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Abstract 

This project involves on developing highly efficient self-healing polymer systems based on 

spontaneous copolymerisation.  

Several different self-healing systems, examples of micro-encapsulation processes, basic 

concepts of free radical polymerisation and copolymerisation, mechanism and examples of 

spontaneous copolymerisation, and fracture mechanics of polymeric materials were 

reviewed. 

The linear spontaneous copolymerisation of electron donor and acceptor monomers was 

investigated. Linear copolymers were synthesised by the spontaneous copolymerisation of 

electron donor monomers (4-methoxy styrene and styrene) and acceptor monomers (maleic 

anhydride and N-methylmaleimide) in bulk at ambient temperature and at 50 °C. The 

reaction of 4-methoxy styrene with ethoxymethylene malononitrile was carried out at 50 °C 

and produced homopolymer of 4-methoxystyrene. The resulting linear polymers were found 

to be soluble in tetrahydrofuran and acetone and fully characterised by 1D and 2D NMR 

spectroscopy, SEC, and FTIR. 

Cross-linked spontaneous copolymerisation of electron donor and acceptor monomers were 

synthesised. By adding divinylbenzene to 4-methoxy styrene, styrene, N-methylmaleimide, 

and maleic anhydride, cross-linked materials were obtained. Those materials, as expected, 

were completely insoluble in normal organic solvent. The cross-linked polymers were 

characterised by sol-gel technique and FTIR. 

The micro-capsules were obtained by using urea-formaldehyde micro-encapsulation process. 

The liquid healing agents (4-methoxy styrene, styrene, divinylbenzene, and their mixtures) 

were encapsulated using a process involving polymerisation of urea-formaldehyde in oil-

water emulsion. The average diameter of the micro-capsule was controlled by adjusting the 

agitation rate. Micro-capsules with diameter were selected using seivesfor self-healing 

specimen preparation. 

The fracture toughness of epoxy matrix was investigated. Fracture toughness of pure epoxy 

matrix specimen was tested by compact tension geometry. The influence of micro-capsules 

and solid healing agents on the fracture toughness of epoxy matrix was investigated. The 

micro-capsules (5-20 wt. %) in the epoxy resin did not change the fracture toughness of 
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matrix.  However, solid healing agents MA and MeMal reduced the fracture toughness of 

epoxy resin as the amount of MA and MeMal added to the matrix. To keep the fracture 

toughness of specimen closed to that of pure epoxy resin, 10% solid healing was decided to 

add into the matrix for self-healing preparation. And the fracture toughness of the specimen 

did not change by adding EtOCN into the epoxy resin matrix. 

The self-healing performance was assessed by fracture toughness recovery. The self-healing 

efficiency of those system designed in this project was first evaluated by injecting the liquid 

healing agents into the crack of the specimen containing solid healing agents. Then, the 

autonomous self-healing specimen was prepared by adding the micro-capsules and solid 

healing agents in the epoxy resin matrix. The specimens were subjected to fracture testing to 

establish healing efficiency. The self-healing system based on obtained good healing 

efficiency. 
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1.1 Classification of self-healing polymer materials 

With the development of technology, varieties of new smart materials are widely involved in 

all ways of life. These smart materials have designed properties that can be significantly 

changed by specific conditions, such as stress, temperature, pH, and even damage of the 

material. Self-healing materials are one class of smart materials that have the ability to repair 

damage.1  

Initiation of cracks and other types of damage on microscopic level has been shown to 

change thermal, electrical, and acoustical properties, and eventually lead to whole scale 

failure of the material.2  Usually, cracks that are difficult to detect are very hard to be 

repaired by hand. A material that can intrinsically correct damage or crack caused by normal 

usage could lower production costs of a number of different industrial processes through 

longer lifetime, reduction of inefficiency over time caused by degradation, as well as 

preventing costs incurred by material failure. Damage, degradation, and failure are natural 

consequences of material applications. Engineering research has been focused traditionally 

on either the design of new materials with increased robustness or the development of 

nondestructive evaluation methods for material inspection. Self-healing materials exhibit the 

ability to repair themselves and to recover functionality using the resources inherently 

available to them. Self-healing materials offer a new route toward safer, longer-lasting 

products and components. 

The self-healing mechanism comes from biological systems, which have the ability to heal 

after being wounded after suffering injury.3 In the biological system, the inflammatory 

response will stop bleeding. Similarly, in the synthetic system, the actuation will cause 

triggering. The biological system will have cell proliferation while the synthetic system will 

have transport.  

Depending on the repair process being autonomic or externally assisted (e.g., by heating), 

these self-healing materials are categorised into two classes: autonomic and non-autonomic 

self-healing materials.4  Autonomic self-healing materials respond without external 

intervention to environmental stimuli, and the chemical healing agents is automatically 

released and facilitates the healing in response to damage.5   On the other hand non-

autonomic self-healing materials need external intervention. Based on the healing agents 

employed, self-healing polymer materials also can be classified two categories: extrinsic and 
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intrinsic.6  

Extrinsic healing systems rely on an external healing agent in the form of capsules or 

vascular networks.7-9  In extrinsic self-healing, the design of the autonomic materials is based 

upon the healing agent and a catalyst to be embedded in the matrix. The two designs 

frequently used to prepare such materials include the micro-encapsulation and micro-

vascular network. In both approaches, the self-healing process is initiated by the damage.10  

Each approach differs by the mechanism used to keep apart the healing functionality until 

triggered by damage. The type of sequestration dictates the damage volume that can be 

healed, the repeatability of healing, and the recovery rate for each approach.  

Intrinsic self-healing polymer materials, known as re-mendable polymer, generally are based 

on either non-covalent chemistries or reversible reactions.11 The non-covalent chemistry 

approach uses ionomeric coupling or hydrogen bonding.12, 13 While reversible reactions use 

Diels-Alder reaction, radical exchange, dynamic urea bond, and trans-esterification.14, 15 The 

re-formation of chemical bonds in intrinsic materials is triggered by a number of external 

stimuli including pH change, light, temperature, or mechanical pressure. Diels-Alder 

reactions are most frequently used to create self-healing polymers containing reversible bond 

formation. Autonomic self-healing without external intervention is not available in these 

materials for the time being.  

1.2 Micro-capsule based self-healing polymer system 

Micro-capsule based self-healing materials store the healing agent in micro-capsules. When 

the capsules are ruptured by damage, the self-healing mechanism is triggered through the 

release and reaction of the healing agent in the region of damage. After release, the local 

healing agent is depleted, leading to only a singular local healing event.16 

Self-healing materials have been developed for some commonly used synthetic polymers and 

elastomers using a variety of capsule-based systems. Each system contains a healing agent in 

a micro-capsule until damage triggers its release.   

1.2.1 System based on dicyclopentadiene with Grubbs’ catalyst 

Polydicyclopentadiene (polyDCPD) is a highly cross-linked polymer of high toughness 

formed by a ring-opening metathesis polymerisation (ROMP), scheme 1.1. Grubbs’ catalyst 
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shows high metathesis activity with the dicyclopentadiene (DCPD) monomer coupled with 

good chemical stability.17-19 

 

Scheme 1.1: ROMP of DCPD with Grubbs’ catalyst 

The most thoroughly studied system for mechanically induced healing using the micro-

encapsulation method containing DCPD is the liquid healing agent.20 Also included in the 

system is a Ruthenium catalyst that will initiate the ROMP of DCPD, which is responsible 

for the healing of the damaged materials.  

 

Figure 1.1: The capsule-catalyst self-healing process. Where (a) is the crack occurred, (b) is 

the rupture of micro-capsules by crack, and (c) is the healing of the rack by polymerisation 

of healing agents. Reprinted from Nature, 409:794–97, White et al, copyright (2001), with 

permission from Macmillan Publishers Ltd. 

The first practical demonstration of self-healing materials was performed in 2001 by White 

et al.21 Self-healing capabilities were achieved by embedding encapsulated healing agents 
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into polymer matrix containing dispersed catalysts. In this design, the healing agent is an 

encapsulated dicyclopentadiene (DCPD) by urea-formaldehyde (UF), and the initiator is a 

dispersed Grubbs’ first generation catalyst in the epoxy resin matrix.  

When the matrix damaged, cracks are formed, figure 1.1a. The micro-capsules are ruptured 

and the healing agents are released into the cracks, figure 1.1b. The polymerisation triggered 

when the healing agents meet the catalyst, which is dispersed in the matrix, figure 1.1c. The 

polymerised healing agent will heal the cracks. 

Majchrazk et al. reported an autonomous self-healing process at ambient temperature based 

on the ROMP of mono- and di-functional norbornene dicarboximides, figure 1.2. It was 

found that the specimens containing healing agent of high viscosity comprising of just a 

mixture of mono- and di-functional norbornene dicarboximide monomers required clamping 

to initiate healing. However, the spcimen containing healing agent of low viscosity 

comprising a mixture of these two monomers and 25% of ethylidene norbornene, as a 

reactive diluent monomer, healed unclamped giving healing efficiency of 33% and this was 

developed between 11 and 24 h.22 

 

Figure 1.2: Structure of mono- (1) and di-functional (2) norbornene dicarboximides 

In 2002, Brown et al. reported an autonomic self-healing system using a UF encapsulated 

DCPD healing agent and Grubbs’ catalyst with high healing efficiencies.23 The use of 

tapered double-cantilever beam (TDCB) fracture geometry provided an accurate method to 

measure the fracture behavior and healing efficiency of self-healing polymer composites and 

to compare with appropriate controls. Virgin fracture properties of the polymer composite 

were improved by the inclusion of micro-capsules and catalyst particles. The size and 

concentration of the catalyst were shown to have a significant impact on the virgin properties 

of the composite and the ability to catalyse the healing agent. The highest healing efficiency 

was obtained with 180–355 μm catalyst particles. Catalyst concentrations of greater than 2.5 

wt% provided diminishing gains in healed fracture toughness. A significant loss of virgin 
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fracture toughness was observed for a catalyst concentration of about 3%. The addition of 

micro-capsules, up to 15 wt%, served to increase the virgin toughness. Capsule size had a 

direct influence on the volume of DCPD monomer released into the crack plane but, over the 

range of capsule sizes investigated, healing efficiency was not restricted by lack of healing 

agent. Maximum healing efficiency was obtained within 10 h of the fracture event. By 

adjusting the concentrations of catalyst and micro-capsules, the healing efficiency of the 

system was increased to over 90 %, figure 1.3.   

 

Figure 1.3: Load-displacement curve for an in-situ sample with 2.5 wt% Grubbs and 5 wt% 

micro-capsules. Reprinted from Exp. Mech., 42(4):372–9, Brown et al, copyright (2002), 

with permission from Springer. 

DCPD-Grubbs’ self-healing system provides good healing performances, so it has been 

widely used in many materials, such as bulk matrices of epoxy24-27, epoxy vinyl ester28, 29, 

and thermoplastic-elastomeric block copolymers30. 

1.2.2 System based on PDMS multi-capsule 

 

Scheme 1.2: Platinum-catalyzed hydrosilylation of vinyl terminated PDMS where (a) is the 

initiator material, (b) is the vinyl functionalised resin, and (c) is the resulting cross-linked 

network. 
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Keller et al. demonstrated multi-capsule self-healing, at ambient temperature, of a silicone 

elastomeric matrix (polydimethylsiloxane (PDMS)) based on hydrosilylation in the presence 

of platinum catalyst, scheme 1.2. The system involved two types of UF micro-capsules, one 

containing vinyl functionalised PDMS resin (scheme 1.2b) containing a Pt catalyst and the 

other containing a liquid initiator material (hydrosiloxane copolymer, scheme 1.2a). Tear 

testing demonstrated the capability of the self-healing elastomer to routinely recover at least 

70% of the original tear properties.31  

PDMS multi-capsule system has been extended to perform corrosion inhibition. Cho et al. 

incorporated PDMS resin capsules and dimethyldineodecanoate tin (DMDNT) catalyst 

capsules in an epoxy coating.32 The healing performance was assessed by salt-immersion 

corrosion tests, figure 1.4.  

 

Figure 1.4: Salt-immersion corrosion testing of control and of room-temperature self-healing 

epoxy coatings. All images were obtained after healing at 20 °C for 24 h and 120 h 

immersion in salt water. Reprinted from Adv. Mater., 21(6):645–9, Cho et al, copyright 

(2009), with permission from Wiley Materials. 

In the report, a control sample consisting of the epoxy-amine matrix coated on a primed 

substrate was scribed and left in salt water, figure 1.4a. The self-healing coating prepared as 

sample (a), with the addition of PDMS healing-agent capsules and TKAS-catalyst capsules, 

was shown in figure 1.4b after salt-immersion corrosion tests. Two-layer containing 

adhesion promoter (control sample) was tested and shown in figure 1.4c. And self-healing 

coating prepared as sample (c), with the addition of PDMS healing-agent capsules and 

TKAS-catalyst capsules, was shown in figure 1.4d after the tests. Corrosion-test results after 
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scribing and healing for 24 h at room temperature show the efficacy of the room-temperature 

activity for both these systems This healing chemistry is attractive because it is air- and 

water- stable, and remains active even after exposure to elevated temperatures (up to 150 °C), 

enabling its use in systems requiring a thermal cure. While the mechanical properties of the 

resultant cross-linked siloxane are not exceptional, in a coating system the mechanical 

strength of the healed matrix is of secondary importance, compared to chemical stability, two 

areas where siloxanes show exceptional performance.  

1.2.3 System based on epoxy-amine latent functionality 

In the latent functionality self-healing systems, the matrix contains residual reactive 

functionality and the healing agent is encapsulated. When the crack opens the micro-capsules, 

the healing agent will be released and meet the reactive function group in the matrix 

initiating the polymerisation.33-34 

Zako and Takano developed a separate system with latent functionality by incorporating 

thermally polymerisable or meltable epoxy particles into epoxy composite.35 Small amount 

of epoxy particle-type adhesive is embedded in a glass/ epoxy composite laminate. When the 

matrix damaged, the embedded particles in the matrix was melted by heat and flow into the 

crack. The melted epoxy adhesive was cross-linked by the amine group in the matrix and 

hence healed the crack. And the embedded particles are found to not change the stiffness of 

the glass/epoxy composite laminate. This healing system was developed by many researchers 

by embedding epoxy monomer via micro-capsules.  

In 2008, Caruso et al. demonstrated an example of a latent self-healing system based on the 

solvent-promoted and resin-solvent self-healing system.36 The residual amine functionality in 

an epoxy matrix was used to initiate polymerisation of the delivered healing agent. An 

autonomic system yielding complete recovery of fracture toughness after crack propagation 

was achieved by embedding micro-capsules containing a mixture of epoxy monomer (EPON 

828) and solvent (chlorobenzene) into an epoxy matrix. However, the concentrate of epoxy 

monomer in chlorobenzene was not stated. This autonomic self-healing system is reported to 

show 100% of the materials’ original fracture toughness recovery.  
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1.2.4 System based on phase separation 

In 2006, Cho et al. demonstrated the concept by phase-separating hydroxyl end-

functionalised polydimethylsiloxane (HOPDMS) and polydiethoxysiloxane (PDES) in a 

matrix of epoxy vinyl ester to restore mechanical integrity.37 The catalyst, di-n-butyltin 

dilaurate (DBTL), was contained within PU micro-capsules embedded in a vinyl ester matrix 

and was released when the capsules were broken by mechanical damage. This system 

possessed a number of advantages such as the stability of healing chemistry in wet 

environments and at elevated temperature (>100 °C) and comparatively low cost. Comparing 

with the original fracture toughness of vinyl ester matrix, a healing efficiency as high as 46 % 

was achieved. 

1.3 Micro-vascular based self-healing materials 

Micro-vascular self-healing materials store the healing agent in a network in the form of 

capillaries or hollow channels, which may be interconnected until damage triggers self-

healing. For vascular systems, additional connectivity adds numerous performance 

advantages. Any location in the network has multiple connection points, leading to increased 

reliability with regard to channel blockages and a larger accessible reservoir for the healing 

agents. Multiple connections between channels also allow for easier refilling of the network 

after depletion.38 

As opposed to capsule-based systems, for vascular materials the healing agents are 

introduced after the network has been integrated into the matrix. Thus, some properties that 

determine the choice of healing agents are surface wettability, chemical reactivity, and 

viscosity. High viscosities and/or unfavorable wetting properties prevent efficient filling of 

the network, whereas chemical incompatibility endangers long-term stability of the system. 

These properties also affect vascular network design, especially the channel diameter, 

because viscosity and wettability affect the release and transport of the healing agents. 

The mechanical properties of a matrix with an embedded network are affected by the 

network wall stiffness, the bonding between the matrix and the network, the network volume 

fraction, and channel distribution and uniformity. The triggering mechanisms are validated 

and the healing performance characterised in a manner similar to capsule-based systems. 

Importantly, for vascular healing systems, access to a large reservoir of healing agents and 

the ability to replenish the network enable repeated healing of multiple damage events.  
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Building upon the hollow glass fiber and micro-capsule healing systems, and striving to 

create the ultimate biomimetic material, new research has focused on the fabrication of 

microvascular self-healing composite materials. One of the main complaints about both the 

glass fiber and micro-capsule systems is their inability to heal the same location in the 

material more than once; often, a second fracture event will occur along the plane of the 

initial crack. By providing a material with a semi-continuous flow of healing agent, multiple 

healing cycles can be achieved.  

Scientists and engineers are constantly looking to nature for inspiration on how to create 

more effective and efficient systems; this is no different in the case of intelligent materials. 

Both animals and plants feature fluid flow networks integrated into load-bearing materials 

and therefore serve as a useful source of inspiration for probable failure modes and reliability 

strategies since it can be assumed that these have evolved to ensure system success.39 Certain 

plants have canals in them that contain latex and/or resin which are used in defense 

mechanisms; upon rupture, secretions from the canals become sticky and serve to protect the 

plant from pathogens.40 This type of self-sensing and self-repairing system is a great source 

of inspiration for engineers. By studying the various vascular systems in plants and noting 

the different mechanics and corresponding effectiveness, scientists can design better 

materials that accomplish the same functions. 

In 2007, Toohey et al. published one of the first example of composite materials containing 

micro-vascular self-healing system. 41 This system used the liquid DCPD as the healing 

agent and solid Grubbs’ catalyst to initiate polymerisation. The specimen was an epoxy 

coating deposited on a substrate that contains a three-dimensional (3D) micro-vascular 

network, figure 1.5.  
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Figure 1.5: Schematic diagram of the self-healing structure composed of a microvascular 

substrate and a brittle epoxy coating containing embedded catalyst in a four-point bending 

configuration monitored with an acoustic-emission sensor. Reprinted from Nature Material, 

6:581–5, Toohey et al, copyright (2007), with permission from Macmillan Publishers Ltd. 

The catalyst was incorporated into epoxy coating that was applied to the top surface of the 

micro-vascular substrate; the micro-channels were filled with DCPD and then sealed. This 

network of micro-channels can be replenished with adding more DCPD healing agent, 

allowing for multiple healing events to occur at the same location within the material. This 

system achieved a peak healing efficiency of 70% with 10 wt% catalyst in the top coating, 

and was able to demonstrate healing for up to seven cycles. It was reported that the amount 

of catalyst in the top epoxy layer did not affect the average healing efficiency per cycle but 

rather dictated how many cycles of testing and that healing could be performed successfully.  

Williams et al. published their version of a micro-vascular containing mechanically 

stimulated healable material in the form of a sandwich structure composite consisting of high 

performing skin materials, such as glass or carbon fiber composites, separated by a 

lightweight core to obtain a material with very high specific flexural stiffness. 42 

A vascular network incorporated into a sandwich structure is reported to address the larger 

damage volume, as well as allowing for multiple healing events to occur. Samples were 

fabricated with channels containing healing agents (epoxy resin and hardener in separated 

channels), which had a small effect on the mechanical properties of the composite. Rupture 

of the vessels released the healing agent, filling the void that formed as a result of impact 

damage on the sample leading to healing. It is reported that self-healing was successful, but 

the healing efficiency was not stated. 
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1.4 Intrinsic self-healing materials 

The intrinsic healing system, also known as re-mendable polymers, is a class of non-

autonomic self-healing process. These polymers achieve repair though inherent reversibility 

of bonding of the matrix polymer, such as reversible reactions, ionomeric coupling, 

hydrogen bonding, or molecular diffusion.43 

1.4.1 Reversible system 

Reversible systems are broadly defined as polymeric systems that can revert to either their 

monomeric, oligomeric, or non-cross-linked states. For the polymer to be stable under 

normal working conditions, the reverting process would normally require an external 

stimulus for it to occur. For mending purposes, ideally the material would revert to its 

constituents after cracking, but could be repaired by applying the conditions that were used 

to polymerise it. 

Self-healing materials based on reversible reactions include components that can be 

reversibly transformed from the monomeric state to the cross-linked polymeric state through 

the addition of external energy. Generally, a damaged polymer is subjected to heat or light 

irradiation, triggering enhanced mobility in the damage region, bond reformation, and 

polymer re-mending.  

The most widely used reaction scheme for re-mendable self-healing materials is based on the 

Diels-Alder (DA) and retro-Diels-Alder (RDA) reactions. Chen et al. demonstrated a 

thermally activated self-healing system based on the DA reaction of synthesised furan-

maleimide polymers.44   
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Scheme 1.3: The DA reaction of synthesised furan monomer (1) and maleimide monomer (2) 

A thermally reversible DA cycloaddition of a multi-diene (furan monomer 1) and 

multidienophile (maleimide monomer 2) was used to prepare a polymeric material (scheme 

1.3).  A highly cross-linked polymer specimen was formed via the DA reaction of furan and 

maleimide moieties, and thermal reversibility was accomplished by the retro-DA reaction. 

