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Abstract 

 

Carbon dioxide (CO2) is fundamental to life with critical roles in respiration, 

photosynthesis, metabolism, pathogenesis, and acid-base homeostasis. It is 

therefore remarkable that we know so little about the direct molecular interactions of 

CO2 with cellular components. CO2 is generally unreactive but combines rapidly with 

neutral amines at physiological temperatures and pressures to form carbamates. 

Carbamylation is caused by the nucleophilic attack of an uncharged amine (lysine 

side chain -amino group or N-terminal -amino group) on CO2. The carbamate 

modification has been observed on proteins including RuBisCO and haemoglobin 

but remains largely unexplored as a protein post-translational modification.  

 

Carbamates are labile and previous work on this PTM has involved their study under 

non-physiological conditions. The objective of this thesis is to investigate this 

understudied modification by removing its labile nature through trapping of CO2 on 

its target proteins in conditions representative of a physiological environment.  

 

This thesis presents a novel methodology to identify carbamates using a chemical 

trapping technique that eliminates their labile nature in combination with tryptic 

digest-MS analysis. The methodology functions under aqueous conditions 

representative of a physiological environment. Initial experiments demonstrated 

effective carbamate trapping at NH2 sites within the model substrates acetyl-lysine, 

PHE-GLY and PHE-LYS, a tetra-peptide and haemoglobin. The results were 

confirmed using ESI-MS combined with 12C and 13C isotope incorporation. 

Screening of Arabidopsis thaliana leaf lysates identified several novel carbamylated 

proteins previously unknown to directly interact with CO2. The proteomic screen was 

validated by the study of one new target, fructose bisphosphate aldolase 1, using 

recombinant protein. 

 

This methodology provides a technology to identify sites of carbamate formation and 

will permit the identification of sites of CO2 interactions within proteomes. This 

research has produced a method capable of removing the labile nature of 

carbamates and thereby completely transforming the study of carbamylation as a 

PTM. 
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Chapter 1: Introduction 

 

 

1-1 Overview 

 

The research presented within this thesis is an investigation into the modification of 

proteins by CO2. This reaction occurs by the nucleophilic attack of a neutral amine 

on CO2 to form a post-translational modification known as a carbamate (Scheme 1-

1).  

 

 

Carbamates have previously been understudied due to their labile nature and 

subsequently there is little known about their interaction within most biological 

systems. The importance of investigating carbamates is to provide further insight 

into the molecular mechanisms of CO2 within a cellular system and the possible 

effects that either an elevated or reduced level could cause.  

 

This work aimed to create a tool which could be used in a model physiological 

environment to reduce the labile nature of a carbamate and allow for downstream 

analysis. This tool could then be used to screen biological systems for undiscovered 

carbamates. 

 

The aim of this chapter is to provide a general overview of CO2, the effects it has in 

systems, the carbamate modification itself and the reason that studying CO2 is so 

important. 

 

 

 

Scheme 1-1 The reversible nucleophilic attack of a neutral amine on CO2 to form a carbamate. 
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1-2 Physiology of CO2 and its role in vivo in mammals

1-2.1 Carbonic anhydrase

CO2 has fundamental roles in all biological systems via its effect on photosynthesis 

(1), respiration (2) and acid-base homeostasis (3). CO2 in solution reacts with water 

molecules to produce carbonic acid which rapidly breaks down to bicarbonate ions 

and protons (Scheme 1-2). This system connects CO2 to the pH of a solution (4).  

The limiting equilibrium in this process is the hydration of CO2 (1). The actual 

process of water and CO2 combining is too slow at physiological pH (5,6) and is 

therefore catalysed by carbonic anhydrase (CA) (7). Carbonic anhydrase enzymes 

are very efficient enzymes with a turnover rate of up to 1 million CO2 molecules per 

second (8). Their role is important in all systems that involve CO2 such as during 

photosynthesis and respiration. This process is so important that CA enzymes have 

been found in Archaea, prokaryotes and eukaryotes (9). The equilibria in Scheme 

1-2 mean that changes in the concentration of any of these components reflect the 

concentration of all three (10). This relationship relates the pH of the system and 

CO2 homeostasis (9).  

CA is a zinc-containing enzyme with three evolutionary unrelated families known as 

α, β and γ. The mechanism of action involves an OH- ion bound to a coordinated 

zinc molecule attacking CO2 to form a metal-bound HCO3
- ion which is displaced by 

a water molecule (7) (Scheme 1-3). Animals only contain the α-type of CA but 

higher plants and cyanobacteria contain members of all three families (11). 

Scheme 1-2 Equlibria between the hydration of CO2 to carbonic acid by CA (1) and the 
breakdown of carbonic acid to bicarbonate (2). 
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1-2.2 Homeostasis of CO2 in mammals

The physiology for the regulation of CO2 within the aveolar system was thoroughly 

covered by Haldane and Priestley 1905 where they investigate the effects of oxygen 

deficiency or excess carbon dioxide on lung ventilation (12). This paper was also the 

first to suggest the modification of a protein (Hb) by carbon dioxide causing an affect 

on the function of the protein. This is now known to be by carbamate formation.  

Further from this work it is now known that homeostasis of internal CO2 levels 

is fundamental for all kingdoms of life (13). The control of both blood gases CO2 

and O2 are important within systems, with PCO2 regulation hypothesised to be 

more important than PO2 due to the tighter control over levels of CO2 (14). 

Without homeostasis cellular systems could undergo respiratory poisoning and 

pH levels could move outside of the range permitted for enzyme reactions (13), a 

movement from this range of just 0.1 µM can be fatal (15). As shown in 

Scheme 1-2 CO2 equilibria is directly linked to system pH by the formation of H+ 

ions. pH levels are important for many chemical and enzymatic processes within a 

cell such as cationic ion channel opening (16), meaning regulation of the 

intracellular CO2 equilibrium is essential. The bicarbonate system is viewed as the 

most important buffer system in 

Scheme 1-3 Hydration of CO2 by CA active site. 
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the body (17) and its levels are closely maintained by reabsorption and excretion 

(18).  

Cells transport H+ and HCO3
- across cell membranes via cationic and anionic 

channels to maintain these levels (10). Acid-base transport across the plasma 

membrane is crucial for intracellular pH (pHi) control. Disturbed levels can cause ion 

channel malfunction and affect enzyme activity (19). There are several G protein-

coupled receptors (GPCRs) known to be activated by a reduction in pH (below 6.8) 

caused by H+ levels (10). Conversion between these species is also important for 

transport, cells convert H2CO3 to CO2  which can then diffuse into the renal cell as 

HCO3
- cannot pass through the cell membrane (5). The detection of CO2 in a system 

can also be through monitoring of the production of HCO3
- and H+ which then 

triggers signal cascades which are monitored (20).  

Despite its importance, very little is actually understood of the molecular interactions 

of CO2 within the cell. It was originally assumed that all gases were transported by 

passage through a biological membrane by diffusion. Gutknecht et. al. 1977 found 

that lipid permeability to CO2 was greater than that of H2CO3 due to polarity (3). 

However it was later shown that the partition coefficient of CO2 was reduced slightly 

in the presence of cholesterol (21). It is now agreed that some membranes are more 

permeable than others and in fact, some membranes such as the apical membranes 

of gastric gland cells and colonic crypt cells, are not permeable to CO2 at all (22,23). 

In some cells, such as red blood cells, it is now known that this process is helped by 

transporter proteins such as Rhesus and aquaporin proteins  (AQP) (24). A study 

undertaken using aquaporin-1 (AQP1) knockout mutants was able to show that the 

level of CO2 inside a red blood cell (RBC) compared to outside was significantly 

reduced upon lack of AQP1 channel (22). Within the blood system CO2 is 

transported either dissolved in solution, as carbonic acid or bound to 

haemoglobin as a carbamate (25,26). The transport of CO2 by the blood therefore 

involves the hydration of CO2 to carbonic acid and then to a bicarbonate ion. After 

the hydration reaction of the CO2 the carbonic anhydrase dissociates (27), 

allowing the movement of bicarbonate across the membrane in exchange for a Cl- 

ion (Figure 1-1).  
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The blood plasma of the average adult contains 50-65 % of its CO2 gas as 

bicarbonate (28). It is clear from the described equilibrium that an increase in the 

amount of CO2 present will correlate with an increase in the amount of bicarbonate 

(28).  

Figure 1-1 Simplified process of CO2 entrance, equilibria within and then exit from a RBC. 

AQP
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1-3 Detection pathways for CO2 in mammals

CO2 and HCO3
- influence a number of cell signalling processes. Identification of CO2

responsive signalling pathways is key to understanding how organisms cope with 

changing CO2 levels. 

Cyclic adenosine 3’,5’,monophosphate (cAMP) is a secondary cell messenger 

present in many signalling cascades. cAMP is regulated by two adenylyl cyclase 

forms, one is a transmembrane enzyme (tmAC) that is activated by a G protein and 

one is soluble adenylyl cyclase (sAC). sAC is directly regulated by the presence of 

HCO3
- (29). This regulation shows a direct link from CO2 to cellular signalling

pathways (30).  

The cAMP produced by adenylyl cyclase is responsible for activating protein kinase 

A (PKA) which phosphorylates downstream proteins. One consequence of this 

pathway is the release of calcium ions (Ca2+) from the ER by phosphorylation of 

calcium channels. These calcium ions are messengers in numerous pathways. One 

of which is the production of cGMP via calcineurin and nitric oxide (31). cGMP 

activates protein kinase G (PKG) (Figure 1-2). 
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Townsend et. al. 2009 demonstrated that some subclass members of AC Class III 

respond to CO2 instead of HCO3
-. The phylogenetically related Class IIIa Rv1625c

AC of M. tuberculosis H37Rv was also shown to be directly stimulated by CO2 at 

physiological concentrations. This led to the conclusion that the mammalian cAMP 

signalling pathway is able to discriminate between CO2 and HCO3
- in vivo.

IP3 receptors (IP3R) are gated Ca2+ channels that allow the release of Ca2+ into the

intracellular environment (32). These receptors are activated by the hydrolysis 

product of phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 is cleaved to form 

diacylglycerol (DAG) and IP3, this IP3 goes on to activate the IP3R which leads to the 

release of Ca2+ from the ER (33) (Figure 1-3). This calcium release regulates 

thousands of downstream targets. 

G protein
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Figure 1-2 Interaction between the cAMP and cGMP pathways showing intracellular calcium 
signalling. Both cAMP and cGMP are produced by soluble cyclase enzymes. Protein kinase A 
(PKA), soluble adenylyl cyclase (sAC), calcineurin (CaN), nitric oxide species (NOS), 
soluble guanadylyl cylase (sGC). 
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The activation of IP3R also causes the release of the inositol 1,4,5-triphosphate 

receptor-binding protein (IRBIT), which is an alternative binding ligand for IP3R able 

to compete with IP3 to suppress IP3R and regulate Ca2+ release (34).

NBC1 is a cotransporter that facilitates the movement of Na+ and HCO3
- ions across

plasma membranes, with 2 or 3 HCO3
- for each Na+ (34). This links NBC1 to the net

movement of negative charge across the membrane. IRBIT has been found to 

specifically bind to pNBC1 (pancreas NBC1) cotransporters and increase their 

activity (Figure 1-4) (35). This links IRBIT to pH regulation and shows a method of 

regulating variants of NBC1 for different physiological roles (33).  
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Figure 1-3 Activation of the IP3 pathway by PIP2 hydrolysis causing Ca
2+

 release from the ER.
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IP3R is also regulated by phosphorylation by PKA linking the removal of intracellular 

HCO3
- to the cAMP pathway (36). This introduces an insight into the crosstalk

between the cAMP and Ca2+ release pathways (37). These pathways also link in the 

regulation of IP3 production. The phosphorylation of PLC by PKA has been shown to 

prevent IP3 production by PIP2 hydrolysis (37). Cytosolic IP3 levels are also 

regulated by their conversion into IP2 and IP4 by IP3 5-phosphatase and IP3 3-kinase 

respectively. 

Reactive oxygen species (ROS) have been shown to be important chemicals in 

signalling processes involving cell growth and differentiation (38). Nitric oxide (NO) 

has been identified as a mediator in the immune response (39) via the production of 

sGC which  catalyses cGMP production (Figure 1-2). ROS can reduce damage by 

ischemic injury to liver cells by activating the release of HMGB1 via calcium 

dependent kinases (40). However hypoxia caused ROS formation can cause cellular 

damage. ROS are produced by NADPH oxidase activity which has been shown to 

be inhibited by CO2 (41). 

Figure 1-4 Interaction of IRBIT with IP3R to regulate the Na
+
/HCO3

-
 cotransporter NBC1 and 

cause calcium release. 
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It has recently been shown that similar to ROS and O2, CO2 is also sensed by cells 

causing physiological responses via NF-Kβ transcription factors (42). NF-Kβ is a 

transcription factor that regulates genes responsible for the immune response. In 

lung cells it was discovered that hypoxia-mediated IL-8 induction was as a result of 

NF-Kβ activation (43). The mechanism of this reaction is caused by the methylation 

of phosphatase PP2A which controls the translocation of NF-Kβ to the nucleus. 

Guais et. al. 2011 found that this reaction was not induced under a drop in pH 

without the presence of CO2 (44) implying the interaction of CO2 in this pathway. 

Mammalian cells sense changes in CO2 levels leading to altered gene expression 

via the NF-Kβ pathway (45). IKKα is a regulatory component of NF-Kβ which has 

been found to translocate to the nucleus in response to elevated CO2. The results of 

this imply the existence of a molecular CO2 sensor in mammalian cells. 

Chemosensing is a complex mechanism of signal transductions that relate to a 

cellular response at a biological level (46). Cells that are sensitive to changing levels 

of CO2/H
+ are chemosensitive cells (47). These cells are necessary to maintain 

homeostatic control over blood gas concentrations (48). The specific mechanisms of 

this process are unclear but the pathways to detect CO2 are known to be linked by 

sAC regulation through bicarbonate sensing (49). sAC then regulates 

downstream pathways via the secondary messenger cAMP. There are several 

types of chemoreceptor, they may sense CO2, HCO3
- or pH (10) in order to 

regulate breathing and tidal volumes. The mechanism of conversion of 

bicarbonate into CO2 is important for several reasons. For example high dissolved 

CO2 (dCO2) concentrations have previously been shown to inhibit cell growth and 

product formation in mammalian cells and to alter the glycosylation pattern of 

recombinant proteins in cell culture (50). An example of a CO2-dependent function is 

the beat frquencey of cilia in airway epithelia, during exhalation the higher 

concentration of CO2 present is sensed by sAC which activates PKA and increases 

ciliary beating (49).  

Levels of CO2 are used as a proxy to detect different things. Insects detect 

increased CO2 to locate decaying food and nematode parasites use CO2 to search 

for prey (8). Blood-feeding insects, including the malaria mosquito Anopheles 

gambiae, use sensitive olfactory systems to locate hosts. This is accomplished by 

detecting and following plumes of volatile host emissions including CO2. CO2 is 
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sensed by a population of OSNs in the maxillary palps of mosquitoes and in the 

antennae of the fruit fly D. melanogaster (51). The signals can also be related to 

internal measures, fungi use high CO2 levels to induce filamentation and regulate 

sporulation, and mammals monitor levels to control respiratory exchange (13).  

The effect of increased CO2 levels has been investigated on C. elegans as a model 

system, with the results showing that levels exceeding 9 % cause slowed 

development and reduced fertility (52). It remains to be resolved whether the 

receptor binds gaseous CO2 or HCO3
-. As CO2 is an important stimulus for a large

number of insect pests, the identification of the CO2 receptor provides a potential 

target for the design of inhibitors that might be useful as insect repellents. These 

would be important weapons in the fight against global infectious disease by 

reducing the attraction of blood-feeding insects to human hosts (51). Little is known 

about its role but in C. elegans, HCO3
- regulated adenylate cyclase controls

development based on CO2 levels (13). The avoidance response of C. elegans to 

CO2 has been shown to be mediated by cGMP (53). There are several guanylyl 

cyclase enzymes which catalyse the conversion of GTP to cGMP. In mice one of 

these enzymes, GC-D, has been shown to be activated by the presence of 

bicarbonate, catalysed from carbonic anhydrase conversion from CO2 and used in 

odour recognition (54,55).  

This display of CO2 effects on cellular pH levels, signalling pathways and 

chemosensing demonstrate a requirement to understand the interactions of CO2 

within a cell and how its effects regulate cellular processes. 
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1-4 Physiology of CO2 in plants

1-4.1 Photosynthesis

CO2 has fundamental roles in plants via its effect on photosynthesis (3) as the 

substrate for the carbon-fixing enzyme ribulose bisphosphate carboxylase-

oxygenase (RuBisCO) to synthesise sugars as well as being a key by-product via 

biochemical pathways in glycolysis and the Krebs cycle (56).  

The Calvin cycle is the name for the light-independent reactions of photosynthesis. 

The cycle involves carbon fixation, reduction reactions and Ribulose 1,5 

bisphosphate regeneration (Figure 1-5). 

Figure 1-5 The Calvin Cycle showing the role that RuBisCO plays in carbon fixation, the 
reduction of the 1,3-BPG molecule and the regeneration of RuBP. 
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Carbon fixation involves the addition of CO2 to Ribulose 1,5 bisphosphate by 

RuBisCO. This 6-C molecule is unstable and breaks down to two molecules of 3-

PG. One is released while the remaining 3-PG molecule is phosphorylated by 

phosphoglycerate kinase producing 1,3-BPG that is then reduced by glyceraldehyde 

3-phosphate dehydrogenase using NADPH to form G3P. Five molecules of G3P are

then used to regenerate three molecules of Ribulose 1,5 bisphosphate (57). 

1-4.2 Effect of CO2 levels on crop yields

Levels of CO2 are rising (58). There has been a lot of debate surrounding the effect 

of CO2 on plants and plant growth, specifically in relation to crop yields. Previous 

studies of rising CO2 levels on crop growth carried out in the 1980’s (59) suggested 

that an increase in CO2 levels would increase crop yields. This was speculated to be 

due to the RuBisCO photosynthetic reaction occurring in areas that were previously 

not saturated with CO2. Many studies have been carried out under controlled 

conditions involving growth chambers or greenhouses but concern has been voiced 

that these studies introduce bias surrounding temperature control (60). 

It has been demonstrated that these previous studies, all carried out in plant 

chamber environments, have over-estimated the yield increase by as much as a 

third. New experiments using a free-air concentration enrichment (FACE) system, in 

which crops are grown in a more realistic field environment with increased levels of 

CO2 pumped over them have shown that in some crops and in tropical growth areas 

it is expected that crop yields will decrease (61). Studies carried out using the newly 

developed FACE technique were believed to have overcome most of the previous 

artefacts but there is still controversy that these new results are exaggerated by the 

limited available data (62). All these studies demonstrate how difficult it is to 

accurately predict the reaction of plants to rising CO2 levels, and highlights the 

importance of understanding the interaction of CO2 within a plant system.  

All of these studies are limited by the short timescale of the experiments, this means 

little is known about the effect on future generations of plants grown under these 

conditions. In one study short term increased atmospheric CO2 led to an increase in 

photosynthesis and decreased respiration in terrestrial plants with the C3 
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photosynthetic pathway which could lead to higher yields. In the longer term this 

increase was often offset by downregulation of photosynthetic capacity (63). 

Another factor to be considered when investigating crop growth is the nutritional 

value of the crops. The rise of CO2 levels is most likely to affect the RuBisCO 

carboxylation reaction, as this reaction occurs in a location not saturated by CO2. 

Though most previous studies have focused on the increased growth of plants in 

increased CO2 environments (normally by increase in dry weight of material) a study 

has been carried out to investigate any changes in physiological properties and 

therefore possible interaction with grazers (64). The study found that though 

nitrogen efficiency was increased in plants this led to increased phenolics and 

tannins as well as tissue mass and that the Chrysophthartus flaveola beetle did 

poorly when fed this material in comparison to a matching weight of atmospheric 

CO2 grown plants. A second study conducted over 9 years found that plant 

nutritional quality was reduced by CO2 increase which led to increased consumption 

by herbivores to compensate for the reduced nutrition (65). This study even found a 

reduction in the abundance of herbivores by 21 %, this result suggests that an 

increase in CO2 levels could change the ecology of a population.  

Understanding how plants will adapt to the rapidly changing climate remains a high 

scientific priority. The effect on crop yield and nutritional value will have 

consequences worldwide for both food bases and the stability of ecosystems (66). 

Though there is much debate surrounding the effect that increased CO2 

concentration in the atmosphere will have on crop growth it is certain that a 

difference will occur. The more information that is gathered surrounding the proteins 

affected by CO2 within the cell the better prepared we might be for the outcome. 

1-4.3 Homeostasis of CO2 in plants

 Homeostasis of CO2 and pH is also important within plant cells. The Arabidopsis 

gene AtCHX23 has been suggested to encode a putative Na+(K+)/H+ antiport within 

the chloroplast envelope (67). This exchanger is important for regulation of the 
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higher stromal pH relative to the chloroplast cytosol. This raised pH is important for 

regulating several steps of the light-independent photosynthetic enzymes (67). 

Besides crop yield there are other mechanisms that could be affected by increased 

CO2 levels. For example it has been shown in wheat that an increase in CO2 level 

decreases the transcription of RbcS, RbcL and three other Calvin cycle enzymes 

(68). CO2 is also transported in plant cells in a similar way to mammalian cells. AQP 

channels are so important it was speculated that there must be a homologous 

protein in plants, NtAQP1 was found to transport CO2 in the same way as 

mammalian aquaporins (69). 
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1-5 Detection pathways of CO2 in plants

CO2 enters plants through stomata pores on the leaf surface. Stomata pores are 

made up of a pair of guard cells which form the main entrance point of CO2 into a 

plant. Guard cells control the opening and closing of stomatal pores by sensing light, 

drought and CO2. The process of CO2 entrance through this pore is via a complex 

signalling pathway involving kinases/phosphatases, hormone stimuli and ion 

channel regulation (70). The stomatal closing of many plant species is dependent on 

free Ca2+ concentration which mediates CO2 signal transduction in guard cells (71).

Stomatal aperture is regulated by abscisic acid (ABA), ROS, NO and Ca2+ ions (72). 

ABA is the main hormone involved in the opening and closing of the stomata, 

stomatal closing starts with ABA-induced signalling which increases cytosolic Ca2+. 

This increased Ca2+ inhibits proton and K+
in pumps as well as activating several

anion pumps called S and R-type channels. These two steps combine to cause an 

anion efflux within the cell which causes depolarisation. This depolarisation 

additionally activates K+
out channels which contribute to the anion efflux and the

guard cell loses its turgor causing stomata closure (73) (Figure 1-6). 
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Reversible protein phosphorylation is known to play a crucial role in guard cell 

control of stomatal opening (74). The opening of stomata to allow CO2 diffusion 

needs to carefully balance with the loss of water vapour out of the plant. Opening of 

stomata through guard cell swelling is caused by the uptake of K+ ions. 

CO2 is present in all organisms that undergo cellular respiration (75) and is 

monitored by K+ channels in all three domains of life (76). K+ channels in guard cells 

are complex and regulated by several signal molecules, one of which is CO2 (77). 

Work was carried out to investigate the response to K+ channels in Vicia faba in 

response to increased CO2 levels. Though the mechanism is unknown it was found 

that the activity of the K+ channels was reduced by increased CO2 independent of

pH (77).  
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Figure 1-6 Simplified pathways involved in the process of stomata closing and opening 
beginning with ABA signalling. 
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Another study on the regulation of K+ channels concluded that several factors were 

involved in the regulation of the channels, including CO2 and pH but that how the 

factors are linked to the channel function has yet to be discovered (76). K+ channel 

regulation by pH is widely known and is implicated in the use of CO2 during 

chemosensing (76). 

Plants depend on CO2 entering through open stomata for photosynthesis. Further 

knowledge into the specific mechanism of stomata opening to CO2 enrichment 

would provide a lot of information into the effect of increased CO2 levels (78). 

Though the consequences of increased CO2 remain unknown it is certain that the 

increase will affect stomata as they are the entrance for CO2 into the cell. 

Homeostasis in plants surrounds the opening and closing of stomata to regulate the 

entrance of CO2 into leaf cells. The discovery of SLAC1, a slow anion channel, has 

been found to mediate CO2 sensitivity in the regulation of plant gas exchange. The 

efflux of Cl- and malate2- ions was already known to occur in guard cells but SLAC1 

is the first evidence of the anion channel carrying out this ion exchange. SLAC1 is 

localised to the plasma membrane of guard cells and its activation increases with 

the rise of CO2 (79). This process occurs by the regulation of anion transfer within 

guard cells which controls the turgor of the cells. 
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1-6 Carbamylation the post-translational modification

The pathways of CO2 that have been discussed are all identified by observed 

system alterations with changing CO2 levels. How CO2 is physically interacting 

within the pathway is often unknown. One way in which CO2 can interact within a 

protein system is via the formation of a carbamate on an amine group. 

1-6.1 Types of Carbamylation

There has been some confusion surrounding carbamates in the literature as 

carbamylation is a term that has been used to describe two different PTMs. One of 

which is the reaction with CO2 which is discussed in this work. The other is the 

interaction of an amine group with urea, or a urea break-down product isocyanate. 

The latter is not a labile reaction and has been analysed using mass spectrometry 

techniques (80) (Figure 1-7). 

Figure 1-7 Schematic difference between the isocyanate formed carbamate (A) and the CO2  
carbamate (B). 
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1-6.2 Carbamate formation and equilibria

The carbamate formation important for this work involves the interaction of CO2 with 

amines. CO2 is generally unreactive but it combines rapidly with amines at cellular 

temperatures and pressures to form carbamates. This reaction is the nucleophilic 

attack of neutral amines on CO2 through a reversible acid-base reaction (81). 

Carbamylation is one of the earliest post-translational modifications (PTMs) to be 

identified (82). In a cellular system carbamylation converts side chain lysine or N-

terminal residues, from basic/neutral to acidic functionality (Scheme 1-4) (83). 

The formation of a carbamate can alter peptide structure or binding which may lead 

to an effect within a cellular system (84). Carbamylation is under investigated due to 

the labile nature of the modification making it difficult to study (83-85). As a 

reversible process carbamates were previously thought to be of little biological 

significance. 

It has since been suggested that carbamylation may be more widespread than 

previously realised and not limited to the proteins so far recognised (86). The 

formation of a carbamate links to the equlibria of CO2 in solution. In order for a 

carbamate to form, the CO2 needs to be in aqueous form not as bicarbonate or 

carbonic acid.  

There has been debate over the formation of a carbamate and the conditions that 

are needed for such an interaction, it has been observed that an increase in pH 

increases the amount of carbamate formed (87). This implies that the rate limiting 

step of the carbamate formation is the charge on the amine group and is linked to 

the pKa. The pKa of an amine group on a lysine residue ranges from 9-13 

depending on the specific environment (88). The pH of a physiological environment 

Scheme 1-4 The reversible nucleophilic attack of a neutral amine on CO2 to form a carbamate. 
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is around 7.4 implying that carbamate formation is enhanced by protein structure 

and the formation of restricted hydration spaces to encourage reduced lysine pKas. 

As can be seen from Figure 1-8 the formation of a carbamate involves the amine 

group being in its uncharged state as well as the conversion of CO2 into its aqeuous 

form from bicarbonate. The pKa of the average lysine side chain is 9-10. This 

means that under normal physiological conditions of pH 7.4 most amine groups are 

in a charged state. It is therefore suggested that carbamates are formed on 

‘privledged’ amines. 

A number of proteins have been found to interact with CO2 by the formation of a 

carbamate on a privileged NH2 group; these are discussed in more detail in 1-7, 1-8 

and 1-9. 

When investigating a carbamate on a single amino acid or short peptide system the 

priviledged environment of a protein structure will not be present. Le Chateleirs 

principle could help with the formation of possible carbamate to trap. The principle 

suggests that a change to a system in equilibrium will cause an adjustment to 

Figure 1-8 Demonstrating the combination of the equilibria involved in the formation of CO2 and 
an uncharged amine that are both necessary for carbamate formation.
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counteract this change as far as possible. This implies that as the uncharged 

amines form a carbamate more amine will become uncharged (89).  

It is also suggested here that the fold of a protein can produce an environment 

capable of encouraging carbamate formation. For example the N-terminal valines on 

β-haemoglobin chains are contained within such an environment to encourage the 

carbamate formation having a pKa of 6.6 (90). 
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1-7 Carbamylated proteins in mammals

1-7.1 Haemoglobin

There are few confirmed carbamylation sites because of the modifications labile 

nature. The first of these is the carbamino group formation of haemoglobin (Hb) 

which alters its oxygen binding properties with the binding of CO2 (84). An increase 

in blood CO2 concentration leads to a decrease in blood pH which results in Hb 

releasing the bound oxygen; this is known as the Bohr effect (91). Within a capillary 

a carbamate is formed at the N-terminal residue of each of the Hb chains producing 

carbaminohaemoglobin (91). Previous studies of this modification have found that 

the adduct formed on the β-chain are more prominent than on the α-chain (92). This 

binding of CO2 to Hb causes a stabilising effect on the protein which changes its 

oxygen binding properties (93). 10-20 % of CO2 transport in the blood is carried by 

Hb in this way (93). Deoxygenation of the blood increases its ability to carry CO2 i.e. 

the lower the saturation of Hb with O2 the larger the CO2 saturation, this is known as 

the Haldane effect (94). 

The presence of carbamylation adducts in Hb was originally confirmed using 13C 

NMR spectroscopy (95). This technique could not identify the location of the 

carbamate, only that a carbamate was forming on the protein. The site of carbamate 

formation was later recognised by mutating the N-terminal residues with cyanate 

and investigating the formation of deoxyhaemoglobin. This technique of mutation is 

unsuitable for identifying the location of many carbamates. This is because they are 

often located in active sites and their mutation would therefore render the protein not 

functional. 

1-7.2 Connexin 26

Gap junctions are composed of two hemichannels, these channels comprise 

primarily of connexin proteins (96). Connexin 26 (Cx26) has been specifically shown 

to be sensitive to PCO2 levels by the formation of a carbamate on Lys125. An 

experiment carried out by Meigh et. al. 2013 demonstrated channel opening to 
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increased CO2 levels despite a constant pH (97). The effect of carbamylation was 

tested by mutation of the Lys125 residue. Previously the main theory of PCO2 

measurement has been via pH-sensing and only recently it has been suggested 

that direct CO2 or HCO3
- molecules are being detected (98).  

