
Durham E-Theses

Recon�gurations of Combinatorial Problems: Graph

Colouring and Hamiltonian Cycle

LIGNOS, IOANNIS

How to cite:

LIGNOS, IOANNIS (2017) Recon�gurations of Combinatorial Problems: Graph Colouring and

Hamiltonian Cycle, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/12098/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/12098/
 http://etheses.dur.ac.uk/12098/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Reconfigurations of Combinatorial
Problems

Graph Colouring and Hamiltonian Cycle

Ioannis Lignos

A Thesis presented for the degree of

Doctor of Philosophy

School of Engineering and Computing Sciences
University of Durham

England

July 2016

Dedicated to my parents, Niki and Michalis.

Reconfiguration of Combinatorial Problems
Graph Colouring and Hamiltonian Cycle

Ioannis Lignos

Abstract

We explore algorithmic aspects of two known combinatorial problems, Graph Colouring and

Hamiltonian Cycle, by examining properties of their solution space. One can model the set of

solutions of a combinatorial problem P by the solution graph R(P), where vertices are solutions

of P and there is an edge between two vertices, when the two corresponding solutions satisfy

an adjacency reconfiguration rule. For example, we can define the reconfiguration rule for graph

colouring to be that two solutions are adjacent when they differ in colour in exactly one vertex.

The exploration of the properties of the solution graph R(P) can give rise to interesting ques-

tions. The connectivity of R(P) is the most prominent question in this research area. This is

reasonable, since the main motivation for modelling combinatorial solutions as a graph is to be

able to transform one into the other in a stepwise fashion, by following paths between solutions

in the graph. Connectivity questions can be made binary, that is expressed as decision problems

which accept a ’yes’ or ’no’ answer. For example, given two specific solutions, is there a path

between them? Is the graph of solutions R(P) connected?

In this thesis, we first show that the diameter of the solution graphR`(G) of vertex `-colourings

of k-colourable chordal and chordal bipartite graphs G is O(n2), where ` ≥ k + 1 and n is

the number of vertices of G. Then, we formulate a decision problem on the connectivity of the

graph colouring solution graph, where we allow extra colours to be used in order to enforce a path

between two colourings with no path between them. We give some results for general instances and

we also explore what kind of graphs pose a challenge to determine the complexity of the problem

for general instances. Finally, we give a linear algorithm which decides whether there is a path

between two solutions of the Hamiltonian Cycle Problem for graphs of maximum degree five, and

thus providing insights towards the complexity classification of the decision problem.

iv

Declaration

The work in this thesis is based on research carried out at the Algorithms and Complexity at

Durham (ACiD) research group, School of Engineering and Computing Sciences, University of

Durham, England.

Chapter 4 is a result of joint research which took place during my studies, and has resulted in

the corresponding publications [6,7], also mentioned in the chapter. No other part of this thesis has

been submitted elsewhere for any other degree or qualification and it is all my own work unless

referenced to the contrary in the text.

Copyright c© 2016 by Ioannis Lignos.

“The copyright of this thesis rests with the author. No quotations from it should be published with-

out the author’s prior written consent and information derived from it should be acknowledged”.

v

vi

Acknowledgements

The utmost gratitude goes to Dr. Matthew Johnson, my PhD supervisor, who introduced me into

the fascinating world of reconfiguration problems, as part of an EPSRC-funded project. I am glad

that Matthew gave me enough freedom to choose research questions which I thought suited my

interests best, and urged me to become an independent researcher from the first instance. At the

same time, he introduced me to other researchers and encouraged me to hone the very important

skill of working collaboratively in research teams. On personal matters, Matthew showed a lot of

understanding and has always been positive and encouraging during my research studies and for

any future career plans.

Durham felt like home, where I met my supervisor Matthew and the rest of the ACiD group,

who were always keen to discuss new graph theory problems and to invite other researchers from

all over the world. This is where I met colleagues who are also now friends, like Viresh Patel – by

the way my ‘Patel number’ is 1!

A bit more back in time in Liverpool, many thanks go to Prof. Leszek Gasieniec, my MSc thesis

supervisor and co-author in a paper. Leszek convinced me to take a graph theory project for my

dissertation, as he believed that my background fitted his project well. He did not have to try hard,

as anyway becoming a software engineer instead seemed to me perhaps only a way to survive and

not as fascinating as delving into the theory side of things.

Becoming a researcher has been an unimaginable experience in many aspects. I will never

forget the moment when in my first working meeting, I faced something which I had considered

an exaggerated rumour; that a professor could stare at a piece of paper while having no answers

vii

viii

to the question at the top of the page, sometimes asking me, his student, whether I had any idea

what the answer might be! It was not an academic joke towards the un-initiated student. It was

a serious question. Suddenly, although I was at a cafe, it felt as if we had reached the boundaries

of the known universe and were trying to push hard to extend them, devising a strategy using ‘pen

and paper’, surrounded by people still grounded and having no idea what it might be that is going

on. It was my normality from that moment and on.

Many thanks to all the co-authors for the fruitful discussions both at Liverpool and Durham,

and to the EPSRC for the financial support on the project linked to my PhD.

Last but not least, thanks to my family for their support, and to my partner for her continuous

support in pursuing my dreams.

Contents

Abstract iii

Declaration v

Acknowledgements vii

1 Introduction 1

1.1 Reconfiguration Questions and their Decision Problem 2

1.1.1 Computational Complexity . 3

1.1.2 Graph Theory . 4

1.2 Motivation . 6

1.3 Outline of the Thesis . 7

2 Graph Colouring Reconfiguration - A Review 9

2.1 The Reconfiguration Graph of Vertex Colourings 9

2.1.1 The Decision Problems . 10

2.2 Connectedness of Rk(G) . 11

2.3 3-MIXING . 12

2.3.1 Mixing 3-Colourings in Bipartite Graphs 13

ix

x CONTENTS

2.4 Finding Paths between k-Colourings . 15

2.4.1 3-COLOUR PATH . 15

2.4.2 k-COLOUR PATH, k ≥ 4 . 17

2.4.3 Connectedness of Rk(G) on Specific Graph Classes and Other Properties . 19

2.4.4 Kempe-Equivalence of Colourings . 19

2.4.5 Reconfiguration on Other Variants of Graph Colouring 20

3 Other Reconfiguration Problems 23

3.1 Boolean Satisfiability . 24

3.1.1 Complexity Classifications . 25

3.1.2 Other Results on SAT-CONN . 26

3.2 On the Complexity of Reconfiguration Problems 26

3.2.1 Power Supply and Subset Sum . 27

3.2.2 Shortest Path . 27

3.2.3 Independent Set . 28

3.2.4 Vertex Cover and Clique . 29

3.2.5 Dominating Set . 30

3.2.6 Problems Remaining in P . 31

3.3 Parameterized Complexity and Reconfiguration 31

3.3.1 Classes . 32

3.3.2 Bounding Solutions and Reconfiguration Sequences 32

3.4 Applications . 34

3.4.1 Radio Frequency Assignment . 34

CONTENTS xi

3.4.2 Relation to Statistical Physics (Glauber Dynamics) 36

4 Recolouring Chordal and Chordal Bipartite Graphs 39

4.1 Preliminaries . 40

4.2 Sufficient Conditions for Quadratic Diameter . 41

4.3 Graph Classes . 44

4.3.1 Chordal Graphs . 44

4.3.2 Chordal Bipartite Graphs . 46

4.4 Lower Bounds . 49

5 Recolouring with Extra Colours 53

5.1 Preliminaries . 54

5.2 Recolouring in k-EXTRA-COLOUR PATH . 55

5.2.1 Recolouring General Instances with k − 1 Extra Colours in O(n) time . . . 56

5.2.2 Instances with a Pair of Disconnected Colour Sets 57

5.2.3 Instances with ek(G,α, β) = k − 1 . 58

5.3 3-EXTRA-COLOUR PATH on Some Graph Classes 63

5.3.1 Bipartite Graphs . 64

5.3.2 Some 3-Chromatic Graphs . 64

6 Reconfiguration of Hamiltonian Cycles in Graphs of Bounded Degree 69

6.1 Introduction . 69

6.1.1 Definitions . 72

6.1.2 Deriving the Alignment of an Edge . 74

6.2 Maximum Degree 4 . 75

xii CONTENTS

6.3 Maximum Degree 5 . 82

6.3.1 Definitions . 82

6.3.2 Outline of Algorithm A and Basic Routines 86

6.3.3 Aligning Sequences and Algorithm A . 90

6.3.4 Property N of a Sequence . 97

6.3.5 Correctness of the Aligning Sequences 114

6.3.6 Correctness of A . 138

7 Conclusions 143

7.1 Graph Colouring Reconfiguration . 143

7.1.1 Open Questions on Graph Recolouring 144

7.2 Hamiltonian Cycle Reconfiguration . 145

7.3 Epilogue . 146

List of Figures

6.1 A switch on vertices t, u, v, and w. In (b), cycle C1 with edges tu and wv is adjacent to

the cycle C2 with edges tv and wu in (c). 70

6.2 A switch on vertices u0, u, v, and v0 as it is defined specifically for the HC-PATH problem,

where the vertices of the switch appear in consecutive order on both of the two adjacent

cycles C1 and C2, with u and v swapping positions in C2. 71

6.3 (a) A d-arc u(m)v with an unready edge mv ∈ U−. (b) A d-arc u(m)v with an unready

edge mv ∈ U−. (c) An aligned and ready edge in Ā . (d) A U0 edge. 74

6.4 A d-arc setting is a setting which contains a pair of related d-arcs. The middle vertex m′

of d-arc u′v′ on the current cycle is the final middle vertex of d-arc uv in the target cycle. . 85

6.5 (a) A d-crossing exchange setting. (b) A zero-exchange setting, on the left, and a one-

exchange setting on the right. Observe that it must be mm′ ∈ M in both cases. (c) A

zero-sub setting, on the left, and a one-sub setting, on the right. Only edges and non-edges

in G required by definition are illustrated. 86

6.6 (a) Vertex s is a direct supporter of the unready edge mv and not a final middle vertex of

u(m)v. According to Lemma 6.3.12, s must be p-connected to m and v. (b) According to

Lemma 6.3.13, the left direct supporter s of d-arc mv is a final middle vertex of u(m)v, as

es = sa ∈ U . 98

xiii

xiv LIST OF FIGURES

Chapter 1

Introduction

We are interested in the area of Reconfigurations of Combinatorial Problems, focussing particularly

on two well-known problems from graph theory: Graph Colouring and Hamiltonian Cycle. Some

of these questions are expressed as decision problems, that is they accept a ‘yes’ or ‘no’ answer.

Our aim is to explore algorithmic and computational aspects of such decision problems and of

other properties of reconfigurations.

In order to define the reconfiguration version of a combinatorial problem P , it is necessary to

define an adjacency relation between solutions of P . This relation is called the reconfiguration rule

and is chosen to be a minimal difference between two solutions. That is why, we call two solutions

adjacent when we can obtain one from the other by applying the reconfiguration rule once. The

single application of the rule is called reconfiguration step. For example, if problem P is Graph

Colouring, then the minimal reconfiguration rule is for two colourings to differ in colour on exactly

one vertex. For other problems, or even other variants of Graph Colouring, the reconfiguration rule

is not (naturally) unique, as there is more than one way to define a minimal symmetric difference

between two solutions. Thus, the same problem P may have more than one reconfiguration version

corresponding to respective reconfiguration rules.

A reconfiguration sequence is a sequence s1, s2, ..., sl of solutions of P , where si and si+1 are

adjacent for every i < l.

1

2 CHAPTER 1. INTRODUCTION

The main question for a reconfiguration problem is the following:

• P -PATH (or P Reconfiguration)

– Instance: A combinatorial problem P and two of its solutions s and s′.

– Question: Is there a a reconfiguration sequence starting with s and ending with s′?

The reconfiguration graph R(P)

Definition 1.0.1. R(P) is a graph whose vertices are solutions of P and there is an edge between

every pair of adjacent solutions.

Thus, P Reconfiguration can also be defined in terms of the solution graph R(P) of P . For

example, in the case of Graph Colouring, the solution graph is the set of all colourings of a graph

G and any two colourings are adjacent in the solution graph when they differ in colour on exactly

one vertex. As mentioned above, changing the reconfiguration rule creates a new reconfiguration

version of P , and accordingly a new edge set for R(P).

Since we can treat solutions of a problemP as vertices of a graph, we can also give an alternative

definition of the reconfiguration sequence between two solutions.

• P -PATH (or P Reconfiguration)

– Instance: A combinatorial problem P and two of its solutions s and s′.

– Question: Is there a path between s and s′ in R(P)?

We can also call a path between two solutions s and s′ in R(P) as a reconfiguration of s to s′.

1.1 Reconfiguration Questions and their Decision Problem

While P -PATH is naturally the fundamental question of a reconfiguration problem, there are addi-

tional interesting questions to ask, when one explores properties of the solution graph R(P).

Reconfiguration questions on a combinatorial problem P can be defined as above, but also in

terms of the properties of the solution graphR(P). For example, the P -PATH question is named by

1.1. RECONFIGURATION QUESTIONS AND THEIR DECISION PROBLEM 3

the respective property of R(P). That is, the existence of a reconfiguration between two solutions

is equivalent to finding a path between the two solutions in R(P).

Other important questions regarding feasible solutions of a problem P and its reconfiguration

graph are the following:

• P -CONN

– Instance: A combinatorial problem P with a reconfiguration rule between adjacent

solutions.

– Question: Is there a path between any two solutions s and s′ in R(P)?

• P -DIAM

– Question: What is the longest shortest path between any two solutions of P ?

In other words, P -CONN asks whether R(P) is connected, and P -DIAM asks what is the

diameter of R(P). Note that R(P) can be exponential in size and thus its diameter. We will give

more details on the properties of R(P) in the Chapters to follow.

1.1.1 Computational Complexity

Computational complexity studies how hard a problem is to solve in terms of time and space

resources. Since the complexity classification of a reconfiguration problem is one of the main tasks

of this area, we present briefly the complexity classes that we will come across. The complexity

class P contains all problems which can be solved in polynomial time. A problem is in the class

NP, when it can be computed in non-deterministic polynomial time. That is, given a solution to

a problem in NP we can verify that it is a valid solution in polynomial time. Since problems in

P are solved in polynomial time, then they are also in NP, as finding a solution is at the same time

a verification that it is indeed a solution.

In this thesis, we say that a decision problem P1 can be reduced to a decision problem P2 or

that there is a reduction from P1 to P2, when there is a polynomial time algorithm which maps (all

the) ’yes’ (resp. ’no’) instances of P1 to ’yes’ (resp. ’no’) instances of P2.

4 CHAPTER 1. INTRODUCTION

Problems in NP which are such that any other problem in NP can be reduced to them are called

NP-complete. Moreover, a problem is NP-hard, if to compute the solution to its instance is at least

as hard as doing so for an NP-complete problem.

Similarly to classifying problems in terms of polynomial time, we can ask whether polynomial

space is enough to compute a solution. A problem is in the class PSPACE (resp. NPSPACE),

when the space needed in order to compute (resp. verify) a solution to the problem is of polynomial

size. PSPACE is a class of importance for reconfiguration problems, as both the P -PATH and P -

CONN problems are in NPSPACE, and by Savitch’s theorem in [70] which proves that PSPACE =

NPSPACE, they are in PSPACE.

It is easy to see why they are in NPSPACE. An instance of P -PATH of a combinatorial problem

P , consisting of the problem P and two of its solutions, can be described in polynomial space in

relation to the size of the original problem P . Then, given a sequence of feasible solutions of

P which describes a path between the two given solutions, we can verify that each of them is

a solution using polynomial space – note that we do not have to verify all the solutions at once

or store them, as P -PATH is a decision problem and thus does not necessarily describe the path

between the two given solutions, which can be of exponential size.

In relation to completeness and polynomial space, problems that are in the PSPACE-complete

class are problems in PSPACE such that we can reduce to them any other problem in PSPACE.

For more details on computational complexity, see the books from Garey and Johnson [30] or

Papadimitriou [67].

1.1.2 Graph Theory

We introduce some of the necessary graph-theoretical terminology and notation that is used through-

out the thesis, while some more specialised definitions will be given in each chapter. For other basic

set-theoretic and graph theory terminology not found here, see Diestel [22].

We consider undirected finite graphs that have no loops and no multiple edges. Given a graph

G = (V,E), we denote the set of its vertices by V and the set of its edges by E. For a subset

1.1. RECONFIGURATION QUESTIONS AND THEIR DECISION PROBLEM 5

S ⊆ V , the graph G[S] denotes the subgraph of G induced by S, i.e., the graph with vertex set S

and edge set {uv ∈ E | u, v ∈ S}. We write G− S = G[V \ S].

For a subgraph G′ ⊆ G, not necessarily induced, we will denote the set of its vertices by V (G′)

and the set of its edges by E(G′), except otherwise defined. The set of neighbours of a vertex u in

a subgraph G′ ⊆ G is denoted by NG′(u) = {v | uv ∈ E(G′)}. Often, we may omit the subscript

for the subgraph, if there is no ambiguity.

If u has no neighbours, then we say that u is an isolated vertex. If u and v are adjacent and have

no other neighbours, then the edge uv is called an isolated edge.

A (vertex) colouring of a graph G is a mapping c : V → {1, 2, . . .} such that c(u) 6= c(v)

whenever uv ∈ E. Here, c(u) is referred to as the colour of u. We write c(U) = {c(u) | u ∈ U}

for U ⊆ V . Then a k-colouring of G is a colouring c of G with c(V) ⊆ {1, . . . , k}. If G

has a k-colouring, then G is called k-colourable. The chromatic number of G denoted by χG is

the smallest value of k for which G is k-colourable. If G is 2-colourable, then G is also called

bipartite. We denote the reconfiguration graph of the k-colourings of a graph G by Rk(G). The

colouring number col(G) of a graph G (or degeneracy of G) is the maximum minimum degree of

any subgraph of G, i.e. col(G) = max{δ(H)|H ⊆ G}.

The number of vertices of a graph G is |V | = n, except if stated otherwise. Thus, when we

calculate time and space complexities in relation to the number of vertices of G, then we do that in

relation to n.

The x-vertex path is the graph with vertices v1, . . . , vx and edges vivi+1 for i = 1, . . . , x − 1.

If vxv1 is also an edge, then we obtain the x-vertex cycle. The length of a path or a cycle is the

number of its edges. A graph is called connected if, for every pair of distinct vertices v and w,

there exists a path connecting v and w. A graph G is k-connected, k ∈ N, if G −X is connected

for every set X ⊆ V with |X| ≤ k.

A hamiltonian cycle is an n-vertex cycle of G, where |V | = n.

6 CHAPTER 1. INTRODUCTION

1.2 Motivation

Reconfiguration problems have diverse motivations. The most obvious one is obtained straight

from their definition, that is to investigate how one can transform a given solution, configuration

or setting s1 of a (combinatorial) structure S to another (desired) setting s2, while abiding to the

adjacency or reconfiguration rule. This rule sets a constraint on how extensive the change between

two settings can be, and thus all other invalid shortcuts are excluded. Compared to the original

problem P of finding a desired setting of the structure, such as the ones given as an input, the

search of the reconfiguration version of P is for a valid transformation between verified settings of

C. Thus, reconfiguration problems are interesting on their own merit, as search problems within

the realm of solutions of an existing known problem P .

The fact that the input comprises of existing settings of a structure C makes reconfiguration

problems useful in modelling any situation, where one needs to gradually migrate from an old

to a new setting of a structure across any discipline, and where the option of constructing or re-

setting the structure directly to the new setting is not an option. For example, in the Power Supply

problem [44], where there is an allocation of suppliers to customers, two customers cannot change

a supplier at the same time, and also we cannot disconnect many customers completely, that is

disconnected from all suppliers.

Looking for a plethora of situations where the reconfiguration version of a problem P can be

applied, one could simply consider situations that are modelled by P , and for which the search

for a gradual transformation to a new solution is useful. For example, it is well known that Graph

Colouring can model resource allocation or scheduling (e.g. airline timetables). Given any two

graph colourings modelling those problems, the reconfiguration problem searches for a path be-

tween the two colourings and thus models a way to move from one configuration of our situation to

a desired one passing through only feasible solutions. On the other hand, the motivation could stem

directly from the situation we wish to model. For example, the evolution of a genotype where only

single mutations can occur and all genotypes must be above a certain fitness threshold is naturally a

reconfiguration problem with a specified transformation rule, which maintains the given threshold.

1.3. OUTLINE OF THE THESIS 7

Finally, whereas reconfiguration problems work on existing solutions of a problem P , an un-

derstanding of the geometry of the solution (or reconfiguration) space of a problem P can provide

insight into the performance of algorithms and heuristics [2] in solving P . Having a minimal trans-

formation between solutions defining the nature of the reconfiguration of P , provides a new way

of investigating how different solutions of P interact with or connect to each other.

1.3 Outline of the Thesis

In Chapters 2 and 3, we give an overview of related work done on reconfiguration problems. We

can separate these results in two categories. On one level, in Chapter 3, we look at the work done

on reconfiguration problems in general. We made an effort to include most of the existing results

which are defined similarly to the definition of the general problem in Chapter 1. On another level,

in Chapter 2, we look at existing work closest to our results, that is on Graph Colouring Reconfig-

uration. In so doing, we describe the main methods used by the respective authors accompanied

by key points in their proofs, as this may give a better understanding of our own work later. Note

that there are no results on Hamiltonian Cycle Reconfiguration of which we are aware.

In Chapters 4 and 5, we present our results on Graph Colouring Reconfiguration. We show

that, under certain conditions, the reconfiguration graph of vertex colourings is connected for the

chordal and chordal bipartite classes of graphs and that its diameter is O(n2), in Chapter 4. This

chapter is based on the corresponding publications [6, 7]. In Chapter 5, we give some more results

on Graph Colouring Reconfiguration, attempting to answer a question posed by Cereceda [15] on

the number of extra colours one needs to enforce a path between two colourings which are not

connected.

Another piece of our research appears in Chapter 6, on Hamiltonian Cycle Reconfiguration. We

state the problem and provide definitions and observations on general instances. The main result in

the chapter is a linear algorithm for graphs of maximum degree five, as well as a simplified version

for graphs of maximum degree four.

Finally, in Chapter 7, we summarise and discuss our results, and set showcase some open ques-

8 CHAPTER 1. INTRODUCTION

tions and future directions.

Chapter 2

Graph Colouring Reconfiguration - A

Review

In this chapter, we present results on Graph Colouring Reconfiguration which precede our work.

We give enough detail and often key points of proofs in [16–19] as a means of introducing the

reader to techniques used in reconfigurations of graph colourings.

2.1 The Reconfiguration Graph of Vertex Colourings

The reconfiguration graph of vertex colourings was introduced in [17] and [15], where the au-

thors call it the colour graph. We will use the term reconfiguration graph for any reconfiguration

problem we refer to, and specify what its vertices are if it is not implied by the context, e.g. colour-

ings, hamiltonian cycles etc. Otherwise and where it is helpful, we also use terminology from the

respective published work.

Definition 2.1.1. Let G be a k-colourable graph. Then Rk(G) is a graph whose vertices are all the

k-colourings of G and there is an edge between two k-colourings if they differ in colour on exactly

one vertex of G.

A k-colouring ofG which corresponds to an isolated vertex inRk(G) is called frozen. The term

9

10 CHAPTER 2. GRAPH COLOURING RECONFIGURATION - A REVIEW

is intuitively appropriate, as for such a k-colouring, there is no vertex in G such that it can be given

a colour different than its current. For example, given a K3, a graph which is a triangle, then all of

its 3-colourings are frozen, since each vertex receives one of the three colours and for every vertex

v in the triangle all three colours are used either to colour v or one of its neighbours.

2.1.1 The Decision Problems

The decision problems studied for Colouring Reconfiguration are not other than the reconfiguration

questions P -PATH and P -CONN, defined in Section 1. When problem P is Colouring Reconfig-

uration, the solutions are k-colourings of a k-colourable graph G. We give precise definitions for

completeness.

• k-COLOUR-PATH (or Colouring Reconfiguration)

– Instance: A k-colourable graph G and two k-colourings of G, α and β.

– Question: Is there a path between α and β in Rk(G)?

If Rk(G) is connected, then we can say that G is k-mixing [15] (or just mixing if the number of

k colours is implied). This alternative definition derives from an application of colourings in their

solution space, which requires a graph to be mixing; see Section 3.4.2 on Glauber Dynamics and

the rapid mixing of Markov Chains.

• k-MIXING

– Instance: A k-colourable graph G.

– Question: Is G k-MIXING? That is, is Rk(G) connected?

Cereceda, van den Heuvel and Johnson [19] give the very first results on the connectedness of

Rk(G). First, they explore the values of k for which Rk(G) is guaranteed to be connected. Then,

by looking at the case k = χ(G), they show that Rk(G) is not connected for k being 2 or 3, while

for k ≥ 4 there are graphs for which Rk(G) is connected and graphs for which it is not.

In [18], they look at the computational complexity of deciding whether a graph is 3-mixing.

Because of the results in [19] for 3-chromatic graphs, the decision (problem) is narrowed down

2.2. CONNECTEDNESS OF RK(G) 11

to the case of bipartite graphs and they show that it is coNP-complete for bipartite graphs and in

P for planar bipartite graphs.

The combined results [10] of Cereceda, van den Heuvel, and Johnson[19] and Bonsma and

Cereceda [13] give a dichotomy for Graph Colouring Reconfiguration. For a k-colourable graph

G and two of its k-colourings k-COLOUR PATH is in P for k ≤ 3, and PSPACE-complete for

k ≥ 4.

We will have a closer look at how these results were obtained. Note that we only sketch any

proofs presented.

2.2 Connectedness of Rk(G)

In [17], Cereceda et al. first look for sufficient conditions such that a graph G is k-mixing.

A colour c is available to a vertex u in a colouring γ, when there is no neighbour x of u such

that γ(x) = c.

There is no bound depending on the chromatic number χ(G) which can give a guarantee that

a graph is k-mixing. For example, we can consider a graph which is the complete bipartite graph

Km,m missing the edges of a perfect matching. Such a graph is k-mixing for every k ≥ 3, except

for k = m, as Rm(G) contains a frozen colouring, that is a colouring which is isolated in Rm(G).

To colour Km,m, with this colouring, colour the m vertices which belong to the same independent

set with different colours (from 1 to m). Then, there is one only way left to colour the rest m

vertices, as each one of them has only one available colour.

On the other hand, for the colouring number col(G) (or degeneracy) of G, the authors give the

following result:

Theorem 2.2.1. For any graph G and integer k ≥ col(G) + 2, Rk(G) is connected.

This improves the lower bound guaranteeing a graph to be k-mixing in terms of the maximum

degree of G as given in [50], which was ∆(G) + 2, because col(G) ≤ ∆(G).

12 CHAPTER 2. GRAPH COLOURING RECONFIGURATION - A REVIEW

Connected bipartite graphs have chromatic number 2 and exactly two 2-colourings, therefore

R2(G) is disconnected with two isolated vertices – for exampleK2 is the smallest such graph. This

implies that 2-MIXING answers ‘NO’ for every instance.

Thus, the first interesting case for k-MIXING is when k = 3.

A Weighting System for 3-Colourings

A weighting system can be defined on the edges and cycles of a graph G, which has been given a

3-colouring α, with colours 1, 2 and 3 [17].

Given an orientation for an edge uv, say from u to v, then the weight of uv is +1, when uv

is coloured 12, 23, 31, and −1 when it is coloured 13, 21 or 32. The weight of a cycle C with a

colouring α is denoted by W (
−→
C ,α) and is the sum of the weights of all of its edges. To calculate

W (
−→
C ,α), one has to choose the same orientation for the edges of C, e.g. clock-wise. Likewise,

for the weight of a path, one has to choose the same orientation for all of its edges.

2.3 3-MIXING

Lemma 2.3.1. Given a graph G coloured with a colouring α, let
−→
C be an oriented cycle. If

W (
−→
C ,α) 6= 0, then G is not 3-mixing.

If we consider the weights of the cycle in two adjacent colourings in R3(G), then their weight

should be the same, as changing the colour in only one vertex changes the sign of the weight of

both incident edges, that is from +1 to −1 and vice versa. For the given colouring α and cycle C

of G, we can choose two specific colours and swap their occurrence on the vertices on which they

appear receiving a different colouring β with W (
−→
C , β) = −W (

−→
C ,α). Since they have different

weights, we know that they are in different components of R3(G). Thus, G is not 3-mixing.

Given that a 3-chromatic graph contains at least one cycle of odd length (and thus having non-

zero weight), the last lemma immediately implies that 3-chromatic graphs are not 3-mixing.

2.3. 3-MIXING 13

2.3.1 Mixing 3-Colourings in Bipartite Graphs

The remaining case for 3-colourable graphs is when they are bipartite, which is essentially when

the decision problem 3-MIXING is not trivial to answer, as its instances cannot be classified as

mixing or non-mixing only. This is what is studied by Cereceda van den Heuvel, and Johnson [18],

proving that 3-mixing is coNP-complete for bipartite graphs, but in P for planar bipartite. We

briefly look at how these results were obtained.

The following theorem states the main result in [18].

Theorem 2.3.2 (Cereceda et al. [18]). The decision problem 3-MIXING is coNP-complete.

A pinch on two vertices u and w of a graph G, which are at distance two, is the identification

of u and w and the removal of any double edges produced. Accordingly, a graph G is pinchable to

a graph H , if there exists a sequence of pinches that transforms G into H .

The following theorem gives a characterisation for bipartite graphs which are not 3-mixing. We

give a sketch of the original proof.

Theorem 2.3.3 (Cereceda et al. [18]). Let G be a connected bipartite graph. The following are

equivalent:

(i) The graph G is not 3-mixing.

(ii) There exists a cycle C in G and a 3-colouring α of G with W (
−→
C) 6= 0.

(iii) The graph G is pinchable to the 6-cycle C6.

Proof. If G is not 3-mixing, then R3(G) has at least two disconnected components. Taking two

colourings, α and β on different components means that there is no path between the two colourings

in R3(G). And thus (i) implies (ii).

G does not contain odd cycles and C4 has always zero weight, so C must be some cycle with

even length and more than 4. IfG = C, then we can pinchG to C6. IfG is C with some additional

chords, then by Lemma 2.3.1 and some thought we can show that there is smaller cycle C ′ with

non-zero weight. With these observations in mind, we can carefully fold G to a cycle C making

sure that a cycle of non-zero weight is maintained and then pinch that cycle to a 6-cycle.

14 CHAPTER 2. GRAPH COLOURING RECONFIGURATION - A REVIEW

Finally, C6 is the smallest bipartite cycle which is not 3-mixing. Assuming (iii) and taking

two 3-colourings of C6, α and β in different components of R3(G), it is possible to construct two

3-colourings of G, α′ and β′, such that α′ is obtained from α and β′ is obtained from β, by using

the reverse sequence of folding G to C6. The construction can be done such that the colouring

of G has the same weight with the respective colouring of C6. Thus, the new colourings are not

connected inR3(G) which implies (i).

Since Theorem 2.3.3 gives a characterisation of when a bipartite graph is 3-mixing, then how

hard it is to decide this depends on the hardness of the equivalent characterisations.

The decision problem of whether a bipartite graph is pinchable to C6 is NP-complete [18] by

a reduction from the problem of whether the same graph is retractable to C6 [77]. Therefore,

deciding whether G is not 3-mixing is also NP-complete by Theorem 2.3.3 and thus 3-MIXING is

coNP-complete.

3-MIXING for Planar Bipartite Graphs

Theorem 2.3.4 (Cereceda et al. [18]). Restricted to planar bipartite graphs, the decision problem

3-MIXING is in P .

The authors show this by giving a polynomial algorithm which decides the problem. The algo-

rithm is given in a series of claims which can be applied repeatedly, if needed, and using Theorem

2.3.3.

Before we list the claims used, we need the following definitions.

A drawing of a graphG on a surface S is a graphical representation ofG on S, with each vertex

assigned a distinct point on S, and each edge assigned a curve which joins points which correspond

to the vertices the edge connects. The drawing is an embedding if no pair of curves intersect in

points of the surface which do not correspond to vertices. G is embeddable on S, if there exists an

embedding of G on S. A planar embedding of a graph is its embedding on the plane.

We assume that G has a planar embedding. Given a cycle D in G, let Int(D) and Ext(D) be

2.4. FINDING PATHS BETWEEN K-COLOURINGS 15

the sets of vertices inside and outside of D, respectively. If both Int(D) and Ext(D) are non-

empty, D is said to be separating. For D, a separating cycle in G, let GInt(D) = G − Ext(D)

and GExt(D) = G− Int(D). Let a face of G with k edges in its boundary be a k-face, and a face

with at least k edges in its boundary a ≥k-face.

Suppose G has a cut-vertex v. Let H1 be a component of G − {v}. Then, G1 is the induced

subgraph G[V (H1) ∪ {v}] and G2 is the induced subgraph G − H1. A block of G is a maximal

connected subgraph of G with no cut-vertex.

The following claims below decide whether specific induced subgraphs of G are 3-mixing by

using Theorem 2.3.3. That is, the decision is made based on whether each subgraph has a cycle C

with non-zero weight or whether it is pinchable to C6.

1. If G has a cut-vertex v, then G is 3-mixing if and only if both G1 and G2 are 3-mixing.

2. If G is 2-connected and has a planar embedding with a separating 4-cycle D, then G is

3-mixing if and only if GInt(D) and GExt(D) are both 3-mixing.

3. If G is 2-connected, has a planar embedding with no separating 4-cycle, and every internal

face of the embedding is a 4-face, then G is 3-mixing.

4. If G is 2-connected and has a planar embedding with: no separating 4-cycle, an internal

≥6-face, and has an ≥6-face outer face, then G is not 3-mixing.

2.4 Finding Paths between k-Colourings

2.4.1 3-COLOUR PATH

Cereceda et al. [19] give a polynomial algorithm for 3-COLOUR PATH, which also finds the

shortest path between two 3-colourings, if it exists, but only for some instances. Also, the diameter

of R3(G) is O(n2).

Thus the main results of this work are the following.

Theorem 2.4.1 ([19]). The decision problem 3-COLOUR PATH is in P .

16 CHAPTER 2. GRAPH COLOURING RECONFIGURATION - A REVIEW

Theorem 2.4.2 ([19]). Let G be a 3-colourable graph with n vertices. Then the diameter of any

component of R3(G) is O(n2).

We give some of the ideas on how they prove their results.

Let G be a graph with two of its colourings, α and β. An obstruction is any structure in G

which forbids the existence of a path between the colourings in R(G). A fixed vertex v in α of G

is a vertex which cannot be recoloured following any sequence of recolourings beginning from α.

A fixed cycle is a cycle of fixed vertices with respect to a specific colouring. A fixed path is a path

whose endvertices are fixed. The set of all fixed vertices in a 3-colouring α is denoted by Fα.

Theorem 2.4.3 ([19]). Let G be a graph on n vertices. Two 3-colourings α and β of G belong to

the same component of R3(G) if and only if

(i) Fα = Fβ and α(v) = β(v) for each v ∈ Fα,

(ii) for every cycle C in G, W (
−→
C ,α) = W (

−→
C , β),

(iii) and for every path P between fixed vertices, W (
−→
P , α) = W (

−→
P , β).

Thus, for two 3-colourings α and β to belong to the same component of R3(G), the set of fixed

vertices has to be the same in both colourings, and all cycles and fixed paths in G must have the

same weight in relation to the two colourings. The algorithm shows either a path between α and β

or an obstruction according to the three necessary conditions above.

The algorithm first decides (i) of Theorem 2.4.3 and, if successful, recolours vertices until

the target colouring is reached or a cycle or path is found which does not satisfy (ii) and (iii),

respectively, of the same Theorem. When the algorithm finds a path, this is done inO(n2) number

of steps, which proves Theorem 2.4.1. Moreover, the path found is the shortest possible [52].

Since all the steps taken by the algorithm are used to recolour vertices, we immediately know

that the diameter of R3(G) is O(n2). And as there is an example when an exhibited shortest path

has quadratic length, this implies that the diameter is actually O(n2).

2.4. FINDING PATHS BETWEEN K-COLOURINGS 17

2.4.2 k-COLOUR PATH, k ≥ 4

Bonsma and Cereceda [13], prove that for every k ≥ 4, the k-COLOUR PATH problem is

PSPACE-complete. Moreover, there is an infinite class of graphs such that each graph has two

colourings which are at super-polynomial distance in Rk(G). We give some more details on how

the completeness result is obtained.

Theorem 2.4.4 ([13]). For every k ≥ 4, the decision problem k-COLOUR PATH is PSPACE-

complete. Moreover, it remains PSPACE-complete for the following restricted instances:

(i) bipartite graphs and any fixed k ≥ 4,

(ii) planar graphs and any fixed 4 ≤ k ≤ 6,

(iii) bipartite planar graphs and k = 4.

