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Abstract

Clay minerals are commonly encountered in the drilling for oil and natural gas and

have the potential to expand considerably when they come into contact with drilling

fluids. Clay swelling is a significant issue in the drilling industry, leading to a number

of borehole stability problems. This thesis develops a mathematical hydromechanical

model to simulate the deformation due to swelling during capillary suction of water in

unsaturated clays. The model builds on an existing modelling framework associated

with coal shrinkage during coalbed methane extraction. Sorption of water in the model

is represented by a Langmuir isotherm and a swelling strain term has been derived by

adapting the theory of linear poroelasticity. The results show that for a clay plug with a

low initial effective saturation (Se0 = 0.001) the amount of swelling correlates with clay

content. These modelled results were compared with experimental swelling curves for

two pure clay plugs and showed that, although the final swelling points converged, the

swelling curves evolved at different rates. These findings indicate that further research

is required before this model can be used to simulate clay swelling with a high degree

of accuracy.
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Key Equations

Listed below are the key equations used in this thesis. Most of the later equations

in this thesis have been derived from these key equations.

Mass conservation statement (p.16)

∂mw

∂t
=

∂

∂t
(ρwθ + ρbs) = − ∂

∂z
(ρwq)

Mass conservation statement in terms of the primary dependent variable, Pw (p.17)

∂Pw
∂t

= − ∂

∂z
(ρwq)

[
ρw

∂θ

∂Pw
+ θ

∂ρw
∂Pw

+ s
∂ρb
∂Pw

+ ρb
∂s

∂Pw

]−1
Hydraulic properties (p.18-20)

Se = (1 + |αψ|n)−m

Kz = KsSe
η[1− (1− Se1/m)m]2

θ = (θs − θr)Se + θr

h = ψ + z

ψ =
Pw
ρwg
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Flow rate per unit area (p.18)

q = −Kz
∂h

∂z

Langmuir isotherm for clay swelling system (p.22)

s

smax
=

Kdc

smax +Kdc

Stress-strain relationship for poroelastic and thermoelastic medium (p.28)

ε =
1

2G
τ − ν

2G(1 + ν)
trace(τ )I −

(
Cbp
3
Pp + βϑ

)
I
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1 Introduction

Mudrocks comprise up to 55 % of sedimentary rock successions and are deposited in a

range of environments, thus making them the most abundant lithology globally (Tucker,

2001). They can act as either source rocks or impermeable cap rocks to reservoir

formations and are therefore commonly encountered in the drilling for oil and natural

gas (Anderson et al., 2010). One of the main constituents of mudrocks is clay (Tucker,

2001). Clays are layered minerals which have the potential to expand considerably

when hydrated (Anderson et al., 2010). This process, known as clay swelling, occurs

when drilling fluids interact with clay-bearing mudrocks and is estimated to cost the

drilling industry up to $1 billion annually (Wilson & Wilson, 2014). Drilling fluids are

a vital component in the drilling of a borehole, performing tasks such as lubricating

the drill bit and maintaining pressure down the borehole (Anderson et al., 2010). The

majority of fluids currently in use are water-based in composition (Anderson et al.,

2010). Although safer for the environment than previously used oil-based fluids, the

interaction between water-based drilling fluids and surrounding mudrock can lead to

significant clay swelling (Anderson et al., 2010). More than 70 % of borehole stability

problems are thought to be associated with clay swelling (Lal, 1999), including bit-

balling, where pieces of mudrock become stuck to the drill bit, and clogging of flow

lines due to the inclusion of mud cuttings (Wilson & Wilson, 2014). In exceptional

cases swelling can cause the walls of the borehole to cave in, leading to abandonment

of the borehole entirely (Wilson & Wilson, 2014; Anderson et al., 2010).

In 2014 oil and natural gas comprised two of the largest energy supplies globally

(IEA, 2016). Global energy consumption is predicted to increase by up to 32.5 %

by 2040 (based on 2014 levels), with oil and gas remaining as significant sources of

energy (IEA, 2015). As a result, there will be continued demand for the exploration
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and drilling of new reserves. In order to minimise the effect of clay swelling on drilling

operations, a lot of research is focussed on understanding the mechanisms of swelling

and developing effective inhibitors. Of particular interest is the work currently being

undertaken by the Layered Mineral Geochemistry Group at Durham University. They

are investigating how the chemical properties of different solutions affect the degree of

swelling undergone by different types of clay (e.g. Erdogan, 2016). This work is vital

towards the development of effective swelling inhibitors and thereby cutting the costs

incurred by the drilling industry as a result of borehole instability. The aim of this thesis

is to develop a numerical model to accompany the macroscopic swelling experiments

performed by the Layered Mineral Geochemistry Group at Durham University.
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1.1 How clays swell

Clays belong to the phyllosilicate group and are primarily formed through weath-

ering and soil formation (Chamley, 1989, p.3). Clay minerals are layered structures,

containing cations which undergo isomorphic substitutions, resulting in each layer to

become negatively charged (Anderson et al., 2010). These layers are then stacked in

either an alternating tetrahedral-octahedral arrangement (1:1 clays), or with an octahe-

dral sheet sandwiched between two tetrahedral sheets (2:1 clays) (Skipper et al., 2006;

Anderson et al., 2010). Exchangeable cations reside in the region between sheets, known

as the interlayer region, thereby balancing the negative charge of the layers (Smith et

al., 2006). The exchangeable nature of these cations allows for the introduction of water

which can lead to significant swelling of the clay mineral (Karaborni et al., 1996).

Clay swelling occurs via two mechanisms. The first is known as crystalline swelling

and takes place in all types of clay (Anderson et al., 2010). Water is adsorbed by

the interlayer region, resulting in the hydration of interlayer cations and subsequent

formation of hydrate layers (Boek et al., 1995; Anderson et al., 2010). These hydrate

layers force the mineral layers apart, thus leading to expansion of the clay mineral

(Boek et al., 1995). There is a limit to the number of hydrate layers which form within

the interlayer region (Boek et al., 1995) and therefore crystalline swelling tends to

result in microscopic expansion of clay. The second mechanism of swelling is known

as osmotic swelling and only occurs in clay minerals where there is a difference in

ionic concentration between the interlayer region and surrounding pore-water (Boek

et al., 1995; Anderson et al., 2010). Water is consequently taken in by the interlayer

region to re-establish equilibrium (Boek et al., 1995). The amount of water adsorbed

in this case is considerably higher and can therefore lead to greater expansion than

crystalline swelling (Anderson et al., 2010). For example, osmotic swelling in Na+-

saturated smectites is so significant that it can cause borehole instability (Anderson et

3



al., 2010).

A number of factors dictate the swelling capacity of a clay mineral. One such factor is

the mineral layer substitution type. Hensen & Smit (2002) ran Monte Carlo simulations

(see Section 1.2.1) on Na-montmorillonite which undergoes octahedral substitutions

and Na-beidellite which undergoes tetrahedral substitutions. They showed that the

montmorillonite forms three hydrate layers, whereas the beidellite is limited to a single

hydrate layer (Hensen & Smit, 2002; Anderson et al., 2010). This is because the cations

in the beidellite are bonded to the clay surface so strongly that it is not possible to fully

hydrate them, and therefore, no matter how much water vapour pressure is applied,

the mineral will not expand any further than the first hydrate layer (Hensen & Smit,

2002).

Another factor which affects degree of swelling is the hydration energy of interlayer

cations. It has been shown through x-ray diffraction (XRD) experiments that for a

group of clay minerals with monovalent interlayer cations, those with higher hydration

energies result in more swelling than those with lower energies (Norrish, 1954; Anderson

et al., 2010). This is believed to be because a high hydration energy allows for migration

of the cations towards the mid-region of the interlayer, thus increasing interlayer spacing

(Hensen & Smit, 2002). Although polyvalent cations generally have higher hydration

energies, the relationship with swelling is not as clear (Norrish, 1954; Anderson et al.,

2010).

Cation charge also impacts swelling capacity. In general, clays which contain diva-

lent cations in their interlayer regions exhibit less swelling than those containing mono-

valent cations (Anderson et al., 2010). This is because the increased charge means that

the clay mineral as a whole is more stable and is therefore less likely to swell (Anderson

et al., 2010). There are some exceptions, however. For example, Ca-bearing clays ex-

perience greater swelling than those containing K+ ions because the majority of Ca2+
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ions will fully hydrate and migrate into the centre of the interlayer region, leading to

an increase in interlayer spacing (Anderson et al., 2010). In contrast, K+ ions do not

fully hydrate and migrate towards the clay surface instead (Boek et al., 1995; Anderson

et al., 2010), thus resulting in less swelling.

The permeability of the clay-bearing mudrock is also a significant factor in the study

of clay swelling. Swelling is often greater in rocks containing cracks or fissures which

allow water to flow through easily and therefore lead to more adsorption (Franklin &

Dusseault, 1989, p.332). Less swelling is likely to occur in mudrocks which have a low

permeability, such as those which are well cemented, for example with organic matter

or calcite (Franklin & Dusseault, 1989, p.332).

5



1.2 Simulation of clay swelling

The first clay swelling experiments were undertaken in 1933 (Karaborni et al., 1996),

and since then a variety of techniques have been developed, depending on the focus of

the research. For example, x-ray diffraction is used to measure the change in inter-

layer spacing due to water adsorption, and therefore determine whether crystalline or

osmotic swelling has taken place (Amorim et al., 2007; Anderson et al., 2010). Neutron

scattering is used to determine the structural and compositional properties of a swelling

complex (Skipper et al., 2006). The macroscopic swelling capacity of a clay mineral can

be investigated by introducing an aqueous solution to a clay specimen and measuring

the height or volume increase with time (Anderson et al., 2010; Erdogan, 2016).

