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1.1 THE MECHANISM OF LATERAL ROOT PATTERNING IN ARABIDOPSIS.  

Figure taken from (Lavenus, et al. 2013). Lateral root development is primarily 

controlled through auxin signalling. There are several pathways involved in this 

process. Priming of LR founder cells involves the degradation of IAA28, 

releasing the repression of activating ARFs 5, 6, 7, 8 and 19. Once primed in the 

basal meristem, the founder cells are able to undergo nuclear migration though 

the SLR/IAA14 – ARF7/19 signalling module. Initiation and patterning then 

occurs using the IAA14 module and the BDL/IAA12 – ARF5 module. After 

initiation and division of the Lateral Root Primordia (LRP), another auxin 

pathway becomes involved: the SHY2/IAA3 – ARF7 pathway, which promotes 

the emergence of the lateral root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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1.2 THE AUXIN SIGNALLING CASCADE. 

A schematic showing the auxin signalling cascade. The auxin signal is perceived 

by the auxin receptor SCFTIR1 ubiquitin E3 ligase complex (light blue). Upon 

binding auxin (orange), the SCFTIR1 ligase catalyses the ubiquitination and 

subsequent degradation, by the 26S Proteasome (green), of the auxin repressor 

proteins, the AUX/IAAs (purple), releasing the ARF transcription factors (red). 

This then allows auxin-induced transcription of the auxin responsive genes to 

occur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

 

 

 

 

 

 

24 

1.3 THE STRUCTURE OF ATTIR1. 

The 3D-structure of the ASK1-TIR1 auxin-receptor complex showing AUX/IAA 

binding, with each component shown in green, blue and purple, respectively. 

The Aux/IAA protein binds at the top of the barrel structure of TIR1 through a 

‘molecular glue’ type interaction with auxin, which binds at the bottom of the 

barrel. Co-ordinates from pdb file 2P1M. (Tan, et al., 2007). Figure generated in 

PyMOL (Delano, 2002) modelling software, Version 1.8. . . . . . . . . . . . . . . . . . . . .  
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1.4 ALIGNMENT OF ARABIDOPSIS SUMO PROTEINS. 

An alignment created with ClustalOmega (Sievers, et al., 2011) using protein 

sequences obtained from UniProt records: SUMO1 (P55852), SUMO2 (Q9FLP6), 

SUMO3 (Q9FLP5), SUMO4 (Q9FKC5), SUMO5 (Q8VZI7), SUMO6 (Q9FKC6), 

SUMO7 (Q3E8A8), SUMO8 (B3H5R8). The alignment shows some conserved 

residues across all members of the Arabidopsis SUMO family, such as the C-

terminal glycine through which conjugation to target proteins occurs.. . . . . . . . .  
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1.5 THE MECHANISM OF UBIQUITINATION VS. SUMOYLATION IN ARABIDOPSIS. 

A schematic showing the mechanisms of ubiquitination and SUMOylation in 

Arabidopsis. Ub/SUMO is activated through the catalysis of ATP by the E1-

activating enzyme. It is then transferred to the E2-conjugase before being 

finally conjugated onto the target protein via the E3-ligase enzyme, whereupon 

it becomes targeted for degradation, in the case of ubiquitin, or confers new or 

altered functions to the target protein, in the case of SUMO. The Ub/SUMO 

moiety is removed via the activation of specialised protease enzymes termed 

de-ubiquitinating enzymes (DUBs)/SUMO Proteases, such as OTS1 and OTS2, 

allowing recycling of the Ub/SUMO moieties. It is through this dynamic cycling 

of posttranslational modification that the cell is able to quickly and efficiently 

respond to a variety of stimuli. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   
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1.6 SEQUENCE SIMILARITY BETWEEN THE ARABIDOPSIS SUMO PROTEASES. 

A phylogenetic tree generated from the sequence data of known SUMO 

proteases from Arabidopsis thaliana. OTS1 and OTS2 can be seen to be closely 

related, falling into a distinct clade. (Novatchkova, et al., 2012). . . . . . . . . . . . . . .  
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3.1 A NUMBER AUXIN-RELATED GENES ARE DIFFERENTIALLY EXPRESSED IN THE OTS1 OTS2 

KNOCK-OUT MUTANT LINE IN COMPARISON TO WT 

A comparison of the number of differentially expressed genes (logFC = >0.5, P 

values = <0.01) in the Arabidopsis knock-out line ots1 ots2 in comparison to WT 

in untreated seedlings. ots1 ots2 show an increase in the number of both up- 

and down-regulated auxin-related genes when compared to Col-0. The number 

of genes differentially expressed with regards to auxin is higher than those 

involved in other hormone pathways, such as ethylene, cytokinin, strigolactone, 

ABA and gibberellin, suggesting that SUMO may play a role in the auxin 

pathway.  

Chart generated from RNAseq data obtained by Dr. Mark Bailey and Dr. Beatriz 

Orosa (Bailey, 2014). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        
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3.2 ots1 ots2 SHOWS A REDUCTION IN PRIMARY ROOT LENGTH IN RESPONSE TO 

EXPOSURE TO THE AUXINIC COMPOUNDS INDOLE-3-ACETIC ACID (IAA) AND 2,4-

DICHLOROPHENOXYACETIC ACID (2,4-D). 

5-day-old ots1 ots2 seedlings showing the effect of exogenous auxin application 

(IAA and 2,4-D) on primary root length compared to WT (Col-0) and an auxin-

signalling mutant (tir1 afb2 afb3). A decrease in primary root length is 

observed, in comparison to WT, in the ots1 ots2 mutant line after auxin 

treatment. No decrease is observed for the auxin insensitive mutant line, tir1 

afb2 afb3. 

Seedlings were germinated on 1/2MS and 0.8% phytoagar plates supplemented 

with 0.5% sucrose under 24 hour light conditions. At 2 days old, the seedlings 

were transferred to the prepared assay plates: 1/2MS with 0.8% phytoagar and 

0.5% sucrose, supplemented with either 0.1uM IAA, or 0.1uM 2,4-D, or no 

hormone treatment (control). Seedlings were then grown under 24hr light 

conditions for a further 3 days before the root length was measured. n = 125 

per genotype, per treatment.   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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3.3 ots1 ots2 EXHIBITS A STATISTICALLY SIGNIFICANT REDUCTION IN PRIMARY ROOT 

LENGTH UPON EXPOSURE TO THE AUXINS IAA AND 2,4-D. 

Analysis of the primary root length of 5-day-old Col-0, ots1 ots2, and tir1 afb2 

afb3 Arabidopsis seedlings in response to exogenous auxin application (0.1uM 

IAA and 0.1uM 2,4-D). A statistically significant decrease in primary root length 

is observed, in comparison to WT, in the ots1 ots2 mutant line after auxin 

treatment. No significant decrease is observed for the auxin insensitive mutant 

line, tir1 afb2 afb3. 

Seedlings were germinated on 1/2MS and 0.8% phytoagar plates supplemented 

with 0.5% sucrose under 24 hour light conditions. At 2 days old, the seedlings 

were transferred to the prepared assay plates: 1/2MS with 0.8% phytoagar and 

0.5% sucrose, supplemented with either 0.1uM IAA, or 0.1uM 2,4-D, or no 

hormone treatment (control). Seedlings were then grown under 24hr light 

conditions for a further 3 days before the root length was measured.   Error 

bars represent standard error of the mean. P values for differences between 

Col-0 and ots1 ots2 for each treatment: *** ≤ 0.001 (multi-way ANOVA with 

Tukey test post hoc). n = 75 per genotype, per treatment. Three repeats 

conducted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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3.4 ots1 ots2 SHOWS A DOSE-DEPENDENT REDUCTION IN PRIMARY ROOT LENGTH UPON  
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EXPOSURE TO IAA. 

6-day-old ots1 ots2 seedlings showing the effect of various concentrations of 

exogenous auxin (IAA) on primary root length compared to WT (Col-0), and an 

auxin-signalling mutant (tir1 afb2 afb3). ots1 ots2 showed significant a decrease 

in primary root length in comparison to WT, even at low concentrations of 

auxin (0.01uM), where a slight increase in primary root length is observed in 

WT seedlings due to the bimodal nature of auxin. No significant change in 

primary root length is observed for the auxin insensitive mutant line, tir1 afb2 

afb3, between treatments.    

Seedlings were germinated on 1/2MS and 0.8% phytoagar plates supplemented 

with 0.5% sucrose under 24 hour light conditions. At 2 days old, the seedlings 

were transferred to the prepared assay plates: 1/2MS with 0.8% phytoagar and 

0.5% sucrose, supplemented with either 0.01uM/0.1uM/1uM IAA, or no 

hormone treatment (control). Seedlings were then grown under 24hr light 

conditions for a further 5 days before the root length was measured. n = 80  per 

genotype, per treatment. Three repeats conducted. . . . . . . . . . . . . . . . . . . . . . . . .  
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3.5 

ots1 ots2 EXHIBITS A STATISTICALLY SIGNIFICANT DOSE-DEPENDENT REDUCTION IN 

PRIMARY ROOT LENGTH UPON EXPOSURE TO IAA. 

Analysis of the primary root length of 6-day-old Col-0, ots1 ots2, and tir1 afb2 

afb3 Arabidopsis seedlings in response to differing concentrations of exogenous 

auxin (0.01/0.1/1uM IAA). ots1 ots2 showed significant a decrease in primary 

root length in comparison to WT, even at low concentrations of auxin (0.01uM), 

where a slight increase in primary root length is observed in WT seedlings due 

to the bimodal nature of auxin. No significant change in primary root length is 

observed for the auxin insensitive mutant line, tir1 afb2 afb3, between 

treatments.    

Seedlings were germinated on 1/2MS and 0.8% phytoagar plates supplemented 

with 0.5% sucrose under 24 hour light conditions. At 2 days old, the seedlings 

were transferred to the prepared assay plates: 1/2MS with 0.8% phytoagar and 

0.5% sucrose, supplemented with either 0.01uM/0.1uM/1uM IAA, or no 

hormone treatment (control). Seedlings were then grown under 24hr light 

conditions for a further 5 days before the root length was measured. Error bars 

represent standard error of the mean. P values for differences between Col-0 

and ots1 ots2 for each treatment: *** ≤ 0.001 (multi-way ANOVA with Tukey 

test post hoc). n = 80  per genotype, per treatment. Three repeats conducted.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

73 



v 
 

 

3.6 

 

ots1 ots2 SHOWS NO DIFFERENCE IN RESPONSE TO TREATMENT WITH THE AUXIN 

EFFLUX INHIBITOR 2,3,5-TRIIODOBENZOIC ACID (TIBA) COMPARED TO WILD TYPE. 

5-day-old ots1 ots2 seedlings showing the effect of auxin signalling inhibition 

(TIBA) on primary root length compared to WT (Col-0) and an auxin-signalling 

mutant (tir1 afb2 afb3). No statistically significant decrease in primary root 

length is observed in the ots1 ots2 mutant upon TIBA treatment. 

Seedlings were germinated on 1/2MS and 0.8% phytoagar plates supplemented 

with 0.5% sucrose under 24 hour light conditions. At 2 days old, the seedlings 

were transferred to the prepared assay plates: 1/2MS with 0.8% phytoagar and 

0.5% sucrose, supplemented with either 3uM TIBA, 30uM TIBA, or no hormone 

treatment (control). Seedlings were then grown under 24hr light conditions for 

a further 3 days before the root length was measured. n = 75 per genotype, per 

treatment. Three repeats conducted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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3.7 OTS1 OTS2 EXHIBITS NO STATISTICALLY SIGNIFICANT DIFFERENCE IN RESPONSE TO 

TREATMENT WITH TIBA IN COMPARISON TO WILD TYPE. 

Analysis of the primary root length of 5-day-old Col-0, ots1 ots2, and tir1 afb2 

afb3 Arabidopsis seedlings in response to auxin signalling inhibition (TIBA). No 

statistically significant decrease in primary root length is observed in the ots1 

ots2 mutant upon TIBA treatment. 

Seedlings were germinated on 1/2MS and 0.8% phytoagar plates supplemented 

with 0.5% sucrose under 24 hour light conditions. At 2 days old, the seedlings 

were transferred to the prepared assay plates: 1/2MS with 0.8% phytoagar and 

0.5% sucrose, supplemented with either 3uM TIBA, 30uM TIBA, or no hormone 

treatment (control). Seedlings were then grown under 24hr light conditions for 

a further 3 days before the root length was measured. Error bars represent 

standard error of the mean. Analysis by multi-way ANOVA (with Tukey test post 

hoc) indicates no statistical significance between treatments. n = 75 per 

genotype, per treatment. Three repeats conducted. . . . . . . . . . . . . . . . . . . . . . . . .  
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3.8 ots1 ots2 PRODUCES FEWER LATERAL ROOTS AT 6 AND 9 DAYS POST-GERMINATION 

IN COMPARISON TO WILD TYPE. 

6-day-old and 9-day-old Col-0 and ots1 ots2 seedlings showing the number of 

emerged lateral roots between genotypes. The ots1 ots2 mutant shows fewer 

emerged lateral roots at all both 6 and 9 days old.  

Seedlings were germinated on 1/2MS plates with 0.8% phytoagar and 

 

 

 

 

 

 



vi 
 

supplemented with 0.5% sucrose. The seedlings were germinated and grown 

under 24 hour light conditions for 6 and 9 days, respectively. n = 50 per 

genotype. Three repeats conducted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

 

78 

3.9 ots1 ots2 PRODUCES SIGNIFICANTLY FEWER LATERAL ROOTS IN COMPARISON TO 

WILD TYPE AT BOTH 6 AND 9 DAYS POST-GERMINATION. 

Analysis of the emerged lateral root number of Col-0 and ots1 ots2, Arabidopsis 

seedlings at 6 days and 9 days post-germination. The ots1 ots2 mutant shows 

fewer emerged lateral roots at all both 6 and 9 days old.  

Seedlings were germinated on 1/2MS plates with 0.8% phytoagar and 

supplemented with 0.5% sucrose. The seedlings were germinated and grown 

under 24 hour light conditions for 6 and 9 days, respectively. Error bars 

represent standard error of the mean. P values for differences between Col-0 

and ots1 ots2 at 6 days and 9 days: ** ≤ 0.01 and  *** ≤ 0.001, respectively 

(one-way ANOVA). n = 50 per genotype. Three repeats conducted. . . . . . . . . . . .  
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3.10 ots1 ots2 PRODUCES FEWER LATERAL ROOTS PER SEEDLING IN COMPARISON TO WILD 

TYPE. 

The distribution of lateral root numbers between Col-0 and ots1 ots2 

Arabidopsis seedlings at 6 days post-germination. ots1 ots2 has a larger number 

of seedlings with only one emerged lateral root at 6 days post germination in 

comparison to WT. ots1 ots2 has no seedlings with 6 or more emerged lateral 

roots at day 6, with all seedlings showing 5 or fewer emerged lateral roots.  

Seedlings were germinated on 1/2MS plates with 0.8% phytoagar and 

supplemented with 0.5% sucrose. The seedlings were germinated and grown 

under 24 hour light conditions for 6 days before counting. n = 50 per genotype.  
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3.11 THE STAGING OF LATERAL ROOT PRIMORDIA. 

Composite figure showing the staging of lateral root primordia of 7-day-old 

seedlings. WT seedlings were germinated on ½ MS plates with 0.8% phytoagar 

and supplemented with 0.5% sucrose. The seedlings were grown under 24 hour 

light conditions for 7 days. The roots were cleared and the lateral root 

primordia staged via white-light microscopy at 60x magnification.  Stage I 

shows the initial assymertric anticlinial division of the XPP cells in the pericycle 

(blue arrowhead) giving rise to the lateral root initiation site. The cells then 

divide in a periclinal fashion to form two (stage II) (red arrowhead), three (stage 

III), four (Stage IV) and five (Stage V) layers. As the cells in the primordia 

continue to divide, they break through the casparian strip (Stage V-VI), 
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eventually emerging as a new lateral root. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81 

3.12 ots1 ots2 PRODUCES SIGNIFICANTLY FEWER ROOT PRIMORDIA IN COMPARISON TO 

WT. 

Analysis of the average number of lateral root primordia categorised by stage 

between Col-0 and ots1 ots2 Arabidopsis seedlings at 7 days post-germination. 

ots1 ots2 shows a significantly fewer number of late-stage LR primordia, in 

comparison to WT. ots1 ots2, however, does not show a dramatic increase in 

the number of LR primordia at the earlier stages, suggesting that the decrease 

in emerged lateral roots observed for the mutant line is not due to LR primordia 

arrest at the earlier stages.   

WT seedlings were germinated on ½ MS plates with 0.8% phytoagar and 

supplemented with 0.5% sucrose. The seedlings were grown under 24 hour 

light conditions for 7 days. The roots were cleared and the lateral root 

primordia staged via white-light microscopy at 60x magnification. Error bars 

represent standard error of the mean. P values for differences in the number of 

LR primordia at different stages between Col-0 and ots1 ots2: ** ≤ 0.01 and  

*** ≤ 0.001, respectively (one-way ANOVA). n = 10 seedlings for each 

genotype. Two repeats conducted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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3.13 ots1 ots2 EXHIBITS A STATISTICALLY SIGNIFICANT DOSE-DEPENDENT INCREASE IN 

LATERAL ROOT EMERGENCE UPON EXPOSURE TO IAA. 

Analysis of the number of emerged lateral roots (LR) of 6-day-old Col-0, ots1 

ots2, and tir1 afb2 afb3 Arabidopsis seedlings in response to differing 

concentrations of exogenous auxin (0.01/0.1/1uM IAA). ots1 ots2 shows 

significantly fewer emerged LR, in comparison to WT, for all treatments 

(control, 0.01-1uM IAA). An increase in LR emergence is observed for ots1 ots2 

upon treatment with IAA in comparison to the ots1 ots2 untreated control, 

suggesting that ots1 ots2 is not insensitive to auxin with regards to the lateral 

root.    

Seedlings were germinated on 1/2MS and 0.8% phytoagar plates supplemented 

with 0.5% sucrose under 24 hour light conditions. At 2 days old, the seedlings 

were transferred to the prepared assay plates: 1/2MS with 0.8% phytoagar and 

0.5% sucrose, supplemented with either 0.01uM/0.1uM/1uM IAA, or no 

hormone treatment (control). Seedlings were then grown under 24hr light 

conditions for a further 5 days before the number of emerged KR were 

counted. Error bars represent standard error of the mean. P values for 
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differences between Col-0 and ots1 ots2 and tir1 afb2 afb3 for each treatment: 

*** ≤ 0.001 (multi-way ANOVA with Tukey test post hoc). n = 80  per genotype, 

per treatment. Three repeats conducted.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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3.14 THE ots1 ots2 MUTANT SHOWS DIFFERENCES IN ROOT HAIR LENGTH AND DENSITY IN 

COMPARISON TO WT. 

Roots of 7-day-old Col-0 (WT), ots1 ots2 and tir1 afb2 afb3 seedlings showing 

morphological differences in root hairs between Arabidopsis mutant lines. ots1 

ots2 shows a decrease in number of root hairs, in comparison to WT, and an 

increase in root hair length. The auxin insensitive mutant, tir1 afb2 afb3, shows 

a dramatic decrease in root hair density and length in comparison to WT.  

Seedlings were germinated on 1/2MS and 0.8% phytoagar plates supplemented 

with 0.5% sucrose under 24 hour light conditions. Seedlings were then grown 

under 24hr light conditions for 7 days before the number of root hairs were 

counted. Error bars represent standard error of the mean. n = 20 per genotype. 

Three repeats conducted. Scale 1mm. Magnification = 2x. . . . . . . . . . . . . . . . . . . .  
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3.15 ots1 ots2 PRODUCES SIGNIFICANTLY FEWER ROOT HAIRS IN COMPARISON TO WT. 

Analysis of average root hair number of 7-day old Col-0, ots1 ots2 and tir1 afb2 

afb3 Arabidopsis lines. ots1 ots2 shows a statistically significant decrease in 

number of root hairs, in comparison to WT. The auxin insensitive mutant, tir1 

afb2 afb3, shows a dramatic decrease in root hair density in comparison to WT. 

Seedlings were germinated on 1/2MS and 0.8% phytoagar plates supplemented 

with 0.5% sucrose under 24 hour light conditions. Seedlings were then grown 

under 24hr light conditions for 7 days before the number of root hairs were 

counted. Error bars represent standard error of the mean. P values for 

differences between Col-0 and the two mutant lines (ots1 ots2, tir1 afb2 afb3): 

*** ≤ 0.001 (one-way ANOVA with Tukey test post hoc).  n = 20 per genotype. 

Three repeats conducted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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3.16 ots1 ots2 PRODUCES SIGNIFICANTLY LONGER ROOT HAIRS IN COMPARISON TO WT. 

Analysis of average root hair length of 7-day old Col-0, ots1 ots2 and tir1 afb2 

afb3 Arabidopsis lines. ots1 ots2 shows a statistically significant increase in 

average root hair length, in comparison to WT. The auxin insensitive mutant, 

tir1 afb2 afb3, shows a dramatic decrease in root hair length in comparison to 

WT. 

Seedlings were germinated on 1/2MS and 0.8% phytoagar plates supplemented 

with 0.5% sucrose under 24 hour light conditions. Seedlings were then grown 
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under 24hr light conditions for 7 days before the number of root hairs were 

counted. Error bars represent standard error of the mean. P values for 

differences between Col-0 and the two mutant lines (ots1 ots2, tir1 afb2 afb3): 

*** ≤ 0.001 (one-way ANOVA with Tukey test post hoc).  n = 20 per genotype. 

Three repeats conducted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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3.17 SCHEMATIC DEMONSTRATING EXPERIMENTAL SETUP FOR THE HYDROTROPIC RESPONSE 

ASSAY. 

Schematic showing the split-plate hydrotropism assay setup. ½ MS plates were 

poured and all media from the lower half of the plate (indicated by the blue 

line) removed and replaced with ½ MS supplemented with 400mM sorbitol 

(thereby providing the hydrotropic stimulus). 5-day-old seedlings were 

transferred to the assay plate; seedlings were positioned upon the plate with 

the root tips situated at the red line (2mm above the start of the hydrotropic 

stimulus). After 12 hours, the angle of bend was then measured (indicated by 

the yellow arrows). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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3.18 THE ots1 ots2 MUTANT IS POSITIVELY HYDROTROPIC. 

5-day-old ots1 ots2 seedlings showing the increased response to hydrotropic 

stimulus (400mM sorbitol) after 12 hours compared to WT (Col-0), and the 

SUMO protease overexpression line (OTS1-OE). The ots1 ots2 mutant line 

shows a slight decrease in bend angle in comparison to WT, indicating a 

positively hydrotropic phenotype. 

Seedlings were germinated on 1/2MS and 0.8% phytoagar plates supplemented 

with 0.5% sucrose under 24 hour light conditions. At 5 days old, the seedlings 

were transferred to the prepared assay plates: 1/2MS with 0.8% phytoagar and 

0.5% sucrose, with the lower half of the split plate supplemented with 400mM 

sorbitol. Seedlings were then grown under 24hr light conditions for a further 12 

hours before the root bend angle was measured. n = 60 per genotype. Three 

repeats conducted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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3.19 ots1 ots2 SHOWS A SIGNIFICANT INCREASE IN HYDROTROPIC RESPONSE IN 

COMPARISON TO WT. 

Analysis of mean angle of bend of 5-day old Col-0, ots1 ots2 and OTS1 

overexpressor, 35S:OTS1:HA, Arabidopsis lines in response to hydrotropic 

stimulus (400mM sorbitol). The ots1 ots2 mutant line shows a statistically 

significant decrease in bend angle in comparison to WT, indicating a positively 

hydrotropic phenotype. 
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Seedlings were germinated on 1/2MS and 0.8% phytoagar plates supplemented 

with 0.5% sucrose under 24 hour light conditions. At 5 days old, the seedlings 

were transferred to the prepared assay plates: 1/2MS with 0.8% phytoagar and 

0.5% sucrose, with the lower half of the split plate supplemented with 400mM 

sorbitol. Seedlings were then grown under 24hr light conditions for a further 12 

hours before the root bend angle was measured. Error bars represent standard 

error of the mean. P values for differences between Col-0 and ots1 ots2 lines: 

** ≤ 0.01 (one-way ANOVA with Tukey test post hoc). n = 60 per genotype. 

Three repeats conducted.  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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4.1 SUMO SITE PREDICTION FOR THE TIR1/AFB FAMILY. 

A.  Schematic showing the highly predicted (85%+) SUMOylation sites in the 

Auxin-Responsive F-box family of proteins. The predicted SUMOylation sites 

located within this protein family differ between members.  

B. A table showing the location, type, percentage prediction and sequence of 

the predicted SUMO sites in the Auxin-Responsive F-Box Family of proteins. . . . 
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4.2 SUMO SITE PREDICTION FOR CROSS-SPECIES ATTIR1 HOMOLOGUES. 

A.  Schematic showing the highly predicted (85%+) SUMOylation sites in TIR1 

homologues identified using BLASTp. All homologues show a highly conserved 

SUMOylation site at the C-terminal end of the protein (AtTIR1 K485), indicated 

by a black arrow.   

B. A table showing the location, type, percentage prediction and sequence of 

the AtTIR predicted SUMO site K485 homologues. All predicted sites have the 

same, highly conserved amino acid sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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4.3 SUMO SITE LOCATION IN THE 3D STRUCTURE OF ATTIR1. 

The 3D-structure of the ASK1-TIR1 auxin-receptor complex, with each 

component shown in green and blue respectively. The three lysine residues 

predicted to be involved in the SUMOylation of TIR1 are highlighted in red. 

These residues are located on the underside of the main barrel of TIR1, 

opposite the AUX/IAA binding location. The side-chains of K373 and K457 are 

pointing away from the main body of the TIR1 protein. The side-chain of the 

K485 residue is pointing inwards through the main barrel, towards the auxin-

binding site.  Co-ordinates from pdb file 2P1M (Tan, et al., 2007). Figure 

generated in PyMOL (Delano, 2002) modelling software, Version 1.8.. . . . . . . . . .  
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4.4 CLONING OF ARABIDOPSIS THALIANA TIR1 AND AFB PROTEIN FAMILY. 

Gel image showing the cloning of TIR1 (AT3G62980), AFB1 (AT4G03190), AFB2 
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(AT3G26810) and AFB3 (AT1G12820). Genes were cloned from Col-0 cDNA 

extracted from 7-day old seedlings The PCR was conducted with the proof-

reading polymerase Q5 (New England Biolabs) supplemented with 0.3% DMSO, 

and was run for 30 cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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4.5 YFP:TIR1 APPEARS TO UNDERGO SUMOYLATION IN TRANSIENT ASSAY. 

A.  Western blot showing α-GFP IP and α-GFP IB of YFP:TIR1 plus a YFP control 

infiltrated with P19 suppressor protein and recombinant SUMO1:HA in a 1:1:3 

ratio. Bands can be seen in all lanes, showing expression and successful 

immunoprecipitation of TIR1 and the GFP control. 10ul of IP was loaded. 

B. Western blot showing α-GFP IP and α-HA IB of YFP:TIR1 and YFP control 

infiltrated with P19 suppressor protein and recombinant SUMO1:HA. A faint 

band can be seen in the IP lane of YFP:TIR1, indicating SUMOylation of TIR1. 

20ul of extract and 20ul of IP was loaded. Ponceau S-stained RuBisCO is shown 

as loading control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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4.6 GENOTYPING OF THE ARABIDOPSIS THALIANA PTIR1:TIR1:VENUS LINE. 

A.  A schematic showing the location and PCR product size of the primers used 

in the genotyping of the Arabidopsis pTIR1:TIR1:VENUS mutant line. 

B. Gel image showing the genotyping of the pTIR1:TIR1:VENUS line alongside a 

VENUS-only control (DR5:VENUS) and the pTIR1:TIR1:VENUS plasmid used to 

generate the mutant line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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4.7 THE VENUS TAG IS CLEAVED FROM TIR1 IN THE PTIR1:TIR1:VENUS LINE. 

Western blot showing α-GFP IP and α-GFP IB of protein extracted from 

Arabidopsis thaliana mutant line pTIR1:TIR1:VENUS and a VENUS only control 

line (DR5:VENUS). No TIR1:VENUS was detected in the total protein extract or 

in the IP elution. Free VENUS was detected in the elution from the IP, indicating 

that the tag is undergoing cleavage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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4.8 GENERATION OF SINGLE, DOUBLE AND TRIPLE K->R SUMO SITE TIR1 CLONES. 

A.  Gel image showing the introduction of the three SUMO site mutations of 

TIR1 (AT3G62980) to make the TIR1 single SUMO site mutants. Genes were 

mutated from a confirmed TIR1 pENTR/D-TOPO clone. The PCR was conducted 

with the proof-reading polymerase Q5 (New England Biolabs) supplemented 

with 0.3% DMSO, and was run for 25 cycles.  

B. Gel image showing the introduction of the three SUMO site mutations of 

TIR1 (AT3G62980) into confirmed single SUMO site mutant clones to make the 

TIR1 double SUMO site mutants. Genes were mutated from a confirmed 
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TIR1K373R, TIR1K457R and TIR1K485R pENTR/D-TOPO clones. The PCR was conducted 

as stated previously (see, Fg.4.6, A.). 

C. Gel image showing the introduction of the missing SUMO site mutation of 

TIR1 (AT3G62980) into confirmed double SUMO site mutant clones to make the 

TIR1 triple SUMO site mutant, TIR13KR. Genes were mutated from a confirmed 

TIR1K373R/K457R, TIR1K373R/K485R and TIR1K457R/K485R pENTR/D-TOPO clones. The PCR 

was conducted as stated previously (see Fig. 4.6, A.). . . . . . . . . . . . . . . . . . . . . . . .  
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4.9 THE TIR13KR
 SUMO SITE MUTANT IS NOT SUMOYLATED IN TRANSIENT ASSAY. 

A.  Western blot showing α-GFP IP and α-GFP IB of recombinant YFP:TIR13KR, 

YFP:TIR1 and a YFP control infiltrated with P19 suppressor protein and 

recombinant SUMO:HA in a 1:1:3 ratio. Bands can be seen in all lanes, showing 

successful immunoprecipitation of YFP:TIR13KR, YFP:TIR1 and the YFP control. 

15ul of IP was loaded. 

B.  Western blot showing α-GFP IP and α-HA IB of recombinant YFP:TIR13KR, 

YFP:TIR1 and YFP control infiltrated with P19 suppressor protein and 

recombinant SUMO:HA. A large band can be seen in the IP lane of YFP:TIR1, 

indicating SUMOylation of YFP:TIR1. No corresponding band can be seen in the 

IP lane of YFP:TIR13KR, indicating the successful removal of the SUMO sites.  

20ul of IP was loaded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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4.10 THE TIR1 3KR MUTANT SHOWS A DECREASE IN STABILITY UPON THE ADDITION OF 

AUXIN. 

Western blot showing α-c-MYC IB of c-MYC:TIR1 and c-MYC:TIR13KR alongside a 

MYC-tag control and uninfiltrated N. benthamiana extract in transient assay. 

Leaves were treated with 1uM NAA and samples collected at 30 minute and 2 

hour time points. 20ul of protein extract was loaded. Ponceau-stained RuBisCO 

is shown as loading control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

 

 

 

 

 

 

113 

4.11 CLONING OF AUXIN-RESPONSIVE E3 LIGASE COMPLEX PROTEINS CUL1 AND ASK1. 

Gel image showing the cloning of CUL1 (AT3G62980) and ASK1 (AT4G03190). 

Genes were cloned from Col-0 cDNA extracted from 7-day old seedlings The 

PCR was conducted with the proof-reading polymerase Q5 (New England 

Biolabs) supplemented with 0.3% DMSO, and was run for 30 cycles. . . . . . . . . . .  
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4.12 BOTH TIR1 AND TIR13KR
 INTERACT WITH ASK1 IN TRANSIENT ASSAY. 

A.  Western blot showing α-GFP IP and α-GFP IB of recombinant YFP:TIR13KR, 

YFP:TIR1 and a YFP control infiltrated with P19 suppressor protein and 

recombinant HA:ASK1 in a 1:1:1 ratio. Bands can be seen in all lanes, showing 
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successful immunoprecipitation of YFP:TIR13KR, YFP:TIR1 and the YFP control. 

10ul of IP was loaded. 

B.  Western blot showing α-GFP IP and α-HA IB of recombinant YFP:TIR13KR, 

YFP:TIR1 and YFP control infiltrated with P19 suppressor protein and 

recombinant HA:ASK1. Large bands corresponding to HA:ASK1 can be seen in 

the YFP:TIR1 and YFP:TIR13KR lanes, indicating interaction with HA:ASK1. No 

corresponding band can be seen in the YFP control.  5ul of IP was loaded. . . . . .  
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4.13 THE TIR13KR
 MUTANT INTERACTS WITH IAA18 IN TRANSIENT ASSAY. 

Western blot showing transient expression and stability of YFP:IAA18 after 

treatment with 1uM NAA. α-c-MYC IB (Top) and α-GFP IB (bottom) show 

recombinant c-MYC:TIR1, c-MYC:TIR13KR and a c-MYC control infiltrated with 

P19 suppressor protein and recombinant YFP:IAA18 in a 1:1:1 ratio. Bands 

corresponding to YFP:IAA18 can be seen in all lanes. 20ul of protein extract was 

loaded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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4.14 TIR1 DOES NOT INTERACT WITH OTS1 IN TRANSIENT ASSAY. 