It has been shown that three hemichannels (Cx 26, 30 and 32) can be opened 

by CO2. These channels all contain a carbamylation motif discovered only in the 

CO2 sensitive connexions which suggest that this CO2 regulation is through the 

formation of a carbamate (99). 
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1-8 Carbamylated proteins in plants

1-8.1 RuBisCO

As mentioned previously the major route of CO2 metabolism in the environment is 

the Calvin-Benson-Bassham (CBB) reductive pentose phosphate pathway, the main 

enzyme in this pathway is RuBisCO (1). RuBisCO is one of the most abundant 

enzymes on Earth (100), it catalytically fixes CO2 in photosynthesis, on the order of 

1011 tons each year (2,101). Being such a large part of photosynthesis RuBisCO is 

present in most autotrophic organisms including algae and plants (102) and has 

been said to represent the ultimate energy source due to its linking inorganic and 

organic carbon (103,104).  

It has been shown that activation of the RuBisCO for its carboxylase function 

requires the stepwise addition of CO2 binding through formation of a carbamate 

followed by stabilisation by a magnesium ion, with the CO2 addition being the rate 

limiting-step (83). This activator CO2 is different from the later CO2 which becomes 

fixed during carboxylation (105) (Scheme 1-5).  
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Scheme 1-5 The process of Lys201 carbamate formation within the RuBisCO active site 
catalysing the conversion of RuBP to two 3-PG molecules, one is released and one is used in 
the regeneration of RuBP. 

RuBisCO represents the first enzyme known to be activated by CO2 through 

carbamate formation, as well as using it as a substrate (105-107). Both of the 

RuBisCO functions require carbamylation of an internal lysine residue (104).  

NMR spectroscopy studies with 13CO2 revealed the presence of binding of CO2 to

RuBisCO by the formation of a carbamate. The site of the carbamate (Lys201) was 

established by X-ray crystallography. This technique involves higher than 

physiological concentrations of CO2 and non-physiological solvent conditions which 

could cause artefacts. Therefore this method is not applicable for searching for 

unknown carbamates under cellular conditions. 
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1-8.2 Urease

Urease is an enzyme with an important role in the metabolism of nitrogen in plants 

and microbes by catalysing the hydrolysis of urea to form ammonia and carbon 

dioxide. It has been isolated from various plants, fungi and bacteria. The urease 

active site contains a carbamylated lysine (Lys217) residue stabilised by a nickel 

atom (108). The enzyme has been shown to be CO2 dependent in vitro which is 

expected to be due to the presence of the carbamylated lysine (109). The site of 

carbamate formation was identified using X-ray crystallography.  

The investigation by Pearson et. al. 1998, was interested in whether the carbamate 

chemistry was essential for activation of urease or if it could be substituted by a 

carboxylate group. Active site mutations of urease replaced the carbamylated lysine 

with a glutamate to look at interaction with the nickel metal ions. No activity was 

achieved as it was seen that the glutamate residue was not long enough to reach 

the metal binding site (109). The activity was later rescued by the addition of formic 

acid which was able to bridge the nickel centre. This implies that the chemistry 

introduced by the carbamylated lysine is essential for enzyme activity. 
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1-9 Carbamylated proteins in bacteria

1-9.1 Alanine Racemase

The carbamate modification is also present in bacteria. Alanine racemase is the 

enzyme responsible for catalysing the formation of D-alanine which is used by 

bacteria to synthesise peptidoglycan for cell walls (110). A step in the process of this 

catalysis involves the formation of a carbamate of the side chain of Lys129 which is 

thought to influence the substrate binding and catalysis by correctly positioning the 

Arg136 residue (110). The absolute requirement for D-alanine in peptidoglycan 

biosynthesis makes alanine racemase an attractive target for inhibitors that might 

also function as antibiotics (110). 

In the case of alanine racemase, the close proximity of Arg136 to Lys129 would be 

expected to promote deprotonation of the lysine. Arg136 is also perfectly positioned 

to stabilise the carbamate product once formed similar to how a metal ion stabilises 

carbamates in other enzymes with lysine carbamylation.  

This carbamate location was discovered using electron density mapping. Much like 

the crystallisation carried out for RuBisCO, these conditions do not match a 

physiological environment so could introduce artefacts. 

1-9.2 Transcarboxylase

Transcarboxylase Biotin is a CO2 cofactor that carries CO2 in the form of 

carboxybiotin. Transcarboxylase from Propionibacterium shermanii is a biotin-

dependent carboxylase, it is involved in the transfer of CO2 to pyruvate using two 

reactions (111). The first of which transfers CO2
- from methylmalonyl-CoA to biotin

and the next moves that same CO2
- to pyruvate (112). The large transcarboxylase

subunit 5S is homologous to the C-terminal carboxyltransferase region of human 

pyruvate carboxylase, therefore work on this transcarboxylase enzyme can 

elucidate information about the mammalian enzyme (112).  
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A carbamylated lysine residue has been discovered within the active site of this 

subunit coordinated to a cobalt ion. As well as coordinating this cobalt the 

carbamylation modification also forms hydrogen bonds with several residues all of 

which appear to be conserved and involved in the catalysis of carboxylating biotin 

(113). It has been shown that catalysis fails without the presence of the 

carbamylated lysine (112). This structural information was gained by X-ray 

crystallography.  

1-9.3 β- lactamase

β-lactam antibiotics prevent cell wall synthesis in bacteria and are therefore a line of 

defence in the treatment of bacterial infections (114). These antibiotics are 

challenged by β-lactamase resistance enzymes. These enzymes come in four 

classes, A, B, C and D. Class D are currently the least studied but have been shown 

to form a carbamate for their catalytic abilities (115). The crystal structure of OXA10 

class D β-lactamase from Pseudomonas aeruginosa has been solved revealing 

many newly discovered features of the protein structure but most notably the 

formation of a carbamate on the active site residue Lys70 (114).  

In the previously mentioned enzymes the carbamate formation is stabilised by 

interaction with a metal cation. The formation of a carbamate at Lys70 on β-

lactamase is the only known example of an active site lysine carbamylation which 

does not coordinate to a metal ion. Instead it is stabilised by hydrogen bond 

interactions to other active site residues and a water molecule (114). 

Work on β-lactamases utilised labelled bicarbonate (e.g. NaH13CO3) and analysis by

13C NMR spectroscopy to investigate the carbamylated residue (115). This site was 

also confirmed by crystallography which puts the enzyme under non physiological 

conditions. The study also examined the activity of the enzyme with regards to 

carbamate formation. It was found that the enzyme was inactive when in degassed 

buffer but regained activity with the addition of bicarbonate at pH 7.0 (114). The 

results of this assay demonstrate the importance of carbamate formation in enzyme 

active sites. 
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1-9.4 Phosphotriesterase

Phosphotriesters are insecticides that are used in the protection of crops by working 

as nerve agents (116). Bacterial phosphotriesterases evolved to be able to 

hydrolyse these compounds after their introduction into the environment. These 

enzymes detoxify pesticides and require a binuclear metal centre for activity (117).  

The reaction mechanism of these enzymes is thought to proceed through an SN2-

type catalytic mechanism (118). The active site contains two metal ions, though it is 

not clear which metal ion is present, but one of the bridging ligands is a carbamate 

formed on Lys169. The enzyme was assayed for activity prior to crystallisation but in 

some cases the metals were not present in the active site due to the conditions 

required for crystal formation. This gives an example of how differences can be 

caused by the artificial conditions required for crystallisation. 
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1-10 Practical challenge

The main reason for the lack of research to investigate carbamate formation is its 

labile nature. This means that the modification freely dissociates as seen by the red 

arrow in Scheme 1-6. 

The main method of PTM analysis is MS. Previously it was not possible to analyse 

many PTMs in this way due to the necessity of hard ionisation techniques. In recent 

years soft ionisation techniques such as MALDI and ESI have made it possible to 

analyse the formation of a carbamate on a whole protein (119). However, the 

additional energy required to fragment the protein for site confirmation causes the 

release of the carbamate modification and therefore cannot identify the location. 

There are several previous investigations into the formation of carbamates on 

proteins. The main difference between the aims of this work and previous studies is 

to perform the fixing of the CO2 under conditions closely matching a cellular 

environment and then allow analysis of the site. Previous studies looking at 

carbamate site location have been performed under organic solvent systems. This 

could mean that their results are artificially formed under the experimental conditions 

(120). Several studies have confirmed the presence of a carbamate in a protein 

through crystallisation but this again cannot be confirmed as a natural state 

carbamate (106).  

To overcome this challenge a trapping method will be developed. This work aims to 

remove the labile nature of the carbamate and create a more robust molecule for 

use in MS. The hypothesis here is that the transfer of a chemical group to the 

formed carbamate will provide this robust nature and prevent the dissociation 

reaction (Scheme 1-7).  

Scheme 1-6 Labile reaction mechanism of carbamate formation. 
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The group transfer needs to occur under physiological conditions of pH and CO2 

concentration in an aqueous environment to provide a system that can more 

accurately predict the location of a naturally occurring carbamate without artefact. 

This technique will also provide a method that can be used on any protein system, 

some proteins are difficult to crystallise so would not be applicable for the current 

discovery techniques. 

Scheme 1-7 Converting a carbamate PTM into a robust modification for downstream analysis by 
removing the labile nature. 
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1-11 Previous trapping work

Thorough detail of the previous background related to trapping of carbamates is 

included within the results chapters 3 and 4 but there is also a brief summary here. 

MS has been used to identify carbamates previously, however due to the fragility of 

the adduct being investigated, the location of the modification cannot be identified 

(84). A study was carried out to investigate the soft ionisation techniques that exist 

for MS to look at their ability to visualise a carbamate. Terrier and Douglas (2010) 

were able to identify the formation of a carbamate at high pH and using dissolved 

CO2. Unfortunately these modifications were mostly on peptides and due to the high 

pH values that are not physiologically relevant, likely to be artificial. 

1-11.1 TMS-DAM

TMS-DAM is an electrophilic methylating agent and has been used previously in 

organic systems for the O-methylation of alcohols in dichloromethane (121). Work 

using TMS-DAM to trap carbamates has also been carried out previously, but only 

within a mostly organic (benzene/methanol (4:1)) solvent environment (122) 

(Scheme 1-8). 

This reaction occurs by the transfer of a methyl group from TMS-DAM to the 

carbamate. This reagent was able to successfully esterify the carbamate but the 

organic solvents cannot be used in this work because any reaction under non-

physiological conditions could create artificial results. Therefore one proposal in this 

synthetic work was to produce a water-soluble derivative of TMS-DAM that can be 

Scheme 1-8 Esterification of a generic carbamate by TMS-DAM in an organic solvent system. 
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used to esterify carbamates in the same way but within an aqueous system. (The 

results describing this work are contained in Chapter 3). 

1-11.2 Meerwein’s reagents

A second method to be investigated was the esterification by an electrophilic 

reagent, specifically Meerwein’s reagent. This term covers both the 

trimethyloxonium (TMO) and triethyloxonium (TEO) tetrafluoroborate salts (Figure 

1-9).

The trapping process of Meerwein’s reagent occurs via a similar mechanism as 

described for TMS-DAM, with the transfer of a methyl or ethyl group to the CO2 

bound to an amine residue (Scheme 1-9).  

Figure 1-9 Meerwein’s reagents TMO and TEO. 

Scheme 1-9 Hypothesised ethylation of a carbamate by TEO. 
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Both TMS-DAM and Meerwein’s reagents hydrolyse in water, with the hydroxide ion 

acting as the nucleophile (Scheme 1-10). 

This is likely to be the reason why these reagents have not often been used for 

reactions in aqueous solution. The Meerwein reagents have an advantage over 

diazomethane, with triethyloxonium having a half-life in water on the order of 7 

minutes (123) which is far greater than the 1.8 seconds found for diazomethane in a 

THF/water mix (124). This gives the reagent longer before hydrolysis to trap the 

desired carbamate. Trimethyloxonium has also been suggested to have a selectivity 

for a carboxyl group over a water hydroxide group (125). 

Some work using these reagents in aqueous solution to investigate the modification 

of carboxyl groups have countered this hydrolysis by the use of a large excess of 

reagent (123). Though one of the reagent side products is ethanol this is not 

expected to cause a denaturation problem within the reaction conditions as 

the maximum concentration of ethanol produced accounts for 0.25 % volume 

of the reaction and a concentration of 22 % volume is needed to see half of a 

protein mixture denatured (126). Previous work using Meerwein’s reagents to 

investigate carboxyl group modifications and the development of their use to trap 

carbamates is described in detail in Chapter 4. 

Scheme 1-10 Hydrolysis of Meerwein’s reagent TEO to form ethanol, ether and H+ ions. 
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1-12 Motivation for investigation

Reactions of CO2 with amino groups have been shown to markedly influence the 

function of several proteins including two highly abundant proteins; Hb and 

RuBisCO. It is therefore likely that other carbamylation sites alter functions of other 

proteins.  

Carbamates are understudied due to their labile nature. Analysis of most PTMs is 

carried out by MS but the fragility of the carbamate modification limits its 

downstream processing. This has led to most carbamate identification being 

performed under conditions that do not match a cellular environment, such as 

required for x-ray crystallography.  

Recently Jimenez-Morales et. al. 2014 have developed a computational method to 

predict the formation of carbamates on lysine residues. The results of this study 

suggest that as many as 1.3 % of proteins may have a carbamylated residue (85).  

1-12.1 Project relevance

It is remarkable that we know so little of how CO2 influences the function of the 

proteome. The main reason for this is that the interaction of CO2 with proteins is 

labile and difficult to study without large amounts of purified protein and using 

artificial conditions. 

The binding interactions of CO2 to proteins have been previously investigated to be 

utilised for carbon capture and sequestration. Current technologies in these areas 

are often corrosive or produce toxic waste and greener technologies involving 

proteins are being sought (127). 

There is also a clinical relevance to understanding deeper CO2 mechanisms. Under 

normal circumstances the body is equipped to buffer changes in levels of inorganic 

carbon using homeostasis (97), however when an underlying disease disrupts this it 

can lead to a pathological acid-base disorder. It can affect tissues and body fluids 

and is thought to have influences on respiration and modes of metabolism (128). 
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Normal levels are essential for the function of many tissues and abnormal levels can 

lead to hyper- or hypocapnia (increased or decreased blood CO2 concentration) and 

effect calcification (129). Hypercapnia has been reported to cause 

pathophysiological effects in all tested eukaryotes (75). These effects are thought to 

occur due to cells being able to sense CO2 levels and alter their growth (42) with 

suppression effects seen on NF-Kβ. NF-Kβ is one of the most understood 

transcription factors and regulates expression of many genes. Importantly it is 

required in the encoding of proteins involved in immunity and inflammation (130). 

The specific molecular mechanisms of these pathways remain unclear. 

Atmospheric CO2 levels are still rising and this increase is predicted to have a 

significant impact on crops (131). It has been found that decreased water uptake 

due to elevated CO2 could be detrimental to the hydrological cycle (132). Elevated 

CO2 has also been found to decrease levels of zinc and iron as well as protein 

levels in several crop plants (133). The true impact of increased CO2 levels on plants 

is still widely speculative due to the small sample size of most experiments. 

Knowledge of the interactions between CO2 and proteins is therefore vital for 

understanding more about the effects the rise in CO2 could have on crop plants. It 

has been seen that giving plants increased CO2 increases the rate of 

photosynthesis for a short period of time but it is not sustained (134). If more 

information were known about the process it is possible the proteins involved could 

be exploited to increase carbon fixation. 

The true extent of signalling involving CO2 is not even close to being known as so 

many enzymes utilise CO2 during activity (42). Increasingly carbamates are being 

seen in important protein systems.  There is much debate over the link between 

acid-base balance in cells and pH/CO2 concentration. Most believe that it is pH-

sensing which causes effects seen by molecular CO2, however recent work carried 

out looking at connexin hemichannels has looked specifically at effects seen when 

CO2 concentration is increased but pH is kept constant. This demonstrated the 

channel to be effected by the change in CO2 independent of pH. Carbamylation is a 

possible way that CO2 could be a signalling molecule directly interacting with 

proteins, this has been found to be the case for the protein connexin 26 (97). 
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The identities of plant proteins which interact directly with CO2 are almost entirely 

unknown. Therefore it is essential to develop tools to identify CO2 targets to improve 

the understanding of plant CO2 interactions. This work was specifically aimed at CO2 

binding upon plant leaf proteins. However the importance of understanding CO2 to 

protein binding is prevalent in many areas. 

1-12.2 Aims and Hypothesis

We hypothesise that there are far more sites of CO2 interaction upon proteins than 

has ever been previously anticipated. We also hypothesise that the main form of 

CO2 interaction within a protein system is through the formation of a carbamate. 

This investigation has two main aims. The first of which is to develop a method to 

convert the labile modification of a carbamate into a more robust molecule that can 

be analysed by downstream mass spectrometry methods. This method needs to be 

applicable to be used under conditions which accurately represent the physiological 

environment of a cell. 

The second aim following from this is to use this method to trap a carbamate on an 

unknown protein within a cellular system and discover the site of this trapping to 

provide new information about the carbamates that are formed.  

The work in this thesis describes two approaches towards these goals: 1) the 

chemical synthesis of a water-soluble TMS-DAM derivative (chapter 3) and 2) the 

direct use of Meerwein’s regents TMO and TEO (chapter 4). Both methods of 

trapping are based on the transfer of a methyl or ethyl group to the carbamate to 

create a more robust PTM for downstream analysis. 

The development of a trapping method to achieve these aims will begin with an 

amino acid system, then progress to a dipeptide, then to purified proteins known to 

form a carbamate such as Hb and RuBisCO, and finally on to other proteins working 

within CO2 environments. This trapping method will then be applied to a soluble leaf 

lysate from Arabidopsis to identify new sites of carbamylation (Chapter 5). 
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Chapter 2: Materials and Methods 

2-1 Materials and Equipment 

All materials were purchased from Sigma-Aldrich unless otherwise stated. NMR 

spectra were recorded on a Bruker 400 spectrometer with all J-coupling values 

given in Hz. ESI Mass spectra were obtained on a Waters Ltd QToF or Thermo LTQ 

XL Orbitrap. Samples were lyophilised on an LP3 Jouan high vacuum system. The 

pH measurements were carried out on a pH stat Radiometer analytical TIM856, the 

probe was calibrated using standards at pH 7 and 10 (Fisher).  

2-1.1 Cell lines

E. coli DH5α (no antibiotic resistance) cells were used for all DNA manipulation work

and E. coli BL21 (Novagen, no antibiotic resistance), Rosetta and Rosetta 2 

(Novagen, both chloramphenicol resistant when containing the pLysS plasmid) cell 

lines were used for protein expression. 

2-1.2 pH stat

All pH stat experiments were carried out in phosphate buffer (4 mL, 50 mM, pH 7.4). 

This solution was transferred to the pH stat and incubated at 25 °C with stirring. 

Triethyloxonium tetrafluoroborate (various amounts) was added stepwise with a 

constant pH maintained (pH 7.4) with the slow addition of 1 M NaOH. The reaction 

was stirred for 1 h.  
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2-2 Experimental Biology

2-2.1 Trimethyloxonium tetrafluoroborate trapping experiments

2-2.1.1  Phenylacetate

Phenylacetic acid (4.4 mg, 0.03 mmol) was dissolved in phosphate buffer (2 mL, 50 

mM, pH 7.4) and trimethyloxonium tetrafluoroborate (TMO) (130 mg, 0.88 mmol) 

was added at room temperature. The reaction mixture was stirred for 1.5 h and the 

product extracted with diethyl ether (2 × 5 mL). The ethereal layers were combined 

and the solvent was removed under pressure to yield phenylacetate 16 (4.1 mg, 

93%). 1H NMR (400 MHz, CDCl3) δ/ppm 7.37-7.27 (5H, m, Ar-H), 3.72 (3H, s, CH3),

3.66 (2H, s, CH2). 
13C NMR (100 MHz, CDCl3) δ/ppm 171.9, 133.9, 129.2, 128.5,

127.0, 51.9, 41.1. GC-MS [M+H] 150.08. 

2-2.1.2  Acetyl-Lysine and TMO experiment

Acetyl-lysine (10 mg, 0.05 mmol) was dissolved in phosphate buffer (2 mL, 200 mM, 

pH 7.4). Sodium bicarbonate (NaHCO3) (1.7 mg, 0.02 mmol) was dissolved in 

phosphate buffer (1 mL, 200 mM, pH 7.4) and added to the acetyl-lysine. TMO (50 

mg, 0.34 mmol) was added with stirring, while the pH was maintained by manual 

addition of sodium hydroxide (NaOH) (1 M, Fisher Scientific), the reaction was 

stirred for 1 h. ESI-MS showed methyl transfer on the carboxyl group (17) but no 

carbamate formation. ESI-MS [M+H] 203.14 
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2-2.2 Triethyloxonium tetrafluoroborate trapping experiments

2-2.2.1  Acetyl-Lysine trapping

Acetyl-lysine (5 mg, 0.03 mmol) was dissolved in phosphate buffer (2 mL, 50 mM, 

pH 7.4). NaHCO3 (1.7 mg, 0.02 mmol) was dissolved in phosphate buffer (1 mL, 50 

mM, pH 7.4) and added to the acetyl-lysine solution. This solution was transferred to 

the pH stat. Triethyloxonium tetrafluoroborate (TEO) (100 mg, 0.53 mmol) was then 

added to the reaction in three portion-wise steps while the pH of the solution was 

maintained with automated addition of NaOH (1 M). The reaction mixture was stirred 

for 1 h then lyophilised and re-dissolved in methanol (1 mg/mL) for MS. The sample 

was analysed using ESI-MS and the trapped carbamate acetyl-lysine product 18 

was confirmed. ESI-MS [M+H] 289.17. 

2-2.2.2  Phenylalanine trapping

Phenylalanine (5 mg, 0.03 mmol) was dissolved in phosphate buffer (2 mL, 50 mM, 

pH 7.4). NaHCO3 (1.7 mg, 0.02 mmol) was dissolved in phosphate buffer (1 mL, 50 

mM, pH 7.4) and added to the phenylalanine solution. This solution was transferred 

to the pH stat. TEO (100 mg, 0.53 mmol) was then added to the reaction in three 

portion-wise steps while the pH of the solution was maintained with automated 

addition of NaOH (1 M). The reaction mixture was stirred for 1 h then lyophilised and 
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re-dissolved in methanol (1 mg/mL) for MS. The sample was analysed using ESI-

MS and the trapped carbamate phenylalanine product 19 was confirmed. ESI-MS 

[M+H] 266.13.  

2-2.2.3  GLY-PHE dipeptide trapping

GLY-PHE dipeptide (8 mg, 0.04 mmol) was dissolved in phosphate buffer (2 mL, 50 

mM, pH 7.4). NaHCO3 (1.7 mg, 0.02 mmol) was dissolved in phosphate buffer 

(1 mL, 50 mM, pH 7.4) and added to the dipeptide solution. This solution 

was transferred to the pH stat. TEO (280 mg, 1.47 mmol) was added to the 

reaction mixture in three portion-wise steps in dH2O (1 mL) while the pH was 

maintained with automated addition of NaOH (1 M). The reaction mixture was 

stirred for 1 h then lyophilised and re-dissolved in methanol (1 mg/mL) for 

MS. The sample was analysed using ESI-MS and the trapped carbamate 

GLY-PHE product 20 was confirmed. ESI-MS [M+H] 323.01. 

2-2.2.4  LYS-PHE dipeptide trapping

LYS-PHE dipeptide (8 mg, 0.04 mmol) was dissolved in phosphate buffer (2 mL, 50 

mM, pH 7.4). NaHCO3 (1.7 mg, 0.02 mmol) was dissolved in phosphate buffer 

(1 mL, 50 mM, pH 7.4) and added to the dipeptide solution. This solution was added 

to 
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the pH stat. TEO (280 mg, 1.47 mmol) was added to the reaction mixture in three 

portion-wise steps in dH2O (1 mL) while the pH was maintained with automated 

addition of NaOH (1 M). The reaction mixture was stirred for 1 h then lyophilised and 

re-dissolved in methanol (1 mg/mL) for MS. The sample was analysed using 

ESI-MS and the trapped carbamate LYS-PHE product 21 was confirmed. ESI-MS 

[M+H] 422.18.  

2-2.2.5  FLKQ tetrapeptide trapping

FLKQ tetrapeptide (synthesised by Ashai Cano) (5 mg, 0.009 mmol) was dissolved 

in phosphate buffer (2 mL, 50 mM, pH 7.4). NaHCO3 (1.7 mg, 0.02 mmol) was 

dissolved in phosphate buffer (1 mL, 50 mM, pH 7.4) and added to the dipeptide 

solution. This solution was added to the pH stat. TEO (280 mg, 1.47 mmol) was 

added to the reaction mixture in three portion-wise steps in dH2O (1 mL) while the 

pH was maintained with automated addition of NaOH (1 M). The reaction mixture 

was stirred for 1 h then lyophilised and re-dissolved in methanol (1 mg/mL) for MS. 

The sample was then analysed using ESI-MS and the trapped carbamate FLKQ 

product 22 was confirmed. ESI-MS [M+H] 663.16. 

2-2.2.6  Haemoglobin trapping

Human haemoglobin (Hb) (14.5 mg, 0.23 µmol) was dissolved in phosphate buffer 

(2 mL, 50 mM, pH 7.4). NaHCO3 (1.7 mg, 0.02 mmol) was dissolved in phosphate 

buffer (1 mL, 50 mM, pH 7.4) and added to the protein solution. This solution was 

added to the pH stat. TEO (280 mg, 1.47 mmol) was added to the reaction mixture 
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in three portion-wise steps in dH2O (1 mL) while the pH was maintained with 

automated addition of NaOH (1 M). The reaction mixture was stirred for 1 h then 

dialysed overnight (1 L dH2O). The sample was then centrifuged and an aliquot (100 

µL) taken from the supernatant. This aliquot was digested using trypsin (Promega) 

and analysed using both MALDI and ESI-MS. A trapped carbamate was identified 

on the N-terminal peptide of the Hb β-chain. 

2-2.2.7  Ribulose-1,5-bisphosphate carboxylase oxygenase trapping

Ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCO) (2 mg, 3.57 nmol) 

was dissolved in phosphate buffer (2 mL, 50 mM, pH 7.4). NaHCO3 (1.7 mg, 0.02 

mmol) was dissolved in phosphate buffer (1 mL, 50 mM, pH 7.4) and added to the 

protein solution. This solution was added to the pH stat. TEO (280 mg, 1.47 mmol) 

was added to the reaction mixture in three portion-wise steps in dH2O (1 mL) while 

the pH was maintained with automated addition of NaOH (1 M). The reaction 

mixture was stirred for 1 h then dialysed overnight (1 L dH2O). The sample was then 

centrifuged and an aliquot (100 µL) taken from the supernatant. This aliquot was 

digested using trypsin and analysed using both MALDI and ESI-MS. A trapped 

carbamate was identified at site K183 but no carbamate was found on the known 

literature site K201.  

2-2.2.8  Arabidopsis thaliana leaf lysate trapping

Arabidopsis leaf lysate was prepared as described refer to section 2-3.4. Extracted 

proteins were re-dissolved in phosphate buffer (2 mL, 50 mM, pH 7.4). NaHCO3 (1.7 

mg, 0.02 mmol) was dissolved in phosphate buffer (1 mL, 50 mM, pH 7.4) and 

added to the protein solution. This solution was added to the pH stat. TEO (280 mg, 

1.47 mmol) was added to the reaction mixture in three portion-wise steps in dH2O (1 

mL) while the pH was maintained with automated addition of NaOH (1 M). The 

reaction mixture was stirred for 1 h then dialysed overnight (1 L dH2O). The sample 

was then centrifuged and an aliquot (100 µL) taken from the supernatant. This 

aliquot was digested using trypsin and analysed using ESI-MS. Several carbamate 

hits were found using this method and are described in detail in chapter 5. 
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2-2.2.9  Purified Fructose Bisphosphate Aldolase 1 (FBA1) trapping

FBA1 protein (1 mg, 23.8 nmol) was dissolved in phosphate buffer (2 mL, 50 mM, 

pH 7.4). NaHCO3 (1.7 mg, 0.02 mmol) was dissolved in phosphate buffer (1 mL, 50 

mM, pH 7.4) and added to the protein solution. This solution was added to the pH 

stat. TEO (280 mg, 1.47 mmol) was added to the reaction mixture in three portion-

wise steps in dH2O (1 mL) while the pH was maintained with automated addition of 

NaOH (1 M). The reaction mixture was stirred for 1 h then dialysed overnight (1 L 

dH2O). The sample was then centrifuged and an aliquot (100 µL) taken from the 

supernatant. This sample was digested using trypsin and analysed using ESI-MS. A 

trapped carbamate was identified at site K293 matching the leaf lysate screen 

results. Details of this are contained in chapter 6. 
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2-3 Molecular Biology

2-3.1 Synthesis of acetyl-lysine carbamate

Acetyl-lysine (50 mg, 0.25 mmol) and NaHCO3 (50 mg, 0.60 mmol) was dissolved in 

dH2O (1 mL). Ethyl chloroformate (27.13 mg, 0.25 mmol) in THF (3 mL) was added 

with stirring. The reaction was stirred overnight and then reduced under pressure. 

The precipitate was dissolved in acidified dH2O (5 mL, pH 2) and the product 

extracted into diethyl ether (2 × 5 mL) (27.7 mg, 40 % yield). 1H NMR (400 MHz, 

D2O) δ/ppm 4.29 (1H, dd, J= 9.0, 5.0 Hz CHNH), 4.07 (2H, q, J= 7.2 Hz CH2CH3), 

3.11 (2H, t, J= 6.6 Hz CH2NH), 2.03 (3H, s CH3CO), 1.90-1.68 (2H, m CH2CH), 1.50 

(2H, p, J= 6.8 Hz CH2CH2CH), 1.45-1.32 (2H, m, CH2CH2NH), 1.21 (3H, t, J= 7.1 Hz 

CH3CH2). 

2-3.2 Protein digestion protocol

Dithiothreitol (DTT) (0.77 g, 5 mmol) was added to protein sample (100 µg, 100 µL, 

200 mM ammonium bicarbonate buffer pH 8, 10 % MeCN) and incubated at 56 °C 

for 20 min. The sample was then cooled before iodoacetamide (2.77 mg, 0.015 

mmol) was added and the sample incubated at room temperature in the dark for 15 

min. Trypsin (Promega, sequencing grade) (2 µg in 10 µL of 2 mM HCl 10 % (v/v) 

acetonitrile) was activated by heating at 37 °C for 20 min. The activated trypsin was 

added to the protein sample and incubated overnight at 37 °C. 