The proof is by a reduction from k-LIST-COLOUR PATH and SLIDING TOKENS. k-COLOUR

PATH is reduced to LIST-COLOUR PATH and the latter to SLIDING TOKENS [40]. We now

define these problems.

A token configuration of a graphG is a set of vertices on which tokens are placed, in such a way

that no two tokens are adjacent. In SLIDING TOKENS instances, the vertices of G are separated

into token triangles (copies of K3) and token edges (copies of K2), and all these groups of vertices

are connected by link edges (normal edges). Exactly one token is placed on one of the vertices of

each token triangle or edge and can slide towards any other of their vertices. However, the token is

not allowed to slide along a link edge, thus always staying on its token triangle or edge.

• SLIDING TOKENS

– Instance: A graph G and two token configurations of G, TA and TB .

– Question: Is there a sequence of moves transforming TA into TB?

Theorem 2.4.5 ([40]). SLIDING TOKENS is PSPACE-complete.

The problem LIST-COLOUR PATH is only different to k-COLOUR PATH in that there is a

colour list for each vertex, a list of available colours from which to choose in order to colour (or

18 CHAPTER 2. GRAPH COLOURING RECONFIGURATION - A REVIEW

recolour) the vertex. Therefore, the reconfiguration graph of list-colouringsRLk (G) contains proper

list-colourings of G.

• LIST-COLOUR PATH

– Instance: A graph G, colour lists L(v) ⊆ {1, 2, ...k} for all v ∈ V (G), and two k-

colourings of G, α and β.

– Question: Is there a path between α and β in RLk (G)?

The following lemma shows that a LIST-COLOUR PATH instance can be transformed into a

k-COLOUR PATH instance, while maintaining the planarity and/or bipartiteness.

Lemma 2.4.6 ([13]). For any k ≥ 4, a LIST-COLOUR PATH instance (G,L, α, β) with lists

L(v) ⊆ {1, 2, 3, 4} can be transformed into a k-COLOUR PATH instance (G′, α′, β′) such that

the distance between α and β in R(G,L) (possibly infinite) is the same as the distance between α′

and β′ in Rk(G′). Moreover,

(i) if G is bipartite, this can be done so that G′ is also bipartite, for all k ≥ 4,

(ii) if G is planar, this can be done so that G′ is also planar, when 4 ≤ k ≤ 6,

(iii) if G is planar and bipartite, this can be done so that G′ is also planar and bipartite, when

k = 4.

Ideas from the Proof of Theorem 2.4.4:

k-COLOUR PATH is in NPSPACE, as given an instance of the problem together with a cer-

tificate (a sequence of recolourings that shows the path between the two colourings in Rk(G)),

then its validity can be checked in polynomial space. And because NPSPACE = PSPACE [70],

k-COLOUR PATH is in PSPACE.

SLIDING TOKENS is reduced to LIST-COLOUR PATH and the instances of the latter can then

be transformed to k-COLOUR PATH instances, according to Lemma 2.4.6.

SLIDING TOKENS is PSPACE-complete [40] with the reduction given for restricted classes

of graphs. Thus, also the reduction from SLIDING TOKENS to LIST-COLOUR PATH in [13] is

proven for restricted classes of graphs. We will outline how this reduction can be done and for

2.4. FINDING PATHS BETWEEN K-COLOURINGS 19

which restricted classes.

Given an instance of SLIDING TOKENS, (G,TA, TB), we can construct an instance (G′, L, α, β)

of LIST-COLOUR PATH, such that token configurations correspond to list-colourings and sliding

a token inG to a sequence of recolourings. Moreover, the construction can be done such that graph

G′ is planar and bipartite. The addition of subgraphs with pairs of vertices which cannot receive

a specific colouring (these are called forbidding paths in [18]) helps build a bijection between the

restricted movement of the tokens in graph G and the vertex recolourings between colourings α

and β in graph G′.

Recall that the colouring number of a planar graph is at most 5 and of a bipartite planar graph is

at most 3. Therefore, from Theorems 2.2.1, 2.4.1, and 2.4.4 we have the following more generalised

conclusion:

Theorem 2.4.7. k-COLOUR PATH is:

• PSPACE-complete, for planar graphs and 4 ≤ k ≤ 6,

• in P, for planar graphs and k ≤ 3 or k ≥ 7,

• PSPACE-complete, for bipartite planar graphs and k = 4,

• in P, for bipartite planar graphs and k 6= 4.

2.4.3 Connectedness of Rk(G) on Specific Graph Classes and Other Properties

Choo and MacGillivray [20] explore a very interesting property of the reconfiguration graph of

vertex-colourings. They define the Gray code of k-colourings of a graph, as the number k0 such

that if k ≥ k0, then there is a Hamiltonian cycle in Rk(G). They prove that for every graph there is

a Gray code which is smallest possible and also give the Gray code of complete graphs, trees and

cycles.

2.4.4 Kempe-Equivalence of Colourings

Given a graph G, a k-colouring of G, and colours c1 and c2 (chosen from the k colours), G(c1, c2)

is the subgraph of G induced by vertices coloured c1 or c2. A Kempe change is the operation of

20 CHAPTER 2. GRAPH COLOURING RECONFIGURATION - A REVIEW

switching colours c1 and c2 on any of the connected components ofG(c1, c2). Adopting the Kempe

change as the reconfiguration rule, then we can ask the standard reconfiguration questions; is there

a path between two colourings in R(G) using one Kempe change at a time? Is R(G) connected?

Mohar [63] introduced this variant of reconfiguration before the usual terminology became a

standard. In this paper, two specific colourings are called Kempe-equivalent if there is a path

between them in R(G), and moreover all colourings of the same connected component are called

the same.

Most of the work on Kempe-equivalence precedes the work done for the standard reconfigura-

tion version. All 4-colourings of an Eulerian triangulation of the plane [28], all 5-colourings of any

planar graph [62], all 5-colourings of any graph containing no K5 minor [56], and all k-colourings

of a planar graph with chromatic number less than k [63] are all Kempe-equivalent.

2.4.5 Reconfiguration on Other Variants of Graph Colouring

Edge Colouring

Ito, Kaminski, and Demaine [46] study the List-edge Colouring Reconfiguration problem where

R(G) contains all list edge-colourings of G, given a list of permitted colours for each edge.

They show that this problem is PSPACE-complete, even for planar graphs of maximum degree

3 and lists chosen from at most six colours. They also give conditions under which R(G) is con-

nected when G is a tree and an algorithm which finds a path between two list-edge colourings in a

quadratic number of steps, which is also best possible.

McDonald, Mohar, and Scheide [60] study similar questions for the Kempe-equivalence version

of edge-colouring. They show thatRk(G), where k is the number of colours used in the colourings,

is connected when ∆(G) ≤ 3 and k = 4 , and when ∆(G) ≤ 4 and k = ∆(G) + 2. Very recently,

Belcastro and Haas [3] showed that if G is a 2-connected planar bipartite cubic graph then R3(G)

is connected.

2.4. FINDING PATHS BETWEEN K-COLOURINGS 21

L(2, 1) Labelling

The L(2, 1)-Labelling problem can be considered a graph colouring variant, as vertices receive

labels instead of colours, and there is the additional restriction that the labels of vertices at distance

one have to differ by at least two, and the labels of vertices at distance two have to differ by at least

one.

Ito et al. [48] study the list L(2,1)-Labelling Reconfiguration problem, where the reconfiguration

rule allows to change the label of exactly one vertex at a time. They show that this problem is

PSPACE-complete, even for bipartite planar graphs and k ≥ 6. They also show that the problem

can be solved in linear time for general instances if k ≤ 4, and that when G is a tree there is a

sufficient condition such that R(G) is connected.

22 CHAPTER 2. GRAPH COLOURING RECONFIGURATION - A REVIEW

Chapter 3

Other Reconfiguration Problems

After presenting research done on Graph Colouring Reconfiguration and some variants, which is

the most relevant to our work, we now follow results on other reconfiguration problems studying

the same questions, P -PATH and P -CONN, regarding the solution space of a combinatorial prob-

lem P . We start with Boolean Satisfiability (SAT) Reconfiguration, which together with Graph

Colouring was the first work in this context. If we cannot claim that the work on SAT or Graph

Colouring initiated the research on reconfiguration problems, we can certainly refer to them as

work which precedes a widespread interest in the research community. For example, the term ‘re-

configuration’ became a standard in one of the papers following the work published on SAT or

Graph Colouring – we will cite most of the results in that paper [43] later.

As it is not within the scope of this thesis to survey all the results on reconfigurations or closely

related problems, we give preference to results on the reconfigurations of well-known graph theory

problems, as our work is within that area. There are a lot of interesting results on token graphs [41],

puzzles and games [21], for which it is straightforward to express the P -PATH and P -CONN

questions. Towards the end of the chapter we refer to some work which inspired even the very first

work on SAT and Graph Colouring and some applications of reconfigurations.

For each problem that we present in relatively more detail, we give necessary definitions, in-

cluding the statement of the original problem, and then we express the two main decision problems,

23

24 CHAPTER 3. OTHER RECONFIGURATION PROBLEMS

P-PATH and P-CONN in terms of the specific problem, by replacing ‘P’ with a short name repre-

senting the specific problem, similarly to ‘k-COLOUR’ for Graph Colouring with k colours, and

stating what is the reconfiguration rule.

3.1 Boolean Satisfiability

Given a Boolean formula φ of n variables, which can be evaluated as either ‘True’ or ‘False’, then

an assignment (x1, x2, ..., xn), where for every i = 0, 1..., n, xi = True or False, is satisfying

when it evaluates φ to ‘True’. If the evaluation of φ to ‘True’ is a solution, then the solution

graph contains all satisfying assignments. The satisfiability problem SAT, expressed as a decision

problem, accepts a Boolean formula φ as an input and answers whether a satisfying assignment

exists for φ or not.

We assume that φ has at least two satisfying assignments. Given two satisfying assignments s1

and s2, SAT-PATH asks whether there is a path between the two assignments in the solution graph

R(φ) and SAT-CONN asks whether R(φ) is connected. The reconfiguration rule is the flipping

(from ‘True’ to ‘False’ and vice versa) of the value of one of the n variables in the φ.

We can assume that φ is in conjunctive normal form (CNF). Then, the solution graph contains

satisfying assignments of k-CNF formulae, where a k-CNF formula is a CNF-formulaC1∧...∧Ck,

where k is fixed and each clause Ci in the CNF-formula is built using relations from a finite set S.

There is an edge between two satisfying assignments, when they differ in the value of exactly one

variable.

We express the two reconfiguration questions according to the above definition:

• SAT-PATH

– Instance: A CNF-formula φ, and two of its satisfying assignments s1 and s2.

– Question: Is there a path between s1 and s2 in R(φ)?

• SAT-CONN

– Instance: A CNF-formula φ.

3.1. BOOLEAN SATISFIABILITY 25

– Question: Is R(φ) connected?

3.1.1 Complexity Classifications

Gopalan et al. first in [34] and then in [35] prove that both of these decision problems are PSPACE-

complete, but also looked for a dichotomy similar to the one Schaefer [71] showed for the original

problem. A set L of logical relations is Schaefer if all relations in L are exactly one of bijunctive,

Horn, dual-Horn, or affine. Schaefer proves that if the finite set of relations L is Schaefer, then

SAT is in P, otherwise it is NP-complete.

Gopalan et al. showed a similar dichotomy for the reconfiguration version of SAT [35]. They

define a set of relations L as tight, where L properly contains the Schaefer classes. They proved

that ifL is tight, then SAT-PATH is in P, otherwise it is PSPACE-complete. Also ifL is tight, SAT-

CONN is in coNP, if L is tight but not Schaefer, it is coNP-complete, otherwise it is PSPACE-

complete. They also studied the diameter of R(G); if L is tight, then the diameter of R(G) is

linear, otherwise it can be exponential.

In [34], the authors conjectured a trichotomy for SAT-CONN, if Schaefer relations were in P.

This was disproved in [58], where a set of specific Horn relations is presented such that SAT-

CONN is coNP-complete. In [35], which is the journal version of [34], Gopalan et al. refined

their evidence of their conjectured trichotomy. They show that for bijunctive and affine relations,

SAT-CONN is in P and they specify new conditions for Horn relations such that SAT-CONN is

also in P.

Thus, to complete the complexity trichotomy for SAT-CONN in general, it suffices to establish

a dichotomy within Horn relations, i.e. which exactly are in P and which are coNP-complete.

Very recently, Schwerdtfeger [72] claims to have completed the trichotomy and specifically to

have found an ommision which affects both the trichotomy for SAT-CONN and the SAT-PATH

dichotomy. Briefly, he suggests that “Gopalan et al. [35] did not consider repeated occurrences

of variables in constraint applications”, and shows that these repeated occurrences can make the

problems harder and the diameter exponential in cases, while it was thought otherwise. This small

26 CHAPTER 3. OTHER RECONFIGURATION PROBLEMS

shift of the complexity boundaries is represented by defining the set of safely tight relations for

which both problems are not PSPACE-complete [72], while the tight relations which are not safely

tight have moved to the PSPACE-complete side for both decision problems.

In addition, Schwerdtfeger [73] studied two variants of SAT Reconfiguration, considering CNF

formulae without constants and partially quantified. Although none of the two versions has a

complete classification yet, the author presents specific sets of relations which suggest, similarly

to the trichotomy of Gopalan et al., a dichotomy for SAT-PATH and a trichotomy for SAT-CONN

for both variants.

3.1.2 Other Results on SAT-CONN

Perhaps, it is worth mentioning that already Ekin et al. [27] had studied connectivity properties of

certain Boolean formulae in disjunctive normal form (DNF) and some hardness results are proven.

Finally, Makino et al. [59] present an exact algorithm for the answer of the k-SAT-CONN question

which runs in time O((2 − εk)n) for some constant εk > 0, where εk depends only on k, and not

on n.

3.2 On the Complexity of Reconfiguration Problems

The pattern of NP-complete problems giving rise to PSPACE-complete versions, especially for the

P-PATH was clearly established with the work of Ito et al. [43] with a journal version appearing

later [44], although already the work on SAT and Graph Colouring had suggested that was the

case. The authors look at a plethora of NP-complete problems and prove that the complexity of

their reconfiguration version is PSPACE-complete, but they also look at problems in P with their

reconfiguration version remaining in P. Recall that the latter was also suggested by the result on

SAT on tight relations [35].

At this point, it should be clear to the reader how the P-PATH and P-CONN questions can be

formulated, given the definition of the original problem and a reconfiguration rule. So, for any

3.2. ON THE COMPLEXITY OF RECONFIGURATION PROBLEMS 27

results presented, we will only give this necessary information.

We proceed with surveying reconfiguration problems, starting from the work done in [44] and

onwards.

3.2.1 Power Supply and Subset Sum

The Power Supply problem is an application of the maximum partitioning problem [45]. Given a

bipartite graph G with vertex partitions U and V , then U is the set of supply vertices, V is the set

of demand vertices, sup(u) is the supply of u and positive integer, and dem(v) is the demand of v,

also a positive integer. If a supply forest T =
⋃
T (u), for every u ∈ U , is a partitioning of G into

subtrees, where each subtree T (u) contains exactly one vertex u from U and one or more vertices

from V , then a supply forest is a solution if the sum of demands of its vertices in V is covered by

the supply vertex u.

Thus, the Power Supply reconfiguration graph R(G) is the set of all supply forests which sat-

isfy the demands of all vertices in U and two supply forests are adjacent in R(G), when there is

exactly a pair of demand vertices which have swapped their supply vertex. A rather straightfor-

ward reduction is given from Boolean Satisfiability Reconfiguration, proving that Power Supply

Reconfiguration is PSPACE-complete [44].

We refer the reader to [42] for the work of Ito and Demaine on the Subset Sum Reconfiguration

problem.

3.2.2 Shortest Path

Given a graph G and two of its vertices s and t, the Shortest Path problem finds a path between s

and t such that the distance between s and t is the smallest possible.

The reconfiguration graph contains all shortest paths between s and t. It is easy to see that the

reconfiguration rule can apply a minimal change to a shortest path between s and t by replacing a

vertex different from s and t, which results in replacing two edges of the vertex to be replaced with

two edges from the newly added vertex such that there is a new shortest path between s and t.

28 CHAPTER 3. OTHER RECONFIGURATION PROBLEMS

Bonsma [8] proved that Shortest Path Reconfiguration (SP-PATH) is PSPACE-complete. For

claw-free and chordal graphs it is in P and the diameter of the graph of shortest paths is linear.

For the same graphs SP-CONN is also in P. Bonsma proves the PSPACE-completeness of general

instances of the problem via a reduction from 4-COLOUR-PATH [13] and he describes polynomial

algorithms for claw-free and chordal graphs.

Shortest Path Reconfiguration was first introduced by Kaminski et al. [53] where the existence

of paths in the reconfiguration graph of shortest paths of exponential length was shown. This

was evidence that either Shortest Path Reconfiguration is PSPACE-complete or that even though

remaining in P, the diameter is super-polynomial. The authors also gave a reduction from SAT

showing that finding the shortest path between two shortest paths in the reconfiguration graph is

NP-hard.

3.2.3 Independent Set

It is not so straightforward to define the solution graph of solutions for an optimisation problem,

as a configuration of the input may not be optimal enough to be a solution. That is why, for these

problems, there is a threshold given as part of the input, usually a fixed integer.

This is the case with the Independent Set problem: Given a graph G and a positive integer k, is

there an independent set of vertices of G of size at least k?

The reconfiguration rule has to take into account the threshold in the input so that the reconfigu-

ration questions for Independent Set, IS-PATH and IS-CONN, define the reconfiguration version of

the original problem well. Thus, we need to specify when two independent sets are adjacent in the

solution graph, or else what is the exact operation which can change the content of an independent

set and produce an adjacent one.

The vertices of the graph of solutions R(G) are the independent sets of G of size at least k,

and there is an edge between two independent sets when they differ in exactly one vertex, that is

they contain k− 1 vertices which are exactly same. There is not a unique natural way to define the

operation which changes the content of an independent set I to an adjacent I ′ of G. There have

3.2. ON THE COMPLEXITY OF RECONFIGURATION PROBLEMS 29

been three different such operations defined using a token to mark a vertex, when it belongs to the

independent set: token sliding (TS), token jumping (TJ) and token addition and removal (TAR),

appearing first in [40], [54], and [44] respectively.

Obviously, a single token can be placed on exactly one vertex, and thus a set of tokens marks

an independent set in the graph G. Token Sliding is the ‘local’ reconfiguration rule, since a token

can only slide along an edge of G, producing a new independent set in the solution graph of

TS(G), where in Token Jumping a token moves to any other vertex. Thus, two independent sets

I and I ′ adjacent in the solution graph of TS(G) or TJ(G) differ in exactly one vertex such that

I\{u} = I ′\{v}, where uv ∈ G for TS only. In TAR, a token can be added to or removed from a

vertex as long as the size of the resulting independent set is equal or more than the given threshold.

Token Sliding is PSPACE-complete even for planar graphs of maximum degree 3 [40], where

the reduction is to a setting of the Non-Deterministic Constraint Logic Machine (NCL machine)

presented in the same paper by Hearn and Demaine. The NCL machine proved to be very useful

in providing a number of reductions to the PSPACE-complete class as one can see in Hearn’s

thesis [40] and the resulted publications. Token Addition/Removal is PSPACE-complete, and this

can be done by using a reduction from SAT-PATH [44].

All TS, TAR, and TJ remain PSPACE-complete for perfect graphs. This is shown by Kaminski

et al. [54] via a reduction from Shortest Path Reconfiguration [8]. More recently, it was shown

that IS-PATH is in P for claw-free graphs under the TS and TJ reconfiguration rules [11], and

cographs [9] for the TAR rule.

3.2.4 Vertex Cover and Clique

It is briefly stated in [44] that due to the direct relation of Independent Set to Vertex Cover and

Clique, Vertex Cover Reconfiguration and Clique Reconfiguration are also PSPACE-complete.

The authors also mention that since Set Cover Reconfiguration is a generalisation of Vertex Cover

Reconfiguration and Integer Programming of Clique, then these problems are also PSPACE-

complete.

30 CHAPTER 3. OTHER RECONFIGURATION PROBLEMS

Very recently, Mouawad et al. [64] showed that Vertex Cover Reconfiguration remains NP-hard

for graphs of bounded degree, but it is in P for cactus graphs.

3.2.5 Dominating Set

Given a graph G, the Dominating k-Set problem asks whether there is a dominating set of size k in

G. As another optimisation problem for which an accepted solution can be determined on whether

it satisfies a certain threshold k, the reconfiguration rule for the Dominating Set problem is not

unique and can be defined respectively to the three rules studied for the Independent Set problem.

Thus, if we placed tokens on each of the vertices that belong to a dominating set, then we would

get the three following case studies:

• Token Jumping (TJ):R(G) contains dominating sets of size k. There is an edge between two

dominating sets D1 and D2, when they differ in exactly one vertex.

• Token Sliding (TS): R(G) contains dominating sets of size k. There is an edge between two

dominating sets D1 and D2 of R(G), when they differ in exactly one vertex such that if

u ∈ D1\D2 and v ∈ D2\D1, then uv ∈ E.

• Token Addition-Removal (TAR): R(G) contains dominating sets of size at most k. There is

an edge between two dominating sets D1 and D2 of R(G), when they differ in exactly one

vertex.

Using this terminology, it is now easier to refer to the results obtained so far in [29], [36], [74],

and [65].

The TJ rule has been considered by Subramanian and Sridharan with k = γ(G), where γ(G) is

the domination number of G, as cited in [36]. Fricke et al. show that R(G) is connected for trees

under the TS rule with k = γ(G) as well [29].

Haas and Seyffarth [36] study the TAR version of Dominating Set Reconfiguration. Note that

according to the TAR rule, we are allowed to add or delete a vertex each time, so for each domi-

nating set D ∈ R(G), it is k ≥ |D| ≥ γ(G). They show that R(G) is connected for k = n − 1,

where G has at least two independent edges and n is the number of vertices of G. They also prove

3.3. PARAMETERIZED COMPLEXITY AND RECONFIGURATION 31

that for bipartite and chordal graphs R(G) is connected when k = Γ(G) + 1, where Γ(G) is the

maximum cardinality of a minimal dominating set of G.

Very recently, Suzuki, Mouawad, and Nishimura [74] extended the results for the connectivity

of R(G) under the TAR rule showing that R(G) is connected for k = n−m, when G has at least

m+1 independent edges. They also give counterexamples and thus giving an answer to a question

in [36] on whether R(G) is connected for any graph, when k = Γ(G) + 1. The examples are

planar, multi-partite and of bounded treewidth graphs. Finally, they demonstrate an infinite family

of graphs of exponential diameter, when k = γ(G) + 1, which is the minimum value for k for the

TAR model – if k = γ(G), then we cannot delete vertices, but only swap, which is possible only

under the TS and TJ rules.

3.2.6 Problems Remaining in P

Shortest Path for general instances, 4-Colouring for bipartite and planar graphs and SAT for tight

relations are all polynomially solvable, but their reconfiguration version is PSPACE-complete, as

seen in Sections 3.2.2, 2.4.2 and 3.1.1, respectively.

Perhaps the result on Shortest Path was the most surprising of all, as it is the only known recon-

figuration problem which is PSPACE-complete on general instances while the original version is

in P. For example, Minimum Spanning Tree Reconfiguration and Matching Reconfiguration are in

P both originally and as a reconfiguration problem [44]. Actually, the authors prove that Matroid

Reconfiguration is in P, which generalises the result for Minimum Spanning Tree.

3.3 Parameterized Complexity and Reconfiguration

Lately, there has been an increasing interest to examine the tractability of reconfiguration prob-

lems through a different perspective. Since a lot of problems are PSPACE-complete, it seems

reasonable to look at their parameterized complexity [24] or how useful it is to approximate their

solutions.

32 CHAPTER 3. OTHER RECONFIGURATION PROBLEMS

3.3.1 Classes

Some problems accept an algorithm which requires time polynomial on the input size (e.g. the

number of vertices), but can be exponential for some parameter k of the problem. If this parameter

can be fixed, i.e. its size does not depend on the input size n of the problem, then the problem

belongs in the complexity class FPT (Fixed Parameter Tractable) or we say that the problem is

FPT. Other problems remain intractable even when one or more of their parameters are fixed.

Those problems belong to the W[t], t = 1, 2, ... complexity classes, with FPT = W[0]. These

classes form the W-hierarchy and they are such that W[i] ⊆W[j], for all 1 ≤ i ≤ j. If a problem

is W[i]-complete, then there is an FPT-time reduction to other problems which are W[i]-complete.

For example, a problem is W[1]-complete if it can reduce to CLIQUE or INDEPENDENT SET

in FPT-time and a problem is W[2]-complete if it can reduce to DOMINATING SET using an

FPT algorithm. The W[i] hierarchy can also be formally defined in relation to combinatorial

circuits of weft i. For more details and precise definitions the reader should refer to one of the

parameterized complexity textbooks available, for example, see [24].

3.3.2 Bounding Solutions and Reconfiguration Sequences

Mouawad et al. [65] first suggested two straightforward parameterizations of reconfiguration prob-

lems; to bound the number of solutions k and/or the length ` of the reconfiguration sequence

between two solutions in R(G). They adapt or extend methods used in the area of parameterized

complexity in order to obtain polynomial reconfiguration kernels in bounding the number of solu-

tions, and they manage to do this for the Feedback Vertex Set Reconfiguration and Bounded Hitting

Set Reconfiguration problems. On the contrary, they show that Unbounded Hitting Set Reconfigu-

ration and Dominating Set Reconfiguration are W[2]-hard, when parameterized by k + `.

Independent Set, Vertex Cover, Dominating Set, and Graph Colouring Reconfiguration

Mouawad et al. [65] also give a general approach on reconfiguration versions of problems with

hereditary properties, classifying them as W[1]-hard, for example Independent Set parameterized

3.3. PARAMETERIZED COMPLEXITY AND RECONFIGURATION 33

by k+` and Vertex Cover parameterized by `. They also show that Dominating Set Reconfiguration

parameterised by k+` is W[2]-hard, where ` is an upper bound on the length of the reconfiguration

sequence.

For the latter, there has been more work disseminated very recently, aiming to find restricted

instances for which the two problems become fixed-parameter tractable (FPT). Mouawad et al. [64]

show that Vertex Cover Reconfiguration remains W[1]-hard for bipartite graphs, which is important

in the sense that the original problem is in P for the same class, and FPT for graphs of bounded

degree. And finally for the Independent Set Reconfiguration, also very recently, Ito et al. [47] show

that the problem under the TJ rule is W[1]-hard, when parameterised by the size of the independent

sets, but FPT, when parameterized by both the size of the independent sets and the maximum

degree. Even more recently [66] both problems were shown to be FPT for planar graphs.

Finally, Johnson et al. [52] and also Bonsma and Mouawad [12] independently showed that

k-Colouring Reconfiguration is FPT for k ≥ 3, when parameterized by the length of the reconfig-

uration sequence.

Reconfiguration on Graphs of Bounded Tree-width, Band-width and Tree-depth

Mouawad et al. [66] examine several reconfiguration problems for graphs of bounded tree-width t

and they prove that most of them remain PSPACE-complete: e.g. Independent Set, Vertex Cover,

Feedback Vertex Set. However, they also show that they are FPT, when parameterized by t. They

manage to show this by introducing a technique which defines reconfiguration problems in monadic

second order logic.

Wrochna [78] show that k-Colouring, Independent Set, and Shortest Path reconfiguration prob-

lems remain PSPACE-complete even for graphs of bounded bandwidth, which restricts instances

of the problem more than tree-width and path-width do.

34 CHAPTER 3. OTHER RECONFIGURATION PROBLEMS

3.4 Applications

Frequency Assignment Problems (FAPs) are closely related to Graph Colouring Reconfiguration,

a problem in wireless communication networks, where radio frequencies have to be (re)assigned.

Perhaps more surprising is an application in the natural realms of the physical world, as in the zero

temperature case of the anti-ferromagnetic Potts model, where particles can be seen as vertices and

their spins as colourings.

3.4.1 Radio Frequency Assignment

Frequency Assignment Problems and Graph Colouring

In FAPs, there can be different scenarios of varying settings and constraints, each one requiring

different parameters or a different model. Aardal, van Hoesel, Koster, Mannino, and Sassano [1]

give a survey of the settings of FAPs that may appear in practice, and the models and methods that

have appeared in response to the latter. This seems to be the most up to date survey, and it also

refers to older surveys of similar content. The same authors maintain a related website with an

updated bibliography [55].

Metzger’s presentation [61] in 1970 is cited [1] as the first work usually receiving the credit

for associating FAPs and graph colouring, and thus optimisation techniques. Since then, radio

frequencies have had a fast increasing use, especially after the evolution of the digital cellular

phone standard GSM, but also in other fast-developing sectors like the military industry and TV

broadcasting, and not too recently wireless internet. One can observe the development of the

area and the new problems arising together with new technologies, from the 1980s and Hale’s

survey [37] until the late 1990s; for example see Eisenblatter’s thesis [26] for a discussion on

problems and models on GSM networks.

Since the common task in FAPs is to find a balance between the minimisation of the interference

between users and the range of frequencies in use, graph colouring methods seem appropriate.

Hale [37] refers to models of FAPs in the 1980s, also associating graph colouring as a modelling

3.4. APPLICATIONS 35

tool to frequency assignment, introducing some graph colourings variants, mainly t-colourings.

For a survey on results specifically on t-colourings, see Roberts [69]. Graph L(k, h)-labeling is a

generalisation of graph colourings and can also be used in modelling FAPs [76]; for a recent survey

on this problem, see [14]. For both graph colouring and labelling techniques with application to

FAPs, the reader can refer to [49] and for a survey on a variety of methods and algorithms on FAPs

in general to the book of Leese and Hurley [57].

The Colour Graph and Frequency Re-Assignment

When using graph colouring, we usually properly model available frequencies as colours and trans-

mitting points as vertices of a graph, while transmitters that cannot broadcast in the same frequency

are connected with an edge in the graph. Additional more realistic constraints produce more com-

plex graph models. For example, such constraints could derive from the decay of radio waves with

distance or more sophisticated incompatibilities between transmitters.

The group of FAPs that can be modelled using graph colouring that is most related to the

problems on which our research focusses is the one that involves frequency re-assignments. This

occurs when the constraints designate what is called a Dynamic Channel Assignment (DCA) prob-

lem, where the demand of frequencies varies with time, as opposed to Fixed Channel Assignment

(FCA) [1]. Resetting the whole network in order to reassign the frequencies from the beginning

would not be preferable, as this could mean wide disruption for an unreasonable amount of time.

On the contrary, it may be more preferable to disrupt smaller parts of the network for less time

each time, until the desired assignment is gradually reached. The research published on frequency

reassignment up to now is limited [4, 39], especially when compared to the work on FAPs in gen-

eral. Graph Colouring Reconfiguration is, apparently, the simplest case of a FAP problem, where

transmitters cannot use the same frequency only when they are at most at unit distance from each

other.

36 CHAPTER 3. OTHER RECONFIGURATION PROBLEMS

3.4.2 Relation to Statistical Physics (Glauber Dynamics)

The connectedness of the graph of vertex colourings has been given some attention by statisti-

cal physicians when studying the Glauber dynamics of an anti-ferromagnetic Potts model at zero

temperature.

Almost uniform sampling enables us to approximately count structures of exponential size in

polynomial time [51]. Often the sampling is applied by simulating an appropriate Markov chain. A

rapidly mixing Markov chain is one that, in simple terms, converges to a very close approximation

of the stationary distribution in polynomial time [25]. Such a Markov chain, which is used for

sampling k-colourings of a graph, is known as Glauber dynamics.

The Potts model is a statistical model used to study the mechanics of the particles in a crys-

talline lattice. Studying the interaction of spins of the particles in this model offers a theoretical

basis for describing ferromagnetism and other phenomena related to the physics of solids. In the

ferromagnetic case, same spins of neighbouring particles are caused by a form of reduction of the

total energy of the system which in its turn is caused by the existence of neighbouring pairs of

particles with the same spin. In the anti-ferromagnetic case, neighbouring particles are urged to

have different spins. In both cases, the temperature of the system is a measure of the tension of

different spins to appear. As the temperature gets lower, the energy of the system is reduced more

than the existence of neighbouring pairs of particles with same/different spins. At zero temperature

the described causal relation becomes even more evident in the anti-ferromagnetic case.

The zero temperature anti-ferromagnetic k-state(spin) Potts model can be modelled as a k-

colouring of a graph G, where the graph is the crystalline lattice (the vertices are the particles)

and colours represent the possible spins. Neighbouring particles have different spins under the

specific conditions, thus neighbouring vertices have different colours. Thus, the rapidly mixing

Glauber dynamics Markov chain of the above model, describes the transition states of the spins

of the system. The ‘rapidly mixing’ part of this model and transition state system is the closest

related to our research. One of the conditions for a Glauber dynamics Markov chain to be rapidly

mixing, is that the graph model has to be k-mixing. Of course, in this case the graphs are of a

3.4. APPLICATIONS 37

very specific class (lattices), and the number of colours is large enough in order to guarantee the

k-mixing property (See Theorem 2.2.1).

For some more details on Markov Chains in this context and mixing times of combinatorial

objects, see Jerrum’s book [51].

38 CHAPTER 3. OTHER RECONFIGURATION PROBLEMS

Chapter 4

Recolouring Chordal and Chordal

Bipartite Graphs

In this chapter, we introduce a class of k-colourable graphs, which we call k-colour-dense and

we show that the reconfiguration graph R`(G) of vertex colourings of a k-colour-dense G on n

vertices is connected, when ` ≥ k + 1. We show that this graph class contains the k-colourable

chordal graphs and that it contains all chordal bipartite graphs when k = 2. Moreover, we prove

that for each k ≥ 2 there is a k-colourable chordal graph G whose reconfiguration graph of the

(k + 1)-colourings has diameter Θ(n2).

Recall that the reconfiguration graph of the k-colourings of a graph G contains as its vertex set

the k-colourings of G, and two colourings are joined by an edge in the reconfiguration graph if

they differ in colour on just one vertex of G.

Apart from the fundamental problem of characterising the relationship between the complexity

of reconfiguration problems and their original version, it is also of interest to find shortest paths

between solutions. The diameter of the reconfiguration graph provides an upper bound. This is

also related to the complexity of finding paths in the reconfiguration graph between given solutions

since paths of polynomial length in the reconfiguration graph are certificates for the problem being

in NP.

39

40 CHAPTER 4. RECOLOURING CHORDAL AND CHORDAL BIPARTITE GRAPHS

For any graphG on n vertices, the diameter ofRk(G), the reconfiguration graph of k-colourings

ofG, has been shown to beO(n2), if k = 3 andR3(G) is connected [17]. Although there are cases

where Rk(G) is not connected but contains components of super-polynomial diameter [13], there

is no known example of a family of graphs for which Rk(G) is connected but does not haveO(n2)

diameter.

A good place to start when thinking about the above question is to consider graphs of bounded

degeneracy. A graph G of degeneracy k is such that for every subgraph H ⊂ G, H has a vertex

of degree k. It is well known that graphs of degeneracy k are (k + 1)-colourable. Bonsma and

Cereceda [13] showed that if G is a graph of degeneracy k, then Rk+2(G), the reconfiguration

graph of (k+ 2)-colourings of G, is connected. In light of what is already known, we are naturally

led to ask whether Rk+2(G) has quadratic diameter; indeed it is conjectured [13] that Rk+2(G)

has cubic diameter, although this is modified to quadratic [15]. Our work includes an important

class of k-degenerate graphs, namely (k + 1)-colourable chordal graphs, for which we show the

conjecture to be true.

4.1 Preliminaries

In this section we give some basic terminology and notation in addition to what is defined in Section

1.1.2.

The disjoint union of two vertex-disjoint graphs G1 = (V1, E1) and G2 = (V2, E2), which we

denote by G1 ∪G2, is the graph with vertex set V1 ∪ V2 and edge set E1 ∪ E2.

A maximal connected subgraph D of a graph is called a connected component (or just compo-

nent) of G; we shall often abuse notation by denoting both the connected component and its vertex

set by D. A separator of a graph G = (V,E) is a set S ⊂ V such that G− S has more connected

components than G; if two vertices u and v that belong to the same connected component in G are

in two different connected components of G − S, then we say that S separates u and v. We say

that we identify two vertices u and v if we replace them by a new vertex adjacent to all neighbours

of u and v.