A.  Western blot showing α-GFP IP and α-GFP IB of recombinant YFP:TIR13KR, 

YFP:TIR1 and a GFP control infiltrated with P19 suppressor protein and 

recombinant OTS1:HA in a 1:1:1 ratio. Bands can be seen in all lanes, showing 

successful immunoprecipitation of YFP:TIR13KR, YFP:TIR1 and the GFP control. 

20ul of IP was loaded. 

B.  Western blot showing α-GFP IP and α-HA IB of recombinant YFP:TIR13KR, 

YFP:TIR1 and GFP control infiltrated with P19 suppressor protein and 

recombinant OTS1:HA. No bands corresponding to OTS1:HA can be seen when 

probed with α-HA.  20ul of IP was loaded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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4.15 SIM SITE PREDICTION FOR THE TIR1/AFB FAMILY. 

A.  Schematic showing the highly predicted (85%+) SUMO INTERACTION 

MOTIFs (SIMs) in the Auxin-Responsive F-box family of proteins. The predicted 

SIMs located within this protein family differ between members.  

B. A table showing the location, type, percentage prediction and sequence of 

the predicted SIMs in the Auxin-Responsive F-Box Family of proteins. . . . . . . . . .  
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4.16 NO SIM SITE BINDING IS OBSERVED FOR TIR1 UNDER TRANSIENT ASSAY CONDITIONS. 

A.  Western blot showing α-GFP IP and α-GFP IB of recombinant YFP:TIR1 and a 

YFP control infiltrated with P19 suppressor protein and recombinant 

SUMO1:HA in a 1:1 ratio. Bands can be seen in all lanes, showing successful 

immunoprecipitation of YFP:TIR1 and the YFP control. 20ul of IP was loaded. 
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B.  Western blot showing α-GFP IP and α-HA IB of recombinant YFP:TIR1 and 

YFP control infiltrated with P19 suppressor protein and recombinant 

SUMO1:HA. No bands corresponding to SUMO1:HA can be seen in the IP lanes 

when probed with α-HA.  20ul of IP was loaded. . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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5.1 SUMO SITE PREDICTION FOR THE AUX/IAA REPRESSOR FAMILY. 

A schematic showing the highly predicted (85%+) SUMOylation sites in the 

AUX/IAA repressor family of proteins. Many of the AUX/IAA proteins show two 

highly conserved SUMOylation sites at the C-terminal end, as indicated by the 

two black arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   
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5.2 CLONING OF THE AUX/IAA PROTEINS IAA2, IAA3, IAA14 AND IAA18. 

Gel image showing the cloning of IAA2 (AT3G23030), IAA3 (AT1G04240), IAA14 

(AT4G14550) and IAA18 (AT1G51950). Genes were cloned from Col-0 cDNA 

extracted from 7-day old seedlings The PCR was conducted with the proof-

reading polymerase Q5 (New England Biolabs) supplemented with 0.3% DMSO, 

and was run for 30 cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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5.3 THE AUX/IAA PROTEINS IAA3 AND IAA18 ARE NOT SUMOYLATED UNDER 

TRANSIENT ASSAY CONDITIONS. 

A.  Western blot showing α-GFP IP and α-GFP IB of recombinant YFP:IAA3, 

YFP:IAA18 and a YFP control infiltrated with P19 suppressor protein and 

recombinant SUMO1:HA in a 1:1:3 ratio. Bands can be seen in all lanes, 

showing successful immunoprecipitation of YFP:IAA3, YFP:IAA18 and the YFP 

control. 15ul of IP was loaded. 

B.  Western blot showing α-GFP IP and α-HA IB of recombinant YFP:IAA3, 

YFP:IAA18 and YFP control infiltrated with P19 suppressor protein and 

recombinant SUMO1:HA. No bands can be seen in any of the lanes, indicating 

that both YFP:IAA3 and YFP:IAA18 are not SUMOylated under transient assay 

conditions.  20ul of IP was loaded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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5.4 

 

STABILISED IAA28 IS NOT SUMOYLATED UNDER TRANSIENT ASSAY CONDITIONS. 

A.  Western blot showing α-GFP IP and α-GFP IB of recombinant YFP:IAA28 plus 

a GFP control infiltrated with P19 suppressor protein and recombinant 

SUMO1:HA in a 1:1:3 ratio. Bands can be seen in both lanes, showing 

expression and successful immunoprecipitation of YFP:IAA28 and the GFP 

control. 20ul of IP was loaded. 

B. Western blot showing α-GFP IP and α-HA IB of recombinant YFP:IAA28 and 
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GFP control infiltrated with P19 suppressor protein and recombinant 

SUMO1:HA. No bands can be seen, indicating that YFP:IAA28 is not 

SUMOylated. 20ul of IP was loaded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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5.5 PREDICTED SUMOYLATION SITES IN THE ACTIVATING ARFS. 

A.  Schematic showing the highly predicted (85%+) SUMOylation sites in the 

ARF family of auxin-responsive transcription factors. Both ARF7 and ARF19 

contain a SUMOylation site located within the DNA-binding region of the 

protein (indicated by arrowhead), which may play a vital role in SUMO-

dependent regulation of the transcription of auxin responsive genes.  

B. A table showing the location, type, percentage prediction and sequence of 

the predicted SUMO sites in the activating ARFs. . . . . . . . . . . . . . . . . . . . . . . . . . .  
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5.4 ARF7:MYC IS SUMOYLATED IN TRANSIENT ASSAY. 

A. Western blot showing α-c-MYC IP and α-c-MYC IB of recombinant ARF7:MYC 

plus a MYC-tagged control (SAE2) infiltrated with P19 suppressor protein in a 

1:1 ratio. Bands can be seen in all lanes, showing expression and successful 

immunoprecipitation of ARF7:MYC and the MYC:SAE2 control. 25ul of extract 

and 10ul of IP was loaded. 

B. Western blot showing α-c-MYC IP and α-SUMO IB of recombinant ARF7:MYC 

and MYC:SAE2 control. A faint band can be seen in the IP lane of ARF7:MYC, 

indicating SUMOylation of ARF7. 50ul of extract and 150ul of IP was loaded. . . .  
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5.6 ARF19:GFP IS SUMOYLATED IN TRANSIENT ASSAY. 

A. Western blot showing α-GFP IP and α-SUMO IB of recombinant ARF19:GFP 

plus GFP-only control infiltrated with P19 suppressor protein in a 1:1 ratio. .A 

faint band can be seen in the IP lane of ARF19:GFP, indicating SUMOylation of 

ARF19. 50ul of extract and 150ul of IP was loaded.  

B. Western blot showing α-GFP IP and α-GFP IB of recombinant ARF19:GFP and 

GFP-only control. . Bands can be seen in all lanes, showing expression and 

successful immunoprecipitation of ARF19:GFP and the GFP-only control.  10ul 

of IP was loaded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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5.7 ARF19:GFP POTENTIALLY INTERACTS WITH GAI:HA AND RGA:HA. 

A.  Western blot showing α-HA IP and α-HA IB of recombinant DELLA proteins 

RGA:HA and GAI:HA infiltrated with either ARF19:GFP or GFP-only control and 

P19 suppressor protein in a 1:1:1 ratio. Bands can be seen in all lanes, showing 

expression and successful immunoprecipitation of RGA:HA and GAI:HA. 10ul of 

IP was loaded.  
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B. Western blot showing α-HA IP and α-GFP IB of recombinant DELLA proteins 

RGA:HA and GAI:HA to identify protein-protein interactions between RGA or 

GAI with ARF19:GFP. A band corresponding to ARF19:GFP can be seen in the IP 

lane of RGA:HA, indicating RGA-ARF19 interaction. No bad can be identified in 

the corresponding control lane. No bands can be identified in the GAI:HA IP 

lanes due to smearing. 50ul of extract and 30ul of IP was loaded. . . . . . .   
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5.8 HIGHER LEVELS OF VENUS ARE OBSERVED AFTER AUXIN TREATMENT IN THE OTS1 

OTS2 BACKGROUND COMPARED TO WT. 

Roots of 7-day-old DR5::VENUS and DR5::VENUS x ots1 ots2 and seedlings at 

60x magnification and excitation at λ488nm showing the difference in auxin 

transcriptional response upon exposure to IAA at selected time points. A higher 

transcriptional response is observed in the DR5::VENUS x ots1 ots2 line.  

Seedlings were germinated on ½ MS plates with 0.8% phytoagar supplemented 

with 0.5% sucrose. The seedlings were germinated and grown under 24 hour 

light conditions for 7 days. The seedlings were then transferred to 20ml of 

liquid 1/2MS media, supplemented with 1uM IAA, and incubated under 24hr 

light conditions, with gentle shaking, for 1-24hrs. Scale bar = 20μm. . . . . . . . . . .  
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A.3 GENOTYPING OF THE DR5::VENUS X OTS1 OTS2 CROSS (F2). 

PCR products from the genomic DNA extracts from the F2 DR5::VENUS x ots1 

ots2 crosses, with DR5:VENUS and ots1 ots2 used as controls. Bands 

correspond to the VENUS gene (TOP) and OTS1 and OTS2 genes (bottom). OTS1 

and -2 primers span the T-DNA insert region; the absence of bands in the OTS1 

and -2 homozygous check correspond to the presence of the T-DNA insert. . . . .  
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Summary 
 

The Small Ubiquitin-like Modifier 1 (SUMO1) protein is a stress-inducible posttranslational 

modification present in all eukaryotic organisms. Conjugation of this modifier to a target protein 

results in the alteration of target protein function. The subsequent de-conjugation of SUMO from 

target proteins is conducted by a class of enzymes termed SUMO proteases.  

 

Previous research regarding the SUMO E3 ligases SIZ1 and HPY2 has inferred a connection 

between protein SUMOylation and auxin signalling (Huang, et al., 2009). Here, that connection 

has been strengthened through phenotypic analysis of Arabidopsis thaliana double knock-out 

mutant line for the SUMO proteases OVERLY TOLERANT TO SALT 1 and -2 (OTS1 and -2), ots1 

ots2, and through the confirmation of the SUMOylation of several auxin cascade proteins.  

 

Loss of OTS1 and -2 was shown to result in an increase in auxin response in Arabidopsis thaliana 

seedlings exposed to exogenous auxin stimulus, indicating that an increase in global SUMOylation 

levels alter auxin homeostasis. Further investigation regarding components of the auxin signalling 

cascade revealed that the auxin receptor, TIR1, and two of the auxin-regulated transcription 

factors, ARF7 and ARF19, undergo SUMOylation under transient assay conditions. Mutations in 

TIR1 inducing lysine to arginine substitution of the SUMO-binding residues at each predicted 

SUMO site eliminated SUMO1 binding under transient assay conditions, further confirming that 

WT TIR1 is SUMOylated and that the predicted locations were correct. These non-SUMOylatable 

TIR1 mutant clones were then transformed into the auxin signalling Arabidopsis mutant line 

tir1/afb2/afb3 to further elucidate the role SUMOylation plays in auxin signalling in planta. 
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Nomenclature 
 

2,4-D 2,4-Dichlorophenoxyacetic acid 
ABA Abscisic acid 
AFB Auxin F-box 
ARF AUXIN RESPONSE FACTOR 
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ATP Adenosine triphosphate 
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CUL1 CULLIN 
DMSO Dimethylsulfoxide 
DNA Deoxyribonucleic acid 
EAR Ethylene Response Factor 
EDTA Ethylenediaminetetraacetic acid 
ESD4 EARLY IN SHORT DAY 4 
Fig. Figure 
GA Gibberellic acid 
GAI GIBBERELLIC ACID-INSENSITIVE MUTANT PROTEIN 
gDNA Genomic DNA 
GFP Green Fluorescent Protein 
GG di-glycine 
HA Hemaglutinin of Influenza Virus 
HECT HOMOLOGOUS TO THE E6-AP CARBOXYL TERMINUS 
HPY2 HIGH PLOIDY 2 
HRP Horseradish Peroxidase 
IAA Indole-3-acetic acid 
IAD Indole-3-acetaldehyde 
IAM Indole-3-acetemide 
IAOX Indole-3-acetaldoxime 
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InsP6 Inositol hexakisphosphate 
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JA Jasmonic Acid 
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LB Luria Broth medium 
LR Lateral Root 
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NCBI National Centre for Biotechnology Information 
OD Optical Density 
OTS1 and -2 OVERLY TOLERANT TO SALT 1 and -2 
PAGE Polyacrylamide Gel Electrophoresis 
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PCR Polymerase Chain Reaction 
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PIF PHYTOCHROME INTERACTING FACTOR 
PIN PIN-FORMED 
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qPCR Quantitative PCR 
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RBX RING-BOX 
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Ri Root-inducing 
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RT Room Temperature 
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SAE1 and -2 SUMO-ACTIVATING ENZYME 1 
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SAR Structure-Activity Relationship 
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SDS Sodium dodecyl sulphate 
SIM SUMO-interacting Motif 
SIZ1 SAP and MIZ1 
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TAIR The Arabidopsis Information Resource 
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1. Introduction 
 

1.1 Auxin 
 

1.1.1 Overview 
 

Plant hormones, known as phytohormones, are a group of chemicals that regulate growth and 

development. Unlike mammalian hormones, which are often large and complex, phytohormones 

are simple chemical compounds able to be produced by every cell. These compounds are 

synthesised in response to both internal and external stimuli, allowing the plant maintain the 

large amount of phenotypic plasticity required for life as a sessile organism.  

 

There are five major classes of phytohormones, with members of each class defined by their 

structural similarities or their effects upon plant physiology. These are auxins, cytokinins, 

gibberellins, abscisic acid, and ethylene. There are many other plant hormones, including 

brassinosteriods and jasmonates, however these are not as easily categorised.    

 

Of these phytohormones, auxin is widely considered to be the first ever discovered. It is a crucial 

morphogen and plays an important role in the growth and development of all plant species.  
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A Brief History of Auxin  

 

The effects of auxin upon plants have been known for millennia. Indeed, one of the earliest 

depictions of the phototropic response, in which auxin plays a major role, is in the epic narrative 

poem Metamorphoses by Ovid. In this poem (iv. 204, 234-256), the phototropic response is 

alluded to through the story of the water nymph Clytie, who was transformed by Venus into a 

Heliotrope (also known as Turnsole: a rocky, sun-loving plant), becoming destined to forever 

follow the movements of her beloved sun god across the sky (Ovid, et al., 1998).  

 

From this tale, it is clear that the concept of phototropism has been known about for a long time. 

However, whilst the phototropic effects of auxin have been recognised for millennia (Whippo & 

Hangarter, 2004), it wasn’t until the 1800s that the first mechanism of action for this 

phenomenon was proposed.   

 

The first auxin experiments were conducted in 1881 by Charles Darwin and his son Francis 

(Darwin and Darwin, 1881). In these experiments, they discovered that plant coleoptiles were 

able to sense and bend towards a unidirectional light stimulus. Through the addition of light 

impermeable coverings on various parts of the coleoptile and hypocotyl, they were able to 

determine that light is perceived in the coleoptile tip but that the light-responsive bending occurs 

in the hypocotyl. They therefore proposed the idea of a ‘moving messenger’, allowing the plant to 

sense light in one structure, yet respond in another.  

 

The Darwins’ work was later continued by Peter Boysen-Jensen (1913), who showed that the 

signal was indeed mobile (Pennazio, 2002).  He demonstrated signal motility through the use of 

permeable and impermeable barriers, which he placed between the coleoptile tip and the 

hypocotyl.  

 

However, the definitive proof of the existence of the messenger came from a series of 

experiments conducted by Frits Went. He demonstrated that this messenger could be captured 

from plants exposed to phototropic stimulus and used to incite a response those that had not 
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been exposed (Tivendale & Cohen, 2015). This messenger was later identified as the auxin Indole-

3-Acetic Acid (IAA), the first phytohormone to be discovered.   

 

The Roles of Auxin within Plant Growth and Development  

 

Auxins have a great many roles within the plant, participating in every stage of development from 

the cellular level up to the plant as a whole.  

 

At a cellular level, auxin is primarily responsible for cell expansion and, in concert with the 

phytohormone cytokinin, cell division (Perrot-Rechenmann, 2010). Auxin mediates cell expansion 

through the acidification of the cell wall via induction of a plasma membrane-bound ATPase 

proton pump (Philippar, et al., 2004). The acidification of the cell wall activates proteins known as 

expansins, which are thought to disrupt the non-covalent bonds formed between the cellulose 

and hemicellulose polymers that form the cell wall, allowing expansion and therefore growth of 

the cell to occur (Sampedro & Cosgrove, 2005). Alongside cell growth, experiments involving the 

auxin starvation of cells in tissue culture also show that lack of auxin causes division arrest 

(Takatsuka & Umeda, 2014), and conversely, that addition of auxin to arrested cells stimulates 

division.      

 

On a wider scale, auxin is responsible for the morphological changes induced by the various plant 

tropsims, such as phototropism, hydrotropism and gravitropism (Muday, 2001). It also plays an 

important role in the growth and development of many plant organs, such as the roots 

(Overvoorde, et al., 2010), fruit growth and development (Pattison, et al., 2014), and floral 

development (Krizek, 2011). 
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1.1.2 Auxin Biosynthesis 
 

To date, over 200 compounds with auxinic activity have been discovered (Calderon-Villalobos, et 

al., 2010). Though these compounds vary wildly in molecular structure, they all contain two 

conserved features: a planar aromatic ring and a side chain containing a carboxyl group. The most 

prevalent and well-studied of these auxinic compounds is indole-3-acetic acid (IAA). IAA was the 

first plant hormone ever identified and is a key regulator of many essential plant growth and 

developmental processes, such as cell division, apical dominance and flowering (Spiess, et al., 

2014).  

 

Unlike the auxin signalling pathways, de novo auxin biosynthesis remains very poorly understood. 

IAA synthesis in plants is a complex process, with the contribution of many different pathways 

proposed to be involved, some of which may be species specific. To date, two forms of IAA 

biosynthesis have been proposed: tryptophan-independent and tryptophan-dependent (Gray, et 

al., 2001). Very little is known about tryptophan (trp)-independent auxin biosynthesis.  

 

Tryptophan-Dependent IAA Biosynthesis 

      

In comparison to trp-independent auxin biosynthesis, far more is known about trp-dependent 

biosynthesis. To date, there are four hypothesised trp-dependent pathways: i. the indole-3-

acetemide (IAM) pathway, ii. the indole-3-pyruvic acid (IPA) pathway, iii. the tryptamine (TAM) 

pathway, and iv. the indole-3-acetaldoxime (IAOX) pathway (reviewed in Mano & Nemoto (2012). 

It is currently unclear if all stated pathways are present in all plant species; current research 

indicates this is unlikely.  

 

Tryptophan-Dependent Biosynthesis: IAM Pathway  

 

Originally, the IAM auxin biosynthesis pathway was thought to be bacteria specific. Hairy root 

disease, caused by the pathogen Agrobacterium rhizogenes, is an infection that exploits the 

plant’s auxin system. The pathogen contains an Ri plasmid with two auxin synthesis genes, aux1 
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and aux2, which upon infection become integrated within the host DNA (Nemoto, et al., 2009). 

The activation of these genes by the host results in synthesis of IAA, thereby disturbing the 

distribution and concentration of endogenous auxin within the plant, resulting in the proliferation 

of root tissue, giving rise to hairy root disease. In this pathway, tryptophan is converted to IAM by 

tryptophan-2-monooxygenase (aux1) (Gaudin, et al., 1993; Camilleri & Jouanin, 1991). IAM is then 

converted to IAA by indole-3-acetamide hydrolase (aux2) (Thomashow, et al., 1984; Offringa, et 

al., 1986).   

 

Later research showed that the IAM synthesis pathway was not just bacteria specific, but was also 

present in higher plants. The presence of IAM has been detected in the extracts of many plant 

species, such as Japanese cherry (Saotome, et al., 1993), tobacco (Lemcke, et al., 2000), 

Arabidopsis (Pollmann, et al., 2002), maize and rice (Sugawara, et al., 2009), indicating that IAM is 

a native compound and almost certainly an intermediate in IAA biosynthesis in both monocots 

and dicots.   

 

To date, relatively little is known about the enzymes involved in the synthesis of IAM in planta. 

Cell-free extracts from several plant species are able to mimic the pathway identified in hairy root 

disease, converting tryptophan to IAM and on to IAA (Pollmann, et al., 2009). However, no 

candidates for enzymes homologous to the aux1 and aux2 genes have been identified. This could 

be due to a large divergence in sequence between the bacterial and plant homologues, rendering 

current bioinformatic techniques inadequate for the task (Mano, et al., 2010). Or, the limited 

success in suitable enzyme candidate identification could be down to a case of convergent 

evolution, the synthesis of IAM (and subsequent conversion to IAA) achieved through a different 

pathway.     

 

Tryptophan-Dependent Biosynthesis: IPA Pathway  

 

The identification of the IPA pathway originally occurred through experiments used to 

characterise Arabidopsis mutants defective in both shade response (Tao, et al., 2008) and 

ethylene response (Stepanova, et al., 2008). The two groups who conducted these experiments 

isolated an aminotransferase enzyme, Tryptophan Aminotransferase of Arabidopsis 1 (TAA1), able 
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to convert tryptophan to the auxin biosynthesis intermediate IPA. Further experiments showed an 

increase of intercellular IAA concentration upon exposure to shade and a dramatic reduction in 

free IAA concentration in Arabidopsis mutants lacking TAA1, indicating the importance of this 

pathway in IAA biosynthesis in response to shade (Tao, et al., 2008).  

 

Like the IAM pathway, the IPA pathway is also exploited by bacteria. This pathway is 

predominantly used by growth-promoting rhizobacteria, such as Azospirillium brasilense and 

Pseudomonas putida (Somers, et al., 2005). As before, this pathway is better characterised in 

bacteria, with experiments indicating that the conversion of tryptophan to the IAA precursor 

indole-3-acetaldehyde (IAD) occurs via IPA (Hilbert, et al., 2012).  To date, it is unclear whether 

plants also produce the auxin intermediate IAD as part of this pathway.    

 

Tryptophan-Dependent Biosynthesis: TAM Pathway  

 

TAM is a protoalkaloid involved in the terpenoid indole alkaloid biosynthetic pathway (Di Fiore, et 

al., 2002). Tryptophan is converted to TAM by tryptophan decarboxylase (TDC). Experiments 

involving the overexpression of TDC in transgenic tobacco show that though a dramatic increase 

in TAM concentration occurs, the levels of IAA remain unaffected. This suggests that despite TAM 

being considered an IAA biosynthesis intermediate, TDC itself plays virtually no role in IAA 

biosynthesis (Songstad, et al., 1990). 

 

In Arabidopsis thaliana, TAM is thought to be an intermediate in IAA biosynthesis. As part of this 

pathway, the oxidization of TAM to N-hydroxytryptamine by a flavin monooxygenase-like enzyme 

called YUCCA is thought to occur (Zhao, et al., 2001). Orthologues of this gene have been 

identified in both monocots and dicots, suggesting that this pathway is widespread amongst 

higher plants (Yamamoto, et al., 2007; Expósito-Rodríguez, et al., 2011). Experiments involving the 

overexpression of OsYUCCA1 in transgenic rice (Yamamoto, et al., 2007) have shown the 

involvement of this enzyme in the IAA biosynthetic pathway, as increased levels of IAA and typical 

excess-auxin phenotypes were observed. However, the TAM pathway metabolite N-

hydroxytryptamine has not yet been identified in plant extracts, suggesting that TAM may not be 

the true YUCCA substrate (Mano & Nemoto, 2012).     
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Recent data, however, has suggested a role in IAA biosynthesis for the YUC protein family through 

the previously mentioned IPA pathway (Mashiguchi, et al., 2011). Experiments involving the 

inhibition of TAA1 in transgenic Arabidopsis plants overexpressing the YUC1 gene showed a 

drastic reduction in the high auxin phenotypes observed for these mutants (Stepanova, et al., 

2011). Further experiments involving the Arabidopsis YUC family triple knock-out mutant, yuc1 

yuc2 yuc6, showed that these plants contain a far higher level of the IAA biosynthesis 

intermediate IPA in comparison to wild type (Won, et al., 2011). Taken together, these findings 

indicate a pivotal role for the YUC gene family in the IPA auxin biosynthesis pathway.   

 

Tryptophan-Dependent Biosynthesis: IAOX Pathway  

 

The IAOX IAA biosynthesis pathway is thought to be species specific, with the enzymes involved in 

tryptophan conversion as yet only identified in Arabidopsis thaliana and Brassica (Ludwig-Müller 

& Hilgenberg, 1988). The IAA intermediate IAOX is converted from tryptophan by two cytochrome 

P450 enzymes: CYP79B2 and CYP79B3 (Hull & Celenza, 2000; Mikkelsen, et al., 2000). No 

homologues of these enzymes have been identified in other plant species to date, and the 

generation of IAOX does not appear to occur in many plant species, such as tomato (Cooney & 

Nonhebel, 1991), rice or maize (Sugawara, et al., 2009). 

 

Like TAM, IAOX is an intermediate in many other pathways, such as IAN production and the 

synthesis of the alkaloid camalexin (Mikkelsen, et al., 2009). Recent work in Arabidopsis using 

double knock-out mutants of AtCYP79B2 and AtCYP79B3 show that though the levels of 

secondary metabolites for which IAOX is an intermediate dramatically decrease, the levels of IAA 

within the plant do not. Overexpression of AtCYP79B2 also shows little change in IAA levels but 

large changes in secondary metabolite levels (Zhao, et al., 2002). This data suggests that the IAOX 

auxin biosynthesis pathway is unlikely to be involved in any major scale production of IAA.    
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1.1.3 The Importance of Auxin 
 

Auxins are heavily involved in practically every stage of plant growth. They are vital in the 

development and maintenance of all primordia, holding sway over the body plan of a plant 

(Casimiro, et al., 2001). Mutants defective in auxin production and signalling often show faults in 

proper plant body plan establishment, with errors seen in internode elongation, apical dominance 

and organ formation, such as the establishment of lateral/adventitious roots. 

 

Auxin and Root Tissue Organisation 

 

In order for a plant to thrive in its environment, well-established plant root systems with the 

ability to respond appropriately to both exogenous and endogenous stimuli are required. Through 

roots, plants are not only able to take in nutrients and water from the surrounding soil, but also 

able to provide themselves a strong anchor into the substratum, an essential function for plant 

survival (Den Herder, et al., 2010). It is via auxin that these essential changes occur.  

 

Plant roots are very complex organs. A single root itself contains a vast array of different cell types 

and tissues. The development of these cell types as part of the establishment and maintenance of 

the root primordia is regulated by auxin (Overvoorde, et al., 2010). To date, three areas of auxin 

concentration maxima have been identified. The first maxima is located at the Root Apical 

Meristem (RAM), with the auxin gradient generated between the RAM and the quiescent centre 

(QC) regulating the maintenance of the stem cell niche from which all root tissues are derived 

(Sabatini, et al., 2003). The second of these maxima is located at the root-shoot junction of the 

plant, regulating the initiation and development of adventitious roots (Gonzali, et al., 2005). And 

the third is located in the xylem pole pericycle cells of the basal meristem, where the auxin 

maxima induces the priming and later initiation of the development of lateral roots (De Smet, et 

al., 2007). 

 

Auxin has several well-documented effects upon the plant root system. These auxin-associated 

phenotypes include the bimodal effect of the hormone upon primary root length, the dose-

dependent effects upon root hair length and the average number of lateral root primordia, and 
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the plant’s response to gravitational stimuli (Rahman, et al., 2002; Péret, et al., 2009; Dolan, 

1998). It is through the establishment of differential auxin gradients within root tissues that these 

effects can be achieved.  

 

In wild type roots, auxin accumulates strongly within the root tip, columellar cells and progeny, 

and within cambial tissues (Uggla, et al., 1996). Upon the disruption of auxin flux using genetic 

and physiological methods (such as phytotropin treatment), the special patterning of the root 

changes dramatically (Sabatini, et al., 1999). The organisational defects in columellar and vascular 

tissue observed in auxin transport mutants are highly indicative of a role for auxin in the 

differentiation of root cell tissue.   

 

Auxin and Lateral Roots 

 

The Arabidopsis root system, like many dicots, consists of one large primary root from which 

lateral roots branch (Osmont, et al., 2007). The formation of these lateral roots in response to 

environmental (Leyser & Fitter, 1998) and internal cues is one of the ways in which root 

phenotypic plasticity contributes to a plant’s adaptation to an ever-changing environment. 

 

The structure of Arabidopsis roots is relatively simple, consisting of four main tissue layers named 

the epidermis, cortex, endodermis, and pericycle, which surround the inner vascular bundle. The 

pericycle is composed of a unique layer of cells in a state of G2 cycle arrest (Beeckman, et al., 

2001). This layer contains two cell types: differentiated phloem pole cells and meristematic xylem 

pole pericycle (XPP) cells (Parizot, et al., 2012). It is from triplets of cells adjacent to XPP cells, 

termed pericycle founder cells, that lateral roots develop (Lucas, et al., 2008). 

 

Lateral roots are formed at regular intervals down the root, emerging in an alternating left-right 

pattern (De Smet, et al., 2007). The predictable nature of LR patterning is dictated by an ‘auxin 

clock’; XPP cells adjacent to pericycle founder cells are primed for LR formation via a 15 hour 

auxin-response oscillatory pattern at the basal root meristem (Moreno-Risueno, et al., 2010). This 

is achieved through PIN-mediated channelling of auxin back to the basal meristem through the 
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inverse fountain pathway (Adamowski & Friml, 2015). Once these cells have been primed, they 

are able to undergo LR initiation. During initiation, primed founder cells divide in an anticlinal 

fashion to produce a small cell file, approximately 10 cells thick, termed the lateral root primordia 

(Casimiro, et al., 2001). This group of cells then continues to divide in both a periclinal and 

anticlinal fashion, generating a dome-shaped, vascularised structure that emerges from the 

primary root to form a new lateral root (Dubrovsky, et al., 2001). 

 

Aside from founder cell priming, auxin also plays a large role in lateral root initiation, tissue 

patterning and emergence. Experiments involving mutations in the auxin pathway have shed light 

on the proteins involved (figure 1.1).  

 

Auxin and Arial Tissues 

 

Alongside the regulation of the plant root system, auxin also plays a large role in the development 

of plant shoot tissue and the establishment of the main apical-basal-axis of growth (Gallavotti, 

2013). As with roots, auxin is responsible for the maintenance of the core of pluripotent stem cells 

located at both the shoot apical meristem (SAM) and axilliary meristems (Weigel & Jürgens, 

2002). 

 

The development of the plant shoot is organised into morphological modules named phytomers 

(Galinat, 1959), each composed of an internode, a node bearing a leaf and one or more auxiliary 

meristem. Variations in this pattern of phytomers, and thus diversity between plant species, is 

controlled largely via auxin patterning.   
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FIGURE 1.1| THE MECHANISM OF LATERAL ROOT PATTERNING IN ARABIDOPSIS 

 

 

 

Figure taken from Lavenus, et al. (2013).  

Lateral root development is primarily controlled through auxin signalling. There are several pathways 

involved in this process. Priming of LR founder cells involves the degradation of IAA28, releasing the 

repression of activating ARFs 5, 6, 7, 8 and 19. Once primed in the basal meristem, the founder cells are able 

to undergo nuclear migration though the SLR/IAA14 – ARF7/19 signalling module. Initiation and patterning 

then occurs using the IAA14 module and the BDL/IAA12 – ARF5 module. After initiation and division of the 

Lateral Root Primordia (LRP), another auxin pathway becomes involved: the SHY2/IAA3 – ARF7 pathway, 

which promotes the emergence of the lateral root.  
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1.1.4 Auxin Patterning 
 

Auxin signalling relies on the formation of hormone gradients within plant tissues. These local 

auxin minima and maxima guide plant growth and development in a spatiotemporal manner, with 

alterations in auxin flux driving morphological change.  This changing spatial distribution of auxin 

within plant tissues is achieved through a mechanism known as polar auxin transport (PAT).  

 

PAT is achieved through the active transportation of the hormone via auxin influx and efflux 

carriers (van Berkel, et al., 2013). These transporter proteins assist in the directional cell to cell 

transport of auxin from the source (the chloroplasts in which auxin is synthesised) to the sink.   

 

Auxin Influx Carrier Proteins 

 

Though protonated auxin is able to easily traverse the plasma membrane without assistance, 

directional transport of the phytohormone is achieved, in part, through the use of the 

AUXIN1/LIKEAUX1 (AUX/LAX) family of auxin influx proteins. To date, four AUX/LAX family 

proteins have been identified in Arabidopsis thaliana (AUX1 and LAX1-3), with the presence of 

homologues reported throughout the multicellular plant kingdom (Swarup & Péret, 2012).  

 

Auxin Efflux Carrier Proteins 

 

Whilst the low pH of the plant cell wall aids in the protonation of auxin, allowing it to move easily 

into the cell, the much higher pH of the cytosol renders the hormone incapable of moving back 

across the membrane unassisted (Hasenstein & Rayle, 1984). To ensure the flow of auxin from cell 

to cell, auxin efflux carriers, called PIN-FORMED proteins (PINs), are used.  