2-3.3 Arabidopsis thaliana plant growth

Arabidopsis seeds were plated onto 0.8 % (w/v) plant agar containing 4.4 g/L 

Murashige and Skoog salt mixture and incubated at 4 °C for 48 h in the dark. The 

seeds were then incubated at 22 °C with 12 h of light for one week before planting. 

Arabidopsis plants were transferred to jiffy pellet soil plugs (LBS Horticulture) and 

grown at 22 °C with 12 h of daylight for 5 weeks before leaf proteins were extracted 

for experimentation. 
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2-3.4 Arabidopsis protein extraction

Arabidopsis leaves (5 g dry weight) were added to a pestle and mortar and ground 

in the presence of liquid N2. Pre-chilled extraction phosphate buffer (100 mM, 15 

mL, pH 7.4) was added to the leaves with sand and poly(vinylpolypyrrolidone) 

(PVPP) and further grinding was carried out. The solution was passed through 

Miracloth (Millipore) on ice to remove particulates. The filtrate was then centrifuged 

at 4500 rpm for 10 min at 4 °C. The supernatant from this spin contains the soluble 

proteins and was used for Arabidopsis trapping experiments, with the addition of 

protease inhibitor cocktail (cocktail for plant cell and tissue extracts, 1% (v/v)). The 

protein concentration of the plant extract was measured individually for each 

experiment using a Bradford assay and ~3 mg of protein was used for trapping. 

2-3.5 Bradford assay

Samples were made with bovine serum albumin (BSA) standards from 2 mg to 25 

µg protein. Bradford reagent was added (1 mL to 20 µL sample) and the samples 

incubated for 15 min at rt. The absorbance was measured at 595 nm. These 

measurements were plotted to generate a standard curve. This curve could then be 

used to measure unknown sample protein concentrations within this range.   

2-3.6 Bicinchoninic acid (BCA) assay

Samples were made with bovine serum albumin (BSA) standards from 2 mg to 25 

µg protein. The samples (25 µL) were then incubated with a working reagent 

(PierceTM) (200 µL) in a microtitre plate for 30 min at 37 °C and then the absorbance 

was measured at 562 nm. The blank measurement was subtracted from the other 

readings and the measurements plotted as a standard curve. This curve could then 

be used to measure unknown sample protein concentrations within this range.   
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2-3.7 Immunocapture of RuBisCO

Arabidopsis leaf lysate (500 μL) was added to spin column containing RuBisCO 

antibody and rotated at room temperature for 15 min. The column was centrifuged 

(30 s, 2000 rpm) and the flow through collected. This RuBisCO depleted sample 

was then run on a gel for comparison to starting material. 

2-3.8 Ammonium sulphate precipitation

Saturated ammonium sulphate was added to Arabidopsis leaf lysate (5 mL). At 20 

%, 30 % and 40 % (v/v) saturated ammonium sulphate solution the sample was 

centrifuged (5500 rpm, 10 min) and the supernatant removed to further precipitate. 

The pellets were dialysed into phosphate buffer (1 L, 50 mM, pH 7.4) and used for 

trapping experiments. 

2-3.9 Protein solubilisation test

Ammonium bicarbonate (ABC) buffer (various concentrations, 100 µL) was added to 

protein pellets (100 µg) with additives for solubilisation (10 % MeCN or 0.1 % SDS) 

post trapping reaction. These samples were then incubated at 37 °C (or 95 °C for 

the heating sample) for 1 h before centrifugation at 13,000 rpm for 5 min. The 

protein concentration assay was carried out on the supernatant. 

2-3.10 Acetone precipitation

Cold (−20 °C) acetone was added to 4× the volume of the protein sample and the 

reaction cooled to −20 °C for 1 h. This was then centrifuged at 13,000 rpm for 10 

min and the pellet washed with cold 80 % (v/v) acetone and re-centrifuged. The 

residual acetone was allowed to evaporate by incubating uncapped for 30 min at 

room temperature. The sample proteins were precipitated in a pellet. 
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2-3.11 Transforming cells

Plasmid DNA (1 µL, 50 ng/µL) was added to competent cells (20 µL). This was 

mixed by gentle vortex and incubated on ice for 20 mins. This solution was then 

heat shocked at 42 °C for 45 s and placed back on ice for 2 min. Luria broth (LB) 

(900 µL) was added and the cells were incubated with shaking at 37 °C for 1 h. The 

culture was then centrifuged at 6000 rpm for 5 min and the pellet re-suspended in 

LB (100 µL). This was spread on an LB agar plate containing antibiotics (cell line 

and plasmid specific) and incubated at 37 °C overnight. 

2-3.12 Protein test expression

LB broth (5 mL) containing antibiotics (cell line specific) was inoculated with a plate 

colony and incubated with shaking at 37 °C overnight. Some of the overnight culture 

(1 mL) was used to inoculate LB broth (25 mL) containing antibiotics (cell line 

specific) and incubated with shaking at 37 °C for 3 h until the OD600 reached 0.5. A 

sample was taken of this pre-induction culture (1 mL) and kept for gel comparison. 

The remaining culture was induced with Isopropyl β-D-1-thiogalactopyranoside 

(IPTG) (1 mM) and shaken at 37 °C for 3 h. After this time the culture was 

centrifuged and the pellet re-suspended in lysis buffer (50 mM Tris-HCl pH 7.5, 500 

mM NaCl, 30 mM Imidazole, 2 mM β-mercaptoethanol). This was then sonicated at 

15 % for 15 s twice and then centrifuged at 5500 rpm for 5 min. Both the 

supernatant and pellet were run against the pre-induction sample on an SDS-PAGE 

gel. 

2-3.13 SDS-PAGE gel

Protein molecular weights were assessed using sodium dodecyl sulphate-

polyacrylamide gel electrophoresis (SDS-PAGE) gel. Protein samples (10-20 µg) 

were made up 1:1 in loading buffer (100 mM Tris-HCl pH 6.8, 200 mM 

dithiothereitol, 4 % (w/v) SDS, 0.2 % (w/v) bromophenol blue, 20 % (v/v) glycerol) 

and were incubated for 5 min at 95 °C to enable protein denaturation. The samples 

were run on resolving gels in the range 12 – 15 % (w/v) with 5 % stacking gel. A 
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protein ladder (PagerulerTM pre-stained) was used to estimate protein size. The gels 

were run in running buffer (25 mM Tris-HCl pH 7.5, 192 mM glycine, 0.1 % (w/v) 

SDS) at 180 V for 1 h. The gel was incubated with Coomassie Brilliant Blue G (20 

mL, 3 mM Coomassie Brilliant Blue G, 12 M methanol and 2 M glacial acetic acid) 

with rocking overnight.   

2-3.14 Truncation of FBA1 DNA

Forward primer sequence (ggccatatgGCgagcgcgtacgcggacg) from  MWG Eurofins 

was used in conjunction with reverse T7 primer. These were used in the order of 

components described in the PCR section 2-3.15. The DNA from this PCR was 

purified from an agarose gel and ligated into pJET1.2 vector as described 2-3.18. 
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2-3.15 Polymerase chain reaction (PCR)

The components and conditions for PCR to amplify purified DNA are listed in Table 

1-1 reaction components and conditions for the amplification of purified DNA.The

components were added in the described order. Colony PCR required additional 

MgCl2 (1 µL) and the plasmid DNA was substituted for a plate colony. The 

conditions were the same except the extension time was increased to 1 min. 

Table 1-1 reaction components and conditions for the amplification of purified DNA. 

PCR reaction components PCR reaction 

Component µL Step Temp. °C Time 

H2O 14.1 1 98 2 min 

DMSO 1 2 (×30) 98 

59 

72 

20s 

20s 

30s 

GC Buffer 5 

2 mM dNTPs 2.5 

Plasmid DNA 0.2 3 72 2 min 

Fw primer (25 pmol/µL) 1 4 4 Hold 

Rv primer (25 pmol/µL) 1 

Enzyme 0.2 

2-3.16 Agarose gel

Agarose (1.5 g) was dissolved in TBE buffer (100 mL) and microwaved for 1 min. 

Ethidium bromide (0.1 mg) was added before the gel was poured and allowed to set. 

DNA samples were run (25 µL) on the gel at 120 V for 1 h with TBE buffer, resulting 

bands were visualised under UV transillumination. 
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2-3.17 DNA purification from agarose gel

Prep-a-gene buffers used for DNA purification were purchased from Bio-rad. 

Agarose gel bands were cut out and melted in binding buffer (1 mL) at 68 °C. Silica 

(166 mg/mL, 12 µL) was added to the melted gel and the mixture rotated at room 

temperature for 30 min. This was then centrifuged at 13,000 rpm for 60 s and the 

supernatant removed. The silica was rinsed with binding buffer (125 µL) and 

centrifuged. The silica was then washed twice with wash buffer (750 µL) with 

centrifugation and supernatant removal in between wash steps. The remaining 

ethanol was evaporated by heating the open tube at 68 °C for 5 min. The silica was 

then incubated with dH2O (12 µL) at 37 °C for 10 min and the DNA eluted by 

centrifugation for 60 s and removal of the supernatant. 

2-3.18 Ligation of DNA into a vector

During this work DNA was ligated into either a pJET1.2 or pET-14b vector 

depending on the nature of the DNA work. For blunt end ligation into a pJET1.2 

vector DNA produced from the PCR reaction (3.7 µL) was incubated with ligation 

buffer (50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 1 mM ATP, 10 mM DTT, 5 µL), 

pJET1.2 vector (0.3 µL) and DNA ligase (1 µL) at room temperature for 1 h. This 

ligation mixture (2 µL) was added to DH5α competent cells (20 µL) and transformed 

as described 2-3.11. For a pET14b vector the vector (1 µL) and insert (3 µL) were 

incubated with dH2O (3 µL), buffer (1 µL), 10 mM ATP (1 µL) and DNA ligase (1 µL) 

at room temperature for 1 h. This ligation mixture (2 µL) was added to DH5α 

competent cells (20 µL) and transformed as described 2-3.11. 

2-3.19 Mini-prep of overnight cultures

Mini preps were carried out using a miniprep spin kit (QIAGEN). Overnight LB 

culture (5 mL) was centrifuged at high speed for 5 min and the supernatant 

removed. The pellet was re-suspended in resuspension buffer (250 µL), and 

transferred to a microcentrifuge tube. Lysis solution (250 µL) was added and the 

tube inverted 3-4 times, before being incubated for 2 min. Neutralisation buffer was 
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added (350 µL) and the tube inverted 4-6 times. The mixture was then centrifuged at 

13000 rpm for 5 min and the supernatant transferred to a spin column. This was 

centrifuged for 1 min and the flow through discarded. Wash solution (500 µL) was 

added, the column centrifuged, the flow through discarded, and then repeated with 

an empty column to remove residual solution. The column was transferred to a fresh 

collection tube and incubated with dH2O (50 µL), at room temperature for 20 min 

and centrifuged for 2 min to collect the DNA. 

2-3.20 Digestion of vector and inserts

A digestion mixture was made using DNA (25 µL), CutSmart buffer (New England 

BioLabs) (3 µL) and digestion enzymes Nde1 (1 µL) and BamH1 (1 µL). The mixture 

was incubated at 37 °C for 1 h. SAP (shrimp alkaline phosphatase) (1 µL) was 

added to the vector digest and incubated for 30 min at 37 °C and then 10 min 75 °C. 

These incubations are then run on an agarose gel (2-3.16) to determine the success 

of the digest and then purified as described previously (2-3.17). 

2-3.21 Large scale protein growth

An overnight culture (250 mL) was inoculated with a plate colony and the culture 

incubated with shaking at 37 °C overnight. Some of this overnight culture (40 mL) 

was then used to inoculate large scale flasks (1 L LB broth) containing antibiotics 

(cell line specific). The cultures were incubated with shaking at 37 °C for 2 h until an 

OD600 of 0.5. The cultures were then cooled to 17 °C and induced with IPTG (final 

concentration 1 mM) and grown for 24 h at 17 °C with shaking. The culture was then 

centrifuged at 4000 rpm for 20 min and the pellet stored at −80 °C until purification. 

The protein of interest was purified as described in 2-3.22. 

2-3.22 Protein purification

A bacterial cell pellet (20 mL) was re-suspended in binding buffer (35 mL, 50 mM 

Tris pH 7.5, 100 mM NaCl, 10 mM Imidazole) and sonicated at 40 % for 1 min three 
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times. This solution was then centrifuged for 1 h at 21000 rpm and the supernatant 

incubated on Ni2+ resin with mixing for 1 h. This resin was then added to a column 

and allowed to settle with the flow through collected. The column was then rinsed 

with a column volume of binding buffer and collected. The column was then washed 

with 3 column volumes of wash buffer (35 mL, 50 mM Tris pH 7.5, 100 mM NaCl, 10 

mM Imidazole), with fractions collected of each column volume. The protein was 

then eluted with increasing amounts of imidazole in binding buffer (range 50 mM to 

250 mM). Elution buffer was passed through the column until no more protein was 

detected at 280 nm in the eluting liquid. All the column fractions were then run on an 

SDS-PAGE gel (2-3.13). 

2-3.23 One-step site directed mutagenic PCR

PCR was carried out using the same conditions as 2-3.15 but also containing the 

template DNA and with 20 cycles of step 2 table 2-1 melting, annealing, extending to 

give additional time to replicate the whole vector. After the PCR reaction Dpn1 (1 

µL) was added to the PCR mixture (20 µL) and incubated at 37 °C for 4 h. This 

mixture was then used to transform DH5α cells 2-3.11. 

2-3.24 Refolding from inclusion bodies

Cells were lysed in binding buffer (35 mL, 50 mM Tris pH 7.5, 100 mM NaCl, 10 mM 

Imidazole) and centrifuged (21,000 rpm, 40 min). The supernatant is discarded and 

the pellet resuspended in lysis buffer (50 mM Tris-HCl pH 7.5, 500 mM NaCl, 30 mM 

Imidazole, 2 mM β-mercaptoethanol) and centrifuged (21000 rpm, 10 min) and the 

supernatant discarded (repeat three times). The pellet was then washed with 

binding buffer (20 mL) then binding buffer containing 8 M urea was added (10 mL) 

and the sample rotated for 30 min. The sample in urea was diluted 1 in 50 into 

refolding buffer (50 mM Tris-HCl pH 8.5, 240 mM NaCl, 10 mM KCl, 1 mM EDTA, 

0.5 % triton X-100, 1 mM DTT) with shaking and the activity measured to monitor 

refolding. 
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2-3.25 FBA1 cleavage assay

Purified FBA1 protein (10 μg) was added to a mixture of β-NADH (0.2 mM), EDTA 

(10 mM) and coupling enzyme α-GDH/TPI (10 units) in TBE buffer (40 mM, pH 7.5). 

Substrate fructose-1,6-bisphosphate (2 mM) was added and the reaction mixed for 

30 s before absorbance read at 340 nm every 5 min over 20 min.  For CO2 minus 

experiments: 96-well plate incubated under Ar atmosphere for 30 min prior to F-1,6-

BP substrate addition. The enzyme reaction was then stopped with the addition of 5 

% TFA. 
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2-4 Physical Chemistry

2-4.1 Concentrating a digest sample on a ziptip

Samples were adjusted to 0.1 % (v/v) TFA. The ziptip was washed with 100 % 

acetonitrile (2 × 10 µL) and then equilibrated with 0.1 % TFA (3 × 10 µL). The 

sample was then bound to the tip (30 µL) and expirated 7 – 10 times. The tip was 

then washed with 0.1 % (v/v) TFA and the peptides eluted with 0.1 %/TFA 50 % 

acetonitrile (v/v) (10 µL). 

2-4.2 Fractionating on a StageTip

Adapted from literature (135). The stage tip was formed of a C18 layer above a strong 

cation exchange membrane. The membranes were washed with methanol (20 µL) 

and then equilibrated with formic acid. The sample (20 µL made up with 0.1 % TFA) 

was added to the tip and fractions collected with increasing ammonium acetate 

concentrations ranging from 50 – 500 mM (10 µL elutions). 

2-4.3 Accurate mass

Protein samples were dialysed overnight against ultra-pure water (1 L) and then 

resuspended 50 µL protein (100 µg) with 50 µL acetonitrile and 1 % formic acid. 

Accurate mass was obtained on an LTQ FT machine. 

2-4.4 MALDI-MS

Peptide samples (1 µL) were applied to a MALDI plate in the ratio 1:1 with α-Cyano-

4-hydroxycinnamic acid (α-CHCA, saturated solution in 50:50 water/acetonitrile with

0.1 % TFA) matrix (1 µL). The spots were allowed to crystallise through evaporation 

at room temperature before placing the plate into the MALDI ion source. Data was 
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collected using 100 pulse shots with variable laser intensity depending on 

the sample concentration. 

2-4.5 ESI-MS method

Samples were prepared in MS compatible ABC buffer. These samples were run 

with a 2 h gradient of acetonitrile from 2-80 % containing 0.1 % formic acid.  

2-4.6 Data analysis

The ESI data was analysed using the GPM database X!Tandem (Tandem) (136) or 

MaxQuant (137). Modifications for the transfer of an ethyl group (MW 28.0313) and 

a trapped carbamate group (MW 72.0211) were searched from among a 

protein database created from Arabidopsis peptides that were found in the results.  
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2-5 Synthetic chemistry

2-5.1 Synthesis of (But-3-enyl)dimethylsilane halogens

2-5.1.1 Chloromethyl (But-3-enyl)dimethylsilane

Following a literature procedure (138), 4-bromo-1-butene (7.98 g, 59.1 mmol) in 

anhydrous diethyl ether (5 mL) was added dropwise to magnesium (1.56 g, 65 

mmol) and dibromoethane (0.1 mL) in anhydrous diethyl ether (10 mL). The mixture 

was stirred at 23 °C for 3 h. Chloro(chloromethyl)dimethylsilane (3.58 g, 25 mmol) in 

anhydrous diethyl ether (5 mL) was then added and the mixture was refluxed at 45 

°C for 39 h. The reaction was quenched by slow addition of dH2O (5 mL) and solid 

residues were removed by vacuum filtration. The dH2O layer was separated and the 

ethereal layer was washed with saturated potassium carbonate solution (2 × 10 mL), 

dried (MgSO4) and concentrated under reduced pressure. Purification by column 

chromatography (silica gel, hexanes) yielded the chloro alkene 4 (X=Cl) (1.85 g, 

55%); 1H NMR (400 MHz, CDCl3) δ/ppm 5.86 (1H, ddt, J=16.6, 10.1, 6.3 Hz, CH=),

5.04-4.98 (1H, m, CHH=), 4.93-4.90 (1H, m, CHH=), 2.79 (2H, s, CH2Cl), 2.14-2.07 

(2H, m, CH2CH), 0.78-0.74 (2H, m CH2Si), 0.12 (6H, s, CH3Si). 13C NMR (100 MHz,

CDCl3) δ/ppm 140.8, 113.2, 30.2, 27.6, 12.8 −4.7. 

2-5.1.2 Bromomethyl (But-3-enyl)dimethylsilane

Adapting a literature procedure (138), 4-bromo-1-butene (27.9 g, 206.9 mmol), in 

anhydrous diethyl ether (30 mL) was added dropwise to magnesium (4.3 g, 180 

mmol) and dibromoethane (0.1 mL) in anhydrous diethyl ether (130 mL). The 

mixture was stirred at 23 °C for 3 h. Chloro(bromomethyl)dimethylsilane (22 g, 117.3 

mmol) in anhydrous diethyl ether (30 mL) was then added and the mixture was 
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refluxed at 45 °C for 24 h. The reaction was quenched by slow addition of saturated 

ammonium chloride solution (80 mL). The product was extracted into diethyl ether (2 

× 30 mL), and the ethereal layer was washed with saturated potassium carbonate 

solution (2 × 20 mL), dried (MgSO4) and concentrated under reduced pressure. 

Purification by column chromatography (silica gel, hexanes) yielded the bromo 

alkene 4(X=Br) (11.7 g, 58%); as a colourless liquid. 1H NMR (400 MHz, CDCl3)

δ/ppm 5.87 (1H, ddt J= 16.6, 10.1, 6.3 Hz, CH=), 5.04-4.99 (1H, m, CHH=), 4.94-

4.90 (1H, m, CHH=), 2.48 (2H, s, CH2Br), 2.12-2.07 (2H, m, CH2CH), 0.80-0.75 (2H, 

m, CH2Si), 0.14 (6H, s, CH3Si). 13C NMR (100 MHz, CDCl3) δ/ppm 140.9, 113.2,

27.7, 17.0, 13.2, −4.0. EI-GC MS: 150.9 (25, [M – C4H7]
+), 122.9 (26, [M – C6H12]

+),

113.1 (100, [M - CH2Br]+), 85.0 (24), 59.0 (22). IR 1640.

2-5.2 Synthesis of silyl propanoic acid halogens

2-5.2.1 3-[(chloromethyl)dimethyl)silyl]propanoic acid

Adapting a literature procedure (138), sodium periodate (3.8 g, 1.78 mmol) was 

added to chloro alkene 1 (5.86 g, 36 mmol) in a mixture of chloroform (25 mL), 

acetonitrile (25 mL) and dH2O (40 mL) and the mixture was heated to 50 °C for 10 

min. Ruthenium III chloride hydrate (19.3 mg, 0.09 mmol) was added and the 

mixture was stirred for 1 h. Further sodium periodate (9.5 g, 4.44 mmol) was added 

portion-wise over 3 h. The mixture was diluted with dichloromethane (10 mL) and 

dH2O (20 mL) and the phases were separated. The dH2O layer was extracted with 

CH2Cl2 (3 × 10 mL) and the organic layers were combined and dried (MgSO4). The 

extracts were concentrated under pressure and purified by column chromatography 

(silica, 1:2 hexane:ethyl acetate) to yield the chloro acid 5(X=Cl) liquid (2.42 g, 

37%); 1H NMR (400 MHz, CDCl3) δ/ppm 2.80 (2H, s, CH2Cl), 2.43-2.39 (2H, m,

CH2C=O), 1.02-0.98 (2H, m, CH2Si), 0.14 (6H, s, CH3Si). 13C NMR (100 MHz,

CDCl3) δ/ppm 180.9, 29.7, 28.3, 8.5, −4.9. 
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2-5.2.2 3-[(bromomethyl)dimethyl)silyl]propanoic acid

Adapting a literature procedure (138), sodium periodate (1.9 g, 0.89 mmol) was 

added to bromo alkene 4 (0.3 g, 1.84 mmol) in a solution of chloroform (5 mL), 

acetonitrile (5 mL) and dH2O (8 mL) and the mixture was heated to 50 °C for 10 min. 

Ruthenium III chloride hydrate (10 mg, 0.05 mmol) was added and the mixture was 

stirred for 3 h. Further sodium periodate (4.5 g, 20.9 mmol) was added stepwise 

over 33 h. The mixture was diluted with dichloromethane (10 mL) and dH2O (20 mL) 

and the phases separated. The dH2O layer was extracted with CH2Cl2 (3 × 10 mL) 

and the organic layers were combined and dried (MgSO4). The extracts were 

concentrated under pressure to yield bromo acid 5(X=Br) (0.31 g, 98%); yellow 

liquid. 1H NMR (400 MHz, CDCl3) δ/ppm 2.47 (2H, s, CH2Br), 2.42-2.37 (2H, m,

CH2C=O), 1.02-0.98 (2H, m, CH2Si), 0.15 (6H, s, CH3Si). 13C NMR (100 MHz,

CDCl3) δ/ppm 181.1, 28.4, 16.2, 9.0, −4.2. EI-GC MS: 129.07 (21, [M - BrOH]+),

101.08 (34, [M – C2O2HBr]+), 88.05 (54), 58.00 (100), 43.05 (52). IR 1705.

2-5.3 Synthesis of amide halogens

2-5.3.1 3-[(chloromethyl)(dimethyl)silyl] [(methylamino)(dimethylamino)ethyl]

Propamide

Adapting a literature procedure (139), thionyl chloride (0.70 g, 5.51 mmol) was 

added to chloro acid 5 (0.31 g, 1.74 mmol) and the mixture was stirred at 60 °C for 2 

h. The excess thionyl chloride was removed under reduced pressure,
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trimethylethylenediamine (0.08 g, 0.77 mmol) was added and the mixture was 

stirred for 30 min. The reaction mixture was diluted with diethyl ether (10 mL) and 

washed with saturated potassium carbonate solution (8 mL), the organic layer was 

dried (MgSO4) and concentrated under vacuum to yield chloro amide 9 solid (0.16 g, 

36%); 1H NMR (400 MHz, CDCl3) δ/ppm (trans conformer) 3.48 (2H, t, J= 7.0 Hz,

CH2NH3), 3.01 (3H, s, NH3), 2.81 (2H, s, CH2Cl), 2.54-2.42 (2H, m, CH2N(CH3)2), 

2.37-2.33 (2H, m, CH2C=O), 2.27 (6H, s, N(CH3)2), 1.00-0.95 (2H, m, CH2Si), 0.13 

(6H, s, CH3Si). 1H NMR (400 MHz, CDCl3) δ/ppm (cis conformer) 3.37 (2H, t, J= 7.0

Hz, CH2NH3), 2.93 (3H, s, NH3), 2.81 (2H, s, CH2Cl), 2.54-2.42 (2H, m, 

CH2N(CH3)2), 2.37-2.33 (2H, m, CH2C=O), 2.27 (6H, s, N(CH3)2), 1.00-0.95 (2H, m, 

CH2Si), 0.13 (6H, s, CH3Si). 13C NMR (100 MHz, CDCl3) δ/ppm 173.5, 48.3, 45.6,

35.8, 34.1, 30.4, 27.8, 27.1, 8.8, −4.5. IR 1636. 

2-5.3.2 [(bromomethyl)(dimethyl)silyl] [(methylamino)3-(dimethylamino)ethyl]

Propamide

Adapting a literature procedure (139), thionyl chloride (0.33 g, 2.76 mmol) was 

added to bromo acid 5 (0.33 g, 1.47 mmol) and the mixture was stirred at room 

tempterature for 10 min. The excess thionyl chloride was removed under reduced 

pressure before the addition of trimethylethylenediamine (0.14 g, 1.38 mmol) with 

stirring for 30 min. The reaction mixture was diluted with diethyl ether (10 mL) and 

washed with saturated potassium carbonate solution (8 mL), the organic layer was 

dried (MgSO4) and concentrated under vacuum to yield bromo amide 9 (0.44 g, 

97%); 1H NMR (400 MHz, CDCl3) δ/ppm (trans conformer) 3.46 (2H, t, J= 7.0 Hz,

CH2NCH3), 3.00 (3H, s, NCH3), 2.49 (2H, s, CH2Br), 2.45-2.41 (2H, m, CH2N), 2.37-

2.33 (2H, m, CH2C=O), 2.26 (6H, s, N(CH3)2). 1.02-0.93 (2H, m, CH2Si),  0.14 (6H, 

s, Si(CH3)2). 
1H NMR (400 MHz, CDCl3) δ/ppm (cis conformer) 3.35 (2H, t, J= 7.0

Hz, CH2NCH3), 2.92 (3H, s, NCH3), 2.49 (2H, s, CH2Br), 2.45-2.41 (2H, m, CH2N), 

2.37-2.33 (2H, m, CH2C=O), 2.26 (6H, s, N(CH3)2). 1.02-0.93 (2H, m, CH2Si),  0.14 



Materials and Methods 

Chapter 2 

81 

(6H, s, Si(CH3)2). 
13C NMR (100 MHz, CDCl3) δ/ppm 173.4, 48.2, 45.8, 45.5, 35.7,

34.0, 27.7, 17.0, 9.2, −4.0. IR 1670. 

2-5.4 Synthesis of amide azide

[(azidomethyl)(dimethyl)silyl] [(methylamino)3-(dimethylamino)ethyl] Propamide 

Adapted from literature (140) bromo amide 9 (0.25 g, 0.81 mmol) was dissolved in 

acetone (2 mL) and a solution of sodium azide (0.26 g, 4.03 mmol) in dH2O (0.5 mL) 

was added. The solution was then stirred for 48 h at room temperature. The acetone 

was removed under pressure and diluted with potassium carbonate solution (4 mL). 

The reaction was then washed with dichloromethane (2 × 10 mL). The 

dichloromethane layers were combined, dried (MgSO4) and reduced under pressure 

to yield azide amide 10 (92%)(0.20 g, 0.74 mmol); 1H NMR (400 MHz, CDCl3) δ/ppm

ppm (trans conformer) 3.48 (2H, t, J= 7.0 Hz, CH2NCH3), 3.01 (3H, s, NCH3), 2.49 

(2H, s, CH2N3), 2.45-2.41 (2H, m, CH2N), 2.37-2.33 (2H, m, CH2C=O), 2.26 (6H, s, 

N(CH3)2). 1.02-0.93 (2H, m, CH2Si), 0.14 (6H, s, Si(CH3)2). 
1H NMR (400 MHz,

CDCl3) δ/ppm (cis conformer) 3.36 (2H, t, J= 7.0 Hz, CH2NCH3), 2.93 (3H, s, NCH3), 

2.49 (2H, s, CH2N3), 2.45-2.41 (2H, m, CH2N), 2.37-2.33 (2H, m, CH2C=O), 2.26 

(6H, s, N(CH3)2). 1.02-0.93 (2H, m, CH2Si),  0.14 (6H, s, Si(CH3)2). 
13C NMR (100

MHz, CDCl3) δ/ppm 173.4, 48.4, 46.0, 45.7, 41.4, 36.0, 34.3, 27.8, 9.2, −4.0. IR 

2091. 
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2-5.5 Synthesis of amide amine

[(aminemethyl)(dimethyl)silyl] [(methylamino)3-(dimethylamino)ethyl] Propamide 

To 10 (0.09 g, 0.34 mmol) was added triphenylphosphine (0.09 g, 0.34 mmol) in 

THF (1 mL) with H2O (5 µL). This reaction was stirred at room temperature for 48 h. 

