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Abstract

The design of liberalised electricity markets (e.g., the energy, capacity and ancillary
service markets) is a topic of much debate, regarding their ability to trigger ade-
quate investment in generation capacities and to incentivize flexible power system
operation.

Long-term generation investment (LTGI) models have been widely used as a
decision-support tool for generation investments and design of energy policy. Of
particular interest is quantification of uncertainty in model outputs (e.g., generation
projections or system reliability) given a particular market design while accounting
for uncertainties in input data as well as the discrepancies between the model and the
reality. Unfortunately, the standard Monte Carlo based techniques for uncertainty
quantification require a very large number of model runs which may be impractical to
achieve for a complex LTGI model. In order to enable efficient and fully systematic
analysis, it is therefore necessary to create an emulator of the full model, which may
be evaluated quickly for any input and which quantifies uncertainty in the output
of the full model at inputs where it has not been run. The case study shows results
from the Great Britain power system exemplar which is representative of LTGI
models used in real policy processes. In particular, it demonstrates the application
of Bayesian emulation to a complex LTGI model that requires a formal calibration,
uncertainty analysis, and sensitivity analysis.

In power systems with large amounts of variable generation, it is important to
provide sufficient incentives for operating reserves as a main source of generation
flexibility. In the traditional unit commitment (UC) model, the demand for oper-
ating reserves is fixed and inelastic, which does not reflect the marginal value of
operating reserves in avoiding the events of load shedding and wind curtailment.
Besides, the system-wide reserve constraint assumes that the operating reserve can
be delivered to any location freely, which is not true in real-world power system
operations. To recognize the value and deliverability of operating reserves, dynamic
zonal operating reserve demand curves are introduced to an enhanced determinis-
tic UC model for co-optimizing the day-ahead schedules for energy and operating

reserves. In the case study on the RTS-73 test system, comparisons are made be-
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tween the choices of reserve policies (e.g., single, seasonal or dynamic zones) and
of different reserve zonal partitioning methods. Results suggest that the enhanced
deterministic UC model produces on average lower operational cost, higher system
reliability and higher energy and reserve revenues than the traditional one.

Finally, we discuss future directions of methodological research arising from cur-
rent energy system challenges and the computer models developed for better un-
derstanding of the impacts of market incentives on power system planning and

operations.
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Chapter 1

Introduction

Electricity market reform is being implemented or considered in many power sys-
tems in order to meet their own needs. The electricity market (e.g., energy-only
market, capacity market and ancillary service market) provides long-term incen-
tives for efficient investment in generation capacity, by means of high energy prices
and/or capacity prices and/or capacity payments. There is much debate on the ef-
fectiveness of different market designs on incentivizing the adequate amount and the
right type of generation capacities. In the short-term, the availability of a flexible
resource at times when it is needed will also be affected by the market design; this is
an important issue when there is a large amount of variable generation (VG) whose
variability and uncertainty require power system flexibility to manage. This chapter
will first introduce the research background, and then identify the aims and original
contributions of our research. In addition, thesis outline will be presented at the

end of this chapter.

1.1 Background

Electricity market liberalisation has been implemented or considered in many coun-
tries. Meanwhile, many electricity markets are evolving in response to the needs
of power systems [2]. For example, the electricity markets in the United Kingdom
(UK) experienced the changes from the Pool (during years 1990 — 2000) to the New
Electricity and Trading Arrangements (NETA) (during years 2001 — 2005), and
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in year 2005 then the NETA was expanded to the British Electricity Trading and
Transmission Arrangements (BETTA) to become the single GB electricity market
of England, Wales, and Scotland [3,4]. The most recent change of of electricity
wholesale trading in GB has been the Electricity Market Reform (EMR) which has
been running since 2009. The setup of an electricity market aims to facilitate the
delivery of a secure, decarbonised and affordable supply of electricity. Delivering
a secure electricity supply, which is the primary goal of power systems, not only
requires sufficient reliable capacity to minimise the risk of supply shortages, but
also calls for diverse energy sources, including renewables, nuclear, Carbon Capture
Storage equipped plant, gas and demand side management [5]. Capacity adequacy
has become a general concern due to a number of industry trends and regulatory
barriers [2,5-8|, including plant closures under Large Combustion Plant Directive
in the the European Union (EU), the integration of a large amount of variable gen-
eration with low capacity values [9,10], the establishment of low price caps, and
the carbon price floor that drives accelerated plant closures and also introduces
regulatory uncertainty.

A reliable and economic power system relies on adequate and efficient planning
and operations that happen on different time frames. In planning, it is necessary
to account for up to 10 ~ 40 years into the future, long enough to make and imple-
ment investment decisions. Good planning will equip the system with the adequate
amount and the right type of resources that supply the energy, and energy prices
in the market should usually be relatively stable. Price spikes caused by energy
and reserve shortages in the energy market supplemented by additional payments
(e.g., capacity payments, uplift payments) if applicable provide signals for invest-
ment. By contrast, the operational time frame often refers to day-ahead or real-time
and sometimes to longer horizons (e.g., 48-hour). In most power systems, the opera-
tional problem is solved by an optimization problem that considers the cost-effective
operation of the existing fleet, subject to technical and reliability constraints. In
well-designed day-ahead or real-time markets, the pricing signals will provide the
incentives for market participants to offer their energy and flexibility for use by the

system operator.



Investments in generation are high risk. In the context of liberalised electricity
markets as opposed to centralised ones with central planning, it is private generation
companies who make investment decisions driven by the maximization of return on
investment. The investment decision is often made based on price signal feedbacks
and the imperfect foresight of cost estimates, revenue risks, and rate of return [11].
The risks exposed to investors range from policy (e.g., the price cap, COs prices and
renewable targets) and market (e.g., fuel cost, demand forecast and electricity price)
risks, to technology (e.g., capital cost, construction costs/times and decommissioning
costs) and finance (e.g., hurdle rate) risks [12] and they create uncertainty (i.e.,
imperfect knowledge) in the financial returns of an investment. Various long-term
generation investment (LTGI) models have been developed for predicting real-world
generation projections and hence guiding investment decisions and the design of
energy policy [13-20]. From the perspective of policymakers, who wish to adequately
account for uncertainty around future generation projections and system reliability
related to the real world, it becomes increasingly important to consider various
sources of uncertainty existing in these models.

Market designs, particularly market incentives, play an important role in shap-
ing generation investments and operational decisions under uncertainty [11,21,22].
As one of the mainstream electricity market designs, an energy-only market ad-
dresses long-term adequacy by rewarding generators for their actual generation at
the price of energy. Examples of energy-only markets are Australia’s National Elec-
tricity Market (ANEM), Alberta, Nordpool and Electric Reliability Council of Texas
(ERCOT) [2]. An energy price cap is typically set to protect consumers from ex-
tremely high prices due to limited demand side participation. The ideal price cap
would reflect the value of lost load (VOLL) which represents the theoretical value
attributed to security of electricity supply (or preventing blackouts) by electricity
consumers [23]. However, the VOLL are usually very high, which are often not po-
litically attractive, so lower market price caps might be established. If no further
intervention is taken, an energy price cap set below the putative scarcity value of
energy will distort the perfect price signal for investment to some extent. This may

lead to the “missing money” problem. Even without the establishment of an energy



price cap, prices in an energy-only market tend to be very volatile, exposing in-
vestors to high risks. Risk-adverse investors may find themselves reluctant to invest
based on the possibility of price spikes.

The introduction of an increasing proportion of VG (e.g., wind generators) to
future power systems is likely to exacerbate the “missing money” problem. On the
one hand, due to the near-zero, zero, or negative bid-based costs of wind producers,
electricity markets will experience increased price volatility and declined average
price [24]. On the other hand, the limited predictability (i.e., forecasting errors) of
VG often leads to the “out-of-merit” dispatch, which means that units are brought
online to hold spinning reserve to protect against unexpected outages or rapid ramps
in demand and wind generation. The “out-of-merit” dispatch results in not only
a substantial reduction in market clearing price that would otherwise increase as
demand increases, but also uncertain and reduced capacity factors, increased main-
tenance costs and shortened expected lifetimes of conventional generators [25, 26].
The profitability of many existing generation units will be under pressure, espe-
cially for marginal power plants of which the marginal cost (the additional cost
incurred in production of one unit) is the highest among all operational ones, such
as gas-fired power plants (Combined-Cycle Gas Turbines/CCGTs, Open-Cycle Gas
Turbines/OCGTs), as experienced in some European countries [27].

Maintaining sufficient aggregate revenues in an energy-only market can mainly
be achieved by increasing either the price cap or the frequency of scarcity peri-
ods [28]. An increase in the frequency of scarcity periods may resort to a change in
the shape of the net load profile which is difficult to manage, or to an increase in
market concentration which, however, is undesirable because market competition is
threatened. In the real-world, the primary measure left to regulators for adjusting
investment incentives is increasing the energy price cap. At present, the ANEM
operators sets a market price cap of AUS$13,500/MWh, but the case study in [29]
finds that the price cap may need to be lifted up to as high as AUS$80,000/MWh
to support a 100% renewable market and to maintain the same reliability standard.

A tight energy price cap together with uncertainty around the frequency of

scarcity pricing leads to insufficient revenues and increased generation risks, which
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makes it unattractive to new entries. It is argued that the wholesale energy-only
markets in many countries are sending too volatile or inadequate price signals to
existing and new flexible generating recourses including flexible conventional gener-
ators and storage devices [17,30-35]. Some of the main driving factors for concern
over energy-only markets, as discussed in [36], include high financial risks in gener-
ation investment (referring to Section 2.3.1 for more details), limited demand side
participation that creates price spikes [37], market power due to imperfect compe-
tition, and distorted energy prices due to current procedures for procurement and
use of operating reserves.

Many markets have implemented or considered some hedging mechanisms (e.g.,
contracts market [28], operating reserve demand curves (ORDCs) [38,39]) to manage
price risks and some complementary market designs including capacity payments, ca-
pacity markets (installed capacity requirement [40] and capacity demand curve [20])
and capacity subscription [36]. These market incentives are designed to compen-
sate the contribution of capacity and operational flexibility to the system, so as to
enhance the robustness of the power system against various sources of uncertainty.
In ANEM’s energy-only market, market participants may rely on option contracts
to hedge against occasional price spikes'. Retailers are allowed to participate in a
market for call options which provide them with a fixed maximum price for some
contracted volume of capacity over a contracted future period in order to cover the
majority of their anticipated load demand. On June 1, 2014, ERCOT implemented
an ORDC to improve the determination of prices of wholesale energy and operat-

2. In the UK, the first capacity market auction

ing reserve in scarcity conditions
was run in 2014 for delivery of capacity from the winter of 2018/19 [23]. In the
United States (US), capacity markets are more common and with different design
details (cleared auction price, contract length, etc.), such as in Independent System

Operator-New England (ISO-NE) and Pennsylvania-New Jersery-Maryland Inter-

Thttp://www.asx.com.au/documents/products/ASX_AustralianElectricityFuturesandOptions_

ContractSpecifications_July2015.pdf
Zhttps://business.directenergy.com/blog/2014/june/ercot-implements-operating-reserve-

demand-curve



connection (PJM), New York Independent System Operator (NYISO) [41]. Ireland,
Spain, Ontario are also examples of energy markets with capacity mechanisms. Al-
ternative policies such as the forward and bilateral energy contracts are designed
to recover some part of investment cost [3] and financial option contracts can be
employed for risk management purposes [33]. For example, in the UK, carbon price
support and feed-in tariffs and an emissions performance standard are proposed for
supporting low carbon generation [5].

With the growing integration of renewables, the increasing need for flexible ca-
pacity requires new market rules and productions. Several options are feasible to
improve system flexibility, including investing dispatchable flexible and back-up gen-
eration, demand-side participation and storage, interconnections and market tools
(e.g. market coupling or capacity remuneration mechanisms) [42]. Generation flex-
ibility, as the most affordable way to provide flexibility [43] is defined by California
Independent System Operator (CAISO) as the resource’s ramping speed, ability
to sustain a ramp, ability to change ramp directions, ability to reduce output and
not encounter emission limitations, start time, and ability to cycle on and off fre-
quency [44].

Regarding incentives for generation flexibility in system operations, some mecha-
nisms are in place including efficient centralised scheduling and pricing, 5-min settle-
ments, ancillary service markets, make-whole payments, and day-ahead profit guar-
antees [2]. A new flexible ramping market which proposes spot market (five minute
interval) and forward procurement (integrated day-ahead) products has emerged in
California. The idea of incorporating specific requirements for flexible unit operat-
ing characteristics in the year-ahead resource adequacy requirements has also been
proposed by CAISO, which may eventually develop into five year forward capacity
procurement process [45]. More research is required to evaluate the potential value
of flexibility to help inform the proper design of markets and the pricing of various

flexible products.



1.2 Aims of research

Overall, the research explores the role that a market design (e.g., market incen-
tives or mechanisms) plays in decision-making under uncertainty for both long-term
generation investment and short-term (day-ahead and real-time) power system op-
eration.

Regarding the impacts of market incentives on long-term generation investments,
it is desirable to provide policymakers with plausible projections of future generation
capacity or system reliability under different market designs (e.g., energy-only and
capacity market). To understand both uncertainty around these projections and the
ways they relate to the real-world, this thesis will carry out calibration (the use of
observed data to match a model with the real process), uncertainty analysis (UA)
(assessing uncertainty in variables or measurements and exploring the propagation
of uncertainty) and sensitivity analysis (SA) (studying how varying values of an
independent variable affect a particular dependent variable) of a computationally
intensive LTGI model with careful management of various sources of uncertainty.

Regarding the impacts of market incentives on short-term power system opera-
tions, this thesis explores how to incorporate the potential value of flexibility in the
deterministic unit commitment model to help inform the proper design of operating
reserve markets, that is, the pricing of operating reserve products. An alternative
is to represent the timing and the locational values of operating reserves by zonal
operating reserve demand curves (Z-ORDCs) in order to reward to improve reserve
deliverability and adequate incentive for flexible generating resources in a transmis-
sion network. It is important to investigate the effectiveness of different reserve
policies (e.g., single, seasonal or dynamic reserve zones) that have been proposed to

emphasize the locational and timing value of operating reserves.

1.3 Original contributions

The research has a number of original contributions:

1) Use of Bayesian emulation that is based on a Gaussian Process model as an

approximation to a LTGI model to systematically manage three major sources
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of uncertainty (in Section 2.3). The sources of uncertainty include input un-
certainty arising from unknown precise values for model inputs, structural
uncertainty due to imperfect science that is used to approximate the under-
lying true system, and functional uncertainty representing unknown functions
when model evaluations take a long time. This is the first time that such
emulation techniques have been used to manage these uncertainties associated

with generation investments (in Section 4.2.1).

Presenting a statistical approach for the calibration of LTGI models, based
on a Bayesian update of prior judgments. Given some historical observations
of the output of interest, one can infer from observations improved knowl-
edge of uncertain model parameters and the imperfect model structure (in

Section 4.2.3);

Quantifying a plausible range of model outputs that is consistent with the
available knowledge (both historical observations and expert knowledge) based
on a Bayesian update of prior judgments, and demonstrating that a failure to
account for uncertainties may result in misleading results to investors and

policymakers (in Section 4.3);

Studying the robustness of electricity market designs (energy-only and capac-
ity markets) against uncertainty through an UA of system reliability metrics
(e.g., loss-of-load expectation/LOLE) in a quantitative manner. Also, demon-
strating how to determine regions of market design parameter space with a

high probability of maintaining the system reliability target (in Section 4.4).

Performing an efficient and comprehensive SA of a LTGI model and identifying

the most important input or groups of inputs (in Section 4.5).

Proposing an enhanced deterministic unit commitment (EDUC) model in-
corporating dynamic zonal ORDCs for studying the impact of incentives for

generation flexibility on system or market performances. (in Chapter 5).



1.4 Thesis outline

The overall structure of the thesis is described below.

Chapter 2 firstly provides a literature review of research results on generation
investments in electricity markets, covering the economic, political and technical
aspects. Since various sources of uncertainty are involved in the long-term planning
period, the key uncertainties that define the quality of generation projections are
identified.

Chapter 3 presents a model specification of a LTGI model and then uses it to
make projections of operational thermal capacities and LOLEs at each decision year
during the planning horizon of interest. LTGI models are generally computation-
ally intensive and so only a limited number of simulations can be carried out. A
statistical methodology based on Bayesian emulation for addressing the computa-
tional challenge of model evaluations and enabling efficient calibration, UA and SA
is presented in this chapter.

Chapter 4 demonstrates a case study relating to the GB power system planning.
First, a formal calibration is carried out on the LTGI model that runs through
a historical planning horizon. Next, calibration results (the updated information
of model parameters and model discrepancy) are applied to future projections of
thermal capacities and LOLEs. Then, a robustness index is presented and quantified
through an UA of the maximum LOLE over the future planning period. Last, a
comprehensive SA is carried out and results of SA imply ways of improving the
market robustness most efficiently by focusing on the most important model inputs.

Chapter 5 proposes an enhanced deterministic unit commitment model incor-
porating hourly updated Z-ORDCs. Reserve zones are defined by the approach of
spectral clustering. A case study on system performances using the RTS-73 test
system is given. Comparisons are made between the choices of reserve policies (e.g.,
single, seasonal or dynamic zones) and of reserve zone partitioning methods.

In Chapter 6, conclusions are drawn and suggestions for future work are pre-

sented.



Chapter 2

Impact of market incentives on

system adequacy

This chapter first gives a review of evolving electricity market designs and system
adequacy metrics with the increasing integration of VG. Different market designs
will have distinct influences on the bidding behaviour of GENCOs and consumers,
on the dynamic behaviour of market prices and investment incentives, and hence
on the investment decisions. For guiding the decision-making in energy policies and
generation investments or the evaluations of the social effects of some interventions,
various types of LT'GI models have been developed in academic and industrial areas.

Then, this chapter describes various sources of uncertainty involved in the LTGI
models, which poses great challenges in model computations, model applications
and the interpretation of model outputs. Assessing uncertainty is necessary to make
sense of model results, which requires tasks of calibration, predictions, uncertainty
analysis (UA) and sensitivity analysis (SA). Existing work on dealing with these
tasks is not comprehensive enough, due to huge burden of model computations and
inadequate consideration of uncertainties. In order to fill in the research gap, we
will adopt Bayesian emulation in Chapter 3 which can enable these computational
tasks by approximating the full model with an emulator while quantifying all major

sources of uncertainties.
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2.1 Electricity markets in transition

Both research problems — the LTGI problem in the planning framework and the
unit commitment (UC) problem in the operational framework, will be studied un-
der the context of liberalised electricity markets. The design of electricity markets
evolves with the change in the energy structure (the proportions of different energy
suppliers including coal-fired plants, gas-fired plants and renewables) and with the
need for new investments. Accordingly, some changes have been seen in the roles
that market participants play, in market competitiveness and in the methodology of
system adequacy metrics used in practice. Our main focus is to explore the effec-
tiveness and robustness of the mainstream electricity market models in sending the
right price signals and investment incentives for maintaining system flexibility and

adequacy.

2.1.1 Market participants

The problems of planning and operations are relevant to the interest of private
investors, demand customers, policymakers, system operators and other market
participants. Different participants play distinct roles in the wholesale electricity
market (spot market) where electricity is traded through bids to buy and through
offers to sell.

On the supply side, the privatisation and liberalization of electricity markets
make the decision of investing in generation capacity transfer from generally state-
owned monopolies to competitive and private investors or GENCOs who sell their
electricity in the spot markets [46]. In a market-based system, costs cannot be
automatically passed on to consumers [46], and investors are exposed to highly
volatile market prices.