 

The PIN proteins are a family of secondary transporter proteins found in all multicellular plants. 

All proteins within this family have a broadly similar structure, with N- and C-terminal membrane-

spanning domains separated by a central hydrophilic domain (Krecek, et al., 2009). Using the 
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electrochemical gradient generated by the plasma membrane, these transporters pump the un-

protonated form of auxin from the cytosol back into the cell wall and intercellular spaces, allowing 

it to be taken up by adjacent cells and thus propagating the signal (Zazímalová, et al., 2010).  

 

Directional transport of auxin is achieved through the unique subcellular distribution of these PIN 

proteins within the cell, which are localised to the basal membrane (Willemsen, et al., 2003). 

Through this manifestation of cell polarity, auxin can be efficiently transported in a unidirectional 

manner from source to sink.    

 

 

  



21 
 

1.1.5 The Auxin Signalling Cascade 
 

Perhaps the most well understood auxin signalling pathway is that involving the degradation of 

the AUX/IAA family of transcriptional repressors. This form of hormone-mediated transcriptional 

regulation involves three major protein families: the TIR1/AFB family of auxin receptors, the 

AUX/IAA family of transcriptional repressors and the ARF family of transcription factors (Parry, et 

al., 2009).  Without auxin, the AUX/IAA transcriptional repressor is bound tightly to the ARF 

transcription factor, preventing transcription of the auxin-response genes. Upon the perception of 

auxin by the TIR1/AFB protein family, the AUX/IAA protein is tagged for degradation by the UPS, 

which subsequently releases the ARF, allowing ARF-dependent transcription of the auxin response 

genes to occur (see figure 1.2).  

 

The AUX/IAA Family 

 

The AUX/IAA proteins are a family of small, short-lived nuclear proteins involved in the auxin 

response. These proteins are found throughout the entirety of the higher plants, with the 

Arabidopsis genome containing the genes of 29 AUX/IAA family members (Leyser, 2010). 

Originally discovered in soybean and pea, these proteins are rapidly transcribed in response to 

auxin and were originally known, along with the SAUR and GH3 gene families, as the ‘early 

induced’ auxin genes (Goda, et al., 2004).  Later research with semi-dominant AUX/IAA 

Arabidopsis mutants, such as AXR2/IAA7, SHY2/IAA3 and BDL/IAA12 (Overvoorde, et al., 2005), 

elucidated the role of these genes as the transcriptional repressors of the auxin response 

pathway.  

 

All AUX/IAA proteins share a similar four-domain structure (Mockaitis & Estelle, 2008). The first of 

these conserved domains, Domain I, contains an EAR (Ethylene Response Factor (ERF)-associated 

amphilic repression) motif. This domain has the canonical sequence LxLxL and is used in the 

formation of the AUX/IAA repressor complex with the transcriptional co-repressor TOPLESS (TPL) 

(Long, et al., 2006). Through the formation of this complex in the absence of an auxinic signal, the 

auxin response genes are tightly repressed. 
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The second of the four domains, Domain II, is the degron domain. This 17 amino acid motif 

interacts with the auxin receptor protein TIR1/AFB in the presence of auxin (Mockaitis & Estelle, 

2008). Upon binding, the rest of the SCFTIR1/AFB E3 ligase complex then proceeds to ubiquitinate 

the AUX/IAA protein, targeting it for degradation by the 26S Proteasome and thereby releasing 

the ARF and thus repression of auxin responsive transcription. Mutations within this domain act 

to vary the degradation rate of the AUX/IAA proteins. Variations in this highly conserved region 

between AUX/IAA family members lead to vastly different rates of protein turn over. For example, 

IAA7 has been shown to have a half-life of 5-10 minutes in the presence of auxin (Dreher, et al., 

2006). In comparison, IAA28, which has a similar but not identical domain II, has a half-life of 80 

minutes in the presence of auxin (Calderon-Villalobos, et al., 2010).  

 

The third and fourth domains, Domain III and IV, confer binding between the AUX/IAA repressor 

and the ARF family of transcription factors. These domains share a high homology with two 

similar regions within the ARF proteins, allowing for homo-dimerisation and heterodimerisation 

(Ulmasov, et al., 1997). Through the heterodimerisation of AUX/IAAs and ARF, transcriptional 

repression is achieved in the absence of a suitable auxinic signal.     

 

The ARF Family 

 

Like the AUX/IAA family of transcriptional repressors, the size of the ARF family of transcription 

factors is also large, with 23 of these genes identified in Arabidopsis. As with the AUX/IAAs, the 

ARFs also show a degree of redundancy between family members. They are broadly classified into 

two groups; those that activate the auxin response genes (i.e. ARF5, ARF6, ARF7, ARF8 and ARF19) 

and those that repress them (Chandler, 2016).  

 

The ARF family of proteins contain four distinct conserved domains: a DNA binding Domain I, a 

highly variable Domain II, and dimerisation-conferring Domains III and IV which promote ARF 

homodimerisation and AUX/IAA binding. The first of these domains, Domain I, is a B3-like DNA 

binding domain. This domain contains a motif highly conserved amongst the auxin- and abscisic 

acid-regulated transcription factors (Yamasaki, et al., 2004). This motif forms a structure similar to 

that of the non-catalytic DNA binding domain of the EcoRII restriction enzyme, consisting of a 
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seven-stranded β-barrel flanked by a single α-helix at each end. It is through this motif that the 

ARFs are able to recognise and bind the auxin response elements (AuxREs) present in the 

promoter regions of auxin-induced genes (Ulmasov, et al., 1995).   
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FIGURE 1.2| THE AUXIN SIGNALLING CASCADE 

 

 

 

A schematic showing the auxin signalling cascade. The auxin signal is perceived by the auxin receptor SCF
TIR1

 

ubiquitin E3 ligase complex (light blue). Upon binding auxin (orange), the SCF
TIR1

 ligase catalyses the 

ubiquitination and subsequent degradation, by the 26S Proteasome (green), of the auxin repressor proteins, 

the AUX/IAAs (purple), releasing the ARF transcription factors (red). This then allows auxin-induced 

transcription of the auxin responsive genes to occur.   
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1.1.6 The TIR1/AFB Family of Auxin Receptors 
 

The auxin receptor TIR1 is a member of a large family of F-box proteins. This family includes the 

auxin receptors TIR1, AFBs 1-5 (Parry, et al., 2009), and the jasmonic acid receptor COI1. Through 

the formation of SCF-type ubiquitin protein ligase (E3) complexes containing these receptors, 

plants are able to regulate transcription of auxin responsive genes via the UPS-mediated 

degradation of the AUX/IAA proteins (Maraschin Fdos, et al., 2009).   

 

E3 Ligases and the UPS 

 

The ubiquitin-proteasome system (UPS) is a powerful regulator of cellular processes present in all 

eukaryotes. It an integral part of plant cellular machinery, with the UPS-mediated degradation of 

protein an essential aspect of almost every stage of development (Vierstra, 2009). 

 

Through the UPS, targeted protein degradation is achieved via the attachment of the small 

protein modifier, ubiquitin (Deshaies, 1995). Ubiquitin moieties are conjugated via one of 7 

conserved lysine residues to the target protein through the sequential action of three distinct 

enzymes: the ubiquitin-activating enzyme (E1), the ubiquitin-conjugating enzyme (E2) and the 

ubiquitin-ligase enzyme (E3) (Hershko & Ciechanover, 1998). Targeted proteins cycle repeatedly 

through this cascade until a short chain of ubiquitin moieties is formed, with Ub-chain topology 

determining the fate of the target protein (Walsh & Sadanandom, 2014). Chains linked via the K48 

residue typically act as a signal for degradation by the 26S Proteasome as part of the UPS.     

 

Via the ubiquitin-mediated degradation of targeted proteins, plants are able to quickly and 

efficiently respond to new stimuli. The specificity of target protein selection is determined 

through the E3 ubiquitin ligase. This large family of enzymes can be separated into three distinct 

classes: RING-type E3s, HECT-type E3s and SCF-type E3s (Pickart, 2001). In plants, it is the latter of 

these classes that form the largest group. 
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SCF E3 ubiquitin-ligase complexes consist of four subunits: ARABIDOPSIS SKP1-LIKE PROTEIN 

(ASK), CULLIN (CUL), RING BOX1 (RBX1) and the substrate receptor F-box proteins (FBPs) (Cardozo 

& Pagano, 2004). The FBPs confer substrate specificity; this allows the UPS to efficiently and 

effectively target a vast array of proteins for degradation through the formation of SCF complexes 

with varying F-boxes. In the auxin signalling system, the TIR1/AFB family of auxin receptors act as 

hormone-mediated F-box proteins, targeting the AUX/IAA repressor proteins for degradation 

(Calderon-Villalobos, et al., 2010).     

 

The TIR1/AFB Family 

 

In Arabidopsis thaliana, there are six members of the TIR1/AFB family: TIR1 and AFB1-5. Of these 

proteins, AFB1 is the most closely related homologue to the main auxin receptor TIR1, with 80% 

sequence similarity. AFB2 and AFB3 also share a high level of sequence similarity with each other, 

at over 80%, and are 60% identical to TIR1 and AFB1 (Dharmasiri, et al., 2005). Studies have 

shown that these four homologues act as auxin receptors and have partially overlapping functions 

in Arabidopsis thaliana.  

 

The final two members of the TIR1/AFB family, AFB4 and AFB5, are both structurally and 

functionally distinct. Unlike TIR1/AFB1-3, these proteins contain an N-terminal extension with a 

currently unknown function, and aside from auxin binding, they also demonstrate an affinity for 

the picloram family of auxinic herbicides (Prigge, et al., 2016).  

 

Phylogenetic analysis of this family, conducted by Parry et al. (2009), has shown that these 

proteins are highly conserved across land plants. They fall into four distinct clades, with three of 

these clades (TIR1/AFB2, AFB4 and AFB6) established through gene duplication events that 

occurred before the division of angiosperms and gymnosperms. Shortly before the division of 

monocot and eudicot plants, the TIR1/AFB2 clade divided further into the two distinct AFB1 and 

AFB2 clades. The maintenance of these distinct clades strongly suggests that the members of 

these subgroups have differing functions. Indeed, studies conducted by Parry et al. (2009) using 

the tir1-1 auxin resistant mutant indicate the biochemically distinct nature of these proteins; their 
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experiments show that AFB1 and AFB2, despite their apparent similarity, are unable to fully 

rescue auxin signalling even when regulated by the TIR1 promoter.     

 

TIR1/AFB Structure and ‘Molecular Glue’  

 

Members of the TIR1/AFB family of auxin receptor proteins are very similar in structure to the 

jasmonic acid receptor COI1 (Sheard, et al., 2010). The crystal structure of TIR1 in complex with 

ASK1 (Tan, et al., 2007), shows that the auxin receptor forms an ‘umbrella-like’ structure, the LRR 

domain forming the ‘canopy’ and the ASK1-binding F-box domain forming the ‘handle’ (see, figure 

1.3).    

 

The LRR domain, containing 18 leucine-rich repeat sequences, is folded into a twisted horse shoe 

shaped solenoid with the auxin and Aux/IAA dual binding pocket located at the top of the 

structure. Below the LRR domain sits the ~40 residue F-box domain, formed from a three helix 

bundle. It is through this domain that the four helices of the ASK1 C-terminal bind (Calderon-

Villalobos, et al., 2010), forming part of the SCFTIR1 complex. 

 

Unlike many other hormone receptors, where the hormone binding site and active site are 

located at different positions within the protein, the TIR1/AFB family of auxin receptors bind both 

hormone and substrate at the same site. Auxin binds at the bottom of this pocket with the 

Aux/IAA protein binding above, sealing the opening and trapping the auxin within the binding site 

until ubiquitination of the Aux/IAA protein occurs.  

 

Unlike other hormone-receptor interactions, auxin binding does not result in any sort of 

conformational change within the receptor. Instead, auxin mediates the interaction between 

Aux/IAA and TIR1 through binding directly to both partners. As well as binding to the TIR1 

receptor through a hydrophobic patch located in the lower half of the binding pocket, auxin also 

binds the highly hydrophobic degron domain (domain II) of the Aux/IAA protein through the 

GWPPV consensus motif (Tan, et al., 2007). This method of hormone perception, where the auxin 
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molecule directly regulates a high affinity interaction between Aux/IAA and TIR, known as 

‘molecular glue’, is relatively novel. 

 

Auxin Binding Pocket Promiscuity 

 

As previously stated (see 1.2.3), there are over 200 identified auxinic compounds. Of these 

compounds, only two common features are conserved: a side chain containing a carboxyl group, 

and a planar aromatic ring structure (Ortiz-Castro, et al., 2011). Between auxinic compounds, the 

ring structure and associated side chains can vary significantly. However, not all molecules 

containing a planar ring and carboxyl side chain are auxinic in nature. This indicates a relative 

degree of promiscuity when it comes to auxin binding, yet also a fine level of specificity. This 

apparently oxymoronic state of affairs can be partially explained through the structure of the TIR1 

binding pocket.  

 

Crystallographic analysis of TIR1, by Tan et al. (2007), shows that the auxin binding pocket of TIR1 

is formed between the inner C-terminal section of the LRR domain and a long, flexible loop that 

emerges from the second TIR1 LRR. Auxin binds at the bottom of this pocket, the planar ring 

stacked horizontally, through its conserved carboxyl group. Within the pocket, a series of two 

phenylalanine residues and the LRR β-sheet backbones form a highly hydrophobic site through 

which it is able to bind the aromatic ring of the auxinic compound.  

 

Through the comparison of the binding strength of three auxinic compounds (IAA, 2,4-D and 1-

NAA) within this pocket, Tan et al. (2007) were able to elucidate the mechanism behind the partial 

promiscuity of TIR1 auxin binding.  Though all three compounds contain the two structures 

required for auxinic activity, a carboxyl side group and planar ring, the rest of the molecules differ 

wildly in ring structure. These differences, whilst accommodated by the hydrophobic ring-binding 

site, result in differing degrees of surface complementation between TIR1 and the auxinic 

compounds. Additionally, the presence of an amine group unique to IAA may strengthen this 

binding through hydrogen bonding with a carbonyl group located near the auxin binding site in 

the TIR1 backbone. A combination of these two factors may account for the differences between 

the observed binding affinities of the chosen compounds, with IAA, the most potent of the auxinic 
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compounds, showing a higher binding affinity for TIR1 than 2,4-D and 1-NAA. However, more 

research regarding the structure-activity relationship (SAR) of auxin is required to fully elucidate 

the factors behind auxin binding specificity and promiscuity.    

 

TIR1 Co-Factor: Inositol Hexakisphosphate  

 

Along with auxin and the AUX/IAA family of proteins, the binding pocket of TIR1 also interacts 

with a molecule called inositol hexakisphosphate (InsP6) (Tan, et al. 2007). This molecule sits 

within the LRR domain of the TIR1 auxin binding pocket, surrounded by 10 highly conserved 

positively charged amino acid residues. The orientation of InsP6 within the pocket allows it to 

come into direct contact with the basic residue used to bind the conserved carboxyl group of 

auxin. This allows InsP6 to form a hydrogen bond and salt-bridge network with the auxin molecule 

(Calderón Villalobos, et al., 2012). The position of InsP6 seems to indicate a role in organising and 

supporting the function of the binding pocket itself, suggesting that it may be an important co-

factor for TIR1 function.  
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FIGURE 1.3| THE STRUCTURE OF ATTIR1 

 

 

 

 

 

 

 

 

 

 

 

 

The 3D-structure of the ASK1-TIR1 auxin-receptor complex showing AUX/IAA binding, with each component 

shown in green, blue and purple, respectively. The Aux/IAA protein binds at the top of the barrel structure of 

TIR1 through a ‘molecular glue’ type interaction with auxin, which binds at the bottom of the barrel.  Co-

ordinates from pdb file 2P1M. (Tan, et al., 2007). Figure generated in PyMOL (Delano, 2002) modelling 

software, Version 1.8. 
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1.2 SUMOylation 
 

1.2.1 Overview 
 

The small ubiquitin-like modifier (SUMO) protein family is a subset of ubiquitin-like modifiers 

present in all eukaryotes. Through addition and removal from a lysine in the target protein, they 

are able to regulate protein function; these regulatory modifications play a large role in many 

important aspects of organism growth and development, including signal transduction, cell cycle 

control and DNA repair (Bossis & Melchior, 2006).  

 

Unlike modifiers, such as acyl or methyl groups, SUMO proteins are more structurally complex 

than many of their counterparts. Though their sequence similarity to the modifier Ubiquitin is less 

than 20%, structurally the difference is negligible, with the defining structural feature of both of 

these proteins being a motif known as the Ub fold (Li & Hochstrasser, 2003).  This motif consists 

of a five-stranded mixed half β-barrel, with β1 and β5 running parallel, and β2, β3 and β4 

antiparallel (Bayer, et al., 1998), flanked by two -helices. The motif itself therefore follows a β-β-

-β-β--β strand arrangement (Huang, et al., 2004).  Alongside the Ub fold, members of these 

protein families also share an extreme C-terminal di-glycine (GG) motif through which conjugation 

to their target proteins occurs.  

 

In Arabidopsis thaliana, the SUMO protein family consists of eight genes clustered into five sub-

families: SUMO1/2, SUMO3, SUMO5, SUMO4/6, SUMO7/8. Members of these families are highly 

divergent in nature, unlike their mammalian equivalents, with proteins from one sub-family 

unable to complement those from another. Members of these sub-families range in sequence 

similarity from 32% to 86% (Kurepa, et al., 2003) but have several highly conserved residues, as 

shown in figure 1.4. 

 

Of all the SUMO proteins present in Arabidopsis, perhaps the best studied are the SUMO1/2 

proteins (Kurepa, et al., 2003). Data obtained by the Vierstra group indicate that these proteins 

accumulate rapidly in response to environmental stress (Saracco, et al., 2007); this combined with 
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the lethality observed in SUMO1/2 knock out (KO) mutants (Castaño-Miquel, et al., 2013), 

indicates their importance in the regulation of plant growth and stress responses.   

  

To date, very little is known about other members of the SUMO protein family.  Of the six other 

family members, only SUMO3 and SUMO5 have undergo any form of study, appearing to 

accumulate in specific tissues only (Saracco, et al., 2007). SUMO4, SUMO6, SUMO7 and SUMO8 

are classed only as putative SUMO proteins, their function unknown.    
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FIGURE 1.4| ALIGNMENT OF ARABIDOPSIS SUMO PROTEINS 

 

 

 

 

An alignment created with ClustalOmega (Sievers, et al., 2011) using protein sequences obtained from 

UniProt records: SUMO1 (P55852), SUMO2 (Q9FLP6), SUMO3 (Q9FLP5), SUMO4 (Q9FKC5), SUMO5 

(Q8VZI7), SUMO6 (Q9FKC6), SUMO7 (Q3E8A8), SUMO8 (B3H5R8). The alignment shows some conserved 

residues across all members of the Arabidopsis SUMO family, such as the C-terminal glycine through which 

conjugation to target proteins occurs. 
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1.2.2 SUMOylation Machinery 
 

As with other posttranslational modifiers, the addition of SUMO to a target protein requires a 

specialised enzyme set similar to that required for Ubiquitin conjugation (see, fig. 1.5). In order to 

complete the covalent addition of a SUMO moiety to a target protein, as with ubiquitin, four 

classes of enzymes are required: a SUMO-activating enzyme (E1), a SUMO-conjugating enzyme 

(E2), a SUMO ligase (E3) and a SUMO protease. 

 

Before the process of SUMOylation can begin, the newly-synthesised SUMO precursor protein 

must be processed into its mature form. This processing step is performed by a class of enzymes 

known as the SUMO proteases; ubiquitin-like (Ulps) and sentrin-specific (SENPs) proteases 

facilitate the maturation of the SUMO precursor protein through the cleavage of the extreme C-

terminus to reveal the di-glycine motif (GG) through which SUMO conjugation occurs (Gareau & 

Lima, 2010). The members of these families are also involved in the recycling of mature SUMO 

within the cell; alongside their role in SUMO maturation, the SUMO proteases also cleave the 

isopeptide linkage generated during SUMO conjugation, releasing SUMO moieties from target 

proteins. It is through this function that SUMO is able to be recycled quickly and efficiently, with 

continued cycling between the tagged and un-tagged forms of the target protein playing an 

important role in the response of the cell to various stimuli (Johnson, 2004). To date, little is 

known about SUMO proteases in Arabidopsis thaliana. Only eight potential SUMO proteases have 

been identified as of 2016 (figure 1.6), all of which belong to the C48 family of peptidases (Barrett 

& Rawlings, 2001).  

 

SUMOylation begins with the activation of the SUMO protein. SUMO is activated through the 

formation of an acyl-anhydride bond between AMP and a carboxyl group located within the di-

glycine motif at extreme C-terminus of the SUMO protein. The adenylated SUMO moiety is then 

attached through a high-energy thioester bond to a conserved cysteine residue within the E1 

protein (Capili & Lima, 2007). The SUMO E1 activating enzyme is heterodimeric in Arabidopsis 

thaliana, consisting of one large (SAE2) and one small (SAE1) subunit. SAE2 contains the four 

essential SUMO activation domains: the Ub fold, the conserved catalytic cysteine, the acetylation 

domain, and the C-terminal domains (Lois & Lima, 2005).  SAE1 completes the acetylation domain 

by the contribution of Arg21 (Lee & Schindelin, 2008).  
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Unlike mammalian and yeast species, the small subunit of the E1 enzyme in Arabidopsis thaliana 

is encoded by three paralogous gene sequences, SAE1a, SAE1b1 and SAE1b2. Of these sequences, 

generated during two independent gene duplication events (Castaño-Miquel, et al., 2013), 

Arabidopsis expresses two functional isoforms of the small subunit, SAE1a and SAE1b (SAE1b1 

and SAE1b2 being identical). SUMO conjugation rates differ dependent on the E1 isoform involved 

in the cascade; an increase in SUMOylation is observed during the formation of an E1 complex 

containing the SAE1a subunit compared to SAE1b (Budhiraja, et al., 2009). This change in 

conjugation rate indicates a possible role for the E1 small subunit the downstream regulation of 

SUMOylation.  

 

Once activated, the SUMO moiety is transferred from the E1 activating enzyme to the E2 

conjugating enzyme, once again binding through a highly conserved cysteine reside. Through the 

E2, the activated SUMO is transferred to the target protein via the formation of an isopeptide 

bond through the C-terminal di-glycine motif of the SUMO moiety and the ε-amino group of a 

lysine located within a SUMO binding site in the target protein (Miura, et al., 2007).  

 

The conjugation of SUMO to a specific target protein is achieved through interaction with the final 

enzyme in the SUMOylation cascade, the E3 SUMO ligase, which acts as a linker. Unlike the 

previous two enzyme classes described above, the SUMO E3 ligases are not required to simulate 

the SUMOylation process in vitro; the E3 SUMO ligases are involved primarily in determining 

target specificity rather than direct SUMO transfer (Perdomo, et al., 2012). 

 

To date, three types of SUMO ligases have been identified: PIAS, RanBP2 and PC2. Though 

structurally unrelated, the PIAS group of E3 ligases do appear to show some structural homology 

to the RING domain found within E3 ubiquitin ligases (Dohmen, 2004). Currently, only two SUMO 

ligases have been identified in Arabidopsis thaliana, SIZ1 and MMS21/HPY2. Both of these 

enzymes have been shown to possess the highly conserved SP-RING motif, placing them firmly 

within the PIAS ligase group (Ishida, et al., 2012).  Research has shown that SIZ1 and HPY2 are 

involved in a diverse number of essential processes, such as copper tolerance (Chen, et al., 2011), 
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the development and maintenance of the root and shoot meristem (Zhang, et al., 2010), nitrogen 

assimilation (Park, et al., 2011) and the regulation of the cell cycle (Ishida, et al., 2009).  
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FIGURE 1.5| THE MECHANISM OF UBIQUITINATION VS. SUMOYLATION IN ARABIDOPSIS 

 

 

 

A schematic showing the mechanisms of ubiquitination and SUMOylation in Arabidopsis. Ub/SUMO is 

activated through the catalysis of ATP by the E1-activating enzyme. It is then transferred to the E2-

conjugase before being finally conjugated onto the target protein via the E3-ligase enzyme, whereupon it 

becomes targeted for degradation, in the case of ubiquitin, or confers new or altered functions to the target 

protein, in the case of SUMO. The Ub/SUMO moiety is removed via the activation of specialised protease 

enzymes termed de-ubiquitinating enzymes (DUBs)/SUMO Proteases, such as OTS1 and OTS2, allowing 

recycling of the Ub/SUMO moieties. It is through this dynamic cycling of posttranslational modification that 

the cell is able to quickly and efficiently respond to a variety of stimuli. 
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FIGURE 1.6| SEQUENCE SIMILARITY BETWEEN THE ARABIDOPSIS SUMO PROTEASES 

 

 

 

 

 

 

 

 

A phylogenetic tree generated from the sequence data of known SUMO proteases from Arabidopsis 

thaliana. OTS1 and OTS2 can be seen to be closely related, falling into a distinct clade. (Novatchkova, et al., 

2012).   
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1.2.3 The Role of SUMO in Plants 
 

Though research into SUMOylation in plants is still in its infancy, many essential developmental 

and regulatory pathways have been identified as targets of this process. Plants deficient in SUMO 

homeostasis, either through disruption of SUMO conjugation or de-conjugation, display defects in 

organ growth and reproduction, as well as a decreased tolerance to both biotic and abiotic stress 

(Xu & Yang, 2013).  Indeed, mutations in the E1-activating enzyme (SAE1/2), the E2-conjugating 

enzyme (SCE1) and SUMO1/2 are embryonic lethal (Saracco, et al., 2007), indicating the 

importance of SUMOylation within plants. 

 

The SUMO E3-Ligases SIZ1 and HPY2  

 

In Arabidopsis thaliana, two SUMO E3-ligases have been identified to date: SIZ1 and HPY2 (Yoo, et 

al., 2006). Though both enzymes are involved the conjugation of SUMO moieties to target 

proteins, they appear to perform differing functions within the plant (Ishida, et al., 2012), with 

SIZ1 and HPY2 unable to rescue their respective mutant phenotypes when placed until reciprocal 

promoter control.  

 

Work conducted by several groups has shown SIZ1 to be integral in the response to many abiotic 

stresses, such as drought stress (Catala, et al., 2007), phosphate starvation (Miura, et al., 2005) 

and cold stress (Miura, et al., 2007). SIZ1 has also been implicated in the regulation of plant tissue 

development with respect to cell proliferation and expansion. In the Arabidopsis siz1-3 knock-out 

mutant, the cells of both the mesophyll and epidermis were far smaller than that of the wild type, 

with 2.3x more cells found per unit area in the mutant plants (Catala, et al., 2007). qPCR data 

from this mutant line shows the down regulation of several auxin-related genes, such as IAA6, 

PIN7 and AUX1, suggesting that SIZ1 is involved in at least some aspect of auxin signalling 

homeostasis.   

 

Research by Ishida, et al. (2009) and Huang, et al. (2009) has indicated that, alongside SIZ1, HYP2 

may also play a role in auxin signalling. The HPY2 E3 ligase has been shown to be essential in the 

regulation of cell proliferation within the root apical meristem (Huang, et al., 2009). Auxin, in 
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combination with cytokinin, has long been known as the phytohormone responsible for cell cycle 

control. It has been suggested that HPY2 acts downstream of this signal as part of the regulation 

of cell proliferation (Ishida, et al., 2009).   

 

The two E3 ligases also demonstrate differential expression patterns within the plant. Expression 

of SIZ1 is global, occurring in all cell types throughout the plant (Ishida, et al., 2012), with large 

amounts of SIZ1 protein accumulating in primary and lateral root tissue. HPY2 expression, 

however, appears to be tissue specific, with large amounts of HPY2 shown to accumulate in the 

root apical meristem, but not in the differentiated cells of the more mature root tissue.  This data, 

along with the siz1-3 qPCR data, phenotyping of siz1-3 knock-out mutants (Catala, et al., 2007) 

and the identification of HPY5 as a downstream component of the cell cycle machinery (Ishida, et 

al., 2009), suggests that SUMOylation plays a significant role in auxin signalling.     

 

The Role of SUMOylation in Photoreception 

 

Recent work by the Sadanandom group has demonstrated that SUMO plays a significant role in 

the regulation of the Arabidopsis photoreception pathway (Sadanandom, et al., 2015). In order to 

respond appropriately to light, plants employ a wide array of photoreceptors, including 

cryptochromes and phytochromes (Goyal, et al., 2013). One of these photoreceptors, the 

phytochrome phy-B, has been shown to be inhibited upon SUMOylation of its C-terminus 

(Sadanandom, et al., 2015). Once SUMOylated, phy-B is no longer able to interact with its 

associated negative regulatory factor, PIF5, resulting in the inhibition of photomorphogenesis.   

 

The Role of SUMOylation in Gibberellin Signalling  

 

To date, SUMO has been shown to play a key role in at least one phytohormone signalling 

pathway, that of gibberellin. Gibberellins (GAs) are plant hormones involved in the regulation of 

seed germination, flowering and growth (Davière & Achard, 2013). GA stimulates the degradation 

of the repressor proteins known as DELLAs via the UPS, leading to growth of the plant.  
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Under stress conditions, these DELLA repressor proteins undergo rapid SUMOylation (Conti, et al., 

2014). The addition of a SUMO moiety to the DELLA protein causes an increase in DELLA protein 

stability, leading to an attenuation of the GA-mediated growth signal. The stabilisation through 

SUMO of the DELLA proteins is achieved through interaction between SUMOylated DELLAs and 

the SUMO INTERACTING MOTIF (SIM) site located on the GA-receptor protein GID1. SUMOylated 

DELLAs are able to sequester the GID1 receptor in a GA-independent manner, leading to the 

accumulation of non-SUMOylated DELLA proteins and the subsequent suppression of the growth 

response under stress conditions.       

 

The SUMO Proteases OTS1 and OTS2  

 

The SUMO proteases, OVERLY TOLERANT TO SALT1 (OTS1) and OTS2, have been shown to be 

involved in the regulation of the salt stress response in Arabidopsis (Conti, et al., 2008). These 

proteases are localized to the nucleus and are responsible to the cleavage of conjugated 

SUMO1/2 from their target proteins. Experiments by Conti et al. have shown that over expression 

of OTS1 increases salt tolerance in Arabidopsis, with seedlings able to germinate and thrive on up 

to 100mM salt. Similarly, they have shown that double knock out plants, ots1/ots2, show a 

hypersensitive phenotype under salt stress conditions. Perhaps the most interesting aspect of 

their research was the discovery that ots1/ots2 plants show a global increase in SUMOylated 

protein under non-stress conditions, indicating a role for OTS1/2 beyond that of the salt stress 

response (Conti, et al., 2008). 

 

Recent research by Srivastava, Zhang and Sadanandom (2016) has lead to the identification of an 

AtOTS1 homologue in rice, OsOTS1. Rice plants with the silenced OsOTS1 gene showed an 

increased susceptibility to salt stress, similar to that seen in Arabidopsis, and also demonstrated a 

significant reduction in germination rate. OsOTS1 knockdown lines showed a reduction in root 

mass through the reduction of root cell size (Srivastava, et al., 2016). This research indicates the 

importance of SUMOylation in commercially valuable crop species.   
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1.3 Study Objectives 
 

In previous work by Conti, et al. (2008), the over expression of the SUMO protease OVERLY 

TOLERANT to SALT1 (OTS1) has been shown to result in an increased tolerance to salt stress. 

Arabidopsis thaliana double knock-out lines for the ots1 and close homologue ots2 genes show a 

hypersensitivity to salt, resulting in a change in Arabidopsis root architecture compared to wild 

type. Given the well known association between auxin signalling and root growth and 

development, it was hypothesised that SUMOylation plays a role in auxin signalling through (de-

)SUMOylation of integral parts of the auxin signalling machinery, such as TIR1, AUX/IAA and ARF.   

 

The main objectives of this work are as follows: 

 

1. Investigate the role of SUMOylation in the auxin response through phenotypic analysis of 

the hyper-SUMOylated Arabidopsis mutant ots1/ots2. 

2. Investigate the SUMOylation status of the primary auxin receptor TIR1 and its role within 

the wider auxin response cascade.    

3. Investigate the SUMOylation status of the rest of the auxin signalling cascade machinery, 

i.e. AUX/IAA and ARF.  
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2. Methods and Materials 
 

 

2.1 Plant Growth and Treatment 
 

2.1.1 Arabidopsis thaliana Tissue Culture 
 

All Arabidopsis seedlings used, ecotype Col-0, were grown on ½ MS medium (Duchefa Biochemie) 

supplemented with 0.5% Sucrose (Duchefa Biochemie) and 0.8% agar (Duchefa Biochemie).  

Media was allowed to cool to 50°C before adding hormone treatments. 

 

2.1.2 Arabidopsis thaliana Sterilization for Tissue Culture 
 

Arabidopsis seeds were sterilized in a closed box in a fume hood using chlorine gas generated 

from the addition of 3ml concentrated hydrochloric acid to 100ml of 13% hypochlorite solution.  