The average mending efficiency of about 50% and 41% was achieved at 150°C and at 120°C, 

respectively.  

This healing system was developed by Plaisted et al. and demonstrated increased healing 

efficiency up to 78% at 115 °C using furan-maleimide polymer.45  The furan monomer (1) 

was the same as that used by Chen et al. and maleimide monomer (3) was shown in figure 

1.6. 

 

Figure 1.6: The maleimide monomer (3) 

Park et al. used the DA reaction to incorporate healing functionality in polymer derived from 

dicyclopentadiene monomers (figure 1.7) in a matrix containing a carbon fiber.46 The design 

is reported to display much faster healing rate by heating. The healing performance was 

examined by SEM. Crack healing was observed at a relatively low temperature range of 70–
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108 °C, and was complete within minutes at these temperatures. However, the value for 

healing efficiency was not reported. 

 

Figure 1.7: The monomer (a, b, and c) synthesised by Park et al. 

1.4.2 Ionomeric system 

Ionomeric copolymers are a class of materials with ionic segments that can form clusters that 

act as reversible cross-links. These clusters can be activated by external triggers such as 

temperature or UV irradiation. Because the formation of the clusters is reversible, multiple 

local healing events are possible.  

 

Figure 1.8: Neutralised random ionomer co-polymer used by Varley et al. 

The ionomeric self-healing system using poly(ethylene-co-methacrylic acid) (EMMA) 

copolymers with ionic segments was first reported by Kalista et al. in 2007.47  And  it was 

investigated further by Varley et al.48 The polymer used was a partially neutralised EMMA 

random ionomer co-polymer (figure 1.8). It contains 5.4 mol.% of methacrylic acid groups, 

30% of them have been neutralised with sodium. EMMA films were able to heal upon 

damage. This occurred through a heat-generating frictional process. The healing behavior 

was observed according to elastomeric and viscous response.  
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1.4.3 Supramolecular system 

Supramolecular polymer materials can be designed to form self-healing system via reversible 

hydrogen bonding.  Cordier et al. designed and synthesised macromolecules that associate to 

form cross-links via hydrogen bonding (figure 1.9).49  

 

Figure 1.9: Macromolecules containing reversible hydrogen bonding 

The system showed recoverable extensibility up to several hundred per cent and little creep 

under load. These systems, when broken or cut, can be repaired by bringing together 

fractured surfaces to self-heal at ambient temperature. Repaired samples recuperate their 

enormous extensibility. The process of breaking and healing is reported to be repeatable.   

1.4.4 Molecular diffusion system 

Self-healing polymer via molecular inter-diffusion has been the subject of extensive research 

in the 1980s. The polymers investigated cover amorphous, semi-crystalline, block 

copolymers, and fiber-reinforced composites. It has been discovered that when two pieces of 

the same polymer are brought into contact at a temperature above its glass transition 

temperature (Tg), the interface gradually disappears and the mechanical strength at the 

polymer–polymer interface increases. This behavior was used to heal the crack in the 

material.50 

Jud and Kausch studied the effect of molecular weight and degree of copolymerisation on the 

crack healing behavior of poly(methyl methacrylate) (PMMA) and PMMA–poly(methoxy 

ethylacrylate) (PMEA) copolymers.51 The self-healing ability of the copolymers was tested 
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by clamping and heating these samples in which the fractured surfaces (of single-edge 

notched and compact tension specimens) were brought together and held for set periods of 

time. Various experimental parameters were investigated, which included the time between 

fracturing and joining of the fractured surfaces, the healing time, the healing temperature and 

the clamping pressure. It appeared that a temperature of 5 °C higher than the Tg and a healing 

time of over 1 min were required to produce healing greater than that could be attributed to 

simple surface adhesion. An increase of the time between fracture initiation and self-healing 

of the fractured surfaces was found to significantly inhibit healing, dropping optimum 

property recovery from 120% to 80%. Visual healing of the fracture surfaces was found to 

occur before a significant recovery in strength was achieved, with the interdiffusion of 

numerous chain segments (rather than entire chains) being reported as the most likely 

healing mechanism. 

1.5 Micro-encapsulation 

Micro-encapsulation is a technique by which solid, liquid or gaseous active ingredients are 

packaged within a second material for the purpose of shielding the active ingredient from the 

surrounding environment. Thus the active ingredient is designated as the core material 

whereas the surrounding material forms the shell.52 This technique has been employed in a 

diverse range of fields from chemicals and pharmaceuticals to cosmetics and printing. For 

this reason, widespread interest has developed in micro-encapsulation technology.  

In the 1950s, Green and Schleicher produced first micro-encapsulation process, in which 

dyes was packaged by complex coacervation of gelatin and gum arabic, for the manufacture 

of carbonless copying paper.53 

In the 1960s, micro-encapsulation of cholesteric liquid crystal by complex coacervation of 

gelatin and acacia was reported to produce a thermosensitive display material. Fergason et al. 

developed nematic curvilinear aligned phase (NCAP), a liquid crystal display system by 

micro-encapsulation of nematic liquid crystal. Encapsulation technology has provided the 

enlargement of display areas and wider viewing angles.54 

Since the mid of 1970s, micro-encapsulation has become increasingly popular in 

pharmaceutical industry as well as for many other products and processes in daily use. A 

very important application for this technology is used for self-healing composites.  
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The micro-capsules in self-healing systems not only store the healing agent, but provide a 

mechanical trigger for the self-healing process when damage occurs in the host material. For 

self-healing materials, the most common encapsulation techniques are produced in-situ 

polymerisation.55 

In-situ and interfacial encapsulations proceed by reaction of urea-formaldehyde (UF), 

melamine-formaldehyde (MF), or polyurethane (PU) formation of a polymer shell wall at the 

interface of droplets in oil-water emulsion. 

1.5.1 Urea-formaldehyde 

In 2003, Brown et al. investigated that UF micro-capsules containing dicyclopentadiene 

were prepared by in-situ polymerisation in an oil-water emulsion that meet requirements for 

self-healing epoxy.56  Micro-capsules of 10–1000 µm in diameter were produced by 

appropriate selection of agitation rate in the range of 200–2000 rpm. A linear relation was 

reported between log (mean diameter) and log(agitation rate). Surface morphology and shell 

wall thickness were investigated by optical and electron microscopy. Micro-capsules were 

composed of a smooth 160–220nm inner membrane and a rough, porous outer surface of 

agglomerated UF nanoparticles. Surface morphology was reported to be influenced by pH of 

the reacting emulsion and interfacial surface area at the core–water interface. High yields 

(80–90%) of a free flowing powder of spherical micro-capsules were produced with a fill 

content of 83–92 wt% as determined by CHN analysis. 

 

Figure 1.10: Process of micro-encapsulation by in-situ polymerisation of UF. Reprinted from 

J. Microencapsul, 20(6):719–30, Brown et al, copyright (2003), with permission from Taylor 

& Francis 

The process of micro-encapsulation by in-situ polymerisation was shown in figure 1.10. The 

monomers to be encapsulated form as droplets in urea emulsion. During in-situ 

polymerisation, oil emulsions in water are first produced under vigorous agitation or 
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sonication of a biphasic liquid. The core chemical acts as the dispersed phase. The monomers 

and initiators used for constructing the capsule wall are dissolved in either the dispersed or 

the continuous phase. After addition of formaldehyde, the polymer synthesised by urea and 

formaldehyde is insoluble in the emulsion, therefore, polymerisation often takes place on the 

surface of the core material droplets or the resulting polymer accumulates onto the droplets 

surface, thus generating micro-capsules with the desired core material. For in-situ micro-

encapsulation, the thickness and size of the micro-capsules is controllable. Average micro-

capsule diameter is controlled by agitation rate. As the agitation rate is increased, a finer 

emulsion is obtained and the average micro-capsule diameter decreases. Micro-capsules with 

average diameter in the range of 10–1000 µm are obtained by adjusting the agitation rate 

between 200–2000 rpm.56 

1.5.2 Melamine-formaldehyde 

In 2002, Lee et al. reported Micro-capsules containing fragrant oil (Foral oil) synthesised via 

the in-situ polymerisation method using melamine-formaldehyde (MF) as a wall material.57 

The encapsulation efficiency and other physical properties were analysed with varying mole 

ratio of melamine with formaldehyde and pH of emulsion medium. The pH of the reaction 

medium was varied from 5.0 to 6.0 and the F/M molar ratio, 2.3 ~ 5.5. Micro-capsules 

containing fragrant oil were synthesised successfully and their particle sizes ranged from 12 

± 5 mm. Encapsulation efficiency of fragrant oil varied from 67 ± 8%.  

1.5.3 Polyurethane 

In 2008, Yang et al. demonstrated that Micro-capsules containing reactive diisocyanate for 

use in self-healing polymers are successfully fabricated via interfacial polymerisation of 

polyurethane (PU). Isocyanates are potential catalyst-free healing agents for use in humid or 

wet environments. The preparation of PU prepolymer and micro-encapsulation of isophorone 

diisocyanate (IPDI) healing agent were presented. Smooth spherical micro-capsules of 40-

400 μm in diameter are produced by controlling agitation rate (500-1500 rpm). The PU shell 

wall thickness varies linearly with capsule diameter, such that the capsules wall thickness to 

diameter ratio was constant (∼0.05). High yields (∼70%) of a free-flowing powder of 

IPDI/PU capsules were produced with a liquid core content of 70 wt % as determined by 

TGA analysis. The micro-capsules were stable with only ∼10 wt % loss of IPDI was 

detected after 6 months storage under ambient conditions. Direct mechanical compression 
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testing of micro-capsules revealed a brittle fracture mode and normalised shell wall strength 

that varied with capsule diameter.58 

1.6 Polymerisation 

The background knowledge of polymerisation is reviewed, the concepts of free radical 

polymerisation and copolymerisation were written according to the textbook of polymer. 59, 60 

1.6.1 Polymerisation reactions 

Polymerisation could be divided into two general groups, according to their mechanisms: 

step-growth polymerisation and chain-growth polymerisation. This subdivision makes a 

distinction between polymers prepared by the stepwise reaction of monomers and those 

formed by chain reactions. 

A step-growth polymerisation can be described as a process that at the beginning involves 

one or more monomers having at least two reactive sites, i.e. functional groups. Two 

monomers can react together to give a dimer, a monomer may add to a trimer, or two dimers 

combine to form a tetramer and so on to form the polymer chains. The monomer is 

consumed at the beginning of the reaction and step growth polymerisation does not need an 

initiator to start the reaction. The monomers can react with or without elimination: the former 

is the case of polycondensation reactions; the latter is the case of polyaddition reactions. It is 

possible to synthesise with this type of polymerisation polymers like polyester, polyamide, 

polyurethane, polysiloxane, polycarbonates, polyurea and polysulfides. The reactions 

involved are reactions to the carbonyl group or nucleophilic substitutions. 

In the polymerisations that occur via a chain reaction, the monomers are usually converted 

into polymers by reaction of the double bond of substituted alkene monomers with a free 

radical or ionic initiator. The product, then, unlike that obtained from step-growth 

polymerisation, has the same chemical composition of the starting monomer, i.e., each unit in 

the chain is a complete monomer and not a residue as in the most step-growth reactions.  

1.6.2 Free radical polymerisation 

In general when the polymerisation mechanism proceeds by the reaction of radicals, the 

reaction is called Free Radical Polymerisation. The chain grows by addition of one monomer 

unit at a time and the active radical species are always at the chain end. The complete 
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polymerisation proceeds in three distinct stages: initiation, propagation and termination, 

scheme 1.4.  

 

Scheme 1.4: Reaction steps in free radical polymerisation: initiation, propagation, and 

termination  

The radical precise mechanism and rate of each step are dependent on a number of factors 

including temperature, solvent and the chemistry of each component. The polymerisation 

process continues until either the monomer is entirely consumed or all the growing free 

radical chains are terminated without the prospect for the further initiation and propagation 

of new polymer chains.  

The radical can be formed in several radical producing reactions. Free radicals can be 

produced by thermal decomposition of organic peroxides (-O-O-), such as benzoyl peroxide 

(scheme 1.5a), and azo compounds (-N=N-), such as Azobisisobutyronitrile (AIBN), scheme 

1.5b.  

 

Scheme 1.5: Thermal decomposition of benzoyl peroxide (a) and AIBN (b) 

Photolysis can also produce free radical. This can be applied to azo compounds, metal 

iodides and metal alkyls, for example, AIBN that is also decomposed by radiation. 

The free radical can also be formed by redox reactions. An example is the reaction between 
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the ferrous ions and hydrogen peroxide in solution that produces hydroxyl radicals, but it is 

also possible to use alkyl hydroperoxides instead of hydrogen peroxide, scheme 1.6.  

 

Scheme 1.6: the reaction between the ferrous ions and hydrogen peroxide in solution 

The radical reacts rapidly with a large number of unsaturated monomers containing double 

bond. It is possible to have two types of reaction (I and II, scheme 1.7) with the double bond 

due to the unsymmetrical nature of the double bond but type I is the favoured because of 

stabilisation due to the resonance effect. 

 

Scheme 1.7 Mechanism of a radical attack to a double bond. 

In the propagation step, the new radical species reacts with another monomer forming the 

polymer chain. The chain propagation proceeds rapidly by addition of a monomer unit to the 

chain carrier. The active centre is displaced after every addition to the end of the growing 

chain. The average life time of the growing chain is short, in the order of second or less. 

Termination occurs when the active radical at the chain end is deactivated, ending the growth 

of the polymer chain. In theory, the chain could continue to propagate until all the monomer 

in the system has been consumed, but free radicals are very reactive and so they can react 

with other radicals to form inactive covalent bonds. Termination of chains can take place in 

several ways: reaction between two active chain ends combination; reaction of an active 

chain end with an initiator radical; transfer of the active center to another molecule such as a 

solvent, initiator or monomer (chain transfer); and interaction with impurities or inhibitors. 

Free radical polymerisation leads to high molar-mass polymers as soon as the reaction starts, 

the monomer concentration decreases steadily throughout the reaction, only the active centre 

can react with the monomer and add units to the chain, and furthermore long reaction times 

increase the polymer yield, but not the molar mass of the polymer. It is important to mention 
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that this type of polymerisation is difficult to control because of the numerous, fast, 

irreversible, termination and chain transfer reactions that occur. It results in a product with a 

broad molecular weight distribution. Therefore, free radical polymerisation is not a good 

method for producing well-defined polymers or block copolymers. To obtain a better control 

on the polymers produced whilst maintaining the versatility of free radical polymerisation, a 

range of “controlled/living radical polymerisation” mechanisms have been developed. 

1.6.3 Copolymerisation 

 

Figure 1.11: Structural representation of a variety of copolymer architectures wherein A and 

B represent monomers (a) random copolymer, (b) alternating copolymer, (c) block 

copolymer. 

The polymerisation reaction involving just one monomer is termed as homopolymerisation. 

When a polymerisation is conducted in the presence of more than one monomer, the process 

is known as copolymerisation. The relative distribution of co-monomers defines the 

architecture of the resulting copolymer. There are five common copolymer architectures 

namely: random (statistical), alternating, block, and graft copolymers, figure 1.11. 

The final copolymer architecture is determined by two principle factors: the relative 

concentration of the co-monomers (feed ratio), and the reactivity ratio of the two co-

monomers. If two monomers are polymerised radically there are four possible propagation 

reactions (a-d, scheme 1.8). 

 

Scheme 1.8: Possible propagation steps for the co-copolymerisation of monomers M1 and 
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M2. (a, c) represent homopolymerisation steps whereas (b,d) represent copolymerisation 

steps. 

Each step has an associated rate constant (k) which provides a direct measure of how 

favourable each reaction is. Therefore, the propensity of the monomers to react with either 

themselves or a co-monomer can be measured by the ratio of the rate constant of each 

reaction. 

𝑟1 =
𝑘11

𝑘12
                    Eq. 1.1 

𝑟2 =
𝑘22

𝑘21
                    Eq. 1.2 

Equations 1.1 and 1.2 are defined as the relative reactivity ratios where r1 and r2 are measures 

of the reactivity of monomers M1 and M2, respectively. Therefore, the relative reactivity 

ratios can be used to predict the final copolymer architecture. When 𝑟 1 ≈ 𝑟 2 ≈ 1 the 

monomers would exhibit no preference for self-propagation or cross-propagation, and a truly 

random copolymer would result (figure 1.12a). When 𝑟 1 = 𝑟 2 = 0, the monomer would 

exhibit no tendency to self-propagation and a truly alternating co-polymer would result 

(figure 1.12b). A third possibility is that when 𝑟 1 = 𝑟 2>1 indicating preference to self-

propagation and therefore tendency to form black copolymers (figure 1.12c). 

The factors which affect the relative reaction rates include: resonance, steric and polar effects 

both in the monomers and the radical species. It has been observed that alternating 

copolymers tend to be composed of monomers with opposite polarity, for example stilbene 

(strongly nucelophilic alkene) and maleic anhydride (strongly electrophilic alkene), neither 

of these monomers is easily homopolymerised but will copolymerise with each other to form 

a perfectly alternating copolymer.61 

1.6.4 Spontaneous (co-)polymerisation  

Upon mixing of the electron-rich and electron-poor olefins, cycloadditions or spontaneous 

(co-)polymerisation would be expected to occur, without added initiator. The reactions 

involving electron-rich and electron-poor compounds show visually transient colours 

ascribed to charge-transfer complexes and have become known as ‘charge-transfer’ 

polymerisations.62 ‘Charge transfer’ is a weak interaction of electron-rich with electron-poor 

molecules, which is detectable by UV or NMR spectroscopy.63  
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In 1983, Hall et al. proposed the fundamentals of the bond forming initiation theory to 

explain the spontaneous initiation of the spontaneous copolymerisations. The intermediates 

occur in the reactions was defined as tetramethylenes.64 These tetramethylenes form by 

“charge transfer” between the olefins at their α-positions and can be either diradical or 

zwitterionic depending on the terminal β-substituents.65,66 

The outcome of ‘charge-transfer’ polymerisations has been systematized.67 A correlation of 

polymerisation behavior with the value of the electron donor-acceptor (EDA) complex 

equilibrium constant had been reported.68 With very weak donor and acceptor olefins, 

spontaneous polymerisation is reported to be difficult to take place. As the donor and 

acceptor strength of the olefins increases, the formation of diradicals and hence spontaneous 

initiation rates for radical copolymerisation increases (1 in scheme 1.9). Even stronger donor 

and acceptor olefins, increases the formation of zwitterions and hence ionic 

homopolymerisation either cationic or anionic (2 and 3 in scheme 1.9).69 Cycloaddtion to 

form cyclobutanes often accompany the polymers formed by spontaneous (co-

)polymerisation.70 

 

Scheme 1.9: The bond-forming initiation theory to the spontaneous reactions 

Although spontaneous homopolymerisations are rare, spontaneous free radical 

copolymerisations of monomers with different polarities are often encountered. The 

observed spontaneous polymerisations varied from spontaneous free radical 

copolymerisations to ionic homopolymerisations. Several suggestions as to the origin of the 

initiating radicals of the spontaneous polymerisations have been made, ranging from charge-

transfer complexes to electron transfer to bond forming initiation involving diradicals.  
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1.6.4.1 Diradicals 

In 1987, Hall et al. reported the 1: l alternating copolymerisation of p-methoxystyrene with 

dimethyl cyanofumarate carried out spontaneously in acetonitrile or 1,2-dichloroethane at 

28 °C (scheme 1.10).71 The equilibrium constant for EDA complex formation was 

determined by nuclear magnetic resonance (NMR) spectroscopy. Propagation at the diradical 

is attested by the increase of molecular weight with conversion. The tetramethylene diradical 

can be trapped. A mixture of p-methoxystyrene and dimethyl cyanofumarate yielded 

diradical tetramethylene and a perfectly alternating copolymer in concentrated solutions or a 

cycloadduct  dihydropyran in high dilution. However, there was no clear explanation given 

for this behaviour. 

 

Scheme 1.10: The spontaneous alternating copolymerisation of p-methoxystyrene with 

dimethyl cyanofumarate 
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In 1990, Hall et al. reported that the spontaneous copolymerisations of electrophilic p-

quinodimethanes with electron-rich olefins forming alternating copolymers.72 They reported 

that diradicals initiate free-radical alternating copolymerisation between the two participants: 

tetracyanoquinodimethane (TCNQ) and styrene, scheme 1.11. 

 

Scheme 1.11 Spontaneous alternating copolymerisation of TCNQ and styrene 

In 2000, Hall et al. have used EPR spectroscopy and product isolation to investigate the 

initiation of spontaneous copolymerisations of donor and acceptor monomers.70 The results 

established the presence of tetramethylene diradicals as the only experimentally supported 

intermediates in the initiation for the spontaneous copolymerisations. The observed 

alternation is currently explained by considering the polarity of radicals and monomers: an 

electron-rich carbon radical will preferentially combine with an electron-poor monomer to 

give an electron-poor radical, while the latter will preferentially combine with an electron-

rich monomer to form an electron-rich radical.73 

1.6.4.2 Zwitterions 

In 1986, Gotoh et al. demonstrated the spontaneous, thermal reaction of electron-rich olefins 

with electron-poor olefins leading to a rich diversity of both small organic molecules and 

polymers.74 The reactions (scheme 1.12) of N-vinylcarbazole (NVCZ) (1) with electrophilic 

tetrasubstituted ethylenes (2) were studied in detail as an example. The formation of EDA 

complex resulted in zwitterions (3) to give poly(vinylcarbazole) via cationic polymerisation. 

The report concluded that spontaneous polymerisation is usually accompany with 

cycloaddition.  Also the product given by cycloaddition of zwitterions was identified (5-7).  