On the demand side, customers (e.g., retail suppliers) and companies (e.g., large
industrial companies) consume electricity they need. In liberalised electricity mar-
kets, very large consumers may be exposed to volatile electricity prices and they may
wish to participate in the demand management program by modifying their demand

pattern in response to the market prices. Long-term price elasticity of demand as a
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whole that accounts for the programs of reducing energy consumption over the full
period of investment has been considered in some LTGI models, as in [18,47-49].

Although policymakers cannot make decisions on investing a new plant in lib-
eralized electricity markets, they play a role in encouraging a diverse, low-carbon
and flexible generation mix by providing incentives [46]. For shaping the future
structure of electricity supply and system reliability, it is important to investigate
the anticipated investment behaviour in the electricity market driven by different
policy designs.

A system operator takes the main responsibility of managing the electricity net-
work to ensure the security, reliability and efficiency of supply of electricity. The
system operator undertakes the task of real-time dispatch of generation, managing
security, planning incentives and contracts signed with generation firms for maintain-
ing generation-demand balance and system security during future trading periods.
The entity who plays the role of a system operator can be owned by the transmis-
sion grid company, or may be fully independent according to the design of electricity
markets, and so it may be named differently in different power systems. For exam-
ple, in Europe, a transmission system operator (TSO) administers the transmission
grid on a national or regional basis. In the United States (US), a regional transmis-
sion organization (RTO) or an independent system operator (ISO) performs similar

functions as the European TSO.

2.1.2 Overview of market designs

Overall, three major electricity market models around the world are discussed here
and they are categorized into centralised and liberalised (competitive) markets [2,41].
The first is the centralised vertically integrated structure where most or all assets
(i.e., generation, transmission and distribution) within a certain geographical area
are owned and operated by a single entity. The second is the competitive energy-only
market design where resources are only paid for the energy and ancillary services (op-

tional)!. The third is the competitive energy plus capacity market design where an

Thttps:/ /www.hks.harvard.edu/hepg/Papers/MISO Resource_Adequacy_112305.pdf
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additional revenue mechanism is available to reward generators for their installed or
available capacity, in addition to revenues from selling energy and ancillary services.
The key feature of liberalised electricity markets is that the potentially competitive
functions of generation and retail are separated from transmission and distribution;

and a wholesale electricity market and a retail electricity market are established.

Centralised vertically integrated structure

During early days of the electric power industry, a vertically integrated structure was
favoured by governments. Under a vertically integrated structure, no competition
exists between different utilities and ideally the energy price is set by the highest
short-run marginal cost/SRMC of running generators (the cost imposed on electric-
ity suppliers by extracting one more unit of supply). The centralised generation
capacity expansion takes the objective of minimizing the total social cost (includ-
ing investment cost, operational cost, reliability cost, environmental cost, etc.) or
maximizing the social welfare, as opposed to the process of liberalised generation
investments where private GENCOs make decisions with an objective of maximizing
the expected profit of a new investment.

The US took the traditional model of the vertically integrated electricity utility
for decades. Later, the US adopted the power pools together with interconnections
over a larger network (electrical grid) instead of a single utility before moving to
liberalisation and ISOs and RTOs in the last decade of the 20th century. The tran-
sition from a vertically integrated structure to a deregulated (competitive) structure
(e.g, an energy-only or a energy plus capacity design) is primarily driven by the need
for a more efficient supply of electricity. A healthy competitive market might also
help attract investment in new technologies given right incentives.

In the late 1980s, UK began the preparations for privatisation with the generat-
ing companies. Reforms in England and Wales, Scotland, and Northern Ireland were
implemented in 1990s and then the liberalisation of different parts of the industry
such as British Energy and National Grid happened at different times. The liberal-
ization in the UK was followed by several other Commonwealth countries including

Australia and New Zealand, and regional markets such as Alberta. In many rapidly
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developing countries, previous vertically integrated utilities (e.g., China’s power sec-
tor [50] and the state electricity boards in India) are now being restructured.

In the 21st century, market designs are rapidly evolving to address various chal-
lenges posed by VG to power system adequacy, operational efficiency and ancillary
services. The electricity market reform (EMR) was recently implemented by the UK
government for purposes of ensuring security of electricity supply while achieving
decarbonisation goals affordably. The GB EMR has introduced support mechanisms
including the Feed-in Tariffs with Contract for Differences, Carbon Price Floor and
Emissions Performance Standard to support investment in low-carbon generation,

as well as the capacity market for supporting security of supply.

Energy-only market

As a central transaction platform in power markets, an energy-only market deals
with day-ahead scheduling and real-time dispatch for energy and ancillary services
(mainly referring to operating reserve) coordinated by system operators.

In a perfect energy-only market, generators offer their SRMCs as price takers
who cannot change market prices. The market-clearing (spot) energy price is deter-
mined by the intersection of the generation supply curve and the electricity demand
curve (the equilibrium solution). All generators are remunerated at the same hourly
market-clearing energy price, set by the SRMC of the marginal plant needed to meet
demand, which is the basic principle of liberalized wholesale power markets. The
market-clearing energy price reflects the VOLL when there is a shortfall in elec-
tricity supply. A perfect market brings sufficient income to generator investors [3]
under the assumption that investors are risk neutral, which, however, is not the
case in practical world. It is investors’ risk aversion that raises concern over simple
arguments that energy only markets can deliver security of supply.

A perfect energy-only market does not exist in practical world. On the one hand,
the VOLL is very difficult to estimate and highly uncertain due to the inclusion of
the consumers’ costs and the wider social costs from blackouts [51]. In real-world
power systems, regulators usually set the energy price cap lower than the real VOLL

in times of scarcity to avoid extremely high market prices [46], which may result
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in insufficient revenues for generators, especially the marginal plants who rely on
price spikes to recover their costs. Scarcity refers to times when the supply may be
insufficient or too costly to deploy to meet the high demand. In order to provide
additional incentives for investments in flexible resources, scarcity pricing is often
implemented in an energy-only market [2] and it will be discussed in more detail
in the following section. On the other hand, it is difficult to administer a perfectly
competitive market environment. Market power is exercised when a GENCO is
capable of profiting from increasing prices (price markups) above competitive levels
(uniform market-clearing prices) for a sustained period of time. The price markup
in the market can be monitored as the difference between the spot energy price
and the SRMC [52]. Strategic interactions among different GENCOs are also seen
both on short-term operational decisions (i.e., strategic bidding in the spot market)
and on long-term investment decisions (i.e., strategic investments in an oligopoly

situation).

Scarcity pricing

As explained in Section 1.1, increased penetrations of VG reduce the average elec-
tricity prices but increase the need for flexible capabilities such as fast ramping,
frequent on-off cycling and balancing ORs, and hence increase the operational cost
of thermal generators [53,54]. To ensure capacity adequacy and revenue sufficiency,
energy-only market is often combined with scarcity pricing, ancillary service scarcity
pricing, or emergency demand-response pricing.

Scarcity pricing refers to arrangements to modify prices in the wholesale elec-
tricity market (spot market) when the system operator reduces demand through
administrative actions such as emergency load shedding [55]. Scarcity pricing in-
troduces a price floor and a price cap to the spot market, which improves revenue
certainty for providers of last resort resources (including generation and demand
response).

An alternative to the floor and cap mechanism is ancillary service scarcity pricing.
Ancillary service markets include those for provision of spinning contingency reserve,

non-spinning contingency reserve and regulating reserve at both short-term (spot)
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and longer-term (bilateral) markets. Additional operating reserves and normal bal-
ancing reserve such as regulating reserve are needed for balancing the increasing
penetration of VG. Hence, the ancillary service clearing prices for those services
will be increased, and market participants will face greater uncertainty in ancillary
service demands and prices. With effectively and well designed ancillary service
markets, the impacts of VG on resource adequacy and revenue sufficiency can be
mitigated. A well tested idea is applying ORDCs during scarcity [39] which has
been found in operation in some RTOs in the US, such as NYISO, ISONE, MISO
and ERCOT. The ORDC is designed to introduce an additional price component to
the energy price and to ensure that the resultant energy price reflects the increasing

value of electricity as the possibility of rotating outages increases.

Capacity mechanisms

Capacity market and some form of capacity payments are two main capacity mech-
anisms designed to support the revenue adequacy of electricity suppliers. Capacity
market is a bilateral contract and forward market where participants purchase or sell
a volume of capacity products which meet reliability requirements?. The capacity
payments mechanism is a fixed revenue system of payment for participants offering
generation capacity. Capacity market is more commonly adopted than the capacity
payments mechanism, because it is generally reckoned to be hard to predict the
capacity outcome triggered by a given payment.

New designs of forward capacity obligations and associated auction mechanisms,
such as the determination of capacity prices and reserve margins, are proposed in [33]
to determine capacity prices. The use of a reliability option contract, a new variant
on reserve requirements, is gaining support in the EU [56]. In a reliability option
contract, a strike price is established via a capacity auction in the day-ahead market.
The establishment of the strike price mitigates market power during scarcity because
generators must pay the difference between the market-clearing energy price and the

strike price and hence do not benefit from price manipulation.

https://www.hks.harvard.edu/hepg/Papers/California.PUC.Capacity. Markets. White. Paper.pdf
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2.1.3 A review on the effectiveness study of market designs

Some modelling and simulation studies have been conducted to examine the effec-
tiveness of capacity mechanisms on improving capacity adequacy in both industrial
and academic world.

Three market designs, namely, the capacity payment, the competitive capacity
market and their joint combination are examined in [18], based upon a long-term
system dynamics model in an energy-only market. A variable capacity payment
mechanism is modelled and studied in [14], which appears to help stabilize the mar-
ket price and reserve margin, and may bring extra credits for consumers in the long
run. The interactions between neighboring power systems are highlighted in [57], in
which the effects of several market designs (e.g, energy-only markets, price-capped
market with a forward capacity market, price-capped market with a capacity mecha-
nism) on incentivising capacity adequacy are tested on two simplified interconnected
markets. In [48], the investment decisions of private firms are represented by a two-
stage game. The model results in the Spanish power system case study show that
the two examined regulatory mechanisms, namely, capacity payment and price adder
are ineffective and costly in delivering the desired level of capacity in an oligopolistic
context.

In the GB EMR process, a suite of models has been developed including a fully
integrated power market model, the dynamic dispatch model [58] provided by De-
partment of Energy & Climate Change (DECC), and network modules designed
and built by UK National Grid. The dynamic dispatch model covers the GB power
market over the medium to long term, which allows the impact of policies on the
investment and dispatch decisions to be analyzed, provided with data, assumptions
and scenarios. In the dynamic dispatch model, a forward capacity market based
on a capacity demand curve (see Section 3.2.1) will be triggered (from 2018/19) if
the amount of generation capacity in an energy market where plant is no longer
profitable is not enough to meet the security of supply reliability target [58]. To
draw some confident conclusions on the effect of the forward capacity market on the
GB power system adequacy based on model simulations, it is necessary to calibrate
some model parameters that represent our assumptions of the real-world.
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The capacity market proposal of PJM is modelled in [20], where the effects of
assumptions concerning investor behaviour on the effectiveness of different capacity
demand curves (capacity payments as a function of reserve margin) are assessed.
The simulation results from the present PJM installed capacity system show that
although there is significant uncertainty regarding the future effects of capacity
mechanisms on financial and adequacy consequences (generator profits, consumer
payments and reserve margins), the use of capacity demand curves reduces risk ex-
posure of generators and consumers, lowers costs to consumers and increases new
investments. Again, these results would have been more convincing if model valida-
tion or calibration work was done.

In real-world analysis relying on computer models, key issues are how well these
models represent the real world and how much uncertainty is involved in these model
results. These concerns are often addressed by model calibration and uncertainty
quantification. More details on the various sources of uncertainty and the ways of

dealing with uncertainty will be presented in Sections 2.3, 2.5.

2.1.4 System adequacy/reliability metrics

Metrics used by system operators to evaluate whether a current or future power
system meets adequacy or reliability requirements are evolving with the energy
structure of power systems [59]. These metrics include a fixed gross capacity margin
or derated capacity margin, probabilistic metrics (e.g., loss-of-load probability -
LOLP, loss-of-load expectation - LOLE and expected unserved energy - EUE), or
economic standards.

The gross capacity margin is normally expressed as the percentage of the level
by which available nameplate or gross generation capacity exceeds the maximum
expected level of demand (e.g., the peak demand) to the peak demand. For example,
standards of a planning capacity margin of 10% to 20% are used in some regional
power systems such as CAISO and SERC/South Carolina Electric & Gas Company
(SCE&G) [60].

The derated capacity margin attempts to account in a margin metric for the
different availability statistics of different plants in a power system [61]. Derated
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conventional capacity is usually defined as expected (in the mathematical sense)
available conventional capacity for generation during the period being examined
after accounting for unit-specific seasonal availability ratings. For example, the
availability probability of a CCGT plant is 85% during the peak time according
to the Office of Gas and Electricity Markets/Ofgem’s Electricity Capacity Assess-
ment [62]. The derated capacity, also called the capacity value of VG is handled
differently by capacity resource planners from conventional generation because of its
intermittent nature. Different metrics may be used to quantify the capacity value
of an additional generator of VG, such as effective load-carrying capability (the ad-
ditional load that could be served by the additional generation without increasing
the adequacy risk level) or equivalent firm capacity (the completely firm generating
capacity that replaces the additional generation and gives the same risk level) [63].

Derated margin is a derived quantity which acts as a proxy for the results of a
full risk calculation, such as LOLE. However, the derated capacity margin does not
indicate how likely it is to have a shortfall. To assess risk at all, probabilistic metrics -
LOLP, LOLE and EUE have been commonly used as the reliability standard in many
markets. Ireland, Spain, GB and some regional markets in the US such as MISO and
PJM have all opted to conduct their adequacy assessment based on a probabilistic
risk metric such as LOLE [60-62,64]. LOLP is defined as the probability that
generation is insufficient to meet demand at a snapshot in time [65]. LOLE is the
expected (in the mathematical sense) number of periods (e.g. half hours, hours,
daily peaks) of periods of shortfall within the time window under study [66]. EUE
is the expected (in the mathematical sense) amount of energy that is unserved by
electricity suppliers within the time window under study.

The early history of adequacy assessment using LOLP is reviewed in [67]. Cur-
rently in the US, such as in PJM, MISO, ISO-NE markets, a generally accepted
generating capacity adequacy criterion is an LOLP of one day in ten years or an
LOLE of 0.1 daily peaks per year. The 0.1 LOLE is specified at a time resolution
of days (typically the expected number of daily peaks on which there is a short-
fall) [60]. In GB, the reliability standard is set by the government at 3 hours LOLE

per year at an hourly resolution [68]. Due to the different time resolutions used for
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defining the LOLE metric, the one day LOLE in the US is not the same as 24 hours
LOLE in GB. It should be noted that the same standard of LOLE does not result
in the same level of reliability in different power systems, because the LOLE study
varies across a range of different modelling assumptions (e.g., accounting for load
forecast uncertainty or not) and reliability modelling tools (e.g., different models of
load forecast uncertainty).

Other markets choose both reliability and economic metrics (e.g., a target of
minimizing customer costs while maintaining a specified capacity margin in South-
eastern Electric Reliability Corporation (SERC)/Southern Company), and a com-
bination of reliability metrics (i.e., the capacity margin and LOLE in the Canadian
Maritimes, the LOLP and EUE in Northwest/Bonneville Power Administration) for

system adequacy assessment [60].

2.2 Overview of long-term generation investment
models

Complex LTGI models have been developed as a decision-support tool of planning
energy systems and designing public energy policy. LTGI models differ with respect
to their adopted mathematical forms and their underlying economic assumptions,
i.e., the mechanism of electricity markets and the behaviour of how each firm makes
its investment decisions. Prior to providing a review of basic LTGI model types,
the various techniques for developing two critical sub-models, namely the modelling
of spot market prices and the economic assessment of an investment project are

described.

2.2.1 Modelling of spot energy prices

As a signal for generation dispatch and investment in liberalised market, the spot
energy price and its formation deserve a careful study. A well-designed and well-
functioning market is supposed to generate prices that do not only compensate for

operation costs, but also allow generators to recover the investment costs with low
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profitability risks [21]. This long-term consideration should help to discern which
of the pricing approaches is more appropriate. However, the full long-run incentive
effects of these pricing rules have not been well understood.

Generally, there are two types of short-term spot energy price simulation models.
One is completely based on data analysis techniques and historical electricity price
data, such as normal distributions of the electricity day-ahead price used in [69-71],
time series analysis of historical electricity prices in [72-74], and artificial intelligence
techniques which map the relationship between the input parameters (e.g., load lev-
els, time periods) and electricity prices [75,76]. The other one is based on a bottom-
up description of the power system, especially the supply-demand balance and the
strategic behaviour of GENCOs [77-79]. The bottom-up electricity price model is
capable of incorporating the temporal fluctuations and short-term uncertainties in
supply and demand, and investigating the effects of varying installed capacity and
demand level on future prices. However, computational efficiency becomes one of the
major challenges when one considers to calculate the high-resolution (hourly or even
half-hourly) spot energy price with the inclusion of generator-level inter-temporal
operational constraints during a long-term planning period, which can account for
30 or more years.

A simple bottom-up electricity price model is based on aggregating the demand
and generation at all buses in the transmission network. The conventional gen-
erators of the same technology can be aggregated and stacked in a merit order.
Merit order, as a simplified dispatch engine, provides a ranking of available electri-
cal generation in ascending order of their SRMCs of production. Then, the uniform
market-clearing price equals the largest SRMC of all generators online. In GB
EMR process, the dynamic dispatch model uses aggregated cost information for
each technology, makes dispatch decisions according to the generation merit order
and calculates the spot energy price as the SRMC of the marginal plant plus a mark
up. In [49,77,80], a probabilistic dispatch algorithm based on the Baleriaux-Booth
method [81] is used to determine the spot market price while characterizing the
short- and long-term uncertainties in demand by discrete probability distributions

and modelling forced outages and scheduled maintenance in thermal generators.
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In [13], a computationally efficient probabilistic costing method is employed based
on a mix of normal distribution approximation to the distribution of net demand
as well as a normal distribution approximation to available conventional generation
capacity that is subject to forced outages. Since investment cost recovery requires
a sufficiently long time horizon beyond the forward market, GENCOs should gain
some knowledge of current and future market prices for scheduling and investment
purposes. A forward-looking simulation is conducted in [4,13,82] to predict future
market prices during the dynamic process of investment.

However, the perfect economic merit order is always distorted to some extent due
to technical limitations such as minimum stable generation and minimum up/down
times. In non-sequential modelling methods, the chronological characteristics of
demand level, generation output and wind availability are removed from their prob-
ability distributions, and hence the inter-period dynamics and constraints at the
unit level cannot be examined. With an increasing wind penetration, the issues of
overgeneration, lack of reserve, and high start costs, resulting from system flexibil-
ity limitations may become significant in assessing the system reliability and the
economic performance of a new investment. Unit construction and commitment
is combined with economic dispatch in [83,84] to produce prices that serve as the
control signal for new investments.

The economic dispatch models have well-defined solution for linear or uniform
market clearing prices and generators being paid the system marginal price can re-
cover their full operational costs, but the more general UC models may produce
no analogous energy prices that fully recover generators’ operational costs including
start-up/shut-down costs [38]. This is the context where uplift or make-whole pay-
ments arise. In many imperfect energy-only markets, uplift payments are added on
top of the linear or uniform market clearing prices, which is the so-called non-linear
pricing rules, in order to ensure generators are sufficiently compensated for their
full operational costs. The analysis in [21] investigates the long-term impact of two
major groups (i.e., linear and non-linear) of pricing rules on the optimal energy mix
under an energy-only market. It is found that the need for uplift payments is in-

creasingly prominent for a power system with high penetration of renewable energy
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sources.