The seeds were left for 12 hours before being ventilated to render the box safe and placed on 

plates under sterile conditions (laminar flow hood). The ½ MS plates were then sealed with 

micropore tape (3M) and stratified for 3 days at 4°C. The plates were then placed vertically at 

room temperature in 24hr light to induce germination and growth.  
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2.1.3 Arabidopsis thaliana Hormone Treatment  
 

The following auxin stock solutions were made: 

TABLE 2.1| HORMONE STOCK SOLUTION CONCENTRATIONS 

 

Auxin Solvent Stock Conc. 

(mM) 

Indole-3-Acetic Acid (IAA) 1N NaOH 100 

1-Naphthaleneacetic Acid (NAA) 1N NaOH 100  

2,4-Dichlorophenoxyacetic Acid (2,4-D) 100% EtOH 100 

2,3,5-Diidobenzoic Acid (TIBA) DMSO 100 

A table showing the hormones used. 

 

The stock solutions were diluted to working concentration (various) using ddH2O. ½ MS plates 

were supplemented with the appropriate treatment. 

 

3 days after germination on standard ½ MS plates, seedlings were transferred to the hormone-

supplemented plates. The plates were then placed vertically at room temperature in 24hr light to 

allow germination and growth. After 3 days, images of the seedlings were taken and the images 

analysed in ImageJ.  

 

2.1.4 Arabidopsis thaliana Growth 
 

Arabidopsis thaliana seeds were sown in moist Levington F2 plus sand compost treated with 

Calypso SC 480 insecticide (Bayer). The seeds were then stratified for 3 days at 4°C before being 

transferred to MLR Plant Growth Chambers (Panasonic). The plants were grown under long day 

conditions: 16 light hours at 22°C and 8 dark hours at 20°C with a constant relative humidity of 

70%. 

 



45 
 

 

2.1.5 Floral Dipping of Arabidopsis thaliana 
 

Generated constructs in GV3101 were dipped into Arabidopsis thaliana to create transgenic seeds 

using the protocol specified in Clough & Bent (1998). 

 

2.1.6 Crossing of Arabidopsis thaliana 
 

Selected Arabidopsis lines were manually crossed to create new mutant lines using the protocol 

specified in Weigel & Glazebrook (2006).  

 

2.1.7 Selection of Transgenic Arabidopsis thaliana 
 

Primary transformants were selected for by spreading seed on soil soaked with 0.1% Glufosinate 

(marketed as Basta, Bayer). After 9 days, resistant seedlings were pricked out onto fresh soil with 

no selection and grown under long day conditions. Once siliques formed, the plants were bagged 

individually and allowed to set seed. 

 

Secondary transgenic seed was sterilized (see, 2.1.2) and spread aseptically on ½ MS plates 

supplemented with 20μg/ml final glufosinate-ammonium. The plates were sealed with micropore 

tape (3M) and the seeds stratified at 4°C for 3 days. The plates were then moved to growth 

cabinets and grown for eleven days (see, 2.1.4). The seedlings were then screened for resistance 

at a ratio of 3:1 (resistant : susceptible) in order to select for transgenics containing a single 

transformation insert. Selected lines were then pricked out onto fresh soil with no selection. 

Again, individual plants were bagged to collect seed once siliques had formed.  

 

Tertiary transgenic seed was sterilized (see, 2.1.2) and spread aseptically on ½ MS plates 

supplemented with 20μg/ml final glufosinate-ammonium. The plates were sealed with micropore 

tape (3M) and the seeds stratified at 4°C for 3 days. The plates were then moved to growth 

cabinets and grown for eleven days (see, 2.1.4).  Plants were then screened for complete 
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resistance, indicating homozygous transgenics. Selected lines were then pricked out onto fresh 

soil with no selection. Again, individual plants were bagged to collect seed once siliques had 

formed.  
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2.2 Microbiological Procedures 
 

2.2.1 Generation of Chemically Competent E. coli 
 

The selected E. coli strain (e.g. DH5α) was streaked out onto a fresh LB agar plate with no 

selection and incubated at 37°C for 24 hours. A single colony was selected using a sterile loop and 

used to inoculate 10ml of LB liquid. The culture was grown for 16 hours at 37°C. 1ml of the culture 

was then used to inoculate 200ml of LB liquid, with shaking at 220rpm, at 37°C for a further 6 

hours. The culture was transferred to chilled centrifuge tubes and centrifuged at 4000rpm for 15 

minutes at 4°C. The supernatant was removed and the cells resuspend in 10ml of ice-cold TE 

buffer. The culture was re-centrifuged under the same conditions, the supernatant removed and 

the cells resuspended in 20ml of ice-cold liquid LB. The cells were then stored at -80°C in 100μl 

aliquots.       

 

2.2.2 Generation of Chemically Competent Agrobactierum tumefaciens 
 

The selected Agrobacterium strain (e.g. GV3101) was streaked out onto a fresh LB agar plate with 

rifampicin and gentamycin selection and incubated at 28°C for 48 hours. A single colony was 

selected using a sterile loop and used to inoculate 10ml of LB liquid plus rifampicin and 

gentamycin. The culture was grown for 24 hours at 28°C. 1ml of the culture was then used to 

inoculate 200ml of LB liquid plus rifampicin and gentamycin and incubated, with shaking at 

220rpm, at 28°C for a further 18 hours. The culture was transferred to chilled centrifuge tubes 

and centrifuged at 4000rpm for 15 minutes at 4°C. The supernatant was removed and the cells 

resuspend in 10ml of ice-cold TE buffer. The culture was re-centrifuged under the same 

conditions, the supernatant removed and the cells resuspended in 20ml of ice-cold liquid LB. The 

cells were then stored at -80°C in 200μl aliquots.       

 

2.2.3 Transformation of Chemically Competent Bacterial Cells 
 

Transformation and growth of bacterial cells with recombinant plasmids were used to ‘bulk up’ 

and select said plasmids (using E.coli strain DH5α), to express recombinant protein (using E.coli 
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strain BL21 (DE3)) or to act as a vector in transient expression systems (using Agrobacterium 

strain GV3101). 

 

For a typical chemical transformation: 

100 – 200ng Plasmid DNA 

40/200μl Chemically competent E.coli/Agrobacterium, respectively. 

 

For E. coli:  

Cells were thawed on ice for 10min, plasmid DNA added and incubated on ice for 30min . Cells 

were placed 42°C for 30sec then returned to ice for a further 5min. 1ml of SOC (at RT) was added 

and the cells incubated in an orbital incubator shaker at 220rpm for 1 hour at 37°C.  

 

For Agrobacterium: 

Cells were thawed on ice for 20min, plasmid DNA added incubated on ice for 5min . Cells were 

flash frozen in liquid nitrogen for 5min then transferred to 37°C for 5 min. 1ml of LB (at RT) was 

added. The cells were incubated in an orbital incubator shaker at 220rpm for 2 hours at 28°C. 

 

 50μl culture was spread upon an LB plate with antibiotic selection. The rest of the culture was 

centrifuged at 14,000rpm for 30sec and the majority of the supernatant removed. The cells were 

resuspended in the remaining 50μl supernatant and spread upon an LB plate with antibiotic 

selection. The plates were incubated overnight at 37°C for E. coli and over a period of two days at 

28°C for Agrobacterium. Colony PCRs were then performed to check for the presence of the 

recombinant gene (see 2.3.1) 
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2.2.4 Recombinant Plasmid Purification 
 

Recombinant plasmids were purified from 10ml E. coli DH5α cultures incubated overnight at 37°C 

using a ZR Plasmid Miniprep Kit - Classic (Zymo Research). The amount of DNA obtained was then 

quantified using a NanoDropTM 1000 Spectrophotometer (Thermo Scientific).  



50 
 

2.3 Nucleic Acid 
 

2.3.1 Polymerase Chain Reaction 
 

Q5TM (NEB) cloning PCR was used to amplify the enzymatic components (see tables 2.2 and 2.3) 

using primers with CACC added to the 5’ end of the forward primer. Colony PCR with vector-

specific AttB primers was used to check for the recombinant gene insert after bacterial 

transformation (see tables 2.4 and 2.5). For colony PCR, individual bacterial colonies were picked 

using pipette tips and diluted in 20l sterile water. 2l was used as template. 

 

TABLE 2.2| Q5 PCR SETUP 

Component Per Reaction 

5x Q5TM Reaction Buffer  5l 

5mM dNTPs  0.5l 

Upper Primer (10pM/l) 1.25l 

Lower Primer (10pM/l) 1.25l 

Template 100-200ng 

Q5TM 0.25l 

Sterile Water to 25l 

A table showing the compositions of cloning and site-directed mutagenesis PCRs. 

 

TABLE 2.3| Q5 PCR CLONING CONDITIONS 

Temperature Time Number of Cycles 

98C  1 min 30 sec - 

98C  15 sec  

X40 ~2C Lower Than Primer Tm  15 sec 

72C  15 sec per kb 

72C  7 min - 

10C   - 

A table showing the cycling programmes used during cloning and site-directed mutagenesis PCR. 
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TABLE 2.4| COLONY PCR SETUP 

Component Per Reaction 

2x TaqMan® Fast Universal Master Mix (Invitrogen) 2.5l 

AttB Upper Primer (10pM/l) 0.25l 

AttB Lower Primer (10pM/l) 0.25l 

DNA Template  10-20ng 

Sterile Water to 10l 

A table showing the compositions of colony PCRs. 

 

TABLE 2.5| COLONY PCR CLONING CONDITIONS 

Temperature Time Number of Cycles 

94C  3 min - 

94C  30 sec  

x35 

 

55C  15 sec 

72C  30 sec per kb 

72C  7 min - 

4C   - 

A table showing the cycling programmes used during colony PCR. 

 

Gene amplification was observed using agarose gel electrophoresis. Cloning and mutagenesis PCR 

gene products of the correct size were then cut from the gel using a sharp scalpel and the DNA 

purified using a Zymoclean Gel DNA Recovery Kit (Zymo). 

 

2.3.2 Agarose Gel Electrophoresis 
 

 Agarose was added to 1xTAE buffer to make a 0.8-2.5% solution. The solution was then 

microwaved at full power until the agarose had dissolved. The solution was allowed to cool before 

ethidium bromide was added to a final concentration of 0.0001%. The solution was then poured 

into an appropriate sized gel mould, a 20/30 well comb added and the solution allowed to set. 

The gel was then placed into an electrophoresis tank filled with 1xTAE. Prior to sample loading, 5X 
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Sample Buffer (NEB) was added to the DNA samples (step omitted if using Master Mix Taq). 

Samples were loaded into the wells along with Hyperladder 1kb Plus (Bioline) and the gels were 

run at 70-110V, dependent upon agarose percentage used. The gels were imaged using a BioRad 

Gel Doc 2000.  

 

2.3.3 pENTR/D-TOPO Reaction 
 

A pENTR/D-TOPO reaction with clean PCR product containing the recombinant gene was 

performed following the instructions provided in the supplied kit (Invitrogen). The reaction 

contents were then transformed into E. coli DH5α (see, 2.2.3). 

 

2.3.4 Restriction Digestion 
 

Restriction digestion of purified DNA was used to remove template DNA from mutagenesis PCR 

products (DpnI (NEB)) and to cut the pENTRTM/D-TOPO vector ready for LR reaction (MluI (NEB)). 

For a standard restriction digest, see table 2.6. 

 

TABLE 2.6| RESTRICTION DIGESTION SETUP 

Component Per Reaction 

10x Compatible NEB Buffer 20l 

DNA 1-10g 

Restriction Endonuclease (NEB) 5U per g DNA 

Sterile Water To 200l 

A table showing the components used in a standard restriction digest with NEB enzymes. 

 

The reactions were incubated at 37°C temperature for 1 hour, transferred to a fresh tube, and 

incubated for a second hour.  
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Restriction endonucleases are stored in 50%(v/v) glycerol-containing storage buffer. Care must be 

taken to ensure that the total glycerol concentration for each reaction does not exceed 5%(v/v) 

glycerol due to increased star activity of the enzyme.  

 

2.3.5 LR Reaction into Gateway® Destination Vectors 
 

An LR reaction with MluI-digested pENTRTM/D-TOPO vector containing the recombinant gene was 

performed following the instructions provided in the supplied kit (Invitrogen) with an appropriate 

Gateway® Destination Vector for protein expression in either E. coli BL21 (DE3) or Agrobacterium. 

The reaction contents were then transformed into E. coli DH5α (see, 2.2.3). 

 

2.3.6 gDNA Extraction from Arabidopsis thaliana 
 

A single leaf disc was cut using the end of a p10 pipette tip. The disc was ground briefly in a 1.5ml 

eppendorf tube using a mini-pestle. 150μl of extraction buffer was added and the mix ground 

again until homogenous. The sample was centrifuged at 13,500 rpm for 5 minutes. 100μl of the 

supernatant was transferred to a fresh tube and 100μl of neat isopropanol was added and mixed 

via inversion. The mixture was incubated at room temperature for 5 minutes. Samples were 

centrifuged at 13,500 rpm for 10 minutes and the supernatant discarded. The pellet was mixed 

gently with 500μl of 70% EtOH and centrifuged at 13,500 rpm for 5 minutes. The supernatant was 

discarded and the pellet left to air-dry for 15 minutes. The dry pellet was then dissolved in 50μl of 

10mM Tris (pH 8.5 at 25°C). The quality of the gDNA extraction was then checked via PCR using 

actin primers. 

 

2.3.7 RNA Extraction from Arabidopsis thaliana 
 

Frozen plant tissue was ground into a fine powder using a pre-cooled mortar and pestle. The 

SpectrumTM Plant Total RNA Kit (Sigma-Aldrich) was used to extract RNA. All extractions were 

performed following the instructions provided in the supplied kit. RNA was quantified by 

measuring absorbance at λ260nm and λ280nm using a NanoDropTM 1000 Spectrophotometer 

(Thermo Scientific). 
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2.3.8 cDNA Synthesis 
 

1.5μg of RNA was treated with 1μl DNase RQ1 (Promega) in a 10ul reaction made with DEPC 

water. The reaction was incubated at 37°C for 30 minutes. 1μl RQ1 Stop Solution and the reaction 

incubated for a further 10 minutes at 65°C. 1μl of oligo dT (500μg/ml) and 1μl dNTP mix (10μM 

each) was added to the reaction and incubated at 65°C for a further 5 minutes. The reaction was 

then chilled briefly on ice and spun down. 4μl 5X First Strand Buffer, 2μl 0.1M DTT and 1μl 

RNaseOUT was added to the reaction and mixed gently. The reaction was incubated at 42°C for 2 

minutes before 1μl SuperScript® II Reverse Transcriptase was added to the reaction. The reaction 

was then incubated at 42°C for a further 50 minutes. Finally, the reaction was heated to 70°C for 

15 minutes to terminate the reaction. The resultant cDNA was made up to 100μl using ultra-pure 

water. The quality of the resultant cDNA was tested by qPCR with ACTIN8 primers.  
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2.4 Protein 
 

2.4.1 SDS-PAGE 
 

Acrylamide gel electrophoresis is used to separate and visualise proteins that differ in molecular 

weight. The tertiary structure of the loaded proteins is denatured by SDS, which coats the protein 

in a negative charge, allowing for separation by size alone. The application of an electric field 

upon a gel causes separation of the proteins into discrete bands that can be seen using coomassie 

staining or transferred to a PVDF membrane for western blotting (see 2.4.2). The gels consist of a 

stacking and running gel, the latter of which can vary in acrylamide percentage depending on the 

weight of proteins that require separation (see table 2.7). 

 

TABLE 2.7| SDS-PAGE GEL COMPOSITIONS 

Running Gel 8% 10% 12% 14% 

1.5M Tris (pH8.8 at 25C) 2.5ml 2.5ml 2.5ml 2.5ml 

10%(w/v) SDS 100l 100l 100l 100l 

30%(w/v) 29:1  

Acrylamide:Bis-acrylamide 

2.7ml 3.33ml 4.0ml 5.4ml 

Water 4.65ml 4.02ml 3.35ml 1.95ml 

TEMED 15l 15l 15l 15l 

10%(w/v) APS 40l 40l 40l 40l 

 

Stacking Gel 5% 

1.5M Tris (pH6.8 at 25C) 0.5ml 

10% (w/v) SDS 50l 

30% (w/v) Acrylamide 0.833ml 

Water 3.5ml 

TEMED 7.5l 

10% (w/v) APS 20l 

A table showing the composition of the running gel (top) in which the protein bands are resolved, and the 

stacking gel (bottom) in which the proteins are loaded. 
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Lysed samples were mixed with 1x SDS Loading Buffer, heated to 95C for 5min and loaded onto a 

gel. Gels were run at 100V to resolve the proteins. 

 

2.4.2 Western Blotting 
 

Western blotting is used to visualise specific proteins within homogenised cell or tissue extracts. A 

PVDF membrane was submersed methanol for 2 min then soaked in 1x transfer buffer for up to 

15 min with blotting paper and sponges. The blotting cassette was prepared and proteins 

transferred overnight at 20V at 4°C from an SDS-PAGE gel onto the membrane. The membrane 

was incubated in blocking solution for 1 hour to prevent non-specific binding of the primary 

antibody (Bergendahl, Glaser and Burgess, 2003). The membrane was washed 1xTBST and 

incubated with primary antibodies in 1x TBST as per the instructions in table 2. The membrane 

was washed with 1xTBST and incubated with secondary antibodies (HRP). The membrane was 

washed again with 1xTBST and developed using ECL solution. 

 

2.4.3 Infiltration of Nicotiana benthamiana  
 

Agrobacterium containing recombinant plasmid was incubated overnight in an orbital incubator 

shaker at 28°C and 220rpm. The cells were pelleted at RT at 5000rpm and resuspended in 20ml 

10mM sterile MgCl2.  The cells were diluted using 10mM sterile MgCl2 to an OD600 0.1-1 and 

infiltrated into a single Nicotiana benthamiana leaf (provided by Mr. John Simpson) using a 1ml 

sterile syringe. The plant was then kept at 18°C on a long day cycle for 3 days.  

 

2.4.4 Protein Extraction from Nicotiana benthamiana Leaves 
 

1g of infiltrated Nicotiana benthamiana leaves were cut at the stem from the plant, wrapped in 

aluminum foil and flash frozen in liquid nitrogen. The leaves were then powdered in a liquid 

nitrogen-cooled mortar and pestle and 1g of PVPP added.  
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For SUMO: 

2ml of ice-cold SUMO buffer was added to the powdered tissue and ground further using the 

mortar and pestle to form a paste. Upon melting, the now liquid paste was then transferred to a 

pre-cooled eppendorf tube. The tubes were centrifuged at 4°C and 8,000rpm for 12 min. The 

supernatant was transferred to a fresh pre-cooled tube and was either prepared for loading onto 

an SDS-PAGE gel by the addition of 1xSDS Buffer or immunoprecipitated using the MACS® 

microbead system (Miltenyi Biotech) as per the instructions included in the kit. The tubes were 

incubated on ice for 15 minutes and the SUMOylated protein extracted using a μMACs multistand 

and separator. The eluted protein was then loaded onto an SDS-PAGE gel for western blotting. 

 

For CO-IP: 

2ml of ice-cold CO-IP buffer was added to the powdered tissue and ground further using the 

mortar and pestle to form a paste. Upon melting, the now liquid paste was then transferred to a 

pre-cooled eppendorf tube. The tubes were centrifuged at 4°C and 10,000rpm for 15 min. The 

supernatant was transferred to a fresh pre-cooled tube and was either prepared for loading onto 

an SDS-PAGE gel by the addition of 1xSDS Buffer or immunoprecipitated using the MACS® 

microbead system (Miltenyi Biotech) as per the instructions included in the kit. The tubes were 

incubated on ice for 30 minutes to 1 hour and the SUMOylated protein extracted using a μMACs 

multistand and separator. The eluted protein was then loaded onto an SDS-PAGE gel for western 

blotting. 

 

1ml of ice –cold SUMO extraction buffer was added to 1ml powder and centrifuged at 4°C and 

8000rpm for 12 min. The supernatant was removed into a fresh tube and was either prepared for 

loading onto an SDS-PAGE gel by the addition of 1xSDS Buffer or immunoprecipitated using the 

MACS® microbead system (Miltenyi Biotech) as per the instructions included in the kit. 
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2.5 Imaging 
 

2.5.1 Cell Clearing 
 

In order to minimise light scattering during observation of deep tissue structures using light 

microscopy, Arabidopsis roots were cleared using the following protocol. The seedlings were 

placed in acidified methanol (20% MeOH, 4% conc. HCl) and incubated at 55°C for 15 minutes. 

The roots were then transferred to a basic solution (7% NaOH, 60% EtOH) for neutralisation and 

incubated at room temperature for 15 minutes. The roots were then rehydrated over the course 

of several EtOH incubation steps. The roots were first incubated in 60% EtOH at room 

temperature for 5 minutes, then transferred to a 40% EtOH solution and the incubation step 

repeated.  The roots were moved through 20% and 10% EtOH solutions before being moved to a 

50% glycerol solution. The roots were incubated at room temperature for 30 minutes before 

being mounted ready for imaging.   

 

2.5.2 LR Primordia  
 

The cleared seedlings were mounted onto slides in 50% glycerol. The roots were imaged using 

bright field microscopy using a NA 60x oil objective. The lateral root primordia were then counted 

and classified according to stage.  

 

2.5.3 Confocal Imaging 
 

The subcellular localisation of YFP-tagged constructs and relative expression of DR5:VENUS was 

visualised using a confocal laser scanning microscope (Zeiss 880 with Airyscan) with a NA 60x oil 

objective. YFP and VENUS fluorescent tags were excited using an argon laser at λ488nm and 

transmission collected between λ505nm and λ530 to prevent crosstalk from chloroplast auto-

fluorescence.  
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2.6 Software Packages 

 

2.6.1 Sequence Analysis and Primer Design 

 

Serial Cloner Version 2.6.1 © 2004-2016 Frank Perez (SerialBasics) 

Finch TV Version 1.4 © 2013 Geospiza® 

 

2.6.2 Image Capture 

 

Quantity One® 1-D Analysis Software Version 4.6.5 © Bio-Rad Laboratories. 

 

2.6.3 Figure Preparation 

 

ImageJ Version 1.47 

Zen Imaging Software © Version 2.3 Ziess Ltd.  

Photoshop CC 2014 Version 15.0 © Adobe 

PyMOL Molecular Graphics System, Version 1.8. Schrodinger LLC. (Delano, 2002) 

 

2.6.4 Manuscript Compilation 

 

Microsoft Word © Office 2016, Microsoft. 
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2.7 Materials 

 

2.7.1 Buffers 

 

All buffers were made with ultrapure deionised water. 

4x SDS Loading Buffer: 200mM Tris‐HCl (pH 6.8 at 25°C), 8% (w/v) SDS, 50mM EDTA, 20mg 

Bromophenol blue, 4% (w/v) β-mercaptoethanol, 40% (v/v) glycerol. 

10x SDS-PAGE RunningBuffer: 250mM Tris-HCl (pH 8.3 at 25°C), 1.9M glycine, 1% (w/v) SDS. 

Coomassie Stain: 0.25% (w/v) Coomassie Brilliant Blue R-250, 10% (v/v) MeOH, 10% (v/v) glacial 

acetic acid.  

Coomassie Destain: 10% (v/v) MeOH, 10% (v/v) glacial acetic acid.  

1x Transfer Buffer: 25mM Tris, 190mM glycine, 20% (v/v) MeOH. 

10x TBS: 500mM Tris (pH 7.4 at 25°C), 9% (w/v) NaCl. 

1x TBST: 50mM Tris (pH 7.4 at 25°C), 0.9% (w/v) NaCl, 0.1% (v/v) Tween20. 

Blocking Solution: 5% (w/v) non-fat milk powder in 1xTBST. 

SUMO Extraction Buffer: 50mM NaCl, 50mM Tris-HCl (pH 8 at 25°C), 1mM EDTA, 1% (v/v) NP-40, 

0.5% (w/v) Sodium deoxycholate, 0.2% (w/v) SDS, 20mM NEM, 1 per final 10ml protease inhibitor 

cocktail.  

CO-IP Buffer: 150mM NaCl, 50mM Tris-HCl (pH 8 at 25°C), 5mM EDTA, 10% (v/v) glycerol, 0.1% 

(v/v) Triton-X, 10mM DTT, 1 per final 10ml protease inhibitor cocktail. 

Ponceau S Stain: 0.5% (w/v) Ponceau S, 1% (v/v) glacial acetic acid. 

 

2.7.2 Enzymes 

 

MyTaqTM Red Mix (Bioline: BIO-25044) 

Q5® Hot Start High-Fidelity DNA Polymerase (New England Biolabs: MD493L) 

Life Technologies pENTR/D-TOPO (Fisher: 10780335) 

Life Technologies Gateway Cassette LR Clonase II (Fisher: 11791020) 

Invitrogen SuperScript® II Reverse Transcriptase (Fisher: 18064014) 

Invitrogen RNaseOUTTM Recombinant Ribonuclease Inhibitor (Fisher: 10777019) 
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HF-MluI Restriction Enzyme (New England Biolabs: R3198S) 

 

2.7.3 Chemicals 

 

1-Naphthaleneacetic acid (Sigma: N0640-25G) 

1,4-Dithiothreitol (Sigma: 000000010197777001) 

2,4-Dichlorophenoxyacetic acid (Sigma: D7299-100G) 

50X TAE (Fisher: 10490264) 

Acetic Acid, glacial (Fisher: 10394970) 

Acrylamide, Bis-Acrylamide (Sigma: A3574) 

Agarose (Melford: MB1200) 

Agar (Melford: M1002) 

Ammonium persulfate (Fisher: 10396503) 

Brilliant Blue R250 (Fisher: 10573165) 

Bromophenol Blue (Fisher: 10679733) 

cOmplete™, Mini, EDTA-free Protease Inhibitor Cocktail (Sigma: 000000004693159001) 

Ethanol (School of Biology, Durham) 

Ethidium bromide (Fisher: 10132863) 

Ethylenediaminetetraacetic acid (Sigma: E5134) 

Glufosinate-ammonium (Sigma: 45520) 

Glycerol (Fisher: 10021083) 

Glycine (Fisher: 10773644) 

Hydrochloric acid, 36-8% (Fisher: 10000180) 

Indole-3-acetic acid (Sigma: I3750-5G-A) 
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IPTG (Sigma: I6758-5G) 

LB (Fisher: 12871650) 

Liquid herbicide BASTA (marketed as Harvest) was kindly supplied by Ian Cookram, Technical 

enquiry at Bayer CropScience Ltd. 

Magnesium chloride, hexahydrate (Melford: M05333) 

Methanol (Fisher: 10785484) 

Murashige & Skoog medium, basal salt mixture (Duchefa Biochemie: M0221.0050) 

N-ethylmaleimide (Sigma: E3876) 

NP-40 (Sigma: I8896-50ML) 

Phytoagar (Duchefa Biochemie: P1003.5000) 

Silwet-L77® surfactant  

Sodium chloride (VWR: 27810.364) 

Sodium deoxycholate (Sigma: D6750-10G) 

Sodium dodecyl sulfate (Melford: B2008) 

Sodium hyperchlorite (Fisher: 10296650) 

Sucrose (Duchefa Biochemie: S0809.5000) 

TEMED (Fisher: 10549960) 

Tris base (VWR: 28811.364) 

Tween-20 (Sigma: P2287) 

β-mercaptoethanol (Sigma: M3148) 
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2.7.4 Antibiotics 

 

Kanamycin monosulphate (Melford: K0126) – 50mg/ml in H2O 

Rifampicin (Fisher: 10562975) – 25mg/ml in MeOH 

Gentamicin sulphate (Melford: G0124) – 25mg/ml in 70% EtOH 

 

2.7.5 Kits 

 

Sigma Plant Spectrum Total RNA Extraction kit (Sigma: STRN250) 

Gel DNA Recovery Kit - Zymoclean™ (Cambridge Bioscience: D4002) 

ZR Plasmid Miniprep™- Classic (Cambridge Bioscience: D4054) 

 

2.7.6. Ladders 

 

DNA HyperladderTM 1KB plus (Bioline: BIO-33069) 

Thermo ScientificTM PageRulerTM Plus Prestained Protein Ladder (Fisher: 26620) 

 

2.7.7 Vectors 

 

Life Technologies pENTR/D-TOPO (Fisher: K240020) 

pEARLYGATE 104/201/203 (Earley, et al., 2006) 
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2.7.8 Bacterial Strains 

 

GV3101:pMP90; Agrobacterium tumefaciens (Rif/Gent) 

DH5α; Escherichia coli (No selection) 

 

Storage Conditions:  

All bacterial strains were grown in LB liquid culture before storage. 2ml of culture was transferred 

to an eppendorf and mixed with glycerol to a final concentration of 15%. The eppendorfs were 

snap frozen using liquid nitrogen and stored at -80°C ready for revival.  

 

2.7.9 Antibodies 

 

α-HA (3F10, Rat); working concentration 1:5,000 (Roche: 11867423002) 

α-GFP (Mouse); working concentration 1:5,000 (Clonetech: 632381) 

α-c-MYC (9E10, Mouse); working concentration 1:5,000 (Fisher: 13-2500) 

α-SUMO (Rabbit); working concentration 1:3,000 (Generated in-house) 

α-RAT-HRP; working concentration 1:10,000 (Sigma: A5795) 

α-MOUSE-HRP; working concentration 1:10,000 (Sigma: A9044) 

α-RABBIT-HRP; working concentration 1:10,000 (Sigma: A0545) 
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3. The Characterisation of the Auxin Response in the 

OTS SUMO Protease Mutants 
 

3.1 Introduction 
 

In 2006, Chosed, et al. (2006), demonstrated the in vitro catalytic activity of four ULP1-like SUMO 

proteases in Arabidopsis thaliana. Later work by Conti, et al. (2008), identified the role of one of 

these proteases, ULP1d, in salt tolerance. Overexpression of ULP1d, consequently known as 

OVERLY TOLERANT TO SALT1 (OTS1), through an insertion in the promoter region caused a 

dramatic increase in salt tolerance in Arabidopsis thaliana. The group also identified a homologue 

of OTS1, OVERLY TOLERANT TO SALT 2 (OTS2), which was shown to regulate the response to salt 

stress in a redundant fashion with OTS1. The Arabidopsis double knock out mutant line of these 

two proteases, ots1 ots2, showed an increase in sensitivity to salt. 

 

Previous work conducted by Dr. Beatriz Orosa and Dr. Mark Bailey regarding the ots1 ots2 mutant 

line has shown a difference in auxin-related gene expression in comparison to WT.  RNA-seq data 

generated from the ots1 ots2 line, under control conditions (Bailey, 2014), shows a number of 

auxin genes are differentially expressed in the mutant line, with 12 up-regulated by more than 

0.5-fold in comparison to WT, and 26 down-regulated by more than 0.5-fold. Compared to the 

number of differentially expressed genes involved in other hormone signalling pathways, such as 

ethylene, cytokinin, ABA, etc. (fig. 3.1), the higher number of differentially expressed auxin-

related genes suggest that OTS1 and OTS2 may play an important role in auxin homeostasis and 

signalling.     
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In Arabidopsis thaliana, two SUMO conjugating enzymes, the E3 Ligases SIZ1 and HPY2, have been 

identified to date (Ishida, et al., 2012). Research by Ishida, et al. (2009) and Huang, et al. (2009) 

has suggested that these E3 ligases, and thus SUMOylation, may be involved in auxin signalling 

and response (see. Section 1.2.3). 

 

 Auxin plays an important role in the development and maintenance of essential root 

architecture. Through auxin-mediated signalling systems, plants are able to control several 

aspects of root development, such as the length of the primary root (Rahman, et al., 2007), the 

priming and development of lateral roots (Fukaki, et al., 2007), changes in root hair length (Pitts, 

et al., 1998), the response to differences in water potential (Kaneyasu, et al., 2007), and the 

response to both gravitropic and thigmotropic stimuli (Philosoph-Hadas, et al., 2005; Reinhold, et 

al., 1972). These effects are achieved through the finely-tuned control of endogenous auxin levels, 

which oscillate in order to guide development in a spatiotemporal fashion (Scheres & Laskowski, 

2016). The disruption of auxin homeostasis and signalling leads to the development of very 

distinct root phenotypes.  

 

In order to test the hypothesis that SUMOylation plays a role in auxin signalling, here I 

characterised the auxin-related root phenotypes of the Arabidopsis SUMO protease double knock 

out line, ots1 ots2.  
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FIGURE 3.1| A NUMBER AUXIN-RELATED GENES ARE DIFFERENTIALLY EXPRESSED IN THE OTS1 OTS2 

KNOCK-OUT MUTANT LINE IN COMPARISON TO WT 

 

 

 

A comparison of the number of differentially expressed genes (logFC = >0.5, P values = <0.01) in the 

Arabidopsis knock-out line ots1 ots2 in comparison to WT in untreated seedlings. ots1 ots2 show an increase 

in the number of both up- and down-regulated auxin-related genes when compared to Col-0. The number of 

genes differentially expressed with regards to auxin is higher than those involved in other hormone 

pathways, such as ethylene, cytokinin, strigolactone, ABA and gibberellin, suggesting that SUMO may play a 

role in the auxin pathway.  

Chart generated from RNAseq data obtained by Dr. Mark Bailey and Dr. Beatriz Orosa (Bailey, 2014).       
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3.2 The Arabidopsis SUMO protease mutant shows a reduction in primary root 
length under auxin stimulus 
 

One of the most well-characterised auxin associated phenotypes is that of primary root length. 