Although experimental techniques are useful for investigating a number of swelling

properties and processes, it can be difficult to make accurate interpretations due to

the challenge of reproducing borehole conditions and the fact that clay minerals range

widely in composition (Anderson et al., 2010). As such, laboratory experiments are

often coupled with modelling techniques. Modelling techniques are useful for studying

the processes involved in clay swelling at the microscopic level, something that is not

always possible using experimental methods (Boek et al., 1995). For example, smectites

are comprised of small platelets and therefore cannot be investigated using x-ray or

neutron diffraction experiments alone (Boek et al., 1995). Modelling techniques are

also useful for simulating extreme pressure and temperature conditions that would be

impractical to achieve in a laboratory environment (Allen & Tildesley, 1987, p.5).

Three techniques employed in the modelling of clay swelling are the Monte Carlo

(MC) method, the Molecular Dynamics (MD) method and Mixture Theory, and are

discussed in greater detail below.
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1.2.1 Monte Carlo (MC) Simulations

The principle underlying MC simulations is statistical mechanics (Anderson et al.,

2010; Boek et al., 1995). A mathematical model is built using potential functions to

represent molecular interactions (Boek et al., 1995; Skipper et al., 1995) and simulations

are performed across a range of parameter inputs in order to define the system’s equi-

librium properties (Boek et al., 1995). Results are then calibrated with experimental

data (Skipper et al., 1995).

MC simulations are particularly useful for the modelling of interlayer spacing changes

with increasing water content. For example, Boek et al. (1995) ran simulations in the

isothermal-isobaric ensemble (pressure, temperature and number of particles held con-

stant) in order to examine the swelling mechanisms of Na-, Li- and K-montmorillonites.

Water content was increased in small increments to assess the impact on interlayer

spacing in greater detail (Boek et al., 1995). They observed that, with increasing water

content, the Na+ and Li+ ions are fully hydrated, become detached from the clay sur-

face and migrate to the centre of the interlayer region, forming a diffuse ion swarm and

increasing the interlayer spacing in a stepwise manner. The K+ ions, by comparison,

only partially hydrate and instead migrate towards the clay surface (Boek et al., 1995).

Their simulations showed good agreement with experimental swelling curves and the

work on K+ ions in particular has been vital in aiding the development of swelling

inhibitors.

Chávez-Páez et al. (2001) investigated the effects of constant normal stress and con-

stant chemical potential on the swelling mechanisms of a Wyoming Na-montmorillonite.

They found that under constant normal stress conditions up to five hydrate layers form

in the interlayer region, depending on the water content. They also found that when

chemical potential is held constant swelling is nonuniform; variations in the basal spac-

7



ing result in variations in the amount of water adsorbed, and therefore the amount of

swelling undergone.

The ability to perform MC simulations under a variety of ensembles, and therefore

assess the impact of different parameters, highlights an advantage of using this method

to investigate clay swelling. A drawback of traditional MC methods, however, is that

they do not consider Newton’s equations of motion which makes it difficult to gain

any dynamical information (Kukol, 2008, p.26). As such, MC simulations are often

accompanied by MD techniques to obtain a more complete overview of swelling.

1.2.2 Molecular Dynamics (MD) Simulations

MD simulations are performed in order to determine the dynamic properties of a

clay swelling system (Allen & Tildesley, 1987, p.71). This is done by assigning each

particle in the system with an initial position and velocity, and then solving Newton’s

equations of motion in order to model how the system progresses with time (Bleam,

1993; Anderson et al., 2010). A major advantage of running MD simulations is that this

temporal evolution allows for comprehensive comparisons to be made with experimental

methods, such as Fourier transform infrared spectroscopy and nuclear magnetic reso-

nance (Anderson et al., 2010; Suter et al., 2009). However, systems in MD simulations

are often restricted to certain ensembles, therefore limiting the number of potential

parameters which can be tested (Anderson et al., 2010). As such, MD simulations are

commonly run in conjunction with MC methods (Anderson et al., 2010). It is common

to find that the initial states used in MD simulations are actually the equilibrium prop-

erties determined by MC techniques (Chang et al., 1998). This was the approach taken

by Chang et al. (1997) who ran MC simulations to determine the equilibrium condi-

tions which they then used in MD simulations to investigate the interlayer molecular

structure of Wyoming Li-montmorillonite with varying hydrate layers. They found that
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for the one and two hydrate layer systems, where the interlayer species are immobile,

the MC simulations were appropriate for defining initial conditions. By comparison, the

MC simulations were not appropriate for the three hydrate layer system, and instead

MD methods were employed (Chang et al., 1997).

Tambach et al. (2004) combined MC and MD simulations in the grand canonical

ensemble (volume, temperature and chemical potential held constant) to examine how

relative humidity affects the swelling behaviour of Wyoming and Arizona montmoril-

lonite minerals. MD simulations were run to displace interlayer cations and any water

molecules already present in the interlayer region, followed by MC simulations to in-

ject additional water molecules (Tambach et al., 2004). Their results highlighted the

dependence of the amount of water in the interlayer region on the clay species, type of

exchangeable cation present and relative humidity.

Karaborni et al. (1996) examined the swelling capacity of Na-montmorillonite. Per-

forming a combination of MC and MD simulations they increased the interlayer spacing

discretely, holding it constant following each increase to allow for water molecules to

enter or leave the interlayer region until equilibrium conditions were achieved. Their

findings indicate that following the introduction of water into the interlayer region one,

three and five hydrate layers formed, in contrast with the expected formation of one,

two, three then four layers. Rather than forming sequentially, they found that the sec-

ond and third hydrate layers formed simultaneously, as did the fourth and fifth layers.

1.2.3 Mixture Theory

Mixture theory, sometimes known as continuum theory, is used to study multi-phase

fluid flow in porous media and can be applied to the study of clay swelling systems

(Bennethum et al., 1997; Hassanizadeh & Gray, 1990; Bennethum, 2007). Unlike MD

and MC methods which focus on clay swelling on the microscopic scale, mixture theory
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operates on the macroscopic scale (Hassanizadeh & Gray, 1990). The principle behind

this method is that the system under investigation is treated as a mixture and each

component of the system as a continuum which exists everywhere in the domain being

studied (Hassanizadeh & Gray, 1979; Bennethum & Cushman, 1996; Lemon et al.,

2006). Together these components are treated as overlaying continua (Bennethum et al.,

1997; Hassanizadeh & Gray, 1979). Macroscale conservation statements are developed

to include terms that take into account the interactions between continua (Murad et al.,

1995; Bennethum et al., 1997; Weinstein et al., 2008). Relevant constitutive equations

can then be incorporated and together the set of equations is solved to simulate the

process under investigation (Hassanizadeh & Gray, 1990). The advantage of working

on the macroscale is that any assumptions that are required can be introduced at this

level and the model becomes more applicable to real life situations (Hassanizadeh &

Gray, 1990). On the other hand, because this approach considers only the macroscale,

some microscale properties of the system are not taken into account, thus resulting in

the possibility of unnecessary assumptions being made (Hassanizadeh & Gray, 1990).

In order to tackle this disadvantage, the hybrid mixture theory has been developed, e.g.

Hassanizadeh & Gray (1979), Bennethum & Cushman (1996). In this case microscale

conservation equations are introduced first, then averaged spatially and upscaled to

produce macroscale conservation equations (Bennethum et al., 1997).

The hybrid mixture theory has been adopted by Bennethum et al. (1997), who adapt

Darcy’s Law, Terzaghi’s Effective Stress Principle and Fick’s First Law to develop a

generalised set of governing equations to simulate clay swelling. They adopt a two-scale,

two-phase system: the microscale represents the clay platelets and vicinal water, and

the macroscale represents individual clay particles (made up of the platelets and water).

The solid clay platelets and the liquid vicinal water are treated as overlaying continua

(Bennethum et al., 1997). Conservation statements are developed at the microscale and
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are averaged to produce macroscale equations, meaning that the microscale properties

are not lost or ignored (Bennethum et al., 1997).

Mixture theory techniques have also been applied to simulate other swelling media.

For example, Lemon et al. (2006) applied a mixture theory to model in-vitro tissue

growth, an important process in therapeutic tissue engineering. In their model all

tissue components are considered as continua, all simultaneously existing in the same

space (Lemon et al., 2006). Mass and force conservation equations are defined on the

macroscopic scale for each component and constitutive equations are developed to define

how stress affects material deformation (Lemon et al., 2006). Their results show good

agreement with experimental studies and highlight areas where further research in the

field is required.

Weinstein et al. (2008) developed a hybrid mixture theory to simulate swelling drug

delivery systems. The drug is carried inside a polymer through the body and as bodily

fluids interact with the polymer it swells and the drug can be extracted (Weinstein

et al., 2008). Their system is comprised of three phases on the microscale: a polymer

phase, a drug phase and a liquid phase, which are treated as a homogeneous mixture on

the macroscale (Weinstein et al., 2008). Conservation statements are developed for each

phase and upscaled to produce macroscale equations and the Coleman-Noll method is

used to derive relevant constitutive relations (Weinstein et al., 2008; Bennethum et al.,

1996). The advantage of this model is that it has been kept non-specific to allow for its

application to other swelling media (Weinstein et al., 2008).

1.2.4 Macroscopic swelling experiments

A number of experimental techniques have also been developed to investigate the

macroscopic swelling behaviour of clay minerals. Erdogan (2016) examined the impact

of different salt solutions and organic solvents on the swelling behaviour of illite and
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bentonite samples. Linear expansion was monitored using a non-contact linear dis-

placement meter (Erdogan, 2016). Following a similar method, Zhang & Sun (1999)

ran swelling tests on a clay containing 96 % wt Ca-montmorillonite to determine how

hydroxyethylcellulose, a drilling additive, can be improved as a clay swelling inhibitor.