2.2.2 Economic evaluation of a new investment

Investment decisions largely depend on the profitability of a projected investment
or project. There exist different aspects of economic assessment, including the NPV
analysis, real options theory and utility theory.

The net present value (NPV) analysis/the discounted cash flow method is often
used in LTGI models, as in [4,47,57,85]. The NPV provides an indicator of how much
value an investment adds to a GENCO, by accounting for the difference between the
present (discounted) value of revenues (cash inflows) and the present value of costs
(cash outflows). The discount rate used for discounting future cash flows to the
present value is a key parameter of this analysis. Some common rates are a firm’s
weighted average cost of capital, the hurdle rate (the minimum acceptable rate of
return), and variable discount rates (varying discount rates with the riskiness of
investments). Generally, if the NPV is positive the project is worthwhile to be
invested in, while the project should be turned down if the NPV is negative. If the
NPV is zero the investor is paying exactly what the project is worth.

In a risky investment environment, there is uncertainty about future cash flows
and the expected (in a mathematical sense) value is often estimated. To reflect the
investors’ risk aversion, the NPV method can be used together with a risk-adjusted
discount rate as in [49] or the risk functions of plants’ profit, such as value-at-risk
(VaR) [86] and conditional value-at-risk [87]. Often, the VaR calculation relies on a
Monte-Carlo (MC) simulation-based approach for a complete economic evaluation
of an investment under a set of scenarios, as conducted in [13,46,88]. Increasing the
number of scenarios generally reduces the sampling errors and hence improves the
robustness of the estimation of the true risk function, while the computational time
will be unavoidably increased.

Real options theory adopted in [77,78,89,90] is an alternative method of as-
sessing investments under uncertainty. Real option theory considers subsequent
decisions that can modify the project once it is undertaken, while the NPV ap-
proach does not allow for this flexibility of the project and consequently underval-
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ues its benefits. Regarding the LTGI problem, the NPV approach only looks at
one possibility (i.e., investing in a new generation capacity or not) in isolation. By
contrast, real options theory assesses a full range of possibilities, allowing a flexible
and dynamic representation of investment timing and different options (e.g. delay-
ing investments, abandoning the project, or changes in the cost effectiveness of the
investment project) [91].

Utility theory models risk preferences in profitability assessment by quantifying
the utility function of a decision marker in the objective function. As used in [92,93],
risk-averse firms maximize the concave utility function of profit with an exponential

form, while a risk-neutral firm maximizes a linear utility function of profit.

2.2.3 Basic model types

Regardless of the market price models and the economic evaluation methods, the
modelling techniques vary among different LTGI models. There is always a trade-off
between detail (e.g., short-term spot energy price models) and scope (e.g., research

aims, assumptions).

Linear programming

Linear programming is one of the simplest modelling approaches applied to the
LTGI problem. In [94], a multi-period and multi-criteria model based on deter-
ministic linear programming and the analytical hierarchy process for the generation
expansion problem is proposed. Linear portfolio optimisation models are developed
for investigating the impact of VG in generation resource planning in [95,96]. In a
linear programming formulation, simplifications must be made on the commitment
configurations as well as the ramping and reserve constraints, which could result in

overly restricted cycling (i.e., start-up and shut-down) of conventional generators.

Mixed Integer programming

The LTGI problem includes discrete decisions (e.g., the number of new power plants

of each technology) and hence is often formulated as a mixed integer programming
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problem. Growing attention has been paid to incorporating UC constraints into a
such a mixed integer programming program.

A detailed integer block UC formulation within a capacity planing model is
proposed in [97]. The idea is to group the generation with similar technical and cost
characteristics and transforming the number of plants on-line to the commitment
state, so the dimensionality of the UC program can be largely reduced. Ref. [98]
further compares the reduction of computation time and the loss of accuracy under
different levels of aggregation. Another simplification technique of UC employed
in [83] is to reduce the size of the search space by adding physical constraints and
additional heuristic constraints — priority ordering among small flexible units with
similar technical and cost characteristics.

However, even with simplified UC programs, the computation time can be dras-
tically increased within a multistage planning horizon. One group of approaches to
speeding up a multistage program is adopting a rolling-horizon setting. Essentially,
the multistage model is solved by solving successively several submodels with shorter
and shorter horizons, e.g., [99]. A second group of approaches to accelerating the
computational speed is to carefully select a limited number of representative days
or weeks to represent possible system states rather than to simulate many years
of hourly operations. A vast majority of existing approaches to selecting a repre-
sentative relies on either simple heuristics or clustering algorithms. In [83], simple
heuristics are used to select four representative weeks characterizing the average of
the net load profiles of four seasons and one or more weeks representing extreme con-
ditions. A collection of independent days are randomly simulated from the historic
load and renewables data using binning strategy in [100], where the sampling ap-
proach allows for parallelization to improve computational efficiency. The heuristic
approaches lack a consistent criterion for assessing the validity of the approxima-
tion. In comparison, clustering algorithms are more advanced by dividing similar
load, wind speed and/or solar patterns into clusters with regard to some distance
functions and picking one representative period from each of resulting clusters [101].
Scenario reduction techniques, such as the fast-backward method, are also used to

select representative periods, e.g., [102]. Another advanced approach is to optimize
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the selection of representative periods using a user-defined criterion. Ref. [103] in-
troduces a week selection method of minimising the least square error between the
approximate and the actual load or net load (demand minus wind generation) du-
ration curve. All these selection approaches introduce structural uncertainty to be
explained in Section 2.3, because there is always a mismatch between the selected
days and the real-world operational conditions.

Both a mixed integer program and a linear program are deterministic and they
omit a key feature of the real investment problem that involves various sources
of uncertainty (see Section 2.3), and these deterministic programs are unlikely to

produce results relevant to the real world.

Stochastic programming

Stochastic programming provides a powerful tool for solving the problem in terms
of making optimal and sequential decisions on dispatch and investment in time
along with a precise description of uncertainty and the folding of uncertainty over
time [104]. In the formulation of stochastic programming, uncertainties are very of-
ten represented as scenario trees that may be constructed from some expert knowl-
edge or historical observations.

In [105], a two-stage stochastic programming model for investments in thermal
generation capacity is developed for studying the impact of demand response at high
wind penetration levels. In the objective function of cost minimization, operational
costs on an annual basis are approximated as those calculated from several weeks
representing high, medium and low load seasons, respectively. In [106], a multistage
stochastic mean-variance optimisation model is developed for portfolio optimisation
in deregulated electricity markets. A multistage framework enables the modelling of
investment decisions at multiple future time points, using the information up to that
time point. To gain computational tractability, the mutistage stochastic program is
simplified through the stage-aggregation (aggregating the decision stages) and linear
decision rules.

The quality of investment decisions largely depend on the selected scenarios that

cannot fully represent the uncertain operational conditions. Besides, the solution
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time of the optimisation model scale with the size of the scenario tree that expands

exponentially with the number of uncertain parameters and decision stages [106].

Dynamic programming

Dynamic programming has the advantage of handling stochastic and multistage
planning or investment models while linking different time periods together so that
time-linking constraints such as those related to hydro and storage may be con-
sidered [107]. In the dynamic programming formulation, the number of generating
units of each type of unit is considered as the state variable and the number of new
generating units constructed in a year is represented as the control variable.

A dynamic programming based generation planning framework in a competi-
tive, energy-only electricity market is presented in [108], in which price dynamics
are simulated by a price-demand model with the consideration of short-term price
uncertainties, and then the annual profit is stochastically simulated using Monte
Carlo (MC) approach. In [49,77,89], stochastic dynamic programming has been
used for solving the optimal sequential investment problems where uncertainty in
demand and fuel prices is represented as a discrete Markov chain. In these papers,
only one investor within a market is studied. The investor is assumed to be a new
entrant to the market, and its effect on the profitability of the existing fleet of gener-
ation capacity is ignored. A framework combining dynamic programming and game
theory is proposed in [109], in which a forward dynamic programming has been
used for solving the long-term investment problem faced by each GENCO and the
Cournot game is applied to model the strategic interactions among market players.

The greatest concern towards the application of dynamic programming is the
curse of dimensionality. In this case, the dimension of the state space grows rapidly
with the increasing number of possible capacity mixes at each year and number of
planning years, resulting in a substantial increase in computing requirements. In
the presence of uncertainty capturing different sources of uncertainty such as energy
from wind, demands, prices, and rainfall.

One solution is limiting the number of decision alternatives to be evaluated at a

time. In [49], only one new plant of each technology can be constructed within the
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planning horizon of 10 years in the case study. A second approach is conducting
a year-by-year optimisation with static or dynamic look-ahead algorithms to avoid
the problem of short-sighted decision-making [110]. The computational efficiency
for the multiple executions of dynamic programming can be significantly improved
compared with the global dynamic programming optimisation. A third approach is
approximate dynamic programming (ADP) [111] that has recently been proposed to
address complex deterministic and stochastic sequential decision-making problems
with a large number of decision variables and uncertainties. ADP has been success-
fully applied to modelling long-term energy policy and investment decisions in [107]
with the capability of capturing short-term variations in intermittent energy and
demand, as well as storage. The key underlying idea is to replace the true value
function with some form of (parametric or non-parametric) statistical approxima-
tion. ADP is not used in our current work but it should be explored as one of our

directions for future methodological research.

System Dynamics

System dynamics is an approach to understand the nonlinear and dynamic behavior
of complex systems using flows, internal feedback loops, and time delays [112].

In LTGI models based on system dynamics, the feedback loops denote the re-
sponse of new investments to price signals (e.g., energy and capacity prices), and
the time delays refer to the lead times of capacity construction. Continuous or dis-
crete differential equations are used to represent the dynamics (change) of installed
capacity over a planning horizon [113]. In comparison to some traditional analyti-
cal or optimisation methods, system dynamics models are easier to implement and
they have more flexibility in modelling the interactions involved in the complex long-
term investment decision-making process. Optimization-based models are restricted
somehow (e.g., the problem size and complexity) in order to guarantee that there is
an optimal solution. By contrast, System dynamics models often choose a simplified
response function (e.g., profit versus action/decision) instead of an objective (min-
imizing cost or maximizing profit) when dealing with decision-making problems.

Besides, system dynamics models use dynamic simulation to study the behaviour
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of systems and the impact of alternative policies. The simulation technique can
efficiently capture linear or non-linear interactions between inputs and outputs, and
easily implement delays involved in the investment implementation, bounded ra-
tionality of making decisions (e.g., imperfect spot energy price forecasts used for
making investment decisions), and imperfect foresight toward future developments
(e.g., uncertain load growth and fuel prices).

System dynamics has been applied to addressing issues of market incentives and
regulatory effects [14,17,18,114], competitive strategies and market power [4], and
most importantly the dynamics of investment decisions and investment cycles [4,14—
16]. A system dynamics model is developed and calibrated (to variables like system
capacity and the wholesale spot energy price in both PJM and ISO-NE) in [115],
where the simulation results show that liberalisation is a driver of boom-and-bust
cycles on generation capacity growth. Simulations in [14,17, 18] explore the effects
of different market mechanisms on the amplitude of boom-and-bust cycles.

System dynamics programs and investment optimisation programs can comple-
ment each other in performing a LTGI study [110]. In [70], a mixed integer program-
ming model is formulated for each GENCO to maximize its total expected profit
over the whole planning horizon, and system dynamics obtains and updates the in-
formation that is needed for individual GENCOs such as the long term electricity

demand and electricity price development.

Hierarchical models

Generation investment decision-making requires the coordination between long-term
or medium-term generation planning and short-term operation. Mathematical pro-
gramming with a single objective function might be inadequate for determining
both optimal bidding strategies and investment decisions in liberalised markets. For
example, one may wish to study the impacts of design of policies determined by
policymakers on investment decisions made by GENCOs. To account for multiple
objectives of different market participants, the multilevel or hierarchical modelling
technique has been employed in recent studies.

Ref. [116] develops a bi-level market equilibrium model where the upper-level
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decisions are design of policies made by the leader (policymakers) and the lower-level
decisions are investment decisions made by followers (GENCOs). Ref. [117] employs
a two-stage stochastic program to explore the effects of different market designs
and demand-side bidding (i.e., a price responsive demand) on capacity adequacy,
while accounting for uncertainty in demand, fuel costs and transmission capacities.
In [118-120], a bi-level optimisation model is formulated with the investment game
in the upper level and the market clearing game in the lower level, in order to analyse
the competitive behaviour among individual GENCOs considering non-cooperative
investment game or incomplete information of rival producers in the energy market.

Hierarchical models can not be directly handled by traditional equilibrium prob-
lems due to the mixing of primal and dual variables. Complementarity models are
introduced in [116,121-125] to cast equilibrium problems using the mixed comple-
mentary problem format. The implementation of a mixed complementary problem is
to firstly formulate an optimisation model for each player, then obtain the first-order
optimality conditions (Karush-Kuhn-Tucker/KKT conditions) for each mathemat-
ical program, and finally combine all those conditions together with the market
clearing conditions, resulting in a (linear or nonlinear) complementarity problem.
In an uncertain context, stochastic equilibrium models can be reformulated from a
standard two-stage stochastic optimization capacity expansion model, as described
in [85].

The scalability of a hierarchical model is a bottleneck for its applications to
long-term/multi-period generation investments in large-scale electricity networks.
Moreover, it is difficult to deal with a mathematical program with equilibrium con-
straints because the feasible region of the program is not necessarily convex or or
even connected. The lower-level problems in a hierarchical problem are often re-
quired to be free from integer variables and to be as simple as possible so that the
mixed complementary problem/mathematical program with equilibrium constraints

can be solved within reasonable time.
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2.2.4 Challenges in the applications of LTGI models

The various types of LTGI models as reviewed in Section 2.2.3 have in common a high
dimensional input space, with considerable uncertainty over both the appropriate
values of inputs and over the relationship between the model structure and the
real world. In real-world applications, it is challenging but valuable to carry out a
comprehensive uncertainty analysis that considers all sources of uncertainty.

There exist studies on modelling some stochastic quantities in LTGI models, such
as short-term and long-term demand uncertainty described by normal distribution
function [17,18] or a discrete binary Markov chain in [19]. However, uncertainty
in some internal model parameters and uncertainty in the model structure (see
Section 2.3 for more explanations) are usually not considered in the literature but
they will be emphasized in our work.

Another challenge is that the LTGI models are often computationally intensive.
A single model run may take many hours [4,13] or even many days or weeks with
more detailed modelling of short-term power system operations [21,97]. Conse-
quently, the number of possible runs of a complex LTGI model is limited, which

makes it difficult to perform a comprehensive UA and SA.

2.3 Sources of uncertainty

The role of risk and uncertainty is of great importance in the LTGI problem. Both
risk and uncertainty are based on lack of certainty in a potential fact, an event,
an outcome or a scenario, etc. Here, a risk refers to a factor that may result in
uncertain financial returns of investment, such as demand, fuel prices and spot
prices. Uncertainty refers to a situation which involves imperfect and/or unknown
information due to limited observability and/or stochastic behaviour, as well as lack
of knowledge.

Inherent uncertainty is involved in projecting revenues (and costs) over the long
lifetimes (20 to 50 years) of a new generation capacity, and thus it influences the
decision-making on investments and energy policies. Therefore, it is necessary to ad-

equately account for uncertainty around the outcomes (e.g., projections of generation
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capacity and system reliability) of a LTGI model related to the real world [126,127].

Three major sources of uncertainty, namely, input uncertainty, structural uncer-
tainty and functional uncertainty, will be taken into account in the LTGI problem.
Other sources of uncertainty, such as observation error are assumed not to contribute

much extra uncertainty.

2.3.1 Input uncertainty

Input uncertainty comes from the model parameters that are inputs to the model
but whose appropriate values are unknown to us. Among these model inputs, there
are some parameters whose values cannot be inferred by statistical methods, such
as future design of energy policy, as this is totally controlled by policymakers. By
contrast, uncertainty in some internal model parameters that represent particular
modelling assumptions may be reduced by learning from historical observations, in
order to move the model closer to the real process or system [128].

Predictions of the future profit of an investment rely on the outcome of random
events (regarding their predictability such as wind speed or generator outages).
These random events are often represented by statistical models, such as modelling
the wind speed at a certain time snapshot as a normally distributed random vari-
able which is characterized by the parameters of mean and variance. It is commonly
assumed in the literature that all of uncertainty in the wind speed has been en-
compassed by a specified probability model. However, there is still uncertainty in
the input parameters and the structure of the probability model regarding its ac-
curacy in representing the real-world wind speed (as will be further discussed in
Sections 2.3.2).

Examples of input uncertainty in the LTGI model mainly include risk factors

ranging from policy risks, technology risks, finance risks to market risks.

Policy risks

Design of future energy policies is unknown to investors. Some administratively
determined values, such as the energy price cap in an energy market have a significant

impact on investment decisions. Uncertainty in carbon prices is largely dominated
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by carbon policies supporting investment in low-carbon generation including the
Carbon Price Support mechanism [129] and the European Emissions Trading Scheme
(EU ETS). The Carbon Price Support is proposed by the GB EMR consultation
with a carbon price floor made up of the price of CO5 from the EU ETS and the
Carbon Price Support rate per ton COs.

Technology risks

Technology risks, such as uncertainty in future capital costs, construction costs
and decommissioning costs, affect the type of generation capacity to be invested.
In comparison, nuclear and coal power plants are less attractive than CCGT and

OCGT power plants because they have higher capital costs and longer lead time.

Finance risks

Private investors make their investment decisions based on their forecasted prof-
itability of a new investment over a long time horizon, during which there is un-
certainty of a return and a potential for financial loss. Rate of return, expressed
as a proportion of the annual income to the original investment, is one of the fi-
nance risks. Generally, investors would require a higher rate of return for choosing
a generation technology with a higher cost of capital.

An investor’s risk attitude toward finance risks is unknown to other investors
and policymakers. There are three alternative risk preferences — risk aversion (the
preference for a certain outcome over a risky outcome), risk neutrality (indifference
between a certain outcome and a risky outcome), and risk loving (the preference for

a risky outcome over a certain outcome).

Market risks

In an electricity market, investors and policymakers are exposed to electricity price

risks arising from the unknown bidding behaviour of GENCOs, as well as from future

projections on fuel prices and electricity demand that are difficult to predict [13].

Uncertainty in fuel prices is passed on to uncertainty in electricity prices since the

fuel cost is included in the energy offer of GENCOs to the spot market. Due to
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the recent improvement of energy efficiency, economic downturn and the potential
increasing level of demand side response, the demand growth rate has considerable

uncertainty, which contributes to long-term electricity price risks.

2.3.2 Structural uncertainty

Structural uncertainty arises from the fact that the model and the reality are almost
always not the same. More specifically, there may be unknown functional relation-
ships or imperfect science in the model equations or errors in the structure of the
model due to the lack of knowledge of the underlying true system or process. Struc-
tural uncertainty is referred to as model inadequacy or model discrepancy between
the model and the reality; this is expected even with the best values of model pa-
rameters. Structural uncertainty often exists in complex LTGI models and needs to

be calibrated and quantified against the real-world observations.

