it is 

possible to directly compare our estimates to the FeHR measurements as shown on Figure 

3.3. Perfect coherence between Opfergelt et al., 2014’s reduction based estimates and our 

estimates would result in a best line y=x; R2=1. Our estimates are within 6% of this ideal fit. 

 

Figure 3.3. Calibrating FeOOH concentration estimates against FeHR concentration measurements. 

The line in the diagram is the best-fit line illustrating the similarity between the two independent data-

sets.
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Table 3.1. Results Summary. A) Data from Opfergelt et al., (2014) B) calculated as [𝐹𝑒𝑖] = [𝐹𝑒𝑇]×
𝑇𝑅𝐵

𝑇𝑅𝐵𝑖
 C) calculated using [Fei] estimated based on TRB 

values D) Data from Opfergelt et al., (2017) E) calculated using the iron isotope values to estimate [Fei] F) The Brown Andosol horizons were assumed to 

originate for basalt with [Fei]=1.24 mol/kg while the Histsol and Histic Andsol samples were assumed to originate form Icelandic Rhyolite G) The average of 

44 pristine Icelandic basalts from Jakobson (1972), Arnorrsson et al., (2002), and Eiriksdottir et al., (2008) H) From Craddock and Dauphas (2001). 

 

Soil Type Horizon 
[FeT]A) 
mol/kg 

TRB A) 
cmolc/kg 

FeHR
A) 

mol/kg 
[Fei]B) TRB 
based mol/kg 

[FeOOH]C) 
mol/kg 

Δ56Fe‰D) 
±2σ 
‰D) 

[FeOOH]E) isotope 
based mol/kg 

[FeOOH]F) 

refined mol/kg 

Parent Basalt   1.64G) 733.6   1.64G)   0.053H) 0.015H)    

Vitrisol 
A 2.08 666.9 0.33 1.89 0.19 0.053 0.047 0.31 

B/c 2.18 568.1 0.57 1.69 0.54 0.053 0.047 0.04 

Gleyic Andosol 

A1 1.87 333.4 0.94 0.85 1.10 0.067 0.027 0.74 

A2 2.13 377.0 1.15 1.09 1.10 0.067 0.047 0.55 

Bw1 2.08 274.5 1.06 0.78 1.02 0.093 0.033 0.41 

C 2.13 648.9 0.55 1.88 0.25 -0.060 0.033 0.18 

2Bw1 1.06 479.6 0.20 0.69 0.39 0.007 0.033 0.20 

Brown Andosol 

A1 2.00 402.7 0.95 1.10 0.98 0.053 0.053 0.59 0.82 

A2 2.09 369.6 1.12 1.05 1.12 0.080 0.067 0.50 0.93 

Bw1 2.19 376.9 1.04 1.13 1.15 0.093 0.027 0.39 1.02 

Bw2 2.25 317.2 1.34 0.97 1.35 0.113 0.067 0.23 1.09 

Bw3/C 2.28 324.5 1.06 1.01 1.33 0.080 0.040 0.36 1.11 

Histisol 

o1 2.15 265.6 1.78 0.78 1.53 0.447 0.047 0.54 1.83 

o2 1.50 192.2 1.03 0.39 1.19 0.373 0.047 0.50 1.18 

o3 2.53 188.0 1.99 0.65 2.00 -0.013 0.013 0.43 2.21 

o4 1.81 282.5 1.41 0.70 1.19 0.080 0.047 0.67 1.50 

Histic Andosol 

A1 2.96 148.2 2.31 0.60 2.53 0.253 0.053 0.30 2.64 

A2 1.77 177.5 1.28 0.43 1.41 0.080 0.020 0.47 1.45 

Bw1 3.13 137.7 2.48 0.59 2.62 -0.220 0.047 0.19 2.81 

Bw2 2.94 156.0 2.32 0.62 2.42 -0.240 0.093 0.05 2.62 

o1 0.99 103.4 0.91 0.14 0.89 -0.107 0.100 0.39 0.68 

Redox 1.03 332.0 0.25 0.47 0.62 -0.033 0.033 0.05 0.71 

O2 0.77 52.4 0.73 0.05 0.73 -0.400 0.047 0.59 0.45 
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3.4.2 Replacing TRB with Iron Isotopes 

The total amount of elemental data required to trace TRB restricts the practicality of the 

approach. Iron isotopes offer an alternative means of solving the model equations to calculate 

sediment FeOOH concentrations. Iron has four stable isotopes (54Fe, 56Fe, 57Fe and 58Fe) that are 

fractionated in a mass-dependent manner during low-temperature chemical weathering 

(Skulkan et al., 2002; Kiczka et al., 2011). More specifically, iron re-precipitation following 

mineral dissolution promotes the formation of aqueous and immobile-solid iron pools which are 

fractionated relative to each other (Skulkan et al., 2002). The fractionation factor (Δ56Feaq-s) 

which encapsulates this process can have one of six generalized environmentally dependent 

based on published experimental data which is summarized on Table 3.2.  
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Table 3.2. Summary of published iron isotope fractionation experiments. (A) Experiments conducted 

under either oxidizing or reducing conditions and the measured experimental values are reported ± their 

published uncertainty. The measured values have then been converted into the opposing redox 

conditions utilizing the experimentally derived value for redox fractionation *Wiederhold et al., (2006) 

reported their values in δ57/54 notation and did not report uncertainty so the values have been converted to 

δ57/54 assuming δ57/54=1.5*δ56/54 and utilizing an uncertainly reported from their standards. 

Feaq-

Feaq 

Experimental Conditions Δ56FeII-III Source 

Equilibrium Redox Fractionation 

Fe(II)-Fe(III) (15 days) -3.01 ±0.08 
Johnson et al 2002;       
Wu et al 2011 

Feaq-

Fes 

Iron System Δ56Feaq-s 
(A) Reference 

Oxic  Anoxic  

Kinetic Iron Cycling 

Feaq-Geothite(exchange) 1.95 -1.05±.0.08  Beard et al 2010 

Feaq-Fesurface  1.83  -1.18±.0.1  Beard et al 2010 

Feaq-Magnetite 1.76 -1.24±0.14 Frierdich et al 2014 

Feaq-Ferrihydrite  1.44  -1.56±0.48 Croal et al 2004 

Feaq-Geothite 1.31 -1.7±0.2* Weiderhold et al 2006 

Feaq-Hematite 1.32 ±0.24 -1.68 Skulkan et al 2002 

Generalized Value +1.5 -1.5   

Ligand Stabilized Iron Cycling 

Feaq+OM-Geothite 0.34±0.15* -2.66 Weiderhold et al 2006 

Feaq+Silica-Ferrihyrdite 0.53 -2.58±0.14  Wu et al 2011 

Feaq+OM-Ferrihydrite 0.6±0.15 -2.4 Dideriksen et al 2008 

Generalized Value +0.49 -2.51   

Equilibrium Iron Cycling 

Feaq-Hematite -0.10 ±0.40 -3.2 Skulkan et al 2002 

Feaq-Ferrihydrite -0.17 -3.18±0.08  Wu et al 2011 

Feaq-Goethite -0.29 -3.30±0.98 Crosby et al 2005 

Feaq-Hematite 0.06 -2.95±0.38 Crosby et al 2005 

Generalized Value  -0.15 -3.15   

 

The six generalized values reflect the combined influences of redox and thermodynamic 

factors on iron isotope fractionation. In general, anoxic conditions promote redox fractionation 

between the aqueous and solid iron pools. This causes the aqueous iron pool to become 

preferentially enriched in the lighter isotope of iron relative to the residual sedimentary iron pool. 

Kinetic iron precipitation has the opposite effect as kinetic precipitation preferentially removes 

the light isotope of iron from solution. Ligands, including organic matter, stabilize aqueous iron 

preventing true equilibration between the aqueous and residual solid iron pools. Thus, iron 
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cycling in environments with high organic matter concentrations adheres to a pattern which is 

intermediate to true kinetic and equilibrium systems. 

Of the six generalized iron cycling environments, only two are needed to cover the vast 

majority of low temperature weathering environments: oxic cycling in the presents of organic 

ligands (Δ56Fe=+0.49‰) and oxic-equilibrium iron cycling (Δ56Fe=-0.15‰). [Kinetic iron 

reduction is also an environmentally plausible scenario for certain low temperature 

environments e.g. Reidel et al., (2013). Kinetic reduction is predicted to result in sediment 

samples which are strongly enriched in the heavy isotopes of iron (Δ56Feaq-s=-1.5‰).] The 

opposing nature of isotope fractionation with and without organic ligands allows a single 

fractionation factor to be selected to describe the weathering history of any sediment; samples 

with isotope compositions less than the bedrock [δFe56<0.053‰ in the case of Iceland] can only 

be described by organic iron cycling while samples with isotope compositions greater that the 

bedrock can only be described by equilibrium iron cycling. Carrying these assumptions through 

Equations 1-6 (listed in Section 4) it is possible to calculate the initial iron isotope composition of 

a sample (δ56Fei) for any given values of [FeT] and [Fei].  

Icelandic basalt has a known and well defined δ56Fei value such that any value of [Fei] 

which yields an incorrect value for δ56Fei can immediately be eliminated. [Section 3.5.2 will 

discuss the limits of this of assuming bedrock δ56Fei values]. In this way, the value of [Fei] can 

be restricted within a narrow range of potential values which yield the correct value of δ56Fei 

based on Equations 1-6.  Existing data on Icelandic basalts can then be used choose the most 

likely value of [Fei] from within the range of potential values.  

The average of 44 pristine Icelandic basalts from Jakobson (1972), Arnorrsson et al., 

(2002), and Eiriksdottir et al., (2008) is: [Fe]=1.64±0.4 (2σ) (mol/kg). On this basis, we set 1.64 

mol/kg as the default value for [Fei] meaning the [Fei] value within the range of acceptable 

values (as determined by solving the equations for δ56Fei) which was closest to 1.64 was used 

to estimate [FeOOH]. 

The estimates for [FeOOH] utilizing this approach are reported on Table 3.1 for all the soil 

horizons. Figure 3.4 shows the results of this isotope based approach relative to the FeHR 

concentrations measured by Opfergelt et al., (2014) in the same samples. The error bars on 

Figure 4.5 reflect the propagation of analytic uncertainty from the isotope measurements to the 

FeOOH estimates. There is a statistically significant correlation (P<0.001) between our estimates 
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and the FeHR concentrations across the samples, but our estimates are also systematically 

lower than the FeHR concentrations. On average the [FeOOH] estimates are more than 30% lower 

than the FeHR concentrations across the sample suite. 

 

Figure 3.4. Calibrating FeOOH concentration estimates against FeHR concentration measurements. The 

solid line in the diagram is the best-fit line illustrating the similarity between the two independent data-

sets. The dashed line defines the theoretic perfect fit relationship. 

3.5 Discussion 

3.6.1 Istopes vs. mobile elements. 

Our model reliably reproduces the FeHR concentrations of the soil samples when 

parameterized with bulk normalized iron and mobile element concentrations. The 5% difference 

between our model estimates and Opfergelt’s (2014) FeHR concentrations falls within the 

analytic uncertainty envelope of the original concentration measurments. However, this 

approach offers no clear advantage over selective extraction based FeHR measurements. 

Samples which can be analysed for TRB are also going to be appropriate for analysis by 

selective extraction, and the selective extraction data will be associated with a higher degree of 

confidence. More directly, having to measure TRB values in samples is not a viable solution to 

extending FeOOH concentration estimates to aquatic samples. The results illustrate the potential 
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of the model to describe iron cycling during chemical weathering, but an alternative means of 

solving the model for [Fei] and [FeOOH] is needed. 

 Iron isotopes offer an alternative means of estimating [Fei] with-in the same model to 

derive FeOOH concentrations. The clear drawback with the isotope based approach is its lack of 

accuracy. In sample suites where there is truly no other way to estimate FeOOH concentrations 

the approach is still useful. For example it is well documented that iron in aquatic samples is 

split between organic and inorganic particulates which have distinct affiliations with carbon 

and/or biological processes e.g. Ingri et al., 2000, Leyven et al., 2003, Boye et al., 2010, 

Vasyukova et al., 2012. At the same time, most studies still default to lumping all this iron 

together as ‘dissolved’ iron due to a lack of suitable alternatives (see review by Raiswell and 

Canfield 2012). The ability to estimate the fraction of FeOOH within such ‘dissolved’ iron pools to 

within ~30% would represent a significant improvement in the characterization of these 

samples. In the context of more traditional soil and bulk sediment samples however the ~30% 

uncertainty needs to be reduced. 

The accuracy of the isotope based measurement can be improved by changing the 

assumed composition of the initial bedrock. Our initial estimates assumed all the soils were 

derived from basaltic bedrock with an initial composition equivalent an average value. This is an 

impossible assumption to test as there is no way to sample the actual initial bedrock 

composition of these soils. Furthermore the total iron concentrations of the samples suggest 

that our average basalt composition may not be a good representation for several of the soil 

profiles.  

The average TRB corrected initial iron concentration for the Histisol and Histic Andosol 

samples is 0.49 mol/kg (Table 3.1). This is well outside the iron concentration range of typical 

Icelandic basalt ([Fe]=1.64±0.4 mol/kg) and is close to the initial iron concentration found in 

Icelandic rhyolite: 0.32±0.04 mol/kg (Schuessler et al., 2009). Rhyolite also has a slightly 

heavier initial iron concentration that pristine basalt (δ56Fe=0.168±0.021‰ Schuessler et al., 

2009) consistent with the heavier isotope compositions of the Histisol soil horizons. Additionally, 

the soil horizons from the Brown Andosol soil profile have TRB corrected [Fei] values near the 

low end of the average basaltic range. Figure 3.5 shows how our FeOOH estimates change if the 

Histisol and Histic Andosol samples are assumed to have been derived from Icelandic Rhyolite 

and the Brown Andosol samples are assumed to have been derived from basalt with [Fei]= 1.24 

mol/kg. The modified FeOOH estimates (reported on Table 3.1) are clearly closer to the sample 
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FeHR concentrations, and on average are with 2% of the measurements. These refinements are 

not however without their problems. 

 

Figure 3.5 Calibrating FeOOH concentration estimates against FeHR concentration 

measurements. The difference between this figure and Figure 3.4 is that the [FeOOH] values for the Histic 

Andosol and Histisol horizons have been adjusted assuming the horizons originated from rhyolitic 

bedrock and the values for the Brown Andosol horizons have been adjusted assuming an [Fei] of 1.24 

mol/kg. 

An alternative explanation of the low apparent initial iron concentrations of the most 

weathered soil horizons is the onset of preferential oxide dissolution during the later stages of 

chemical weathering. The onset of acidic and/or reducing conditions in mature soil horizons 

could create conditions favouring preferential and quantitative dissolution of iron oxides. The 

preferential removal of iron oxides from sediments would induce the trend of decreasing 

apparent initial iron concentration with increasing extent of weathering as seen in our dataset. 

Unfortunately, the preferential dissolution process cannot be identified by isotope 

measurements. Mineral dissolution alone does not induce iron isotope fraction (Skulkan et al., 

2002) such that preferential oxide dissolution does not leave an identifiable signal in the iron 

isotope record. This makes it impossible to identify samples which may have undergone 

preferential oxide dissolution without adding an additional layer of assumptions and 

uncertainties to the model estimates. 
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Overall, the methodologic uncertainty of the isotope based FeOOH concentration 

estimates is appears to be inversely correlated to the compositional similarity between the 

samples and bedrock. In this way, the approach appears to be far better suited for application to 

immature sediment which have a high degree of chemical similarity to the bedrock from which 

they were derived than strongly weathered soils. 

3.6.2 Moving Beyond Basalts.  

Our sample set only covered soils derived from a single bedrock type. The inherent 

nature of iron isotope fractionation however allows the model to be extrapolated to sediments 

derived from all crustal terrains. This is because iron isotope fractionation is inversely 

dependent on mineral crystallization temperature, and at low temperature there is no need to 

correct for bedrock and/or organic matter compositional variability within the model. 

Above 500°C mineral equilibrium fractionation factors are smaller than the analytic 

sensitivity of iron isotope ratio measurements due to the inverse relationship between isotope 

fractionation and crystallization temperature (Blanchard et al., 2009). In the real world, this 

means that primary minerals within crustal terrains are expected to all have the same iron 

isotope ratios. Magmatic differentiation does induce bulk iron stable isotope fractionation 

between large igneous bodies (Weyer et al., 2005; Schuessler et al., 2009), but igneous 

minerals within a given terrain are not significantly fractionated relative to each other. Therefore, 

primary mineralogy is not a significant control of iron isotope compositions in crustal terrains. 

Sedimentary terrains might not adhere to this same principle as iron carbonates, iron-sulphides 

and iron-oxides formed at low temperatures are expected to be measurably fractionated relative 

to one another (Blanchard et al., 2009).  

Even at low temperatures there is no need to consider bedrock composition during 

crustal weathering under most circumstances. Based on the the published experimentally 

derived iron isotope fraction factors (Table 3.2) the systematic uncertainty associated with 

deriving iron isotope fractionation factors for a given environment is greater than any mineral 

specific control on isotope fractionation. Systems which contain magnetite as the solid phase 

are indistinguishable from systems which contain ferrihydrite as the solid phase. Similarly, for 

the environments which contain ligands there is no significant difference between the 

experiment which used silica to stabilize aqueous iron i.e. Wu et al (2011) and the experiments 

which utilized organic siderophores i.e. Dideriksen et al., (2008). [This is consistent with the fact 

that studies of anoxic ground waters have traditionally argued organic matter stabilizes the light 



61 
 

isotopes of iron (Ingri et al., 2006) while studies of oxic surface waters have argued organic 

matter stabilized the heavy isotopes of iron (Ilinia et al., 2013)]. In the context of our model is 

means our generalized Δ56Feaq-s values can be taken as environmentally representative without 

the need to further account for compositional differences in the bedrock and/or organic matter 

between real-world environments. Again, this is might be limited to comparisons between iron 

oxides as iron sulphides and/or iron carbonates have the theoretical potential to significantly 

alter iron isotope fractionation (Blanchard et al., 2009). 

Despite the potential effects of low temperature carbonates and/or sulphide cycling in 

iron isotope fractionation sedimentary terrains display a restricted range of iron isotope 

compositions (Beard et al., 2003). Extreme iron fractionation has been identified in sedimentary 

rock from Greenland, but why this is true is a matter of debate (Dauphaus et al., 2004, 2007). 