In both studies the samples were first compressed to form plugs, which were then placed

into chambers and the test solutions introduced.

Taking a slightly different approach, Besq et al. (2003) investigated the swelling

capacity of bentonite by adding the powdered sample directly to a cylinder containing

the test solution over the course of 4 hours. The volume of swollen bentonite was then

measured after 24 hours (Besq et al., 2003).

The aim of the model in this thesis is to focus on macroscopic swelling directly,

thereby eradicating any uncertainty associated with upscaling results. The model

builds on coal matrix shrinkage models which are able to simulate coal shrinkage due to

methane desorption on a regional scale (e.g. Shi & Durucan, 2004), as will be discussed

in Section 1.3.
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1.3 Coal Shrinkage

The principle underlying the clay swelling model developed in this thesis is based

on the mechanism of coal shrinkage due to methane desorption.

Coal seams are comprised of a dual porosity system: (1) a well-defined, naturally

occurring fracture system, known as a cleat network, and (2) a highly heterogeneous

microporous coal matrix (Shi & Durucan, 2004; Pillalamarry et al., 2011). Coal seams

contain a large, potentially recoverable amount of methane, and up to 95 % of this

gas is found adsorbed to the internal surfaces of the microporous matrix (Levine, 1996;

Pillalamarry et al., 2011). The cleat system is often saturated with water, which pre-

vents the methane from desorbing (Pillalamarry et al., 2011). During the extraction

of methane, water is pumped from the coalbed, leading to a decrease in pressure and

consequently desorption from the internal coal surfaces (Cui & Bustin, 2005; Pillala-

marry et al., 2011). The methane diffuses from the micropores to the cleat network and

flows to the production well (Cui & Bustin, 2005). The process of methane desorption

results in shrinkage of the coal matrix (Palmer & Mansoori, 1998).

Various models have been developed to investigate the mechanisms of gas desorption

and how permeability, in particular, is affected by coal shrinkage. Shi & Durucan

(2004) have adapted the theory of linear poroelasticity to develop a model investigating

how cleat permeability varies with pore-pressure during gas desorption. They derived

stress-strain relationships to represent a linear elastic gas-desorbing porous medium

and replaced a thermal expansion term with a matrix shrinkage term (Shi & Durucan,

2004). The clay swelling model in this thesis follows a similar approach, by deriving

stress-strain relationships and incorporating a swelling term to simulate the expansion

of clay due to water imbibition.
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1.4 Thesis Aims

The aim of this project is to develop a mathematical hydromechanical model to sim-

ulate the deformation due to swelling during water imbibition in unsaturated clays. The

model builds on an existing modelling framework associated with coal matrix shrink-

age due to coalbed methane extraction. In contrast to the models discussed previously

which tend to focus on the microscopic level of clay swelling, this model investigates

macroscopic expansion of clay, and will accompany macroscopic swelling experiments

performed by the Layered Mineral Geochemistry Group at Durham University.

This model considers both the migration of bulk pore-water through the plug and

the adsorption of water between the clay mineral layers. Sorption is represented by

a Langmuir isotherm. In order to incorporate expansion of the plug due to sorption,

a swelling strain term is derived by adapting the theory of linear poroelasticity under

uniaxial strain conditions.

Once developed, the model is compared with experimental results previously ob-

tained by Erdogan (2016). Finally, recommendations are made for future research.
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2 Methods & Data

2.1 Conceptual Model

A mathematical model is developed to simulate the deformation that occurs when

water enters and migrates through a one-dimensional unsaturated clay plug, as de-

scribed in Figure 2.1. The plug is assumed to be homogeneous and does not contain

any cracks or fissures. The pore-space of the plug is a multi-phase system containing

water and air (Schwartz & Zhang, 2003, p.130; Bear & Cheng, 2010). An unsaturated

setting is assumed, which means a negative pressure head occurs. This is because wa-

ter is held in the pore-space under surface tension forces which occur at the interface

between water and air (Allan Freeze & Cherry, 1979). A fixed water table condition

is applied at the base of the plug, by imposing a 0 cm pressure head. Water is sucked

vertically up the plug by the action of capillary rise and is split up into two components:

(1) bulk pore-water which migrates through the pore-space via capillary rise, and (2)

water which is adsorbed between the clay mineral layers. This adsorption forces the clay

layers apart and leads to macroscopic expansion of the plug. Deformation is assumed

to be elastic and occurs under uniaxial strain conditions.
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Figure 2.1: Conceptual diagram of the clay plug.

2.2 Mathematical Model

Mass conservation states that the flow of water into the clay plug is equal to the

change in storage of water within the plug.

A mass conservation statement for the clay swelling system can be written as follows

∂mw

∂t
=

∂

∂t
(ρwθ + ρbs) = − ∂

∂z
(ρwq) (1)

subject to the following initial and boundary conditions

θ = θI , 0 ≤ z ≤ H(t), t = 0 (2)

θ = θs, z = 0, t > 0 (3)

s = sI , 0 ≤ z ≤ H(t), t = 0 (4)
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s = smax, z = 0, t > 0 (5)

q = 0, z = H(t), t > 0 (6)

where θ [-] represents the moisture content, θI [-] and θs [-] represent the initial and

saturated moisture content respectively, s [-] represents the mass of water sorbed per

unit mass of clay (comprising the clay matrix, water and air), sI [-] and smax [-] represent

the initial mass of water sorbed and the maximum adsorption capacity respectively,

ρw [ML−3] and ρb [ML−3] represent the water and bulk density respectively, q [LT−1]

represents the flow rate of water into the clay plug, z [L] represents the elevation of the

plug, H [L] represents the height of the plug and t [T] represents time.

2.2.1 Recasting the equation in terms of the primary dependent variable

When solving partial different equations, such as Eq.(1), it is necessary to define

a primary dependent variable (PDV) to solve for. In this model water pressure, Pw

[ML−1T−2], has been chosen as the PDV.

Applying the product rule to the mass conservation equation, Eq.(1), and recasting

in terms of Pw leads to

ρw
∂θ

∂Pw

∂Pw
∂t

+ θ
∂ρw
∂Pw

∂Pw
∂t

+ s
∂ρb
∂Pw

∂Pw
∂t

+ ρb
∂s

∂Pw

∂Pw
∂t

= − ∂

∂z
(ρwq) (7)

Rearranging for ∂Pw/∂t gives

∂Pw
∂t

= − ∂

∂z
(ρwq)

[
ρw

∂θ

∂Pw
+ θ

∂ρw
∂Pw

+ s
∂ρb
∂Pw

+ ρb
∂s

∂Pw

]−1
(8)

where ∂(ρwq)/∂z is solved using the finite difference approximation (see Appendix A)

and the other terms are derived in the following sections.

17



2.2.2 Hydraulic properties

The hydraulic properties required to solve Eq.(1) are defined by the van Genuchten

functions, as follows (van Genuchten, 1980):

The effective saturation, Se [-], is defined by

Se = (1 + |αψ|n)−m, ψ < 0 (9)

Se = 1, ψ ≥ 0 (10)

where ψ [L] is the pressure head, α [L−1] is the reciprocal of a reference state pressure

head, n [-] is an empirical exponent and m = 1− 1/n [-].

The hydraulic conductivity in the z-direction, Kz [LT−1], is found from

Kz = Ks, t = 0 (11)

Kz = KsSe
η[1− (1− Se1/m)m]2, t > 0 (12)

where Ks [LT−1] is the saturated hydraulic conductivity and η [-] is an empirical expo-

nent.

The rate of flow of water into the clay plug per unit area, q [LT−1], is defined as

follows

q = −Kz
∂h

∂z
(13)

where h [L] represents the hydraulic head, given by

h = ψ + z (14)

The moisture content, θ [-], is found from
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θ = (θs − θr)Se + θr (15)

where θs [-] and θr [-] represent the saturated and residual moisture content respectively.

The change in moisture content with water pressure is found by differentiating

Eq.(15), yielding

dθ = (θs − θr)dSe + Se(dθs − dθr) + dθr (16)

By assuming that θr represents the saturated smallest pores and θs represents all

saturated pores, it can be said that the change in moisture content is equal in both

cases and therefore dθs = dθr. It follows that

dθ = (θs − θr)dSe + dθs (17)

Differentiating with respect to Pw yields

∂θ

∂Pw
= (θs − θr)

∂Se
∂Pw

+
∂θs
∂Pw

(18)

where ∂θs/∂Pw is derived in Section 2.2.9 and ∂Se/∂Pw is found using the chain rule,

as follows

∂Se
∂Pw

=
∂Se
∂ψ

∂ψ

∂Pw
(19)

where ∂Se/∂ψ is found by differentiating Eq.(9) with respect to ψ to give

dSe
dψ

= mn|α|n|ψ|(n−1)(1 + |αψ|n)−(m+1), ψ < 0 (20)

dSe
dψ

= 0, ψ ≥ 0 (21)

19



Pressure head, ψ, is related to Pw as follows

ψ =
Pw
ρwg

(22)

where g [LT−2] represents the gravitational acceleration and where Pw = Pa − Pc and

Pc [ML−1T−2] represents the capillary pressure. It has been assumed that air is inviscid

and therefore air pressure, Pa [ML−1T−2], is at atmospheric level, i.e. Pa = 0.

Differentiating Eq.(22) with respect to Pw leads to

∂ψ

∂Pw
= ψ

[
1

Pw
− CF

]
(23)

where CF [M−1LT2] represents the fluid compressibility.

