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The Simulation of Transient Cross-Wind Gusts and Their 
Aerodynamic Influence on Passenger Cars 

Anthony Ryan 

Abstract 

The unique University of Durham transient cross-wind facility has been developed such 

that sharp edged, finite length, cross-wind gusts with a relative yaw angle of 22' can be 

developed at the rate of 1000/hr. This cross-wind facility uses the transient interaction 

of two wind tunnel jets to create these gusts, with the fully automated, rapid, repeatable 

gust production process allowing ensemble averaging to significantly improve data 

quality. 

The cross-wind gust characteristic, as observed for the empty working section, has some 

inherent problems. A yaw angle undershoot, and more importantly, an overshoot occur 

at the leading edge of the gust. A transient total pressure overshoot is also observed at 

the leading edge of the gust. Computational fluid dynamics (CFD) simulations of the 

empty working section have replicated these anomalies, and suggestions are proposed 

for their elimination. 

Two aerodynamic models were tested in this facility, each being subjected to transient 

cross-wind gusts of 10 model lengths. Both models exhibited significant transient force 

and moment overshoots. These overshoots were found to be a consequence of delayed 

pressure development in regions of separated flow, with full flow development requiring 

up to seven model lengths of cross-wind gust. 

These results, which cannot be replicated by any steady testing procedure, confirm the 

requirement for transient testing, if transient forces and moments are required. 
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Chapter One - Introduction 

Chapter One 

Introduction 

1.1 Vehicle Aerodynamics 

Vehicle aerodynamics can be broadly split into three areas; external aerodynamics, 

component cooling and passenger comfort. 

Even the simplified vehicle shapes used for fundamental investigations, for example the 

Ahmed geometry [2], produce complex three dimensional flowfields. The external 

flowfield of a true vehicle, be it either in a wind tunnel or the road environment, is 

further complicated by wheels, surface detail, underbody roughness and the interaction 

of peripheral objects such as wing mirrors and windshield wipers. As is true for flow 

over any bluff body, at some point the boundary layer separates from the surface. 

Automotive shapes are usually characterised by a number of regions of separated flow. 

The contribution to drag and the other components of force from these separated regions 

is much greater than that of the viscous forces on the surface and hence much research 

has been undertaken to further understanding of the flow mechanisms present in these 

regions, for example see [3,4,5]. 

The underbonnet layout of a vehicle must not only provide air for the combustion 

demands of the engine, but must also provide adequate cooling for many components. 

For example, a modem vehicle will require cooling air for the engine water, engine oil, 

brake components, potentially turbocharger and intercooler and engine electronics. An 

engine cooling system must be designed such that it can not only cope with these 

demands under the most arduous conditions, but must do this whilst giving as small a 
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Chapter One - Introduction 

decrease in overall vehicle performance as possible. Cooling drag may be split into 

three constituent components. Pressure drag will result directly from pressure loss 

across cooling systems, for example the pressure loss across a radiator. The turbulent 

outflowing cooling air is also likely to have a detrimental effect on the external 

aerodynamics, although this is not always the case. Finally, elements such as radiators 
have a significant 'wetted area' and therefore although the through velocity is low, a 

significant contribution from skin friction drag can be expected. 

Hucho [6] reports a typical increase in drag coefficient, Cx, as result of cooling airflow 

of ACx = 0.03. This is a significant percentage of what may be considered as a typical 

overall passenger car drag coefficient of Cx = 0.35. More recently Freymann et al [71 

quote ACx = 0.013 for a BMW 8 series. This much lower value was a consequence of a 

concerted effort by BMW to reduce the overall drag of their vehicles and within this 

framework was the minimising of cooling airflow drag. It was achieved by optimisation 

of the intake and outflow geometry, the shape of the air ducts and the arrangement of the 

radiators. Further improvements were realised through minimisation of flow restrictions 

and the use of active elements for flow control. 

From an aerodynamic viewpoint, passenger comfort is concerned with the ventilation, 

heating, air conditioning and noise experienced in the passenger compartment of a 

vehicle. With an increasingly competitive car market, these factors are becoming much 

more important in selling a vehicle. Advances in technology are not only leading to 

quieter engines, but better suppression of engine and other forms of noise (e. g. road 

noise) is leading to aerodynamic noise becoming increasingly important. The major 

contributions to aerodynamic noise come from flow around the wing mirrors and the 

unsteady nature of flow in the A- and C-pillar regions [8] (key vehicle geometrical 

features are illustrated in figure 1.1). Current research topics not only include methods 
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Chapter One - Introduction 

of reducing noise, but also prediction of the sound transmission properties of closed 

windows [9]. 

Passenger compartment ventilation is generally provided by air intake ducts at the 

bottom of the windscreen. This location is ideal in that it is situated in a region of high 

pressure, thus providing good intake flow rates. Carr [10] quotes Cp, = 0.5 as typical in 

this region for a vehicle with a 450 windshield. This location is also remote enough to 

the ground that exhaust fumes are not ingested. Prior to flowing into the passenger 

compartment conditioning of this air is likely, such that its temperature or humidity is 

altered. 

1.2 Cross-Wind Aerodynamics 

Outlined above are some of the important features of vehicle aerodynamics. When 

designing a vehicle, it must be considered that the ma ority of driving conditions 

encountered will not be ideal. Thus, as the design process becomes more advanced and 

car sales more competitive, it is possible and necessary to design for a much wider range 

of driving conditions. Cross-winds are one of these driving conditions, not only are they 

unnerving for drivers, but have been an integral part of a significant number of road 

accidents [11,12]. In efforts to meet future emissions regulations it is probable that 

motor manufacturers will need to produce lighter vehicles. The reduced inertia of these 

vehicles is likely to make them more sensitive to cross-winds, although undoubtedly 

advances in suspension technologies will partially offset this. 

Essentially there are three possible types of cross-wind condition. These are steady 

cross-winds, unsteady cross-winds and so called transient cross-winds. Steady cross- 

winds are a result of a steady atmospheric wind condition, but in reality are rare. The 
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Chapter One - Introduction 

inherently gusty nature of atmospheric winds makes unsteady conditions much more 
likely. Transient cross-winds are caused by the combination of one of the above 

conditions and the relative motion of a vehicle. For example, a vehicle may exit from a 

tunnel into a transverse wind condition, either steady or unsteady, at which point it will 

be subjected to a cross-wind transient. Many similar situations exist where a vehicle 

can appear from a sheltered position into a region of cross-wind. For example, 

emergence from a bridge abutment, or the passing of a gap in a hedge, or between 

buildings. A similar condition may be experienced when overtaking a large vehicle in a 

cross-wind and in this situation the effects may be exaggerated by buffeting from the 

unsteady wake of the large vehicle. 

Figure 1.2 illustrates the transient cross-wind condition that results from a vehicle being 

suddenly exposed to a transverse wind. Initially the vehicle is travelling through 

nominally stationary air and hence is subjected to axial flow, as depicted by the left hand 

velocity triangle. It subsequently rapidly passes through a shear layer into a region of 

yawed flow, where the resultant velocity vector, u, comprises of the vehicles relative 
forward velocity, u, and the cross-wind velocity, v. Thus the vehicle is subjected to an 

increased resultant velocity at a yaw angle of V (central velocity triangle). A short time 

later the vehicle passes through a second shear layer and is returned to the original axial 

flow condition. The transition from axial to yawed flow is potentially very rapid, with 

the rapidly changing forces and moments the vehicle is subjected to requiring fast, 

corrective, driver reaction. In many situations this leads to over-reaction. Similarly fast 

reaction is required on exit from the gust. If the region of cross-wind is of short 

duration, these two driver reactions are required within a short time and hence from a 

driver reaction perspective, sharp edged, finite length cross-wind gusts are considered to 

be a worst case scenario. 
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Only in the most extreme conditions will a wind induced accident involve the 

overturning of a passenger car, although this is a serious problem for high sided 

vehicles. It is much more common for cross-wind conditions to produce excessive and 
dangerous vehicle deviation, either through direct forces and moments or through driver 

over-reaction. The aerodynamic moment of most interest for directional stability is 

yawing moment, as this determines the steering angle input required to maintain a 

straight vehicle path. In addition to yawing moment, for transient conditions yaw rate is 

of extreme importance, as this determines the time available for a driver to take 

corrective action. A low yaw rate is desirable, as clearly this provides a driver with 

more time to make a correction, hence reducing the risk of over-correction. Of 

secondary importance are side force and lift, with low values for both being desirable. 

The side force determines the tyre slip angle required to maintain a straight path, with a 

small side force requiring a small slip angle, and hence there is less of a discrepancy 

between the angle of the vehicle and the direction of forward travel. Reducing the lift, 

or even producing a downforce, has been shown by researchers such as Buchheim et al 

[ 13] and Howell [ 14] to increase stability. 

1.3 Objectives of the Work 

The aim of the work detailed in this thesis was to further the investigations of Docton 

[61] into the transient flow effects observed around a vehicle on entry to a sharp edged 

region of cross-wind. A facility for conducting the required tests existed, however the 

cross-wind gust generation process was labour intensive and relatively slow. Thus a 

priority was the development of this facility to allow fully automated generation of rapid 

and repeatable cross-wind gusts. The aim was then to use the developed facility to 

further understanding of the underlying flow physics and mechanisms responsible for 

the observed transient effects. This was to be achieved through the investigation of 
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Chapter One - Introduction 

surface pressures, aerodynamic forces and wakes of two vehicle like bodies under the 

transient cross-wind conditions. 

1.4 Thesis Structure 

A brief introduction into vehicle aerodynamics including cross-wind aerodynamics has 

been given in this Chapter. 

Chapter Two reviews literature relevant to this thesis, focusing on cross-wind 

aerodynamics of passenger vehicles and also reviews some of the more pertinent aspects 

of general wind tunnel testing techniques. 

A review of the unique University of Durham transient cross-wind facility is given in 

Chapter Three. This covers historical aspects of the facility, it theoretical operation and 

the developments made by the current author. 

The aerodynamic models and instrumentation used for data acquisition are covered in 

Chapter Four. This gives a brief discussion of the geometry of the two aerodynamic 

models and their instrumentation with pressure tappings. The five hole pressure probe 

and two component force balance are also reviewed, with estimations made as to the 

accuracy of the measurements. Also discussed is the dynamic correction technique used 

to accurately replicate the amplitude and phase of the unsteady pressure data. 

Chapter Five discusses the experimental technique and outlines the experiments 

performed. Also discussed is the computation fluid dynamics (CFD) investigation of 

the empty working section. 

The results, both experimental and computational, are presented in Chapter Six. These 

are subsequently discussed in Chapter Seven. Conclusions are drawn in Chapter Eight, 

and recommendations for further work outlined in Chapter Nine. 
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Chapter Two 

A Review of Vehicle Aerodynamics 

2.1 Aerodynamic Design 

The aerodynalnic design of passenger vehicles is driven by the requirements of fuel 

efficiency, low noise and stability. Often these requirements conflict with those of the 

stylist, who needs to design a body shape that is aesthetically pleasing and will therefore 

sell. Much research is undertaken by vehicle aerodynamicists in an attempt to achieve 

their goals. 

2.2 Current Vehicle Aerodynamics Research 

2.2.1 Generic Bodies and Vehicle Shapes 

Vehicle external aerodynamics research may be split into two domains depending on the 

geometry being investigated. Flow fundamentals are much easier to isolate on simple 

generic bodies that do not include much of the detail of a real vehicle. This however is 

of little interest to motor manufacturers, who are primarily interested in the flow around 

real vehicle shapes. 

Barlow et al [151 investigated the wake structure of three dimensional rectangular 

bodies with rounded front and sharp rear comers. They were interested in the effects of 

changing the aspect ratio on drag. Their results highlighted one of the drawbacks of 

using simple bodies; they found that for smooth surfaced bodies drag increased with 

increasing aspect ratio, but for bodies with a rough underbody (as most vehicles have), 

drag decreased with increasing aspect ratio. Ahmed [16] encountered a similar problem 
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after adding surface detail to the underbody of a 1/4 scale squareback car. The addition 

of this detail changed the lift coefficient from Cz = -0.148 to Cz = 0.129. Lajos [17] 

investigated the drag reduction possibilities for a bluff body by the introduction of 

various flow disturbing features on the front face. He found a 60% reduction in drag 

could be achieved by the introduction of a backward facing step on the front face, this is 

something that has little relevance as for reasons of aesthetics it would never be adopted 
by a motor manufacturer. 

Williams et at [181 highlighted the true potential of fundamental investigations by 

successfully using simple radiused rectangular boxes to aid explanation of the decrease 

in drag coefficient they observed for increasing aspect ratio on several potential van 

shapes. Thus, these fundamental investigations had a true commercial application. 
Other investigations are solely interested in the performance of real vehicles, for 

example see Howell and LeGood [ 19] and LeGood et at [20]. 

2.2.2 Vehicle Wakes 

The wake of a vehicle forms an important part of its flowfield, being a consequence of 

the drag inducing flow structures around a vehicle. Although a wake is very dependent 

on the flow around the rear, it is also affected by the flow structures that have developed 

as a result of the upstream geometrical features. 

The flow structure of a fastback type vehicle (figure 2.1 illustrates the three passenger 

car rear end shapes) is of most interest as it can take one of two fundamentally different 

forms. It will either fully separate at the roof/backlight intersection, forming a large 

region of recirculating flow, or it will remain attached. The attached structure may 

involve separation at the roof/backlight intersection and subsequent reattachment further 

down the backlight. The attached flow structure is characterised by a much smaller 

region of recirculating flow in the near wake and two strong contra-rotating trailing 
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vortices. The flow structure, either attached or separated, observed for a particular 

vehicle is dependant on the 'history' of the airflow upstream and specific geometry of 

the vehicle. Indeed, both flow regimes may be observed for the same geometry, with 

some external factor such as the presence of a splitter plate in the wake determining the 

current flow structure [2 1 ]. 

Some of the earliest observations of this phenomena were made by Morel [22]. His 

geometry consisted of a circular cylinder of aspect ratio 9: 1, with an aerodynamically 

shaped nose and the rear of the cylinder truncated to form a backlight (figure 2.2). He 

investigated the effect of changing the backlight angle on the flow structure and found 

that transition between the two flow regimes was very sudden, but that either flow 

pattern was stable once it had been established. 

Morel [22] subsequently investigated this phenomenon on a vehicle like geometry in 

ground proximity. The model, as seen in figure 2.3, was a cuboid of aspect ratio 

3.33: 1.5: 1 .0 (I: w: h) with well rounded front comers to minimise the upstream effect on 

the wake structure and a slanted interchangeable backlight region, such that the 

backlight angle was variable. Again, he observed a similar bi-stable flow regime, with a 

critical backlight angle of P= 30'. Production road vehicles are unlikely to experience a 

bi-stable flow structure, however the significant variations in drag coefficient with 

backlight angle observed are of importance. 

Ahmed et al [2] used results obtained from flow visualisation and surface pressure 

measurements to describe in detail the wake structure of the Ahmed geometry for both 

attached and separated flow. This geometry has the same well rounded front comers 

and backlight as the Morel geometry, but a different aspect ratio of 3.36: 1.37: 1 (I: w: h). 

Figure 2.4 shows the wake structure for the attached flow regime. Flow separation 

occurs at the roof/backlight intersection, but with subsequent reattachment on the 
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backlight. This forms a closed recirculation bubble (E), with two triangular regions of 

attached flow (F). Strong trailing vortices are formed as the shear layers from the sides 

of the model roll onto the low pressure backlight. The cores of these vortices are further 

fed with low energy fluid from the recirculation bubble (E). Two areas of opposite 

sense recirculating flow exist behind the rear vertical face (A and B). Further increasing 

the backlight angle causes the recirculating regions A and E to merge, such that the flow 

no longer reattaches to the backlight and the separated flow regime is formed. The 

separated flow regime is characterised by the absence of strong trailing vortices and 

consequently usually exhibits a lower drag. 

Figure 2.5 shows the variation of drag coefficient with backlight angle for the Ahmed 

geometry. Here it can be seen that for the attached flow case (0' -< 
P :5 30'), the drag 

coefficient exhibits a minima at 100, from where there is a rise to the maximum at 30'. 

if the backlight angle is further increased the flow regime changes to the separated case 

and a sudden decrease in drag is observed. Sedney [23] later highlighted that the 

variation in drag observed for the attached flow regime is much greater that that of the 

separated flow regime. This is presumably a result of the significant change in strength 

of the trailing vortices with backlight angle for the attached flow regime. 

A squareback geometry can be considered as a fastback with a very steep backlight 

angle. Hence flow separation occurs at the roof/backlight intersection, with no 

subsequent reattachment. The flow also separates from the sides and underbody, 

forming a large region of recirculation region in the near wake. Ahmed and Baumert 

[241 found the contra rotating vortices in the wake of a 1/4 scale squareback model were 

opposite in sense to those found for a comparable fastback. From this they concluded 

that somewhere between these configurations would be a configuration that would not 

exhibit C-pillar trailing vortices and hence would not suffer from trailing vortex drag. 

However, as indicated by Bearman [25], it is possible that the trailing vortices they 
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observed were formed by flow around the A-pillars and weaker C-pillar vortices were 

formed that were not visible on the relatively coarse vector plots of their results. Also, 

the formation of A-pillar vortices, which is common to all car configurations, would 

make it impossible to entirely eliminate vortex drag. 

The near flowfield of a notch back type vehicle contains a complex arrangement of 

separated regions and trailing vortices. The relatively steep backlight angles found on 

notchback vehicles promotes flow separation at the roof/backlight intersection. The 

formation of weak C-pillar vortices causes a downwash in the wake, with this aiding 

reattachment on the boot lid, however this may not occur for all geometries. Nouzawa 

et al [26] found the critical geometry defining whether the flow reattached or not could 

be defined by the angle Ort, this being the angle formed when a straight line is drawn 

from the roof/backlight intersection to the top of the rear of the boot lid. They found a 

drag maxima at Ort = 25*, indicating this was the critical angle. 

2.2.3 Wake Surveys and Integrals 

Wake surveys have been used as a powerful tool to investigate the structure of vehicle 

wakes. For example Cogotti [271 used a fourteen hole probe to investigate the steady 

(time-averaged) wake of several squareback configurations. The probe design and large 

number of holes permitted flow angles of 70' to 250' to be measured in pitch, with the 

yaw range being ±90'. This large range allowed measurements in regions of near 

reversed flow, allowing him to build up a complete picture of the vehicle wake. He 

concluded that for all the configurations tested trailing vortices did exist. The sense of 

these vortices depended on the specific geometry. No significant changes in drag 

coefficient were observed for the different wake structures, suggesting the separation 

points, base pressure and contribution to drag coefficient from the trailing vortices 

remained relatively constant. 
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A detailed steady wake survey can also be integrated to yield the drag of a vehicle. This 

has been done by many authors, for example Onorato et al [28], Cogotti [29], Hackett 

and Sugavanarn [30], and Hackett et al [31]. The advantage of using a wake survey to 

calculate drag is that the energy transferred into to the trailing vortices (so called vortex 

drag) can be isolated, such that the direct effect of geometrical configuration changes to 

reduce the strength of these vortices (and hence hopefully drag) can be assessed. The 

local contribution to total drag (microdrag) can also be assessed, allowing the 

aerodynamicist to concentrate refinements on certain areas of a vehicle. 

Two slightly different approaches have been adopted by the various authors; Onorato et 

al [28] and C6gotti [29] used the basic momentum equation, as seen in Appendix B, 

whereas Hackett and Sugavanam [30] and Hackett et al [3 1] applied a development of a 

the basic momentum equation, as first used by Maskell [32]. By modelling the wake of 

the body, and its reflections in the wind tunnel walls, as a potential flowfield, Maskell 

[32] demonstrated that the terms in the basic momentum equation could be adjusted 

such that the area from which data is required to perform a wake integral can be reduced 

to just the wake of the body. Thus, his final equations require data from a relatively 

small traverse area. The major limitation of the first method is that for correct 

prediction of aerodynamic coefficients, the wake survey has to be completed over the 

entire area of flow that is affected by the presence of the body. This can not only be 

impractical, but is very time consuming, and hence the development of the Maskell [32] 

method. Wake surveys conducted by both methods are very sensitive to grid density. 

Davis [33] integrated wake surveys using the Maskell [32] method for a 1/10th scale 

generic vehicle shape in ground proximity. He found that decreasing the spatial 

resolution in area by a factor of four (10mm. grid to a 20mm. grid) introduced errors of 

over 50% in the value of drag force. 
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The practical difficulties in meeting the traverse area requirements of the first technique 

make it somewhat less rigorous, with the chosen limits of the traverse potentially having 

a significant effect on the aerodynamic coefficients. This to a certain extent allows 

fortuitous results to be obtained. That said, this method has produced results that are 

equally good in their agreement with the force balance results. Onorato et al [28] 

quoted drag figures for a 20% scale simplified vehicle shape at 0' yaw from a 20mm. 

grid that are within 1.3% of the force balance results. In comparison, Hackett and 

Sugavanam [30] quoted drag figures obtained from a 12.5mm grid for a 15% scale 

vehicle shape, of similar design, that are in agreement with force balance results to 

within 3.5%. 

2.3 Cross-Wind Vehicle Aerodynamics Research 

2.3.1 Introduction 

The majority of cross-wind vehicle aerodynamics research is carried out under steady 

cross-wind conditions. This is primarily due to the simplicity of the technique, with 

many current wind tunnels, for example the MIRA wind tunnel, as used by Docton [34], 

able to rotate a vehicle in the working section, allowing it to be subjected to steady 

yawed flow. Aerodynamic coefficients obtained under these conditions are pertinent to 

steady atmospheric winds, and probably hold true for the majority of unsteady 

atmospheric winds. The technique used for steady cross-wind testing of vehicles has 

been referred to as the 'static-static' technique by Macklin et al [35], with results 

obtained from this technique reviewed in section 2.3.2. 

The aerodynamic coefficients recorded for a vehicle on entry to, and exit of, a region of 

cross-wind will be significantly different to their comparable steady yawed coefficients 

and hence the interest in these transient cross-wind conditions. Consider a quasi-steady 

process, where the vehicle is incrcmented into a region of cross-wind flow in a series of 
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stationary positions. Initially, only the front of the vehicle is subjected to cross-wind 

flow. Thus the side force will be lower than that of steady yawed flow, however as no 

restoring moment is provided by yawed flow around the rear of the vehicle, the yawing 

moment will be larger than that of steady yawed flow. As the vehicle increments further 

into the cross-wind, both side force and yawing moment will tend to their steady yawed 

values. The maximum yawing moment is recorded when the entire vehicle ahead of the 

ccntre of pressure is in the cross-wind gust, with the peak magnitude depending on the 

exposed side area. Neglecting end effects, both coefficients should equal their steady 

yawed values after 1 model length of cross-wind flow. 

If this process is turned into a continuous one, whereby the vehicle is driven into the 

region of cross-wind, albeit at a slow velocity, flow hysterisis may make a contribution. 

This will cause the peak yawing moment, and the steady yawed side force and yawing 

moment coefficients, to be reached after an increased number of vehicle lengths of 

cross-wind flow. The time-dependent coefficients will however still be characterised by 

the side force coefficient rising asymptotically to the steady yawed value, with no 

overshoot, and the yawing moment coefficient exhibiting an overshoot before falling to 

the steady yawed value. 

A third situation may also be considered, whereby a rapid change in flowfield around a 

vehicle as it enters a cross-wind region results in significant transient flow effects. 

These are the situations of most interest, where transient overshoots of both side force 

and yawing moment are likely to occur, as the forces and moments generated cannot be 

replicated by any steady testing technique. It is probable that these effects will only 

occur for a limited number of situations, where the velocity into the cross-wind is 

relatively high, the yaw angle is significant, and the vehicle geometry is appropriate. 

A variety of techniques have been used to obtain data for transient cross-wind 

conditions. Macklin et al [35] classify these techniques as either 'dynamic-static' or 

4static-dynamic'. Dynamic-static techniques keep the gust source constant and move the 
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vehicle. This has been applied at both full scale, for example MacAdam [36] and 

Kobayshi and Yamada [37], and in a wind tunnel facility, for example Kramer et al [381 

and Yoshida et al [39]. In contrast 'static-dynamic' techniques, as used by Ryan and 

Dominy [40,41] and Dominy and Ryan [42] for example, keep the model stationary and 

simulate the cross-wind by either varying the gust profile, or by the introduction of a 

second gust. Results obtained from the dynamic-static technique are reviewed in section 

2.3.3, with those from the static-dynamic technique reviewed in section 2.3.4. 

In addition to experimental investigations, several empirical and theoretical methods 

have been developed that attempt to model cross-wind conditions, both steady and 

transient. These are reviewed in section 2.3.5. 