Chapter 1 Introduction 

27 
 

 

Scheme 1.12: The spontaneous reaction of electron-rich olefins with electron-poor olefins 

demonstrated  

In 1987, Abdelkader et al. investigated the spontaneous copolymerisation of electron-rich 

vinyl monomers with electrophilic olefins.75 They reported that tetramethylene zwitterion 

could initiate cationic polymerisation of electron-rich vinyl monomers, which is caused by 

incorporating a leaving group into the β-position of the electrophilic olefins (figure 1.12). In 

this study N-Ethyl-3-vinylcarbazole (l) and N-vinylcarbazole (2) were selected as electron-

donor and methyl β,β-dicyanoacrylate (3), tetracyanoethylene (4), and β,β-dicyanovinyl 

chloride (5) as  electron-acceptors.  The investigation shows that only electrophilic olefin 5 

restulted in cationic  polymerisation of electron-rich olefins 1 and 2 due to presence of strong 

Cl leaving group.  

 

Figure 1.12: The electron-rich vinyl monomers (1-2) and electrophilic olefins (3-5)  

 

In 1990, Hall et al. reported that the spontaneous copolymerisations of electrophilic TCNQ 
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with electron-rich olefins (vinyl ether) which formed homo-poly(vinyl ether).76 They 

reported that zwitterionic intermediates initiated the cationic homopolymerisation of the 

electron-rich olefin, scheme 1.13. 

 

Scheme 1.13 Homopolymerisation of vinyl ethers in the presence of TCNQ 

 

1.7 Fracture mechanics of polymeric materials 

Although thermal, chemical and other environmental factors can cause damage in polymers, 

impact and cyclic fatigue associated failures are receiving the most attention for structural 

applications of polymeric materials.77 Both of these failure mechanisms proceed via crack 

propagation, with a monotonic load experienced during impact type incidents and cyclic 

loads experienced during fatigue. Crack propagation78-80 and the mechanics81,82 associated 

with these failures in polymeric materials have been modeled and researched extensively. 

For a crack to propagate, the energy released during cracking must be equal to, or larger than 

the energy required generating new surfaces on the material.83 Although new models for 

crack propagation are still being developed84,85, most crack propagation modeling is based on 

a parameter called the (KI).
86,87 During crack opening type failure growth, KI is related to 

crack depth, material/crack geometry and the applied stresses. As the applied stress and 

crack geometry change during monotonic or cyclic loading, a critical stress intensity factor 

(KIC) is reached and then crack growth occurs. During an impact damage incident (consisting 

of a monotonic load) the extent of crack propagation is related to the maximum stress 

intensity factor (KIMax) experienced. During fatigue-type damage crack propagation is related 

to both KIMax and the change in KI during cycling (ΔK).88 In order to heal cracked polymers, 

the fractured surfaces need to be resealed or alternatively crack growth must be impaired. 
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Figure 1.13: Extrinsic mechanisms of crack growth retardation. Reprinted from Int. J. Fract., 

100:55–83, Ritchie et al, copyright (1999), with permission from Springer. 

A number of methods to retard crack growth are demonstrated in figure 1.13.89 Basically, 

crack growth retardation occurs when energy is dissipated within the loaded material without 

extending an existing crack. Intrinsic crack growth retardation can be achieved through 

selection of appropriate monomer and curing agent system90,91, varying the ratio of curing 

components92–94, or use of additives or modifiers.95–97 These intrinsic approaches to crack 

growth retardation provide alternative avenues for stress relief within the original structure, 

and they are generally used to improve the intrinsic properties of the virgin materials rather 

than to heal-damaged components. 

Extrinsic crack growth retardation mechanisms are used as the primary method of repairing 

damage in both the traditional and the self-healing techniques. This generally involves 

dissipation of energy away from the propagating crack tip via a mechanical change behind 

the crack tip. Additives can act as intrinsic toughness and as extrinsic toughness when they 

are stretched or compressed in the void behind the crack tip.98 A more common extrinsic 
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toughening mechanism is that of patching, where a cracked surface is covered or filled with a 

rigid material. Patching can provide bridging- and wedging-type mechanical support for the 

damaged material, retarding crack propagation and restoring structural integrity to the 

polymer composite.  
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1.8 The aim of the project 

A self-healing process based on the formation linear or cross-linked polymer from the 

spontaneous reaction of electron-rich olefins (donor) with electron-poor olefins (accepter) 

without the use of a catalyst or initiator will be explored.  

Initially, the reactions between the liquid electron donor monomers (4-methoxystyrene, 

styrene, 2-vinylpyridine, and divinylbenzene) and the solid acceptor monomers (maleic 

anhydride, N-methylmaleimide, ethoxymethylene malononitrile, maleic acid, 

tetracyanoethylene, acrylonitrile, and dimethyl maleate) will be tested in the sample vials at 

ambient temperature or at 50 °C to evaluate their reaction profile. The electron donor and 

acceptor monomers producing linear or cross-linked polymer, will be used for designing the 

self-healing system. The product of these reactions will be tested for their solubility in 

organic solvents. The linear polymer product will be characterised by 1H and 13C NMR, size 

exclusion chromatography (SEC), and FTIR. The cross-linked polymer will be characterised 

by sol-gel technique and FTIR.  

The next stage will involve encapsulation of liquid monomers. The liquid healing agents, 

electron-rich monomers, will be encapsulated in a process involving in-situ polymerisation 

of urea-formaldehyde in oil-water emulsion. The obtained micro-capsules will be 

characterised by scanning electron microscopy (SEM). The sieves will be used to select 

unique size (100-250 µm) of those micro-capsules for self-healing investigations. 

The third stage will be preparation of specimens for the evaluation of fracture toughness. The 

epoxy matrix of the self-healing specimen will be bisphenol-A based epoxide cured by 

diethylenetriamine. The fracture toughness of background specimen (pure epoxy resin 

specimen, specimen only containing solid healing agents, or specimen only containing 

micro-capsules) will be investigated by compact tension geometry. 

The last stage will be the self-healing performance assessment. The self-healing performance 

will be assessed by fracture toughness recovery of specimen containing solid healing agents 

and micro-capsules containing liquid healing agents. The self-healing potential of the system 

designed in this project will be first evaluated for their healing efficiency by injecting the 

liquid healing agents into the induced crack of the specimen containing only solid healing 

agents. Then, the autonomous self-healing will be performed on specimen containing micro-

capsules and solid healing agents in the epoxy resin matrix.   
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2.1 Introduction 

The spontaneous (co-)polymerisation of electron-rich and electron-poor olefins was 

investigated to produce linear polymers.  

Four electron donor monomers (1-4, figure 2.1): 4-methoxystyrene (4MeOSt) (1), styrene 

(St) (2), 2-vinylpyridine (2VP) (3), and 4-vinylcarbazole (4VC) (4) were chosen. Also, six 

electron acceptor monomers (5-11, figure 2.1): maleic anhydride (MA) (5), N-

methylmaleimide (MeMal) (6), ethoxymethylene malononitrile (EtOCN) (7), maleic acid (8), 

tetracyanoethylene (TCNE) (9), acrylonitrile (AN) (10), and dimethyl maleate (DMa) (11) 

were selected for investigation of spontaneous (co-)polymerisation reactions with electron 

donor monomers named above, in bulk.  

 

 
Figure 2.1: Electron-donor (1-4) and electron-acceptor monomers (5-11) 

The reactions between the electron donor and acceptor monomers, which could produce 

linear polymer product, were carried out for further characterisation.  The electron donor 

monomers (liquid monomers): 4MeOSt and St were selected and electron acceptor 

monomers (solid monomers): MA, MeMal, and EtOCN were chosen.  Due to 4-VC is solid 

electron donor monomer, it is difficult to be applied in self-healing process design. And there 

is no solid product formed by 2VP with any electron-poor monomers, maleic acid, TCNE, 

AN, or DMa with any electron-rich monomers, hence those monomers will not be further 
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investigated.  

 

2.2 Materials  

Maleic anhydride (MA) (≥99.0%), 4-methoxystyrene (4MeOSt) (97%), styrene (St) 

(≥99.0%), ethoxymethylene malononitrile (EtOCN) (98%), and N-methylmaleimide (MeMal) 

(97%) were purchased from Aldrich and used as supplied.  Dichloromethane (DCM) 

(analytical grade, Fisher Scientific), toluene (Analytical Grade, Fisher Scientific), acetone 

(analytical grade, Fisher Scientific), tetrahydrofuran (THF) (anhydrous, ≥99.9%), chloroform 

(analytical reagent grade, 99.5%), were used as supplied. 

2.3 Instrumentation 

NMR spectra were either recorded on a Bruker Avance 400 spectrometer at 400.0 MHz (1H) 

and 100.6 MHz (13C); or a Varian Inova 500 spectrometer at 499.8 MHz (1H, HSQC) and 

125.7 MHz (13C, HMBC).  All chemical shifts were referenced to the residual of the 

deuterated solvent.   

Molecular weight analysis was carried out by size exclusion chromatography (SEC) on a 

Viscotek TDA 302 with refractive index detector. Two 300 mm PLgel 5 µm mixed C 

columns (with a linear range of molecular weight from 200 to 2 000 000 g/mol) were used. 

THF was used as the eluent with a flow rate of 1.0 mL/min at 30 °C. 

FTIR spectra were recorded on Perkin Elmer 1600 series FTIR spectrometer fitted with a 

golden gate. The samples were used as solids or liquid. The IR spectra were collected from 

4000 to 400 cm-1, with 10 scans per spectrum and 4.00 cm-1 resolution. The IR spectra was 

analysed using Infrared spectroscopy correlation table.1  

 

  



Chapter 2 Linear Spontaneous Copolymerisation 

42 
 

2.4 Experimental 

2.4.1 Reaction of maleic anhydride with 4-methoxystyrene 

MA (0.98 g, 10 mmol) and 4MeOSt (1.37 g, 10 mmol) were mixed in a sample vial at 

ambient temperature, upon which the mixture became yellow. The mixture was heated to 

50 °C upon which MA dissolved completely in 4MeOSt and the mixture became viscous 

after 2 h.  The mixture was kept at 50 °C for 48 h.  THF (5 mL) was added to dissolve the 

yellow solid and the mixture precipitated in methanol (50 mL).  The solid product was 

filtered and dried in a vacuum oven, giving 1.26 g white solid, 53 % yield.   

 

1H NMR, (d6-acetone, 500 MHz, δ(ppm)): 6.66 (4H, H1 and H2), 3.74 (3H, H3), 3.26 (2H, 

H6), 1.88 (1H, H4), 1.55 (2H, H5). 13C NMR, (d6-acetone, 126MHz, δ(ppm)): 172.7 (k), 

158.8 (b), 137.6 (g), 129.4 (e), 114.1 (f), 54.6 (a), 51.7 (j), 43.0 (i), 39.8 (h). SEC, Mn = 

85845 Da with dispersity (Ð) of 3.11. FTIR, (cm-1): 1779 (C=O), 1610 (aromatic C=C), 

1511 (aromatic C=C), 1247 (C-O), 830 (aromatic C-H). 

Table 2.1: Reaction of 4MeOSt and MA (LP01-07) 

Reaction 
4MeOSt  

(g, mmol) 

MA 

(g, mmol) 
4MeOSt : MA 

Temperature 

(˚C) 

Yield 

(%) 

LP01 1.37, 10 0.98, 10 1:1 50 53 

LP02 2.74, 20 0.98, 10 2:1 50 44 

LP03 2.74, 20 0.49, 5 4:1 50 29 

LP04 5.48, 40 0.49, 5 8:1 50 17 

LP05 1.37, 10 0.10, 1 10:1 50 12 

LP06 2.74, 20 0.10, 1 20:1 50 <1 

LP07 1.37, 10 0.98, 10 1:1 RT 36 

LP01-06 were prepared with different ratio of starting materials and kept for 48 h at 50 °C 

(table 2.1).  After the same recovery process as LP01, LP02-06 were obtained with 53%, 

44%, 29%, 17%, 12%, and 1 % yields, respectively.  LP07 was repeated with the same 

amount of starting materials as LP01 at ambient temperature and kept for 48 h.  Similar 

recovery procedure gave 0.85 g white solid, 36 % yield. 
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2.4.2 Reaction of N-methylmaleimide with 4-methoyxtryrene 

MeMal (1.11 g, 10 mmol) and 4MeOSt (1.37 g, 10 mmol) were mixed in a sample vial at 

ambient temperature, upon which the clear liquid became yellow.  The mixture was heated to 

50 °C, however, MeMal did not dissolved completely in 4MeOSt upon heating. The MeMal 

dissolved and the mixture became viscous after 24 h.  The mixture was kept at 50 °C for 

further 48 h.  THF (5 mL) was added to dissolve the mixture and the mixture precipitated in 

methanol (50 mL).  The white solid was filtered and dried in a vacuum oven, giving 1.81g, 

46% yield.   

 

1H NMR, (CDCl3, 500 MHz, δ(ppm)): 6.65 (4H, H1 and H2), 3.75 (3H, H3), 2.73 (3H, H7), 

2.47 (1H, H4), 2.20 (2H, H5), 1.95 (2H, H6). 13C NMR, (CDCl3, 126MHz, δ(ppm)): 178.3 

(k), 159.2 (b), 129.9 (e), 129.8 (g), 114.2 (f), 55.3 (a), 51.7 (h), 42.0 (j), 35.1 (i), 24.8 (m). 

SEC, Mn = 60467 Da with PDI=4.70. FTIR, (cm-1) 1696 (C=O), 1610 (aromatic C=C), 1512 

(aromatic C=C), 1250 (C-O), 1032 (C-N), 831 (aromatic C-H). 

Table 2.2: Reaction of 4MeOSt and MeMal (LP08-13) 

Reaction 
4MeOSt 

(g, mmol) 

MeMal 

(g, mmol) 
4MeOSt : MeMal 

Temperature 

(˚C) 

Yield 

(%) 

LP08 1.37, 10 1.11, 10 1:1 50 46 

LP09 2.74, 20 1.11, 10 2:1 50 41 

LP10 2.74, 20 0.56, 5 4:1 50 10 

LP11 5.48, 40 0.56, 5 8:1 50 0 

LP12 1.37, 10 0.11, 1 10:1 50 0 

LP13 1.37, 10 1.11, 10 1:1 RT 31 

LP08-12 were prepared with different ratio of starting materials and kept for 48 h at 50 °C 

(table 2.2).  After the same recovery process as LP08, LP09 and 10 were obtained with 41 

and 10 % yields, respectively, and LP11 and 12 did not produce any solid. LP13 was 

prepared with the same amount of starting materials as LP08 at ambient temperature and 

kept for 48 h.  Similar recovery procedure gave 0.77 g white solid, 31 % yield. 
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2.4.3  Reaction of ethoxymethylene malononitrile with 4-methoxystyrene 

EtOCN (1.22 g, 10 mmol) and 4MeOSt (1.37 g, 10 mmol) were mixed in a sample vial at 

ambient temperature, upon which became brown. The mixture was heated to 50 °C and 

became viscous after 24 h and was kept for another 24 h. THF (5 mL) was added to dissolve 

the mixture and then precipitated in methanol (50 mL).  The white solid was filtered and 

dried in a vacuum oven, giving 1.01 g, 38 % yield.  

 

1H NMR, (DMSO-d6, 500 MHz, δ(ppm)): 6.61 (4H, H2 and H3), 3.65 (3H, H1), 1.74 (1H, 

H4), 1.37 (2H, H5). 13C NMR, (DMSO-d6, 126MHz, δ(ppm)): 157.6 (b), 137.9 (f), 128.5 (d), 

113.7 (e), 55.3 (a), 44.3 (h), 39.0 (g). SEC, Mn = 22911 Da with dispersity (Ð) of 1.63. 

FTIR, (cm-1): 1609 (aromatic C=C), 1509 (aromatic C=C), 1242 (C-O), 826 (aromatic C-H). 

Table 2.3: Reaction of 4MeOSt and EtOCN (LP14-21) 

Reaction 
4MeOSt 

(g, mmol) 

EtOCN 

(g, mmol) 

4MeOSt : 

EtOCN 

Temperature  

(˚C) 

Yield  

(%) 

LP14 1.37, 10 1.22, 10 1:1 50 75 

LP15 2.74, 20 1.22, 10 2:1 50 69 

LP16 2.74, 20 0.61, 5 4:1 50 72 

LP17 5.48, 40 0.61, 5 8:1 50 1 

LP18 1.37, 10 0.12, 1 10:1 50 1 

LP19 1.37, 10 1.22, 10 1:1 RT 0 

LP20 1.37, 10 1.22, 10 1:1 30 0 

LP21 1.37, 10 1.22, 10 1:1 40 54 

LP15-18 were prepared with different ratio of starting materials and kept for 48 h at 50 °C 

(table 2.3). After the same recovery process as LP14, LP15-18 were obtained with 46%, 61%, 

9%, and 2 % yield, respectively. LP19, LP20, and LP21 were prepared with the same amount 

of starting materials as LP14 at ambient temperature, 30 and 40 °C, respectively.  They were 

kept for 7 days.  LP19 and 20 did not form any solid product; however, LP21 gave 29% yield 

after 7 days. 
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2.4.4 Reaction of maleic anhydride with styrene 

St (1.04 g, 10 mmol) and MA (0.98 g, 10 mmol) were mixed in a sample vial at ambient 

temperature, upon which the mixture became white.  The mixture was kept at 50 °C for 5 

days.  THF (5 mL) was added to dissolve the mixture and was precipitated in methanol (50 

mL).  The white solid product was filtered and dried in a vacuum oven, giving 0.61 g, 21 % 

yield.  The reaction was repeated with the same amount starting materials and kept at 50 °C  

 

1H NMR, (d6-acetone, 500 MHz, δ(ppm)): 7.23 (5H, H1), 3.27 (1H, H2), 2.30 (2H, H3), 1.61 

(2H, H4). 13C NMR, (d6-acetone, 126MHz, δ(ppm)): 173.5 (g), 146.7 (b), 128.6 (a), 52.3 (d), 

42.7 (f), 35.1 (e). SEC, Mn = 14407 Da with dispersity (Ð) of 1.63. FTIR, (cm-1): 1776 

(C=O), 1454-1496 (aromatic C=C), 1225 (C-O), 922 (aromatic C-H). 

Table 2.4: Reaction of St and MA (LP22-27) 

Reaction 
St 

(g, mmol) 

MA 

(g, mmol) 
St : MA Temperature (˚C) Yield (%) 

LP22 1.04, 10 0.98, 10 1:1 50 29 

LP23 2.08, 20 0.98, 10 2:1 50 18 

LP24 2.08, 20 0.49, 5 4:1 50 14 

LP25 4.16, 40 0.49, 5 8:1 50 0 

LP26 1.04, 10 0.10, 1 10:1 50 0 

LP27 1.04, 10 0.98, 10 1:1 RT 0 

LP22-26 were prepared with different ratio of starting materials and kept for 7 days at 50 °C 

(table 2.4).  After the same recovery process as LP22, LP23-26 were obtained with 38%, 

33%, 18%, 0, and 0 yields, respectively.  LP27 was repeated with the same amount of 

starting materials as LP22 at ambient temperature and kept for 7 days. The mixture was left 

for 7 days. Similar recovery procedure gave none solid, 0 % yield. 
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2.5 Results and discussion 

2.5.1 Maleic anhydride with 4-methoxystyrene 

The spontaneous copolymerisation of 4MeOSt and MA was carried out at 50 °C and at 

ambient temperature (scheme 2.1) and a yellow solid was produced, which was found to be 

soluble in acetone and THF. The polymer product obtained at 50 °C (LP01) was 

characterised by 1H and 13C NMR spectroscopy.  

 

Scheme 2.1: Spontaneous copolymerisation reaction of 4MeOSt and MA 

 

  

Figure 2.2: 1H NMR spectrum of poly(4MeOSt-alt-MA) 

The 1H NMR spectrum of the product is shown in figure 2.2, which clearly shows 

resonances due to the protons of both reacted MA and 4MeOSt.  The broad multiplet 

resonance at 6.63 ppm due to the 4 protons of the aromatic ring (H1 and H2); the broad 

singlet resonance at 3.74 ppm due to the 3 protons of the methyl group (H3) can be observed. 

The resonance at 3.22 ppm corresponds to the methine proton of the backbone chain, H4. The 

resonance at 2.33 ppm and 1.89 ppm corresponds to the methine protons of the backbone 
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chain of the maleic anhydride, H6 and H6’. The resonance at 1.56 ppm corresponds to 

methylene protons of the backbone chain, H5. The ratio between protons H3 and H6 

(including H6’) was calculated to be 3:2, as expected, confirming that the repeat units of 

4MeOSt and MA are in a ratio of 1:1. 

The 13C NMR spectrum of the product is shown in figure 2.3. The resonances observed were 

chracterised in conjunction with 2D NMR including heteronuclear single-quantum 

correlation spectroscopy (HSQC) and heteronuclear multiple-bond correlation spectroscopy 

(HMBC). 

  

Figure 2.3: 13C NMR spectrum of poly(4MeOSt-alt-MA) 

The proposed structure for poly(4MeOSt-alt-MA) indicates the following couplings: 1) the 

aromatic ring (H1, H2) with carbons f and e; 2) protons of the methyl group (H3) with carbon 

a; 3) proton H4 with carbon h; 4) proton H5 with carbon i; and 5) proton H6 with carbon j.  

Using 1H-13C HSQC map (figure 2.4), the protons bonded to a carbon atom through a single 

bond can be easily assigned. In the carbon spectrum, the resonances at 128 ppm and 113 ppm 

are due to carbons f and e, respectively, and the resonance at 55 ppm is due to carbon a.  