2.2.3 The Langmuir adsorption isotherm

Sorbed water is represented by a Langmuir adsorption isotherm. Adsorption isotherms

describe the process whereby a substance in the aqueous phase, the adsorbate, is re-

tained or released by the solid phase, the adsorbent (Foo & Hameed, 2010). In the

case of the clay swelling system, the clay mineral is the adsorbent and water migrating

through the plug is the adsorbate. Following the approach taken by various coalbed

methane desorption models (e.g. Levine (1996), Palmer & Mansoori (1998)), this model

employs the use of the Langmuir adsorption isotherm to represent the adsorption of wa-

ter by the clay. The Langmuir isotherm makes a number of assumptions which can be

adequately applied to the clay swelling system. It is assumed that there is a limit to the

adsorption capacity of the clay and that the system undergoes monolayer adsorption,

i.e. one molecule of water is sorbed at each adsorption site (Limousin et al., 2007; Foo

& Hameed, 2010). This means that once all sites are filled the maximum adsorption

capacity has been reached and no more adsorption occurs (Foo & Hameed, 2010). It
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is also assumed that temperature is constant and all adsorption sites are identical and

homogeneous, i.e. no one site has a greater affinity for the adsorbate than any other

site (Limousin et al., 2007; Foo & Hameed, 2010). The Langmuir isotherm is derived

according to Limousin et al. (2007), as follows:

Consider the following chemical reaction (Limousin et al., 2007)

solute + free site ⇀↽ adsorbed complex (24)

In the clay swelling system the solute represents pore-water and the free site represents

the clay mineral surface.

The equilibrium constant for this system, Ke [M−1L3], represents the affinity of the

water for the clay surface (Limousin et al., 2007) and can be defined as follows

Ke =
[adsorbed complex]

[solute][free site]
=

[X]

[C][F ]
(25)

where [X] [ML−3] represents the concentration of the adsorbed complex, [C] [ML−3]

represents the concentration of the solute, and [F ] [ML−3] represents the concentration

of the free site (i.e. the adsorbent), where F = Xmax − X, and Xmax represents the

maximum adsorption capacity.

Rearranging Eq.(25) leads to the general form of the Langmuir isotherm, defined by

X

Xmax

=
KeC

1 +KeC
(26)

The system reaches equilibrium when X = Xmax (Limousin et al., 2007; Foo &

Hameed, 2010).
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2.2.4 Parameterisation of the Langmuir isotherm for a clay swelling system

Let s [-] represent the mass of water sorbed per unit mass of clay matrix, smax

[-] represent the maximum adsorption capacity and c [ML−3] represent the mass of

pore-water per unit volume of pore-space, such that Eq.(26) becomes

s

smax
=

Kdc

smax +Kdc
(27)

where Kd = Kesmax [M−1L3] and represents the linear isotherm partition coefficient.

The maximum adsorption capacity, smax [-], is defined by

smax =
ρwθssF
ρb

(28)

where sF [-] describes how much water is adsorbed as a multiple of the maximum mass

of water that can be stored in the pore-space. When sF = 0 no sorption takes place

and all water is contained within the pore-space.

The mass of water in the pore-space per unit volume of clay, c [ML−3], is found from

c =
ρwθ

θs
(29)

At small values of c, Kd represents the initial gradient of the isotherm (Limousin et

al., 2007), and can therefore be defined as follows

Kd =
s

c
=

sθs
ρwθ

(30)

At the point when s = smax, Se = Sef , such that Eq.(30) becomes

Kd =
smaxθs

ρw[(θs − θr)Sef + θr]
(31)
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where Sef [-] is the fraction of Se where maximum adsorption has almost occurred

(0 < Sef < 1), described by Figure 2.2.

Figure 2.2: Graph to show how Sef has been determined.

Using the chain rule it is possible to determine the change in mass of water sorbed

with water pressure, as follows

∂s

∂Pw
=
∂s

∂c

∂c

∂Pw
(32)

where ∂s/∂c is found by differentiating Eq.(27) with respect to c, yielding

∂s

∂c
=

s2maxKd

(smax +Kdc)2
(33)

Differentiating Eq.(29) with respect to Pw leads to

∂c

∂Pw
= c

[
1

ρw

∂ρw
∂Pw

+
1

θ

∂θ

∂Pw
− 1

θs

∂θs
∂Pw

]
(34)
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2.2.5 Water density

Consider the following definition of fluid compressibility, CF

CF =
1

ρw

∂ρw
∂Pw

(35)

Separating the variables and integrating leads to

CF

∫
∂Pw =

∫
1

ρw
∂ρw (36)

ln

(
ρw
ρw0

)
= CF (Pw − Pw0) (37)

where ρw0 [ML−3] and Pw0 [ML−1T−2] represent the initial water density and initial

water pressure respectively.

Rearranging for ρw leads to

ρw = ρw0 exp[CF (Pw − Pw0)] (38)

A term for ∂ρw/∂Pw can be derived by rearranging Eq.(35), as follows

∂ρw
∂Pw

= ρwCF (39)

2.2.6 Bulk density

The bulk density of clay, ρb, can be defined as follows

ρb =
Mb

Vb
=
Mw +Ma +Mdc

Vb
(40)

where Mb [M] represents the bulk mass, Vb [L3] represents the bulk volume and Ma [M]
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and Mdc [M] represent the mass of air and dry clay matrix respectively, and can be

defined further

Ma = Vbρa(θs − θ) (41)

Mdc = Vdcρdc (42)

where ρa [ML−3] and ρdc [ML−3] represent the density of air and dry clay matrix re-

spectively.

The mass of water, Mw, is found from

Mw = Mwp +Mws (43)

where Mwp [M] represents the mass of water stored in the pore-space and Mws [M]

represents the mass of water sorbed by the clay. These terms are defined as follows

Mwp = ρwVwp (44)

Mws = ρwVws (45)

where Vwp [L3] represents the volume of water stored in the pore-space and Vws [L3]

represents the volume of water sorbed by the clay.

Following the definitions of θ and s it can be said that

Mwp = Vbρwθ (46)

Mws = Vbρbs (47)

Substituting these terms into Eq.(43) yields
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Mw = Vb(ρwθ + ρbs) (48)

The bulk volume, Vb, is found from

Vb = Vp + Vc (49)

where Vp [L3] represents the volume of the pore-space and Vc [L3] represents the volume

of the wet clay matrix, which can be further defined as follows

Vc = Vws + Vdc (50)

The volume of the dry clay matrix, Vdc, is therefore found from

Vdc = Vb − Vp −
Vbρbs

ρw
(51)

It follows that

ρb = ρwθ + ρbs+ ρa(θs − θ) +

(
1− θs −

ρb
ρw
s

)
ρdc (52)

where θs = φ = Vp/Vb and φ [-] represents the porosity.

Rearranging for ρb leads to

ρb =
ρw[ρwθ + ρa(θs − θ) + ρdc(1− θs)]

ρw(1− s) + sρdc
(53)

In order to derive an equation for ∂ρb/∂Pw, Eq.(53) must first be differentiated

logarithmically, as follows
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ln(ρb) = ln(ρw) + ln[ρwθ + ρa(θs − θ) + ρdc(1− θs)]− ln[ρw(1− s) + ρdcs] (54)

dρb
ρb

=
dρw
ρw

+
dF1

F1

− dF2

F2

(55)

where

F1 = ρwθ + ρa(θs − θ) + ρdc(1− θs) (56)

dF1 = θdρw + ρwdθ + ρa(dθs − dθ) + (θs − θ)dρa + (1− θs)dρdc − ρdcdθs (57)

F2 = ρw(1− s) + ρdcs (58)

dF2 = (1− s)dρw − ρwds+ ρdcds+ sdρdc (59)

Differentiating with respect to Pw leads to

∂ρb
∂Pw

= ρb

[
1

ρw

∂ρw
∂Pw

+
1

F1

∂F1

∂Pw
− 1

F2

∂F2

∂Pw

]
(60)

where

∂F1

∂Pw
= θ

∂ρw
∂Pw

+ρw
∂θ

∂Pw
+ρa

(
∂θs
∂Pw

− ∂θ

∂Pw

)
+(θs−θ)

∂ρa
∂Pw

+(1−θs)
∂ρdc
∂Pw
−ρdc

∂θs
∂Pw

(61)

∂F2

∂Pw
= (1− s)ρwCF + (ρdc − ρw)

∂s

∂Pw
+
∂ρdc
∂Pw

(62)

The dry clay particles in the plug are assumed to be incompressible, such that the

density of dry clay, ρdc, is constant and ∂ρdc/∂Pw = 0.

It has also been assumed that air is inviscid and, as such, it can be said that ρa and
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Pa are constant, and therefore that

∂Pa
∂Pw

= 0 (63)

∂ρa
∂Pw

= 0 (64)

2.2.7 Adaptation of the theory of linear poroelasticity

Poroelasticity describes the coupling between the hydrological and mechanical be-

haviour of a porous system (Jaeger et al., 2007, p.168). The Earth’s crust is highly

heterogeneous, comprised of fluid-saturated pores and cracks which can significantly im-

pact the mechanical behaviour of subsurface rocks (Jaeger et al., 2007, p.168; Guéguen

& Boutéca, 2004, p.ix). Changes in the pore volume of a rock due to fluid flow can

induce macroscopic deformation (Jaeger et al., 2007, p.168; Guéguen & Boutéca, 2004,

p.ix). Conversely, deformation, for example due to drilling operations, can lead to

changes in pore volume and fluid flow (Jaeger et al., 2007, p.168; Guéguen & Boutéca,

2004, p.ix). Therefore, it can be said that the hydrological and mechanical components

of the system are coupled (Jaeger et al., 2007, p.168).