This mixture was washed with basic H2O (containing potassium carbonate, pH 10) 

and then extracted with DCM (3 × 5 mL). This solution was reduced under pressure 

to yield amine amide (13) (0.11 g, 0.46 mmol). 1H NMR (400 MHz, CDCl3) δ/ppm

ppm (trans conformer) 3.54-3.49 (2H, m, CH2NCH3), 3.02 (3H, s, NCH3), 2.53-2.49 

(2H, m, CH2N), 2.45-2.42 (2H, m, CH2C=O), 2.27-2.26 (8H, m, NH2 and N(CH3)2). 

0.92-0.85 (2H, m, CH2Si), 0.13 (6H, s, Si(CH3)2). 
1H NMR (400 MHz, CDCl3) δ/ppm

(cis conformer) 3.4-3.35 (2H, m, CH2NCH3), 2.94 (3H, s, NCH3), 2.53-2.49 (2H, m, 

CH2N), 2.45-2.42 (2H, m, CH2C=O), 2.27-2.26 (8H, m, NH2 and N(CH3)2). 0.92-0.85 

(2H, m, CH2Si), 0.13 (6H, s, Si(CH3)2).  

2-5.6 Attempted synthesis of amide diazo compound

[(diazomethyl)(dimethyl)silyl] [(methylamino)3-(dimethylamino)ethyl] Propamide 

Adapted from a literature procedure used to make TMS-DAM (141). Dry diethyl ether 

(2 mL) and dibromomethane (0.01 mL, 0.11 mmol) were added to magnesium 

turnings (65 mg, 2.7 mmol) in a dry two-headed flask. The mixture was stirred at 

room temperature for 15 min. In a separate flask dry diethyl ether (2 mL) was added 

to 9 (52 mg, 0.2 mmol) and transferred to the reaction mixture. The mixture was 

stirred at 40 °C for 3 h. The mixture was then added to dry diethyl ether (2 mL) and 
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diphenylphosphoryl azide (130 mg, 0.47 mmol) on ice. The reaction was quenched 

with dH2O (10 mL) and extracted with diethyl ether (2 × 10 mL). The ethereal layer 

was concentrated under pressure. The reaction was not successful in producing 

diazo product due to lack of formation of the Grignard. 

Adapted from literature procedure (142). Dissolve 10 (0.03 g, 0.12 mmol) in THF (2 

mL) and 100 L dH2O. Then add N-succinimidyl 3-(diphenylphosphino) propionate 

(0.03 g, 0.09 mmol), stir for 8 h on ice, leave to warm to room temperature 

overnight. Mixture diluted with sodium chloride and extracted with dichloromethane. 

The reaction progressed as far as phosphine attachment but the separation to 

produce the diazo was not achieved. 

2-5.7 Conversion of Cl alkene to Br alkene (Finklestein reaction)

Bromomethyl (But-3-enyl)dimethylsilane 

To 4(X=Cl) (0.57 g, 3.5 mmol) was added lithium bromide (4.4 g, 51.2 mmol) in dry 

acetone (2 mL) and heated to 40 °C for 40 h. The acetone was removed under 

reduced pressure and the mixture was extracted with diethyl ether (2 × 5 mL). The 

extracts were combined and concentrated under reduced pressure to yield 

bromoalkene 4 (0.27 g, 1.31 mmol); 1H NMR (400 MHz, CDCl3) δ/ppm 5.90 (1H,

ddt, J= 16.4, 10.1, 6.3 Hz, CH=), 5.04-4.99 (1H, m, CH2=), 4.94-4.90 (1H, m, CH2=), 

2.48 (2H, s, CH2Br), 2.14-2.07 (2H, m, CH2CH), 0.80-0.75 (2H, m, CH2Si), 0.14 (6H, 

s, CH3Si). 13C NMR (100 MHz, CDCl3) δ/ppm 140.9, 113.2, 27.7, 17.0, 13.2, −4.0.
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Chapter 3: Design and partial synthesis of a 
Trialkylsilyl-diazomethane Derivative for 
Carbamate trapping

3-1 Overview 

Protein carbamates are unstable, and do not withstand standard methods for PTM 

analysis such as MS (85). Previous analyses of protein carbamates were therefore 

carried out using artificial conditions (106,110,115). 

X-ray crystallography has been used to confirm the site of carbamylation on Ribose-

1,5-bisphosphate carboxylase oxygenase (RuBisCO) (100). Samples used to form 

crystals were never tested for their enzymatic activity and the concentrations of CO2 

used far exceeded physiological conditions. NMR spectroscopy has been used to 

confirm carbamate formation on haemoglobin (Hb) and RuBisCO (143,144). The 

main issue with this technique is that it is difficult to confirm the site of carbamate 

formation and would be unusable within a protein mixture due to the complexity of 

the sample. The carbamate site on Hb was later inferred by modification with 

cyanate (145). 

This thesis describes a strategy to trap carbamates under cellular conditions thereby 

making them amenable to downstream analysis; this method relies on the 

nucleophilic attack of carbamates upon electrophiles to introduce stability (Scheme 

3-1).

To achieve this goal two approaches are described, the first is covered in this 

chapter; the design and partial synthesis of a trimethylsilyl-diazomethane (TMS-

DAM) derivative. This work was not completed due to the success of the second 

approach using commercially available Meerwein’s reagents trimethyloxonium 

tetrafluoroborate (TMO) and triethyloxonium tetrafluoroborate (TEO) salts. The 

development of that methodology process is detailed in chapter 4.

Scheme 3-1 Formation and trapping of a carbamate using an electrophilic reagent. 
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3-2 Background to the trapping hypothesis 

Diazomethane and TMS-DAM are established reagents for the preparation of alkyl 

esters (146).  The following section reviews the underlying mechanistic chemistry 

behind the use of these systems as reagents for carboxylic acid esterification. This 

literature work forms the basis for the approach and molecule design discussed in 

this chapter. 

Trapping of carbamates is required for their analysis because the labile nature of the 

modification renders it unsuitable for normal PTM analysis (Scheme 3-1). Often 

PTM sites can be confirmed by mutagenesis, the site of carbamate formation on Hb 

was confirmed by modifying the α-amine groups of the N-terminal residues using 

cyanate (147). This is not a technique that could be applied to the majority of 

suspected carbamylated lysines as they are often located close to or within active 

sites. In the case of RuBisCO it was known that the site could not be confirmed by 

mutagenesis because it would render the enzyme inactive (102). 

3-2.1 Diazomethane

Diazomethane (DAM) has previously been used to efficiently convert organic acids 

into methyl esters, where yields are typically 95-100% (148). The diazo group can 

be represented by two resonance structures (149), where the C atom is basic, 

making it susceptible to protonation by carboxylic acids (Scheme 3-2).  

Once protonated, the methyl group becomes electrophilic, allowing irreversible 

attack by the carboxylate group with the release of nitrogen gas. The process 

usually proceeds with few side reactions (Scheme 3-3). 

Scheme 3-2 Resonance structures of diazomethane. 
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DAM has previously been used to investigate CO2 binding to RuBisCO. DAM was 

added to a RuBisCO complex bound to 14CO2, the protein was then denatured using

SDS and seen to still contain the 14CO2 showing that it had been ‘trapped’ by the

DAM (83). 

However, DAM is a highly toxic, explosive gas which has now been given a high 

carcinogenic rating (150-154), making it a difficult substance to work with safely and 

only appropriate to be used on small scales. These properties made it necessary to 

develop a safer alternative. 

The reactions of amines with carbon dioxide to form carbamates have been 

explored outside cellular systems within the context of carbon dioxide scrubbing 

(155). These reactions differ from the in vivo protein systems to be explored 

because the levels of CO2 are far higher than physiological, but they provide 

unequivocal evidence for the reactions between amines and carbon dioxide to form 

carbamates.  

3-2.2 Trimethylsilyl-diazomethane

Trimethylsilyl-diazomethane (TMS-DAM) is a safer working alternative to DAM (156) 

(Figure 3-1). The addition of the TMS group provides stability to the diazo 

functionality and the molecule can now be purchased in hexane or diethyl ether as a 

stable liquid (156). 

Figure 3-1 Structure of TMS-DAM. 

Scheme 3-3 Mechanism of esterification of a carboxylic acid by diazomethane. 
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TMS-DAM is an electrophilic methylating agent and has been used previously in 

organic systems for the O-methylation of alcohols in dichloromethane (121) and for 

the transfer of the CH2-TMS group to carboxylic acids in benzene (150). This 

reagent has been compared to other methods of esterification of acids and though it 

was found to require milder conditions it also yielded TMS ester side-products 

(Scheme 3-4, route 1) (157). It was later found that if the reaction is carried out with 

the addition of methanol (20 % methanol in toluene), only the CH3 ester is formed 

(Scheme 3-4, route 2) (141,155). This work thus provided an efficient method for 

methylation of carboxylic acids; however, this work lacked a deeper mechanistic 

explanation.  

In 2007, Kühnel et. al. (150) used isotopic labelling to demonstrate that using 

methanol as a co-solvent causes the removal of the TMS group, to afford DAM in 

situ, which then transfers a methyl group to the carboxylate to afford methyl esters 

(150) rather than CH2-TMS esters (Scheme 3-4, route 2).

Work using TMS-DAM to trap carbamates has been carried out previously, but only 

within a mostly organic (benzene/methanol (4:1)) solvent (122). This work involved 

the bubbling of carbon dioxide into solutions containing amines followed by the 

Scheme 3-4 In situ formation of DAM from TMS-DAM followed by transfer of a methyl group to 
RCO2

−
.
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addition of TMS-DAM to produce the corresponding methylcarbamates. These 

reactions produced good yields, but the organic solvents cannot be used in this 

work, mainly because any reaction under non-physiological conditions could create 

artificial results due to the role that water plays in the dynamics of proteins (158).  

Carbamates only form on neutral amines. At physiological pH 7.4 most amines are 

positively charged, therefore carbamates are only expected to form under privileged 

conditions (i.e. at specific active sites) that have increased concentrations of neutral 

amine.  

These precedents for the application of TMS-DAM towards the trapping of 

carbamates form the basis for the development of the work described in this 

chapter. The hypothesis of how to adapt TMS-DAM into a water-soluble reagent is 

put forward in the design section below (3-3). However this trapping method was 

developed in parallel with a method utilising Meerwein’s reagents TMO and TEO. 

The use of TEO demonstrated successful results so that method was developed 

and this synthesis was never fully completed. 
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3-3 Design of a water-soluble TMS-DAM derivative 

Based on the previous work using TMS-DAM for esterification of carboxylic acid and 

carbamate groups, this molecule was selected as the starting point for the synthetic 

design. The key feature needed for the molecule to trap a carbamate under 

physiological conditions was to be water soluble. On this basis, a water-soluble 

group was introduced into TMS-DAM at position R (Figure 3-2). 

The work of Kühnel et. al. (150) discussed in 3-2.2 illustrated the requirement for 

methanol to remove the TMS group. The hypothesis in this work was that within a 

cellular system water would affect the desilylation process in place of methanol. 

Scheme 3-5 shows the predicted reaction mechanism of desilylation and carbamate 

trapping. 

Figure 3-2 Silyl diazo molecule showing the site of introduction of a water-soluble group (R) into 
TMS-DAM. 
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The trapping molecule needs to be soluble at neutral pH; the normal method of 

introducing solubility to a molecule is through the addition of a charged group. Use 

of an anionic group is not possible because it will provide a nucleophile, which could 

easily react with the diazo group to become methylated. Therefore a cationic group 

was necessary; amines are cationically charged at neutral pH and have been used 

Scheme 3-5 Hypothesised reaction mechanism of trapping a carbamate by a water soluble 
diazo trapping reagent. 
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to increase the solubility of other molecules, such as pro-dugs, within cellular 

systems (159).  

In order to prevent intramolecular reaction between the diazo and the amine 

functionalities, an amide bond will be used to introduce rigidity to the molecule. 

Trimethylethylenediamine was chosen because it contains only one site for amide 

formation and, once attached, will not contain any primary or secondary amine 

groups, which would also interfere with the trapping reagent.  

In order to form the amide bond, a carboxylic acid will need to be introduced into the 

silyl backbone. This will be achieved via oxidation of an alkene group and is 

discussed in further detail later in this chapter (3-5.2). 

Based on these chemical assumptions, the water-soluble carbamate trapping agent 

design is summarised below (1) (Figure 3-3). 

Figure 3-3 Design of water soluble carbamate trapping agent 1. 
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3-4 Retrosynthetic strategy for the chemical synthesis of 

designed carbamate trapping agent 1 

A reterosynthetic approach was used to design a practical route towards target 

molecule 1 (Scheme 3-6). 

Scheme 3-6 Retrosynthetic scheme for the synthesis of diazo trapping molecule 1. 
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To further the synthesis of molecule 1 the individual reaction steps need to be 

considered. From trapping molecule 1, the first retrosynthetic step was to create the 

diazo group. The most common method used for TMS-DAM synthesis is the direct 

transfer of a diazo from diphenyl phosphorazidate (DPPA) to a carbanionic species 

(160). This reaction could occur via the formation of a Grignard on a halogen (12) 

which would then be replaced by the diazo from DPPA. This strategy requires a 

halogen to be in place attached to the silylmethyl group as seen in molecule 9. As 

the work progressed the direct transfer of a diazo via this method proved difficult, 

and a further method to create a diazo through the interaction of a phosphine with 

an azide group was explored based on literature (142). Thus molecule 10 was also 

considered where the azide could be formed from a halide group via a Finkelstein 

reaction (161). 

The design incorporates the tertiary amine functionality via an amide bond to 

introduce rigidity to the molecule, which is needed to prevent an intra molecular 

reaction. Amide coupling has been extensively covered in the literature (139). There 

are three common methods of amide coupling: 1) production of an acyl chloride, 2) 

via a mixed anhydride or 3) via an activated ester group. Using an ester introduces 

the additional step of ester activation so it was chosen to investigate the acyl 

chloride (via molecule 7) and mixed anhydride (via molecule 8) methods first. Both 

methods were found to be successful to some degree, but ultimately the acyl 

chloride method was taken forward due to higher yields and easier purification of the 

product from starting materials. 

Both methods require a carboxylic acid starting material 5. The disconnection of 

carboxylic acid molecules came from the literature (138). The procedure produced 

the carboxylic acid, 5, by oxidisation of alkene 4. Details of the development of the 

literature procedure are given later in this chapter. The production of the silyl alkene 

4 was carried out following the same literature from the shown commercially 

available starting materials (2,3) via the production of a Grignard reagent and gave 

good yields.  

The original starting point of the commercially available chlorosilane material 2 was 

chosen to match the backbone of TMS-DAM (Figure 3-2).  
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3-5 Forward Synthesis of Carbamate trapping agent 1 

3-5.1 Synthesis of Alkenes

The first step was the synthesis of a silyl alkene 4, either containing Cl or Br. These 

reactions have been carried out previously on both chlorine, 2 (X=Cl) and bromine, 

2 (X=Br) chloro(dimethylsilyl)methylhalogen compounds (138,162). A but-3-enyl 

magnesium bromide Grignard reagent, 3, was formed via the slow addition of 4-

bromo-1-butene to a diethyl ether suspension of magnesium turnings. After the 

production of this Grignard reagent 3 the reaction proceeded via substitution of 

chloride from chloro(dimethylsilyl)methylhalogen, 2, compound by the Grignard 

reagent to create (but-3-enyl)dimethylsilane halogen molecules 4 (Scheme 3-7). 

The literature method used chlorosilane 2(X=Cl), however, during the later stages of 

the project it was found that a more reactive halogen substituent was necessary, so 

the scope of the approach was broadened to encompass bromosilane 2(X=Br). 

The development of the reaction of the chlorosilane 2(X=Cl) went through several 

phases (Table 3-1). Initially, there were difficulties in forming Grignard reagent 3, 

most likely due to the presence of water. Precautions were taken to ensure an 

anhydrous environment, such as drying solvents and baking glassware. In addition, 

the introduction of iodine crystals served as a catalyst for Grignard reagent 

formation (163). The combination of these factors enhanced the formation of the 

desired haloalkenes 4. Next, the development of the purification of the alkene 

Scheme 3-7 Synthesis of alkenes 4 from starting silyl material 2 and Grignard reagent 3. 
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product was investigated. Isolation of the desired products from the silyl starting 

material (2) by vacuum distillation proved difficult due to the similarity in the boiling 

points. Therefore column chromatography was explored which greatly increased the 

yields to 36 % (Cl) and 48 % (Br) but these were still lower than the literature value 

of 53 % for the chlorosilane 2(X=Cl). In order to improve yields, the use of an excess 

of Grignard reagent 3 was explored because, upon aqueous work-up, Grignard 3 

will be protonated to yield 1-butane, which is gaseous, and readily removed. This 

approach removed the need for chromatographic purification, and produced the 

highest yields of halosilane products 55 % (Cl) and 58 % (Br) (Table 3-1). 

Table 3-1 Details of optimisation experiments towards the preparation of haloderivatives 4 from 
Grignard reagent 3 and halosilanes 2 figure 3-6. 

Attempt 

no. 

X Ratio of 2 to 3 Yield/% Comments 

1 Cl 1:1 0 No Grignard formed 

2 Cl 1:1 12 Purified by distillation 

3 Cl 1:1 36 Purified by column 

chromatography 4 Br 1:1 48 

5 Cl 1:2 55 No purification needed 

6 Br 1:2 58 

The syntheses of the alkenes 4(X=Cl) and 4(X=Br) were confirmed by comparing 1H 

NMR chemical shifts to values reported in the literature (138). In addition, 

comparisons of 1H NMR signals between the starting materials 4-bromo-1-butene 

and the haloalkenes 4 were used. This is illustrated by the shifts of the signals c and 

d to c’ and d’ which are consistent with the conversion from 4-bromo-1-butene (A) to 

the bromosilylalkene molecule (B) (Figure 3-4).  



Design and partial synthesis of a trapping reagent 

Chapter 3 

96 

At first, the Finkelstein reaction was used to convert the chloro alkene 2(X=Cl) to a 

bromo alkene 2(X=Br) before the azide reaction step but replacing the starting 

material  with chloro(dimethylsilyl)bromomethyl, producing the final product 4(X=Br) 

proved more efficient. (Details of the Finkelstein reaction are in section 3-5.5.) 

3-5.2 Oxidation of alkenes 4 to acids 5

The next step of the synthetic strategy was the formation of carboxylic acids 5 by the 

oxidation of the alkene functionalities of haloalkenes 4 (Scheme 3-8). The process 

of oxidation of an alkene to an acid has been described many times and has been 

carried out on a similar system to haloalkenes 4 (138). However, the reported 

procedure used carbon tetrachloride as the solvent which is no longer used in 

laboratories for health and safety reasons. Therefore method development was 

Figure 3-4 Comparison of 4-bromo-1-butene starting material (A) and halo alkene product 
4(X=Br) (B). 
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required to determine an alternative solvent system for this oxidation reaction. 

Chloroform was chosen as an alternative. 

The oxidation of haloalkene 4(X=Cl) was initially carried out at the literature 

temperature of 23 °C but no reaction was observed. A second attempt was 

performed under reflux but this caused polymerisation of the starting alkene 4. A 

mid-range temperature of 50 °C was then investigated, and this method was 

successful, but not over the literature time scale of 2 h. An extended reaction time of 

36 h was then used, and this gave the desired product at reasonable conversion 

levels (5). Column chromatography was used and afforded isolated yields of 5(X=Cl) 

(52 %) and 5(X=Br) (77 %). Further optimisation using stepwise addition of the 

sodium periodate oxidant to regenerate RuO4 (164), delivered almost complete 

oxidation of the bromo alkene 4(X=Br) (165). These developments are summarised 

in Table 3-2.  

Table 3-2 Details of method development for the oxidation of alkenes 4 to acids 5. 

Attempt 

no. 

X Temp. °C Yield/% Comments 

1 Cl 23 0 No observable reaction 

2 Cl 80 0 Polymerised starting 

material 

3 Cl 50 52 Column chromatography 

purification 4 Br 50 77 

5 Cl 50 74 Stepwise addition of 

sodium periodate 6 Br 50 98 

The formation of the acid group was monitored via IR-spectroscopy. The 

appearance of a signal at 1705 cm -1 corresponded to the formation of the carboxyl 

Scheme 3-8 Synthesis of carboxylic acids 5 by oxidation of haloalkenes 4. 
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group (166). The 1H NMR spectrum also shows the disappearance of the vinyl 

signals from 4(X=Br) (e and f) between 5.0 and 6.0 ppm (Figure 3-5) (and the shift 

of d to d’ which is consistent with the expected shift value for a RCH2CO2H system). 

The carboxyl group is not seen on 1H NMR spectroscopy however, the presence of 

C=O was confirmed by 13C NMR signal at 179 ppm (e’) (Figure 3-6). This signal is at 

a much higher chemical shift than the other molecule signals due to the high 

deshielding by the oxygen.  

Figure 3-5 
1
H NMR comparison of the bromo alkene 4 (A) and Br acid 5 (B), showing the 

disappearance of the vinyl alkene signals (e and f) when the alkene (A) is oxidised to the 
carboxylic acid (B).  
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From haloacid compounds 5, the water soluble element was introduced by the 

formation of amide groups on the newly synthesised carboxylic acid functionalities.  

3-5.3 Formation of amides 9 from acids 5

There are several ways to form an amide bond from a carboxylic acid that have 

been reported in the literature (139), and two approaches were investigated. First a 

carbodiimide method, using the coupling agent dicyclohexylcarbodiimide (DCC) was 

explored. The DCC method works through the carboxylic acid reacting with the 

carbodiimide to produce an intermediate carboxylic ester (8) with a good leaving 

group. Displacement of this group by the addition of an amine gives the desired 

amide and the by-product dicyclohexylurea (DCU) (Scheme 3-9).  

Figure 3-6 Comparison of 
13

C NMR spectra of bromoalkene 4(X=Br) (A) and acid molecule
5(X=Br) (B) showing the appearance of the C=O signal at 179 ppm gives clear evidence for the 
formation of acid 5. 
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The DCU by-product is sparingly soluble, and the majority of it can be filtered off 

after the reaction but removal of all traces proved difficult. Methods investigating the 

removal of DCU by centrifugation and cold ethyl acetate wash steps (167) gave 

impure materials with crude yields of 38 and 63 % respectively (Table 3-3). A 

different workup method involving the extraction of the amide into an aqueous layer 

by taking advantage of the charge state of the amine group gave effective 

purification, but with a very low yield of only 6 %. Because of these unsatisfactory 

results, the use of an acyl chloride intermediate was investigated for amide bond 

formation. 

Scheme 3-9 Reaction mechanism of the formation of amides 9 from acids 5 using DCC. 
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Table 3-3 Details of the development process of synthesis of amide 9 via DCC coupling method. 
Attempts 1 and 2 were never purified but produced crude yields of 38 and 63 % but attempt 3 
produced purified product 6 %. 

Attempt no. X Yield/% Comment 

1 Br 0(38) Centrifugation 

2 Br 0(63) Cold ethyl acetate washes 

3 Br 6 Basic workup 

The second route investigated the formation of an acyl chloride. The method relies 

on the substitution of the hydroxyl group of the carboxylic acid by chlorine using 

thionyl chloride by chlorine that is in turn displaced by the amine group (Scheme 

3-10). It proved important to keep the reaction under dry conditions as the acyl

chloride group was readily hydrolysed back to the carboxylic acid 5 (168). 

Optimisation experiments were explored involving keeping the reaction dry, 

changing the temperature of the reaction and altering the ratio of the reagents as 

detailed in Table . The initial observation of no reaction was believed to be caused 

by water reacting with the acyl chloride. Thorough drying of the reaction solvent and 

then removal of the solvent altogether meant the reaction was able to progress to 

amine transfer. After the acyl chloride had been formed and reacted with amine 6 

the main problem was the purification of the amides (9). The basic properties of the 

amides caused difficulties in purification via column chromatography due to their 

strong interaction with the acidic silica. As the amides 9 should be soluble in water 

when charged, a basic workup was developed to draw the starting material acid 5 

into the water layer and leave the amide in the organic layer. Excess thionyl chloride 

decomposes on addition of water to give hydrogen chloride and sulphur dioxide 

which are both lost as gases at room temperature. So an excess of this reagent 

coupled with the basic workup was developed to produce purified product, 

with yields of 36 % 9(X=Cl) and 97 % 9(X=Br) (Table 3-4). 

Scheme 3-10 Synthesis of amide 9 from carboxylic acids 5 via acyl chlorides 7. 
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Table 3-4 Details of development of addition of amine 6 to acid 5 via an acyl chloride 
intermediate 7 to form amide 9. 

Attempt no. X Yield/% Comment 

1 Cl 0 No reaction 

2 Cl <1 Loss during column chromatography 

3 Cl 36 Repeated washes with basic workup and 

use of excess thionyl chloride 4 Br 97 

Confirmation of the formation of the amide was seen through the movement of the 

carbonyl IR stretch from 1705 to 1670 cm-1. 1H NMR spectra were compared to the 

spectrum of the amine starting material (6) which contains four signals in the range 

2.0-3.0 ppm. Further corroboration came in the form of signal integration showing 

the correct number of protons and proton environments. The integrations of the 

signals also showed that there was no excess acid starting material remaining 

further confirming the effectiveness of the basic work-up as a purification strategy. 

These can be seen to correspond to 9(X=Br) in Figure 3-7. Assignment by NMR 

spectroscopy is the best method for analysis of amide 9 because comparison to acid 

5 will show very little movement of peaks due to very little change in the existing 

proton environments.  

Figure 3-7 
1
H NMR spectrum for bromo amide 9. 
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Further confirmation can be seen through the movement of the carboxyl signal in the 

13C NMR spectrum when the amide bond forms from 181 ppm for the acid 5(X=Br) 

to 173 ppm for amide 9(X=Br). 

The formation of an amide bond can take on two conformers, cis and trans. In 

Figure 3-7 signals e and f are seen as two signals due to restricted rotation around 

the amide bond, meaning that the product is present as both of these conformers 

(Figure 3-8).  

3-5.4 Diazo group transfer to halo amides 9

Following the synthesis of halo amides (9), there were several different pathways to 

investigate the formation of the final diazo compound, 1. In the literature the 

formation of TMS-DAM was usually by the transfer of a diazo group from an azide 

containing compound, most commonly DPPA (141,160). This reaction would 

proceed via the creation of a Grignard reagent (12). Based on this literature the first 

method to introduce a diazo group on 9 was via Grignard formation and diazo 

transfer (Scheme 3-11). 

Scheme 3-11 Attempted synthesis of diazo molecule 1 via a Grignard reagent 12 and diazo 
transfer from DPPA. 

This reaction never reached completion. This was due to failure to form the Grignard 

reagent 12 though several methods were trialled (Table 3-5). The lack of production 

Figure 3-8 The trans and cis forms of the amide bond formation for amide 9. 



Design and partial synthesis of a trapping reagent 

104 

Chapter 3 

of Grignard 12 on the amide 9(X=Cl) was attributed to the presence of water in the 

reaction. Commercial dry solvents and thorough drying of glassware were used but 

still no reaction between the chloride 9(X=Cl) and magnesium was observed. The 

use of 1,2-dibromoethane as a Grignard initiation catalyst was then introduced (169) 

without success. It was at this stage that the use of bromoamide 9(X=Br) was 

investigated to increase the reaction of the halogen group and improve Grignard 

formation. The alteration of the chloride for a bromide group was carried out with 

use of the Finklestein reaction (3-5.5). The Grignard reaction on 9(X=Br) was also 

not successful.  

Table 3-5 Details of attempts towards diazo group transfer to amide 9. 

Attempt no. X Yield/% Comment 

1 Cl 0 Reaction not dry enough 

2 Cl 0 Addition of dibromoethane catalyst 

3 Br 0 Tried a more reactive halogen 

4 Br 0 Purchased dry solvents rather than 

drying with molecular sieves 

There are several other methods of diazo formation that have been explored within 

the literature so another experimental approach was investigated. Work by Myers 

and Raines, (2009) (see sections 3-5.6 and 3-5.7) investigated the conversion of an 

azide group to a diazo. In order to examine this strategy the halide 9 was converted 

to azide 10. The chemistry of exchanging a halogen to an azide is very well 

established and has been carried out before (140) on different systems.  

3-5.5 Interconversion of halo substituents of alkenes 4 via the Finkelstein

reaction 

The Finkelstein reaction is used to interconvert halogens (161). This reaction was 

used to increase the reactivity of the halomethylene (XCH2) group after failure to 

produce a Grignard on the chloride derivative of molecule 9. The chlorine was 
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substituted with both bromine (Scheme 3-12) and iodine in attempts to increase the 

halogen reactivity for the production of the Grignard reagent (12) needed for diazo 

transfer. 

The transfer of the bromine in place of the chlorine was easily monitored with 1H 

NMR by the movement of the proton peak connected to the halogen (a) but with a 

maximum yield of 64 % (Figure 3-9).  

Scheme 3-12 Synthesis of bromo alkene 4 (X=Br) by Finkelstein reaction on chloro alkene 
4(X=Cl). 

Figure 3-9 
1
H NMR showing the movement of signal a from 4(X=Cl) (A) to a’ 4(X=Br) (B).
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At first the yield seen was relatively low (5 %) this was probably because the 

reaction time was too short for this system. The yield was then increased by the use 

of dry acetone to reduce any possible hydration of the halogen group (170). Besides 

hydration there are no other side reactions taking place so the reaction time was 

increased to 40 h which increased the yield to 37 %. After this, the sodium bromide 

(NaBr) reagent was replaced with lithium bromide (LiBr) which is more soluble in 

acetone and this alteration increased the yield to 64 % (Table 3-6). 

Table 3-6 Details of the optimism of the Finkelstein reaction to convert alkene 4 (X=Cl) to alkene 
4 (X=Br). 

Chlorine was substituted for iodine in the same way with a yield of 50 % but the 

iodine group on the alkene proved to be too reactive during the oxidation of 

iodoalkene 4(X=I) to iodoacid step cyclisation was observed. For this reason, 

bromine was chosen as the best halogen group to continue development of the 

overall synthesis. 

3-5.6 Halide to azide conversion

There has been extensive work done on the conversion of azide groups to diazo 

groups across a range of compounds (142). Reactions were carried out in aqueous 

solution using phosphine compounds. In order to attempt this chemistry, the halogen 

group of haloamides needed to be converted into an azide group. This reaction has 

Attempt no. Halogen 

converted 

Time 

/h 

Yield /% Comment 

1 Cl-Br 2 5 Reaction time too short 

2 Cl-Br 4 15 Dry acetone used 

3 Cl-Br 40 37 40 h 

4 Cl-Br 24 64 Exchanged reagent 
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previously been carried out on the trimethylsilylmethylchloro compound (Scheme 

3-13).