Previous studies have therefore widely assumed that on a global scale iron isotope fractionation 

in sedimentary rocks is negligible e.g. Conway and John (2014). Therefore, our model can 

confidently be extended to all may also be broadly applicable to sedimentary terrain albeit with a 

higher degree of uncertainty than when it is used in crustal terrains. 

3.7 Summary and Conclusion 

 Iron isotope and iron concentration measurements provide a simple, if imperfect, method 

of estimating the concentrations of secondary iron (oxyhydr)oxides in sediment samples. The 

reliability of the estimates is inversely correlated with the similarity between the sediment 

samples and the bedrock from which the sediments were derived. Given that iron isotope and 

iron concentration measurements can be applied to a greater array of samples than traditional 

selective extractions our new method opens the door to studying iron cycling and FeOOH 

formation in new systems. Specifically, the future application of this technique to samples of 

aquatic suspended and colloidal material FeOOH content could help unlock the role iron plays in 

moderating the carbon cycle. 
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Chapter 4 

 

Estimating the Effects of Weathering on Reactive Iron Fluxes from 

Iceland 
 

Abstract 

This study compares the continental weathering patterns of glacial and non-glacial 

catchments in Icelandic on the basis of iron isotope measurements, total suspended sediment 

concentration data and sediment iron (oxyhydr)oxide estimates. The iron isotope measurements 

indicate organic matter influences iron cycling in non-glacial catchments while iron cycling in the 

non-glacial catchments is an inorganic process. The amount of iron affiliated with organic matter 

in the non-glacial systems is however only a small proportion of the total iron pool transported 

within the river systems. Overall, the large difference in physical sediment transport rates 

between glacial and non-glacial rivers is the dominant driver of iron export differences between 

glacial and non-glacial rivers. On average the glacial rivers contain 3.5 times more total 

sediment and 2.5 times more iron (oxyhydr)oxide than analogous non-glacial rivers on a flow-

normalized basis. Globally total sediment accumulation and iron (oxyhydr)oxide accumulation 

rates correlate with organic carbon preservation in nearshore marine environments. Our results 

are therefore consistent with the hypothesis that glaciers enhance marine organic carbon burial 

by enhancing marine sediment and FeOOH accumulation. 

4.1 Introduction 

There is a strong positive correlation between organic carbon (OC) accumulation and total 

sediment accumulation in marine sediments as shown on Figure 4.1. This raises two related 

questions: Does the relationship between marine sediment accumulation and organic carbon 

accumulation mean that processes which enhance marine sedimentation increase carbon 

burial?; and if so, is there a positive feedback between glaciers and organic carbon 

sequestration? There is no doubt that glaciers enhance physical weathering rates relative to 

analogous non-glaciated terrains (Anderson et al., 2000; van de Flierdt et al., 2002). Whether or 

not the increase in physical weathering corresponds to an increase in OC burial depends on 

why sediment accumulation and organic carbon accumulation are so closely correlated. 

There is no universally accepted explanation for why OC accumulation and total sediment 

accumulation are so strongly correlated in marine sediment. Some authors have suggested the 



66 
 

correlation is a product of redox dynamics e.g. Canfield (1994). Another theory is that non-

specific mineral-organic matter surface interactions promote the protection of otherwise labile 

OC (e.g. Mayer 1994, Hedge and Keil 1995, Greathouse et al., 2014). More recently there has 

been a shift away from non-specific mineral-OM dynamics towards specific iron-OC dynamics to 

explain how inorganic minerals promote OC accumulation (e.g. Lalonde et al 2012, Barber et 

al., 2014). Iron (oxyhydr)oxides (FeOOH) have been singled out as the key phase(s) controlling 

OC burial (Schrumpf et al., 2013).  

 

Figure 4.1: Sediment and organic carbon accumulation. Organic carbon accumulation in marine 

environments adheres to strong linear relationship with total sediment accumulation. Open ocean 

locations tend to fall below this line while estuarine locations tend to fall above the line consistent different 

environments having different relative carbon burial efficiencies. The data in the figure is from Talwani et 

al., (1976), Lyendyk et al., (1978), Barker et al., (1990), Barron et al., (1991), Eadie et al., (1994), Thiede 

et al., (1996), Saunders et al., (1998), Barker et al., (1999), Raymo et al., (1999), Flemmings et al., 

(2006), Kao et al., (2006), Aller et al., (2008) and Brackley et al., (2010), Fulthorpe et al., (2011), Dale et 

al., (2015) and Peketi et al., (2015).  

Iron (oxyhydr)oxide concentrations have traditionally been measured utilizing selective 

chemical reduction techniques leading them to be described as highly reactive iron (FeHR). 

Reactive iron concentrations have been widely shown to correlate with the OC preservation 
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potentials of soils irrespective of all other environmental factors (Kaiser and Guggenberget 

2000; Mikutta et al., 2006; Kogel-Knabner 2008; von Lutzow et al., 2008; Schrumpft et al., 

2013). More recently Lalonde et al., (2012) showed the same trend exists in marine sediments.  

The theory that FeOOH actively controls, rather than passively correlates with, OC burial is 

supported by the unique ability for FeOOH to account for what is labelled as the ‘burial rate offset’ 

on Figure 4.1. This offset is a way of describing the fact that different environments tend to have 

slightly different relationships between OC and sediment accumulation.  

The burial differences between marine environments are only weakly linked to absolute 

differences in primary production and/or redox conditions (see reviews by Blair and Aller 2012 

and Burdige 2007). Environments with higher than average sediment normalized OC 

accumulation rates do however contain higher than average sediment normalized FeOOH 

accumulation rates. Sediment redox cycling promotes FeOOH formation in environments with 

anoxic and/or poorly oxygenated bottom waters leading to high OC and FeOOH preservation on a 

sediment normalized basis (Canfield et al., 1993; Riedel et al., 2013). Marine upwelling also 

enhances FeOOH formation (Hedges and Keil 1995) because the upwelling waters are rich in iron 

which precipitates near the surface. The direct protection of OC by FeOOH therefore provides a 

means for accounting for the known marine OC accumulation patterns. 

If OC preservation in sediments is dependent on specific secondary FeOOH phases then 

predicting OC burial rates requires knowing the composition of sediments exported to the ocean 

as well as the total sediment export rates. This study compares the physical and chemical 

weathering dynamics of glacial and non-glacial river catchments in Iceland to determine how 

glaciers alter both the extent and nature of iron in alluvial sediments.  

4.2 Icelandic Geology, Weathering, and Reactive Iron Formation 

Chemical and physical weathering rates are strongly dependent on geologic variables in 

addition to local climatic conditions (Anderson et al., 1997, Syvitski and Milliman 2007). It is 

therefore necessary to control for geologic factors when assessing the impact of climatic shifts 

on terrestrial weathering patterns. This includes constraining initial bedrock iron isotope 

compositions when using iron isotope ratios to investigate iron cycling dynamics. Iceland is one 

of the best locations in the world for controlling for the influence of geology when comparing 

glacial and non-glacial catchments. 
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Iceland is a geologically young and active island formed primarily (>80%) of basaltic 

lavas with a mixed mid-ocean ridges-ocean island melt source composition. All known pristine 

Icelandic basaltic lavas have an iron isotope composition within uncertainty of the USGS BIR-1a 

Icelandic basalt international iron-isotope reference standard, δ56/54Fe=0.053±0.015 (Schuessler 

et al., 2009; Craddock and Dauphas 2010). Non-basaltic portions of the island are composed of 

more evolved lavas, predominantly rhyolites, and are focused near the most active volcanic 

centres. Magmatic evolution appears to involved iron isotope fractionation such that Icelandic 

rhyolites have iron isotope compositions around δ56/54Fe=0.15±0.03 (Schuessler et al., 2009).  

Pristine Icelandic lavas do not contain primary FeOOH minerals restricting FeOOH to 

secondary mineral formation during chemical weathering (Stefansson et al., 2001). This means 

that differences in the iron isotopic compositions and FeOOH concentrations of sediments in 

glacial and non-glacial basaltic can be confidently attributed to differences in weathering rather 

than variations in initial bedrock chemistry. As for chemical weathering, iron is one of the least 

mobile elements during mineral dissolution in Icelandic environments (Stefansson and Gislason 

2001). Iron’s low mobility is largely due to secondary FeOOH formation during primary mineral 

dissolution (Stefansson et al., 2001). 

4.3 Methods 

4.3.1 Field Sampling 

River samples were collected during September 2003, August 2005, September 2009, 

September 2010, August 2012, August 2013, and September 2014 at locations shown in Figure 

4.2. The 2003 and 2005 samples were collected and characterized by (Pogge von Strandmann 

et al., 2006, 2008, 2011). The 2012 and 2013 samples were collected using the same 

methodology. Water samples were collected from near the water surface in the centre of the 

flow, facilitated by road bridges. For filtered and suspended sediment samples 15L of waters 

was collected and quickly filtered shortly after sampling, through 0.2µm Millipore filters, using a 

pressurized teflon unit. The filters were preserved and later the suspended particulate matter 

(SPM) was physically removed from the filters for analysis. Separate samples were collected for 

total suspended sediment (TSS), filtering a known volume of water through a 0.2µm filter. 

Riverbed sediment (RBS) samples were also collected as grab sample from within the active 

streambed where possible. 
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Figure 4.2. Soil map and field areas modified from the Icelandic Institute of Natural Histories Bedrock 

Geology Map of Iceland. The samples sites on the upper map show the locations of the soil profiles 

collected by Opfergelt et al., (2014) and used to calibrate the weathering models. The sample sites on the 

lower figures show the locations of the water samples. 

4.3.2 Filterable Iron and Total Carbon Concentrations: 

Iron concentrations in the filtered water samples were measured on a Thermo-Fisher X-

series inductively coupled mass spectrometer (ICP-MS) utilizing a collision-cell to reduce oxide 

interferences at Durham University. The concentrations were calibrated against high purity 

synthetic Fe-standards which were doped with sodium (250µmol/L) and calcium (100µmol/L) to 

more accurately match the sample matrix. The certified reference standard SLRS-5 was used 

check the accuracy of the measurements, and external reproducibility was better than ±5%. The 
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total carbon concentrations of a number of the suspended sediments samples were measured 

on a Thermo-Finnigan MAT 253 isotope-ratio mass spectrometry at Durham University. 

4.3.3 Stable isotopic analysis: 

All samples were prepared for iron stable analysis according to established methods 

reported in Williams et al., (2004). Known volumes (500ml-1L) of the 0.2µm filtered waters were 

dried down for FeF analysis. Suspended and riverbed sediments were transferred into glass 

vials using a teflon coated spatula and 18.2 M water and dried at 60oC. All samples were 

treated with a mixture of concentrated teflon-distilled HNO3 and HF to ensure total sample 

digestion as well as complete oxidation of any organic matter. Digested samples were then 

taken through two treatments of HCl dissolution/evaporation prior to column chemistry. The 

samples were then brought up in 1 mL of 6 N HCl and half the samples was loaded onto 1mL of 

preconditioned BioRad AGX-1 X4 resign stored in 2mL columns. The columns were rinsed four 

volumes of 6 N HCL before being eluted in seven volumes of 2N HCL. After sample elution 

another volume of 2N HCl was added to the columns, collected and concentration checked for 

iron to ensure quantitative purification. Following elution the samples were dried and refluxed in 

a mixture of ultra-pure H2O2 and HNO3 to oxidize any resin which may have leaked through the 

columns. Following oxidation the samples were prepared in 0.1 N HNO3 for MC-ICPMS 

analysis. Total procedural blanks, processed in parallel with the samples were below the 

detection limit (<0.1µgFe) which is negligible relative to the quantities of processed sample iron 

(>200µg).  

All the samples were diluted to within 10% of the sample-standard bracketing iron 

standard solution using the beam estimated intensity prior to analysis. All sediment analyses 

were carried out using sample standard bracketing against IRMM-14 at 2g/g on an Thermo 

Neptune Plus multi-collector inductively coupled plasma mass spectrometer (MC-ICPMS) on 

medium resolution-mode with an Elemental Scientific Apex desolvator introduction system. A 

number of the measurements were conducted using a Fe57-Fe58 double spike technique 

described by Millet et al., (2012) and run at 3 g/g total iron (1.5g/g sample, 1.5g/g spike) with 

all other parameters the same as the non-spiked analyses. Each sample analysis consisted of 

at least 30 individual measurements (2 second integration times) and analyses were always 

repeated at least once within a session and during at least two different sessions. All errors are 

reported as 2 standard deviations (2σ) of the average value. 
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Iron isotope compositions are primarily reported in δ56Fe notation, which represents the 

per mil deviation of the measured 56Fe/54Fe ratios relative to that of the bracketing standard, 

IRMM-014. In order to verify mass dependence during analysis, when utilising sample-standard 

bracketing, both the measured δ56Fe and δ57Fe values are reported in the data section. Iron 

fractionation factors are reported in Δ56 Fe notation, which represents the per mil offset of two 

δ56Fe relative to each other i.e. Δ56 FeA-B= δ56FeA-δ56FeB. 

The BIR-1a USGS standard and internal FeCl lab standard were analysed multiple times 

during every analytical session to monitor stability and external reproducibility. The long-term 

external reproducibility of the value for the BIR-1a standard was δ56Fe=0.049±0.043, 

δ57Fe=0.105±0.080 (n=30; 2 σ) well within the accepted range of values for the standard 

(δ56Fe=0.053±0.015‰, δ57Fe=0.087±0.023, Craddock and Dauphaus 2011). The long term 

reproducibility of the value for the laboratory internal FeCl standard was consistent with 

previously published values of this standard (Williams et al., 2012; Williams and Bizimis 2014). 

4.3.4 Iron isotope based FeOOH concentrations 

Iron cycling during chemical weathering to be simplified into six equations which are 

listed below (see the previous chapter for a detailed discussion of the model): 

1)  𝐹𝑒𝑖 = 𝐹𝑒𝑂𝑂𝐻 + 𝐹𝑒𝑎𝑞 + 𝐹𝑒𝑝 :The sum of the (oxyhydr)oxide iron pool (FeOOH), the 

aqueous iron pool (Feaq) and the primary iron pool (FeP) is determined by the 

concentration of iron initially present in the system (Fei). 

2) [𝐹𝑒𝑇] =
𝐹𝑒𝑝+𝐹𝑒𝑂𝑂𝐻

1−
𝐹𝑒𝑂𝑂𝐻+𝐹𝑒𝑎𝑞

𝐹𝑒𝑖

: the bulk normalized concentration of iron in a sediment sample 

is the ratio of the sedimentary iron pool (Fep+Feo) and the total composition of the 

sediment following mineral dissolution (1 − (
𝐹𝑒𝑜+𝐹𝑒𝑎𝑞

𝐹𝑒𝑖
). This assumes iron is the most 

immobile element during chemical weathering. 

3)[𝐹𝑒𝑂𝑂𝐻] = [𝐹𝑒𝑇]×
𝐹𝑒𝑂𝑂𝐻

𝐹𝑒𝑂𝑂𝐻+𝐹𝑒𝑝
: the bulk normalized concentration of FeOOH ([FeOOH]) is the 

relative amount of FeOOH to total iron (
𝐹𝑒𝑂𝑂𝐻

𝐹𝑒𝑂𝑂𝐻+𝐹𝑒𝑝
) multiplied by the total iron concentration 

([FeT]) 
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4) 𝛿56𝐹𝑒𝑇 = (
𝐹𝑒𝑝

𝐹𝑒𝑝+𝐹𝑒𝑜
) ∗ (𝛿56𝐹𝑒𝑖) + (

𝐹𝑒𝑜

𝐹𝑒𝑝+𝐹𝑒𝑜
) ∗ (𝛿56𝐹𝑒𝑂): The iron isotope composition of 

the residual bulk sediment  pool (δ56FeR) is the mass balanced composition of primary 

iron pool (Fep, δ56Fei) and precipitated iron (oxyhydr)oxide pools (FeO, δ56FeO). 

5) ∆56𝐹𝑒𝑎𝑞−𝑠 = 𝛿𝐹𝑒𝑎𝑞 − 𝛿𝐹𝑒𝑠: The iron isotope composition of the aqueous (𝛿𝐹𝑒𝑎𝑞) and 

solid ( 𝛿𝐹𝑒𝑠)  iron pools during chemical weathering differ based on one of the 

fractionation factors derived in the previous section (∆56𝐹𝑒𝑎𝑞−𝑠) 

 6) 𝛿56𝐹𝑒𝑖 = (
𝐹𝑒𝑜

𝐹𝑒𝑎𝑞+𝐹𝑒𝑜
) ∗ (𝛿56𝐹𝑒𝑜) + (

𝐹𝑒𝑎𝑞

𝐹𝑒𝑎𝑞+𝐹𝑒𝑜
) ∗ (𝛿56𝐹𝑒𝑎𝑞): The initial amount of iron in a 

system (Fei) is dependent on the concentration of iron in the bedrock ([Fei]) 

Solving the equations requires measuring the iron isotope composition (δ56FeT) and bulk 

normalized iron concentration ([FeT]) of the target sediment samples. It is also necessary to 

parameterize the equations with the iron isotope composition of the pristine bedrock (δ56Fei) and 

the environmentally relevant iron cycling iron isotope fractionation factor (Δ56Feaq-s) to refine the 

estimated initial iron concentration of the sample (Fei). The full details of this process along with 

a validation test of the method in Icelandic soils are provided in the previous chapter which 

should be consulted for more information. In this study, we are assuming δ56Fei is equivalent to 

the isotope composition of the BIR-1a international iron isotope references standard, which is an 

Icelandic Basalt (δ56Fei=0.053 ‰ Craddock and Dauphas 2010).  Δ56Feaq-s is assumed to be 

either -0.15‰, reflecting equilibrium iron cycling, or +0.49, reflecting iron cycling in the presence 

of organic matter (see Chapter 3 for further details).   