Consider the following stress-strain relationship for a poroelastic and thermoelastic

medium

ε =
1

2G
τ − ν

2G(1 + ν)
trace(τ )I −

(
Cbp
3
Pp + βϑ

)
I (65)

where τ and ε represent the stress and strain tensors, G [ML−1T−2] represents the shear

modulus, ν [-] represents Poisson’s ratio, ϑ [K] represents an incremental temperature

increase, β [K−1] represents the linear thermal expansion coefficient and Cbp [M−1LT2]
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represents the bulk pore compressibility and relates bulk strain, εb [-], to pore-pressure,

Pp [ML−1T−2], as follows (Jaeger et al., 2007, p.170)

Cbp = −
(
∂εb
∂Pp

)
P

(66)

Taking the trace of both sides of Eq.(65) yields

εb =
τm
K
− (CbpPp + 3βϑ) (67)

where τm [ML−1T−2] represents the trace of the stress tensor and K [ML−1T−2] repre-

sents the bulk modulus.

Rewriting the stress-strain relationship for stress in terms of strain leads to

τ ′ = τ − (αBPp + γϑ)I = 2Gε+ λtrace(ε)I (68)

where τ ′ represents the effective stress tensor, αB = CbpK [-] and represents the Biot

coefficient and γ = 3Kβ.

2.2.8 Uniaxial strain assumption

This model simulates the migration of water through a one-dimensional clay plug,

following the method applied by the Layered Mineral Geochemistry Group at Durham

University in their linear swelling experiments. In order to account for this, the swelling

model adopts the state of uniaxial strain. Uniaxial strain assumes that only vertical

strain occurs, and that lateral strains are zero (Jaeger et al., 2007, p.112).

The uniaxial strain assumption states that εxx = εyy = 0 (Jaeger et al., 2007,

p.112). Therefore, from Eq.(68) it is possible to determine the effective stress, τ ′, in

each orthogonal direction (Jaeger et al., 2007, p.112)
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τ ′xx = τ ′yy = λεzz (69)

τ ′zz = (2G+ λ)εzz (70)

where λ [ML−1T−2] represents the Lamé coefficient.

Rearranging Eq.(70) for εzz leads to

εzz =
τ ′zz

(2G+ λ)
(71)

The mean effective stress, τ ′m, is defined by (Jaeger et al., 2007, p.101)

τ ′m =
1

3
(τ ′xx + τ ′yy + τ ′zz) (72)

Therefore, it follows that

τ ′m =
1

3

(
2G+ 3λ

2G+ λ

)
τ ′zz (73)

The Lamé parameters, G and λ, are defined as follows (Jaeger et al., 2007, p.108)

G =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
(74)

where E [ML−1T−2] and ν [-] represent the Young’s Modulus and Poissons’ ratio re-

spectively.

Substituting the Lamé parameters into Eq.(73) leads to

τ ′m =
1

3

(
1 + ν

1− ν

)
τ ′zz (75)

Palmer & Mansoori (1998) have defined a constrained axial modulus, M , related to

the bulk modulus, K, as follows
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M =
3K(1− ν)

(1 + ν)
(76)

It can therefore be said that

τ ′m =
K

M
τ ′zz (77)

From Eq.(68)

τ ′m = τm − (αBPp + 3Kβϑ) (78)

Rearranging and substituting into Eq.(77) leads to

τm =
K

M
τ ′zz + αBPp + 3Kβϑ (79)

Substituting Eq.(79) into Eq.(67) yields

εb =
τ ′zz
M

(80)

where

τ ′zz = τzz − αPp − 3Kβϑ (81)

Substituting the swelling term for the thermoelastic term, where εs = −3βϑ, gives

τ ′zz = τzz − αPp +Kεs (82)

εb =
1

M
(τzz − αBPp +Kεs) (83)
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2.2.9 Saturated moisture content

It has been assumed that the saturated moisture content, θs, represents all pores

and is therefore analogous to the porosity, φ, of the clay plug. The equation for θs in

this section will first be derived in terms of φ before substituting for θs.

Recall that the bulk volume, Vb, of a porous medium is defined by

Vb = Vp + Vc (84)

Porosity, φ, is found from (Jaeger et al., 2007, p.169)

φ =
Vp
Vb

= 1− Vc
Vb

(85)

Differentiating Eq.(85) and re-writing in terms of strain leads to

−dφ = (1− φ)(dεb − dεc) (86)

where εc [-] represents the strain of the clay matrix.

The change in bulk strain, dεb, is found by differentiating Eq.(67), yielding

dεb =
dτm
K
− CbpdPp − 3βdϑ (87)

Partial differentiation is used to define the change in strain of the clay matrix, dεc,

as follows

dεc =

(
∂εc
∂τm

)
Pp,ϑ

dτm +

(
∂εc
∂Pp

)
τm,ϑ

dPp +

(
∂εc
∂ϑ

)
τm,Pp

dϑ (88)

Each of these three terms can then be found from (Jaeger et al., 2007, p.174)
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(
∂εc
∂τm

)
Pp,ϑ

=
1

(1− φ)

1

Km

(89)

(
∂εc
∂Pp

)
τm,ϑ

= − φ

(1− φ)

1

Km

(90)

(
∂εc
∂ϑ

)
τm,Pp

= −3βm (91)

where Km [ML−1T−2] and βm [K−1] represent the bulk modulus and the coefficient of

linear thermal expansion respectively of the clay matrix, and where Km is found from

Km =
K

1− αB
(92)

It can therefore be said that

(1− φ)dεc =
1

Km

(dτm − φdPp)− 3(1− φ)βmdϑ (93)

Substituting Eq.(93) and Eq.(87) into Eq.(86) yields

−dφ = (1− φ)

[
dτm
K
− CbpdPp − 3(β − βm)dϑ

]
− 1

Km

(dτm − φdPp) (94)

Differentiating Eq.(79) and substituting into Eq.(94) leads to

dφ =
1

Km

(
K

M
dτ ′zz + (αB − φ)dPp + 3Kβdϑ

)
− (1− φ)

[
1

M
dτ ′zz + 3βmdϑ

]
(95)

Differentiating Eq.(81) and substituting into Eq.(95) yields
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dφ =
1

Km

(
K

M
dτzz −

Kα

M
dPp −

3K2β

M
dϑ+ (αB − φ)dPp + 3Kβdϑ

)
−(1− φ)

[
1

M
dτzz −

αB
M
dPp −

3Kβ

M
dϑ+ 3βmdϑ

] (96)

Consider the special case when β = βm, such that rearranging Eq.(96) leads to

dφ = (αB − φ)

(
1

Km

+
αB
M

)
dPp + (αB − φ)

(
K

M
+ 1

)
3βdϑ− (αB − φ)

dτzz
M

(97)

where τzz is constant and therefore dτzz = 0.

Substituting the swelling term for the thermoelastic term, dεs = −3βdϑ, yields

dφ

(αB − φ)
=

(
1

Km

+
αB
M

)
dPp −

(
K

M
+ 1

)
dεs (98)

It follows that

1

(αB − φ)

∂φ

∂Pp
=

(
1

Km

+
αB
M

)
−
(
K

M
+ 1

)
∂εs
∂Pp

(99)

Integrating Eq.(99) with respect to Pp leads to

ln

(
αB − φ0

αB − φ

)
=

(
1

Km

+
αB
M

)
(Pp − Pp0)−

(
K

M
+ 1

)
(εs − εs0) (100)

where φ0 [-], Pp0 [ML−1T−2] and εs0 [-] represent the initial porosity, initial pore-pressure

and initial swelling strain respectively.

Rearranging for φ yields
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φ = αB − (αB − φ0) exp

[
−
(

1

Km

+
αB
M

)
(Pp − Pp0) +

(
K

M
+ 1

)
(εs − εs0)

]
(101)

Recall that φ = θs, such that

θs = α− (αB − θs0) exp

[
−
(

1

Km

+
αB
M

)
(Pp − Pp0) +

(
K

M
+ 1

)
(εs − εs0)

]
(102)

Returning to Eq.(98) and rewriting in terms of θs, it is possible to derive a term for

∂θs/∂Pw. Differentiating with respect to Pw leads to

∂θs
∂Pw

= (αB − θs)
[(

1

Km

+
αB
M

)
∂Pp
∂Pw

−
(
K

M
+ 1

)
∂εs
∂Pw

]
(103)

where the pore pressure, Pp, is related to the water pressure, Pw, as follows

Pp = SwPw + (1− Sw)Pa (104)

where Pa = 0 and Sw = θ/θs [-] and represents the water saturation.

Differentiating with respect to Pw leads to

∂Pp
∂Pw

= Sw (105)

The term ∂εs/∂Pw is defined using the chain rule

∂εs
∂Pw

=
∂εs
∂s

∂s

∂Pw
(106)

where ∂εs/∂s is found from
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εs
εs,max

=
s

smax
(107)

∂εs
∂s

=
εs,max
smax

(108)

2.2.10 Maximum swelling strain

This model assumes that swelling reaches a maximum value, εs,max, at which point

equilibrium is reached and no further expansion takes place.

Recall that the bulk strain, εb, and the swelling strain, εs, are related by the following

equation

εb =
1

M
(τzz − αBPp +Kεs) (109)

It follows that

εb − εb0 = −αB
M

(Pp − Pp0) +
K

M
(εs − εs0) (110)

where dτzz = 0.

At the point when εb = εb,max, Pp = 0 and εs = εs,max, such that

εb,max − εb0 =
1

M
[αBPp0 +K(εs,max − εs0)] (111)

Rearranging for εs,max leads to

εs,max =
1

K
[M(εb,max − εb0)− αBSw0Pw0] + εs0 (112)

where Sw0 [-] represents the initial water saturation.

It should be noted that εb is a volumetric strain. However, because uniaxial strain
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conditions are assumed, εb only acts in the z-direction. Extension is also negative.

Because the clay plug assumes unsaturated conditions, beyond a certain height the

plug cannot be fully saturated by the action of capillary pressure alone. This means

that the maximum bulk strain, εb,max, may not be reached throughout the entire plug.