2.3.3 Functional uncertainty

As mentioned in Section 2.2.4, LTGI models with a high-dimensional input space
are often computationally intensive. A particular issue in high dimensional models
is that while broad knowledge of the model input-output relationship across a range
of credible inputs is required when it comes to carry out computational tasks of
calibration, UA or SA, it is usually only possible to cover sparsely this input space
with model runs. At any untried point (where the full LTGI model has not been run),
the function representing the relationship between the model inputs and outputs
are unknown to us, which forms functional uncertainty. In order to enable a quick
evaluation of the function at any input, a meta-model is often used in replace with
the full model. The meta-model gives an evaluation of a model output at any
untried input point as an approximation to the output evaluated by the full model.
Uncertainty in this approximation (between the meta-model and the full model), in

principle, arises from functional uncertainty.
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2.4 An illustrative example of uncertainty

An example presented here is used to illustrate the three major sources of uncertainty
— input uncertainty, structural uncertainty and functional uncertainty.

Ezample 1. (The concentration of a chemical®). Suppose the concentration of a
chemical that evolves in time is modeled as e(r, t) satisfying the differential equation,

de(r,t)
dt

=re(r,t), (2.1)

where r is a rate parameter and t is time.

The equation (2.1) above can be written as,
e(r,t) = egexp(rt). (2.2)

We wish to learn about the best value of the model parameter r for describing
the real system (i.e., the concentration of a chemical) when some observations are
available. Assuming the initial conditions are ey = e(r,t = 0) = 1 and a measure-
ment at ¢ = 3.5s, we run the model from ¢ = 0s to t = 5s at five selected values of the
model parameter r. Fig. 2.1 shows the five simulation runs indicated by the colored
lines and the measurement at ¢ = 3.5s is shown with a black dot, with measurement
error given by the error bars.

If the analytic solution to the function e(r,t) as expressed in (2.2) is unknown,
which is common for complex functions, the solution would be generated by numer-
ically solving the differential equation. To answer which values of r produce the
output e(r, t) that is consistent with the observations, we now focus on the function
e(r,t = 3.5) as a function of r only.

Fig. 2.2 presents the five simulation runs (in colored points) and the observation
(in solid black horizontal line) at ¢t = 3.5s. If the analytical model e(r,t = 3.5) =
exp(3.57) is known, a single value of r would be easily identified if the measurement
error is ignored. However, uncertainty in the observation of e(r,t = 3.5), indicated

by the two dotted black horizontal lines, leads to uncertainty in the inferred values of

3This toy example is adapted from one of Michael Goldstein’s presentations titled “Bayesian

uncertainty analysis for complex systems modelled by computer simulators”.
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Concentration e(r,t)

Time (t)

Figure 2.1: Concentration of a chemical that evolves in time at different rates.

r, that is, a range (in green) of possible values of r consistent with the measurements,
with all the implausible values of 7 in red/yellow in Fig. 2.2.

Apart from uncertainty in the model parameter r, structural uncertainty (or
model discrepancy) around the model output e(r) itself is indicated by the red
dashed lines in Fig. 2.2. The consideration of model discrepancy results in more
uncertainty in the estimated value of r, and hence a larger range (in green/yellow)
of r values, with all the implausible values of 7 in red.

Functional uncertainty at untried input data is indicated by the solid purple
lines, as shown in Fig. 2.3. Without the consideration of model discrepancy, func-
tional uncertainty and measurement uncertainty result in the plausible values of
r in green in Fig. 2.3. Supposing that functional uncertainty is independent from
structural uncertainty, the additive effect of these two sources of uncertainty leads
to the uncertainty range quantified by the blue solid lines. Hence, the range (in

green/yellow) of possible values of r is enlarged, in comparison with that shown in

Fig. 2.2.
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Figure 2.2: Concentration of a chemical as a function of the rate parameter at time 3.5s, accounting

for structural uncertainty and observation errors.
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Figure 2.3: Concentration of a chemical as a function of the rate parameter at time 3.5s, accounting

for structural uncertainty, observation errors, and functional uncertainty.
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2.5 Dealing with uncertainty

For real-world applications of LTGI models such as design of energy policy or de-
termination of investment decisions, it may be necessary to quantify, analyse and
reduce uncertainty in model outputs. General tools for dealing with uncertainty are
calibration, UA and SA. Different assumptions on the characteristics of uncertainty
may provide different implications for policymakers. Therefore, it is important to
describe and analyze uncertainty in a systematical way that reflects the use of the
model for policy purposes. Meanwhile, it is necessary for policymakers to design a

robust energy policy against different sources and assumptions of uncertainty.

2.5.1 Calibration

Calibration or history matching refers to the process of learning from observations
and tuning a model to the real process to best approximate and predict reality.
Calibration is a valuable tool for validating a LTGI model and ensuring the quality
of investment decisions to be delivered by the design of energy policy.

Some calibration work is found on the statistical modelling of fuel prices or elec-
tricity prices based on historical data [73,74]. However, there is limited work on
calibrating a complex LTGI model. Dan Eager et. al. developed a LTGI model
described in [82] and found a set of model parameters for projecting future genera-
tion capacities. The model is validated by showing graphical comparisons between
the simulated and observed market dynamics (i.e., capacity margin, total installed
capacity, installed capacity for each generator, and average monthly spot energy
prices) since the introduction of the NETA to England and Wales in GB wholesale
electricity market. However, there is no calibration work done regarding tuning
the model parameters to better match with the real world. The modellers in [115]
manually varied some model parameters that potentially have substantial effect on
the price behaviour, gradually achieving a reasonable match between the simulated
results and the historical data of peak spot prices for PJM and ISO-NE. The qual-
ity of calibration is examined through visual graphs and two statistical measures

- the mean absolute error over the mean and the Theil statistics [130]. However,
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the calibration method based on trial-and-error used in [115] is very inefficient for
resource-demanding models. In addition, it is incapable of capturing and quantifying
the structural uncertainty that applies to future projections of model outcomes.

A formal calibration typically involves calibration of a subset of uncertain model
parameters against historical observations of the model output whilst modelling the
discrepancy between the model and the real system. Uncertainty in calibration
parameters whose values are unknown to modellers may be reduced via inference
using statistical methods. In Bayesian approaches, uncertainty in model parameters
is specified ex ante as a probability distribution based on the prior beliefs of the
model user or other experts, and these prior beliefs are updated according to Bayes’
rule (i.e., by identifying values of calibration parameters that are plausible with
respect to historical observations of the model output). A more detailed description
will be given in Section 3.3.4.

In the example presented in Section 2.4, the calibration process involves the
inference of the rate parameter and of the model discrepancy based on the available
observations. To the best of our knowledge, no such formal calibration of LTGI
models has previously been done. If a calibration against historical observations
is not performed, this severely limits the conclusions which can be drawn from
assumptions based models regarding investment decisions, the capacity requirements

and policy design in the real system.

2.5.2 Prediction

Prediction is estimation of model outputs at input configurations that have not been
tested. There is uncertainty about how close the true real-world outcomes will be to
the prediction that is the outputs simulated by the model. As model users, investors
or policymakers should wish to be provided with a plausible range of the possible
model outcomes rather than a single value or scenario. It is also of great value to
quantify uncertainty around a prediction using a probability interval.

Suppose investors or policymakers are determining the combined values of all
decision/control variables that trigger the adequate amount of generation capacity
at low costs. Predictions will be made at the selected settings of control inputs. In
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this situation, uncertainty in the predicted total installed capacity arises from many

sources, particularly from input uncertainty and structural uncertainty.

2.5.3 Uncertainty analysis

Uncertainty analysis focuses on uncertainty quantification and propagation of un-
certainty from model inputs and structure to model outputs. Uncertainty quan-
tification is a process of assessing the uncertainty of variables (e.g., model inputs,
model outputs and observations) that are used in decision-making problems or the
uncertainty of a measurement in experiments. Propagation of uncertainty explores
the whole picture of model predictions while accounting for various sources of un-
certainty in model inputs and structure. Depending on nature of the variable and
the technique we adopt, uncertainty in a variable may be characterized by a (joint)
continuous/discrete probability distribution or a set of quantitative/qualitative sce-
narios.

UA is most relevant when those outputs provide guidance in real-world decision-
making problems, such as using a LTGI model for investigating the uncertainty of
future LOLEs, and further for suggesting the settings of the energy price cap that
has an effect on the range of LOLE. Since there exist various kinds of uncertainties
in the lengthy planning process, the lack of UA will lead to the underestimation the
risks exposing to the investors.

A number of techniques such as MC simulations, scenario planning and Bayesian
statistics can be used for carrying out an UA. In [18], MC simulations are employed
to determine the average value and the highest and lowest limits of confidence inter-
vals for variation of reserve margin and generation total price caused by uncertainty
in annual demand growth rate. However, MC-based UA is particularly challenging
for a high-dimensional energy planning model that is expensive, in time and compu-
tational resources to evaluate at any point of the input space. Scenario planning, as
the simplest and aggregate form of UA, characterizes uncertainty using a small num-
ber (typically three to five) of plausible scenarios (i.e., possible alternative futures),
and more often expresses the resultant model outputs in qualitative terms such as
“high” or “low” than in quantified terms such as probabilities [131]. Compared with
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numerical simulation based UA, scenario planning is relatively easy to implement
and to explain but it is not analytically rigorous as the qualitative terms such as
“plausible” it relies on do not convey clear and precise meaning. Besides, scenario
planning is not comprehensive due to the limited number of scenarios selected that
may not represent the full range of potential futures.

A formal UA based on probability distributions provides the analyst with a com-
prehensive picture, that is, the full range of outcomes giving all extremes, and with
an understanding of the outcomes given a specific setting (a real-life scenario) of in-
put variables. In practice, we can collect a small number of quantitative judgements
from a group of experts, and then fit a proper distribution to those judgements. Use-
ful individual judgements on an uncertain quantity/event include plausible limits,
mean, quantiles (e.g., median and tertiles), and likelihoods using Roulette method
(using the bins in the Roulette grid) [132]. However, a probability distribution is
more difficult for stakeholders in government to understand than scenarios. They
may also be skeptical on the credibility of a probability distribution that is formed

based on many assumptions.

2.5.4 Sensitivity analysis

Sensitivity analysis studies the relationship between a model’s inputs and outputs.
Quantifying the output uncertainty is the role of UA, but there is often interest
in identifying which inputs have the strongest or negligible influence on outputs;
this can be addressed by ranking the sensitivity of model outputs to variation or
uncertainty in model inputs [133]. In addition, one may wish to know how much
of the overall uncertainty in the output of a model or system can be attributed to
uncertainty in particular inputs or groups of inputs, in which case variance-based
methods are widely used for measuring the sensitivity of the output to an input
variable by the amount of variance in the output caused by that input.

In the LTGI problem, there can be many parameters of interest, and investors or
policymakers might not be fully aware of critical parameters that affect uncertainty
in their objectives (e.g., investors’ future profits or power system reliability). There-
fore, sensitivity information is useful in giving decision-makers an idea of uncertainty
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involved with new investments and policy design, and hence implying effective ways
to reduce decision uncertainty by focusing on the most important model inputs.

One measurement of sensitivity is partial derivatives, as expressed as df (x)/0z;,
which measures the change in output f(x) when a particular input z; was perturbed
slightly from the nominal (base-line) value. This measurement is referred to as local
SA because it is limited to exploring the impact of an infinitesimal change in an
input. When the nominal input values are perturbed slightly, the SA results have
limited value in understanding the consequences of input uncertainty. Besides, local
SA is unable to account for any nonlinearity in the response to z;. Alternatively,
global SA methods are more commonly used.

One simple global SA method, the one-way or one-at-a-time method has been
employed in [13,16,18,20,115,134,135], where each input is perturbed only one at a
time from its nominal value while all others are held constant at their nominal values
for each run of the model, and then the resulting change in output is regarded as a
measure of sensitivity to the varied input. However, the one-way method is incapable
of taking into account interactions among different inputs.

Multi-way SA can identify the combined effects of two or more inputs, through
varying the inputs together rather than individually using a large and highly struc-
tured set of simulator runs [136]. In the one-way and multi-way methods where
the inputs are substantially perturbed, there is a question of determining the per-
turbation or uncertainty range. For example, variations in the inputs are chosen
randomly within the upper and lower range of an input, without accounting for the
relative credibility of these values.

To avoid the arbitrary definition of variations, probabilistic SA is an alternative
approach to multi-way SA that can address interactions and nonlinearities [137,138].
Probabilistic SA emphasizes on the careful and explicit specification of a probability
distribution of model inputs. Therefore, it has the unique ability to describe the

relationship between input uncertainty and output uncertainty.
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2.5.5 Methods of carrying out calibration, uncertainty anal-
ysis and sensitivity analysis

A conventional way to conduct a formal calibration or a UA/SA is the MC method
of drawing random configurations of inputs from their uncertainty distributions,
running the model for each input configuration to obtain the set of outputs, and
constructing the output distribution (which can in principle be evaluated to any
desired accuracy).

Computationally intensive models associated with large studies tend to have
high-dimensional inputs. The MC-based method may require thousands of (if not
more) individual evaluations in order to avoid sparse coverage of the model input
space. It may be practically impossible for complex models to achieve very dense
coverage of input space even if very large computer resource is available [131]. Even
where a very large number of runs may be possible by acquiring additional comput-
ing resource, the approach adopted in our work allows results to be obtained in a
systematic way with a smaller computing resource.

The Bayesian approach is applied in our work to inferring the unknown val-
ues of some parameters and quantifying the model discrepancy of the LTGI model.
Directly using such a complex computer model for statistical inference produces in-
tractable likelihood functions. There are methods of indirect inference [139], approx-
imate Bayesian computation [140], and likelihood-free Markov chain Monte Carlo
(MCMC) [141] proposed to overcome the computational challenge of intractable
likelihoods in complex computer models. However, for carrying out a comprehen-
sive UA and SA, there still need a large number of computationally expensive model
runs. The underlying idea of resolving the intractable model runs is to use a sim-
pler and more efficient model as an approximation to the original model. Bayesian
emulation is such an approach that introduces a statistical emulator to approximate
the full computer model and to quantify the functional uncertainty in the output of
the model at all points in the input space where it has not been evaluated. In this
way, Bayesian emulation can systematically deal with various sources of uncertainty

(e.g., input uncertainty, structural uncertainty, functional uncertainty) and enable
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very efficient calibration, UA and SA of a complex computer model.

Bayesian emulation has been successfully applied to complex galaxy formation
models [142], climate models [143, 144], infectious disease models [145] and DNA
population dynamics [146], etc. The Bayesian approach adopted in our work is based
on a Gaussian process (GP) emulator, which characterizes uncertainty regarding the
simulator as a GP and uncertainty regarding the inputs and outputs by complete
probability distributions. More theory and technical details of Bayesian emulation

will be presented in Chapter 3.

2.6 Chapter summary

This chapter first gives an overview of electricity market designs in transition for
facilitating the integration of VG, including vertically integrated structure, energy-
only market, scarcity pricing, and capacity mechanisms. Next, the roles that market
participants play in the LTGI problem are explained, followed by the evolution of
system adequacy metrics. Then, the modelling studies on the LTGI problem in the
literature are reviewed.

The computer models and the real world are not the same, due among other
issues to uncertainties in input parameters and discrepancies between the model
structure and the real world. An example was presented to illustrate three major
sources of uncertainty, namely, input uncertainty, structural uncertainty and func-
tional uncertainty. In order to use LTGI models robustly for decision support, it is
necessary to quantify uncertainty in the relationship between model outputs and the
real-world equivalents. In order to systematically and efficiently manage uncertainty
in a complex LTGI model, it is necessary to create an emulator of the full model,
which may be evaluated quickly for any input and which quantifies uncertainty in
the output of the full model at inputs where it has not been run. The statistical

methodology, Bayesian emulation, will be demonstrated in the next chapter.
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Chapter 3

Application of Bayesian
calibration to long-term

generation investment models

This chapter presents methodology for carrying out formal calibration, uncertainty
analysis (UA) and sensitivity analysis (SA) of a computationally intensive long-term
generation investment (LTGI) model (i.e., the simulator) with careful management
of various sources of uncertainty. Calibration links the model with the real world
by learning from historical observations the updated information of some uncertain
model parameters and model discrepancy. UA and SA are powerful tools for making
sense of uncertainty around model inputs and outputs when a LTGI model is used
for real-world analysis.

LTGI models, such as the one proposed in [4,13] and used as an exemplar in
our work, are often computationally expensive to run. The traditional MC-based
techniques require a very large number of simulator runs that may be impractical to
achieve. In comparison, Bayesian emulation enables very efficient calibration, UA
and SA. A Bayesian emulator approximates the simulator as a Gaussian process
model and quantifies uncertainty in the approximation. A simple example is pre-
sented to illustrate the performance of an emulator. Finally, descriptions are given

on how to carry out validation, calibration, and SA within a Bayesian framework.
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Figure 3.1: Diagram of the Bayesian framework.

3.1 Diagram of the methodology

A highly efficient Bayesian approach described in [133,137,144,147] will be employed
to tackle the computational challenge found when performing calibration, prediction,
UA and SA on complex computer models. Fig. 3.1 shows a diagram of the proposed
Bayesian framework, which is based on a Gaussian process (GP) model (i.e., the
emulator) that is built as an approximation of the simulator using a limited number
of simulation runs (i.e., training data). The traditional MC-based method directly
uses the simulator for model evaluations at untried model inputs. By contrast, the
Bayesian approach uses the emulator for evaluations and only a small number of
simulator evaluations are required for the development of the emulator.

In Section 3.2, a brief description of the simulator under study is provided,
emphasizing uncertain model inputs and outputs that are of interest. The theoretical

foundations of the Bayesian framework are illustrated in Section 3.3.

3.2 The simulator

A brief description of the simulator under study is provided in this section, with
emphasis on the uncertain model inputs and the output of interest. The LTGI

model developed by Eager, Bialek and Hobbs [4, 13] will be used as an exemplar
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to demonstrate the application of the Bayesian approach to a decision-support tool.
The modeling technique of this simulator is based on system dynamics which is most
commonly used in industrial practice particularly in modeling electricity markets
under uncertainty [113]. Whilst this is a specific application, the Bayesian framework
as presented here can be generally applied to models in which uncertainty plays a
key role and where the link between the model and reality is of great importance

and interest to model users. For more discussions, please refer to Section 4.6.

3.2.1 High-level formulation of the simulator

The simulator developed in [4,13] provides projections of installed thermal capacity
and LOLE given a scenario of on-shore and off-shore wind capacities over a long
planning horizon 7. The simulator is system dynamics based and it obtains an
investment response as a function of a performance index (e.g, profitability and its
likelihood) instead of using optimality or equilibrium criterion as in optimization
based models. The simulator is stochastic because it considers annual load distri-
bution, generator availability, annual load growth rate, and stochastic fuel prices.
Forward-looking MC simulations are conducted at each decision year to obtain the
performance index of an investment. A full description of the simulator may be
found in [4,13].

Fig. 3.2 shows the structure and the main inputs and outputs of the simulator.
A high level description of the five main modules within the simulator is provided

in egs. (3.1a)—(3.1e).

F, = (K, q) (3.1a)
Prariupt = o (NDy, {AGyi}, Opariups Woo), Vg € G (3.1Db)
[P, {Cyt,yr ] = hs(CMy, Fy, Prrupy), Vg € G (3.1c)
[ygft, y;\ﬁ, yft} = h4(9VaR, {P.:},{Cy+}, ucone), Vre{t,....t+71,—1} (3.1d)
Ygt = hs (Cg,t—h yf’t, yé‘fft, yi}t, RTg,t). (3.1e)

The five modules are described in the following sections.
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Figure 3.2: The model structure of the simulator.