Usually, one peak is observed at the frequency of each proton-carbon resonance, although 

occasionally two are seen and this is indicative of a diastereotopic CH2 group, which was 

displayed as different phase colours in the 2D map. The resonance at 42 ppm is due to 

carbon i, which is coupling with the CH2 of H5. The resonances at 52 ppm and 39 ppm are 

due to carbons j and h, respectively. The resonances at 138 ppm, 158 ppm, and 173 ppm are 
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not coupling with protons, therefore identification of the carbon resonances are achieved via 

1H-13C HMBC spectroscopy. 

  

Figure 2.4: 1H-13C HSQC of poly(4MeOSt-alt-MA) 

 

Figure 2.5: 1H-13C HMBC of poly(4MeOSt-alt-MA) 
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The proposed structure for poly(4MeOSt-alt-MA) indicates that protons H1 and H2 should 

exhibit coupling to carbons b and g; proton H3 to carbon b.  In the 1H-13C HMBC map 

(figure 2.5), the resonance at 138 ppm is confirmed due to carbon g (multiple coupling with 

H1 and H2), and the resonance at 158 ppm is confirmed due to carbon b (multiple coupling 

with H1, H2, and H3).  The final 13C NMR resonances resonance at 173 ppm is due to the 

carbon k. Carbon k is expected to couple with H6, however, the coupling is very weak 

caused by the conformational freedom of polymer chain in solution. 

The presence of 4MeOPh and succinic anhydride repeated units in the product was further 

confirmed by the IR spectroscopy, figure 2.6.  The figure clearly shows the presence of a 

peak at 1779 cm-1 due to C=O stretch (figure 2.6c), similar to that seen for MA, figure 2.6b. 

The figure 2.5c also shows peaks at 1037 and 1247 cm-1 due to C-O stretch (MeO), and 1511 

and 1612 cm-1 due to aromatic C=C, similar to that seen for 4MeOSt, figure 2.6a.  

 

Figure 2.6: the IR spectrum of a) 4MeOSt; b) MA; c) poly(4MeOSt-alt-MA) 

The polymerisation reaction involves 4MeOSt (an electron donor) and MA (an electron 

acceptor).  4MeOSt is a conjugated system and electrons at the oxygen atom of OMe group 

participate in the delocalisation of electron in the phenol ring making vinyl group electron-

rich, scheme 2.2.  
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Scheme 2.2: the conjugated system of 4MeOSt 

In MA, the presence of two electron withdrawing carbonyl groups decreases the electron 

density at the double bond and hence electron deficient, scheme 2.3  

 

Scheme 2.3: the electron-poor olefin in MA 

 

Scheme 2.4: Proposed mechanism: a) formation of diradicals; b) formation of spontaneous 

co-polymer.  

The spontaneous (co-)polymerisation is expected to occur by electron transfer from donor 

(4MeOSt) to the acceptor (MA). The diradicals then initiate the copolymerisation. Several 

suggestions as to the origin of the initiating radicals for the spontaneous (co-)polymerisations 

have been made, ranging from charge-transfer complexes to electron transfer, to bond 

forming initiation involving diradicals (scheme 2.4a).2  Diradicals between donor and 
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acceptor have already been trapped and characterised by electron paramagnetic resonance 

(EPR) spectroscopy.2  Therefore, 4MeOSt and MA form diradicals at the initiation step 

leading to the formation of linear co-polymer, scheme 2.4b.   

In order to investigate the reaction rate, six reactions of LP01, LP02, LP03, and LP05 using 

the molar ratio of 4MeOSt: MA of 1:1, 2:1, 4:1, and 10:1 were prepared in respective vials 

and placed in an oven set at 50 °C.  A vial was taken out and analysed for the reaction yield 

after 2, 4, 6, 12, 24, and 48 h, and the results are showed in figure 2.7. 

 

Figure 2.7: The reaction yield of MA and 4MeOSt at 50°C. 

Table 2.5: the reaction of MA and 4MeOSt in different ratio 

Reaction MA (mol %) MA : 4MeOSt Yield (after 48 h) 

LP01 50 1 : 1 53% 

LP02 33 1 : 2 44% 

LP03 20 1 : 4 29% 

LP04 11 1:8 17% 

LP05 9 1 : 10 12% 

LP06 5 1 : 20 <1% 

The table 2.5 and figure 2.7 show that the yield of the reaction after 48 h was decreasing with 

the increasing amount of MA. Initially, the reaction yield was increased up to 12 h, after 

which it reached a plateau at 50% yield. The reaction was undertaken in bulk giving solid 

product which is believed to be responsible for stopping the progress of the reaction and 

hence reaching a plateau. The yield of the reaction also decreased as the amount of 4MeOSt 

increased and the maximum yield obtained when the ratio of MA: 4MeOSt is 1:1.  This is 

expected as equimolar of both monomers is essential to form a spontaneous co-polymer.  
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Figure 2.8: The 1H NMR spectra of LP01-05 

The 1H NMR spectra of LP01-05 are shown in figure 2.8.  The ratio of integration of 

resonances at 3.26 ppm and 2.27 ppm corresponding H6 and H6’ (succinic anhydride) to 

resonance at 3.74 ppm corresponding H3 (4MeOSt) give a ratio of 3:1.91, 3:1.74, 3:1.82, 

3:1.84, 3:1.93 for LP01, LP02, LP03, LP04, LP05, respectively (table 2.6). The ratio is very 

close, within the experimental error, to the expected ratio of the protons of CH3 of 4MeOSt 

to methine protons of MA repeat units is 3:2. This confirmed that the polymer product is an 

alternating co-polymer with the repeat units of both 4MeOSt and MA in the ratio of 1:1. 

Table 2.6: of integration of the H3 and H6 

 H3 H6 and H6’ 

LP01 3 1.91 

LP02 3 1.74 

LP03 3 1.82 

LP04 3 1.84 

LP05 3 1.93 

 

2.5.2 N-Methylmaleimide with 4-methoxystyrene 

The spontaneous copolymerisation of 4MeOSt and MeMal was carried out at 50 °C and at 

ambient temperature (scheme 2.5) and a yellow solid was produced which was found to be 

soluble in acetone and THF. The polymer product obtained was characterised by 1H and 13C 

NMR spectroscopy. 

H3 H6 H6’ 



Chapter 2 Linear Spontaneous Copolymerisation 

53 
 

 

Scheme 2.5: Spontaneous copolymerisation reaction of 4MeOSt and MeMal 

 

Figure 2.9: 1H NMR spectrum of poly(MeMal-alt-4MeOSt) 

The 1H NMR spectrum of the polymer product is shown in figure 2.9, which clearly shows 

resonances due to the protons of both repeat units of 4MeOSt and MeMal.  The resonance at 

2.72 ppm due to 3 protons of the methyl group (H7) (–NCH3); the resonance at 3.74 ppm due 

to the methyl group (H3) (–OCH3); the resonance at 6.63 ppm due to 4 protons of the 

aromatic ring (H1 and H2); and the resonance between 1.27-3.45 ppm due to backbone 

protons of the polymer (H4, H5, and H6) can be observed. The expected ratio between proton 

of H3 and H7 is 1:1 and the integration ratio of peaks at 3.75 and 2.71 ppm was found to be 

1:1, indicating the ratio of 4MeOSt with MeMal is 1:1. 

The 13C NMR spectrum of the product is shown in figure 2.10. The resonances were 

chracterised in conjunction with 2D NMR (HSQC and HMBC NMR) spectroscopy. 
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Figure 2.10: 13C NMR spectrum of poly(MeMal-alt-4MeOSt) 

The proposed structure of poly(MeMal-alt-4MeOSt) indicates the following couplings: 1) 

the aromatic ring (H1, H2) with carbons f and e; 2) protons of the methyl group (H3) with 

carbon a; 3) proton H4 with carbon h; 4) proton H5 with carbon i; 5) proton H6 with carbon j; 

and 6) proton H7 with carbon m. Using 1H-13C HSQC map (figure 2.11), the protons bonded 

to a carbon atom through a single bond can be easily assigned. In the carbon spectrum, the 

resonances at 129 ppm and 114 ppm are due to carbons f and e, respectively, and the 

resonance at 25 ppm and 55 ppm is due to carbon m and a, respectively. Usually, one peak is 

observed at the frequency of each proton-carbon resonance, although occasionally two are 

seen and this is indicative of CH2 group, which was displayed as different phase colours in 

the 2D map. Therefore, the resonance at 35 ppm is due to carbon i, which is coupling with 

the CH2 of H5.  The resonances due to the backbone of the polymer are very broad, therefore, 

it is very difficult to identify H4, H6, and H6’. The resonances at 158 ppm and 178 ppm are 

not coupling with protons, therefore identification of the carbon resonances are achieved via 

1H-13C HMBC spectroscopy. 
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Figure 2.11: 1H-13C HSQC of poly(MeMal-alt-4MeOSt) 

The proposed structure of poly(MeMal-alt-4MeOSt) indicates the following multiple 

couplings: 1) protons H1 and H2 with carbons b and g; 2) proton H3 with carbon b; and 3) 

proton H7 with carbon k.  Using the 1H-13C HMBC map (figure 2.12a), the resonance at 158 

ppm is confirmed due to carbon b (multiple coupling with H1, H2, and H3) and the resonance 

at 178 ppm is confirmed due to carbon k (multiple coupling with H7).  There is no resonance 

due to carbon g observed in the 13C NMR spectrum.  However, the resonance at 138 ppm, 

which is already confirmed due to carbon f, exhibit multiple coupling to a proton of the 

polymer backbone (H4). However, carbon g should exhibit multiple coupling to H4 as the 

proposed structure of poly(4MeOSt-co-MA) shows. Also in the zoom-in 2D map (figure 

2.12b), this conjunction area (carbon f or g with aromatic protons) is much bigger than others.  

So the resonance due to carbon g may stack with carbon f. 
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(a) 

 

(b) 

Figure 2.12: (a) 1H-13C HMBC of poly(MeMal-alt-4MeOSt); (b) the details of coupling area 

for protons H1 and H2 with carbon e, g, f, b, and k 

The IR spectrum (figure 2.13) clearly shows the presence of peaks at 1512 cm-1 and 1250 
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cm-1 corresponding to aromatic C=C and C-O of 4MeOSt, respectively. It also shows peaks 

at 1696 cm-1 and 1032 cm-1 due to C=O and C-N of MeMal, respectively. 

 

Figure 2.13: The IR spectrum of poly(MeMal-alt-4MeOSt) 

This reaction involves 4MeOSt (an electron donor) and MeMal (an electron acceptor) 

monomers.  The electron donating of 4MeOSt was described in section 2.4.1.  The MeMal is 

electron deficient, but not as strong as MA due to the presence of nitrogen atom. The 

electron deficiency is caused by two carbonyl groups drawing electron density away from 

C=C (scheme 2.6). 

 

Scheme 2.6: The electron deficiency of MeMal 

The proposed mechanism for the polymerisation of 4MeOSt and MeMal is shown in scheme 

2.7. This involves electron transfer from donor (4MeOSt) to acceptor (MeMal) to form 

diradicals, scheme 2.6a. The diradicals then initiate the copolymerisation, scheme 2.6b. 
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Scheme 2.7: Proposed formation of a) 4MeOSt-MeMal diradicals; b) co-polymer 

Reaction LP07-11 using ratio of MeMal: 4MeOSt of 1:1, 1:2, 1:4, 1:8, and 1:10 were 

prepared in respective vials and placed in an oven at 50 °C. A vial was taken out and 

analysed the reaction yield after 12, 24, 36, 48, 60, and 72 h, in order to investigate the 

reaction rate, and the results are shown in figure 2.14.   

 

Figure 2.14: The reaction yield of MeMal and 4MeOSt  

Initially, the reaction yield was increased up to 48 h, after which it reached a plateau. The 

reaction was undertaken in bulk during which solid product was formed which is believed to 

be possible for stopping the progress of the reaction and hence reaching a plateau. The yield 
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of the reaction also decreased as the amount of 4MeOSt increased and the maximum yield 

obtained when the ratio of MA: 4MeOSt is 1:1.  This is expected as equimolar of both 

monomers is essential to form a spontaneous co-polymer. 

 Table 2.7: the reaction of 4MeOSt and MeMal in different ratio  

Reaction MeMal (mol %) MeMal : 4MeOSt Yield (after 48 h) 

LP07 50 1 : 1 46% 

LP08 33 1 : 2 41% 

LP09 20 1 : 4 10% 

LP10 11 1 : 8 0 

LP11 9 1 : 10 0 

The table 2.7 shows that the yield of the reaction was decreasing with the increased amount 

of MeMal.  As more 4MeOSt was added, the yield of the reaction decreased.  LP10 and 11 

did not form any solid. This indicates that a molar ratio for MeMal: 4MeOSt of 1:1 is 

essential for the formation of diradicals and hence poly(4MeOSt-alt-MeMal). 

2.5.3  Ethoxymethylene malononitrile with 4-methoxystyrene 

The spontaneous copolymerisation of 4MeOSt and EtOCN was carried out at 50°C (scheme 

2.8) using a molar ratio of 1:1 and produced a light brown solid, which was found to be 

soluble in acetone and THF. The reaction did not produce any solid at ambient temperature. 

The product was dissolved in THF and then precipitated in methanol giving a light yellow 

solid which was characterised by 1H and 13C NMR spectroscopy. 

 

Scheme 2.8: Proposed reaction of 4MeOSt and EtOCN 
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Figure 2.15: 1H NMR spectrum of the product 

The 1H NMR spectrum of the product is shown in figure 2.15 which clearly shows 

resonances only due to the protons of 4MeOSt and there is no resonance due to the protons 

of EtOCN. The resonance at 6.61 ppm due to 4 protons of the aromatic ring (H1 and H2); the 

resonance at 3.65 ppm was due to 3 protons of the methyl group (H3); and the resonance 

between 0.80-2.25 ppm due to backbone protons of the polymer (H4 and H5) are observed.  

The integration shows the ratio of H1 : (H2+H3) : (H4+H5) is 3:4:3.   

 

Figure 2.16: 13C NMR spectrum of the product 
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The presence of MeOPh repeat unit in the product was further confirmed by 13C NMR, 

figure 2.16. 13C NMR resonances observed were characterised in conjunction with 2D NMR 

(HSQC and HMBC NMR) spectroscopy.  

The proposed structure of poly(4MeOSt) indicates the following couplings: 1) the aromatic 

ring (H2, H3) with carbon d and e; 2) protons of the methyl group (H1) with carbon a; 3) 

proton H4 with carbon g; and 4) protons H5 with carbon h.  Using 1H-13C HSQC map (figure 

2.17), the protons bonded to a carbon atom through a single bond can be easily assigned. In 

the carbon spectrum, the resonances at 129 ppm and 114 ppm are due to carbon d and e, 

respectively; the resonance at 55 ppm is due to carbon a; the resonance at 38 ppm is due to 

backbone of the polymer carbon g.  The CH2 group was displayed as different phase colours 

(blue) in the 2D map.  Therefore, the resonance at 44 ppm is due to carbon h, which is 

coupling with the CH2 of H5. The resonances at 138 ppm and 158 ppm are not coupling with 

protons, therefore identification of the carbon resonances are achieved via 1H-13C HMBC 

spectroscopy. 

 

Figure 2.17: 1H-13C HSQC of the product 

The proposed structure of poly(4MeOSt) indicates protons H2 and H3 exhibit multiple 

coupling to carbons b and f; proton H1 couples to carbon b.  Therefore, in the 1H-13C HMBC 
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map (figure 2.18), the resonance at 158 ppm is due to carbon b (multiple coupling with H2, 

H3 and H1). The resonance at 138 ppm is due to carbon f (multiple coupling with H2 and H3).   

 

Figure 2.18: 1H-13C HMBC of the product 

 

Figure 2.19: The IR spectrum of EtOCN (a) and the product (b) 

The presence of MeOPh in the product was further confirmed by the IR spectroscopy. The 
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peaks at 1035 and 1243 cm-1 due to C-O stretch (MeO), and 1510 and 1610 cm-1 due to 

aromatic C=C were observed. The IR spectrum of EtOCN (figure 2.19a) shows the CN 

group come at 2228 cm-1 which not observed in the IR spectroscopy of the product, figure 

2.19b.  The result confirmed that the product is homopoly(4MeOSt). 

This reaction involves 4MeOSt as an electron donor monomer and EtOCN as an electron 

acceptor.  The conjugated system of 4MeOSt was introduced in previously section.  The 

electron deficiency of EtOCN is caused by the conjugated nitrile group. In EtOCN, the 

presence of two electron withdrawing nitrile groups decreases the electron density at the 

double bond and hence electron deficient, figure 2.20. 

 

Figure 2.20: The conjugated system in EtOCN 

As the 13C NMR spectrum and FTIR spectroscopy both showed the presence of 4MeOSt 

repeat units, the reaction is believed to be homopolymerisation of 4MeOSt forming 

poly(4MeOSt) initiated by EtOCN. As it is explained in chapter 1 (section 1.6.4), 

spontaneous copolymerisation between electron-rich and electron-poor olefins could form 

zwitterions resulting in either cationic or anionic homopolymerisation.  Therefore, it is 

concluded that the poly(4MeOSt) is formed via cationic polymerisation and the mechanism 

is shown in scheme 2.9.  The reaction of 4MeOSt with EtOCN form zwitterions, scheme 

2.9a. This is followed by the polymerisation of 4MeOSt, scheme 2.9b. 
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Scheme 2.9: The mechanism of the formation of a) 4MeOSt-EtOCN zwitterions; b) poly 

(4MeOSt) via cationic polymerisation 

It is believed that most likely the mechanism of polymerisation of 4MeOSt is cationic, as the 

carbocation is stabilised by the phenyl ring. However, the reaction at ambient temperature 

did not produce any solid polymer. Therefore, the reaction was further investigated at 50 °C 

with different ratios of 4MeOSt and EtOCN and reaction time, was shown in figure 2.21.   

 

Figure 2.21: The reaction yield of 4MeOSt with EtOCN 

The ratio of 4MeOSt: EtOCN for LP14 was 1:1, LP15 was 2:1, LP16 was 4:1, LP17 was 8:1, 
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and LP18 was 10:1. The result shows that the final yield for LP14-16 is increased as the 

amount of 4MeOSt is increased from 1:1 to 4:1 (with respect to EtOCN).  However, LP17 

and 18 gave low yields as the amount of 4MeOSt is increased to 8:1 and 10:1 (with respect 

to EtOCN).  A reasonable explanation is that sufficient amount of EtOCN is required to form 

enough zwitterions to initiate the homopolymerisation of 4MeOSt. 

Interestingly, as it is shown in the table 2.8 and figure 2.22, the yield, Mn, and Ð remain 

constant, within the experimental error, for LP14-16 despite more 4MeOSt monomer being 

present. The reason for this behavior is not clear but one possible explanation is that, in bulk 

polymerisation, the polymer chain growth to the same length, due to steric hindrance. 

Table 2.8: The molecular weight and yield for LP14-16 

Reaction 
4MeOSt : 

EtOCN 

Mn 

(Da) 

Ð Yield  

(%) 

LP14 1:1 22911 1.63 75 

LP15 2:1 24381 1.61 69 

LP16 4:1 23732 1.64 72 

 

Figure 2.22: Stacks of SEC chromatograms for LP14-16 

 

2.5.4 Maleic anhydride with styrene 

The spontaneous copolymerisation of St and MA (scheme 2.10) was carried out at 50 °C and 

a yellow solid was produced, which was found to be soluble in acetone and THF. The 
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reaction did not produce any solid at ambient temperature. The polymer product obtained 

was characterised by 1H and 13C NMR spectroscopy. 

 

Scheme 2.10: the reaction of St and MA 

 

Figure 2.23: 1H NMR spectrum of poly(MA-alt-St) 

The 1H NMR spectrum of the product is shown in figure 2.23, which clearly shows 

resonances due to the protons of both MA and St repeat units.  The broad multiplet 

resonance at 7.11 ppm due to 5 protons of the aromatic ring (H1); and the resonance between 

0.77 - 4.06 ppm due to backbone protons of the polymer (H2, H3, and H4) are observed.  The 

integration ratio between protons H1 and backbone protons was calculated to be 1:1, as 

expected for poly(MA-alt-St).  
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Figure 2.24: 13C and DEPT NMR spectra of poly(MA-alt-St) 

Distortionless enhancement by polarisation transfer (DEPT) was used to identify the 13C 

NMR resonances, figure 2.24. Non-proton-bearing carbons are not seen in DEPT spectra 

because the technique relies on polarisation transfer, in this case, the transfer of proton 

magnetisation onto the directly bound carbon.  Particularly, DEPT in most cases is sufficient 

to distinguish between methine (CH), methyl (CH3), and methylene (CH2) groups, normally.  

CH and CH3 will stay up and CH2 will transfer down to the base line. The resonance at 146 

ppm and 173 ppm are not observed in DEPT, meaning they are due to non-proton-bearing 

carbons. As the proposed structure shows that carbon b and g are non-proton-bearing 

carbons.  The resonance at 173 ppm is due to carbon g and the resonance at 146 ppm is due 

to carbon b. The resonance at 34 ppm in DEPT was displayed below the base line due to 

CH2 group (carbon e).  The resonance at 128 ppm is due to carbon a. The resonance at 40 

ppm and 52 ppm is due to carbon f and d, respectively.  

DEPT 
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Figure 2.25: the IR spectroscopy of poly(MA-alt-St) 

The presence of succinic anhydride repeat unit in the product was further confirmed by the 

IR spectroscopy of poly(MA-alt-St), figure 2.25. The peak at 1776 cm-1 due to C=O from 

succinic anhydride. Therefore, the 13C NMR and IR confirm the product to be poly(MA-alt-

St). 