Auxin has a bimodal effect on primary root length (Overvoorde, et al., 2010); at low 

concentrations, auxin promotes the growth of the primary root, resulting in an increase in primary 

root length. However, at high concentrations, primary root growth is inhibited. To investigate the 

role of SUMOylation in the auxin response, the effects of auxin on primary root length in a hyper-

SUMOylated environment, such as that of the SUMO protease knock out mutant line ots1 ots2, 

were studied.  

 

The SUMO protease knock out mutant line, ots1 ots2, along with a WT control (Col-0) and an 

auxin insensitive mutant line, tir1 afb2 afb3, was germinated on ½ MS plates and grown under 24 

hour light conditions for three days (see, Methods 2.1.1). Three days after germination, the 

seedlings were then transferred to assay plates containing either 0.1uM IAA, 0.1uM 2,4-D, or no 

auxin stimulus (control) and grown under 24 hour light conditions for a further 3 days.   

 

 In the absence of exogenous auxin stimulation, ots1 ots2 primary root length is indistinguishable 

from wild type primary root length (fig. 3.2 & 3.3). This suggests that the ots1 ots2 mutant is able 

to produce and respond appropriately to internal auxin cues. The auxin signalling triple mutant, 

tir1 afb2 afb3, is significantly shorter under control conditions, as previously described in 

(Dharmasiri, et al., 2005).  

 

Upon the application of the auxinic compounds indole-3-acetic acid (IAA) and 2,4-

dichlorophenoxyacetic acid (2,4-D) to the assay plates, a significant difference in primary root 

length between wild type and the SUMO protease mutant line ots1 ots2 was observed (fig. 3.2 & 

3.3). A reduction of primary root length was seen in both the wild type and the ots1 ots2 mutant. 

However, the reduction in primary root length was significantly more severe in the ots1 ots2 line. 

This suggests that the ots1 ots2 mutant is more sensitive to exogenous auxin stimulus than the 

wild type. As expected, no reduction in primary root length was observed for the auxin insensitive 

triple mutant, tir1 afb2 afb3.   
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Further experiments to determine the auxin sensitivity of the ots1 ots2 mutant line were 

conducted using a range of concentrations of IAA. Due to the bimodal nature of the auxin 

response with regards to primary root length, at lower IAA concentrations, such as 0.01uM IAA 

(Booker, et al., 2010), very little difference in primary root length is to be expected in comparison 

to control conditions. However, as the concentration of auxin increases, the length of the primary 

root should decrease. This well characterised phenotype was observed, as expected, for the WT 

(Col-0), with the length of the primary root decreasing dramatically as the concentration of auxin 

increased (fig. 3.4). However, the ots1 ots2 line did not follow the expected pattern, with the 

length of the primary root showing a significant higher level of decrease compared to WT even at 

extremely low levels of auxin (fig. 3.5). This suggests that an increased level of SUMOylation leads 

to an increase in sensitivity to stimulation by auxinic compounds, therefore resulting in the 

dramatic reduction in primary root length observed after exposure to 0.01uM IAA. No discernible 

difference in primary root length was observed for the auxin insensitive triple mutant line, tir1 

afb2 afb3, between the control conditions and all tested auxin concentrations, as expected.     

 

In order to further explore the role of SUMOylation plays in the auxin response, the ots1 ots2 

mutant line was exposed to the auxin transport inhibitor, 2,3,5-triiodobenzoic acid (TIBA). TIBA 

blocks the polar transport of auxin through the disruption of PIN1 membrane localisation 

(Geldner, et al., 2001). No significant difference was observed with regards to primary root length 

between WT and the ots1 ots2 mutant line upon exposure to both high (30uM) and low (3uM) 

concentrations of TIBA (fig. 3.6 & 3.7). This suggests that whilst an increase in SUMOylation leads 

to an increase in auxin sensitivity, this is not due to SUMO-mediated alterations in polar auxin 

transport via the PIN1 auxin efflux protein. 
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FIGURE 3.2| ots1 ots2 SHOWS A REDUCTION IN PRIMARY ROOT LENGTH IN RESPONSE TO EXPOSURE TO 

THE AUXINIC COMPOUNDS INDOLE-3-ACETIC ACID (IAA) AND 2,4-DICHLOROPHENOXYACETIC ACID (2,4-

D) 

 

 

5-day-old ots1 ots2 seedlings showing the effect of exogenous auxin application (IAA and 2,4-D) on primary 

root length compared to WT (Col-0) and an auxin-signalling mutant (tir1 afb2 afb3). A decrease in primary 

root length is observed, in comparison to WT, in the ots1 ots2 mutant line after auxin treatment. No 

decrease is observed for the auxin insensitive mutant line, tir1 afb2 afb3. 

Seedlings were germinated on 1/2MS and 0.8% phytoagar plates supplemented with 0.5% sucrose under 24 

hour light conditions. At 2 days old, the seedlings were transferred to the prepared assay plates: 1/2MS with 

0.8% phytoagar and 0.5% sucrose, supplemented with either 0.1uM IAA, or 0.1uM 2,4-D, or no hormone 

treatment (control). Seedlings were then grown under 24hr light conditions for a further 3 days before the 

root length was measured. n = 125 per genotype, per treatment.    
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FIGURE 3.3| ots1 ots2 EXHIBITS A STATISTICALLY SIGNIFICANT REDUCTION IN PRIMARY ROOT LENGTH 

UPON EXPOSURE TO THE AUXINS IAA AND 2,4-D 

 

 

 

Analysis of the primary root length of 5-day-old Col-0, ots1 ots2, and tir1 afb2 afb3 Arabidopsis seedlings in 

response to exogenous auxin application (0.1uM IAA and 0.1uM 2,4-D). A statistically significant decrease in 

primary root length is observed, in comparison to WT, in the ots1 ots2 mutant line after auxin treatment. No 

significant decrease is observed for the auxin insensitive mutant line, tir1 afb2 afb3. 

Seedlings were germinated on 1/2MS and 0.8% phytoagar plates supplemented with 0.5% sucrose under 24 

hour light conditions. At 2 days old, the seedlings were transferred to the prepared assay plates: 1/2MS with 

0.8% phytoagar and 0.5% sucrose, supplemented with either 0.1uM IAA, or 0.1uM 2,4-D, or no hormone 

treatment (control). Seedlings were then grown under 24hr light conditions for a further 3 days before the 

root length was measured. Error bars represent standard error of the mean. P values for differences 

between Col-0 and ots1 ots2 for each treatment: *** ≤ 0.001 (multi-way ANOVA with Tukey test post hoc). n 

= 75 per genotype, per treatment. Three repeats conducted.   
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FIGURE 3.4| ots1 ots2 SHOWS A DOSE-DEPENDENT REDUCTION IN PRIMARY ROOT LENGTH UPON 

EXPOSURE TO IAA 

 

6-day-old ots1 ots2 seedlings showing the effect of various concentrations of exogenous auxin (IAA) on 

primary root length compared to WT (Col-0), and an auxin-signalling mutant (tir1 afb2 afb3). ots1 ots2 

showed significant a decrease in primary root length in comparison to WT, even at low concentrations of 

auxin (0.01uM), where a slight increase in primary root length is observed in WT seedlings due to the 

bimodal nature of auxin. No significant change in primary root length is observed for the auxin insensitive 

mutant line, tir1 afb2 afb3, between treatments.    

Seedlings were germinated on 1/2MS and 0.8% phytoagar plates supplemented with 0.5% sucrose under 24 

hour light conditions. At 2 days old, the seedlings were transferred to the prepared assay plates: 1/2MS with 

0.8% phytoagar and 0.5% sucrose, supplemented with either 0.01uM/0.1uM/1uM IAA, or no hormone 

treatment (control). Seedlings were then grown under 24hr light conditions for a further 5 days before the 

root length was measured. n = 80  per genotype, per treatment. Three repeats conducted.   
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FIGURE 3.5| ots1 ots2 EXHIBITS A STATISTICALLY SIGNIFICANT DOSE-DEPENDENT REDUCTION IN PRIMARY 

ROOT LENGTH UPON EXPOSURE TO IAA 

 

 

 

Analysis of the primary root length of 6-day-old Col-0, ots1 ots2, and tir1 afb2 afb3 Arabidopsis seedlings in 

response to differing concentrations of exogenous auxin (0.01/0.1/1uM IAA). ots1 ots2 showed significant a 

decrease in primary root length in comparison to WT, even at low concentrations of auxin (0.01uM), where a 

slight increase in primary root length is observed in WT seedlings due to the bimodal nature of auxin. No 

significant change in primary root length is observed for the auxin insensitive mutant line, tir1 afb2 afb3, 

between treatments.    

Seedlings were germinated on 1/2MS and 0.8% phytoagar plates supplemented with 0.5% sucrose under 24 

hour light conditions. At 2 days old, the seedlings were transferred to the prepared assay plates: 1/2MS with 

0.8% phytoagar and 0.5% sucrose, supplemented with either 0.01uM/0.1uM/1uM IAA, or no hormone 

treatment (control). Seedlings were then grown under 24hr light conditions for a further 5 days before the 

root length was measured. Error bars represent standard error of the mean. P values for differences 

between Col-0 and ots1 ots2 for each treatment: *** ≤ 0.001 (multi-way ANOVA with Tukey test post hoc). n 

= 80  per genotype, per treatment. Three repeats conducted.   
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FIGURE 3.6| ots1 ots2 SHOWS NO DIFFERENCE IN RESPONSE TO TREATMENT WITH THE AUXIN EFFLUX 

INHIBITOR 2,3,5-TRIIODOBENZOIC ACID (TIBA) COMPARED TO WILD TYPE  

 

 

 

5-day-old ots1 ots2 seedlings showing the effect of auxin signalling inhibition (TIBA) on primary root length 

compared to WT (Col-0) and an auxin-signalling mutant (tir1 afb2 afb3). No statistically significant decrease 

in primary root length is observed in the ots1 ots2 mutant upon TIBA treatment. 

Seedlings were germinated on 1/2MS and 0.8% phytoagar plates supplemented with 0.5% sucrose under 24 

hour light conditions. At 2 days old, the seedlings were transferred to the prepared assay plates: 1/2MS with 

0.8% phytoagar and 0.5% sucrose, supplemented with either 3uM TIBA, 30uM TIBA, or no hormone 

treatment (control). Seedlings were then grown under 24hr light conditions for a further 3 days before the 

root length was measured. n = 75 per genotype, per treatment. Three repeats conducted.   
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FIGURE 3.7| OTS1 OTS2 EXHIBITS NO STATISTICALLY SIGNIFICANT DIFFERENCE IN RESPONSE TO 

TREATMENT WITH TIBA IN COMPARISON TO WILD TYPE 

 

 

 

Analysis of the primary root length of 5-day-old Col-0, ots1 ots2, and tir1 afb2 afb3 Arabidopsis seedlings in 

response to auxin signalling inhibition (TIBA). No statistically significant decrease in primary root length is 

observed in the ots1 ots2 mutant upon TIBA treatment. 

Seedlings were germinated on 1/2MS and 0.8% phytoagar plates supplemented with 0.5% sucrose under 24 

hour light conditions. At 2 days old, the seedlings were transferred to the prepared assay plates: 1/2MS with 

0.8% phytoagar and 0.5% sucrose, supplemented with either 3uM TIBA, 30uM TIBA, or no hormone 

treatment (control). Seedlings were then grown under 24hr light conditions for a further 3 days before the 

root length was measured. Error bars represent standard error of the mean. Analysis by multi-way ANOVA 

(with Tukey test post hoc) indicates no statistical significance between treatments. n = 75 per genotype, per 

treatment. Three repeats conducted  
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3.3 The Arabidopsis SUMO protease mutant shows a reduction in lateral root 
primordia 
 

The effects of auxin upon the growth and development of the lateral root in Arabidopsis have 

been extensively studied (reviewed in Lavenus, et al., 2013). To further investigate the role of 

SUMOylation in the auxin response, the effects of auxin on the growth and development of lateral 

roots in a hyper-SUMOylated environment, such as that of the SUMO protease knock out mutant 

line ots1 ots2, were studied.  

 

In the absence of auxin stimulation, the ots1 ots2 mutant line displays a reduction in the number 

of emerged lateral roots compared to WT (fig. 3.8 & 3.10). Under 24 hour light conditions, the 

ots1 ots2 mutant line produced half the number of lateral roots compared to Col-0; the observed 

ratio of 1:2 emerged lateral roots between ots1 ots2 and the Col-0 seedlings persisted over the 

course of the observed time period, with the same ratio observed at both 6 and 9 days growth 

(fig. 3.9). These observations suggest that increased levels of SUMOylation have a detrimental 

effect on the production of lateral roots, possibly through alterations in either the regulation of 

endogenous auxin oscillations through which the LR founder cells are primed (Moreno-Risueno, et 

al., 2010), or the regulation of lateral root development from primed LR founder cells via IAA3/14 

and ARF7/19 (Okushima, et al., 2007).  

 

To assess whether the reduction in emerged lateral roots observed for the ots1 ots2 mutant line 

was due to aberrations in LR priming or emergence, the LR primordia of this line were studied. 

Seedlings were grown under 24 hour light conditions on ½ MS plates for 7 days before undergoing 

cell clearing (see, Methods 2.5.1). The cleared roots were mounted in 50% glycerol and the LR 

primordia counted and staged via white light microscopy at 60x magnification. The ots1 ots2 line 

showed no irregularities in LR formation, with normal LR primordia of all stages (I-VII) observed 

compared to WT (fig. 3.11) and no increase in the number of arrested LR observed compared to 

WT. However, the ots1 ots2 line appeared to have significantly fewer LR primordia at all stages of 

development, save Stages I and II, compared to WT (fig. 3.12). A >2-fold increase in stage I and II 

LR primordia was observed in the SUMO protease mutant line; these LR primordia did not appear 

to be developmentally arrested, located near the root tip rather than further up the root (as 

would indicate arrest). It is possible that the difference in LR primordia observed at these stages is 

due to issues successfully identifying early stage LR primordia in the WT: due to the nature of the 
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establishment of the LR initialisation site, consisting of a small amount of asymmetric division 

within a single cell layer, the early stages can be difficult to identify within the root. At all other 

stages, more LR primordia were observed in the WT roots, with a >3-fold increase in stage 

VII/emerged LRs seen in comparison to the ots1 ots2 mutant line.  This data indicates that 

increased SUMOylation does not affect the growth and development of LR primordia, but appears 

instead to affect the establishment of the LR founder cells from which lateral roots are produced, 

potentially through SUMO-mediated alterations in the establishment of auxin maxima and 

minima (Dubrovsky, et al., 2001) or through abnormalities in root cap formation (Xuan, et al., 

2015).     

 

The application of exogenous auxin to Arabidopsis roots causes an increase in lateral root 

production. This is due to increased cell division in the pericycle; lateral roots develop from auxin-

primed triplets of Xylem Pole Pericycle (XPP) cells located within the pericycle (De Smet, et al., 

2007), therefore an increase in pericycle cell proliferation leads to an increase in lateral root 

number. To further confirm the role of SUMO in the lateral root phenotype observed above for 

the ots1 ots2 mutant line, 3-day-old seedlings grown under 24 hour light conditions were 

transferred to ½ MS plates supplemented with varying concentrations of IAA (0.01uM-1uM). The 

seedlings were incubated on the assay plates for 3 days under 24 hour light conditions and the 

number of emerged lateral roots counted (fig. 3.4 & 3.13).   

 

As expected, the number of emerged lateral roots for the WT plants increased dramatically after 

auxin treatment. This phenotype was not observed for the auxin insensitive triple knock out line, 

tir1 afb2 afb3, again as expected, with the occasional lateral root only produced at very high 

levels of auxin concentration (1uM). Surprisingly, the number of emerged lateral roots observed 

after auxin treatment for the ots1 ots2 mutant line doubled compared to the number observed 

under control conditions for the genotype. However, the number of lateral roots produced by the 

ots1 ots2 line remained far below that of the WT, regardless of auxin concentration. This data 

suggests that the ots1 ots2 mutant line is not insensitive to exogenous auxin stimulus, further 

supporting the findings regarding auxin sensitivity observed in chapter 3.2, but that increased 

background SUMOylation does affect the priming of lateral root primordia.    
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FIGURE 3.8| ots1 ots2 PRODUCES FEWER LATERAL ROOTS AT 6 AND 9 DAY POST-GERMINATION IN 

COMPARISON TO WILD TYPE 

 

 

 

6-day-old and 9-day-old Col-0 and ots1 ots2 seedlings showing the number of emerged lateral roots 

between genotypes. The ots1 ots2 mutant shows fewer emerged lateral roots at all both 6 and 9 days old.  

Seedlings were germinated on 1/2MS plates with 0.8% phytoagar and supplemented with 0.5% sucrose. The 

seedlings were germinated and grown under 24 hour light conditions for 6 and 9 days, respectively. n = 50 

per genotype. Three repeats conducted. 
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FIGURE 3.9| ots1 ots2 PRODUCES SIGNIFICANTLY FEWER LATERAL ROOTS IN COMPARISON TO WILD TYPE 

AT BOTH 6 AND 9 DAYS POST-GERMINATION 

 

 

 

Analysis of the emerged lateral root number of Col-0 and ots1 ots2, Arabidopsis seedlings at 6 days and 9 

days post-germination. The ots1 ots2 mutant shows fewer emerged lateral roots at all both 6 and 9 days 

old.  

Seedlings were germinated on 1/2MS plates with 0.8% phytoagar and supplemented with 0.5% sucrose. The 

seedlings were germinated and grown under 24 hour light conditions for 6 and 9 days, respectively. Error 

bars represent standard error of the mean. P values for differences between Col-0 and ots1 ots2 at 6 days 

and 9 days: ** ≤ 0.01 and  *** ≤ 0.001, respectively (one-way ANOVA). n = 50 per genotype. Three repeats 

conducted. 

 

  

*** 

*** 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

6 Days 9 Days

A
ve

ra
ge

 L
at

e
ra

l R
o

o
t 

N
u

m
b

e
r 

Col-0

ots1 ots2



80 
 

FIGURE 3.10| ots1 ots2 PRODUCES FEWER LATERAL ROOTS PER SEEDLING IN COMPARISON TO WILD TYPE 

 

 

 

The distribution of lateral root numbers between Col-0 and ots1 ots2 Arabidopsis seedlings at 6 days post-

germination. ots1 ots2 has a larger number of seedlings with only one emerged lateral root at 6 days post 

germination in comparison to WT. ots1 ots2 has no seedlings with 6 or more emerged lateral roots at day 6, 

with all seedlings showing 5 or fewer emerged lateral roots.  

Seedlings were germinated on 1/2MS plates with 0.8% phytoagar and supplemented with 0.5% sucrose. The 

seedlings were germinated and grown under 24 hour light conditions for 6 days before counting. n = 50 per 

genotype.  
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FIGURE 3.11| THE STAGING OF LATERAL ROOT PRIMORDIA 

 

 

 

Composite figure showing the staging of lateral root primordia of 7-day-old seedlings. WT seedlings were 

germinated on ½ MS plates with 0.8% phytoagar and supplemented with 0.5% sucrose. The seedlings were 

grown under 24 hour light conditions for 7 days. The roots were cleared and the lateral root primordia 

staged via white-light microscopy at 60x magnification.  Stage I shows the initial assymertric anticlinial 

division of the XPP cells in the pericycle (blue arrowhead) giving rise to the lateral root initiation site. The 

cells then divide in a periclinal fashion to form two (stage II) (red arrowhead), three (stage III), four (Stage 

IV) and five (Stage V) layers. As the cells in the primordia continue to divide, they break through the 

casparian strip (Stage V-VI), eventually emerging as a new lateral root.  
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FIGURE 3.12| ots1 ots2 PRODUCES SIGNIFICANTLY FEWER ROOT PRIMORDIA IN COMPARISON TO WT 

 

 

 

Analysis of the average number of lateral root primordia categorised by stage between Col-0 and ots1 ots2 

Arabidopsis seedlings at 7 days post-germination. ots1 ots2 shows a significantly fewer number of late-stage 

LR primordia, in comparison to WT. ots1 ots2, however, does not show a dramatic increase in the number of 

LR primordia at the earlier stages, suggesting that the decrease in emerged lateral roots observed for the 

mutant line is not due to LR primordia arrest at the earlier stages.   

WT seedlings were germinated on ½ MS plates with 0.8% phytoagar and supplemented with 0.5% sucrose. 

The seedlings were grown under 24 hour light conditions for 7 days. The roots were cleared and the lateral 

root primordia staged via white-light microscopy at 60x magnification. Error bars represent standard error 

of the mean. P values for differences in the number of LR primordia at different stages between Col-0 and 

ots1 ots2: ** ≤ 0.01 and  *** ≤ 0.001, respectively (one-way ANOVA). n = 10 seedlings for each genotype. 

Two repeats conducted.   
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FIGURE 3.13| ots1 ots2 EXHIBITS A STATISTICALLY SIGNIFICANT DOSE-DEPENDENT INCREASE IN LATERAL 

ROOT EMERGENCE UPON EXPOSURE TO IAA 

 

 

 

Analysis of the number of emerged lateral roots (LR) of 6-day-old Col-0, ots1 ots2, and tir1 afb2 afb3 

Arabidopsis seedlings in response to differing concentrations of exogenous auxin (0.01/0.1/1uM IAA). ots1 

ots2 shows significantly fewer emerged LR, in comparison to WT, for all treatments (control, 0.01-1uM IAA). 

An increase in LR emergence is observed for ots1 ots2 upon treatment with IAA in comparison to the ots1 

ots2 untreated control, suggesting that ots1 ots2 is not insensitive to auxin with regards to the lateral root.    

Seedlings were germinated on 1/2MS and 0.8% phytoagar plates supplemented with 0.5% sucrose under 24 

hour light conditions. At 2 days old, the seedlings were transferred to the prepared assay plates: 1/2MS with 

0.8% phytoagar and 0.5% sucrose, supplemented with either 0.01uM/0.1uM/1uM IAA, or no hormone 

treatment (control). Seedlings were then grown under 24hr light conditions for a further 5 days before the 

number of emerged KR were counted. Error bars represent standard error of the mean. P values for 

differences between Col-0 and ots1 ots2 and tir1 afb2 afb3 for each treatment: *** ≤ 0.001 (multi-way 

ANOVA with Tukey test post hoc). n = 80  per genotype, per treatment. Three repeats conducted.   
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3.4 The Arabidopsis SUMO protease mutant shows a reduction in the production 
of root hairs 
 

Root hairs are an important part of plant root architecture. These subcellular extensions from 

root epidermal cells allow the plant root system to dramatically increase its surface area, thereby 

increasing the soil volume, and thus nutrient content, available to the plant. The growth and 

development of these root hairs is mediated through the action of several phytohormones, such 

as auxin, ethylene, jasmonic acid, brassinosteroids and strigolactone (Lee & Cho, 2013), with the 

roles of auxin and ethylene perhaps the most well studied.    

 

The density of root hairs has been shown to be dependent upon several factors, such as Pi 

content (Bates & Lynch, 2000), and exposure to the ethylene precursor 1-aminocyclopropane-1-

carboxylic acid (ACC) (Dolan, 1996). Pi deficiency is a major driver in root architecture 

remodelling, with changes to the plant root structure in response to low soil Pi content observed 

across a wide variety of plant species, such as maize (Zea mays), tomato (Solanum lycopersicum) 

and rice (Oryza sativa) (Li, et al., 2012; Kim, et al., 2008; Niu, et al., 2013).    

 

Under control conditions, 7-day-old seedlings from the SUMO protease mutant line ots1 ots2 

produced significantly fewer root hairs in comparison to WT (Col-0) (fig. 3.14 & 3.15). This 

suggests that high levels of background SUMOylation may also possibly affect the nutrient stress 

and ethylene signalling pathways. These observations further support findings that SUMO plays 

an important role in the Pi-starvation response; knock out mutants of the SUMO E3 ligase SIZ1, 

siz1-1/2/3 and siz1-1 sos3-1, display hypersensitivity to Pi starvation through an increase in root 

hair density via modification of the MYB transcription factor PHOSPHATE STARVATION RESPONSE 

1 (PHR1) (Miura, et al., 2005). Further work involving the siz1 knock out mutant has shown SIZ1 to 

be a negative regulator Pi deficiency-induced root architecture remodelling through the 

involvement of the auxin response pathway (Miura, et al., 2011). The root hair phenotype 

displayed here suggests that SUMO may play a role in the remodelling of plant root architecture 

in response to Pi deficiency and auxin.   

 

Auxin modulates root hair growth, working downstream of the transcription factor involved in 

root hair initiation, ROOT HAIR DEFECTIVE 6 (RDH6) (Masucci & Schiefelbein, 1996). Changes in 
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auxin homeostasis affect root hair elongation; in the auxin insensitive mutant tir1, and its 

paralogues (afb1, afb2, and afb3), root hair length is dramatically reduced (Dharmasiri, et al., 

2005). The opposite is observed for the TIR1 RHS-over-expression line, where an increase in root 

hair growth is seen (Ganguly, et al., 2010). Under control conditions, 7-day-old seedlings from the 

SUMO protease mutant line ots1 ots2 produced significantly longer root hairs in comparison to 

WT (Col-0) (fig. 3.16), with the opposite phenotype observed, as expected, for the auxin 

insensitive triple knock out line, tir1 afb2 afb3. This observation is consistent with the data 

regarding auxin sensitivity obtained in chapters 3.2 and 3.3; the statistically significant (one-way 

ANOVA) increase in root hair length confirms the hypothesis that an increase in background 

SUMOylation levels leads to an increase in auxin sensitivity.  
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FIGURE 3.14| THE ots1 ots2 MUTANT SHOWS DIFFERENCES IN ROOT HAIR LENGTH AND DENSITY IN 

COMPARISON TO WT 

 

 

 

Roots of 7-day-old Col-0 (WT), ots1 ots2 and tir1 afb2 afb3 seedlings at 2x magnification showing 

morphological differences in root hairs between Arabidopsis mutant lines. ots1 ots2 shows a decrease in 

number of root hairs, in comparison to WT, and an increase in root hair length. The auxin insensitive mutant, 

tir1 afb2 afb3, shows a dramatic decrease in root hair density and length in comparison to WT.  

Seedlings were germinated on 1/2MS and 0.8% phytoagar plates supplemented with 0.5% sucrose under 24 

hour light conditions. Seedlings were then grown under 24hr light conditions for 7 days before the number of 

root hairs were counted. Error bars represent standard error of the mean. n = 20 per genotype. Three 

repeats conducted. Scale 1mm. Magnification = 2x.  
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FIGURE 3.15| ots1 ots2 PRODUCES SIGNIFICANTLY FEWER ROOT HAIRS IN COMPARISON TO WT 

 

 

 

Analysis of average root hair number of 7-day old Col-0, ots1 ots2 and tir1 afb2 afb3 Arabidopsis lines. ots1 

ots2 shows a statistically significant decrease in number of root hairs, in comparison to WT. The auxin 

insensitive mutant, tir1 afb2 afb3, shows a dramatic decrease in root hair density in comparison to WT. 

Seedlings were germinated on 1/2MS and 0.8% phytoagar plates supplemented with 0.5% sucrose under 24 

hour light conditions. Seedlings were then grown under 24hr light conditions for 7 days before the number of 

root hairs were counted. Error bars represent standard error of the mean. P values for differences between 

Col-0 and the two mutant lines (ots1 ots2, tir1 afb2 afb3): *** ≤ 0.001 (one-way ANOVA with Tukey test post 

hoc).  n = 20 per genotype. Three repeats conducted.  
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FIGURE 3.16| ots1 ots2 PRODUCES SIGNIFICANTLY LONGER ROOT HAIRS IN COMPARISON TO WT 

 

 

 

Analysis of average root hair length of 7-day old Col-0, ots1 ots2 and tir1 afb2 afb3 Arabidopsis lines. ots1 

ots2 shows a statistically significant increase in average root hair length, in comparison to WT. The auxin 

insensitive mutant, tir1 afb2 afb3, shows a dramatic decrease in root hair length in comparison to WT. 

Seedlings were germinated on 1/2MS and 0.8% phytoagar plates supplemented with 0.5% sucrose under 24 

hour light conditions. Seedlings were then grown under 24hr light conditions for 7 days before the number of 

root hairs were counted. Error bars represent standard error of the mean. P values for differences between 

Col-0 and the two mutant lines (ots1 ots2, tir1 afb2 afb3): *** ≤ 0.001 (one-way ANOVA with Tukey test post 

hoc).  n = 20 per genotype. Three repeats conducted.  
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3.5 The Arabidopsis SUMO protease mutant shows an increased hydrotropic 
response 
 

Due to the sessile nature of plants, members of this kingdom have evolved several intricate 

mechanisms to deal with their ever changing environments. Through these mechanisms, plants 

are able to perceive and respond appropriately to varied environmental stimuli, such as drought, 

gravity and light, by growing to/from the point of stimulus. This morphological plasticity exhibited 

in response to perceived environmental change is known as a tropic response.   

 

The hydrotropic response is the morphological change induced in response to fluctuations in the 

surrounding moisture gradient (Eapen, et al., 2005). Unlike many of the other tropisms, such as 

gravitropism (Chen, et al., 1999) and phototropism (Liscum, et al., 2014), hydrotropism has been 

less extensively studied, with relatively little research conducted in this area until the turn of the 

21st century, despite its perceived importance in the prevention of crop yield losses due to water 

shortage (Cassab, et al., 2013). This apparent oversight is due to the interplay between 

gravitropism and hydrotropism; due to the former tropism interfering with the subtler influence 

of the latter, the establishment of this tropism as a distinct response was not achieved until the 

mid-1980s (Jaffe, et al., 1985). 

 

Classical thinking attributes root hydrotropism to the Cholodny-Went hypothesis (Went & 

Thimann, 1937); upon the detection of specific environmental stimuli, the lateral redistribution of 

auxin occurs within the plant, leading to alterations in growth. Whilst this has been shown 

generally to hold true for gravitational stimulus (Gutjahr, et al., 2005), current research regarding 

the role of auxin in the hydrotropic response renders this hypothesis less than favourable (see, 3.8 

Discussion) (Shkolnik, et al., 2016).   

 

Despite the lack of definitive evidence linking auxin to hydrotropism, the responses of the SUMO 

protease double knock out mutant line, ots1 ots2, and the SUMO protease over expression line, 

35S:OTS1:HA, to changes in water potential were tested. In order to determine whether increased 

background SUMOylation levels affect the response to changes in water potential, a split-plate 

assay was used (see, fig. 3.17) (Antoni, et al., 2016). The lower half of the split ½ MS plate was 
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supplemented with 400mM sorbitol to decrease the water potential, thereby creating a water 

gradient through which the hydrotropic response could be stimulated.  

 

WT (Col-0), ots1 ots2, and 35S;OTS1:HA seedlings were germinated and grown on ½ MS plates 

under 24 hour light conditions. At 5 days old, the seedlings were transferred to the split assay 

plate and incubated vertically under 24 hour light conditions for 12 hours (fig. 3.18), after which 

the angle of bend, and therefore the strength of the tropic response, was measured. Upon 

exposure to the moisture gradient, the ots1 ots2 line showed a significant increase (one-way 

ANOVA) in the average angle of bend compared to WT (fig. 3.19). This indicates that increased 

SUMOylation levels leads to an increase in hydrotropism in Arabidopsis.  

 

The hydrotropic response of the 35S:OTS1:HA overexpression line was also tested. Due to the 

hydrotropic phenotype exhibited by the knock out line, it was expected that the 35S:OTS1:HA line 

would show a significant decrease in hydrotropic response. However, overexpression of the OTS1 

SUMO protease appeared to result in a slight increase in angle of bend compared to WT, though 

not as extreme as that observed for the ots1 ots2 knock out line. This increase was not found to 

be statistically significant (one-way ANOVA). This seemingly contradictory phenotype observed for 

the overexpression line could be due to the molecular quirks of overexpression. For example, the 

activity of OTS1 may not be dependent upon its expression level, meaning any restoration of OTS1 

function results in a return to the WT phenotype. It is also possible that the increase in 

hydrotropic response observed for the knock out line is due to the loss of the ots2 gene only; 

overexpression of the OTS1 gene, therefore, would not significantly affect the hydrotropic 

response.      

 

 

 

 

 

 



91 
 

FIGURE 3.17| SCHEMATIC DEMONSTRATING EXPERIMENTAL SETUP FOR THE HYDROTROPIC RESPONSE 

ASSAY  

 

 

 

 

 

Schematic showing the split-plate hydrotropism assay setup. 1/2MS plates were poured and all media from 

the lower half of the plate (indicated by the blue line) removed and replaced with 1/2MS supplemented with 

400mM sorbitol (thereby providing the hydrotropic stimulus). 5-day-old seedlings were transferred to the 

assay plate; seedlings were positioned upon the plate with the root tips situated at the red line (2mm above 

the start of the hydrotropic stimulus). After 12 hours, the angle of bend was then measured (indicated by the 

yellow arrows).  
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FIGURE 3.18| THE ots1 ots2 MUTANT IS POSITIVELY HYDROTROPIC 

 

 

 

5-day-old ots1 ots2 seedlings showing the increased response to hydrotropic stimulus (400mM sorbitol) 

after 12 hours compared to WT (Col-0), and the SUMO protease overexpression line (OTS1-OE). The ots1 

ots2 mutant line shows a slight decrease in bend angle in comparison to WT, indicating a positively 

hydrotropic phenotype. 