Fuel price module

In (3.1a), hy(-) simulates annual fuel and carbon prices (both in the past and future)

using mean-reverting stochastic processes [13,148], as expressed as,

dFt = X(MRt - Ft)dt + ’UOl(Ft)th, (32)
K dgy

MR, = —— 3.3

; L T (3.3)

where Fj is the fuel price at year ¢, M R, the reference time dependent mean reverting
level, vol(-) characterizes the expected change and the local uncertainty (the year-
to-year volatility) of each fuel type, W; a standard one-dimentional Wiener process,
q; the DECC central estimate, £ a multiplier, and y is the speed of mean reversion.

Projected fuel prices depend on the reference long-run fuel price projections,
referring to the DECC projections here. A multiplier x is used to adjust the central
estimate ¢; upwards or downwards, which reflects the long-run or global uncertainty
of fuel and carbon prices arising from market changes or political interventions.
Applying a multiplier to the trend of future carbon prices, as shown in Fig. 3.3,

results in different trend levels of carbon prices (in solid and dashed lines) associated
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Figure 3.3: Different trend levels of carbon prices (in solid and dashed black lines) using the central
estimates of carbon prices published by DECC [1] as a reference (in solid black line); The expanding
shaded area (in light grey) reflecting the local uncertainty along the trend level.

with local uncertainty (in shaded areas).

Price markup module

In (3.1b), hy(-) calculates the energy price markup, as shown in the upper graph
in Fig. 3.4. For simplicity, all generators are stacked in merit order and dispatched

whenever they are available. The wholesale energy price model is
Pe,t = SRMCQ + Pmm‘k:up,t) (34)

where

— b-C' M,
Pmarkup,t ‘= Uyoll€ L (35)

The price markup Pqrkup,e is Tepresented as an exponential function of the ca-
pacity margin. The markup reaches the energy price cap at a capacity margin of
zero. The parameter b is calibrated so that the markup approaches zero at a cut-
in point of capacity margin, denoted as 6,,4rkup- The price markup given as (3.5)

becomes prominent when peaking plants N, — 1, N, are on the margin. The price
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Figure 3.4: Upper: Energy prices cleared in merit-order with price markup; Lower: Price markup

functions with different values of Omarkup-

markup can be derived from the joint probability distribution of the capacity margin
CMpy,-, and CMy,. Different assumptions on the value of 0,,4,1yp, that is, on the
competitiveness level of the power system, lead to different levels of price markup,

as shown in the lower graph in Fig. 3.4.

Production simulation module

In (3.1c), hs(+) performs the probabilistic production costing method in a nonequi-
librium market settlement. The method performs a convolution of generator outages
with the annual net load (demand minus wind generation) curve N D, and calculates
the energy prices, costs, revenues and LOLE. Since an existing published model is
adopted, discussion about more details on the form of this model is beyond the scope

of this thesis.
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Decision making module

In (3.1d), h4(-) is the module of decision-making under uncertainty. At each decision
year, the investor assesses the distribution of the value of a project V; based on the
NPV of the first 7; years of forecasted profitability of new and existing generation
capacity. To consider the investor’s risk preference, the VaR of the distribution of V;
is selected according to P,(V; < Viurt) = Ovar, and then Vi,g: is used for making
investment decisions. The smaller the value of 6y, is, the more risk averse the
investor is assumed, and the lower level of investment would be.

Given the cost estimations, the energy prices and the capacity price if a capacity
market is available, hy(-) calculates the gross margin of per MW of a plant, as
defined as the overall revenue received from the energy and the capacity market
minus its variable costs. We refer to Section III in [13] and Section 8.2.4.1 in [4]
for more details. Then, the module outputs are annual decisions on the investment
in new thermal generators and the mothballing/de-mothballing of existing thermal

generators.

Capacity dynamics module

The last function hs(-) in (3.1e) simulates capacity dynamics that update the gener-
ation capacity portfolio at each decision year by adding the newly installed and/or
demothballed capacity and removing the mothballed and/or retired capacity. The
module inputs include exogenous variables such as plant life time and thermal plant
retirements, and endogenous variables such as new builds and new mothballed /de-
mothballed capacity. The module outputs are the installed thermal capacity of each

technology and system reliability index (e.g., LOLE) at the decision year.

Capacity mechanisms module

Capacity mechanisms hg(-) may refer to a forward capacity market, capacity pay-
ment, or a reliability option contract. A capacity demand curve derived by DECC
and announced in advance of each auction is considered here. Fig. 3.5 shows a rep-
resentation of supply and demand in the UK capacity market where the intersection

of the capacity demand curve and the supply curve sets capacity prices [35]. A ca-
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Figure 3.5: Capacity market supply and demand curve.

pacity balance target represents the estimated optimal level of installed capacity in
the system. The capacity price at capacity balance target is determined by the net
CONE that represents the cheapest cost of a new entrant peaking plant minus its
expected annual energy market revenue [23]. In this model of a capacity market, the
net CONE, the slope of the demand curve and the capacity price cap are the main
design parameters [20], among which the key uncertainty and complexity driving
capacity pricing comes from the net CONE. The net CONE is administratively de-
termined in the capacity market (like VOLL). However, the true value of net CONE
highly uncertain due to the uncertain cost structure bid by the market participants

and estimates of revenues from energy market [23].

3.2.2 Model inputs and outputs

Model inputs

In the decision-making module (3.1d) as described in Section 3.2.1, two common
electricity market designs, namely the energy-only market design and the forward

capacity market design will be studied. There are too many model parameters to
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explore all of them in a reasonable execution time. The inputs of interest here are
the source of uncertainty that can result in a substantially different trend in the long-
run investment decisions. SA helps identify the influential parameters, and hence
can be used for screening out unimportant variables in high-dimensional problems
before a full sensitivity analysis is performed. The selection of model inputs in our
work is based on the one-way SA results obtained from [4] as well as our research
aims of exploring the impacts of market designs.

Among the modules described in Section 3.2.1, six model inputs are identified
and categorized into three types from policymakers’ perspective: control variables
U := {Ucone, Upol; Uco,  that are determined by the capacity market design, energy
price cap policy and the carbon policy, respectively; calibration parameters 6 :=
{Omarkup, Ovar} of which unknown values are expected to be learned using historical
observations of the model output [133], as further explained in Section 3.3.4; and
a forcing input w := wy,s reflecting the global uncertainty (uncertainty in the long-
term trend) of future gas prices. Two inputs (calibration parameters) are used for
model calibration, five for forecasting under an energy-only market design and six
for forecasting under a capacity market design.

We cannot calibrate the control inputs {ucone, Upoir, Ueo, }, Since they will be ad-
ministratively determined in the future, nor can we calibrate the forcing input wgy,s
as the future long-term trend of gas prices might not be independent from the his-
torical trend due to market changes. Calibration parameters are those representing
model assumptions such as the market competitiveness and the investors’ risk pref-
erence, and it should be reasonable to assume that these parameters do not change
over time. So the calibration parameters are the only things that we can vary to
improve the accuracy of the model, i.e., to match it more closely to the real-world.

The above input categorization is derived from a policymaker’s perspective; an
investor might have a different categorization of inputs. For example, 0y ,z will be
a control input since the investor has the freedom of choosing a risk preference,
and {Ueone, Upoll; Uco, } Will be forcing inputs as these policy-related parameters are
uncertain to the investor. Apart from the six model inputs, other model parameters

that make the simulator stochastic such as fuel price volatility vol(-) and the variance

23



of the normally distributed demand growth rate are not assumed to have a long-
run effect on investment decisions. The selected model inputs are assumed to be
constant over the planning horizon. This approach allows direct exploration of the
relationship between one parameter (used to represent a model input) and model
outputs. Similar practices can be found in [16,18,20,135]. The dimensionality of the
input space can be extended if independent values are needed for an input variable
at each year or at each stage (e.g., every five years). Also more model parameters
(e.g., the mean or the variability of demand growth rates) can be included in the

input space if they are deemed to contribute substantial additional uncertainty.

Model outputs

One of the outputs of interest is the time series of annually installed thermal gener-
ation capacity y© = {y“},Vt € 1... T, where y& = 3" y,;. The historical observa-
tions of operational thermal capacities are available,g i\(/}hich allows for calibration in
the history matching procedure. The planning time horizon of interest 7 is either
the past (¢t € P), for which observations exist, or the future (¢ € F), for which a
projection is made.

A second output of interest is the time series of annual LOLE - loss-of-load ex-
pectation over the future planning horizon y* := {yl},vt € 1...F. A third output
of interest is the maximum annual LOLE, as expressed as y := max(y’),Vt € F,
because we are interested in determining energy policy scenarios within which the
maximum value in annual LOLEs over the future planning horizon does not ex-
ceed, at any time, a given threshold (e.g. 3 hours per year). After the invest-
ment /mothballing/demothballing decisions are made, the LOLE is computed as
the number of hours in a year Ny multiplying by the snapshot LOLP, that is, the
probability that net load (load minus wind generation) is not met by supply from
conventional generators at a randomly chosen point in any hour within the year, as
expressed as,

yl = N, x Pr(ND, > G,), (3.6)

where Pr(-) is the estimate of the LOLP, estimated using convolution, as described

in [4,13]. Given a specific MC sample of annual demand growth rate, there is a net
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load distribution N D, and hence a solution to an estimate of LOLE at each decision
year t according to (3.6). With 100 MC samples of annual demand growth rate at
year t, there will be 100 values of yZ. The expected (in the mathematical sense)
value of yF is chosen as the LOLE at year ¢, denoted as y~.

The simulator is stochastic because the quantities including future fuel prices
and annual demand growth rate are modelled as random variables. However, the
expected value of MC simulated annual LOLEs, y”, is a deterministic function of the
six selected model inputs if the number of MC simulations is sufficiently large. The
simulator returns the same outputs y&, y if repeatedly executed on the same set of
inputs. The statistical metric - LOLE can not be directly observed in the history.
The loss-of-load events are rare and the observed loss-of-load time durations in many
historical years were zero in the GB power system. In order to properly conduct
calibration over P, the time series of historical thermal capacity y“ := {y“}, vt € P
are chosen to calibrate against as historical observations are readily available. Given
a set of model inputs = := {u, #,w} of N; elements, the simulator output is {y“, y*}.

In this way, the simulator can be described as a deterministic function, f(-),

v y"] = f(a). (3.7)

3.3 Bayesian Approach

In this section, calibration, UA and SA within a Bayesian framework are introduced
as ways of dealing with uncertainty in a LTGI simulator. The Bayesian approach
is based on a very efficient emulator that is built on top of the simulator as an

approximation and estimates the uncertainty in this approximation.

3.3.1 Introduction to the Bayesian approach

As presented in Section 3.2, the real-world problem of generation investments has
been modelled as a simulator that is sophisticated and computationally expensive,
particularly when there are a large number of stochastic variables taken into ac-
count [4,82,97] (see Section 4.1.3 for details). Variation or uncertainty in the input

values of x propagates into output uncertainty, resulting in a range of projections of
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generation capacities and LOLEs. It is important to manage uncertainty in order
to provide model users (e.g., policymakers and investors) with the whole picture of
model outputs. A sufficient management of uncertainty ensures the proper appli-
cations of LTGI models, such as probabilistic predictions of generation projections
and robust design of energy policy. The computational complexity of the simulator
makes it difficult to perform enough runs to get a dense coverage of the input space
and therefore it is impractical to carry out a comprehensive UA and SA.

An alternative is to build a simplified model (a metamodel) as an approxima-
tion to the simulator behaviour in order to enable efficient prediction, UA and SA.
One example in the area of energy modeling is the use of a non-Bayesian statistical
method — multivariate adaptive regression splines, in combination with the LP-based
bounding method in representing the input-output relationship of an integrated
planning model [149]. Like Bayesian emulation, multivariate adaptive regression
splines provides policy analysts a direct view of the multidimensional surface (re-
sponse surface) of the model as a function of selected inputs. Uncertainty in the
response arising from input assumptions is characterized in the form of bounds by
the bounding method using multivariate adaptive regression splines, as opposed to
by the probability distribution using Bayesian emulation. Bayesian emulation is
more general than the metamodelling approach adopted in [149]. Firstly, the ap-
proach of multivariate adaptive regression splines is mainly applicable to linear or
nonlinear convex optimization models, because the algorithm is heuristic so it does
not guarantee optimal parameter estimates when solving a nonconvex optimization
problem that may have many local, non-optimal minima. The bounding method
proposed in [149] uses mathematical properties of linear programs, and so it cannot
be applied to some types of power system planning models, such as those based
on system dynamics, mixed integer programming and stochastic programming as
reviewed in Section 2.2.3. In addition, Bayesian emulation allows for an explicit
incorporation of prior information and consideration of structural and functional
uncertainty that are failed to consider in [149].

For the purpose of exploring uncertainty regarding the model output propa-

gated from all major sources of uncertainty, namely, input uncertainty, structural
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uncertainty and numerical uncertainty as explained in Section 2.3, Bayesian emu-
lation is employed to enable very efficient calibration, predictions [126], UA [127]
and probabilistic SA [137]. Bayesian emulation is based on a statistical meta-model
(the emulator) that is built to approximate the LTGI model and to quantify the
uncertainty in the approximation. Within the Bayesian framework, all sources of
uncertainty are quantified through probabilities [133].

Bayesian statistics takes a much broader definition of probability than frequen-
tists. The frequentist statistics defines the probability as the limit of the frequency
of the trials when an event is repeated for a large number of times [133]. The uncer-
tainty in the repeatable event, called aleatory uncertainty, arises from its intrinsic
randomness and unpredictability [133]. Examples of aleatory uncertainty include
the outcomes of tossing dice and getting a full house in poker [150]. However, most
of the uncertain quantities of our interest, such as the population of the city of
London in year 1900, are not repeatable. This kind of non-repeatable uncertainty,
named as epistemic uncertainty [133], is due to our lack of knowledge or data and
in principle it might be reduced by gathering more information (e.g., referring to a
reference book or historical data). To encompass epistemic uncertainty, in Bayesian
statistics, probability is interpreted as the degree of belief, which is sometimes re-
ferred to as personal probability or subjective probability. Hence, uncertainty in
some internal model parameters which is categorized into epistemic uncertainty can
be managed by Bayesian approaches.

A fully Bayesian approach based on Gaussian Processes (GPs) is employed in
our work, in the sense that the (prior and posterior) beliefs about model inputs, the
model structure, and the model outputs of interest are all treated as uncertain and
described through probability distributions. The prior distribution formulates our
prior beliefs about the value of some parameters that are uncertain before we observe
the data. The prior distribution can often be suggested by experts. The posterior
distribution specifies our updated beliefs about the parameters after we observe the
data. The posterior is achieved according to the Bayes’ rule, which combines the
prior with the observed data. A Bayesian emulator based on a GP gives a parametric

representation between the (joint) probability distribution of model inputs and that
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of model outputs. That is, a complete probability distribution instead of moments
(e.g., mean, variance, skewness) or scenarios are used to characterize model outputs.

In the existing literature, a small number of scenarios are usually used for mod-
elling input uncertainty in LTGI models. In scenario-based approaches, the results
from predictions, UA and SA largely depend on the selected scenarios. Therefore,
the choice of scenarios needs to be representative and qualitative. A simple tech-
nique is to choose the high, medium and low levels of a relevant quantity based
on experience or modelling analysis. Some advanced scenario sampling techniques,
such as importance sampling and scenario reduction [151,152] can be used to limit
the number of selected scenarios while preserving as much statistical information as
possible. However, these scenarios levels will neither be exhaustive nor cover cred-
ible worst cases extensively, as opposed to a probability distribution. In addition,
even without explicit probability judgments, choices of scenarios include implicit
probability judgments in terms of what is credible. Comparing a probability distri-
bution with scenarios, model results may well be less sensitive to precise choice of
probability judgments than to precise choice of a small number of scenarios.

The aim of Bayesian emulation is to evaluate the function (simulator) f given
in (3.7) at a small number of carefully configured input points, and to approximate
this function as accurately as possible with a statistical representation (emulator)
f. The emulator is computationally less demanding to evaluate than the simulator.
The emulator encodes our uncertainty in the value of the function f(x) where it
has not been evaluated. That is, the emulator forms a probability distribution over
the simulator and for the simulator outputs at new test points. This uncertainty
information is useful in making more robust predictions on new test points.

The Bayesian approach is a two-stage approach, involving emulation of the sim-
ulator’s response in the first stage and calibration and UA /SA using the emulator in
the second stage. The application of Bayesian emulation to the LTGI problem seeks
to estimate the relative credibility of different future system outcomes of interest

(e.g., investment projections or system adequacy) in a quantitative manner.
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3.3.2 Emulation using a Gaussian process

A deterministic simulator is represented by the function f(-) in (3.7), with the
simulator inputs comprising the function’s argument and the simulator output(s)
comprising the function value. f(-) is treated as an uncertain function, as the value
of f(z) for any value of z is unknown until the simulator is run at z. In the
Bayesian approach, our prior uncertainty on the function f(-) is modelled with a
GP f(-) = GP(-,-), with mean function E[f(z)|3] = m(z) and covariance function
Cov[f(z), f(z)|\, 7] = A le(x, o) [133], so that,

f(@)|B, Ay~ flz) =GP (m(x);ﬁ, A_lc(x,x');”y), z, 7 € X, (3.8)

where z, ' are any two points over the standardised input space X’; m(x); 8 denotes
that m(z) has parameters of a vector of regression coefficients  if a regression
function is assumed; A is a vector of unknown scale hyperparameters; c(x, 2’) is the
correlation function of parameters ~; v is a diagonal matrix of N; positive correlation
hyperparameters v := {71, ...,7n,} for each input dimension; and c(z, z") provides
spatial correlation across X using a positive-definite function such that c(x,z) =
1,Vx.

Definition: f(x) is a GP if for any finite subset of input data ™), ... (™ C X,
the marginal distribution over that finite subset of random variables f(z™1), ..., f(z™)

has a multivariate Gaussian distribution,

f(zM) m(zM) Ale(z®, 2y oo A e(2®) 2m)
=N : : :

f(zm) m(z(™) A le(zm M) oo A Tle(atm) 2 m)

According to the definition, a GP is a statistical distribution over functions with
a continuous domain. This means that at any input point where the simulator is
not evaluated, uncertainty around the output evaluated by the emulator is modelled
as a one-dimensional Gaussian distribution (which is the marginal distribution at
that point) conditional on the emulator parameters.

As discussed in 3.2.2, both the input space X and the output space 7T are a
space of vectors in the simulator under study. To deal with a vector output, one

simplified approach is to consider the time index as a new input to the model and

29



use a univariate emulator with a stationary, separable covariance structure. The

covariance structure is separable in input x and time ¢, so that

Cov[f(x,t), f(a',1')] = Cov[f(z), f(a")] Cov[f(t), ()], (3.9)

where the covariance function Cov|[f(¢), f(t')] depends on planning years ¢,¢ and
some additional hyperparameters.

By assuming a stationary and separable covariance structure, the computational
demand is alleviated as the dimension of the covariance matrices to be inverted is
reduced [153]. However, a separable covariance structure is lack of flexibility in ac-
counting for interactions between different types of correlations and it implies the
conditional independence of outputs [147,153]. A multivariate GP with nonseparable
covariance functions is generally the best option in general multi-output problems,
yet this option may make it infeasible to solve large-scale realistic problems. In our
work, a very general dimension-reducing technique, principal component analysis as
described in [147], is adopted for defining a new, orthogonal basis for a set of mul-
tivariate data. In the new representation, the outputs are transformed and treated
as independent, using many univariate (single-output) emulators. In this way, the
approach of emulating an univariate output described in [133] can be generalized
for emulating multivariate outputs.