 

Figure 2.26: The reaction yield of LP22  

Reaction LP22 using ratio of MA: St of 1:1 were prepared in respective vials and placed in 

an oven at 50 °C. A vial was taken out and analysed the reaction yield after 12, 24, 36, 48, 60, 

and 72 h, in order to investigate the reaction rate, and the results are shown in figure 2.26.  

Initially, the reaction yield was increased up to 48 h, after which it reached a plateau. The 
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reaction was undertaken in bulk during which solid product was formed which is believed to 

be possible for stopping the progress of the reaction and hence reaching a plateau.  

Reaction LP22-26 using ratio of MA: St of 1:1, 1:2, 1:4, 1:8, and 1:10 were prepared in 

respective vials at 50 °C. The table 2.9 shows that the yield of the reaction was decreasing 

with the increased amount of MA.  As more St was added, the yield of the reaction decreased.  

LP25 and 26 did not form any solid. This indicates that a molar ratio for MA: St of 1:1 is 

essential for the formation of diradicals and hence poly(St-alt-MA). 

 Table 2.9: the reaction of 4MeOSt and MeMal in different ratio  

Reaction St : MA Temperature (˚C) Yield (%) 

LP22 1:1 50 29 

LP23 2:1 50 18 

LP24 4:1 50 14 

LP25 8:1 50 0 

LP26 10:1 50 0 

LP27 1:1 RT 0 
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2.6 Conclusion 

The spontaneous copolymerisations of electron-rich monomers (4MeOSt and St) with 

electron-poor monomers (MA, MeMal, and EtOCN) were investigated and the resulting 

linear polymer products were characterised.  

The spontaneous copolymerisation of 4MeOSt with MA and 4MeOSt with MeMal were 

carried out at 50 °C and at ambient temperature and yellow solid was produced, which was 

found to be soluble in acetone and THF. The products were characterised by 1D NMR (1H 

and 13C), 2D NMR (1H-13C HSQC and HMBC), SEC, and FTIR. The results confirmed that 

the polymer products are alternating copolymers. The test followed by different reaction 

times showed that the cpolymerisations of 4MeOSt with MA in bulk reached a plateau at 50% 

yield after 12 h and that 4MeOSt with MeMal in bulk reached a plateau at 46% yield after 48 

h.  The reactions were undertaken in bulk giving solid product which is believed to be 

responsible for stopping the progress of the reaction and hence reaching a plateau. 

The spontaneous copolymerisation of 4MeOSt with EtOCN was carried out at 50 °C and a 

red-brown solid was produced, which was found to be soluble in acetone and THF.  The 

product was characterised by 1D NMR (1H and 13C), 2D NMR (1H-13C HSQC and HMBC), 

SEC, and FTIR. The reaction was found to produce poly(4MeOSt) with a yield of 75% after 

12 h, believed to be result of homopolymerisation of 4MeOSt initiated by EtOCN. As it is 

explained in chapter 1 (section 1.6.4), spontaneous copolymerisation between electron-rich 

and electron-poor olefins could also form zwitterions resulting in either cationic or anionic 

homopolymerisation. Therefore, it is concluded that the poly(4MeOSt) is formed in the 

presence of EtOCN via cationic polymerisation. However, the reaction of 4MeOSt with 

EtOCN did not produce any solid at ambient temperature. 

The spontaneous copolymerisation of St with MA was carried out at 50 °C and a yellow 

solid was produced, which was found to be soluble in acetone and THF.  The product was 

fully characterised. The results confirmed that the polymer product of St with MA is an 

alternating co-polymer. The tests followed by different reaction times shows that the 

copolymerisation of St with MA reached a plateau at 30% yield after 60 h. The reaction was 

undertaken in bulk giving solid product which is believed to be responsible for stopping the 

progress of the reaction and hence reaching a plateau. However, the reaction of St with MA 

did not produce any solid at ambient temperature.  
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3.1 Introduction 

The spontaneous (co-)polymerisation of electron-rich and electron-poor olefins was 

investigated to produce cross-linked polymers (thermoset materials) using di-functional 

monomers divinylbenzene (DVB). DVB consists of a benzene ring bonded to 

two vinyl groups. It is related to styrene by the addition of a second vinyl group. Therefore, 

DVB is used as a cross-linking agent.  

Thermoset materials are an important class of materials with excellent thermal and 

mechanical properties.  They have been used in a wide range of applications particularly as 

coatings, adhesives, and encapsulants.1 Thermoset materials are stronger than thermoplastic 

materials due to their three-dimensional network of bonds. The polymer chains lose some of 

their ability to move as individual one when they are linked together by cross-links.  The 

cross-link brings the polymer toughness, good adhesive and high stable temperature.  Low 

cross-link densities increase the viscosities of polymer melts; intermediate cross-link 

densities transform gummy polymers into materials that possess elastomeric properties and 

potentially high strengths; very high cross-link densities can make materials become very 

rigid or glassy, for example, phenol-formaldehyde materials.2   

3.2 Materials  

Maleic anhydride (MA), 4-methoxystyrene (4MeOSt), divinylbenzene (DVB), styrene, were 

purchased from Aldrich and used as supplied.  Dichloromethane (DCM) (analytical grade, 

Fisher Scientific), toluene (Analytical Grade, Fisher Scientific), acetone (analytical grade, 

Fisher Scientific), tetrahydrofuran (THF) (anhydrous, ≥99.9%), chloroform (analytical 

reagent grade, 99.5%, fisher scientific), were used as supplied. 

3.3 Instrumentation 

FTIR spectra were recorded on Perkin Elmer 1600 series FTIR spectrometer fitted with a 

golden gate. The samples were used as solids or liquid. The IR spectra were collected from 

4000 to 400 cm-1, with 10 scans per spectrum and 4.00 cm-1 resolution. The IR spectra was 

analysed using Infrared spectroscopy correlation table.3 
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3.4 Experimental 

3.4.1 Gel content test 

The cross-linked polymer product was weighed as W1 (1±0.1g) and placed into a clean and 

dry flask containing a stirring bar and fitted with a condenser. THF (20 mL) was added and 

the flask was placed into an oil bath. The mixture was refluxed for 5 h. A filter paper was 

folded and placed into a clean sample vial and was put into an oven set at 100°C and dried 

for 2 h. The sample vial was sealed by a cap after taken out from the oven, cooled to ambient 

temperature and was weighed as W2. The reaction mixture was filtered through a glass 

funnel fitted with the pre-weighed filter paper. The solid was wrapped by the filter paper and 

placed in the sample vial. The sample vial was placed into the oven set at 100°C for 4 h. The 

sample vial was sealed by the same cap after taken out from the oven, cooled to ambient 

temperature and was weighed as W3.  

The gel content was calculated by: 
𝑊3−𝑊2

𝑊1
𝑋100%. 

3.4.2 Reaction of maleic anhydride with divinylbenzene 

DVB (0.81 g, 5 mmol) and MA (0.98 g, 10 mmol) were mixed in a sample vial at ambient 

temperature, upon which the mixture became light yellow. The mixture was kept at 50 °C for 

7 days, resulting light yellow solid.  The solid product was ground into powder and was 

subjected to sol-gel analysis, giving 0.75 g, 32 % yield.  

FTIR, (cm-1): 1768 (C=O), 1455 (aromatic C=C), 1178-1230 (C-O), 953 (aromatic C-H). 

Table 3.1: Reaction of DVB and MA (CP01-05) 

Reaction 
DVB 

(g, mmol) 

MA 

(g, mmol) 
DVB : MA 

Temperature 

(˚C) 

Yield* 

(%) 

CP01 0.81, 5 0.98, 10 1:2 50 32 

CP02 1.62, 10 0.98, 10 1:1 50 32 

CP03 3.24, 20 0.98, 10 2:1 50 28 

CP04 3.24, 20 0.49, 5 4:1 50 10 

CP05 0.81, 5 0.98, 10 1:2 RT 29 

*Yield is quoted after sol-gel analysis.  

CP01-04 were prepared with different ratio of starting materials and kept for 7 days at 50 °C 

(table 3.1).  After the same recovery process as CP01, CP02-04 obtained with 32%, 28% and 

10% yields, respectively.  CP05 was repeated with the same amount of starting materials as 



Chapter 3 Cross-Linked Spontaneous Copolymerisation 

75 
 

CP01 at ambient temperature and kept for 7 days.  Similar recovery procedure gave 0.52 g 

white solid, 29 % yield. 

3.4.3 Reaction of maleic anhydride, 4-methoxystyrene with divinylbenzene 

MA (1.18 g, 12 mmol), 4MeOSt (1.10 g, 8 mmol), and DVB (0.30 g, 2 mmol) using the ratio 

of DVB: 4MeOSt: MA of 1:4:6 were mixed in a sample vial at ambient temperature, upon 

which the mixture became yellow. The mixture was heated to 50 °C and kept for 7 days, 

resulting yellow solid. The solid product was ground into powder and was subjected to sol-

gel analysis, giving 1.62 g, 53 % yield.   

FTIR, (cm-1): 1775 (C=O), 1440-1609 (aromatic C=C), 1175-1240 (C-O), 826 (aromatic C-

H). 

CP06-08 were prepared with different ratio of starting materials and kept for 7 days at 50 °C 

(table 3.2).  CP07 and CP08 gave 52% and 27% yields, respectively, following the same 

recovery process as CP06.  CP09 was repeated with the same amount of starting materials as 

CP06 at ambient temperature and kept for 7 days.  Similar recovery procedure gave 1.17 g 

white solid, 41 % yield. 

Table 3.2: Reaction of DVB, 4MeOSt and MA (CP06-09) 

Reaction 

DVB 

(g, 

mmol) 

4MeOSt 

(g, mmol) 

MA 

(g, mmol) 

DVB : 

4MeOSt : 

MA 

Temperature 

 (˚C) 

Yield*  

(%) 

CP06 0.30, 2 0.55, 4 0.78, 8 1:2:4 50 53 

CP07 0.30, 2 1.10, 8 1.18, 12 1:4:6 50 52 

CP08 0.30, 2 1.64, 12 2.19, 16 1:6:8 50 27 

CP09 0.30, 2 0.55, 4 0.78, 8 1:2:4 RT 41 

*Yield is quoted after sol-gel analysis. 

 

3.4.4 Reaction of maleic anhydride, styrene with divinylbenzene 

MA (1.18 g, 12 mmol), St (0.85 g, 8 mmol), and DVB (0.30 g, 2 mmol) were mixed in a 

sample vial at ambient temperature, upon which the mixture became yellow.  The mixture 

was heated to 50 °C and kept for 7 days, resulting light yellow solid. The solid product was 

ground into powder and was subjected to sol-gel analysis, giving 1.19 g, 57 % yield.   

FTIR, (cm-1): 1773 (C=O), 1457 (aromatic C=C), 1220 (C-O), 700-912 (aromatic C-H). 
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CP10-12 were prepared with different ratio of starting materials and kept for 7 days at 50 °C 

(table 3.3).  CP11 and CP12 obtained with 55% and 23% yield, respectively, following the 

same recovery process as CP10.  CP13 was repeated at ambient temperature and left for 7 

days, however, no solid was produced. 

Table 3.3: Reaction of DVB, St and MA (CP10-13) 

Reaction 
DVB 

(g, mmol) 

St 

(g, mmol) 

MA 

(g, mmol) 

DVB : St : 

MA 

Temperature 

(˚C) 

Yield* 

(%) 

CP10 0.30, 2 0.43, 4 0.78, 8 1:2:4 50 57 

CP11 0.30, 2 0.85, 8 1.18, 12 1:4:6 50 55 

CP12 0.30, 2 1.27, 12 1.57, 16 1:6:8 50 23 

CP13 0.30, 2 0.43, 4 0.78, 8 1:2:4 RT 0 

*Yield is quoted after sol-gel analysis. 

3.4.5 Reaction of N-methylmaleimide with divinylbenzene 

MeMal (1.10 g, 10 mmol) and DVB (0.81 g, 5 mmol) were mixed in a sample vial at 

ambient temperature, upon which the mixture became yellow. The mixture was heated up to 

50 °C and kept for 7 days, resulting light yellow solid. The solid product was ground into 

powder and was subjected to sol-gel analysis, giving 0.66 g, 40 % yield.   

FTIR, (cm-1): 1700 (C=O), 1281-1430 (aromatic C=C), 1127 (C-N), 953 (aromatic C-H). 

CP15-16 were prepared with different ratio of starting materials and kept for 7 days at 50 °C 

(table 3.4).  CP15-16 obtained with 41 and 25% yield, respectively, after the same recovery 

process as CP14.  And CP17 was repeated with the same amount of starting materials as 

CP14 at ambient temperature and kept for 7 days.  Similar recovery procedure gave 0.47 g 

white solid, 26 % yield. 

Table 3.4: Reaction of DVB and MeMal (CP14-17) 

Reaction 
DVB 

(g, mmol) 

MeMal 

(g, mmol) 

DVB : 

MeMal 

Temperature  

(˚C) 

Yield* 

(%) 

CP14 0.81, 5 1.10, 10 1:2 50 40 

CP15 1.62, 10 1.10, 10 1:1 50 41 

CP16 3.24, 20 1.10, 10 2:1 50 25 

CP17 0.81, 5 1.10, 10 1:2 RT 26 

*Yield is quoted after sol-gel analysis. 
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3.4.6 Reaction of N-methylmaleimide, 4-methoxystyrene with divinylbenzene 

DVB (0.3 g, 2 mmol), 4MeOSt (1.10 g, 8 mmol), and MeMal (1.33 g, 12 mmol) were mixed 

in a sample vial at ambient temperature, upon which the mixture became yellow. The 

mixture was heated up to 50 °C and kept for 48 h, resulting yellow solid. The solid product 

was ground into powder and was subjected to sol-gel analysis, giving 1.22 g, 56 % yield.   

FTIR, (cm-1) 1685 (C=O), 1382-1432 (aromatic C=C), 1281 (C-O), 1061-1127 (C-N), 703-

757 (aromatic C-H). 

CP18-20 were prepared with different ratio of starting materials and kept for 7 days at 50 °C 

(table 3.5).  After the same recovery process as CP18, CP19-20 obtained with 56 and 42% 

yield, respectively.  Furthermore, CP21 was repeated with the same amount of starting 

materials as CP18 at ambient temperature and left for 7 days.  Similar recovery procedure 

gave 0.53 g white solid, 23 % yield. 

Table 3.5: Reaction of DVB, MeOSt and MeMal (CP18-21) 

Reaction 

DVB 

(g, mmol) 

4MeOSt 

(g, mmol) 

MeMal 

(g, mmol) 

DVB : 

4MeOSt : 

MeMal 

Temperature  

(˚C) 

Yield* 

(%) 

CP18 0.30, 2 0.55, 4 0.89, 8 1:2:4 50 56 

CP19 0.30, 2 1.10, 8 1.33, 12 1:4:6 50 44 

CP20 0.30, 2 1.64, 12 1.78, 16 1:6:8 50 42 

CP21 0.30, 2 0.55, 4 0.89, 8 1:2:4 RT 23 

*Yield is quoted after sol-gel analysis.  
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3.5 Results and discussion 

3.5.1 Maleic anhydride with divinylbenzene 

The spontaneous copolymerisation of DVB and MA was carried out at 50 °C and at ambient 

temperature and a yellow solid was produced, which was found to be insoluble in organic 

solvents. The cross-linked polymer product obtained at 50 °C was characterised by FTIR, 

figure 3.1. The presence of C=O at 1768 cm-1 corresponding to MA repeat unit is observed. 

 

Figure 3.1: the IR spectroscopy of poly(DVB-alt-MA) 

 

Scheme 3.1: The mechanism of a) formation of diradicals; b) cross-linked polymer 
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The polymerisation reaction involves DVB (an electron donor) and MA (an electron acceptor) 

monomers.  As it is explained in chapter 1 (section 1.6.4), the spontaneous (co-

)polymerisation is believed to occur by electron transfer from donor (DVB) to acceptor (MA) 

forming diradicals, scheme 3.1a. The diradicals then initiate the copolymerisation (scheme 

3.1b) to give cross-linked materials.  

The reaction of DVB and MA in a molar ratio of 1:2 (CP01) at 50 °C was followed by gel 

content determination over a period of 7 days, figure 3.2. Initially, the gel content increased 

up to 5 days, after which it reached a plateau at 31% gel content. The reaction formed 

insoluble solid cross-linked material which is believed to be responsible for eventually 

stopping the progress of the reaction.  

 

Figure 3.2: The gel content of reaction of DVB with MA 

The reaction was repeated with different ratio of starting materials (CP01-04) and kept for 7 

days at 50 °C (table 3.6).  The gel contents of CP01-04 were found to be 32, 32, 28, and 10%, 

respectively.  The gel content decreased as the amount of DVB increased.  This is the 

expected as both monomers are necessary to form spontaneous co-polymer.   

Table 3.6: Gel content of CP01-05 
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(˚C) 
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CP05 1:2 RT 29 

The reaction of MA with DVB in a molar ratio of 2:1 (CP05) over 7 days produced 29% gel 

content at ambient temperature indicating that the cross-lined spontaneous copolymerisation 

of MA and DVB could be carried out without heating. 

3.5.2 Maleic anhydride, 4-methoxystyrene, and divinylbenzene 

The spontaneous copolymerisation of 4MeOSt, MA and DVB was carried out at 50 °C and 

at ambient temperature and a yellow solid was produced, which was found to be insoluble in 

organic solvents. The cross-linked polymer product obtained at 50 °C was characterised by 

FTIR, figure 3.3. The presence of C=O at 1779 cm-1 corresponding to MA repeat unit is 

observed. Furthermore, the figure 3.3 shows the presence of peaks at 1034 and 1242 cm-1 

due to C-O stretch (MeO), and 1510 and 1608 cm-1 due to aromatic C=C.  

 

Figure 3.3: the IR spectrum of the product 

The copolymerisation reaction involves DVB and 4MeOSt, both electron donor monomers 

and MA, an electron acceptor monomer.  The spontaneous copolymerisation is postulated to 

occur by electron transfer from donor (DVB and 4MeOSt) to acceptor (MA) to form 

diradicals. 
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Scheme 3.2: The mechanism of formation of a) diradical 1 and b) diradical 2 

 

Scheme 3.3: The formation of a) poly(4MeOSt-co-MA-co-DVB); b) poly(DVB-co-MA); 

and c) poly(4MeOSt-co-MA) 
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The mechanism of the cross-linking reaction is complex. However, in this reaction diradicals 

1 (scheme 3.2a) and 2 (scheme 3.2b) are expected to be formed. The two diradicals would 

then be expected to be involved in 3 possible reactions to give polymer products. The first is 

the result of the participation of both diradicals 1 and 2 in the polymerisation, scheme 3.3a. 

The second is the participation of diradical 2 in the polymerisation, scheme 3.3b. The third is 

the participation of diradical 1 in the polymerisation, scheme 3.3c. 

The reaction CP06-08 (table 3.7 in the experimental section) at 50 °C was followed for the 

gel content over a period of 7 days (figure 3.4) using the ratio of 4MeOSt: DVB of 2:1, 4:1, 

and 6:1, respectively.  The gel content is decreased as the amount of DVB is reduced. This is 

expected as DVB is the crosslinking agent and controls the degree of crosslinking and hence 

the gel content. The reaction of MA , 4MeOSt with DVB (CP09) over 7 days produced 41% 

gel content at ambient temperature indicating that the cross-lined spontaneous 

copolymerisation of those monomers could be carried out without heating. 

 

Figure 3.4: the gel content of copolymerisation of DVB, 4MeOSt with MA 

3.5.3 Maleic anhydride, styrene, and divinylbenzene 

The spontaneous copolymerisation of St, MA, and DVB was carried out at 50 °C and at 

ambient temperature and a yellow solid was produced, which was found to be insoluble in 

organic solvents. The cross-linked polymer product formed at 50 °C was characterised by 

FTIR (figure 3.5), showing the presence of C=O at 1769 cm-1 corresponding to MA repeat 

unit. 
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Figure 3.5: the IR spectroscopy of the product of St, MA, and DVB 

The polymerisation reaction involves DVB and St, an electron donor monomer and MA, an 

electron acceptor monomer.  The spontaneous (co-)polymerisation is postulated to occur by 

electron transfer from donor (DVB and St) to acceptor (MA) to form diradicals 1 (scheme 

3.4a) and 2 (scheme 3.4b).  

 

Scheme 3.4: The mechanism of formation of a) diradical 1 and b) diradical 2 
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Scheme 3.5: The formation of a) poly(St-co-MA-co-DVB); b) poly(DVB-co-MA); and c) 

poly(St-co-MA) 

Again, the mechanism of the cross-ling reaction is complex. The two diradicals would be 

expected to be involved in 3 possible reactions to give the polymer products. The first is the 

result of the participation of both diradicals 1 and 2 in the polymerisation, scheme 3.5a. The 

second is the participation of diradical 2 in the polymerisation, scheme 3.5b. The third is the 

participation of diradical 1 in the polymerisation, scheme 3.5c. 

The reaction of St, MA and DVB at 50 °C was followed for the gel content over a period of 

7 days using the molar ratio of DVB: St of 1:2, 1:4, and 1:6 (CP10-12), figure 3.6. Initially, 

the gel content increased up to 5 days, after which it reached a plateau at 56% gel content for 

CP10 & CP11 and 47% gel content for CP12. This is believed to be due to the formation of 

insoluble cross-linked material hindering and eventually stopping the progress of the reaction. 

The gel content is decreased as the amount of DVB is reduced. This is expected as DVB is a 

cross-linking agent and controls the degree of cross-linking and hence the gel content. 