Seedlings were germinated on 1/2MS and 0.8% phytoagar plates supplemented with 0.5% sucrose under 24 

hour light conditions. At 5 days old, the seedlings were transferred to the prepared assay plates: 1/2MS with 

0.8% phytoagar and 0.5% sucrose, with the lower half of the split plate supplemented with 400mM sorbitol. 

Seedlings were then grown under 24hr light conditions for a further 12 hours before the root bend angle was 

measured. n = 60 per genotype. Three repeats conducted.   

 

35S:OTS1:HA Col-0 ots1 ots2 
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FIGURE 3.19| ots1 ots2 SHOWS A SIGNIFICANT INCREASE IN HYDROTROPIC RESPONSE IN COMPARISON TO 

WT 

 

 

 

Analysis of mean angle of bend of 5-day old Col-0, ots1 ots2 and OTS1 overexpressor, 35S:OTS1:HA, 

Arabidopsis lines in response to hydrotropic stimulus (400mM sorbitol). The ots1 ots2 mutant line shows a 

statistically significant decrease in bend angle in comparison to WT, indicating a positively hydrotropic 

phenotype. 

Seedlings were germinated on 1/2MS and 0.8% phytoagar plates supplemented with 0.5% sucrose under 24 

hour light conditions. At 5 days old, the seedlings were transferred to the prepared assay plates: 1/2MS with 

0.8% phytoagar and 0.5% sucrose, with the lower half of the split plate supplemented with 400mM sorbitol. 

Seedlings were then grown under 24hr light conditions for a further 12 hours before the root bend angle was 

measured. Error bars represent standard error of the mean. P values for differences between Col-0 and ots1 

ots2 lines: ** ≤ 0.01 (one-way ANOVA with Tukey test post hoc). n = 60 per genotype. Three repeats 

conducted.   
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3.8 Discussion 
 

The control of root architecture is inextricably linked with plant phytohormones. The most well 

studied of these hormones is auxin. Auxin is a major player in practically all forms of plant growth 

and development, from embryogenesis and organogenesis to tropisms and stress responses 

(Saini, et al., 2013). Research conducted by Ishida, et al. (2009) and Huang, et al. (2009) regarding 

the SUMO E3 ligases SIZ1 and HPY2 has shown that the auxin response may be regulated, in part, 

through SUMOylation. Here, through the use of Arabidopsis seedlings unable to express two 

members of the SUMO protease family, OTS1 and OTS2, that link has been confirmed.  

 

The ots1 ots2 knock out mutant line shows a distinct and statistically significant increase in 

sensitivity to auxin compared to WT (fig. 3.2, 3.4, 3.13, & 3.14). The mutant line displays many of 

the classical auxin-sensitive phenotypes, such as a decrease in primary root length upon the 

application of exogenous auxin (Eliasson, et al., 1989), an increase in lateral root number upon 

application of exogenous auxin (Reed, et al., 1989), and an increase in root hair length under 

control conditions (Pitts, et al., 1998). These phenotypes suggest that an increase in background 

levels of SUMOylation within Arabidopsis lead to an increase in auxin sensitivity within the plant. 

However, how this increase in sensitivity is achieved is not yet known.  

 

The lack of phenotype observed for the ots1 ots2 mutant line when exposed to TIBA suggests that 

whilst increased SUMOylation levels effect auxin sensitivity, this is not due to SUMO-mediated 

alterations in polar auxin transport. This leads to the assumption that the changes in auxin 

sensitivity observed for the ots1 ots2 mutant line may be due to increased SUMOylation of the 

auxin cascade machinery, e.g. the TIR1, AUX/IAA and ARF protein families.  This hypothesis is 

explored in later chapters (see, chapter 4 &5). 

 

Alongside the clear auxin phenotype documented in this chapter, the ots1 ots2 mutant line also 

appears to exhibit a root cap-related phenotype. In comparison to WT Arabidopsis, the ots1 ots2 

mutant line produces significantly fewer lateral roots under control conditions. Whilst initially this 

appears to undermine the hypothesis, and associated experimental data regarding the primary 

root and root hair length, that increased levels of background SUMOylation result in an increase 

in auxin sensitivity, this is not the case. Upon the application of exogenous auxin to the seedlings, 
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an increase in lateral root number is observed for the ots1 ots2 mutant (fig. 3.13) compared to 

the untreated ots1 ots2 seedlings. However, this increase only extends to a doubling in number of 

emerged lateral roots; unlike its WT counterpart, the ots1 ots2 mutant does not conform to the 

pattern of producing increasing numbers of lateral roots with increasing auxin concentration, but 

is instead only able to increase the number of lateral roots it produces to by a finite number 

(twice that observed under control conditions) regardless of exogenous auxin concentration. This 

deviation from the expected pattern suggests that, whilst the ots1 ots2 mutant is indeed auxin 

sensitive, as demonstrated by its increase in lateral root production upon auxin application, it is 

defective in the priming of lateral root precursor cells.      

 

Recent research by Xuan, et al. (2015) has indicated that the root cap is responsible for the 

modulation of the auxin signal responsible for the priming of lateral root precursor cells. The 

priming of the XPP cells that eventually form the lateral root primordia occurs via periodic 

oscillations in cellular auxin concentration (Laskowski, 2013). This oscillation is modulated by the 

auxin precursor IBA; through the root-cap specific conversion of IBA to IAA and the subsequent 

induction of MEMBRANE-ASSOCIATED KINASE REGULATOR 4 (MAKR4), the plant is able to tightly 

regulate spatiotemporal root patterning (Xuan, et al., 2015).  

 

This information combined with the experimental data shown here regarding the increased 

hydrotropic response of the ots1 ots2 mutant line (fig. 3.18 & 3.19) suggests increased levels of 

SUMOylation alter the perception and signalling of the primary root cap. Changes in water 

potential are sensed by root cap cells (Kiss, 2007), with removal of the root cap resulting in the 

complete abolition of the hydrotropic response (Jaffe, et al., 1985). It is therefore likely that the 

reduction in lateral roots observed for the ots1 ots2 mutant line, and the increase in hydrotropic 

response, is due to defects in the primary root cap and not SUMO-mediated alterations in the 

auxin signalling cascade.     
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3.9 Conclusion 
 

In this chapter, it has been demonstrated that hyper-SUMOylated cellular environment of the 

SUMO protease knock out mutant line, ots1 ots2, may induce an increase in sensitivity to the 

phytohormone auxin.   

 

Phenotypic analysis of the ots1 ots2 mutant line revealed an increased level of response to 

exogenous auxin stimulus, with a reduction in primary root length and an increase in lateral root 

number observed after exposure to the auxinic compounds IAA and 2,4-D. Analysis of root hair 

length under control conditions further confirmed a potential increase in auxin sensitivity within 

the mutant line, with increased root hair length observed for the mutant in comparison to WT. 

The absence of a differential response between WT and the ots1 ots2 mutant line upon exposure 

to the auxin efflux inhibitor, TIBA, lead to the hypothesis that this potential increase in auxin 

sensitivity may be due to SUMO-mediated alterations in the auxin signalling cascade rather than 

auxin transport. This hypothesis is further explored in subsequent chapters (see, chapters 4 & 5). 

 

A secondary phenotype possibly regarding the root cap was observed for this mutant line. A 

reduction in lateral root primordia and emerged lateral roots under control conditions, alongside 

an increase in hydrotropic response, lead to the hypothesis that root cap perception and/or 

signalling may be altered in the ots1 ots2 mutant background.   
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4. The SUMOylation of the Auxin Receptor TIR1 
 

4.1 Introduction 
 

The results presented in Chapter 3 indicate that SUMOylation plays a role in auxin signalling in 

Arabidopsis thaliana. The root phenotype data from the ots1 ots2 double mutant shows that 

there is an increase in auxin sensitivity in a hyper-SUMOylated background. This leads to the 

hypothesis that SUMOylation of the auxin cascade machinery, either in part or as a whole, 

increases auxin sensitivity.  

 

In this chapter, the SUMOylation status and the effects thereof of the auxin receptor TIR1 are 

investigated. 
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4.2 SUMOylation of the Auxin Receptor TIR1 
 

To investigate the hypothesis (see, Introduction 1.3) that SUMOylation of the primary auxin 

receptor, TIR1, is involved in the increase in auxin sensitivity observed in the hyper-SUMOylated 

ots1 ots2 mutant, the protein sequences of the TIR1/AFB family members were scanned for 

potential SUMO binding sites using the bioinformatics software, HyperSUMO (Nelis, 2014) as 

shown in fig. 4.1. Potential SUMO binding sites were identified in all family members, with three 

such sites (K373, K457 and K485) predicted in the main auxin receptor protein, TIR1. 

 

Arabidopsis TIR1 homologues were identified in other plant species using BLASTp (Gish & States, 

1993). From the TIR1 homologues identified by BLASTp, under the standard parameter settings, 

proteins from the following species were used in a bioinformatic analysis with HyperSUMO to 

determine the conservation of predicted SUMO binding sites: C. sativa (XP_010512696), E. 

salsugeineum (XP_006402320), B. rapa (XP_009116967), O. sativa (XP_015635915), Z. mays 

(XP_008669494), S. tuberosum (XP_006359432), N. tabacum (ACT53268), and C. annuum 

(XP_016565699). The results of this analysis indicate that the three SUMO binding sites predicted 

in Arabidopsis are conserved in C. sativa, E. salsugeineum and B. rapa.  In all homologues, the 

predicted SUMO binding site corresponding to AtTIR1 K485 was present, the sequence remaining 

highly conserved amongst all analysed proteins (fig. 4.2). These results suggest that the K485 

binding site is the most likely candidate for the SUMO binding site of TIR1.   

 

Whilst primary protein sequence analysis by HyperSUMO is useful in identifying potential SUMO 

binding sites, it does not take into account the 3D structure of the protein. SUMO can only bind to 

lysine residues exposed to the external environment, no matter how favourable the amino acid 

sequence. It is therefore important to map predicted SUMO binding sites onto the 3D structure of 

the protein in question, where possible, in order to eliminate any predicted sites buried within the 

protein or rendered inaccessible through steric hindrance. The three predicted TIR1 SUMO 

binding sites, K373, K457 and K485, were located on the structure of the crystallised TIR1-ASK1 

complex (pdb file: 2P1M; Tan, et al., 2007) using the protein structure modelling software PyMOL. 

All three sites are present on the lower side of the LRR domain, with residues K373 and K457 

angled away from the underside of the protein, and residue K485 angled in towards the auxin-

binding pocket located in the barrel of the solenoid formed by the LRR domain (fig. 4.3). The 

location of all three potential SUMO binding residues renders them suitable for SUMO binding.   
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The four Auxin Receptor F-box proteins were successfully amplified using the proofreading DNA 

polymerase Q5 (NEB) plus 0.3% DMSO from cDNA generated from 7 day old Col-0 seedlings (fig. 

4.4) (see, Methods 3.3.1 & 3.3.7/8). The PCR product was purified using a ZymocleanTM Gel DNA 

Recovery Kit (Zymo) and cloned into the entry vector pENTR/D-TOPO (see, Methods 3.3.3). The 

constructs were transformed into E. coli DH5 and the colonies screened for successful clones by 

PCR using AttB primers. Two clones for each construct were selected for plasmid purification 

followed by in-house sequencing via DBS Genomics. Constructs containing the correct gene 

sequence were digested with MluI (NEB) and transferred via recombination into the 35S, N-

terminal GFP-tag Gateway® destination vector pEARLYGATE104 and into the 35S, N-terminal 

4xMyc-tag pEARLYGATE203 (see, Methods 3.3.4 & 3.3.5).  Confirmed TIR1, AFB1, AFB2 and AFB3 

clones in pEARLYGATE104/203, identified via colony PCR with AttB primers, were transformed 

into the Agrobacterium strain GV3101 ready for transient expression (see, Methods 3.2.3).  

 

A transient assay in N. benthamiana using 35S:GFP:TIR1 was conducted to confirm the 

SUMOylation status of the auxin receptor E3 ligase (see, Methods 3.4). Recombinant YFP:TIR1 

transient expression was confirmed by western blotting with -GFP monoclonal antibodies 

(Clonetech); -GFP was used as it is reactive to all GFP variants, such as YFP and CFP (Kaltwasser, 

et al., 2002). A large band corresponding to YFP:TIR1 was observed in the IP sample lane (see, fig. 

4.5:A). The SUMOylation status of recombinant YFP:TIR1 was shown via western blotting with -

HA antibodies (Sigma). A faint band was observed at ~200kDa in the lane corresponding to 

YFP:TIR1 (fig 4.5:B). This band suggests that YFP:TIR1 is SUMOylated in planta, with the mass of 

the observed band implying that YFP:TIR1 is decorated by multiple SUMO moieties.  

 

To confirm TIR1 SUMOylation in vivo, tir1 knockout Arabidopsis lines containing C-terminal 

VENUS-tagged TIR1 under control of the TIR1 promoter (pTIR1:TIR1:VENUS, obtained from 

Malcolm Bennett, Nottingham University) were used. Mutants were confirmed before use via PCR 

from genomic extracts (see, Methods 3.3.1 & 3.3.6) using 3 sets of primers (Fig. 4.6). 

pTIR1:TIR1:VENUS seeds were germinated on MS medium (see, Methods 3.1.1 & 3.1.2) and 

allowed to grow for 12 days before harvesting. Protein was extracted from the harvested tissue 

and expression of the recombinant protein observed by western blot with -GFP monoclonal 

antibodies (Clonetech) (fig. 4.7). No TIR1:VENUS was identified in the extract or IP. Unfortunately, 
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cleavage of the VENUS tag from TIR1 was observed in the IP; no band corresponding to 

TIR1:VENUS was seen in the pTIR1:TIR1:VENUS IP lane, only that of the free VENUS.   
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FIGURE 4.1| SUMO SITE PREDICTION FOR THE TIR1/AFB FAMILY 

A. 

 

B. 

Protein Position Type Confidence Sequence 

AFB1 K246 I 100 QLKPEA 

AFB3 K190 I 99 CLKGET 

TIR1 K373 II 100 CPKLES 

TIR1 K457 II 100 AKKMEM 

TIR1 K485 II 99 LRKLEI 

AFB1 K500 II 99 AAKLET 

AFB2 K34 II 100 WYKIER 

AFB2 K424 II 95 IVKACK 

AFB2 K499 II 99 VSKYET 

AFB3 K34 II 99 WHKIER 

 

A.  Schematic showing the highly predicted (85%+) SUMOylation sites in the Auxin-Responsive F-box 

family of proteins. The predicted SUMOylation sites located within this protein family differ between 

members.  

B. A table showing the location, type, percentage prediction and sequence of the predicted SUMO sites in 

the Auxin-Responsive F-Box Family of proteins.  
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FIGURE 4.2| SUMO SITE PREDICTION FOR CROSS-SPECIES ATTIR1 HOMOLOGUES 

A. 

 

 

 

 

 

 

 

 

 

B. 

Protein Position Type Confidence Sequence 

A. thaliana (AT3G62980) K485 II 99 LRKLEI 

C. sativa (XP_010512696) K485 II 99 LRKLEI 

E. salsugeineum (XP_006402320) K485 II 99 LRKLEI 

B. rapa (XP_009116967) K485 II 99 LRKLEI 

O. sativa (XP_015635915) K480  II 99 LRKLEI 

Z. mays (XP_008669494) K479 II 99 LRKLEI 

S. tuberosum (XP_006359432) K481 II 99 LRKLEI 

N. tabacum (ACT53268) K481 II 99 LRKLEI 

C. annuum (XP_016565699) K481 II 99 LRKLEI 

 

A.  Schematic showing the highly predicted (85%+) SUMOylation sites in TIR1 homologues identified 

using BLASTp. All homologues show a highly conserved SUMOylation site at the C-terminal end of the 

protein (AtTIR1 K485), indicated by a black arrow.   

B. A table showing the location, type, percentage prediction and sequence of the AtTIR predicted SUMO site 

K485 homologues. All predicted sites have the same, highly conserved amino acid sequence.  
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FIGURE 4.3| SUMO SITE LOCATION IN THE 3D STRUCTURE OF ATTIR1 

 

 

 

The 3D-structure of the ASK1-TIR1 auxin-receptor complex, with each component shown in green and blue 

respectively. The three lysine residues predicted to be involved in the SUMOylation of TIR1 are highlighted in 

red. These residues are located on the underside of the main barrel of TIR1, opposite the AUX/IAA binding 

location. The side-chains of K373 and K457 are pointing away from the main body of the TIR1 protein. The 

side-chain of the K485 residue is pointing inwards through the main barrel, towards the auxin-binding site.  

Co-ordinates from pdb file 2P1M (Tan, et al., 2007). Figure generated in PyMOL (Delano, 2002) modelling 

software, Version 1.8. 
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FIGURE 4.4| CLONING OF ARABIDOPSIS THALIANA TIR1 AND AFB PROTEIN FAMILY 

 

 

 

 Gel image showing the cloning of TIR1 (AT3G62980), AFB1 (AT4G03190), AFB2 (AT3G26810) and AFB3 

(AT1G12820). Genes were cloned from Col-0 cDNA extracted from 7-day old seedlings The PCR was 

conducted with the proof-reading polymerase Q5 (New England Biolabs) supplemented with 0.3% DMSO, 

and was run for 30 cycles.   
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FIGURE 4.5| YFP:TIR1 APPEARS TO UNDERGO SUMOYLATION IN TRANSIENT ASSAY 

 

 

 

A.  Western blot showing α-GFP IP and α-GFP IB of YFP:TIR1 plus a YFP control infiltrated with P19 

suppressor protein and recombinant SUMO1:HA in a 1:1:3 ratio. Bands can be seen in all lanes, showing 

expression and successful immunoprecipitation of TIR1 and the GFP control. 10ul of IP was loaded. 

B. Western blot showing α-GFP IP and α-HA IB of YFP:TIR1 and YFP control infiltrated with P19 suppressor 

protein and recombinant SUMO1:HA. A faint band can be seen in the IP lane of YFP:TIR1, indicating 

SUMOylation of TIR1. 20ul of extract and 20ul of IP was loaded. Ponceau S-stained RuBisCO is shown as 

loading control.  

 

 

  



106 
 

FIGURE 4.6| GENOTYPING OF THE ARABIDOPSIS THALIANA PTIR1:TIR1:VENUS LINE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A.  A schematic showing the location and PCR product size of the primers used in the genotyping of the 

Arabidopsis pTIR1:TIR1:VENUS mutant line. 

B. Gel image showing the genotyping of the pTIR1:TIR1:VENUS line alongside a VENUS-only control 

(DR5:VENUS) and the pTIR1:TIR1:VENUS plasmid used to generate the mutant line.  

 

 

  

A. 

B. 
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FIGURE 4.7| THE VENUS TAG IS CLEAVED FROM TIR1 IN THE PTIR1:TIR1:VENUS LINE 

 

 

 

Western blot showing α-GFP IP and α-GFP IB of protein extracted from Arabidopsis thaliana mutant line 

pTIR1:TIR1:VENUS and a VENUS only control line (DR5:VENUS). No TIR1:VENUS was detected in the total 

protein extract or in the IP elution. Free VENUS was detected in the elution from the IP, indicating that the 

tag is undergoing cleavage.  
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4.3 Generation of the Non-SUMOylatable TIR13KR Mutant 
 

In order to identify the predicted SUMO binding sites involved in the conjugation of SUMO 

moieties to TIR1, site directed mutagenesis was used to remove each of the predicted SUMO 

binding residues in turn (see, Appendix A.1). Through the use of specially designed overlapping 

mismatch primers (see, Appendix A.2), the lysine residues at each of the predicted binding sites 

were changed to arginine, thus preventing the binding of SUMO whilst maintaining the structural 

environment of the surrounding area. The three single TIR1 SUMOylation mutants (K373R, K457R 

and K485R) were successfully amplified using the proofreading DNA polymerase Q5 (NEB) plus 

0.3% DMSO from purified recombinant TIR1 pENTR/D-TOPO (see, fig. 4.8) (see, Methods 3.3.1). 

The PCR product was then digested and transformed into E. coli DH5. Mutant clones were 

identified through sequencing by DBS Genomics, with successfully mutated clones used to make 

the double SUMO-site mutants: K373/457R, K373/485R and K457/5485R, via the same process. 

The final, triple SUMO-site mutant, TIR1 3KR, was generated as above from successfully mutated 

double mutant clones.    

 

Upon confirmation of the generation of the TIR1 3KR triple mutant, the clone was then digested 

with MluI (NEB) and transferred via recombination into the 35S, N-terminal GFP-tag Gateway® 

destination vector pEARLYGATE104 and into the 35S, N-terminal 4xMyc-tag pEARLYGATE203.  

Confirmed TIR13KR clones in pEARLYGATE104/203, identified via colony PCR with AttB primers, 

were transformed into the Agrobacterium strain GV3101 ready for transient expression. 

 

In order to confirm the loss of SUMOylation in the TIR13KR mutant, a transient assay in N. 

benthamiana was performed. Recombinant YFP:TIR13KR and YFP:TIR1 transient expression was 

confirmed by western blotting with -GFP monoclonal antibodies (Clonetech). Two large bands 

corresponding to YFP:TIR13KR and YFP:TIR1 respectively were observed in both the IP sample lanes 

(see, fig. 4.9:A). The SUMOylation status of recombinant YFP:TIR13KR in comparison to YFP:TIR1 

was confirmed via western blotting with -HA antibodies (Sigma). A large band was observed at 

~200kDa in the lane corresponding to YFP:TIR1, again confirming that YFP:TIR1 is SUMOylated in 

planta (see, fig. 4.9:B).  No equivalent band was observed in the lane corresponding to the 

YFP:TIR13KR mutant, confirming the loss of SUMOylation, as predicted, with the removal of the 

lysine residues identified by HyperSUMO.    
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To assess the role the SUMOylation of TIR1 plays in auxin signalling, a stability assay was 

conducted. c-MYC:TIR1 and c-MYC:TIR13KR were transiently expressed in N. benthamiana and the 

leaves treated with the auxinic compound 1-Naphthaleneacetic acid (NAA) before collection. 

10uM NAA was infiltrated into leaves expressing c-MYC:TIR1 and c-MYC:TIR13KR, with samples 

taken at 30 minutes and 2 hour time points alongside a non-auxin treated control. The stability of 

c-MYC:TIR13KR compared to c-MYC:TIR1 was assessed via western blot with -c-MYC monoclonal 

antibodies (Sigma). In transient assay, c-MYC:TIR13KR was shown to be less stable than c-

MYC:TIR1, with the stability of the non-SUMOylatable protein decreasing upon the addition of 

auxin (fig. 4.10). The result of this blot provides a potential explanation for the increased auxin 

sensitivity observed in the hyper SUMOylated ots1 ots2 line (see, chapter 3); the SUMOylation of 

the auxin receptor TIR1 stabilises the protein, resulting in an increase in sensitivity to auxin.   

 

To fully confirm SUMOylation of TIR1 and investigate its role in planta, N-terminal c-MYC-tagged 

35S:TIR1 constructs (pEARLYGATE203) of TIR1 and the TIR13KR mutant, were dipped into wild-type 

(Col-0) Arabidopsis, the SUMO protease double knock out mutant line ots1 ots2, and the auxin 

insensitive triple knock out mutant line tir1 afb2 afb3 (see, Methods 3.1.5 & 3.1.6). Seeds from 

the dipped plant lines were collected and germinated on MS media supplemented with BASTA. F1 

transformants were then moved to soil and their seeds collected. F2 seeds were again germinated 

on MS media supplemented with BASTA and transformants selected for growth on soil.    
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FIGURE 4.8| GENERATION OF SINGLE, DOUBLE AND TRIPLE K->R SUMO SITE TIR1 CLONES 

 

A. 

 

B. 

 

 

C. 

 

 

A.  Gel image showing the introduction of the three SUMO site mutations of TIR1 (AT3G62980) to make 

the TIR1 single SUMO site mutants. Genes were mutated from a confirmed TIR1 pENTR/D-TOPO clone. 

The PCR was conducted with the proof-reading polymerase Q5 (New England Biolabs) supplemented with 

0.3% DMSO, and was run for 25 cycles. 

B. Gel image showing the introduction of the three SUMO site mutations of TIR1 (AT3G62980) into 

confirmed single SUMO site mutant clones to make the TIR1 double SUMO site mutants. Genes were 
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mutated from a confirmed TIR1K373R, TIR1K457R and TIR1K485R pENTR/D-TOPO clones. The PCR was 

conducted as stated previously (see, Fg.4.6, A.). 

C. Gel image showing the introduction of the missing SUMO site mutation of TIR1 (AT3G62980) into 

confirmed double SUMO site mutant clones to make the TIR1 triple SUMO site mutant, TIR13KR. Genes 

were mutated from a confirmed TIR1K373R/K457R, TIR1K373R/K485R and TIR1K457R/K485R pENTR/D-TOPO clones. 

The PCR was conducted as stated previously (see Fig. 4.6, A.).   
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 FIGURE 4.9| THE TIR13KR
 SUMO SITE MUTANT IS NOT SUMOYLATED IN TRANSIENT ASSAY 

 

 

 

A.  Western blot showing α-GFP IP and α-GFP IB of recombinant YFP:TIR1
3KR

, YFP:TIR1 and a YFP control 

infiltrated with P19 suppressor protein and recombinant SUMO:HA in a 1:1:3 ratio. Bands can be seen in all 

lanes, showing successful immunoprecipitation of YFP:TIR1
3KR

, YFP:TIR1 and the YFP control. 15ul of IP was 

loaded. 

B.  Western blot showing α-GFP IP and α-HA IB of recombinant YFP:TIR1
3KR

, YFP:TIR1 and YFP control 

infiltrated with P19 suppressor protein and recombinant SUMO:HA. A large band can be seen in the IP lane 

of YFP:TIR1, indicating SUMOylation of YFP:TIR1. No corresponding band can be seen in the IP lane of 

YFP:TIR1
3KR

, indicating the successful removal of the SUMO sites.  20ul of IP was loaded.  
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FIGURE 4.10| THE TIR1 3KR MUTANT SHOWS A DECREASE IN STABILITY UPON THE ADDITION OF AUXIN 

 

 

 

 

Western blot showing α-c-MYC IB of c-MYC:TIR1 and c-MYC:TIR1
3KR

 alongside a MYC-tag control and 

uninfiltrated N. benthamiana extract in transient assay. Leaves were treated with 1uM NAA and samples 

collected at 30 minute and 2 hour time points. 20ul of protein extract was loaded. Ponceau-stained RuBisCO 

is shown as loading control.  
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4.4 SUMOylation and TIR1 interaction data 
 

To further probe the effects of the SUMOylation of TIR1 on the auxin response, the interaction of 

both the YFP:TIR1 and non-SUMOylatable YFP:TIR13KR mutant with several proteins involved in the 

auxin signalling cascade and SUMOylation machinery were studied.      

 

In order to act as ubiquitin E3 ligase, the auxin receptor F-box protein, TIR1, forms a complex with 

three others: ASK1, CUL1 and RBX1 (Yu, et al., 2015). To assess the effects of SUMOylation on the 

assembly of the SCFTIR E3 ligase complex, ASK1 and CUL1 were cloned for use in transient assay 

(fig. 4.11). Both ASK1 and CUL1 were successfully amplified using the proofreading DNA 

polymerase Q5 (NEB) plus 0.3% DMSO from cDNA generated from 7 day old Col-0 seedlings. The 

PCR product was purified using a ZymocleanTM Gel DNA Recovery Kit (Zymo) and cloned into the 

entry vector pENTR/D-TOPO. The constructs were transformed into E. coli DH5 and the colonies 

screened for successful clones by PCR using AttB primers. Two clones for each construct were 

selected for plasmid purification followed by in-house sequencing via DBS Genomics. Constructs 

containing the correct gene sequence were digested with MluI (NEB) and transferred via 

recombination into the 35S, N-terminal HA-tag Gateway® destination vector pEARLYGATE201. 

Confirmed ASK1 and CUL1 clones in pEARLYGATE201, identified via colony PCR with AttB primers, 

were transformed into the Agrobacterium strain GV3101 ready for transient expression.  

 

To investigate the effect of SUMOylation on the assembly of the TIR1-ASK1 complex, a CO-IP of 

transiently expressed YFP:TIR1 and YFP:TIR13KR with HA:ASK1 was performed (fig. 4.12) (see, 

Methods 3.4.6). A western blot probed with -HA monoclonal antibodies (Sigma) showed there 

was no difference in the interaction of ASK1 with both YFP:TIR1 and YFP:TIR1:3KR. Therefore, it can 

be concluded that SUMOylation does not affect the assembly of the TIR1-ASK1 complex.  

 

 The experiment was repeated with HA:CUL1 and HA:RBX1, in order to determine whether 

SUMOylation of TIR1 affected the assembly of the rest of the E3 ligase complex. However, neither 

construct expressed sufficiently well in N. benthamiana to conduct the CO-IP.  
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Alongside the components of the E3 ligase complex, the effects of TIR1 SUMOylation upon the 

AUX/IAA repressors were also studied. In order to assess the role of TIR1 SUMOylation in auxin-

induced degradation of the AUX/IAA repressor family, c-MYC:TIR1 and c-MYC:TIR13KR were 

transiently expressed in N. benthamiana alongside YFP:IAA18 (see. Chapter 5.2 for construct 

generation) and the leaves treated with the auxinic compound 1-Naphthaleneacetic acid (NAA) 

before collection. 1uM NAA was infiltrated into leaves expressing the recombinant proteins, with 

samples taken at 30 minutes and 2 hour time points alongside a non-auxin treated control. A CO-

IP of transiently expressed c-MYC:TIR1 and c-MYC:TIR13KR with YFP:IAA18 was performed (fig. 

4.13). A western blot probed with -GFP monoclonal antibodies showed there was no difference 

in the interaction of YFP:IAA18 with both c-MYC:TIR1 and C-MYC:TIR1:3KR. Therefore, it can be 

concluded that SUMOylation does not affect the stability of IAA18. 

 

Due to the increase in auxin sensitivity observed in the ots1 ots2 mutant line, the interaction of 

TIR1 and its non-SUMOylatable counterpart with the SUMO protease OTS1 was also studied. A 

CO-IP of transiently expressed YFP:TIR1 and YFP:TIR1:3KR with OTS1:HA was performed (fig. 4.14). 

A western blot probed with -HA monoclonal antibodies showed there was no interaction 

between OTS1:HA and either of the recombinant TIR1 proteins. This suggests that OTS1 is not the 

primary SUMO protease responsible for the regulation of TIR1 SUMOylation.  
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FIGURE 4.11| CLONING OF AUXIN-RESPONSIVE E3 LIGASE COMPLEX PROTEINS CUL1 AND ASK1  

 

 

Gel image showing the cloning of CUL1 (AT3G62980) and ASK1 (AT4G03190). Genes were cloned from 

Col-0 cDNA extracted from 7-day old seedlings The PCR was conducted with the proof-reading 

polymerase Q5 (New England Biolabs) supplemented with 0.3% DMSO, and was run for 30 cycles.   
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FIGURE 4.12| BOTH TIR1 AND TIR13KR
 INTERACT WITH ASK1 IN TRANSIENT ASSAY 

 

 

 

A.  Western blot showing α-GFP IP and α-GFP IB of recombinant YFP:TIR1
3KR

, YFP:TIR1 and a YFP control 

infiltrated with P19 suppressor protein and recombinant HA:ASK1 in a 1:1:1 ratio. Bands can be seen in all 

lanes, showing successful immunoprecipitation of YFP:TIR1
3KR

, YFP:TIR1 and the YFP control. 10ul of IP was 

loaded. 

B.  Western blot showing α-GFP IP and α-HA IB of recombinant YFP:TIR1
3KR

, YFP:TIR1 and YFP control 

infiltrated with P19 suppressor protein and recombinant HA:ASK1. Large bands corresponding to HA:ASK1 

can be seen in the YFP:TIR1 and YFP:TIR1
3KR

 lanes, indicating interaction with HA:ASK1. No corresponding 

band can be seen in theYGFP control.  5ul of IP was loaded.  
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FIGURE 4.13| THE TIR13KR
 MUTANT INTERACTS WITH IAA18 IN TRANSIENT ASSAY 

 

 

 

Western blot showing transient expression and stability of YFP:IAA18 after treatment with 1uM NAA. α-c-

MYC IB (Top) and α-GFP IB (bottom) show recombinant c-MYC:TIR1, c-MYC:TIR1
3KR

 and a c-MYC control 

infiltrated with P19 suppressor protein and recombinant YFP:IAA18 in a 1:1:1 ratio. Bands corresponding to 

YFP:IAA18 can be seen in all lanes. 20ul of protein extract was loaded.  
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FIGURE 4.14| TIR1 DOES NOT INTERACT WITH OTS1 IN TRANSIENT ASSAY 

 

 

A.  Western blot showing α-GFP IP and α-GFP IB of recombinant YFP:TIR1
3KR

, YFP:TIR1 and a YFP control 

infiltrated with P19 suppressor protein and recombinant OTS1:HA in a 1:1:1 ratio. Bands can be seen in all 

lanes, showing successful immunoprecipitation of YFP:TIR1
3KR

, YFP:TIR1 and the YFP control. 20ul of IP was 

loaded. 