This previous work on a similar silyl backbone was successful so these conditions 

(heating in dried DMF with sodium azide) were the starting point for the method 

development on molecule 9(X=Br) (171) (Scheme 3-14). 

For this step the use of bromide 9(X=Br) instead of chloride 9(X=Cl) as the halogen 

moiety became important due to the increased reactivity of the bromide providing a 

better leaving group. When using 9(X=Cl), complete consumption of starting 

material 9 was never observed. The development of this reaction involved increased 

reaction time. The original reaction temperature of 80 °C gave only a 60 % 

conversion of the starting molecule 9 to product 10 (seen by 1H NMR). By reducing 

the temperature to RT and experimenting with the reaction time using 24 h and 48 h, 

the yield increased to 84 % and 92 % respectively (Table 3-7).  

Scheme 3-14 Synthesis of silyl azide 10 from silyl bromo amide 9 via nucleophilic substitution 
with sodium azide. 

Scheme 3-13 Literature method of converting a chlorine to an azide group. 
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Table 3-7 Details of development process from synthesis reaction step Scheme 3-14. 

Attempt no. X Yield/% Comment 

1 Cl 0 Trace levels 

2 Br 0 60% conversion by 1H NMR 

3 Br 84 24 h 

4 Br 92 48 h 

The reaction was monitored by the appearance of an azide IR signal at 2091 cm-1 

which is a very distinct signal and by the movement of signal a to a’ using 1H NMR 

spectroscopy from 9(X=Br) to azide 10 (Figure 3-10).  

Figure 3-10 
1
H NMR comparison of bromo amide 9 (A) to spectra for azide amide molecule 10

(B). 
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3-5.7 Conversion of azide 10 to diazo 1

As previously mentioned, Myers et.al. 2009 studied extensively the conversion of 

azide groups to diazo groups. The reaction procedure involves the addition of a 

phosphine to the azide group which is then hydrolysed to form a diazo. The 

literature described several commercially available phosphine groups, the 

phosphine selected for this azide to diazo conversion had been previously used on 

an RCH2N3 group considered to be chemically similar to molecule 10 (Figure 3-11). 

Figure 3-12 shows the proposed mechanistic steps for the attachment and 

subsequent loss of the phosphine (11) adapted from Myers et.al. 2009 (142) which 

is the fragmentation of 1,3-disubstituted alkyl aryl triazenes. This reaction never 

reached completion but instead was halted at the fragmentation of the bound 

phosphine to the azide group (13).  

Figure 3-11 Phosphine 11 
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1H NMR and IR spectroscopies confirmed the absence of the methyleneazide signal 

but did not give evidence for the diazo group, however the NMR spectrum contained 

many by-product signals which made analysis difficult. For this reason, 31P NMR 

spectroscopy was used. It was confirmed that phosphine 11 was being converted 

into the intermediate product of an acyl triazene (13) by a shift from −15 ppm to 30 

ppm suggesting that the phosphine was successfully coupled to the azide but failed 

to proceed through to diazo formation. One difficulty analysing this reaction with 31P 

NMR spectroscopy was that the intermediate and final product both have very 

similar signals (acyl triazene 30 ppm, released phosphine (15) 36 ppm) (142) and 

the shift pattern of a 31P NMR is more difficult for comparison between samples due 

to the lack of a reference signal in the solvent.  

From this intermediate step, several different workup conditions were investigated 

Figure 3-12 Suggested reaction mechanism between a phosphine molecule binding to the azide 
functional group and being displaced to form a diazo. 
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in order to facilitate conversion of the acyl triazene intermediate  to diazo product (1) 

(Table 3-8). The workup described in the literature for the use of phosphine 11 was 

investigated first. The procedure involved a basic workup using NaHCO3, however 

this was shown to be unsuccessful as the 31P NMR spectroscopy showed no 

change in the assumed acyl triazene signal (~30 ppm), the assumed reason was 

that the phosphine had bound more tightly to molecule 10 than the one used in 

literature. It is possible that the silyl group within molecule 10 could be stabilising the 

acyl triazene. Next a wash with 10 % NaOH was used. This strategy was adapted 

from the wash system of diazo transfer from a tosy or mesyl azide system (172) but 

the phosphine remained attached. Other conditions of phosphate buffer and the use 

of an acidic wash were then used to see if these conditions could fragment the 

phosphine but all proved unsuccessful in fragmenting the acyl triazene 13.  

Table 3-8 Summary of workup conditions and outcomes for the attempted breakdown of 
intermediate acyl triazene to diazo 1 (conversion % calculated by 

31
P NMR).

None of the workup methods removed the phosphine attached to the silyl molecule 

to form the diazo target 1. In light of this, a third method of converting an amine into 

a diazo group was found in the literature (173) and this is summarised below. This 

approach required the conversion of the existing azide into an amine group 

(Scheme 3-15). 

Attempt no. Reaction 

conditions 

Conversion of 

phosphine starting 

material (11) to 

intermediate (aryl 

triazene) /% 

Workup 

1 Dry, 2 h 0 Basic (NaHCO3) 

2 Dry, 12 h 0 Basic (NaOH) 

3 H2O, 12 h 40 Phosphate buffer 

4 H2O, 24 h 90 Acidic 
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3-5.8 Conversion of azide 10 to amine 14 for conversion to diazo 1

Initially the Staudinger reduction of azide 10 using PPh3 was explored (Scheme 

3-15).

The conversion of azide to amine was successfully carried out using a literature 

procedure with the use of triphenylphosphine (174) monitored by IR. Literature work 

described the conversion of the amine group to a diazo using nitrous acid (175) or 

the use of triflyl azide (173) however due to time constraints these methods were not 

investigated. 

Scheme 3-15 Synthesis of silyl amine (14) by reduction of azide (10) with triphenylphosphine. 
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3-6 Conclusion 

This chapter discussed the development and partial synthesis of trapping molecule 

1. Unfortunately, successful synthesis of the diazo group was not achieved despite

the multiple methods investigated (direct diazo transfer and conversion from an 

azide). This work was carried out in parallel with the development of a method using 

a commercially available reagent for trapping (Meerwein’s reagent). Ultimately the 

use of Meerwein’s reagent proved successful for the trapping of carbamates 

(discussed in Chapter 4). Therefore the use of Meerwein’s reagent took precedence 

over efforts towards the synthesis of diazo target 1. Though the diazo was never 

formed, the preceding steps were all optimised into robust procedures. There are 

still several methods of creating a diazo group that have not been investigated, and 

it is likely that this work will be continued by another member of the research group 

in the future. A summary of these methods is provided in Future Work (section 3-7).  
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3-7 Future work 

This synthetic route has been developed to the final stage. The original method of 

diazo group introduction in this investigation was via the transfer of DPPA as this is 

the method most often used in the literature. There are three key ways the method 

could be improved. First, methods to activate the magnesium could increase the 

chances of Grignard formation. Magnesium can be activated by dry stirring in an 

inert atmosphere (removing the oxide from the magnesium surface) or the use of the 

catalyst vitride (removes moisture from the metal surface) (169). Secondly, the 

Finklestein reaction could be carried out on amide 9 to introduce the iodine at this 

later stage and create a more active leaving group for Grignard formation. Finally, a 

different diazo transfer reagent could be used for the same reaction mechanism; the 

use of tosyl azide instead of DPPA has been demonstrated in several cases for the 

synthesis of a diazo group (176).  

The work involving the use of the phosphine (11) for diazo formation could also be 

re-visited to try to remove the attached phosphine group with harsher conditions and 

longer reaction times. The previous work in this area described the synthetic use of 

several different phosphine groups and another could be used in place of 11 to 

improve this approach. 

There is also another method of diazo formation that was not investigated. This is 

the reaction of an acyl chloride with diazomethane to form a diazoketone using the 

Arndt-Eistert reaction (177). This method would involve converting the halogen 

group into a carboxylic acid and then reacting with thionyl chloride though these 

reactions might be too harsh for the rest of the molecule. 
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Chapter 4: Development of a carbamate trapping 

method  

4-1 Overview 

As previously mentioned (chapter 3) this investigation discusses the development of 

two methods for the trapping of a carbamate within a protein. Chapter 3 explained 

the synthetic approach carried out towards synthesising a water-soluble TMS-DAM 

derivative to achieve this objective. The work in this chapter explores the second 

approach, using a commercially available alkylating reagent. The reagent discussed 

in this chapter is a salt known as Meerwein’s reagent; a term covering both the 

trimethyloxonium tetrafluoroborate (TMO) and triethyloxonium tetrafluoroborate 

(TEO) derivatives (Figure 4-1).  

Figure 4-1 Meerwein’s reagents trimethyloxonium tetrafluoroborate (TMO) and triethyloxonium 
tetrafluoroborate (TEO). 

The basis for this trapping experiment follows the same principles as the use of 

TMS-DAM; the transfer of a methyl or ethyl group to the formed carbamate to create 

a more robust sample for downstream analysis.  

The results described within this chapter demonstrate the development of a method 

in which Meerwein’s reagent can be used to trap carbamates under physiologically 

relevant conditions. This method was begun using TMO but was exchanged for TEO 

due to the fast hydrolysis of TMO within an aqueous system. Method development 

began using single amino acids and dipeptides before successfully trapping CO2 on 

a protein already known to form a carbamate, haemoglobin (Hb).  
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4-2 Methods to modify carboxyl groups and previous work with 

Meerwein’s reagent  

The main challenge of studying carbamates within a protein has been a lack of tools 

to investigate this modification under physiological conditions due to its labile nature. 

This work aims to modify the carbamate by the addition of a covalently bound group 

to make the carbamate robust enough for downstream analysis by MS. 

Previous trapping of carbamic acid species in a mostly organic solvent 

system (methanol:benzene, 1:4) was carried out by methyl transfer from TMS-

DAM (116). This is the process of alkylation via an electrophilic reagent. 

Several methods of alkylation on a carboxyl group have been investigated in the 

literature (Scheme 4-1); alkylation with an electrophilic reagent (1) such as 

Meerwein’s or TMS-DAM, esterification using an acid catalyst (2) and group 

transfer via an acyl chloride intermediate (3).  

Meerwein’s reagents have been previously investigated in comparison to these 

other alkylation methods. It was concluded that esterifying with an electrophilic 

reagent is the best direct method with no problem of reversibility or need for any 

hazardous chemicals (139). Acid catalysed esterification requires a strong acid to 

activate the carboxyl and the alcohol; the addition of a strong acid would perturb the 

cellular conditions that this investigation is trying to maintain (170). The method 

using an acyl chloride intermediate involves the use of a harsh chemical to produce 

Scheme 4-1 Modification of a carboxyl group by three different alkylation methods, electrophilic 

reagent (1), acid catalysis (2) and via an acyl chloride (3) to form an ester. 
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an intermediate which would also disturb a cellular environment (171). Therefore, 

the use of an electrophilic alkylating agent is the best choice for modification of a 

carbamate while limiting any disturbance to the physiological conditions being 

mimicked.  

Whilst there are several electrophilic alkylating agents to choose from - Meerwein’s 

reagents are most applicable for this work as they are tetrafluoroborate salts and 

therefore water-soluble. They are also much safer than the alternatives such as 

methyl iodine or dimethyl sulphate (172). 

4-2.1 Trimethyloxonium tetrafluoroborate (TMO)

Previous work with TMO has converted organic acids into methyl esters as a safer 

alternative to diazomethane (139,173,174). TMO has also been reacted with several 

different proteins to modify the carboxyl groups present to investigate enzyme 

activity. The process of how TMO would modify a carbamate is shown in Scheme 

4-2.

There have only been a few experiments carried out with TMO in an aqueous 

system and they required vigorous stirring and incremental addition of TMO to 

Scheme 4-2 Hypothesised reaction mechanism of methyl transfer from TMO to a carbamate 
group within a protein. 
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counter the hydrolysis of the reagent (175). The modification of catalytic carboxyl 

groups in Pepsin was carried out in aqueous solution using TMO (176) and showed 

an activity decrease with increased transfer of methyl groups (methyl group transfer 

was measured using 14C labelled TMO (176)). However, this work by Paterson and 

Knowles (1972), does not look into the location of the transferred methyl groups or 

what other affects this reagent might have on the protein but simply reports the 

correlation between increased methylation and reduced protein activity. The use of 

TMO to reduce activity in Ca2+ activated K+ channels was measured by a reduction 

in current after TMO addition (175). This previous work demonstrates that TMO has 

been shown to modify proteins under aqueous conditions (174).  

4-2.2 Triethyloxonium tetrafluoroborate (TEO)

The main reactive difference between TMO and TEO is the rate of hydrolysis in 

aqueous solution. TMO has a half-life in aqueous solution of 0.14 s (175) whereas 

TEO has a half-life of 7.4 min (117). The investigation described in this chapter 

began with the use of TMO but moved to TEO when it became apparent the longer 

half-life was necessary. 

Another difficulty associated with the use of these reagents is the pH change caused 

by their hydrolysis, which forms H+ ions reducing the pH of the solution (Scheme 

4-3). This was important within this work because in order to accurately replicate a

cellular environment the pH must be carefully maintained at 7.4. 
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Previous experiments using this reagent have used the manual addition of a base 

(normally sodium hydroxide) to maintain the desired pH (117). The development of 

the work recorded here began in this way but it was clear that the range of pH 

created by this method was too wide to accurately represent a cellular system. A pH 

stat was therefore introduced to maintain pH with the slow addition of 1 M sodium 

hydroxide (NaOH) during the reaction. TEO’s advantage over TMO is that the 

slower hydrolysis rate improves the ability to buffer the system around a chosen pH 

and allows for a constant environment during the trapping reaction. 

The use of TEO in aqueous solutions has previously been investigated as an 

ethylating reagent (117). To counter the hydrolysis of the reagent a 10-20 times 

molar excess was used and the esterification of organic acids was successfully 

confirmed by 1H NMR spectroscopy. The use of TEO to modify carboxyl groups was 

used to reduce the enzymatic activity of lysozyme by carboxyl esterification (177). A 

generic example of ethylation of an aspartate by TEO is demonstrated in Scheme 

4-4.

Scheme 4-4 Transfer of an ethyl group from TEO to the carboxylic acid side chain of amino acid 
aspartate. 

Scheme 4-3 Hydrolysis of TEO reagent producing H
+
 ions which causes a drop in pH of the 

solution. 
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As with the previous TMO investigation, no further analysis beyond the activity of the 

enzyme was established. This means that firm conclusions cannot be drawn about 

the sites that were modified or which of those were important for enzyme activity. It 

is possible that the most likely reason for the activity loss was the total denaturation 

of the enzyme.  



Development of a carbamate trapping method 

Chapter 4 

121 

4-3 Carbamate trapping using TMO

4-3.1 Phenylacetic acid

The first step of this investigation was to explore whether TMO could transfer a 

methyl group to a carboxylic acid within a physiologically relevant environment. To 

achieve this the TMO reagent was tested on an organic molecule, phenylacetic acid 

(2-2.1.1). This test was modelled on a cellular environment using a phosphate buffer 

at pH 7.4. Phosphate buffer was chosen as it buffers in the physiologically relevant 

pH range and does not contain any amine groups which might interfere with the 

trapping reagent. It was hypothesised that the reagent would transfer a methyl group 

to the carboxyl group of the acid producing phenylacetate (16) (Scheme 4-5).  

Manual addition of NaOH was used to maintain the pH around 7.4. Due to the short 

half-life of TMO in water, a lot of the reagent hydrolysed over the reaction so a 20 

times molar excess of TMO was used (chapter 2 2-2.1.1). The results of this 

reaction were analysed by NMR spectroscopy (Figure 4-2). 

Scheme 4-5 Transfer of a methyl group from TMO to the carboxyl group of phenylacetic acid to 

produce phenylacetate. 
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The synthesised phenylacetate was produced with a 93 % yield. The appearance of 

a methyl signal at 3.69 p pm using 1H NMR (a) confirmed the presence of the 

synthesised phenylacetate product which corresponds to commercial phenylacetate 

material. 

A mass peak of 150.0 m/z seen by ESI-MS also confirmed the product. These 

experiments demonstrate that despite hydrolysis, TMO is able to transfer a methyl 

group to a carboxyl in an aqueous environment. 

Figure 4-2 
1
H NMR comparing synthesised phenylacetate 16 from the reaction of TMO and 

phenylacetic acid (A) and purchased phenylacetate from Sigma Aldrich (B). 

A 

B 

a 

b 
c 
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4-3.2 Acetyl-lysine

Once the reagent was shown to carry out methyl group transfer, the next step was 

to establish whether a carbamate could be trapped under physiological conditions. 

Acetyl-lysine was used because the ε-amino group of the lysine side chain is known 

to form carbamates in vivo (94). Before trapping, the formation of a carbamate under 

the current experimental conditions was investigated to demonstrate carbamate 

formation. 

Carbon dioxide was introduced to the system using sodium bicarbonate (NaHCO3). 

In solution NaHCO3 dissociates to form carbonic acid (1), which then dissociates to 

give carbon dioxide (2) (Scheme 4-6).  

The formation of the carbamate was analysed using 13C NMR spectroscopy (20 mM 

NaHCO3) (Figure 4-3).   

Scheme 4-6 Dissociation of sodium bicarbonate to carbonic acid which then produces carbon 
dioxide. 
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Figure 4-3 
13

C NMR spectrum showing the formation of a carbamate on acetyl-lysine by the
appearance of a peak at 164 ppm (a). (Extra peak at 161 ppm is bicarbonate in solution.) 

The carbamate formation was confirmed by the appearance of a peak at 164 ppm 

matching literature values (137). 

After confirmation that the carbamate was forming, the TMO reagent was used with 

the developed conditions to test whether a methyl group could be transferred to this 

formed carbamate. NaHCO3 was used at a 20 mM concentration as a 

physiologically relevant concentration for animal systems (178). The manual 

addition of NaOH was used to keep the pH at approximately 7.4. It was 

hypothesised that a methyl group would be transferred to the carboxyl group of the 

acetyl-lysine as well as to the formed carbamate (Scheme 4-7). 

Scheme 4-7 The process of carbamate formation on the ε-amino group of the lysine and the 
predicted results of the transfer of a methyl group from TMO to both the carbamate and the 
carboxyl group. 

a b c 
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The reaction was analysed using electrospray mass spectrometry (ESI-MS) (Figure 

4-4).

Unfortunately, no methyl trapped carbamate product was found, the ESI-MS trace 

showed only starting material acetyl-lysine (A) and methylated acetyl-lysine (B).  

Methyl transfer onto the carboxyl group was expected from the previous experiment 

with phenylacetic acid. However, there was also a very small peak in the 

chromatogram (not shown) equivalent to the mass of acetyl-lysine with two 

additional methyl groups, one to the carboxyl and one to the amine group (Figure 

4-5).

Figure 4-4 ESI-MS spectrum showing acetyl-lysine starting material (A) and acetyl-lysine with a 
methylated carboxyl group (B). 

A B 
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Though the reagent is more likely to transfer to the carboxyl than the amine, the 

excess of reagent needed to counter the hydrolysis reaction means that transfer 

onto an amine is possible. This was not expected to be a problem as carbamate 

formation only occurs on uncharged amines. Nonetheless, these two side reactions 

need to be accounted for when carrying out whole protein analysis. 

The process of carbamate formation within this system involves several equilibria. 

An overview of these is shown in Scheme 4-8. Under the pH of the reaction the 

amine group of acetyl-lysine is in equilibrium between its charged and uncharged 

states (1). When CO2 is added to the system, with the use of sodium bicarbonate, it 

will react with the uncharged amine group to form a carbamate (2) but no reaction 

will occur with the charged amine (3). With the addition of the TMO reagent both 

methyl groups and H+ ions are introduced to the system. If the methyl group 

interacts with the carbamate the modification becomes trapped (4) however the 

production of H+ ions causes dissociation of the formed carbamate and returns the 

amine group to its original charged state (5-8) (Scheme 4-8).  

Figure 4-5 Acetyl-lysine with additional methyl group transfer on the carboxylic acid and amine 
side chain. 
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The most likely hypothesis for the reaction being unsuccessful is therefore the 

introduction of H+ ions by the hydrolysis of TMO causing the dissociation of the 

carbamate.  

To improve the disruption of the experimental pH the next experiments were carried 

out using a pH stat. A pH stat is a machine able to measure the pH throughout the 

experiment and slowly add 1 M NaOH to buffer the pH around a set value. It was 

hypothesised this would cause a much smaller range of pH fluctuation during the 

experiment. The trapping reagent was also changed, TMO was exchanged for 

triethyloxonium tetrafluoroborate (TEO) which has a much longer half-life (117). 

Scheme 4-8 Process of possible equilibria present with acetyl-lysine in solution with the 
addition of CO2 and TMO. 
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4-3.3 Amount of possible carbamate formation

The ɛ-amino group of lysine has a pKa value in the range 9.2-10.5 depending on the 

environment (179). Therefore the trapped carbamate yields at pH 7.4 are expected 

to be low. Using the Henderson-Hasselbalch equation (Figure 4-6) describing the 

relationship between a base and its conjugate acid allows the percentage of free 

base in solution to be calculated. Using the pH of the reaction 7.4 and the pKa of a 

lysine amine group as 10.5 (180) then using the equation below the ratio of freebase 

to conjugate acid is 0.0008. This means that under these conditions 99.9 % of the 

acetyl-lysine will be in the conjugate acid form. 

𝒑𝑯 = 𝒑𝑲𝒂+ 𝒍𝒐𝒈𝟏𝟎
[𝑩]

[𝑩𝑯+]

Figure 4-6 Henderson-Hasselbalch equation. 

The use of this equation demonstrates a very low amount of lysine that would be 

capable of forming a carbamate. This factor suggests that the pKa of a lysine 

capable of forming a carbamate has been altered by the structure of the protein and 

the hydration space of its environment. This is true in the case of the N-terminal 

of Hb which is known to have a pKa of 6.6. 
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4-4 Trapping carbamates using TEO

TMO is a very reactive reagent in an aqueous environment, with a half-life of only 

0.14 s (175). This means that the reagent is quickly hydrolysed during the reaction, 

decreasing the pH. TEO has a much longer experimental half-life of 7.4 min (117) 

making it a suitable alternative for investigating carbamate trapping under 

physiological conditions. The increased half-life of hydrolysis means that the 

production of H+ ions is much slower and therefore easier to control during the 

reaction. The mechanism is very similar to TMO except an ethyl group instead of a 

methyl group is transferred (Scheme 4-9). 

4-4.1 Acetyl-lysine trapping

It was demonstrated (Figure 4-3) via 13C NMR that a carbamate is formed on acetyl 

lysine under the experimental conditions being used. An experiment was then 

performed to investigate whether the TEO reagent was able to trap the carbamate 

via ethyl transfer. As described previously, the trapping experiment was carried out 

with physiologically relevant levels of NaHCO3 and pH 7.4 (181,182). The previous 

experiments described here used the manual addition of NaOH (117), however a pH 

stat was now introduced for more accurate pH maintenance (176).  

Scheme 4-9 Transfer of an ethyl group from TEO to a carbamate. 
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As discussed previously, transfer of the ethyl group to the carboxyl group as well as 

the carbamate is expected. The hypothesised trapped product is shown in Scheme 

4-10.

TEO was added with stirring in three incremental amounts to limit the disruption of 

the pH of the solution, while NaOH (1 M) was added via a pH stat. The pH stat 

monitors the pH over the course of the reaction and an example readout is given in 

Figure 4-7. The pH is kept stable over the course of the experiment with some 

fluctuations seen with reagent addition which are artefacts due to mixing.  

Scheme 4-10 The process of carbon dioxide binding to the ε-amino group of the lysine to form a 
carbamate and the predicted results of the addition of TEO on both the carbamate and the 
carboxyl group. 
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The results of a TEO acetyl-lysine trapping experiment were examined using ESI-

MS (Figure 4-8). The trapped carbamate product was identified (C) as well as 

starting material with one transferred ethyl group on the carboxyl terminus (A) and 

starting material containing an ethyl group on both the carboxyl and amine groups 

(B). These peaks were assigned using the mass to charge ratio of the molecules. 

Figure 4-8 shows the total ion chromatogram (TIC) displaying the three peaks of 

products A, B and C as well as the m/z spectrum for the trapped carbamate product 

(C) both with and without the presence of a sodium ion.

Figure 4-7 Graph produced by pH stat showing the maintenance of pH over an acetyl-lysine 
trapping experiment. 
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This result demonstrates that under these experimental conditions it is possible to 

form a carbamate on an amine group under physiologically relevant conditions of pH 

and [CO2] and trap it by ethyl transfer with TEO. This transfer of an ethyl group 

makes the modification robust enough for analysis by MS. 

4-4.2 Synthesis of synthetic carbamylated acetyl-lysine

For further confirmation that the product (C) identified corresponds to a trapped 

carbamate, product C was purified from the side products by extraction into ether (2-

2.2.1) and compared by NMR spectroscopy to a chemically synthesised product 

(Scheme 4-11).  

Figure 4-8 TIC and m/z trace from trapping of acetyl-lysine with TEO. Showing the products to 
be acetyl-lysine with ethylation of the carboxyl group (A), ethylation on both the carboxyl and 
amine groups (B) and the trapped carbamate on the ε-amine of acetyl-lysine (C). The mass of 
the trapped acetyl-lysine C – 289 and the 13C isotope 290 is seen in the m/z chromatogram. 

TIC 

C 

C + Na
+

C B A 
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This synthesised acetyl-lysine derivative contains a group chemically equivalent to a 

trapped carbamate (red box). This material was compared to the purified trapped 

material (C) by 1H NMR spectroscopy (Figure 4-9). 

Figure 4-9 
1
H NMR comparing signals between the chemically carboxyl ethylated acetyl-lysine

(A) and the material formed during the trapping reaction (B).

Scheme 4-11 Synthesis of chemically modified acetyl-lysine derivative containing a group 
chemically equivalent to a trapped carbamate. 
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The product made by the trapping reaction includes an additional ethyl signal on the 

carboxyl group accounting for signals i and j (B).  

Though the separation of the three products (A, B and C Figure 4-8) can be seen on 

the TIC from the mass spectrometry trace the purification of C (the carbamate 

trapped desired product) proved difficult by silica chromatography due to the similar 

affinity of the three compounds. This introduced some contamination signals around 

signal f in spectrum B (Figure 4-9) corresponding to side products B and C in Figure 

4-7. It was not possible to completely remove this contaminant.

Despite these two differences the spectra match very closely and confirm that 

product C from the trapping reaction is acetyl-lysine with a trapped carbamate. 

4-4.3 13C Confirmation of carbamylated acetyl-lysine 

It is assumed in the carbamate trapping reaction that the NaHCO3 is dissociating 

within the aqueous system to provide CO2 for carbamate formation. To confirm that 

this is occurring a labelled sodium bicarbonate source (NaH13CO) was used as an 

orthogonal approach. This method has been used previously to investigate 

carbamylation in β-lactamases and adult human Hb in NMR analysis (109,183).  

The m/z of this experiment was then compared to the 12C experiment to look for a 

mass shift (Figure 4-10).  
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The expected 1 Dalton (Da) mass shift increase seen between 12C trapping (product 

A) and 13C trapping (product B) confirmed that it is the CO2 being formed in solution

under the experimental conditions that is causing carbamate formation. 

4-4.4 Phenylalanine trapping

Due to the difficulty removing the acetyl-lysine side products the yield of the trapping 

reaction could not be accurately confirmed. The amount of substance in a reaction 

cannot be compared by MS because of effects such as ion suppression (184).  

Without the separation of the pure trapped product, another method to discover the 

yield of carbamate trapping is to use a UV active group so that the amount can be 

Figure 4-10 MS trace showing the increase of one mass unit from 
12

C (A) with the use of 
13

C 
labelled sodium bicarbonate (B). 

A 

B 

A + Na
+

B + Na
+
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analysed from the MS UV trace. To introduce a UV active group the experiment was 

repeated on the amino acid phenylalanine (Scheme 4-12).  

Phenylalanine does not have an amine group on its side chain but carbamate 

formation is also possible on an N-terminus α-amine group, such as occurs on Hb 

(138). However this is not a direct comparison with acetyl-lysine because an N-

terminus amine group has a lower pKa of around 9 (180) so will more readily form a 

carbamate under the same pH conditions. Using the Henderson-Hassellbach 

equation the ratio of freebase to conjugate acid is 0.025. This means that under 

these conditions 97.6 % of the α-amine group will be in the conjugate acid form. 

The experiment was carried out under the same conditions of NaHCO3, pH and TEO 

as the acetyl-lysine trapping and the results were analysed by ESI-MS (Figure 4-11). 

Scheme 4-12 Formation and trapping of a carbamate on the N-terminus of phenylalanine. 
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A carbamate was successfully trapped on the N-terminus α-amine of phenylalanine 

((D) Figure 4-11). There was also the starting material with ethyl transfer to the 

carboxyl group (A) and double transfer to both the carboxyl and the amine group 

once (B) and twice to the amine group (C). The yield was calculated by comparing 

the area of the product D to side products A-C on the UV trace (Figure 4-11). 

Phenylalanine experiments were carried out at pH 7.4 and 8.5 to investigate the 

effect on carbamate formation of the pH of the reaction (pH 8.5 not shown). Both 

experiments contained the same product and three side products. The yield was 

compared using the MS UV system with a minimum threshold of 0.5 %. Though the 

‘peaks’ seen by the software (Figure 4-11 UV absorbance spectra) are small enough 

to offer a large possibility of variance the difference between the peak observed at 

Figure 4-11 TIC and UV traces of trapped phenylalanine reaction at pH 7.4 showing the 

carbamate trapped product D and ethylated side products A, B and C. 

UV absorbance 

A B C 

A B C D 

D 
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pH 8.5 and pH 7.4 was large. This goes to support the hypothesis that the reaction 

is pH limited due to the charge of the amine group. 

This demonstrates the importance of the pH of the solution and therefore the charge 

state of the amine group in the formation of a carbamate. It is known that the rate-

limiting step in the formation of a carbamate is the binding of CO2 to the amine (78) 

which is encouraged by a neutral charge state of the amine group. As normal 

physiological environments are at pH 7.4 it is hypothesised here that carbamate 

sites are contained within privileged protein environments which encourage neutral 

amine formation. 
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4-5 Development of the trapping method on dipeptide and tetra

peptide systems 

After successfully trapping a carbamate on a single amino acid system, the next 

step was to examine carbamate trapping on a dipeptide. Two different dipeptides 

were used both containing phenylalanine; the second amino acid was glycine as a 

control molecule without a side chain amine and lysine. This was to 

compare carbamate formation on a lysine side chain versus an N-terminus amino 

group. 