Therefore it can be said that εb,max is greater than the observed maximum negative

vertical strain by a factor, εsF

εb,max <
HI −Hmax

HI

(113)

εb,max =
εsF (HI −Hmax)

HI

(114)

where HI [L] is the initial height of the clay plug and Hmax [L] is the maximum height

achieved by the plug, found from swelling experiments undertaken by Erdogan (2016).

Substituting Eq.(114) into Eq.(112) leads to

εs,max =
1

K

[
M

(
εsF (HI −Hmax)

HI

− εb0
)
− αBSw0Pw0

]
+ εs0 (115)

For the purpose of this model it has been assumed that εb0 = εs0 = 0.

2.2.11 Mapping elevation from a non-swelling domain to a swelling domain

This model currently operates on a static grid, which means that the increase in

height of the plug due to sorption is not being taken into account. To rectify this,

the data points are mapped onto a domain which incorporates swelling, i.e. contains a

moving grid. This has been done through the introduction of a change of variables, as

follows

ζ =
z

H(t)
, T = t (116)
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where H [L] is the height of the clay plug.

Application of the chain rule maps the data points from the non-swelling domain to

the swelling domain

∂Pw
∂z

=
∂Pw
∂ζ

∂ζ

∂z
+
∂Pw
∂T

∂T

∂z
(117)

∂Pw
∂t

=
∂Pw
∂ζ

∂ζ

∂t
+
∂Pw
∂T

∂T

∂t
(118)

where ∂T/∂z = 0 because T is not a function of z, ∂T/∂t = 1 and where ∂ζ/∂t is found

through logarithmic differentiation with respect to t

∂ζ

∂t
= − ζ

H

∂H

∂t
(119)

Rearranging Eq.(117) leads to

∂Pw
∂ζ

= H
∂Pw
∂z

(120)

where ∂Pw/∂z is solved using the finite difference approximation (see Appendix A).

It follows that ∂Pw/∂T is defined by

∂Pw
∂T

=
∂Pw
∂t

+ ζ
∂H

∂t

∂Pw
∂z

(121)

The change in height with time, ∂H/∂t, is given by

∂H

∂t
= −

∫ H

0

∂εb
∂t
dz (122)

where ∂εb/∂t is found by differentiating Eq.(83) with respect to time, as follows

∂εb
∂t

=
1

M

[
K
∂εs
∂Pw

− αBSw
]
∂Pw
∂t

(123)
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2.3 Numerical Solution

Eq.(1) takes the form of a nonlinear partial differential equation (PDE) and is

best solved using numerical approximations rather than analytically (Celia et al., 1990;

Zadeh, 2011; Varado et al., 2006). Following Goudarzi et al. (2016), a method of lines

approach is adopted whereby the PDE is discretised in space using finite differences

(see appendix A), resulting in a set of coupled non-linear ordinary differential equa-

tions (ODEs), which are integrated with respect to time using MATLAB’s ODE solver,

ODE15s (Shampine & Reichelt, 1997).

2.4 Data

The hydraulic parameters used in this model are obtained from the ROSETTA

Model database, a computer program which uses pedotransfer functions based on soil

texture (i.e. % sand, % silt, % clay) to estimate the hydraulic properties of a soil

(Schaap et al., 2001).

The swelling model results are compared with experimental data obtained from

Erdogan (2016). The experiments were carried out according to the method described

in Section 1.2 and produced linear swelling curves for two clay plugs composed of illite

and bentonite respectively.
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3 Results & Discussion

This chapter is split up into three sections to discuss the results obtained from run-

ning three versions of the model, each making different assumptions and simplifications.

3.1 Capillary Suction Model

This version of the model only considers the migration of bulk pore water through

the clay plug, i.e. it has been assumed that no water is adsorbed by the clay and

therefore no expansion takes place. It has also been assumed that

1

φ

∂φ

∂Pw
= CR (124)

where CR [M−1LT2] represents rock compressibility.

Eq.(1) was solved using the method of lines approach previously described (Goudarzi

et al., 2016), using parameter values given in Table 3.1 in conjunction with the ROSETTA

pedotransfer function database (obtained from Schaap et al., 2001).

Parameter (unit) Value
Water density, ρw (kg m−3) 1000
Acceleration due to gravity, g (m s−2) 9.81
Fluid compressibility, CF (Pa−1) 4.8e-10
Rock compressibility, CR (Pa−1) 1e-8
Initial height of plug, HI (m) 0.05

Table 3.1: Capillary suction model parameters. Fluid and rock compressibility values
taken from Schwartz & Zhang (2003, p.74)

Figure 3.1 shows how the moisture content of the clay plug varies with time. As

water migrates through the pore-space the moisture content increases, until equilibrium

is reached and no more water can enter the plug. For the height of the plug being

modelled, saturated moisture content is not reached throughout the entire plug and the
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moisture content decreases slightly with increasing elevation once equilibrium has been

reached. This is because for the given height of the plug capillary pressure is not able

to suck enough water to the top of the plug to fully saturate it.

Figure 3.1: Moisture content evolution with time for plugs containing (a) 5 % clay and
(b) 30 % clay. Both plugs have an initial effective saturation, Se0, of 0.01. The blue
and yellow lines represent the residual moisture content and the final moisture content
respectively.

An increase in the clay content of the plug leads to an increase in the time taken to

reach equilibrium (hereafter called the equilibrium time). As shown by Figure 3.1a, a

plug containing 5 % clay takes 26 s to reach equilibrium, whereas the time taken for a
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plug with a clay content of 30 % is 15 days (Figure 3.1b). This is because as clay content

increases the pore-size distribution becomes less well sorted, resulting in more pores of

a smaller diameter (Schwartz & Zhang, 2003, p.135). Permeability decreases with pore

diameter, meaning that the rate of migration of water through the plug is reduced as

clay content increases and more time is required for the plug to reach equilibrium.

Figure 3.2: Moisture content evolution with time for plugs containing (a) 5 % clay and
(b) 30 % clay. Both plugs have a Se0 of 0.2.

Figure 3.2 shows the evolution of moisture content with time for plugs with a higher

initial effective saturation, Se0. Comparison with Figure 3.1 shows that equilibrium time
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decreases as initial effective saturation increases. One reason for this is because the plug

contains more water initially and is therefore closer to equilibrium. Another reason is

that more water in the plug results in a higher initial relative permeability throughout.

For example, a plug containing 5 % clay with an initial effective saturation of 0.01, has

a relative permeability of 5.105e-5, whereas the same plug with an initial effective satu-

ration of 0.2 has a relative permeability of 0.0199. A higher relative permeability allows

for easier flow through the plug and therefore less time is taken to reach equilibrium.

Due to time constraints with running the model, results could not be obtained for

plugs with clay contents higher than 30 %, despite using larger time steps. The model

did run for all clay contents when using fewer grid points, but it was found that accuracy

of the results was significantly reduced. A possible solution to this could be to treat

the rock and water as incompressible. This should be tested with further research.

Figure 3.3: Relationship between effective saturation and capillary pressure for a plug
with a clay content of 5 % and a Se0 of 0.01.
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Capillary pressure is inversely related to effective saturation, as shown by Figure

3.3. This can be explained by considering the air entry pressure of a pore, defined as the

pressure required to move water out of the pores in order for air to enter (Lu & Likos,

2004). There is an inverse relationship between pore-radius and air entry pressure (Lu

& Likos, 2004). This means that air enters the largest pores first, because a lower

pressure is required. Pressure needs to be increased in order for air to enter smaller

pores. Figure 3.3 shows that low capillary pressure values correspond with high effective

saturation values. As effective saturation decreases, i.e. water is being displaced by air,

capillary pressure increases.

3.2 Sorption Model

The capillary suction model described in the previous section assumes that all water

is contained within the pore-space. Here the model is extended to incorporate sorbed

water through the use of the Langmuir isotherm. Swelling is not yet considered. The

assumption of Eq.(124) still holds.

Eq.(1) was solved following the same approach applied to the capillary suction

model, using parameter values given in Table 3.2.

Parameter (unit) Value
Water density, ρw (kg m−3) 1000
Bulk density, ρb (kg m−3) 2600
Acceleration due to gravity, g (m s−2) 9.81
Fluid compressibility, CF (Pa−1) 4.8e-10
Rock compressibility, CR (Pa−1) 1e-8
Initial height of plug, HI (m) 0.05

Table 3.2: Sorption model parameters. Fluid and rock compressibility values taken
from Schwartz & Zhang (2003, p.74)

Figure 3.4 shows the evolution of moisture content with time for two plugs, contain-
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ing 5 % and 30 % clay respectively. Comparison with Figure 3.1 shows that, following

the incorporation of sorbed water, it takes longer for the plug to reach equilibrium. For

example, for the plug containing 5 % clay, equilibrium time has increased from 26 s to

50 s. This is because, as water is being adsorbed by the clay mineral, it is being taken

out of the pore-space and, since the rate of flow of water into the plug does not vary

significantly between the two models, more water is required to migrate through the

plug.

Figure 3.4: Moisture content evolution with time for plugs containing (a) 5 % clay and
(b) 30 % clay. Both plugs have a Se0 of 0.01. The sorption parameters are smaxF = 2
and Sef = 0.5.
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3.2.1 Sensitivity Analysis

A sensitivity analysis has been performed to determine the impact the newly defined

sorption parameters, sF and Sef , have on equilibrium times for plugs of varying clay

content.

Recall that sF describes how much more water is adsorbed compared with the

amount in the pore-space. This suggests that as sF is increased, time taken to reach

equilibrium will increase. Figure 3.5 confirms this and indicates a linear relationship

between sF and equilibrium time. The results also show that the difference in equilib-

rium times produced by sF values of 1 and 10 increases with clay content, indicating

that sF has more influence on equilibrium time as clay content increases. Additionally

it is shown that when sF = 0 the sorption model replicates the capillary suction model.

Higher values of sF were tested (sF = 15, 25, 50) and followed the same trend.