2.3.2 The Static-Static Technique 

As for general vehicle aerodynamic research, the bodies investigated under cross-wind 

conditions range from simple box like shapes, for example Cooper [43], to scale 

vehicles, for example Davis [44] who investigated a 1/4 scale two seater performance 

car. Two relatively exhaustive parameter studies have been completed by Gilhaus and 

Rcnn [45] and Howell [46]. Gilhaus and Renn [45] tested a 3/8th scale model vehicle 

with interchangeable body parts at a speed of 210km/h (this corresponds to 80km/h full 

scale, Rel = 5.5 x 106). The model had a smooth underbody, with no cooling airflow 

simulation. Data was taken at a constant yaw angle of q= 20'; their data suggested a 

linear increase in yawing moment up to 20% and hence data taken at this yaw angle 

could be used to imply forces and moments at lower yaw angles. Howell [46] used a 

combination of two generic vehicle models that permitted geometry alterations and 

some data from full scale vehicle tests. The generic models were 1/4 scale and were 

tested at a nominal test speed of 27ms-1 (Re, = 1.85 x 106) . Data was taken at a range of 

yaw angles for 00 :5y :5 400. The models had a smooth underbody and no wheels. A 

similar, although more restricted, parameter study was conducted by Kohri and Kataoka 
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[47] who tested a 1/5th scale notchback. The effects on yawing moment of some of the 

geometrical changes undertaken by these authors are presented in table 2.1. As can be 

seen from table 2.1, there is a certain amount of conflicting evidence, highlighting the 

sensitivity of some of these geometrical changes to the exact model shape, and hence 

caution should be exercised before applying the results universally. In addition to these 

data, both Howell [46] and Buchheim et al [13] found that for notchback vehicles 

moving the canopy rearwards decreases the yawing moment; this is a consequence of 
decreased front side area and increased rear side area. In general both Gilhaus and Renn 

[45] and Kohri and Kataoka [47] agree that aerodynamic optimisation for drag causes 

greater conflict with yawing moment for geometrical changes adopted at the rear rather 

than at the front of a vehicle. 

Wake surveys and integrals have also been conducted for generic models at yaw, for 

example Bearman [25] and Bearman et al [48]. These yield both side force and drag 

coefficients. Davis [33] reports on the wake behind a family of generic models at a 

range of yaw angles for xV: 5 100. Comparison of the wake integral obtained side force 

for several of the models indicated that the leeward side A-pillar vortex, which was the 

dominant feature of the yawed wakes, was responsible for a considerable percentage of 

the increase in side force observed at yaw. 

Howell [49] similarly investigated the wake of a saloon car under yawed flow 

conditions, concluding that as yaw angle increased the wake became increasingly 

dominated by two distinct vortices of equal rotation, as opposed to the contra rotating 

vortices generally observed under axial flow conditions. 
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Gilhaus & Renn Howell Kohri & Kataoka 

[451 [461 [471 

Lowering of front Decreased yawing e Decreased yawing 
spoiler moment moment 

increased front * Increased yawing o Increased yawing 
wing vertical edge moment moment - also 
curvature decreased drag 

Increasing front Decreased yawing * Decreased yawing 
wing side edge moment moment 
curvature 

increasing A-pillar Decreased yawing * Decreased yawing 
curvature moment moment 

increasing C/D- e Increased yawing 9 Increased yawing Increased yawing 
pillar curvature moment - also moment moment 

decreased drag 

Increased bonnet * Increased yawing Increased yawing 
front edge curvature moment moment - also 

decreased drag 

Increased planfonn Increased yawing * Decreased yawing * Increased yawing 
curvature - (boat- moment - also moment moment - also 
tailing) decreased drag decreased drag 

Change from Decreased yawing 9 Increased yawing Increased yawing 
notchback to moment moment moment 
hatchback 

increased rear Increased yawing Increased yawing 
overhang moment - also moment 
(notchback only) decreased drag 

Increased boot deck Decreased yawing 9 Decreased yawing 
height (notchback moment moment - also 
only) decreased drag 

Table 2.1 Effect of Geometrical Changes on Yawing Moment Characteristic 
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Baker [50], whose interests mainly lie with high sides lorries and trains where 

overturning is a potential problem, considered the quantities that will affect the values 

of force, moment and pressure coefficient acting on a vehicle under steady cross-wind 

conditions. Included in these quantities were the properties that would be considered to 

constitute an atmospheric turbulence simulation, namely mean velocity profile, 

turbulence profile, turbulence length scale profile and reference values for these 

properties at a particular height. 

Dimensional analysis was used to demonstrate that if wind tunnel simulations are to 

yield correct values for the steady coefficients, it is necessary to use a dynamic-static 

testing technique with an atmospheric boundary layer simulation. He further 

commented that in reality it is difficult to produce the correct turbulence length scale for 

an atmospheric boundary layer simulation, as the wind tunnels available are too small to 

do this at realistic model scales. 

Baker [5 1] subsequently investigated the effects of the unsteady wind component on the 

force and moment coefficients. He defined an aerodynamic admittance (in the 

frequency domain) that related the force fluctuations experienced by a vehicle to the 

wind velocity fluctuations. This admittance combined with the available wind spectrum 

for a particular site can then be used, via an extreme value coefficient, to calculate the 

required combination of wind speed and wind direction to overturn a vehicle, or as 

shown in Baker [521, a train. 

Humphreys and Baker [531 fully applied Baker's conclusions that both atmospheric 

boundary layer simulation and a dynamic-static testing technique are required. They 

investigated the mean force and moment coefficients generated by a 1/50th scale sharp 

edged lorry, comparing those calculated from dynamic-static track tests to those from 

static-static tests. The dynamic-static forces were taken to be the mean force measured 

over the central part of a run, thus not including the overshoots that occur on entry to, or 

exit of, a region of cross-wind. Although an atmospheric boundary layer simulation was 
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used, the turbulent length scale produced was 1/2 that required. The results indicated 

that only the mean side force coefficient was in good agreement between dynamic-static 

and static-static tests. The remaining four measured mean coefficients (yawing, rolling 

and pitching moment and lift force) all showed significant discrepancies. The mean 

static coefficients were also compared to some obtained in a low turbulence simulation, 

again side force showed good similarity, with the other components showing significant 

discrepancies. Although some doubt was expressed over the lift coefficient, and hence 

pitching moment coefficient, the results would tend to indicate that an atmospheric 

boundary layer simulation and a dynamic-static test technique are significant factors in 

determining the mean coefficients. 

2.3.3 The Dynamic-Static Technique 

The most common form of dynamic-static testing is the track technique. This involves 

propelling a vehicle along a straight track, such that it passes through a wind tunnel jet 

that has its axial direction perpendicular to the direction of travel of the vehicle. 

This has been applied at full scale by Kobayshi and Yamada [37] who drove a one-box 

type van through a sharp edged region of cross-wind at a relative yaw angle of 30'. In 

general, two types of full scale test may be conducted, one where the steering input is 

fixed and the vehicle deviation over a fixed length of cross-wind is measured - termed 

$closed loop'. The second type is where a driver attempts to drive along a fixed path, 

this involves corrective driver input which is very hard to quantify - termed 'open loop'. 

Figure 2.6 shows the transient yawing moment (Cym) and side force (Cs) coefficients 

obtained by Kobayshi and Yamada [371 by integration of the transient pressures from 

120 tappings located on the surface of their vehicle. On entry to the cross-wind region 

the yawing moment exhibits a significant transient overshoot, corresponding to 

approximately 100% of the final value, with the peak overshoot occurring at x/I = 1.3, 

where x represents the distance the vehicle is into the cross-wind and I the length of the 
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vehicle. The yawing moment overshoot subsequently decays to a steady value over a 

period of about seven vehicle lengths. A smaller overshoot of about 30% of the final 

value occurred for the transient side force coefficient. Thus, the flow around this 

vehicle under these conditions is subject to transient effects that could not be replicated 

by any steady testing procedure. Although this technique accurately replicates the real 

finite length, sharp edged condition, full scale testing has to be conducted at a late stage 

in the design process, from where it is costly and time consuming to make any changes, 

should they be necessary. It is also difficult to directly measure the aerodynamic forces 

and moments the vehicle is subjected to. If serious aerodynamic investigations are to be 

conducted into the forces and moments and the underlying flow physics, tests need to be 

conducted under controlled and repeatable conditions. Wind tunnel testing of scale 

models is arguably the best way to achieve this. 

Some of the first wind tunnel investigations were conducted by Beauvais [54]. He 

constructed a 9.5m track along which a 1/10th scale model passenger car was propelled. 

The cross-wind tunnel was of low turbulence with 0.0 1% :5 Tu :50.02%, depending on 

tunnel speed, and created cross-wind gusts of approximately five model lengths. 

Rubber shock chord was used to accelerate the model to a maximum speed of 15.2ms-1. 

The notchback type model was constructed in a space frame style from balsawood, 

keeping the weight below 0.170kg. The model contained an internally mounted two 

component balance (side force and yawing moment), this being isolated from track 

vibration by means of rubber isolators. The model and balance were mounted on a 

carriage above the track, such that the model would not be considered to be in ground 

proximity. Force and moment coefficients were compared for static and moving model 

tests for a yaw angle range of 00 :5 xV :! ý 900, with the yaw angle for the moving model 

tests controlled by adjusting both the model and tunnel speeds. The test Reynolds 

number was dependent on speed, and hence varied with yaw angle, however the 

minimum was Rei = 1.6 x 105, based on model forward speed and length. His results 

(figure 2.7) showed the transient side force increasing from zero to the value found for a 
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comparable steady yawed condition over a distance equivalent to three model lengths. 

For yaw angles greater than 15', the transient yawing moment coefficient overshot the 

steady yawed coefficient by up to 25%, with the transient yawing moment coefficient 

reducing to the comparable steady yawed coefficient within two model lengths of cross- 

wind flow. These results are typical of those expected for a vehicle entering into a 

region of cross-wind where no transient flow effects occur. 

Stewart [551 constructed a similar moving model facility. This consisted of a 24m 

track, with the models again propelled by rubber shock chord. This larger scale facility 

allowed the testing of 1/4 scale passenger cars, or 1/10th scale commercial vehicles. 

The models used were run in proxin-dty to the ground, being supported by struts that 

projected through the ground plane. The cross-wind tunnel exit was 4.5m in length, 

creating gusts of between 3 and 5 model lengths. Reynolds number based on model 

forward speed and length was 1.3 < Re, :! ý 1.7 x 106. Force and moment data were 

recorded by a five component (no drag) internally mounted balance, with 30Hz low pass 

filters and a 'no wind' trace used to remove and vibration track noise. In order to give a 

good comparison with real gusts, turbulence intensity was in the order of Tu = 10%. 

The results are too numerous to discuss in detail, however the side force and yawing 

moment coefficients obtained for a fastback vehicle shape entering a sharp edged cross- 

wind gust with relative yaw angle of y= 30' are presented in figure 2.8. The side force 

shows a peak transient overshoot of about 15% of the steady yawed value, with this 

occurring 2 model lengths into the cross-wind gust. The yawing moment also exhibits a 

transient overshoot, with a peak overshoot of around 150% of the steady yawed value. 

Both coefficients subsequently decay, and are comparable with the steady yawed flow 

coefficients after 3 model lengths of cross-wind flow. The transient side force 

coefficient overshoot must be the result of transient flow effects in the development of 

the yawed flowficid, with these transient effects also affecting the yawing moment 

coefficient. Stewart [55] also investigated the effect of various aerodynamic add-on 
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devices, finding that the magnitude of the transient force and moment overshoot was 

dependent on the geometry tested, however it was significant in all cases. 

Macklin et al [36] used a similar facility to investigate the transient forces and moments 

on scale passenger cars, with each of the three generic configurations tested (notchback, 

squareback and fastback). The Reynolds number for the tests varied in the range 3.4 x 

105: 5 Re, :54.7 x 105. Comparisons of peak moving model and static model force and 

moment coefficients were made. These showed that for all three configurations, for all 

yaw angles greater than y= 15', the peak moving model yawing moment coefficients 

showed a significant overshoot of their static counterparts, however a yaw angle of y= 

40' was required before any overshoot was observed in the transient side force 

coefficients. This suggests that for these geometries, under these flow conditions, 

transient flow effects were only present for yaw angles of xV > 40'. 

More recently Chadwick et al [56], using the same facility as Macklin et al [36], 

investigated the transient surface pressures, and forces and moments on both square and 

radiused edged boxes. The models were approximate 1/10th scale. The sharp edged 

box experienced a transient yawing moment overshoot on entry to the gust (as 

expected), however no side force overshoot was observed. This can be contrasted to the 

radiused box, which experienced a transient yawing moment overshoot for xV > 10' and 

a transient side force overshoot for y> 25'. Again, the transient side force overshoot 

indicates the presence of transient flow development, that is not present for the square 

edged box, and only occurs for the radiused box at higher yaw angles. 

A completely different approach to the dynamic-static technique was adopted by Garry 

and Cooper [571. They compared the drag and yawing moment coefficients of a simple 

tractor-trailcr assembly obtained from quasi-steady measurements at yaw to those 

obtained when rotating the model at yaw rates of up to 64os-1 in steady flow over a yaw 

angle range of 40* :5V : 540". Tare measurements were completed in a 'wind-off' 
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situation, such that the dynamic and aerodynamic forces could be separated. They 

concluded that the magnitude of the drag and yawing moment were unaffected by the 

rotation, however the dynamic data was phase shifted. This technique provides 
interesting results, however has little relevance to the sharp edged gust entry, or any 

other flow situation, as when one end of the model moves away from the wind, the other 

moves towards it. 

2.3.4 The Static-Dynamic Technique 

Bearman and Mullarkey [58] used a pair of sinusoidially oscillating aerofoils placed 

upstream of a 1/8th scale generic passenger car to created flow oscillations in the 

working section that corresponded to gust angles of y =_ý ±8'. Aerodynamic admittances 

were calculated over a range of gust reduced frequencies and from these they concluded 

that quasi-steady measurements would safely predict transient forces and moments. It 

should be noted that the yaw angle of y _= ±8' was relatively low and that this 

simulation is unlikely to represent the entry to a sharp edged gust discussed in the 

previous chapter. 

A unique static-dynamic technique has been used at the University of Durham, where 

sharp edged, finite length cross-wind gusts were created by the transient interaction of 

two wind tunnel jets. This method was initially investigated by Scott [59], and then 

significantly developed by Docton [60,61] and Docton and Dominy [62,631. Results 

for a simple one-box shape with well rounded comers, subjected to a cross-wind gust of 

three model lengths at a relative yaw angle of y= 30' and a Reynolds number of Rel = 
3.3 x 105 indicated delayed leeward side pressure development on entry to the gust. 

This delayed pressure development, which again suggested the presence of transient 

flow effects, had a significant effect on both the transient side force and yawing moment 

coefficients. More detail about this facility is given in Chapter Three. 
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2.3.5 Advantages and Disadvantages of the Testing Techniques 

By far the most promising scale model transient testing results have been obtained from 

the two fundamentally different dynamic-static track technique and the static-dynamic 
jet interaction technique. The relative advantages and disadvantages of these techniques 

are contrasted in table 2.2. 

The most fundamental disadvantage of the track technique is vibration associated with 

model movement along the track. This has an obvious effect on direct force and 

moment measurements, and is usually removed by subtracting a 'wind-off' 

measurement from the 'wind-on' measurement. The practical Reynolds number 
limitation originates from the spatial requirement of the track. To increase Reynolds 

number either a higher model velocity or a larger model are required. A higher model 

velocity would require a longer track, (assuming the acceleration remains the same), as 

would a larger (and heavier) model travelling at the same velocity, (assuming the 

accelerating force remains the same). The model acceleration also complicates drag 

measurement, in that the drag component of any balance must by stiff enough to 

withstand the acceleration force and hence accuracy is compromised. This could be 

overcome by reducing the acceleration force, however to achieve the same Reynolds 

number (model velocity) for the same mass (scale) of model, a longer track would be 

required. The main advantages are the ability to test a range of yaw angles and the 

availability of ground boundary layer profiles. 

The fixed wind tunnel configuration of the static-dynamic jet interaction technique 

produces cross-wind gusts with a fixed yaw angle. This yaw angle also has a practical 

minimum, however the yaw angles possible do lie within the range that can be 

considered as worst cases (section 3.2). The current generation of facility have inherent 

gust characteristic Problems, (section 7.1), however the technique is still under 

development and it is likely that these will be eradicated. The main advantages lie in 

the conventional fixed instrumentation, the rapid gust production rate, and the flexibility 
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of gust length. This type of facility also allows transient and steady data to be collected 

from the same configuration, removing any uncertainty about the validity of 

comparisons. 

Advantages Disadvantages 

High gust production rate (up 9 Fixed yaw angle (y > 20') 

to I 000/hr) 9 Current generation has 

* Conventional fixed inherent gust profile problems 
instrumentation 

Static-Dynamic Jet * Can be used with large scale 
Interaction models 
Technique 9 Transient and time-averaged 
(Stationary Model) conditions can be tested in the 

same environment 

* Ability to generate gusts of any 
length 

" Can test a range of yaw angles Inherent model vibration 

" Correct ground simulation associated with the track 

" Good replication of real gust signature 
Dynamic-Static situations 9 Unable to easily perform 
Track Technique * Ability to accurately simulate wake traverses 
(Moving Model) ground boundary layer profiles * Practical upper limit on the 

achievable Reynolds number 

e Difficulty in directly 

measuring drag force 

Table 2.2 Advantages and Disadvantages of Two of the Transient Cross-Wind Testing 

Techniques 
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2.3.6 Empirical and Theoretical Methods 

White [64] recorded steady side force and yawing moment data for 144 cars in the 

MIRA full scale wind tunnel at a yaw angle of xV = 200. From this he formulated a 

rating system that would allow the prediction of coefficients for new vehicles. The 

rating was based around ten categories of vehicle shape that were assessed on a 

present/absent basis and four categories of vehicle proportion. A linear regression was 

used that correlated the rating of a specific vehicle to a side force coefficient. 

Predictions were made for side force coefficients that were with 20% of those measured 

experimentally. The magnitude of this error is not surprising considering the 

complicated three dimensional nature of flow around a passenger car, that is not 

conducive to the simplifications made in this, or any other, empirically based method. 

Tran [65,66] developed an empirical method to predict transient forces on entry to a 

cross-wind gust from a number of steady flow waistline surface pressure measurements. 

He measured the differential pressures between pairs of tappings under steady 

homogeneous yawed flow in a wind tunnel, subsequently defining several pressure 

coefficient curves that allowed side force and yawing moment coefficients and incident 

flow velocity and angle to be related to the measured pressures around a vehicle. From 

the assumption that the coefficients measured in steady, homogeneous flow would also 

be valid for unsteady, inhomogeneous flow, he combined these coefficients with the 

transient surface pressures measured on entry to a sharp edged cross-wind region (using 

a full size vehicle and cross-wind generator) to calculate the transient side force and 

yawing moment coefficients. The results for a yaw angle of \v = 30" showed no 

evidence of a side force overshoot, suggesting no transient flow mechanisms were 

present, however the familiar yawing moment peak, due to the motion into the gust, was 

seen at x/I = 0.5, where x represents the distance travelled into the gust and I the vehicle 

length. 
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Carr et al [67] developed an empirical method based on a detailed study of over 300 

vehicle configuration. From these data they formulated relations between 61 

dimensional parameters and the components of force and moment. The side force and 

yawing moment data was considered to be valid for the yaw angle range -20':: ý xy : 520', 

as the coefficients are generally linear within these limits. The method was 

subsequently validated for 15 full scale vehicles, however as with the empirical method 

of White [64], the predicted forces and moments did not correlate well with directly 

measured ones. 

Hucho and Emmelmann [68] developed a theoretical prediction method for both steady 

and transient side force and yawing moment coefficients. A three-dimensional vehicle 

was represented by a two-dimensional projection of the side area of the vehicle. This 

projection was further split into vertical sections, with two-dimensional potential flow 

theory applied to solve for the flow around a plate of infinite width and height equal to 

the height of a particular vertical section, for a wind velocity equal to the normal 

component of the cross-wind. The pressure difference across a plate (corresponding to a 

single vertical section) was taken to be twice the pressure on the front face and by 

summing of the component sections over the side of the vehicle the side force and 

yawing moment were obtained. Ground simulation and vertical symmetry were 

obtained using a mirrored image below the ground plane, with a correction for the flow 

between the vehicle and ground applied later. Time dependant solutions, obtained by 

using a time dependant normal component of cross-wind, also provided transient side 

force and yawing moment coefficients on entry to a sharp edged gust. Calculations 

conducted for a medium sized passenger car entering such a gust, with a relative yaw 

angle of y= 30', showed that both the side force and yawing moment exhibit significant 

overshoots on entry to the gust. The magnitudes of the overshoot were seen to decrease 

for gusts with shallower gust entry profiles, an effect also observed by Stewart [551. 
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2.4 Computational Fluid Dynamics 

No literature review pertinent to vehicle aerodynamics would be complete without 

reference to some of the computational fluid dynamics (CFD) investigations undertaken. 
CFD has significant advantages for automotive engineering in that the artificial 

environment it creates makes the modelling of precise boundary conditions, that can be 

difficult to achieve experimentally, easier. For example, no difficulty would be 

envisaged in modelling a skewed velocity profile with the correct turbulence quantities 

and lengthscales. Other advantages are that unrealistic model mounting facilities are not 

introduced, for example a wind tunnel model is usually mounted on a sting with the 

affect this sting has on the flowfield potentially significant. Full scale Reynolds number 

simulations are also possible. Potentially the most fundamental advantage is that CFD 

can provide much more information about the flowfield than experimental 

measurements. 

CFD is frequently criticised for not being able to accurately predict absolute magnitudes 

for the standard coefficients used in the automotive industry. The numerical solutions 

are sensitive to mesh density, choice of differencing scheme and in particular turbulence 

model. Perzon et al [69] presented CFD drag coefficient (Cx) values for a bluff body, 

obtained using two different commercial codes (StarCD and Fluent UNS), for a variety 

of differencing schemes, mesh densities and turbulence models. Their results exhibited 

a range of -0.039 :ý ACx :! ý 0.243, where ACx is defined as the difference between the 

experimentally and computationally obtained drag coefficients. Axelsson et al [70] 

presented drag coefficients for the generic Volvo EEC concept car. They used the CFX- 

4 flow solver to investigate the effect of turbulence model. The drag coefficients 

obtained varied in the range 0.088 :5 Cx :50.141, which can be compared to the 

experimentally obtained value of Cx = 0.14 1. 

Gaylard et al [71] presented data for two generic vehicle shapes obtained from 

calculations using StarCD. Comparisons of CFD and experimentally obtained (FSWT) 
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drag and lift coefficients are shown in table 2.3. As can be seen from table 2.3, drag 

was relatively well predicted, whereas lift was not, an effect they attributed to a 
fortuitous balancing out of errors for the drag coefficient. They had more success in 

predicting the trends in both drag and lift for a series of parametric changes. Table 2.4 

compares the CFD and FSWT drag and lift coefficients for a notchback vehicle 

undergoing such a series of changes. As for the baseline cases, drag is in relative 

agreement (within 6.3%), whereas the absolute differences for lift are substantial, 
however the trends in both forces as a result of the configuration changes are correctly 

predicted. 

Drag Coefficient 
(Cx) 

Lift Coefficient 
(Cz) 

CFD FSWT CFD FSWT 

Notchback 0.271 0.267±0.002 -0.317 -0.081±0.005 
Fastback 0.210 0.206±0.002 -0.328 -0.066+-+0.005 

Table 2.3 CFD and Experimental Lift and Drag Coefficients 

(from Gaylard et al [7 1 ]) 

Drag Coefficient 
(Cx) 

Lift Coefficient 
(Cz) 

CFD FSWT CFD FSWT 

Baseline 
Notchback 

0.271 0.267 -0.317 -0.081 

Configuration 2 0.297 0.317 -0.447 -0.237 

Configuration 3 0.297 0.303 -0.415 -0.200 

Configuration 4 

1 

0.291 0.299 -0.320 -0.320 
1 

Table 2.4 CFD and Experimental Trends in Lift and Drag Coefficients 

(from Gaylard et al [7 11) 
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Okumura and Kuriyama [72] calculated the side force and yawing moment coefficients, 

using the commercially available Navier Stokes solver SCRYU, for a two-box type 

vehicle under steady yawed flow conditions for the range of yaw angles 00 <- V :: 9 45'. 

As they rightly highlight, using CFD to simulate flow under yawed conditions requires 

significantly more CPU time as the axial symmetry of the geometry cannot be exploited. 

Their pre-processor allowed CAD data to be directly converted into a structured 

computational grid which contained 1x 105 mesh elements. The direct conversion of 

CAD data allowed significant fine detail resolution. The calculation time was 30 hours 

using a single processor CRAY Y-MP. A Reynolds number of Re =2x1 06 based on 

model height was used, with a k-c turbulence model and wall functions. The 

intrinsically unsteady nature of the flow at yaw made it necessary to use an unsteady 

solver. The computations yielded yawing moment coefficients that matched the 

experimental values to within 3%. 

They further investigated the aerodynamic characteristics of a one-box (van) type 

vehicle under steady yawed flow conditions. This was done to assess the reduction in 

yawing moment possible from the use of an 'aero-kick' bumper. This bumper was 

designed to provoke front leeward side flow separation at low yaw angles, therefore 

reducing yawing moment. The computational results predicted a 26% reduction in 

yawing moment compared to a 35% reduction from the experiments. These results are 

significantly different, and it should be noted that for the standard model (non aero-kick 

bumper) there was a 25% discrepancy between experimental and computational yawing 

moment. This discrepancy is significantly larger than that of the two-box vehicle, 

highlighting the somewhat fickle nature of CFD. Okumura and Kuriyama [72] 

attributed the large errors of the one-box vehicle to the asymmetric separated region 

under yawed flow and that the nominal freestrearn direction is diagonally across the 

cells, although this condition would also be present for the two box vehicle. Remeshing 

the geometry would permit alignment of the nominal freestrearn and cell directions, 

although this would be time and resource consuming should it be necessary for all 
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changes in incident flow angle and clearly cannot easily be applied to transient 

investigations. 

Docton [61] used the commercially available PHOENICS code to model the jet 

interaction technique of transient cross-wind gust generation. He investigated the flow 

around a two dimensional square edged geometry. The results showed that a cross-wind 

gust of up to 7 model lengths was required for the transient forces and moments to 

develop such that they were comparable with the steady yawed coefficients. This was 

attributed to delayed flow development on the leeward side. Figure 2.9 presents 

velocity vectors for the transient flow from the Docton calculation, clearly showing the 

delayed leeward side flow development. 