4-5.1 Glycine-Phenylalanine (GLY-PHE)

The first investigation of a dipeptide system used the dipeptide GLY-PHE. The 

same amount of NaHCO3 and TEO were used and the expected reaction is 

shown in Scheme 4-13. 

These results were analysed using ESI-MS (Figure 4-12). 

Scheme 4-13 GLY-PHE dipeptide reaction with CO2 and TEO and its product after trapping with 
the formation of a carbamate. 
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A carbamate was successfully trapped on the N-terminus of the dipeptide (C) as 

expected the reaction also created the side products of single and doubly ethylated 

GLY-PHE (Figure 4-12, A and B respectively). This successful result has confirmed 

that the method has progressed to be able to form and trap a carbamate on a 

dipeptide molecule for analysis by MS. 

4-5.2 Lysine- Phenylalanine (LYS-PHE)

Next, an investigation into carbamate formation on an α-amine versus an ε-amine 

group was carried out using the dipeptide LYS-PHE. Both have been seen on 

proteins in literature (the Hb carbamate is on an N-terminus α-amine group (90) and 

the RuBisCO carbamate ε-amine K201 (78)).  

Figure 4-12 ESI-MS showing the trapped carbamate product of GLY-PHE (C) as well as the 
singly ethylated starting material (A) and doubly ethylated starting material (B). 

A B C 

C C + Na
+
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This experiment was carried out using the same developed conditions and analysed 

using ESI-MS. The hypothesised reaction can be seen in Scheme 4-14 with both 

possible carbamate locations highlighted.  

This experiment was analysed using ESI-MS (Figure 4-13). 

Scheme 4-14 LYS-PHE dipeptide and its possible carbamate formation sites (circled) with 
trapping. 

Figure 4-13 LYS-PHE MS spectrum showing the side products with additional ethylation (A and 
B) and the trapped carbamate product with one and two ethyl additions (C).

A B C 

C 
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The results of this experiment showed a successfully trapped carbamate product 

peak of 422 m/z (Figure 4-13, C). However, no doubly carbamylated product was 

found, most likely due to steric hindrance. The MS could not be used to say which 

location the carbamate formed at but due to the pKa values, it is most likely to be 

the N-terminus amine. In this case the side products were doubly and triply 

ethylated starting material (Figure 4-13, A and B respectively). 

4-5.3 Phenylalanine-leucine-lysine-glutamine (FLKQ) Tetrapeptide

After development of the method on a dipeptide system, a tetrapeptide (FLKQ) was 

investigated. The process of reaction of FLKQ with CO2 and TEO with carbamate 

formation expected on the N-terminus is shown in Scheme 4-15. 

This reaction was successful and produced a trapped carbamate on the N-terminus 

of the tetrapeptide (Figure 4-14 A) and a trapped carbamate molecule with 

an additional ethylation on the lysine side chain (Figure 4-14 B). 

Scheme 4-15 FLKQ tetrapeptide reaction with CO2 and TEO. 

C 
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Figure 4-14 FLKQ tetrapeptide MS results showing a trapped carbamate on the N-terminus with 
an ethylation on the C-terminus (A) and on the lysine group (B). 

Once the method had reached a stage of repeatedly trapping a carbamate on a 

small molecule, the next step was to develop the method on a whole protein.  

A B 

A B 
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4-6 Haemoglobin trapping

The overall aim of this investigation is to develop a method for screening 

carbamates on a proteome. Therefore, it is important to develop this method to be 

able to trap carbamates within a whole protein. 

Hb was chosen as the first full protein for development of the method because it is 

one of the few proteins already confirmed to form a carbamate (79). The formation 

of the carbamate is known to be on the N-terminus residue of the β–chain and 

therefore an easily accessible site. 

First the formation of a carbamate was confirmed on Hb using 13C NMR 

spectroscopy and compared to literature values (81). The formation of a carbamate 

on Hb was confirmed in the same way as on acetyl-lysine, by the appearance of a 

signal at 164 ppm (A) in 13C NMR spectroscopy (Figure 4-15). 

Figure 4-15 
13

C NMR spectrum showing a bicarbonate in solution peak B and a carbamate peak

A. 

The site of carbamate formation on Hb is on the α-amine of the β chain N-terminus 

residue valine (138). The carbamate formation and trapping on this residue can be 

seen in Scheme 4-16. 

A

B 



Development of a carbamate trapping method 

Chapter 4 

145 

Scheme 4-16 Trapping of a carbamate formed on the N-terminus valine residue of Hb. 

The Hb experiment was carried out using purchased human Hb (Sigma Aldrich 

H7379) and the same reaction conditions previously developed. Applying the 

method to a whole protein produced several new challenges.  

4-6.1 Proteomics

Proteomics is the study of the whole proteome, all the proteins expressed within a 

cell including their modifications (185). The study of protein PTMs requires the use 

of MS to analyse the modification (186). MS used to only be applicable to small 

molecules but the introduction of new ‘soft’ ionisation techniques made protein MS 

possible (187). There are two main types of ‘soft’ ionisation used for protein MS, 

electrospray ionisation (ESI) and matrix assisted laser desorption ionisation (MALDI) 

(188). Both of these MS techniques were used in this investigative work. MALDI MS 

uses a solid phase matrix to assist in ionisation, in this work the matrix used was 

alpha-cyano-4-hydroxycinnamic acid (α-CHCA) (189). The matrix is a molecule that 

is designed to absorb the laser energy and assist the sample in ionisation. ESI 

works by forcing the liquid sample out of a needle tip causing it to disperse into a 

fine spray of charged droplets (190). ESI is easily coupled to become tandem MS 

(MS-MS) which provides additional peptide fragmentation information necessary for 

sequencing. 

Though these new soft ionisation techniques allow the visualisation of most PTMs 

but due to the labile nature of carbamylation it is still difficult. The trapping of the 

carbamate has made this modification robust enough to view by MS. 

Proteins must be digested for MS because peptides are more easily soluble and 

ionise better than whole proteins. The digest was carried out using the protease 

trypsin which cleaves on the C-terminus side of lysine and arginine residues (191). 

The full description of how the digestion was developed is covered in chapter 5. 
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4-6.2 MALDI

During the protein trapping reaction TEO also transfers ethyl groups to other amino 

acids in Hb. This becomes more of a challenge when investigating a complex 

protein mixture and is discussed more thoroughly in chapter 5. 

MALDI data comes in the form of a list of mass peaks to be analysed. As the 

location of the Hb carbamate is known to be on the β chain N-terminus peptide the 

expected mass of interest can be calculated. 

The sequence of the β chain N-terminus peptide is VHLTPEEK and the mass of this 

peptide is 952.51 Da. Ethyl transfer was expected on both E amino acids (each 

ethylation adds 28.03 Da) which would give the mass 1008.57 Da. This mass was 

therefore the starting point for the search of the modified peptide in the MALDI data. 

The addition of a trapped carbamate (CO2 and an ethyl group) adds 72.02 Da. The 

addition of an ethyl group is a variable modification so a series of products is 

possible (Table 4-1).  

Table 4-1 Showing the mass peaks from the MS in Figure 4-16 and their corresponding 

modifications. 

Peak m/z Non-carbamate series Trapped carbamate series 

1008.57 N-terminus + 2 ethylations - 

1023.61 - - 

1036.60 N-terminus + 3 ethylations - 

1064.64 N-terminus + 4 ethylations - 

1080.59 - N-terminus + carbamate + 2 ethylations

1092.67 N-terminus + 5 ethylations

1108.62 - N-terminus + carbamate + 3 ethylations

1120.70 N-terminus + 6 ethylations

1136.66 - N-terminus + carbamate + 4 ethylations

The mass of the N-terminus peptide with a trapped carbamate and two ethylations is 

1080.59, which can be seen in the MALDI spectrum (Figure 4-16). The MALDI data 

shows an ethylation addition series for the N-terminus peptide (red peaks) and for 

the trapped carbamate peptide series (blue peaks). 
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Figure 4-16 Hb MALDI spectrum, showing both an ethylation series (red peaks) and a trapped 
carbamate ethylation series for the N-terminus peptide (blue peaks). The trapped carbamate 
series is highlighted in blue boxes and increases by the mass of an ethylation (28). 

Figure 4-16 shows the ethylation series (red peaks) as having a large relative 

intensity compared with the ethylation series also containing the trapped carbamate 

(blue peaks). However as demonstrated by the phenylalanine experiment the 

intensity level of peaks does not always correspond to the experimental values. 

Originally in literature (173) the amino acids thought to be ethylated by TEO were 

only glutamate and aspartate but looking at the length of the ethylation series in 

these results (showing at least four additional ethyl groups) there are more ethylated 

amino acids than previously suggested.  

The peptide suspected of being the N-terminus residue mass plus a carbamate + 2 

ethyl groups (1080.59 Da) was fragmented for sequence 

confirmation. Fragmentation is caused by increased energy inside the MS machine 

which creates ionised fragments from a digested peptide, these are then used to 

gain sequence information about the peptide (Figure 4-17).  
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Figure 4-17 MSMS fragmentation peaks of the N-terminus peptide peak 1080.6. 

These fragmentation peaks were then compared to possible mass fragmentation of 

the peptide VHLTPEEK + carbamate + two ethylations. The fragments that 

correspond to the peaks in Figure 4-17 are detailed in Table 4-2.  

Table 4-2 Comparing the m/z fragments from 1080.6 fragmentation to the N-terminus peptide 
sequence. 

Peak m/z Corresponding amino acid sequence 

138.1 H 

337.2 VH + carbamate + ethylation 

450.3 VHL + carbamate + ethylation 

551.3 VHLT + carbamate + ethylation 

558.3 PEEK + 2 ethylations 

952.5 VHLTPEEK 

This fragmentation confirms the presence of a carbamate on the N-terminus 

peptide. 
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Due to the wide range of additional ethylations the MALDI spectra contains many 

peaks. This creates difficulty when manually searching the data for sites of 

carbamylation and was only possible for Hb due to previous knowledge of the 

location of the carbamate. ESI was therefore used as an alternative technique. ESI 

can easily be coupled to an MS-MS system so that peptide fragmentation can be 

collected inline. MALDI also cannot be used to confirm a modification in the first 

instance because, unlike ESI, it does not collect MS-MS data which is needed to 

provide sequence information.  

4-6.3 ESI

ESI acquisition takes longer due to collecting MS-MS data. However, this provides 

much better analysis and confirmation of modifications. Further details of the MS 

techniques explored in this work are detailed in chapter 5. ESI MS contains MS-MS 

fragmentation caused by increased energy; this allows the identification of the amino 

acid sequence and in this case the additional modifications being carried. Previous 

literature surrounding carbamates have tried to analyse via MS but this increased 

energy has removed the carbamate, with this new trapping method the modification 

can be retained (78). 

The use of ESI meant that the data collected needed processing software. There 

are many MS online software available but they are all limited to a maximum of two 

variable modifications so were unusable for this work. A collaboration with 

Newcastle University introduced the software GPM X!Tandem (Tandem) which is 

able to handle multiple modifications. ESI-MS produces MS-MS data which Tandem 

can then compare to a specified genome to search for the detailed modifications. A 

score is provided along with the peptide and modification assignment to provide 

information about the likelihood of a false positive. In this case a false positive would 

correspond to a fragment ion being assigned to the wrong peptide. 

The search was carried out including the carbamate modification (within Tandem 

referred to as carboxyethyl) on lysine and protein N-terminals and the ethylation 

modification (within Tandem referred to as dimethyl) occurring on glutamate and 

aspartate residues. The ethylation can also occur on other amino acids with free 
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electrons such as lysine and arginine but a larger number of modifications increases 

the chances of a false positive so these were omitted in the original search. 

The software successfully found a mass corresponding to the N-terminus peptide 

with a carbamate and one ethyl group (1052.56) from the ESI data (Figure 4-18). 

The score for this hit was high and there were no other carbamates found on the 

protein. 

Figure 4-18 Tandem image containing the N-terminus peptide with a trapped carbamate on the 
valine residue (green box) a good score (blue box) and the mass for the peptide (red box). 

The Tandem software allows the user to search through the data by looking for a 

specific PTM, in this case a trapped carbamate (labelled carboxyethyl by the 

software). The software then displays the peptide sequence containing the 

modifications (green box), the mass of the peptide (red box) and the confidence 

score (blue box) to demonstrate the assignment. The fragments found in the data 

that match the peptide (purple box) and shown as blue peaks for b ions and red 

peaks for y ions which correlate with the peaks shown in the spectra. 

To confirm that the formation and trapping of the carbamate is due to the 

experimental procedure, an isotope experiment was completed using NaH13CO3.

NaH13CO3 has previously been used to investigate Hb carbamate binding (136) and

would confirm the carbamate formation by the appearance of the same peak but 
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with an additional 1 Da mass shift. The experiment was successful and the expected 

increase of one mass shift from 1024.10 VHLTPEEK + CO2 to 1025.11 VHLTPEEK 

+ 13CO2 can be seen in Figure 4-19. 

Figure 4-19 Tandem image showing the N-terminus peptide with a 
13

C trapped carbamate being 
1 dalton heavier than the 

12
C sample mass of 1024.5.

A control was also carried out to investigate the hypothesis that carbamates are able 

to form because of the privileged environment of the folded protein. To control 

against this a trapping experiment was undertaken after the Hb protein had been 

denature in 4 % SDS to unfold the protein before trapping. The majority of the SDS 

was removed from the reaction before trapping. No trapped carbamate was 

observed (Figure 4-20) within this sample, indicating that the structure of the protein 

is necessary for carbamate formation. 
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Figure 4-20 Tandem image for a control experiment showing the N-terminus peptide without a 
carbamate, mass 952.5 and a high confidence score of -2.4.  

These results demonstrate that the method has now been developed to a stage 

where it can be used to trap a carbamate, formed under these conditions, for 

downstream MS analysis on a whole protein. 
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4-7 Conclusion

Previously there had been little work done on the investigation of the 

post-translational modification carbamylation. The main reason behind this area 

being so understudied is the labile nature of the modification. The common 

method of PTM analysis uses MS which, due to its high energy ionisation and 

acidic conditions is unsuitable for carbamylation identification. This has 

meant that all known carbamates have been confirmed using non-native 

conditions which could cause artefacts. This work presents the development of a 

method to overcome these restrictions. This method can be used on proteins 

under native aqueous conditions to convert a carbamate into a modification robust 

enough for in-depth analysis. 

The work in this chapter has described the development of a carbamate 

trapping method for use under physiological conditions. This work builds on 

previously established alkylation chemistry but under aqueous conditions. The 

work began by trapping a carbamate on a single amino acid system using 

acetyl-lysine and progressed through two dipeptides and a tetrapeptide. Once 

a stable trapping method had been confirmed the work progressed on to a whole 

protein. Hb was the protein chosen for this due to the repeated confirmation of 

carbamate formation within literature (136,140,192). The results were analysed 

using MALDI and ESI MS and were confirmed with 13C isotope labelling.  

This method can now be applied to any protein and can be used in all systems to 

search for novel CO2 target proteins, thus opening up a pathway to further 

understand the complex interactions of CO2 within a cellular environment. 

Carbamate formation on Hb and RuBisCO are important for function of the protein. 

Therefore it is hypothesised that this modification could also be important in the 

function of other proteins. 
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4-8 Future work

This chapter has described the successful development of a method that can trap a 

carbamate under physiological conditions on a protein.  

The overall aim of this investigation was always to search for unknown carbamates. 

This developed method can now be used to carry out this aim. To investigate this 

the trapping method was used to screen an Arabidopsis soluble leaf lysate. This 

work and the development of the digestion and MS necessary for analysis is 

detailed in chapter 5. 
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Chapter 5: A proteomic screen for new protein 

carbamates 

5-1 Overview 

The overall aim of this project was to develop a system capable of searching for 

unidentified carbamylation sites on proteins under physiological conditions. This 

work began by developing a method to trap a known carbamate on a protein and is 

successfully described for Hb in chapter 4. Carbamates cannot be analysed via MS 

due to their labile nature. Development of a trapping method provides the ability to 

convert a carbamate into a robust modification amenable to analysis. This chapter 

describes the development of a method to trap unknown carbamates on a plant leaf 

lysate, with the aim of creating methods able to screen any proteome.  

Arabidopsis thaliana (Arabidopsis) has been used as a model plant system since the 

1980’s (193). This is because it has a small sequenced genome and relatively short 

life cycle. The leaf lysate was chosen as the site for screening as this is the location 

of CO2 interface through photosynthesis and therefore likely to contain proteins that 

are important for CO2 interactions (194).  

The leaf lysate is a far more complex sample than trapping on a single purified 

protein and therefore required methods of fractionation to simplify sample 

complexity before analysis. Several methods of fractionation were explored in this 

chapter and it was decided that fractionation after trapping was a suitable way to 

keep closest to physiological conditions. Analysis methods were developed to be 

able to search a complex range of modifications and criteria were developed to 

reduce the chances of false positives. 

Newly discovered protein carbamates were discovered using two different analysis 

software packages. These carbamates were all on lysine residues at previously 

unknown sites and were identified by fragmentation patterns from ESI-MS data.
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5-2 Previous work on complex protein systems 

5-2.1 Previous proteome investigations

The predominant method used in proteomics screening is known as bottom-up 

proteomics (195). Bottom-up proteomics is the process of identifying proteins 

through tandem mass spectrometry (MS-MS) by digesting a protein sample to form 

peptides (196). In this work the soluble proteins from an Arabidopsis leaf were 

extracted and digested into peptides. These peptides were then fractionated and 

ionised using MS. These ionised peptides were then further fragmented with 

increased energy (MS-MS) (Figure 5-1). These new fragmented ions formed peaks 

corresponding to a mass to charge ratio (m/z) and were compared to a theoretical 

peptide spectrum from the selected database (197) which allowed protein 

sequencing and identification.  

Peptides are preferred over proteins for MS due to the higher sensitivity of MS for 

smaller molecules and the better fragmentation of peptides compared to proteins 

Figure 5-1 Steps involved in bottom-up proteomics for peptide identification from protein 
extraction. 
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(198). There are several proteases that can digest proteins, the most commonly 

used is trypsin because of its stability and low error rate (199). Trypsin works by 

cleaving on the carboxyl terminal of lysine and arginine residues (200) to form 

peptides. 

There are several challenges associated with working on a large-scale proteome 

study. The largest of which is swamping of the sample by highly abundant proteins, 

which can cause rare proteins to be missed (201). In most studies the sample 

complexity is reduced by either fractionation or subcellular compartment enrichment 

(202). Recent studies investigating yeast proteomes were able to identify 3639 (203) 

and 3977 (204) proteins, roughly 2/3 of the theoretical yeast proteome, using LC-

MS-MS triplicate runs when including fractionation before MS. The Arabidopsis 

genome encodes roughly 25000 proteins (205) so a method to reduce the sample 

complexity is essential. 

Previous investigations of plant proteomes have focused on one cellular 

compartment; this is normally achieved by fractionating the lysate by density 

gradient centrifugation. This has been carried out in studies into both the chloroplast 

and mitochondrial proteomes of Arabidopsis where both studies begin by purification 

of their cellular compartments by Percoll density centrifugation (206,207). Next, 

sample proteins were separated into soluble and insoluble fractions and then 

additionally fractionated by either 2-DE (206) or by liquid chromatography (207). 

These studies identified 690 and 170 proteins respectively. 

In most cases of proteome analysis the fractionation of the sample is targeted to a 

subcellular location in this way because the protein or PTM location is known and 

therefore the complexity can be easily reduced. In this work, it is hypothesised that 

carbamates are formed under any cellular environment and therefore can occur in 

all cell compartments so this method of directed fractioning was not used. Other 

methods of fractionation were explored here and are described in 5-3.2. 
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5-2.2 Previous work investigating PTMs

PTMs are changes to a protein which can alter the activity or localisation of that 

protein (208). The investigation of PTMs on proteins is paramount to understanding 

their biological function. 

Previous screens have been carried out for both acetylation and phosphorylation 

within plants. Lysine acetylation was previously thought to only occur on histones 

but has recently been identified on 57 proteins within Arabidopsis (209). Several 

large scale studies of phosphorylation have been carried out in plants (202). A study 

of phosphorylation in an Arabidopsis whole cell lysate identified 1346 proteins 

containing modifications. Searching for both of these modifications can be improved 

by enrichment of the sample based on the modification. The acetylation study used 

immunocapture with anti-acetyl antibodies and the phosphorylation study used 

several enrichment methods including Fe-IMAC to remove unmodified peptides 

(210). Using enrichment allows the screening of a much larger sample as the sites 

of interest can be concentrated prior to analysis. 

Carbamates have not been previously screened due to the lack of methodology to 

analyse their formation. The carbamate modification is labile and therefore unable to 

withstand most conditions required for MS which remove the modification prior to 

identification (78). Recently a study has identified the formation of a carbamate on a 

whole peptide (Angiotensin) by using very gentle ESI technique (79) however this 

method would not be able to identify the site of carbamate formation due to the 

harsh conditions needed for ion fragmentation. The trapping methodology described 

in chapter 4 has removed this labile nature and allows for carbamate location 

analysis via MS. 

It is proposed that understanding the regulation of phosphorylation in plants is key to 

understanding many plant functions (210). We hypothesise this is also the case for 

understanding the formation of carbamates. 

The work described in this chapter uses the developed carbamate trapping method 

to produce robust covalently trapped carbamate sites on proteins. The trapping 

experiments were analysed using MS and the samples were run at the facility at 
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Durham University on an Applied Biosystems Qstar® XL mass spectrometer, 

however this machine has a limited sample rate compared to newer MS machines. 

A comprehensive review of proteins identified from an E.coli lysate compared two 

very similar MS machines; an Orbitrap and a Qstar elite. This study found that when 

analysing the same sample the Orbitrap outperformed the Qstar instrument, 

identifying over 2.5 times as many proteins and with higher mass accuracy than the 

Qstar machine (211). Samples were therefore also sent to the NUPPA facility at 

Newcastle University to be run on a Thermo LTQ (Linear Quadrupole) Orbitrap XLTM 

mass spectrometer. 

The data collected from these machines was analysed with two different database 

software packages, GPM X!Tandem (Tandem) and MaxQuant, to identify protein 

carbamates. 
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5-3 Development of a method to identify unique proteins from a 

carbamate trapping reaction 

5-3.1 Analysis of amount of protein extracted from Arabidopsis leaves

The samples were prepared for trapping by extraction of soluble protein from 

Arabidopsis leaves. Assaying the amount of protein in a plant sample is often 

difficult due to interference from phenols and chlorophyll and can lead to widely 

varying results (212). Bradford and BCA assays were carried out to calculate the 

amount of protein extracted from the leaves.  

A Bradford assay works by measuring the binding of the Bradford dye which directly 

interacts with amino acid side chains, mostly arginine residues. This binding causes 

the transfer of a hydrogen from the dye converting it into the anionic form which 

causes a shift in the dye absorbance from 465 nm to 595 nm (213). This reliance on 

side chain groups can cause variety over different protein samples. A standard 

curve (Figure 5-2) was made using a range of BSA standard solutions and plotting 

the absorbance measurements. This graph can then be used to quantify the amount 

of protein in an unknown sample (213).  

Figure 5-2 Standard curve from known concentrations of BSA using the Bradford assay, 
absorbance read at 595 nm. R squared values defines how closely the data fits the regression 
line. 
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𝑦 =  0.0002𝑥 +  0.0131 

Equation 5-1 Standard curve equation from Figure 5-2. 

Bradford assays are quick and easy to perform but can sometimes provide an 

underestimate due to interference by detergents and buffers binding with the dye 

(214) therefore a bicinchoninic acid (BCA) assay was also investigated.

A BCA assay works by the binding of copper ions (Cu2+) to proteins in an alkaline 

environment. The peptide bonds within a protein reduce the Cu2+ ions from copper 

sulphate to Cu+. The amount reduced is directly proportional to the amount of 

protein present in the solution. Then bicinchoninic acid chelates with these Cu+ ions 

forming a complex that is read at 562 nm. This method is known to be more tolerant 

to interference from detergents than the Bradford assay (215). A standard curve was 

produced in the same way using BSA standards (Figure 5-3). 

Figure 5-3 Standard curve from known concentrations of BSA using the BCA assay, 
absorbance read at 562 nm. R squared value close to 1 shows the data closely matches the 
regression line. 

𝑦 =  0.0009𝑥 +  0.0358 

Equation 5-2 Standard curve equation from Figure 5-3. 

The two equations from these assays (Equation 5-1 and Equation 5-2) were then 
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5-3.2 Fractionation of the sample

Due to analysis limitations it is important to reduce the complexity of the sample 

before MS (202). Previous work investigating complex proteomes have used several 

methods to accomplish this. 

As well as fractionation based on subcellular target location another method often 

used to separate proteins is by 2-DE (216). This method involves separating 

proteins on a gel by two dimensions, first by isoelectric point (pI) and then by 

molecular weight (201). This method was investigated in this work, however 

additional ethyl transfers from the TEO reagent to carboxylic acids containing amino 

acids (aspartate and glutamate) alters the pI of proteins and caused poor gel 

separation (data not shown). 

A method often used in conjunction with 2-DE gels when investigating plant proteins 

is the removal of RuBisCO (217). As RuBisCO can account for almost 50 % of 

soluble leaf protein its removal can lead to an increase in identification of less 

abundant proteins (218). The removal of RuBisCO was achieved by using an anti-

RuBisCO antibody packed into a spin column, this removes RuBisCO from the 

sample while allowing the rest of the proteins to flow through (217). The sample 

before and after passing through the RuBisCO removal column was run on an SDS-

PAGE gel (Figure 5-4). 

Figure 5-4 SDS-PAGE containing a MW marker (kDa) (lane 1) a RuBisCO depleted sample (lane 
2) and the original leaf lysate (lane 3).
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The SDS-PAGE compares a RuBisCO depleted sample (lane 2) to the original leaf 

lysate (lane 3). The RuBisCO removal can be seen by the absence of the large 

subunit in lane 2 at 53 kDa. The molecular weight is known by the use of a 

molecular weight ladder (lane 1) Figure 5-4.  

Unfortunately, the capacity of the removal column (0.2 mg) was found to be too 

small to produce sufficient material for downstream analysis so this method was 

ultimately not suitable for reducing the sample complexity in this work. 

Another method used to fractionate protein samples is by salt precipitation (219). 

This method works by increasing interactions between the proteins and the salt 

causing proteins to reveal hydrophobic residues and aggregate out of solution. The 

most commonly used salt is ammonium sulphate because of its high solubility. 

Fractions were taken at 20, 40, 60 and 80 % (v/v) salt and analysed by running on 

an SDS-PAGE gel (Figure 5-5). 

Figure 5-5 SDS-PAGE containing a MW marker (kDa) (lane 1), the original leaf lysate sample 
(lane 3) and four salt precipitation samples; F1 20 % (v/v) (lane 5) F2 40 % (v/v) (lane 7) F3 60 % 
(v/v) (lane 9) and F4 80 % (v/v) (lane 10). The RuBisCO large subunit (53 kDa) and small subunit 
(18.5 kDa) can still be seen in all lanes. 

This method did not appear effective at fractionating the sample when visualised on 

a gel due to the main band in all the fractions still containing both RuBisCO subunits 

(large subunit, 53 kDa and small subunit, 18.5 kDa).  
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After the precipitation the samples were re-solubilised by dialysis into 50 mM 

phosphate buffer and were then used for individual trapping experiment and 

analysis by MS. Despite the appearance on the gel it was seen that there were 

unique proteins found in all fractions (Figure 5-6) with a total number of 91 unique 

proteins identified over the four fractions.  

Figure 5-6 Number of unique proteins found in each salt precipitation sample, F1 20 % (v/v), F2 
40 % (v/v), F3 60 % (v/v) and F4 80 % (v/v). 

It could not be guaranteed that the proteins had not misfolded or lost their native 

state during the precipitation and re-solubilisation process; therefore, to ensure that 

the process of fractionating the sample did not interfere with the native state of the 

proteins, fractionation was carried out after the trapping experiment to provide 

confidence that the lysate was as close to physiological conditions as possible.  
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5-3.3 Solubilisation

During the carbamate trapping reaction there is additional transfer of ethyl groups by 

the TEO reagent to other amino acids. This can include any amino acid with free 

electrons but most commonly those containing carboxylic acid groups (aspartate 

and glutamate) (Figure 5-7) and containing amine groups (lysine and arginine). The 

transfer of ethyl groups blocks previous sites of hydrogen bonding by altering the 

charge state of the amino acid to neutral and causes protein precipitation during the 

trapping reaction.  

This precipitation causes denaturation of the protein, however this is not thought to 

be a problem for false positives because the protein structure is necessary to form a 

pKa environment capable of forming a carbamate.  

The amount of protein present in the leaf lysate was compared to the amount of 

soluble protein present in the supernatant (SN) after trapping and a loss of ~70 % 

protein was seen (Figure 5-8). The precipitated proteins also cause difficulty for 

trypsin to digest the sample and therefore cause a reduction in the number of 

proteins identified by MS.  

Figure 5-7 Ethylation of acidic amino acids (D and E) by TEO causing the alteration of negative 
charged side chains to neutral. 
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Figure 5-8 Total amount of protein present before the trapping experiment (1) and in the 
supernatant after the experiment (2) with the amount calculated using both Bradford (blue) and 
BCA assay (red). 

The protein amounts recorded in Figure 5-8 were obtained using the Bradford and 

BCA assay equations (Equation 5-1 Bradford and Equation 5-2 BCA). The graph 

shows a very different amount of protein estimated depending on which assay was 

used (Bradford 644 µg to 228 µg and BCA 1876 µg to 470 µg). Previous work 

investigating both assays also revealed an underestimation by Bradford and an 

overestimation by the BCA assay (220,221). 

Despite the exact amount of protein being inconsistent, both methods showed a 

drop (~70 %) in the amount of protein identified post-trapping with the lost protein 

contained in the precipitated pellet. To increase the amount of protein identified 

post-trapping, methods of solubilisation were investigated to increase the number of 

proteins in solution that could then be digested. These methods were based on 

previous membrane protein work as they are also hydrophobic proteins (222). The 

solubilisation methods investigated were; 0.1 % SDS, 10 % acetonitrile (MeCN) and 

heating at 95 °C and were compared to normal digest buffer as a control (50 mM 

ammonium bicarbonate (ABC) buffer) (223). The results of these solubilisation trials 

were analysed using both the Bradford and BCA assays on the supernatant after the 
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protein precipitate had been incubated for 1 h (2-3.9) and are shown in Figure 5-9. 