The above GP in (3.8) specifies our prior beliefs about the properties of the
unknown function f(-) we are modelling. The forms of the prior mean m(z) and

covariance function A~!c(z,2’) in a univariate GP used here are given by,

m(z) =0,
Nt
—1 N y—1 4(zi—xt)?

A ez, ') = A H% (3.10)

I

= Alexp(= ) (i — a7)°pi)

i=1

where the index ¢ denotes the i-th element of the input vector x, and p; :== —41In~;

is the spatial correlation parameter between the simulation output and the input
parameter 7.
The prior mean of the GP model is zero because the output is standardised and

represented via principal components (see Section 3.3.2), so that the transformed
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output in a new representation can be modelled with a mean of 0 and a marginal
variance close to 1. Gamma prior distribution I'(5,5) is specified for the marginal
precision A, and independent Beta prior distributions Be(1,0.1) are assigned to the
spatial dependence parameters ;. The Gamma prior for A is chosen so that the
marginal variance for each GP process is close to 1 with standardised simulator
outputs. The Beta prior for 7; gives substantial prior mass near 1, which makes the
correlation parameter p; close to 0; this reflects our prior assumption that the output
has a low dependence on each input parameter. The justification for choosing these
priors can also be found in [147].

Given the prior GP model (3.10), the following three steps are taken to develop
the emulator:

Step 1: Defining the standardised input space of interest through prior knowledge
of these parameters; and selecting a small set of well designed input configurations,
known as design points, D := [z, 2®) ... (9] of d elements.

Step 2: Running the simulator f(-) at each of these design points, and obtaining
the simulator output, f(D) := (f(zM), f(x@),..., f(x D)7 of d elements.

Step 3: Fitting an emulator by combining the training data (D, f(D)) with the
prior GP model given in (3.8).

In step 3, before fitting an emulator, the input data are normalised to the range
[0,1] by subtracting the mean from the data and dividing by the range of the data;
and the output data are standardised by subtracting out the mean and dividing by
the standard deviation of the data. The prior GP model is updated in the presence
of training data by means of a likelihood function, that relates our prior assumptions
of hyperparameters to training data based on Bayesian inference, as explained later
in Section 3.3.2. This leads to an updated distribution (i.e., a posterior GP model)
that can be used, for example, for predicting new test points. In particular, for
any point 2/, the posterior distribution of the vector output [f(z")|D, f(D), A, ] is
a multivariate Gaussian distribution according to the definition of GP (for more
details on the estimation of {\,~} via an MCMC scheme, we refer to [154]).

Validation is required to ensure that an emulator is sufficiently accurate. We

expect a good enough estimate given the training data, and that the uncertainty
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assessment associated with predictions of function values are reasonable. By replac-
ing the simulator with the emulator, we are able to proceed with Bayesian inference
to calibrate the emulator and to carry out MC simulations for UA and SA. This
means that computational tasks such as calibration, UA and SA can be carried out

efficiently based on the emulator.

Design

Observing runs of the simulator (i.e., the training data) is the first step to build
an emulator, as they are used for learning and estimating hyperparameters of the
emulator. The set of points in the space of simulator inputs at which the simulator
is run is called the design points. Good input configurations to run the simulator at
are important for training the emulator in order to get better results.

As suggested by experts, good design points must be spread over the plausible
ranges. Given a 6-dimensional input space, for instance, every possible combination
of an extreme low (i.e., 0.005-quantile of its prior distribution), medium (i.e., 0.5-
quantile of its prior distribution) and an extreme high (i.e., 0.995-quantile of its
prior distribution) value for each input might be tried, resulting in 3% = 729 runs
of the simulator which can go beyond our computational ability when each model
run takes several hours or days. A major concern with this design is that even the
3% combinations of the 6 inputs would give a poor coverage across the whole prior
parameter space because the design gives much more extreme points for inputs at
which we are less likely to predict. However, a uniform coverage of the input space
is needed by the emulator in order to predict well for a realistic range of inputs.

To reduce the number of input configurations while ensuring reasonable space-
filling properties, a maximin Latin hypercube design is employed here. In a Latin
hypercube, there are as many equally distributed levels of each factor (i.e., each
input variable) as the number of needed or desired runs in the design, which is also
one benefit of this design [155]. Alternatives to Latin hypercubes in experimental
designs for computer experiments include orthogonal arrays, Hammersley designs
and a combination of different designs [156,157]. Latin hypercube is chosen because

it is simple to implement and is flexible enough to provide data capable of cover small
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and large design spaces reasonably well compared to other designs [157]. To get
improved space-filling properties, the maximin Latin hypercube design maximises
the minimum distance between the design points, subject to that the levels of all
factors are evenly spaced from the lower bound to the upper bound [158]. This
maximin design can be done by generating a random Latin hypercube and then
permuting the entries in each column such that the maximin criteria is satisfied.
However, in practice, there is no guarantee of obtaining a globally optimal design
when the exhaustive search is not feasible.

To proceed with the Latin hypercube design, one must decide the number of
sample points to use. There is no general rule of thumb regarding the relationship
between the sample size and the number of inputs because it really depends on the
problem. Validation is necessary to demonstrate whether or not the emulator is a

good approximation to the simulator (see Section 3.3.3 for more detail).

Dimension Reduction

As described in Section 3.2.2, the simulator output of interest y := f(z) is a vector
of T elements. To cope with the high-dimensional model output space, principal
components analysis (PCA), described in [159] is used to project the high dimen-
sional output data into a new lower dimensional representation of the data that
contains most of the variance in the data with minimal loss of information. The
principal component basis vectors Ky = [ky,...,k, ] are are an uncorrelated or-
thogonal basis set. They can be obtained via singular value decomposition of the
standardised simulation output matrix f(D). Each basis vector is scaled so that the
output of v,(z) has a mean of 0 and a marginal variance close to 1.

Based on PCA, the T-dimensional simulator output f(z) is modelled using a

ps-dimensional basis representation [147]:

Py
f@) ~ > kyp(x),p=1,...,py, (3.11)
p=1

where v,(z) are mean 0 independent GP models as formulated in (3.8) with their
priors given in (3.10).

The basis vector maps the data vector from an original space of T variables
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which are possibly correlated to a new space of p; variables which are uncorrelated
over the dataset. Therefore, the problem of building an emulator that maps [0, 1]

to R7 is reduced to building p s independent, univariate GP models for each v,(x).

Bayesian inference

Bayesian inference is the basic technique for developing and utilizing an emulator.
Bayes’ theorem is used in Bayesian inference in order to provide the posterior prob-
ability distribution of the model parameters rather than so-called point estimates.
Bayes’ theorem is written as,

PO)P(D]0)

P(OID) = =55y

(3.12)

where P(6|D) is the posterior probability density of § conditional on available data,
P(0) is the prior probability density of parameter 6, P(D|#) describes the likelihood
- the probability density of observing the data D given the parameter value 6, and
the denominator P(D) is the evidence or marginal likelihood - the total probability
of the observed data. The probability P(D) can be simply viewed as a normalizing

constant, and hence Bayes’ theorem can be expressed as,
P(0|D) < P(8)P(D|0), (3.13)

that is, the posterior probability is proportional to the prior probability times the
likelihood.

For the sake of illustrating Bayesian inference, an example of inference on a
binomial parameter is presented here; this example is adapted from the example
presented in [160].

Ezxample 2. (Inference on a binomial parameter). Suppose we have been given
data M consisting of a series of m coin flips which contain r positive trials. The
data were assumed to be generated by a sequence of independent draws from a
Bernoulli distribution with parameter 6,, which is the probability model of flipping
Heads. Let M; = 1 if flip ¢ was Heads, and M; = 0 otherwise. Let my = 2111 M;
be the number of heads in m tosses. Then, the likelihood model is P(M|6,) =
6,7 (1 — 6,)™ ™. Suppose that prior knowledge about 6 is described by a Beta
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Figure 3.6: Prior and posterior density functions of the parameter 0, in the probability model of

flipping Heads.

distribution Be(fy|aw, By), so that P(0y|ow, By) o 021 (1 — ;)% 1. By varying ay
and fy, a wide range of possible prior beliefs of 6, can be obtained.
Applying Bayes’ theorem 3.18 gives the posterior density of 6, as the Beta dis-

tribution Be(0,|my + ap,m — mpy + 5y),

P(Oylmp,m, ap, By) o< O] (1 — )™ ™05 (1 — 6,)P )

oc Gt — gy)ymoma A (3.14)

Suppose available information on the parameter 6, in the probability model of
flipping Heads is described by a Beta distribution Be(6,]10,10), so that it is judged
to be equally likely that the coin flip would be Heads in 20 coin tosses. A random
trial of size 11 is conducted, where only 5 flips were Heads. Using the results above,
the corresponding posterior distribution is then Be(6,|15, 16). Fig. 3.6 plots the prior
and posterior densities of 6,. It can be seen from Fig. 3.6 that the initial uncertainty
in the value of 6 represented by the prior density plot (in red) is significantly reduced
by the data, resulting in the posterior density plot (in blue).

Assume a more informative prior, such as a Be(6,|100, 100) distribution of 6,.
Given the same 11 coin tosses, the corresponding posterior distribution, Be(6,|105, 106)
(in green line in Fig. 3.6, is very different from Be(6,|15,16). With the same data

set available, the difference in the resultant posterior distribution in the two case
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Figure 3.7: The emulator of the concentration function of a chemical e(r,t = 3.5) developed by

using 3 training data.

lies in that in the second case the prior is stronger so the data has less effect on it.

When there is less data, the posterior becomes more influenced by the prior.

An illustrative example of the emulator

Once an emulator is built, it can be used to make predictions at new input points.
Below is an example to illustrate that the emulator quantifies the uncertainty in
the output where the simulator is not evaluated, and the quality of the emulator is
affected by the number of training data.

Ezample 1. (The concentration of a chemical, continued). The toy example
given in Section 2.4 Chapter 2 is used here to explain how the emulator works as an
approximation of the simulator.

Three emulators are respectively developed for approximating the f unction
e(r) = exp(3.5r) over r € [0.0.6] using the three, four and five function evalua-
tions (e.g., training data) given by the blue circles, as shown in figs. 3.7-3.9. In each
of the three figures, the purple line gives the true function e(r), the red line gives
the posterior mean GP estimate, and the black lines quantify uncertainty bounds
of the GP emulator, namely, 5th and 95th percentiles of the emulator output, given

the available training data.
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Figure 3.8: The emulator of the concentration function of a chemical e(r,t = 3.5) developed by

using 4 training data.

10

Concentration e(r,3.5)
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Figure 3.9: The emulator of the concentration function of a chemical e(r,t = 3.5) developed by

using 5 training data.
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It is clearly seen that the emulator reproduces the training data at the design
points with no approximation error. The black lines are formed by draws from
the emulator (the posterior GP) at a large number of selected values of the input
parameter r, integrating (by sampling from the posterior distributions of) the hy-
perparameters of the emulator. A comparison made among the three figures reveals
that the credible interval narrows, that is, the accuracy of the emulator can be im-
proved with an increasing number of training data. In Fig. 3.8, the purple line plots
the analytical expression of the model e(r,t = 3.5) = exp(3.57).

Note that in Fig. 3.8 at the rate parameter region of 0.53 — 0.6, the simulator
(the purple line) rises beyond the credible interval quantified by the emulator. This
is because that parameter region is beyond the range of training data. An emulator,
like any statistical model, is not guaranteed to fit anywhere in the input space. In
the region of the input space where there are no training data, the fit of the emulator
will depend heavily on the priors and the model assumptions chosen, and these may
not be reflective of reality. Hence, it is important to carefully select the design points

at which the model is evaluated and to do validation checks on an emulator.

3.3.3 Validation of an emulator

The emulator exactly reproduces the training data because it has been fitted using
that data. Hence, the training data cannot be used for validation. The aim of
validation is to test the ability of the emulator to predict at untried input points.

Our validation diagnostics are based on comparisons between emulator outputs
and simulator runs for a new data, called as test points. The procedure of validating
a GP emulator is described as follows.

Step 1: Select a small set of well designed input configurations from the input
space, known as validation sample designs, V := [2*(1) %@ 2*N)] of N, ele-
ments using an optimised Latin hypercube design procedure. When the simulator
is slow to run, it is necessary to keep the size of the validation sample as small as
possible, although it might not be a good thing because ideally there would be a
large validation sample.

Step 2: Run the simulator at each of the test points to produce the output vector
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Step 3: Evaluate the emulator’s predictions for f (V) at the test points and
obtaining the means, variances, covariances and 95% credibility intervals for the
purposes of our diagnostics.

Step 4: Apply validation diagnostics as an indicator of a validation failure.

A number of validation diagnostics are provided in [161], including the Maha-
lanobis distance, the pivoted Cholesky decomposition, eigen decomposition, and
graphical methods such as credible interval diagnostic (plots of credible intervals of
the emulator predictions against the simulator predictions), plots of the individual
errors against the emulator predictions, plots of the errors against the index, and
plots of error against inputs.

The main diagnostic used in our work is credible interval diagnostic, which plots
the predicted values by the emulator with 90% or 99.8% credibility intervals, against
the simulator outputs at each validation point. The 90% credible interval is quan-
tified by 5th and 95th percentiles of the emulator output, and the 99.8% credible
interval is quantified by 0.01th and 99.9th percentiles of the emulator output. It is
expected to see approximately 90% of simulator outputs lie within the 90% credible
interval; this is an approximate proportion due to the randomness of the emula-
tor output Having some simulator outputs falling outside of the 99.9% credibility
intervals of of the emulator outputs is a clear evidence of failure. If there are no
indications of conflict across such diagnostics within the test set that has been used,
we then have confidence to say that the emulator represents the simulator accu-
rately. A second diagnostic is to plot the standardised errors (ratio of residual to
mean of simulation output) against the index (the planning year), as will be shown
in Section 3.3.3. A third diagnostic is to calculate the root mean squared errors of
the predictions, which is a widely used indicator of accuracy in computer experi-

ments [156].

3.3.4 Bayesian calibration

The goal of model calibration here is to identify plausible values of calibration
parameters whilst simultaneously inferring the model discrepancy using physical
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observations of the output over the time period P. Among the inputs = := {u, 0, w}
described in Section 3.2.2, {u,w} are already known historically. The calibration
parameters # are assumed to have unknown best values due to our incomplete knowl-
edge of the real-world. If the simulator were run with these best values, it would
reproduce the observations plus a model discrepancy term ¢ plus observation errors
if any. With the emulator f () as an approximation of the simulator, the relationship
between the observations, the model discrepancy and the emulator at the best value

of 6 can be written as [127],

Yobs = f(u,0,w) + 9 + ¢, (3.15)

where Yops = {Yobs.1s - - - » Yobs,Np ;1S the single time series of historical thermal ca-
pacity over the past planning horizon P.

The model discrepancy 0 quantifies the mismatch between the model and the
observations at the best setting for the calibration parameter #. The mismatch
may arise from inadequacies in the simulator, such as in the model equations, model

structure or logic [127]. § is modelled by a linear combination of basis functions [162]:

Ps
j=1

where d;’s are basis functions; and the weights 9J;’s are modelled as independent GP
priors over .

Here the basis functions are independent Normal kernels that are separated along
the t direction; this modelling technique is driven by the expectation that the dis-
crepancies, if they exist, should have a strong time persistence. The number of basis
functions and the kernel width (or the standard deviation of the kernel) are often
specified by the model users; they are chosen so that the kernels of the discrepancy
are well separated along the time axis. Therefore, their specification depends on the
application (see Section 4.2).

The weights of the discrepancy kernels are modelled as independent mean 0 GP
priors,

V5|79, Aoj ~ GP(0, )\gjlc(:c, ) v95), 7 =1,...,ps (3.17)

s where the correlation function ¢(z, z’) is a function of parameters vy := {y9;},7 =
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1,...,ps, and independent beta priors Be(1,0.1) are assumed for vy and gamma pri-
ors I'(1,0.0001) are for Ay := {\y;}. The beta priors for the correlation parameters
v assume low dependence between the discrepancy and each input parameter. The
gamma priors for the precision parameters Ay are rather uninformative, which leads
to a very small model discrepancy when the historical observations are uninforma-
tive, as explained in [147].

To find plausible values for the calibration parameters, 8, alongside inferring the
model discrepancy, first suppose that the prior knowledge of the calibration parame-
ters, the discrepancy parameters Ay, 7y and the emulator parameters A\, and 7, is de-
scribed by the joint prior distribution P(6, \,7), where X := {A,, Ao}, 7 := {7, Y9}
This prior distribution is updated using the observations and the set of training
runs obtained from the simulator. This updating is the so-called Bayesian inference

(described in Section 3.3.2), implemented according to Bayes’ theorem [127]:

PO, N, Y| Yobs, f(D)) o< P(Yops, f(D)|0, A\, v)P(0, \,7), (3.18)

where the left hand term of (3.18) is the posterior distribution of the calibration
parameters of interest and P(yus, f(D)]6, A,7) is the joint distribution of the ob-
served data and the training runs f(D), conditional on these calibration parameters.
The marginal posterior distribution for each of 8, A and ~ can be obtained through
integration over the other parameters.

For more discussions and technical details regarding this Bayesian calibration

approach see [127,162].

3.3.5 Variance-based sensitivity analysis

Calibration helps reduce input uncertainty as described in the last subsection, while
the output uncertainty can be reduced most efficiently if those inputs that influence
the output most strongly are focused on. SA provides such a tool of exploring how
much of the total output uncertainty is attributed to uncertainty in a particular
input or a group of inputs, and hence identifying which input parameters are the
most influential to the output variations.

SA takes various forms of studying the relationship between a simulator’s in-
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puts and outputs, such as variance decompositions, partial derivatives in local SA
(see Section 3.3.5 for more details) and variance decompositions in variance-based
SA. The variance-based SA will be used in our sensitivity analysis for two main
reasons. Firstly, the variance-based SA, as a class of probabilistic SA, quantifies
the input and output uncertainties as probability distributions, which is consistent
with the uncertainty modelling in the GP-based Bayesian approach. Secondly, the
variance-based SA is an attractive global SA because it explores the full range of
the input space and accounts for nonlinear responses and interactions. To densely
cover the whole input space, it may involve many thousands of simulator runs. The
Bayesian approach enables the use of a very efficient emulator in replace of an sim-
ulator, which substantially reduces computational expense. Moreover, the Bayesian
approach quantifies uncertainty where the simulator has not been evaluated, thus
allowing understanding of consequences of using limited number of runs.
Variance-based measures of sensitivity prioritizes uncertainties by decomposing
the output variance into fractions attributable to inputs and sets of inputs and mea-
suring the sensitivity of the output to an input variable by the amount of variance
in the output contributed by that input. One variance-based measurement is known
as “main-effect index” that quantifies the contribution to the output variance of the
main effect of a subset of inputs z;, averaged over the joint distribution of all the

other input variables z_; [136], as expressed as,

_ SV
7 Var(y)’

Sm (3.19)

where
SV; = Var,, (Em(f (az)lm))

Vo, ([ FP-sto sl ) (3.20)

N, N,
Var(y) =Y SVi+ > SVij+- -+ SVia ;. (3.21)
i=1 i<j

As shown in (3.21), the mean-effect measurement provides a decomposition of
the output variation into terms relating to the main effects and various interactions

between the input variables. In (3.20) P_;;(x_,|z,) denotes the probability density
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function of x_; conditional on the value of x; and E(f(x)|z;) denotes the expected
value of the simulator output at x, conditional on a subset of input variables z,
averaged over the joint distribution of all the other input variables x_ ;. The effects

of single input parameter and two-input interactions are shown in the following
SVi = Var(E(f(z)|x;)) = Var(/ f(@)p_ii(x_ilzs)dr_;), (3.22)

SVi; = Var(E(f(z)|zy))) = Var(/ F@)p—ijjij (X —ij|wi;)dz—i5). (3.23)

The other variance-based sensitivity measurement is “Total-effect index” or “total-
order index”. It is often used when the number of input variables is large. “Total-
effect index” measures the contribution to the output variance of z;, including all
variance caused by its interactions, of any order, with any other input variables z_;.