Okumura and Kuriyama [731 later presented the transient force and moment coefficients 

for an one-box type vehicle entering a sharp edged cross-wind gust with a relative yaw 

angle of V= 25". The computational grid contained 2.5 x 105 mesh elements, with a 

calculation time of 100 hours on a SGI Indigo 2. The vehicle entering the cross-wind 

region was facilitated by the use of a sliding mesh and time dependent mesh elements. 

The transient yawing moment coefficient exhibited a 20% overshoot of the steady 

yawed value when the leading edge of the vehicle was 1.4 body lengths into the gust (x/I 

= 1.4), with the side force coefficient showing a small overshoot at x/I = 2.0. These 

results compare well with those obtained experimentally at full scale by Kobayashi and 

Yamada [38] for an identical vehicle, although it should be noted that the yaw angle for 

the computational simulation is slightly lower than that of the experiments. Figure 2.10 

shows isoplethic surfaces for the vehicle on entry to the gust. The two defined contour 

levels are set at Cp, = 0.8 and Cps = -1.5. The first plot (a) is taken at x/I = 0.0, Le. axial 

flow conditions, where the stagnation region lies on the front of the vehicle, with flow 

acceleration around the front comers producing two front comer suction regions (one 

either side of the vehicle). The second plot (b) is at x/I = 1.4, the point of maximum 

yawing moment, where the stagnation region has moved to the windward front comer 
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and there is a significant increase in size of the leeward side suction region. It is the 

combination of these two effects that is responsible for the large yawing moment 

overshoot. By the third plot (c) at x/l = 4.0, the leeward side suction region has reduced 
in size, with a corresponding reduction in yawing moment. This is an excellent example 

of the type of flow visualisation that would be very difficult to achieve with only 

experimental data. 

This brief presentation of CFD results shows that although there is great potential for 

detailed, accurate, investigations, there is still a considerable need to validate results, 
limiting the usefulness of CFD as a predictive tool. Baxendale et al [74] commented 

that CFD should not be used for external flows around vehicles without correlation to 

experimental data, which is clearly the case. 

2.5 Importance of Experimental Technique 

There are several areas of experimental technique pertaining to ground vehicle testing 

that are of fundamental importance and have been the subject of many investigations, 

some of which are reviewed here. 

2.5.1 Ground Simulation 

Various methods of ground simulation are depicted in figure 2.11, the most common 

and simplest of these being 2.11 a, where the model is directly mounted onto a fixed 

ground board. This configuration has several drawbacks; firstly the incident airflow has 

a boundary layer and hence vertical velocity gradient, (this would not exist for a moving 

vehicle in statistically stationary air), secondly the relative motion between the ground 

and the vehicle is not modelled and finally the presence and growth of the boundary 

layer induces a vertical velocity component on the incident flow, which again would not 

be experienced in a true vehicle environment. 
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These effects can considerably affect the flow around a vehicle; Baker and Brockie [75] 

found that using a fixed groundboard underpredicted values of drag coefficient for a 

range of scale train models. They attributed this to boundary layer effects reducing the 

average velocity of the flow around the model. Fago et al [76] compared drag and lift 

coefficients for a bluff body with rounded comers, measured using a fixed ground and 

moving ground condition. They found the drag was significantly lower for the moving 

ground condition, an affect they attributed to a change in wake structure. As expected, 

the influence of the ground condition was significantly reduced by increasing the 

spacing between the model and the ground. Lajos and Hegel [77] observed lateral 

outflow from the sides of the underbody gap for a 1/5th scale model bus with detailed 

underbody while using a fixed ground board. The outflow was significantly reduced 

when a moving ground was adopted. Hackett et al [78] observed similar outflow for a 

15% scale Ford Cougar with detailed underbody. Wake traverses were conducted with 

both fixed and moving ground; the fixed ground condition revealed the presence of two 

side lobes at ground level, with associated total pressure deficit that were not present for 

the moving ground condition. Howell [79] and Howell and Goodwin [80] commented 

that although correct ground simulation changes the absolute values of drag and lift, the 

trends are the same and therefore it is reasonable to use a fixed ground condition in the 

early development of a passenger car, where comparative testing is more important than 

absolute magnitudes. 

Figures 2.10b to j show several methods that have been used to improve the ground 

simulation. Methods d-j are only concerned with the removal of the ground boundary 

layer or the effects thereof, but are simpler to implement than the more realistic moving 

ground method, c, which not only removes the boundary layer but also simulates the 

motion between the vehicle and road. One of the main difficulties associated with a 

moving ground is mounting of the model, as it cannot be supported from below. 

Generally a sting is used that supports the model from either behind or above, however 
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this can have significant influence on the flow in the backlight region, which is 

potentially very sensitive to external disturbances. If force measurements are required, 
it is also necessary to isolate the forces transmitted to the wheels by the road from the 

measured forces. 

A rather unique method of ground simulation was adopted by Papenfuss [8 1 ]. He used 

the track moving model technique, normally reserved for cross-wind simulations, to 

produce what would be a perfect representation of a vehicle in motion. Moving model 

techniques however have several disadvantages, as detailed in table 2.2. 

The simulation of the correct ground boundary layer profile is significantly harder for a 

vehicle subjected to cross-wind conditions. Considering a vehicle in an area of 

perpendicular cross-wind, the cross-wind flow is moving relative to the ground and has 

a vertical velocity gradient, whereas the relative forward movement between the vehicle 

and the air has no such gradient. Figure 2.12 depicts two possible boundary layer 

profiles for simulated cross-wind conditions. If the boundary layer is removed, the 

profile on the left is achieved, however it can be seen that this is significantly different 

to the natural boundary layer profile, as seen on the right. For this profile, both yaw 

angle and resultant velocity vary with height. The only cross-wind method that 

currently can correctly represent this boundary layer profile is the dynamic-static track 

technique. 

2.5.2 Reynolds Number 

The Reynolds number, based on vehicle length, is given by equation 2.1 where p is fluid 

density, u is fluid velocity, I is the vehicle length and p is the fluid dynamic viscosity. 

Re, = 
pul 

JU 
(2.1) 
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For an average sized passenger car of length 4.0m, travelling at 80km/h, the Reynolds 

number under standard atmospheric conditions is Re, = 5.8 x 106. Ideally this should be 

replicated in wind tunnel tests, however the use of small scale models makes this 

difficult. For a 1/8th scale model this would require a wind tunnel velocity of 178ms- , 
which in addition to requiring a powerful fan motor, would clearly introduce significant 

compressibility effects. It is common practice to use a significantly lower Reynolds 

number, however this should be sufficiently high that the flow structures are correct and 

hence the flow is effectively Reynolds number independent. 

Cooper [44] investigated the effects of Reynolds number on the drag of simple box like 

shapes with radiused comers for a range of 1.6 !ý ReA :! ý 2.6 x 106, where Reynolds 

number was based on the square root of base area. He found a significant decrease in 

drag at ReA =5x 105, this being the critical Reynolds number at which transition of the 

boundary layer to turbulent and hence delayed separation occurred. The critical 

Reynolds number increased as yaw angle increased for the tested range of 0' 
-< 

T :5 15'. 

Cooper [44] concluded that a minimum test Reynolds number of ReA =2x 10 6 should 

be used. Interestingly, taking a typical passenger car frontal area of 1-97M2 [1] and 

converting Cooper's minimum test Reynolds number to one based on a vehicle length of 

4.0m, yields Re, = 5.7 x 106, which is only marginally below a typical full scale 

Reynolds number (Rej = 5.8 x 106). 

Barth [821 investigated the effect of Reynolds number on the surface static pressure 
distribution of a two dimensional body with rounded comers, where the ratio of radius 

of curvature to body length was r/I = 0.1. He used a low turbulence wind tunnel and 

investigated a range of yaw angles from 00 
-< y :ý 200. The results showed that 

increasing the Reynolds number from Re, = 4.6 x 105 to Re, = 10.3 x 105 prevented front 

leeward comer separation, even at 20' yaw, and in this instance he recorded a suction 

peak in the order of Cps = -2.4. 
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Baker and Humphreys [83] presented a series of results obtained for an articulated lorry 

over a range of Reynolds numbers from 4.4 x 104 <- Re, :53.0 x 105 and turbulence 

simulations at a range of yaw angles. The side force coefficients showed remarkable 

agreement over the range of Reynolds number of turbulence intensity for all yaw angles, 

however the lift coefficients exhibited significant differences for yaw angles of T> 30". 

The model used for this investigation had sharp edges and therefore was likely to exhibit 
low Reynolds number sensitivity. 

It may be concluded from these investigations that Reynolds number sensitivity is very 
dependant on geometry and test environment, and therefore it is advisable to conduct 

sensitivity tests prior to any wind tunnel program. It is most likely that geometries that 

have relatively large radii comers will be more sensitive to Reynolds number than those 

with sharp comers, and that for these geometries the Reynolds number required for 

independence will be significantly higher. 

2.5.3 Turbulence Intensity 

Assuming that no attempt is being made to model atmospheric turbulence intensities 

and lengthscales, the wind tunnel turbulence intensity used can have a significant effect 

on the results. For isotropic turbulence, the turbulence intensity, Tu, is defined in 

equation 2.2 [84], where u' are the strearnwise velocity fluctuations and Uthe mean 

strearnwise velocity. 

Tu ='ý7 ii 
(2.2) 

Bearman and Morel [851 described the presence of freestrearn turbulence as potentially 

having three effects on a flowfield: accelerated transition to turbulence in shear layers, 

enhanced mixing and entrainment, and distortion of free stream turbulence itself by the 

mean flow. Accelerated transition to turbulence can be expected to have a significant 
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impact on the location of separation and reattachment points. Enhanced mixing and 

entrainment can be expected, for example, to alter the base pressure in the wake region 

of a bluff body, and thus affect its drag. Distortion of freestream. turbulence by the 

presence of a bluff body, for example the constraint that there can be no normal 

turbulent component adjacent to a surface, will mean that the turbulent structure in a 

boundary or shear layer may be significantly different from that of the free stream. 

Hegel and Bearman [86] investigated the effect of free stream turbulence on the force 

coefficients of a bluff body with rounded front comers for turbulence levels of 0.15 % :! ý 

Tu :5 10.5%. They found that the effects were complex, with the magnitude and 

direction of any change in drag dependant on the size of the comer radii, but no 

systematic trend was apparent. 

Results presented by Macklin et al [87] for the mean force and moment coefficients 

measured on a 115 scale passenger car using the dynamic-static track technique for a 

range of turbulence intensities (1.0% < Tu < 3.4%) indicate that the turbulence intensity 

within this range had little effect on the magnitude of the coefficients. 

Wiedemann and Ewald [881 described a method to increase the effective Reynolds 

number by the introduction of turbulence. Using two different turbulence grids that 

generated turbulence intensities of Tu = 2.2% and Tu = 2.8% they raised the effective 

Reynolds number by a factor of 2. This method has limitations in that there is a 

practical limit on the level of freestrearn turbulence that can be generated, (> 5% 

difficult), and it decays rapidly. 

Bearman [89] commented that generalising about the effects of freestrearn turbulence is 

unwise, as clearly seems to be the case. He cited results that show a reduction in drag 

with increasing turbulence for a circular cylinder, and contrasts these to his own [90], 

that showed an increase in drag with turbulence for square plates and circular discs 
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mounted normal to the flow. The main geometrical difference accounting for these 

opposing results was the fixed separation points of the plates and discs. 
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Notchback 

Fastback 

Squareback 

Figure 2.1 Passenger Car Rear End Shapes 
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Flow direction 

Figure 2.2 Morel's Truncated Cylinder (from Morel [221) 

Figure 2.3 The Morel Geometry (from Morel [22]) 
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Figure 2.4 Attached Flow Over the Ahmed Geometry Backlight 

(from Ahmed et al [2]) 
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Figure 2.5 Variation of Drag Coefficient with Backlight Angle for the Ahmed 

Geometry (from Ahmed et al [21) 
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Figure 2.6 Transient (a) Yawing Moment and (b) Side Force Coefficients 

(from Kobayashi & Yamada [37]) 
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Figure 2.7 Transient (a) Side Force and (b) Yawing Moment Coefficients for a 

Notchback Vehicle Entering into a Sharp Edged Gust (from Beauvais [54]) 
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Figure 2.9 Transient CFD, Velocity Vectors (from Docton [611) 

a) Axial Flow 

b) Gust Leading Edge at Model Leading Edge 

c) Gust Leading Edge Downstream of Model Trailing Edge 

d) Fully Developed Yawed Flow 
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Figure 2.12 Possible Cross-Wind Boundary Layer Profiles (from Macklin et al [36]) 
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Chapter Three 

The Static-Dynamic Jet Interaction Technique 

3.1 Theoretical Operation 

The objective of the static-dynamic jet-interaction technique was to produce repeatable, 

sharp edged, finite length cross-wind gusts with as conventional a wind tunnel 

configuration as possible. This cross-wind gust characteristic was chosen as it is 

generally considered to be a worst case scenario (section 1.2). The advantage of using a 

relatively conventional wind tunnel configuration is that it permits the use of already 

well developed test techniques and instrumentation. 

The cross-wind gust is generated by the introduction of additional fluid, from a second 

wind tunnel, into the working section of a conventional open working section wind 

tunnel. The development of the gust profile is carefully controlled by manipulation of 

the boundary conditions at the exit of this second tunnel. A schematic plan of the 

required wind tunnel configuration is shown in figure 3.1. The exit plane of the cross- 

wind tunnel is nominally blocked, thus the model is subjected to axial flow. To 

generate a cross-wind gust an open aperture of finite length is allowed to pass along the 

exit plane of the cross-wind tunnel (from upstream to downstream) such that cross-wind 

fluid exits into the working section. The movement of this aperture is analogous to that 

found in many cameras, where the passing of an open aperture over a film allows light 

to project onto the film. To generate the required gust profile the speed of propagation 

of this aperture and the axial component of velocity of the incoming cross-wind fluid are 

matched to the axial velocity of the main wind tunnel. 

As the non-dnally yawed cross-wind fluid enters the working section, it displaces the 

fluid from the main jet in a cross-stream direction. This continues to such an extent that 
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as the leading edge of the aperture reaches the model, far downstream in the working 

section, all fluid of interest in the working section originates from the cross-wind tunnel. 

Thus the model is subjected to flow at a predefined relative yaw angle. On passing of 

the trailing edge of the aperture, the flow in the working section returns to the axial 

condition. 

A simplified development of the flow is shown schematically in figure 3.2. Here the 

model is represented by the solid black square and the boundary between the cross-wind 

tunnel and the working section as the thick black line. At time t=1, the cross-wind exit 
is blocked, thus the model is subjected to axial flow only. At time t=2, the aperture is 

positioned such that cross-wind fluid enters the working section into cell B2. The yaw 

angle achieved in cell B2 is much lower than that finally attained. The entire flow and 
leading edge of the aperture move downstream with a velocity of u, consequently when 

the aperture has reached column 3, the fluid previously in cell B2, which is now in cell 

C3, is again acted on by flow from the cross-wind tunnel. Thus this fluid element 

moves further across the working section while continuing with an unchanged axial 

component. New flow enters the working section from the cross-wind tunnel and as it 

merges with a flow that already exhibits a small yaw component the resulting merged 

yaw angle (cell B3 at t= 3), is slightly greater than that of its neighbours (cells B2 and 
C3). As the aperture moves further downstream, (t = 4-12), this process continues until 

the influence of the cross-wind jet has extended to the entire width of the flowfield. 

At time t= 13, the perpendicular leading edge of the gust has moved down the working 

section (at a velocity equal to the axial velocity, u), such that it lies just in front of the 

model. The model now undergoes an abrupt change from axial to yawed flow and 

remains subjected to yawed flow until the trailing edge of the aperture reaches the same 

axial location as the model, when a similarly abrupt return to axial flow occurs. 

Throughout the duration of the development of the cross-wind gust fluid is entering the 

working section from the main (axial) jet, this fluid is displaced by the fluid from the 
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cross-wind jet such that it exits out of side (or lower face in figure 3.2) of the working 

section. This main jet curvature has been omitted in figure 3.2 to clarify the area of 

influence of the cross-wind fluid. 

3.2 Implementation of the Technique 

A facility of this type, suitable for testing 1/8th scale passenger cars, was constructed by 

Docton [61]. The main axial flow was provided by the University of Durham 

automotive wind tunnel (0-85m x 0.55m working-section). This tunnel is of open jet 

open return type with a maximum freestrearn. velocity of 27ms-1. A second cross-wind 

tunnel was built to provide flow for the cross-wind gust. 

This facility generated cross-wind gusts of 1.5m in length (3 model lengths). Data 

published by Kobayshi and Yamada [38] suggested that a cross-wind gust of up to 7 

model lengths were required for full flow development, however the shorter gust length 

was considered sufficient for investigation of the initial transient response. The relative 

yaw angle of the cross-wind gusts was y= 30'. Much of the published data from steady 

cross-wind testing, for example Macklin et al [36], has shown the maximum steady 

peak side force and yawing moment coefficients to occur around this yaw angle. 

The working section Reynolds number under axial flow conditions, which was limited 

by the mass flow from the cross-wind tunnel, was Re, = 3.3xlO5. Docton [611 

thoroughly investigated the possibilities for control of the cross-wind tunnel exit 

boundary, concluding the best option was to use a vertically mounted flexible belt 

mounted parallel to the axis of the main tunnel. Figure 3.3 shows the facility used by 

Docton. 

The belt contained several apertures for the creation of the cross-wind gusts. On 

initiation of a run, it would be rapidly wound from the upstream to the downstream 

spool by means of a motor. A length of belt was permitted for acceleration purposes, 
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after which there were four apertures, two in the top half of the belt, and two in the 

bottom half. The apertures in the top half allowed cross-wind tunnel fluid to exit into 

the working section, thus creating the cross-wind gust, while the apertures in the lower 

half allowed cross-wind fluid to exit below the working section. The apertures were 

configured such that the open exit area of the cross-wind tunnel remained almost 

constant, helping the cross-wind tunnel fan to operate at an almost fixed point on its 

characteristic. 

After each belt run (two cross-wind transients) the belt had to be manually rewound 

onto the upstream spool. This was a time consuming process, restricting the number of 

cross-winds gusts that could be generated within realistic timescales, however the gust 

production rate did represent an improvement on the dynamic-static track method. The 

length of cross-wind gust that could be generated was restricted by the mass of, and the 

flexible nature of, the belt. The mass was limited by the available drive torque, while 

the flexible nature led to increased tracking problems with increasing belt length. 

Docton [61] conducted a survey of the empty working section of this facility, 

confirming the generation of sharp edged, finite length, cross-wind gusts was as 

expected. Figure 3.4 shows the transient response as found at the model centre in the 

empty working section. This was measured using a 5-hole probe system designed for 

optimum transient response. Prior to onset of the cross-wind gust the yaw angle at the 

model centre is nominally zero. An undershoot occurs before rapid transition to the 

yawed flow regime, which is maintained for the duration of the gust, before an equally 

rapid return to axial flow conditions. Inspection of the axial velocity component shows 

that, within the constraints of the unsteady flow, matching of the axial velocities of the 

main and cross-wind tunnels was achieved. 
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3.3 Facility Development 

Docton's [61] method of gust generation had inherent limitations. Aerodynamic 

unsteadiness in the working section produced a noisy signal, this could have been 

rt-ýinimised by ensemble averaging however the labour intensive gust generation process 

was not conducive to this. In addition, the relatively short gust length was unlikely to 

allow full transient flow development to be observed. 

Ideally a fully automated repeating transient gust generation facility with the possibility 

of varying the gust length was required. The development, manufacture and testing of 

such a facility was undertaken by the current author and is detailed in the remainder of 

this Chapter. From reviewing the work of Docton [61], it was apparent that the only 

requirement was an improved method of controlling the cross-wind tunnel boundary 

condition. The rapid gust production rate of this new facility would not only allow 

ensemble averaging, but also offer the possibility of conducting wake traverses, yet 

untried because of the large number of gusts required (several 1000s). 

3-3.1 Vertical Axis Shutter Concept 

Careful consideration of the proposed concepts for controlling the cross-wind tunnel 

boundary showed a vertical axis shutter system to have the greatest potential. Two rows 

of vertically mounted, sequentially opening, shutters were placed at the exit plane of the 

cross-wind tunnel (figure 3.5). 

The top row of shutters allowed cross-wind fluid to exit into the working section. Each 

top row shutter was connected to its bottom row counterpart by a gear mechanism, such 

that when one opened the other closed. This maintained a constant open exit area 

irrespective of which top row shutters were open. Each shutter pair was individually 

actuated allowing sequential opening of the shutters. Thus, the top row of shutters 

54 



Chapter Three - The Static-Dynamic Jet Interaction Technique 

could be opened and closed in a 'Mexican wave' fashion, giving an effect analogous to 

the open aperture moving down the cross-wind tunnel exit plane. 

Control of the dwell time each linked shutter pair was open for allowed the gust length 

to be set, with the speed of propagation of the gust leading and trailing edges controlled 
by the timing of adjacent shutter opening and closing. 

3.3.2 Conceptual Development of the Shutter System 

The design of the shutter system was split into three areas; the aerodynamic 

considerations, shutter actuation and the mechanical design of the support system. 
Before construction of the final system, a single pair of vertically linked shutters were 

manufactured and tested to assess the assumptions about inertial effects, bearing friction 

and actuator speed made during the design process. 

The aerodynamic design was dominated by the potential effects of shutter chord length. 

A short chord is desirable on two accounts. Firstly, it represents less of a percentage of 

the cross-wind gust length, making the gust propagation process less 'discrete'. 

Secondly, it minimises the disturbance to the cross-wind fluid of an opening shutter. 

During the opening process, each shutter acts as a rotating bluff body in the cross-wind 
fluid. This inevitably disturbs the passing fluid, however using a shorter shutter chord 

minimises this disturbance. Turbulence suppression devices, such as screens or 

honeycomb section, could also be used to reduce any flow disturbance caused by the 

opening shutters. 

Various concepts for shutter actuation were considered, including connected mechanical 

levers, rotating shafts with cams and pneumatics. The only concept that provided an 

effective opening system, within the cost constraints, was found to be solenoid 

actuation. 
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3.3.3 Design Implementation 

Consideration of the above factors led to a shutter chord length of 68.5mm, which 

offered a good compromise between cost and performance for a yet unproved design. 

This chord length required two rows of 30 shutters to cover the cross-wind tunnel exit 

plane. Figure 3.6a shows a schematic plan view of part of the shutter system taken 

along section B-B' (figure 3.6b), with 3.6b being a schematic front elevation of two 

shutter pairs along section AW (the aspect ratio of the shutters has been decreased to fit 

on the page). Directional control of the cross-wind fluid was provided by the static 

guide vanes between shutters and the honeycomb flow straightener downstream of the 

shutters. 

The solenoid actuated opening was provided by Mechetronics D5 solenoids; these 

provide 40N of force over a 24.0mm. stroke length when operated at the rated 12V. The 

linear to rotational motion translation required for shutter opening was achieved by lever 

arms. To decrease the shutter opening times the solenoids were supplied at 60V for the 

duration of shutter opening, with the shutters held open for the remainder of the dwell 

time by a separate 24V supply. The low duty cycle (< 1%) prevented any potential 

overheating problems that could have been caused by the voltage over-rating of the 

solenoids. 

Power for the 60V supply was provided by 5,12V, 7Ah batteries. The 24V supply was 

2,12V, 17Ah batteries. This was sufficient for approximately 3000 cross-wind gusts, 

with the gusts generated at a rate of 1000/h. Recharging of the whole battery supply was 

possible overnight. Solenoid control was by an Amplicon PC14AT and an Amplicon 

PC 14A 110 boards. Each board contained 6,8 bit digital output ports, with one board 

used to control to 60V supply and the other for the 24V supply. The 1/0 boards were 

mounted in a dedicated PC, with the outputs routed to the individual solenoid control 

transistors through a buffer board. 
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For reasons of economy shutter closure was spring actuated. Thus shutter closure was 

significantly slower than shutter opening, an effect likely to smear the gust trailing edge, 

however at this stage the aerodynamic effects at the trailing edge were of secondary 

importance. It is for this reason that no detailed analysis of the transition from yawed to 

axial flow conditions for either the experimental facility or the aerodynamic models is 

included. 

The honeycomb flow straightener (figure 3.6a) covered the full length of the upper row 

of shutters. Due to its length, and the fact the flow through the honeycomb is not 

perpendicular to its face, it was necessary to manufacture it from several sections. Each 

of these sections was similar to the shape depicted in figure 3.6a. Great difficulty was 

encountered in joining adjacent honeycomb sections in a manner that ensured flow 

straightening occurred but without increasing the local blockage of the honeycomb. 

This problem later manifested itself as uneven total pressure loss through the 

honeycomb along its length, leading to some total pressure gradients in the working 

section. The honeycomb also introduced an asymmetry in exit conditions between the 

top and bottom rows of shutters, such that although the open exit area remained constant 

for the duration of a cross-wind gust, some change in the cross-wind fan operating point 

was expected. 

3.3.4 Other Aspects of the Facility 

As discussed in section 2.5.1, ground simulation is a potentially important aspect of 

experimental technique. This is particularly pertinent for this facility where the model is 

mounted a significant distance (2.4m) along the ground board. A rolling road was not 

available for the early tests, so the simplest approach of boundary layer removal by use 

of a raised section of ground board was adopted. This raised ground board was mounted 

70mm above the main board, which had been shown by a five hole probe survey to be 

above the boundary layer. The aerodynamic model centre was 470mm from the leading 
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edge of the raised board, which extending a further 1030mm. behind the model centre. 
This is well within the recommendations made by Garry et al [9 11. 