Chapter 3 Cross-Linked Spontaneous Copolymerisation 

85 
 

 

Figure 3.6: the gel content of DVB, St with MA 

The reaction of MA, St with DVB (CP13) did not produce any solid at ambient temperature 

over 7 days indicating that the cross-lined spontaneous copolymerisation of those monomers 

is difficult to be carried out without heating due to the spontaneous copolymerisation of MA 

and St was difficult to carried out at ambient temperature (the results in Chapter 2). 

3.5.4 N-Methylmaleimide with divinylbenzene  

The spontaneous copolymerisation of MeMal and DVB was carried out at 50 °C and at 

ambient temperature and a yellow solid was produced, which was found to be insoluble in 

organic solvents.  

 

Figure 3.6: the IR spectrum of the product of DVB and MeMal 

The cross-linked polymer product obtained at 50 °C was characterised by FTIR (figure 3.6) 

showing the presence of C=O at 1685 cm-1 and C-N at 1130 cm-1corresponding to MeMal 

repeat unit. Furthermore, the presence of aromatic C=C at 1431 cm-1 corresponding to DVB 
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repeat unit is also observed. 

The polymerisation reaction involves DVB, an electron donor monomer and MeMal, an 

electron acceptor monomer.  The spontaneous (co-)polymerisation is postulated to occur by 

electron transfer from donor (DVB) to acceptor (MeMal) forming diradicals, scheme 3.6a. 

The diradicals then initiate the copolymerisation to form the product, scheme 3.6b. 

 

Scheme 3.6: The mechanism of a) formation of diradicals; b) cross-linked polymer 

The reaction of DVB and MeMal in a molar ratio of 1:2 at 50 °C was followed for the gel 

content over a period of 7 days, figure 3.7. Initially, the gel content increased up to 5 days, 

after which it reached a plateau at 40% gel content. The reaction formed insoluble solid 

cross-linked material which is believed to be responsible for eventually stopping the progress 

of the reaction. 
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Figure 3.7: The gel content of reaction of DVB and MeMal  

This reaction was prepared with ratios of DVB: MeMal of 1:2, 1:1, and 2:1 starting materials 

and kept for 7 days at 50 °C (CP14-16) (table 3.7).  The gel content of CP14-16 was found to 

be 40%, 41%, and 25%, respectively.  The gel content decreased as the amount of DVB 

increased.  This is the expected as DVB is the crosslinking agent and more DVB result in 

more crosslinking and hence more gel content.   

The reaction using malor ratio DVB: MeMal of 2:1 (CP17) left at ambient temperature for 7 

days produced 26% gel content  indicating that the cross-lined spontaneous copolymerisation 

of those monomers could be carried out without heating. 

Table 3.7: The gel content of CP14-17 

Reaction DVB : MeMal 
Temperature  

(˚C) 

Gel content 

(%) 

CP14 1:2 50 40 

CP15 1:1 50 41 

CP16 2:1 50 25 

CP17 1:2 RT 26 

 

3.5.5 N-Methylmaleimide, 4-methoxystyrene with divinylbenzene 

The spontaneous copolymerisation of 4MeOSt, MeMal and DVB was carried out at 50 °C 

and at ambient temperature and a yellow solid was produced, which was found to be 

insoluble in organic solvents. The cross-linked polymer product was characterised by FTIR 

(figure 3.8) showing the presence of C=O at 1685 cm-1 and C-N at 1127 cm-1corresponding 

to MeMal repeat unit. Furthermore, the presence of aromatic C=C at 1433 cm-1 

corresponding to DVB and 4MeOSt repeat unit and the presence of aromatic C-O at 1282 
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cm-1 corresponding to 4MeOSt repeat unit is also observed. 

 

Figure 3.8: the IR spectrum of the product of DVB, 4MeOSt and MeMal 

The copolymerisation reaction involves DVB and 4MeOSt, both electron donor monomers 

and MeMal, electron acceptor monomer.  The spontaneous copolymerisation is postulated to 

occur by electron transfer from donor (DVB and 4MeOSt) to acceptor (MeMal) to form 

diradicals 1 (scheme 3.7a) and 2 (scheme 3.7b). 

 

Scheme 3.7: The mechanism of formation of a) diradical 1 and b) diradical 2 

As explained previously, the mechanism of the cross-linking reaction is complex. The two 

diradicals would be expected to be involved in 3 possible reactions to give the polymer 

products. The first is the result of the participation of both diradicals 1 and 2 in the 
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polymerisation, scheme 3.8a. The second is the participation of diradical 2 in the 

polymerisation, scheme 3.8b. The third is the participation of diradical 1 in the 

polymerisation, scheme 3.8c. 

 

Scheme 3.8: The formation of a) poly(4MeOSt-co-MeMal-co-DVB); b) poly(DVB-co-

MeMal); and c) poly(4MeOSt-co-MeMal) 

The reaction CP18-20 carried out at 50 °C and was followed for the gel content over a period 

of 7 days (figure 3.9) using the ratio of 4MeOSt: DVB of 2:1, 4:1, and 6:1, respectively.  The 

gel content is decreased as the amount of DVB is reduced. This is expected as DVB is 

crosslinking agent and control the degree of crosslinking and hence the gel content. 
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Figure 3.9: The gel content of reaction of DVB, 4MeOSt and MeMal 

The reaction of MeMal, 4MeOStSt with DVB (CP21) produced 23% gel content at ambient 

temperature over 7 days indicating that the cross-lined spontaneous copolymerisation of 

those monomers could be carried out without heating. 
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3.6 Conclusion 

The spontaneous copolymerisation of electron-rich monomers (4MeOSt, St, and DVB) with 

electron-poor monomers (MA and MeMal) was investigated at ambient temperature and at 

50°C. The resulting insoluble cross-linked polymer products were characterised by FTIR. 

The results confirmed that the cross-linked polymer product contains the repeating units due 

to MA and MeMal monomers used in the reaction. 

The copolymerisation of electron-rich monomers (4MeOSt, St, and DVB) with electron-poor 

monomers (MA and MeMal) was followed by gel content determination over a period of 7 

days. Initially, the gel content increased for a few days, after which it reached a plateau 

around 33%-57% at 50 °C and 23%-41% at ambient temperature based on the monomers 

used. The reaction formed insoluble cross-linked material which is believed to be responsible 

for eventually stopping the progress of the reaction resulting in a plateau. 
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5.1 Introduction  

Self-healing of polymers and composites containing micro-encapsulated healing agents offer 

tremendous potential for providing long-lived structural materials. The micro-capsules in 

self-healing polymers not only store the healing agent during quiescent states, but provide a 

mechanical trigger for the self-healing process when damage occurs in the host material and 

the capsules are ruptured. The key feature of self-healing materials is the highly engineered 

microencapsulated healing agent. The micro-capsules must possess sufficient strength to 

remain intact during processing of the host polymer, yet rupture when the polymer is 

damaged. High bond strength to the host polymer combined with a moderate strength of 

micro-capsule shell is required. To provide long shelf-life the capsules must be impervious to 

leakage and diffusion of the encapsulated (liquid) healing agent for considerable time. These 

combined characteristics are achieved with a system based on the in-situ polymerisation of 

urea-formaldehyde (UF) micro-capsules encapsulating healing agent. The addition of these 

micro-capsules to an epoxy matrix also provides a unique toughening mechanism for the 

composite system. 

5.2 Materials 

4-Methoxystyrene (4MeOSt) (technical grade, 80%), divinylbenzene (DVB) (technical 

grade, 80%), styrene (St) (analytical standard), poly (ethylene-alt-maleic anhydride) 

copolymer (EMA), urea (powder, Bio-reagent), ammonium chloride (≥99.5%), resorcinol 

(ReagentPlus®, 99%), sodium hydroxide (anhydrous, free-flowing, pellets, Redi-Dri™, ACS 

reagent, ≥97%), hydrochloric acid (36.5~38.0%), 1-octanol (analytical standard), and 

aqueous solution of formaldehyde (contains 10-15% methanol as stabiliser, 37 wt. % in H2O) 

were purchased from Aldrich and used as supplied. 

Dichloromethane (DCM) (analytical grade, Fisher Scientific), acetone (analytical grade, 

Fisher Scientific), and deionised water were used as supplied. 

5.3 Instrumentation 

SCILOGEX OS20-S LED digital overhead stirrer driving a three-bladed (50mm diameter); 

desktop-pH-meter FiveEasyTM Profi-Kit FE 20 ATC; and fine test sieves (Brass frame, pore 

size 250, 500 μm, and 1 mm).  
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NMR spectra were either recorded on a Bruker Avance 400 spectrometer at 400.0 MHz (1H) 

and 100.6 MHz (13C); or a Varian Inova 500 spectrometer at 499.8 MHz (1H, COSY, HSQC) 

and 125.7 MHz (13C).  All chemical shifts were referenced to the residual proton of the 

deuterated solvent. 

Scanning electron microscope (SEM) pictures were taken by Philips/FEI XL30 ESEM®; 

optical microscope linked to a digital image recording system。 
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5.4 Experimental 

5.4.1 Preparation of aqueous solution of EMA copolymer 

Aqueous solution of EMA co-polymer was prepared following the literature.1 

EMA copolymer (2.5 g), sodium hydroxide (0.1 g, 0.1 wt. %) and deionised water (97.5 g) 

were mixed in a 250 mL round bottom flask with a manganic stir bar fitted with a reflux 

condenser. The flask was suspended in a temperature-controlled oil bath on a hotplate with 

external temperature probe. The mixture was heated up to 80 ºC and kept stirring for 12 h, 

after which became a transparent viscous solution.  

5.4.2 Micro-encapsulation process 

Micro-encapsulation process was carried out following the literature.1 

Micro-capsules were prepared by in-situ polymerisation in an oil-water emulsion. The 

healing agents used in the micro-encapsulation experiments are shown in table 4.1.  

Deionised water (100 mL) and aqueous solution of EMA copolymer (2.5 wt. %, 25mL) were 

mixed in a 500 mL beaker at ambient temperature. The beaker was suspended in a 

temperature-controlled water bath on a hotplate with external temperature probe. The 

solution was agitated with a digital overhead stirrer driving a three-bladed, 50mm diameter 

low-shear mixing propeller placed just above the bottom of the beaker. Under agitation, urea 

(2.50 g, 0.04 mmol), ammonium chloride (0.25 g, 4.67 mmol) and resorcinol (0.25 g, 2.27 

mmol) dissolved in the solution. The pH increased from ~2.60 to 3.50 by drop-wise addition 

of sodium hydroxide and hydrochloric acid. 1-octanol (1~2 drops) was added to eliminate 

surface bubbles.   

Table 4.1: The amount of healing agents used in micro-encapsulation process 

Experiment code Healing agents Amount (g) 

MC01 4MeOSt 25 

MC02 DVB 25 

MC03 St 25 

MC04 4MeOSt+DVB (4:1) 19+6 

MC05 4MeOSt+DVB (2:1) 15+10 

MC06 St+DVB (4:1) 18+7 

MC07 St+DVB (2:1) 13+12 

The required amount of healing agents was added to form an emulsion and allowed to 

stabilise for 10 min. Aqueous solution of formaldehyde (37 wt. %) (6.341 g, 0.076 mol) was 
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added to obtain a ratio of formaldehyde: urea of 1.9: 1. The beaker was covered with 

aluminium foil and heated slowly to 55 °C and left for 4 h under continuous agitation. Once 

cooled to ambient temperature, the suspension of micro-capsules was separated under 

vacuum using a coarse-fritted filter. The micro-capsules were rinsed with deionised water 

and dichloromethane (10: 1 in volume) and air dried for 48 h.  The yield of fine micro-

capsules was 76-88%. 

5.4.3 Analysis of the size distribution and selection of micro-capsules 

Micro-capsule size analysis was performed with SEM and image analysis software. Mean 

diameter and standard deviation were determined from data sets of at least 50 measurements.  

All the micro-capsules after drying were sieved by fine test sieves.  The pore size of 1 mm 

sieve was firstly used to remove large poly (urea-formaldehyde) particles. Then, the pore 

size of 250 µm and 500 µm sieves were used to collect the micro-capsules within size of 

250-500 µm. 

5.4.4 The content and shell thickness of micro-capsules 

Micro-capsules (1 g) were placed into a mortar, and then were crushed by a pestle.  

Chloroform (10 mL) was added and the solution containing healing agent was filtered by 

coarse-fritted filter under reduced pressure.  The solution was transferred into a round bottom 

flask, and then chloroform was removed by rotary evaporator under reduced pressure. The 

remains liquid in the flask was weigh and characterised by NMR.  The solid powder was 

dried in a vacuum oven, after which were weighed and characterised by SEM to determine 

their thicknesses.   The percentage of healing agent content for the micro-capsules were 

calculated and shown in table 4.2. 

Table 4.2: The healing agent content of micro-capsules 

Healing agent 
Weight of micro-

capsules (g) 

Weight of the micro-

capsules shall (g) 

Healing agent 

content (%) 

4MeOSt 1.00 0.29 71 

DVB 1.00 0.27 73 

St 1.00 0.25 75 

4MeOSt with DVB 1.00 0.30 70 

St with DVB 1.00 0.31 69 

 



Chapter 4 Micro-Encapsulation 

98 
 

5.5 Results and discussion 

5.5.1 Micro-encapsulation process 

Micro-capsule diameter and surface morphology significantly influence capsule rupture 

behaviour and hence healing agent release in self-healing polymers. All the micro-capsules 

were analysed by SEM for the size distribution, surface quality, and shell thickness.  

High quality urea-formaldehyde micro-capsules using for in self-healing process were 

prepaired. The core of these micro-capsules was liquid electron-rich monomers, 4MeOSt, 

DVB, St, and their mixtures. The micro-capsules were spherical and free flowing after 

drying (figure 4.1). The yields, defined by the ratio of the mass of micro-capsules to the total 

mass of 4MeOSt, DVB, St, urea, and formaldehyde, were 76–88%.  

 

Figure 4.1: Micro-capsules containing different healing agents 

The ratio of monomers (oil) and water was changed to see the effect of monomer 

concentration on the surface of micro-capsules.  

   

(a) 
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(b) 

 
(c) 

Figure 4.2: ESEM image of UF micro-capsules based the concentration (by vol%) of 4-

methoxystyrene in oil-water emulsion: (a) 17%, (b) 20%, and (c) 23%. 

Figure 4.2 shows micro-capsules made by using different concentration of oil (monomers) 

and water of 17% (a), 20% (b), and 23% (c), but with the same ratio of urea, ammonium 

chloride, resorcinol, and formaldehyde. As it can be seen, the surface of the micro-capsules 

was changed from very rough (a & b) to smoother (c) as the oil-water ratio increased.  

The micro-capsules exhibited a rough surface could also be due to the presence of urea-

formaldehyde. A smooth contact surface is essential to bond with the matrix materials. 

Moreover, if the surface of the micro-capsules is too rough, the tension force of matrix 

materials could crack open only small amount of micro-capsules. 4MeOSt micro-capsules 

were washed with deionised water and DCM to make the surface smooth and therefore to 

increase the surface quality. 

Figure 4.3 shows micro-capsules prepared at different initial pH. At the pH of 2.5 micro-

capsules were agglomerated (figure 4.3 a) whereas at pH of 3.5 they were free flowing and 
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well dispersed (figure 4.3 b). As the pH decreases, the viscosity is increased the affecting the 

droplet formation leading to agglomeration of micro-capsules, similar observation has 

previously been reported.3 

  
(a) 

 
(b) 

Figure 4.3: SEM image of UF micro-capsules containing 4MeOst prepared with the initial 

pH: (a) 2.5, and (b) 3.5 

 

5.5.2 Micro-capsules size distributions 

Average micro-capsule diameter is controlled by agitation rate, as shown in figure 4.4. As the 

agitation rate increased, a finer emulsion was obtained and the average micro-capsule 

diameter decreased. Micro-capsules with average diameter in the range of 10–1000 μm are 

obtained by adjusting agitation rate between 200–1500 rpm.  
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Figure 4.4: Mean micro-capsule diameter vs agitation rate.  

Size analysis was performed by SEM on data sets of at least 50 measurements at each 

agitation rate.  Error bars correspond to standard deviation of the data.  The standard 

deviation was reduced as the agitation rate increased; however, the yield of fine micro-

capsules was also reduced from 76-88% to 34-41%. Moreover, the amount of liquid content 

which is dependent as the size of the micro-capsules was reduced from 69-77% to 42-53%.  
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5.5.3 Micro-capsules 

5.5.3.1 4-Meoxystyrene micro-capsules 

The diameter of 4MeOSt micro-capsules prepared was found to be in the range of 50-500 

μm at 550 rpm. These micro-capsules were subjected to sieving to collect those with the 

diameter of 100-200 μm, figure 4.5. 

  

(a) 

 

(b) 

Figure 4.5: SEM image of the surface morphology of 4MeOSt micro-capsules, a) using 

magnification of 50×, b) using magnification of 400× 
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The liquid content of micro-capsules could be viewed by optical microscopy, figure 4.6. The 

light spot in the picture is the light refraction of liquid monomers indicating efficient 

encapsulation of liquid 4MeOSt healing agent. 

 

Figure 4.6: Optical microscopy (magnification of 20×) image of 4MeOSt micro-capsules 

The shell wall thickness of 4MeOSt micro-capsules was also investigated by SEM, figure 4.7.  

The average thickness of 4MeOSt micro-capsules was found to be about 200 nm. 

 

Figure 4.7: SEM image (magnification of 9600×) of the shell thickness of MeOSt micro-

capsules 

The healing agent contents of 4MeOSt micro-capsules were investigated. The 1H NMR 

spectrum of the healing agents extracted from 4MeOSt micro-capsules is shown in figure 4.8. 

The spectrum shows the resonances at 7.49 ppm and 7.02 ppm due to the 4 protons of the 
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aromatic ring (H1 and H2); the resonance at 6.80 ppm due to the 1 proton of the –CH– group 

(H3); the resonances at 5.81 ppm and 5.31 ppm due to the 2 protons of the =CH2 group (H4 

and H4’); and the resonance at 3.89 ppm due to the 3 protons of the methyl group (H5). The 

result confirms that the extract was identical to that of the monomer (4MeOSt) used for 

micro-encapsulation. 

 

Figure 4.8: 1H NMR spectrum of the healing agents extracted from 4MeOSt micro-capsules 
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5.5.3.2 Divinylbenzene micro-capsules 

The diameter of DVB micro-capsules was found to be in the range of 50-500 μm at 550 rpm.  

DVB micro-capsules were subjected to sieving to collect diameter of 100-200 μm, figure 4.9. 

 
(a) 

 

(b) 

Figure 4.9: SEM image of the surface morphology of DVB micro-capsules, a) using 

magnification of 50×, b) using magnification of 200× 

Optical microscopy showed that those DVB micro-capsules have liquid monomers, The 

liquid content of micro-capsules could be viewed by optical microscopy, figure 4.10.  The 

light spot in the picture is the light refraction of liquid monomers indicating efficient 

encapsulation of liquid healing agents.  
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Figure 4.10: Optical microscopy (magnification of 20×) image of DVB micro-capsules 

The shell wall thickness of DVB micro-capsules was also investigated by SEM. The average 

thickness was found to be 1.75-1.97 µm, figure 4.11. 

 

Figure 4.11: SEM image (magnification of 1000×) of the shell thickness of DVB micro-

capsules 

The healing agent contents of DVB micro-capsules were investigated. The 1H NMR 

spectrum of the healing agents extracted from DVB micro-capsules is shown in figure 4.12. 

The spectrum shows the resonances at 7.60 ppm due to the 4 protons of the aromatic ring 

(H1); the resonances at 6.80 ppm due to the 2 proton of the –CH– group (H2); and the 

resonances at 6.06 ppm and 5.56 ppm due to the 4 protons of the =CH2 group (H3 and H3’).  



Chapter 4 Micro-Encapsulation 

107 
 

The purity of DVB is 80% technical grade with 20% diethylbenzene, which is due to the 

resonances at 2.94 ppm and 1.57 ppm.  The result confirms that the extract was identical to 

that of the monomer (DVB) used for micro-encapsulation. 

  

Figure 4.12: 1H NMR spectrum of the healing agents extracted from DVB micro-capsules 
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5.5.3.3 Styrene micro-capsules 

The diameter of St micro-capsules was found in the range of 50-500 μm for agitation rate at 

550 rpm. Micro-capsules were subjected to sieving to collect diameter of 100-200 μm, figure 

4.13. 

 

(a) 

 

(b) 

Figure 4.13: SEM image of the surface morphology of St micro-capsules, a) magnification of 

105×, b) magnification of 200× 

Optical microscopy showed that St micro-capsules have liquid monomers, figure 4.14. The 

light spot in the picture is the light refraction from liquid monomers.   
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Figure 4.14: Optical microscopy (magnification of 20×) image of St micro-capsules 

The shell wall thickness of St micro-capsules was also investigated by SEM. The average 

thickness was found to be 273~343 nm, figure 4.15. 

 

Figure 4.15: SEM image (magnification of 9600×) of the shell thickness of St micro-

capsules 

The healing agent contents of St micro-capsules were investigated. The 1H NMR spectrum of 

the healing agents extracted from St micro-capsules is shown in figure 4.16. The spectrum 

shows the resonances at 7.45 ppm due to the 5 protons of the aromatic ring (H1); the 

resonances at 6.85 ppm due to the 1 proton of the –CH– group (H2); and the resonances at 

5.91 ppm and 5.39 ppm due to the 2 protons of the =CH2 group (H3 and H3’).  The result 

confirms that the extract was identical to that of the monomer (St) used for micro-
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encapsulation. 