4.2. SUFFICIENT CONDITIONS FOR QUADRATIC DIAMETER 41

A tree is a connected graph with no cycles. A clique is a graph where every pair of vertices is

joined by an edge. The size of a largest clique in G is denoted by ωG. A perfect graph is a graph

in which χG′ = ωG′ for every induced subgraph G′ ⊆ G.

4.2 Sufficient Conditions for Quadratic Diameter

In this section, we introduce the class of k-colour-dense graphs, and we show by induction in

Theorem 4.2.2 that, for every k-colour-dense graph G, the diameter of R`(G) is at most quadratic

in the size of G for all ` ≥ k + 1. Indeed, the definition of k-colour-dense graphs is recursive and

has been formulated in order to facilitate our inductive method. For this reason, it is difficult to

establish precisely which graphs are k-colour-dense; however, in the next section, we will show

that, for example, k-colourable chordal graphs are k-colour-dense.

For a fixed positive integer k, we say that a k-colourable graphG on n vertices is k-colour-dense

if either

(i) G is the disjoint union of cliques, each of which has at most k vertices, or

(ii) G has a separator S, and G− S has components D and D′ with vertices u ∈ D and v ∈ D′

such that

(a) |D| = 1 or |D ∪ S| ≤ k,

(b) S ⊆ N(v), and

(c) identifying u and v in G results in a k-colour-dense graph G′.

We show the following proposition for use in Section 4.3.1.

Proposition 4.2.1. If G1 and G2 are k-colour-dense graphs, then G1 ∪ G2, the disjoint union of

G1 and G2, is k-colour-dense.

Proof. We will show this by induction on the total number of vertices in G1 and G2. If G1 and G2

are both the disjoint union of cliques, then the claim holds trivially, so assume that G1 is not the

disjoint union of cliques. Thus G1 has a separator S, components D1 and D2, and vertices u and v

as in part (ii) of the definition of k-colour-dense graphs; in particular, G′1, the graph obtained from

42 CHAPTER 4. RECOLOURING CHORDAL AND CHORDAL BIPARTITE GRAPHS

G1 by identifying u and v, is k-colour dense. Thus, by induction, the disjoint union of G′1 ∪ G2

is k-colour dense. Thus S,D,D′, u, v also fulfills part (ii)(c) of the definition of k-colour-dense

graphs when applied to G1 ∪G2 (and they obviously still satisfy (ii)(a) and (ii)(b)).

We define the `-colour diameter of a graph G to be the diameter of R`(G).

Theorem 4.2.2. For an integer k ≥ 1, let G be a k-colour-dense graph on n vertices. Then, for

all ` ≥ k + 1, the `-colour diameter of G is at most 2n2.

Note that ` ≥ k+1 is necessary in the above theorem because, for example, the reconfiguration

graph of the k-colourings of a clique on k vertices consists of k! isolated vertices.

Proof. Let k ≥ 1 be an integer and let G be a k-colour-dense graph on n vertices. We assume

` = k + 1; the proof for ` > k + 1 is similar. We prove the following claim which immediately

implies the theorem.

Claim 1. Let α and β be two (k+1)-colourings ofG. Then we can transform α to β by recolouring

every vertex of G at most 2n times.

There are two cases to consider corresponding to the two conditions in the definition of k-colour

dense graphs.

We first suppose that G is a disjoint union of cliques and describe how to recolour from α to

β. We recolour the disjoint cliques one at a time. Given a clique of G with vertices v1, . . . , vr,

(r < k + 1), we consider the vertices in order; once we have v1, . . . , vi−1 coloured with colours

β(v1), . . . , β(vi−1) respectively, we try to recolour vi with β(vi). We are only prevented from

doing this directly if there is a vertex vj with j > i that is presently coloured with β(vi). In this

case we first recolour vj with an unused colour (such a colour exists since r < k + 1) and then

colour vi with β(vi). When the whole clique is coloured with β each vj has been recoloured at

most j ≤ r ≤ 2n times.

We now consider the case where G is not a disjoint union of cliques but satisfies condition (ii)

of the definition of k-colour dense. We use induction on the number of vertices. Let S, D, D′,

4.2. SUFFICIENT CONDITIONS FOR QUADRATIC DIAMETER 43

u ∈ D and v ∈ D′ be as in condition (ii). We first show how to transform α into some (k + 1)-

colouring α′ satisfying α′(u) = α′(v), by recolouring each vertex of G at most once. Suppose that

α(u) 6= α(v). If we can immediately recolour u with α(v), then we do this to obtain the desired

colouring α′. If not, then

W = {w ∈ NG(u) | α(w) = α(v)} ⊆ NG(u)

must be non-empty. Since u ∈ D, andD is a component ofG−S, we haveW ⊆ NG(u) ⊆ D∪S.

However, every vertex of W is coloured α(v) and no vertex of S is coloured α(v) (since every

vertex of S is adjacent to v by condition (ii)(b)), so W ⊆ D. Now, for each w ∈ W ⊆ D, we

have NG(w) ⊆ D ∪ S; thus |NG(w)| ≤ |D ∪ S| ≤ k by condition (ii)(a) (note that |D| 6= 1 since

D contains u and the non-empty set W ⊆ N(u)). Hence, each vertex of W can be successively

recoloured with some colour not used in its neighbourhood. After this we recolour u with α(v) and

we do not recolour any other vertices ofG. Thus we have recoloured each vertex ofG at most once

and transformed α to a new (k + 1)-colouring α′ where α′(u) = α′(v). By the same argument,

we can transform β to a (k + 1)-colouring β′ with β′(u) = β′(v). Changing α to α′ and β to β′

together require that each vertex of G is recoloured at most twice.

We now identify u and v. This leads to a new vertex u′ and a graph G′ that is k-colour-dense by

condition (ii)(c). We can consider α′ and β′ to be colourings of G′ by defining α′(u′) = α′(u) =

α′(v) and β′(u′) = β′(u) = β′(v), respectively. We can transform α′ into β′ on G′ using at most

2(n − 1) recolourings for each vertex (by application of either the induction hypothesis or the

previous case depending on whether G′ satisfies the first or second condition of the definition of

k-colour dense). Thus we can transform α′ into β′ on G by simulating each recolouring of u′ by a

recolouring of u and v in G, that is, every time we recolour u′ in G′ we apply the same recolouring

to u and then immediately to v in G. Thus transforming α′ to β′ in G requires that each vertex of

G is recoloured at most 2(n− 1) times, and transforming α to α′ and β′ to β requires at most two

additional recolourings of each vertex, resulting in a total of at most 2(n−1)+2 = 2n recolourings

of each vertex, as required. This completes the proof of the claim and of Theorem 4.2.2.

44 CHAPTER 4. RECOLOURING CHORDAL AND CHORDAL BIPARTITE GRAPHS

4.3 Graph Classes

In this section, we show that k-colourable chordal graphs are k-colour-dense for every fixed integer

k ≥ 1 and that chordal bipartite graphs are 2-colour-dense. Hence, these graphs satisfy the neces-

sary condition in Theorem 4.2.2 and consequently have an at most quadratic `-colour diameter, for

` ≥ k + 1 and ` = 3 respectively.

4.3.1 Chordal Graphs

A chordal graph is a graph with no induced cycle of length more than 3. Let G = (V,E) be a

graph, let K be the set of maximal cliques of G, and for v ∈ V , let Kv be the set of maximal

cliques of G containing v. A clique tree T of a (connected) graph G is a tree whose vertex set is

K and whose edges are such that T [Kv] is connected (i.e. forms a subtree) for all v ∈ V . In this

context, the maximal cliques of G are also called bags of T .

The next lemma is well known.

Lemma 4.3.1 ([32]). A connected graph is chordal if and only if it has a (not necessarily unique)

clique tree.

The next lemma is also well known (see e.g. [33]).

Lemma 4.3.2. If G is a chordal graph then ωG = χG.

Next we prove some properties of chordal graphs and clique trees that we shall require. The

first property (i) is well known [23], and the second one (ii) has probably been used before, but we

give proofs for completeness.

Lemma 4.3.3. Let G be a connected chordal graph that has a clique tree T , where T has at least

two vertices. Let K be a leaf of T and let K ′ be the unique neighbour of K in T . We have the

following properties.

(i) S := K ∩K ′ is a separator of G, and D := K\S is non-empty and a connected component

of G− S.

4.3. GRAPH CLASSES 45

(ii) There exists u ∈ K\K ′ = K\S = D and v ∈ K ′\K such that, if G′ is obtained from G by

identifying u and v, then G′ is chordal and ωG′ ≤ ωG (so χG′ ≤ χG by Lemma 4.3.2).

We remark that the above lemma holds more generally even if K is not a leaf of T , but the

proof in our case is slightly simpler.

Proof. (i) Fix any u ∈ D := K\S = K\K ′; such a vertex exists since otherwise K ⊆ K ′,

contradicting the maximality of K. Fix any z ∈ G −K. Let P be a path of G from u to z with

vertices u = a0, a1, . . . , ar, ar+1 = z in order. Let aiai+1 be the first edge of P not in K. Then

aiai+1 is an edge of some maximal clique K∗ 6= K. Furthermore ai ∈ K since either ai = u or

ai−1ai is an edge of K. We deduce that K,K∗ ∈ Kai . Since T [Kai] is connected and the only

neighbour of K is K ′, we have K ′ ∈ Kai . Thus ai ∈ K ∩K ′ = S and so P passes through S. So

every path from u ∈ K\S to any vertex z 6∈ K passes through S. Hence S is a separator of G, and

K\S =: D (which is a clique) is a connected component of G− S.

(ii) Fix any u ∈ K\S = K\K ′ and v ∈ K ′\K; such vertices exist by the maximality of K

and K ′. Let G′ be the graph obtained by identifying u and v, and let u′ be the new vertex of G′

that results. Suppose for a contradiction that G′ is not chordal. Then G′ has an induced k-cycle

for some k ≥ 4; this cycle necessarily contains u′ since otherwise G would contain an induced k-

cycle. Therefore inG′ there is a path with vertices u, b1, . . . , bk−1, v (in order) such that identifying

u and v gives an induced cycle. Thus the path can have no chords except possibly ubk−1 or b1v.

However both of those chords would give an induced k-cycle in G, so we can assume that P is an

induced path (of length k ≥ 4). But, since S separates u and v (by part (i) of the lemma), P must

pass through S, and since every vertex of S = K ∩K ′ is adjacent to both u and v, P cannot be an

induced path.

Finally, suppose that G′ has a (k + 1)-clique. The clique necessarily contains u′; otherwise it

would also be a (k+ 1)-clique of G. Thus in G, there is a k-clique L such that L ⊆ N(u)∪N(v).

Fix vertices a ∈ L\N(u) and b ∈ L\N(v) (a, b exist, because otherwise we have a (k + 1)-clique

of G). We know that S ⊆ N(u) ∩ N(v), so that a, b 6∈ S. We also know S separates u and

v, and yet u, b, a, v is a path from u to v in G − S, a contradiction. Hence, G′ does not have a

46 CHAPTER 4. RECOLOURING CHORDAL AND CHORDAL BIPARTITE GRAPHS

(k + 1)− clique.

We use Lemma 4.3.3 in the proof of the following result.

Theorem 4.3.4. For each fixed integer k ≥ 1, every k-colourable chordal graph is k-colour-dense.

Proof. Let G = (V,E) be a k-colourable chordal graph on n vertices. We show by induction on n

that G is k-colour-dense. We may assume that G is connected since otherwise, each component of

G is k-colour-dense (by induction), and so G is k-colour dense by Proposition 4.2.1. We may also

assume that G is not a clique, since then it is trivially k-colour-dense.

By Lemma 4.3.1, G has a clique tree T . Since G is not a clique, G has at least two maximal

cliques, so T has at least two vertices. Let K be a leaf of T , and let K ′ be the unique neighbour of

K. By Lemma 4.3.3, S := K ∩K ′ is a separator of G, D := K\S is a connected component of

G − S, and there exist two vertices u ∈ D and v ∈ K ′\K ⊆ V \(D ∪ S) such that identifying u

and v gives a graph G′ that is chordal and χG′ ≤ χG ≤ k. Set D′ to be the connected component

of G− S containing v.

Now, for G, it is easy to check that S,D,D′, u, v satisfy conditions (ii) in the definition of k-

colour-dense graphs. Condition (ii)(a) is satisfied because D ∪ S = K and so |D ∪ S| ≤ |K| ≤ k.

Condition (ii)(b) is satisfied because v ∈ K ′ and S ⊆ K ′, so that S ⊆ N(v). Condition (ii)(c)

is satisfied because identifying u and v in G gives a k-colourable chordal graph G′, which is k-

colour-dense by the induction hypothesis.

4.3.2 Chordal Bipartite Graphs

A chordal bipartite graph is a bipartite graph with no induced cycle of length more than 4. It is a

misnomer since chordal bipartite graphs are only chordal if they are trees. We show that chordal

bipartite graphs are 3-colour-dense by proving that a more general class of graphs is 3-colour-

dense. Let us call a graph semi-false if it can be constructed from a set of one or more isolated

vertices by a sequence of the following two operations, namely adding a pendant vertex and adding

a semi-false twin. Here, a pendant vertex in a graph is a vertex of degree one, and a vertex u is

4.3. GRAPH CLASSES 47

a semi-false twin of another vertex v if N(u) ⊆ N(v). Note that adding a pendant vertex u is a

special case of adding a semi-false twin, unless u is added as the neighbour of an isolated vertex.

In order to show that every chordal bipartite graph is semi-false we need the following termi-

nology. A vertex u in a bipartite graph G is weakly simplicial if its neighbours can be labelled

v1, . . . , vt such that N(vi) ⊆ N(vi+1) for i = 1, . . . , t − 1. Uehara [75] showed the following,

which also follows from results of Hammer et al. [38]; see Pelsmajer et al. [68].

Lemma 4.3.5 ([38, 75]). A bipartite graph G is chordal bipartite if and only if every induced

subgraph of G has a weakly simplicial vertex.

We use Lemma 4.3.5 in the proof of the following theorem.

Theorem 4.3.6. The class of semi-false graphs is a proper superclass of the class of chordal

bipartite graphs.

Proof. We first give an example of a semi-false graph G∗ that is not chordal bipartite. Start with

a vertex u1 and add three pendant vertices u2, u3, u4, each with (unique) neighbour u1. Then add

two semi-false twins u5 and u6 of u1 with neighbours u2, u3 and u3, u4, respectively. Finally add

a semi-false twin u7 of u3 with neighbours u5 and u6. Because u1, u2, u4, u5, u6, u7 induce a

6-vertex cycle in G∗, we find that G∗ is not chordal bipartite.

We now show by induction on n that every chordal bipartite graphG on n vertices is semi-false.

The case n = 1 is trivial. Let n ≥ 2, let G be a chordal bipartite graph on n vertices, and assume

that every chordal bipartite graph with n − 1 vertices is semi-false. If we can show that G can be

obtained from a semi-false graph G′ by adding a pendant vertex or a semi-false twin the theorem

will follow. Note that any graph obtained from G by removing a vertex is chordal bipartite and so,

by the induction hypothesis, semi-false.

As a graph containing only isolated vertices is semi-false, we assume that G has a component

D containing at least 2 vertices. Lemma 4.3.5 tells us that D has a weakly simplicial vertex

u, the neighbours of which can be labelled v1, . . . , vt, t ≥ 1, such that N(vi) ⊆ N(vi+1) for

i = 1, . . . , t− 1.

48 CHAPTER 4. RECOLOURING CHORDAL AND CHORDAL BIPARTITE GRAPHS

First suppose that t = 1. Then let G′ = G − u. Thus G is obtained from G′ by adding u as a

pendant vertex.

Now suppose that t ≥ 2. Then let G′ = G− v1. Therefore G is obtained from G′ by adding v1

as a semi-false twin of v2.

We note that the class of semi-false graphs does not contain the class of chordal graphs; this can

be seen by taking any clique on 3 or more vertices.

We now show that semi-false graphs are bipartite.

Proposition 4.3.7. Every semi-false graph G is 2-colourable.

Proof. If G contains only isolated vertices the proposition is true. Otherwise G can be obtained

from a graph G′ by adding a vertex u that is either pendant or a semi-false twin. Using induction,

we can assume that G′ has a 2-colouring. We show how to extend it to G by colouring u. If u is

pendant, we colour it with the colour that is not used on its unique neighbour. If u is a semi-false

twin, then all its neighbours have a common neighbour v. We can therefore colour u with the

colour used on v.

We conclude this section by showing that every semi-false graph G is 2-colour-dense.

Theorem 4.3.8. Every semi-false graph is 2-colour-dense.

Proof. We prove by induction on n that if G = (V,E) is a semi-false graph on n vertices then it is

2-colour-dense. The claim is trivially true if n = 1.

If G is a semi-false graph on n vertices, then we know by Proposition 4.3.7 that G is 2-

colourable. Recall thatG is constructed from a set U of isolated vertices by a sequence of pendant-

vertex and semi-false-twin operations. Let u be the last vertex added to G either as a pendant

vertex or a semi-false twin (if there is no such vertex, then we have G = (U, ∅), which is trivially

2-colour dense). If u is a pendant vertex, we may assume that u is an end vertex of an isolated edge

e = uu′ of G (since otherwise we can consider u to be a semi-false twin of another vertex). Then

4.4. LOWER BOUNDS 49

G[{u, u′}] = ({u, u′}, {e}) is 2-colour-dense, G[V \ {u, u′}] is 2-colour-dense by induction, so G

is 2-colour dense by Proposition 4.2.1.

Thus we may assume u is a semi-false twin of some other vertex v of G. We take S = N(u),

D = {u} and we let D′ be the component of G − S containing v. Then S is a separator of G

(separating u from v) and |D| = 1; hence, condition (ii)(a) in the definition of 2-colour-dense is

satisfied. Because S = N(u) ⊆ N(v), condition (ii)(b) is satisfied. Finally, identifying u and v in

G to form G′ is equivalent to deleting u from G. Thus G′ is a semi-false graph (obtained from U

by performing the same operations as used for G, except the last). Since G′ is 2-colour-dense (by

induction) we see that condition (ii)(c) is satisfied. This completes the proof of Theorem 4.3.8.

4.4 Lower Bounds

We prove that the bound in Theorem 4.2.2 is asymptotically sharp up to a constant factor for every

k. To be more precise, for k = 2, we show that the 3-colour diameter of a path on n vertices is

Θ(n2). (Note that a path is chordal bipartite, and as such it is 2-colour-dense due to Theorems 4.3.6

and 4.3.8.) Apart from one subtlety, our result employs very similar techniques to [19], where it

is shown that a path on n vertices with an appended triangle has two 3-colourings with quadratic

separation. Note however that this example has a disconnected reconfiguration graph and hence

infinite diameter.

For each fixed k ≥ 3 and every n ≥ k, we give an example of an n-vertex, k-colour-dense

graph Gk(n) with (k + 1)-colour diameter Θ(n2). We believe that these are the first examples of

graphs with quadratic k + 1-colour diameter. These examples are easily derived from the path.

Theorem 4.4.1. The 3-colour diameter of a path on n vertices is Θ(n2).

Proof. We have already seen that the 3-colour diameter of a path on n vertices is at most 2n2 by

Theorem 4.2.2 and recalled that a path is 2-colour-dense. It remains only to show a quadratic lower

bound.

Let P be a path on n vertices v1, . . . , vn for some integer n ≥ 2. Let the n − 1 edges of

50 CHAPTER 4. RECOLOURING CHORDAL AND CHORDAL BIPARTITE GRAPHS

P be e1, . . . , en−1, where ei = vivi+1 for i = 1, . . . , n − 1. We define edge weights w(ei) =

min(i, n− i) for i = 1, . . . , n− 1. Given a 3-colouring c of P and an edge ei = vivi+1, we define

zc(ei) =

1 if (c(vi), c(vi+1)) = (1, 2), (2, 3), or (3, 1);

−1 otherwise.

We define the value of a 3-colouring c as

φ(c) =
n−1∑
i=1

w(ei)zc(ei).

We claim that |φ(c1) − φ(c2)| ≤ 2 for any two 3-colourings c1 and c2 of P that are adjacent in

the graph R3
P , i.e., that differ on one vertex of P . This is easy to check, but we give the details for

completeness.

Note first that z(e) changes sign if we change the colour of exactly one end vertex of e or if we

exchange the colours of e. Let vk be the (unique) vertex on which c1 and c2 differ, and suppose

c1(vk) = x and c2(vk) = y 6= x. If z is the unique colour that is not x or y, then the vertices

vk−1, vk, vk+1 (when they exist) are coloured z, x, z by c1 and z, y, z by c2. From this we deduce

that

zc1(ek−1) = −zc2(ek−1) = −zc1(ek) = zc2(ek), (4.1)

ignoring any terms that are not defined. If k 6= 1, n then

φ(c1)− φ(c2) =
k∑

i=k−1

w(ei)(zc1(ei)− zc2(ei))

= 2zc1(ek−1)
(
w(ek−1)− w(ek)

)
,

where the last line follows from (4.1). Taking the absolute value of both sides (and noting that

|w(ek−1)− w(ek)| ≤ 1) proves the claim. If k = 1, n, then excluding the appropriate terms from

the above calculation (and noting that w(e1) = w(en−1) = 1) also yields |φ(c1)− φ(c2)| ≤ 2.

We now let c1 be the 3-colouring that colours v1, v2, v3, v4, . . . by colours 1, 2, 3, 1, . . ., re-

spectively, and we let c2 be the 3-colouring that colours v1, v2, v3, v4, . . . by colours 3, 2, 1, 3, . . .,

respectively. Then

φ(c1) = −φ(c2) =
n−1∑
i=1

w(ei) =
⌊
n

2

⌋⌈
n

2

⌉
≥ 1

4
(n2 − 1).

4.4. LOWER BOUNDS 51

In order to get from c1 to c2, the value of the colouring must necessarily change by |φ(c1) −

φ(c2)| ≥ 1
2(n2 − 1). Hence, the number of recolourings required is at least 1

4(n2 − 1) = Θ(n2)

because each recolouring changes the value by at most 2. This completes the proof of Theo-

rem 4.4.1.

We now generalise Theorem 4.4.1. Recall that every k-colourable chordal graph is k-colour

dense by Theorem 4.3.4.

Theorem 4.4.2. For each fixed k ≥ 2 and each n ≥ k, there is a k-colourable chordal (hence

k-colour-dense) graph Gk(n) on n vertices that has (k + 1)-colour diameter Θ(n2).

Proof. The case k = 2 follows from Theorem 4.4.1. Assume that k ≥ 3 and set n′ = n−k+2 ≥ 2.

Let Gk(n) be the graph obtained from a path P on n′ vertices v1, . . . , vn′ by adding a clique on

k − 2 new vertices w1, . . . , wk−2 and inserting an edge between each vi and each wj . Because

we can obtain Gk(n) by repeatedly adding vertices adjacent to all existing vertices, Gk(n) is

chordal. Clearly Gk(n) is k-colourable. We now show that the k-colour diameter of Gk(n) is

Θ(n′2) = Θ(n2).

Let c1 be a colouring of Gk(n) in which the colours 1, 2 and 3 cycle on the vertices of P . Let

c2 be the colouring closest to c1 in Rk(Gk(n)) in which only 2 colours are used on P . To recolour

from c1 to c2 only involves recolouring vertices on P since as long as there are 3 colours used on

the path, we cannot recolour any vertex not in the path. Moreover only the colours 1, 2 and 3 are

available to use on the path. So we can forget about the clique and think only about the distance

between the restriction to P of c1 and c2 in R3(G). Using the ideas of the proof of Theorem 4.4.1,

we note again that the value of c1 is Θ(n′2) = Θ(n2) and see that if P has an even number of

edges the value of c2 is 0 (else consider instead P − v1v2). As again each recolouring changes the

value by at most 2, the proof is complete.

52 CHAPTER 4. RECOLOURING CHORDAL AND CHORDAL BIPARTITE GRAPHS

Chapter 5

Recolouring with Extra Colours

In this chapter we give some first results on a decision problem related to the reconfiguration graph

of vertex colourings, studied in Chapter 4.

It is of interest to examine how a NO-instance of k-COLOUR PATH can be turned into a

YES-instance by relaxing the conditions under which a path exists. That is, given a pair of k-

colourings α and β, how many extra colours e are needed such that there is a path from α to β in

the reconfiguration graph of k + e colourings?

That is, given a NO-instance of k-COLOUR PATH and now setting t = k + e, we pose the

following optimisation problem:

• k-EXTRA-COLOUR PATH (optimisation problem)

– Instance: A graph G and two of its k-colourings α and β, which are in different com-

ponents of Rk(G).

– Question: What is the smallest integer t > k such that there is a path between α and β

in Rt(G)?

We can also express the above question as a decision problem:

• k-EXTRA-COLOUR PATH

– Instance: A graph G and two of its k-colourings α and β, which are in different com-

53

54 CHAPTER 5. RECOLOURING WITH EXTRA COLOURS

ponents of Rk(G).

– Question: Given an integer t with t > k, is there a path from α to β in Rt(G)

We immediately obtain t ≤ col(G)+2 for any graph G, by Theorem 2.2.1, where col(G) is the

colouring number of G. That is, t cannot be larger than the number of colours which guarantees

that a graphG is mixing [17]. And since our instances are no-instances of k-COLOUR PATH, then

k < t ≤ col(G) + 2.

Our Results

We first show that we can recolour any k-EXTRA COLOUR PATH instance using k − 1 extra

colours in time that is linear in the number of vertices, and then we describe a property exhibited

by some instances which allows them to be recoloured using at most k − 2 extra colours. Next,

we show that there are instances which require k − 1 extra colours, thus motivating the first result.

These instances are constructed based on the cartesian product of a complete graph with itself.

Focussing on the cartesian product of the triangle (9 vertices), we show how adding a vertex and

adding/removing edges produces instances which may require either 1 or 2 extra colours. Finally,

we examine instances of simple 3-chromatic graph classes, which can be recoloured using 1 extra

colour.

5.1 Preliminaries

Here we give or recall some necessary definitions related to the colour graph and the related recon-

figuration problems. For any definition not included in this chapter, we refer the reader to Sections

1.1.2, 2.1 and 4.1.

Definition 5.1.1. Given an instance of k-EXTRA-COLOUR PATH (G,α, β), we define the colour

sets V β
i,j , 1 ≤ i ≤ 2k − 1, 1 ≤ j ≤ k of G in relation to the target colouring β, and such that

V (G) =
⋃
i,j
V β
i,j . We also define the colour classes Vi ofG, where Vi is the union of colour sets Vi,j ,

for all j. The assignment of the vertices to the colour sets is equivalent to colouring the vertices

5.2. RECOLOURING IN K-EXTRA-COLOUR PATH 55

with some colour within the range {1, 2, ..., 2k − 1}.

Thus, if a vertex u is coloured with colour i, then u ∈ V β
i,j ⊂ Vi, where j = β(u). Also,

given two different colourings of G, there is at least one vertex which belongs to different colour

sets (resp. classes) in the two colourings. When the 2k − 1-colouring of G is proper, then every

colour class and colour set are independents sets. We call the colour class Vi initial, when V β
i =

{u | α(u) = i} and target or T βj , when V β
j = T βj = {u | β(u) = j}. Recolouring a vertex u from

colour i to colour i′ is equivalent to moving u from colour set V β
i,j (resp. colour class V β

i) to colour

set V β
i′,j (resp. colour class V β

i′). Obviously, recolouring a colour set V β
i,j with colour i′ 6= i, is

equivalent to moving all the vertices of V β
i,j to colour set V β

i′,j .

A pair of colour sets V β
i,j and V β

i′,j′ , i 6= i′, j 6= j′ is disconnected, when V β
i,j ∪ V

β
i′,j′ is an in-

dependent set. The two colour sets are ‘disconnected’ in that they could potentially be ‘connected’

by having an edge between any vertices of the two colour sets, since this would not violate the

colouring constraint. Yet, they are ‘disconnected’, that is there are no edges between any pairs of

such vertices.

For what follows, if the target colouring β is clear from the context, then we denote colour set

V β
i,j as Vi,j and colour class V β

i as Vi.

5.2 Recolouring in k-EXTRA-COLOUR PATH

Recall that t is the smallest integer such that t > k and colourings α and β are connected inRt(G).

Thus, the least number of extra colours required such that α and β are connected in Rt(G) is

e(G,α, β) = t− k.

In this section we first describe how to recolour any instance G(α, β) of k-EXTRA-COLOUR

PATH quickly with k − 1 extra colours. Then in Section 5.2.3, we show that there are instances

such that e(G,α, β) = k − 1. This implies that k − 1 is not an arbitrarily chosen number of extra

colours guaranteeing the recolouring of every instance, but the lower bound of all such numbers.

In addition, we show that the trivial lower bound of 2n recolourings remains the same when we use

56 CHAPTER 5. RECOLOURING WITH EXTRA COLOURS

k − 1 extra colours when using the algorithm described in Theorem 5.2.1. The lower bound can

be achieved when we use an extra colour for each vertex and then recolour to the target colouring.

More specifically, with an unlimited number of available colours, we can recolour all vertices to

colours different than the initial k colours in at most n steps, and then recolour each vertex to its

target colour in at most n steps.

In between these results and in Section 5.2.2, we show that k − 2 extra colours are enough to

find a path between any two k-colourings for instances with a pair of disconnected colour sets.

5.2.1 Recolouring General Instances with k − 1 Extra Colours in O(n) time

We now give a simple polynomial algorithm to find a path between two k-colourings α and β in

G, showing that k − 1 extra colours are enough to recolour any instance (G,α, β).

Proposition 5.2.1. Given a k-colourable graph G on n vertices and two of its k-colourings α and

β, there is always a path of length O(n) between α and β using k − 1 extra colours.

Proof. In each round i, i = 2, ..., k, we recolour target colour class Ti with colour k+ i− 1. Then,

in k rounds we recolour each target colour class Ti to its target colour i.

It is easy to see that in the first part of the algorithm all colourings are proper, since we recolour

vertices of the same target colour class using an extra colour; different extra colours for different

colour classes. In the second part, we can only start recolouring to β from target class T1, as any

other class Ti, i 6= 1 has neighbours in T1, which is coloured with colours from α, and thus with

colours appearing in β. After we recolour T1 with colour β(T1) = 1, then any other vertex can

move to its colour target class, as its neighbours are coloured with either their target colour in β or

a colour not appearing in β. Since each vertex is recoloured at most twice, at most once in the first

round and once in the second round, the overall time is at most 2n.

5.2. RECOLOURING IN K-EXTRA-COLOUR PATH 57

5.2.2 Instances with a Pair of Disconnected Colour Sets

The following theorem provides an upper bound for ek(G,α, β) in k-EXTRA COLOUR PATH,

for instances with at least one pair of disconnected colour sets.

Theorem 5.2.2. Let (G,α, β) be an instance of k-EXTRA COLOUR PATH. If (G,α, β) has a

disconnected pair of colour sets, then ek(G,α, β) ≤ k − 2.

Proof. Suppose that there is a disconnected pair of colour sets, defined in relation to the target

colouring β. Let these colour sets be Vi1,t1 and Vi2,t2 with i1 < i2, and thus by definition i1 6=

i2, j1 6= j2. We apply a procedure similar to the one using k− 1 extra colours in Proposition 5.2.1,

but now using k − 2 extra colours, in order to find a path from α to β.

The basic idea is to recolour all target colour classes Tj , j = 1, 2, ..., k with extra colours apart

from the two which contain the disconnected pair of colour sets, Vi1,t1 and Vi2,t2 . Then, recolour

both Vi1,t1 and Vi2,t2 with the same colour. After, there is always a target colour class with an

available colour, so we recolour target colour classes to their target colour either directly or using

available colours until we reach the target colouring β.

• Recolour each of the target colour classes Tj apart from t1 and t2 to a new extra colour.

• Since i1 appears only in colour sets Vi1,t1 , Vi1,t2 , which are disconnected to colour set Vi2,t2 ,

we recolour Vi2,t2 with i1.

• Now, i2 appears only on colour set Vi2,t1 . Recolour target class t1 with i2.

• Now, t2 appears only in target colour class t2 so we can recolour the latter to t2.

• Finally, t1 does not appear anywhere, so we can recolour the respective target colour class.

The recolourings are such that colour sets which are connected never receive the same colour,

so all intermediate colourings resulting from colour set or colour class recolouring are proper.

When there is no pair of disconnected colour sets, then there are instances (G,α, β) for which

ek(G,α, β) = k−1, but also instances that require fewer than k−1 extra colours. For example, in

the next section we give an example of an instance (G,α, β) with no pair of disconnected colour

sets and yet ek(G,α, β) = k − 1. However, if we consider a 3-EXTRA COLOUR PATH instance

58 CHAPTER 5. RECOLOURING WITH EXTRA COLOURS

(G,α, β), where each colour set contains two vertices and between any two target colour classes

there are edges such that there is exactly a perfect matching between vertices of each pair of target

colour classes, then we get a forest of paths but no disconnected pair of colour sets. For this

instance, e3(G,α, β) < 2 = k − 1.

5.2.3 Instances with ek(G,α, β) = k − 1

In this section we prove that the upper bound for ek(G,α, β) provided by Proposition 5.2.1 is

tight. While that proposition shows that k − 1 extra colours are enough for any instance, this does

not mean that such a number of colours is necessary. However, we give below an example of an

instance such that e3(G,α, β) = 2, that is ek(G,α, β) = k − 1 for k = 3.

First, we need to recall the following definition.

The cartesian product G ×H of two graphs G and H has vertex set V (G ×H) = {uv : u ∈

V (G), v ∈ V (H)} and edge set E(G ×H) = {uvu′v′ : uu′ ∈ E(G) and v = v′, or u = u′ and

vv′ ∈ E(H)}.

Informally, the cartesian product of two graphs G and H , on n and m vertices respectively, is a

graph which is comprised of m copies of G with some edges added between vertices in different

copies of G. If we assign each of the m copies of G to a different vertex in H , then given two

copies G′ and G′′ of G, they are assigned to two distinct vertices v′ and v′′ of H . If v′v′′ ∈ H ,

then we add an edge between vertices u′i ∈ G′ and u′′i ∈ G′′, where 1 ≤ i ≤ n is a labelling of the

vertices of each copy of G.

Now, we are ready to define a graph Zk,k and prove that there are instances (Zk,k, α, β) with

ek(Zk,k, α, β) = k−1. We will also use Z3,3 to define finite graphs 10XY with instances such that

e3(10XY , α, β) can be both k − 2 and k − 1.

Definition 5.2.3. Zk,k is the cartesian product of the complete graph on k vertices, Kk ×Kk.

5.2. RECOLOURING IN K-EXTRA-COLOUR PATH 59

Labelling Zk,k

For ease of reference we will use a specific construction (drawing) of Kk ×Kk for when we refer

to it as Zk,k. Recalling the definition of a colour set Vi,j (Definition 5.1.1), we can call (i, j) the

colour set coordinates.

To aid with the construction of Zk,k, we look for an instance (Kk ×Kk, α, β) such that every

colour set Vi,j , i, j ≤ k is non-empty when Kk ×Kk is coloured with α, that is it contains at least

one vertex. Kk × Kk has exactly k2 vertices, as many as the colour sets with i, j ≤ k. Thus,

exactly one vertex of Kk × Kk should be in each colour set. Since Kk × Kk is a disjoint union

of Kk copies, we can obtain α and β by ordering the k-colours on each different copy of Kk such

that every vertex falls into a different colour set. We consider one of the possible disjoint unions

of copies of Kk of the graph and we number the copies from 1 to k. We colour each i copy of Kk

with two colours: j and j + i. Now observe that each vertex is in a different colour set. We label

each vertex using its colour set coordinates, such that vertex ui,j is in colour set Vi,j .

Note that this labelling does not mean that Zk,k depends on specific colourings, although it

is obvious that its labelling corresponds to the specific instance from which it was assigned. If

necessary, we will mention when we refer to the label of a vertex in Zk,k or its two colours in an

instance (Zk,k, α, β).

Similarly, we can use colour set coordinates to label a graph G in the same way that we did for

Zk,k and again mention, if not clear, whether the labelling corresponds to actual (two) colourings

of an instance of the problem.

Constructing 10XY

We will construct a graph 10XY , where X and Y are colour set coordinates and X 6= Y . Consider

graph Z3,3 and let X = (i, j). We add a new vertex vi,j to V (Z3,3). We want both ui,j and vi,j

to have three neighbours, not all common. We remove edge ui,jui′,j′ , i 6= i′, j 6= j′, and we add

vi,jui′,j′ . We also add two more edges between vi,j and neighbours of ui,j . Now there is one

neighbour of ui,j with coordinate Y , which is not a neighbour of vi,j .