Early flow measurements conducted in the empty working section indicated that the 

cross-wind jet had a tendency to ride up over the main jet. Thus a roof section was 
fitted that covered the full width of the working section, but finished at the leading edge 

of the raised ground board. The roof was not required to extent beyond here as by this 

downstream position full gust development has taken place, with the open jet nature of 

the remainder of the working section avoiding any potential problems of a high 

blockage ratio. 

The completed facility, with the roof of the working section removed, is shown in figure 

3.7. 
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Figure 3.1 Schematic Plan of the Wind Tunnel Configuration and Velocity Triangle 
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Figure 3.2 Transient Cross-Wind Flow Development 
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Figure 3.4 The Docton Facility Gust Characteristics (from Docton [61 ]) 
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Figure 3.7 The Developed Transient Cross-Wind Facility 
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Chapter Four 

Instrumentation and Aerodynamic Models 

4.1 Introduction 

To commission the facility measurement of the flow in the empty working section was 

essential. Several appropriate methods of measurement exist, including pressure probes, 

hot wires or hot films. The use of pressure probes is advantageous in that they provide a 

means of pressure measurement at the point of interest, from which the velocity can be 

calculated. Hot-wires or films can only provide information about the velocity field. 

Pressure probes are also much more robust and cheaper than the alternatives. 

Five hole pressure probes are frequently utilised at the University of Durham for 

aerodynamic investigations and hence the necessary instrumentation and expertise for 

their use exists. For reasons of economy the pressure transducers of the available probes 

were mounted remotely from the probe head. The length of tubing required to connect 

to the probe head limits the frequency response of the probe, however Sims-Williams 

[92,931 recently used a system for the dynamic correction of pressure probes that 

provides an excellent frequency response up to 250Hz (this can be contrasted to hot 

wires where a frequency response of up to 50kHz is easily obtained [94]). This upper 

frequency permits the resolution of all aerodynamic effects corresponding to greater 

than 8.5% of model length. 

After facility commissioning, aerodynamic measurements on two vehicle like 

geometries were conducted. These consisted of surface static pressure, direct force and 

moment and wake traverse measurements. The surface static pressure data were 

acquired using a scanivalve system that had been dynamically corrected in a similar 

manner to the five hole probe. Force and moment measurement was by means of a new 

65 



Chapter Four - Instrumentation and Aerodynamic Models 

two component internal balance that was designed with the emphasis on dynamic 

response. Finally, the wake traverses were conducted using the five hole probe system 

that had been used for the empty working section survey. 

4.2 Aerodynamic Models 

4.2.1 The Docton Geometry 

Preliminary aerodynamic investigations were conducted on the two-dimensional 

'Docton' geometry. The model geometry and dimensions are shown in figure 4.1. This 

geometry is essentially a cuboid of aspect ratio 3.36: 1.37: 1.00 (I: w: h), but with well 

rounded comers. The ratio of comer radii to model length (r/I = 0.1) is significantly 
larger than that found on production vehicles. This parameter has been shown by 

Cooper [441 to be significant in determining the cross-wind response of a vehicle, with 

large radii enhancing yawing moment. 

For simplicity, two-dimensional flow was promoted by fitting end plates on a geometry 

where the height to width aspect ratio is only 0.74. The initial motivation for Docton to 

manufacture a model with such a low aspect ratio was two fold. Firstly, the area 

blockage of this model in the axial jet is 6%. If the model had occupied the height of 

the tunnel the blockage ratio would have been 23%, which is unacceptable even for an 

open jet tunnel. Secondly, his belt and spool assembly produced cross-wind gusts with 

a height of 0.35m, which needed to be greater than the model height. 

Each side of the model was instrumented with 37 pressure tappings at mid height, the 

location of these tapping being shown in figure 4.2. As can be seen from figure 4.2, the 

tappings are concentrated around the comer radii, where movement of lines of flow 

separation and reattachment is expected. The pressure tappings were constructed from 

I. Omm internal diameter stainless steel hypodermic tubing. 
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To maximise the frequency response of the modellbalance system for transient force and 

moment measurements a second lighter version of the Docton geometry was 

manufactured. This was constructed from high density foam and fitted with wooden 

end plates, producing a model with a mass of 1.05kg. This compared favourably with 

the original model mass of 2.61kg. 

For the surface static pressure readings and wake traverses the model was mounted from 

below in the working section using three 25mm. diameter supports. The lighter model, 

used only for the force balance measurements, was mounted by a single underfloor sting 

at the model centre. 

Figure 4.3 shows key points on the perimeter of the Docton geometry in the non- 
dimensional form 's/S', which is used in later results ('s' is the distance around the 

perimeter from the front centre of the model and 'S' is the half perimeter). The moment 

centre for the Docton geometry was taken on the axial centreline at x/I = 0.5 from the 

front of the model. 

4.2.2 The Durham Geometry 

To assess the transient cross-wind response of a more realistic vehicle shape the generic 

three dimensional 'Durham' geometry was used (figure 4.4). This geometry, which is 

very similar to that used by Davis [33] and Bearman and Mullarkey [58], exhibits 

certain vehicle-like features such as A-pillars, C-pillars, a slanted windshield and 
backlight, boat-tailing (plan form tapering) and tumbleholm (vertical tapering), however 

much of the complicated detail of a real vehicle is omitted. The A-pillars are 

particularly pronounced and likely to produce strong A-pillar vortices. The basic 

geometry had the critical backlight angle of 30', [2,21], however as a bi-stable flow 

condition was undesirable, a backlight angle of 25', which should promote attached 

flow, was used throughout these investigations. 
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Each side of the model was instrumented with 57 pressure tappings, the upper surface 

having a further 100. Again the pressure tappings were I. Omm diameter hypodermic 

tubing. The tappings, as shown in figure 4.5, are essentially equally distributed on a 

40mm grid, but are more concentrated in regions where strong pressure gradients were 

expected (for example around the side front comer). The lower surface of the model 

was not instrumented as it was considered that the inappropriate ground boundary 

condition and the flow interference created by the model supports and instrumentation 

cabling would lead to erroneous results. 

A second lighter Durham geometry was manufactured for the purposes of direct force 

and moment measurement. This geometry was mainly constructed from thin (1.6 or 

1.2mm) aluminium sheet, with the rounded front section sculpted from wood. The 

model mass was 1.46kg, compared with 3.77kg of the original model. The moment 

centre for the Durham geometry was taken as mid height on the axial centreline at x/l 

0.55. 

The model mounting system used for both pressure data and force measurements was 

identical to that used for the Docton geometry. 

4.3 The Five Hole Pressure Probe 

4.3.1 The Probe 

The probe, which was the same probe as used by Docton [61], was of the forward facing 

pyramid type (as classified by Dominy and Hodson [95]), with a cone angle of 45*. The 

probe is shown schematically in figure 4.6. It is constructed from 5, I. Omm internal 

diameter 300mm long hypodermic tubes sheathed in a 6. Omm internal diameter tube and 

held together with epoxy. The large bore of the individual tubes produces a relatively 
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intrusive probe, however they help maintain a good frequency response, which was vital 
for Docton [6 1] who used the probe without dynamic correction. 

The probe was calibrated to ±35' (2.5' increments) in both yaw and pitch using a 

dedicated calibration facility. Probe calibration was at a freestrearn velocity of 12.9ms-I 

(Pdyn 10OPa), which corresponds to a probe Reynolds number (based on diameter) of 

Red 5090. Although this velocity is higher than the free-stream velocity in the 

working section (I 1.3ms-1), it was the lowest achievable with this calibration facility. A 

Reynolds number sensitivity investigation was not undertaken, but pyramid type probes 

have previously been shown to be relatively insensitive to Reynolds number [951. The 

probe calibration maps and coefficient definitions are seen in Appendix A. To minimise 

errors, the probe was calibrated using the same pressure transducers and data acquisition 

system used for the experimental investigations. To reduce the peak yaw angles 

experienced by the probe in the working section it was mounted at an angle of 12' to the 

axial direction; thus it would be expected to be nominally subjected to flow with a 

relative yaw angle of ±12*. The probe was positioned in the working section using a4 

axis (3 linear and I angular) traverse system controlled by the data acquisition desktop 

PC. The unsteady pressure correction technique of Sims-Williams [92,93] (section 4.5) 

was applied to all transient five hole probe data. 

4.3.2 The Pressure Transducers 

Five fast response (rise time -= 200ýts) SensorTechnics 103LPIODPCB ±lOOOPa 

pressure transducers with onboard power supply stabilisation, signal amplification and 

precision temperature compensation [96] were used for measurement of the individual 

five hole probe pressures. The transducers were operated in differential mode, with a 

common 12V power supply. The transducers were regularly, simultaneously calibrated 

against a silicon oil micromanometer with the individual calibration slopes stored in a 
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lookup table. A further two identical pressure transducers were used for measurement 

of the wind tunnel reference conditions. 

4.4 The Scanivalve System 

Surface static pressures were measured using a 48 channel scanivalve mounted inside 

the model. The unsteady pressure correction technique of Sims-Williams [92,93] 

(section 4.5), was applied to correct for amplitude and phase distortion caused by the 

pressure tapping, tubing and scanivalve system. Passive improvement of the dynamic 

response was also achieved by minimising the lengths of tubing connecting the pressure 

tappings to the scanivalve, and the scanivalve to the pressure transducer. The pressure 

transducer used was from the bank of five, with data acquisition and scanivalve stepping 

controlled by the desktop PC. 

4.5 Unsteady Correction Technique 

To accurately measure unsteady pressures a system is required that does not either 

attenuate (including resonance) or phase shift the pressure signal between the point of 

measurement and the pressure transducer. Attenuation is caused by viscous losses in the 

tube, with a phase lag generally occurring due to the length of tubing. Both these can be 

minimised by shortening the lengths of tubing between the point of measurement and 

the pressure transducer, however this is not always practical. For example, the 4 axis 

traverse system used in these investigations requires a minimum tube length of 1.0m to 

connect the probe to the pressure transducers. A further reduction in attenuation can be 

achieved by increasing the diameter of the tubing, but this has practical limitations. For 

many experimental situations the absolute phase of a signal is not required, more the 

relative phase between signals recorded at different points in space. If this is the case, 
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providing a constant tubing length is used the phase need not be corrected and the 

attenuation limited by use of a short length of tubing. 

Several methods have previously been implemented to improve the dynamic response of 

tubing systems. The simplest of these, as used by Duell and George [97] for example, is 

to place a restrictors within the tubing system. Here two different diameter tubes are 

connected in series, the smaller diameter tube acting as the restrictor. The restrictor 

damps out the standing waves that are responsible for resonance within the system. 

Duell and George [971 applied this method to a tubing length of 12.5cm, successfully 

moving the resonant frequency to over 50OHz, which was above their range of interest. 

This method however increases the viscous damping of the system (due to the reduced 

diameter tubing) and makes no active attempt to correct the phase shift. 

More recently Rediniotis and Pathak [981 modelled a tubing system as a second order 

dynamic system. For simplification, the second order model was reduced to a first order 

model. This placed some restrictions on its application (it could now only be used for 

critically damped or overdamped systems), but allowed easy measurement of the 

constants associated with the system, subsequently allowing them to correct for 

amplitude distortion, but not phase distortion. They found a good frequency response 

could be achieved for frequencies of up to 120Hz when using tubing of 0.25mm. internal 

diameter and 0-3m length. 

By far the most promising method for dynamic correction is that used by Irwin et al [99] 

and more recently applied by Ishihara and Takagi [5] and Sims-Williams [92,93]. This 

method, known as the inverse transfer function (ITF) method, actively models both 

amplitude and phase distortion. The transfer function of a tubing system is measured by 

applying a test signal of varying frequency and amplitude to one end of the system. The 

test signal is directly measured and then compared with the recorded signal at the 

pressure transducer end of the system. Comparison of these signals in the frequency 

domain allows a complex transfer function (amplitude and phase), which is valid over 
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the range of frequencies of the test signal, to be calculated for the tubing system. This 

complex transfer function can then be applied to any signal recorded at the downstream 

end of the tubing to accurately infer the applied signal. 

This method has been successfully applied to both the five hole probe and scanivalve 

system used in these experiments. For both corrections a swept sine wave with upper 

and lower limits of 3Hz and 30OHz was used as the exciting signal. This was applied 

into a small chamber that contained either the probe head, or a representative pressure 

tapping, through an audio loudspeaker. The chamber also contained the pressure 

transducer used to measure the test signal. Five hundred sets of 1024 points were 

recorded and Fast Fourier transforms (FFT's) of the fluctuating pressure signals 

calculated. A transfer function was then calculated for each of the sets and the 500 

transfer functions averaged. An extrapolation to zero Hertz was made using the 

assumption of an amplitude ratio 1.0 and phase shift of 0.0' at OHz. For the five hole 

probe individual transfer functions were calculated for each tube. The transfer function 

for the centre hole of the Docton five hole probe is shown in figure 4.7. The noise 

above 30OHz is caused by a lack of signal above this frequency. 

For correction of a particular experimental pressure signal, FFT's of the time domain 

data were calculated and then divided by the relevant tubing transfer function. All data 

above 25OHz was truncated and an inverse Fourier transform (IFT) taken to yield 

amplitude and phase corrected time-domain data. This method is fully discussed by 

Sims-Williams [100]. 

4.6 The Two Component Force Balance 

Measurement of unsteady forces using a force balance is inherently difficult. Force 

measurement is achieved through deflection, and hence any balance possesses elasticity. 

This when combined with the finite mass of a balance produces system that is 
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dynamically characterised by damped simple harmonic motion. Mullarkey [101] states 

that the useful upper bound of frequency response of a balance is between half and one 

third of the resonant frequency, although this depends on the level of damping. 

The force balance used by Docton [61] was relatively heavy, with six degrees of 

freedom and low capacity (6kg) load cells reducing the overall stiffness and hence 

resonant frequency. His balance was also externally mounted, allowing the model to act 

as a pendulum mass. For the experiments undertaken by the current author a new 

balance was designed and manufactured, with the emphasis on stiffness, low mass, and 

minimising the size such that it could be internally mounted in either of the aerodynamic 

models. 

To achieve these criteria the balance was restricted to two components. This allowed 

measurement of a single force and moment component for a given balance orientation, 

however the balance could be mounted in any orientation, hence all six components 

could be measured. Measurement of only two components requires the remaining four 

to be eliminated at the point of measurement. This was achieved by making the balance 

relatively stiff in all other directions and transmitting force to the load cells by means of 

thin steel rods. These thin rods allow transmission of tension or compression, but have 

negligible resistance in bending. A schematic of the balance configuration is shown in 

figure 4.8. 

Force measurement was by means of two bespoke 'S-beam' load cells, as shown in 

figure 4.9. The load cell geometry was based on the Graham & White 535Q series cell 

which had been used in Docton's balance. This design was chosen as sufficient data 

were available to allow the design to be extrapolated to a much higher capacity, in this 

case a nominal capacity of 60kg, which was expected to yield a significant increase in 

balance stiffness. Although this capacity was an order of magnitude higher than that of 

the cells used by Docton [611, the specific output (V/kg) was kept constant through 

higher signal amplification. Deflection measurement was by means of 4,350Q foil 
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backed strain gauges configured in a full bridge circuit, which also provided temperature 

compensation. Signal amplification was extemal, using a gain of 1000, with noise 

reduction achieved by ensemble averaging (section 5.1.3). 

The balance was calibrated in the side force/yawing moment configuration. The effect 

of cross-loading the balance was investigated for a limited number of loading 

configurations. This led to the conclusion that cross-coupling between components had 

not been entirely eliminated on this simple balance design, however for the expected 

loadings the force and moment data would be within 5% of the actual load. 

Although the balance was designed to have a high natural frequency, serious problems 

of balance resonance were encountered when measuring transient forces. Figure 4.10 

shows unfiltered autospectral density functions of side force and yawing moment 

coefficients for the Docton geometry when subjected to the standard 5. Om (10 model 

lengths) transient cross-wind gust. The balance/model system is clearly resonating at 

approximately 30Hz. The balance could not easily be further stiffened, thus a low pass 

digital filter was used to eliminate unwanted frequencies. Figure 4.11 is the autospectral 

density of the empty working section yaw angle. This shows that although the gust is 

sharp edged the aerodynamic input is dominated by the lower frequency aspects. 

Filtering at a low frequency will undoubtedly remove some of this data, however the 

detrimental effects should be limited. 

A digital filter is defined by two parameters, the cut-off frequency, f,, and the stop 

frequency, f, The resonant frequency of the balance dictated that the stop-frequency 

had to be below 30Hz. An unavoidable consequence of digital filtering is 'ringing', 

which manifests itself as damped oscillations in the filtered time domain data [1021. 

Ringing is a consequence of sharp edges in the frequency response of a filter, with the 

oscillations being at the frequency of these edges. To avoid removing important data a 

high cut-off frequency is desirable, however for a fixed stop frequency this inevitably 

leads to sharper edges and enhanced ringing. The effects of ringing can be minimised 
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using a optimised filter geometry (shape), for example that proposed by Hamming 

[1031. 

Numerous filter geometries were investigated, with changes made to the cut-off 

frequency, the stop frequency and the filter geometry. The most effective filter was 

found to be an empirical design proposed by the author, with the geometry was based on 

circular arcs. The cut-off frequency is a mere 5Hz, with a stop frequency of 18Hz. 

Figure 4.12 shows the frequency response of this filter. This was used to filter all 

transient load cell output voltage time histories prior to application of the force balance 

calibration matrix (applying the force balance calibration and then filtering produces 

identical results). 

Figure 4.13 shows typical transient side force and yawing moment data for the Docton 

geometry. The ringing has clearly affected the side force coefficient, but to a much 

lesser extent the yawing moment coefficient. Comparison of the respective side force 

and yawing moment autospectral densities (figure 4.10) illustrates that the side force 

contains a relatively high amount of information around ISHz, the cut off frequency. 

Thus, the ringing appears to be mainly associated with the filter geometry around this 

frequency. 

The effect of the low pass filter on transient data is seen in figure 4.14. Here the 

unfiltered empty working section yaw angle is compared with the same data after 

filtering. The main effect of filtering is to increase the rise time of the yaw angle as the 

high frequency components are removed, with truncation of both the under and 

overshoot spikes. There is little evidence of filter ringing, again inspection of the yaw 

angle autospectral density (figure 4.11) shows a relatively small amount of information 

around 18Hz. 
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4.7 Data Acquisition 

Data acquisition was by an Amplicon PC30-PGH, 12 bit ADC card run on a MS-DOS 

based desktop PC. This card has a maximum of 16 analogue input ports, with an 

additional three 8 bit 110 ports. The card was operated in differential input mode, 

limiting the number of inputs to 8. The input range was set to 0- 1 OV, with each channel 

having an individual software controlled gain setting of either 1,2,4 or 8. 

The data logging and post-processing software used was custom written in FORTRAN. 

Data acquisition for each transient cross-wind gust was triggered by a signal from the 

shutter control software, thus ensuring consistent 'zero' times. All data was logged in 

sets of 1024 points at a sampling rate of 80011z. Anti-aliasing was provided by a set of 

matched second order 25OHz low pass analogue filters. 

4.8 Experimental Accuracy 

Errors in aerodynamic measurements have been classed by Gossweiler et al [104] as 

being either systematic or random. Systematic errors are those that occur, and in theory 

can be compensated for, whereas random error cannot be compensated for. For 

example, when considering a five hole probe systematic errors will occur in the 

measurements due to thermal shift of both zero values and sensitivity of the pressure 

transducers, with random errors occurring due to aerodynamic effects around the probe 

head that have not been calibrated for. 

4.8.1 Logger Card 

Probably the smallest contribution to error, but one that is common to all data 

acquisition, is the quantization error of the logger card. The maximum quantization 

error is ±1/2 LSB (least significant bit) [105], this corresponds to 1.22 x 10-3V for the 
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card used, which typically equates to 0.5Pa for the pressure transducers or 0.05N for the 

load cells. This error is random as it cannot be compensated for. 

4.8.2 Pressure Transducers 

The pressure transducers have a small systematic error that is mainly due to temperature 

shifts. The pressure transducer specification [96] quotes typical values of thermal shift 

in the range 0- 500C of ±0.5% of full scale for both offset and sensitivity. This 

corresponds to an absolute value of 5Pa over 50'C, however in the vicinity of the wind 

tunnel temperature variations of more than IOOC are rarely experienced, reducing the 

error accordingly. 

Errors in offset voltages through long term creep were virtually eliminated through the 

daily acquisition of datum values, as were variations in long term sensitivity through 
frequent calibration. 

4.8.3 Five Hole Probe Data 

The largest magnitude of error in the flowfield data will undoubtedly be from the five 

hole probe, with the errors originating from several sources. 

The flow in the majority of the empty working section is at or near freestrearn velocity, 

this being near the calibration velocity of the probe, and hence Reynolds number errors 

should be small. This is not the case in the wake of the bluff bodies, where for the 

majority of the wake the local Reynolds number is likely to be substantially lower that 

that of the freestrearn. Areas of higher than freestream, Reynolds number will also exist, 

but the increase here are not likely to be substantial. Dominy and Hodson [95] report 

that for a 60' forward facing cone probe errors as high as 5% in yaw angle and 6% in 

dynamic pressure were found by increasing the probe Reynolds number from Re = 1.0 x. 

104 to Re = 2.1 x 104 . The probe used for the current experiments is of the pyramid 
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type, with the sharp edges fixing the separation points, even at incidence, and hence the 

Reynolds number sensitivity should be somewhat lower. Doir: iiny and Hodson [95] also 

investigated the effect of turbulence on probes. They concluded that freestrearn 

turbulence is most likely to affect probes that are sensitive to Reynolds number, as 

turbulence mainly affects the size and position of separated regions. Thus the 

turbulence intensity sensitivity of this probe is expected to be low. 

Random errors will originate from dissimilarity in flow around the probe head for a 

given flow condition between the calibration process and the experiments, mainly due to 

flow hysterisis. Errors of this nature may occur as early on as the calibration process, 

with the calibration map not being a true representation of the probe. Treaster and 

Yocum [ 106] suggested that a probe should be calibrated a number of times in the same 

manner, and these calibrations averaged to minimise this error. A potential 

improvement on this would be to calibrate the probe a number of times, but vary the 

order of calibration, i. e. change the order of pitch and yaw angle incidences, and average 

these calibrations. 

The transient nature of the flow would normally accentuate any hysterisis effects. The 

parameter of interest is reduced frequency, as defined in equation 4.1. Here fred is the 

reduced frequency, f is a characteristic frequency, da characteristic dimension and u the 

freestream velocity. 

fred ý-- 
2 nfd 

u 
(4.1) 

A flow with a reduced frequency of order 1 or greater can be expected to exhibit 

transient effects, however if the reduced frequency is well below 1 the flow can be 

considered quasi-steady [107]. A typical reduced frequency for the flow around the 

probe can be calculated using the time for the flow to change from nominally axial to 

yawed to form the characteristic frequency (1/0.028s), the probe diameter (6. Omm) for 
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the dimension and the freestream. velocity (I 1.3ms-1). This yields fred " 0.12, which is 

well within the bounds of quasi-steady flow and hence the steady probe calibration can 
be considered appropriate. The reduced frequency in other parts of the flowfield, 

especially the model wakes, may vary substantially from this. 

The relatively large probe diameter (6.2mm) will cause measurement errors in regions 

of either high shear or where there is small scale unsteadiness. For either case the error 

will be caused by the different tubes of the probe head being subjected to different flow 

conditions. For the case of high shear, this error will give a incorrect value for yaw or 

pitch and is likely to overpredict both total and static pressure. In the case of 

unsteadiness, the error will depend on the exact nature of the unsteadiness. 

4.8.4 Force Balance Data 

Force balance errors will originate from calibration errors and hysterisis effects in the 

load cells, however in both cases these are likely to be significantly less than the 

maximum 5% error possible from cross-coupling (section 4.6). 
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a) Amplitude b) Phase 

1-2 

L. 0 

0a 

0.0 

04 

0.2 

00 

0 so too 150 200 250 Boo. 400 
HI 

50 100 150 200 250 SOD. $50 400 

Hz 

Figure 4.7 Five Hole Probe a) Amplitude and b) Phase Transfer Function 

Characteristics 

400 

a5o 

300 

25 0 

200 

L50 

too. 

50 

0 

82 



Chapter Four - Instrumentation and Aerodynamic Models 

Link betwet 

upperandlo 
plate (I of 4: 

Lower plate Force transmitting element Load cell 

Figure 4.8 Two Component Force Balance Configuration 

Strain gauge 

0" 
(0 
U, 

- 

.4 
24 10 10 

Figure 4.9 Schematic of an S-bearn Load Cell (dimensions in MM) 

83 

4 72.0 10 



Chapter Four - Instrumentation and Aerodynamic Models 

a) Side Force Coefficient 
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Chapter Five 

Experimental and Computational Investigations 

5.1 Experimental Technique 

5.1.1 Cross-Wind Gust Matching Process 

Correct formation of the cross-wind gust requires matching of the axial velocity of the 

main tunnel, the axial component of the cross-wind tunnel and the speed of propagation 

of shutter opening (section 3.1). Matching of the two tunnel velocities was achieved by 

examination of the axial velocity component, measured at the model centre in the empty 

working section, for a set of gusts, and if necessary adjustment of the axial tunnel 

velocity. The correct shutter propagation speed was then set to be the nominal tunnel 

axial velocity, as measured during the matching process. It was found that changes to 

the axial tunnel velocity (and shutter propagation speed) were rarely required, hence the 

tunnel matching process was only repeated at approximate four week intervals. The 

nominal experimental Reynolds number, based on tunnel axial velocity, model length, 

and standard atmospheric conditions was Re, = 3.9 x 105. 