4.3. Results 

4.3.1 Total Suspended Sediments and Filterable Fe Concentrations 

The concentrations of total sediment (TSS), filterable iron (FeF<0.2µm) and suspended 

particulate iron (FeSPM<0.2µm) are reported in Table 4.1 alongside the calculated proportion of 

the total iron load which is transported in the FeF pool (%FeF). On average glacial rivers contain 

3.5 times more TSS than non-glacial rivers: 1099 mg/L and 310 mg/L respectively. On average 

the non-glacial rivers contain higher FeF concentrations than the glacial rivers, but the difference 

is not statistically significant (P>0.1). There is also no statistically significant difference in FeSPM 

concentrations between glacial and non-glacial sediments. The large offset in TSS and 

insignificant differences in FeF concentrations between glacial and non-glacial rivers equate to a 
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higher relative fraction of the total iron load in the glacial rivers being transported in the 

sediment phase. However, even in the non-glacial most of the total iron in the systems is 

affiliated with the sedimentary load (average non-glacial % FeF=4.77%). 

There is significant inter-annual variability in the data (e.g. Gislason et al., 1996) including at 

locations collected over multiple years. The 2003 TSS values are consistently higher than 

values collected over subsequent years. In general, the 2003 samples also have lower FeF 

concentrations that the remaining samples. 
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Table 4.1 Riverine total suspended sediment (TSS) and filterable iron (FeF<0.2µm) concentrations. A) 

Discharge normalized percentage of iron within the filterable iron pool relative to the total iron pool. 

Values market with (-) were not determined. 

Sample Source Sample [FeF] (µmol/L) TSS (mg/L) [FeSPM] (mol/kg) % FeF
A) 

 Glacial Rivers  

A12-12 0.47 1531 1.31 0.02 

A14-12 0.33 2047 1.62 0.01 

A16-03 0.31 364 1.41 0.06 

G2-03 0.01 517 1.09 0.00 

E1-03 0.13 1890 1.55 0.00 

E3-03 0.95 1380 1.88 0.04 

E4-14 0.84 1650 1.26 0.04 

E5-03 0.06 2790 0.15 0.02 

E5-12 0.11 780 0.69 0.02 

E5-14 0.79 181 1.55 0.28 

E6-03  - 1570 - - 

E6-14 0.37 335 1.82 0.06 

E8-12 0.02 1294 0.28 0.01 

E10-12 0.37 768 1.68 0.03 

E11-12 (East) 0.55 910 1.45 0.04 

E12-12 0.49 238 1.69 0.12 

E13-12 0.05 432 1.34 0.01 

Average 0.37 1099 1.30 0.05 

Nonglacial River  

A3-03 1.85 522 1.87 0.19 

A6-03 0.22 525 1.39 0.03 

A6-13 0.73 12 1.69 3.40 

A7-03 - 558 - - 

A7-13 0.63 1 1.49 29.54 

A8-03 0.24 635 1.06 0.04 

A8-10 0.21 - 1.26 - 

A8-12 0.21 145 1.20 0.12 

A8-13 0.02 83 0.54 0.05 

Average 0.51 310 1.31 4.77 

4.3.2 Riverine Isotope Compositions 

The iron isotope compositions of the SPM samples are reported on Table 4.2. In the 

glacial samples δ56FeSPM values vary from -0.015≤ δ56Fe≤0.232. The compositional range of the 

non-glacial samples is -0.049≤ δ56Fe≤0.127. The average isotopic compositions of the glacial 

and non-glacial SPM are δ56Fe=0.055±0.04 and δ56Fe=0.053±0.06 respectively which is within 

error of the isotopic value of fresh basalt (δ56Fe=0.049±0.04 for the BIR-1a reference standard). 
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The composition of glacial SPM does not vary significantly between samples collected from 

rivers, from ice and from a glacial estuary.  

The iron isotope compositions of the riverbed sediment samples (RBS) are reported on 

Table 4.4. All the samples are isotopically equal to or heavier than pristine basalt. The 

compositions of the glacial samples range from 0.047≤ δ56Fe≤0.131 (average 

δ56Fe=0.096±0.03), and the compositions range of the non-glacial samples is 0.056< 

δ56Fe<0.470 (average δ56Fe=0.260±0.16).  

The total carbon concentrations (organic + inorganic) are also reported on Table 4.3 

along with iron isotope measurements of selected FeF and Aeolian sand samples. All the SPM 

sample contain <0.3 wt. % carbon. The sand sample has an isotope composition within error of 

pristine basalts. The FeF samples from the two measured glacial samples are slightly enriched in 

the lighter iron isotopes relative to pristine basalt. The isotopic compositions of the FeF samples 

are also lighter than the compositions of the SPM pools with which they were co-collected. The 

non-glacial FeF samples display the opposite patterns. The samples have iron isotope 

compositions which are enriched in the heavy isotopes of iron compared to both pristine basalt 

and the SPM pools collected in the same total water samples. 
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Table 4.2. Iron isotope compositions of the SPM samples 

Suspendend Particulate Material (>0.2um)   Suspendend Particulate Material (>0.2um) 

Sample Source Sample δ56 2sd δ57 2sd   Sample Source Sample δ56 2sd δ57 2sd 

Fresh Basalt BIR-1a 0.049 0.04 0.105 0.08   

Glacial Ice 

A15-12 Ice -0.001 0.04 -0.015 0.01 

Glacial Rivers 

A12-12 0.064 0.09 0.064 0.09   E4-14 ice  0.001 0.08 0.019 0.01 

A14-12 0.061 0.08 0.043 0.01   E9-12 Ice 0.092 0.05 0.090 0.04 

A15-12 0.061 0.13 0.043 0.01   J ice 0.075 0.01 0.131 0.09 

A16-03 0.077 0.04 0.115 0.04   

Glacial Estuary 

E2-05 0.101 0.02 0.152 0.06 

G2-03 0.042 0.03 0.062 0.04   E2-12 0.057 0.10 0.056 0.12 

G3-03 0.107 0.04 0.159 0.16   J1 0.232 0.11 0.318 0.18 

E1-03 0.052 0.04 0.078 0.04   J2 0.120 0.04 0.209 0.06 

E1-12 0.043 0.05 0.056 0.10   J5 0.005 0.09 0.065 0.10 

E3-03 0.002 0.04 -0.025 0.04   J9 0.053 0.01 0.112 0.01 

E3-09 0.051 0.04 0.077 0.04   

Non-glacial 
River 

A3-10 -0.049 0.03 -0.105 0.01 

E4-14 -0.015 0.04 -0.050 0.04   A6-03 0.080 0.05 0.150 0.08 

E5-03 0.101 0.04 0.151 0.04   A6-13 0.122 0.02 0.280 0.08 

E5-09 0.027 0.04 0.009 0.07   A7-03 0.035 0.04 0.053 0.07 

E5-12 0.037 0.03 0.055 0.09   A7-13 0.011 0.04 0.079 0.08 

E5-14 0.002 0.04 0.139 0.05   A8-03 0.090 0.01 0.225 0.09 

E6-03  0.085 0.04 0.127 0.04   A8-10 0.024 0.04 0.036 0.06 

E6-09 0.101 0.02 0.157 0.02   A8-12 0.035 0.05 0.016 0.01 

E6-14 0.032 0.02 0.038 0.05   A8-13 0.127 0.06 0.188 0.09 

E8-12 0.045 0.08 0.097 0.07   
Mixed Source 
Estuary A5-10 0.038 0.04 0.008 0.01 

E10-12 0.030 0.02 0.062 0.08   
      E11-13 (East) 0.015 0.05 0.000 0.05   
      E12-12 0.024 0.01 0.036 0.04   
      E13-12 0.048 0.08 0.034 0.14   
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Table 4.3 Iron isotope compositions of the RBS, FeF and sand samples as well as SPM total carbon concentrations. 

Bed Load Material   Filterable Iron (<0.2µm) 

Weathering 
Extent Sample δ56 2sd δ57 2sd   Weathering Extent Sample δ56 2sd δ57 2sd 

Fresh BIR-1a 0.052 0.04 0.105 0.08   
Glacial Rivers 

E5-12 0.036 0.05 0.030 0.05 

Glacial Rivers 

A14-12 0.094 0.03 0.162 0.00   E13-12 0.000 0.04 -0.020 0.04 

E1-03 0.121 0.01 0.180 0.08   

Non-glacial Rivers 

A6-13 0.253 0.04 0.340 0.04 

E4-14 0.097 0.04 0.140 0.04   A7-13 0.116 0.05 0.150 0.05 

E5-03 0.106 0.03 0.184 0.10   A8-12 0.188 0.05 0.250 0.05 

E5-14 0.089 0.01 0.081 0.05   
    

    

E8-12(I) 0.068 0.07 0.040 0.05   Suspendend Particulate Material (>0.2um)     

E8-12(II) 0.131 0.04 0.196 0.08   Sample Source Sample 
Total Carbon 

wt%     

E10-12 0.094 0.07 0.131 0.11   

Glacial 

A12 0.04     

E12-12 0.114 0.05 0.165 0.05   A14(I) 0.05     

E13-12 0.047 0.07 0.092 0.08   A14(II) 0.02 
  

Non-glacial 
Rivers 

A4-14 0.056 0.03 0.098 0.03 
  

A15 ice 
course 0.03 

  

A4-05 0.115 0.04 0.172 0.06 
  

A15 ice 
fine 0.11 

  A6-13 0.208 0.16 0.630 0.08   E1 0.10 
  A3-03 0.327 0.12 0.340 0.11   E5 0.14 
  A7-03 0.383 0.06 0.620 0.05 

 
E8 0.14 

  A8-03 0.470 0.04 0.700 0.05 
 

E10 0.18 
  

       
E11 0.12 

  Aeolean Basaltic Sand 
 

E12 0.11 
  Weathering 

Extent Sample δ56 2sd δ57 2sd 
 

Non-Glacial A3-09 0.22 
  Aeolean Sand Westman 0.085 0.091 0.115 0.07 

 
A8 0.11 

   



78 
 

4.3.3 FeOOH concentrations 

Table 4.4 list the total iron concentrations ([Fe]) and FeOOH concentration estimates for 

all the RBS samples. On average the non-glacial RBS samples have higher Fe and FeOOH 

concentrations, but the differences are not statistically significant (P>0.2 t-test). 

Table 4.5 list the FeOOH concentration estimates for all the SPM samples. The flow 

normalized fluxes of FeOOH from the rivers were determined by multiplying the TSS 

concentrations by the estimated FeOOH concentration of the sediment pool. The non-glacial 

samples contain higher FeOOH concentrations on average than the glacial samples, but the 

difference is not statistically significant (p>0.1, t-test). Due to the significant difference between 

the TSS concentrations in glacial and non-glacial rivers the glacial export at least 2.5 times 

more FeOOH than non-glacial rivers on a flux normalized basis. 

Table 4.4 River bedload sediment FeOOH estimates. *These locations are downstream of both 

glacial and non-glacial tributaries but have dominantly non-glacial catchment areas. 

Bed Load Material 

System Sample 
[Fe] 
mol/kg 

[FeOOH] 
mol/kg System Sample 

[Fe] 
mol/kg 

[FeOOH] 
mol/kg 

Glacial Rivers 

A14-12 1.42 0.42 

Non-glacial 
Rivers 

A4-12* 1.57 0.07 

E1-03 1.34 0.64 A4-05* 2.51 1.11 

E4-14 0.96 0.36 A6-13 1.41 0.91 

E5-03 1.85 0.65 A3-03 1.67 1.17 

E5-14 1.63 0.43 A7-03 2.29 0.65 

E8-12(I) 1.40 0.20 A8-03* 1.36 0.46 

E8-12(II) 1.74 0.94 Average 1.79 0.73 

E10-12 1.16 0.36 
    E12-12 2.73 1.13 
    E13-12 1.31 0.11 
    Average 1.55 0.57 
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Table 4.5 FeOOH concentration and flux estimates. *These locations are downstream of both glacial and non-glacial tributaries but 

have dominantly non-glacial catchment areas. 

Suspended Particulate Material (>0.2um) 
 

Suspended Particulate Material (>0.2um) 

Sample Source Sample 
[Fe] 

mol/kg 
[FeOOH] 
mol/kg 

TSS 
(mg/L) 

FeOOH Flux 
(µmol/L) 

 

Sample 
Source 

Sample 
[Fe] 

mol/kg 
[FeOOH] 
mol/kg 

TSS 
(mg/L) 

FeOOH Flux 
(µmol/L) 

Glacial Rivers 

A12-12 1.31 0.11 1531 168.0 

 

Glacial Ice 

A15-12 Ice 0.89 0.19 - - 

A14-12 1.62 0.12 2047 245.0 

 

E4-14 ice  1.51 0.21 - - 

A15-12 1.24 0.14 - - 

 

E9-12 Ice 1.56 0.46 - - 

A16-03 1.41 0.31 364 112.7 

 

J ice 2.13 0.49 - - 

G2-03 1.09 0.09 517 46.4 

 

Average 1.52 0.33   - 

G3-03 1.21 0.51 - - 

 

Glacial 
Estuary 

E2-05 1.78 0.58 203 117.6 

E1-03 1.55 0.05 1890 94.8 

 

E2-12 1.93 0.29 24 6.9 

E1-12 1.48 0.08 - - 

 

J1 1.95 1.55 23.6 36.6 

E3-03 1.88 0.24 1380 331.9 

 

J2 1.16 0.56 - - 

E3-09 1.92 0.28 - - 

 

J5 1.45 0.15 - - 

E4-14 1.26 0.26 1650 427.3 

 

J9 1.31 0.11 - - 

E5-03 0.70 0.30 2790 832.3 

 

Average 1.60 0.54 83 45.1 

E5-09 2.10 0.46 - - 

 

 Estuary A5-10 1.07 0.07 - - 

E5-12 0.69 0.09 780 70.1 

 

Nonglacial 
River 

A3-10 1.87 0.47 522 245.1 

E5-14 1.55 0.25 181 45.3 

 

A6-03 1.39 0.29 525 152.3 

E6-03  1.55 0.35 1570 549.5 

 

A6-13 1.69 0.69 12.2 8.4 

E6-09 1.90 0.60 - - 

 

A7-03 -   558 - 

E6-14 1.82 0.18 335 60.3 

 

A7-13 1.49 0.29 0.36 0.1 

E8-12 0.28 0.03 1294 39.1 

 

A8-03* 1.06 0.36 635 228.6 

E10-12 1.68 0.08 768 61.3 

 

A8-10* 1.26 0.16 - - 

E11-13 1.45 0.15 910 136.1 
 

A8-12* 1.20 0.10 145 14.5 

E12-12 1.69 0.19 238 45.1 

 

A8-13* 0.54 0.34 83 28.2 

E13-12 1.34 0.04 432 17.2 

 

Average 1.31 0.34 310 80.3 

Average 1.42 0.21 1099 193.1 
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4.4 Discussion 

4.4.1 The 2003 Data 

A published long term record of Icelandic River data by Louvat et al., (2008) suggests our 

2003 samples are anomalously high even against decadal scale variability. Louvat et al., (2008) 

found in rivers which had been sampled a minimum of 23 times over a minimum of 7 years 

glacial samples contained 923±606 mg/L TSS while non-glacial samples contained on average 

150±85 mg/L TSS. If the data from 2003 is removed our TSS data falls close to these values 

(924±621 mg/L and 60±67 mg/L glacial and non-glacial respectively). The 2003 samples were 

collected following a major storm event created by the merger of Hurricane Fabian with a major 

extra-tropical storm in the North Atlantic (Pasch et al., 2003). The storm event impacted all of 

Iceland and may account for the high TSS values in 2003. 

The decision was made to not remove the 2003 samples during analysis even though they 

may reflect abnormal river flow conditions. Including the 2003 was determined as one way to 

intentionally minimize the glacial and non-glacial differences by reducing the TSS offset from a 

factor of 6, consistent with Louvat et al., (2008), to a factor of 3.5. In doing so we ensure that our 

estimated glacial-non-glacial differences are highly conservative, and reduce the possibility that 

our final estimates overstate the true impact of weathering changes on iron (oxyhydr)oxide 

export to the ocean. 

4.4.2 Iron Cycling Patterns: FeF and FeSPM 

Organic matter and/or plant activity has been identified as the cause of significant 

differences in the behaviour of aluminium, silica (Opfergelt et al., 2011) and magnesium 

(Opfergelt et al., 2014 during chemical weathering in Iceland. For more than 4 decades it has 

also been known that the environmental behaviour of iron is highly dependent on organic matter 

i.e. Purdue and Beck (1976). Glacial catchments in Iceland are known to be poorer in OM than 

non-glacial catchments (Gislason et al., 1996) leading the expectation that organic matter might 

cause iron to behave differently during chemical weathering in glacial and non-glacial 

catchments. The iron isotope data is consistent with organic matter influencing iron cycling in 

the non-glacial catchments but not in the glacial catchments. 

Figure 4.3 shows the relative compositions of the FeF, FeSPM and FeRBS pools in all the 

locations where the pools were sampled at the same time. Suspended particulate material is 

expected to be more chemically reactive than RBS due its much larger surface area to volume 
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ratio and its constant mixing within the river. The relative fractionation between the FeF and 

FeSPM pools (Δ56FeF-SPM) therefore provides an indication of iron cycling within the active river 

system. The FeF pools in non-glacial rivers are significantly heavier than both pristine basalt and 

the co-occurring FeSPM pools. This is consistent with organically bound iron being the primary 

component of the FeF pool.  

Organic ligands preferentially bind the heavier isotopes of iron in oxygenated 

environments (Dideriksen et al., 2008; Wiederhold et al., 2006). [In anoxic environments ligands 

preferentially stabilize the light isotopes due to redox controls on iron isotope fractionation (Wu 

et al., 2011)]. In the absence of organic matter, equilibrium iron cycling under oxidizing 

conditions is associated with the opposite isotope fractionation patter; the light isotopes of iron 

are preferentially retained in solution although the difference is just above analytic uncertainty 

(Skulkan et al., 2002, Wu et al., 2011). This inorganic pattern provides a good explanation of the 

glacial samples as the glacial FeF pools are slightly enriched in the light iron isotopes relative to 

their corresponding FeSPM pools. 

 

Figure 4.3. Environmental Iron cycling. Glacial and non-glacial river systems are distinguishable both in 

terms of their FeF/FeSPM and Δ56FeF-SPM values. This is consistent with organic ligands stabilizing iron in 

the non-glacial catchments but not in the glacial catchments. 