60 CHAPTER 5. RECOLOURING WITH EXTRA COLOURS

According to this construction, there are four possible coordinates for X and Y :

• A = (i+ 1, j − 1)

• B = (i+ 1, j + 1)

• C = (i− 1, j − 1)

• D = (i− 1, j + 1), where addition is modulo 3.

Given an instance (G,α, β) of k-EXTRA-COLOUR-PATH with G being either Z3,3 or 10XY ,

we can assume without loss of generality that the coordinate of a vertex corresponds to its initial

and target colours α and β – in this exact order. Such colourings exist, since two of them are

used to construct the labellings of those graphs. For 10XY in particular, depending on the two

input colourings, the values of X and Y , thus producing any of the possible six combinations of

coordinates.

Given a graph G and two of its k-colourings α and β, let M(G) be the set of all maximal

independent sets of G. The following proposition specifies the size and contents of H ∈ M(G),

where G is either Z3,3 or 10XY .

Proposition 5.2.4. If G = Z3,3 or G = 10XY , then for every H ∈ M(G), we have 3 ≤ |H| ≤ 4

and specifically exactly one of the following is true:

• |H| = 4, when H = Vi,j

• |H| = 3, when H = Vr, Vi,j * Vr

• |H| = 3, when G = 10XY and H = {u, v, w : u ∈ Vi,j , v ∈ Vrc ⊂ X ∪Y,w ∈ Vrc′ ∪Vr′c},

where Vr is a colour class and Vi,j is the colour set which contains two vertices in 10XY .

Proof. By definition of 10XY , if Vi,j ⊆ H , then |H| = 4. If H = Vr and Vr 6= Vi,j , then |H| = 3.

In both cases there is no other vertex that we can add to H , because all vertices in G \H have at

least one neighbour in H .

Assume that G = 10XY and H * Vr, for any colour class Vr. Then, not all vertices in H are

from the same colour class. Suppose that u, v ∈ H , such that u and v are from different colour

classes. Then, they also belong to connected colour sets. Since uv 6∈ E(G), then it must be that

5.2. RECOLOURING IN K-EXTRA-COLOUR PATH 61

u ∈ Vij and v ∈ VX or v ∈ VY . Now, observe that if there is a third vertex w ∈ H , then it must

share the same colour class with one of u, v, otherwise it would be connected with one of them and

thus H would not be an independent set. So, if v ∈ Vrc, then w ∈ Vrc′ for some c′ 6= c or w ∈ Vr′c

for some r′ 6= r. With a similar argument it is easy to see that H is maximal, as there is no other

vertex in G \H that is not a neighbour of one of the three existing vertices.

Proposition 5.2.5. Let G be either Z3,3 or G = 10XY , and α and β two of its 3-colourings. If for

every H ∈M(G), G \H contains a fixed 6-cycle C∗, then there is no path between α and β.

Proof. Let H ∈ M(G). Then, G \H contains a fixed 6-cycle. We reach a 4-colouring γ, where

γ(H) = 4 and γ(G \ H) = α(G \ H). Since H is maximal and α is a frozen colouring of G,

there is no way to recolour vertices of the fixed cycle, unless we recolour at least one vertex from

H back to its initial colour.

We will prove that whatever is the content of H , according to Lemma 5.2.4 above, attempting

to find a different path always involves the recolouring of a maximal independent set.

Suppose we recolour one or more vertices ofH back to their initial colour in colouring α. Then,

we reach a colouring γ′, where γ(H ′) = 4 and γ′(G \H ′) = α(G \H ′), H ′ ⊂ H . If |H ′| = 3,

then |H| = 4. By Lemma 5.2.4, there is only one vertex to recolour with an extra colour, and that

is the unique vertex inH \H ′, so we would go back to colouring γ. Thus, we assume that |H| = 3.

Then, 1 ≤ |H ′| ≤ 2. Since any recolouring would start with the recolouring of one vertex with an

extra colour, it suffices to look at the case when |H ′| = 2.

Case 1: Suppose that H is a colour class.

Then H ′ has both of its vertices on the same colour class. Obviously H ∩ C∗ = ∅, so C∗

remains fixed, unless we recolour one more vertex x, extending H ′. If x is in the same colour class

with both of these vertices, then we end up with the original H . If x is in a different colour class

with y, one of the two vertices of H ′, then without loss of generality x ∈ Vij and y ∈ VX . By

Lemma 5.2.4, H ′′ = H ′ ∪ {x} is maximal, and thus there is a cycle in G \H ′′ which is fixed.

Case 2: H is not a colour class.

62 CHAPTER 5. RECOLOURING WITH EXTRA COLOURS

Then by Lemma 5.2.4, it contains two vertices which belong to different colour classes. This

means that H has the form of the set H ′′ in the first case above. If we follow the construction of

H ′′ in reverse order by setting H = H ′′, it easy to see that we need to reach to a different maximal

independent set to recolour a vertex of C∗.

Thus, there is no path starting from colouring α and reaching a colouring γ which does not

result in a fixed cycle in G.

Corollary 5.2.6. e3(Z3,3) = 2.

Proof. Every maximal independent set H ∈ Z3,3 is either an initial or target colour class and for

every such setH ,G\H contains a fixed 6-cycle. By Proposition 5.2.5, if (Z3,3, α, β) is an instance

of k-EXTRA COLOUR PATH, then there is no path between α and β. Thus, by Proposition 5.2.1,

any instance of Z3,3 would require two extra colours, e(Z3,3) = 2.

Recall the definition of 10XY and the possible four states (coordinates) of each of X and Y .

Also, we denote Vr,s as the colour set containing two vertices. Now, we can prove the following

proposition, which gives a necessary and sufficient condition such that e(10XY , α, β) = 1.

Proposition 5.2.7. e3(10XY) = 1, unless XY = AD or BC.

Proof. Consider the case where XY is neither AD nor BC. For these instances, there is a colour

class H which does not contain Vr,s and none of VX or VY . Thus, G \H is a path of six vertices.

As all the neighbours of the vertices of this path are coloured with the extra colour, we can recolour

G \H as if we would recolour a graph which is a path. It is easy to do this using no extra colour

on the path itself, by starting with a vertex which one of the three original colours available. Then,

we recolour H to βH .

(For example, if XY is AB and (r, s) = (2, 3), then Vr,s is V23, exactly one vertex in V23 is

connected to u31 ∈ V31 and exactly one vertex in V23 is connected to u32 ∈ V32. Thus, H = I1,

the initial colour class, with α(I1) = 1).

Now consider when XY is either AD or BC. Observe that for every maximal independent set

5.3. 3-EXTRA-COLOUR PATH ON SOME GRAPH CLASSES 63

H , G \H contains a fixed 6-cycle. By Proposition 5.2.5, there is no path using one extra colour.

By Proposition 5.2.1, e3(10XY , α, β) = 2.

A consequence of Proposition 5.2.7 is that we have found examples of instances (G,α, β)

which do not have a disconnected pair of colour sets and yet e3(G,α, β) = 1. Thus the opposite

of Theorem 5.2.2 above is not true. That is, there are examples of instances with no disconnected

pair of colour sets, and yet ek(G,α, β) = k − 2.

Theorem 5.2.8. For any two k-colourings α, β of a graph G, e(G,α, β) ≤ k − 1 is tight.

Proof. Proposition 5.2.1 immediately implies that a path is guaranteed using k−1 colours. Finally,

Corollary 5.2.6 provides an example where k − 1 extra colours are necessary.

Corollary 5.2.9. For any graph G of less than k2 vertices and two k-colourings α and β of G,

ek(G,α, β) < k − 1.

Proof. Consider graph Zk,k. Since α and β are k-colourings of G, then there are exactly k2 non-

empty colour sets, and thusZk,k has k2 vertices. Suppose that there is a graphGwith fewer vertices

than Zk,k, and for which k − 2 extra colours are not enough in order to transform α colouring to

β. Then by Theorem 5.2.2, there is no pair of disconnected colour sets and thus there is no empty

colour set – otherwise there would be more than one pair of disconnected colour sets. This implies

that each colour set has at least one vertex. By the pigeonhole principle, G has at least k2 vertices;

a contradiction.

5.3 3-EXTRA-COLOUR PATH on Some Graph Classes

In this section we attempt to explore the k-extra-COLOUR PATH problem by looking at the small-

est value of k for which the problem is not trivial, that is k = 3. Note that applying Theorem 5.2.8

for k = 3 we get that e3(G,α, β) ≤ 2 for any graph G and any two of its 3-colourings. Thus in the

case of two colourings which are in different components of the R3(G), e(G,α, β) is either 1 or

64 CHAPTER 5. RECOLOURING WITH EXTRA COLOURS

2. Consequently, the optimisation problem of computing e3(G,α, β) is equivalent to the decision

problem of whether e3(G,α, β) = 1.

• 3-EXTRA COLOUR PATH

– Instance: A graph G and two of its k-colourings α and β, which are in different com-

ponents of R3(G).

– Question: Is there a path between α and β in R4(G)?

An equivalent question is obviously: Is e3(G,α, β) = 1?

In exploring the computational hardness of the above question, we present some classes of

instances for which e3(G,α, β) = 1. In these cases, computing e3(G,α, β) takes as long as

recognising that the input graph G belongs to a specific graph class or that the instance (G,α, β)

has some specific property.

By Theorem 5.2.2, ek(G,α, β) = 1, when there is a disconnected pair of colour sets. This

recognition requires O(n2) time.

5.3.1 Bipartite Graphs

Let G be a bipartite graph and any two of its 3-colourings.

Proposition 5.3.1. e3(G,α, β) = 1, when G is bipartite.

Proof. Let V = A ∪ B be the partition of G. We can find A and B by taking a walk on the graph

starting from any vertex and then include all vertices of parity 1 in A and of parity 2 in B. To

recolour G, we first recolour A with colour 4. Since every vertex in B has neighbours only in A,

then vertices in B can be recoloured as in β. Since every vertex v in A has neighbours coloured as

in β, then β(v) is available to v, and so we recolour vertices in B as in β.

5.3.2 Some 3-Chromatic Graphs

In this section, G is a 3-chromatic graph and α and β are two of its 3-colourings.

5.3. 3-EXTRA-COLOUR PATH ON SOME GRAPH CLASSES 65

Definition 5.3.2. Let Lm,r = Pm×Pr be a lattice with m rows and r columns of vertices. Let ui,j

be the vertex in row i and column j. Then, E(Lm,r) = {ui,jui+1,j , ui,jui,j+1, 1 ≤ i ≤ m− 1, 1 ≤

j ≤ r}.

Also, letLtm,r = Cm×Cr. ThenLtm,r is asLm,r above with some edges added; ui1uir, u1jumj ,

for all i, j ≥ 1.

Theorem 5.3.3. Let G be a 3-chromatic graph. For the following cases, e3(G,α, β) = 1:

(a) G is a cycle

(b) G is a cycle with a chord

(c) G is a theta graph

(d) G = Lm,r

(e) G = Ltm,r

Proof. (a). Let G be an odd cycle with n vertices, and two of its 3-colourings, α and β.

Pick a vertex v. Since G \ v is bipartite, we can partition it into two independent sets A and B,

using the parity property of bipartite graphs. Observe that A cannot contain both neighbours of v,

as they have different parity. Let u be the neighbour of v which is not in A. We recolour A to 4.

We can recolour all vertices in B \ {u, v} to their target colour, as all of their neighbours are in A.

Since u and v are incident to vertices coloured 4, then u and v have an available colour. We can

recolour u and v to their target colour, using the available colour to one of them, if needed. Finally,

we can recolour vertices in A to their target colour.

(b). Let G be a cycle C with a chord, and two of its 3-colourings α and β. Let x,y be the

vertices that induce the chord. Let Pr ≡ x1...xr and Ps ≡ y1...ys be the two distinct paths in G

between x and y, with r, s ≥ 1.

As in (a), we recolour an independent set A to colour 4. We set A to contain all vertices with

an odd index from paths Pr and Ps. In this case B = G \A contains vertices of the two paths with

even parity plus edge uv. We recolour A to 4. We can now recolour all vertices on the two paths

with even parity to their colour in β, except if their neighbour is either x or y. Then, apart from

vertices in A, the only vertices which are not set to their target colour induce a path P of length

66 CHAPTER 5. RECOLOURING WITH EXTRA COLOURS

at most 4, inclusive of x and y. The endvertices of P have exactly one neighbour coloured 4. If

the path has length four, then we add one of the two internal vertices to A by recolouring it to 4,

and then recolour the vertex which is between two vertices in A to its target colour. Now the only

vertices in B not in their target colour are the vertices of an edge in path P . Since any neighbours

of u and v are in A, then each of u and v has an available colour. If none of u and v can be set to

their target colour immediately, we can use an available colour first.

(c). Let G be a theta graph, C be the largest cycle of G, P the path between vertices vi and vj

of C, excluding those vertices, P = G \ C. Let α and β two 3-colourings of G.

We assume that P has length more than one (or else G is a graph with a chord). We follow

exactly the same procedure as in (b) with the only difference that A is determined excluding all

vertices in path P (x, y) – and not only vertices x and y. After A is coloured to 4, the remaining

path P in B = G \ A has length three or more. With a further inclusion of vertices to set A, as

done in (b), the only vertices in B not set to their target colour induce an edge, but they also have

an available colour. Using the available colour, if needed, we can set those vertices to their target

colour. Finally we set the vertices of A to their target colour.

(d). Let Lm,r be a lattice graph with m vertices on each row and r vertices on each column.

We choose an independent set A which we colour with 4 and then attempt to recolour the vertices

B = G \ A to their target colour. Let ui,j be the vertex in row i and column j. We set A =

{ui,j , ui+1,j+1, where i, j ≥ 1 and odd }. Observe that A and B contain only isolated vertices.

Thus, we can recolour A to 4, recolour the vertices in B to their target colour and then the vertices

in A also to their target colour.

(e). Let Ltm,r be a lattice and furthermore add edges ui1uir, u1jumj , for all i, j ≥ 1. Consider-

ing the same set A as defined in (d) above, A is not an independent set in G because some of the

added edges have both of their vertices in A. We remove the vertex with the highest row or column

index from A so that A is an independent set again. Since G contains at least one odd cycle, then

one of the dimensions is odd. In that case, if we recolour as in (d) above, then B contains isolated

vertices and an even cycle. It is not hard to exchange vertices between A and B such that B is a

path plus isolated vertices (ie avoid having a cycle in B). And since we can recolour a path with no

5.3. 3-EXTRA-COLOUR PATH ON SOME GRAPH CLASSES 67

fixed endvertices without using an extra colour, we can recolour vertices inB to their target colour,

and then the same for A. Thus, e(G,α, β) = 1, as we only used one extra colour to recolour A in

the meantime.

68 CHAPTER 5. RECOLOURING WITH EXTRA COLOURS

Chapter 6

Reconfiguration of Hamiltonian Cycles

in Graphs of Bounded Degree

6.1 Introduction

In this chapter we look at reconfigurations of the HAMILTONIAN CYCLE problem:

LetG denote a simple undirected graph. A hamiltonian cycle ofG is a cycle that contains every

vertex of G. Consider the following problem.

• Hamiltonian Cycle

– Instance: A graph G.

– Question: Does G contain a hamiltonian cycle?

For an instanceG of the HAMILTONIAN CYCLE problem, we define the reconfiguration graph

H(G): the vertices correspond to its solutions (that is, each vertex of H(G) is a hamiltonian cycle

of G) and a pair of hamiltonian cycles C1 and C2 is joined by an edge in H(G) if there are vertices

t, u, v and w in G such that C2 = C1 \{tu, vw}∪{tv, uw}. We call the operation of obtaining C2

from C1, a switch (of u and v). One way to think about the difference between C1 and C2 is that

after we remove edges tu and vw from C1, we are left with two disjoint paths which are t...w and

69

70 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

(a)

w v

t u

(b) C1

w v

t u

(c) C2

w v

t u

Figure 6.1: A switch on vertices t, u, v, and w. In (b), cycle C1 with edges tu and wv is adjacent to the

cycle C2 with edges tv and wu in (c).

u...v, without loss of generality. Then, we use edges tv and uw to join the two paths and create C2.

Such a switch is shown in Figure 6.1 in (a), and where (b) and (c) are the two states of the switch

in cycle C1 and C2, respectively.

We are concerned with the problem of whether there is a sequence of hamiltonian cycles Ci =

C0, C1, . . . , Ck = Ct such that pairs that are adjacent in the sequence are adjacent in H(G) and

so each can be obtained from the other by switching a pair of vertices. We call this a switching

sequence.

Minimality of the Switch

In general, reconfiguration rules of combinatorial problems are minimal in the sense that there is

minimal difference between two adjacent solutions of the solution graph.

The switch ofH(G), as defined earlier, is a minimal reconfiguration rule because it removes the

minimal number of edges, two edges from the initial cycle C1, and adds two new edges to create

the new cycle C2 adjacent to C1 in H(G).

However, for the rest of the chapter we add extra ‘minimality’ to the switch of H(G) by min-

imising the distance in C1 between the two edges to be removed from C1. It is easy to see that the

minimum distance between these two edges cannot be zero. That is, the two edges cannot share

6.1. INTRODUCTION 71

u0 u v v0

Figure 6.2: A switch on vertices u0, u, v, and v0 as it is defined specifically for the HC-PATH problem,

where the vertices of the switch appear in consecutive order on both of the two adjacent cycles C1 and C2,

with u and v swapping positions in C2.

a vertex, otherwise it is not enough to add two new edges to obtain the new cycle C2. Thus, the

minimum distance in C1 between the removed edges is one.

From now on, we refer to a switch according to the following refined definition, with an illus-

tration found in Figure 6.2.

Definition 6.1.1. Let u0, u, v, and v0 be vertices in G, and C1 and C2 a pair of hamiltonian

cycles of G, where u0uvv0 is a path on cycle C1, u0vuv0 is a path on cycle C2, and C2 = C1 \

{u0u, vv0} ∪ {u0v, uv0}. Then, the switch of uv is the operation of obtaining C2 from C1. When

considering cycle C1, we call uv, u, and v switching and u0 and v0 supporting vertices of uv.

For ease of reference to the application of this reconfiguration rule, we will use equivalent

expressions, as appropriately. Thus, to obtain C2 from C1 is to switch (edge) uv or to switch

(vertices) u and v. Alternatively, we can say that two vertices u and v switch or an edge uv

switches.

Our Results

Hamiltonian Cycle is a well-known NP-complete problem, which remains NP-complete even for

cubic graphs [31]. On the contrary, we prove that Hamiltonian Cycle Reconfiguration, defined

below as HC-PATH and equipped with the reconfiguration rule as defined in Definition 6.1.1, can

be decided in linear time for graphs of maximum degree 5.

Thus we can now define our reconfiguration problem.

72 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

• HC-PATH

– Instance: A graph G and two of its hamiltonian cycles Ci and Ct.

– Question: Is there a reconfiguration path between Ci and Ct?

In the next section we introduce some basic definitions and lemmas useful to further study

HC-PATH both for graphs of bounded degree and in general.

6.1.1 Definitions

Orientation, Paths and Arcs of a Hamiltonian Cycle C

Throughout this chapter and when discussing the HC-PATH problem for graphs of degree at most

k, a hamiltonian cycle C of a graph G is given a left-to-right orientation by means of listing its

vertices consecutively, starting with any vertex x and ending in the same vertex x, where any two

consecutive vertices in the ordering are adjacent in C.

Let C be a hamiltonian cycle of a graph G.

• A path P (u, v) on cycle C with endvertices u and v is the subgraph of C induced by u, v

and the vertices between them. All vertices except u and v, are called the internal vertices

of path P (u, v). When all internal vertices are mentioned, then a path is also denoted by the

sequence of the vertices in the order of appearance. For example, uwxyzv is a path P (u, v).

• The distance d(u, v) between u and v on C is the number of edges of the shortest path

between u and v on C.

• An arc uv of length k is an edge in G with k = d(u, v) > 2 on C.

Alignment of Edges in Relation to a Pair of Cycles

Given two hamiltonian cycles C and Ct of a graph G, we can partition the edges ofG into two sets

A and M , according to the ordering of their vertices in C and Ct.

• An edge uv in G is aligned (in relation to C and Ct), when the vertices of uv appear in the

6.1. INTRODUCTION 73

same order both in C and Ct. A is the set of all aligned edges in C.

• An edge uv is misaligned (in relation to C and Ct), when uv is not aligned. M is the set of

all misaligned edges.

Note: Since the target cycle remains unchanged, from now on we define aligned and misaligned

edges referring to the current cycle C only, as the target cycle Ct is implied. And when C is also

implied, then we refer to aligned and misaligned edges without mentioning C.

When deciding whether an edge uv is aligned or misaligned, we assume that n is much larger

than k, and thus the shortest path between u and v along each of the two cycles defines the orien-

tation of uv in each cycle – and for example, different orientations suggest that uv is misaligned.

An edge in C is ready when it is in a switch, otherwise it is unready. That is an edge uv is ready

if it is possible to immediately switch u and v and obtain a new hamiltonian cycle in which their

order is reversed.

We can further partition misaligned edges:

• U is the set of all misaligned and unready edges.

• R is the set of all misaligned and ready edges.

For ease of reference and as we will be using sets U and R more often, we refer to edges in U

as just ‘unready’ and edges in R as just ‘ready’. On the other hand, for edges which are aligned

and unready or aligned and ready there will be an explicit reference.

We further partition the set U , as shown in Figure 6.3. Let u0uvv0 be a switch and uv ∈ U :

• if uv0 /∈ E, then uv ∈ U+

• if u0v /∈ E, then uv ∈ U−

• if u0v, uv0 /∈ E, then uv ∈ U0

Similarly, we define A−, A+, A0 ⊆ A. Moreover, if uv is aligned and ready, as shown in (c) of

Figure 6.3, then uv ∈ Ā ⊆ A ∩ C.

74 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

(a)

u m v v0A U−

(b)

u0 u m v
U+ A

(c)

Ā

(d)

u m v v0A U0 A

Figure 6.3: (a) A d-arc u(m)v with an unready edge mv ∈ U−. (b) A d-arc u(m)v with an unready edge

mv ∈ U−. (c) An aligned and ready edge in Ā . (d) A U0 edge.

6.1.2 Deriving the Alignment of an Edge

We define the alignment of an edge uv, or two vertices u and v, as their state as aligned or mis-

aligned in a cycle C (in relation to the target cycle). Also, we say that we align (resp. misalign) an

edge uv (or two vertices u and v) in relation to C, when we switch uv and uv is misaligned (resp.

aligned) in C.

Observation 6.1.2. Let u and v be two vertices in a graph G, and let Ci and Ct be two of its

hamiltonian cycles which are connected in H(G). If uv ∈ M , then uv ∈ E, and if uv /∈ E, then

uv ∈ A.

Proof. If uv ∈ M and uv /∈ E, then uv cannot switch, and thus two cycles are not connected;

a contradiction. Therefore, uv ∈ E. Also, the contrapositive is true, that when uv /∈ E, then

uv ∈ A.

Given a hamiltonian cycle C and two vertices u and v in a graph G, the degree of u and v and

their relative position in C provide requirements such that u and v can be adjacent in some cycle

C ′ in H(G).

Lemma 6.1.3. Let a, b and c be three vertices in a graph G, and let Ci and Ct be two of its

hamiltonian cycles which are connected in H(G). If a is the leftmost and c the rightmost vertex of

the three in C, then the following are true:

6.2. MAXIMUM DEGREE 4 75

• (i) If both ab, bc ∈M , then ac ∈M .

• (ii) If both ab, bc ∈ A, then ac ∈ A.

Proof. (i) If there is a path between C and C ′, assume that bc switches first, without loss of gen-

erality. Then, it remains that ab must switch. For this to happen, ac has to switch first. Now, all

vertices appear in reverse order compared to cycle C. Observe that there is no way to switch ac

back again, without misaligning the rest of the edges. Hence, it must be that ac ∈M . (ii) Suppose

that ac ∈M . Then to align ac requires to switch bc. But, then bc ∈M .

Corollary 6.1.4. Let a, b and c be two vertices in a graph G, and let Ci and Ct be two of its

hamiltonian cycles which are connected in H(G). If a is the leftmost and c the rightmost vertex of

the three in C. Then if the alignment of ac is different from one of ab and bc, then it is the same as

the other.

Observation 6.1.5. Let u and v be two vertices not adjacent in a hamiltonian cycle C of a graph

G. Then every internal vertex of P (u, v) is connected to at least one of u, v.

Proof. For uv to switch, every internal vertex in P (u, v) has to first switch with either u or v.

6.2 Maximum Degree 4

In this section, we consider HC-PATH on the first non-trivial case of bounded degree graphs, i.e.

when the maximum degree is ∆(G) = 4. We will prove that HC-PATH is in P for this restricted

class of graphs. Although this result is a special case of the result on graphs with maximum degree

5, found in Section 6.3, we think it is worth highlighting as it is much simpler.

The problem HC-PATH for graphs of maximum degree 4 is defined as follows:

• HC-PATH with ∆ = 4

– Instance: A graph G of maximum degree 4 and two of its hamiltonian cycles Ci and

Ct.

76 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

– Question: Is there a reconfiguration path between Ci and Ct?

We will prove the following.

Theorem 6.2.1. HC-PATH with ∆ = 4 can be decided in linear time.

The proof is based on a number of lemmas. Before we proceed with the lemmas we provide

some intuition on how the problem is decided in linear time. The algorithm is described by proce-

dure Pr, stated in the proof of the Theorem later. We briefly state the procedure:

Starting from cycle Ci we switch ready edges successively on every newly obtained cycle until

there are no ready edges left.

The lemmas to follow help us show that such a procedure decides the problem correctly. That

is, if there are no ready edges left to switch, then either there is no path between the two cycles or

cycle Ct has been reached.

Definition 6.2.2. A supporter s of an edge uv is a common neighbour of u and v which is either

the left-neighbour of u or the right-neighbour of v, when uv ∈ R in some cycle C ′. We also say

that s supports uv in C ′.

Lemma 6.2.3. Let Ci and Ct be two hamiltonian cycles of a graph G of maximum degree 4. If Ci

and Ct are connected in H(G), then each vertex in Ci is misaligned with at most two vertices.

Proof. If a vertex is misaligned with three vertices to the right and aligned to any other vertex, then

it has five distinct neighbours; its initial left neighbour, the three misaligned vertices and its final

right-neighbour. If a vertex u is misaligned with two vertices to the right and vertex v to the left,

then v is misaligned with three vertices to its right.

In the next lemma we prove that we can choose any ready edge in C to switch. This derives

from the fact that it is not necessary for any vertex in a ready edge to support any other switch

in subsequent cycles, and also switching the ready edge does not harm the generality of finding a

path.

6.2. MAXIMUM DEGREE 4 77

Lemma 6.2.4. Let C and Ct be two hamiltonian cycles of a graph G of maximum degree 4. If C

and Ct are connected in H(G), and, moreover, it is possible to reach Ct from C by only switching

ready edges, then the order in which ready edges switch does not matter.

Proof. Consider a ready edge uv. We will prove that, without loss of generality, vertex u is not

necessary to support any other switch at distance 1 or 2 (beyond that distance, maximum degree 4

rules out such a case).

Case. Distance 2

Suppose the path uvwx is on the current cycle C, and that vertex v supports wx ∈M . We will

prove that wx does not require v to support it. If ux /∈ E, then before both uv and wx switch,

there has to be some vertex y between u and x.

– Suppose y is on the right of x. Observe that all vertices mentioned have degree 4 (also vertex

x, as it has to have two supporting edges for its switch with y). The right neighbour of w is always

a vertex inN(w) = {u, v, x, y}. Suppose we first switch uv. Then after we can either switch y first

until it reaches u, or wx. Both cases require that the right neighbour of w is not in N(w). Suppose

we do not switch uv first, then y will not be able to switch with w, as yv /∈ E. At any case, one of

the vertices mentioned has to have degree at least 5 in order to switch both misaligned edges, and

thus ux must be an edge. This also implies that u, instead of v, can support wx after uv switches.

It remains to prove that vertex u is does not need to support any other switch, before it switches

with v. Vertex u has maximum degree and can only support edge vw in the next step, if needed.

Edge vw is aligned, otherwise u would have more than two misaligned neighbours, contradicting

Lemma 6.2.3.

–Suppose y is on the left of u. Similarly, we can prove that at least one of the vertices involved

has to have degree more than four. Therefore, vertices in ready edges do not have to support any

switch at distance two.

Case: Distance 1

In this case, there are two consecutive misaligned edges in C on a path auxwb. Suppose

ux, xw ∈ R. Then the structure induced by the vertices in G is unique, when there is a path from

78 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

C to Ct. Apart from the degree imposed by the ready edges, also vertex u and w have to have

vertices b and a, respectively, as final neighbours. We illustrate this for b. Vertices u, x, and w have

all four neighbours, including their final. If the final neighbour f of u is not b, then f would have

to reach w before u does. But the only neighbour of w on its right is b, and so f = b. Notice that

both auwx and uwxb have to be 4-cliques and that following any order of switching ready edges

on these vertices, leads to their target position in Ct, as appearing in the path axwub on Ct.

Suppose uw ∈ R and wx ∈ U in path auxwb. Can we switch uw first, without obstructing the

path to the target cycle? Since b cannot support wx, there has to be some other vertex y, supporting

wx on its right. But, N(w) = {w′, u, x, b}, where x′ is the final left-neighbour of w, on the left u.

Therefore, y has to be on the left of w. Observe that y must be u, and thus ux must switch before

xw.

Lemma 6.2.5. Let C and Ct be two hamiltonian cycles of a graph G of maximum degree 4. If

C and Ct are connected in H(G), then Ct can be reached from C without switching any aligned

edges.

Proof. Suppose uv ∈ A in C. Also, suppose uv ∈ Ā, i.e. in a switch, and that one of its vertices

can support another edge at a valid distance C. The proof of Lemma 6.2.4 implies that if uv is

ready, and thus in a switch, then none of its vertices is needed to support another edge, before uv

possibly switches. Thus, also uv, being aligned but also ready, does not need to support any vertex

and can remain aligned.

It follows from Lemma 6.2.3, that we cannot have three consecutive edges in U . In fact, we can

say something stronger:

Lemma 6.2.6. Let C and Ct be two hamiltonian cycles of a graph G of maximum degree 4. If C

and Ct are connected in H(G), then there cannot be a pair of adjacent edges in C which are both

in U .

Proof. Suppose cycle C contains the path axyzb, where xy, yz ∈ U . As xz ∈ M , then xz ∈ E,

see Observation 6.1.2. As xy, yz ∈ U , then ay, yb /∈ E. It is N(x) = {a, z, y, x′}, where x′ is

6.2. MAXIMUM DEGREE 4 79

the final right-neighbour of x. As x and y must have two supporting vertices in order to switch,

yx′ must be an edge, and x′ 6= b. Similarly, the final left-neighbour of z cannot be a. But then this

implies that x and z have only one neighbour in common, and thus xz cannot switch.

Lemma 6.2.7. Let C and Ct be two hamiltonian cycles of a graph G of maximum degree 4. If C

and Ct are connected in H(G), then for a given edge uv in C which is in U , no vertex to the right

of v is misaligned to v (and no vertex to the left of u is misaligned to u).

Proof. The two parts are symmetric, so we just prove the first. Let w be the right-neighbour of

v. By Lemma 6.2.6 vw ∈ A. If any vertex to the right of w is misaligned to v, then it is also

misaligned with u and w, because uv ∈ U and vw ∈ A. This contradicts Lemma 6.2.3.

Lemma 6.2.8. Let C and Ct be two hamiltonian cycles of a graph G of maximum degree 4. If C

and Ct are connected in H(G), then for a given edge uv ∈ U in C, we can assume that vertices u

and v have a common neighbour initially to the right of v and a common neighbour initially to the

left of u and these vertices are at distance at most two from the nearest of the pair.

Proof. We assume that u and v have exactly two neighbours in common since they must switch

(observe that if they have three neighbours in common, then uv /∈ U). We can assume that a

common neighbour s of u and v is initially on the right of v; if s is at distance more than 2 from

v then it is not adjacent to the right-neighbour of v, so s could only support a switch if this right-

neighbour switched left, in which case it also neighbours u and so there is a neighbour at distance

at most 2. If the vertex that supports the switch of u and v from the left is a vertex initially to the

left of u we are done.

Otherwise a vertex x from the right of v must switch with u. Vertex x and all of its neighbours

are of maximum degree 4, therefore the neighbours of x can be specified; N(x) = {u, v, u0, x0},

where u0 is the initial left-neighbour of u, and x0 is the initial right-neighbour of x. This implies

that xv is initially in C. Observe that once uv switches with the support of vertex x on the left

and, say, vertex y on the right, the edge xv is now in U . This is because uv is initially in U , and

by Lemma 6.2.6, vx is in A. Therefore since vx switches once, it has to switch back in the next

80 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

steps. The common neighbours of v and x are exactly two and these are u, supporting from the

left, and x0, both currently on the right of xv. Thus uv ∈ A if and only if vx ∈ M . Therefore the

two cycles are not connected in H(G), a contradiction.

For the following two lemmas, we assume that set R = ∅, i.e. there are no ready edges in the

current cycle C. Also, recall the assumption that every misaligned edge is involved in a switch.

Lemma 6.2.9. Let C∗ and Ct be two hamiltonian cycles of a graph G of maximum degree 4. If

Ci and Ct are connected in H(G), and there are no ready edges to switch, then there cannot be a

pair of adjacent edges in A, unless every edge is in A.

Proof. Let cycle C∗ contain fabcxyz where xy and yz are in A and cx is in U . By Lemma 6.2.6,

bc is in A. As cx is in U, either cy or bx is not an edge.

Case 1. Suppose cy /∈ E.

By Lemma 6.2.7, the final right-neighbour of c is initially to its right. By Lemma 6.2.8, c and x

are both neighbours of z. But as z is aligned to the right of y, z cannot be the final right-neighbour

of c and if c is misaligned with z, then it is misaligned with x,y and z and we apply Lemma 6.2.3.

Thus c,x,y are all to the left of z and are all aligned to its left so its initial right-neighbour is its final

right-neighbour. So the final right-neighbour of c is at least two to the right of z and misaligned

with at least three vertices.

Case 2. Suppose bx /∈ E.

If ab ∈ A, this is the same as the first case. By Lemma 6.2.8, a and b have a common neighbour

to the right within distance 2. As bx /∈ E, both then it must be ac, bc ∈ E. Similarly c and x have

a neighbour in common to the left which must be a. So, N(a) = {f, b, c, x}. But as ab ∈ U , then

fb /∈ E. But a and b must have a neighbour in common to their left. If this is not f , then a has a

fifth neighbour.

We have proved that adjacent edges cannot belong to the same set. So the whole cycle C∗ has

edges alternating between A and U . We show this is a contradiction.

6.2. MAXIMUM DEGREE 4 81

Lemma 6.2.10. Let C∗ be the hamiltonian cycle and Ct be two hamiltonian cycles of a graph G

of maximum degree 4. If there is a path between the two cycles, and there are no ready edges to

switch, then it cannot be the case that all edges of C∗ alternate between sets A and U .

Proof. Suppose cycle C∗ contains path abcdefg. If some edge in the cycle is not aligned, then we

can assume we have ab, cd, ef ∈ A and bc, de ∈ U . Without loss of generality, we assume that

bd /∈ E. So, by Lemma 6.2.8, be, ce ∈ E. Thus df /∈ E, as de ∈ U . By Lemma 6.2.8 again,

dg, eg ∈ E, so then N(e) = {b, c, d, f, g}; a contradiction.

Proof of Theorem 6.2.1:

We consider what happens when the following procedure is applied to Ci:

Procedure Pr:

• While R is nonempty, switch uv ∈ R in the current cycle C, where uv is an edge in the

current cycle C.

Claim 6.2.11. Procedure Pr terminates in at most linear time.

Proof. Lemmas 6.2.4 and 6.2.5 imply that switching any available ready edge leads to an adjacent

cycle which is on some path leading to Ct in the solution graph, and no edge is required to be

switched more than once. Therefore, procedure Pr terminates in at most |E| steps, where E is the

set of edges of graph G.

Then, we suppose we have the case that there is a path from Ci to Ct, and that procedure Pr

has been applied to Ci. Let C∗ be the output of the procedure. The next claim 6.2.12 proves that

C∗ = C2.

Claim 6.2.12. When procedure Pr terminates, if there is a path from Ci to Ct, then the cycle C∗

obtained by the procedure is Ct.

Proof. After Pr terminates, there are no ready edges left in cycle C∗. This means all edges in C∗

are either in set A or U . By Lemmas 6.2.6, 6.2.9 and 6.2.10, there are no two adjacent edges both

82 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

in either A or U , and it cannot be that the membership of adjacent edges of C∗ alternates between

A and U . Thus, the only remaining case is that every edge is inA, which means that C∗ = Ct. The

only case left is that Pr is not sufficient to findCt fromCi since aligned vertices must be switched.