5.1.2 Non-Dimensionalisation 

The transient nature of the flow in working section leads to significant changes in 

dynamic pressure during the duration of a cross-wind gust. Thus for the purposes of 

non-dimensionalisation, the reference dynamic (Pdyn_jf) and static (pý_mf) pressures were 

measured on a daily basis under steady axial freestrearn. conditions, prior to any transient 

experiments. All non-dimensional coefficients, as defined in equations (5.1-5.7), are 

then formed using these reference pressures. 
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Total pressure coefficient: 

Po - Ps-ref CP, = 
Pdyn-ref 

Static pressure coefficient: 

P., - P, 
-", f CP, =-- (5.2) 

Pdyn-ref 

Velocity coefficient: 

Cvj vi (5.3) 
U 

ref 

where vi represents a velocity in one of the three orthogonal directions x, y or z and uef 
is the reference freestrearn axial velocity, as defined in (5.5). 

Reference freestrearn velocity: 

P: dy:.. -Zf (5.5) ref 
p 

where p is the density of air. 

General force coefficient: 

C=F (5.6) 
Pdy. 

-,,, 
xA 

where F is a force and A the model frontal area. 
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General moment coefficient 

Cm =m (5.7) 
Pdyn-ref, xAx1 

where M is a moment and I is the model length. 

Empty working section data are presented as working section yaw angle, xV, as defined 

in (5.8). 

v (5.8) tan-' 
N) 

where v is the cross-stream velocity and u the axial velocity. 

Wake data are presented as non-dimensional vorticity, 4, as defined in (5-9). 

01 - -4 _IV 

x0 -0 (5.9) 
u ref 

ý 

dy dz 
) 

5.1.3 Ensemble Averaging 

The rapid nature of gust production possible with this new facility (1000/hr) allows 

phase synchronised averaging of data to improve the signal to noise ratio (so called 

'ensemble averaging'). The phase synchronisation is realised through the trigger signal 

that initiates data logging at a fixed time prior to every cross-wind gust (section 4.7). 

The effect of varying the number of averages used for a particular data set was 

investigated for both typical five hole probe and surface static pressure tapping data. 

Figure 5.1 shows total pressure coefficient (Cp. ) against time for a fixed point in the 

wake of the Durham geometry (x/l = 1.5, y/l = -0.24, z/1 = 0.24 where x is the axial 

distance from the nose of the model, y the cross-stream distance from the model 
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centreline, z the vertical distance above the groundboard, and I the model length), as 

recorded by the five hole probe. The number of gusts used to create each average is 

given by 'n-ens'. It is apparent from these results that ensemble averaging is essential 
for the collection of meaningful aerodynamic data. Although the signal to noise ratio 

continues to increase throughout the range of gust numbers used, experimental run and 
battery charge time dictate a practical maximum. Thus all five hole probe data were 

averaged over 20 cross-wind gusts. 

Figure 5.2 shows that a similar increase in quality of static pressure coefficient data 

(Cp, ) for a surface pressure tapping is also achieved by ensemble averaging. These data 

are for tapping 7 on the front leeward comer of the Docton geometry (figure 4-2), a 

position at which the flow remains attached for the duration of a cross-wind gust (figure 

6.11, s/S = 0.127). Again an ensemble average of 20 gusts were used for all surface 

static pressure data, with this offering a good compromise between data quality and time 

requirements. 

5.2 Experimental Investigations 

5.2.1 General Overview 

The first part of the experimental investigation was to conduct a survey of the empty 

working section under both transient and nominally steady (time-averaged) axial and 

yawed flow conditions. This was required to provide accurate information about the 

gust characteristics that the aerodynamic models would be subjected to. For all the 

transient investigations a cross-wind gust length of 5. Om was used. 

This was followed by aerodynamic investigations on the two models. These primarily 

consisted of surface static pressure distribution measurements, wake surveys and direct 

force and moment measurements. Data was collected for both transient and steady axial 
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and yawed flow conditions. Again, a cross-wind gust length of 5. Om (10 model lengths) 

was used for all transient investigations. The main focus of the analysis was to 

investigate if any differences occur in the force and moment coefficients between 

transient and comparable steady flow conditions, and if so, what were the flow 

structures responsible for these differences. 

5.2.2 Empty Working Section Survey 

The empty working section survey was conducted in the x-y plane (horizontal) at a 
height equal to the mid height of the aerodynamic models. The gridpoint spacing was 
100mm in both directions, giving an overall grid dimension of 29 x9 points. The 

survey was completed for steady axial, yawed and transient flow conditions. The steady 

yawed flow was created using both cross-wind and axial jets. The limited range of the 

traverse system, and in the case of the transient flow the number of cross-wind gusts 

available from a single battery charge, required the survey be completed in several 

sections. The subsequent successful assembly of these sections gave good confidence in 

the repeatability of the wind tunnel configuration and experimental technique. The 

transient survey required some 5,500 cross-wind gusts. 

A 'pseudo' turbulence intensity was measured at the assumed model centre under steady 

axial and yawed flow conditions. This was done using a single element hot-wire 

mounted in a vertical orientation. The turbulence intensity was taken as the quotient of 

the resultant velocity standard deviation, cr(ur), and mean, W r, expressed as a percentage, 

as defined in equation (5.10). 

TU = 
Cr(ur )x 

100 
ii, 

(5.10) 
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5.2.3 The Docton Geometry 

In addition to surface static pressure and force measurements, an x-y plane (horizontal) 

wake survey was conducted around the sides and rear of the Docton geometry. The grid 

used was of non-uniform density, however had an average spacing of about 25mm. The 

grid contained some 560 points, requiring nearly 12,000 cross-wind gusts. 

Docton geometry direct force measurements were limited to side force, yawing moment 

and drag components, with each of these being measured under steady axial, yawed and 

transient flow conditions. 

The steady yawed flow condition was created by subjecting the model to flow from both 

jets, as opposed to yawing the model in the working section, as this permits exact 

comparison with the fully developed transient yawed flow. 

5.2.4 The Durham Geometry 

More detailed investigations were made into the flow structure of the Durham geometry. 

In addition to the surface static pressure and direct force measurements several wake 

surveys were conducted. 

Steady axial, yawed and transient wake surveys were conducted at three y-z (vertical, 

perpendicular to the freestrearn direction) planes downstream of the model. The 

downstream distances used were x/I = 0.75,1.3 and 1.5, where x represents distance 

from the leading edge of the model and I is the model length. The surveys were 

conducted on a 20mm. x 20mm. grid, with each plane having 29 points in the cross- 

stream direction and 12 in the vertical direction, thus requiring over 7,000 cross-wind 

gusts per plane. 

Quasi-steady wake surveys were conducted at x/I = 1.5 for yaw angles of XV = 00,70,140 

and 220. For these surveys the relative yaw angle of the flow to the model was obtained 
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by yawing the model in the working section, and subjecting it to only the main jet. The 

surveys were conducted with the traverse plane perpendicular to the main axis of the 

geometry for all yaw angles, allowing direct comparison with the other wake surveys. 

Two steady wake surveys (axial flow and xV = 220 yawed flow) were conducted on a 

10mm grid spacing and used for the purposes of wake integration. The finer grid 

spacing was used in an attempt to improve the accuracy of the integration. The yawed 

flow condition was again created by yawing the model in the axial jet. This produced 

problems of blockage, whereby the model was in close proximity to the shear layer at 

the leeward side of the tunnel, however it was thought to be preferable to the yawed 

flow condition created using both jets, which exhibits some spatial total pressure 

variations (section 7.1.1). 

The method used for the wake integration was that of the simple momentum equation. 

Although the wake surveys were carried out over a large area (-0.7 :ý y/l :! ý' 0.7 and 0.04 

:! ý z/1 :50.46) the area used for the integration was reduced. It was hoped that this would 

increase accuracy by eliminating any effects of the free shear layers at the sides of the 

jet. For the axial flow case, the area used for the integration was -0.31 :ý y/1: 5 0.31 and 

0.04: 5 z/1: 5 0.46, and for the yawed flow case the area was -0.27: 5 yfi:! ý 0.57 and 0.04: 5 

z/1 :! ý 0.46. The contribution made to drag and side force from the groundboard 
boundary layer was kept to a minimum by not surveying below z= 20mm. (z/1 = 0.04). 

The wake integration method allows the drag and side forces to be split in viscous and 

vortex terms. The viscous term represents energy loss through fluid entrainment into 

the boundary layer and wake of the body, while the vortex term represents the energy 

required to maintain secondary flow. In addition, the numerical evaluation of drag or 

side force from discrete data points in the wake allows comparison of the relative 

contributions from these discrete points - so called 'microdrag' and 'microside'. The 

wake integration method, including viscous and vortex terms and microdrag and 

microside is fully discussed in Appendix B. 
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Force balance data were recorded for all six components of force and moment under 

steady axial, yawed and transient flow conditions. 

5.3 Computational Fluid Dynamics 

Computational investigations were initially undertaken using the commercially available 

PHOENICS code, as used by Docton [61]. This code proved to have serious 

limitations, in that difficulty was encountered in obtaining a solution for a two- 

dimensional computation of the flow around a radiused body (the Docton geometry), 

and hence was abandoned. Simulations were subsequently undertaken using the 

commercially available StarCD code (version 3.10) and in the light of experimental data 

obtained from the empty working section these computations were focused on the flow 

in the empty working section. 

The advantages of conducting a computationally based investigation were twofold. 

Firstly, it allowed the wind tunnel configuration, including the boundary conditions, to 

be easily manipulated, and secondly it permitted more detailed quantitative analysis of 

the flowfield parameters. The CFD subsequently provided significant insight that could 

not have been achieved experimentally. The investigation was limited to the empty 

working section, with a two-dimensional assumption made that significantly reduced 

hardware demands and calculation times. 

As the computation was not required to provide a solution for regions of separated or 

stagnating flow, which have caused significant solution problems for flow around bluff 

bodies, for example see [108,109,110], it was considered that parameters such as 

turbulence model, differencing scheme and solution method would have little effect on 

the results, and it is for this reason that they are not discussed in detail. 
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5.3.1 Computational Grid and Boundary Conditions 

Figure 5.3 shows a schematic of the outline of the computational grid used (A-C-D-E). 

The extent of the working section, as defined by the ground board, is shown by the 

dashed line. A representative model position is shown by the black rectangle, although 

no model was included for these calculations. The grid consisted of approximately 

27,000 identical cells of aspect ratio 1.02 (264 in the streamwise direction and 104 in 

the cross-stream direction). A solution was obtained for an approximate 61,000 cell 

grid (grid density increased by a factor of 1.5 in both directions) that showed little 

difference to the 27,000 cell grid, suggesting the solution from the coarser grid was 

relatively grid independent. 

The transient cross-wind boundary condition was prescribed as follows. The cross-wind 

shutter inlet region (A-B in figure 5.3) was split into 30 discrete inlets such that each 

inlet represented a single shutter exiting into the working section. The computation 

time domain was split into 61 discrete time regions. For the initial time region, the 

entire boundary A-B was represented as a solid wall. As the computation stepped 

through the time regions, discrete wall boundaries were replaced by inlet boundaries, 

with the required inlet conditions, in a process analogous to the opening of the shutters 

in the experimental facility. The change from wall to inlet condition for each inlet was 

instantaneous, such that it represented a shutter opening in an infinitesimal time. Each 

inlet region remained as an inlet for a predetermined time, equal to the shutter open time 

in the experimental facility, before reverting back a wall condition. The inlet conditions 

were prescribed as fixed velocity components, equal to those from the experimental 

facility. 

The axial jet inlet boundary, which was not time dependent, was also set as a fixed 

velocity inlet. Boundaries B-C, C-D and D-E (figure 5.3) were fixed pressure 

boundaries, and hence were located sufficiently far from the working section that this 

condition would have little affect on the flow in the region of interest. Boundary E-F 
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was set as a wall boundary. For an accurate replication of the experimental facility 

boundary E-F should have been of the fixed pressure type, however this led to 

numerically unstable solutions, and hence the wall condition was imposed. 

5.3.2 Solution Method 

The solution was calculated as an incompressible flow field. The standard k-4 

turbulence model was used with a self-filtered central differencing scheme. Self-filtered 

central differencing is a blended upwind and central differencing scheme with the 

blending factor determined by the local gradients, such that in areas of steep gradients 

the blending factor has a strong bias towards the central differencing scheme [111]. 

Wall functions were used for solid boundary conditions. 

Prior to a transient solution being undertaken a steady solution was calculated for the 

axial flow condition. From this starting condition a full transient solution took around 

2hrs to converge. 

The main area of investigation for the CFD study was the effect of the rough honeycomb 

flow straightener and associated thick boundary layer along the cross-wind inlet. Two 

conditions were examined. The first modelled the wall as a smooth surface with a no- 

slip condition imposed. The second modelled the wall as a rough surface, which 

consequently produced a much thicker boundary layer. Selection of wall roughness 

parameters was by comparison of the region of total pressure loss along the wall from 

the steady axial flow computation to that observed under comparable conditions in the 

experimental facility. 
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Chapter Six 

Results 

6.1 Empty Working Section 

6.1.1 Empty Working Section Survey 

Figures 6.1 - 6.6 show contours of the important flow quantities in the empty working 

section as the transient cross-wind gust develops. They are: yaw angle (figure 6-1), 

cross-stream (y) velocity coefficient (figure 6.2), modified velocity vectors (figure 6.3), 

total pressure coefficient (figure 6.4), strearnwise (x) velocity coefficient (figure 6-5) 

and static pressure coefficient (figure 6.6). Contour intervals for each quantity are 

defined on the last sheet of each figure. No data is available for x< 200mm, as the 

presence of a concrete pillar beside the wind tunnel prevented the traverse from reaching 

this region, however the flow in this region was of little interest as it was upstream of 

the cross-wind inlet. Similarly the furthest reach of the traverse in the y direction was 

800mm. This was limited by the length of the probe mounting stem. Lengthening the 

stem would have allowed the traverse to travel further, but also increased the amplitude 

of vibration at the probe head, and hence a practical maximum length was used. The 

modified velocity vectors of figure 6.3 are velocity vectors with each vector having its 

axial direction component reduced by a velocity corresponding to the freestream 

velocity. Thus they are what an observer would see if moving along the working section 

at a velocity equal to the axial velocity. This adds clarity to the processes occurring at 

the leading edge of the cross-wind gust. 

Animations of the empty working section yaw angle (ewsyaw. avi) and total pressure 

coefficient (ewscpo. avi) are available on the CD-ROM that accompanies this Thesis. 
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These may be viewed on any Windows based media player. The animations cover the 

time period 0.0s:!:, t:! ý I. Os with the frames at 6.25 x 10-3S increments. 

With the exception of the CFD all zero times are synchronised. 

6.1.2 Associated Results 

Figure 6.7 shows total pressure, as recorded in the cross-wind tunnel upstream of the 

shutter mechanism at a position corresponding to fluid that subsequently passes through 

the upstream shutters. The first shutter opens at t=0.089s. 

Figure 6.8 shows time dependent total pressure coefficient traces for two positions in the 

working section, as indicated on the graphs. 

6.1.3 Gust Characteristics at the Model Centre 

Figure 6.9 presents time histories of empty working section yaw angle, strearnwise and 

cross-strewn velocity coefficients, and total, dynamic and static pressure coefficients. 

The time histories are for x= 2400mm, y= 400mm, z= 97mm, which corresponds to 

the model centre in the working section at mid-model height. Comparisons are drawn 

with the steady axial and yawed flow conditions for yaw angle and dynamic pressure 

coefficient. The steady axial flow pseudo turbulence intensity, as defined in equation 

5.10, was Tu = 3.4%, with the steady yawed flow pseudo turbulence intensity being Tu 

= 2.6%. The axial flow condition represents the turbulence intensity of the main jet, 

whereas the yawed flow turbulence intensity is that of the cross-wind jet. 
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6.2 The Docton Geometry 

6.2.1 Surface Static Pressure Data 

Figure 6.10 and 6.11 show respectively steady axial and yawed, and transient pressure 

distributions around the Docton geometry. The surface static pressures are plotted 

against 's/S', the non-dimensional distance around the model perimeter, where 's' is the 

distance of the tapping around the perimeter and 'S' is the half perimeter of the 

geometry. Pressures are plotted against this quantity as it allows better resolution of the 

pressures on the front and rear faces. 

Figures 6.12 - 6.14 are the integrated pressure side force, yawing moment and drag 

coefficients. The integrated pressure side force is obtained by multiplying the surface 

static pressure (figure 6.10 and 6.11) by a projected area (as viewed in the y direction) 

for each tapping and summing these over the surface of the model. It should be noted 

that a positive pressure on the windward side contributes a negative side force, whereas 

a positive pressure on the leeward side contributes a positive side force. The yawing 

moment is obtained in a similar manner, however the distance from the moment centre 

to each tapping is included, as are the contributions from the front and rear faces of the 

model. The drag coefficient is obtained in a similar manner to the side force, however 

the faces of interest are the front and rear faces of the model. The yawed side force is 

nominally negative (away from the cross-wind), but for ease of viewing -Cy has been 

plotted. This is true for all subsequent side force graphs. 

The forces and moments, as directly measured by the two component balance, arc 

presented in figures 6.15 - 6.17. 
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6.2.3 Wake Traverse Data 

Figure 6.18 presents the transient total pressure coefficient obtained from the two 

dimensional horizontal (x-y) wake traverse around the sides and rear of the Docton 

geometry. The domain is non-dimensionalised by 'P, the model length. The model 

outline is shown by the thin black line, with the white region being excluded from the 

probe measurements. Data that was out of range of the probe calibration is presented as 

black in this and all subsequent figures. An animation of the total pressure coefficient 

(docwkcpo. avi) is available on the accompanying CD-ROM. This covers the time 

period 0.0s:! ý t: 5 1.0s with the frames at 6.25 x 10-3S increments. 

6.3 The Durham Geometry 

6.3.1 Steady Flow 

Figures 6.19 - 6.22 present results for steady axial flow and figures 6.23 - 6.26 results 
for steady yawed flow. Figure 6.19 and 6.23 are the surface static pressure distributions 

under axial and yawed flow respectively. Contour plots of the surface static pressures 

are shown, along with line graphs corresponding to discrete sets of pressure tappings 

which aid a more quantitative analysis of the surface pressures. To aid clarity different 

contour levels are used for each surface of the model. For the geometry sides, two rows 

of tappings are shown, 'lw' corresponds to lower windward, row I in figure 4.5, with 
'uw' being upper windward, corresponding to row 3 in figure 4-5. Similarly '11' and 'ul' 

for the leeward side. The upper surface line graph is from the centreline of the geometry 

(figure 4.5). The line graphs show surface static pressure coefficient against 'x/1', where 

x is the axial distance from the nose, and I the length of the model. 

Figures 6.20 and 6.24 show surface oil now visualisation, using flourescent dye and 

photographed under ultra-violet light, for steady axial and yawed flow respectively. 
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Figures 6.21 - 22 and 6.25 - 26 are contour plots of vorticity and total pressure 

coefficient contours from the wake surveys. Contour plot domains are non- 
dimensionalised by 1, the model length. Figure 6.27 shows contour plots of vorticity 
from the quasi-steady wake traverse (5.2.4). 

6.3.2 Transient Flow 

Time-dependent surface static pressure data for times t=0.10s, 0.30s and 0.34s are 

presented in figures 6.28 - 6.30. Note again that for reasons of clarity different contour 
levels are used for each surface of the model. These three times correspond to an axial 
flow condition (t = 0.10s), approximate cross-wind onset (t = 0.30s) and approximate 

post cross-wind yaw angle overshoot (t = 0.34s). The latter two are only approximate, 

as at any one time during transient flow development different parts of the model are 

subjected to different flow conditions. Side data for two subsequent times are shown in 

figures 6.31 and 6.32. The first time (t = 0.47s) is when the transient side force equals 

the steady yawed side force, with the second time (t = 0.52s) corresponding to the 

maximum transient side force and yawing moment. Figures 6.33 and 6.34 show roof 

surface static pressures at times of t=0.45s, 0.55s, 0.74s and 0.76s. The first time (t = 
0.45s) is when the transient upper surface lift equals the steady yawed upper surface lift, 

and the second time (t = 0.55s) the maximum upper surface lift. The final two times (t = 
0.74s and t=0.76s) correspond to anomalies in the upper surface lift occurring near the 

end of the cross-wind gust. Note should be made of the change in contour interval 

between figures 6.33 and 6.34, which was made in an attempt to detect the source of 

these relatively small anomalies. Animations of the Durham geometry surface static 

pressure for the windward side (durwincp. avi), leeward side (durleecp. avi) and upper 

surface (durroocp. avi) are available on the CD-ROM. Integrated pressure side force, 

yawing moment and upper surface lift coefficients are shown in figures 6.35 - 6.37. 
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Figure 6.38 shows selected transient vorticity and total pressure coefficient contours for 

the x/I = 0.75 wakeplane, with similar contours for the x/I = 1.5 wakeplane shown in 

figure 6.39. The time regions for these two sets are shifted by approximately the time 

taken for freestrearn flow to propagate between the two planes (0.035s). Subsequent 

vorticity and total pressure coefficient contours at times t=0.52s and t=0.57s for the 

x/I = 1.5 wakeplane are shown in figure 6.40. Animations of vorticity (durwkvor. avi) 

and total pressure coefficient (durwkcpo. avi) for the x/I = 1.5 wakeplane are available 

on the CD-ROM. 

The six components of force and moment, as measured by the two-component force 

balance in its different orientations, are shown in figure 6.41, with comparisons made 

with the corresponding steady forces and moments. Autospectral density functions of 

these forces and moments are seen in Appendix C. 

6.3.3 Wake Integration 

The drag and side force coefficients, as obtained from the wake integration, are shown 

in table 6.1. 

Steady Axial Flow Steady Yawed Flow 

CX 0.40 0.98 

Viscous Cx 0.36 0.82 

Vortex Cx 0.04 0.16 

Cy 0.02 -0.85 
Viscous Cy 0.02 -0.78 
Vortex Cy 0.0 -0.07 

Table 6.1 Durham Geometry Wake Integration Results 
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Figure 6.42 shows the total pressure coefficient, microdrag and viscous and vortex 

contributions to microdrag, as obtained from the axial flow survey. The total pressure 

coefficient contours show the extent of the survey plane, with the integration carried out 

over the reduced area shown in the microdrag contours (section 5.2.4). Figure 6.43 

shows the yawed wake traverse total pressure coefficient contours and microdrag and 

microside contours. Again the extent of the traverse is indicated in the total pressure 

coefficient contours, with the integration performed over the area shown in the 

microdrag and microside contours. 

6.4 Computation Fluid Dynamics 

Figure 6.44 shows the empty working section yaw angle as obtained from the CFD 

simulation. Attempts have been made to synchronise the CFD and experimental times, 

however difficulty in estimating the exact time between the shutters opening and cross- 

wind fluid entering the working section for the experimental facility means this may not 

be exact. The corresponding total pressure coefficient contours are shown in figure 

6.45. 

Figure 6.46 and figure 6.47 show the empty working section yaw angle at x= 2400mm, 

y= 632mm. Figure 6.46 is with the rough honeycomb flow straightener modelled along 

the cross-wind inlet and figure 6.47 is the smooth wall with the no-slip condition. 
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Figure 6.12 Docton Geometry Integrated Pressure Side Force Coefficients 
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Figure 6.13 Docton Geometry Integrated Pressure Yawing Moment Coefficients 
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Figure 6.14 Docton Geometry Integrated Pressure Drag Coefficients 
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Figure 6.15 Docton Geometry Side Force Coefficients 
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Figure 6.16 Docton Geometry Yawing Moment Coefficients 
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Steady values: axial flow = -0.08, yawed flow = -2.72. 
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Chapter Seven 

Discussion 

7.1 Empty Working Section 

7.1.1 Working Section Survey 

The time-dependent contour plots of yaw angle (figure 6.1) show the formation of a 

sharp edged, finite length cross-wind gust in the working section. The first shutter 

opens at t=0.089s with the incoming cross-wind flow affecting the yaw angle in the 

survey area of the working section from t=0.14s (x = 500mm, y= 800mm, figure 6.1). 

The delay between shutter opening and the cross-wind flow entering the working section 

is from the finite time required for the fluid to move from the shutter exit plane into the 

working section. 

Prior to onset of the cross-wind condition the yaw angle is nominally zero, although 

small perturbations, which are highlighted by the y=0.0' contour interval, are present. 

The only significant deviation from zero yaw is seen along the y= Omm boundary. This 

is due to unsteadiness in the free shear layer along this boundary. 

The leading edge of the yawed flow region propagates down the working section as 11 r-I 

intended, such that it remains almost perpendicular to the axial direction. This occurs in 

a manner very similar to that depicted in figure 3.2. The close nature of the contour 

lines defining the transition from axial to yawed flow (e. g. figure 6.1, t=0.30s, x= 

2350mm) indicate the rapid nature of the transition. By t=0.36s, the leading edge has 

moved sufficiently far downstream such that the entire working section is subjected to 

nominally steady yawed flow at constant yaw angle of 22'. This is significantly less 

than the intended 300, the shortfall being a consequence of manufacturing difficulties 
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with the honeycomb flow straightener. The cross-wind inlet only extends to x= 
2500mm, and hence the flow in the region x> 2500mm. is not all at 22' yaw. The 

closure of the shutters at the trailing edge of the cross-wind gust subsequently returns 

the working section to an nominally axial flow condition. The slower nature of the 

spring actuated shutter closure causes the return to axial flow to be significantly more 

bluffed than the transition to yawed flow (figure 6.1, t=0.62s - 0.94s). This is 

relatively easy to solve and not of importance for this investigation. 