Figure 3.5: Variation of equilibrium time with sF for four plugs with different clay
contents. Other parameters held constant: Se0 = 0.01, Sef = 0.5. Note that when
sF = 0 no water is sorbed and the sorption model replicates the capillary suction
model.
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Figure 3.6 shows how equilibrium time varies with Sef . For plugs containing 5 %,

10 % and 15 % clay, figure 3.6 shows that as Sef is increased, equilibrium time increases

initially, before decreasing again once Sef = 0.4. As clay content of the plug increases,

the range of equilibrium times also increases, suggesting that Sef has a greater impact

on equilibrium time for plugs containing more clay. The plug with a clay content of 30

% does not show an initial increase in equilibrium time, only a decrease. The definition

of Sef suggests that as Sef increases, equilibrium time decreases, as is shown by all four

plugs. It is not currently known why the initial increase in equilibrium time occurs, but

it appears to disappear once clay content of the plug reaches 30 %.

Figure 3.6: Variation of equilibrium time with Sef for four plugs with different clay
contents. Other parameters held constant: Se0 = 0.01, sF = 2.

3.3 Swelling Model

This model incorporates expansion due to sorption of water, assuming uniaxial

strain conditions and that the height of the clay plug is a function of time.
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Eq.(121) was also solved by following the same approach used in the capillary suction

and sorption models, using parameter values given in Table 3.3.

Parameter (unit) Value
Initial water density, ρw0 (kg m−3) 1000
Initial bulk density, ρb0 (kg m−3) 2600
Dry clay density, ρdc (kg m−3) 1600
Air density, ρa (kg m−3) 1.225
Acceleration due to gravity, g (m s−2) 9.81
Fluid compressibility, CF (Pa−1) 4.8e-10
Initial height of plug, HI (m) 0.05
Bulk modulus, K (Pa) 4.9e9
Poisson’s ratio, ν (-) 0.15
Biot coefficient, αB (-) 1

Table 3.3: Swelling model parameters. Bulk modulus, Poisson’s ratio and Biot co-
efficient are for the Boise sandstone, taken from Jaeger et al., (2007, p.190). Fluid
compressibility value taken from Schwartz & Zhang (2003, p.74)

Figure 3.7a shows the moisture content evolution of a swelling plug with a clay

content of 5 %. The equilibrium time has increased compared with the sorption and

capillary suction model results. This is because the plug has been allowed to grow and

more water is required to fill the larger volume. Since the rate of flow of water into the

plug does not vary significantly between the models, more time is required for water to

migrate to the top of the plug.

Figure 3.7b shows how the plug has swelled with time. Linear swelling is calculated

as follows

Linear swelling =
H −HI

HI

(125)
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Figure 3.7: Moisture content evolution with time for plugs containing (a) 5 % clay
and (c) 15 % clay. Swelling curves for plugs containing (b) 5 % clay and 15 % clay.
Parameters held constant: Se0 = 0.01, sF = 2, Sef = 0.5 and εsF = 2.

The rate of swelling decreases with time, until a maximum height is reached and

swelling ends. An increase in clay content of the plug leads to the adsorption of more

water and is therefore predicted to lead to an increase in swelling. Figure 3.7 contradicts

this theory, instead showing a slight decrease in swelling with increasing clay content.

This may be due to the fact that it has been assumed that εs0 = 0. If there is water in

the clay plug initially, then an amount of initial swelling would be expected to occur.

The more water there is in the plug initially, i.e. a higher Se0, the more initial swelling
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there would be. So, for a drier plug, i.e. lower Se0, initial swelling would be closer to

0, improving the accuracy of the results in the model. Plugs with a lower Se0 were

modelled (Figure 3.8) and confirm this theory. For this reason, all subsequent plugs

being modelled will contain a Se0 of 0.001. It should be noted that the model currently

does not run for plugs with a clay content higher than 15 %. The reason for this is

unknown and will be investigated with further research.

Figure 3.8: Swelling curves for plugs containing (a) 5 % clay and (b) 15 % clay with
Se0 of 0.001.

3.3.1 Sensitivity Analysis

In addition to the sorption parameters, sF and Sef , which were defined in Section

2.2.4, another parameter is introduced: εsF . A sensitivity analysis has been performed

to investigate how each parameter affects swelling for three plugs with varying clay

content.

Figure 3.9 shows how varying sF affects linear swelling for plugs containing 5 %, 10

% and 15 % clay respectively. The plugs containing 5 % and 10 % clay show the same

overall trend: as sF is increased, time taken to reach equilibrium swelling also increases,
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but only up to a sF value of 4. For higher values no change in the swelling curve is

seen. This contradicts the sensitivity analysis results run on the sorption model, which

show that all values of sF between 1 and 10 impact the results. This suggests that for

the swelling model sF has become insignificant compared with overall swelling. It can

also be seen that sF has no effect on amount of swelling in these two plugs. This defies

the definition of sF which implies that an increase in sF leads to an increase in swelling.

The plug containing 15 % clay, by comparison, shows a different result. As occurs for

the 5 % and 10 % clay plugs, an increase in sF leads to an increase in the time taken

to reach equilibrium swelling. However, for the 15 % clay plug sF directly impacts the

amount of swelling undergone: an increase in sF leads to an increase in swelling. It

may be that at very low clay contents sF does not have an effect on swelling, and the

effect is only seen at clay contents of 15 % or higher. This is something to investigate

with further research.

The effect of using higher values of sF has been tested (sF = 15, 25, 50) and for

the simulation of plugs containing 5 % and 10 % clay no change is seen. For the plug

containing 15 % clay, swelling decreases slightly as sF is increased, by about 0.8 %. This

contradicts the definition of sF which indicates that higher values of sF can be used for

plugs with higher clay contents, as more water is adsorbed. It is not currently known

why the amount of swelling decreases with higher values of sF for the plug containing

15 % clay, but this is something to investigate with further research.

Figure 3.10 shows how varying Sef affects swelling. Simulation of all three plugs

shows the same trend: an increase in Sef leads to a marginal increase in swelling.

For the plugs containing 5 % and 10 % clay the variation in swelling with Sef is 0.9

%, but for the plug with a clay content of 15 % the variation has decreased to 0.7

%. This indicates that the variation in swelling for the range of Sef values decreases

with increasing clay content, thus making Sef less significant as clay content increases.
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However, it is difficult to investigate this thoroughly without being able to simulate

plugs with higher clay content.

Figure 3.11 shows how varying εsF affects swelling for the three clay plugs. Each

plug shows the same general trend: as εsF is increased amount of swelling also increases.

Recall that εsF is defined as the factor by which maximum bulk strain, εb,max, is greater

than observed maximum negative strain. An increase in εsF leads to an increase in εb,max

which in turn leads to an increase in εs,max and therefore an increase in εs. The results

show that this parameter has the greatest effect on overall swelling. Higher values of

εsF were also tested (εsF = 15, 25, 50) and showed the same trend.

Overall, the sensitivity analysis shows that sF affects the speed with which swelling

takes place, and the results suggest that as clay content is increased sF has a more

significant impact on the amount of swelling, but it is difficult to make this conclusion

without simulating plugs with higher clay contents. As Sef is increased swelling in-

creases by a small amount, and the results indicate that as clay content is increased,

Sef has a smaller impact on swelling. By comparison, εsF has the greatest impact,

where an increase in εsF leads to an increase in swelling.
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Figure 3.9: Swelling curves for varying sF values for plugs containing (a) 5 % clay,
(b) 10 % clay, (c) 15 % clay. Other parameters held constant: Sef = 0.5, εsF = 2,
Se0 = 0.001.
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Figure 3.10: Swelling curves for varying Sef values for plugs containing (a) 5 % clay,
(b) 10 % clay and (c) 15 % clay. Other parameters held constant: sF = 2, εsF = 2,
Se0 = 0.001.
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Figure 3.11: Swelling curves for varying εsF values for plugs containing (a) 5 % clay,
(b) 10 % clay and (c) 15 % clay. Other parameters held constant: sF = 2, Sef = 0.5,
Se0 = 0.001.
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3.3.2 Comparison with Experiments

The accuracy of this swelling model has been assessed by comparing the results

with those obtained from macroscopic swelling experiments undertaken by Erdogan

(2016). The experimental data shows linear swelling curves for an illite and a bentonite

plug which underwent expansion due to water imbibition, as has been simulated in this

model. Both experimental plugs had an initial height of 0.0038 m. The model was run

for three plugs containing 5 %, 10 % and 15 % clay respectively, also with an initial

height of 0.0038 m. The parameters used were determined based on the results of the

sensitivity analysis. It was noticed that varying the parameters had less of an effect on

swelling for the smaller plug.

Figure 3.12: Comparison between modelled results for plugs with three different clay
contents and the experimental result for an illite plug. All modelled plots overlap at
this scale. Parameters used are given in Table 3.4. Data obtained from Erdogan (2016).

Figure 3.12 shows the comparison between experimental results for an illite plug

and the modelled results for three clay plugs. Low values of sF and high values of Sef

were used in order to fit the initial slope of the modelled plugs with the experimental

result and various values of εsF were simulated in order to bring the final swelling point
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as close to the illite curve as possible.

The modelled results show a significant amount of swelling over a small time period,

before flattening off. Final swelling is reached after 25 seconds for all three plugs. By

comparison, the illite data, whilst also showing the most swelling at the start of the

experiment, curves off and swelling slows down considerably, such that final swelling is

not reached until 3600 seconds have passed. The results show that it is possible for the

model to achieve the same final amount of swelling as the experiment for all percentages

of clay simulated. There is also a good correlation between the experimental curve and

the modelled results for initial swelling. However, beyond a certain time all three

modelled results diverge from the experimental curve and only converge again once the

experimental plug reaches its final swelling value. The difference in shape between the

modelled and experimental plots could be explained by the low clay contents of the

modelled plugs (compared with the experimental plug which is composed of pure clay).