Lemma 6.2.5 disproves this case, and thus the procedure decides the problem correctly.

6.3 Maximum Degree 5

We consider graphs of maximum degree 5, as the first case where the procedure in Theorem 6.2.1

cannot decide the problem correctly. For example, given two cycles Ci and Ct, suppose that five

consecutive edges in cycle Ci are labelled as A,R,R,U,A. It is left to the reader to observe that

the order of switching ready edges in R in the next steps, while trying to obtain the target setting,

does matter. Therefore, applying the procedure Pr of Theorem 6.2.1 will not decide whether there

is a path to Ct correctly.

For the case of graphs of maximum degree 5, we provide an algorithm which applies local

manipulations whenever we reach a cycle with no ready edges, in order to reach a new cycle, again

with no ready edges, but with fewer misaligned edges overall. The algorithm decides whether there

is a path by considering the order of switching edges (both in R and Ā). It does so by processing

cycle paths of constant length, as imposed by the degree constraints of the graph (for example, see

Observation 6.1.5).

Section 6.3 is comprised of three main parts. First, we give some necessary definitions (Sec-

tion 6.3.1), then we describe the algorithm (Sections 6.3.2 and 6.3.3), and finally we prove its

correctness (Sections 6.3.4 to 6.3.6).

6.3.1 Definitions

What follows is a list of definitions used throughout Chapter 6. Let G be a graph and C one of its

hamiltonian cycles. Ḡ is the complement of G.

6.3. MAXIMUM DEGREE 5 83

Arcs and Disconnected Arcs

Let V and V̄ be the set of vertices of G and Ḡ, respectively, where Ḡ is the complement graph of

G.

Recall the definition of an arc uv in Section 6.1.1. We define the vertices and edges of an arc

uv as all the vertices and edges, respectively, of path P (u, v) on C. The endvertices of the arc uv

are the endvertices of P (u, v). We categorise a pair of arcs according to the distance or relative

location on the cycle. We say that two arcs:

• cross, when exactly one endvertex of one arc is an internal vertex of the path of the other arc.

• are disjoint, when they do not share any endvertices.

• are consecutive, when they share an endvertex.

• are at distance k in C, when they are disjoint, do not cross, and the shortest path between

two of their endvertices is k.

An arc is called disconnected, if uv is in Ē.

Definition 6.3.1. Let Ct be the target cycle of an instance of HC-PATH. If umv is a path on C,

then arc uv (of length 2) is called a d-arc with middle vertex m. We will denote the d-arc by uv, or

when referring to its middle vertex explicitly, by u(m)v. The vertices in Ct between u and v are

called final middle vertices of d-arc uv. If d-arc uv has only one final middle vertex, it is called a

single-middle d-arc; otherwise it is called multi-middle.

Note that at most one of the two edges of a d-arc can be unready (Corollary 6.1.4). Whether the

d-arc contains an unready edge or not, it will be clear from the context.

Sequences and Supporters

Recall that a switching sequence is a sequence of hamiltonian cycles, which are pairwise adjacent

in H(G). For every pair of adjacent cycles, there is a corresponding switch. This fact leads in to

the following definition:

Definition 6.3.2. A sequenceQ is a sequence of switches between pairs of cycles forming a switch-

84 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

ing sequence. A subsequence Q′ ⊂ Q is a sequence of switches of which pairs of cycles do not

necessarily form a switching sequence.

It follows by the definition that a subsequence is not necessarily a path in H(G), but a set of

paths inH(G) (which could form the path induced byQ inH(G) if zero or more edges are added).

A possible supporter s of an unready edge mv in cycle C is a common neighbour of m and v

in G and satisfies Observation 6.1.5. A vertex x replaces the middle vertex m in d-arc u(m)v in

cycle C ′, when there is a sequence from a cycle C which contains path umv to a cycle C ′ which

contains path uxv.

Definition 6.3.3. A possible supporter s of a d-arc u(m)v in cycle C is vicious to uv, if for every

sequence Qs from C during which s replaces m in uv, exactly one of the two is true:

– uv remains a d-arc with a middle vertex x 6= m, or

– m replaces s in u(s)v.

In other words, a possible supporter s is vicious to a d-arc u(m)v, when there is no sequence of

switches which can align mv with s as a supporting vertex.

Below, we refine the definition of a supporter, as described in Section 6.2.

Definition 6.3.4. A supporter s of an edge mv of a d-arc u(m)v is a possible supporter of mv

which is not vicious to u(m)v. If s will be the left supporting vertex on the left (resp. right) of mv,

then s is called a left supporter (resp. right supporter) of mv.

Settings and d-arc Settings

Let SP be the induced subgraph induced by a path P of a cycle C in G minus all arcs of length

more than two.

Definition 6.3.5. A setting S on a path P of a cycle C in G is such that SP ⊆ S ⊆ G[P], where

the alignment of the edges in P is known and G[P] is the induced subgraph of P in G.

6.3. MAXIMUM DEGREE 5 85

u′ m′ v′ u m v xA U− A U−

Figure 6.4: A d-arc setting is a setting which contains a pair of related d-arcs. The middle vertex m′ of

d-arc u′v′ on the current cycle is the final middle vertex of d-arc uv in the target cycle.

A setting is described by assigning labels to the edges of a path onC, depending on which of the

sets A, U , R the edge belongs. Given the setting of a path x1x2...xd of length d, we let l1l2...ld−1

be labels where li is the label for the edge xixi+1 and is: ‘A’, ‘R’, or ‘U’, for xixi+1 being aligned,

ready, or unready, respectively.

Two d-arcs u′(m′)v′ and u(m)v are related, when m′ is a final middle vertex of u(m)v, or m

is a final middle vertex of u′v′.

A setting is aligned, when all of its edges are aligned. The sequence of switches which aligns

one or more of the misaligned edges of a d-arc setting is called aligning.

Definition 6.3.6. A d-arc setting is a setting with its path containing exactly two related d-arcs.

An example of a (generic) d-arc setting with both unready edges in U− is shown in Figure 6.4.

Below, we categorise d-arc settings according to the relative position of their two d-arcs on the

cycle, also shown in Figure 6.5. Let u(m)v be a d-arc with middle vertex m.

– Ifmm′ is a d-arc with middle vertex either u or v then the setting on pathm′umv (or umvm′)

a d-crossing.

– If u′(m′)v′ is a d-arc related to u(m)v, m′ is a final middle vertex of u(m)v and the least

distance in C between uv and u′v′ is k, then we distinguish two cases. When m is the final middle

vertex of u′(m′)v′, then the setting on path P (u′, v) is a k-exchange, otherwise it is a k-sub. Note

that k = 0 is possible and then v = u′.

86 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

(a)

s m′ u m v s′U+ A0 U−

(b)

u m v m′ v′A U− U+ A u m v u′ m′ v′A U− Ā U+ A

(c)

u′ m′ u m v x
A U− A U− u′ m′ v′ u m v xA U− A A U−

Figure 6.5: (a) A d-crossing exchange setting. (b) A zero-exchange setting, on the left, and a one-exchange

setting on the right. Observe that it must be mm′ ∈M in both cases. (c) A zero-sub setting, on the left, and

a one-sub setting, on the right. Only edges and non-edges in G required by definition are illustrated.

6.3.2 Outline of Algorithm A and Basic Routines

Let C be a hamiltonian cycle of G. We give some definitions of subsets of the sets of ready edges

R and unready edges U of C, which are useful when the algorithm picks a d-arc setting in C and

attempts to align some or all of its edges. Edges in R0 and Rp are ready but not allowed to switch,

until other specific ready edges switch first. Edges in R0 switch after specific ready edges switch,

whereas edges in Rp switch when certain unready edges switch first. Aligned edges, previously in

M and which can remain aligned until we reach Ct without loss of generality, move to set Z ⊂ A.

Unready edges which have to be preceded by the switching of other unready edges move to set

Up ⊂ U .

6.3. MAXIMUM DEGREE 5 87

Main idea of the Algorithm

AlgorithmA attempts to find a path between the two cycles Ci and Ct in H(G). In every iteration

the current cycle C has no edges in R\(R0 ∪ Rp) and A picks a d-arc u(m)v with unready edge

mv, recognises the d-arc setting S and applies the respective sequence of switches Q. Q attempts

to align one or more misaligned edges of S. This is done without loss of generality, what is referred

to as “Property N” in Section 6.3.4. With every main iteration, aligned and misaligned edges are

appropriately moved to specific subsets, if needed, that is to Z, Up, and Rp, and A outputs a new

cycle C ′. The new cycle is either closer to Ct in H(G) or Up has obtained a new edge, or identifies

a setting or misaligned edges which cannot be aligned. If appropriate, the algorithm re-iterates by

choosing a d-arc from the new input cycle C ′.

We present the algorithm and the sequences it uses in Section 6.3.3. In Section 6.3.5, we prove

that the algorithmic procedures determining the aligning sequences for the settings are correct,

and finally in Section 6.3.6, we show that algorithm A is correct. Before these, we describe basic

routines used by all the aligning sequences and A.

Important Conventions

(1) Recall that given a cycle C we assign a left-to-right (anti-clockwise) orientation. However,

when the algorithm picks a d-arc setting from C, the orientation of the vertices may be reversed,

such that the unready of the d-arc is in U−. This can happen without loss of generality, as in the

next step the current cycle will be processed with all of its edges re-labeled as appropriate.

(2) The observations in Section 6.1.2 of deriving the alignment of an edge will be considered

’common knowledge’ throughout the chapter, if not explicitly stated. Deriving the alignment of an

edge by looking at two other edges is due to Corollary 6.1.4, and deriving required edges between

an endvertex of a path and its internal vertices is done by Observation 6.1.5.

88 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

Basic Routines

We introduce the basic routines Support, Switch-R, and Setting-R, which A utilises in order to

construct an aligning sequence for each of the different d-arc settings, according to the structure of

the subgraph induced by the vertices of the d-arc setting.

Schematically, the basic routines which we describe thereafter in detail, are the following:

• Support p-switches a supporter of an unready edge to the respective d-arc and outputs a cycle

where the unready edge is ready.

• Setting-R switches ready edges within a d-arc setting, according to the membership of the

edges in subsets of R.

• Switch-R switches ready edges in R\Rp arbitrarily.

Definition 6.3.7. A vertex x on a cycle C is p-connected to vertex y, if xw ∈ E for every w ∈

P (x, y)\{x}. A vertex x is p-connected to d-arc u(m)v, if x is on the left of u and p-connected

to m or on the right of v and p-connected to u. A vertex x p-switches to vertex y, when x is

p-connected to y and switches with every internal vertex in P (u, v).

Definition 6.3.8. Let x, y be two non-adjacent vertices on a cycle C, where x is on the left of y in

C. Vertex h is the left (resp. right) host for xy, if h is the left (resp. right) supporter of xy after y

p-switches to the right (resp. left) of x on a cycle C ′.

Note: We suggest the reader perhaps to skip the study of the basic routines and follow them by

means of studying one or more of the aligning sequences in the next section, Section 6.3.3.

6.3. MAXIMUM DEGREE 5 89

Procedure Support(s, D)

Input: A supporter s supporting d-arc D = u(m)v with unready edge mv in the current

cycle C.

Output: A cycle C ′, where s is the left supporting vertex of mv.

IF s is on the right, THEN p-switch s to the host h of ms

ELSE p-switch s to m

FOR x in {u,m, v}:

IF xs is in R and was aligned in C, THEN:

Put xs in R0.

Procedure Switch-R(H)

Input: A set of edges H ⊂ E, which are ready in the current cycle C.

Output: A cycle C ′, where the edges in H are not in R\(R0 ∪Rp).

R(H) := R ∩H , R0p := R0 ∪Rp.

WHILE R(H)\R0p 6= ∅ DO:

Switch e in R(H)\R0p.

Procedure Setting-R(S)

Input: Setting S on path P in the current cycle C with R 6= ∅.

Output: A cycle C ′ with R\Rp = ∅.

H = the set of edges induced by S in G.

R0p := R0 ∪Rp.

C ′′ := Switch-R(H).

WHILE R0 ∩H 6= ∅ DO:

FOR er in R0 ∩ P

IF er is at distance more than one from any em ∈ Up THEN:

Switch er, reaching a cycle C ′′′

C ′ := Switch-R(H).

ELSE put er in Rp, reaching a cycle C ′.

90 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

6.3.3 Aligning Sequences and Algorithm A

An aligning sequence is called single-middle, when the chosen d-arc is single-middle, otherwise

it is called multi-middle. We proceed in listing the procedures required by the algorithm in order

to produce appropriate aligning sequences for each setting. We can distinguish these sequences

according to the location of the initial and final middle vertex/vertices of the chosen d-arc.

Note that from now on we may refer to both the aligning sequences and the procedures deter-

mining them as ‘aligning sequences’, especially when it is clear from the context.

Minimal Structure of the d-arc Settings

For each aligning sequence below, we will give an input d-arc setting, the edges of which are

either given explicitly or can be derived by listing the d-arcs and the unready edges in U+ or U−

it contains. E.g. for an unready edge U+ in path u0uvv0 we know already that edge u0v exists,

while uv0 does not. Recall that a setting gives information for all arcs of length 2 in relation to the

input cycle C.

Two vertices u and v are (or edge uv is) related in C ′, when uv ∈ C ′. If C ′ = Ct, then they

are called just related.

The d-crossing exchange Sequence

The d-arc setting d-crossing is a U+A0U
− setting on the path sm′umvs′, which is also in the path

u0sm
′umvs′v0. The d-arc u(m)v is single-middle with middle vertex m and final middle vertex

m′, mm′ /∈ E, and m′ is at distance 2 from m. If a vertex s, its left neighbour and the two vertices

immediately to its right form a clique, then s is called right-complete. Left-complete is defined

similarly.

6.3. MAXIMUM DEGREE 5 91

d-crossing exchange(P):

Input: Path P (u0, v0), as defined above, on the current cycle C.

Output: A cycle C ′ where one or more misaligned edges of the setting are aligned or

Up = U .

S = the setting on path P .

H = the set of edges induced by P in G.

IF ss′ /∈ E THEN:

IF s is right-complete, p-connected to v and sm′ ∈ Ā\Z THEN s := s.

IF s′ is left-complete, p-connected to u, vs′ ∈ Ā\Z THEN s := s′.

IF s is p-connected to v , sm′ ∈ Ā\Z and m′(u)m is multi-middle THEN s := s.

IF s′ is p-connected to u, vs′ ∈ Ā\Z and uv is multi-middle THEN s := s′.

C0 :=Support(s, u(m)v)

C ′ :=Setting-R(H).

ELSE-IF s′s ∈ E and sm′, vs′ ∈ Ā\Z THEN:

IF s is right-complete, and sm, s′m ∈ E THEN:

s1 := s, D1 := m′(u)m

s2 := s′, D2 := s(m)v.

IF s′ is left-complete and s′u, sv ∈ E THEN:

s1 := s′, D1 := u(m)v

s2 := s, D2 := m′(u)s′.

C0 :=Support(s1, D1)

C∗ :=Support(s2, D2)

C ′ :=Setting-R(H).

ELSE Up := U .

92 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

The zero-exchange Sequence

The d-arc setting zero-exchange is a AU−U+A setting on the path umvm′v′ which is also in the

path xtsumvm′v′s′t′x′. The d-arc u(m)v is single-middle, m′ is its final middle vertex, arc mm′

is misaligned and of length two.

zero-exchange(P):

Input: Path P (x, x′), as defined above, on the current cycle C.

Output: A cycle C ′ with at least one of the three misaligned edges of the setting aligned

or Up = U .

S = the setting on path P .

H = the set of edges induced by P in G.

IF vv′ is single-middle, THEN:

IF s′ is p-connected to v and v′s′ ∈ Ā\Z, THEN:

s := s′, D := v(m′)v′.

ELSE-IF s is p-connected to m′ and su ∈ Ā\Z, THEN:

s := s, D := u(m)v.

ELSE-IF t′ is p-connected to v, s′t′ ∈ Z\Ā, s′m, s′v ∈ E and v′m, v′x ∈ E, THEN:

s := t′, D := v(m′)v′.

ELSE-IF t is p-connected to v, ts ∈ Z\Ā, s′m′, s′v, ux′ ∈ E, THEN:

s := t, D := u(m)v.

ELSE-IF vv′ is multi-middle, THEN:

mv is in Up (until vm′ is aligned).

ELSE Up := U .

C∗ := Support(s,D).

C ′ := Setting-R(H).

6.3. MAXIMUM DEGREE 5 93

The one-exchange Sequence

The d-arc setting one-exchange is a AU−ĀU+A setting on the path umvu′m′v′. The d-arc u(m)v

is single-middle, m′ is its final middle vertex, m′v is related, and arc mm′ is misaligned and of

length three.

one-exchange(P):

Input: Path P (u, v′), as defined above, on the current cycle C.

Output: A cycle C ′ with at least one of the misaligned edges of the setting aligned or

Up := U .

S = the setting on path P .

H = the set of edges induced by P in G.

IF u′v′ is single-middle, THEN:

s := v, D := u′(m′)v′, if vv′ ∈ E

s := u′. D := u(m)v, if uu′ ∈ E.

ELSE-IF u′v′ is multi-middle, THEN:

s := u′, D := u(m)v, if uu′ ∈ E.

ELSE Up := U .

C∗ := Support(s,D).

C ′ := Setting-R(H).

The sub Sequences

Given a single-middle d-arc u(m)v with final middle vertex m′, where m′m is aligned, there can

be three different d-arc settings depending on the distance of m′ to m. Specifically, then u(m)v is

in:

• zero-sub setting AU−AU− on path u′m′umv, when m′ is at distance two from m and

m′m ∈ E

94 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

• one-sub setting AU−AAU− on path u′m′umv, when m′ is at distance three from m and

m′m ∈ E

• dis-1-sub setting AU−AAU−A on path u′m′v′umvv0, when m′ is at distance three from m

and m′m /∈ E.

Below, we provide the aligning sequences for each of these three settings.

zero-sub(P):

Input: Path P (u′, v), as defined above, on a cycle C.

Output: A cycle C ′ where mv ∈ Up.

Move mv to Up.

dis-one(P):

Input: Path P (u′, v0), as defined above, on a cycle C.

Output: A cycle C ′ where mv is aligned or Up := U .

S = the setting on path P .

H = the set of edges induced by P in G.

IF v′ is p-connected to m, THEN:

C0 :=Support(v′, u(m)v)

C := C0.

IF v′v /∈ E and v0 is p-connected to m, THEN:

C∗ :=Support(v0, v′(m)v)

C := C∗.

C ′ :=Setting-R(H).

ELSE Up := U .

6.3. MAXIMUM DEGREE 5 95

The multi-middle Sequence

multi-middle(P):

Input: Path P (x, y) induced by a pair of multi-middle d-arcs u(m)v and u′(m′)v′, where

m′ is a final middle vertex of u(m)v, x is the leftmost and y is the rightmost vertex of

the respective setting, by definition.

Output: A cycle C ′, where one or more misaligned edges of the d-arc setting formed by

uv and u′v′ or at least one unready edge moves to Up or Up := U .

S = the setting induced by path P in G.

H = the set of edges induced by P in G.

IF S is a zero-exchange THEN:

IF u is the only left-neighbour of m, THEN:

Move mv to Up.

ELSE-IF v′ is the only right neighbour of m′, THEN:

Move vm′ to Up.

ELSE Up := U .

ELSE-IF S is a one-exchange THEN:

IF both uu′, vv′ ∈ E, THEN:

C∗ := Support(u′,u(m)v)

C∗ := Switch vm′

C ′ := Setting-R(C∗).

ELSE Up := U .

ELSE-IF S is a d-crossing THEN:

C ′ := d-crossing(P).

ELSE Up := U .

96 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

The algorithm A

Input: Cycles Ci and Ct.

C :=Switch-R(E)

Move misaligned edges to U and aligned edges to A.

Initialise sets Z, Up, R0, and Rp as empty.

Move all edges in U0 to Up.

WHILE U 6= ∅ DO:

Choose a d-arc u(m)v with its unready edge in U\Up in the

following order of preference:

• u(m)v is single-middle

• u(m)v is multi-middle and in a k-exchange setting

• u(m)v is multi-middle and in a d-crossing exchange setting

IF the d-arc setting S formed by d-arcs u(m)v and u′(m′)v′

(where m′ is a final middle vertex of uv) is such that there is

an aligning sequence Q, THEN:

Apply Q on S and output cycle C ′.

C ′′ := Switch-R(E).

Move any edges in U0 to Up.

IF any misaligned edge e with both vertices in S

aligned, THEN move e to Z.

Set the current cycle to C.

ELSE Up := U .

IF Up 6= ∅, THEN return ’NO’

ELSE return ’YES’.

6.3. MAXIMUM DEGREE 5 97

6.3.4 Property N of a Sequence

In this section, we provide a series of lemmas useful in proving the correctness of the (aligning)

sequences described in Section 6.3.5 and algorithm A later in Section 6.3.6. Notably, when any

sequence Q satisfies what is defined below as Property N , then Q can be applied at the time of

the algorithmic call without loss of generality. That is, applying Q does not cause A to decide

HC-PATH wrongly.

Recall that a sequence (of switches) Q, starts from a cycle C and switches edges in the order

given by the sequence, and outputs the resulting cycle C ′. Also, a subsequence of switches is a

strict subset of switches of a sequence Q and not necessarily a sequence.

Definition 6.3.9. SC is the set of all minimal sequences corresponding to all paths from cycle C

to the target cycle Ct.

That is, every switch in each Q ∈ SC is necessary such that the misaligned edges in C align.

Another way to think about it is that we do not allow the path between C and Ct to contain cycles

in H(G). Clearly, if there is a path between C and Ct, then SC 6= ∅.

Given a path rst and a vertex u on a cycle C, if u is on the right (resp. left) of rst, then the

u-internal edge of s is st (resp. rs).

Definition 6.3.10. A supporter s of an edge e is direct in cycle C, when there is a sequence Qs

such that s is a supporting vertex of a ready edge in some cycle C ′ and there is no unready edge in

C which is aligned in C ′.

That is, it is not required to align any unready edge, for Qs to move vertex s next to edge e.

And thus, e is the first unready edge to be in R between cycles C and C ′.

Lemmas 6.3.12 to 6.3.11 provide both requirements for and implications of a vertex s being the

supporter of a d-arc u(m)v. The lemma below shows that d(s,m) ≤ 3, where s is the left direct

supporter mv ∈ U− of d-arc u(m)v in cycle C and if the m-internal edge of s is aligned, then it is

also in Ā.

98 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

(a)

u m vs A U−

A

A
(b)

b u m vs aU− A U−

M

A

Figure 6.6: (a) Vertex s is a direct supporter of the unready edgemv and not a final middle vertex of u(m)v.

According to Lemma 6.3.12, s must be p-connected to m and v. (b) According to Lemma 6.3.13, the left

direct supporter s of d-arc mv is a final middle vertex of u(m)v, as es = sa ∈ U .

Lemma 6.3.11. Let s be the left direct supporter of the unready edge mv of d-arc u(m)v in cycle

C, where es is the m-internal edge of s. The following are true:

(i) d(s,m) ≤ 3

(ii) If es ∈ A, then es ∈ Ā.

Proof. (i) Vertex s is connected to u, m, v and its initial neighbour is not in es. Thus, there can be

at most one vertex between s and u, in which case the neighbour of s in es is not u and d(s,m) ≤ 3.

(ii) Suppose that es is aligned, but not ready, that is es ∈ A\Ā. We will show that at any case,

either s is not direct or s is not a supporter of the unready edge mv. By Lemma 6.3.12, s is p-

connected to u(m)v, and so es ∈ A−. Thus, es requires a left supporter y such that it can be in

Ā.

CASE A. s is between u(m)v and y.

Then also the d-arc for which s is the middle vertex is between y and u(m)v in C.

– Suppose that s is on the left of u. Since ys /∈ C, let z 6= y be the left-neighbour of s. Due

to N(s) = {y, z, u,m, v}, path zsumv must be on C. Suppose that y is able to p-switch to and

replace s in z(s)u and then s replaces m in u(m)v. We reach a cycle with path zyusvm, where

us ∈ U+. Edge us has only two possible supporters, m and y. Thus, s is vicious to uv, as m must

replace s in u(s)v in order to align us, and so uv remains a d-arc.

– Suppose that s is on the right of v. Similarly to above, y is on the right of s and path umvsz

6.3. MAXIMUM DEGREE 5 99

must be on C. Suppose that y replaces s in the d-arc v(s)z and s p-switches to u. If my /∈ E, then

my cannot switch, so y will remain on the right of m. Thus, vertex s is vicious to uv, as m is the

only left supporter for u(s)v, and y is the only right one, so m must replace s in u(s)v in order to

align sv. If my ∈ E, the conclusion is similar.

CASE B. y and u(m)v are on the same side of s.

Case 1. d(s,m) = 2.

– Suppose that s is on the left of u. Since d(s,m) = 2, then zsumvx is a path on C and y is

on the right of u. Also, uv /∈ E, then y 6= v. If y is on the right of v, then deg(y) > 5, considering

that N(y) = {z, s, u,m, v, x}. The only case left is that y = m. Edge sm needs a left host and,

without loss of generality, that is z. So, mz ∈ E. Since um /∈ Ā, and all the neighbours of m

appear on the path zsumvx, then x is the only possible right supporter of um.

Let Q be a sequence starting from C such that vx is ready, x replaces m in u(m)v and m p-

switches to z, then we reach a new cycle C ′ with path zmsuxv. Since m is the left supporter of

su, su must switch before mu, which is misaligned in C ′ with only possible supporters s and x.

Then, x should be the left supporter of mu in some subsequent cycle, as s has to be on the right

of m. This requires sx ∈ E. Without loss of generality, x is neighbours with all vertices in path

zmsuxv, and its initial right-neighbour in C, that is it has degree six. Hence, such Q does not

exist.

– Suppose that s is on the right of v. Since d(s,m) = 2, umvsz is a path on C and the right

supporter y of vs is on the left of v. With s the left supporter of mv, mv cannot switch before s,

so y 6= m. In every other case, deg(y) > 5.

Case 2. d(s,m) = 3.

– Suppose that s is on the left of u. Since d(s,m) = 3, then zstumv is a path on C, which also

contains all neighbours of s. Also, zt /∈ E. Thus, y is on the right of t and one of u, m, v.

If y = u, then tu ∈ A, otherwise s would not be a direct supporter of mv. N(u) =

{z, s, t,m,m′}, where s 6= m′ since su ∈ A. Thus, the required right supporter of tu such

that the latter is ready in a subsequent cycle must be m, that is tm ∈ E. Let Q be the sequence

100 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

starting from C and in which u replaces s in z(s)t, and mv switches, resulting in a cycle C ′ with

the path zutsvmx. Observe that s and m are the only possible supporters for ut ∈ U−, with s

being the only possible left supporter. Thus, s and m must support ut before we reach cycle C ′.

Therefore, for any sequence Q, s is vicious to u(m)v, since uv remains a d-arc.

Observe that if y is m or v, then y cannot be the left supporter of st, unless deg(y) > 5. For

example, if y = m, then m must be p-connected to z.

– Suppose that s is on the right of v. Since d(s,m) = 3, then umvtsz is a path on C, which

contains all neighbours of s. Thus, y, on the left of t, must be one of u, v – it cannot be m, as this

would mean that mv can switch without s as the left supporter.

If y = v, then vz ∈ E. Let Q be a sequence starting from C, where v p-switches to z and

replaces s in t(s)z, and s p-switches to u, reaching path usmtvz on C ′. The only supporters for

tv ∈ U+ are s and m. If s is the left supporter of tv then u(s)v is a d-arc with m the only left

supporter. And if s is the right supporter of tv, then Q reaches back to cycle C. Thus, at any case,

s is vicious to u(m)v. It is easy to see that also y 6= u.

Thus, if s is a left direct supporter of u(m)v, then it can only be es ∈ Ā.

The next lemma shows that if s is a direct supporter, then it is p-connected to the unready edge,

apart from one case. Figure 6.6 (a) illustrates one such case.

Lemma 6.3.12. Let s be a direct supporter of the unready edgemv of a d-arc u(m)v in cycle C. If

s is not a final middle vertex of u(m)v, then s is p-connected to m and v, apart from the following

case:

• s is the right supporter of mv and the left supporter s′ of mv is between v and s.

Proof. We suppose that s is not p-connected to mv, and reach a contradiction. Then there is some

vertex x between s and the d-arc u(m)v such that xs /∈ E. Then x has to switch with all vertices in

u(m)v, before s is able to be a supporting vertex of mv in some cycle C ′. Let ex be the m-internal

edge of x in C. Since s is a direct supporter, ex must have the same alignment both in C and C ′,

therefore ex ∈ A.

6.3. MAXIMUM DEGREE 5 101

Consider that s can be either the left or the right supporter of mv ∈ U−.

CASE 1. s is the left supporter of mv.

– Suppose that s is on the left of u. Thus, x is between s and u. If x can switch with u and v,

then there is a right host (see Definition 6.3.8) x′ of xv. Since x has four neighbours on its right

starting from u, and it also has an initial left-neighbour, then the path txumv is on C. If xu /∈ Ā,

then one of its neighbours is its left supporter. Due to its degree, x′ cannot be the left supporter of

xu and uv /∈ E. Thus, t is the left supporter of xu and s is on the left of t. Since xu ∈ Ā, we

p-switch x to x′ to reach (a cycle with) path tumvxx′. Then s p-switches to and replaces m in uv,

reaching a cycle Cs with path tusvxmx′. Notice that when on C, since xu ∈ A, then su ∈ A,

and so us ∈ U+. The only possible right supporter for us is m, and thus s is vicious to u(m)v, as

us ∈ A requires mv ∈ U . Thus, x does not exist.

– Suppose that s is on the right of v. Similarly to the above case, if x is between v and s and

we switch xv and xu, then s is vicious to u(m)v, while we try to align us after s replaces m in

u(m)v.

CASE 2. s is the right supporter of mv.

– Suppose that s is on the left of u. If t is the left-neighbour of s, then N(s) = |{t, u,m, v, h},

where h is the left host of sv. Thus, s is p-connected to u(m)v in the path tsumv on C.

–Suppose that s is on the right of v. Since there is some vertex x between v and s such that

xs /∈ E, then x has to switch with v, m, and y, which is the left supporter of mv, before mv

switches – by assumption x 6= y. Thus N(x) = {y, u,m, v, w}, where w is a vertex between x

and s. The only available host for xy is u. It is easy to see that the only right supporter, required to

switch vx, is w (mv cannot switch by assumption, uv /∈ E, and yw /∈ E. Also, vx ∈ A, otherwise

s is not direct. Thus, vx ∈ Ā. It is N(v) = {y,m, x, w, s} and N(y) = {z, u,m, v, w}, where z

is the left-neighbour of y, and so path yumvxws is on C. At least one final middle vertex m′ is

such that m′ ∈ N(v). In fact, m′ ∈ N(v)\{x, s,m} = {y, w}, because vx is aligned and s 6= m′

by assumption. Since, m′m /∈ E, m′ is on the left of u, and so m′ = y and yu ∈ U−. Observe

that there is no left supporter for yu. Thus, this setting is not possible, when SC 6= ∅.

102 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

Lemma 6.3.13. Let s be the left and direct supporter of the unready edge mv of d-arc u(m)v in

cycle C, where es is them-internal edge of s in C. If es is unready, then s is one of the final middle

vertices of uv in the target cycle Ct.

Proof. We will assume the opposite of the statement, an illustration of which is in (b) of Figure

6.6, and reach a contradiction.

Suppose that es is unready and s is not one of the final middle vertices of uv. Then s is either

on the left of u or on the right of v in Ct.

CASE A. s is on the left of u in Ci.

Let s be in the path zstumv. Since all of the neighbours of s are on this path, one of these

vertices has to be the left supporter of st.

Case 1. s is on the left of u in Ct.

Then, su ∈ A. Also, t 6= u, otherwise su would be both aligned and misaligned. Edge tu ∈ A,

because su ∈ A and by Lemma 6.1.4. Only u can be the left supporter for st. According to (ii),

tu ∈ Ā and u is p-connected to z. The final right neighbour of u and one of the final middle vertices

of uv, say ur, must be on the right of u, otherwise urs would be misaligned, and thus urs ∈ E.

But s cannot have more neighbours. Since mv is unready then urm must be misaligned, and thus

urm ∈ E. But then none of the neighbours of m can be its final right neighbour. Therefore, s

cannot be on the left of u in Ct.

Case 2. s is on the right of v in Ct.

If d(s, u) = 1, then s is in the path zsumv, where su, mv ∈ U−. By (i) and (ii) of Lemma

6.3.11, the left supporter y of sumust be on the left of z. Once y replaces s in z(s)u and s replaces

m in u(m)v, we reach the path zyusvm. If y can replace s in the d-arc uv, then it must be the

initial left neighbour of z. If yz is not in Ā, then yz cannot have a left supporter while on C, due to

degree. So, yz ∈ Ā. Once y replaces s in d-arc uv, then s is the only right supporter for uy. Thus,

s is vicious to uv.

If d(s, u) = 2, then s is in the path zstumv, where st, mv ∈ U−. Since all the neighbours of

6.3. MAXIMUM DEGREE 5 103

s are on this path and only tu can be in Ā, by (ii) of Lemma 6.3.11 u must be the left supporter of

st. It is also required that uz ∈ E, so that z is the host for su. Once u replaces s in z(s)t, then s

replaces m in uv, reaching the path zutsvmx. Since s is the only left supporter for ut, we cannot

align both ut and sv.

CASE B. s is on the right of v in Ci.

Case 1. s is on the right of v in Ct.

Since vs ∈ A, but es ∈ U , then s must be in the path umvtsz, where t is the left-neighbour of

s and es = ts ∈ U+. All the neighbours of s are in this path, so the right supporter of ts is one of

u, m, v. Since only vt can be in Ā, by (ii) of Lemma 6.3.11 v is the only possible right supporter

for ts. As such, also vz ∈ E, as only z can be the host for vs. Once v replaces s in t(s)z, then

s p-switches to u, reaching path usmtvz, where tv ∈ U+. If the right supporter for tv is only s,

then s is vicious to u(m)v, because u(m)v remains a d-arc, when s reaches back to z to support

tv. Thus, the right supporter of tv must be x 6= s. It is easy to see that x can only be on the right

of z. Assuming that x can replace v in t(v)z, we can switch mv, and now u(s)v is a d-arc. If m

replaces s in u(s)v, then s will be vicious to u(m)v. If t replaces s in u(s)v, then we reach a cycle

where u(t)v is a d-arc. Since the only possible right supporters for ut are s andm, then s is vicious

to u(t)v, when s replaces t, and s is vicious to u(m)v, when m replaces t.

Case 2. s is on the left of u in Ct.

Since s is misaligned to u,m, and v, then `, the final left-neighbour of s, is not one of them.

Thus, N(s) = {u,m, v, z, `}, where z is the initial right-neighbour of s. It is easy to see that

` 6= z, and so ` is initially on the left of s. In fact ` is initially on the left of u, as if it is the initial

left-neighbour of s, it would have to be an unready edge, but `s ∈ A. Thus, s must be exactly in

the path `umvsz, where mv ∈ U− and sv ∈ U+. Observe that none of the neighbours of s can

be the right supporter of vs. The described setting of this case is not possible. We have reached a

contradiction, and thus s must be a final middle vertex of u(m)v.

Next, we prove that a vertex x cannot be misaligned to both vertices u and v of a d-arc u(m)v,

except for the case where u(m)v is in a d-crossing.

104 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

Lemma 6.3.14. Let u(m)v be a d-arc withmv ∈ U− on a cycle C, and x is a vertex not in u(m)v.

Then x cannot be misaligned to both u and v, unless uv is in a d-crossing.

Proof. Assume x is misaligned to both u and v.

Case A. Suppose x is on the left of u in C.

Case: d(x, u) = 1.

Let x be in the path x0xumvv0. Since xu ∈ U and xumv is not in a d-crossing, then xu ∈ U−.

We will show that the left supporter y of xu is a fifth neighbour of x. By Lemma 6.3.11,

y 6= m, as um ∈ A\Ā, and y 6= v because vu /∈ E. Finally, y cannot be on the right of v,

because then deg(y) > 5. So y must be on the left of u. y 6= x0, because x0u /∈ E. Thus,

N(x) = {y, x0, u,m, v}.

Now, we will show that only one of x, m can be misaligned to v. Let Q be a sequence starting

fromC, which switches xu and xv. From all the neighbours of x,m is the only possible final right-

neighbour of x, somv has to precede xv inQ. At the same time, when xv switches, then the middle

vertex in uv is a neighbour of x. Now, there can be one of the following: either xv is unready, and

some neighbour of x supports xv, or x switches with one or more existing vertices between u and

v. At any of the two cases, x cannot be misaligned to both u and v, unless deg(x) > 5.