 

Figure 4.16: 1H NMR spectrum of the healing agents extracted from St micro-capsules 
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5.5.3.4  4-Methoxystyrene-divinylbenzene micro-capsules  

Micro-capsules with 4MeOSt and DVB content using the ratio of 4MeOSt with DVB of 4:1 

were prepared.  The micro-capsules diameter was found to be in the range of 50-500 μm for 

agitation rate at 550 rpm. These micro-capsules were subjected to sieving to collect the 

diameter of 100-200 μm, figure 4.17. 

 

(a) 

 

(b) 

Figure 4.17: SEM image of the surface morphology of MeOSt-DVB micro-capsules, a) 

magnification of 63×, b) magnification of 800× 

Optical microscopy showed that the 4MeOSt-DVB micro-capsules have liquid monomers, 
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figure 4.18. The light spot in the picture is the light refraction from liquid monomers.   

 

Figure 4.18: Optical microscopy image (magnification of 20×) of MeOSt-DVB micro-

capsules 

The shell wall thickness of MeOSt-DVB micro-capsules was also investigated by SEM, 

figure 4.19. The average thickness was found to be ~382 nm. 

 

Figure 4.19: SEM image (magnification of 4800×) of the shell thickness of 4MeOSt-DVB 

micro-capsules 

The healing agent contents of 4MeOSt and DVB micro-capsules were investigated. The 1H 

NMR spectrum of the extract is shown in figure 4.20. The spectrum shows the resonances at 

7.40 ppm due to the 4 protons of the aromatic ring (H6) of DVB; the resonances at 6.93 ppm 
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due to the 4 proton of the aromatic ring (H1, H2) of 4MeOSt; the resonances at 6.80 ppm due 

to the 1 proton of the –CH– group (H3) of 4MeOSt; the resonances at 6.70 ppm due to the 2 

protons of the –CH– group (H7) of DVB; the quartet resonances at 5.58 ppm and 5.27 ppm 

due to the 2 protons of the =CH2 group (H4 and H4’) of 4MeOSt; and the quartet resonances 

at 5.69 ppm and 5.13 ppm due to the 2 protons of the =CH2 group (H8 and H8’) of DVB.  The 

result confirms that the extract was identical to that of the monomer (4MeOSt and DVB) 

used for micro-encapsulation.  

 

Figure 4.20: 1H NMR spectrum of the healing agent extracted from 4MeOSt-DVB micro-

capsules. 
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5.5.3.5 Styrene-divinylbenzene micro-capsules 

Micro-capsules containing St and DVB with ratio of 4:1 were prepared.  The diameter of the 

micro-capsules was found to be in the range of 50-500 μm for agitation rate of 550 rpm. 

These micro-capsules were subjected to sieving to collect diameter of 100-200 μm, figure 

4.21. 

 

(a) 

 

(b) 

Figure 4.21: SEM image of the surface morphology of St-DVB micro-capsules, a) 

magnification of 105×, b) magnification of 800× 
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Optical microscopy could show that those St and DVB micro-capsules have liquid 

monomers, figure 4.22. The light spot in the picture is the light refraction from liquid 

monomers.   

 

Figure 4.22: Optical microscopy image (magnification of 20×) of St-DVB micro-capsules 

The shell wall thickness of the micro-capsules was also investigated by SEM, figure 4.23. 

The average thickness was found to be about 667 nm.  

 

Figure 4.23: SEM image (magnification of 4800×) of the shell thickness of St-DVB micro-

capsules 

The healing agent contents of St and DVB micro-capsules were investigated. The 1H NMR 
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spectrum of the extract is shown in figure 4.24. The resonances at 7.46 ppm due to the 4 

protons of the aromatic ring (H6) of DVB and 5 proton of the aromatic ring (H1) of St; the 

resonances at 6.86 ppm due to the 1 proton of the –CH– group (H2) of St and 2 protons of the 

–CH– group (H5) of DVB; the quartet resonances at 5.92 ppm and 5.40 ppm due to the 2 

protons of the =CH2 group (H3 and H3’) of St and the 2 protons of the =CH2 group (H4 and 

H4’) of DVB can be observed.  The result confirms that the extract was identical to that of 

the monomer (St and DVB) used for micro-encapsulation. 

 

Figure 4.24: 1H NMR spectrum of the healing agent extracted from St-DVB micro-capsules. 
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5.6 Conclusion 

The micro-encapsulation of liquid healing agents (4MeOSt, DVB, St, and their mixtures) by 

in-situ polymerisation of urea-formaldehyde in an oil-water emulsion was carried out. The 

micro-capsules of high quality surface and good size distribution were produced and 

analysed by SEM. Micro-capsules with average diameter in the range of 50–500 μm were 

obtained at agitation of 550 rpm. These micro-capsules were subjected to sieving to collect 

those with diameter of 100-250 μm. During the micro-encapsulation process, UF 

nanoparticles formed and deposited on the micro-capsule surface producing a rough surface 

morphology. The deposition of UF nanoparticles was prevented by carrying out the reaction 

under constant pH (3.5) conditions and washing with DCM and deionised water. The liquid 

content was extracted and characterised by 1H NMR. The fill content was measured by 

comparing the weight of filled micro-capsules with that of the dried broken shells and was 

found to be 70-80 wt. %. 
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5.1 Introduction 

The design concept of self-healing system is to recover lost function due to damage in the 

matrix material. Damage in polymers and composites often involves some form of fracture. 

Complete filling of damage volume and reforming bonds across damage surfaces can restore 

fracture properties.1  

The primary fracture loading conditions for self-healing specimens have been quasi-static 

fracture, fatigue, and impact. These loading conditions cause several types of fracture (figure 

5.1), including Mode I crack opening, Mode II sliding, Mode III tearing, and mixed-mode.2   

In this project, the fracture crack separation mode was Mode I crack opening by compact 

tension.  Mode I fracture allows for controlled crack growth along the centre line and a crack 

length independent fracture toughness that depends only on the applied load.2 The healed 

crack length is difficult to measure in the matrix, however, the compact tension geometry of 

Mode I is more accurate evaluation of healing efficiency. 

 

Figure 5.1: Fracture crack separation modes 2 

Fracture toughness is a property which describes the ability of a material containing a crack 

to resist fracture, and is one of the most important properties of any material for many design 

applications. Fracture toughness is a quantitative way of expressing a material's resistance to 

brittle fracture when a crack is present. If a material has high fracture toughness it will 

probably undergo ductile fracture. Brittle fracture is very characteristic of materials with low 

fracture toughness.3 For polymer materials, the higher the density of cross-linking is, the 

more brittle the material is.  Fracture toughness is determined from the stress intensity factor 
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KIC at which a thin crack in the material begins to grow.   

The curing of epoxy resin by DETA is expressed by the formula shown below.  The reaction 

mechanism involving cyclic compounds such as epoxides is identified as ring-opening 

polymerisation. In cross-linking of an epoxy resin with an amine hardener, the epoxy group 

can react either with primary or secondary amine. Scheme 5.1 showed the reaction 

mechanism for a primary amine with an epoxy group yielding a hydroxyl secondary amine 

(step 1), which in turn is able to react with another epoxy to give a hydroxyl tertiary amine 

(step 3).  As the reaction proceeds, further branching reactions lead to the formation of a 

three-dimensional network molecule (step 3).4 

 

Scheme 5.1: Steps involved in the mechanism of epoxy-amine curing process 

The hydroxyl amine groups are generated by epoxy-amine reactions act as catalysts. The 

activation of carbon atoms of the epoxy ring for nucleophilic attack by hydroxyl-containing 

amine molecules as shown in scheme 5.2, which was identified as a “termolecular transition 

state”.5 These secondary hydroxyl groups catalyse the reaction through the formation of a 

termolecular complex, which facilitates the nucleophilic attack of the amino groups. 

Therefore, as the reaction progresses the cross-linking reaction shows an accelerating rate. 

Tertiary amines are the general class of anionic catalysts used for cross-linking of epoxy 

resins. 
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Scheme 

5.2: Termolecular transition state of the epoxy-amine addition 

At higher temperature or later stage of conversion, in spite of the main ring-opening reaction 

between epoxy and amine, slow side reactions such as homopolymerisation of epoxides and 

epoxy-hydroxyl reaction (etherification) take place at elevated temperatures as shown in 

scheme 5.3. 6, 7   But these reactions are not sequential rather it may occur simultaneously 

over a certain range of conversion. Progression of the epoxy-amine cross-linking also 

activates the homopolymerisation of epoxy resin by tertiary amine that is produced during 

the epoxy-amine reaction.   

 

Scheme 5.3: Mechanism of etherification and homopolymerisation of epoxy-amine reaction 

At the end of the curing process, the increase in the cross-link density or gelation constrains 

the mobility of chains and makes the reactive species more difficult to react and the curing 

process was completed. 

5.2 Materials  

Maleic anhydride (MA), 4-methoxystyrene (4MeOSt), divinylbenzene (DVB), styrene (St), 

ethoxymethylene malononitrile (EtOCN), N-methylmaleimide (MeMal), and 
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Diethylenetriamine (DETA) were purchased from Aldrich and used as supplied.  Bisphenol-

A based epoxide (EPON 828) resin was purchased from HexionTM Specialty Chemicals. 

5.3 Instrumentation 

Fracture testing of the specimens was performed on a rack drive panel (RDP) servo-

mechanical testing machine at a crosshead speed of 0.5 mm/ min, using compact tension 

geometry. The test process was carried out in University of Leeds. Rack-drive loads place 

special requirements on the servo control system. On one hand, rack-andpinion mechanisms 

have a relatively large amount of lost mechanical motion or backlash. On the other hand, the 

two drive systems are strongly linked through the rack. When the backlash is taken up, the 

average speed is the same for the two motors. This linkage prevents using fully independent, 

integrating velocity loops for the two drives.  
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5.4 Experimental 

5.4.1 The preparation of blank specimens 

DETA (10 wt%, 2 g) was added to bisphenol-A based epoxide resin (20 g), stirred and the 

final mixture was degassed.  The mixture was then poured into a closed Teflon mould (60 

mm × 50 mm × 5 mm) with silicon seals and cured at ambient temperature for 24 h. The 

specimen was further cured at 50 °C for 24 h, and cooled to ambient temperature to collect 

the blank epoxy resin specimen (EpoA1).  EpoA2-5 specimens were prepared using the same 

process.  

5.4.2 The preparation of specimen containing micro-capsules 

The micro-capsules used for specimen EpoB1-5 were prepared by urea-formaldehyde micro-

encapsulation of styrene. The preparation process was explained in chapter 4 micro-

encapsulation. 

DETA (10 wt. %, 2 g) was added to bisphenol-A based epoxide resin (20 g), stirred and the 

final mixture was degassed.  The micro-capsules (5-20 wt. %) was added, stirred thoroughly 

to ensure uniform distribution and the mixture was degassed. The mixture was then poured 

into a closed Teflon mould (60 mm × 50 mm × 5 mm) with silicon seals and cured at 

ambient temperature for 24 h. The specimen was further cured at 50 °C for 24 h, and cooled 

to ambient temperature to collect the specimen.  Concentration and quantity of micro-

capsules used for the preparation of specimen (EpoB1-5) is shown in table 5.1.   

Table 5.1: Concentration and quantity of micro-capsules  

Specimen Micro-capsules (wt%, g) 

EpoB1 5, 1 

EpoB2 7.5, 1.5 

EpoB3 10, 2 

EpoB4 15, 3 

EpoB5 20, 4 

 

5.4.3 The preparation of specimen containing solid healing agents 

DETA (10 wt%, 2 g) was added to bisphenol-A based epoxide resin (20 g), stirred and the 

final mixture was degassed. The mixture was kept at ambient temperature for 4 h.  Then, the 

finely powdered solid healing agents (5-20 wt. %) (MA, MeMal, or EtOCN) was added, 
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stirred slightly and the mixture was degassed again.   The mixture was then poured into a 

closed Teflon mould (60 mm × 50 mm × 5 mm) with silicon seals and cured for 24 h at 

ambient temperature. The specimen was further cured at 50 °C for 24 h, and cooled to 

ambient temperature to collect the specimen. The concentration and quantity of solid healing 

agents (MA, MeMal, and EtOCN) used for the preparation of specimen (EpoC1-5, EpoD1-5, 

and EpoE1-5) is shown in table 5.2. 

Table 5.2: Concentration and quantity of solid healing agents 

Specimen 
Solid healing 

agents 
Amount(wt. %, g) 

EpoC1 MA 5, 1 

EpoC2 MA 10, 2 

EpoC3 MA 15, 3 

EpoC4 MA 20, 4 

EpoD1 MeMal 5, 1 

EpoD2 MeMal 10, 2 

EpoD3 MeMal 15, 3 

EpoD4 MeMal 20, 4 

EpoE1 EtOCN 5, 1 

EpoE2 EtOCN 10, 2 

EpoE3 EtOCN 15, 3 

EpoE4 EtOCN 20, 4 

5.4.4 Fracture toughness test 

Fracture tests were carried out at ambient temperature using the compact tension geometry 

(60 mm × 50 mm × 5 mm), figure 5.2.   

 

Figure 5.2: the geometry of the specimens for the compact tension. Where a is the crack 

length; B is the specimen thickness and W is loading width of the specimen.   

The specimen shape is rectangular with loading holes placed 10 mm from the specimen 
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surfaces. A 20 mm long crack was first sawn into the specimen, followed by tapping the 

sharp pre-crack. Taking into account the unloaded area of 10 mm, the starter crack was 

therefore of the order of 15 mm.  

The specimen was loaded until crack initiation occurred. The fracture behaviour was brittle 

in all cases, such that on initiation the crack travelled a distance across the specimen. The 

loading process was record by the force displacement curve. The fracture force (P) was 

obtained from the force-displacement curve. A value of the critical stress intensity factor, 

KIC, was calculated for each fracture event from the equation 5.1. 

𝐾𝐼𝐶 =
𝑃𝑌(

𝑎

𝑊
)

𝐵𝑊
1
2

                                               Eq. 5.1 

Where a is the crack length; P is the fracture load; B is the specimen thickness and W is the 

specimen width.   

Y(
𝑎

𝑊
) = 29.6(

𝑎

𝑊
)

1

2 − 185.5(
𝑎

𝑊
)

3

2 − 655.7(
𝑎

𝑊
)

5

2 + 1017(
𝑎

𝑊
)

7

2 − 638.9(
𝑎

𝑊
)

9

2     Eq.5.2 

Y(a/W) is a geometry factor which compensates for the fact that in the compact tension 

testing geometry, the compliance of the specimen depends on the crack length (a) to 

specimen width (W) ratio, equation 5.2. There are a number of different forms for this 

function, which are broadly equivalent, but are valid for different ranges of (a/W). For this 

study we have followed previous work and used the form shown by Kinloch and Young 8 

from the original work of Brown and Srawley 9, which is valid for 0.2 < a/W < 0.7. 

  



Chapter 5 Fracture Toughness Test of Epoxy Matrix 

127 
 

5.5 Results and discussion 

5.5.1 The preparation of epoxy resin specimens 

Epoxy resins are thermosetting polymer resins where the resin molecule contains one or 

more epoxide groups.  Epoxy resins are cured with the addition of a curing agent, which is 

commonly called a hardener. The most common type of curing agent is amine based.  In this 

project, Bisphenol-A based epoxides resins (figure 5.3a) cured by diethylenetriamine 

(DETA) (figure 5.3b) were used as matrix materials for self-healing systems.   

  (a) 

   (b) 

Figure 5.3: the structure of (a) Bisphenol-A based epoxide monomer and (b) the cross-

linking agent diethylenetriamine (DETA)  

5.5.2 Fracture toughness test of blank epoxy resin specimens 

 

Figure 5.4: The force-displacement curve for the compact tension test of EpoA1-5. 

The blank epoxy resin specimens (EpoA1-5) were cured by DETA (10 wt. %).  The matrix 

specimens prepared in this ratio were with good toughness, which were not too soft or too 
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brittle.  The fracture toughness of those blank specimens, which did not add any healing 

agents or micro-capsules, were tested by the compact tension geometry.  The fracture 

toughness test were carried out at ambient temperature and the results were recorded by the 

force-displacement curve, figure 5.4.  

The fracture force (P) is obtained in the force-displacement curve above. A value of the 

critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 5.3.  The fracture toughness of the blank epoxy resins is found to be KIC = 

0.801 ± 0.019 MPa·m1/2. 

Table 5.3: The fracture toughness of blank epoxy resin (EpoA1-5) 

Test 
a 

(mm) 

B 

(mm) 

Force 

(N) 
Factor, Y 

KIC 

(MPa·m1/2) 

EpoA1 13.92 6.29 196 5.631 0.783 

EpoA2 15.03 5.24 161 5.856 0.805 

EpoA3 11.30 5.46 183 5.274 0.791 

EpoA4 14.62 5.73 184 5.768 0.826 

EpoA5 11.24 5.36 178 5.269 0.783 
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5.5.3 Fracture toughness of specimen containing micro-capsules 

The epoxy resin specimens containing micro-capsules (EpoB1-5) were prepared to 

investigate influence of micro-capsules on the fracture toughness of the base materials. The 

liquid content of the micro-capsules would not affect the test. Therefore, the micro-capsules 

were prepared by UF micro-encapsulation of styrene. 

The epoxy resin containing micro-capsules (5 wt. %) (EpoB1) were cured by DETA (10 

wt. %). The 5 repeated testing were carried out at ambient temperature and the results were 

recorded by the force-displacement curve, figure 5.5.  

 

Figure 5.5: The force-displacement curve for the compact tension test of EpoB1 

The fracture force (P) is obtained from the force-displacement curve above. A value of the 

critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 5.4. The fracture toughness of EpoB1 is found to be KIC = 0.765 ± 0.029 

MPa·m1/2. 

Table 5.4: The fracture toughness of EpoB1  

Test 
A 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 12.12 5.52 184 5.358 0.797 

2 13.53 5.44 166 5.561 0.759 

3 12.33 5.29 176 5.384 0.799 

4 11.92 5.67 174 5.335 0.730 

5 14.74 5.81 173 5.793 0.771 
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The epoxy resin containing micro-capsules (7.5 wt. %) (EpoB2) were cured by DETA (10 

wt. %). The 5 repeated testing process were carried out at ambient temperature and the 

results were recorded by the force-displacement curve, figure 5.6. 

 

Figure 5.6: The force-displacement curve for the compact tension test of EpoB2 

The fracture force (P) is obtained from the force-displacement curve above. A value of the 

critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 5.5. The fracture toughness of EpoB2 is found to be KIC = 0.768 ± 0.037 

MPa·m1/2. 

Table 5.5: The fracture toughness of EpoB2 

Test 
A 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 13.42 5.29 172 5.543 0.804 

2 11.59 6.21 196 5.301 0.746 

3 14.47 5.74 167 5.737 0.744 

4 16.78 6.11 179 6.291 0.822 

5 15.51 5.94 169 5.966 0.759 

 

The epoxy resin containing micro-capsules (10 wt. %) (EpoB3) were cured by DETA (10 

wt. %). The 5 repeated testing process were carried out at ambient temperature and the 

results were recorded by the force-displacement curve, figure 5.7. 
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Figure 5.7: The force-displacement curve for the compact tension test of EpoB3 

The fracture force (P) is obtained from the force-displacement curve above. A value of the 

critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 5.6. The fracture toughness of EpoB3 is found to be KIC = 0.777 ± 0.044 

MPa·m1/2. 

Table 5.6: The fracture toughness of EpoB3 

Test 
A 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 11.67 5.13 153 5.309 0.708 

2 12.14 5.28 174 5.361 0.788 

3 14.11 5.17 166 5.666 0.811 

4 13.33 5.12 165 5.528 0.794 

5 11.35 5.15 156 5.279 0.713 

 

The epoxy resin containing micro-capsules (15 wt. %) (EpoB4) were cured by DETA (10 

wt. %). The 5 repeated testing process were carried out at ambient temperature and the 

results were recorded by the force-displacement curve, figure 5.8. 

The fracture force (P) is obtained from the force-displacement curve above. A value of the 

critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 5.7. The fracture toughness of Epo-b4 is found to be KIC = 0.752 ± 0.045 

MPa·m1/2. 
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Figure 5.8: The force-displacement curve for the compact tension test of EpoB4 

Table 5.7: The fracture toughness of EpoB4 

Test 
A 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 12.53 5.22 164 5.410 0.758 

2 12.74 5.27 166 5.438 0.764 

3 11.27 5.14 173 5.272 0.791 

4 11.49 5.19 151 5.292 0.686 

5 12.36 5.12 163 5.388 0.765 

  

The epoxy resin containing micro-capsules (20 wt. %) (EpoB5) were cured by DETA (10 

wt. %). The 5 repeated testing process were carried out at ambient temperature and the 

results were recorded by the force-displacement curve, figure 5.9. 

The fracture force (P) is obtained from the force-displacement curve above. A value of the 

critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 5.8. The fracture toughness of Epo-b5 is found to be KIC = 0.746 ± 0.048 

MPa·m1/2. 
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Figure 5.9: The force-displacement curve for the compact tension test of EpoB5 

Table 5.8: The fracture toughness of EpoB5 

Test 
A 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 12.36 5.26 169 5.388 0.772 

2 11.51 5.11 156 5.293 0.723 

3 14.58 5.63 176 5.759 0.803 

4 13.99 5.26 145 5.643 0.693 

5 12.79 5.14 162 5.446 0.765 

 

The fracture toughness of epoxy resin containing 5-20% micro-capsules (EpoB1-5), 

comparing with pure epoxy resin specimens (0% micro-capsules) (EpoA) are shown in 

figure 5.10.  