The cross-wind gust profile differs from what would be considered an ideal square wave 

profile in several ways: 

1) Ahead of the leading edge of the gust is a region of yaw angle undershoot, where the 

actual yaw angle is less than that expected (e. g. figure 6.1, t=0.30s, x= 2500n-un, y 

350mm). 

2) A region of yaw angle overshoot, where the yaw angle is greater than that expected, 

occurs at the beginning of the cross-wind gust (e. g. figure 6.1 t=0.28s, x= 2200mm, y 

= 400mm). 

3) A region of transient high total (and dynamic) pressure forms at the outside leading 

edge of the gust and is convected downstream in this relative position (e. g. figure 6.4, t 

= 0.28s, x= 2100nim, y= 300mm). 

4) The total (and dynamic) pressure behind the leading edge of the gust reduces as the 

leading edge moves downstream. 

The cross-stream velocity contour plots (figure 6.2) show the yaw angle overshoot to be 

almost uniquely coincident with an excess of cross-stream velocity. The CFD 

investigation of the empty working section provided significant insight into the 

mechanism responsible for this. Figure 6.46 shows the empty working section yaw 

angle at x= 2400mm, y= 632mm for the CFD calculation with the rough honeycomb 

simulated. This shows a small yaw angle undershoot immediately upstream of the gust 
front (t = 0.28s), followed by a rapid rise to the yawed flow regime, including a 10' yaw 
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angle overshoot at the leading edge of the gust (t = 0.32s). The yaw angle then remains 

almost constant until an equally rapid return to axial flow conditions (t = 0.74s). This 

can be compared with figure 6.47, the empty working section yaw angle for the CFD 

calculation with the inlet modelled as a smooth wall prior to inflow. Here there is again 

a small yaw angle undershoot upstream of the leading edge of the gust (t = 0.28s), but 

no overshoot during the transition to yawed flow (0.28s <t<0.35s). Thus it is 

concluded that the overshoot is connected with the thickness of the boundary layer along 

the cross-wind inlet, prior to cross-wind conditions being established. 

The CFD data is supplied for a slightly different model centre to the experimental data 

as the locations of the maximum yaw angle overshoots are not coincident (CFD: x= 

2400mm, y= 632mm cf. exp: x= 2400mm, y= 400mm). Comparison of the CFD and 

experimental transient yaw angle plots indicate that the region of maximum yaw angle 

overshoot is located nearer the cross-wind inlet for the CFD. For example, figure 6.44 

(CFD data), t=0.3096s, maximum yaw angle overshoot at x= 2350mm, y= SOOMM cf. 

figure 6.1 (experimental data), t=0.30s, maximum yaw angle overshoot at x= 

2200mm, y= 500mm. Thus the CFD data is taken from a location nearer the cross- 

wind inlet, as this is more representative of the worst case. 

The thick boundary layer that exists along the honeycomb of the experimental facility 

for axial flow conditions can be seen in both the total pressure and streamwise velocity 

coefficient contours (figure 6.4 and 6.5, t=0.0s). Although the boundary layer grows 

over the entire length of the honeycomb it is only apparent for x> 1500mm due to the 

limitations of the traverse mechanism travel. When the first shutter opens the incoming 

high momentum cross-wind fluid easily convects the low momentum boundary layer 

fluid onto the leading edge of the cross-wind gust. As subsequent shutters open further 

down the working section the incoming cross-wind fluid experiences an increasingly 

thick boundary layer. This increase in thickness has two affects. Firstly it acts as a 

blockage, turning the incoming flow such that its cross-stream velocity component is 
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increased and axial velocity component decreased, and hence the yaw angle is increased. 

Secondly, as the boundary layer fluid is continuously convected onto the leading edge of 

the cross-wind gust, a large area of high loss fluid forms. 

The turning of the cross-wind fluid is highlighted in the modified velocity vectors 

(figure 6.3). The incoming flow at the leading edge of the cross-wind gust adjacent to 

the honeycomb flow straightener (y = 800mm) exhibits an increased cross-stream 

component, with the streamwise component being significantly less than the freestream 

velocity (e. g. t=0.20s, x= 1000mm, y= 800mm). Both total pressure coefficient 

contours (figure 6.4) and strearnwise velocity coefficient contours (figure 6.5) show the 

area of high loss (low total pressure and low momentum) adjacent to the honeycomb at 

the leading edge of the cross-wind gust (e. g. figure 6.4, t=0.28s, x= 2125mm, 400MM 

<y< 800mm). The size of this area grows as the leading edge of the cross-wind gust 

moves downstream, as high loss, low momentum fluid from the boundary layer is 

continuously added. It should be noted that although the strearnwise velocity coefficient 
is significantly lower than that of the freestream this area is convected downstream at 
freestream velocity. 

Elimination of the yaw angle overshoot in the CFD calculation using the smooth wall 
boundary condition suggests that it may also be eliminated from the experimental 
facility by further facility development. Importantly, a significant reduction in the 

boundary layer thickness, as opposed to its elimination, is sufficient to produce a much 
better gust profile. 

The mechanism responsible for the yaw angle undershoot immediately upstream of the 

cross-wind gust (e. g. figure 6.1, t=0.30s, x= 2500mm, y= 350mm) is related to the 

relative cross-stream velocity between the fluid in the cross-wind gust and the fluid 

ahead of it. This relative motion forms a shear layer at the leading edge of the gust 

which entrains fluid from the nominally axial flow ahead of the gust. Fluid flows back 

across the working section (+ve y direction) to replace this entrained fluid, with this 
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forming a region of yawed flow that corresponds to a yaw angle undershoot. The 

combination of fluid with a positive cross-stream velocity ahead of the leading edge of 

the cross-wind gust, and fluid with a negative cross-stream velocity immediately behind 

the leading edge of the gust leads to a flow regime typical of a vortex at the leading edge 

of the gust. This vortical motion can be seen in the modified velocity vectors (e. g. 

figure 6.3, t=0.28s, x= 2200mm, y= 450mm). Consideration of a real world transient 

cross-wind situation, as depicted in figure 1.2, suggests that this is not necessarily 

physically unrealistic. Here entrainment of fluid from in front of the building into the 

shear layer will occur, with this leading to cross-flow in the opposite direction to that of 

the cross-wind fluid and hence the vehicle will experience a yaw angle undershoot just 

prior to entry into the cross-wind region. The vortex at the leading edge of the 

simulated cross-wind gust has an associated viscous loss at its centre. This is not clear 

in the total pressure coefficient contours as the total pressure field is subject to other 

more significant effects, however is seen in the static pressure coefficient contours 

(figure 6.6). The loss is apparent from t=0.20s onwards (e. g. figure 6.6, t=0.20s, x= 

1200nim, Y= 650mm), from where it moves downstream maintaining its position 

relative to the front of the gust. From this mechanism, it follows that for the CFD 

calculation with the honeycomb roughness modelled, where the magnitude of cross- 

stream velocity immediately behind the leading edge of the cross-wind gust and hence 

entrainment of fluid from ahead of the cross-wind gust is increased, will exhibit an 
increased yaw angle undershoot. This can be seen from comparison of the empty 

working section yaw angle from the two CFD calculations (figures 6.46 and 6.47, t 

0.27s). 

Prior to onset of the cross-wind gust the total pressure coefficient contours (figure 6.4) 

remain at Cp,, : -:: 1 .0 for the core of the axial jet. The pressure loss corresponding to the 

boundary layer along the honeycomb section (x > 1500mm, y= 800mm) and the shear 

layer between the leeward side of the axial jet and the stationary bulk air (x > 500mm, y 

=0- 100mm) are also apparent. The incoming fluid from the cross-wind tunnel has an 
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identical axial velocity component to the axial jet, with an additional cross-stream 

component and hence greater resultant velocity. For a yaw angle of 22' consideration of 

the resultant velocity of the cross-wind fluid and assuming constant static pressure and 

density yields a maximum theoretical total pressure coefficient of Cp,, = 1.16. Total 

pressure coefficients approaching Cp, = 1.7 are seen in the working section, with the 

area of high total pressure located at the front outer edge of the cross-wind gust. This 

area of high total pressure is visible as early as t=0.15s, (x = 600mm, y= 700mm), 

from where it is convected down the working section at freestream velocity. The 

magnitude of the maximum total pressure increases slightly at more downstream 

positions. The high total pressure manifests itself as a region of increased axial velocity 
(e. g. figure 6.5, t=0.28s, x= 2125mm, y= 300mm), however it is convected 
downstream at a velocity equal to the free-stream velocity. 

Three possible mechanisms for the generation of this region of high total pressure have 

been considered, firstly a transient change in cross-wind fan operating point, secondly a 

transient effect caused by shutter opening, and thirdly a transient effect caused by the 

interaction of the two wind tunnel jets. 

Although the shutters always present a constant open exit area, the exit conditions of the 

cross-wind tunnel change during the formation of a cross-wind gust in that the flow 

through the upper row of shutters exits via a section of loss inducing honeycomb into a 

working section of greater than ambient static pressure, whereas flow through the lower 

row of shutters exits directly into nominally stationary air. These differences may cause 

a transient change in the cross-wind fan operafing point as the shutters begin to open. 
Figure 6.7 shows the total pressure in the cross-wind tunnel against time for the duration 

of a cross-wind gust. This was measured in the cross-wind tunnel, just upstream of the 

top row of shutters, at a position that corresponds to fluid that will subsequently exit 

through the shutters at the upstream end of the working section. As can be seen from 
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figure 6.7 the total pressure remains relatively steady and certainly does not exhibit 

characteristics consistent with a large transient total pressure rise in the working section. 

An increase in working section total pressure could also result from reduced loss 

through the honeycomb flow straightener. Upon a shutter opening the previously 

stagnating fluid behind the shutter accelerates through the shutter aperture. Thus the 

velocity of the fluid that initially travels through the honeycomb is low and hence the 

loss is low. This could lead to fluid entering the working section with a total pressure 

approaching that seen within the cross-wind tunnel upstream of the honeycomb, 

approximately 155Pa (figure 6.7). This total pressure is high enough to account for the 

transient overshoot in the working section (maximum observed total pressure 145Pa), 

however if this were the case fluid with a high total pressure would be expected to enter 

the working section along the entire length of the cross-wind inlet. Figure 6.8 shows 

total pressure coefficient against time for two positions in the working section. The first 

position is at the upstream end of the working section, adjacent to the honeycomb 

section, (x = 200mm, y= 800mm). The transient total pressure overshoot visible 
between t=0.1 Os and 0.20s. The full magnitude of the overshoot is not captured at this 

position, with the highest pressure recorded Cp. =-' 1.35. The second graph is from 

further down the working section, again adjacent to the honeycomb section, (x = 
700mm, y=800m). Here a total pressure coefficient spike is seen for 0.10s <t<0.15s, 

however this corresponds to high total pressure fluid that has been convected 
downstream. At this position cross-wind fluid enters the working section from t= 

0.16s, with no transient total pressure overshoot apparent. Admittedly this incoming 

fluid is affected by the region of low total pressure boundary layer fluid along the 

honeycomb, thus making any overshoot difficult to observe, however some mixing 

would be expected between the incoming fluid and the boundary layer fluid, thus 

producing a region of fluid with a total pressure higher than that seen in the remainder 

of the boundary layer, which is not the case. 
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The third and most likely mechanism thought to be causing the transient high total 

pressure is a transient effect associated with the initial formation of the cross-wind gust. 
Consider the pressure forces acting on an small element of invicid, incompressible fluid 

within a strearntube in a horizontal plane. The element of fluid is shown in figure 7.1. 

The resultant force, F, acting on the fluid: 

F= pA - (p + 8p)(A + 5A) + (p + k5p)8A (7.1) 

Neglecting second order terms, this reduces to: 

F= -A8p (7.2) 

Applying Newton's Second Law: 

-Aöp = pAös. 
du 

(7.3) 
dt 

Dividing by pA5s and rearranging: 

1 dp du 
--+-= 0 (7.4) 
p ds dt 

Taking the substantive derivative of 
du 
dt 

1 dp du A, 
--+u-+-j =0 (7.5) 
p ds ds 

Integrating along the strearntube: 

f ds + Pf u ds + Pf 
a4 

ds = constant (7.6) 
ds as dt 
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Which yields: 

A(P + pU2 2) + pf Ou ds = constant (7.7) 
a 

Equation 7.7 is Bernoulli's equation with an extra time derivative term. This time 

derivative term is zero for steady flow conditions, however may be non-zero for 

transient flow conditions. This extra term can be physically interpreted as thus: if the 

flow is slowing down in time (i. e. decelerating) along the strearntube this term will 
become a non-zero negative and hence the total pressure term will rise above the steady 

theoretical maximum. 

It is quite conceivable that as the cross-wind gust formation process begins the incoming 

cross-wind fluid that impinges on the main jet in the working section decelerates, thus 

forming the area of transient high total pressure. It is for this reason that this is thought 

to be the correct mechanism. 

This hypothesis was further augmented by the CFD analysis of the empty working 

section. The CFD did not model either the cross-wind tunnel fan system or the 

honeycomb section, however as can be seen from transient total pressure coefficient 

contours (figure 6.45, t=0.1498s - 0.3496s) a very similar region of high total pressure 
is formed at the leading edge of the cross-wind gust. The size of the region of high total 

pressure is larger than that seen for the experimental facility, however so is the shear 
layer that corresponds to the transition region from axial to yawed flow at the leading 

edge of the gust, suggesting greater mixing at the gust leading edge for the CFD. As for 

the experimental facility (figure 6.4) the total pressure in this region increases as it is 

convected downstream, with the final magnitude being slightly above that of the 

experimental data. 

The subsequent development of the predicted transient flow (CFD) was tamished by the 

imperfect boundary conditions. As can be seen from figure 6.45 (t = 0.2297s - 0.4695s) 
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a jet of high total pressure fluid forms in the working section where the main and cross- 

wind jets impinge. This is not present for the experimental facility and thus limits the 

usefulness of the current CFD. A more physically realistic boundary condition for both 

axial jet and cross-wind inlets would have been a fixed total pressure boundary. A 

calculation with these boundary conditions was attempted, however for an unknown 

reason soon after the first cross-wind inlet boundary opened outflow occurred from the 

working section through the cross-wind inlet. This caused the calculation to become 

unstable and a solution was never reached. 

Two further total pressure anomalies occur behind the cross-wind gust leading edge of 

the experimental facility. Comparing total pressure coefficient contours for 0.24s :5t:: ý 

0.32s (figure 6.4) shows that the total pressure in the area immediately behind the 

leading edge of the cross-wind gust is reducing across the entire width of the working 

section. For t=0.24s, the total pressure coefficient is almost entirely in the contour 

range 1.10 < Cp,, < 1.20 (e. g. x= 1000mm, y= 400mm), however by t=0.28s a 

significant proportion of this fluid now lies in the contour interval 1.00 < Cp. < 1.10 

(e. g. x= 1300mm, y= 300mm) and a further reduction occurs by t=0.32s (e. g. x= 

2000mm, y= 400mm). This reduction is not caused by low pressure fluid entering the 

working section, but is a genuine reduction in total pressure of the fluid within the 

working section. It would be easy to attribute this to viscous losses, but this should not 

be the case as the majority of fluid is not in an area of high shear. There is a similar 

reduction in total pressure ahead of the trailing edge of the cross-wind gust, again this 

appears to be a fall in total pressure of fluid within the working section as opposed to 

low total pressure fluid entering the working section. It is thought that the loss of total 

pressure at the leading edge of the cross-wind gust maybe linked to the previous total 

pressure overshoot, but this is not the case at the trailing edge of the cross-wind gust, 

and additional work is required before the underling mechanisms are understood. 
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The transient total pressure coefficient contours for the period of fully developed yawed 

flow (figure 6.4, t=0.54s) shows some spatial non-uniformities in total pressure. The 

area of influence of the cross-wind fluid should exhibit a constant total pressure of Cp. 

= 1.16, however contours in the range 1.0:! ý Cp,,:! ý 1.3 are seen. These spatial variations 

are a consequence of the uneven total pressure loss through the honeycomb flow 

straightener along it length (section 3.3.3). 

The impinging of the axial and cross-wind jets has two further consequences for the 

flow in the working section. Firstly, as the cross-wind fluid enters the working section 

it displaces the main jet fluid. The region of high static pressure located in the top left 

comer of the working section (figure 6.6, t=0.20s, x= 300mm, y= 700mm) provides 

the necessary force for this streamline curvature. Secondly, a change in operating point 

of the main jet fan occurs, such that main jet fluid now enters the working section at the 

same (increased) total pressure as the cross-wind fluid. 

From these data the most appropriate location for the model in the working section was 

chosen. The most fundamental criteria for this facility is that the model is far 

downstream in the working section, such that the cross-wind gust has sufficient time to 

develop before reaching the model. Practical limitations are placed on this distance by 

the length of the cross-wind inlet (the limit of the yawed flow region) and the free shear 

layer growth on the leeward side of the main jet under axial flow conditions. It was 

clear that wherever the model was placed, it would be subjected to total pressure 

anomalies, and therefore the emphasis was placed on the yaw angle characteristic. 

Again, no ideal location existed, with the chosen position being one that had both a yaw 

angle under and overshoot. The location chosen was x= 2400mm, y= 400mm. 

7.1.2 Gust Characteristics at the Model Centre 

Figure 6.9 shows the cross-wind gust characteristics at the model centre. Prior to onset 

of the transient cross-wind gust the yaw angle at the model centre has a very small 
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negative offset. Later aerodynamic model axial flow force and moment data is 

consistent with a small positive yaw angle offset in the working section. This difference 

is a likely result of a blockage effect created by placing the model in the working 

section. In the empty working section the boundary layer growth along the honeycomb 

flow straightener would be expected to induce a small positive flow angle incidence in 

the vicinity of the honeycomb, however shear layer growth on the leeward side of the jet 

would induce a small negative flow angle incidence in its area of influence. Thus, it is 

suggested that for the empty working section the model centre position (x = 2400mm, y 

= 400mm) is one where the yaw angle is influenced by the free shear layer growth, and 

hence the small negative yaw angle offset under axial flow conditions. 

When the model is in the working section, the flow displacement around the model is 

asymmetric, in that the windward side has an essentially solid boundary in close 

proximity, whereas the leeward side does not. The consequence of this asymmetry 

being a circulation around the model and small positive flow angle incidence onto the 

model. It should be noted that although these effects exist they are insignificant in 

comparison to the flow field changes that occur during the passing of a cross-wind gust. 

The yaw angle undershoot (Y = -12.3' at t=0.29s) and overshoot (y = 33.9' at t= 

0.32s) are visible before the steady condition of y= 220 is attained. The transition to 

yawed flow is rapid, with a steady yaw angle achieved within a time corresponding to 

fluid that is moving at freestrearn velocity covering half a model length. The yaw angle 

under and overshoot has a significant effect on the initial development of yawed flow 

around the aerodynamic models, making the calculation of yaw rate, an important 

vehicle stability parameter (section 1.2), inappropriate for this facility. 

The streamwise velocity coefficient indicates that matching of the axial velocity of the 

main jet and axial velocity component of the cross-wind jet has been successfully 

achieved, albeit with the constraints of the slightly varying strearnwise velocity 

component that occurs for the duration of the yawed flow (0.30s <t<0.76s). 
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With the exception of the loss caused by the vortex at the leading edge of the gust (t = 
0.30s), the total and dynamic pressure coefficients are almost identical. During the 

passing of a cross-wind gust, the maximum values for both total and dynamic pressure 

exceed the theoretical maximums because the position of model centre lies downstream 

of a region of lower loss through the honeycomb flow straightener. 

The effect of the reduction in total (and dynamic) pressure immediately behind the gust 
leading edge (0.30s <t<0.45s) and in front of the gust trailing edge (0.60s <t<0.75s) 
is obvious, with the transient dynamic pressure only comparable to the steady yawed 
dynamic pressure for 0.45s <t<0.60s. The reduction in dynamic pressure in front of 

the gust trailing edge is approximately 5% of the dynamic head. The consequences of 

the uneven nature of the dynamic pressure on surface pressures and force and moment 

coefficients of an aerodynamic model is obvious, however importantly the transient 

dynamic pressure never exceeds the steady yawed dynamic pressure, making 

comparisons between the peak transient and steady yawed forces and moments valid. 

The working section Reynolds number based on model length and standard atmospheric 

conditions of Re, = 3.9 x 105 is approximately an order of magnitude below that found 

for real vehicles (section 2.5.2), thus Reynolds number effects would be important if 

extrapolation to full scale Reynolds number was to be attempted. Currently the 

achievable Reynolds number is dictated by the available cross-wind fan mass flowrate, 

however there is no reason why this type of facility should not operate at a much higher 

Reynolds number. This could be achieved either by increasing the nominal axial 

velocity or the scale of the facility. 

The small discrepancy in turbulence intensity between axial (Tu = 3.4%) and yawed (Tu 

= 2.6%) flow is unlikely to have any significant effects on the flow around the 

aerodynamic models. 
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7.2 The Docton Geometry 

7.2.1 Steady Axial Flow 

The slight asymmetry of the steady axial pressure distribution (figure 6.10) is the result 

of the previously discussed wind tunnel flow asymmetry. Pressure coefficients 

consistent with closed separation bubbles are seen on both windward and leeward sides 

around s/S = 0.18. A rapid pressure recovery occurs along the beginning of the sides, 

with the small pressure minima at s/S = 0.82 indicating early separation from the rear 

comers. Both integrated pressure side force and yawing moment coefficients have small 

offsets under axial flow conditions, these being the consequence of the asymmetric 

pressure distribution. 

7.2.2 Steady Yawed Flow 

The dominant feature of the yawed pressure distribution is the region of separated flow 

on the leeward side. Separation occurs just after the suction peak at s/S = 0.1, with 

reattachment not occurring until s/S n-ý 0.4 (figure 6.10). Separated shear layers are very 

unstable and hence the reattaching flow will be highly turbulent. This flow 

subsequently separates a second time at the leeward rear comer, with its high level of 

turbulence causing increased entrainment of fluid from the wake region, and hence a 

smaller, lower pressure wake is formed. Consequently the pressures on the rear face of 

the model (s/S > 0.81) are also lower than those of the axial flow condition. 

The yawed flow condition, as compared to the axial flow condition, exhibits 

significantly increased side and drag force magnitudes (Cy = -2.62 cL Cy = -0.10, Cx = 

0.93 cf. Cx = 0.5 1) and yawing moment coefficient (Cmz = 0.48 cL Crnz = 0.04). 
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7.2.3 Transient Flow 

Prior to any development of the yawed flow regime the transient axial flow pressure 

distribution (figure 6.11, t=0.0) is in good agreement with the steady axial flow 

pressure distribution (figure 6.10). The pressure in the stagnation region shows Cp, = 

1.0, with suction peaks, indicating flow acceleration, around the front comers and a 

closed separation bubble at s/S = 0.18. There are two small suction peaks at the rear 

comers (sIS = 0.82) prior to flow separation. The wake survey (figure 6.18, t=0.0), 

shows an axially aligned wake behind the model. Although the wake survey plots are 

instantaneous, they are obtained from ensemble averaged data that is phase synchronised 

with respect to the cross-wind gust, thus any unsteady phenomena, for example vortex 

shedding, will not be captured unless they are forced by the gust (currently there is no 

evidence to suggest that vortex shedding is forced by the gust, however it is likely there 

would be some interaction). 

At t=0.20s the model is still subjected to nominally axial flow (cross-wind gust leading 

edge at x= 1750mm, figure 6.1), however the pressure distribution around the model is 

affected by the impending region of transient high total pressure, as observed for the 

empty working section. The wake survey of figure 6.18 (t = 0.20s) shows the area of 

influence of this high total pressure to be mainly down the windward side and around 

the leeward front comer of the model, although the magnitude of the increase is small at 

this stage. An increase in stagnation region pressure and an increase in the peak suction 

around the front comers, relative to t=0.0s, are observed in the surface pressure 
distributions of figure 6.11 (t = 0.20s). These changes cause a slight rise in integrated 

pressure yawing moment coefficient (figure 6.13) and drag coefficient (figure 6.14), but 

have little effect on the side force coefficient (figure 6.12). 

By t=0.28s, just prior to the cross-wind gust leading edge reaching the model, the 

region of maximum total pressure overshoot moves down the leeward side of the model 

(figure 6.18, t=0.28s). At this time the model is also subjected to the yaw angle 
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undershoot ahead of the cross-wind gust. The combination of these two effects causes 

an increase in leeward side front comer pressure for s/S < 0.12 and an increase in 

suction for 0.12 < s/S < 0.2 (relative to t=0.20s). The windward side ftont comer, 

which is affected mainly by the yaw angle undershoot, exhibits decreased pressure for 

the region 0.0 < s/S < 0.08 and increased suction for the region 0.08 < s/S < 0.2 (relative 

to t=0.20s). Little change in surface pressure profile is observed around the remainder 

of the model. These pressure changes result in an increased side force coefficient 

magnitude, and change of direction, (figure 6.12), a decreased yawing moment 

coefficient (figure 6.13) and a significant decrease in drag coefficient (figure 6.14) 

between t=0.20s and t=0.28s. 

Docton [61] noted similar surface pressure changes as the cross-wind gust approached 

the model during his experiments, astutely concluding without direct evidence that these 

observations were consistent with a localised region of higher axial velocity. 

Development of the yawed pressure regime occurs for t>0.28s. The cross-wind gust 

yaw angle overshoot and transient high total pressure continue to affect the pressure 
distribution around the model until t=0.34s, thus surface static pressure and wake data 

for the period 0.28s <t<0.34s are not shown. The effect on side force and yawing 

moment coefficients is evident in figures 6.12 and 6.13 respectively. 