The x-axis of Figure 4.3 is the relative portioning of iron between the FeF and FeSPM 

pools. A higher percentage of the total iron pool is associated with FeF in non-glacial rivers than 
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in glacial rivers. This patterns is again consistent with non-glacial rivers having higher organic 

matter concentrations than glacial rivers. However, even in the sample with the highest 

[FeF]/[FeSPM] more than 70% of total iron in system is associated with the suspended sediments 

(Table 4.2). From a mass balance prospective, this limits the overall influence organic matter 

ultimately has on the total iron flux differences between glacial and non-glacial systems. While 

organic matter does appear to be stabilizing FeF in the non-glacial rivers, the pool of ligand 

stabilized iron represents only a small fraction of the total iron pool in these systems. 

4.4.3 Iron Cycling Patterns: FeF and FeSPM 

 Figure 4.4 shows how the iron concentrations and iron isotope compositions of the RBS 

and SPM samples compare to each other and to the compositions of Icelandic soils from 

Opfergelt et al., (2014, 2017). The glacial RBS and all SPM samples have similar ranges of iron 

concentrations and iron isotope compositions (see Figures 4.3 and 4.4). This range overlaps 

with the expected range of immature sediments with a high degree of chemical similarity to the 

bedrock. As a discussed in the previous chapter this makes the SPM samples a good samples 

suite for estimating FeOOH concentrations via the iron istope approach. The non-glacial RBS 

samples do not fall within this compositional range, and have compositions which are more 

similar to the soil horizons. Such a pattern is consistent with the inclusion of more mature soil 

material into the bedload fraction of non-glacial rivers. The potentital mixing of soil material into 

the non-glacial RBS significantly decreases the reliability of the iron isotope measurements for 

estimating FeOOH concentrations in the samples (see previous chapter for full discussion). 
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Figure 4.4 Compositional range of Icelandic soils and river sediments. Soil compositions from Opfergelt 

et al., 2014, 2017.  

4.4.4 Proglacial Weathering 

The pattern of glacial weathering discussed in Section 4.4.2 would inherently limit glacial 

sediments to iron isotope compositions δ56Fe>0.053‰. There are a few samples which 

contradict this pattern i.e. δ56FeSPM<0.053‰. These outlying samples all come from glacial rivers 

which drain the Vatnajökull icsheet. In this region of Iceland, glacial meltwaters pool in 

significant lakes before draining into the rivers. Biologic activity within the lakes might be 

creating sufficient quantities of organic matter to influence iron cycling and the composition of 

the local sediments. Ligand stabilization would account for the isotope compositions of the 

outlaying samples, and indicate the melt-water lakes represent a transitional glacial/non-glacial 

environment. 

4.4.5 Coastal iron (oxyhydr)oxide exports 

 Iron mixes in a strongly non-conservative manner in estuaries resulting in the near 

complete deposition of alluvial iron in nearshore marine environments (Berquist and Boyle 

2009). Discharge normalized nearshore FeOOH deposition rates can therefore be derived by 

adding the FeOOH concentrations contained with the SPM and FeF pools per litre of water. Table 
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4.6 presents the average estimated FeOOH flux rates for glacial and non-glacial systems in 

Iceland. On average glacial rivers are estimated to deposit 239% more FeOOH in nearshore 

marine environments than analogous non-glacial rivers.  

Table 4.6 Total FeOOH flux estimates.  

System 
TSS FeOOH sediment FeF Total FeOOH flux  

mg/L µmol/L µmol/L µmol/L 

Glacial 1099 193.1 0.37 193.5 

Non-glacial 310 80.3 0.53 80.8 

Relative 
Difference (%) 354.5 240.5 69.8 239.4 

 

In general, interglacial periods are associated with wetter climates than glacial periods 

(Coale et al., 2004). Wetter climates may mean higher terrestrial hydrologic flux rates, but the 

link between de-glaciation and increased precipitation accumulation in Iceland is not easy to 

quantify. From 1835-2000, climate change has driven a statistically significant increase in 

average temperatures across Iceland while having no statistically significant impact on total 

precipitation rates (Hanna et al., 2004). Therfore it is not possible to readily quantify the 

difference in total hydrologic discharge between peak glacial and non-glacial conditions, and 

flux normalized data provides the best available means for comparing the climate systems.  

The Icelandic data fits well into established global patterns surrounding the impact of 

glaciers on continental weathering. In general, glacial terrains are associated with higher 

physical weathering rates but near equal chemical weathering rates relative to analogues non-

glacial terrains (Anderson et al., 1997). That is not to say chemical weathering difference do not 

occur between glacial and non-glacial catchments, but that most of the differences are due to 

minor phase weathering dynamics (van de Flierdt et al., 2002; Anderson et al., 2000). Iron 

cycling is not controlled by the weathering of accessory minerals, and therefore FeOOH formation 

does not significantly differ between glacial and non-glacial terrains. This claim is supported by 

reactive iron (FeHR) concentration data from Poulton and Canfield (2005) and Poulton and 

Raiswell (2005) on glacial and non-glacial sediments from catchments around the world. Those 

studies concluded that physical sediment characteristics, namely sediment surface area, 

controls sediment FeHR concentrations, and that the controls do not significantly differ between 

glacial and non-glacial system. The studies also recognized the implications of such a claim in 

the context of global FeOOH export dynamics; the physical weathering differences between 
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glacial and non-glacial weathering must equate to significant differences in the relative FeOOH 

export rates of glacial and non-glacial terrains.  

4.5 Conclusion. 

 Organic matter availability creates a small difference in the way iron behaves in non-

glacial catchments in Iceland relative to glacial catchments. The difference is detectable in the 

iron isotope concentrations of the non-glacial sediments, but overall organically bound iron 

constitutes a minor component of the total iron cycle. Physical sediment erosion is the primary 

source of FeOOH to rivers and subsequently to nearshore marine environments. The enhanced 

physical erosion rates associated with glacial weathering allow glacial rivers to deliver far more 

FeOOH to the ocean than analogous non-glacial rivers. Barring a complete revision of the factors 

which control the correlation between marine total sediment and marine organic carbon 

accumulation, the preferential export of total sediment and FeOOH from glaciated catchments 

constitutes a significant positive climate feedback mechanism. 
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Chapter 5 

 

Estimating the Effects of Weathering on Reactive Iron Fluxes from 

Greenland 
 

Abstract 

This study presents sediment concentrations, total iron concentrations and iron isotope 

measurements from glacial and non-glacial catchments in Greenland to compare continental 

weathering patterns between analogous glacial and non-glacial terrains. The iron stable isotope 

compositions of the sediment and water samples indicate that organic ligands impact the 

behaviour of iron during continental weathering in non-glacial but not in glacial systems. This 

chemical weathering difference does not appear to have a significant impact on the iron 

(oxyhydr)oxide export rates of glacial and non-glacial systems. Total (oxyhydr)oxide export, 

estimated from the data, broadly scales with total sediment export and glacial rivers contain 100 

times more sediment than non-glacial rivers on a flow normalized basis. The preservation of 

organic matter in nearshore marine sediments depends on the accumulation total sediment 

and/or iron (oxhydr)oxides from continental weathering. Therefore, our data supports the 

hypothesis that glacial weathering increases nearshore marine organic carbon burial, relative to 

non-glacial weathering, thereby enhancing the positive feedback between glacial advance and 

Earth’s climate. 

5.1 Introduction 

Do glaciers enhance organic carbon sequestration? Glacial environments are poor in 

organic matter (OM) such that their relationship with organic carbon burial has received little 

attention. However, OM preservation is not readily accounted for by organic processes (see 

reviews by Burdige 2007, Blair and Aller 2012 and Kögel-Knabner et al., 2008). Globally two 

inorganic variables are far better indicators of OM preservation than any other biologic or 

environmental factors.  

The first inorganic variable which provides a strong indication of organic matter preservation 

is total sediment accumulation. There is a strong correlation between sediment accumulation 

and organic carbon (OC) concentrations proposed to be the bi-product of OC preservation by 

inorganic minerals (Mayer 1994, Kiel et al., 1994, Hedges and Kiel 1995, Blair and Aller 2012). 

Sedimentation rates have also been proposed as a key control of sediment redox dynamics 
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which would allow increases in sedimentation rates to further enhance OM preservation 

(Canfield 1994).  

The second variable which is a strong predictor of OM accumulation is (oxyhydr)oxide 

(FeOOH) accumulation. Berner (1970) was the first study to show a clear correlation between the 

concentrations of FeOOH and organic carbon (OC) preservation in marine sediments. More 

recently Lalonde et al., (2012) dubbed the relationship the ‘Rusty Carbon Sink’ and Figure 5.1a 

summarizes the existing published data on the phenomena. There is a statistically significant 

correlation between organic carbon concentrations and extractable iron (a functionally defined 

approximation of FeOOH) within alluvial and marine environments. Organic carbon and FeOOH 

concentrations are also significantly correlated in terrestrial soils (Figure 5.1b). The correlation 

between FeOOH and organic carbon has been found to be so universal in soils that Schrumpf et 

al., (2013) concluded FeOOH concentrations are a robust indicator of soil OM preservation 

irrespective of all other environmental factors. 

This study reports total sediment and FeOOH discharge rates from glacial and non-glacial 

catchments in Greenland. The FeOOH discharge rates are estimated based on iron isotope and 

iron concentration measurements of samples of filterable iron (FeF<0.2µm), suspended 

particulate iron (SPM>0.2µm) and riverbed sediments (RBS). The iron isotope data is also used 

to investigate differences in iron cycling dynamics between glacial and non-glacial rivers. 

Comparing these factors between the glacial and non-glacial systems provides an indication of 

the feedback between glacial-interglacial change, organic carbon burial and Earth’s climate. 
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Figure 5.1. Organic Carbon Preservation and Chemically Reactive Iron. A) Aquatic sediment data from: Berner (1970), Poulton and Raiswell et 

al., (2005), Lalonde et al., (2012), Sabadini-Santos et al., (2014), and Sheng et al., (2015). B) Modified from Kaiser and Guggenberg (2000), 

whose data is shown in black, with additional data shown in blue from: Kiem and Kögnel-Knabner (2002) Mikkuta et al., (2006), Xu-hui et 

al.,(2007), Lutzow et al.,(2008), Thompson et al., (2011) and Song et al., (2012) shown in blue. (1) The Chemical extractable iron concentrations 

reflect a combination of oxalate, dithionate and HCL soluble iron measurements reflecting the different methodologies of the different studies
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5.2 Greenlandic Geology and Weathering Regimes 

Lithology has a major impact on continental weathering (Syvitski and Milliman 2007) 

making it important to control for geologic factors when comparing weathering patterns between 

locations. South-west Greenland is one region where significant areas of glacial and non-glacial 

weathering occur over a very similar lithology. South-west Greenland is primarily composed of 

Proterozoic tonalite-trondhjemite-granodiorite (TTG) orthogenesis (Gool and Marker 2007). 

Greenlandic TTGs are characterized by a low degree of iron stable isotope variability (Dauphas 

et al., 2009), and a relatively low degree of overall geochemical variability (Kalsbeek 2001). 

Given the scale of South-west Greenland some level of heterogeneity is expected, and the 

region does contain a number for supracrustal formations with distinctive geochemical 

properties (Dauphaus et al., 2004, 2009; Gool and Marker 2007). However, bedrock 

composition is expected to have a minimal impact on the differences in the weathering patterns 

between glacial and non-glacial catchments in South-west Greenland. Additonally relative to 

other regions where glacial and non-glacial catchments persist on equivalent bedrock, South-

west Greenland offers the most extreme glacial and non-glacial endmember environments for 

comparison.  

The Greenland Ice Sheet covers about 80% of the Greenland’s total surface area. 

Surface meltwaters penetrate through the ice sheet and form sub-glacial drainage networks 

(McMillian et al., 2007). Where the sub-glacial networks emerge from the glacial front they feed 

large rivers characterized by seasonally variable discharge rates and high suspended sediment 

concentrations (McMillian et al., 2007). The combination of past glacial erosion and limited post-

glacial vegetation means the rivers have few natural barriers before they drain into the ocean. 

Greenland’s post-glacial geography and climate favours the formation of non-glacial systems 

which have few similarities to these glacial systems. 

Permafrost coverage prevents groundwater formation throughout Greenland and forces 

all hydrologic flow into surface systems (Jorgensen and Andreasen 2007). While Greenland has 

low average annual temperatures, precipitation accumulation rates across South-west 

Greenland are near zero (Bales et al., 2009) i.e. evaporation rates are as high as precipitation 

rates. This has led to the formation of largely static lakes which dominate the pro-glacial 

landscape. Many of the lakes have become (semi)-saline as evaporation exceeds precipitation 

in some locations (Anderson et al., 1998). Many of the lakes are also organic rich environments 

(Bhatia et al., 2013, Palmtag 2015) and can be redox stratified (Anderson et al., 1998). From a 



93 
 

theoretical standpoint, many of the environmental differences between these lakes and typical 

(sub)glacial drainage systems are expected to cause continental weathering patterns to differ 

between glacial and non-glacial regions of Greenland. 

Figure 5.2 shows the locations of the samples used in this study. Figure 5.2 also 

highlights the geo-spatial relationship between glaciated regions, lake dominated pro-glacial 

catchments, and the North Atlantic. The actual transition from glacial and non-glacial 

environments compared in this study occurs on a km to sub-km scale. This maximizes the 

ability extrapolate the effect of glacial retreat/advance on continental weathering from the 

differences in the glacial and non-glacial samples. 

 

Figure 5.2. Geologic map of South-west Greenland modified from Gool and Marker (2007) including 

sampling localities. 

 



94 
 

5.2 Methods: 

5.2.1 Field Sampling 

Field sampling in the Illulissat and Eqi field areas was conducted using the same 

methodology Wimpenny et al., (2010) utilized for collecting samples in the Kangerlussuaq field 

area. Riverine samples were collected from the surface near centre of the flow in 15L pre-

cleaned containers. The large water samples were quickly filtered, through 0.2µm cellulose-

acetate Millipore filters, using a pressurized PFA unit. The filters were preserved and the 

suspended particulate matter (SPM) was later removed for analysis. Temperature, pH, 

alkalinity, and conductivity were measured in field at the same locations using handheld probes. 

Total suspended sediment (TSS) concentrations were measured by filtering 100mL of water 

through a preweighed 0.2µm and then drying and reweighing the filters. Where possible 

riverbed sediments (RBS) were taken from within the river and bedrock samples were collected 

from adjacent outcrops.  

Glacial ice samples were collected from within the Ilulissat ice fjord by placing pieces of 

glacial ice into pre-cleaned plastic bags. The ice as allowed to melt for 24 hours and then the 

remaining ice was transferred into a second bag and fully melted. The initial melt samples were 

discarded reduce the potential of surface contamination during sampling. The melt water was 

then filtered and treated like the riverine samples. In all cases, some sediment was retained 

within the melt-bags after filtration, and this sediment was also recovered from the bags 

following filtration. 

5.2.2 Elemental Analysis 

Iron concentrations in the filtered water samples were measured on a Thermo-Fisher X-

series inductively coupled plasma-mass spectrometry (ICP-MS) with a collision-cell to reduce 

oxide interferences at Durham University. The concentrations were calibrated against high 

purity synthetic Fe-standards which were doped with sodium (250µmol/L) and calcium 

(100µmol/L) to more accurately match the sample matrix. The certified reference standard 

SLRS-5 was used check the accuracy of the measurements and external reproducibility was 

better than ±5%. 

Total nitrogen and carbon concentrations were measured on an Isotope Ratio Mass 

Spectrometer according to methods described in Hilton et al., (2010). The iron concentrations of 
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the suspended and riverbed samples were also measured during stable isotope analysis as 

described below. 

5.2.3 Stable isotopic analysis: 

All samples were prepared for iron stable analysis according to established methods 

reported in Williams et al., (2004). Suspended sediments and bed load sediments were 

transferred into glass vials using a teflon coated spatula and mili-Q water and dried at 60oC. All 

samples were treated with a mixture of concentrated teflon-distilled HNO3 and HF to ensure 

total sample digestion as well as complete oxidation of any organic matter. Digested samples 

were then taken through two treatment of HCl dissolution/evaporation prior to column chemistry. 

The samples were loaded onto preconditioned BioRad AGX-1 X4 and rinsed four times with 1 

mL 6 N HCL before being eluted in 7mL of 2N HCL. After sample elution another 1mL of 2N HCl 

was added to the columns, collected and concentration checked for iron to ensure quantitative 

purification. Following elution the samples were dried and refluxed in a mixture of ultra-pure 

H2O2 and HNO3 to oxidize any resin which may have leaked through the columns. Following 

oxidation the samples were prepared in 0.1 N HNO3 for MC-ICPMS analysis. Total procedural 

blanks, processed in parallel with the samples were below the detection limit (<0.1µgFe) which 

is negligible relative to the quantities of processed sample iron (>200µg).  

All the samples were diluted to within 10% of the sample-standard bracketing iron 

standard solution using the beam estimated intensity prior to analysis. All sediment analysis 

were carried out using sample standard bracketing against IRMM-14 at 2ppm at medium 

resolution on an Neptune Plus multi-collector inductively coupled plasma mass spectrometer 

(MC-ICPMS) with an Apex desolvator introduction system. The a number of the measurements 

were conducted using a Fe57-Fe58 double spike technique described by Millet et al., (2012) and 

run at 3 ppm total iron (1.5ppm sample, 1.5ppm spike) with all other parameters the same as 

the non-spiked analysis. Each sample analysis consisted of at least 30 individual measurements 

and analyses were always repeated at least once within a session and during at least two 

different sessions. All errors are reported as 2 S.D. of the average analysis value. 

Iron stable isotope compositions are primarily reported in δ56Fe notation, which 

represents the per mil deviation of the measured 56Fe/54Fe ratios relative to that of the 

bracketing standard, IRMM014. In order to verify mass dependence both δ56Fe and δ57Fe 

values are reported. Iron fractionation factors are reported in Δ56 Fe notation, which represents 

the per-mil offset of two δ56Fe relative to each other i.e. Δ56 FeA-B= δ56FeA-δ56FeB. 
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The BIR-1a USGS standard and internal FeCl lab standard were analysed multiple times 

during every analytical session to monitor stability and external reproducibility. The long-term 

external reproducibility of the value for the BIR-1a standard was δ56Fe=0.049±0.04, 

δ57Fe=0.105±0.08 (n=30; 2σ) well within the accepted range of values for the standard 

(δ56Fe=0.053±0.015‰, δ57Fe=0.087±0.023, Craddock and Dauphaus 2010). The long-term 

reproducibility of the value for the laboratory internal FeCl standard was δ56Fe=-0.693±0.04, 

δ57Fe=-1.008±0.08 (n=158; 2σ) consistent with previously published values of this standard 

(Williams et al., 2012; Williams and Bizimis 2014).  