Case: d(x, u) = 2.

Let x be in the path x0xaumvv0. We determine the alignment of edges between x0 and u. If

au ∈M , then it can only be au ∈ U−, otherwise d-arc uv is in a d-crossing. But xu ∈ E, so then

au ∈ R. We assume no ready edges on input cycles, thus au ∈ A and xa ∈ U−, and so x0a /∈ E.

This also implies that x0u ∈ A.

We next locate m′, the final middle vertex of u(m)v. N(x) = {x0, a, u, v, xr}, where xr is

the final right neighbour of x. Then, m′x /∈ E. Obviously, m′x ∈ A, and given that xv ∈ M , m′

is on the left of x0. Observe that m′ must be the left-neighbour of x0, that is wm′x0xaumv is on

C, where w is the left-neighbour of m′. Also, any other final middle vertex of uv would have to be

on the left of m′ with degree more than five. So, m′ is unique and N(m′) = {w, x0, a, u, v}.

6.3. MAXIMUM DEGREE 5 105

Let path x1m
′x0xaumvv0 be on C, and Q a sequence starting from C, which first switches

xu and xv before m′u. Now observe that one of the neighbours of m′ has to be the middle

vertex of x0a, while Q switches m′x0 and then m′a, and this can only be u. By now, N(u) =

{m′, x0, x, a,m}. Also, m′x0 ∈ U , because x0a ∈ A and m′a ∈ M , and since m′x /∈ E. Thus,

m′x0 needs a right supporter and this can only be u; not possible due to degree.

Case B. Suppose x is on the right of v in C.

First of all, x is misaligned to u, m and v, has a final left-neighbour x′, and an initial right-

neighbour w. Thus, umvxw is a path on C due to the degree of x.

Let m′ be a final middle vertex of u(m)v. m′x /∈ E, and thus m′x ∈ A and m′ is on the right

of w.

By Lemmas 6.3.13 and 6.3.11, m is the only possible right supporter for vx. So mv and mx

have to switch before vx. The left supporter s of mv must be on the left of u, otherwise xs ∈ E,

since s has to p-switch to u(m)v before vx switches. Since now m has degree five, mw /∈ E. But,

w is the only possible right host for mx, thus mx has no host.

Definition 6.3.15. Given two sequencesQ1 andQ2, then their concatenation is sequenceQ1 +Q2,

which applies the switches of Q1 and continues with the switches of Q2, in the exact order the

switches appear in Q1 and Q2.

Recall that SC is the set of all minimal sequences starting from cycle C and resulting in the

target cycle Ct. Also, an aligning sequence Q starts from a cycle C and results in a cycle C ′,

which is closer to Ct.

In order to prove the correctness of algorithm A, we will need to show that all aligning se-

quences, which are used by A, satisfy the following property:

Property N : Let Q be a sequence starting from a cycle C and resulting in a cycle C ′

(i) Q ⊂ QC for some QC ∈ SC ,

(ii) There is a sequence QC′ ∈ SC′ such that Q+QC′ ∈ SC .

Practically, if a sequence Q satisfies Property N , then by (i) all the switches it contains are

106 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

required by some sequence QC in SC and by (ii) Q can be applied on the current cycle C without

loss of generality.

In showing that some aligning sequence QA satisfies Property N , we will often do so for its for

each of its subsequences Qs and Qm, which are such that Qs + Qm ⊂ QA. Recall that once QA

identifies a supporter s of the unready edge of a d-arc u(m)v on a cycle C, s p-switches to u(m)v.

We denote the sequence of the switches of this action by Qs. After we apply Qs we reach a cycle

C ′, where sm is in C and mv is ready to switch. We denote the sequence of switches starting from

the output cycle of Qs until the switch of mv, as Qm.

If an aligning sequence Q does not satisfy (ii) of Property N , then must be some misaligned

edge e which cannot align once some or all of the switches of Q are applied. We will show that

for Qs (Lemma 6.3.16) and Qm (Lemma 6.3.17) satisfy (ii) of Property N by examining whether

such an edge e exists.

Without loss of generality, from now on we assume that the supporter s which p-switches to

d-arc u(m)v in Qs is the left supporter of mv ∈ U−. By symmetry we can apply the same lemma

for the right supporter of an unready edge in U+.

Lemma 6.3.16. Let s be the left supporter of the unready edge mv of and p-connected to d-

arc u(m)v on a cycle C. Moreover, let Qs be the sequence starting from C which p-switches

s to u(m)v and replaces m with s in u(m)v reaching a cycle C ′, and only under the following

conditions:

• s is not a final middle vertex of uv

• s is not a supporter of an edge containing a final middle vertex of uv and a vertex not in

u(m)v.

If Qs satisfies (I) of Property N , then it also satisfies (II).

Proof. Let QC ∈ SC such that Qs ⊂ QC , that is Qs satisfies (I) of Property N . We will show that

every switch in Qs can precede any other switch in QC\Qs. In other words, any e ∈M which can

precede Qs can also switch after Qs.

6.3. MAXIMUM DEGREE 5 107

We note that by assumption and Lemma 6.3.11, the m-internal edge of s is aligned and ready.

Let m′ be any final middle vertex of uv, and by assumption m′ 6= s.

Case A. m′ and s are on different sides of u(m)v in C.

– Suppose that m′ is on the left of u and s is on the right of v in C. We first show that

d(s,m) 6= 3. We apply Qs on cycle C with path umvast and reach a cycle C ′ with path hsmvat,

where h is the left host of ms, and so N(s) = {h,m, v, a, t}. Without loss of generality, h = u.

Then a is the only possible left supporter for d-arc u(s)v, and so amust be p-connected to u. Thus,

N(a) = {u,m, v, s, t}. Observe that in this structure exactly one of a, s, m will be the middle

vertex of d-arc uv, for any cycle where s is the supporter of mv. Thus, s is vicious to u(m)v.

The only case left is that vs is in C, since d(s,m) ≤ 3. We are looking for e ∈ M such that it

has to precede Qs. If e = vt, then st ∈ U+. We apply Qs on cycle C with path umvst and we

reach a cycle C ′ with path usmvt. Then, N(s) = {u,m, v, t, s′}, where s′ is the left supporter of

sv, when mv switches in a subsequent cycle. By Lemma 6.3.14, t cannot be misaligned to both

u and v, and thus t is a final middle of uv. By assumption, s does not support vt. Suppose that

e = s′u or e = s′v, where s′ is not a final middle of uv. Then N(s) = {u,m, v, t, s′}, and s′ is

misaligned to both u and v. By Lemma 6.3.14, this can happen only if s′umv is a d-crossing. So,

s′ must be in path t′s′umvst on C, and s′u ∈ U+. If s p-switches to u, then s can replace m in

u(m)v and u in s′(u)m in any order. Therefore, e = s′u does not have to precede mv. If e = s′m,

then s′ is misaligned to all u,m, v. Since s′umv is not in a d-crossing, this case is not possible, by

Lemma 6.3.14.

– Suppose that s is on the left of u and m′ is on the right of v in C. If d(s,m) = 3 with s in the

path bsaumvx, thenm′s /∈ E due to the degree of s, andN(s) = {b, a, u,m, v}. Vertex s is not in

a d-crossing and not a final middle vertex of uv, therefore su ∈ A, and by Lemma 6.3.11 su ∈ Ā.

Edge ba ∈ A, otherwise s has no final left neighbour. If s is the supporter of some misaligned

edge, then observe that the only candidate is au, but then e is not in a d-crossing by assumption.

If s is in the path basumvx and e = ba ∈M , then we applyQs ⊂ QC . With a similar argument

we conclude that there will be a cycle after Qs with a path basu, where s can support ba.

108 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

Case B. s and m′ are on the same side of u(m)v.

We will explore N(s). Since su, sv ∈ A, then after we apply Qs and path usmv is on cycle

C ′, s is misaligned to the one vertex from u, v to which also m′ is misaligned. Thus, it must be

m′s ∈M , and som′s ∈ E. We deduce thatN(s) = {t,m′, u,m, v}, where t is the final neighbour

of s that is further from d-arc u(m)v in C. Observe that there is no misaligned e supported by s

with the properties defined in the assumption.

In conclusion, all switches of Qs can be applied on C and there is QC′ ∈ SC′ such that Qs +

QC′ ∈ SC .

The following lemma shows that we can switch a misaligned edgemv, which has become ready

in cycle C under certain conditions, without loss of generality, that is satisfying Property N .

Lemma 6.3.17. Let u(m)v be a d-arc with unready edge mv ∈ U− in a cycle C with vertices

m′ and s, the final middle vertex and the left supporter of u(m)v, respectively. Let Qm be the

sequence which switches mv from ready to aligned, when the following conditions are met:

• m′ is connected to both u and v

• when s 6= m′, then s is direct

• if mv is in a AU−U+A setting on path umvm′v′, and vm′ precedes mv, then both d-arcs

are single-middle.

If Qm satisfies (I) of Property N , then it also satisfies (II).

Proof. Let Qm be the sequence which switches mv in a cycle C ′. We will show that every switch

in Qm ⊂ QC′ ⊂ SC′ can precede any switch in QC′\Qm. If this precedence is not possible, then

it must be because there is some misaligned edge e ∈ QC′ such that e must precede Qm.

We look at every possible edge e ∈ M which requires one of the vertices of mv as a supporter

while mv ∈M , and specifically at the cases:

(i) both vertices of e are on the left of mv, and m or u is a possible supporter of e

6.3. MAXIMUM DEGREE 5 109

(ii) both vertices of e are on the right of mv and v is a possible supporter of e

(iii) each vertex of e is on a different side of mv and any of u, m or v is a possible supporter of e.

Note that e does not contain any final middle vertices of u(m)v, otherwise Qm satisfies Prop-

erty N by assumption.

(i) Suppose that the vertices of e are on the left of m and one or more of u, m are supporters

of e. Let path cbaumvx be on C.

Case: e = ba

First we show that ba must be in U− and that m′ and s must be on the right of v. Since, by

assumption, b is not a final middle of u(m)v and uv is not in a d-crossing, then by Lemma 6.3.14

b is aligned to u and v. Thus, u is the final right-neighbour of b in Ct, and so bu ∈ A. This implies

that ba ∈ U−. It is ca ∈ A and so cu ∈ A. Any vertex on the left of c which is a final middle of uv

would have degree six, as its neighbours would be all vertices in path cbau, its initial left-neighbour

and its final right-neighbour (either v or some other final middle). Thus, m′ is on the right of v.

Next, we locate s. If s = a, then N(s) = {r, b, u,m, v}, where r is the final left-neighbour

of s. After we apply Qs and switch mv, we reach a cycle C ′ with path usvm. Observe that m is

the only possible right supporter for d-arc u(s)v in cycle C ′, and thus s is vicious to u(m)v. By

Lemma 6.3.11, the left supporter of u(m)v cannot be on the left of b, and by Lemma 6.3.13, s 6= b,

or else b would be a final middle of uv. Hence, s is on the right of v.

Now, we prove that neither u or m are supporters of ba. If m is a possible supporter of ba,

then N(m) = {b, a, u, v,m′}, and so m does not have a final right neighbour. Since u is the

right-neighbour of ba in C, it can be its right supporter after mv switches. Suppose that u is the

left supporter of ba, then N(u) = {h, a, b,m,m′}, where h is the host of bu. Observe that since

su ∈ E, then s = m′. By Lemma 6.3.11, u ∈ Ā. We are looking for a right supporter for ba

different than u. It is N(m) = {u, v,m′, a, r}, where r 6= b is its final right neighbour. Since

mb /∈ E, m is not a supporter of ba. Also, m′ is not a possible supporter of ba due to degree.

Therefore, u is not the left supporter of ba.

110 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

Case: e = zu, where z is on the left of a

If z = b, then bu ∈ M and b is not a final middle vertex of uv. This means that bv ∈ M . By

Lemma 6.3.14, bumv is a d-crossing. None of u or m is a possible supporter of bu.

If z is on the left of b, then zu ∈M . By Lemma 6.3.14, since zu is not in a d-crossing with uv,

z is a final middle vertex of uv; but e does not contain final middle vertices of uv.

Thus, e 6= zu, for any z on the left of a.

Case: e = pq, where p and q are on the left of u and pq 6= ba

We will show that m is not a supporter of pq in these cases. The neighbours of m are N(m) =

{u, v, s, x}. If m is a supporter of pq, then one of p, q must be an existing neighbour of m and

on the left of u, for example q = s. Then, N(s) = {u,m, v, p}. q is a direct supporter, and thus

d(q,m) ≤ 3. This means q is one of b, a. Since pq 6= ba, and given all the conditions above, either

bqumvx is a path on C and p on the left of b, or pqaumvx is a path on C.

When pqaumvx is on C, then pq ∈ U−. Since q = s, N(q) = {p, a, u,m, v}. Observe that

there is no final left-neighbour for q. It remains that bqumvx is on C and p is on the left of b. At

least one of pb, bq is unready, as pq ∈M . Then, at least one of pb, bq is misaligned. Since b is the

only vertex that can be the final left-neighbour of q, then bq ∈ A and so pb ∈ M . Also, p is not a

final middle of uv. It remains that p is the final left-neighbour of u. Therefore, dpbqumvx is on C,

and none of the neighbours of p can be the left supporter of pb ∈ U−. Thus, the assumption that

m is a supporter of pq is false.

(ii) The vertices of e are on the right of v and v is a supporter of e. Let path umvxab be on C.

Case: e = vx

Since x is not a final middle vertex of u(m)v, it has to be misaligned to all vertices in path umv.

By Lemma 6.3.11, x is misaligned to both vertices of d-arc uv and x is not in a d-crossing. Thus

vx is in U+ and so va /∈ E. N(x) = {h, u,m, v, a}, where h is the left host of ux. Thus, the right

supporter of vx must be on its left and by Lemma 6.3.11 this can only be m. Then mv precedes

vx.

6.3. MAXIMUM DEGREE 5 111

Case: e = xy, where y is on the right of x in C.

We assume that the switch of xy precedes that of mv, and we will reach a contradiction.

– Suppose that m is the left and v is the right supporter of xy. Path umvx is on C, and

N(v) = {m′,m, x, y, w}, where w is the right host of yw. It is obvious that umvxy is a path on

C, with xy ∈ U+. If y was further away from x, then v would be of degree more than 5. mw /∈ E,

otherwise m is a possible right supporter of xy, and then mv can precede xy, violating the initial

assumption. Thus, v is the only right supporter for xy. If we p-switch v to w, and v replaces y in

x(y)w, then we reach a cycle C ′ with path umyxvw. The only supporters for d-arc x(v)w are m

and y, which means that v is vicious x(y)w, and thus v is not the right supporter of xy.

– Suppose that v is the left supporter of xy. First, we look at the connectivity of vertices in the

path in consideration.

If xy precedes mv, then my /∈ E; otherwise, m can also be the left supporter of xy, and thus

mv can precede xy. Since my /∈ E, there must be at least one vertex between m and y in Ct. Let

z be the right-neighbour of m in Ct. Since xy ∈M and z is on the right of x in C, then xz ∈M .

So, N(x) = {m, v, y, z, xr}, where xr is the final right-neighbour of x, as the other neighbours

are on its left in Ct. Moreover, N(m) = {u, v, s, z, x}, where s is the left supporter of mv – not

necessarily distinct from m′. Moreover, s is on the left of u, otherwise sx would be misaligned,

and sx an edge. If vz is not an edge, then mv has exactly two possible supporters; s is the left and

x is the right. In this case v cannot support xy; the switch of mv must precede xy, because x has

to remain on the left of y and when mv aligns, v cannot be the left supporting vertex of xy. Thus,

vz ∈ E and N(v) = {m′,m, x, y, z}. Also, observe that s = m′ and recall that s, and thus m′

must be in the left of u.

The following claim will assist us in the rest of the proof, while we consider different paths on

C, starting from and on the right of v.

Claim 1: Let Pv the path of length five starting from vertex v and extending to its right. In addition

to edge vx, which is in Pv at any case, if the rest of the vertices Pv are a permutation of xr, y and

112 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

z, then Pv cannot be on C.

Proof. We prove the claim, using the information on the neighbourhoods of the relevant vertices

above. If vxyz is on C, then xy is ready. If vxxr is on C, then xr is misaligned to y, z, and so xr

and one of y, z, are in a ready edge. Finally, if vxwxr is on C, where w is one of y, z, then xw is

ready. In all cases, there is a ready edge in C, while C has only unready or aligned edges. �

Observe that path m′vmzyxxr is on the target cycle Ct, since this is the only ordering of the

vertices on this path which abides to all the above constraints – to see this easily, consider N(x)

first. Thus, yz ∈ E.

Given that vxyz or vxzy contains a ready edge, then there must be some vertex b between x

and y or y and z, and also by Claim 1, b 6= xr. Since x has already degree five, then b is between

y and z.

Due to the degree of x, bx /∈ E, and thus by or bz is misaligned. Without loss of generality, by

is misaligned. Then, N(y) = {v, x, z, b, yr}, where yr is the right-neighbour of y, and so vxzbyyr

is a path on C. Then, it is by ∈ U+. By Lemma 6.3.11, by has no right supporter.

– Suppose that v is the right supporter of xy. Since v is the right supporter of xy, then the left

supporter of xy must be on the left and it cannot be the right supporter. This can only be m. Since

xy is unready, then in some cycle C∗, v can p-switch to x(y)q, where q is the host of vy. After

v replaces y in x(y)q, then the only possible supporter for xv is y. That is, v is vicious to x(y)q.

Therefore, v cannot be the right supporter of xy.

Case: e = wt, where x is on the left of wt

Given that v is necessarily one of the two supporters forwt, then either inC or some subsequent

cycle, mv is in C and wt is unready. If not, then v is not a supporter of wt. Therefore, without loss

of generality, we assume that wt is in C, and thus wt ∈ U .

– Suppose that x 6= m′ and N(v) = {m,m′, x, w, t}. That is, vertex m′ = s is both the left

supporter of mv and final middle vertex of u(m)v. Also, v can only be the left supporter of wt,

otherwise v has six neighbours, including a right host for vt.

6.3. MAXIMUM DEGREE 5 113

Suppose xw is in C. If xt is not an edge, then m must be the final left-neighbour of t, thus

mt ∈ E. Observe that mv must precede xv. Thus, xt ∈ E. Since both vw and xt are edges, then

xw ∈ Ā – it could also be in R, but C does not have ready edges. Observe that x is both a left

and right possible supporter of wt. If x is the right supporter of wt, with h the right host of xt,

we p-switch x to w(t)h and x replaces t reaching a cycle C ′ with path umvtwxh. Now, the only

possible right supporter for w(x)c is t – consider that N(x) = {m, v,w, t, h}. Thus, x is vicious

to w(t)c and x can be the left supporter of wt without loss of generality, and so wt does not have

to precede mv.

Suppose xw is not in C. There is some vertex q between x and w. Due to the degree of v, vq is

not an edge. So q has to switch with at least w and t, before v supports wt. If this is possible, then

there is a right host for qt and q is also a right supporter of wt. We p-switch q to c and reach a cycle

C ′ with path umvxwtqc. Now, if xt is an edge and N(v) = {m,m′, x, w, t}, then the conclusion

is similar to the previous case – xw ∈ C – and mv must precede wt.

– Suppose that x = m′. First, we note the difference with the first case; v has now a spare

neighbour, if it exists. It is vx = vm′ ∈ U+, and so q, the right-neighbour of x, is such that

vq /∈ E, and this imposes that q 6= w, as vw ∈ E. Since q has to switch with w and t before v can

support wt, we infer that qt ∈ E.

For v to support wt, there is a subsequent cycle with path vwtqc. Since m′, due to degree,

cannot be on the right of t, then vm′ is aligned in C ′. Thus, if vm′ precedes wt, then it also

precedes mv. Since vm′ precedes mv, then the right supporter s′ of vm′ must be one of the

neighbours of v on the right of m′ – otherwise s′ is on the left of u and requires degree at least six.

In fact, for the same reason s′ cannot be on the right of t, and s′ 6= t by assumption. Therefore,

s′ = w. Then, um′mvs′qwtc is a path on C. Thus, at the same time that q p-switches to c,

also w becomes the right-neighbour of m′, and we reach a cycle with path umvm′wtqc, and then

we switch some ready edges, and reach cycle C ′ with path um′mvwtqc. Observe that mt /∈ E,

otherwise m could substitute v as the left supporter of wt, and thus mv would be able to precede

wt. So, we switch wt and reach a cycle with path um′mvtwqc. Now, q requires a right supporter

r, which is easy to see that it must be on the right of c, so N(q) = {m′, w, t, c, r}. Finally, mv

114 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

needs a right supporter in d-arc m(v)t, and this can only be q, thus qm ∈ E. Once wq is ready,

we p-switch q to v, we switch all ready edges, and then we reach a cycle with path um′vmqtwc.

Observe that d-arc vq has been imposed to have more than one final middle vertex, which violates

one of the assumptions.

In conclusion, for all cases which agree with the assumptions, mv can precede e, without loss

of generality.

A consequence of the two last lemmas above is that once an unready edge is aligned by some

sequence Q satisfying Property N , it does not have to be misaligned again. We describe this,

formally, in the following corollary.

Corollary 6.3.18. Let u(m)v be a d-arc with unready edge mv in some cycle C and Q be a

sequence which satisfies Property N . If after applying Q on C, mv is aligned, then we can move

mv to Z.

Proof. By the definition of Property N , the alignment of mv can precede the alignment of any

other misaligned edge not aligned by Q. Thus, we can move mv to Z.

6.3.5 Correctness of the Aligning Sequences

In this section, we show that each of the aligning sequences in Section 6.3.3 attempt to align one

or more misaligned edges of the respective d-arc setting, while outputting a new cycle C ′ such that

if SC 6= ∅, then SC′ 6= ∅. We achieve this by showing that each aligning sequence can be broken

down into smaller sequences, each of them satisfying Property N .

d-crossing exchange

Recall that a d-crossing exchange is a setting U+A0U
− on a path Pd ≡ m′umv, where m′(u)m

and u(m)v are d-arcs – see Section 6.3.1. We call the right supporter of m′u and the left supporter

of mv the in-support of the d-crossing.

6.3. MAXIMUM DEGREE 5 115

In this section, we show that the d-crossing exchange sequence Qd, presented in Section 6.3.3,

is such that if the d-crossing is in the current cycle C, then Qd satisfies Property N and thus we

can apply Qd on C without loss of generality.

In Lemma 6.3.19 we identify the possible support for the d-crossing exchange by defining

requirements on its neighbourhood in E. In Lemma 6.3.20, we prove that Qd chooses the sup-

porter(s) of the d-crossing exchange such that Property N is satisfied.

Lemma 6.3.19. Let a d-crossing exchange setting U+A0U
− be on path m′umv on a cycle C with

no edges in R. The possible in-support of the d-crossing are vertices s and s′, where sm′umvs′ is

on C. More specifically, if the in-support of the d-crossing is:

(a) exactly one vertex, then this is s or s′.

(b) two vertices, then s is the right supporter for m′u and s′ is the left supporter for mv, and:

(i) ss′ ∈ E

(ii) if s is p-connected to m′(u)m, then s′ is p-connected to m and connected to m′

(iii) if s′ is p-connected to u(m)v, then s is p-connected to u and connected to v

Proof. Consider the induced subgraph of path sm′umvs′ in G.

(a) Let x be the in-support of the d-crossing. Since x supports both m′u and mv, then Observe

that N(x) = {x0,m
′, u,m, v}, where x0 is an initial neighbour. Thus, xu or xv is in C, and so

x = s or x = s′.

(b) The in-support of the d-crossing has two vertices.

Suppose these are x and y respectively, x 6= y, so x is on the left of m′ and y is on the right of

v. (We will prove that x = s and y = s′.)

Vertex x is neighbours with its initial left-neighbour x0,m′, u, and the right supporter x′ ofm′x,

when m′x is in a cycle C ′ with path um′xhx, where hx is the right host of xu, also a neighbour of

x. These neighbours are not necessarily distinct. Nevertheless, x must be p-connected at least to

u, otherwise there is some vertex q between x and u with xq /∈ E. Then, q must be p-connected

to m such that x can also p-switch to hx. But then without loss of generality x = q. Thus x is

116 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

p-connected to u. Moreover, if x 6= s and sx /∈ E, then s must be on the left of x, otherwise from

the previous argument, x = s. By assumption, s is the left-neighbour of m′, and x is on the left of

m′, thus x = s (at any case).

Similarly, y is p-connected to m, and y = s′. By Lemma 6.3.11 the m-internal edges of s and

s′ are in Ā, thus xu, xs′ ∈ Ā. Also, N(x) = {x0,m
′, u, hx, x

′}, and N(y) = {y0, v,m, hy, y
′}.

Claim. Let t be the left-neighbour of s in path wtsm′umvs′ on C, and t is p-connected to m.

Also, s is a possible right supporter of m′u. Then, t is vicious to m′(u)m, and it cannot be the

right host of xu or the left host for ms′ or the right supporter for m′x, once m′u is aligned.

Proof. We p-switch t to m, and then x to m. This imposes that w is the left supporter of m′u.

We then do all ready edges, with one of t, x being the right supporter of m′u, and we reach a cycle

C ′ with path wsum′tmv, without loss of generality, where m′u is aligned. Observe that m′tsmv

is a d-crossing exchange in cycle C ′, and the only right supporter for m′t is u. Thus, t is vicious to

d-arc m′(u)m in C (both as a host of su and right supporter of m′s). Further note that t has five

neighbours, not including s′. �.

We continue with the main proof. The Claim above immediately implies for cycle C that hx is

either m or y, and x′ is on the right of m. By symmetry, we assume the same for y, that hy is either

u or x, and y′ is on the left of u.

Finally, we claim that when hx = m, then hy = x, and vice versa. Suppose that hx = m. Then,

x p-switches to m and now y p-switches to x. After we switch the ready edges m′u and mv, since

xv /∈ E, yv cannot switch before m′x. And for m′x to switch it must be x′ = y, that is y is the

right supporter of m′x, and so ym′ ∈ E.

As x = s and y = s′, we have proven (ii).

Recall that the algorithmic procedure in Section 6.3.3 which determines the d-crossing ex-

change sequenceQd, looks at the neighbourhoods of the vertices in the d-crossing exchange setting

and chooses the in-support of the d-crossing, the order in which supporters p-switch, and switches

ready edges from the setting, if appropriate.

6.3. MAXIMUM DEGREE 5 117

With the next lemma, we show that the d-crossing exchange sequence Qd satisfies Property N .

Lemma 6.3.20. Given a cycle C with no ready edges in R\Rp and a d-crossing exchange set-

ting U+A0U
− on the path m′umv on a cycle C, the d-crossing exchange sequence Qd satisfies

Property N .

Proof. We can express the output sequence Qd as the concatenation of two sequences. It is Qd =

Qs + Qm, where Qs is the p-switching of the supporter(s) to one or both of the d-arcs in the d-

crossing and Qm is the switching of any of m′u, mv which are ready on the output cycle of Qs.

We will prove that Qd satisfies Property N by showing this for Qs and Qm.

By Lemma 6.3.19 the supporter(s) of the d-crossing can be exactly one of two options, as

described in (i) and (ii), respectively, of the same lemma. Option (i) or (ii) depends exactly on

whether ss′ ∈ E. If ss′ /∈ E, Qd has to identify which of s and s′ is the in-support of the

d-crossing. When ss′ ∈ E, Qs has to determine the order of p-switching s and s′.

First, we show that Qs ⊂ QC for some QC ∈ SC for each of the two options (i) and (ii) of

Lemma 6.3.19, Cases (A) and (B) respectively, below.

CASE A. s and/or s′ are possible in-support of the d-crossing.

Qd has to choose the in-support of the d-crossing between s and s′ such that if SC 6= ∅, then

SC′ 6= ∅, where C ′ is the output cycle of Qd. In this case, either s or s′ is p-connected to both

d-arcs. That is, if s (resp. s′) is the in-support of the d-crossing, then s is p-connected to v (resp.

m′).

We can choose as the in-support of the d-crossing any of s or s′ which has the ’-complete’

property, in order to align both unready edges such that SC′ 6= ∅. Without loss of generality, if s is

right-complete, and s′ is not left-complete, then we choose s as the in-support – and eventually s′

will remain as the right supporter for mv.

If s is not right-complete and s′ is not left-complete, then one of s, s′ is not a possible in-

support of the d-crossing (always given that SC 6= ∅). If both of them are possible in-support of

the d-crossing, then observe that none of the two unready edges can have both a left and a right

118 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

supporter. To illustrate this, if s is chosen as the in-support of the d-crossing, then m′u does not

have a left supporter, because the possible supporters of m′u are s and s′. By (i) of Lemma 6.3.19,

in this case we cannot use s′ as the right supporter of m′u, because then s′ would be the in-support

of the d-crossing. Thus, we choose as the in-support exactly the one vertex from s, s′ which is

p-connected to the d-crossing exchange.

If none of the above can be satisfied, then SC = ∅.

CASE B. s and s′ are (jointly) the in-support of the d-crossing.

By (ii) of Lemma 6.3.19, ss′ ∈ E and we can have exactly one of the two subgraphs of (a) or

(b) in (ii) of the same lemma.

Depending on its neighbourhood, if s must p-switch first to u(m)v, then s′ must p-switch to

s(m)v afterwards. Similarly, if s′ must p-switch first (to m′(u)m). And since both of the s and s′

are the in-support of the d-crossing, there is no further choice to be made by the sequence.

Furthermore, if s must p-switch first and s is not right-complete or s′ must p-switch first and s′

is not left-complete, then SC = ∅. To illustrate this without loss of generality, suppose that s and s′

have the neighbourhood in (ii)(a) of Lemma 6.3.19, and so smust p-switch first to u(m)v. Suppose

that some vertex x is the final right-neighbour of m and that we manage to switch mv using s′ and

x as its supporters. Then, we reach a subsequent cycle with the path bm′uss′vmxc. Edge us ∈ Up,

as s has to remain as the right supporter of m′u, and vm ∈ Z by Corollary 6.3.18. If we choose

to align s′v ∈ U−, then by Lemma 6.3.11, there is no possible left supporter available. So, also

s′v ∈ Up. Observe that edge m′u must have its left supporter on its right. All possible supporters

are either in edges in Up or in Z. So, m′u cannot have a left supporter.

We have proven that for every possible neighbourhood of the vertices on the d-crossing ex-

change setting, Qs ⊂ QC for some QC ∈ SC . Now, we apply Lemma 6.3.19 to Qs. For Case

(A) above, we apply the lemma for the supporter s or s′ and d-arcs m′(u)m and u(m)v. For Case

(B) we apply the lemma for both s, s′ and the d-arc to which each supporter p-switches. Thus, Qs

satisfies Property N . Let C ′ be the cycle such that m′u and/or mv is ready, as a result of applying

Qs on C. By the Property N of Qs, there is QC′ ∈ S ′C such that QC = Qs +QC′ . By definition,

6.3. MAXIMUM DEGREE 5 119

Qm ⊂ QC′ . By Lemma 6.3.17, Qm satisfies Property N .

Since bothQs andQm satisfy PropertyN andQs precedesQm, we deduce thatQd = Qs+Qm

satisfies Property N , since there is some Q ∈ SC such that Q = Qd +Q\Qd.

k-exchange

Recall that a zero-exchange setting is a settingAU−U+A on a path umvm′v′ and an one-exchange

setting is a settingAU−ĀU+A on a path umvu′m′v′, where the single-middle d-arc uv exchanges

its middle vertex m with the one of the other d-arc; vv′ or u′v′, whichever applies for the specific

setting. See Section 6.3.1 for the formal definition of k-exchange.

In this section we will show that a k-exchange setting can be aligned only when k ≤ 1, using the

zero-exchange Q0x and one-exchange Q1x sequences. We show that both of them satisfy Property

N . More specifically, for each of the two sequences, we look at the neighbourhoods of the vertices

of the respective setting and assign supporters to at least one of the misaligned edges of the setting

such that the resulting sequence satisfies Property N . This is shown in Lemmas 6.3.21 and 6.3.25.

And finally Lemma 6.3.26 shows that for k > 1, a k-exchange setting cannot be aligned, and thus

its existence immediately suggests that there is no path between the two input cycles.

Lemma 6.3.21. Given a cycle C with no ready edges in R\Rp and a zero-exchange setting

AU−U+A on the path umvm′v′ on C with d-arc uv being single-middle, the zero-exchange se-

quence Q0x satisfies Property N .

Proof. The algorithmic procedure which determines sequence Q0x looks at the possible neigh-

bourhoods of the vertices of the three misaligned edges in the zero-exchange setting and chooses

their supporters, if they exist. Q0x can be broken into two sequences such that Q0x = Qs + Qm.

We will prove that Qs and Qm satisfy Property N , which immediately implies the same for Q0x.

First, we prove three claims.

The first one determines the alignment of v′s′, where abtsumvm′v′s′t′a′b′ is a path on C with

a zero-exchange setting as stated.

120 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

Claim 6.3.22. The following are true:

(i) If m′s′ is an edge, then v′s′ is aligned.

(ii) If s′ is p-connected to v and s′ is a supporter of vm′, then v′s′ is in Ā, and m′ and m do not

support any unready edge apart from edges in the setting. Similarly, for s and mv.

Proof. (i) Suppose m′s′ is an edge and that v′s′ is unready. In cycle Ct, um′v is a path and m is

on the right of v.

If ms′ /∈ E, then there must be at least one vertex between m and s′ in Ct. If this is a′, right

neighbour of t′ in Ci, then since a′s′ ∈ M , also a′t′ ∈ M , therefore t′a′ ∈ U (or else Ci would

have ready edges). Since ms′ /∈ E, then a′ is also the final right-neighbour of m. One of m, a′ is

misaligned to v′, because m and a′ are an edge in Ct. By Lemma 6.3.14, a′v′ /∈M , so mv′ ∈M .

s′ cannot be the host of mv′, so this must be a′, thus a′v′ ∈ E. Observe that t′a′ have only one

possible supporter, s′, and so t′a′ cannot align.

If ms′ ∈ E, then either s′m or s′v is an edge in Ct, because by Lemma 6.3.14, s′ is not a final

middle of d-arc uv. If vs′ is an edge in Ct, then the possible supporters of v′s′ arem′ andm, given

that mv′ ∈ E. Neither m′s′ nor ms′ has a host such that one of them can be the right supporter of

v′s′. Thus, vs′ /∈ E and s′m must be an edge in Ct. Now observe that vm′ has only one supporter,

which is m.

Our assumption that v′s′ is unready arrived to a contradiction and thus v′s′ ∈ A.

(ii) By (i), if s′ is p-connected to v, then v′s′ ∈ A, and by Lemma 6.3.11, v′s′ ∈ Ā. Moreover,

m′ has maximum degree and it is not in any misaligned edges other than those in the setting. If s is

p-connected to v, then su ∈ A because s is not a final middle vertex of uv, and by Lemma 6.3.14,

it cannot be sv /∈ M . Then, similarly, su ∈ Ā. In both cases, due to degree it is obvious that m′

and m cannot support any misaligned edges outside the setting.

The three misaligned edges of the setting, namely mv, mm′ and vm′ can be aligned in two

possible orders, according to the order of the edges in sequences Q1
0 = (mv,mm′, vm′) or its

reverse, Q2
0 = (vm′,mm′,mv). Thus, every sequenceQC ∈ SC contains eitherQ1

0 orQ2
0. In fact,

6.3. MAXIMUM DEGREE 5 121

exactly one of Q1
0, fQ2

0 is in every QC ∈ SC .

Claim 6.3.23. Given a cycle C with no ready edges in R\Rp and a zero-exchange setting on the

path umvm′v′ on C, then exactly one of Qi0x, i = 1, 2 is such that Qi0x ⊂ QC for every QC ∈ SC .

Proof. Bothm andm′ have three neighbours towards the side of their target d-arc; m′ is connected

to m, v and its final left-neighbour m′` (either another final middle vertex of uv or u). Similarly for

m, let mr be its final right-neighbour.

We assume that that any of mv and vm′ can switch first, and we will reach a contradiction.

Suppose that s is the left supporter of mv, when mv switches first, and s′ the right supporter

of vm′, when vm′ switches first. Therefore, s 6= m′, since m′ is the right supporter of mv,

and s′ 6= m, since m is the left supporter of vm′. If s = m′`, then su ∈ U and in C with

N(s) = {s`, u,m, v,m′}, where s` is the left-neighbour of s. Observe that su has only one

supporter. So s 6= m′`. Similarly, s′ 6= mr. When mv switches first, edge mm′ requires a

right host, which must be a common neighbour of m and m′, so this can only be v′ and thus

mr = v′. Similarly, when vm′ switches first, m` = u is the only left host for mm′. Without loss

of generality, mv switches first and we reach the path usvm′mv on a cycle C∗, where usvm′ is a

d-crossing exchange setting. The only right supporter for us is m, but then s is vicious to u(m)v;

a contradiction, as s is a supporter of mv.