B.  Western blot showing α-GFP IP and α-HA IB of recombinant YFP:TIR1
3KR

, YFP:TIR1 and YFP control 

infiltrated with P19 suppressor protein and recombinant OTS1:HA. No bands corresponding to OTS1:HA can 

be seen when probed with α-HA.  20ul of IP was loaded.  
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4.4 SIM of TIR1 
 

Aside from conjugation through its C-terminal di-glycine motif, SUMO is also able to interact with 

and influence the function of target proteins in a non-covalent manner via SUMO-Interacting 

Motifs (SIMs) (Hecker, et al., 2006). Previous work by Conti, et al. (2014), identified potential 

Arabidopsis SIM sites using peptide arrays, which were then used to educate the HyperSUMO 

programme created by Dr. Stuart Nelis (Nelis, 2014). Using the HyperSUMO programme, several 

potential SIM sites were identified in the TIR1/AFB protein family (fig. 4.15). 

 

To investigate the potential role of non-covalent SUMO interaction in the auxin signalling cascade, 

a CO-IP of transiently expressed YFP:TIR1 with SUMO1:HA was performed (fig. 4.17). A western 

blot probed with -HA monoclonal antibodies showed there was no non-covalent interaction 

between YFP:TIR1 and SUMO1 (fig. 4.16). Therefore, it can be concluded that TIR1 does not 

possess a functioning SIM.  
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FIGURE 4.15| SIM SITE PREDICTION FOR THE TIR1/AFB FAMILY  

A. 

 

B. 

Protein Position Type Confidence Sequence 

TIR1 132 to 144 A 94 FKVLVLSSCEGFS 

TIR1 184 to 196 A 98 TSLVSLNISCLAS  

TIR1 554 to 566 A 93 ERVFIYRTVAGPR 

AFB1 154 to 166 A 94 LRVLELRECIVED 

AFB1 549 to 561 A 92 ERIYIYRTVAGPR 

AFB3 128 to 140 A 98 KSLVLVSCEGFTT 

AFB3 284 to 296 A 99 QNLISLNLSYAAE 

TIR1 23 to 35  R 92 LDKDRNSVSLVCK 

AFB1 19 to 31 R 92 SNEDRNSVSLVCK 

AFB1 147 to 159 R 87 IAATCRNLRVLEL 

AFB1 353 to 365 R 87 IPLTEQGLVFVSK 

AFB2 18 to 30 R 91 SHKDRNAISLVCK 

AFB2 435 to 447 R 93 SGLLTDQVFLYIG 

AFB3 18 to 30 R 93 SHKDRNSISLVCK 

AFB3 319 to 331 R 88 DSIGDKGLAVVAA 

AFB3 437 to 449 R 93 SGLLTDQVFLYIG 
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A.  Schematic showing the highly predicted (85%+) SUMO INTERACTION MOTIFs (SIMs) in the Auxin-

Responsive F-box family of proteins. The predicted SIMs located within this protein family differ between 

members.  

B. A table showing the location, type, percentage prediction and sequence of the predicted SIMs in the 

Auxin-Responsive F-Box Family of proteins.  
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FIGURE 4.16| NO SIM SITE BINDING IS OBSERVED FOR TIR1 UNDER TRANSIENT ASSAY CONDITIONS 

 

 

 

A.  Western blot showing α-GFP IP and α-GFP IB of recombinant YFP:TIR1 and a YFP control infiltrated with 

P19 suppressor protein and recombinant SUMO1:HA in a 1:1 ratio. Bands can be seen in all lanes, showing 

successful immunoprecipitation of YFP:TIR1 and the YFP control. 20ul of IP was loaded. 

B.  Western blot showing α-GFP IP and α-HA IB of recombinant YFP:TIR1 and YFP control infiltrated with P19 

suppressor protein and recombinant SUMO1:HA. No bands corresponding to SUMO1:HA can be seen in the 

IP lanes when probed with α-HA.  20ul of IP was loaded.  
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4.6 Discussion 
 

Analysis of the protein sequences of the F-box auxin receptor family of proteins by the 

programme HyperSUMO revealed the presence of several SUMO sites for each member. Despite 

the relatively high level of protein sequence conservation between the members of this protein 

family (fig. 4.1), there was little in the way of similarity in the location and motif of the predicted 

SUMO binding sites; of the four proteins, only the C-terminal Type II SUMO-binding sites of AFB1 

and AFB2, and the N-terminal Type II SUMO binding sites of AFB2 and AFB3 were conserved. And 

of this, only the latter showed any form of binding motif similarity between sites. This difference 

in predicted SUMO binding suggests that despite their relative redundancy in terms of auxin 

perception, SUMOylation plays a very different role for each protein.  

 

Further bioinformatic analysis revealed the conservation of one of the predicted SUMO binding 

sites amongst inter-species homologues of the AtTIR1 auxin receptor protein (fig. 4.2). The 

predicted K485 SUMO binding site was identified in all homologues, ranging from closely related 

dicots such as B. rapa (Tiffin & Hahn, 2002) to commercially important monocot species such as O. 

sativa. The high level of conservation amongst the TIR1 homologues indicated that of all auxin 

receptor F-box family members, TIR1 was perhaps the most promising candidate to help elucidate 

the role SUMOylation plays in auxin signalling.         

                                                                          

Consequently, transient expression of TIR1 was used to confirm the presence of covalently bound 

SUMO moieties to the protein. The band shift observed indicates that TIR1 is decorated with 

many SUMO proteins, suggesting that all three predicted sites are utilised in the binding of either 

a single moiety or a poly-SUMO chain (Vertegaal, 2010). Whether SUMO binding at these 

separate sites confers different functions to the TIR1 protein, such as the SUMO site dependent 

effects on localisation and stability demonstrated for mammalian POLY(A)-POLYMERASE (PAP) 

(Vethantham, et al., 2008), remains to be seen. Further phenotyping work using the generated 

single and double TIR1 SUMO site mutants (fig. 4.8) dipped into an Arabidopsis line of appropriate 

background, such as the auxin signalling triple mutant tir1 afb2 afb3, would allow the function of 

each of these sites to be determined fully. 
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Having established that TIR1 undergoes SUMOylation in planta, the generation of a mutant form 

of the protein with all three SUMO sites rendered impotent through the substitution of the active 

lysine with arginine was undertaken. Transient expression of this mutant, the TIR13KR, further 

confirmed the location of SUMO binding (as predicted by HyperSUMO) through the complete loss 

of SUMOylation of the protein. This un-SUMOylatable form of TIR1 was shown to be less stable, 

with less protein observed under control conditions and after exogenous auxin treatment. The 

decrease in recombinant protein level observed for the mutant suggests that SUMO is essential in 

the regulation of TIR1 stability, and therefore auxin signalling.  

 

SUMO plays a large role in the response to both endogenous and external stresses, such as 

genotoxic shock and heat stress (Enserink, 2015). During times of stress, SUMO proteases, such as 

ESD4, OTS1 and OTS2, cleave SUMO moieties from their target proteins, resulting in a significant 

change in transcriptional regulation within the plant (Park, et al., 2011). One of the ways this 

change in transcriptional regulation occurs is through ubiquitin-SUMO pathway crosstalk. In 

plants subject to heat shock, the ubiquitination of SUMO-conjugated proteins was found to 

dramatically increase (Millera, et al., 2010). It is therefore possible, that the removal of SUMO 

from TIR1 induces ubiquitation of the protein, leading to an increase in TIR1 turnover, thus 

reducing the pool of readily available TIR1 within the cell. This hypothetical mechanism allows the 

plant to quickly and efficiently control auxin-mediated growth under stress conditions through an 

auxin-independent manner.                                    

 

The data obtained from transient assay regarding the interaction of the non-SUMOylatable form 

of TIR13KR with a number of its binding partners lends credence to the theory that the 

SUMOylation of TIR1 affects auxin signalling through maintenance of receptor stability only. No 

difference in interaction was observed between either from of TIR1 and ASK1 (fig. 4.12) or IAA18 

(fig 4.13).  This suggests that SUMO does not affect the assembly of the SCF E3 ligase complex, of 

which ASK1 is an integral component, or the binding and subsequent degradation of the AUX/IAA 

transcriptional inhibitors, such as IAA18. This assumption, however, is to be taken with a pinch of 

salt, as the rest of the SCF complex proteins (CUL1 and RBX1) along with other members of the 

AUX/IAA family have not been tested. It is possible that the SUMOylation status of TIR1 may 

affect the binding of these other, untested proteins.  
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However, due to the inherent flaws of transient expression, the data presented in this chapter 

may not be an entirely accurate representation of what occurs in vivo. Further work involving the 

transgenic Arabidopsis lines expressing c-MYC-tagged TIR1 and TIR13KR will be used to confirm 

both the SUMOylation status of TIR1 and the role that status plays within the plant root.  
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4.7 Conclusion 
 

In this chapter, a possible process through which the increased auxin sensitivity observed in the 

hyper-SUMOylated Arabidopsis SUMO protease mutant, ots1 ots2, (see, Chapter 3) is achieved 

has been shown.  

 

Transient assay results in N. benthamiana indicate that an integral part of the auxin signalling 

machinery, the auxin receptor TIR1, undergoes SUMOylation in planta (see, fig. 4.5/4.9). 

Subsequent removal of the predicted SUMO binding sites of TIR1 has been shown to affect the 

stability of the receptor (fig. 4.10). It is therefore possible to conclude that the addition of SUMO 

moieties to TIR1 stabilises it, consequently resulting in increased auxin signalling within the plant. 

This conclusion is borne out in the increased sensitivity to exogenous auxin observed in the ots1 

ots2 mutant line, where the levels of SUMO-conjugated proteins are far higher than those 

observed in wild type plants (Conti, et al., 2008). 
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5. The Role of SUMOylation in the Downstream 

Components of the Auxin Signalling Cascade 
 

5.1 Introduction 
  

The results presented in chapter 4 suggest that SUMO plays a role in auxin signalling through 

modification of the auxin receptor E3 ligase TIR1.  

 

However, TIR1 may not be the only target for SUMOylation within this pathway. It is not unusual 

for several proteins within a pathway to become modified, either simultaneously or sequentially, 

by posttranslational modifiers such as SUMO. For example, many of the proteins involved in 

double-stranded DNA break repair undergo rapid SUMOylation, with the SUMO moieties 

stabilising the physical interactions necessary to successfully repair the break (Psakhye & Jentsch, 

2012). It is therefore possible that other auxin signalling components downstream of TIR1 are also 

subject to modification by SUMO, allowing the plant to be able to more finely tune its response to 

environmental stress.   

 

In this chapter, the SUMOylation status of the rest of the auxin signalling cascade machinery, the 

AUX/IAA and ARF protein families, is investigated. The transcriptional response to auxin in a 

hyper-SUMOylated environment is also studied in this chapter, allowing for further confirmation 

of the role SUMO plays in the auxin perception and signalling. 
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5.2 The AUX/IAA Repressor Proteins Do Not Undergo SUMOylation in Transient 
Assay 
 

The AUX/IAA family of repressor proteins are an integral part of the auxin signalling machinery. 

The SUMOylation of these proteins, alongside TIR1, may also play a role in the regulation of the 

auxin response. SUMOylation of AUX/IAA proteins may interfere with their stability and rate of 

turnover, therefore modulating auxin responsive gene expression in a SUMO-dependent manner 

entirely independent to TIR1. 

 

To investigate this hypothesis, the protein sequences of the AUX/IAA repressor proteins were 

scanned for potential SUMO binding sites using the bioinformatics software, HyperSUMO (Nelis, 

2014), as shown in fig. 5.1. A large number of potential SUMO binding sites were identified by the 

software, with several of the more closely related AUX/IAA proteins containing two predicted 

SUMO binding sites located at the C-terminal end. 

 

Given the prohibitively large number of AUX/IAA proteins and their relative functional 

redundancy within the auxin signalling pathway, a full investigation of the SUMOylation status of 

AUX/IAA family was not conducted. Instead, four AUX/IAA proteins shown to be involved in the 

formation of lateral roots (Marchant, et al., 2002; Goh, et al., 2012; Uehara, et al., 2008) were 

selected: IAA2 (AT3G23030), IAA3 (AT1G04240), IAA14 (AT4G14550) and IAA18 (AT1G51950). 

These AUX/IAA proteins were successfully amplified using the proofreading DNA polymerase Q5 

(NEB) from cDNA generated from 7 day old Col-0 seedlings (fig. 5.2) (see, Methods 3.3.1&3.3.7/8). 

The PCR product was purified using a ZymocleanTM Gel DNA Recovery Kit (Zymo) and cloned into 

the entry vector pENTR/D-TOPO. The constructs were transformed into E. coli DH5 and the 

colonies screened for successful clones by PCR using AttB primers. Two clones for each construct 

were selected for plasmid purification followed by in-house sequencing via DBS Genomics. 

Constructs containing the correct gene sequence were digested with MluI (NEB) and transferred 

via recombination into the 35S, N-terminal GFP-tag Gateway® destination vector pEARLYGATE104 

(see, Methods 3.3.4 & 3.3.5).  Confirmed IAA2, IAA3, IAA14 and IAA18 clones in pEARLYGATE104, 

identified via colony PCR with AttB primers, were transformed into the Agrobacterium strain 

GV3101 ready for transient expression (see, Methods 3.2.3).  
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Transient assays in N. benthamiana using 35S:YFP:IAA3 and 35S:YFP:IAA18 were conducted to 

confirm the SUMOylation status of IAA3 and IAA18 (see, Methods 3.4). YFP:IAA3 and YFP:IAA18 

transient expression was confirmed by western blotting with -GFP monoclonal antibodies 

(Clonetech). Specific bands corresponding to YFP:IAA3 and YFP:IAA18 were observed in both the 

extract and IP sample lanes (fig. 5.3). The SUMOylation status of the YFP:IAA3 and YFP:IAA18 

constructs was confirmed via western blotting with -HA antibodies (Sigma). No bands were 

observed in the lanes corresponding to YFP:IAA3 and YFP:IAA18, indicating that neither of these 

AUX/IAA proteins is SUMOylated in planta. However, in the total protein extracts obtained from 

transient expression, there is a dramatic reduction in free SUMO observed in those co-expressing 

recombinant AUX/IAA proteins. This may be due to an increased turnover rate of SUMO-tagged 

AUX/IAA proteins, with the addition of a SUMO moiety dramatically reducing the stability of the 

repressors. 

  

In light of this, the SUMOylation status of a stabilised (through the mutation of the DII degron 

domain) IAA28 construct (obtained from Teva Vernoux, ENS de Lyons) was also investigated.  

YFP:IAA28 transient expression was confirmed by western blotting with -GFP antibodies 

(Clonetech). A specific band corresponding to YFP:IAA28 was observed in the IP sample lane. The 

SUMOylation status of the YFP:IAA28 construct was confirmed via western blotting with -HA 

monoclonal antibodies (Sigma). No band was observed, indicating that IAA28 is not SUMOylated 

in planta (fig. 5.4). 
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FIGURE 5.1| SUMO SITE PREDICTION FOR THE AUX/IAA REPRESSOR FAMILY 

 

 

 

 

A schematic showing the highly predicted (85%+) SUMOylation sites in the AUX/IAA repressor family of 

proteins. Many of the AUX/IAA proteins show two highly conserved SUMOylation sites at the C-terminal 

end, as indicated by the two black arrows.   
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FIGURE 5.2| CLONING OF THE AUX/IAA PROTEINS IAA2, IAA3, IAA14 AND IAA18 

 

 

 

Gel image showing the cloning of IAA2 (AT3G23030), IAA3 (AT1G04240), IAA14 (AT4G14550) and IAA18 

(AT1G51950). Genes were cloned from Col-0 cDNA extracted from 7-day old seedlings The PCR was 

conducted with the proof-reading polymerase Q5 (New England Biolabs) supplemented with 0.3% DMSO, 

and was run for 30 cycles.   
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FIGURE 5.3| THE AUX/IAA PROTEINS IAA3 AND IAA18 ARE NOT SUMOYLATED UNDER TRANSIENT 

ASSAY CONDITIONS 

 

 

A.  Western blot showing α-GFP IP and α-GFP IB of recombinant YFP:IAA3, YFP:IAA18 and a YFP control 

infiltrated with P19 suppressor protein and recombinant SUMO1:HA in a 1:1:3 ratio. Bands can be seen in all 

lanes, showing successful immunoprecipitation of YFP:IAA3, YFP:IAA18 and the YFP control. 15ul of IP was 

loaded. 

B.  Western blot showing α-GFP IP and α-HA IB of recombinant YFP:IAA3, YFP:IAA18 and YFP control 

infiltrated with P19 suppressor protein and recombinant SUMO1:HA. No bands can be seen in any of the 

lanes, indicating that both YFP:IAA3 and YFP:IAA18 are not SUMOylated under transient assay conditions.  

20ul of IP was loaded.  
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FIGURE 5.4| STABILISED IAA28 IS NOT SUMOYLATED UNDER TRANSIENT ASSAY CONDITIONS  

 

 

 

 

A.  Western blot showing α-GFP IP and α-GFP IB of recombinant YFP:IAA28 plus a GFP control infiltrated 

with P19 suppressor protein and recombinant SUMO1:HA in a 1:1:3 ratio. Bands can be seen in both lanes, 

showing expression and successful immunoprecipitation of YFP:IAA28 and the GFP control. 20ul of IP was 

loaded. 

B. Western blot showing α-GFP IP and α-HA IB of recombinant YFP:IAA28 and GFP control infiltrated with 

P19 suppressor protein and recombinant SUMO1:HA. No bands can be seen, indicating that YFP:IAA28 is not 

SUMOylated. 20ul of IP was loaded.  
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5.3 The Activating ARF Transcription Factors, ARF7 and ARF19, Undergo 
SUMOylation in Transient Assay  
 

The Auxin Response Factors ARF7 and ARF19 have been shown to play a large role in the 

regulation of lateral root formation in Arabidopsis thaliana (Okushima, et al. 2007). The lateral 

root phenotype observed in the ots1 ots2 double mutants (see, Chapter 3. 3) suggests that SUMO 

may also play a role in lateral root regulation, potentially through the SUMOylation of previously 

identified regulatory proteins, such as ARF7 and ARF19. 

 

To investigate this hypothesis, the protein sequences of the activating ARFs (ARF5 (AT1G119850), 

ARF6 (AT1G30330), ARF7 (AT5G20730), ARF8 (AT5G37020) and AF19 (AT1G19220)) were scanned 

for potential SUMO sites using the bioinformatics software HyperSUMO (Nelis, 2014). In ARF7 and 

ARF19, two homologous SUMO binding sites were identified in each protein sequence (fig. 5.5). 

The first of these binding sites, residue K103 in ARF7 and residue K104 in ARF19, is located in the 

DNA binding region of the ARF proteins, making it a promising candidate for further investigation.   

 

Transient assays in N. benthamiana using 35S:ARF7:4xMYC and 35S:ARF19:GFP constructs 

(obtained from Professor Malcolm Bennett, Nottingham University) were conducted to confirm 

the SUMOylation status of ARF7 and ARF19 (see, Methods 3.4). ARF7 and ARF19 transient 

expression was confirmed by western blotting with -c-MYC (Sigma) and -GFP (Clonetech) 

monoclonal antibodies, respectively. Specific bands corresponding to ARF7:MYC and ARF19:GFP 

were observed in both the extract and IP sample lanes (fig. 5.6 & 5.7). The SUMOylation status of 

both constructs was confirmed via western blotting with -SUMO1 antibodies (Abcam).  

 

The transient expression data shows that ARF7 is SUMOylated in planta (fig. 5.6). The level of 

SUMOylated ARF7 is very low, as can be seen from the faint band observed in the IP lane, despite 

150ul of concentrated protein run.  The same low level of SUMOylation was also observed for 

ARF19 (fig. 5.7). It is possible that these proteins are more highly SUMOylated in Arabidopsis root 

tissue compared to transient expression in leaves. This could be due to the spatiotemporal 

expression of ARFs and associated SUMOylation machinery. 
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DELLA proteins negatively regulate gibberellin (GA) signalling, resulting in reduced growth 

(Hussain & Peng, 2003). The binding of GA to its receptor (GID1) causes degradation of these 

proteins by the UPS (Eckardt, 2006), with recent work (Conti, et al., 2014) showing that 

SUMOylation of one of the DELLAs, RGA, halts this process. Recently, GA signalling has been 

shown to play an important role in lateral root formation through GA-Auxin cross-talk 

(Farquharson, 2010). Studies in transgenic Poplar have confirmed the inhibitory role of GA in 

lateral root development, suggesting that GA signalling is involved in root remodelling in response 

to stress (Goua, et al., 2010).  

 

To investigate the role of DELLAs, a protein complex immunoprecipitation (CO-IP) with two 

DELLAs, GAI:HA and RGA:HA, and ARF19:GFP was performed (see, Methods 3.4.6). The transient 

expression data shows that RGA:HA and ARF19:GFP interact in vivo (fig. 5.8). The CO-IP data 

combined with the lateral root assay data (see, chapter 3.3) suggests a role for DELLA proteins in 

lateral root formation. It is currently unclear from the CO-IP data as to whether GAI:HA and 

ARF19:GFP interact due to dark smearing on the western blot. 
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FIGURE 5.5| PREDICTED SUMOYLATION SITES IN THE ACTIVATING ARFS 

A. 

 

B. 

Protein Position Type Confidence Sequence 

ARF5 K665 I 99 GLKFDQ 

ARF6 K390 I 99 GLKEDD 

ARF5 K531 II 100 PAKPEN 

ARF7 K104 II 96 VNKYDR 

ARF7 K889 II 98 YSKSDM 

ARF8 K561 II 97 FMKSDF 

ARF19 K103 II 96 VNKYDR 

ARF19 K800 II 100 YTKTES 

 

A.  Schematic showing the highly predicted (85%+) SUMOylation sites in the ARF family of auxin-

responsive transcription factors. Both ARF7 and ARF19 contain a SUMOylation site located within the 

DNA-binding region of the protein (indicated by arrowhead), which may play a vital role in SUMO-

dependent regulation of the transcription of auxin responsive genes.  

B. A table showing the location, type, percentage prediction and sequence of the predicted SUMO sites in 

the activating ARFs.  
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FIGURE 5.6| ARF7:MYC IS SUMOYLATED IN TRANSIENT ASSAY 

 

 

 

A. Western blot showing α-c-MYC IP and α-c-MYC IB of recombinant ARF7:MYC plus a MYC-tagged control 

(SAE2) infiltrated with P19 suppressor protein in a 1:1 ratio. Bands can be seen in all lanes, showing 

expression and successful immunoprecipitation of ARF7:MYC and the MYC:SAE2 control. 25ul of extract and 

10ul of IP was loaded. 

B. Western blot showing α-c-MYC IP and α-SUMO IB of recombinant ARF7:MYC and MYC:SAE2 control. A 

faint band can be seen in the IP lane of ARF7:MYC, indicating SUMOylation of ARF7. 50ul of extract and 

150ul of IP was loaded.  
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FIGURE 5.7| ARF19:GFP IS SUMOYLATED IN TRANSIENT ASSAY 

 

 

 

 

 

A. Western blot showing α-GFP IP and α-SUMO IB of recombinant ARF19:GFP plus GFP-only control 

infiltrated with P19 suppressor protein in a 1:1 ratio. .A faint band can be seen in the IP lane of ARF19:GFP, 

indicating SUMOylation of ARF19. 50ul of extract and 150ul of IP was loaded.  

B. Western blot showing α-GFP IP and α-GFP IB of recombinant ARF19:GFP and GFP-only control. . Bands 

can be seen in all lanes, showing expression and successful immunoprecipitation of ARF19:GFP and the GFP-

only control.  10ul of IP was loaded.  
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FIGURE 5.8| ARF19:GFP POTENTIALLY INTERACTS WITH GAI:HA AND RGA:HA  

 

 

A.  Western blot showing α-HA IP and α-HA IB of recombinant DELLA proteins RGA:HA and GAI:HA infiltrated 

with either ARF19:GFP or GFP-only control and P19 suppressor protein in a 1:1:1 ratio. Bands can be seen in 

all lanes, showing expression and successful immunoprecipitation of RGA:HA and GAI:HA. 10ul of IP was 

loaded.  

B. Western blot showing α-HA IP and α-GFP IB of recombinant DELLA proteins RGA:HA and GAI:HA to 

identify protein-protein interactions between RGA or GAI with ARF19:GFP. A band corresponding to 

ARF19:GFP can be seen in the IP lane of RGA:HA, indicating RGA-ARF19 interaction. No bad can be identified 

in the corresponding control lane. No bands can be identified in the GAI:HA IP lanes due to smearing. 50ul of 

extract and 30ul of IP was loaded. 
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5.3 DR5:VENUS Signalling is Higher in the ots1 ots2 Background 
 

In order to study the down-stream effects of SUMOylation on the auxin signalling machinery, 

plants containing the auxin-signalling marker, DR5::VENUS (Ulmasov, et al., 1997); Benková, et al., 

2003), were crossed into the ots1 ots2 mutant line (see, Methods 2.1.6). DR5::VENUS is a tool 

used to observe the effect of auxin-mediated transcription. It consists of a synthetic auxin-

responsive promoter constructed of several repetitions of the auxin responsive element (AuxRE) 

motif, CCTTTTGTCTC (Mironova, et al., 2014). This promoter is used to drive the expression of the 

VENUS marker in an auxin-dependent fashion, allowing visualization of the auxin response in vivo.  

 

Seeds from the siliques which developed from manually crossed flowers (DR5::VENUS male, ots1 

ots2 female), were collected and grown on soil under long day conditions. F1 hybrids for 

DR5::VENUS, ots1 and ots2 were determined by PCR of genomic DNA (see, Methods, 3.31 & 3.36). 

F1 hybrid seeds were then collected and grown on soil under long day conditions, with F2 plants 

homozygous for ots1 ots2 and DR5::VENUS determined, again, by PCR (see, Appendix A.3). Seeds 

from the DR5::VENUS ots1 ots2 triple mutant lines were collected and stored ready for further 

use.  

 

In order to determine the effects of a hyper-SUMOylated environment upon auxin-mediated 

transcription, and therefore auxin signalling by proxy, 6-day-old seedlings containing the 

DR5::VENUS auxin reporter, either in the WT (Obtained from Malcolm Bennet, Nottingham 

University) or SUMO protease mutant (ots1 ots2) background, were subjected to treatment with 

1uM IAA over a 24-hour period. At the 1 hour, 3 hour, 6 hour and 24 hour time points, the auxin-

mediated transcriptional response of the WT and ots1 ots2 Arabidopsis lines was analysed using 

fluorescence microscopy.  

 

Unsurprisingly, the levels of free VENUS observed in the auxin-treated ots1 ots2 line seemed to be 

far higher than those observed in their WT counterpart (fig. 5.9). This indicates that increased 

levels of SUMO-conjugates within Arabidopsis may lead to in auxin signalling, and therefore 

sensitivity, further lending weight to the results observed in chapter 3; in a hyper-SUMOylated 

environment, auxin sensitivity is amplified. Very little VENUS was observed in both the treated 

and untreated WT controls. However, it is possible that this is due to silencing DR5 expression.   
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FIGURE 5.9| HIGHER LEVELS OF VENUS ARE OBSERVED AFTER AUXIN TREATMENT IN THE OTS1 OTS2 

BACKGROUND COMPARED TO WT  

 

 

 

 

Roots of 7-day-old DR5::VENUS and DR5::VENUS x ots1 ots2 and seedlings at 60x magnification and 

excitation at λ488nm showing the difference in auxin transcriptional response upon exposure to IAA at 

selected time points. A higher transcriptional response is observed in the DR5::VENUS x ots1 ots2 line.  

Seedlings were germinated on ½ MS plates with 0.8% phytoagar supplemented with 0.5% sucrose. The 

seedlings were germinated and grown under 24 hour light conditions for 7 days. The seedlings were then 

transferred to 20ml of liquid 1/2MS media, supplemented with 1uM IAA, and incubated under 24hr light 

conditions, with gentle shaking, for 1-24hrs. Scale bar = 20μm 
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5.4 Discussion 
 

Sequence analysis of the AUX/IAA and ARF families of proteins via HyperSUMO revealed the 

presence of several potential SUMO binding sites within members of both families, lending 

credence to the hypothesis that several proteins involved in the auxin signalling cascade undergo 

SUMOylation.  

 

In the first of these protein families, that of the AUX/IAA transcriptional repressors, several 

potential SUMO binding sites were identified (fig. 5.1). Indeed, only three of the 30 family 

members, IAA30/33/34, did not contain any predicted SUMO binding sites. Two potential SUMO 

binding sites, located towards the C-terminal end of the proteins, were conserved amongst over 

half of the AUX/IAA family. The high level of conservation of these sites amongst the AUX/IAAs 

merited further investigation, with several family members, particularly those involved in the 

growth and development of the lateral root primordia, selected for cloning. 

 

However, despite the predictions of HyperSUMO with regards to SUMO binding, no SUMOylation 

was observed for the transiently expressed AUX/IAA proteins (fig. 5.3).  Initially, it was thought 

that the lack of observed SUMOylation of the AUX/IAAs may have been due to the addition of 

SUMO inducing a reduction in protein stability. To test this theory, a non-degradable form of 

IAA28 was transiently expressed and probed for SUMO modification (fig. 5.4); no SUMOylation 

was observed for IAA28 in transient assay.  

 

This is not to say, however, that no members of the AUX/IAA repressor protein family are 

SUMOylated. Though the family itself is large and fraught with functional redundancy between 

members, each of the AUX/IAAs do appear to play distinct roles within the plant. Indeed, though 

most members follow the same, four-domain structure, the different AUX/IAA proteins show 

variances in rate of turnover and spatiotemporal expression (Audran-Delalande, et al., 2012). It is 

possible that these differences also extend into the level of SUMO modification, perhaps with 

AUX/IAA proteins only undergoing SUMOylation under certain conditions or in certain tissues as 

part of a more complex network of regulation. Further work using Arabidopsis mutant lines 

expressing tagged AUX/IAA proteins under their own promoters would help tease out whether 

the AUX/IAAs are SUMOylated only in a spatiotemporal pattern or, indeed, not at all.  
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SUMO binding site analysis of the ARF family of transcription factors by HyperSUMO (fig. 5.5) 

indicated that several members of the activating ARF subfamily (ARF5/6/7/8/19) may undergo 

post-translational modification by SUMO. Of these ARFs, the two most promising candidates for 

SUMOylation were determined to be ARF7 and ARF19, both of which play an important role in the 

growth and development of the lateral root system in Arabidopsis (Okushima, et al., 2007). Two 

sites, one located at the N-terminus in the DNA binding region, and one at the C-terminus in the 

Q-rich region, were identified in ARF7 and ARF19.  

 

Consequently, transient expression of both ARF7 and ARF19 was used to confirm the presence of 

covalently bound SUMO to the transcription factors (fig. 5.6 & 5.7). Unlike TIR1, little in the way of 

a band shift was observed for either protein when probed with α-SUMO1, indicating that 

relatively few SUMO moieties bind to the ARFs at any one time. Further work undertaken by Dr. 

Beatriz Orosa (Sadanandom lab, unpublished), has identified the location of main SUMO site for 

ARF7; mutation studies of ARF7 conducted by Dr. Orosa have shown that SUMOylation primarily 

occurs at the site located within the DNA binding region of ARF7. This leads to the hypothesis that 

SUMO is able to regulate the auxin responsive genes in a manner independent of auxin through 

alteration of the rate of ARF binding to gene promoter regions. Further work utilising a non-

SUMOylatable form of ARF7 in a CHIP-seq assay (Donner, et al., 2009) would allow elucidation of 

the role SUMO plays in ARF transcription factor regulation.     

 

Finally, the auxin-mediated transcriptional response of the ots1 ots2 mutant line was investigated. 

The DR5::VENUS construct, a proxy for the transcriptional auxin response, was introduced into the 

ots1 ots2 mutant line via crossing. Upon treatment of the DR5::VENUS ots1 ots2 seedlings with 

the auxinic compound IAA, an increase in free VENUS was observed in comparison to WT, thereby 

indicating an increase in auxin-mediated transcription within the mutant line. The increase in free 

VENUS observed is consistent with the data presented in chapter 3 regarding the apparent 

increase in auxin response in a hyper-SUMOylated environment, such as that of the ots1 ots2 

mutant.   
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However, caution must be exercised when interpreting these results. It is possible, due to the 

relatively meagre auxin response seen in the WT, that the DR5::VENUS construct is undergoing 

silencing, thereby accounting for the observed difference in free VENUS between the WT and ots1 

ots2 seedlings. To confirm whether this is the case, additional experiments must be conducted; 

direct measurement of the transcript levels of auxin-responsive genes in response to IAA stimulus 

through qPCR would confirm the validity of the imaging results obtained.       
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5.5 Conclusion 
 

In this chapter, another possible process through which the increased auxin sensitivity observed 

in the hyper-SUMOylated Arabidopsis SUMO protease mutant, ots1 ots2, (see, Chapter 3) is 

achieved has been shown.  