5.1.4 Measuring Reactive Iron 

Iron cycling during chemical weathering to be simplified into six equations which are 

listed below (see Chapter 3 of a detailed discussion of the method): 

1)  𝐹𝑒𝑖 = 𝐹𝑒𝑂𝑂𝐻 + 𝐹𝑒𝑎𝑞 + 𝐹𝑒𝑝 :The sum of the (oxyhydr)oxide iron pool (FeOOH), the 

aqueous iron pool (Feaq) and the primary iron pool (FeP) is determined by the 

concentration of iron initially present in the system (Fei). 

2) [𝐹𝑒𝑇] =
𝐹𝑒𝑝+𝐹𝑒𝑂𝑂𝐻

1−
𝐹𝑒𝑂𝑂𝐻+𝐹𝑒𝑎𝑞

𝐹𝑒𝑖

: the bulk normalized concentration of iron in a sediment sample 

is the ratio of the sedimentary iron pool (Fep+Feo) and the total composition of the 

sediment following mineral dissolution (1 − (
𝐹𝑒𝑜+𝐹𝑒𝑎𝑞

𝐹𝑒𝑖
). This assumes iron is the most 

immobile element during chemical weathering. 

3)[𝐹𝑒𝑂𝑂𝐻] = [𝐹𝑒𝑇]×
𝐹𝑒𝑂𝑂𝐻

𝐹𝑒𝑂𝑂𝐻+𝐹𝑒𝑝
: the bulk normalized concentration of FeOOH ([FeOOH]) is the 

relative amount of FeOOH to total iron (
𝐹𝑒𝑂𝑂𝐻

𝐹𝑒𝑂𝑂𝐻+𝐹𝑒𝑝
) multiplied by the total iron concentration 

([FeT]) 

4) 𝛿56𝐹𝑒𝑇 = (
𝐹𝑒𝑝

𝐹𝑒𝑝+𝐹𝑒𝑜
) ∗ (𝛿56𝐹𝑒𝑖) + (

𝐹𝑒𝑜

𝐹𝑒𝑝+𝐹𝑒𝑜
) ∗ (𝛿56𝐹𝑒𝑂): The iron isotope composition of 

the residual bulk sediment  pool (δ56FeR) is the mass balanced composition of primary 

iron pool (Fep, δ56Fei) and precipitated iron (oxyhydr)oxide pools (FeO, δ56FeO). 

5) ∆56𝐹𝑒𝑎𝑞−𝑠 = 𝛿𝐹𝑒𝑎𝑞 − 𝛿𝐹𝑒𝑠: The iron isotope composition of the aqueous (𝛿𝐹𝑒𝑎𝑞) and 

solid ( 𝛿𝐹𝑒𝑠)  iron pools during chemical weathering differ based on one of the 

fractionation factors derived in the previous section (∆56𝐹𝑒𝑎𝑞−𝑠) 
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 6) 𝛿56𝐹𝑒𝑖 = (
𝐹𝑒𝑜

𝐹𝑒𝑎𝑞+𝐹𝑒𝑜
) ∗ (𝛿56𝐹𝑒𝑜) + (

𝐹𝑒𝑎𝑞

𝐹𝑒𝑎𝑞+𝐹𝑒𝑜
) ∗ (𝛿56𝐹𝑒𝑎𝑞): The initial amount of iron in a 

system (Fei) is dependent on the concentration of iron in the bedrock ([Fei]) 

 

Solving the equations requires measuring the iron isotope composition (δ56FeT) and bulk 

normalized iron concentration ([FeT]) of the target sediment samples. It is also necessary to 

parameterize the equations with the iron isotope composition of the pristine bedrock (δ56Fei) and 

the environmental specific iron cycling iron isotope fractionation factor (Δ56Feaq-s) to refine the 

estimated initial iron concentration of the sample (Fei). The full details of this process along with 

a validation test of the are provided in the Chapter 3 of this thesis which should be consulted for 

more information. In this study, we are assuming δ56Fei is equivalent to the average iron isotope 

composition of Greenlandic TTG as reported by Dauphas et al., 2004 and Dauphas et al., 2009 

(δ56Fei =0.074‰). Δ56Feaq-s is assumed to be either: -0.15‰, reflecting equilibrium iron cycling; 

+0.49, reflecting iron oxidation in the presence of organic matter; or-1.5‰ reflecting anoxic 

sediment reductions.  

5.3 Results 

5.3.1 Bulk Riverine Compositions 

 The physical and chemical properties of the water samples are reported in Table 5.1. 

The samples cluster into three distinct groups: glacial, iron rich non-glacial (GR11, GR12 and 

GR14) and iron poor non-glacial. 

The glacial locations have high TSS concentrations, high pH values, and intermediate 

FeF concentrations compared to the non-glacial samples. The iron isotope composition of the 

FeF pool was analysed in two of the samples and both samples are slightly enriched in the light 

isotopes of iron relative to Greenlandic bedrock (data presented in the next section). Most of the 

non-glacial samples lower FeF concentrations that the glacial samples. The samples from 

GR11, GR12 and GR14 are however significantly enriched in FeF compared to all the other 

samples. The iron isotope composition of the FeF pool from GR11 was measured and is 

significantly enriched in the heavy isotopes of iron relative to Greenlandic bedrock.  
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Table 5.1. Bulk Riverine Measurements. N.D.= not determined ** The glacial fjord samples are not 

included in the overall glacial average. 

Sample Type 

[FeF]  TSS pH Conductivity Alkalinity  δ56FeF σ δ57FeF σ 

umol/L mg/L   µS meq/L ‰   ‰   

GR1 Glacial 0.23 435 8.48 9 0.07   

GR2 Glacial 0.12 598 7.91 14 0.10 0.063 0.04 0.075 0.04 

GR3 Supraglacial 0.06 229 6.32 3 0.02 

  

GR4 Glacial 0.09 846 7.11 18 0.12 

GR5 Glacial 0.10 399 7.18 10 0.15 

GR7 Glacial 0.13 545 7.30 13 0.13 

GR8 Glacial 0.69 444 7.20 11 0.15 0.046 0.04 0.050 0.05 

GR10 Fjord 0.43 162 6.96 2650 0.27   

GR11 Non-glacial 1.44 4 6.81 25 0.36 0.609 0.04 0.886 0.05 

GR12 Non-glacial 12.70 14 8.3 198 1.74 

  

GR14 Non-glacial 0.25 2 8.1 120 0.56 

ILU-1 Glacial Fjord 0.03 1 6.13 2000 0.16 

ILU-2 Glacial Fjord N.D 10 N.D. 14.6(mS) N.D 

ILU-3 Non-glacial 0.01 1 6.73 96 0.15 

ILU-4 Non-glacial 0.01 9 6.53 24 0.08 

ILU-5 Non-glacial 0.04 4 6.13 57 0.14 

ILU-6 Glacial Fjord N.D. 23 8.1 23.45(mS) 1.21 

EQI-1 Glacial 0.03 274 6.73 16 0.12 

EQI-2 Non-glacial 0.08 11 6.36 8 0.06 

EQI-3 Non-glacial 0.04 1 6.64 40 0.06 

Glacial Average** 0.18 506 7.42 13 0.12 

Non-glacial Average 1.82 6 6.95 71 0.39 

  

5.3.2 Bedrock iron composition. 

The iron stable isotopic compositions and iron concentrations of bedrock samples from 

the Greenlandic mainland are presented in Table 5.2. The bedrock samples are within isotopic 

error of one another with an average value of δFe56= 0.041±.08‰. This value is consistent with 

previously reported values of Greenlandic TTG (δFe56= 0.074±.06‰, Dauphaus et al., 2004, 

2009). The average total iron concentrations of our bedrock samples is also consistent with 

published iron concentration values of Greenlandic TTG (0.59±0.33 mol/kg; Kalsbeek and 

Skjernna 1998, Kalsbeek 2001) 
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Table 5.2 Greenlandic Bedrock Composition. *Iron isotope values reflect the average iron isotope 

composition of Greenlandic TTG as reported by Dauphas et al., (2004) and Dauphas et al., (2009). The 

iron concentration values reflect the average of measurement of Greenlandic TTG as reported by 

Kalsbeek and Skjernna (1998) and Kalsbeek (2001). Our average bedrock composition is within error of 

the published TTG values.  

Rocks 

Sample δ56Fe σ δ57Fe σ [Fe] (mol/kg) 

GR1 0.091 0.09 0.136 0.13 0.83 

GR2 -0.013 0.09 -0.055 0.08 0.40 

GR3 0.035 0.04 0.056 0.08 1.24 

GR5 0.014 0.02 0.031 0.04 1.03 

GR6 0.035 0.03 0.053 0.04 0.21 

GRKISS 0.081 0.06 0.106 0.12 1.53 

Average 0.041 0.04 0.054 0.13 0.74 

Published TTG* 0.074 0.06 0.109 0.08 0.59 

 

5.3.3 Riverbed sediment (RBS) iron compositions  

The iron stable isotope compositions and iron concentrations of RBS are reported in 

Table 5.3. Most of the samples have isotope compositions within the compositional range of 

bedrock samples, but a few samples are significantly enriched in the heavy isotope of iron. The 

isotopically heavy samples reflect a combination of glacial and non-glacial locations. 
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Table 5.3. River Bedload Sediment Compositions. *These samples were with measured utilizing a Fe57/58 

double spike and the reported δ57/54Fe values are spike-corrected rather than raw values. A) The reported 

standard deviations are the 2 σ values of the measurements. 

River Bedload Sediments 

Sample Catchment Type δ56Fe σ δ57Fe σ [Fe] (mol/kg) 

GR1 Glacial 0.070 0.04 0.120 0.12 0.57 

GR2 Glacial 0.051 0.03 0.069* 0.04 0.48 

GR3 Glacial 0.060 0.07 0.077 0.10 0.77 

GR4 Glacial 0.185 0.07 0.220 0.09 1.27 

GR5 Glacial 0.064 0.05 0.130 0.15 0.69 

GR7 Glacial 0.064 0.04 0.091 0.06 0.56 

GR8 Glacial 0.069 0.04 0.121 0.05 0.39 

GR9 Glacial 0.118 0.02 0.170 0.06 0.88 

GR10 Fjord 0.090 0.04 0.097 0.15 0.65 

GR11 Nonglacial 0.092 0.03 0.204 0.04 0.49 

GR12 Nonglacial 0.054 0.03 0.135 0.10 0.97 

GR13 Nonglacial 0.065 0.02 0.190 0.05 0.45 

GR14 Nonglacial 0.081 0.04 0.135 0.07 0.60 

GR15 Nonglacial 0.053 0.05 0.151 0.05 0.59 

ILU-3 BL Nonglacial 0.523 0.05 0.723* 0.06 0.14 

ILU-4 BL Nonglacial 0.326 0.06 0.441* 0.07 0.53 

ILU-5 BL Nonglacial 0.088 0.04 0.093* 0.04 0.41 

EQI-1 BL Glacial 0.361 0.06 0.523* 0.08 0.23 

 

5.3.4 Suspended Particulate Material (SPM) 

 The iron stable isotope compositions and iron concentrations of the SPM samples are 

reported in Table 5.4 alongside the total carbon and total nitrogen concentrations. The nitrogen 

concentrations generally scale with the carbon concentrations consistent with an organic source 

for both elements. None of the measured glacial samples contain more than 1 wt. % total 

carbon while a single non-glacial sample contains at least 3 wt. % C. The highest total carbon 

sample also has the highest total iron concentration. 

 All the glacial SPM samples have iron isotope compositions δ56Fe≥0.0‰ with the most 

fractionated samples approaching an iron isotope composition of δ56Fe=0.20‰. Three of the 

non-glacial samples have compositions around δ56Fe= -0.30‰. These highly negative samples 

are from locations with among the highest FeSPM concentrations of the samples. 
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Table 5.4. River Suspended Sediment Compositions. *These samples were with measured utilizing a 

Fe57/58 double spike so the reported δ57/54Fe values represent spike corrected rather than raw values. 

**The Glacial Averages reflect only river samples i.e. they exclude the ice and fjord samples. 

Sample Type 

[FeSPM] δ56FeSPM σ δ57FeSPM σ TCSPM TNSPM 

mol/kg ‰ ‰     wt % wt% 

GR2 Glacial 0.77 0.134 0.03 0.146 0.03 0.12 0.01 

GR3 Supraglacial 0.80 0.154 0.06 0.227 0.12 0.61 0.04 

GR4 Glacial 1.24 -0.043 0.05 0.037 0.07 0.20 0.01 

GR5 Glacial 0.72 0.203 0.03 0.267 0.08 0.21 0.01 

GR7 Glacial 0.91 0.058 0.04 0.107 0.08 0.21 0.02 

GR8 Glacial 0.82 0.075 0.03 0.239 0.10 0.21 0.02 

GR9 Glacial 1.16 0.033 0.05 0.080 0.04 0.54 0.05 

GR10 Fjord 0.74 0.122 0.01 0.149 0.02 0.23 0.02 

GR11 Non-glacial 1.29 -0.377 0.04 -0.605* 0.03     

GR12 Non-glacial 2.11 -0.378 0.01 -0.594 0.02 >3 0.60 

ILU-1 Glacial Fjord 0.60 0.076 0.04 0.082* 0.05     

ILU-1 ice Ice 0.78 0.164 0.04 0.197* 0.05     

ILU-2 Glacial Fjord 0.48 0.056 0.04 0.131 0.03     

ILU-3 Non-glacial 0.39 0.151 0.04 0.179* 0.04     

ILU-4 Non-glacial 0.79 0.189 0.05 0.248* 0.06     

ILU-5 Non-glacial 1.47 -0.273 0.04 -0.445* 0.06     

EQI-1 Glacial 0.55 0.122 0.04 0.146* 0.05     

EQI-2 Non-glacial 1.25 0.063 0.04 0.062* 0.04     

EQI-3 Non-glacial 0.53 0.078 0.03 0.083* 0.03     

 

5.4. Discussion 

5.4.1 Iron Cycling in the Rivers 

Figure 5.3 shows the iron isotope compositions of the FeF and SPM pools of the glacial 

and non-glacial sample locations relative to the TSS concentrations in the same samples. The 

three groups identified on the basis of bulk riverine chemistry in Section 5.3.1 correspond to 

different patterns in river iron cycling. 

The iron stable isotope composition of glacial FeF is heavier than TTG but lighter than 

the co-occuring SPM samples by on average -0.07‰. This pattern is consistent with iron 

oxidation in the absence of organic matter (Skulkan et al., 2002, Wu et al., 2011). The isotope 

compositions of the SPM pools from the iron poor non-glacial rivers are also consistent with 
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inorganic iron cycling. The isotope composition of the FeF pools in the iron poor non-glacial 

samples were not measured due to the low absolute iron concentrations in the samples. As 

organic matter is expected to be positively correlated with FeF in Greenlandic samples e.g. 

Bhatia et al., (2013), the fact that these samples are iron poor also supports the assumption the 

systems are characterized by equilibrium iron cycling. 

 

Figure 5.3 Sample Iron Stable isotope fractionations. The offset in the iron stable isotope composition of 

the FeF pools (shown as green triangles) and SPM pools (shown as blue diamonds) reflects Feaq-s 

partitioning in the environments. The low absolute offset in the glacial samples is consistent with 

equilibrium Fe3+ cycling while the larger offset in the non-glacial sample could reflect with kinetic Fe3+ 

cycling or cycling between organic and inorganic iron species. 

 

The iron isotope compositions of the FeF and SPM pools in the iron rich non-glacial 

samples are significantly fractionated relative to the glacial and iron poor non-glacial samples. 

The isotopic offset between the FeF and SPM pools in the iron rich samples is on the order of 

Δ56FeF-SPM= 1.00. This level of isotope fraction is consistent with iron cycling in mixed redox 

systems. More specifically, the fractionation factor is consistent with rapid kinetic oxidation of 

iron (Skulkan et al., 2002). In real-world environment, this type of kinetic oxidation is most 

frequently associated with organic rich stratified systems where anoxic sediment reduction 

provides a continuous source of iron to overlaying oxic water i.e. Canfield et al., (1993) Reidel et 

al., (2013). The anoxic portion of mixed-redox systems is expected to be characterized by a 

pattern of iron isotope fractionation around Δ56Feaq-S≈ -1.50‰ (Croal et al., 2004, Wiederhold et 
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al., 2006, Beard et al., 2010, Frierdich et al., 2014). [See Chapter 3 for a detailed analysis of the 

relationship between iron isotope fractionation and environmental conditions]. The isotopically 

light aqueous iron then precipitates in the overlaying oxygenated waters leading to the formation 

of isotopically light suspended material. The same redox fractionation process leads to the 

formation of bedload sediments in anoxic systems which are significantly enriched in the heavy 

isotopes relative to the initial bedrock composition. Two of the non-glacial locations (ILU-3 and 

ILU-4) contained RBS with very heavy isotope compositions.  

All of the significantly fractionated samples were collected either from pro-glacial lakes or 

small streams which drain the lakes. The lakes themselves are are known to be highly stratified, 

poorly ventilated and organic rich environments (e.g. Anderson et al., 1998, Palmtag 2015) 

providing a clear link between the proposed iron cycling patterns and physical descriptions of 

the environments. The difference in residence times between FeF, RBS and SPM with-in the 

lake systems is the most likely explanation for why mixed redox weathering does not 

necessarily appear in both the RBS and SPM samples from several the location. The SPM and 

FeF pools reflects the active iron cycling conditions occurring at any given location. The RBS 

pool preserves a longer-term record of chemical weathering which isn’t rapidly altered as the 

sediment moves through the system. 