Thus, exactly one of mv, vm′ can switch first (which directly implies the lemma).

Claim 6.3.24. If s is p-connected to m′ or s′ is p-connected to m, then vv′ is also single-middle.

Proof. Suppose that s′ is p-connected to m.

By Claim 6.3.22, v′s′ ∈ A. If mv′ /∈ E, then ms′ ∈ A, and so the final right-neighbour of

m is misaligned to s′ and v′. The only vertex with this property is t′. But then, s′ does not have

a final right-neighbour, as again t′ is the only candidate. Thus, mv′ ∈ E, and m has already five

neighbours. Therefore, vv′ can have only one final middle vertex, as m′ cannot have any extra

neighbours.

122 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

Suppose that s is p-connected to m′ and that vv′ is not single-middle. Then mv′ /∈ E. The

supporters of vm′ are s and m; s is the left supporter, so m must be the right. Since m is on the

left of vm′, a right host for m′m is required. From the five neighbours of m′, only v′ can be the

required right host, thus mv′ ∈ E, and, similarly to the above, vv′ must be single-middle.

Now, we continue with the main proof.

We define Qs and Qm and prove that they satisfy Property N . Qs is the sequence p-switching

the chosen supporter to one of the d-arcs of the setting which is either u(m)v or v(m′)v′. Qm

is the sequence switching misaligned edges in the setting. Recall that the procedure determining

Q0x, and here specifically Qs, looks at the possible neighbourhoods of the vertices in the setting,

and assigns supporters to one or more of the misaligned edges of the setting.

Let sm be the left supporter of mv and sm′ be the right supporter of vm′. By the proof of

Claim 6.3.23, sm of mv and sm′ of vm′ must be on the same side of d-arc u(m)v. Without loss of

generality, we suppose that both of them are on the right of v, and thus Q2
0x ⊂ QC . And so, Qs

is the p-switching of sm′ to d-arc v(m′)v′. Now, we specify Qs by looking at the possible right

supporters of vm′, that is which vertex sm′ can be, for different induced neighbourhoods of the

vertices of the setting in G.

CASE A. vv′ is single-middle.

Observe that due to the degree of m′, sm′ is a unique vertex, found on the right of m′. Specifi-

cally, it is either s′ or t′.

Case 1. Suppose that sm′ = s′.

Since vv′ is single-middle, s′ is not a final middle vertex of vv′ and thus v′s′ ∈ A. It is obvious

that s′ is p-connected to v and a direct supporter of vv′. By Lemma 6.3.11, v′s′ ∈ Ā. We p-switch

s′ to v and do all available ready edges which are in the setting, reaching a cycle C ′ with the path

um′mvs′v′t′. Edges vm′, m′m are now aligned. If ms′ is not an edge, there is a d-crossing on

mvs′v′. m′ cannot support the d-crossing, or else m′ is vicious to v(s′)v′. If ms′ is an edge, then

we keep switching ready edges and we reach a cycle where all three misaligned edges of the setting

are aligned.

6.3. MAXIMUM DEGREE 5 123

Case 2. Suppose that sm′ = t′.

Since all edges from on the path between m′ and s′ are aligned, then no unready edge has to

align before t′ p-switches to m′. Thus, t′ is a direct supporter of vm′. By Lemmas 6.3.11 and

6.3.13, since t′ is not a final middle vertex of vv′, then s′t′ ∈ Ā. We p-switch t′ to m′ and switch

ready edges, reaching a cycle C ′ with the path um′mvtv′s′a′b′, where mvtv′ is a d-crossing.

Clearly for both cases 1 and 2 above, the only left supporter for vm′ is m and sm′ is the only

right, both p-connected to m′. Thus, Qs ⊂ QC with s = sm′ and d-arc v(m′)v′. By Lemma

6.3.16, Qs satisfies Property N . Since Q2
0x ⊂ QC , any misaligned edges with switches in Q2

0x

are in QC . So, for each of these misaligned edges Qm satisfies Property N by Lemma 6.3.17. In

conclusion, Qs +Qm satisfies Property N , and thus Q0x also does.

CASE B. vv′ is multi-middle.

Vertex m needs a final right neighbour. Since mv′ is not an edge in Ct, then the final right-

neighbour of m must be on the right of v′.

If ms′ is an edge in Ct, then v′s′ ∈ U , and by Claim 6.3.22 m′s′ /∈ E. Observe that now the

only supporters for mm′ are u and v, so vm′ has to switch before mv to bring m and m′ between

u and v. By Claim 6.3.23, Q2
0x ⊂ QC , for every QC ∈ SC . Therefore, mv is in Up until vm′ is

aligned, and there is a d-crossing exchange setting on path vm′v′s′.

Let mt′ is an edge in Ct. By the proof of Claim 6.3.23, exactly one of the following can be

true: either the left supporter of mv is on the left of mv, or only the right supporter of vm′ is on

its right. Suppose the first, that the left supporter sm of mv is on its left. The five neighbours of m

are N(m) = {sm, u, v,m′, t′}. Thus, edges s′t′, v′t′ ∈M , as s′m, v′m /∈ E. Since m′ is the right

supporter of mv, mv switches before vm′, so mm′ requires a right host. None of the common

neighbours of m and m′ can have that property. Thus, both the right supporter of vm′ and the left

supporter of mv are on the right of v, and so Q2
0 ⊂ QC . Therefore, mv must be in Up until vm′ is

aligned. Hence, Q0x satisfies Property N .

Lemma 6.3.25. Let C be a cycle with no ready edges in R\Rp. Given a one-exchange setting

AU−ĀU+A on the path umvu′m′v′ where uv is a single-middle d-arc, then the one-exchange

124 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

sequence Q1x satisfies Property N .

Proof. The algorithmic procedure which determines sequence Q1x, first looks at possible neigh-

bourhoods of the vertices on the path of the setting, and chooses the supporters for each of the

misaligned edges of the setting.

By assumption, uv is single-middle, so N(m′) = {u′, v′, u, v,m}. The supporters of u′m′ ∈

U . Without loss of generality, the supporters of u′m′ are m and v (For example, u can be too.

For u to be the left supporter of u′m′, v has to p-switch to v′. Then u′m′ is ready with m the left

supporting vertex. After we switch ready edges, all the misaligned edges are aligned without using

u as a supporter). Obviously, there two cases; either m is the left and v is the right supporter of

u′m′, or vice versa.

Claim 1. If u′v′ is multi-middle, then m is the left supporter and v is the right supporter of u′m′.

Moreover, when v is the right supporter of u′m′, then m′ is the left supporter of mv.

Proof. Since d-arc u′v′ is multi-middle, N(m) = {u, v, u′,m, x}, where x is its final right-

neighbour. For the first part of the claim, if x 6= v′, then xm′ /∈ E, due to the degree of m′.

So x cannot be the right host of mm′. Thus, m can only be the left supporter of u′m′. For the

second part of the claim, if v is the right supporter of u′m′, then once v p-switches to v′ and we

switch all ready edges, all edges of the setting are aligned, with m′ being the left supporter of

mv.

Given the above, we follow the algorithmic procedure determining Q1x step by step (Section

6.3.3), and show that Q1x satisfies Property N . We express Q1x as Q1x = Qs +Qm, where Qs is

the p-switching of supporter s to d-arc D and Qm are switches of misaligned edges of the setting

– after Qs is applied.

Case. u′v′ is single-middle.

If vv′ is an edge, then since vu′ is aligned and ready, Q1x is: v p-switches to and replaces m′ in

d-arc u′v′. We switch all ready edges on the setting. If uu′ is an edge, then since vu′ is aligned and

6.3. MAXIMUM DEGREE 5 125

ready, Q1x is:u p-switches to u and replaces m in d-arc uv. We switch all ready edges available

on the setting. It is easy to verify that all the edges of the setting are aligned in the output cycle. If

vv′, u′u /∈ E, then SC = ∅.

By Lemma 6.3.16, Qs satisfies Property N , where s is either u′ or v. By Lemma 6.3.17 on mv

(resp. u′m′), Qm satisfies Property N .

Case. u′v′ is multi-middle.

If vv′ ∈ E, by Claim 1 above, v is the right supporter of u′m′ and m′ is the left supporter of

mv. Thus the existence of uu′ does not matter and so Q1x ⊂ QC for some QC ∈ SC . If vv′ /∈ E,

then it must bemv′ ∈ E, otherwise u′m′ has no right supporter. Thus, u′v′ is single-middle and we

refer to the case above. Note that in every other case, one of the unready edges cannot be aligned,

so SC = ∅. Thus, Q1x satisfies Property N .

The following lemma shows that k-exchange can be performed only for k < 2.

Lemma 6.3.26. k-exchange is not possible for k = 2.

Proof. Let the settingAU−XXU+A be a 2-exchange setting on path u′m′v′abumv, where u′(m′)v′,

u(m)v are the two d-arcs exchanging their middle vertices. Observe that one of the two X edges

must be aligned. Without loss of generality, assume that v′a ∈ A. Also observe that m must be

p-connected to m′. Let x be a vertex such that xm is an edge in Ct. If x is another final middle

vertex of u′v′, then this cannot be on the right ofm′, since v′a ∈ A. If x is not a final middle vertex

of u′v′, then x = u′. At any case, x must be on the left of m′, but then deg(m) = 6.

disconnected- and connected-sub

We recall the definitions of the settings that we examine in this section. A disconnected-1-sub

setting – dis-one in short – is a setting U−AAU− on a path u′m′v′umv, where m′ is the final

middle vertex of uv and m′m is not an edge. A k-sub setting is a setting where d-arcs u′(m′)v′

and u(m)v are at distance k from each other, and m′ is the final middle vertex of and p-connected

to u(m)v.

126 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

In this section, we will show that a dis-one setting and a k-sub setting for k ≤ 1 (see Section

6.3.3) can be aligned by the respective aligning sequence, in Lemmas 6.3.27 and 6.3.28 respec-

tively. The algorithmic procedures which determine the aligning sequences examine all possible

neighbourhoods of the vertices in each setting and find their supporters. Specifically for these two

settings, we show that there are unique left and right supporters for the unready edge mv, and that

these are assigned correctly, if they exist, and thus Property N is satisfied.

Lemma 6.3.27. Given a cycleC with no ready edges inR\Rp and a dis-one settingAU−AAU−A

on the path u′m′v′umvx with d-arc u(m)v, which is single-middle and mv is its unready edge,

the dis-one sequence Qd1 satisfies Property N .

Proof. First we show that the only possible left supporters for mv are v′ and x. Due to degree, the

left supporter of mv cannot be on the left of u′. We check whether u′ is a supporter. Since u′ is not

p-connected to m and is not a final middle vertex of uv, then by Lemma 6.3.12 u′ is not a direct

supporter of uv or it is not a supporter. If u′ is a supporter of u(m)v, but not direct, then there must

be at least one misaligned edge with a vertex between u′ and m which has to switch before u′ can

p-switch to mv. The only vertex which obstructs u′ from p-switching to v is v′, because u′v′ /∈ E.

But v′ is not in a misaligned edge with any of its neighbours, except for m′. Switching m′v′ will

not remove v′ from the path between u′ and m. Thus, u′ is not a supporter of mv, and the only

possible supporters are v′ and x.

Let x be the right-neighbour of v in C.

Claim 1. If x is a left supporter of mv, then v′x ∈ E.

Proof. Assume the opposite, that v′x /∈ E. Vertexm′ is connected to a middle vertex w of d-arc

uv in some cycle. Since N(m′) = {u′, v′, u, v, w}. Since x will replace m in u(m)v, then it must

be x = w and thusm′x ∈ E. Since the left host ofmx cannot be v′, then it must be u orm′. If it is

not u, then it is m′. In that case, m′ must p-switch to m first, not possible because m′m /∈ E. So,

u is the left host of xm, and thus N(x) = {m′, u,m, v, x0}, where x0 is the initial right-neighbour

of x. As now x is p-connected to u, x p-switches to u and replaces m in u(m)v, reaching the path

6.3. MAXIMUM DEGREE 5 127

u′m′v′uxvm on a cycle C∗. For m′ to replace x in u(x)v, m′v′ must be ready. The only possible

supporter of m′v′ is u, but v′u is not ready (as required). Thus, it must be that v′x ∈ E, and v′ is

the left host of xm.

Now, we follow the algorithmic procedure which determines Qd1 in Section 6.3.3 and prove

that Qd1 is correct and satisfies Property N in the following two cases.

Case 1. If v′ is p-connected to v, then v′ is the only left supporter for mv and v′ is the only left

host for mx.

Let Qv′ be the sequence which p-switches v′ to and replaces m in u(m)v, and switches mv,

reaching the path u′m′uv′vmx. Let m1 be the final middle vertex of u′v′. The neighbourhood of

v′ is N(v′) = {u,m, v,m′,m1}, and so v′x /∈ E. By Claim 1, x is not the left supporter of mv.

Thus, v′ is the only left supporter formv. Moreover, sinceQv′ precedesmv andmv precedesm′u,

then Qv′ precedes m′u. By this fact and Lemmas 6.3.16 and 6.3.17, Qv′ satisfies Property N , and

Qd1 = Qv′ .

Case 2. If v′ is not p-connected to v, then x is the only left supporter for mv, v′ is the only left

host for mx, and m′ is the only left supporter for xv.

Since v′ is not p-connected to v, then either mv′ of vv′ is not an edge, and so v′ is not a

supporter for mv. It is N(x) = {m′, v,m, hx, xr}, where hx is the left host of mx and xr is the

right-neighbour of x in C. As the only possible left supporter is x, v′x ∈ E by Claim 1. Recall

that N(m′) = {u′, v′, u, v, h′}, where h′ is the right host for m′u. Then it must be hx = v′. This

implies v′m ∈ E, and thus v′v /∈ E, as v′ is not p-connected to v. Since x is a direct supporter

of mv, then by Lemma 6.3.11 vx ∈ Ā, and so vxr ∈ E. Now, we look for the left and right

supporters of xv, to ensure that m is not vicious to x. Let sxv be the right supporter of xv. When x

is in d-arc u(x)v andmv is aligned, path uxvmsxv is on the current cycle C∗. The right-neighbour

of m is sxv, given that it is the only neighbour of m which is on its right. And this is true until xv

can align. Thus, sxv cannot be the left or right supporter of xv. So, if y is the left supporter of xv,

then y 6= sv. In this case, my /∈ E, as N(m) = {xr, x, v, u, v′}. As with sv, y cannot reach x

when vm is aligned, as y would have to be on the right of sv and thus on the right of path uxvmsv.

128 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

Therefore, the only supporters for xv are m′ and m, and therefore N(m′) = {u′, v′, u, v, x}.

Considering the initial cycle C again, u is the only possible left supporter for m′v′ and u′ is the

only host form′u, as u p-switches to u′ on the left ofm′. Thus u′u ∈ E, without loss of generality.

Let Qu′ be the sequence which p-switches u to u′ and Qx the sequence which p-switches x to v′. If

we apply Qu′ +Qx, then we reach the path u′um′v′xmv. Edgemv is either ready or in U+. Ifmv

is ready then we switch mv. Conditionally on whether mv is ready or not, xm is either aligned or

in Rp, until the right supporter of mv is adjacent to v in C, respectively.

Since u and x are the only left supporters for unready edges m′v′ and mv, respectively, then

Qu+Qx ⊂ QC for everyQC in SC , which proves (i) of PropertyN . By applying Lemma 6.3.16 on

Qu +Qx and Lemma 6.3.17 on the supporters we p-switch and their respective d-arcs – u′(m′)v′

and v′(m)v – we get that Qd1 = Qu + Qx + Qm, where Qm is the switching of mv, satisfies

Property N .

Lemma 6.3.28. Given a cycle C with no ready edges in R\Rp and a k-sub setting with d-arcs

u′(m′)v′ and u(m)v, where uv is single-middle, m′ is its final middle vertex and mv its unready

edge, the aligning sequence Qsub applied on the k-sub setting satisfies Property N . If there is a

k-sub setting in C with k > 1, then SC = ∅.

Proof. Let path umvx be on cycle C, for k ≤ 1. Since uv is single-middle, x is not a final middle

vertex of uv and uv is not in a d-crossing, so by Lemma 6.3.14, vx is aligned.

For k = 0, we get the setting AU−AU− on the path u′m′umvx and for k = 1 the setting

AU−AAU− on the path u′m′v′umvx. Without loss of generality, we choose x to be the right

supporter of mv, since m′ can p-switch and replace m in u(m)v, once m′u aligns. That is, m′ is

the left supporter. Thus, Q0s and Q1s move edge mv to Up, and by Lemma 6.3.17 and s = m′, the

two sequences satisfy Property N .

6.3. MAXIMUM DEGREE 5 129

d-separation

A d-separation is a setting AU0A on a path umvv′, where uv and mv′ are d-arcs sharing the same

unready edge mv, which is an alternative definition for an unready edge in U0. Note that this is not

a d-arc setting, as the two d-arcs cannot be related. And that is why, there is no special aligning

sequence for d-separation settings in Section 6.3.3, given that each aligning sequence attempts to

align a setting which contains a pair of related d-arcs, a d-arc setting.

In this section we examine which settings containing edges in U0 can exist in a cycle C, such

that SC 6= ∅ or else d-arc settings containing U0 edges. Then, we show that moving any U0 edge

to Up satisfies an equivalent form of Property N .

We first prove some useful claims. Claims 1 and 3 give information about the possible location

of the supporters and the final middle vertices of d-arcs whose unready edge is in U0. Claim 2

shows how close two unready edges in U0 can be in the cycle and that if two vertices are incident

to a different U0 edge, then they cannot be related.

Claim 1. Given a AU0A setting on the path umvw, the final middle vertex m′ of uv is on the

left of uv (and the final middle vertex of mw is on its right).

Proof. Let m′ be the final middle vertex of u(m)v. Suppose that m′ is on the right of m.

N(m′) = {f,m, v, w, a}, where f is the final left neighbour of m′ and a is the initial right neigh-

bour of m′ – both mm′ and vm′ are misaligned and thus in E. So, m′ is p-connected to m with

wm′ ∈ C. It is wm′ ∈ U+, and thus wa /∈ E and wm′ requires a right supporter. By Lemma

6.3.11, none of the rest of the neighbours ofm′ is a possible right supporter of wm′. Thus, m′ is on

the left of u. Because of the symmetry of the d-separation setting around the U0 edge, we deduce

that the final middle vertex of mw is on its right. �

Claim 2. Let u′m′v′w′ and umvw be two d-crossing separation settings in C with U0 unready

edges m′v′ and mv respectively. If SC 6= ∅, then edges m′v′ and mv must be at distance at least

three from each other, and in generalm′ is not a final middle vertex of uv and v is not a final middle

vertex of u′v′. That is, the vertices of the two unready edges U0 are not related.

130 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

Proof. Suppose that SC 6= ∅.

– Suppose that the two unready edges m′v′,mv ∈ U0 are at distance one from each other. That

is, we examine the settingAU0A0U0A on the path u′m′v′mvw on C. Let x be a possible supporter

of m′v′. Vertex x cannot be one of m, v,w, as then either x is not a supporter of m′v′ or it is not

possible to reach a cycle C ′ where xv′ is in C ′. For the same reason, if x is on the right of w in C,

then x must be p-connected to v′, as the vertices in between cannot switch towards the left. But,

then deg(x) > 5. By symmetry we infer the same for vertices on the left of m′v′.

– Suppose that the two unready edges m′v′,mv ∈ U0 are at distance two from each other. Let

the setting AU0AAU0A be on path u′m′v′umvw with m′v′, mv ∈ U0. Observe that m′u, v′v ∈ A

and so m′ (resp. v) is not a final middle vertex of uv (resp. m′u). The final middle vertex m1 of

m′u, and related to u, can only be on the left of u′, and so it has to be m1u
′,m1v

′,m1m
′ ∈ M ,

and connected to u and its initial left neighbour u0. Then, m1u
′ ∈ U−. Observe in N(m1) =

{u′, v′,m′, u, u0} that m1u
′ does not have a left supporter.

Thus, two unready edges in U0 must be at distance at least three from each other. Let such a

setting AU0AXAU0A be on the path u′m′v′aumvw. Suppose that m′ is a final middle vertex of

uv. Then, m′ is misaligned to v′, u, m, and v. So deg(m′) > 5, since it is also connected to its

initial and final neighbours. This shows that the vertices of two unready edges in U0 are not related

in any setting. �

Claim 3. The right (resp. left) supporter s of mv is on its right (resp. left).

Proof. Suppose that s is the right supporter of mv and that it is on its left in C. Then N(s) =

{u,m, v, h, a}, where h is the right host of sv and a the initial left-neighbour of s. This means

path basumvw must be on C. By Claim 1, s is not a final middle vertex of mw, but it could be a

final middle vertex of uv. If that is the case, then su ∈ U− and observe that none of the neighbours

of s can be the left supporter of su. Thus, s is not a final middle vertex of uv and su ∈ A. As only

a can be the left supporter of su, su ∈ Ā. By Claim 1, the final middle vertex m′ of uv is on the

left. This implies that m′u ∈M , and so sm′ ∈ E. Then, m′ = a, and bm′sumvw is a path on C.

6.3. MAXIMUM DEGREE 5 131

Suppose that m′s ∈ U−. We p-switch s to w and reach path bm′umvsw. Because N(m′) =

{b, u,m, v, s}, then b must be the left supporter of m′u, thus bu ∈ E, and so m′u ∈ R. If we

switch m′u, then we can switch mv. Now, we get to the path bum′vmsw. Observe that only m

can replace s in d-arc m(s)w, thus s is vicious to uv. Therefore, s is not a supporter of mv; a

contradiction. In conclusion, the right supporter of mv is on its right. By the symmetry of the

d-separation setting AU0A, also the left supporter of mv is on its left. �

Remember that anything shown so far in relation to Property N has not involved edges in U0.

Therefore we now show that how A deals with edges in U0 satisfies Property N .

Lemma 6.3.29. Given a cycle C with no ready edges in R\Rp and a U0-setting Suv with d-arcs

u′(m′)v′ and u(m)v such that there is a d-separation setting on path umvw, the sequence Q0

applied on the U0-setting satisfies Property N .

Proof. Given two unready edges in U0, Claim 2 implies that there is at least one unready edge not

in U0 on both of its sides. Claim 3 implies that we can p-switch each supporter of the unready

edge mv independently of when we p-switch the other. Thus, given a d-separation setting AU0A

on the path umvw, we can choose to align any of the following two U0-settings independently:

Suv contains d-arc uv and Smw contains d-arc mw. By Claim 2, Suv extends to the left including

the d-arc which contains the final middle vertex of uv, and Smw extends to the right including the

d-arc which contains the final middle vertex of mw.

According to the above and by the symmetry of the d-separation setting, it suffices to look

at how to align Suv. According to algorithm A, Q0 moves mv to Up, until both Suv and Smw

align and provide the two final middle vertices for mv, which can also be its supporters. And this

implies that Q0 ⊂ QC ∈ SC . To prove that Property N holds for Q0, we have to consider which

other edges m may need to support (on its left), before mv aligns in some subsequent cycle. By

symmetry, one can prove the same for v. Let mv be in the path baumvw, and e a misaligned edge

with vertices on the left of m in C and of which m is a supporter. N(m) = {u, v, r, s, x}, where

s, r are the left and right supporter of m, respectively, and x is a fifth distinct neighbour of m.

Since r is on the right of mv, then the vertices of e can only be two of u, s and x.

132 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

– Suppose that e = sx, and x 6= u, a, s 6= a. Since am /∈ E, then x and s would have to switch

with a before m can be support xs. But then a and u can support xs.

– Suppose that e = ya, y ∈ {x, s}. We switch y to the right such that ya is an edge in a

subsequent cycle C∗ with path yaumvw. If yu is an edge, then u can be the right supporter of xa

instead of m. If yu is not an edge, then um has to switch first such that y can switch to m. But um

does not have a right supporter.

– Suppose that e = au. Then, au ∈ U and m is its right supporter. If uv is single-middle then,

neither a nor u are in any other misaligned edges, and so m does not support any other misaligned

edge apart from au. Since a is the final middle vertex of u(m)v and the left supporter of mv, then

au precedes mv for every QC ∈ SC . If uv is not single-middle, then let x be another final middle

vertex of uv, which by Claim 1 is on the left of u. Vertex m can support either xa or xu. If au

switches first, then x reaches u in the path xuamv. Since a is a supporter of xu, then we can align

mv before xu without loss of generality.

– Finally, suppose that the left supporter s of mv is not a final middle vertex, and that m is the

right supporter of m′u, where m′ is the final middle vertex of uv. By Claim 3, s is on the left of u

both in C and Ct and so m′s ∈ M . This implies that mv can switch before m′u as s can be the

right supporter of m′u, and then m′ is the right supporter for su.

Hence, at any case when mv is possible to precede e, then mv can do so without loss of

generality, and thus (II) of Property N is satisfied.

multi-middle

A multi-middle d-arc setting is formed by two related multi-middle d-arcs. Its aligning sequence is

determined by the algorithmic procedure in Section 6.3.3, which gives priority to the single-middle

sequences where possible.

Therefore, in Lemma 6.3.32 we prove that for each multi-middle d-arc setting, defined similarly

to respective single-middle settings, the multi-middle sequence satisfies Property N .

Before we look at the individual multi-middle settings and their sequences, we provide condi-

6.3. MAXIMUM DEGREE 5 133

tions on the location and alignments of the final middle vertices of a multi-middle d-arc. Specif-

ically, given a path xumv, where u(m)v is a d-arc with unready edge mv, the alignment of xu

determines the alignment of the u-internal edges of the final middle vertices of uv which are on

the left of x in C.

Lemma 6.3.30. Let x be the left-neighbour of u, where u(m)v is a d-arc in a cycle C, with

unready edge mv. If xu ∈ A, then every final middle vertex m′ of u(m)v on the left of x is in a

d-arc. Moreover, the u-internal edge of m′ is unready.

Proof. We will prove this by induction on the number of final middle vertices mi of uv which are

on the left of x and by increasing distance from x. Let us denote by mk the k-th closest to x final

middle vertex of u(m)v, bk the left-neighbour ofmk and ak its right-neighbour. By Lemma 6.3.14,

any vertex on the left of x and misaligned to u must be a final middle vertex of d-arc uv. So the

a1u ∈ A, since m1 is the first final middle vertex of uv on the left of x. Given that and m1u ∈M ,

then b1m1 ∈ U− and b1a1 /∈ E. Assume that mkak ∈ U− and that bk(mk)ak is its d-arc. Now

consider mk+1. Because bkak, bu ∈ A, then bku ∈ A, and thus mk+1 6= bk. Similarly to m1,

mk+1ak+1 ∈ U−, since ak+1u ∈ A.

An implication of the previous lemma is the following:

Corollary 6.3.31. Let m′ be a final middle vertex of a d-arc u(m)v on the left of and not adjacent

to u(m)v, in a cycle C. If the u-internal edge of m′ is aligned, then every vertex between m′ and

u is misaligned to u.

Proof. Suppose that the u-internal edge of m′ is aligned and that there is some vertex between m′

and u which is not misaligned to u. By Lemma 6.3.30, the u-internal edge of m′ is unready; a

contradiction. Therefore, no vertex between m′ and u is aligned to u.

Next, we show which multi-middle settings are possible to align, when SC 6= ∅, specifically

those used by A.

Lemma 6.3.32. Let C be a cycle with two multi-middle d-arcs u′(m′)v′ and u(m)v, where m′ is

a final middle vertex of uv. Furthermore, C does not contain:

134 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

• ready edges in R\Rp

• single-middle d-arcs with an unready edge in U\Up

If SC 6= ∅, then the multi-middle sequenceQt applied on the setting S in cycleC, satisfies Property

N .

Proof. We look at different settings S of two related multi-middle d-arcs, following the multi-

middle aligning sequence in Section 6.3.3. We do so by proving a series of claims, corresponding

to different possible settings for S.

Claim 1. If S is a one-zero exchange setting in C, then Qt satisfies Property N .

Proof: S is on path umvu′m′v′ with multi-middle d-arcs uv and vv′. Let m` 6= m′ be a final

middle vertex of uv and mr 6= m be a final middle vertex of vv′. Observe that m` must be on the

left of u, andmr on the right of v′. Looking at the neighbourhoodsN(m) = {u, v, u′,mr,m
′} and

N(m′) = {u′, v′, v,m`,m}, we find that the supporters of mv are u′ and m′ and the supporters of

u′m′ are m and v. Since the setting is symmetrical around edge vu′, we focus on the alignment of

mv and conclude the same for both edges.

If m′ is the left supporter of mv, then mm′ needs a left host in a subsequent cycle. This host

must be u′. But then both u′ and m′ remain on the left of mv, and so there is no right supporter

in place for mv. Thus, it remains that m′ is the left supporter of mv, and u′ is the right. The host

of mu′ can only be u. Similarly, the left supporter of u′m′ is m, and v is the right and the host for

vm′ is v′. Thus, u′u, vv′ ∈ E.

Let Qs be the sequence which applies the p-switching of u′ to u and v to v′. After applying Qs,

we reach the path uu′mm′vv′, where mm′ ∈ R. Since the supporters of the two unready edges

are unique, then Qs ⊂ QC , QC ∈ SC . Lemma 6.3.16 applies on the supporter u′ of d-arc uv and

the supporter v of d-arc u′v′. Moreover, switching the ready edge mm′ is trivially in QC , and we

can do so whenever mm′ is ready, given that m and m′ cannot support any other misaligned edge.

Hence, the multi-middle sequence satisfies Property N when S is one-exchange.

6.3. MAXIMUM DEGREE 5 135

Claim 2. If S is a zero-exchange setting, then Qt satisfies Property N .

Proof: Recall the two possible sequences Q1
0x and Q2

0x involving the three misaligned edges of

a zero-exchange setting, according to the order in which the switches of the three edges appear

in some QC ∈ SC . By Claim 6.3.23, only one of the two sequences appears in QC ∈ SC . We

assume, without loss of generality, that Q1
0x ⊂ Q and thus Q2

0x /∈ Q. So in QC , mv precedes

mm′ and mm′ precedes vm′. That is why, Qt moves the vm′ to Up. We will show that Qt satisfies

Property N .

There is a AU−U+A setting on the path umvm′v′. Let m` be the final middle vertex of u′v′

and related to m′, mr be the final middle vertex of vv′ and related to m, S` be the setting formed

by the d-arc of m` and uv, and Q` be the sequence aligning S` and v′mr reaching a cycle C ′. By

the proof of the same claim, we know that s 6= m`, where s is the supporter of mv, m the right

supporter of vm′, mr is the host of mm′, and m′ is the right supporter of mv.

First, we show that (i) Q` precedes the switch of vm′ in QC . The neighbours of m are in

N(m) = {u, v,m′, s,mr}. Since s 6= m`, then m`m /∈ E, so m`u requires a host. Q` p-switches

s to m before mv switches, so m`s must switch after us. So m`s ∈ E and without loss of

generality s is the host for m`m. Observe that m` is the only supporter of m′ and v. So, m` is

the left supporter of vm′, and thus the only right supporter of us. Since m`u precedes mv and mv

precedes vm′, then Q` precedes vm′. Moreover, v′mr precedes m′m – mr is the only host for

mm′ – and m′m precedes vm′.

Next, we show that (ii) S` is either a d-crossing exchange or a dis-one setting, uv is single-

middle in C ′, and vm′ ∈ Up until v′mr aligns.

Since by (i) above, Q` and v′mr precede vm′, we move vm′ to Up. If we run Q`, then we

get to a cycle C ′ where mv is aligned and uv is single-middle in relation to C ′ with final middle

vertex m`. Therefore we can apply without loss of generality the single-middle sequence which

corresponds to uv in C ′. Observe that due to its neighbourhood,m` can either be at distance one or

two from u. Thus, if m`u is in C, then there is a d-crossing exchange on the path m`umv. If m`u

is not in C, then am`s is in C, where as is a d-arc. So, d-arcs as and uv form a dis-one setting.

136 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

In conclusion, S can result in a single-middle setting, for which there is an aligning sequence, as

shown in (ii). Also neither v is the supporter of any unready edge to its left, nor m is the supporter

of any unready edge on its right, as shown in (i). Thus, whenever vm′ is ready in some subsequent

cycle, it can switch without loss of generality.

Claim 3. There is no k-sub setting with multi-middle d-arcs.

Proof: Let u′(m′)v′ and u(m)v be the two multi-middle d-arcs of S, where m′ is a final middle

vertex of uv. Recall that in k-sub settings, m′ is non the left of and p-connected to v. In the defini-

tion of the single-middle k-sub settings, m′v is an edge. Note that this does not have to be the case

here, as m′ can be related to a second final middle vertex of uv, instead of v. We explore whether

a k-sub setting can be multi-middle, given all the assumptions.

If k = 0, then setting AU−AU− is non the path u′m′umvx. Let w 6= m′ be a final middle

vertex of uv different from m′ and in d-arc x(w)y.

– Suppose w is non the right of v. If vw is in C, then x = v and the d-arcs u(m)v and v(w)y in

C are in a zero-exchange setting. This is not possible by (the proof of) Claim 2, otherwise u(m)v

can be in a d-crossing or dis-one setting with its related d-arc on its left in C. Thus, vw is not in

C. If d(v, w) = 2, then uv and xy form an one-exchange setting. This, as well, is not possible by

Claim 2, since Qt has already dealt with one-exchange settings.

– Suppose w is on the left of m′. Since w is a final middle vertex of uv, then w must be

misaligned to both u′ and u. By Lemma 6.3.14, this is only possible if x(w)y is in a d-crossing

with u′(m′)u, where y = u′. But then wm′ /∈ E, so uv has at least three final middle vertices and

there is some final middle vertex w′ which is between w and m′ in Ct. As mentioned earlier in

the proof, there is no final middle vertex of uv on the right of v, which is in a d-arc, so vx ∈ A

and the v-internal edge of w′ must be aligned. Since vx is aligned, then by Lemma 6.3.30 w′ must

be in a d-arc; a contradiction. Thus, w′ is not a final middle vertex of uv, and so wm′ ∈ E, and

thus xy is not in a d-crossing with u′v′. This refutes the assumption that w can be on the left of

u. In conclusion, m′ is the only final middle vertex of uv which is in a d-arc in C and there is no

final middle vertex of uv on its right. Therefore, if uv is multi-middle, then a second final middle

6.3. MAXIMUM DEGREE 5 137

vertex w is on the left of u′, while the u-internal edge of w is aligned. If that is the case, then by

Corollary 6.3.31, all vertices between w and u must be misaligned to u, which is not true. Thus,

uv is single-middle.

If k = 1, let u′(m′)v′ and u(m)v form a 1-sub setting without m′v necessarily be an edge.

Then, the setting AU−AAU− setting is on the path u′m′v′umv. With similar arguments we de-

duce that uv has to be single-middle. For example, a second final middle vertex of uv on its right

would impose a zero- or one-exchange setting, which are not possible for the same reasons stated

for k = 0. And finally, the conditions of Corollary 6.3.31 are not satisfied, just as above.

Claim 4. If S is a d-crossing exchange setting, then Qt satisfies Property N .

Proof. S is on path m′umv on cycle C, with multi-middle d-arcs m′(u)m and u(m)v.

None of the two d-arcs is in a k-exchange setting in C, since Qt has dealt with those settings.

If there is a d-arc x(w)y related to u(m)v, on the right of m, then the two d-arcs form a k-sub

setting. By definition of the k-sub setting, x(w)y does not provide a final middle vertex to u(m)v

– but the opposite. Moreover, any other vertex in a d-arc which is on the right of x(w)y cannot be

a final middle vertex of u(m)v, by Lemma 6.3.14. By symmetry, the same conclusion is true for

d-arc m′(u)m. Thus, it only remains that any final middle vertices of d-arcs m′m,uv are incident

to aligned u and v-internal edges.

Now, we show that Qt satisfies Property N . We consider the final middle vertices of d-arc uv.

Let w be a final middle vertex of uv. If w is a supporter of the d-crossing on the path m′umv, then

wm′ is in C. If w is not a supporter of the d-crossing, then by Lemma 6.3.30 every vertex between

w and m′ is a final middle vertex of uv. Thus, we can p-switch the supporter of the d-crossing,

and once m′u is ready, u switches with all final middle vertices (found on its left). If Qs is the p-

switching of the supporter(s) of the d-crossing, since the supporter(s) are unique by Lemma 6.3.19,

then Qs ⊂ QC for every QC ∈ SC . Moreover, by Lemma 6.3.20, a supporter of the d-crossing

is not a possible supporter of any other misaligned edge not in the d-crossing, thus Qs satisfies

Property N .