 

The increase in auxin sensitivity observed in chapter 3 was further confirmed via the use of the 

auxin-mediated transcriptional response proxy DR5::VENUS; upon stimulation of the auxin 

signalling pathway by the auxin IAA, a dramatic increase in the transcriptional response is 

observed in the ots1 ots2 background in comparison to WT.   

 

Transient assay results in N. benthamiana indicate that two integral parts of the auxin signalling 

machinery, the auxin response factors ARF7 and ARF19, undergo SUMOylation in planta (see, fig. 

5.6/5.7). It possible that the addition of SUMO moieties to the ARF transcription factors affect 

transduction of the auxin signal, potentially through changes in promoter binding, consequently 

resulting in increased auxin signalling within the plant. Experimental data obtained via a 

DR5::VENUS proxy regarding the level of auxin-mediated transcription within the ots1 ots2 

mutant line has indicated that auxin-induced transcription is increased in the mutant, consistent 

with the data obtained in chapter 3.   

 

No SUMOylation of the auxin repressors, the AUX/IAAs, was observed under transient assay 

conditions.    
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6. Final Discussion 
 

The results presented in chapters 3, 4 and 5 underline the possible significance of SUMOylation in 

auxin signalling. Previous research regarding the SUMO E3 ligases SIZ1 and HPY2 has inferred a 

connection between protein SUMOylation and auxin signalling through the observed alteration of 

auxin-mediated processes, such as cell proliferation in the root apical meristem (Huang, et al., 

2009). Here, that connection has been further strengthened through phenotypic analysis of the 

SUMO protease double knock out mutant line, ots1 ots2, and the identification of several 

SUMOylated proteins involved in the auxin signalling cascade.  

 

6.1 SUMO and the Regulation of Root Architecture 

 

Results in chapter 3 indicated that ots1 ots2 double mutants differ significantly in root 

architecture and the response to hormonal and environmental stimuli in comparison to WT. 

Under control conditions, the ots1 ots2 mutant line displayed differences in lateral root 

production and in root hair growth and production (see, chapters 3.3 & 3.4). Upon the 

introduction of the mutant line to various external stimuli, such as the application of exogenous 

auxinic compounds or exposure to dramatic changes in water potential, further differences 

between the WT and the ots1 ots2 line were observed; these included the dramatic reduction of 

the primary root, an increase in lateral root emergence and a highly positive hydrotropic response 

(see, chapters 3.2, 3.3 & 3.5). These differences were attributed to a number of different causes, 

such as increased auxin sensitivity and alterations to the primary root cap.  
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6.1.1 Auxin Signalling and Sensitivity 

 

Results presented in chapter 3 indicated that SUMO plays an important role in the mediation of 

auxin signalling within Arabidopsis; the increase in SUMO conjugates accumulated within the ots1 

ots2 mutant line appeared to lead to a significant increase in sensitivity to the phytohormone 

auxin. The long root hairs produced by the mutant line were indicative of alterations in auxin 

homeostasis. Taken alongside the data generated regarding primary root length and lateral root 

emergence upon exposure to exogenous auxin stimulus, it was determined that a reduction in de-

conjugation of SUMOylated proteins, and therefore an increase in the level of SUMO-conjugates 

present within the plant, had a significant influence on auxin signalling and its related responses.  

 

Previous research regarding the two identified SUMO E3 ligases, SIZ1 and HPY2, by Catala, et al. 

(2007), Miura, et al. (2005; 2007), Ishida, et al. (2009) and Huang, et al. (2009) (see, Introduction, 

1.2.3) has led to the hypothesis that SUMO is a key player in the regulation of the auxin response. 

SIZ1 and HPY2 are differentially expressed within the plant; with regards to roots, accumulation of 

SIZ1 is observed in both primary and lateral root tissue, whilst HPY2 is preferentially expressed in 

the tissues that form the root apical meristem. Knock out mutant lines of these genes display 

distinct auxin-related phenotypes (Catala, et al., 2007), therefore demonstrating that a reduction 

in SUMO-conjugates leads to an alteration the auxin response. This data is consistent with that 

reported in chapter 3, lending significant credence to the theory that SUMO plays a key role in 

auxin signalling.  

 

However, this explanation may be somewhat simplistic. Though it is tempting to attribute all 

observed morphological changes of the ots1 ots2 root architecture in comparison to WT to the 

sole influence of SUMO-mediated alterations in auxin homeostasis, it is important to take into 

consideration the considerable influence of hormone crosstalk. The idea that phytohormones act 

as independent modules regulating growth and stress responses in an antagonistic fashion, such 

as the classic auxin vs. cytokinin model, is a relatively outmoded one (Murphy, 2015). Indeed, the 

three classes of hormones primarily responsible for the regulation of plant growth, auxin, 

brassinosteroid and gibberellin, often work in a complementary fashion to regulate process such 

as cell elongation (Depuydt & Hardtke, 2011). Examples of this synergistic method of action can 

be seen in the regulation of the GA biosynthesis genes GA 3-oxidase and GA 20-oxidase by auxin 

(Reid, et al., 2011), the regulation of the DNA-binding activities of the transcription factors ARF6, 
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PIf4 and BZR1 by the DELLA growth repressor protein RGA (Oh, et al., 2014), and the regulation of 

the abundance of the PIN family of auxin efflux proteins via GA (Willige, et al., 2011).  

 

The importance of SUMOylation has been implicated in many of the hormone pathways, such as 

those of auxin, gibberellic acid (GA), salicylic acid (SA), brassinosteroid (BR), jasmonic acid (JA), 

and abscisic acid (ABA) (Huang, et al., 2009; Nelis, et al., 2015; Bailey, et al., 2016; Khan, et al., 

2014; Conti, et al., 2014). Recent research by Conti, et al. (2014), has shown that the growth 

supressing proteins RGA and GAI undergo SUMOylation in planta. The conjugation of SUMO to 

these repressors leads to their stabilisation, the result of which being the induction of growth 

inhibition in a manner independent of GA. As stated above, the interplay between the auxin and 

GA signalling pathways is complex, with many points of hormone crosstalk identified. Due to the 

global nature of SUMOylation, and the potential for cumulative effects of SUMOylation between 

the signalling pathways, it is therefore important that these factors are taken into consideration 

when assessing the role of SUMO in any one phytohormone signalling pathway.  

  

6.1.2 The Primary Root Cap 

 

Alongside the increase in auxin sensitivity observed for the ots1 ots2 mutant, phenotypes relating 

to potential aberrations in the primary root cap were also identified for the mutant line. Results 

presented in chapter 3 indicated that an increase in SUMO-conjugate levels led to a decrease in 

the production of lateral root primordia under control conditions, as well as a significant increase 

in hydrotropic response upon exposure to a steep moisture gradient.    

 

As previously stated, the ots1 ots2 mutant line appeared to show an increased sensitivity to auxin. 

Upon the application of exogenous auxin stimulus to ots1 ots2 seedlings, the number of emerged 

lateral roots increased, as expected. However, the average number of emerged lateral roots, even 

after auxin treatment, remained far below that of the WT. The increase in emerged lateral root 

number subsequent to auxin exposure suggested that the lateral root phenotype observed under 

control conditions was not due to a decrease in auxin sensitivity, as first thought, but instead due 

to irregularities in lateral root patterning. No increase in the number of arrested lateral root 

primordia was observed for the ots1 ots2 mutant; indeed, the only difference seen between the 
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mutant and WT lines regarding the primordia was number alone, with the WT plants consistently 

producing more LR primordia of all stages in comparison to the ots1 ots2 mutant. Taken together, 

this data led to the hypothesis that, though the ots1 ots2 mutant was able to respond 

appropriately to auxin stimulus, it was unable to correctly prime the XPP cells that go on to form 

lateral root primordia, and therefore lateral roots.    

 

SUMO-mediated aberrations in root cap signalling and/or perception were hypothesised to be the 

cause of the decrease in both lateral root primordia and emerged lateral roots in the ots1 ots2 

mutant under controlled conditions. This hypothesis is consistent with data from Xuan, et al. 

(2015), which identifies root cap derived IAA, and downstream activation of the kinase MKAR4, as 

the modulator of the auxin oscillations responsible for lateral root patterning and the priming of 

XPP cells. Additional data regarding the increase in hydrotropic response, a tropism in which the 

root cap plays an integral role (Cassab, et al., 2013), further implicated irregularities in the root 

cap as the source of the non-auxin mediated phenotypes observed for the mutant. It is clear that 

further research regarding root cap formation, sensing and signalling in the ots1 ots2 mutant line 

is required in order to full understand the role SUMO plays in the establishment of the 

Arabidopsis root architecture.    
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6.2 SUMOylation in the Auxin Signalling Cascade 

 

Results in chapters 4 and 5 indicated that several components of the auxin signalling cascade 

undergo SUMOylation. Though, as yet, it is unclear what role SUMOylation plays regarding the 

auxin signalling cascade, the potential significance of the modification of the proteins involved in 

the cascade by SUMO moieties will be discussed here.   

 

6.2.1 SUMOylation of the Auxin Receptor TIR1 

 

Transient expression of the auxin receptor TIR1 in Nicotiana benthamiana has shown that it 

undergoes modification by SUMO in planta (see, chapter 4). Subsequent conversion via mutation 

PCR of the lysine residues predicted to form the SUMO attachment sites to arginine residues, 

thereby maintaining binding site structure whilst removing the point of attachment, eliminated 

the conjugation of SUMO moieties to the TIR1 protein. The removal of these sites appeared to 

effect the stability of the TIR1 protein under transient assay conditions, leading to the hypothesis 

that SUMOylation of TIR1 is required to stabilise the receptor, thereby leading to an increase in 

auxin sensitivity through increased receptor signalling.  

 

The postulated hypothesis is consistent with the data obtained in chapter 3. In the ots1 ots2 

mutant line, the levels of SUMO-conjugates increase due to the disruption of de-SUMOylation 

activity through the loss of SUMO proteases OTS1 and OTS2 (Conti, et al., 2014). Though it is not 

yet clear how SUMO and auxin interface, a good case can be made regarding the role of 

SUMOylated TIR1 in the establishment of the augmented auxin response observed in the ots1 

ots2 mutant line from the data presented here.   

 

SUMO-mediated protein stabilisation has been demonstrated in previous research, not just in 

plants but also throughout all kingdoms. The stabilisation of target proteins via SUMO attachment 

with regards to cell cycle control (Schimmel, et al., 2014) and cancer development and 

progression (He, et al., 2015) is well documented in mammalian systems. Until relatively recently, 

research regarding the role of SUMOylation within the plant kingdom was decidedly lacking. To 
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date, relatively few papers have been published regarding the role of SUMOylation on the 

stability of the target protein.  

 

However, recent research by Lin, et al. (2016) has set a precedent for the enhancement of 

phytohormone signalling through the SUMO-mediated stabilisation of a E3 ubiquitin ligase; 

through the use of loss-of-function siz1 mutants, the role of SUMOylation in the stabilisation of 

the negative regulator of photomorphogenesis, CONSTITUATIVE PHOTOMORPHOGENIC 1 (COP1), 

was elucidated. Substitution of SUMO binding site residue K193 with arginine resulted in a 

reduction in the E3 ligase activity of COP1 through the destabilisation of the protein (Lin, et al., 

2016). Similarly, in mammalian systems, the modification of ubiquitin E3 ligases, such as 53BP1 

and BRCA-1, by SUMO has been shown to play an important role in double stranded DNA repair, 

possibly through SUMO-mediated induction of the E3 ligase activity (Wei & Lin, 2012). Taking into 

account the data obtained in chapter 3 and 4, it is therefore possible that TIR1 is regulated by 

SUMO in a similar fashion, therefore accounting for the increase in auxin sensitivity observed in 

the hyper-SUMOylated mutant line, ots1 ots2. 

 

However, despite the attractiveness of the hypothesis outlined here, a great deal more research is 

required in order to determine its validity. Though SUMOylation of the TIR1 auxin receptor has 

been shown to occur under transient assay conditions, confirmation that this indeed occurs in 

Arabidopsis and is not an artefact of transient assay overexpression has yet to be demonstrated. 

The analysis of the generated transgenic Arabidopsis lines expressing the c-MYC:TIR1 and the c-

MYC:TIR13KR in the auxin insensitive tir1 afb2 afb3 background (see, chapter 4) should further 

elucidate the role of SUMO in auxin signalling, with regards to TIR1 stability and activity, therefore 

allowing the legitimacy of the hypothesis outlined above to be fully determined.  

 

6.2.2 SUMO and the AUX/IAA Protein Family 

 

Results in chapter 5 have indicated that, despite high confidence predictions regarding the 

presence of SUMO binding sites by the programme HyperSUMO, the AUX/IAA proteins IAA3 and 

IAA18 do not appear to undergo SUMOylation under transient expression conditions in Nicotiana 

benthamiana. The AUX/IAA family of transcriptional repressors are rapidly degraded in the 
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presence of auxin through ubiquitination by SCFTIR1 (Worley, et al., 2000). Taking this into account 

alongside the auxin-related phenotypes observed in the hyper-SUMOylated ots1 ots2 mutant line 

(see, chapter 3), it was postulated that the addition of SUMO moieties to the AUX/IAA repressor 

proteins may lead to an increase in the rate of AUX/IAA turnover, therefore accounting for the 

lack of observed SUMOylation in the transient assay. The wealth of previous research regarding 

the interplay between SUMOylation and Ubiquitination lent credence to this idea, with many 

previous studies indicating that SUMO and Ub can work in a cooperative fashion in order to 

regulate protein stability (Liebelt & Vertegaal, 2016), such as in the regulation of Ub E3 ligase 

RNF4 targeting via SUMO in humans (Tatham, et al., 2008).   

 

In order to test this hypothesis, a stabilised form of IAA28 was transiently expressed and its 

SUMOylation status determined; as with the previously investigated AUX/IAA proteins, no 

SUMOylation was observed for the stabilised IAA28 protein.  

 

Whilst the transient assay data regarding the SUMOylation status of the AUX/IAA repressor 

proteins appears relatively clear, it is very likely that the answer to the question ‘are the AUX/IAA 

family of transcriptional repressors SUMOylated?’ is not a simple no. The AUX/IAA protein family 

is vast, comprising of 29 members, with each gene thought to differ somewhat in its physiological 

function (Muto, et al., 2007). Said members, though conforming to a highly conserved four-

domain structure, vary widely in their sensitivity to auxin with regards to their auxin-mediated 

degradation (Shimizu-Mitao & Kakimoto, 2014) and in their pattern of expression (Audran-

Delalande, et al., 2012). It is therefore not beyond the realms of possibility that SUMOylation 

status between the AUX/IAA family members also varies, possibly in a spatiotemporal fashion, 

resulting in the lack of SUMO modification observed under transient assay conditions. To truly 

determine the SUMOylation status of the AUX/IAA family members, a different approach, 

potentially involving the use of transgenic Arabidopsis lines, encompassing a wider array of 

AUX/IAA proteins must be undertaken. 
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6.2.3 SUMOylation of the ARF Protein Family Members, ARF7 and ARF19 

 

Transient expression of the transcription factors ARF7 and ARF19 in Nicotiana benthamiana has 

shown that they undergo low-level modification by SUMO in planta (see, chapter 5).  Further 

work undertaken by Dr. Beatriz Orosa (Sadanandom lab, unpublished), has subsequently 

confirmed the location of main SUMO biding site for ARF7.  Work conducted by Dr. Orosa has 

shown that SUMOylation primarily occurs at a site located within the DNA binding region of ARF7. 

This leads to the hypothesis that SUMO is able to regulate the auxin responsive genes in a manner 

independent of auxin through alteration of the rate of ARF binding to gene promoter regions. 

Further work utilising a non-SUMOylatable form of ARF7 in a CHIP-seq assay (Donner, et al., 2009) 

would allow elucidation of the role SUMO plays in ARF transcription factor regulation.     
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6.3 Future Prospects 

 

Alterations in gene expression, either through over-expression or gene knock-down/knock-out, 

provide exceptionally useful insights as to the roles said genes play at the whole organism level. 

Changes in gene expression can generate complex phenotypic traits within the organism; this is 

especially true for alterations in the regulation of global post-translational modifiers, like SUMO, 

and as such, a great deal of caution must be exercised during data interpretation. The need for 

such caution is apparent in the phenotypic data generated here, with an increase in SUMOylation 

levels resulting in a number of complex, and in some cases seemingly contradictory, phenotypes 

within the Arabidopsis root.   

 

In order to tease out the underlying molecular processes responsible for the phenotypes 

displayed by the mutant lines, a more integrative global approach is required, such as whole 

transcriptome and proteasome studies. With the improvement of proteomic technologies, it has 

become clear that posttranslational modifications (PTMs) do not operate in isolation, but instead 

act as facilitators in the integration of many signalling pathways (Deribe, et al., 2010). Therefore, 

the necessity of study into PTMs and the role they play has never been of more importance, both 

in plant and animal research.   

 

 

  



156 
 

6.4 Knowledge Transfer 

 

The model plant Arabidopsis thaliana has undergone extensive study since the 1980s, with almost 

5000 papers describing research regarding this model plant system published in 2013 alone 

(Piquerez, et al., 2014). The use of Arabidopsis as a model plant has many benefits; though 

Arabidopsis thaliana has little in the way of direct significance when it comes to agriculture, 

widely considered a weed, the sheer wealth of data in terms of both genomic information and 

technical resources (eg. TAIR), alongside such biological benefits as a short life cycle (6 weeks 

germination to seed), prolific seed production, self-fertilization and the relative ease of floral 

dipping, makes Arabidopsis the organism of choice when it comes to plant research. It is, 

however, unclear as to how much of the research generated can be applied directly to the more 

economically and agriculturally relevant crop species, due to insufficient information regarding 

genetic synteny (Bevan & Walsh, 2004). 

 

That said, the importance of knowledge transfer between model and economically relevant 

species cannot be understated. The intrinsic complexity of transcriptional regulation and the 

current lack of success regarding the more traditional up/down regulation of gene expression 

within crop plants is indicative of the necessity to re-think our current approach to the 

implementation of Arabidopsis-generated information within these species. With the advent of 

highly specific and elegant gene editing techniques, such as CRISPR (Song, et al., 2016), the ease 

of translation and subsequent implementation of research regarding SUMO-mediated signalling 

regulation within crop species is more achievable than ever before. Given the implications of 

SUMOylation demonstrated here in plant growth and development, continued research in this 

area with regards to economically important species will provide opportunities to help maintain, 

or indeed possibly improve, crop yields in less than ideal growing conditions.      
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A. Appendix 
 

A.1 TIR1 and TIR13KR Sequence Alignment  

 

TIR1 

3KR 

 

ATGCAGAAGCGAATAGCCTTGTCGTTTCCAGAAGAGGTACTAGAGCATGTGTTCTCGTTT        

ATGCAGAAGCGAATAGCCTTGTCGTTTCCAGAAGAGGTACTAGAGCATGTGTTCTCGTTT           

************************************************************ 

 
TIR1 

3KR 

 

ATTCAGCTGGATAAGGATAGGAACTCAGTCTCTCTGGTGTGCAAGTCATGGTACGAGATC       

ATTCAGCTGGATAAGGATAGGAACTCAGTCTCTCTGGTGTGCAAGTCATGGTACGAGATC           

************************************************************ 

 
TIR1 

3KR 

 

GAGCGGTGGTGCAGGAGGAAAGTCTTCATCGGGAACTGCTACGCCGTGAGTCCAGCGACG    

GAGCGGTGGTGCAGGAGGAAAGTCTTCATCGGGAACTGCTACGCCGTGAGTCCAGCGACG           

************************************************************ 

 
TIR1 

3KR 

 

GTGATTAGGAGGTTCCCGAAAGTGAGATCCGTGGAGCTTAAAGGAAAACCTCACTTTGCT      

GTGATTAGGAGGTTCCCGAAAGTGAGATCCGTGGAGCTTAAAGGAAAACCTCACTTTGCT           

************************************************************ 

 
TIR1 

3KR 

 

GACTTTAATTTGGTACCTGACGGATGGGGAGGTTACGTGTATCCATGGATTGAGGCCATG     

GACTTTAATTTGGTACCTGACGGATGGGGAGGTTACGTGTATCCATGGATTGAGGCCATG           

************************************************************ 

 
TIR1 

3KR 

 

TCTTCGTCTTACACGTGGCTTGAAGAGATAAGGCTGAAGAGGATGGTGGTCACCGACGAT      

TCTTCGTCTTACACGTGGCTTGAAGAGATAAGGCTGAAGAGGATGGTGGTCACCGACGAT           

************************************************************ 

 
TIR1 

3KR 

 

TGCTTGGAGCTCATAGCCAAGTCTTTTAAGAATTTTAAGGTTCTTGTGCTTTCTTCCTGC  

TGCTTGGAGCTCATAGCCAAGTCTTTTAAGAATTTTAAGGTTCTTGTGCTTTCTTCCTGC           

************************************************************ 

 
TIR1 

3KR 

 

GAAGGCTTCTCCACCGATGGTCTCGCTGCTATCGCTGCCACTTGCAGGAATCTGAAAGAG     

GAAGGCTTCTCCACCGATGGTCTCGCTGCTATCGCTGCCACTTGCAGGAATCTGAAAGAG           

************************************************************ 

 
TIR1 

3KR 

CTTGACTTACGAGAGAGTGATGTTGACGACGTTAGTGGCCACTGGCTTAGCCATTTCCCA   

CTTGACTTACGAGAGAGTGATGTTGACGACGTTAGTGGCCACTGGCTTAGCCATTTCCCA           
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 ************************************************************ 

 
TIR1 

3KR 

 

GATACATACACTTCTTTGGTATCACTCAATATATCTTGCTTAGCATCTGAGGTCAGTTTC     

GATACATACACTTCTTTGGTATCACTCAATATATCTTGCTTAGCATCTGAGGTCAGTTTC           

************************************************************ 

 
TIR1 

3KR 

 

TCTGCTCTGGAAAGGCTGGTGACTAGGTGTCCCAATCTCAAGTCTCTCAAGCTTAACCGA     

TCTGCTCTGGAAAGGCTGGTGACTAGGTGTCCCAATCTCAAGTCTCTCAAGCTTAACCGA           

************************************************************ 

 
TIR1 

3KR 

 

GCTGTTCCACTTGAAAAATTGGCTACTTTACTTCAAAGAGCACCTCAATTGGAGGAATTG       

GCTGTTCCACTTGAAAAATTGGCTACTTTACTTCAAAGAGCACCTCAATTGGAGGAATTG           

************************************************************ 

 
TIR1 

3KR 

 

GGCACTGGTGGGTACACTGCAGAAGTGCGACCAGATGTTTACTCTGGTTTATCTGTAGCG   

GGCACTGGTGGGTACACTGCAGAAGTGCGACCAGATGTTTACTCTGGTTTATCTGTAGCG           

************************************************************ 

 
TIR1 

3KR 

 

CTCTCTGGGTGCAAGGAATTGAGGTGCTTATCTGGATTTTGGGATGCTGTTCCTGCCTAT      

CTCTCTGGGTGCAAGGAATTGAGGTGCTTATCTGGATTTTGGGATGCTGTTCCTGCCTAT           

************************************************************ 

 
TIR1 

3KR 

 

CTTCCAGCAGTTTATTCGGTTTGCAGTCGGCTTACAACTTTGAATCTGAGTTATGCAACA       

CTTCCAGCAGTTTATTCGGTTTGCAGTCGGCTTACAACTTTGAATCTGAGTTATGCAACA           

************************************************************ 

 
TIR1 

3KR 

 

GTCCAGAGCTATGATCTTGTCAAGCTTCTTTGTCAATGCCCTAAACTGCAGCGCCTCTGG       

GTCCAGAGCTATGATCTTGTCAAGCTTCTTTGTCAATGCCCTAAACTGCAGCGCCTCTGG           

************************************************************ 

 
TIR1 

3KR 

 

GTGCTTGACTACATCGAGGATGCTGGTCTTGAGGTGCTTGCTTCAACCTGCAAGGACCTA   

GTGCTTGACTACATCGAGGATGCTGGTCTTGAGGTGCTTGCTTCAACCTGCAAGGACCTA           

************************************************************ 

 
TIR1 

3KR 

 

CGCGAGCTGAGAGTGTTTCCGTCCGAGCCTTTTGTCATGGAACCAAATGTGGCATTGACG    

CGCGAGCTGAGAGTGTTTCCGTCCGAGCCTTTTGTCATGGAACCAAATGTGGCATTGACG           

************************************************************ 

 
TIR1 

3KR 

 

GAACAGGGGCTTGTCTCCGTCTCCATGGGCTGTCCAAAACTCGAGTCGGTTCTCTACTTC   

GAACAGGGGCTTGTCTCCGTCTCCATGGGCTGTCCAAGACTCGAGTCGGTTCTCTACTTC           

************************************* ********************** 

 
TIR1 

3KR 

 

TGCCGTCAAATGACCAATGCTGCATTGATAACCATTGCTAGGAACCGTCCCAACATGACT       

TGCCGTCAAATGACCAATGCTGCATTGATAACCATTGCTAGGAACCGTCCCAACATGACT           

************************************************************ 

 
TIR1 

3KR 

 

CGCTTCCGTTTGTGCATCATTGAGCCAAAAGCCCCAGACTATCTGACTCTAGAGCCACTG      

CGCTTCCGTTTGTGCATCATTGAGCCAAAAGCCCCAGACTATCTGACTCTAGAGCCACTG           

************************************************************ 

 
TIR1 

3KR 

 

GATATTGGATTTGGAGCCATAGTAGAGCACTGCAAGGATCTCCGTCGCCTCTCTCTATCT      

GATATTGGATTTGGAGCCATAGTAGAGCACTGCAAGGATCTCCGTCGCCTCTCTCTATCT           

************************************************************ 

 
TIR1 

3KR 

 

GGCCTCTTGACCGACAAGGTTTTTGAATACATTGGGACATATGCCAAGAAGATGGAAATG   

GGCCTCTTGACCGACAAGGTTTTTGAATACATTGGGACATATGCCAAGAGGATGGAAATG           

************************************************* ********** 
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TIR1 

3KR 

 

CTCTCAGTGGCATTTGCAGGAGACAGTGACTTAGGCATGCATCATGTTTTGTCCGGGTGC     

CTCTCAGTGGCATTTGCAGGAGACAGTGACTTAGGCATGCATCATGTTTTGTCCGGGTGC           

************************************************************ 

 
TIR1 

3KR 

 

GATAGCTTGAGGAAACTAGAGATAAGGGACTGCCCGTTTGGAGACAAGGCGCTTTTGGCC      

GATAGCTTGAGGAGACTAGAGATAAGGGACTGCCCGTTTGGAGACAAGGCGCTTTTGGCC           

************* ********************************************** 

 
TIR1 

3KR 

 

AATGCTTCAAAGCTGGAGACAATGCGATCCCTTTGGATGTCTTCTTGTTCCGTGAGTTTT     

AATGCTTCAAAGCTGGAGACAATGCGATCCCTTTGGATGTCTTCTTGTTCCGTGAGTTTT           

************************************************************ 

 
TIR1 

3KR 

 

GGAGCCTGCAAGTTACTAGGACAGAAGATGCCAAAGCTGAATGTGGAAGTCATCGATGAA       

GGAGCCTGCAAGTTACTAGGACAGAAGATGCCAAAGCTGAATGTGGAAGTCATCGATGAA           

************************************************************ 

 
TIR1 

3KR 

 

CGGGGTGCACCGGACTCGAGACCAGAGAGCTGCCCTGTTGAGAGAGTCTTCATATACCGA       

CGGGGTGCACCGGACTCGAGACCAGAGAGCTGCCCTGTTGAGAGAGTCTTCATATACCGA           

************************************************************ 

 
TIR1 

3KR 

 

ACAGTGGCTGGTCCTCGATTTGACATGCCTGGCTTCGTCTGGAACATGGACCAAGACTCA       

ACAGTGGCTGGTCCTCGATTTGACATGCCTGGCTTCGTCTGGAACATGGACCAAGACTCA           

************************************************************ 

 
TIR1 

3KR 

 

ACAATGAGGTTTTCCAGGCAAATCATTACTACTAACGGATTATAA       

ACAATGAGGTTTTCCAGGCAAATCATTACTACTAACGGATTATAA           

********************************************  
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A.2 Primers 
 

Primer Sequence Tm Type 

AttB1 ACA AGT TTG TAC AAA AAA GCA GGC T 58.1 Colony PCR 

AttB2 ACC ACT TTG TAC AAG AAA GCT GGG T 61.3 Colony PCR 

2OTS_TDNA TGG TTC ACG TAG TGG GCC ATC G 65.8 Genotyping 

OTS1_KO CGA CAA GAA GTG GTT TAG ACC 59.5 Genotyping 

OTS1_HOM GTA ACG TAA CAC TTA TTA GAT GCC 60.3 Genotyping 

OTS2_KO GAC AGG GAT GCA TAT TTT GTG AAG 62 Genotyping 

OTS2_HOM TTA ATC TGT TTG GTT ACC CTT GCG G 64.1 Genotyping 

VENUS_F ACA AGC AGA AGA ACG GCA TC 60.4 Genotyping 

VENUS_R GAA CTC CAG CAG GAC CAT GT 60.1 Genotyping 

TIR1_Detect_F AGA TAA GGG ACT GCC CGT TT 59.9 Genotyping 

TIR1_Detect_R GAC CAG CCA CTG TTC GGT AT 60 Genotyping 

TIR1_F CAC CAT GCA GAA GCG AAT AGC CTT 59.1 Cloning 

TIR1_R TTA TAA TCC GTT AGT AGT AAT GAT TTG 54.7 Cloning 

AFB1_F CAC CAT GGG TCT CCG ATT CCC A 61.2 Cloning 

AFB1_R TTA CTT TAT GGC TAG ATG TGA AAC TCC 60.3 Cloning 

AFB2_F CAC CAT GAA TTA TTT CCC AGA TGA AGT AAT 57.7 Cloning 

AFB2_R TTA GAG AAT CCA CAC AAA TGG C 59.1 Cloning 

AFB3_F CAC CAT GAA TTA TTT CCC AGA CGA GGT 60.1 Cloning 

AFB3_R CTA AAG AAT CCT AAC ATA TGG TGG TG 59.3 Cloning 

IAA2_F CAC CAT GGC GTA CGA GAA AGT CAA C 66.5 Cloning 

IAA2_R TCA TAA GGA AGA GTC TAG AGC AGG A 58.7 Cloning 

IAA3_F CAC CAT GGA TGA GTT TGT TAA CCT CAA G 65.3 Cloning 

IAA3_R TCA TAC ACC ACA GCC TAA ACC TT 58.5 Cloning 

IAA14_F CAC CAT GAA CCT TAA GGA GAC GGA GC 67.5 Cloning 

IAA14_R TCA TGA TCT GTT CTT GAA CTT CTC C  59.6 Cloning 

IAA18_F CAC CAT GGA GGG TTA TTC AAG AAA CG 66.1 Cloning 

IAA18_R TCA TCT TCT CAT TTT CTC TTG CTT AC 58.2 Cloning 

ASK1_F CAC CAT GTC TGC GAA GAA GAT TGT GTT 67 Cloning 

ASK1_R TCA TTC AAA AGC CCA TTG GT 58.8 Cloning 

CUL1_F CAC CAT GGA GCG CAA GAC TAT TGA CT 67.1 Cloning 

CUL1_R CTA AGC CAA GTA CCT AAA CAT GTT AGG 58.7 Cloning 

TIR1_K373R_F CAT GGG CTG TCC AAG ACT CGA GTC GGT T 73 Mutation 

TIR1_K373R_R GAA CCG ACT CGA GTC TTG GAC AGC CCA T 73 Mutation 

TIR1_K457R_F GAC ATA TGC CAA GAG GAT GGA AAT GCT C 68.4 Mutation 

TIR1_K457R_R GAG AGC ATT TCC ATC CTC TTG GCA TAT GT 68.4 Mutation 

TIR1_K485R_F GCG ATA GCT TGA GGA GAC TAG AGA TAA G 61.3 Mutation 

TIR1_K485R_R CCC TTA TCT CTA GTC TCC TCA AGC TAT CG 61.3 Mutation 

TIR1_Seq1 TTC GTC TTA CAC GTG GCT TG 60.2 Sequencing 

TIR1_Seq2 GAG GTG CTT ATC TGG ATT TTG G 59.9 Sequencing 

TIR1_Seq3 AGC CAA AAG CCC CAG ACT AT 60 Sequencing 

AFB1_Seq1 CTT CTT GTG AAG GTT TCT CTA CTG ATG 59.7 Sequencing 

AFB2_Seq1 TTT TCT AGA GGC TGC TCC TCA C 58.7 Sequencing 

AFB3_Seq1 CTT TTT AGA GGT TGC TCC ACT CTG 59.4 Sequencing 
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A.3 Genotyping of the DR5::VENUS, ots1 ots2 Cross (F2) 
 

 

 

PCR products from the genomic DNA extracts from the F2 DR5::VENUS xots1 ots2 crosses, with DR5:VENUS 

and ots1 ots2 used as controls. Bands correspond to the VENUS gene (TOP) and OTS1 and OTS2 genes 

(bottom). OTS1 and -2 primers span the T-DNA insert region; the absence of bands in the OTS1 and -2 

homozygous check correspond to the presence of the T-DNA insert.   
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