By t=0.34s rapid pressure development has occurred around the entire model, but only 

the front windward side pressure distribution resembles that of the steady yawed flow 

(figure 6.10). The windward side rear comer suction peak is significantly stronger than 

that observed under steady yawed flow conditions. The leeward side pressure 

characteristics are similar to those under axial flow conditions, however the leeward 

front comer suction peak is much stronger, with no evidence of flow separation. These 

two transient suction peaks have a significant effect on the yawing moment coefficient 
(figure 6.13). A peak of Cmz = 0.74 occurs at t=0.34s, this being a 55% overshoot of 

the steady yawed value and occurring approximately one model length into the cross- 
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wind gust. The magnitude of the transient side force coefficient at t=0.34s (figure 

6.12) is slightly lower than the steady yawed value (Cy = -2.25 cf. Cy = -2.62), and the 

transient drag coefficient (figure 6.14) is significantly lower (Cx = 0.20 cf. Cx = 0.51). 

These differences are a result of increased suction around the front leeward comer, 

decreased suction around the rear leeward comer and increased suction around the rear 

windward comer, when compared to the steady yawed pressure profile. The wake 

survey for t=0.34s (figure 6.18) shows that the region of high total pressure is no 

longer influencing the pressure distribution around the model. The effect of the yaw 

angle undershoot on the model far wake is still apparent, with the wake meandering 

towards the windward side of the model (top of the picture). 

The leeward front comer separation, as observed for the steady yawed flow, is only 

apparent from t=0.38s onwards (figure 6.11, t=0.38s, s/S = 0.15) and continues to 

increase in size until t=0.60s, by which time reattachment is occurring at s/S -= 
0.4, 

which is a comparable position to that of the steady yawed flow (figure 6.10). The 

leeward rear comer suction peak develops simultaneously with the leeward front comer 

separation (figure 6.11,0.38: 5 t: 5 0.60, s/S = 0.84) suggesting the two processes may be 

linked by the propagation of information down the leeward side of the model. The 

windward rear comer suction peak significantly weakens between t=0.34s and t= 

0.38s (figure 6.11, s/S = 0.82) and is comparable to the steady yawed value by t=0.38S 

(figure 6.10, s/S = 0.82). This change in windward rear comer pressure distribution is 

also mainly responsible for the sharp decrease in drag observed at t=0.36s (figure 

6.14). 

Continued surface pressure profile development causes a peak in the transient side force 

magnitude at t=0.50s, with Cy = -2.9 (figure 6.12) This corresponds to 4.5 model 

lengths of cross-wind flow and represents an 11 % overshoot of the steady yawed value 

(Cy = -2.62). Part of this pressure development can be attributed to the increasing 

dynamic (and total) pressure within the cross-wind gust up to t. = 0.50s (section 7.1.2), 
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however this cannot account for the overshoot of the steady yawed side force 

coefficient. The increase in working section total pressure is visible around the 

windward side of the model in the wake survey of figure 6.18 (y/I = 0.2,0.0: 5 x/l :51 -0). 
At t=0.38s, much of this region lies in the contour interval 0.98:! ý Cp,,: 5 1.26, however 

by t=0.50s it is in the interval 1.26:! ý Cp,,: 5 1.40. 

The yawed wake flow, with its much larger area of out of range data (black), is seen in 

figure 6.18 for 0.38s:! ý t:! ý 0.70s. Interestingly, the amount of out of range data along the 

leeward side of the model (y/l = -0.2,0.0 :ý x1l < 1.0), increases significantly between t= 

0.38s and t=0.45s. This corresponds to the formation of the leeward side front comer 

separation, with the out of range data associated with the region of recirculating flow. 

Surface pressure profile development (figure 6.11) continues until t=0.60s, by which 

time the transient pressure distribution and the transient force and moment coefficients 

(figures 6.12 - 6.14) are comparable to their steady yawed values. This development 

time corresponds to 7 model lengths of cross-wind flow. For an infinitely long cross- 

wind gust the final pressure distribution and force and moment coefficients should be 

equal to the steady yawed values, however this is not exactly achieved in this facility 

where a reduction the cross-wind dynamic (and total) pressure of approximately 5% 

occurs after t=0.60s, (section 7.1.2). This reduction in total pressure can be seen in the 

wake survey of figure 6.18. Comparison of t=0.60s and t=0.70s clearly show a 

general reduction in total pressure coefficient for the majority of the freestrearn fluid 

shown in the working section. Both side force (figure 6.12) and yawing moment (figure 

6.13) coefficients have distinct plateaux between 0.65s <t<0.75s. For the side force 

this is approximately 6% below the steady yawed value, however the yawing moment is 

only approximately 2% below the steady yawed value. The drag coefficient (figure 

6.14) also exhibits a reduction, but no plateau is reached and the reduction corresponds 

to more than 6% of the steady yawed value. Thus a degree of error is present for both 

yawing moment and drag coefficients, with the likely source of this being the pressure 
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distributions on the front and rear faces of the model, as these are common to both but 

do not contribute to the side force coefficient. 

The return to the axial flow pressure distribution occurs from t=0.75s onwards, with 

the pressure distribution and force and moment coefficients in good agreement with the 

steady axial flow values from t=0.90s. The return to axial flow is also seen in the wake 

survey of figure 6.18, although traces of yawed flow can still be seen at t=0.90s for x/I 

> 1.25. 

Thus it can be seen that as the transient flow conditions develop the flow remains 

attached around the front leeward and rear windward comers beyond the yaw angle at 

which it would separate under steady flow conditions, which is evidence of significant 

transient flow effects. Although the flow later separates, the transient side force, yawing 

moment and potential yaw rate that are recorded exceed comparable values obtained 
from steady tests, with transient testing being the only method of determining these 

values. 

Delayed flow separation has also been observed on the suction surface of aerofoils 

undergoing transient pitching motions, with this having a similar effect on the transient 

forces and moments. For example McCroskey et al [112], stated that the aerodynamic 
forces and moments produced under transient flow conditions are considerably larger 

than their steady counterparts, although not quantification of their overshoots was given. 

7.2.4 Force Balance Data 

The qualitative agreement between the integrated pressure (figure 6.12) and directly 

measured side forces (figure 6.15) is good. The steady axial flow side force shows a 

discrepancy of ACy = -0.02, and the steady yawed side force a discrepancy of ACy = 
0.10 0%). This lies within the previously mentioned balance repeatability of 

approximately 5% (section 4.6). The low pass filtering has truncated part of the high 
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frequency component associated with the transition from axial to yawed flow for the 

transient condition, leading to an increased rise time (figure 6.15, t ! -n' 0.30s, cf. figure 

6.12, t =-! 0.30s). Filter ringing has obscured any potential transient overshoot (figure 

6.15,0.30s <t<0.70s). The general agreement between the final transient and steady 

yawed values is good. 

The agreement between directly measured and integrated pressure steady yawing 

moment is fairly good. The steady axial yawing moment exhibits a difference of ACmz 

= 0.02, and the steady yawed yawing moment a difference of ACmz = 0.03 (6.25%). 

The directly measured transient yawing moment (figure 6.16) however differs 

substantially from the integrated pressure transient yawing moment (figure 6.13). 

Firstly, the low pass filtering has truncated part of the higher frequency component 

associated with the rapid increase in yawing moment at the leading edge of the gust, 

hence the rise time to the yawed flow condition is longer (figure 6.16, t =- 0.30s cf. 

figure 6.13, t =-! 0.30s). Secondly the balance has not resolved the double peak of the 

integrated pressure yawing moment, as seen at the beginning of the yawed flow (figure 

6.13,0.30s <t<0.35s). Thirdly the magnitude of the maximum yawing moment is 

substantially less than that of the integrated pressure yawing moment (Cmz = 0.55 cf. 
Cmz = 0.79), and finally the fall to a steady yawing moment after the initial peak is 

much faster for the directly measured moment. The final transient value is however in 

good agreement with the steady yawed value (Cmz = 0.44 cf Cmz = 0.45), and is within 

ACmz = 0.04 (6.25%) of the transient integrated pressure final value. 

The discrepancies between directly measured and integrated pressure transient yawing 

moment are mainly associated with the rapid change in yawing moment at the beginning 

of the gust. This suggests they are a consequence of the limited capabilities of the 

balance and the inherent difficulty of measuring unsteady forces and moments (section 

4.6). 
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The transient drag coefficient (figure 6.17) bears little resemblance to the integrated 

pressure drag coefficient (figure 6.14), showing little difference between the axial and 

yawed drag coefficients, and with a significant amount of oscillation. The magnitude of 

the transient drag coefficient for the axial part of the cross-wind flow (O. Os <t<0.30S 

and 0.76s <t<1.0s) is however in rough agreement with the steady axial flow drag 

coefficient. The steady axial drag coefficient is reasonable (Cx = 0.44), but is 14% 

below the steady axial integrated pressure drag (Cx = 0.5 1). The steady yawed drag is 

substantially lower than the steady yawed integrated pressure drag (Cx = 0.53 cf. CX = 

0.93). The error in yawed drag coefficient (both steady and transient) is a likely 

consequence of balance cross-coupling. The largest magnitude of components 

measured is the yawed (either steady or transient) side force and yawing moment, thus 

with the balance in the side force and yawing moment orientation, the cross-coupling 

from other components is relatively insignificant. The converse is true however when 

measuring the remaining four components, such that in those balance orientations the 

errors due to cross-coupling, and hence overall errors are at a maximum. 

7.3 The Durham Geometry 

7.3.1 Steady Axial Flow 

The surface oil flow visualisation shows that under axial flow conditions closed 

separation bubbles are present at the front comers of the model on both the sides and 

upper surface (figure 6.20). This is usual where discontinuities of curvature occur, in 

this case at the interface of the comers and either the side or windshield and is 

advantageous in that rapid turbulent reattachment means that downstream the flow 

development should be relatively insensitive to Reynolds number. 

After an initial acceleration around the front comers, as indicated by the suction peak in 

the pressure distribution, the flow down the sides of the model undergoes a rapid 
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pressure recovery. Strong vortices are formed along the long and relatively sharp (2mm 

radii) A-pillars, as seen in both the surface pressure contours (figure 6.19) and the flow 

visualisation (figure 6.20). The leeward side A-pillar vortex is also visible in the X/I = 
0.75 wakeplane, which is located just ahead of the backlight, and shown in figure 6.2 1. 

As can be seen from figure 6.21, the A-pillar vortices are drawn towards the roof by the 

low pressure in this region. The A-pillar vortices are not present in the x/l = 1.5 

wakeplane survey (figure 6.22), suggesting they are weakened by the opposite sense C- 

pillar vortices. A region of low pressure, indicating accelerated flow, exists below the 

C-pillars on both windward and leeward sides (figure 6.19). This is caused by two 

effects; firstly, the boat-tailing at the rear of the model causes an acceleration at the 

beginning of the taper, and secondly the C-pillar vortices draw fluid onto the backlight, 

causing further flow acceleration in this region. 

The flow over the upper surface of the model, as seen in figure 6.19, accelerates up the 

windshield, with a closed separation bubble at the windshield/roof intersection (figure 

6.20). Pressure recovery occurs on the roof with a second separation at the 

roof/backlight intersection. Detailed inspection of the backlight flow visualisation, 
(figure 6.20), shows than on the centreline reattachment occurs two-thirds of the way 
down the backlight, with the region of separated flow almost triangular in shape, as seen 
for the Ahmed geometry in figure 2.4. Strong C-pillar vortices are apparent from the 

backlight flow visualisation (figure 6.20), and are seen in the x/I = 1.5 wakeplane 

vorticity contours (figure 6.22a), with the total pressure loss caused by viscous loss at 

the vortex cores apparent in the x/I = 1.5 wakeplane total pressure coefficient contours 

(figure 6.22b). The wind tunnel shear layer is also seen on the left side of figure 6.22b, 

where it has a weak interaction with the leeward (left hand) C-pillar vortex. 

Careful comparison of the flow visualisation (figure 6.20) and the upper surface 

pressure tapping distribution (figure 4.5) shows the C-pillar vortices to be located 

outboard of the backlight pressure tapping distribution, and hence the low pressure 
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vortex cores are not visible in the backlight pressure contours (figure 6.19). The 

pressure discontinuity between the sides and the upper surface of the model is made 

possible by the sharp (2mm) radii along the intersections. The small offsets of the 

steady axial flow integrated pressure side force and yawing moment coefficients (figure 

6.35 and 6.36 respectively) are, as with the Docton geometry, the result of tunnel flow 

asymmetry. 

7.3.2 Steady Yawed Flow 

The yawed flow regime surface pressure distribution, as seen in figure 6.23, is 

dominated by the now very strong leeward side A-pillar vortex. This is seen in both the 

leeward side pressure contours, and the wake surveys (figures 6.25 and 6.26). As can be 

seen from figure 6.26b, the high loss (drag) region is much larger than for the axial flow 

regime. The far wake horizontal total pressure gradients of figure 6.26b are a 

consequence of the non-uniform loss through the honeycomb section. The windward 

side A-pillar vortex has been replaced by a vortex forming at the front of the windward 

side roof. This vortex draws in fluid from the side of the model, thus lowering the 

pressure here, and hence reducing the side force. The windward side C-pillar vortex has 

significantly increased in strength, thus drawing in more fluid from the windward side 

C-pillar region of the model. The corresponding decrease in windward side C-pillar 

side pressure (figure 6.23) acts to reduce the side force and increase the yawing moment 

coefficient. The low pressure vortex cores of the windward side roof vortex and the C- 

pillar vortex are seen in the upper surface pressure contour plots of figure 6.23 and the 

flow visualisation of figure 6.24. Apart from the vortex cores, the yawed flow 

visualisation was unable to shed light on the nature of the flow on the backlight. 

Downstream of the geometry mutual entrainment of the two windward side vortices 

occurs, with a single vortex core centred at y/I = -0.05, z/1 = 0.2 in the x/I = 1.5 

wakeplane (figure 6.26). 
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A second leeward side vortex is formed by flow under the model, although this is not 

nearly as strong as the leeward side A-pillar vortex. The corresponding low surface 

static pressure coefficients are seen near the front at the bottom of the leeward side 

(figure 6.23), with the vortex apparent at y/I = -0.35, z/1 = 0.1 in the x/l = 1.5 wakeplane 

(figure 6.26). 

Three other areas of vorticity are present in the x/l = 1.5 wakeplane (figure 6.26). A 

second vortex formed by flow under the model is centred at y/l = -0-15, Z/1 = 0.5. The 

origin of this vortex cannot be determined from the available data, although possibilities 
include the model windward side lower edge, the model supports or underside flow 

exiting from the leeward (left) side of the rear diffuser. It seems unlikely that the model 

supports would cause such a large vortex to form, being thin circular cylinders of a short 

length (25mm). It is also unlikely to be caused by flow exiting the diffuser, as in figure 

6.25 this vortex is located inboard of the edge of the diffuser, in a flow regime that is 

nominally yawed to the left. Thus it s thought that the vortex is formed by flow around 

the windward side lower edge of the model. The area of weak vorticity at y/l = 0.05, z/1 

= 0.1 is not a vortex, but a region where flow is turned as it is entrained into the main 

windward roof/C-pillar vortex, and hence has non-zero vorticity. The third area of 

vorticity, located at y/l = -0.55, z/1 = 0.075, is as a result of an effect noted by Harvey 

andPerry[114]. The leeward side underfloor vortex (y/l = -0.35, z/1 = 0.1) induces a 

cross-flow on the groundboard that is in addition to the component of cross-wind in this 

direction. A pressure minima occurs under the core of the vortex, and consequently the 

boundary layer caused by this cross-flow has to negotiate an adverse pressure gradient 

once it has passed under this core. When a vortex is near enough to the floor, as is the 

case here, the adverse pressure gradient is enough to cause separation of the boundary 

layer. Further downstream, the separation bubble grows to the point at which it 

detaches from the floor as a second vortex, with opposite sense vorticity to the main 

vortex. 
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The remainder of the upper surface static pressure contours, (figure 6.23), show flow 

acceleration up the windshield of the model, with the yawed flow regime clearly visible. 

The contours are significantly less skewed at the windshield/roof intersection, 

suggesting the flow in this region is dominated by the axial component of the flow 

around this relatively sharp comer, although the windshield/roof separation bubble does 

exhibit a higher peak suction than that observed under axial flow conditions (-1.2 < Cp, 

min <-1.0 for yawed flow cf. -1 -0 < Cps min < -0.8 for axial flow). 

7.3.3 Quasi-Steady Wake Surveys 

These data (figure 6.27) provide more information about the wake structure changes as 

the model is subjected to incident flow of increasing yaw angle, but under steady flow 

conditions. The leeward side A-pillar vortex, which is dominant under yawed flow 

conditions is visible from W= 7'. As the yaw angle increases, the size and strength of 

this vortex increases, with the core moving further from the model as the nominal flow 

angle in the wake increases. The influence of the low pressure on the roof of the model 

decreases with increasing yaw angle, as indicated by the reduction in height of the centre 

of the vortex. 

No increase in windward side vortex peak vorticity is recorded at V= 7', (although this 

may be due, in part, to the coarse nature of the survey grid). An increase in strength is 

however seen by y= 14'. This could be due to either a simple increase in vortex 

strength with yaw, or the formation of the windward side roof vortex, which 

subsequently entrains the windward side C-pillar vortex resulting in an increase in 

vorticity. The original leeward side C-pillar vortex decreases in strength and by Y= 22' 

ceases to exist. The leeward side underfloor vortex is apparent form \U = 14' onwards, 

although the final location is subtly different from that described in 7.3.2. This 

difference, and the other slight differences, can be attributed to the two different 

techniques used to place the model in yawed flow (section 5.2.4). The other areas of 
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weak vorticity, as seen in the previous steady yawed wakeplane (figure 6.26) are also 

apparent. 

Davis [33] presented wake traverses for a similar geometry under steady yawed flow 

conditions for yaw angles of 00 <_ xV :5 100 in 2' increments. He also found a 

strengthening of the leeward side A-pillar vortex with yaw, with a second leeward side 

vortex formed at the front of the model from flow under the model. His windward side 
C-pillar vortex exhibited almost constant vorticity up to 10' yaw, while the leeward side 

C-pillar vortex remained up to the maximum yaw angle with no decrease in peak 

vorticity. For comparison he also tested a model with well rounded A-pillars and one 

with an obvious angle change between the bonnet and windshield. Both these exhibited 

much weaker A-pillar vortices and had significantly lower yawed side force coefficients, 
from which he concluded that the A-pillar vortices make a significant contribution to the 

yawed side force. 

Davis [45] later studied a high performance road car at yaw. For this geometry a total 

separation of the leeward side flow between y= 100 and IV changed the trailing vortex 

structure over the top rear deck of the car; giving rise to a much larger windward side 

vortex. This is in contrast to the Durham geometry, which exhibits a significant change 
in the windward side vortex structure without the total leeward side separation. 

7.3.4 Transient Flow 

Many of the features observed in the transient development of the yawed flow regime 

around the Docton geometry are also present for the Durham geometry. Further 

information about the flow development is available from the wake surveys, however it 

should be noted that because elements of fluid from different parts of the model travel 

different distances, and hence take different times, to reach a particular wake plane, it is 

not possible to correlate a transient wake plane at a particular time to a transient surface 

pressure distribution at a previous time. Thus, a transient wake plane integral is 
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meaningless, but transient wake planes can add significantly to the understanding of the 

structure of a vehicle wake 

Transient yawed flow development again commences around t=0.28s. Prior to this 

both surface static pressures (figure 6.28) and wake surveys (figure 6.38) are in good 

agreement with the steady axial flow data. At t=0.30s the effects of the cross-wind 

gust anomalies (high total pressure and yaw angle overshoot) again result in spurious 

surface static pressure data (figure 6.29). The effect on the side pressures, forces and 

moments are as for the Docton geometry, with the roof experiencing a brief reduction in 

pressure coefficient, and the model a corresponding increase in upper surface lift 

coefficient (figure 6.37). 

The transient axial flow (O. Os <t<0.25s) integrated pressure side force (figure 6.35) 

and yawing moment (figure 6.36) coefficient offsets are more significant than those of 

the steady flow conditions. A likely cause of this is a slight leakage of cross-wind fluid 

flow through the closed shutters, augmenting the already asymmetrical wind tunnel 

flow. 

The subsequent side pressure data indicates rapid surface pressure development on both 

windward and leeward sides, with the pressure distributions comparable to those of the 

steady yawed flow from t=0.34s onwards (figure 6.30). The transient side force 

coefficient (figure 6.35) exhibits the characteristic under and overshoot created by this 

cross-wind facility before rising to the steady yawed value by t=0.47s. The rise 
between t=0.34s and t=0.47s is partially accounted for by the increase in cross-wind 

tunnel dynamic pressure, however the subsequent overshoot of the steady yawed value 

and then reduction indicates that flow development must continue up to t=0.60s (7 

model lengths of cross-wind flow). The maximum side force coefficient of Cy = -1.63 

at t=0.52s represents a 16% overshoot of the steady yawed value. As seen with the 

Docton geometry, development of a region of separated flow can take up to 7 model 

lengths of cross-wind flow. Thus it is suggested that this increase in side force is a 
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result of delayed leeward side A-pillar and underfloor flow vortex development. 

Comparison of the leeward side surface pressures at t=0.47s (figure 6.3 1) and t=0.52s 

(figure 6.32) shows small differences in pressure coefficient for the A-pillar region, with 

the latter time exhibiting lower pressures (this however could be due to the inherently 

unsteady A-pillar vortex moving such that the pressure tappings were subjected to a 

lower pressure part of the core). 

A reduction in side force from the maximum occurs as the transient flow subsequently 

tends towards the steady yawed flow. As for the Docton geometry, with an infinitely 

long gust, the final side force coefficient would be expected to match that of the steady 

yawed flow. Again, this is not the case, with the approximately 6% discrepancy 

accounted for by the reduction in cross-wind dynamic pressure after t=0.60s (figure 

6.9). 

The transient yawing moment coefficient (figure 6.36) is similar in shape to the side 

force coefficient, with the transient value exceeding the steady yawed value for the 

period 0.42s <t<0.6s. The maximum yawing moment of Cmz = 0.36 at t=0.52s 

corresponds to a 7% overshoot of the steady yawed value. It is suggested, that as with 

the transient side force overshoot, the transient yawing moment overshoot is a result of 

the delayed leeward side A-pillar and underfloor vortex flow development. As the 

surface static pressure distribution subsequently tends towards the steady yawed 

distribution, so does the integrated pressure yawing moment, with the final approximate 

6% discrepancy again accounted for by the wind tunnel dynamic pressure shortfall. 

The pressure coefficients over the majority of the upper surface also exhibit rapid 

development, with a yawed flow pressure regime apparent from t=0.34s. The 

integrated pressure upper surface lift coefficient (figure 6.37) however does not reach a 

maximum until t=0.55s, thus pressure development must continue until this time. The 

increase in upper surface lift between t=0.36s and t=0.45S can again partially be 

accounted for by the increase in wind tunnel dynamic pressure, but the subsequent 

183 



Chapter Seven - Discussion 

increase must be caused by delayed flow development, and it is this phenomena that is 

of greater interest. Comparison of the upper surface pressure contours at t=0.45s and t 

= 0.55s (figure 6.33) shows that this delayed flow development is occurring in the 

regions of separated flow. In this case, the windshield/roof closed separation bubble and 

the windward side roof/C-pillar vortex, where significant decreases in pressure 

coefficient are seen. This also causes a reduction in pressure coefficient over a larger 

section of the roof. The reduction in pressure coefficients observed for the windward 

side roof/C-pillar vortex are much more apparent than those of the A-pillar vortex, 

seemingly confirming that delayed pressure development in areas of separated flow of 

this nature is a true effect. The delayed development of the windward side roof/C-pillar 

vortex may also affect the side force and yawing moment coefficients through increased 

entrainment of fluid from the windward side of the model, although any contribution 
from this mechanism is likely to be small. 

The maximum transient upper surface lift coefficient recorded is Czu = 1.38 at t=0.50s, 

corresponding to a 12% overshoot of the steady yawed value and occurring after 5 

model lengths of cross-wind gust. The upper surface lift coefficient subsequently 
decays and undershoots the steady yawed value. Unlike the other coefficients, it does 

not reaches a plateau, with two spurious spikes occurring prior to the end of the cross- 

wind gust. The cause of these spikes is predominately, although not uniquely, small 

pressure changes on the windshield surface of the model. It is not, as might be 

expected, associated with an unsteady region of separated flow. Figure 6.34 shows the 

upper surface pressure distributions for t=0.74s (high lift) and t=0.76s (low lift), with 

no significant changes is surface static pressure magnitudes apparent. This effect may 

be aerodynamic, but is potentially the result of a yet unknown gust characteristic. 

Development of the leeward side A-pillar and underfloor vortex occurs in the x/I = 0.75 

wakeplane (figure 6.38) from t=0.31s, with both being fully developed by t=0.34s. 

The total pressure coefficient contours show the wind tunnel high total pressure region 
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passing down the leeward side of the model. The cores of both vortices exhibit high 

loss (drag), with the loss of the A-pillar vortex being significantly higher. 