Now it remains to show that switching any of m′u, mv when they are ready satisfies Property

138 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

N . Because of symmetry of the setting, we only consider mv. If s′ is the right-neighbour of mv

and s′ is not a supporter of the d-crossing, then u(m)v satisfies Property N , by Lemma 6.3.17. Let

the path m′umvs′x be on C. Suppose now that s′ is the left supporter of mv. Since all the final

middle vertices of u(m)v, apart fromm′, are on the right of v and their v-internal edges are aligned,

then by Lemma 6.3.30 s′ is a final middle vertex of uv. By assumption and since e /∈ Up, e must

be in another multi-middle d-crossing setting, at a distance in C such that s′ or v be neighbours

with vertices of e.

The series of Claims 1 to 4, concludes the proof.

6.3.6 Correctness of A

All the d-arc settings defined in Section 6.3.1 are defined based on the distance between the two d-

arcs u′(m′)v′ and u(m)v and on whether the middle vertices m′ and m move towards the same or

opposite directions. In the next lemma, we show that the aligning sequences in Section 6.3.3 deal

with all possible d-arc settings which can occur in any cycle C in a switching sequence starting

from a cycle Ci and ending with a cycle Ct.

Proposition 6.3.33. Let S be a d-arc setting in a cycle C of a switching sequence Q, starting from

cycle Ci and ending in cycle Ct. If SC 6= ∅, then there is an aligning sequence which accepts S as

an input.

Proof. In other words, we will show that if S can be aligned, then there is some aligning sequence

which will align (or change the state of) one of its unready edges.

There are four categories of d-arc settings of two related d-arcs u′(m′)v′ and u(m)v, where m′

is the final middle vertex of u(m)v:

• k-sub, where m′ is p-connected to m and m is not the final middle vertex of u′v′

• k-exchange, where m′ is p-connected to m and m is the final middle vertex of u′v′

• dis-k-sub, where m′ is not p-connected to m and m is not the final middle vertex of u′v′

• d-crossing exchange, where the two d-arcs cross in both cycles but they ’exchange’ their

relative position on the two cycles

6.3. MAXIMUM DEGREE 5 139

Finally, in the d-separation settings, two d-arcs uv and mw cross in Ci on path umvw with

mv ∈ U0 and ‘separate’ in Ct, where they are at distance one or more from each other.

It is clear by Lemma 6.3.29 that we consider every possible distance between d-arcs with an

unready edge in U0. When the unready edge of d-arc u(m)v is either in U− or in U+, then the

initial middle vertex m of d-arc u(m)v has an orientation in relation to u and v in the target cycle

Ct. When the unready edges of u(m)v and u′(m′)v′ have the same orientation, that is both in U−

or U+ then the k-sub and dis-one settings cover both of these by symmetry. When the orientation

is different, one unready edge is in U− and one is in U+. The k-exchange settings cover the case

when U+ edge is non the right of the U− edge. The remaining case is covered by the d-crossing

exchange setting.

We show that for each of the possible orientations, the aligning sequences consider all feasible

d-arc settings. To do so, we consider the distance between the two related d-arcs in the cycle C.

For the orientations explored by the k-sub and k-exchange settings, Lemmas 6.3.28 and 6.3.26

show that each of these categories of d-arc settings does not exist beyond a certain distance, when

SC 6= ∅, and thus are not assigned an aligning sequence.

What remains to prove concerns the d-arc settings with two d-arcs having unready edges of

different orientation, and where the U+ edge is non the left of the U− edge. Let u′(m′)v′ be on

the left of u(m)v in cycle C and, according to the above, edges u′m′ and mv are unready and m′

is related to v. When the two d-arcs cross both in Ci and Ct, we get a d-crossing exchange. In this

case, m′ = u. Since m′ is between u and v and non the left of u′ and v′ in Ct, then both u′ and v′

are misaligned to u. So the two d-arcs cannot be adjacent, that is v′ = u, otherwise u′u is not an

edge. Suppose that the two d-arcs are at distance at least one from each other, that is d(v′, u) ≥ 1.

Since m′ is related to v, then m′u ∈ M . The neighbours of m′ are N(m′) = {u′, v′, u, v, a},

where a the initial left-neighbour of u′, and the neighbours of u N(u) = {m,m′, u′, v′, u`}, where

u` is its final left-neighbour. Since u is misaligned to all of its left neighbours and aligned to m,

then u` must on the left of u′. Observe that v′u ∈ U+, and none of the neighbours of u can be the

right supporter for v′u. This proves that SC = ∅.

Proposition 6.3.34. Every aligning sequence satisfies Property N .

140 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

Proof. This is a direct implication of Lemmas 6.3.20, 6.3.21, 6.3.25, 6.3.27, 6.3.28, and 6.3.32.

Theorem 6.3.35. Algorithm A decides HC-PATH for a graph G of maximum degree 5.

Proof. We prove this by showing that A produces a sequence of switches which satisfies Property

N , and which corresponds to a path in H(G).

First of all, given any cycle C, we implicitly consider that A updates sets A, M , R, and U

whenever it outputs a new current cycle C ′ adjacent to C in H(G). In the same fashion,A updates

particular subsets of the sets above which are defined by edges in G, in relation to the position of

their vertices in C ′ and Ct. (For example, recall that an edge in U in a cycle C can be in exactly

one of U−, U+, or U0, depending on the arcs of length 2 induced by the cycle in G).

Given the input cycles Ci and Ct of graphG,A starts with procedure Switch-R, which switches

all the available ready edges until R = ∅, reaching a cycle C with edges only in A and U . It is

obvious that if C 6= Ct, then it contains at least one unready edge and no ready edges. In fact C

contains at least two unready edges, as we show with the next claim.

Claim: There is at least one pair of related d-arcs, and thus a d-arc setting in C, when C 6= Ct.

Let u(m)v be the only d-arc in C. Since there is no other unready edge in C, then the final

middle vertices of uv are currently incident to edges in C which are aligned. Let m′ be one of

the final middle vertices of uv and also m′u ∈ M , without loss of generality. Then m′u is not in

C, otherwise it would be unready. Since the u-internal edge of m′ is aligned, then by Corollary

6.3.31, xu ∈ U , where x is the left-neighbour of u. Thus, C has at least two unready edges.

We continue with the correctness of the algorithm. Next, A moves all edges in U0 to Up, which

satisfies Property N , by Lemma 6.3.29. The main body of A (main loop) can determine correctly

whether SC is empty or not. Since there is at least one unready edge in U\Up, then by the claim

above there is a d-arc setting S. A determines whether there is an aligning sequence Q for S,

according to Proposition 6.3.33. If not, then SC = ∅. We apply the aligning sequence Q to S. By

Proposition 6.3.34, Q is such that either satisfies Property N , or sets Up = U , because S does not

6.3. MAXIMUM DEGREE 5 141

satisfy any structural requirement such that SC 6= ∅. Consequently, if SC 6= ∅, then Q outputs a

new cycle C ′ with S ′C 6= ∅. As such, every unready or misaligned edge in C which is aligned in

C ′ is now in set Z, by Corollary 6.3.18.

Next, we show that each iteration of A with input cycle C outputs a cycle C ′ closer to the

target cycle Ct than C is. If |M(C)| is the number of misaligned edges in a cycle C, then we

will show that |M(C ′)| < |M(C)|, by assigning at least one misaligned edge to every aligning

sequence, which A applies. Let Q be an aligning sequence applied in C. If Q moves an unready

edge e from U to Up, then e aligns later in some cycle C∗. This will happen as a consequence

of aligning another misaligned edge e∗ during some aligning sequence Q∗. Q∗ will align at least

two edges, the misaligned edge which provides a supporter to e and, via Procedure Supporter, e,

which we assign to Q. If Q does not only move edges from U to Up, then it aligns at least one

edge which was misaligned in C. On the other hand, it may move edges from A to Rp. However,

every edge in Rp is associated with some ready or unready edge in that both are aligned by the

same sequence. Thus, aligned edges which become misaligned are eventually put back again by

sequences already assigned a misaligned edge. Finally, every time an aligning sequence is applied,

A applies procedure Switch-R on the output cycle C ′, which switches ready edges in R\Rp. After

doing so, we reach a cycle C ′′ with R\Rp = ∅. Since this procedure only switches ready edges,

it cannot decrease the number of misaligned edges, thus |M(C ′′)| ≤ |M(C ′)|. In conclusion, it

is always |M(C ′′)| < |M(C)| for every iteration of the main loop of A. Thus, A both terminates

and decides the problem correctly.

Theorem 6.3.36. A decides 5-HC-PATH in linear time.

Proof. We refer to the last part of the proof of Theorem 6.3.35, where we count the number of

misaligned edges on each cycle along the sequence of switches (or the path of cycles) which takes

us from Ci to Ct. For every application of an aligning sequence or move of an unready edge from

U to Up we can assign at least one misaligned edge which is aligned at some point along the path, if

not on the current iteration. Thus, we needO(|E|) iterations in order to reach Ct from Ci. In each

iteration, there is a constant number of operations related to the chosen d-arc setting. Each setting

142 CHAPTER 6. RECONFIGURATION OF HAMILTONIAN CYCLES

contains a constant number of edges and there is a constant number of unit operations applied on

each of them. Thus, the overall running time is still O(|E|).

Chapter 7

Conclusions

In this final chapter we briefly discuss the results presented in this thesis. We contextualise our

work within the wider research area and we summarise our results. Finally, we pose some open

questions deriving from our work and also discuss the possible future directions for reconfiguration

problems.

7.1 Graph Colouring Reconfiguration

A great part of our work focussed on questions on Graph Colouring Reconfiguration. In Chapter

4, we provided results on the diameter of the colour graph which also appear in the respective

publications [6, 7]. We determined sufficient conditions for the reconfiguration graph to have a

diameter at most quadratic in the number of vertices. We gave examples of graph classes, such as

chordal graphs and chordal bipartite graphs, that satisfy these conditions and described a class of

graphs that show that our quadratic bound is sharp. More specifically, given a k-colourable chordal

graph G, R` (G), ` ≥ k + 1 is connected and has diameter O(n2).

The outcome coincides with the conjecture that if G is a k-colourable graph, then the diameter

of Rk+2(G) is O(n2) [15].

In [7] we posed open questions on graph classes that generalise our result for chordal graphs:

143

144 CHAPTER 7. CONCLUSIONS

1. We know that a k-colourable chordal graph has bounded treewidth t = k − 1. Is it true that

Rt+2(G) of a graph G of bounded treewidth t has diameter at most O(n2)?

2. We know that a chordal graph is also perfect. Is it true that for all k-colourable perfect graphs

G, R`(G), l ≤ k + 1 is connected and has diameter at most O(n2)?

The first question was answered in the affirmative in [5]. The second remains open.

In Chapter 5 we explore the k-EXTRA COLOUR PATH problem, originally posed by Cereceda

in his thesis [15] and which results naturally from k-COLOUR PATH. k-EXTRA COLOUR PATH

accepts the no-instances of k-COLOUR PATH as input and asks whether a path using t-colourings

exists, where t > k.

We have given initial results for k-EXTRA COLOUR PATH, as well as specific results for the

case k = 3. We have shown that using k− 1 extra colours to find a path between two k-colourings

is sufficient for any instance, and also required by some of them. Moreover, we give examples of

instances for which k−1 extra colour is always sufficient. Another result is based on the definition

of a disconnected pair of colour sets. Recall that given an instance (G,α, β) of k-COLOUR PATH,

then a vertex v with α(v) = i and β(v) = j belongs to colour set Vi,j . We have given conditions

such that k−2 extra colours are enough to turn a no-instance of k-COLOUR PATH to a yes-instance

of k-EXTRA COLOUR PATH, when there is a pair of colour sets which is an independent set.

According to Cereceda [15], using extra colours to obtain a transformation between colourings

has been examined before, but not directly related to or defined as a reconfiguration problem.

7.1.1 Open Questions on Graph Recolouring

It is an open problem whether k-EXTRA COLOUR PATH accepts a polynomial algorithm, for

some integer k. We hope that our initial insight in Chapter 5 will help in investigating this further.

Of interest would be to discover classes of graphs which persist in polynomial solutions. For

example lattices embedded on the torus (or otherwise the cartesian product of two cycles) provide

us with both yes and no instances, as shown by Theorems 5.3.3 and 5.2.8. Thus, one could explore

graphs which are denser than the latter but somewhat retain the regularity of a lattice and/or torus.

7.2. HAMILTONIAN CYCLE RECONFIGURATION 145

Furthermore, the technique used in Theorem 5.3.3 of partitioning the graph into two parts G \H

andH , whereH is a maximal independent set, could be extended to more general classes of graphs

and lead to either more polynomial results or some reduction from some known hard problem.

Perhaps the most prominent open question in Graph Colouring Reconfiguration has been that

of determining the complexity of k-MIXING, as the first and only result on this was published

in [18]; see Chapter 2 for more details on why 3-mixing is NP-complete. Does the hardness of

3-MIXING [18] imply that k-MIXING is at least as hard for k ≥ 4? If we assume the latter,

then is there an interesting class of graphs for which k-MIXING can be answered in polynomial

time? Would it be sensible to look for a class with some geometric property similar to the case

of 3-MIXING, where the problem becomes polynomial for planar bipartite graphs? When G is

bipartite and not 3-mixing, it contracts to the 6-cycle. Can we define a class of graphs depending

on k to which every graph G contracts, when G is not k-mixing?

7.2 Hamiltonian Cycle Reconfiguration

Although the reconfiguration of combinatorial problems has been an area of growing interest,

Hamiltonian Cycle Reconfiguration has not been visited at all, to the best knowledge of the author.

It has been implicitly posed as an open problem in [44], where authors ask the same question about

the Travelling Salesman Problem, which can be considered as a generalised version of Hamiltonian

Cycle. Thus, our result in Chapter 7 is the first result on Hamiltonian Cycle Reconfiguration, and

specifically presents a class of graphs which accepts a polynomial algorithm.

Whether Hamiltonian Cycle Reconfiguration is hard for graphs of bounded degree remains an

open question. If we conjecture that it is computationally hard, then it would be interesting to find

more classes of graphs for which the problem can be decided in polynomial time. It would be

reasonable to build directly on the work of this thesis and investigate graphs of bounded degree k.

Do instances of those graphs accept a polynomial solution when k > 5? If not, then is there some

exact constant k > 5 for which the problem becomes hard?

146 CHAPTER 7. CONCLUSIONS

7.3 Epilogue

After the work on SAT Reconfiguration and Graph Colouring Reconfiguration, the research com-

munity extended its focus further amongst classic graph theory and combinatorial problems. For an

NP-complete problem to become PSPACE-complete in its reconfiguration version is now thought

the default pattern, although there have been exceptions from the very first published work, e.g. for

3-COLOURING.

Nevertheless, one can find the study of the reconfiguration version of a problem worth explor-

ing, independently of how high is the expectation of it following the established pattern or of falling

into the exceptions. Until proven, each problem maintains its own interest. And especially when

the reconfiguration rule is not always naturally imposed by the statement of the original problem,

this creates an additional motivation to explore how the defined reconfiguration rule affects the

complexity outcome and why. For example, there is more than one ‘natural’ minimal reconfigura-

tion step for the reconfiguration of independent sets or hamiltonian cycles. Equally interesting is

to work on a restricted class of instances of a reconfiguration problem and possibly find a polyno-

mial algorithm or look at specific features of the solution graph such as its diameter. All of these

different and inherent motivations have resulted in numerous results within the last decade.

Perhaps an interesting meta-question is to give some form of general justification to the relation

between the complexity of an original combinatorial problem P and its reconfiguration version

R(P), and specifically why and when exceptions arise. In particular, when an NP-complete prob-

lem P is given, then R(P) is PSPACE-complete with very few exceptions discovered to date.

What do those exceptions suggest for the problems P and R(P)? It seems that in these excep-

tional cases, the constraints of the original problem coupled with the reconfiguration rule result in

an ”easy” structure of the reconfiguration graph, such that to decide its properties is easier than

to construct its vertices (solutions to the original problem). Can this or some similar observation

be rigorously answered and perhaps define reconfiguration (complexity) classes according to some

level of constraints and/or reconfiguration rules?

One of those exceptional cases is 3-COLOURING, which is very well-known to be NP-complete,

7.3. EPILOGUE 147

but 3-COLOUR PATH is in P. Intuitively, we could claim that because the non-trivial instances

of 3-COLOUR PATH are bipartite graphs, and 2-COLOURING is in P, then in some sense the

nature of the reconfiguration rule restricts the expected complexity of the reconfiguration version.

Rather than relying on intuition, a meta-theorem is needed to refute or confirm the former. And for

example, justify why k-COLOUR PATH is in P for k = 3, but PSPACE-complete for any k > 3.

148 CHAPTER 7. CONCLUSIONS

Bibliography

[1] AARDAL, K., VAN HOESEL, S. P. M., KOSTER, A. M. C. A., MANNINO, C., AND SAS-

SANO, A. Models and solution techniques for frequency assignment problems. Annals of

Operational Research 153, 1 (2007), 79 – 129.

[2] ACHLIOPTAS, D., COJA-OGHLAN, A., AND RICCI-TERSENGHI, F. On the solution-space

geometry of random constraint satisfaction problems. Random Structures & Algorithms 38,

3 (2011), 251–268.

[3] BELCASTRO, S.-M., AND HAAS, R. Counting edge-kempe-equivalence classes for 3-edge-

colored cubic graphs. Discrete Mathematics 325 (2014), 77 – 84.

[4] BILLINGHAM, J., LEESE, R., AND RAJANIEMI, H. Frequency reassignment in cellular

phone networks. Tech. rep., Smith Institute Study Group, 2005.

[5] BONAMY, M., AND BOUSQUET, N. Recoloring bounded treewidth graphs. Electronic Notes

in Discrete Mathematics 44 (2013), 257–262.

[6] BONAMY, M., JOHNSON, M., LIGNOS, I., PATEL, V., AND PAULUSMA, D. On the diameter

of reconfiguration graphs for vertex colourings. Electronic Notes in Discrete Mathematics 38,

0 (2011), 161 – 166. The Sixth European Conference on Combinatorics, Graph Theory and

Applications, EuroComb 2011.

[7] BONAMY, M., JOHNSON, M., LIGNOS, I., PATEL, V., AND PAULUSMA, D. Reconfigura-

tion graphs for vertex colourings of chordal and chordal bipartite graphs. J. Combinatorial

Optimization 27, 1 (2014), 132–143.

149

150 BIBLIOGRAPHY

[8] BONSMA, P. The complexity of rerouting shortest paths. Theoretical Computer Science 510

(2013), 1–12.

[9] BONSMA, P. Independent set reconfiguration in cographs. In Graph-Theoretic Concepts

in Computer Science: 40th International Workshop, WG 2014, Nouan-le-Fuzelier, France,

June 25-27, 2014. Revised Selected Papers (2014), D. Kratsch and I. Todinca, Eds., Springer

International Publishing, pp. 105–116.

[10] BONSMA, P., CERECEDA, L., VAN DEN HEUVEL, J., AND JOHNSON, M. Finding paths be-

tween graph colourings: Computational complexity and possible distances. Electronic Notes

in Discrete Mathematics 29 (2007), 463 – 469. European Conference on Combinatorics,

Graph Theory and Applications European Conference on Combinatorics, Graph Theory and

Applications.

[11] BONSMA, P., KAMIŃSKI, M., AND WROCHNA, M. Reconfiguring independent sets in

claw-free graphs. In Algorithm Theory – SWAT 2014: 14th Scandinavian Symposium and

Workshops, Copenhagen, Denmark, July 2-4, 2014. Proceedings (2014), R. Ravi and I. L.

Gørtz, Eds., Springer International Publishing, pp. 86–97.

[12] BONSMA, P., AND MOUAWAD, A. E. The complexity of bounded length graph recoloring.

CoRR abs/1404.0337 (2014).

[13] BONSMA, P. S., AND CERECEDA, L. Finding paths between graph colourings: PSPACE-

completeness and superpolynomial distances. Theoretical Computer Science 410, 50 (2009),

5215–5226.

[14] CALAMONERI, T. The L(h, k)-labelling problem: An updated survey and annotated bibli-

ography. The Computer Journal 54, 8 (2011), 1344–1371.

[15] CERECEDA, L. Mixing Graph Colourings. PhD Thesis, London School of Economics and

Political Science, London, 2007.

[16] CERECEDA, L., VAN DEN HEUVEL, J., AND JOHNSON, M. Mixing 3-colourings in bipartite

graphs. In Graph-Theoretic Concepts in Computer Science, 33rd International Workshop,

BIBLIOGRAPHY 151

WG 2007, Dornburg, Germany, June 21-23, 2007. Revised Papers (2007), A. Brandstädt,

D. Kratsch, and H. Müller, Eds., vol. 4769 of Lecture Notes in Computer Science, Springer,

pp. 166–177.

[17] CERECEDA, L., VAN DEN HEUVEL, J., AND JOHNSON, M. Connectedness of the graph of

vertex-colourings. Discrete Mathematics 308, 5-6 (2008), 913–919.

[18] CERECEDA, L., VAN DEN HEUVEL, J., AND JOHNSON, M. Mixing 3-colourings in bipartite

graphs. European Journal of Combinatorics 30, 7 (2009), 1593–1606.

[19] CERECEDA, L., VAN DEN HEUVEL, J., AND JOHNSON, M. Finding paths between 3-

colorings. Journal of Graph Theory 67, 1 (2011), 69–82.

[20] CHOO, K., AND MACGILLIVRAY, G. Gray code numbers for graphs. Ars Mathematica

Comporanea 4, 5-6 (2011), 125–139.

[21] DEMAINE, E. D. Playing Games with Algorithms: Algorithmic Combinatorial Game The-

ory. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001, pp. 18–33.

[22] DIESTEL, R. Graph Theory, 3rd ed. Springer-Verlag, Heidelberg, 2005.

[23] DIRAC, G. On rigid circuit graphs. Anh. Math. Sem. Univ. Hamburg 25, 1-2 (1961), 71–76.

[24] DOWNEY, R. G., AND FELLOWS, M. R. Parameterized Complexity. Springer-Verlag, 1999.

[25] DYER, M., GOLDBERG, L. A., AND JERRUM, M. Systematic scan for sampling colorings.

The Annals of Applied Probability 16, 1 (2006), 185–230.

[26] EISENBLATTER, A. Frequency assignment in GSM networks: Models, heuristics, and lower

bounds. PhD Thesis, Technische Universitt Berlin, Berlin, Germany, 2001.

[27] EKIN, O., HAMMER, P. L., AND KOGAN, A. On connected boolean functions. Discrete

Applied Mathematics 96-97 (1999), 337 – 362.

[28] FISK, S. Geometric coloring theory. Advances in Mathematics 24, 3 (1977), 298 – 340.

152 BIBLIOGRAPHY

[29] FRICKE, G., HEDETNIEMI, S. M., HEDETNIEMI, S. T., AND HUTSON, K. R. γ-graphs of

graphs. Discussiones Mathematicae Graph Theory 31, 3 (2011), 517–531.

[30] GAREY, M. R., AND JOHNSON, D. S. Computers and Intractability, A Guide to the Theory

of NP-Completeness. W. H. Freeman and Company, 1979.

[31] GAREY, M. R., JOHNSON, D. S., AND TARJAN, R. E. The planar hamiltonian circuit

problem is NP-complete. SIAM Journal on Computing 5, 4 (1976), 704–714.

[32] GAVRIL, F. The intersection graphs of subtrees in trees are exactly the chordal graphs.

Journal of Combinatorial Theory, Series B 16, 1 (1974), 47 – 56.

[33] GOLUMBIC, M. C. Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Math-

ematics, Vol 57). North-Holland Publishing Co., Amsterdam, The Netherlands, The Nether-

lands, 2004.

[34] GOPALAN, P., KOLAITIS, P. G., MANEVA, E. N., AND PAPADIMITRIOU, C. H. The con-

nectivity of boolean satisfiability: Computational and structural dichotomies. In Automata,

Languages and Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy,

July 10-14, 2006, Proceedings, Part I (2006), M. Bugliesi, B. Preneel, V. Sassone, and I. We-

gener, Eds., vol. 4051 of Lecture Notes in Computer Science, Springer, pp. 346–357.

[35] GOPALAN, P., KOLAITIS, P. G., MANEVA, E. N., AND PAPADIMITRIOU, C. H. The con-

nectivity of boolean satisfiability: Computational and structural dichotomies. SIAM Journal

on Computing 38, 6 (2009), 2330–2355.

[36] HAAS, R., AND SEYFFARTH, K. The k-dominating graph. Graphs and Combinatorics 30,

3 (2014), 609–617.

[37] HALE, W. Frequency assignment: theory and applications. vol. 68 of Proceedings of IEEE,

pp. 1497–1514.

[38] HAMMER, P., MAFFRAY, F., AND PREISSMANN, M. A characterization of chordal bipartite

graphs. RUTCOR Research Report 16–89, Rutgers University, New Brunswick NJ, RRR,

1989.

BIBLIOGRAPHY 153

[39] HAN, J. Frequency reassignment problem in mobile communication networks. Computers

and Operations Research 34, 10 (2007), 2939 – 2948.

[40] HEARN, R., AND DEMAINE, E. PSPACE-completeness of sliding-block puzzles and other

problems through the nondeterministic constraint logic model of computation. Theoretical

Computer Science 343, 1-2 (2005), 72–96.

[41] VAN DEN HEUVEL, J. The complexity of change. Surveys in Combinatorics, London Math-

ematical Society Lecture Notes Series 409 (2013).

[42] ITO, T., AND DEMAINE, E. D. Approximability of the subset sum reconfiguration problem.

In Theory and Applications of Models of Computation: 8th Annual Conference, TAMC 2011,

Tokyo, Japan, May 23-25, 2011. Proceedings (Berlin, Heidelberg, 2011), M. Ogihara and

J. Tarui, Eds., Springer Berlin Heidelberg, pp. 58–69.

[43] ITO, T., DEMAINE, E. D., HARVEY, N. J. A., PAPADIMITRIOU, C. H., SIDERI, M., UE-

HARA, R., AND UNO, Y. On the complexity of reconfiguration problems. In Algorithms and

Computation: 19th International Symposium, ISAAC 2008, Gold Coast, Australia, Decem-

ber 15-17, 2008. Proceedings (Berlin, Heidelberg, 2008), S.-H. Hong, H. Nagamochi, and

T. Fukunaga, Eds., Springer Berlin Heidelberg, pp. 28–39.

[44] ITO, T., DEMAINE, E. D., HARVEY, N. J. A., PAPADIMITRIOU, C. H., SIDERI, M., UE-

HARA, R., AND UNO, Y. On the complexity of reconfiguration problems. Theoretical Com-

puter Science 412, 12-14 (2011), 1054–1065.

[45] ITO, T., DEMAINE, E. D., ZHOU, X., AND NISHIZEKI, T. Approximability of partitioning

graphs with supply and demand. Journal of Discrete Algorithms 6, 4 (2008), 627 – 650.

Selected papers from the 1st Algorithms and Complexity in Durham Workshop (ACiD 2005).

[46] ITO, T., KAMINSKI, M., AND DEMAINE, E. D. Reconfiguration of list edge-colorings in a

graph. Discrete Applied Mathematics 160, 15 (2012), 2199–2207.

[47] ITO, T., KAMINSKI, M., ONO, H., SUZUKI, A., UEHARA, R., AND YAMANAKA, K. On

the parameterized complexity for token jumping on graphs. In Theory and Applications of

154 BIBLIOGRAPHY

Models of Computation: 11th Annual Conference, TAMC 2014, Chennai, India, April 11-13,

2014, Proceedings (2014), T. V. Gopal, M. Agrawal, A. Li, and S. B. Cooper, Eds., Springer

International Publishing, pp. 341–351.

[48] ITO, T., KAWAMURA, K., ONO, H., AND ZHOU, X. Reconfiguration of list L(2, 1)-

labelings in a graph. Theoretical Computer Science 544 (2014), 84 – 97.

[49] JANSSEN, J. Channel assignment and graph labeling. In Handbook of Wireless Networks and

Mobile Computing. Wiley, 2002, pp. 95–117.

[50] JERRUM, M. A very simple algorithm for estimating the number of k-colorings of a low-

degree graph. Random Structures & Algorithms 7, 2 (1995), 157–166.

[51] JERRUM, M. Counting, Sampling and Integrating: Algorithms and Complexity. Birkhauser

Verlag, Basel, 2003.

[52] JOHNSON, M., KRATSCH, D., KRATSCH, S., PATEL, V., AND PAULUSMA, D. Colouring

reconfiguration is fixed-parameter tractable. CoRR abs/1403.6347 (2014).

[53] KAMINSKI, M., MEDVEDEV, P., AND MILANIC, M. Shortest paths between shortest paths.

Theoretical Computer Science 412, 39 (2011), 5205–5210.

[54] KAMINSKI, M., MEDVEDEV, P., AND MILANIC, M. Complexity of independent set recon-

figurability problems. Theoretical Computer Science 439 (2012), 9–15.

[55] KAREN I. AARDAL, STAN P.M. VAN HOESEL, A. M. K. C. M., AND SASSANO, A. Fap

web - a website about frequency assignment problems, 2007. Last accessed: 28 July 2016.

[56] LAS VERGNAS, M., AND MEYNIEL, H. Kempe classes and the hadwiger conjecture. J.

Combinatorial Theory Series B 31 (1981), 95104.

[57] LEESE, R., AND HURLEY, S., Eds. Methods and Algorithms for Radio Channel Assignment.

Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford,

United Kingdom, 2002.

BIBLIOGRAPHY 155

[58] MAKINO, K., TAMAKI, S., AND YAMAMOTO, M. On the boolean connectivity problem for

horn relations. Discrete Applied Mathematics 158, 18 (2010), 2024–2030.

[59] MAKINO, K., TAMAKI, S., AND YAMAMOTO, M. An exact algorithm for the boolean

connectivity problem for k-CNF. Theoretical Computer Science 412, 35 (2011), 4613 –

4618.

[60] MCDONALD, J., MOHAR, B., AND SCHEIDE, D. Kempe equivalence of edge-colorings. J.

Graph Theory 70, 2 (May 2012), 226–239.

[61] METZGER, B. H. Spectrum management technique, 1970. Presentation at the 38th National

ORSA meeting.

[62] MEYNIEL, H. Les 5-colorations d’un graphe planaire forment une classe de commutation

unique. J. Combinatorial Theory Series B 24, 3 (1978), 251–257.

[63] MOHAR, B. Kempe equivalence of colorings. In Graph Theory in Paris, Proceedings of

a Conference in Memory of Claude Berge (Birkhauser, 2006), J.A. Bondy, J. Fonlupt, J.L.

Fouquet, J.-C. Fournier, and J. Ramirez Alfonsin (Eds.), pp. 287–297.

[64] MOUAWAD, A. E., NISHIMURA, N., AND RAMAN, V. Vertex cover reconfiguration and be-

yond. In Algorithms and Computation: 25th International Symposium, ISAAC 2014, Jeonju,

Korea, December 15-17, 2014, Proceedings (2014), H.-K. Ahn and C.-S. Shin, Eds., Springer

International Publishing, pp. 452–463.

[65] MOUAWAD, A. E., NISHIMURA, N., RAMAN, V., SIMJOUR, N., AND SUZUKI, A. On the

parameterized complexity of reconfiguration problems. In Parameterized and Exact Compu-

tation: 8th International Symposium, IPEC 2013, Sophia Antipolis, France, September 4-6,

2013, Revised Selected Papers (2013), G. Gutin and S. Szeider, Eds., Springer International

Publishing, pp. 281–294.

[66] MOUAWAD, A. E., NISHIMURA, N., RAMAN, V., AND WROCHNA, M. Reconfigura-

tion over tree decompositions. In Parameterized and Exact Computation: 9th International

156 BIBLIOGRAPHY

Symposium, IPEC 2014, Wroclaw, Poland, September 10-12, 2014. Revised Selected Papers

(2014), M. Cygan and P. Heggernes, Eds., Springer International Publishing, pp. 246–257.

[67] PAPADIMITRIOU, C. Computational Complexity. Addison-Wesley, Boston, 1994.

[68] PELSMAJER, M. J., TOKAZY, J., AND WEST, D. B. New proofs for strongly chordal graphs

and chordal bipartite graphs. Manuscript.

[69] ROBERTS, F. S. T-colorings of graphs: recent results and open problems. Discrete Mathe-

matics 93, 2-3 (1991), 229–245.

[70] SAVITCH, W. J. Relationships between nondeterministic and deterministic tape complexities.

J. Computer and System Sciences 4, 2 (1970), 177–192.

[71] SCHAEFER, T. J. The complexity of satisfiability problems. In Proceedings of the Tenth

Annual ACM Symposium on Theory of Computing (New York, USA, 1978), STOC ’78, ACM,

pp. 216–226.

[72] SCHWERDTFEGER, K. W. A computational trichotomy for connectivity of boolean satisfia-

bility. CoRR abs/1312.4524 (2013).

[73] SCHWERDTFEGER, K. W. The connectivity of boolean satisfiability: No-constants and quan-

tified variants. CoRR abs/1403.6165 (2014).

[74] SUZUKI, A., MOUAWAD, A. E., AND NISHIMURA, N. Reconfiguration of dominating sets.

CoRR abs/1401.5714 (2014).

[75] UEHARA, R. Linear time algorithms on chordal bipartite and strongly chordal graphs. In

ICALP (2002), P. Widmayer, F. T. Ruiz, R. M. Bueno, M. Hennessy, S. Eidenbenz, and

R. Conejo, Eds., vol. 2380 of Lecture Notes in Computer Science, Springer, pp. 993–1004.

[76] VAN DEN HEUVEL, J., LEESE, R. A., AND SHEPHERD, M. A. Graph labeling and radio

channel assignment. Journal of Graph Theory 29, 4 (1998), 263–283.

[77] VIKAS, N. Computational complexity of compaction to irreflexive cycles. J. Computer and

System Sciences 68, 3 (2004), 473–496.

BIBLIOGRAPHY 157

[78] WROCHNA, M. Reconfiguration in bounded bandwidth and treedepth. CoRR abs/1405.0847

(2014).

	Abstract
	Declaration
	Acknowledgements
	Introduction
	Reconfiguration Questions and their Decision Problem
	Computational Complexity
	Graph Theory

	Motivation
	Outline of the Thesis

	Graph Colouring Reconfiguration - A Review
	The Reconfiguration Graph of Vertex Colourings
	The Decision Problems

	Connectedness of Rk(G)
	3-MIXING
	Mixing 3-Colourings in Bipartite Graphs

	Finding Paths between k-Colourings
	3-COLOUR PATH
	k-COLOUR PATH, k 4
	Connectedness of Rk(G) on Specific Graph Classes and Other Properties
	Kempe-Equivalence of Colourings
	Reconfiguration on Other Variants of Graph Colouring

	Other Reconfiguration Problems
	Boolean Satisfiability
	Complexity Classifications
	Other Results on SAT-CONN

	On the Complexity of Reconfiguration Problems
	Power Supply and Subset Sum
	Shortest Path
	Independent Set
	Vertex Cover and Clique
	Dominating Set
	Problems Remaining in P

	Parameterized Complexity and Reconfiguration
	Classes
	Bounding Solutions and Reconfiguration Sequences

	Applications
	Radio Frequency Assignment
	Relation to Statistical Physics (Glauber Dynamics)

	Recolouring Chordal and Chordal Bipartite Graphs
	Preliminaries
	Sufficient Conditions for Quadratic Diameter
	Graph Classes
	Chordal Graphs
	Chordal Bipartite Graphs

	Lower Bounds

	Recolouring with Extra Colours
	Preliminaries
	Recolouring in k-EXTRA-COLOUR PATH
	Recolouring General Instances with k - 1 Extra Colours in O(n) time
	Instances with a Pair of Disconnected Colour Sets
	Instances with ek(G, ,) = k-1

	3-EXTRA-COLOUR PATH on Some Graph Classes
	Bipartite Graphs
	Some 3-Chromatic Graphs

	Reconfiguration of Hamiltonian Cycles in Graphs of Bounded Degree
	Introduction
	Definitions
	Deriving the Alignment of an Edge

	Maximum Degree 4
	Maximum Degree 5
	Definitions
	Outline of Algorithm A and Basic Routines
	Aligning Sequences and Algorithm A
	Property N of a Sequence
	Correctness of the Aligning Sequences
	Correctness of A

	Conclusions
	Graph Colouring Reconfiguration
	Open Questions on Graph Recolouring

	Hamiltonian Cycle Reconfiguration
	Epilogue