5.4.3 FeOOH export Rates. 

In addition to providing information on general iron cycling dynamics during chemical 

weathering, iron isotopes can be used to approximate sediment FeOOH concentrations. The 

estimated FeOOH concentrations of the SPM pools, based on their iron isotope composition and 

total iron concentration, are reported on Table 5.5. On average, non-glacial SPM is 

preferentially enriched in FeOOH relative to glacial SPM. This offset is entirely due to three non-

glacial samples (GR11, GR12 and ILU-5) having substantially higher FeOOH concentrations than 

the rest of the samples. GR11 and GR12 also have very high FeF concentrations indicating the 

presence of high concentrations of organic matter in the samples, which is further supported by 

the high total carbon concentration measured in GR12. 
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Table 5.5. FeOOH concentration and export rates from glacial and non-glacial samples 

Sample 

[FeF]  Particulate FeOOH TSS FeOOH Flux 

µmol/L mol/kg mg/L µmol/L 

GR2 Glacial 0.12 0.37 598 220.6 

GR3 Supraglacial 0.06 0.50 229 114.0 

GR4 Glacial 0.09 0.34 846 286.8 

GR5 Glacial 0.10 0.52 399 206.4 

GR7 Glacial 0.13 0.11 545 59.8 

GR8 Glacial 0.69 0.02 444 9.5 

EQI-1 Glacial 0.03 0.25 274 161.4 

Glacial Average 0.17 0.30 476 151.2 

GR11 Non-glacial 1.44 1.19 4 2.4 

GR12 Non-glacial 12.70 1.91 14 29.4 

ILU-4 Non-glacial 0.01 0.59 9 0.8 

ILU-5 Non-glacial 0.04 1.17 4 0.7 

EQI-2 Non-glacial 0.08 0.15 11 13.2 

EQI-3 Non-glacial 0.04 0.03 1 0.3 

ILU-3 Non-glacial 0.01 0.19 1 0.6 

Non-glacial Average 2.05 0.75 6 6.8 

 

Iron does not mix conservatively within the low salinity zone resulting in the near 

quantitative deposition of iron within coastal waters (Sholkovitz and Coopland 1981; Berquist 

and Boyle 2009). The sum of FeF and particulate FeOOH concentrations therefore provides a first 

order estimate of flux normalized FeOOH export rates from river systems. Table 5.5 contains such 

flux normalized FeOOH export rates for the glacial and non-glacial catchments in Greenland. On 

average glacial rivers export around 150 µmol FeOOH /L while non-glacial rivers export less than 

10µmol FeOOH/L. 

Our flux estimates are of the same magnitude as those published by Bhatia et al., 

(2013), the only other study which has published FeOOH discharge estimates from Greenland. 

Bhatia et al., (2013) sampled a catchment region about halfway between our Kangerlussuaq 

and Illussat field areas and measured filterable iron (<0.2 µm) as well as the extractable iron 

concentrations of sediments >0.7µm. The study found glacial rivers contained 40-320 µmol 

FeOOH/L. The same study also measured one location consistent with how we have described 

non-glacial weathering i.e. drainage from a proglacial lake and found it contained 278 µmol 

FeOOH/L. Due to the methodology used by Bhatia et al., (2013) it unclear if this high FeOOH 

concentration reflects high TSS concentrations or very high FeOOH concentrations within the 
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SPM pool. In either case, we cannot exclude the potential that some non-glacial systems export 

nearly as much FeOOH as glacial samples on a discharge normalized basis. Overall, we still 

expect glacial weathering to result in enhanced FeOOH export relative to non-glacial weathering 

across Greenland. 

5.5. Summary and Conclusion 

The iron stable isotope ratios of alluvial sediments indicate iron-cycling in non-glacial 

regions of Greenland can differ substantially from the iron-cycling pattern affiliated with glacial 

weathering. Specially, iron cycling during chemical weathering within proglacial redox stratified 

and organic rich lakes differs significantly from iron cycling during (sub)glacial weathering. 

 In the context of FeOOH discharge to the ocean the physical difference in sediment 

erosion between glacial and non-glacial catchments dominates the chemical differences 

between the environments. Glacial weathering enhances FeOOH discharge to nearshore marine 

environments, because glacial weathering promotes total sediment discharge to nearshore 

marine environments. This supports the hypothesis that glacial weathering enhances marine 

organic carbon burial which will act as a positive climate feedback mechanism. 
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Chapter 6  

Translating Riverine Fluxes to Organic Carbon Burial 

Abstract 

Discussion in the preceding chapters has been limited to comparing the relative 

differences in continental weathering between glacial and non-glacial systems. The extent to 

which these relative differences reflect a geologically significant climate driver depends on the 

absolute magnitude of the feedback between continental weathering and carbon burial. This 

final chapter comprises a simple thought experiment: based on the data presented in the 

preceding chapters: How did the collapse of the Laurentide Ice Sheet alter carbon burial over 

the last 21000 years? The thought experiment provides a valuable means of considering the 

potential magnitude of the feedback between weathering and climate over glacial-interglacial 

cycles using a realistic set of parameters.  

6.1 The Laurentide Ice Sheet. 

The Laurentide Ice Sheet provides a reliable starting point for conducting a thought 

experiment which helps place the carbon burial changes highlighted in the previous chapters 

into a wider geologic context. During the Last Glacial Maximum (LGM) the Laurentide Ice Sheet 

covered all of Canada (~10 million km2) (Dyke et al., 2002). A few glaciers still exist in Canada 

but their overall land surface coverage is minimal i.e. 10 million km2 of land in Canada has 

switched from glacial to non-glacial weathering since the LGM. Canada is specifically relevant to 

the work in this thesis because much of the country is dominated by Precambrian bedrock 

known as the Canadian shield. Rocks in the Canadian shield are broadly equivalent to 

Greenlandic TTG providing a basis for using the weathering trends we measured in Greenland 

to think about the larger scale changes which have occurred in Canada since the LGM. 

6.2 Sediment and FeOOH export from Greenland.  

Net precipitation accumulation rates (precipitation-evapotranspiration) allow the 

conversion of river sediment concentration data to total sediment export rates. In terrains, such 

as Greenland where groundwater formation is extremely restricted (Jorgensen and Andreasen 

2007)) net precipitation accumulation can be assumed to equal to net hydrologic flux. Bales et 

al., (2009) produced a net precipitation accumulation map of Greenland, and integrating the 

map results in a total precipitation accumulation estimate of 1.045x1015 L yr-1 for Greenland.  
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In the previous chapter the total sediment concentration of glacial discharge from 

Greenland was estimated to contain 506 mg sediment L-1 and 151 µmol FeOOH L-1. These values 

equate to total yearly discharge rates of 528 Tg sed. yr-1 and 8.8 Tg of FeOOH yr-1 assuming 

100% of the discharge from Greenland is associate with glacial rivers. Greenland has a total 

land surface area of 2.1 million km2 (Cappelen and Vinther 2013) equating to area normalized 

sediment discharge rates of 2.4x108 g sed km-2 yr-1 and 7.3 x 104 mol FeOOH km-2 yr-1. If, as a 

result of climate change, 100% of the discharge was associated with non-glacial rivers the 

export rates would drop to 2.9x106 g sed km-2 yr-1 and 3.3x103 mol FeOOH   km-2 yr-1.  

The preceding values for glacial systems assume sediment export occurs in affiliation 

with meltwater rivers. Glacial systems can also directly discharge ice into the ocean, and there 

is a significant difference between sediment discharge associated with ice-rafting and melt-

water rivers. In the preceding chapters the FeOOH concentrations of sediment entrained in glacial 

ice from Iceland and Greenland were found to be in the same range as glacial sediment from 

melt-water rivers. We did not measure the ice meltwater volumes, but based on field 

observations the total sediment concentrations of ice appear significantly lower than the 

sediment concentrations of glacial rivers. This is consistent with Raiswell et al., (2006)’s 

estimate that on average glacial ice contains 0.5 kg sed m-3 or 0.5 mg sed L-1 or 1/1000th of what 

we measured in glacial rivers, and equates to export rates around 2.4x105 g sed km-2 yr-1 and 

1.2x102 mol FeOOH km-2 yr-1. 

The sediment and FeOOH flux rates in the proceeding paragraphs have been normalized 

on a km2 basis for a specific reason. Spatially scaling down sediment discharge changes to the 

km2 level allows the continental weathering changes to be compared without the need to 

account for the complex relationship between climate change and hydrologic discharge. This is 

encapsulated by the fact that over the last 100 years coastal regions of both Iceland and 

Greenland have transitioned from experiencing ice-calving to being ice-free/non-glacial terrains 

while local precipitation rates have remained relatively constant. (Hanna et al., 2004; Cappelen 

and Vinther 2013). 

Over longer term periods net precipitation accumulation is expected to change as a 

function of climate change such that peak glacial hydrologic discharge is not expected to equal 

peak inter-glacial hydrologic discharge. Over the last 150 years Greenland has become both 

warmer and wetter on average, even while many areas in South-west Greenland have not 

become wetter in response to global climate change (Cappelen and Vinther 2013). More rainfall 

means higher riverine discharge rates such that total riverine discharge associated with annual 

precipitation is expected to increase as atmospheric CO2 concentrations increases. The warmer 
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temperatures have also increased glacial retreat providing an additional source of hydrologic 

run-off from the ice sheet (Rignot et al., 2009). In all likelihood peak run-off rates from 

Greenland occur in the middle of a glacial-interglacial transition when glacial melting and 

precipitation rates are both high. Similarly, the lowest run-off rates are likely to occur during the 

onset of a glacial cycle as precipitation rates fall and precipitation is increasingly bound in 

terrestrial ice. However, limited data is available to quantify the magnitude of these patterns 

preventing their explicit incorporation into our sediment discharge estimates. As a result, our 

sediment discharge estimates become more speculative as they are scaled-up to longer glacial-

interglacial timescales. 

6.3 Marine sediment and OM accumulation 

 The global rate of marine organic carbon (OC) accumulation is estimated to be 309 Tg of 

organic carbon yr-1 (Burdige 2007). The global rate of marine sediment accumulation due to 

continental weathering is estimated at 126100 Tg sed yr-1 Syvitski et al., (2005). This equates to 

an OC accumulation rate=0.24% the total sediment accumulation rate. A complete different 

global data set, shown previously in Chapter 4 Figure 4.1, displays almost the same relationship 

between total sediment and OC accumulation (OM=0.23% total sediment).  

 Utilizing the Greenlandic sediment discharge rates derived in the previous section, 

carbon burial is therefore expected to decrease along the trend glacial rivers>>non-glacial 

rivers>>ice rafting on the order of 4.8 x105 g C km-2 yr-1>> 5.8 x 103 g C km-2 yr-1>> 4.8 x102 g C 

km-2 yr-1.  

Deriving the carbon burial rates from FeOOH, rather than total sediment accumulation, 

results in a similar set of values. The molar ratio of FeOOH to OC in oxygenated marine 

sediments and mature soils is about 1:2 (See Chapter 5, Figure 5.1). Therefore, carbon burial in 

nearshore marine environments is predicted to decrease along the trends: 1.7x106 g C km-2 yr-1 

for glacial rivers>> 8.0x104 g C km-2 yr-1 for non-glacial rivers>> 2.9x103 g C km-2 yr-1 for ice-

rafted debris.  

The offset between the iron based estimates and the total sediment based estimates 

most likely reflects the impact of sampling biases on the two data sets. The iron data all stems 

from nearshore environments while the total sediment data set contains a substantial number of 

open marine sample. Nearshore environments are known to accumulate OC at higher rates 

than open marine environments (Burdige 2007) which biases the iron based estimates towards 

higher values.  
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6.4 Changes in Carbon burial over glacial-interglacial cycles 

The final step in the thought experiment is to integrate the carbon burial changes 

calculated in the previous sections across last glacial-interglacial transition for the Laurentide 

Ice Sheet. It is first useful to consider the steady state-end member systems. When the 

Laurentide ice sheet was at its peak, exporting sediment mainly via ice rafting, the associated 

carbon burial rates would be expected to be on the order of <0.05 Tg C yr-1. Once the ice sheet 

retreated such that there was no longer directly calving this carbon burial rate would have shot 

up to around 4.8 Tg C yr-1. Current, near ice-free conditions, are predicted to be associated with 

the burial of around 1 Tg C yr-1. This means carbon burial would have been very low when the 

Laurentide Ice Sheet began to collapse due to the dominance of ice calving. As soon as the ice 

sheet transitioned onto the land carbon burial would have rapidly increased. Continued melting 

and the increase of ice-free conditions would have then caused a reduction in carbon burial. 

The overall picture is of non-linear response between climate change and carbon burial where 

the endmembers of the system vary by ~5 TG C yr-1. If these estimates are of the correct order 

of magnitude they reflect a geologically significant climate feedback mechanism. 

The most recent IPCC climate summary report, Ciasis et al., (2013), concluded that the 

‘Iron Hypothesis’ has led to a net source of 10.5 Pg C over the last 21,000 years. This accounts 

for more than half of the total carbon impact estimated by the IPCC for all geologic processes 

since the LGM. Our estimates suggest the effects of the Iron Hypothesis could have been totally 

offset by the increase in carbon burial associated with the transition of ice-rafting to riverine 

melt-water discharge. It is also worth noting that carbon burial changes on this magnitude are 

significantly less than the uncertainty associated with the current best estimate of the modern 

marine carbon burial rate (Burdige 2007). If we can’t measure carbon burial to this level of 

accuracy today detecting such changes in the sedimentary record will be all but impossible. In 

other words, climate feedbacks on this scale are difficult to isolate within the geologic record 

even when the cumulative impact of climate change is readily measured.  

Comparing our carbon burial estimates to the Iron Hypothesis is also instructive when 

considering the speculative nature of our estimates. John Martin (1990) was the first to propose 

the link between continental weathering and primary production, and it was the speculative 

nature of the original proposal that forced the ‘hypothesis’ designation of the Iron Hypothesis. 

Martin’s original idea held a lot of merit, but was based on extremely broad extrapolations and 

an equally limited amount of data. Martin (1990) did not have iron measurement from the 
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Southern Ocean and freely admits in the study to having no direct evidence that iron limited 

primary productivity in the Southern Ocean. Additionally, Martin (1990) makes a ballpark guess 

that iron deposition in the Southern Ocean was 50 times higher during the LGM than today and 

that carbon burial scales directly with this changes in iron inputs. Neither of these guesses are 

supported by any measurements. Given the lack of concrete evidence it is unsurprising that a 

number of Martin (1990)’s claims were immediately refuted due to significant evidence that the 

claims were highly improbable e.g. Peng and Broecker (1991). It is also now well understood 

that some of the original numbers used in the hypothesis were not very accurate e.g. iron 

deposition in the Southern Ocean was about only twice the modern rate during the LGM not 50 

times higher (Martinez-Garcia et al., 2014). However, after several decades of intense 

investigation the scientific consensus is that despite limited data Martin (1990) correctly 

identified a global pattern (e.g. Coale et., 2004, Martinez-Garcia et al., 2014) which has 

subsequently helped re-defined the relationship between biotic and abiotic Earth System 

processes. 

Throughout this thesis there has been an attempt to repeatedly identify patterns in 

climate change and continental weathering, continental weathering and sediment accumulation, 

sediment accumulation and organic carbon accumulation, and organic carbon burial and climate 

change. Definitively linking all these patterns in a robust scientific theory represents a 

monumental task and one which is beyond the scope of data presented in this thesis. But every 

theory must start with a hypothesis. Our elemental and isotopic data is consistent with glacial 

weathering enhancing total sediment and FeOOH accumulation rates in nearshore marine 

environments. The data is supported by a wealth of published information linking climate 

change to glacial-interglacial cycles, sediment and/or FeOOH accumulation of organic carbon 

preservation, and organic carbon preservation to climate change. This allow is the proposal of a 

hypothesis: continental weathering, organic carbon burial and Earth’s climate are all coupled in 

a dynamic geochemical feedback cycle. 
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Appendices 

1.0 Data Tables 

1.1 Icelandic river Compositions 

 

 

 

 

Sample ID Collection Year Na Ca Al Fe Cl− TSS pH Catchment Type

µmol/L µmol/L µmol/L µmol/L µmol/L mg/L

A1 2003 303 68.2 0.18 0.14 379 359 7.76 Ng

A2 2003 324 86.8 0.31 0.89 282 569 8.08 Ng

A3 2003 361 112.0 0.25 1.69 402 522 8.07 Ng

A3#2 2005 440 98.1 0.23 0.59 174 8.08 Ng

A4 2003 309 98.1 1.19 1.05 361 612 7.93 Ng+Gl

A4#2 2005 299 79.1 1.59 0.28 274 8.15 Ng+Gl

A6 2003 283 109.0 0.19 0.72 312 525 8.02 Ng

A6#2 2005 323 118.0 0.21 0.38 143 8.27 Ng

A6-13 2013 297 50.0 0.19 0.45 226 12 8.60 Ng

A7 2003 362 129.0 0.16 1.71 434 558 8.00 Ng

A7#2 2005 487 143.0 0.15 1.07 197 8.15 Ng

A7-13 2013 362 60.0 0.12 0.60 195 0 8.69 Ng

A8* 2003 270 74.3 2.14 0.41 236 635 8.56 Ng

A8#2* 2005 272 72.1 2.75 0.44 63 8.87 Ng

A8-12* 2012 264 23.3 1.43 0.31 93 145 7.56 Ng

A8-13* 2013 302 23.0 1.66 0.37 174 83 9.10 Ng

A9 2003 509 150.0 0.37 3.88 414 679 8.11 Gl+Hydro

A10 2003 282 85.6 0.62 0.97 325 427 7.83 Gl+Ng

A11 2003 306 120.0 0.12 0.99 140 362 7.95 Ng

A12 2003 267 69.8 2.69 0.44 62 675 9.30 Gl

A12-12 2012 55 51.9 1.95 0.39 1531 7.85 Gl

A13 2003 311 91.6 0.91 0.77 84 406 8.44 Gl

A14 2003 125 57.3 0.76 0.06 28 7.79 Gl

A14-12 2012 87 25.5 0.86 0.09 23 2047 6.35 Gl

A16 2003 255 68.0 1.25 0.11 100 364 9.54 Gl

G1 2003 280 62.4 1.84 0.03 60 9.89 Gw

G1-12 2012 386 27.8 1.12 0.09 82 95 9.11 Gw

G2 2003 367 78.6 1.73 1.38 76 517 9.13 Gl

G3 2003 187 57.2 1.31 0.09 41 8.07 Gl

G4 2012 701 28.3 1.50 0.10 169 56 9.58 Gw

E1 2003 205 106.0 3.54 1.60 163 1890 9.11 Gl

E3 2003 66 160.0 4.97 0.13 164 1380 9.63 Gl

E4 2003 117 27.9 0.22 166 1650 7.72 Gl

E5 2003 132 92.1 3.61 0.45 180 2790 9.69 Gl

E5-12 2012 112 28.3 1.63 0.28 24 780 9.31 Gl

E6 2003 136 60.9 0.79 0.05 112 1570 7.98 Gl

E8-12 2012 302 29.3 0.40 0.21 22 1294 9.52 Gl

E10-12 2012 113 56.0 1.01 0.18 30 768 9.36 Gl

E11-12 2012 202 35.5 0.77 0.13 50 910 8.66 Gl

E11-13 W 2013 217 21.8 0.65 0.16 62 45 7.40 Gl+Ng

E11-13 E 2013 127 26.5 0.38 0.31 27 434 7.52 Gl

Ice (langjokull) 2005 61 0.7 0.05 BDL 7 Ice

E9 (ICE) 2012 38 2.5 0.07 0.09 15 Ice

A 15 ice 2012 11 14.3 BDL 27 Ice

Nonglacial Average 330±63 85±36 0.67±0.87 0.72±0.48 229±111 342±241 8.25±0.43

Glacial Average 178±85 60±35 1.55±1.31 0.38±0.45 78±57 1120±730 8.55±0.98
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1.2 Non-glacial PHREEQC (oxyhydr)oxide precipitation estimates 

 
Arnorsson S., Gunnarsson I., Stefansson A., Andresdottir A., Sveinbjornsdottir A.E. (2002). 