It is expressed as,

B, (Var,(ylz))
o= T V)
. Varévﬂ' (Exz (y|£L',Z)>
Var(y) '

(3.24)

The following steps are used to implement variance-based SA based on an emu-

lator within the Bayesian framework.

e Quantify the uncertainty in each input using probability distributions that
identify in detail how the inputs might be varied.

e Sample from the distributions of model inputs as design of experiments.

e Run the emulator plus the discrepancy term as an approximation to the sim-

ulator a number of times at sampled designs.

e Using the resulting model outputs obtained in the last step to calculate the

sensitivity measurements of interest.

3.4 Chapter summary

This chapter has briefly presented the mathematical model of a computationally

expensive LTGI model as the simulator. The relationship between the inputs and

73



outputs of interest represented by the simulator (i.e., the LTGI model) is approxi-
mated by a Bayesian emulator while adequately accounting for uncertainty in real-
world applications. The emulator is capable of managing uncertainties arising from
different sources, including its stochastic inputs, imperfect science and the limited
number of evaluations of the LTGI model.

At any input point where the simulator has not been run, the prediction produced
by the emulator is an approximation to the simulator evaluation. The emulator’s
evaluation is not a point estimate or a single scenario, but a probability distribution
with uncertainty information that covers a range of plausible values or scenarios.
Besides, this Bayesian method allows for calibrating uncertain model parameters
and quantifying the model discrepancy, so that the probabilistic predictions made
by the emulator are consistent with historical observations of the model output.
Moreover, Bayesian emulation enables efficient UA for uncertainty quantification
and variance-based SA for prioritizing uncertainty in model inputs according to

their contributions to variations in model outputs.
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Chapter 4

Case study on GB power system

In this chapter, a case study on the GB power system is presented, where Bayesian
emulation is employed to enable calibration, prediction, uncertainty analysis (UA)
and sensitivity analysis (SA) regarding a complex LTGI model.

Bayesian calibration reduces uncertainty in calibration parameters and quanti-
fies the model discrepancy using available historical observations (e.g., historically
installed thermal capacity in operation). Then, the model discrepancy is applied
to making future projections on thermal capacities. Using the Bayesian method,
policymakers can be provided with a realistic picture of the possible model out-
comes with probabilities attached. The robustness of different electricity market
designs (i.e., energy-only and capacity markets) against uncertainties (e.g., input
uncertainty, structural uncertainty and functional uncertainty) is studied in terms
of the probability of meeting a LOLE threshold given a scenario of market design
parameters; this is achieved by performing an UA of the maximum LOLE over a
future planning horizon. Finally, a probabilistic SA is conducted to identify the
most influential inputs (a particular input or a group of inputs) to the variations of

the model output of interest.
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4.1 Data, assumptions and computational time

4.1.1 Data

The data used here are consistent with those provided in [4], including the initial
capacity mix, wind and demand data, as well as financial and technical assumptions

for generators. Our assumed prior distributions of the six model inputs are listed in

Table 4.1.

Table 4.1: Summary of prior distributions of model inputs

Inputs Prior Unit Description

Ucone U(31.8,66.3) £ /kW-year Net cost of new entry

Upoll U(1000,30000) £/MWh Energy price cap

Ucoy U(0.8,1.2) N/A Multiplier to the central projection of carbon prices
Wyas N(1,0.062) N/A Multiplier to the central projection of gas prices
Ovar U(0.005,0.55) N/A Investor’s value-at-risk

Omarkup U(0,25) GW Energy price markup parameter

Expert knowledge can be incorporated in the model by assigning prior distribu-
tions to model inputs. When there is little knowledge about an uncertain parameter
in the model, a uniform distribution is commonly used as a prior carrying little
information, but with credible upper and lower bounds. The bounds of control and
forcing inputs can be reasonably wide as weak priors over which we may wish to
achieve the desired understanding through UA and SA.

The net CONE only takes effect under the capacity market design, and its prior
range is consistent with the low, central and high estimates provided in [62]. The
prior range of the energy price cap, u,oy, is referred to that of its benchmark - VOLL.
According to the study in [51], (1000 — 30000) is a reasonable range for VOLL that
is estimated for domestic, industrial and commercial electricity consumers in GB.
Hence, the energy price cap oy is assumed to sample from U(1000, 30000)£/MWh;
a narrower prior range with a lower upper limit of the energy price cap (e.g.,
20000£/MWh) may be chosen when the energy price cap is administratively set

below the VOLL or when there is a lower estimate of VOLL. The risk attitude 6y .,z
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is sampled from the uniform distribution U(0.5%, 55%) reflecting a range of invest-
ment assumptions from extremely risk averse to risk neutral. In the GB power
system with 60 GW peak demand, 6,,4rkyp is sampled from U(0,25) [GW]. The
chosen range of 0,4k, implies that the energy price uplift function is used under
system conditions with a fairly tight capacity margin (range 0 — 41%). A prior uni-
form distribution U(0.80, 1.20) is assigned to u.,,. In the case that ., = 1.05, the
reference trend of carbon prices, which takes DECC’s central forecast [163], would
be shifted upwards by 5%. The uncertainty range of future carbon prices resulting
from the chosen range of wu.,, is broadly in line with the range of DECC’s carbon
projections in [163]. The prior belief for the forcing input wy,s is a normal distribu-
tion N(1,0.06%), which indicates bias over the reference gas price level, and results

in a range consistent with that estimated by DECC [1].

4.1.2 Assumptions

In the application of Bayesian emulation to the LTGI problem, our main assumptions

are as follows:

(1) Assume that known sources of uncertainty (e.g., observation errors) not in-
cluded in the LTGI emulator are not likely to contribute much extra uncer-
tainty, in comparison with the contribution of the three major sources of un-
certainty (e.g., input uncertainty, structural uncertainty and functional uncer-

tainty) that are accounted for;

(2) Assume that structural uncertainty obtained from model calibration is a good

proxy for structural error to be applied in future projections;

(3) Assume that the model outputs depend upon a set of selected model inputs
that are explained in Section 3.2.2 and these inputs are judged to be important

determinants of the output of model simulations;

(4) Assume that the risk preference and the investment logic of a representative

investor do not change over time in the long-term decision-making process.
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In the GB case study, the robustness of two mainstream market designs, namely,
energy-only and capacity markets will be compared in Section 4.4. Regarding the
capacity demand curve adopted in the UK capacity market, as shown in Fig. 3.5 in
Section 3.2.1, there are some main features and modelling assumptions according to

some UK capacity market proposals [23,164], which are as follows:

(1) A 4-year ahead auction for capacity will be held every year since year 2014
(e.g. an auction in 2020 would be for delivery in 2024,/2025).

(2) If successful at auction, an existing plant will be awarded a one-year contract

at the clearing price and new entrants will have access to fifteen-year contract;
(3) The capacity price cap is set as 1.5 times of the net CONE;

(4) The choice of the net CONE is based on the assumptions on the projected
level of revenue from a capacity market agreement that is required to permit

investment in new generation capacity.

(5) A 1.5 GW range is set above and below the capacity target level [23], reflect-
ing an increasing appetite for capacity at lower prices. This capacity range
together with the capacity price cap determines the slope of the capacity de-

mand curve.

4.1.3 Computational time

The simulator was run in the Matlab/Simulink R2012a environment using an In-
tel(R) Core(TM) i5 — 3470 3.20GHz processor with 8.00GB RAM. The run time for
a single simulation of the 30-year generation planning varied between 140 and 600
minutes, with 100 MC simulations of the forward-looking years of operation for each
investment decision. The Gassian Process Model/Sensitivity Analysis (GPM/SA)

code package that was developed by Los Alamos National Laboratory! has been

'The Matlab code for implementing Bayesian emulation is available online from

https://github.com/libqueso/gpmsa-matlab/tree/master/Examples
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adapted in our work for carrying out emulation, UA and SA (as provided in Ap-
pendix A.1). In comparison with simulator runs, one emulator evaluation in the
same environment took approximately 10~% seconds, a speed ratio in the order of
10" ~ 10°. Note that the simulator output is a single scenario or a certain value
while the emulator output is a probability distribution. The time needed for de-
veloping and validating an emulator includes that for obtaining training data and
validation data by running the simulator, and that for fitting the emulator to the
training data which takes about 6 minutes.

Traditional MC-based probabilistic SA that is directly applied to the simulator
would take several months or even over one year for a thousand simulations, which
would be required to give a sense coverage of the input space. However, with the
developed emulator, sensitivity analysis can be achieved within several seconds.
The advantage of the emulator-based approach in saving computational time is
clearly seen. It is noted that the simulated simulator outputs are deterministic
as explained in Section 3.2.2, while the emulator outputs are probabilistic with
uncertainty bounds because for any input, the emulator outputs is modelled by a

multivariate normal distribution conditional on the emulator parameters.

4.2 Emulation, validation and calibration

It will be shown here how the simulator can be emulated and validated, and then
calibrated against historical observations of the model output. In practice a good
simulator is needed in that it is able to reasonably well reproduce the dynamics of

observations (at least for some parameter values).

4.2.1 Emulating the long-term generation investment model

Prior to carrying out model calibration against the observations of installed thermal
capacity, an emulator is needed for approximating the relationship between the
calibration parameters and the installed thermal capacity. Since the introduction
of NETA in 2001, an energy-only market has been implemented in the GB power
system. Before 2001, the Pool market in England and Wales included capacity
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Figure 4.1: Three principal components of the standardised simulation data (historical thermal

capacities in operation).

payments. To ensure that the LTGI model keeps the same energy-only structure
during the simulation process, the model is run from year 2000 to year 2014 for
calibration purposes. During the past time period, the energy price cap was set
as 10000£/MWh. The long-term gas price level wgy,s was set as 1, implying that
historical gas prices have been chosen during the decision-making process.

The emulator is built using 12 training data that are composed of 12 design
points over the two-dimensional input space (v .r, Omarkup) and the corresponding
12 scenarios of annual outcome of the total thermal capacity over the planning
horizon P. The observation data y$ ., against which the simulator is calibrated,
consists of a single time series of total thermal capacity from year 2003 to year
2014. Note that the observations at years 2001 — 2002 are omitted from calibration
because the investment decisions do not take effect until 2003 due to construction
delays associated with thermal power plants. Fig. 4.1 shows 3 principal components
used in capturing 98% variability of the time series of standardised thermal capacity.
Note that the first two principal component (in blue and green lines) has much bigger
vertical scale than the third one (in red line); this confirms that most of the variation

in the simulation data is captured by the first two principal components.
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Note that the only model output for calibration is the time series of total ther-
mal capacity in operation. For comparison purposes, Fig. 4.2 gives a breakdown of
simulated (in lines) and observed (in circles) installed thermal generation capaci-
ties at all design points, and also historically observed on-shore and off-shore wind
capacities. Only 0.5 GW new nuclear plant was built in year 2014 at one of the
12 simulated scenarios, and no new coal plant was chosen to be invested across all
scenarios. The top two graphs show that the simulated nuclear and coal capacities
are very close to the observations. The most attractive generation type is CCGT,
which is revealed by both simulation results and observations. In 2015, there is a
significant decline in the amount of OCGT across all simulated scenarios; this is
due to plant retirements. The input data of onshore and offshore wind capacities
are obtained from rounding the actual historical data. About 9 GW solar capacities
had been installed by 2015 but they are not considered in our simulation. These
approximations do not affect the simulation results much, because wind and solar
have small capacity values [9,10, 165] and they have insignificant contribution to

power system reliability when the total capacity is low.

4.2.2 Validation results

Apart from the training data, 6 additional model runs on a maximin Latin hypercube
design are used for validation. Fig. 4.3 shows the 12 design points (in red circles)
and the 6 test points (in blue stars) that are sampled from the prior ranges of two
calibration parameters, respectively. Each axis is divided into the same number of
intervals as the desired sample size, and the points (between which the minimum
distance is maximised) have been sampled within those intervals.

The validation procedure described in Section 3.3.3 is carried out.

Each graph in Fig. 4.4 presents the reference plausible range (probabilistic pre-
diction) of the emulator’s prediction compared with the evaluation of the simulator
at a validation point. A common indicator of a validation failure is to have signif-
icantly more than about 10% of simulator’s evaluations lying outside of the 90%
credible interval (the 5th and 95th percentiles) of the reference distribution, or to
have significantly more than 0.2% simulator’s evaluations falling outside of the 99.8%
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Figure 4.5: Boxplots of residuals at each planning year.

credible interval as a clear evidence of failure. Fig. 4.4 shows that almost all the
results produced by the simulator are located within the 90% credibility intervals
(in solid black lines) of model output predicted by the emulator, suggesting that the
emulator performs well. At a test point (e.g., Oyor = 0.21, Onarkup = 15.89) which
is closer to a design point (see Fig. 4.3), there is less uncertainty in the emulator
output.

The analysis of prediction errors is also used as a diagnostic. Fig. 4.5 shows a
boxplot of residuals (i.e., differences between predicted mean values from the em-
ulator and observed values from the simulator) at each planning year. The root
mean-square error (RMSE) between the emulator’s mean of evaluation and the
simulator’s evaluation is 46.4 MW. The ratio of RMSE to the mean value of the
simulated output is 0.62%; this number is small enough to indicate a good mean
prediction by the emulator. If the results from diagnostics are not satisfactory, more

training data may be chosen for developing the emulator.
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4.2.3 Calibration results

Once the emulator is validated, we can then proceed to use it to calibrate the simu-
lator. Calibration obtains the posterior distributions of the calibration parameters
by combining the priors with observed data, and meanwhile infers the model dis-
crepancy, so that these may be applied to future projections. The formal calibration
approach makes significant improvement on the validation work presented in [82].
In [82], no formal calibration work has been done on uncertain model parameters,
and the simulation results at the assumed ‘good’ values of model parameters are
graphically compared against observations without giving any quantitative informa-

tion, and issues such as structural uncertainty are not accounted for.

Parameter Calibration

Fig. 4.6 shows probability density functions for the marginal (diagonal bar plots) and
bivariate (off-diagonal contour plots) posterior distributions of the two calibration

parameters on the original scale. The red and blue contour lines represent the
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Figure 4.7: An illustrative example of the model discrepancy consisting of three normal kernels.

50th and 90th percentiles of the bivariate posterior distributions, respectively. As
compared with their prior uniform distributions specified in Section 4.1, the posterior
distributions are constrained in these two dimensions by removing input values that
result in implausible outputs.

The posterior distribution of 6y, is constrained within the range of 0.25 — 0.5,
showing that the investor tends to be risk-averse when they are faced with uncer-
tainties in the future such as fuel prices and demand growth rates. The posterior
distribution of 6,,4,%., indicates that it is plausible for generators to receive an uplift
payment when the capacity margin falls into the range of 6 —17 GW (on the original

scale).

Calibrated and Discrepancy-adjusted Simulator

Assumptions have to be made about the model discrepancy that adjusts the simu-
lated thermal capacity over the time axis. It is expected that the number of normal
kernels should be small. A large number of normal kernels would result in too many
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Figure 4.8: The effect of calibration on model accuracy. Circles: the historical data of operational
thermal capacities; Left: Calibrated simulations; Center: Discrepancy-adjusted calibrated simula-
tions after adding the discrepancy term to the calibrated simulations; Right: The discrepancy term

between emulated and observed values.

uncertain parameters o3, \y that need calibrating and there will be insufficient data
(i.e., the limited number of observations available) to reduce uncertainty in these
parameters. It is also expected that the discrepancy between simulated and actual
thermal capacity has a strong time persistence over the planning horizon. However,
only one or two normal kernels may not be flexible enough to model the discrep-
ancy over a long planning horizon. Therefore, it is justified to use a reasonably
small number of wide normal kernels to model 9, as long as the kernels fully cover
the time horizon. It is simpler to model the discrepancy using a straight line than
normal kernels, but a straight line has less flexibility as it cannot capture the po-
tentially non-linear pattern of the discrepancy on the time axis. As explained in
Section 3.3.4, each kernel weight is a GP which is a smooth function of x with both
positive and negative values, because the model discrepancy is expected to change
smoothly with the input condition .

Here, the model discrepancy is represented by a linear combination of 3 weighted
normal kernels centered on years (2005, 2009, 2013), each with a standard deviation
of 2. The three kernels are evenly distributed over time and they cover the whole

historical planning horizon. Fig. 4.7 shows an illustrative example of the discrepancy
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model. The top graph shows the three normal kernels, the middle graph shows the
weighted normal kernels (by assigning a real number to each weight) and the bottom
graph gives the resultant model discrepancy. The resultant discrepancy term in our
case study, shown as the right graph in Fig. 4.8, is very small compared with the
total thermal capacity. Since there is only one observation available which is not
very informative, the posterior of the discrepancy largely depends on its prior which
have very small values, as explained in Section 3.3.4.

The uncertainty in the calibration parameters, represented by the prior or poste-
rior distributions, propagates into the output uncertainty, resulting in a probability
distribution over the outputs. Fig. 4.8 shows how the calibration and the discrepancy
term reduce the plausible output space when observations are available. A credible
interval of [5%, 95%)] is taken as the plausible range in our case study. Without cal-
ibration, a wide range of simulator outputs is simulated by the simulator, as shown
by the light grey lines in both the left and the centered graphs. With calibration,
a much narrower plausible range of simulator outputs is evaluated by the emulator
by the dashed black lines in the left column. After adding the discrepancy term to
the calibrated evaluations, the predicted range of simulator outputs, as quantified
by the black lines in the centered graph, more closely matches the observation data
compared with that predicted by the calibrated simulator. The plots in the right
column quantify the plausible range of the model discrepancy, which has a much

lower order than the model output and grows slightly over time.

4.3 Predictions using the discrepancy-adjusted and
calibrated emulator

This section uses the results of calibration (i.e., the posterior distributions of calibra-
tion parameters and model discrepancy) for obtaining plausible future projections
of thermal capacity and LOLEs under the energy-only market design. Apart from
uncertainty in calibration parameters and model discrepancy, additional uncertainty
on the inputs (u,w) takes effect in making future projections. Following a Bayesian
approach allows for the combination of the simulator runs, the posterior distribu-
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tions of the calibration parameters 6, and the model discrepancy.

4.3.1 Future projections on operational thermal capacities

in an energy-only market

As for calibration, the first stage for obtaining plausible future projections is building
an emulator; this is trained using a group of 25 design points over the 5-dimensional
input space = = {Wyoir, Ucoy, OVar, Omarkups Weas } and the corresponding 25 scenarios
of annual installed thermal capacity over period of years 2013 — 2040. The same
validation approach described in Section 3.3.3 was employed by using 6 additional
model runs and similar results were obtained suggesting a good fit. All these design
and test points are sampled using a Latin hypercube design over their prior ranges
given in Table 4.1. A relatively narrow range U(1000,20000)£/MWh is chosen for
Uyoy In this study. Alternatively, during the sampling process, the priors of the
two calibration parameters may be replaced with the posteriors obtained during the
calibration stage; this can potentially improve the quality of emulator built upon the
limited number of training data. In order to compare the future projections made
by the pre-calibrated simulator with the calibrated one, the prior distributions of
calibration parameters are used in our study.