Unfortunately, much of the data for the fully developed A-pillar vortex is out of range of 

the probe calibration. Much more information is provided about the development of the 

yawed trailing vortex structure by the x/l = 1.5 wakeplane (figure 6.39). The increase in 

strength of the windward side A-pillar vortex at t=0.33s is a result of the cross-wind 

yaw angle undershoot. Development of the C-pillar and windward side roof vortices is 

seen from t=0.34s onwards. The leeward side C-pillar vortex moves to the right, with 

the windward side C-pillar vortex moving to the left. At t=0.35s, the windward side C- 

pillar/roof vortex has moved far enough to the right that it 'leap-frogs' over the leeward 

side vortex. The leeward side A-pillar vortex also becomes apparent at this time (y/I =- 
0.4, z/1 = 0.25). Momentarily both C-pillar vortices exist, with the windward vortex 

located above the leeward vortex, which is still in a position similar to that it occupies 

under axial flow conditions. The leeward side C-pillar vortex then disappears 

completely and the windward side vortex centre reduces in height such that by t=0.38s 

the flow structure is comparable with that of the steady yawed flow. The cross-wind 

gust high total pressure region is again seen passing the leeward side of the model in the 

total pressure coefficient contours. As the yawed wake develops, the original two 

discrete areas of loss, corresponding to the two C-pillar vortices, amalgamate to form a 

single area of loss corresponding to the windward side C-pillar/roof vortex (y/I = 0.0, z/1 

= 0.15). The second main area of loss for the yawed flow corresponds to the leeward 

side A-pillar vortex (y/l = -0.3, z/1 = 0.2), with the loss here significantly higher that that 

of the windward side vortex. 

The delayed flow development of the leeward side vortices, as seen on the side surface 

static pressures, should be apparent at a later time in the wake. Comparison of x/I = 1.5 

wakeplane data for t=0.52s and t=0.57s (figure 6.40) (these roughly correspond to 

surface pressure data at t=0.47s and t=0.52s respectively) show no significant 

differences in either vorticity or total pressure. Thus it is assumed that the downstream 
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diffusion of the vortices obscures the apparent increase in vortex strength at the model 

surface. 

73.5 Force Balance Data 

As with the Docton geometry, the Durham geometry transient side force and yawing 

moment coefficients (figure 6.41) miffor the trends seen in the transient integrated 

pressure coefficients. The side force again exhibits balance oscillations, with these not 

apparent in the yawing moment. The yawing moment is particularly similar to the 

integrated pressure yawing moment, exhibiting both the transient overshoot and final 

value undershoot. The magnitudes of the steady yawed and transient yawed side force 

and yawing moment coefficients are significantly higher that those of the integrated 

surface pressure coefficients (integrated pressure steady yawed: Cy = -1.41, Cmz = 0.34, 

force balance steady yawed: Cy = -1.78, Cmz = 0.40). It is likely that the coarse 

pressure tapping distribution on the side surfaces of the Durham geometry was unable to 

entirely resolve the low pressure cores of the leeward side vortices, and if so the 

integrated pressure forces will underpredict the magnitude of both yawed side force and 

yawing moment coefficients. The transient yawing moment coefficient exhibits a 

maximum 5% overshoot of the steady yawed value, which compares well with the 7% 

transient overshoot of the integrated surface pressure yawing moment coefficient (figure 

6.36). 

The transient drag coefficient is again dominated by balance oscillations, although some 

agreement can be seen between the steady axial flow and axial part of the transient flow 

(O. Os <t<0.30s and 0.76s <t<1.0s). The steady axial flow drag coefficient (Cx = 
0.41) can be considered accurate, but as with the Docton geometry, the yawed value (Cx 

= 0.56) is probably underpredicted due cross-coupling. 

The transient pitching moment exhibits the oscillations generally seen in the force 

measurements, although agreement between the steady and transient conditions for axial 
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and yawed flow is relatively good. The pitching moment remains negative (nose down) 

for all conditions; this being a consequence of low pressure on the backlight of the 

model, caused by the attached flow regime. 

Little agreement is apparent for the lift coefficients. The steady axial and yawed values 

are very similar, which is unlikely given the significant changes in flow structure seen 

on the upper surface of the model. The steady axial flow and the axial part of the 

transient flow are also significantly different, giving little confidence in these results. 

The low absolute magnitude of the lift coefficient (when compared to side force) makes 

accurate measurement of lift much more difficult, with the error contribution from 

cross-coupling under yawed flow conditions also at a maximum. One characteristic of 

interest is that the transient lift, as with the integrated pressure upper surface lift of 

figure 6.37, shows a marked increase just prior to the end of the cross-wind gust (t = 
0.78s), although this agreement should be treated with caution. This single peak, as 

opposed to the two seen for the integrated pressure upper surface lift, is a likely 

consequence of the inability of the balance to resolve high frequency force oscillations. 

The oscillations of the integrated pressure lift occur at a frequency of =_ý 20Hz, which is 

higher than the balance filter stop frequency of 18Hz. 

The rolling moment coefficients appear reasonable, with good agreement between 

steady and transient axial and yawed conditions. This is especially surprising as the 

magnitude of the coefficient is small. Under axial flow conditions the coefficient is 

nominally zero, with a significant decrease occurring as the yawed flow develops. The 

effect of cross-wind tunnel yaw angle under and overshoots are visible (t 0.25s and t= 

0.32s respectively), with the steady yawed value not reached until t 0.53s. The 

negative value of the coefficient under yawed flow conditions indicates the centre of 

pressure is below the mid-height of the model. Although the magnitude of rolling 

moment is small, it would be significant if the overall vehicle dynamic response were to 

be evaluated. 
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As with the Docton geometry side force and yawing moment coefficients, a correlation 

exists between the spectral distribution of the force and moment components and the 

time-domain oscillations, with the components that have a significant amount of energy 

around 18Hz exhibiting the most pronounced ringing. Appendix C shows the 

autospectral density functions of the six components of force and moment for the 

Durham geometry. 

This balance system presents an improvement in the force and moment measurements, 

compared to the work of Docton [61], however is still in need of significant 

development. Raising the balance natural frequency yields twofold improvements. 

Firstly, the higher the resonant frequency, the less the aerodynamic exciting force will 

be at that frequency, and therefore the smaller the effect of resonance. Secondly, a 

higher filter cut-off frequency would allow developments to the filter geometry to 

minimise the effects of ringing. That said, an increase in balance natural frequency is 

not easy to achieve without compromising measurement accuracy. 

7.3.6 Wake Integration 

The wake integral derived drag coefficient for the axial flow condition (Cx = 0.40) is in 

good agreement with the force balance data (Cx = 0.41). Viscous drag accounts for 

90% of the total drag, the remaining 10% being from the transfer of energy into the 

trailing vortices (vortex drag). The largest local contribution to drag, both viscous and 

vortex, comes from the trailing vortices, as seen in the microdrag of figure 6.42. 

The wake integral derived axial flow side force coefficient (Cy = 0.02) is not in 

agreement with the integrated pressure and force balance side force coefficients of Cy = 

-0.02. The wake plane contains negative cross-stream momentum that is a consequence 

of the flow asymmetry in the working section. The wake integration is unable to 

differentiate between this and cross-stream momentum that is a consequence of forces 

on the fluid within the control volume, and hence returns an erroneous value. This 
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problem could be eliminated by surveying a plane upstream of the model and integrating 

the differences in momentum between the two planes, as opposed to assuming uniform 

axial flow upstream of the model. 

The extra blockage of the yawed model in the working section clearly requires a larger 

integration area for the yawed flow wake integral, however the available area is limited 

by the proximity of the shear layer to the leeward side of the model. Thus the area used 
for the yawed model integration violates the requirement of the integration that the 

boundaries of the control volume parallel to the streamwise direction are sufficiently far 

from the model that no changes in flow occur (Appendix B). The subsequent resolution 

of forces from the working section axes to yawed model axes causes any error to affect 
both drag and side force coefficients. 

The yawed model side force coefficient (Cy = -0.84) is substantially lower than the 

integrated pressure side force (Cy = -1.41) or the force balance data (Cy = -1.78), this 

discrepancy undoubtedly being a consequence of the small size of the integration area. 
The drag coefficient (Cx = 0.98) is higher than expected, however an increase in 

magnitude of the side force would reduce this on resolution of the forces, thus this result 
is not unexpected. Neglecting the inaccuracy in magnitude, inspection of the microdrag 
(figure 6.43) shows that the leeward side A-pillar vortex makes the highest local 

contribution to drag, this being followed by the windward side roof/C-pillar vortex. The 

yawed flow microside plot also shows it is the leeward side A-pillar vortex that is 

providing the highest local contribution to side force, with this followed by the 

windward side roof/C-pillar vortex. 

7.4 Comparison of Docton Geometry and Durham Geometry Results 

The Docton and Durham models are geometrically very different, however the most 

significant result applies to both geometries. This is that the transient flow development 
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can take up to 7 model lengths of cross-wind flow before the model surface pressure 

distributions become comparable to the steady, yawed pressure distributions. These 

long development times are associated with regions of separated flow. During pressure 

development, transient pressure overshoots are observed in the regions of separated 

flow, resulting in transient force and moment overshoots. Mullarkey [101] also 

commented that the most important flow phenomenon responsible for differences 

between steady and transient flow is separation. 

The most striking of these overshoots is the 55% integrated pressure yawing moment 

overshoot of the Docton geometry. This is particularly large and as comparison with the 

Durham geometry results show (table 7.1), this overshoot is much smaller for a more 

realistic passenger car geometry. The significantly higher yawing moment overshoot of 

the Docton geometry is a consequence of its peculiar geometry. The overshoots result 

from transient suction pressure peaks. On the Docton geometry two such transient 

suction peaks occur, one on the front leeward comer and one on the rear windward 

comer. Both these act to increase yawing moment, with the suction peaks acting over 

the full height of the model (hence large area) and at a position where the moment arm 

is near maximum. This can be contrasted to the Durham geometry, where the yawing 

moment overshoot is mainly a consequence of suction peaks within the cores of the 

leeward side A-pillar and underfloor vortices. These suction peaks act over a relatively 

small area, and at a position where the moment arm is relatively small, and hence the 

yawing moment overshoot is not as significant. 

The majority of passenger cars would be expected to have a response similar to that of 

the Durham geometry, however the magnitude of overshoot experienced by vans or 

people carrier vehicles, that are characterised by their one-box shape, may well be of 

concern. The transient force and moment overshoots, as obtained from the integrated 

pressure forces and moments, are summarised in table 7.1. 
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Docton Geometry Durham Geometry 

Side Force I I% - after 4.5 model 16% - after 5 model 

lengths of cross-wind lengths of cross-wind 

Yawing Moment * 55% - after 1 model * 7% - after 5 model 

length of cross-wind lengths of cross-wind 

flow 

Drag No transient overshoot 

Upper Surface Lift * 12% - after 5 model 

lengths of cross-wind 

flow 

Table 7.1 A Summary of the Transient Force and Moment Overshoots 
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Figure 7.1 Forces on an Element of Fluid in a Strearntube (from Massey [112]) 
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Chapter Eight 

Conclusions 

8.1 Empty Working Section 

The unique University of Durham transient cross-wind facility has been developed such 

that repeatable, finite length, sharp edged cross-wind gusts can be generated at the rate 

of 1000/hr. Currently these cross-wind gusts have two inherent problems. Firstly there 

is a transient yaw angle undershoot (y = -12.30) and then overshoot (Y = 33.9') at the 

leading edge of the gust, prior to the final yaw angle of y= 22.0' being attained. 
Secondly, there are total pressure anomalies. These anomalies take two forms; a 

concentrated region of transient overshoot at the leading edge of the gust where Cp,, :! ý 

1.7 (maximum theoretical Cp(, = 1.16), and an uneven total pressure distribution within 

the gust, whereby the total pressure at the leading edge of the gust rises slowly from the 

axial flow value (Cp. = 1.0) to the yawed flow value (Cp. = 1.16), with a further 

approximately 6% reduction in total pressure occurring near the trailing edge of the gust. 

CFD analysis of the working section has shown the yaw angle overshoot to be a 

consequence of the thick boundary layer along the cross-wind inlet. Reducing the 

thickness of the boundary layer was shown to eliminate the yaw angle overshoot for a 
CFD calculation. Future development of the experimental facility should be able to 

replicate this result. Reducing the yaw angle overshoot also has the desirable effect of 

reducing the yaw angle undershoot. The effect of the current yaw angle under and 

overshoots on aerodynamic data is however clearly apparent, allowing erroneous data to 

be identified. 

Evidence from the experimental facility and the CFD suggests that the total pressure 

overshoot is linked to a transient interaction between the two jets as the cross-wind gust 

193 



Chapter Eight - Conclusions 

is formed. Although this is undesirable its effect on the transient forces and moments is 

limited. Further work is required to establish the cause of the uneven total pressure 

within the gust. Importantly, the total and dynamic pressures of the transient gust do not 

rise above their steady counterparts, making the comparison of steady and transient 

aerodynamic data valid. 

8.2 Aerodynamic Models 

Two substantially different aerodynamic models have been tested under steady axial, 

yawed and transient flow conditions. The first model, the so called 'Docton geometry', 

was a two-dimensional geometry of the one-box type with large radii comers and end 

plates fitted to promote two-dimensional flow. The second model, the 'Durham 

geometry' was a generic three-dimensional vehicle shape. Time accurate measurements 

of surface static pressures and forces and moments were taken. Wake traverses were 

also conduced behind the Durham geometry. 

Initial aerodynamic investigations showed that ensemble averaging provided a dramatic 

increase in the signal to noise ratio of surface static pressure and five hole probe data, 

and in fact is essential for the acquisition of meaningful data. The rapid gust production 

rate and time synchronised logging procedures of this facility allowed all data to be 

averaged over 20 cross-wind gusts, with the volume of averaged data produced within 

the time frame still significantly higher than that possible from alternative transient 

cross-wind testing procedures. 

Difficulties were experienced with force balance resonance and cross-coupling during 

direct measurement of the forces and moments, however integration of the surface 

pressures yielded relatively accurate limited forces and moments. 

The integrated pressure forces and moments from the Docton geometry showed a 

significant transient yawing moment overshoot of 55% of the steady yawed value 
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immediately on entry into the cross-wind gust. A transient side force overshoot was 

also observed, although the magnitude was significantly smaller (11 %). The cause of 

these overshoots was found to be the delayed formation of regions of separated flow, 

and in particular the separation around the front leeward comer. No transient overshoot 

was observed for the drag, although the yawed drag coefficient (Cx = 0.93) was 

significantly higher that its axial flow counterpart (Cx = 0.51). Full flow development 

was not observed until after 7 model lengths of cross-wind flow. 

Similar transient overshoots were observed for the Durham geometry. The yawing 

moment experienced a 7% overshoot, while the side force overshoot was 16%. The 

upper surface lift also experienced a 12% overshoot. The cause of these overshoots was 

again delayed flow development in regions of separated flow, which for this model were 

the trailing vortices. Again, full flow development required 7 model lengths of cross- 

wind flow. The wake surveys indicated a significant increase in the strength of the 

leeward side A-pillar vortex under yawed flow conditions. The windward side A-pillar 

vortex was replaced by a vortex forming at the leading edge of the windward side roof. 

This subsequently entrained the stronger windward side C-pillar vortex, such that they 

appear as a single vortex core in the wake. No evidence of the leeward side C-pillar 

vortex was seen in the yawed wake. 

As discussed in section 1.2, from a perspective of the required driver input, sharp edged 
finite length cross-wind gusts are considered a worst case scenario. These investigations 

have highlighted significant transient aerodynamic effects under those precise 

conditions, with these aerodynamic effects acting to decrease vehicle stability in all 

cases. This vindicates the need for transient testing procedures, and clearly facilities are 

required that allow rapid and repeatable generation of sharp edged cross-wind gusts in 

excess of seven model lengths in length. 
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Chapter Nine 

Recommendations for Further Work 

9.1 Facility Development 

The CFD investigations have shown that the cross-wind yaw angle overshoot can be 

eliminated by a significant reduction in the boundary layer along the cross-wind inlet 

plane. Thus a possible solution would be to bleed high momentum fluid from the cross- 

wind tunnel into the boundary layer. This may well cause a change in the nominally 

axial flow yaw angle in the working section, although any change may be offset by 

angling the plane of the shutters away from the working section in the downstream 

direction, or by rotating the model in the working section. 

The yaw angle undershoot would be more difficult to remove, although as discussed in 

section 7.1.1, it is not necessarily physically unrealistic. The CFD shows a reduction in 

yaw angle undershoot when the yaw angle overshoot is eliminated, thus on elimination 

of the overshoot, it would become less of a concern. 

The honeycomb flow straightener along the cross-wind inlet plane causes spatial total 

pressure gradients in the yawed flow working section, and clearly this needs rectifying. 

Ideally, it would be replaced by a honeycomb section that has a relatively smooth outer 

surface, thus also helping to reduce the axial flow boundary layer growth. 

The elimination of the total pressure overshoot may be more problematic. If, as 

concluded, it is caused by an interaction between the two jets as the cross-wind forms, 

one possible solution would be to deflect the axial jet away from the cross-wind fluid 

entering the working section. This could be achieved using a series of turning veins 

mounted along the axial jet exit plane. These would be rotated about their vertical axis, 
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in a similar manner to the opening of the shutters, such that fluid from the main jet was 

directed out of the side of the working section as cross-wind fluid entered it, thus 

minimising the interaction with the incoming fluid. The potential of this solution could 

be easily be assessed using CFD, although it would probably be much more difficult to 

implement in practice. 

Development of the CFD simulations may yield more important information about the 

flow development. For this the correct boundary conditions (of fixed stagnation 

pressure) need to be implemented. Thus far, this has proved to be very problematic. 

Modelling of all, or part of, the cross-wind tunnel may yield a solution, although the 

current author found it impossible to implement the time-dependent boundary 

conditions of the shutter mechanism when this was attempted. The CFD may then 

become an accurate predictive tool for the transient flow around the aerodynamic 

models. 

Other developments for the facility include the solenoid closure of shutters to produce a 

sharp transition from yawed to axial flow. A rolling road, which is now available, could 

be implemented to provide the correct floor boundary condition. This may also go some 

way to providing the correct skew velocity profile. Finally an increase in working 

section Reynolds number can be achieved by replacing the cross-wind tunnel fans. 

In the longer term, once the problems associated with the facility have been overcome, a 
larger scale, higher speed facility could be manufactured that would allow the testing of 

more detailed models at more realistic Reynolds numbers. 

9.2 Instrumentation 

For accurate measurement of the six components of transient force and moment the 

balance needs developing. Currently two problems exist, the cross-coupling between 

components and the natural frequency of the balance. 
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The successful manufacture of load cells provides opportunity in that any future balance 

design will not be constrained by the available commercial load cells. Thus, a six 

component balance that was suitable for internal mounting could be manufactured. This 

would eliminate the problems of cross-coupling. 

Increasing the natural frequency of the balance is more difficult. If deflection is to be 

measured by load cells this can only be done by using higher capacity cells, but this 

approach has an associated loss in accuracy. Reduction in mass of the balance/model 

system would also increase the natural frequency, however this places restrictions on 

any aerodynamic model that is to be used. 

Implementation of an advanced flowfield measurement technique, for example PIV, 

would significantly aid the investigation of flowfield structures in both the empty 

working section and around the aerodynamic models, however this does have the 

limitation of not providing pressure data. 

9.3 Aerodynamic Investigations 

The basic principles of the aerodynamic mechanisms causing the transient force and 

moment overshoots have been identified. Parametric studies of simplified bodies would 

provide valuable information regarding the relative importance of geometrical 

parameters, for example comer radii, A-pillar sharpness and backlight angle. 

Thus far, the forces and moments induced on a scale vehicle have not be investigated, 

this would provide significant insight into the 'real world' importance of transient 

testing. 
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Appendix A- Five Hole Probe Calibration Data 

Appendix A 

A. 1 Five Hole Probe Calibration Coefficients 

Listed in equations (A. 1-5) are the calibration coefficients used to formulate the five 

hole probe calibration maps. 

Pitch angle coefficient: 

Cp = 
P4 - P5 

(A. 1) 
Pi - P., ' 

Yaw angle Coefficient: 

Cy = 
P2 P3 

(A. 2) 
A P., 

Stagnation pressure coefficient: 

Ct A A, (A. 3) 
A Pay 

Static pressure Coefficient: 

Cs = 
Pav - Ps (A. 3) 
A- Pav 

where: 

pav = 
(P2 + P3 + P4 + P5) 

(A. 5) 
4 

and PI-5 are the individual pressures of the five holes. 
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Appendix A- Five Hole Probe Calibration Data 

A. 2 Five Hole Probe Calibration Maps 

Figure A. I Pitch/Yaw Coefficient Calibration Map 
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Figure A. 2 Total Pressure Coefficient Calibration Map 
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Figure A. 3 Static Pressure Coefficient Calibration Map 
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Appendix B- Wake Integration Method 

Appendix B 

B. 1 The Momentum Equation to Wake Integration 

The hydrodynamic force exerted on a body from the fluid flowing past it may be 

calculated from the momentum equation. 

B. I. 1 One-Dimensional Flow 

Consider the one-dimensional flow situation shown in figure B. 1. Here a body lies 

within a control volume, such that uniform flow with velocity uef and static pressure 

p, 
_, ef, with p., 

-,, f = 0.0, occurs at the upstream boundary, AB. Boundaries AD and BC 

are parallel to the flow, and sufficiently far from the body that the flow at these planes is 

unaffected by the presence of the body. Boundary CD lies behind the body, such that 

local changes in velocity and static pressure are experienced along its length. The local 

velocity at CD in the direction of u,, f is u, and the static pressure ps. 

The mass flow rate through an element of boundary CD of thickness 5y and unit breadth 

is pu8y, where p is the density of the fluid. The rate of increase of momentum of this 

fluid is therefore pu5y(u - u,, f). Integrating along the length of CD yields the total rate 

of increase of momentum for the control volume, as seen in equation (B. 1). 

Total rate of increase in momentum: 

D 
f pu(u - u,., f ) dy 
c 

(B. 1) 

The rate of increase of x-momentum. is equal to the sum of the forces on the fluid in the 

x-direction. These forces are F,,, the x component of the force exerted by the body on 
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Appendix B- Wake Integration Method 

the fluid and any force resulting from the pressure in the plane CD differing from that at 

AB. The net pressure force acting downstream is as shown in equation (B. 2). 

Net downstream pressure force: 

ADD 

f ps_ref dy -fp, dy =f (p, 
_rf - 

p, ) dy (B. 2) 
Bcc 

The momentum equation then becomes: 

DD 

Fx +f (p, 
_,, rf - 

p, ) dy f pu(u - u,., f ) dy (B. 3) 
cc 

Thus the axial force on the body, F., is given by: 

F. =f 1(P, 
-, 4 - p, ) - pu(u - u�, )l dy (B. 4) 

Similarly, the perpendicular force on the body in the +ve y direction, Fy is: 

D 

Fy f 
-puv dy (B. 5) 

c 

BI. 2 Three-Dimensional Flow 

Equation (B. 4) can be extrapolated for three dimensional flow. 

From total pressure definition: 

,: f 
p(U"e 2+ Ve 2+ Wre 2) Ps-ref = Po-re _Y2 fff (B. 6) 
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Appendix B- Wake Integration Method 

where p, f is the upstream total pressure and uef, vef and wef are the three upstream 

velocity components. The flow at the upstream boundary (AB) is assumed axial and 

uniform, thus v,, f = %ef = 0.0. Similarly: 

Ps -2 A, - Y2 p(U2 + V2 + W2) (B. 7) 

where p. is the local total pressure in plane CD and v and w are the local secondary flow 

velocity components. 

The axial force on the body, F,, then becomes: 

pJ -2 p(U 
ref 

2 +U2)+PUU 
ref 

1 dy Y2 
c 

D 

fN p(V2 + W2)1 dy 
c 

(B. 8) 

The first line of equation (B. 8) represents energy loss through fluid entrainment into the 

boundary layer and wake of the body, and is commonly termed 'viscous drag'. The 

second line represents energy required to maintain the secondary flow - so called 'vortex 

drag'. 

Assuming the assumptions of B. I are held, no such extrapolation is required for the 

perpendicular force on the body. 

B13 Microdrag and Microside 

The numerical evaluation of the wake integral from experimental data at discrete points 
in a wakeplane allows the local contribution (i. e. the contribution from a single point) to 

either drag or side force to be evaluated. These are commonly referred to as 'microdrag' 

and 'microside' respectively, and are defined in equations (139) and (B 10). 
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F, 
nld ": 

Pdýw-ref x dA 
(B. 9) 

ms= - 
Fy 

x dA 
(B. 10) 

where md and m, are the microdrag and microside respectively, F., and Fy the drag and 

side force respectively, as evaluated at a single point in the wake, Pdyn-ref the reference 

dynamic pressure and dA the area associated with a single point in the wake. The 

inclusion of dA for the reference area makes the two quantities independent of the wake 

traverse resolution, thus permitting a wider comparison of results. 

B1.4 Resolution of Forces 

For the yawed flow wake integral traverse where the Durham geometry was yawed in 

the working section, the axial and perpendicular forces (as shown in figure B. 2) required 

resolving into body axis axial (drag - F. ) and perpendicular (side - Fp) forces. This is 

outlined in equations (B. 11) and (B. 12). 

F, cos Vi + Fy sin Vi (B. 11) 

Fp = Fy sin V/ - F,, cosy/ (B. 12) 

where y is the yaw angle of the model. 
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Component of velocity 
through CD 

5y 

D 
r- --------- --1 

YL C 

x Pressure distribution 

along CD 

Figure B. I One Dimensional Flow in A Control Volume 
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Figure B. 2 Resolution of Yawed Body Forces 
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Appendix C- Durham Geometry Force Autospectral Density Functions 

Appendix C 

C. 1 Durham Geometry Autospectral Density Functions 

Figure CA shows autospectral density of all six components of force and moment, as 

measured by the two component balance, for the Durham geometry. 

Side Force 
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Figure C. I (page I of 2) 
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Figure C. I (page 2 of 2) Autospectral Density Functions for the Durham Geometry 

Forces and Moments 
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