Major element chemistry of surface- and groundwaters in basaltic terrain, N-Iceland. I. 
Primary mineral saturation. Geochem. Cosmochem. Act.66(23): 4015-4046.  

Gislason S.R. and Arnorsson S. (1993) Dissolution of primary basaltic minerals in natural 
waters: saturation state and kinetics. Chem. Geo. 105: 117-135. 

Pogge von Strandmann P.A.E., Burton K.W., James R.H., van Calsteren P., Gislason S.R., 
Mokaden F. (2006) Riverine behaviour of uranium and lithium isotopes in an actively 
glaciated basaltic terrain. Ear. Plan. Sci. Lett. 251: 134-147. 

 

Location FeOOH AlOOH Source

A1 34.7 29.2 Pogge von Strandmann et al  2006

A2 35.3 33.7 Pogge von Strandmann et al  2006

A3 39.1 44.9 Pogge von Strandmann et al  2006

A3-2 37.6 54.0 Pogge von Strandmann et al  2006

A4 65.4 46.0 Pogge von Strandmann et al  2006

A4-2 55.9 34.8 Pogge von Strandmann et al  2006

A6 53.5 40.8 Pogge von Strandmann et al  2006

A6-2 49.4 48.8 Pogge von Strandmann et al  2006

A6-13 25.9 27.8 This Study

A7 52.3 41.2 Pogge von Strandmann et al  2006

A7-2 47.7 60.0 Pogge von Strandmann et al  2006

A7-13 16.5 33.5 This Study

A11 39.5 47.1 Pogge von Strandmann et al  2006

Nordurra-Stekkur 30.1 40.6 Gislason et al 1993

Seydisa 39.0 46.4 Gislason et al 1993

Langidalur 53.7 68.7 Gislason et al 1993

Midhlutara 43.3 54.8 Gislason et al 1993

Skjalfandafljot 40.1 73.4 Gislason et al 1993

Sog 38.9 51.4 Gislason et al 1993

Fremmstrava 27.9 37.7 Gislason et al 1993

Thjorsa 38.6 60.3 Gislason et al 1993

vatnsfjodure 18.4 8.6 Gislason et al 1993

Olfusa 48.4 49.8 Gislason et al 1993

Bruara 47.0 29.6 Gislason et al 1993

Blonduhlid 49.8 69.6 Gislason et al 1993

Fossa 50.9 66.7 Gislason et al 1993

Tungufljot 37.4 37.5 Gislason et al 1993

Tungufljot 39.0 31.9 Gislason et al 1993

Fossa 58.0 48.5 Gislason et al 1996

Tungufjot 35.9 42.0 Gislason et al 1996

Bruara, Estidalur 32.6 39.3 Gislason et al 1996

Olfusa 41.6 49.9 Gislason et al 1996

Sog 35.4 47.9 Gislason et al 1996

Nordua, Stekkur 39.0 37.8 Gislason et al 1996

Hvita-w, Ferjukot 35.9 43.1 Gislason et al 1996

Nordura (96-53) 44.6 20.6 Arnorsson et al 2002

Nordura (97-53) 46.3 22.6 Arnorsson et al 2002

Nordurra (98-21) 61.4 32.6 Arnorsson et al 2002

Egilsa (96-54) 50.4 28.7 Arnorsson et al 2002

Egilsa (97-55) 42.9 24.1 Arnorsson et al 2002

Egilsa (98-20) 59.0 40.3 Arnorsson et al 2002

N-Foss (97-76) 62.3 28.9 Arnorsson et al 2002

Nonglacial
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1.3 Glacial PHREEQC (oxyhydr)oxide precipitation estimates 

 

Arnorsson S., Gunnarsson I., Stefansson A., Andresdottir A., Sveinbjornsdottir A.E. (2002). Major 
element chemistry of surface- and groundwaters in basaltic terrain, N-Iceland. I. Primary mineral 
saturation. Geochem. Cosmochem. Act.66(23): 4015-4046.  

Gislason S.R. and Arnorsson S. (1993) Dissolution of primary basaltic minerals in natural waters: 
saturation state and kinetics. Chem. Geo. 105: 117-135. 

Gislason S.R., Arnorsson S., Armannsson H. (1996) Chemical weathering of basalt in 

southwest Iceland: effects of runoff, age or rocks and vegetative/glacial cover. Amer. 

Journ. Sci., 296: 837-907. 

Pogge von Strandmann P.A.E., Burton K.W., James R.H., van Calsteren P., Gislason S.R., Mokaden F. 
(2006) Riverine behaviour of uranium and lithium isotopes in an actively glaciated basaltic terrain. 
Ear. Plan. Sci. Lett. 251: 134-147. 

 

Sample Location FeOOH AlOOH Source

A12 34.2 44.3 Pogge von Strandmann et al  2006

A12-12 11.4 11.4 This Study

A13 41.0 47.6 Pogge von Strandmann et al  2006

A14 19.6 27.3 Pogge von Strandmann et al  2006

A14-12 10.3 7.6 This Study

A16 33.1 25.6 Pogge von Strandmann et al  2006

G2 42.6 52.4 Pogge von Strandmann et al  2006

G3 30.7 31.3 Pogge von Strandmann et al  2006

E1 43.5 42.8 Pogge von Strandmann et al  2006

E5 91.2 41.4 Pogge von Strandmann et al  2006

E5-12 6.4 18.7 This Study

E6 29.7 27.0 Pogge von Strandmann et al  2006

E8-12 5.5 20.6 This Study

E10-12 12.1 26.8 This Study

E11-12 30.1 24.9 This Study

E11-13 G 9.8 16.5 This Study

Blondudalur 48.1 65.2 Gislason et al 1993

Vestari Jokulsa 44.8 53.1 Gislason et al 1993

Skagafjordur 49.3 93.5 Gislason et al 1993

Hvita-w 38.4 41.8 Gislason et al 1993

Hvita-w 35.7 39.5 Gislason et al 1993

Geldingsa 38.1 30.0 Gislason et al 1993

Eystri Jokula 38.2 45.7 Gislason et al 1993

Hvita-s, Gulfoss 39.3 51.9 Gislason et al 1996

Hvitarvatn 39.7 48.7 Gislason et al 1996

Hvitarvatn 37.2 44.2 Gislason et al 1996

Hivta-w, Kjafoaa 34.8 44.0 Gislason et al 1996

Bruara, Dynjandi 35.9 48.2 Gislason et al 1996

Bruara, Estidalur 40.2 50.6 Gislason et al 1996

Eystri Jokula (98-96) 38.5 46.0 Arnorsson et al 2002

Eystri-Jokul (96-59) 36.9 35.5 Arnorsson et al 2002

Eystru Jokulk (97-58) 31.9 30.9 Arnorsson et al 2002

Eystru Jokulk (97-62) 21.1 25.3 Arnorsson et al 2002

Vestri-Jokul (97-87) 8.8 8.6 Arnorsson et al 2002

Vestri-Jokul (98-27) 25.8 39.5 Arnorsson et al 2002

Vestri-Jokul (98-57) 34.0 38.2 Arnorsson et al 2002

Fossa (97-88) 9.4 8.1 Arnorsson et al 2002

Glacial
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1.4 Additional Iron Isotope Data.  

Two field areas were samples during the course of field work and the data has not been 

reported elsewhere in this thesis and are reported below. The locations of these samples are 

listed in Appendix 1.5. 

  56Fe σ [Fe] wt. % 

DK-1 BL 0.049 0.04 9.79 

DK-2 BL 0.210 0.03 12.34 

DK-2 SPM 0.033 0.03 9.21 

SKA-1 BL 0.071 0.06 9.51 

SKA-2 BL 0.094 0.03 9.58 

SKA-3 BL 0.032 0.07 8.07 

SKA-3 NG BL 
2014 0.097 0.04 8.69 

SKA-5 BL 0.018 0.06 9.55 

SKA-4 BL 0.009 0.01 7.96 

SKA1 SPM 
2014 0.091 0.02 9.03 

SKA-2 SPM 0.082 0.04 9.29 

SKA-3 SPM 0.057 0.04 9.47 

SKA-4 SPM 0.072 0.03 7.55 

SKA4 SPM 
2014 0.089 0.03 13.79 

SKA5 SPM 
2014  0.052 0.00 9.35 

 

1.5 Illulissat Field Sample Location  

Sample Type Code: F=Filterable, S=Suspended, I=Ice, IS= Ice Particulate material and 

BL=bedload 

Sample Latitude  Longitude Origin 
Sample 
Types 

ILU-1 
N 
69°11'57.57" 

W 
50°3'55.11" Ice Fjord F ,S, I, IS 

ILU-2 
N 
69°10'52.96" 

W 
51°2'38.65" Ice Fjord F, S 

ILU-3 
N 
69°11'14.74" 

W 
51°1'47.54" 

Non-
glacial F,S, BL 

ILU-4 
N 69°12'8.35" 

W 
51°2'14.42" 

Non-
glacial F,S, BL 

ILU-5 
N 
69°14'15.52" 

W 
51°3'49.07" 

Non-
glacial F,S, BL 

ILU-6 
N 
69°11'59.19" 

W 
51°7'31.50" Ice Fjord F ,S, I, IS 
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1.6 Eqi Field Sample Location 

Sample Latitude  Longitude Origin 
Sample 
Types 

EQI-1 
N 69°45'16.24" 

W 
50°17'20.39" Glacial F,S, BL 

EQI-2 
N 69°45'34.35" 

W 
50°12'26.57" 

Non-
glacial F,S 

EQI-3 
N 69°44'58.47" 

W 
50°14'10.38" 

Non-
glacial F,S, BL 

EQI-
SOIL 

N 69°45'7.96" W 50°14'0.40" 
Non-
glacial F, Soil 

 

1.7 Disko Field Sample Location 

Sample Latitude  Longitude Origin 
Sample 
Types 

DK-1 
N 69°15'50.58" 

W 
53°26'52.12" 

Non-
glacial F, Rock 

DK-2 
N 69°15'10.84" 

W 
53°29'57.14" Glacial F, S, BL 

 

1.8 Borgarfjordur Field Sample Locations 

  Lattitue N Longitude W Principle Water Type 
Year(s) 
Collected Sample Type 

A1 65°10'58.85" 19°41'45.60" Rain 2003 F, S Bl 

A2 64°32'24.42" 21°20'9.06" Rain 2003 F, S, Bl 

A3 64°35'32.00" 21°34'32.00" Rain 2003, 2005 F, S, Bl 

A4 64°36'11.60" 21°42'23.80" Rain+Glacial+Groundwater 
2003, 2005, 

2012 F, S, Bl 

A6 64°42'39.70" 21°36'6.00" Rain 
2003, 2005, 

2013 F, S, Bl 

A7 64°40'52.50" 21°31'8.30" Rain 
2003, 2005, 

2013  F, S, Bl 

A8 64°41'31.90" 21°24'40.50" Glacial+Groundwater 
2003, 2005, 
2012, 2013 F, S, Bl 

A9 64°39'45.71" 21°23'52.28" Rain+Groundwater 2003 F, S, Bl 

A10 64°40'48.78" 21°2'15.54" Rain 2003 F, S, Bl 

A11 64°45'56.40" 21°30'48.84" Rain 2005 F 

A12 64°42'21.54" 21°2'21.18" Glacial+Groundwater 2005, 2012 F, S, Bl 
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A13 64°48'6.06" 20°41'18.36" Glacial 2005 F 

A14 64°39'18.84" 20°42'3.96" Glacial 2005, 2012 F, S, Bl 

A15 64°38'47.46" 20°34'0.18" Glacial 2005, 2012 F, S, Bl 

A16 64°28'58.85" 19°41'45.60" Glacial 2005 F, S 

G1 64°42'6.71" 20°58'21.17" Groundwater 2005, 2012 F 

G2 64°42'14.04" 20°59'34.26" Glacial+Groundwater 2005 F 

G3 64°42'54.60" 20°50'1.86" Glacial 2005 F 

G4 64°15'5.82" 20°39'34.14" Groundwater 2012 F 

A6-Fe 64°42'40.61" 21°36'10.23" Groundwater 2013 F, S 

 

 

1.9 Vatnajokull Field Sample Locations 

  Lattitue N Longitude W 
Principle Water 
Source Year(s) Collected Sample Type 

E1 63°58'35.10" 16°59'55.74" Mix 2003 F, S Bl 

E2 64°2'51.78" 16°10'54.54" Esturine 2003, 2012 F, S 

E3 64°0'45.36" 16°22'28.23" Glacial 2003 F, S 

E4 63°57'16.80" 16°51'6.00" Glacial 2003, 2014 F, S, BL 

E5 64°0'23.17" 16°56'2.53" Glacial 2003, 2014 F, S, BL 

E6 63°56'20.97" 17°21'52.13" Glacial 2003, 2014 F, S, BL 

E7 63°46'3.60" 18°7'43.50" Mix 2003 F, S BL 

E8 64°1'36.72" 16°56'8.04" Glacial 2012 F, S BL 

E9 64°0'19.19" 16°52'59.98" Glacial 2012 F, S, BL 

E10 63°59'30.61" 16°52'18.56" Glacial 2012 F, S, BL 

E11 63°57'22.13" 17°28'10.41" Mix 2012, 2013 F, S, BL 

E12 64°14'47.16" 15°40'28.44" Glacial 2012 F, S, BL 

E13 63°56'15.76" 16°26'1.96" Glacial 2012 F, S, BL 

 

1.10 Skafta Field Sample Locations 

  Lattitue N Longitude W 
Principle Water 
Source Year(s) Collected Sample Type 

SKA-1 63°47'32.40" 18°2'14.16" Mix 2013, 2014 F, S, BL 

SKA-2 63°47'33.96" 18°29'43.98" Mix 2013, 2014 F, S, BL 

SKA-3 63°54'36.18" 18°35'54.84" Mix 2013, 2014 F, S, BL 

SKA-4 64°4'46.16" 18°24'25.15" Glacial 2013, 2014 F, S, BL 

SKA-5 64°14'2327" 18°08'26.54" Glacial 2014 F, S, BL 
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2.0 Greenland Field Area Descriptions 

2.1 Geology 

 The geology of south-west Greenland have been extensively studied by the Geolgic 

Survey of Denmark (GEUS) and summarized in a series of reports by Higgins and Watt (1999), 

Henriksen et al (2000) and Gool and Marker (2007). Most of the region is composed of 

Proterozoic tonalite- trondhjemite-granodiorite (TTG) orthogenesis and associated 

metasediments which formed during early craton stabilization.  Three geologic super-groups, 

the Northern (NNO), Central (CNO) and Southern Nagssuqtogidian Orogenic (SNO) Zones, are 

recognized for the area although Kalsbeek (2001) found limited compositional variability across 

the TTGs bodies in the region facilitating a level of regional geochemical homogeneity. 

The SNO is a thrust bounded region frequently described as a transition zone between 

the North Atlantic Craton and the core of the CNO. The distinguishing feature of the SNO is the 

presents of the pre-orogenic Kangâmuit ultramafic kimberlite/lamproite dykes swarm (Jensen et 

al 2001; Mayborn and Lesher 2006).  Kangâmuit dykes have high MgO contents (>30 wt. %) 

and enriched trace element patterns not found elsewhere in South-west Greenland (Mayborn 

and Lesher 2006; Tappe et al 2011).  

The CNO and NNO were extensively mapped as part of the Disko Bugt Project 

summarized in Garde and Steengelt (1999). Deformation and metamorphism progressively 

increase from the north to the south across the units leaving no definitive CNO-NNO boundary. 

The NNO and CNO contain geologic relics of the continental arc accretion process including 

shallow water meta-sediment and failed/discontinuous ophiolite deposits  The CNO is 

distinguished by the presents of Calc-Alkaline intrusive rock suites interpreted to be the 

remnants of ocean arc accretion (Kalsbeek and Mantaschak 1999). 

  South-west Greenland also hosts the Tertiary West Greenland Continental Flood Basalt 

Province. The basalts erupted about 63 Ma into a sedimentary basin during a period of rifting 

between Greenland and Canada, and geochemically fall into distinct picritic and tholeiitic lavas 

(Lightfoot et al., 1997). The Picrites are geochemically similar to recent Icelandic picrites 

(Lightfoot et al., 1997) indicating little to no crustal contamination occurred during emplacement. 

This is in stark contrast to the Qeqertarsuaq tholeiitic lavas which are heavily contaminated with 

(supra)crustal material. The crustal material was likely rich in carbon and sulphide minerals 

which lead to the development of extremely reducing conditions during lava emplacement.  The 
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tholeiitic lavas contain a number of ultra-reduced native iron and iron-carbon minerals which will 

only form on Earth under very specific and unusual conditions (Lightfoot et al., 1997).  

2.2 Climatology and Glaciology of South West Greenland 

The Greenland Ice Sheet covers about 80% of Greenland’s 216000km2 land surface. 

The ice sheet formed during Pliocene (~3.2 Ma), and has subsequently waxed and waned in 

phase with global climate cycles (Letreguilly et al., 1991).  The ice sheets combined persistence 

through yet reactivity too climate change makes Greenland an ideal location to study the effect 

of ice fluctuations over recent geologic history.  