Figure 5-9 Total amount of protein from four solubilisation methods 4 solubilisation solutions 
50 mM ammonium bicarbonate buffer, 0.1 % SDS, 10 % MeCN and heating at 95 °C) using both 
Bradford (blue) and BCA (red) assays. 

The most successful condition was 10 % MeCN, a condition regularly used in 

digests as it is known to enhance the ability of trypsin (216). There are other 

detergents that are suitable for solubilising protein samples including Triton-X100 

but they are not permitted for MS due to interference; they ionise very well and 

cause swamping of the protein in the sample (200). 

Further solubilisation was sought by investigating the effect of increased buffer 

concentration. The concentration of buffer does not influence trypsin activity but can 

increase solubilisation of hydrophobic proteins by increased ionic strength. An 

increase of buffer concentration from 50 mM to 200 mM greatly increased the 

amount of protein seen by assay Figure 5-10 (the BCA assay was used). 
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Figure 5-10 Comparison of precipitated pellet solubilisation with increased ABC buffer 
concentration by the BCA assay. 

The increase of ABC buffer concentration from 50 mM to 200 mM increased the 

number of unique proteins identified from 44 to 344 therefore, digests were carried 

out using 200 mM ABC buffer containing 10 % MeCN (2-3.2). Fractionation was 

then carried out after digest to increase the number of identified peptides. 

5-3.4 Fractionation of peptides

After sample digestion the method used for fractionation was via the use of a 

StageTip. A StageTip is a membrane inserted into a pipette tip over which the 

digested sample is then slowly passed (224), in this work a C18 membrane was 

combined with a cation exchange (SCX) membrane. The SCX membrane binds 

peptides based on their charge, the peptides are then fractionated by elution with 

increasing salt concentration (50 mM – 1 M) using ammonium acetate buffer (128).  

The number of unique proteins identified using this fractionation method was far 

greater than compared to no fractionation (Figure 5-11). 

0

100

200

300

400

1

T
o

ta
l 
a

m
o

u
n

t 
o

f 
p

ro
te

in
 (

μ
g

) 

Amount of protein pellet solubilisation by increased 
ABC buffer concentration 

50 mM

100 mM

200 mM



A proteomic screen for new protein carbamates 

Chapter 5 

169 

Figure 5-11 Comparing the number of unique proteins identified between three samples using 
sample fractionation. 

The number of proteins identified was obtained using the analysis software Tandem 

(Tandem is explained further in 5-4.2). 

Once the method development reached a stage capable of identifying ~300 proteins 

per sample a second MS machine was used to control for the introduction of 

variables by the machine. The NUPPA facility at Newcastle University contains an 

Thermo LTQ (Linear Quadrupole) Orbitrap XLTM mass spectrometer and so sample 

duplicates were compared between the two machines (Figure 5-12).  
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Figure 5-12 Comparison of the number of unique proteins identified between the Qstar and 
Orbitrap MS machines. 

Three different experimental samples were run at both facilities. The Qstar samples 

were fractionated by StageTip into 5 fractions before ESI-MS. The Orbitrap samples 

were fractionated on an in-line SCX column before injection. A two sample t-test 

showed no significant difference between the results from these samples. 
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5-4 Analysing protein carbamates 

5-4.1 Difficulty in analysing data

MS of a complex protein mixture produces a large amount of MS-MS data. This data 

is analysed using software which assigns proteins from MW and fragment mass 

information (225). This is performed by comparing in silico protein sequences with 

experimental data, these matches are then scored by the software. PTMs greatly 

increase the complexity of mass-based searching by increasing the search variables 

(226). The search time for comparison of spectra increases dramatically with every 

newly possible modification site (227). Identifying PTMs is very important for 

understanding protein function but many modifications are still not present in 

standard databases. Previous studies investigating PTMs have used software such 

as FindMod which allows the searching of PTMs, but contains a limited list of 

modifications to be searched (228).  

There are many available online software options to analyse ESI MS data, however 

most are limited to the search of two variable modifications and do not permit user-

defined modifications (the addition of unknown modifications). This limitation in 

software is especially important in this work as most software modification tables 

only permit ethylation to occur on amino acids aspartate and glutamate, but in this 

work ethylation can occur on a variety of other amino acids. As well as the ethyl 

group modification the modified carbamate group also needs to be searched for. 

Therefore, only software that permits multiple variable modifications, and that can be 

user-defined, can be used for this analysis. The amino acids suggested to be 

ethylated in this work as well as the two sites of carbamate formation (lysine and N-

terminal) are detailed in Table 5-1. 
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Table 5-1 Variable modifications that can occur during the reaction with TEO. 

Modification Amino acid Modification Amino acid 

Ethylation D Carbamate K 

Ethylation E Carbamate N-terminal

Ethylation K 

Ethylation R 

Ethylation H 

Ethylation T 

Ethylation S 

In order to reduce the chances of finding a false positive the analysis searches were 

carried out only including ethylations on D and E amino acids. This may have meant 

that a possible carbamate would have been missed (false negative) but gives 

greater confidence to the hits found. The other listed amino acids in Table 5-1 are 

amino acids with free electrons that could possibly be ethylated due to the strong 

ethylating nature of TEO. 

This level of modification is unusual for a proteomics experiment and therefore 

requires specifically tailored search software. Two software packages were used for 

the analysis of the data produced in this work. 

5-4.2 Software used for analysis

All MS analysis software have similar initial settings for searching data, these 

include the protease used for the digest, the type of MS machine the data was 

collected on, the species database to search and any chemical modifications carried 

out on the sample (229). However, software packages then differ in the way they 

score matching data and the PTMs they are capable of searching for. 

Mascot is a very popular MS search software. Mascot is currently the most common 

software for peptide identification (197) and works based on a probability scoring 

system. This system works by calculating the probability that the experimental data 

could match a theoretical spectrum randomly, if the peptide is correct the probability 

of this being a random match will be very small due to the number of matched 
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peaks. The online version only allows for searching of four variable modifications 

due to the increased chance of a random hit with each additional modification (226). 

An additional disadvantage of Mascot is that the freely available version cannot 

accept user-defined PTMs (197). Mascot was therefore not used for the analysis of 

this data. 

GPM X!Tandem (Tandem) is an online software package specifically adapted to 

handle large amounts of data. This is achieved by a two-step process, the software 

first identifies a set of proteins based on abundant peptides and narrows the 

specified search database down from a whole genome to this subset, this new 

subset is then more carefully refined (197). This software is capable of accepting 

user-defined PTMs and due to its fast analysis rate was the first software used here 

for MS-MS analysis. The Tandem scoring system is a matched peak score instead 

of probability based and is carried out based on knowledge of amino acid intensity 

patterns upon fragmentation. These theoretical spectra are then compared to the 

raw data and the shared peaks between the spectra are used to calculate a score 

(230). Tandem reports e-values to show how unlikely it is for the assigned peptide to 

be matched to the spectrum by chance. A reverse database is also searched and 

compared to look at random chance matches under the thresholds used for 

searching. 

A study recently compared Tandem to Mascot based on the number of false positive 

assignments made and showed both to have 99 % specificity but Tandem 

outcompeted Mascot with a higher sensitivity of 74 % to 71 % respectively (231). As 

with all analytical searches it was important to guard against false positives to 

increase the confidence in the carbamate hits found. Use of a target-decoy search 

strategy by using a reverse database to create random search sequences was a 

procedure shown to give reproducible results for the same input data using both 

software (231) and is used in all searches performed using this data.  

An important internal marker for hit confidence was present within the digest 

reaction. The protease used for digesting the sample, trypsin, cleaves at the 

carboxyl side of lysine and arginine residues. The trypsin catalytic pocket contains 

an aspartate residue which is stabilised by the positive charge on lysine and 

arginine residues during the cleavage reaction, and mutation of this residue to a 
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positive amino acid removed all catalytic activity (232). Therefore, as the addition of 

a trapped carbamate on a lysine converts its charge state to neutral and adds 

additional bulk, trypsin cannot cleave at this site. Missed cleavages are rare for 

trypsin so a carbamate suggested on a missed cleavage adds confidence to the 

presence of that carbamate. This process of searching for missed cleavages has 

previously also been implemented while looking at acetylation on lysine groups 

(233). For this reason, only carbamates found on miscleaved lysines were 

considered to be potential hits. 

The Tandem software has two disadvantages. The first is that it does not display the 

raw data; the software displays a user interface image of the fragmentation showing 

the matching ions colour coded. This is the software interpretation of the data but 

doesn’t allow the user to check the raw data for background level or ion intensity or 

the fragmentation pattern surrounding the modification. The other disadvantage is 

related to its ability to search data so quickly. The first step of the search involves 

narrowing the search database by creating a smaller one from the data. This 

requires the presence of an unmodified peptide for the protein to be included in the 

smaller made subset search database. In the case of these experiments the high 

level of modification could mean that some proteins were not considered due to not 

having an unmodified peptide present in the sample. Therefore, further analysis of 

all samples was carried out using another software package, MaxQuant, to 

compensate for any potential deficiencies in Tandem. 

MaxQuant is standalone software which also allows for user-defined modifications; 

however, unlike Tandem it searches all of the data. This greatly increases the 

analysis time but also reduces the risk of missing a modification because the protein 

was not selected during the first analysis step. MaxQuant combined with the search 

engine Andromeda uses a probability search algorithm like Mascot (130) that 

matches peptide fragment information to generate spectra based on probability. 

MaxQuant is proposed to obtain a higher level of accuracy based on its method of 

assigning peak m/z values, whereby the software fits each peak with a Gaussian 

distribution and the centre of this distribution becomes the mass estimate for the 

peak. In this way it determines masses with a far higher accuracy than Mascot 

(234). The visualisation of data from MaxQuant also allows the user to see the raw 
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data spectrum and can be used to combine multiple data samples to increase 

scoring. 

5-4.3 Carbamate hits found

A carbamate hit was searched for in Tandem or Maxquant by searching for the 

mass of a carbamate with the addition of an ethyl group (72.0211 Da, Figure 5-13).  

5-4.3.1 Tandem 

The Tandem software identified several carbamates on lysine residues at previously 

unknown sites. Some of the most promising hits are described below and a 

summary table of other hits is displayed in 5-4.5. 

The graphical representation of the results from Tandem shows the sequence of the 

identified peptide with the modified residue highlighted in blue and the modification 

label shown underneath (carboxyethyl). The calculated peaks that would arise from 

the fragmentation of the peptide are shown (on the right) with those that match the 

spectrum highlighted in red which are the matches used to calculate the log e value 

score (Figure 5-14).  

In order to be confident that the newly found carbamates are true PTMs there were 

several criteria that were put in place. Both analysis software packages provide 

confidence scores for peptide assignment. The Tandem software works by 

calculating a shared peak count (SPC) between the theoretical spectra and the raw 

Figure 5-13 Exact mass of carbamate addition on a lysine side-chain. 
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data spectra. A confidence score is then calculated based on how close the 

spectrum match together. 

At2g45180 Lipid transfer protein (LTP) 

A carbamate hit was identified at K44 on the LTP found using both the Tandem and 

MaxQuant software. After the first hits were identified experiments were repeated 

using 13C labelled sodium bicarbonate to demonstrate that the carbon dioxide 

binding to the protein is caused by the reaction conditions. This modification could 

be searched for by altering the user defined modification from 72.0211 to 73.0244. A 

matching 12C and 13C hit was found for LTP K44 which greatly improved the 

confidence in the modification (Figure 5-14). 



A proteomic screen for new protein carbamates 

Chapter 5 

177 

This successful experiment shows that the carbamate is forming under the reaction 

conditions. The LTP is present in the chloroplast thylakoid membrane which is the 

centre for oxygenic photosynthesis (235) and has been implicated in the stress 

response (236). 

Figure 5-14 
12

C (top) vs 
13

C (bottom) carbamate trapped on K44 of the lipid transfer protein.
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Atcg00490 RuBisCO 

A carbamate hit was identified at K183 in repeated samples on RuBisCO. These hits 

were found with high confidence scores (−5.1 from Tandem, 170 from MaxQuant). 

This hit at K183 does not match the already known RuBisCO carbamylation site at 

K201 (Figure 5-15). 

The Tandem software scores a ‘hit’ using an e value which is a score comparing the 

chances of the hit being a false positive. For example, a score of −5.1 means there 

is a 0.0000051 chance that the hit is a false positive.  

RuBisCO is already known to interact with CO2 as the site of carbon fixation in the 

Calvin cycle. The site of carbamate formation already known in RuBisCO is K201 

(96). This site is within the same RuBisCO protein region which is conserved 

amongst higher plants as the trapped K183. The protein sequences were compared 

between the Spinach of the previous Lorimer, 1983, K201 conclusion and the 

Arabidopsis used within this work and the sites are definitely distinct. 

This carbamate site is a non-exchangeable site due to the stabilisation added by the 

Mg2+ ion. The trapping methodology developed here is able to identify exchangeable 

sites that have previously not been identified. Therefore, we hypothesise that K183 

is an exchangeable CO2 binding site on RuBisCO.  
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Figure 5-15 Software displays of the K183 carbamate hit found on RuBisCO using both Tandem 
(top) and MaxQuant (bottom). 
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At3g32980 Peroxidase 

A carbamate was identified at K262 on Peroxidase. This site was seen using both 

software and had the best score found in the Tandem searches (−7.6) (Figure 5-16). 

Examination of the spectrum reveals this is because there are many peaks that 

match the peptide fragmentation patterns.  

Figure 5-16 Software displays of the K262 carbamate hit found on Peroxidase using both 
Tandem (−7.6, top) and MaxQuant (bottom). 
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It has previously been observed that increased levels of O3 cause enhanced activity 

of peroxidases but that this difference was seen to change under high levels of CO2, 

implying a possible effect on peroxidase by the CO2 present (237).  

At2g21330 Fructose bisphosphate aldolase 1 (FBA1) 

A carbamate was identified at K293 of FBA1 in repeat samples and with a 

confidence score of −5.8 (Figure 5-17).  

Fructose bisphosphate aldolase has been identified as a redox sensitive target 

responding to ABA signalling in guard cells (238). 

Figure 5-17 Tandem result showing a trapped carbamate at K293 on protein FBA1 with a 
confidence value of −5.8. 
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5-4.3.2 MaxQuant 

The scoring system for MaxQuant differs from Tandem by being based on a 

probability scoring strategy similar to Mascot.  

The results displayed by this software allow a clearer look at the fragmentation 

pattern seen from the raw data by displaying the peptide sequence assigned and 

showing the spectrum peaks and where matches occurred. The ability to visualise 

the raw fragmentation in this way rules out false positives that did not have 

fragmentation around the carbamate modification. 

The MaxQuant software also identified several carbamate hits, results were found 

that matched the peroxidase K262 and the RuBisCO K183 but also new protein hits. 
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At4g21280 Photosystem II subunit Q 

A carbamate was identified at residue K109. This site was found with a high score 

and a good fragmentation pattern (Figure 5-18). 

 

Figure 5-18 shows the fragmentation occurring around the carbamate modification 

which improves the confidence in the presence of the carbamate.  

Subunit Q is a subunit of PSII involved in oxygen evolution (239) and it has been 

previously established that PSII activity requires high amounts of dissolved CO2 

(240). 

Figure 5-18 Fragmentation pattern of the peptide containing the K109 carbamate on PSII 
subunit Q. 
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At1g08070 Tetratricopeptide repeat containing protein 

A carbamate was identified at residue K696 of a tetratricopeptide repeat containing 

protein. This hit has a high score of 137.9 (Figure 5-19) and was identified in 

multiple experiments. 

 

This protein encodes a chloroplast RNA editing factor (241) and is involved in RNA 

editing of genes from plastids which encode many genes for photosynthesis. 

At4g02790 GTP-binding family protein 

A carbamate hit was identified at residue K207 on a GTP-binding family protein. Toc 

complexes are located in the chloroplast outer membrane and together with TIC 

complexes (inner membrane) facilitate the transfer of proteins out of the chloroplast 

Figure 5-19 Fragmentation pattern of the peptide containing the K696 carbamate on 
Tetratricopeptide repeat containing protein. 
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(242). Proteins in the Toc complex are responsible for chloroplast biogenesis and 

are GTP-binding dependent so require the activation of GTP-binding proteins (243).  

5-4.4 False positive examples

As described above, the best way to improve confidence in a hit is for it to be 

present as a missed trypsin cleavage site and for the ESI fragmentation pattern to 

surround the site of modification. These are the best ways to rule out a false 

positive. Examples of potential false positives found by the software are shown 

below. 
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At5g55560 Protein kinase superfamily protein 

A carbamate hit was purportedly found on a protein kinase superfamily protein at 

residue K187. However the site of modification was at a cleaved lysine residue so it 

is unlikely that a carbamate could have been attached here (Figure 5-20). 

Observing the raw data also shows a very poor fragmentation pattern for the whole 

peptide. 

Figure 5-20 Example of a false positive carbamate site at a cleaved lysine residue. 



A proteomic screen for new protein carbamates 

Chapter 5 

187 

At1g12800 Nucleic acid-binding protein 

Some sites of suggested carbamates had high scores but when the raw data 

fragmentation pattern was observed the fragmentation was not present around the 

modification. An example included here was at residue K82 on Nucleic acid-binding 

protein and came with a high score of 104 but the fragmentation pattern could not 

be used to ascertain whether the carbamate was genuine (Figure 5-21). 

Figure 5-21 An example of a bad fragmentation pattern not around the carbamate modification. 
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5-4.5 Summary of total hits

A summary of the other hits found by both software can be seen in Table 5-2 

including the protein, residue containing the carbamate and the software score. 

Table 5-2 Combined carbamate hits found using both analysis software from data run on both 
the Qstar and Orbitrap MS machines. 

MS run on Software 

analysed with 

Genome number| 

Protein identification 

Residue Score 

Qstar Tandem Atcg00490| 

Rubisco 

K183 -2.2

Qstar Tandem At2g42530| 

Cold regulated 15b 

K107 -2.0

Orbitrap Tandem At1g20630| 

Catalase 

K574 -1.2

Orbitrap Tandem At4g38970| 

Fructose bisphosphate 

aldolase 2 

K292 -2.1

Orbitrap Tandem At5g60390| 

GTP binding elongation 

factor 

K164 -1.6

Orbitrap Tandem At3g12780| 

Phosphoglycerate 

kinase 

K378 -1.1

Orbitrap MaxQuant At3g52590| 

Ubiquitin extension 

protein 

K48 92.19 

Orbitrap MaxQuant At2g44500| O-

fucosyltransferase 

family protein  

K307 89.89 

Orbitrap MaxQuant At3g54400| 

Eukaryotic aspartyl 

protease 

K251 73.23 
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Orbitrap MaxQuant At1g17860| 

Kunitz family trypsin 

inhibitor protein 

K178 57.17 

Orbitrap MaxQuant At3g16850| 

Pectinlyase-like 

superfamily protein 

K132 72.79 

Orbitrap MaxQuant At5g36700| 

2-phosphoglycolate

Phosphatase1 

K123 50.31 

Orbitrap MaxQuant At5g23600| 

RNA 

phosphotransferase 

K70 85.21 

Orbitrap MaxQuant At2g35140| 

Development and cell 

death domain 

K168 43.77 

Orbitrap MaxQuant At3g26240| 

Cysteine/histidine rich 

domain family 

K317 83.87 

Orbitrap MaxQuant At1g31730| 

Adaptin family protein 

K63 88.50 
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5-5 Conclusion 

This chapter investigated several methods of sample fractionation to increase the 

number of proteins identified and therefore the chances of finding a carbamate. 

Methods were also developed to improve solubilisation of the sample after the 

trapping experiment. These advances combined to improve the number of unique 

proteins identified from 91 to 382 over the course of this work. 

Fractionation methods were investigated to increase the number of unique proteins 

identified within the complex sample, with a maximum number of 382 identified in 

the final protein screens. This is still significantly lower than ~4000 proteins 

described in several literature studies.  

Different analysis software were investigated to allow the use of multiple user–

defined modifications and to visualise the raw data. Using these two 

software several novel carbamate sites were deduced with the use of a decoy 

database and by searching for only miscleavage events. These two conditions 

combined with the software scoring system and repeated hits in multiple 

samples gave several very confident carbamate sites (5-4.3.1, 5-4.3.2).  

This chapter has described the development of a method to trap previously 

unknown carbamates within a complex protein system. This method has been found 

to be capable of trapping both soluble and insoluble proteins shown by the trapping 

of a carbamate on the membrane bound protein LTP. 
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5-6 Future work 

The biggest limitation in this work is the coverage of the proteome, further work 

needs to be performed to increase the number of proteins identified. In 

previous investigations that managed to identify thousands of proteins the main 

difference is much more extensive chromatography for fractionation of the sample. 

Another method to increase the chances of finding a carbamate modification would 

be to create an enrichment method. Another common lysine PTM is acetylation, this 

modification is often enriched for by use of an anti-acetyl-lysine antibody (244). A 

carbamate specific antibody could be raised against synthetically made carbamate 

trapped acetyl-lysine (chapter 4) bound to BSA as the antigen.  

Other enrichment strategies utilised for phosphorylation screening involve a pull 

down or chromatography method. This style of enrichment would be possible in this 

work by synthetically altering the TEO trapping reagent to be able to click attach to a 

purification column. The method suggested here would be to alter the ethyl groups 

to alkyne groups which could be clicked to azide groups attached to a resin 

(Scheme 5-1). 

Scheme 5-1 the process of using alkyne-azide click chemistry to modify the TEO trapping 
reagent so be used to enrich the sample on an azide resin. 
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The next step for work in this investigation is the validation of a newly discovered 

carbamate hit on a previously unknown site. The protein chosen for investigation 

was FBA1 due to the high confidence score given and that it was found in multiple 

samples using both analysis software. The process of protein production and 

validation of activity by assay is discussed in chapter 6. 
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6 Chapter 6: Expression and validation of FBA1 

6-1 Overview 

Proteomic analysis of an Arabidopsis leaf lysate revealed several new sites of 

carbamate formation (chapter 5). Efforts were made during the search to reduce the 

chances of a false positive occurring, however confirmation that the carbamate is 

forming on an isolated and purified protein would provide validation for the mass 

spectrometry data. 

The protein chosen for validation was fructose bisphosphate aldolase 1 (FBA1). 

FBA1 was chosen as it was identified in repeated experiments with a high 

confidence score. Also, for practical reasons, FBA1 is not a membrane protein and 

very similar proteins have been expressed as recombinants (253). 

FBA1 is a fructose bisphosphate aldolase located in the chloroplast. FBA1 is one of 

the enzymes of the Calvin cycle where it is involved in the condensation of F-1,6-BP 

(254) as well as playing a key role in glycolysis and gluconeogenesis (255). FBA

has been shown to respond to ABA and ROS which indicates its importance in 

abiotic stress responses including responses to CO2. 

The work described in this chapter is the process of producing recombinant FBA1 

isolated from BL21 E. coli cells and purified using affinity column chromatography. 

This purified protein was then assayed to demonstrate its activity before being used 

for a trapping experiment to confirm carbamate formation. To investigate the site of 

carbamate formation a mutant FBA1 K293A was also produced converting the 

carbamate site lysine to an alanine to investigate any activity changes. 
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6-2 Factors in recombinant protein expression 

6-2.1 Choice of organism

Escherichia coli (E. coli) is a suitable host organism for recombinant protein 

expression due to its fast doubling time and its ease of transformation with 

exogenous DNA (256). Protein expression using E. coli is a well-established 

procedure (257).  

There are many different E. coli cell strains. This work utilised the DH5α strain for 

DNA production and the BL21 strain for protein production. DH5α cells contain a 

recA mutation that reduces recombination of DNA and an endAI mutation which 

reduces plasmid digestion (258). The E. coli strain BL21 is deficient in the Lon and 

OmpT proteases which degrade many foreign and extracellular proteins (256) 

making them suitable for producing recombinant proteins.  

6-2.2 Choice of cloning vector

A cloning vector is the plasmid used to insert the desired DNA into the bacterial cell. 

A cloning vector has three important criteria: 1) an origin of replication (ori), 2) a 

selection marker and 3) restriction enzyme digest sites. 

In this work pET-14b was used as an expression vector (Figure 6-1). This vector 

system contains the pBR322 ori which is the site at which replication of the plasmid 

is initiated. 
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In order to control protein expression the pET vector system contains an antibiotic 

resistance gene, the lacI gene from the lac operon that codes for the lac repressor 

(LacI) and the gene of interest (GOI) inserted after the T7 promoter DNA sequence. 

This T7 promoter prevents leaky expression by only matching T7 RNA polymerase 

(RNAP) from T7 bacteriophage.  LacI binds to the lac operator and prevents 

transcription. The LacI repressor is removed from the operator of the lac operon in 

E. coli by allolactose allowing transcription. Artificial induction of the system in the

pET vector is achieved through the use of a non-hydrolysable analogue, IPTG, 

which is capable of binding the lac repressor but is not metabolised within the cell 

(259). 

To ensure that the bacterial cells have taken up the plasmid containing the GOI, a 

selection marker is expressed from the plasmid in the form of an antibiotic 

resistance gene. The antibiotic resistance used in this DNA manipulation was 

ampicillin resistance introduced by the ampr gene. Ampr encodes for the β-

lactamase enzyme which hydrolyses the β-lactam ring of ampicillin and removes its 

ability to prevent bacterial cell wall biosynthesis (260).  

pET-14b 

4671 bp 

BamHI 

NdeI 

T7 
promoter 

T7 
terminator AmpR 

promoter 

pBR322 - ori 

6×His 

Figure 6-1 pET-14b expression vector containing AmpR antibiotic resistance marker, pBR322 

ori and T7 promoter sites. 
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6-2.3 Purification tags

In order to purify the protein of interest (POI) from the growth culture, a tag is 

attached so that purification can be carried out in one-step by affinity 

chromatography. The tag is encoded for by the vector used and in pET-14b is a His-

tag which allows the protein to be purified using a Ni2+ charged resin with the protein 

being eluted using increasing concentrations of imidazole for competitive binding. 

Nickel column affinity chromatography works by passing the soluble cell lysate over 

a column packed with Ni2+ activated resin (1). The POI contains a His tag which is a 

string of 6 histidine residues at the N-terminus of the protein. These histidine 

residues interact with Ni2+ and bind to the column (2). The process of this interaction 

is between the N of two histidine residues interacting with the Ni2+ charged nickel. 

The other soluble proteins are washed through with repeated buffer column volumes 

(3) and the POI is then eluted by addition of imidazole which competes for binding to

the Ni2+ (4) (Figure 6-2). 

Figure 6-2 Purification of POI containing a His tag by Nickel column chromatrography. Protein 
mixture is passed over a column packed with activated nickel resin (1-2), the POI His tag 

attaches to the nickel (3) and is eluted off by competitive Imidazole binding (4). 
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6-3 Expression of FBA1 

The FBA1 sequence is shown below with the putative carbamate site highlighted in 

red (Figure 6-3). 

6-3.1 Test expression

We examined multiple E. coli strains for the expression of recombinant FBA1 to 

determine the optimal strain for protein expression. The FBA1 DNA sequence 

encoding the complete FBA1 open reading frame (Figure 6.3) within a pET14b 

vector was purchased from Genscript and transformed into Rosetta, Rosetta 2 and 

Rosetta Tuner E. coil strains (2-3.11). Rosetta is a strain of BL21 cells designed to 

enhance the expression of eukaryotic proteins that contain codons rare in E. coli. 

These were used for a small-scale test protein expression (2-3.12). The three E. coli 

strains were compared both before and after a 3 h induction with IPTG (1 mM). The 

protein lysate from three test protein expressions were separated by electrophoresis 

on an SDS-PAGE gel to determine whether recombinant protein production 

occurred. The FBA1 protein was identified by its MW of 43 kDa in all lanes (Figure 

6-4).

MASSTATMLKASPVKSDWVKGQSLLLRQPSSVSAIRSHVAPSALTVRAAS

AYADELVKTAKTIASPGHGIMAMDESNATCGKRLASIGLENTEANRQAYR

TLLVSAPGLGQYISGAILFEETLYQSTTDGKKMVDVLVEQNIVPGIKVDK

GLVPLVGSYDESWCQGLDGLASRTAAYYQQGARFAKWRTVVSIPNGPSAL

AVKEAAWGLARYAAISQDSGLVPIVEPEIMLDGEHGIDRTYDVAEKVWAE

VFFYLAQNNVMFEGILLKPSMVTPGAEATDRATPEQVASYTLKLLRNRIP

PAVPGIMFLSGGQSELEATLNLNAMNQAPNPWHVSFSYARALQNTCLKTW

GGKEENVKAAQDILLARAKANSLAQLGKYTGEGESEEAKEGMFVKGYTY 

Figure 6-3 FBA1 protein sequence. Containing the end of the plastid coding region (A) and 

putative carbamate binding site (K). 
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The level of POI production from each cell strain was compared by analysis with 

SDS-PAGE. A sample from each cell strain pre-induction with IPTG (lanes 2, 4 and 

6) and post-induction (lanes 3, 5 and 7) were assessed. All samples contained a

band relating to the correct MW for FBA1 (43 kDa) so it was concluded that all cell 

strains had leaky expression of the recombinant protein. The Rosetta and Rosetta 2 

cells were shown to have produced the most protein post-induction so were chosen 

to investigate further. 

To investigate the amount of induced protein that is in the soluble fraction the 

bacterial pellet produced from the test expression was sonicated in lysis buffer and 

re-centrifuged to separate the soluble and insoluble fractions. Both the soluble and 

insoluble fractions of this sample were then separated by electrophoresis by SDS-

PAGE for comparison (Figure 6-5). 

Figure 6-4 SDS-PAGE of test expression of FBA1 using 3 E. coli strains Rosetta, Rosetta 2 and 
Rosetta Tuner. Lane 1 contains a MW marker (kDa), lanes 2, 4 and 6 are pre induction and lanes 
3, 5 and 7 are post-induction. 
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The pre-induction sample (lane 2) is compared to the post-induction soluble protein 

(lane 3) and insoluble protein (lane 4). The POI was identified by its MW of 43 kDa 

and is confirmed by the increased band density in the post-induction insoluble 

sample (lane 4). Though all lanes appear to contain the POI the SDS-PAGE results 

suggest that the majority of the protein is in the insoluble fraction. This demonstrates 

the formation of inclusion bodies, which are caused by protein aggregating due to 

misfolding during protein production (261).  