Fig. 4.9 gives a scatterplot matrix of the 25 normalised design points (in red
circles) and 6 normalised test points (in blue points) in the five-dimensional input
space. Some parts of the input space have not been covered by the 25 points, such
as the top-right corner and the bottom-left corner in the two-dimensional scatter-
plot of (wyoir, Omarkup)- More design points in a Latin hypercube would give a better
exploration of the input space at the expense of longer computational time of the
simulator. Three principal components are chosen to capture 95% of the standard-
ised simulation output (future operational thermal capacities) under the energy-only
market design, as shown in Fig. 4.10. The first two principal components (in blue
and green lines) capture most of the variation in the simulation data than the third
one (in red line). Given 5 model inputs and 3 principal components, there are in
total 18 hyperparameters in the emulator fitted to 25 training data. Then, there

are 7 degrees of freedom left in the estimation. It would be desirable to have more
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Figure 4.9: A scatterplot matriz of the design points and test points on the [0 1] scale in the

five-dimensional input space; Red circles represent design points, and blue points show test points.
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training data so that the fitted emulator resulting from more degrees of freedom
carries more merits.

Fig. 4.11 shows a breakdown of simulated scenarios of operational thermal capac-
ities given a projection of future on-shore and off-shore wind capacity. On average,
the projected total thermal capacity into the future is falling for three main reasons.
First, GB system has a fast pace of power plant retirements. Almost all coal-fired
power plants will be closed by 2025, combined with the retirement of the majority
of the UK’s ageing nuclear fleet and over 5 GW of OCGT fleet within a decade from
2015. The electricity supply gap is too big to close by only building enough new
CCGT plants. Second, some thermal capacities will be replaced by wind capacities
subsidized by the government. The projected wind capacity will reach the target of
45 GW by 2030. Meanwhile, the uncertain demand growth rate used in the simula-
tor is assumed to have a mean of 0 [4] and so the residual demand to be supplied by
thermal plants is declining. Third, there may be insufficient incentives for private
GENCOs to invest in any type of thermal capacity, particulary when there is a low
energy price cap under the energy-only market design.

Fig. 4.12 presents validation results of the emulator that is used for predicting
future thermal capacities under an energy-only market design. The red, black and
blue solid lines in each graph quantify the 50%, 90% and 99.8% credibility intervals of
the emulator’s prediction respectively, compared against the simulator’s evaluations
(in circles) at test points. It can be seen from Fig. 4.12 that most of the simulation
output lie within the 90% credibility intervals and all lie within the 99.8% credi-
bility intervals of the emulator output, suggesting that the emulator performs well.
Fig. 4.13 shows a boxplot of the ratio of residuals to the mean of simulated thermal
capacity at each planning year. The residual in year 2024 is larger than others be-
cause the surge in the thermal capacity (lying within 95th and 99.9th percentiles)
shown in the middle-right graph in Fig. 4.12 is not fully captured by the principal
components. Such an isolated outlier might be ignored because there are no large
residuals systematically observed at that particular test point. The ratio of RMSE
to the mean value of the simulated output is 1.5%, implying a good mean prediction

by the emulator. It is acknowledged that the validation set is not large enough to
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Figure 4.13: Bozplots of residuals at each future planning year.

have great certainty over the accuracy of the emulator that has 5 input variables.
More validation data are generally desired if one wants to gain greater certainty.

The validated emulator is then used for making predictions in the second stage,
where the control variables are fixed but the calibration and forcing parameters re-
main uncertain. In this case, the output uncertainty results from uncertainty in forc-
ing and calibration parameters, functional uncertainty, and structural uncertainty.
As a consequence, a probabilistic prediction (with uncertain bounds) of generation
projections at an input point is estimated by the emulator here as shown in Fig. 4.16,
whereas in [82] a deterministic scenario (path) is produced by the simulator which
uses a specific set of plausible values of calibration parameters. Without taking
into account uncertainty in calibration parameters and structural uncertainty, the
simulator’s estimation may be inconsistent with historical observations.

Fig. 4.14 shows a probabilistic prediction of future thermal capacities at fixed
values of ey := 10000 and u.,, := 1. The grey lines in the left and center col-
umn show all the simulations obtained from the simulator. A comparison is made

between the plausible range of thermal capacities predicted by the simulator before
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Figure 4.14: Uncertainty quantification in future gemeration projections; Left: Simulator before
calibration; Center: Discrepancy-adjusted calibrated simulations; Right: Discrepancy term applied

to future projections.

calibration (in dashed lines in the left column), and the calibrated and discrepancy-
adjusted simulator (in black lines in the center column). As expected, a much wider
plausible range of future thermal capacities is predicted by the emulator before
calibration; in this case, the prior distributions of calibration parameters are used
instead of their posterior distributions and no model discrepancy is accounted for.
The right column in Fig. 4.14 shows the model discrepancy applied to future pro-
jections. The discrepancy is consistent with that inferred from history matching (in
Fig. 4.8) for the first 12 simulation years of interest (2015 - 2026). In order to reflect
the increasing uncertainty far into the future, the model discrepancy is assumed to
increase by 5% per year from 2026 onwards. The discrepancy term used here is
simply an illustration of mitigating the risk of making overconfident projections. In
reality, a much larger model discrepancy is expected than what is used here, when
projecting thermal capacities over 25 years into the future. To obtain a large model
discrepancy, the prior of the discrepancy model can be modified (by assigning an
informative prior of the marginal precision model in (3.17)). Alternatively, a larger

growth rate of the model discrepancy projected into the future can be assumed.
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4.3.2 Future projections on annual LOLEs

The time series of LOLE are calculated in (3.1c) as a metric for system reliability
using the same set of design points as used for emulating thermal capacities in
Section 4.3.1. The LOLE profiles under the energy-only market design are emulated
and validated using the Bayesian approach as described in Section 3.3.2.

The validation results presented in Fig. 4.15 indicate that the mean of the emula-
tor’s evaluation reasonably matches the simulator’s output of the LOLE profile and
almost all the test data lie in the 90% credible intervals predicted by the emulator.
The original credible intervals of LOLE predicted by the emulator contain negative
values that have no physical meaning. This is because the emulator output is a
continuous response of the input variables. When the uncertainty range is large and
the LOLE in a year is close to zero at some input settings, the emulator will produce
negative evaluations. All the negative values that are drawn from the emulator are
replaced with zero before calculating the credibility intervals. Although this ap-
proach introduces discontinuity at zero, the results are still usefulness because the
larger values of LOLE is of more importance to power system reliability and hence
of more interest to policymakers.

For exploring the combined effects of (wyoi, Ueo, ), the probabilistic predictions of
thermal capacities and LOLE are presented in Fig. 4.16 and Fig. 4.17 respectively,
at selected combinations of “high”, “middle” and “low” values of both variables.
In comparison with the GB standard of 3 hours per year LOLE [61], the risk of
security of supply from year 2023 onwards for some choices of input settings can be
very high, as shown by the grey lines in Fig. 4.17. The right-hand graphs in Fig. 4.16
and Fig. 4.17 show that thermal capacities decline and the LOLE increases as the
value of u,,, increases (i.e., the trend level of carbon prices increases) but the effect is
small. One of the advantages of the probabilistic predictions is that it is natural and
computationally efficient to determine the combination of (U, Ueo,) With a high

probability of keeping the LOLE at each planning year below some set threshold.
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4.4 A study on the robustness of market designs
using the calibrated emulator

This subsection presents a study on the robustness of two market designs, namely
energy-only market and capacity market in the context of uncertainty. The robust-
ness of a specific setting of a market design is indicated by the probability of not
exceeding a certain threshold of LOLE, denoted as y? (e.g., 3 hours per year),
given as,

R(u) = Pr(y" <y |u). (4.1)

Obtaining future projections of the maximum LOLE is necessary for exploring
scenarios of energy policies that can plausibly be applied to the GB power sys-
tem without increasing LOLE by more than a certain threshold. The calibration
procedure as shown in Section 4.2 produces the posterior distribution of calibra-
tion parameters 6 that will be applied to obtain plausible predictions of LOLE over
the future planning years. Following the Bayesian emulation technique allows for
the combination of the simulator runs and the posterior distributions of calibration

parameters.

4.4.1 Emulating the maximum LOLE under two market de-
signs

In the study on the robustness of market designs, a wider prior range U(1000, 30000)
has been chosen for the energy price cap u,.; under both market designs. The
prior distributions of all other model inputs are the same as those provided in 4.1.
The simulator is run forward to year 2040 to produce the output of interest - the
maximum LOLE, and then an emulator is built for each of the two market designs.
An emulator is trained in an energy-only market design using a group of 35 design
points over the 5-D input space and the corresponding 35 scenarios of the maximum
LOLE over period F. The other emulator is trained in a capacity market design
using a new group of 40 design points over the 6-D input space because the capacity

market design needs an extra control parameter wqope.
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Figure 4.18: Predictions of the maximum LOLE under an energy-only market design at test points;
Clircles show the simulator’s evaluations; Horizontal red line, blue lines indicate the mean, the 5th
and 95th percentiles of the maximum LOLE predicted by the emulator, respectively.

Apart from training data, a handful of extra design points are used for validating
the emulators for both market designs. The boxplots in Fig. 4.18 and Fig. 4.19 show
that all test points (in circles) lie in the 5th and 95th percentiles (in horizontal blue
lines) of the distribution of the maximum LOLE. The validation results indicate

that the emulators are accurate enough for carrying out the robustness study.

4.4.2 Uncertainty analysis of the maximum LOLE

In the LTGI model described in Section 3.2.1, there is uncertainty in the input values
of x, which propagates into output uncertainty, resulting in a range of the maximum
LOLE. An UA will derive the uncertainty range of the maximum LOLE under
energy-only or capacity market design, given that the model inputs including the
parameters of market designs have specified probability distributions (see Table 4.1).
A full UA is achieved here through exploring the posterior distributions of all model
inputs together with the emulator via Markov chain Monte Carlo [154,166].

Fig. 4.20 shows the uncertainty range of the maximum LOLE under an energy-
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only market design (on the left column) and a capacity market design (on the right
column). The box shows the interquartile range, which accounts for 25th — 75th
percentile. The whiskers add 1.5 times the interquartile range to the 75th percentile
and subtract 1.5 times the interquartile range from the 25th percentile. The central
line shows the median (the 50th percentile) of the data. The center of the box gives
the mean of the data. As can be seen in Fig. 4.20, the reliability of the system under
an energy-only market design appears much riskier than under a capacity market
design, implying that capacity adequacy will be a great concern at lower settings of
LOLE and the system is less robust to market risks and investors’ risk attitude in

the context of energy-only markets.

4.4.3 Algorithm and results of the robustness study

The procedure of quantifying R(u) at a given set of control variables is described as
follows:

Step 1: Choose a set of values from control variables u := {Ucone; Uvoll, Ueos } 5
obtained from their prior distributions;

Step 2: Take a sample from the posterior distribution of calibration parameters
6 := {Ovar, Omarkup }» Obtained after calibration;

Step 3: Take a sample from the forcing parameter w := {wyqs}, obtained from
its prior distribution;

Step 4: Take a sample from the posterior distribution of GP model parameters,
denoted as \,, obtained after calibration;

Step 5: For each combination (6, w, A, 7), use the emulator to predict the prob-
ability density function P(y%|u,6,w,\,7), and compute the probability Pr(y’ <
YT, 6,00, 1, 7);

Step 6: Average out over (6,w, \,7) to get the probability Pr(y" < y*T|u).

Applying the above procedure to the calibrated emulators developed in 4.3, Ta-
ble 4.2 shows the probabilities of the maximum LOLE exceeding 3-hour per year
under different settings of design parameters in energy-only and capacity markets.
Note that the variable wu.,,. only applies in capacity markets. Comparing the re-

sults between the second and the third columns, at the same setting of e, Uco,
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Table 4.2: A comparison of the probabilities of exceeding the threshold (3-hour per year) of LOLE

between energy-only market and capacity market

Control Variables u Energy-only Market Capacity Market
Ucone Unoll Uco, | R(u) E(y") Var(y") | R(u) B(y") Var(y")
£/kW/yr  £/MWh N/A | N/A hrs/yr (hrs/yr)? | N/A  hrs/yr (hrs/yr)?
31.89 1000 1 1 44.16 2.83 0.97 4.17 0.69
47.18 5000 1.2 1 11.61 1.46 0.71 3.37 0.75
47.18 5000 1 1 11.45 1.43 0.53 3.02 0.34
47.18 5000 0.8 1 11.33 1.40 0.20 2.50 0.67
66.21 2000 1 1 29.92 2.36 0.75 3.54 0.89
31.89 10000 0.8 0.98 6.87 1.61 0.768  3.50 1.14
47.18 15000 1 0.83 3.90 1.22 0.09 2.20 0.62
66.21 19500 1 0.57 3.21 1.68 0.04 1.51 0.45

in both markets, the expected value of the maximum LOLE, E(y"), informing the
expected level of the security of supply, considerably reduces with the introduc-
tion of capacity payment. Although some combinations of the control variables in
the two market designs may result in similar expectations of the maximum LOLE;,
for example, setting u,o; = 25000£/MWh in an energy-only market, and setting
Ueone = 4T18L/kW /yr, wyoy = 5000£/MWh in a capacity market, the variances of
the maximum LOLE, Var(y”), however, are generally larger in energy-only markets.
A comparison between Pr(y’ < 3|u) in both markets shows that a capacity mar-
ket design is generally more robust to uncertainties than energy-only market. The
results from the 2-nd and 5-th rows reveal that the increase in carbon prices may
discourage thermal investments and hence reduce the level of security of supply in
both markets. However, the effect of the control parameter u,,, is insignificant.

A clearer way to show the impact of the capacity and energy price caps on the
long-term system reliability is making a large number of predictions on the maximum
LOLE at possible scenarios of two control parameters teope, Upoy- Fig. 4.21 displays
the probability map of the maximum LOLE not exceeding 3 hours a year given 100
combinations of U, and u,o; sampled from their prior distributions while averaging

over the joint distribution of all other input variables. This quantitative information
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A prediction of the maximum LOLE in a capacity market
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Figure 4.23: Uncertainty range of the mazimum LOLE in a capacity market, conditional on values
of Ucone = 4TA8L /EW /yr, wyou = 10000£ /MWh and uco, = 1 and averaging on all other input

variables.

would be very helpful for choosing good values of Ucone, Uporr-

To help policymakers understand the use of Bayesian emulation for design of
energy policy, the plausible ranges (i.e., the probabilistic prediction) of the maxi-
mum LOLE at a specific setting of control variables under an energy-only market
and a capacity market are graphically shown in Fig. 4.22 and Fig. 4.23, respec-
tively. In each figure, a comparison is made between the output predicted by the
simulator before calibration, shown as the left-hand box plot, and by the calibrated
simulator, shown as the right-hand box plot. In this case, uncertainty in the max-
imum LOLE propagates from uncertainty in forcing and calibration parameters as
well as the approximation error between the emulator and the simulator. Since
uncertainty in calibration parameters has been reduced through the calibration pro-
cedure (as shown in Fig. 4.6), the plausible range of maximum LOLE produced by
the calibrated simulator is much narrower than that produced by the pre-calibrated
simulator as shown by the two box plots in both figures.

The probabilistic prediction made by the calibrated emulator has a lower risk
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of overfitting than the deterministic prediction made by the simulator which uses
a single set of values (point estimates) of model inputs as in [82]. Using a poste-
rior distribution covering a range of possible values for calibration parameters leads
to a range of output evaluations that are consistent with historical observations.
Whereas, using point estimates of pre-calibrated parameters produces a point esti-
mate of LOLE lying somewhere in between the left-hand box plot in Fig. 4.23; this

is a conservative estimation in an uncertain environment.

4.5 Sensitivity analysis results

A comprehensive probabilistic SA can be efficiently conducted based upon the em-
ulators validated and calibrated in Sections 4.2-4.4. The implementation requires
a distribution for the uncertain inputs given in Table 4.1. The SA approach based
on an emulator has benefits of allowing full exploration of the input space, esti-
mating variance-based measures at a low computational cost, and accounting for
interactions and nonlinear responses. By contrast, directly using a limited number
of training data in SA, is far less informative, because it does not fully explore the
input space. It is acknowledged that although an emulator allows SA to explore the

whole input space, it does so by extrapolation from the training data.

4.5.1 Sensitivity to generation projections

A probabilistic SA is firstly conducted on the emulator developed in 4.2 to study the
individual and combined effects of calibration parameters on the historical thermal
capacities.

Firstly, the following mean-effect functions for each input parameter z; are ex-

plored,
M(z;) = Em_i(yG|:EZ~) = /yPii(x_i|xi)dx_i, (4.2)

where E,_,(y“|z;) quantifies the expected value of the simulator output y* to vary-
ing an individual input z;, averaged over the probability distribution of all the other

input variables x_; and conditional on the value of z;.
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Thermal Capacity [MW]

Figure 4.24: Sensitivity analysis of 0 = {Ovar, Omarkup} in history matching

Fig. 4.24 plots the average response surface of the time series of historical gen-
eration capacities to each of the two calibration parameters. The two graphs in
Fig. 4.24 indicate that the two parameters have time-delay effects, that is, it takes
some time (a few years) to make changes to the installed thermal capacity due to
construction delays of new investments. In addition, the time series of operational
thermal capacities is not changing smoothly with the values of calibration param-
eters, because long-term generation investments naturally display boom-and-bust
cycles in a liberalised electricity market [14,17,18,115]. This is also one of the
reasons of using principal components (an orthogonal basis set) in representing the
time series of thermal capacities, so that the weight of a basis are relatively smooth
functions of the model inputs. The clearly visible sinusoidal pattern across 2014
suggest that there is a nonlinear relationship between the calibration parameters
and the annual thermal capacities.

Table 4.3 provides the variance contributions of individual and joint calibration
parameters to the total variance of the model output in terms of the main effect
index defined in (3.19). The quantitative information delivers a clear message that
the price markup model parameter 0,414, alone is dominating variations in installed

thermal capacity.
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Table 4.3: Main-effect sensitivity measures of single and joint calibration parameter effects on

generation projections (% total variation) in history matching

Input variables Ovar  Omarkup (Ovars Omarkup)

% of total variation 6 85 9

Table 4.4: Main-effect sensitivity measures of single and joint parameter effects on generation

projections (% total variation) in the energy-only market

Inputs — Upon  Uco, Wgas Ovar  Omarkup
Ugoll 57.6 0.46 0.13 0.01 0.53
Ueo, 046 2.3 0.12 0.02 0.24
Wgas 0.13 0.12 0.8 0.02 0.33
Over  0.01 0.02 0.02 0.6 0.13

Omarkup 1.84 053 0.33  0.13 34.9

A probabilistic SA is then carried out on the emulator developed in Section 4.3
for analyzing the effects of the five model inputs {wyoiu, Ucoys Woas, Ovar, Omarkup } O
future generation projections in energy-only markets. Table 4.4 provide the variance
contributions of individual model inputs and those of two-input interactions to the
overall variance associated with the projections of thermal capacity. It is clearly
seen that the most important input parameters are wyoy and Opgrkup, as varying
these contributes the most to variations in projected future thermal capacities. An
index of 57.6% indicates that uncertainty about w,.; accounts for over half of the
overall uncertainty in the output. Uncertainty in 6,44y, accounts for 34.9% of the
overall uncertainty in the output. Both parameters take effect on scarcity pricing,
that is, modifying the uniform market-clearing energy prices in scarcity situations.
The results from SA highlight the significant long-term effect of scarcity pricing on
incentivizing the investment of conventional generation capacity in future electricity

markets with a high penetration of wind power.
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