Annual temperature and precipitation records from stations on the east and west coast 

of the island over the past 100 years indicate precipitation and temperature respond in phase to 

global climate change patterns. In both locations average annual temperatures are below zero 

but temperatures from May-September are significantly above zero, creating a pronounced 

summer melt season. The balance of ice lost during summer melting and ice formed during 

winter snow accumulation determines the size/extent of the ice sheet such that winter 

precipitation accumulation rates help define the limits of the icesheet.  Precipitation rates across 

Greenland are positively correlated with mean annual temperature, and differences in 

precipitation patterns across the country explain why different areas of the country respond 

differently to global climate change. In the east of the country yearly precipitation is dominated 

by winter snowfall so increases in net precipitation increase winter ice growth (Cappelen and 

Vinther 2013). Over the last few Ma central and eastern portions of the country have always 

hosted glacial ice formation as ice formation keeps pace with ice loss in these areas even when 

temperatures are substantially warmer than present day (Letreguilly et al 1991). Along the west 

coast of Greenland the majority of precipitation falls as rain during the summer, which does not 

form glacial ice, so increased precipitation rates do not buffer the icesheet against increasing ice 

loses. Presently ice and ice melt drainage in Western Greenland exceeds winter ice 

accumulation rates by 30% accounting for a significant percentage of the ice sheets net losses 

(Rignot et al 2008). This study focuses on catchments in the South-west of the country where 

the icesheet is highly sensitive to temperature change. 

2.3 Hydrology of South-West Greenland 

Permafrost coverage inhibits the formation and flow of groundwater forcing a surface 

flow dominated hydrologic cycle (Jorgensen and Andreasen 2007).  Greenland’s proglacial 

landscapes are characterized by limited vegetation cover and/or soil formation increasing the 
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influence of surface topography on catchment morphology. These factors create significant 

differences between drainage catchments fed by glacial melt and those fed by direct 

precipitation.  

Direct precipitation accounts for about 1/2 of the freshwater discharged from South-west 

Greenland annually, 10-30 g cm2 a-1 of precipitation (Bales et al 2009) compared to 21.6 g cm2 

a-1 total marine discharge (Rignot et al 2008). Rain and snow melt collects in topographic lows 

driving the formation of small lakes in proglacial areas.  Following periods of peak snow melt 

and/or rainfall these lakes feed into streams which ultimately drain into the ocean. Drainage 

from the lakes is often restricted by high local evaporation rates (Anderson et al 1998). In some 

areas yearly evaporation exceeds precipitation causing local lakes to become (semi)saline and 

highly stratified (Anderson et al 1998). The very fine nature of sediments within these lakes 

indicates that the lakes act as settling pools reducing inorganic limiting physical exports and 

increasing the relative influence of chemical versus physical wreathing in non-glacial riverine 

exports. 

Glacial meltwater provide the other main source of water to Greenlandic rivers. Most 

glacial meltwaters originate from melting in the interior of the icesheet and flow via complex 

subglacial networks before entering proglacial river systems. The nature of the subglacial 

drainage networks makes glacial rivers prone to large periodic floods with total drainage rates 

typically peaking in the late summer (McMillian et al 2007). Greenland’s proglacial landscape 

offers few natural barriers to the concentrated high volume flows created by the glacial melting 

processes allowing the formation of large rapidly draining rivers. These glacial rivers generally 

flow uninterrupted to the sea giving them substantially more power to physically transport 

inorganic sediments than their non-glacial analogues.  

2.4 Field Areas 

Four catchment areas were sampled along the west coast of the Greenland over the 

course of two field season. Samples of glacial melt streams and streams draining semi-saline 

lakes were collected by during the summer of 2009 by Wimpenny et al (2010) near the town of 

Kangerlussuaq to investigate the effects of glacial weathering in Greenland. Samples from three 

additional catchments were collected during the summer of 2013 to increase the diversity of 

weathering localities in Greenland. 
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2.4.1 Kangerlussuaq and Field Areas .  

The Kangerlussuaq field areaencompasses a 600km2 catchment between the Greenland 

Ice Sheet and the Søndre Strømfjord within the Southern Nagssuqtoqidian Orogen. Image J 

was used to estimate that the 106 pro-glacial lakes in the field area covered 6.7% of the total 

land surface area. The catchment drains ancient TTG, typical for the region, and is 

topographically elevated from the fjord preventing any tidal influence within the catchment area. 

Kangerlussauq has a precipitation accumulation rate of 5-15 g H2O cm-2 year-1 (Ohmura 1991; 

Bales 2009). 

Samples of glacial river water, precipitation fed lake water, suspended particulate 

material and riverine bed load samples were collected according to table x.y. Samples GR1, 

GR2, GR4, GR5, GR7, GR8 and GR9 were taken along the main forks of the glacial river that 

flows from the ice sheet to Søndre 7Strømfjord via Kangerlussauq. GR6, GR11, GR13 and 

GR15 sampled streams draining precipitation fed lakes. GR3 was collected from a supraglacial 

pool. Significant particulate material, originating from either wet or dry deposition, was widely 

present on the ice and within the sample such that particulate dissolution cannot be excluded 

from the sample. GR12 sampled a small strongly coloured flow assumed to be overflow from 

the nearby and topographically elevated lake. The actual source of the flow could not be directly 

determined however and similar flows have previously been attributed to snow melt which 

rapidly becomes saline due to a combination of high evaporation rates and the dissolution on 

surface salt deposits. GR10 was collected from near the Kangerlussuaq harbour to characterize 

the balance of fresh and marine waters in the fjord. An additional river, GR14, 100km west of 

Kangerlussuaq, near the town of Sisimuit in the Central Nagssuqtoqidian Orogen, was sampled 

during the same trip. Major element, trace element, and physical data along with lithium isotope 

compositions for all the sample localities are published in Wimpenny et al (2010) and 

magnesium isotope compositions are published in Wimpenny et al (2011). 

2.4.2 ILU-Sample 

The Ilulissat field area covered about 30km2 of nonglacial lakes and streams on the 

north side of the Jakobshaven ice fjord 50km west of the Jakobshavn glacial. Image J was used 

to estimate that the 35 pro-glacial lakes in the field area covered 5.4% of the total land surface 

area. The catchment is composted TTG type orthgneisis from the Proterozoic Northern 

Nagassugtoqidian Orogen. Yearly precipitation accumulation rates in Ilulissat are 25-30 g/cm2 

(Bales et al 2009; Ohmura 1991) sustaining numerous freshwater lakes in the area. While no 
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glacial rivers drain through the area the Jakobshavn icefjord is the most concentrated area of 

glacial retreat in Greenland. The icefjord covers less than 0.45% of Greenland’s total land 

surface but carries about 50 km3 of ice per year to the ocean, equivalent to 7% of icesheet’s 

total volume (Holland et al 2008). The mouth of the fjord shallows rapidly from 700m to less than 

300m near its outlet creating a bathymetric barrier which traps large icebergs (Holland et al 

2008) causing the whole fjord to fill with ice. 

Post-glacial lake water, glacial fjord water, ice, suspended particulate matter and river 

bedload samples were collected from near the town of Ilulissat In August 2013. Samples ILU-3 

and ILU-4 were taken from steep streams which drained freshwater lakes. ILU-5 was collected 

from a small meandering stream after it drained across a large area of low laying bog. No glacial 

rivers directly drained through the field area but ice and water from within the icefjord were 

sampled at ILU-1, ILU-2 and ILU-6 to characterize glacial outflow.   

2.4.3 EQI Samples 

Eqi is about 60km north-east of Ilulissat and less than 3km from edge of the ice sheet. 

The 15km2 field area was bounded by the icesheet to the north, east and south and by a large 

glacial outflow river to the west. Image J was used to estimate that the 20 pro-glacial lakes in 

the field area covered 3.8% of the total land surface area. The field area is on the boundary 

between Rinkian fold belt and the Nagssuqtoqidian orogen which contain metamorphosed 

Archean and Proterozoic terrains. The nearest meteorological station, Qutdligssat (alternative 

spelling Qullissat), reports average precipitation accumulation rates of 20-30 gH2O (Ohmura 

1991; Bales et al 2009).  

Glacial river water, post-glacial lake water, bog water, suspended particulate material 

and river bedload samples were collectednear the Eqi glacial ice camp in August 2013. A large 

braided river directly drains the glacier within the field area which was near the outlet of the river 

at Eqi-1. Eqi-2 sampled a steep rapidly flowing stream draining a large fresh water lake. Eqi-3 

drained the an adjacent lake but across a across a much shallower slope that included areas of 

significant vegetation. A bog/soil and associated water sample were also collected from a 

shallow water-logged area between Eqi-1 and Eqi-3. 

2.4.4 Disko Island 

Qeqertarsuaq (formerly Disko Island) is an 8500 km2 island west of Ilulissat separated 

from the mainland by the 50km Disko Bugt. The main city on the island shares its names with 
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island (formerly known as Godhavn) is on the southern tip of island. The field area extended 

east about 4km along the coast from the city of Qeqertarsuaq. The city has a precipitation 

accumulation rate in excess of 40g/cm2/year, double the rate of the other field areas in 

Greenland. Qeqertarsuaq marks the southernmost exposure the of the West Greenland Flood 

Basalt Province. As discussed in section 3.4 the basalts on the island have are geochemically 

distinct due to extensive crustal contamination during emplacement. The area has 

discontinuous permafrost coverage (Jorgensen and Andreasen 2007) and host far fewer lakes 

than the mainland. 

Two localities were sampled east of the city of Qeuertarsuaq in August 2013. DK-1 

sampled a groundwater flow as the water emerged along the boundary of two lava flows from 

the base of a 30+m cliff. The groundwater contained no appreciable amount of suspended 

material so a bulk rock samples was taken from the lava-water contact.  The main glacial river in 

the area, the Rode Elv, was sampled from a footbridge at DK-2. Rode Elv means red river 

named because it has a distinct reddish hue and contains bright red suspended material due to 

the oxidation of the unusual iron bearing minerals phases hosted in the islands basalts 
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3.0 Iceland Field Area Descriptions  

3.1 Geology and Hydrology  

Iceland is a geologically young and active island formed primarily, >80%, of lavas with a 

mixed mid-ocean ridges-ocean island basalt melt source composition (Jakobsson 1972).  The 

remainder of the island is comprised of andesitic-rhyolitic lavas clustered near the largest 

volcanic centres (Schuesler et al., 2009). For weathering purposes Icelandic basalts are used to 

broadly split into two age defined regions, younger and older than 0.8Ma, based on the effect of 

age of elevation, eruptive style, porosity and soil formation. 

The topography of Iceland is negatively correlated with age due to the thermal buoyancy 

of the mid-Atlantic Ridge raising the youngest and most active central regions of the island. 

Iceland’s climate is also heavily dependent on topography leading to the formation of two 

distinct microclimates on the island: the Central Highlands and Coastal Lowlands.  The Central 

Highlands are defined by a 500+m plateau which forms the core of the island. The highlands 

host an arid boreal to subartic climate characterized by dust and ash deserts with sparse 

vegetation between large volcanic peaks (Hanna et al 2004). The highlands are comprised 

largely of youngest basalts (<0.8 Ma) many of which were erupted subglacially forming 

hyaloclastitic ridges parallel to the mid-Atlantic ridge axis.  Hyalocalstites have inherently higher 

permeability’s than sub-aerial lavas and their young age has limited porosity reduction due to 
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weathering. As a result precipitation and melt waters are able to penetrate into the bedrock and 

flow as groundwater often intersecting the water table in the valleys between the ridges.  The 

increased permeability in the younger lavas also concentrates groundwater formation near 

active volcanic centres where they are prone to geothermal alteration increasing geothermal 

groundwater formation in the centre of the island (Kaasalainen and Stefanson 2012). The 

combination of young rocks, limited total precipitation and significant groundwater formation has 

greatly limited soil formation within the highlands. While Iceland as a whole is sparsely 

vegetated (<25% ) and characterized by limited soil formation in most areas (Gislason et al 

1996) vegetation and soil formation processes have a significant impact on the chemical and 

physical evolution of the landscape (review by Arnalds and Gretarrson 2001; Pogge von 

Strandmann et al 2012; Opgerfelt et al 2013; Opgerfelt et al 2014). The Central Highlands are 

dominated by Vitrisols, Figure (), which differ from fresh basalts due to the presence of 

ferrihydrite, up to 3%, but are very immature containing less than 1% organic carbon (Arnalds 

and Gretarrson 2001).  

Away from the centre of the island Iceland’s Costal Lowlands have a temperate and wet 

climate buffered against large intra-annual variability by the Atlantic Ocean (Gislason et al 

1996). Precipitation rates increase from west to east across the lowlands and is greater along 

the south coast than the north (Hanna et al 2004). The coastal lowland are composed primarily 

of the older (>0.8Ma) basalt which were erupted mainly subaerially creating layered lava flows. 

Subsequent aerial exposure and weathering has reduced any of the original permeability of 

these older lavas restricting the formation and flow of groundwater. The permeability difference 

between older and younger basalts forces groundwater flow to the surface wherever the two 

groups meet creating large springs in areas such as Hraunfossar. The geologic and climatologic 

differences between the Lowlands and Highlands have facilitated much more extensive soil 

formation across the Lowlands. The Lowland region is dominated by the Brown, Glyeic and 

Histic Andosols as well as Histosols. Brown and Glyeic Andosols represent the continued 

weathering products of Vitrisols containing up to 10% of both ferrihydrite and organic carbon. 

Histic Andosols and Histosols contain up to and greater than 20% organic carbon respectively 

(Arnarlds and Gretarrson 2001). 

Climatic between the Central Highlands and Coastal Lowlands have been a major factor 

in determining how glacial retreat has occurred across the island. Iceland was completely 

glaciated 9.6ka but rapidly (in less than 2ka) collapsed to near its modern state in the early 

Holocene (Gislason 1996; Norddahl and Petursson 2005). Within the last 100 years Iceland’s 
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glaciers have begun another period of rapid retreat, leaving large terminal moraines, which is 

set to continue in response to Anthropogenic warming. This makes Iceland an ideal location to 

study both the effects of rapid climate change on weathering and investigate the slightly longer 

term effects of deglaciation on river catchments. 

3.2 Field Areas 

Rivers and streams in Borgarfjordur, Vatnajokull and Skafta catchment areas, were 

sampled during the summers of 2003, 2005, 2009, 2010, 2012, 2013 and 2014.  Sampling 

locations were selected to isolated differences between weathering and sediment transport in 

glacial and non-glacial catchements. A soil sampling was conducted in 2009 targeting the main 

Icelandic soil types.  

3.2.1 Borgarfjordur Area (A+G Samples) 

The Borgarfjordur area, shown in figure 2.3, encompasses a 1685 km2 drainage basin 

east of the town of Borgarnes between the Langjokull icecap and the Borgarfjordur estuary. The 

area includes two major sub-catchments, the Nordura and Hvita, as well as a number of smaller 

tributaries which in total discharge 9km3/a into the Borgarfjordur estuary (Gannoun 2006).  The 

eastern most part of catchment, sampled at A13, A14, A15 and G3, is a dominantly fed by 

glacial meltwater from the Langjokull icecap. A significant portion of water in the upper reaches 

of the catchments penetrates into the young hyaloclastites and flows as groundwater until the 

water table intersect older lava flows. A series of springs, sampled at G1 and G4, form along the 

boundary between the older and younger basalts and significantly increasing flow in the lower 

areas of the catchment. The waters sampled G1 and G4 are similar to rainwaters and ice melt 

from the region suggesting they have not experienced hydrothermal alteration. Sulphidic 

hydrothermal groundwaters are present in the region, sampled directly at B4, but their elemental 

concentrations is inconstant with hydrothermal alteration of surface waters (Kaasalainen and 

Stefansson 2012) indicative of an isolated deeper aquifer disconnected from the normal 

hydrologic cycle.  The river sample collected at A9, adjacent to B4, does show signs of mixing 

between typical surface waters for the region and the sulphur rich hydrothermal waters. 

Rainwater and snowmelt provide the sources of water for the north-west and southern portions 

of the catchments samples at A1, A2, A3, A6, A7 and A11.  The rest of the sample localities 

reflect a mixture of glacial melt, groundwater and precipitation sources.  
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3.2.2 Vatnajokull and Skafta 

Vatnajokull is Iceland’s largest icecap and is located in the wettest region of the iceland 

where currents from the southern Atlantic intersect the Icelandic coast. Most of the drainage 

from the icesheet is directly across the Coastal Lowlands along the south and east boundaries 

of the icecap. Glacial retreat during the Anthropocene has resulted in the formation of significant 

glacial moraines hundreds of meters to over a kilometre beyond the current edge of the glacial 

tongues. These moraines now defined the boundaries of proglacial lakes which have 1 or 2 

overflow outlets which drain into sea. Samples of glacial meltwater were collected from these 

overflow outlets at E1, E3, E4, E5, E6, E11, E12, E13 from road bridges where the road crossed 

the rivers. E1 differs from the other samples in that are drains an area of acidic bedrock. Two 

visually distinct streams join just upstream of the E11 bridge and remain unmixed at the 

sampling location so samples of both streams were taken.  Samples E8, E9 and E10 were 

collected along the glacial fronts allowing ice to be directly sampled as well as melt streams 

within meters of the glacial front. Sample E2 is an estuarine sample taken during tidal outflow 

from Jokulsarlon glacial lagoon. Precipitation rates across the field area are among the highest 

in Iceland so all the samples may reflect some degree of supra-glacial/rainwater runoff as well 

as subglacial drainage.  

The south-west corner of the Vatnajokull icecap drains into the Skafta river which is 

significantly different from other rivers in the area. The Skafta river is near the centre of the Mid-

Atlantic Ridge in the most geothermally active area of the country making it prone to large inputs 

of sulphur rich groundwaters and jökulhlaup floods (Old et al 2004). Significant subglacial 

hydrothermal activity was occurring during the 2012 sampling season with the resulting 

jökulhlaup eventually occurring in a catchment just to the west of the Skafta. Samples were 

collected from five main locations along the river from its source to where it interests the main 

road near Kirkjubaejarklaustur. Several lake fed streams also drain into the catchment with the 

largest entering the main catchment just downstream of Skafta-3 so both the main flow and the 

side stream were collected in 2014 at the locality. 
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