A lower clay content means that final swelling is reached sooner, as is shown by Figure

3.12. There is also very little variation between the three modelled curves. This may

be because small changes in clay content have less of an impact on overall swelling for

a smaller plug.

Parameter
(unit)

5 % Clay 10 % Clay 15% Clay

sF (-) 1 1 1
Sef (-) 0.9 0.9 0.9
εsF (-) 5.18 5.31 5.23
Se0 (-) 0.001 0.001 0.001
HI (m) 0.0038 0.0038 0.0038

Table 3.4: Parameters used for comparison with illite swelling curve.

Figure 3.13 shows the comparison between experimental results for a bentonite plug

and the modelled results for three clay plugs. Various values of sF , Sef and εsF were
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tested to find the best fit with the experimental curve.

Figure 3.13: Comparison between modelled results for plugs with three different clay
contents and an experimental result for a bentonite plug. Parameters used are given in
Table 3.5. Data obtained from Erdogan (2016).

The results show that, as with the illite comparison, it is possible to model the

same amount of swelling reached by the end of the experiment. However, in this case it

is not possible to achieve good correlation for initial swelling, despite setting the most

appropriate parameters. The modelled results in Figure 3.13 show a very quick increase

in the height of the plug, before the plot flattens off and swelling ends. In contrast, the

bentonite plug shows more gradual swelling. It has not been possible to achieve such

gradual swelling with the model. A possible reason for this could be due to the low

clay content of the plugs, which mean that final swelling is achieved sooner, hence the

steep slopes of the modelled plugs. Given that the experimental plugs are composed of

pure clay, plugs with higher clay contents need to be modelled to assess whether or not

the results match with the experimental data more accurately. Another consideration

is the type of clay being studied. The swelling patterns for illite and bentonite differ

from each other and the modelled results show a closer resemblence to the illite plug. It
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would be interesting to test the model parameters on plugs with higher clay contents to

investigate whether or not the model is able to simulate both types of clay accurately.

It should be noted that the reason the amount of linear swelling does not increase

with clay content in Figures 3.12 and 3.13 is because, in order to make comparisons

with experimental data, the model parameters have been set to match the modelled

results as accurately as possible with the experimental data, including the final amount

of swelling. If the same model parameters had been used for all three modelled plugs

then the amount of swelling would increase with clay content, as shown by Figure 3.8.

In conclusion, although the model was able to simulate the same amount of overall

swelling as the two experimental plugs, it has not been possible to simulate the evolution

of swelling with much accuracy. This indicates that the model is not suitable to simulate

clay swelling at this stage. As has been discussed, further research is required to develop

a model that can simulate plugs with a higher clay content to investigate whether or

not convergence with experimental results improves.

Parameter
(unit)

5 % Clay 10 % Clay 15 % Clay

sF (-) 4 4 4
Sef (-) 0.1 0.1 0.1
εsF (-) 7.08 7.24 7.05
Se0 (-) 0.001 0.001 0.001
HI (m) 0.0038 0.0038 0.0038

Table 3.5: Parameters used for comparison with bentonite swelling curve.
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4 Future Research

Comparing the results from the model with experimental results show that this

model currently cannot simulate clay swelling with a high degree of accuracy. This may

be partly because it is not possible to simulate the swelling of plugs containing more

than 15 % clay. It is not understood why this is the case, but it is clearly a significant

drawback of the swelling model and further research is required to investigate this. The

inaccuracy might also be because the swelling model currently shows a mass balance

error of about 8 % (difference between water entering the plug and water contained

within the plug), which increases when running tests with higher εsF values. Both the

capillary suction and sorption models show good mass balance, indicating that the error

is associated with the swelling component of the model. Further research is required

in order to determine what this error might be. Deriving a term for the initial swelling

strain may also improve accuracy of the model.

Once the error in the model has been resolved and the results show good comparison

with experimental data, adaptations to the model can be made to simulate borehole

conditions.

One such adaptation might be to reconsider the adsorption isotherm used to repre-

sent sorption of water. The model currently uses the Langmuir isotherm because the

assumptions it makes can adequately be applied to the clay swelling system. However,

the Freundlich isotherm could be considered instead. This isotherm allows for multi-

layer adsorption rather than monolayer adsorption (Foo & Hameed, 2010), which could

represent the formation of multiple hydrate layers in the interlayer region of the clay

mineral.

The model currently assumes that the clay plug is physically homogeneous. In a

subsurface setting this is unlikely to be the case. The model could be adapted to include
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fractures or cracks in the plug to assess how fluid flow along preferential pathways affects

swelling.

Drilling operations affect the in-situ stresses surrounding the borehole, resulting in

pore-pressure and pore-volume changes in the surrounding rock (Jaeger et al., 2007,

p.175). A way of accounting for this and therefore simulating borehole conditions more

accurately could be to assume undrained compression conditions, where the confining

pressure and pore-pressure are dependent on one another (Jaeger et al., 2007, p.175).

Finally, the ultimate aim of investigating the mechanisms of clay swelling is to

develop effective swelling inhibitors. By varying the input parameters this swelling

model could be adapted to test the impact of different fluids on the clay plug and

assess which fluids are most effective at minimising swelling.
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5 Conclusions

Clay swelling is a significant problem in the drilling industry and, as it is predicted

that oil and gas will be important sources of energy for the foreseeable future (IEA,

2015), it is imperative to understand the mechanisms of swelling and develop effective

inhibitors (Anderson et al., 2010)

This thesis develops a mathematical hydromechanical model to simulate the macro-

scopic swelling of clay due to water imbibition, in order to accompany macroscopic

swelling experiments run by the Layered Mineral Geochemistry Group at Durham Uni-

versity. The sorption of water is represented by a Langmuir isotherm and a swelling

strain term is derived by adapting the theory of linear poroelasticity under uniaxial

strain conditions.

The results show that as the clay content of the plug is increased more time is taken

for water to migrate up the plug and reach equilibrium. This is due to an increase

in pore size distribution which accompanies the increase in clay content (Schwarz &

Zhang, 2003). Since permeability decreases with pore diameter, the rate of migration

of water through the plug is reduced and more time is taken for water to move up the

plug.

It has also been shown that for a plug with a very low initial effective saturation

(Se0 = 0.001) amount of swelling increases with clay content. As Se0 is increased, how-

ever, the opposite occurs. This could be because the initial swelling strain is assumed

to be zero, which is unlikely to be the case since there is water in the plug initially. As

such, it is recommended that a term for the initial swelling strain be incorporated to

provide a more accurate simulation.

A sensitivity analysis of three newly defined parameters, sF , Sef , εsF , indicates that,

overall, εsF has the greatest impact on swelling. The results suggest that as clay content
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increases sF has a greater impact on swelling, whereas Sef has less of an impact.

A comparison with experimental swelling curves for two clay plugs shows that this

swelling model is not currently able to simulate clay swelling with much accuracy.

This is due to a number of limitations with the swelling model as it currently stands.

First of all, the model does not run for plugs containing more than 15 % clay. Given

that the experimental plugs are composed of pure clay, it is difficult to make accurate

comparisons using modelled plugs containing 15 % clay or less. It might be the case

that plugs with higher clay contents are able to replicate experimental results more

accurately. More research is required to investigate why the model does not run for plugs

with higher clay contents. The parameter sF also needs further study. By definition, an

increase in sF should result in an increase in swelling. However, it was found that for

the 15 % clay plug, swelling decreases slightly as larger values of sF are used. The cause

of this needs to be investigated further. Another limitation of the swelling model is that

it currently has a mass imbalance. Although the exact cause of this imbalance is not

known, it is thought to be related to the swelling component of the model, since both

the capillary suction and sorption models show good mass balance. It is recommended

that these errors in the model be investigated further so that this model can be used to

simulate clay swelling accurately and can then be further developed to simulate in-situ

clay swelling too.
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6 Appendix A: Finite Difference Approximation

The terms ∂(ρwq)/∂z and ∂Pw/∂z have been derived using the finite difference

approximation, following the approach taken by Watson et al. (2012) and Mathias et

al. (2008).

The one-dimensional plug is discretised into N number of nodes along the z-axis,

such that

0 < z(i) < zmax, i = 1...N (126)

where z(i) is the value of z at the ith node and zmax represents z at the boundary of

the plug.

It is possible to define (ρwq)(i) and Pw(i), representing (ρwq) and Pw at each node,

which leads to the following equations

∂(ρwq)(i)
∂z(i)

=
(ρwq)(i+1/2) − (ρwq)(i−1/2)

z(i+1/2) − z(i−1/2)
i = 1...N (127)

∂Pw(i)
∂z(i)

=
Pw(i+1/2) − Pw(i−1/2)
z(i+1/2) − z(i−1/2)

i = 1...N (128)

where boundary conditions are given by

q(i−1/4) = Ks

[
h(i) − h0

z(i) − z(i−1/2)

]
i = 1 (129)

q(i+1/2) = 0, i = N (130)

ρw(i−1/2) = ρw0 exp[−CFPw0] (131)

ρw(i+1/2) = ρw0 exp[CF (Pw(1+1/2) − Pw0] (132)
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Pw(i−1/2) = 0, i = 1 (133)

Pw(i+1/2) = ψ(i+1/2)ρw(i+1/2)g i = N (134)

where, with increased grid resolution, q(i−1/4) tends to q(i−1/2).
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7 Appendix B: MATLAB Codes

The MATLAB codes for the three versions of the model have been loaded onto a

CD attached to the thesis.
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8 Appendix C: ROSETTA Database

The ROSETTA database used in this model was obtained from Schaap et al. (2001)

and can be found on the CD attached to the thesis.
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