Previous work producing Arabidopsis fructose 1,6 bisphosphate aldolase proteins 

used a DNA sequence which omitted the plastid targeting signal (Figure 6-3 the 

sequence up to A) (254). It was predicted that the removal of this region would 

increase the solubilisation of the recombinant protein. Therefore, a new recombinant 

plasmid in which amino acids 1-48 encoding for the plastid targeting sequence were 

deleted was produced for further investigation. 

This new recombinant plasmid was prepared by carrying out PCR on the desired 

fragment (sense oligo ggccatatgGCgagcgcgtacgcggacg, antisense oligo 

gctagttattGCtcagcgg) and confirming the newly reduced DNA sequence size by 

agarose gel electrophoresis. This new DNA encoding truncated FBA1 was cloned 

into a pJET1.2 vector system before being digested with BamH1 and Nde1 to 

produce the correct cohesive DNA ends for ligation into the pET-14b vector.  

Figure 6-5 SDS-PAGE of Rosetta strain pre-induction (lane 2), soluble fraction post 3 h 
induction (lane 3) and insoluble fraction post 3 h induction (lane 4) against a MW marker (kDa) 
(lane 1). 
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The newly made recombinant DNA plasmid did not contain any mutations and 

aligned correctly with the original DNA. This truncated FBA1 (FBA1-WT-Trunc) in 

vector pET14b was transformed into an E. coli BL21 strain and used for the large 

scale expression of this protein for CO2 trapping experiments. 

6-3.2 Large scale protein expression

The results from the test expression showed the presence of the POI in the non-

induced sample suggesting leaky expression in Rosetta cells. This could contribute 

to the formation of inclusion bodies, so for the large scale expression E. coli BL21 

pLysS cells were used. The presence of a pLysS plasmid gives tighter expression 

as it encodes for  T7 lysozyme which inhibits T7 RNA polymerase reducing 

transcription until the E. coli cells are induced with IPTG (262). 

A large scale expression (12 L) was carried out to produce sufficient protein for 

purification and CO2 trapping. As well as changing the E. coli strain other protocol 

modifications were made to reduce inclusion body formation. Inclusion bodies are 

often formed by protein production occurring too quickly therefore a lower induction 

temperature of 20 °C and a lower concentration of 20 µM IPTG were used to slow 

protein production and encourage correct folding (263). Due to this lower 

temperature a longer induction time of 24 h was used. The results from the 

expression can be seen in Figure 6-6. 
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Samples from an IPTG uninduced and induced culture were compared by SDS-

PAGE. From these two samples the insoluble (lanes 2 and 4) and soluble (lanes 3 

and 5) proteins were evaluated. Lane 4 contains the insoluble protein from the 

induced culture and contains a very large protein band corresponding to FBA1-WT-

Trunc inclusion body formation. This band is identified as the FBA1-WT-Trunc as it 

corresponds to the newly truncated MW of 38 kDa and can clearly be seen to be 

increasing in the uninduced culture. Protein purified from inclusion bodies was 

refolded under buffer conditions to encourage the correct structural formation of the 

native protein.  

Figure 6-6 SDS-PAGE of BL21 strain test comparing a not induced vs an induced culture. 
Comparison of insoluble samples (lanes 2 and 4) and soluble samples (lanes 3 and 5).  
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6-3.3 Inclusion bodies

Inclusion bodies are formed of insoluble protein due to misfolding. Inclusion bodies 

can be refolded to encourage the correct soluble formation of the protein structure 

and was carried out using a QuickFold refolding kit (AthenaES) (chapter 2; 2-3.23). 

Samples of the aggregated FBA1 (100 µL) were dialysed into a range of buffers 

overnight. Several buffers produced solubilised protein but the optimal buffer for 

FBA1 refolding was 50 mM Tris-HCl pH 8.5, 240 mM NaCl, 10 mM KCl, 1 mM 

EDTA, 0.5% triton X-100, 1 mM DTT (Figure 6-7).  

The supernatant from the refolding was examined by SDS-PAGE with a protein 

corresponding to FBA1 observed at 38 kDa (lane 2) for the optimal refolding buffer. 

This re-folded protein was then tested for its aldolase activity via assay (6-5) 

compared to a purchased aldolase control protein (Sigma Aldrich- A2714). No 

aldolase activity was seen for the refolded FBA1-WT-Trunc. 

Refolding can only show that the protein is now in a solubilised state not that it is 

correctly folded to form the active site. As this has not produced active protein this 

refolded inclusion body protein was not used to confirm carbamate formation. 

Instead the purification of the soluble protein produced during expression was 

further developed. 

Figure 6-7 SDS-PAGE of refolding of FBA1-WT from inclusion bodies showing the MW marker 
(lane 1) and a large soluble FBA1-WT protein band from the the best refolding condition (lane 
2). 

http://www.sigmaaldrich.com/catalog/product/sigma/a2714
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6-3.4 Improved soluble protein conditions

Some soluble protein at 38 kDa had been observed in the test expression (Figure 

6-6 lane 4) previously. As the refolded insoluble protein was shown to be inactive,

the activity of the SN of an FBA1-WT-Trunc culture was measured to examine 

whether any soluble protein production had occurred (Figure 6-14). Aldolase activity 

was identified within the sample so further development was directed toward 

production of soluble protein. Other methods to help solubilise aggregating 

recombinant proteins are by increasing the concentration of osmolytes or by addition 

of chaperone proteins. In this work the concentration of osmolytes was altered to 

improve amount of protein remaining in the soluble fraction. The method used here 

was the addition of a final concentration of 2 mM betaine in the E. coli growth 

medium (264). Betaine is one of the best known stabilising osmolytes; it helps the 

cell adapt to osmotic stress and assists in stabilising folded protein conformations 

(265). This additive has been used previously for recombinant protein expression 

within an E. coli system (266) so was adapted here to aid the reduction in inclusion 

body formation. Samples of the protein expression were taken after three and 24 h 

post induction and the soluble protein electrophoresed on an SDS-PAGE gel (Figure 

6-8).

Figure 6-8 SDS-PAGE of test conditions to improve amount of soluble FBA1-WT, showing MW 
(kDa) marker (lane 1)  and no increase in the amount of protein in the soluble layer after 3 h 
(lane 2) and 24 h (lane 3). 
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The amount of protein observed in the soluble fraction of the E coli lysate was seen 

to increase with the addition of betaine and a lower induction temperature of 17 °C 

and the use of 24 h induction period (lane 3) so this was the method used to 

express FBA1-WT-Trunc for assay and trapping. 

6-3.5 Soluble FBA1-WT-Trunc purification

Affinity column purification was necessary after the large scale growth to purify the 

desired protein from the remainder of the E. coli soluble proteins. The FBA1-WT-

Trunc protein contains a His tag on the N-terminus so purification was carried out 

using a Ni2+ column. The His tag binds to the Ni2+ attaching it to the column resin, 

the remaining E. coli proteins are washed through and the POI is then eluted with 

increasing concentrations of imidazole to produce purified FBA1-WT-Trunc (Figure 

6-2).

The initial column chromatography purifications produced elution fractions still 

containing many other proteins resulting in an impure FBA1-WT-Trunc sample 

(Figure 6-9). 
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The elution fractions (lanes 5, 6 and 7) all contain the POI as well as several other 

contaminating proteins. The wash steps (lanes 3 and 4) do not contain the POI and 

there is insufficient washing occurring to remove all of the contaminating proteins. 

As the POI appeared to be present in the elution fractions, but contaminated with 

other E coli proteins, the purification procedure was modified. A new protocol 

increased the incubation time of the sample on the resin for 30 min to 2 h to 

encourage the POI to bind. The new protocol also increased the volume of wash 

buffer passed over the column prior to elution of the POI. This volume was 

increased from 3 column volumes to 20 to remove the contaminating proteins. 

These steps greatly improved the purity of the eluted protein (Figure 6-10). 

Figure 6-9 SDS-PAGE of purification of FBA1-WT-Trunc using a Ni
2+

 column showing the MW 
marker (kDa) (lane 1), flow through (lane 2), wash fractions (lanes 3 and 4) and the elution 
fractions (lanes 5-7) with the POI FBA1-WT identified by the correct weight and highlighted with 
a black box.  
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The SDS-PAGE contained a MW marker (lane 1), the cell lysate flow through the 

column (lane 2), two wash fractions (lanes 3 and 4) and an elution fraction (lane 5). 

All lanes contain FBA1-WT-Trunc protein (highlighted by black box) but the elution 

fraction in lane 5 shows a very pure sample, this purified protein was then used for 

carbamate trapping and assayed for protein activity (6-4 and 6-5.2). 

6-3.6 Construction of mutant FBA1 protein

The hypothesised carbamate site of K293 in FBA1 (Chapter 5, Figure 5-16) was 

mutated from a lysine to an alanine, which is not capable of forming a carbamate, to 

investigate the importance of this amino acid in aldolase activity in response to CO2. 

This mutation was carried out using PCR mutagenesis with the sense oligo 

gttgcgagctacaccctgGCgctgctgcgtaaccgtatc and the antisense oligo: 

gatacggttacgcagcagcGCcagggtgtagctcgcaa. These primers were used to amplify 

the whole FBA1-WT-Trunc DNA plasmid by PCR (2-3.23). This template DNA 

plasmid was then digested using the restriction enzyme Dpn1 which digests the 

methylated template DNA (267) before transformation of DH5α with the reaction 

mixture.  

Figure 6-10 SDS-PAGE of improved purification of FBA1-WT-Trunc with increased volume of 
wash buffer, showing MW marker (kDa) (lane 1), flow-through (lane 2), wash fractions (lanes 3-

4) and elution (lane 5).



Expression and Validation of FBA1 

Chapter 6 

207 

This mutated plasmid DNA was sequenced and aligned with the truncated aldolase 

construct to confirm the presence of the single point DNA mutation at lysine 293 

converting it to alanine (FBA1-K293A). 

The K293A mutated plasmid was transformed into E. coli cells BL21 strain and 

grown on a large scale under the conditions developed for the wild-type FBA1 to 

produce FBA1-K293A-Trunc. However the process of producing this mutant was 

never fully purified due to time constraints. 
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6-4 Purified FBA1 carbamate trapping 

Once FBA1-WT-Trunc protein had been expressed and purified the CO2 trapping 

experiment was carried out using the conditions developed in chapter 4. An 

additional trapping experiment with a lower concentration of sodium bicarbonate of 1 

mM which at pH 7.4 is equivalent to 73.5 µM CO2 which approximates hypothesised 

intracellular concentration within plants (268). 

These trapping experiments were carried out to validate the carbamate identified 

through the proteomics screen (chapter 5) and to demonstrate that the carbamate 

would also form under lower [CO2] applicable to a physiological leaf environment. 

The CO2 trapping at both concentrations identified the carbamate modification at 

K293 (Figure 6-11). 

Figure 6-11 Image of fragmentation pattern of the FBA1-WT-Trunc peptide containing the K293 
carbamate binding site displayed from Tandem. 

The trapped carbamate was visualised using the Tandem software at the putative 

site (K293). This hit was found with a high confidence score of −5.8 and almost a 

complete peptide fragmentation pattern. These results demonstrate a high level of 

confidence for the hypothesised carbamate site. The success of this trapping 

experiment validates the previous proteomics carried out in chapter 5 lending 

support to the other possible sites of carbamylation identified on other proteins. 



Expression and Validation of FBA1 

Chapter 6 

209 

6-5 Fructose Bisphosphate aldolase 1 assay 

6-5.1 Aldolase reaction mechanism

There are two reactions catalysed by an aldolase enzyme, the cleavage and the 

condensation reaction. Both reactions play a role in the sugar metabolic pathway of 

all organisms (269). The cleavage reaction in glycolysis is the breakdown of 

fructose-1,6-bisphosphate (F-1,6-BP) into glyceraldehyde-3-phosphate (G3P) and 

dihydroxyacetone phosphate (DHAP) (270). The reaction mechanism of this 

cleavage is shown in Figure 6-12.  

The F-1,6-BP substrate interacts with a lysine and cysteine amino acid to release G-

3-P and then the remaining chain interacts with a histidine residue and is rearranged

to form DHAP which is then released. 

Figure 6-12 Steps in the binding of F-1,6-BP to the aldolase enzyme AS and it’s breakdown to G-

3-P and DHAP.
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In order to use this reaction as an assay it was coupled to the oxidation of reduced 

nicotinamide adenine dinucleotide (NADH) to nicotinamide adenine dinucleotide 

(NAD+) by α-glycerophosphate dehydrogenase (GDH) and triosephosphate 

isomerase (TPI) enzymes (Figure 6-13).  

6-5.2 Synthesised FBA1-WT and FBA1-K293A activity assay

The aldolase assay was used to assess the activity of the synthesised FBA1-WT-

Trunc and FBA1-K293A-Trunc to confirm that the CO2 trapping had been performed 

on a functionally active enzyme. An aldolase assay was carried out on unpurified SN 

of FBA1-WT-Trunc and FBA1-K293A growth cultures to investigate whether any 

active aldolase protein is being produced. The results of this assay showed small 

amounts of activity from both supernatant cultures compared to a control sample 

without any aldolase enzyme (results not shown). The most likely reason for such 

small activity levels is due to the small concentration of FBA protein within the 

unpurified SN. 

The assay was then repeated using purified FBA1-WT-Trunc protein shown in 

Figure 6-10, this was to investigate the activity of the protein post-purification (Figure 

Figure 6-13 Mechanism of coupling the aldolase cleavage reaction to the oxidation of NADH to 

form an activity assay to investigate enzyme activity of FBA1. 
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6-14). This assay was conducted to investigate the presence of active protein being

produced during expression within the E. coli growth culture. 

Figure 6-14 Graph to show the aldolase activity of FBA1-WT-Trunc compared to a control 
sample not containing any enzyme.  

Figure 6-14 shows a reduction in absorbance in the presence of purified FBA1 

that correlates to the oxidation of NADH (blue line) compared to a no-enzyme 

negative control (green line) and a positive control of purchased Aldolase 

(SigmaAldrich) (red line) over a three-minute time scale. This indicates that the 

soluble protein is in the correct conformation to produce an active site capable 

of cleaving the F-1,6-BP substrate. This result demonstrates that the soluble 

protein purified has aldolase activity after purification. This validates that the 

trapping experiments were undertaken with active protein. 

6-5.3 CO2 dependence on activity

After the assay of FBA1-WT-Trunc demonstrated active protein the next step in the 

line of investigation was to investigate the effect of CO2 on this activity. One of 

the largest challenges in this investigation was the complete removal of CO2 from 

the assay due to the presence of CO2 in the atmosphere dissolving within the 

reaction solution. 
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The usual methods of removing carbon dioxide from a solution are to use a carbon 

dioxide scrubber, sonication or displacement by sparging with another gas 

through the solution. The scrubber method does not completely remove the carbon 

dioxide so would not be effective here and sonication cannot be used on a solution 

containing proteins as this will denature the protein and remove activity. 

Therefore sparging with argon (Ar) was used on all of the solvents and the 

mixture was incubated under an Ar atmosphere prior to substrate addition. 

In order to investigate the effect CO2 has on the Km or the Vmax the 

investigation was carried out using two different concentrations of substrate 

(fructose-1,6-bisphosphate). A low (40 µM) and highly saturated (400 

mM) substrate concentration (253). The use of 400 mM substrate concentration 

will demonstrate the maximum rate for the enzyme due to the saturation of the 

enzyme active sites. A low concentration of substrate will investigate the Km 

which is the affinity of the enzyme for the substrate as the substrate is now 

limiting. To thoroughly investigate the Vmax and Km values of an enzyme a range 

of substrate concentrations need to be investigated and plotted.  

Unfortunately the preliminary results (not shown) from the first experiment 

showed no significant difference between the Km and Vmax and repeat 

experiments were not undertaken.  

The FBA1-K293-Trunc mutant protein will also provide information about the 

effect of CO2 interaction within the assay however; this protein was not 

successfully purified within the time scale of this study. 



Expression and Validation of FBA1 

Chapter 6 

213 

6-5.4 Protein structural information

Protein fold searches using the Phyre2 protein homology/analogy recognition engine 

version 2.0 (271) were undertaken using the open reading frame of FBA1, using 

both normal and intensive modelling modes. The model was based on the crystal 

structure of the rabbit fructose diphosphate aldolase (PDB accession number 1FDJ; 

100% coverage, 48% identity) (272) and sequence alignments were generated by 

the Phyre2 server. Side chain packing and energy minimization was performed using 

GalaxyRefine (273). Figure was generated using the PyMOL molecular graphics 

system (274) with assistance from Phil Townsend (Figure 6-15). 

 Figure 6-15 Model based on crystal structure of the rabbit fructose diphosphate aldolase – PDB 
accession number 1FDJ showing the residues surrounding the K293 putative carbamate site. 
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The residues surrounding the K293 putative carbamate binding site are all residues 

with a carboxylic acid side chain (E263, D238 and E245).  

The production of a carbamate at this location causes the conversion of the lysine 

residue from a neutral to acidic charge state. Based on previously identified 

carbamate sites it is likely that the new charge could contribute to the surrounding 

negative residues possibly involved in stabilisation, maybe for a coordinated metal 

binding site. It could also be involved in encouraging a structural change in folding of 

the protein due to the new negative charge causing repulsion with the surrounding 

negative residues. Future crystallisation of FBA1 with and without CO2 could help 

distinguish between these hypothesised roles. 
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6-6 Conclusion 

This chapter has described the process of validation of a newly discovered 

carbamate site within FBA1, a protein previously unknown to bind CO2.  

The results discussed in this chapter have shown that the carbamate formation 

occurs on purified FBA1 at the same site as previously identified within Chapter 5. 

This demonstrates confidence that this formation is a true carbamate and not 

through lysate interactions. This carbamate has also been confirmed at lower 

concentrations of CO2 more accurately representing a plant cellular environment 

and demonstrating the ability of the trapping reaction to still be accurate at this 

scale. 

The purified protein was assayed and established to be in its active form. This 

further encourages the belief that the carbamate found in the proteome screen is a 

true site and that the method for extracting the protein lysate is not causing inactivity 

of protein prior to the trapping experiment. 

This work adds value to the other hits on unknown proteins that were discovered 

within the leaf lysate screen described in Chapter 5 and demonstrates that there are 

many new sites of CO2 interaction that were previously unknown. 



Expression and Validation of FBA1 

Chapter 6 

216 

6-7 Future work 

The method of protein production and purification needs further development to 

reduce the production of inclusion bodies and therefore produce a larger scale of 

soluble active protein. In some previous cases tags have been used to increase the 

solubility of recombinant proteins, for example the Fh8 fusion tag (275), which could 

be investigated. 

Due to time constraints only preliminary work on the CO2 dependence of the 

recombinant wild type FBA1 was performed. These results show a very promising 

effect of CO2 on the activity of FBA1 but further investigation is necessary for 

conclusions. 

The assay dependence on CO2 could be improved by further replicates so that 

statistical analysis to show a significant difference found in the presence of CO2 can 

be assessed. Further validation to the experimental relevance of CO2 within the 

reaction could be investigated with the use of the K293 mutant to observe the effect 

seen when a carbamate cannot form at the confirmed site. 

As well as the work discussed here further work of validation needs to be carried out 

on more of the new carbamate ‘hits’ found in chapter 5 to confirm their sites and 

mutations made to investigate the role of the carbamate within the leaf system. 
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7 Chapter 7: Synopsis 

7-1 Introduction

Despite the abundance of CO2 within cellular systems, little is known about its 

molecular interactions with protein. Further information about the molecular CO2 

interface within proteins could provide essential information for numerous areas of 

research. 

A carbamate is the nucleophilic attack of an uncharged amine on CO2 (Scheme 7-1) 

and can occur under cellular conditions of CO2 concentration and pH. 

Within proteins known to form carbamates the carbamylated amino acid functions in 

regulatory or catalytic roles (e.g. β-lactamase and RuBisCO). This highlights the 

possible importance the carbamate post-translational modification can have on a 

protein system (84). 

The work in this thesis describes the development of a novel method for trapping 

carbamates on protein under physiologically relevant conditions. This chapter 

summarises the results outlined in this investigation as well as highlighting the 

important benefits of studying the identification of carbamylation sites on protein.  

Scheme 7-1 Nucleophilic attack of an uncharged amine on carbon dioxide to form a carbamate. 
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7-2 Partial synthesis of a carbamate trapping reagent

Chapter 3 of this thesis describes the process for design of a synthetic TMS-DAM 

derivative to trap carbamates by the transfer of a methyl group. This synthesis was 

undertaken in parallel with an investigation into the use of Meerwein’s reagent for 

carbamate trapping (chapter 4). Due to the success seen with Meerwein’s 

reagent the synthesis of the TMS-DAM derivative was not taken to completion, 1 

(Figure 7-1). (Although the achieved synthetic steps were well developed with high 

yields.)  

The synthetic work covered here was modified from several previously published 

procedures to synthesise TMS-DAM (141,156,160,276). The modifications were to 

include an amine group into the synthetic derivative to introduce water solubility into 

the molecule. Previous work with TMS-DAM involved the use of mostly organic 

solvents which is a clear barrier to its use under physiologically relevant conditions 

(150). The final synthetic product of Chapter 3 can be seen in Figure 7-2 

([(bromomethyl)(dimethyl)silyl] [(methylamino)3-(dimethylamino)ethyl] Propamide 9) 

Though this molecule is not capable of carbamate trapping it has been suggested to 

have an effect as a protein kinase inhibitor due to being a small water-soluble 

molecule with an easily altered halogen group. This could be tested using a simple 

binding affinity assay (277). 

Figure 7-2 Synthetic final product from Chapter 3. 

Figure 7-1 Diazo trapping molecule 1. 
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7-3 Development of the trapping methodology using Meerwein’s

reagents 

Carbamylation has not been fully investigated as a post-translational modification 

due to its labile nature (83-85). In addition to its labile nature, its ready reversibility 

has meant that carbamates have previously been considered unlikely to be 

of biological significance (83). Until recently (97) this has meant that 

protein carbamylation has not elicited significant interest since their first mention in 

the early 1900’s (82).  

The carbamate trapping method developed in this investigation is described in detail 

in Chapter 4. This method chemically traps CO2 on proteins using the reagent TEO 

which transfers an ethyl group to the carbamate (Scheme 7-2) creating a 

modification robust enough for downstream analysis by MS. 

This research has produced a method capable of removing the labile nature of 

carbamates and thereby completely transforming the field of carbamate study.  

Scheme 7-2 Process of ethyl transfer from TEO to a carbamate. 
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7-4 Newly discovered carbamate sites

This novel method was applied to a soluble protein lysate extracted from 

Arabidopsis leaves to screen for the presence of proteins modified by carbamylation 

(Chapter 5). These complex protein mixtures were digested with trypsin and 

fractionated by cation exchange before being analysed by ESI-MS. This work 

revealed new carbamate modifications at previously unknown sites. Though all the 

newly discovered proteins have different cellular functions they are all functions 

involving CO2 (e.g. photosynthesis and guard cell function). 

Investigating the effect of CO2 on plant proteins with functional roles in 

photosynthesis links to discussion of the effect of rising atmospheric CO2 levels on 

crop growth (134). Multiple investigations into the effects of rising CO2 on crops 

have not agreed upon what result this will have on crop yield (61,132). These 

debates surround the lack of a sufficiently well-defined environment to perform these 

studies, the inadequate data so far collected, and the limited time frame these 

studies have been carried out over (62). If more were known about the proteins 

directly regulated by CO2 then downstream physiological effects would be much 

easier to predict. Investigating CO2 binding proteins within a system will provide 

crucial information about the regulation of CO2 on cellular processes. 

Though the work described here focused on a plant leaf lysate, the developed 

methodology is not limited to use in plants but could be used to provide novel insight 

into how any cellular system is affected by interactions with CO2. For example NF-

κβ has been shown to link CO2 to immunity and inflammation in mammalian cells by 

the rapid movement of IKKα to the nucleus in response to elevated CO2. Cummins 

et. al. 2010 suggests that this implies a molecular CO2 sensor in mammalian cells. 

The ability to screen the mammalian proteome for sites of carbamate formation 

could determine the mechanism of the effect of CO2 on inflammation. 

It has previously been shown that increased levels of CO2 reduce growth rates of 

bacteria (278). This can be a problem for the commercial production of recombinant 

proteins. Further knowledge of the affected pathways could reduce this problem by 

rationale engineering of protein carbamates to enhance yield (279). 
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Further information about CO2 interactions could also be of significance to clinical 

situations involving elevated PCO2. For example, there is a debate (280,281) 

concerning the influence of permissive hypercapnia on patients with acute 

respiratory distress syndrome (ARDS). Permissive hypercapnia is the elevation of 

arterial CO2 associated with artificial mechanical ventilation designed to minimise 

lung stretch injury. These respiratory rates are related to tidal volumes, low tidal 

volumes minimise lung injury but may contribute to hypercapnia. Curley et. al. 2013 

describes the benefits seen by a reduction in inflammation caused by hypercapnia 

but Beitler et. al. 2013 claim that hypercapnia worsens pulmonary hypertension and 

that there is insufficient evidence to draw meaningful clinically relevant conclusions. 

Both discussions note that advances in understanding of the mechanism of 

increased CO2 within this system would enable a further understanding of the 

benefits to ARDS patients. The developed methodology for identifying protein 

carbamates is a potential route forward. 

Previous work on discovering carbamates has occurred through their 

fortuitous discovery by X-ray crystallography (102,112,282). Crystallography as 

a route to carbamate discovery has several disadvantages; it is highly work 

intensive, does not work for all proteins and is performed under artificial conditions. 

The work here has described a method capable of screening a large complex 

mixture of proteins to identify the CO2 binding sites. The CO2 trapping is 

achieved under conditions that are physiological with regards to the aqueous 

environment and pH of the system. It has been shown by the activity of extracted 

FBA1 (chapter 6) that the method of extracting the soluble leaf lysate is not 

altering the activity of the proteins prior to trapping. 
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7-5 Validation of a previously unknown protein carbamylation

site 

One newly discovered carbamylation site was K293 of FBA1 from Arabidopsis. This 

carbamylation site was further investigated to confirm that the carbamate trapping 

was occurring on a correctly folded and active protein (Chapter 6). These validation 

experiments were performed by the production of a purified recombinant protein 

which was assayed for protein activity. 

These experiments demonstrated that the CO2 trapping was occurring on an active 

protein and provides supporting evidence that the carbamates discovered through 

the proteomic screen (chapter 5) represent real CO2 binding sites and are not 

experimental artefacts of the complex protein mixture or analytical methods. 
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7-6 Conclusions

The results described in this thesis demonstrate a novel methodology to trap 

carbamates on proteins creating a robust modification for downstream MS analysis. 

This ground breaking technology allows the identification of proteins targeted by 

CO2.  

The developed methodology functions under aqueous conditions closely matching a 

physiological environment and in so doing creates the first method of observing 

carbamates under a more natural cellular setting without the chance of artefact 

introduction. 

The methodology provides a technology to identify sites of carbamate formation and 

will allow a significant expansion of our fundamental understanding of protein 

regulation by CO2. This method can be taken forward to eventually establish the 

extent to which CO2 interacts with the proteome, forming a complete ‘carbamylome’. 

This breakthrough can be applied to all research concerning CO2 protein 

interactions. For example research into greener methods of carbon capture by 

Drummond et. al. 2010 looked for insight into new technologies based on RuBisCO 

due to its ability to sequester 1011 tons of CO2 a year. This binding of CO2 is through

carbamylation.  
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7-7 Future work

A limitation of the work described here is the number of proteins identified in the 

proteomics screen. Method development into solubilisation of the post-trapping 

samples would allow for more proteins to be identified. A description of a more 

aggressive method of solubilisation called FASP, involving 8 M Urea, has been used 

in other studies of difficult to solubilise proteins and could be introduced here (283). 

Previous proteomic studies have identified thousands of proteins (211,212). This 

was achieved by thorough pre-fractionation of the sample prior to MS. Subcellular 

fractionation of the leaf cellular compartments could be introduced with the use of 

Percoll density centrifugation. Based on the results discovered here this approach 

could be targeted towards the chloroplast as it is expected this is a location 

containing many proteins interacting with CO2.  

An increase in the number of proteins identified could also be obtained by 

improvement of the fractionation of samples post-digest. A new methodology has 

been decided which will involve fractionation of the sample into 24 fractions by 

OffGel electrophoresis prior to injection into the ESI-MS machine. This will greatly 

reduce the complexity of the peptide mixture prior to MS. 

Many new sites of carbamate formation were identified in the Arabidopsis screen in 

Chapter 5. Though Chapter 6 was able to ascertain that the extracted soluble 

protein lysate did contain an active aldolase, future work should validate CO2 

trapping on recombinant proteins corresponding to other targets.  

A further important aspect of future validation experiments would focus on the effect 

of the formation of a carbamate on protein function. The development of methods 

capable of assaying the protein with complete CO2 removal from the experiment is 

necessary to be able to investigate this further. Such methods could then be used to 

investigate wild type protein and proteins mutated at the carbamylated lysine to 

identify the biochemical relevance for the carbamate formation. Previously identified 

carbamylation sites have functions in structural change (Hb (84)), active site 

stabilisation (Urease (108)) and enzyme catalysis (RuBisCO (83)). 
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Where structural information is already available for a protein, the identified 

carbamylation site could be analysed to search for nearby residues and look for 

possible interactions that the carbamate could be stabilising providing a rationale for 

the influence of carbamylation on protein function (e.g. Cx26, (97)). 

Another avenue for future work is to investigate the physiological significance of the 

protein carbamylation site identified. Such work could be performed in Arabidopsis 

through the use of Arabidopsis knock out plants to investigate the importance of the 

newly identified carbamylated proteins. Reintroduction of the wild type gene, or a 

gene mutated at the carbamylation site, could be used to rescue these knock out 

mutants and investigate the specific function of the carbamate in the physiological 

response to CO2 in the whole organism. 

The future of this work is heading towards trapping within an in vivo system. TEO is 

a small molecule with no overall charge and is hypothesised to traverse a cellular 

membrane which provides the possibility of conducting the same methodology upon 

whole cells. 
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