The fracture toughness of blank epoxy resin (EpoA) was 0.801 ± 0.019 MPa·m1/2. The 

fracture toughness epoxy resin containing 5-20% micro-capsules (EpoB1-5) was found to be 

0.764 ± 0.029, 0.768 ± 0.037, 0.777 ± 0.044, 0.752 ± 0.045, and 0.746 ± 0.048 MPa·m1/2, 

respectively.  The error bars representing standard deviation was between 0.027 and 0.047 

MPa·m1/2 (2.5% ~ 6.7%).  The standard deviation of specimens containing micro-capsules is 

bigger than that of pure epoxy resin of 0.019 MPa·m1/2.  It was caused by the presence 

micro-capsules in the epoxy resin matrix.  Perhaps the difference between the curves in 

figure 5.11 and 5.12, is that in figure 5.12 there is a bundle of micro-capsules directly in front 
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of the crack tip so that as it starts to propagate it is temporarily stopped. Once enough energy 

is stored then the crack travels through this region. One interesting aspect comparing figures 

5.12 and 5.11 is that in 5.12 the crack travels much further on propagation (greater load drop) 

than figure 5.11. Of course, the difference in behaviour could also be due to the state of the 

original crack tip that is introduced. 

 

Figure 5.10: The fracture toughness of epoxy resin containing micro-capsules (5-20 %) 

compared with pure epoxy resin specimen (0) 

  

Figure 5.11: the force and displacement record of blank epoxy resin (EpoA) specimen  
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Figure 5.12: the force and displacement record of specimen containing micro-capsule 

The specimens containing different concentration of micro-capsules (EpoB1-5) slightly 

increased the standard deviation, but no effect on the fracture toughness.  
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5.5.4 Fracture toughness of specimen containing solid healing agents 

The solid healing agents used in this project were MA, MeMal, and EtOCN. In order to 

minimise or prevent the likelihood of any side reaction between the solid healing agents (MA 

and MeMal) and primary amine of DETA curing agent, the process of making specimen for 

self-healing assessment was modified.  This involved mixing bisphenol-A based epoxide 

with DETA and leaving it at ambient temperature for 4 h before the addition of solid healing 

agents (MA and MeMal). This ensured the full consumption of primary amine and hence 

minimising or preventing any side reactions. 

5.5.4.1 Epoxy resin containing maleic anhydride 

The epoxy resin containing MA (5-20 wt. %) (EpoC1-4) were cured by DETA (10 wt. %). 

The 5 repeated testing process were carried out at ambient temperature and the results were 

recorded by the force-displacement curve. 

 

Figure 5.13: The force-displacement curve for the compact tension test of EpoC1 

The force-displacement curve for the compact tension test of EpoC1 containing MA (5 

wt. %) is shown in figure 5.13. The fracture force (P) is obtained in the force-displacement 

curve above. A value of the critical stress intensity factor, KIC, is calculated for each fracture 

event and the results are shown in table 5.9. The fracture toughness of the EpoC1 is found to 

be KIC = 0.767 ± 0.036 MPa·m1/2. 
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Table 5.9: The fracture toughness of EpoC1 

Test 
A 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 12.28 5.57 172 5.378 0.740 

2 13.73 5.24 161 5.596 0.767 

3 13.21 5.47 163 5.509 0.732 

4 15.39 5.63 173 5.938 0.816 

5 11.14 5.66 182 5.261 0.754 

The force-displacement curve for the compact tension test of EpoC2 containing MA (10 

wt. %) is shown in figure 5.14. 

 

Figure 5.14: The force-displacement curve for the compact tension test of EpoC2 

The fracture force (P) is obtained from the force-displacement curve above. A value of the 

critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 5.10. The fracture toughness of the blank epoxy resins is found to be KIC = 

0.667 ± 0.043 MPa·m1/2. 

Table 5.10: The fracture toughness of EpoC2 

Test 
A 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 11.47 5.12 156 5.290 0.718 

2 11.29 5.34 145 5.274 0.638 

3 13.11 5.64 149 5.493 0.647 

4 12.38 5.39 146 5.390 0.651 

5 15.57 5.37 147 5.980 0.730 
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wt. %) is shown in figure 5.15. 

 

Figure 5.15: The force-displacement curve for the compact tension test of EpoC3 

The fracture force (P) is obtained from the force-displacement curve above. A value of the 

critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 5.11. The fracture toughness of the blank epoxy resins is found to be KIC = 

0.576 ± 0.037 MPa·m1/2. 

Table 5.11: The fracture toughness of EpoC3 

Test 
A 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 12.49 5.31 115 5.404 0.521 

2 13.27 5.33 123 5.518 0.570 

3 14.21 5.28 131 5.685 0.628 

4 11.57 5.35 128 5.299 0.567 

5 12.73 5.49 122 5.437 0.540 

 

The force-displacement curve for the compact tension test of EpoC4 containing MA (20 

wt. %) is shown in figure 5.16. 
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Figure 5.16: The force-displacement curve for the compact tension test of EpoC4 

The fracture force (P) is obtained from the force-displacement curve above. A value of the 

critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 5.12. The fracture toughness of the blank epoxy resins is found to be KIC = 

0.549 ± 0.046 MPa·m1/2. 

Table 5.12: The fracture toughness of EpoC4 

Test 
A 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 11.88 5.64 105 5.331 0.442 

2 12.46 5.36 126 5.400 0.568 

3 11.27 5.33 133 5.272 0.588 

4 12.15 5.17 121 5.362 0.559 

5 13.51 5.26 102 5.558 0.482 

The fracture toughness of epoxy resin containing different concentration of MA is compared 

and showed in figure 5.17.  As the concentration of MA increased, the fracture toughness of 

the epoxy resin specimens was decreased.  It has been reported that anhydrides is able to 

cross-link epoxy resin at 155 °C.10  The preparation of the epoxy resin specimen for this 

project was carried out at 50 °C at which test carried out here showed no evidence for cross-

linking bisphenol-A based epoxide with MA. The possibility of cross-linking of bisphenol-A 

based epoxide with MA is the presence of amine cannot be investigated.  This is due to rapid 

cross-linking reaction between bisphenol-A and amine.  

Also, there is a possibility of side reaction between MA and amine group of DETA curing 
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agent. This side reaction is likely to reduce the cross-link density and hence the fracture 

toughness. As it is mentioned in the section 5.4.4, the process of preparation of specimen 

containing MA was modified to minimise or prevent the side reaction. The decrease in the 

fracture toughness is possible due the presence of small amount of side reaction.  

 

Figure 5.17: the fracture toughness of epoxy resin containing MA (EpoB1-5) 

 

5.5.4.2 Epoxy resin containing N-methylmaleimide 

The specimen containing MeMal (5-20 wt. %) (EpoD1-4) were cured by DETA (10 wt. %). 

The 5 repeated testing processes were carried out at ambient temperature and the results were 

recorded by the force-displacement curve. The force-displacement curve for the compact 

tension test of EpoD1 containing MeMal (5 wt. %) is shown in figure 5.18. The fracture 

force (P) is obtained from the force-displacement curve above. A value of the critical stress 

intensity factor, KIC, is calculated for each fracture event and the results are shown in table 

5.13. The fracture toughness of the blank epoxy resins is found to be KIC = 0.766 ± 0.037 

MPa·m1/2. 

Table 5.13: The fracture toughness of EpoD1 

Test 
A 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 12.36 5.27 170 5.388 0.775 

2 12.58 5.31 164 5.416 0.748 

3 11.23 5.43 168 5.268 0.727 

4 14.55 5.17 156 5.753 0.774 

5 13.66 5.42 177 5.584 0.813 
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Figure 5.18: The force-displacement curve for the compact tension test of EpoD1 

The force-displacement curve for the compact tension test of EpoD2 containing MeMal (10 

wt. %) is shown in figure 5.19. 

 

Figure 5.19: The force-displacement curve for the compact tension test of EpoD2 

The fracture force (P) is obtained from the force-displacement curve above. A value of the 

critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 5.14. The fracture toughness of the blank epoxy resins is found to be KIC = 

0.715 ± 0.057 MPa·m1/2. 
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Table 5.14: The fracture toughness of EpoD2 

Test 
A 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 13.53 5.33 161 5.561 0.749 

2 12.63 5.82 153 5.423 0.638 

3 13.68 5.49 156 5.587 0.708 

4 14.77 5.37 157 5.799 0.758 

5 11.94 5.41 172 5.338 0.757 

 

The force-displacement curve for the compact tension test of EpoD3 containing MeMal (15 

wt. %) is shown in figure 5.20. The fracture force (P) is obtained from the force-

displacement curve above. A value of the critical stress intensity factor, KIC, is calculated for 

each fracture event and the results are shown in table 5.15. The fracture toughness of the 

blank epoxy resins is found to be KIC = 0.648 ± 0.054 MPa·m1/2. 

 

Figure 5.20: The force-displacement curve for the compact tension test of EpoD3 

Table 5.15: The fracture toughness of EpoD3 

Test 
A 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 12.75 5.13 144 5.440 0.683 

2 11.34 5.15 139 5.278 0.635 

3 13.52 5.11 124 5.560 0.601 

4 11.92 5.21 159 5.335 0.726 

5 13.46 5.17 132 5.550 0.631 
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The force-displacement curve for the compact tension test of EpoD4 containing MeMal (20 

wt. %) is shown in figure 5.21. The fracture force (P) is obtained from the force-

displacement curve above. A value of the critical stress intensity factor, KIC, is calculated for 

each fracture event and the results are shown in table 5.16. The fracture toughness of the 

blank epoxy resins is found to be KIC = 0.602 ± 0.042 MPa·m1/2.  

Table 5.16: The fracture toughness of EpoD4 

Test 
A 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 11.63 5.14 136 5.305 0.625 

2 11.29 5.11 142 5.274 0.653 

3 12.11 5.24 121 5.357 0.551 

4 12.28 5.19 129 5.378 0.598 

5 13.02 5.12 127 5.479 0.608 

 

Figure 5.21: The force-displacement curve for the compact tension test of EpoD4 

The fracture toughness of epoxy resin containing different concentration of MeMal is 

compared and showed in figure 5.22.  As the concentration of MeMal increased, the fracture 

toughness of the epoxy resin specimens was decreased.  There is a possibility of side reaction 

between MeMal and amine group of DETA curing agent. This side reaction is likely to 

reduce the cross-link density and hence the fracture toughness. As it is mentioned in the 

section 5.4.4, the process of preparation of specimen containing MeMal was modified to 

minimise or prevent the side reaction. The decrease in the fracture toughness is possible due 

the presence of small amount of side reaction. 
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Figure 5.22: the fracture toughness of epoxy resin containing MeMal 

 

5.5.4.3 Epoxy resin containing ethoxymethylene malononitrile 

The epoxy resin containing EtOCN (5-20 wt. %) (EpoE1-4) were cured by DETA (10 

wt. %). The 5 repeated testing process were carried out at ambient temperature and the 

results were recorded by the force-displacement curve.  

The force-displacement curve for the compact tension test of EpoE1 containing EtOCN (5 

wt. %) is shown in figure 5.23. 

 

Figure 5.23: The force-displacement curve for the compact tension test of EpoE1 
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The fracture force (P) is obtained from the force-displacement curve above. A value of the 

critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 5.17. The fracture toughness of the blank epoxy resins is found to be KIC = 

0.791 ± 0.014 MPa·m1/2. 

Table 5.17: The fracture toughness of EpoE1 

Test 
A 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 12.56 5.03 166 5.414 0.799 

2 13.77 5.11 166 5.603 0.812 

3 13.23 5.05 161 5.512 0.783 

4 14.01 5.16 160 5.647 0.783 

5 13.78 5.25 165 5.605 0.785 

The force-displacement curve for the compact tension test of EpoE2 containing EtOCN (10 

wt. %) is shown in figure 5.24. The fracture force (P) is obtained from the force-

displacement curve above. A value of the critical stress intensity factor, KIC, is calculated for 

each fracture event and the results are shown in table 5.18. The fracture toughness of the 

blank epoxy resins is found to be KIC = 0.792 ± 0.022 MPa·m1/2. 

 

Figure 5.24: The force-displacement curve for the compact tension test of EpoE2 
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Table 5.18: The fracture toughness of EpoE2 

Test 
A 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 13.02 5.16 168 5.479 0.798 

2 12.74 5.17 164 5.438 0.772 

3 12.65 5.09 166 5.426 0.789 

4 15.72 5.11 149 6.016 0.785 

5 13.16 5.13 172 5.501 0.822 

The force-displacement curve for the compact tension test of EpoE3 containing EtOCN (15 

wt. %) is shown in figure 5.25. The fracture force (P) is obtained from the force-

displacement curve above. A value of the critical stress intensity factor, KIC, is calculated for 

each fracture event and the results are shown in table 5.19. The fracture toughness of the 

blank epoxy resins is found to be KIC = 0.758 ± 0.028 MPa·m1/2. 

 

Figure 5.25: The force-displacement curve for the compact tension test of EpoE3 

Table 5.19: The fracture toughness of EpoE3 

Test 
A 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 12.91 5.34 170 5.463 0.775 

2 12.02 5.28 163 5.347 0.736 

3 13.44 5.15 165 5.546 0.795 

4 11.24 5.14 161 5.269 0.736 

5 11.99 5.19 167 5.343 0.767 
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wt. %) is shown in figure 5.26.  

 

Figure 5.26: The force-displacement curve for the compact tension test of EpoE4 

The fracture force (P) is obtained from the force-displacement curve above. A value of the 

critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 5.20. The fracture toughness of the blank epoxy resins is found to be KIC = 

0.781 ± 0.045 MPa·m1/2. 

Table 5.20: The fracture toughness of Epo-e4 

Test 
A 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 10.99 5.41 171 5.249 0.740 

2 11.26 5.31 176 5.271 0.779 

3 11.31 5.01 170 5.275 0.798 

4 13.42 5.22 174 5.543 0.826 

5 11.78 5.27 160 5.320 0.720 

 

The fracture toughness of epoxy resin containing different concentration of EtOCN is 

compared and showed in figure 5.27.  As the concentration of EtOCN increased, the fracture 

toughness of the epoxy resin specimens did not change much.  The EtOCN does not have 

any side reaction with DETA. 
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Figure 5.27: the fracture toughness of epoxy resin containing EtOCN 

In summary, MA and MeMal reduced the fracture toughness of epoxy resin. For the self-

healing specimens, 10% solid healing was added into the matrix. It will not only keep the 

fracture toughness closed to the pure epoxy resin, but also provide enough monomers for the 

polymerisation of healing agents. The fracture toughness of epoxy resin was between 0.65-

0.7 MPa·m1/2, figure 5.28.  

 

Figure 5.28: the fracture toughness of epoxy resin implanted 10% different solid healing 

agents  
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5.6 Conclusion 

The blank epoxy resin specimens were prepared using Bisphenol-A based epoxide and 

diethylenetriamine (DETA) (10 wt. %) as the curing agent and the fracture toughness was 

measured to be KIC = 0.801 ± 0.019 MPa·m1/2.  The epoxy resin specimens containing 5-

20% micro-capsules were prepared and their fracture toughness was investigated. The 

inclusion of micro-capsules did not change the fracture toughness of matrix.  The epoxy 

resin specimens containing solid healing agents (MA, MeMal, and EtOCN) were also 

prepared and their fracture toughness was investigated. Solid healing agents MA and MeMal 

reduced the fracture toughness of epoxy resin matrix as the amount increased. Therefore, 

specimens were prepared with 10% added solid healing agents as this amount gave minimum 

reduction of fracture toughness. There is a possibility of side reaction between MA (or 

MeMal) and amine group of DETA curing agent which is likely to reduce the cross-link 

density and hence the fracture toughness. The process of preparation of specimen containing 

MA (or MeMal) was modified involving mixing bisphenol-A based epoxide with DETA and 

leaving it at ambient temperature for 4 h before the addition of solid healing agents (MA and 

MeMal). This ensured close to full consumption of primary amine and hence minimising or 

preventing side reactions. However, the fracture toughness of the specimen did not change 

by adding EtOCN solid healing agent into the epoxy resin matrix due to the lack of any side 

reaction between EtOCN and DETA.  
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6.1 Introduction 

Capsule-based self-healing system in this project is based on epoxy resin matrix and urea-

formaldehyde micro-capsules (figure 6.1). Epoxy resin is selected as matrix materials for 

fracture toughness test. The liquid healing agents (4MeOst, DVB, St, and their mixtures) are 

encapsulated by urea-formaldehyde micro-capsules, which is added into the epoxy resin 

matrix and acting as the triggers. When the damage occurring in the epoxy resin matrix, it 

will rupture micro-capsules and release the liquid healing agent. The solid healing agents 

(MA, MeMal, and EtOCN) are dispersed in the epoxy resin, which will polymerise with the 

liquid healing agents released by the micro-capsules. 

 

Figure 6.1: the design of self-healing specimens 

The self-healing performance was assessed by fracture toughness recovery. To quantify 

healing, the healing efficiency (η) as a ratio of changes in material properties was defined as 

equation 6.1. 

η =
𝐾𝐼𝐶 ℎ𝑒𝑎𝑙𝑒𝑑

𝐾𝐼𝐶 𝑜𝑟𝑖𝑔𝑒𝑛𝑎𝑙
× 100%                                        Eq. 6.1 

Where KIC the stress intensity factor: the fracture toughness measured by compact tension. 
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6.2 Materials  

Maleic anhydride (MA), 4-methoxystyrene (4MeOSt), divinylbenzene (DVB), styrene (St), 

ethoxymethylene malononitrile (EtOCN), N-methylmaleimide (MeMal), and 

Diethylenetriamine (DETA) were purchased from Aldrich and used as supplied.  Bisphenol-

A based epoxide (EPON 828) resin was purchased from HexionTM Specialty Chemicals. 

6.3 Instrumentation 

Fracture testing of the specimens was performed on an RDP servo-mechanical testing 

machine at a crosshead speed of 0.5 mm/ min, using compact tension geometry. This test was 

carried out in University of Leeds. 
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6.4 Experimental 

6.4.1 Self-healing performance via injection 

6.4.1.1 The preparation of specimen 

DETA (10 wt. %) was added to bisphenol-A based epoxide resin, stirred and the final 

mixture was degassed. The mixture was kept at ambient temperature for 4 h.   Then the 

finely powdered solid healing agents monomers (10 wt. %) was added, stirred thoroughly 

and the mixture was degassed again. The mixture was then poured into a closed Teflon 

mould (60 mm × 50 mm × 5 mm) with silicon seals and cured for 24 h at ambient 

temperature. The specimen was further cured at 50 °C for 24 h, and cooled to ambient 

temperature to collect the specimen. 

6.4.1.2 The fracture toughness recovery test 

Fracture tests were carried out at ambient temperature using the compact tension geometry 

shown in figure 6.2, where the dimensions are 60 mm × 50 mm × 5 mm and a is the starting 

crack length; B is the specimen thickness and W is loading width of the specimen.  The 

specimen shape is rectangular with loading holes placed 10 mm from the specimen surfaces. 

A 20 mm long crack was first sawn into the specimen, followed by tapping the sharp pre-

crack.  

 

Figure 6.2: the geometry of the specimens for the compact tension 

For the first test, the specimen was loaded until crack propagated to the end of the specimen. 

The specimen was removed from the testing machine and liquid healing agents (~0.1 mL) 

(4MeOSt, DVB, St, or their mixtures) was injected on the surface of the crack, and then left 

at 50 C̊ or ambient temperature for the required healing time. The specimens were again 



Chapter 6 Assessment of Self-Healing Performance 

155 
 

placed into the testing machine and reloaded. For this second test, the specimens were loaded 

until the ‘healed’ section broke. The testing process was recorded by the force-displacement 

curve. 

6.4.2 Self-healing performance via micro-capsules 

6.4.2.1 The preparation of specimen 

DETA (10 wt. %) was added to bisphenol-A based epoxide resin, stirred and the final 

mixture was degassed. The micro-capsules (with content of 4MeOSt, DVB, St, or their 

mixtures) (10-20 wt. %) was added, stirred thoroughly to ensure uniform distribution and the 

mixture was degassed. The mixture was kept at ambient temperature for 4 h.  Then the finely 

powdered solid healing agent (MA, MeMal, or EtOCN) (10 wt. %) was added, stirred 

thoroughly and the mixture was degassed again. The mixture was then poured into a closed 

Teflon mould (60 mm × 50 mm × 5 mm) with silicon seals and cured for 24 h at ambient 

temperature. The specimen was further cured at 50 °C for 24 h, and cooled to ambient 

temperature to collect the specimen. 

6.4.2.2 The fracture toughness recovery test 

Fracture tests were carried out at ambient temperature using the compact tension geometry 

(60 mm × 50 mm × 5 mm), figure 6.2.  The specimen shape is rectangular with loading holes 

placed 10 mm from the specimen surfaces. A 20 mm long crack was first sawn into the 

specimen, followed by tapping the sharp pre-crack. Taking into account the unloaded area of 

10 mm, the starter crack was therefore of the order of 15 mm. For the first test, the specimen 

was loaded until crack initiation occurred. The fracture behaviour was brittle in all cases, 

such that on initiation the crack travelled a certain distance across the specimen. This test 

gave the original fracture toughness of specimens. At this point the specimen was removed 

from the testing machine and left at 50 C̊ or ambient temperature for the required healing 

time. Then, the specimens were again placed into the testing machine and reloaded. For this 

second test, the specimens were loaded until the ‘healed’ section broke, and then loaded 

further to propagate a new crack. This new crack was then left again for the required healing 

time. This testing strategy continued until the specimen was finally cracked in two.  The 

testing process was recorded by the force-displacement curve. 
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6.4.3 The list of specimen prepared for self-healing performance test  

The self-healing systems designed in this project are shown below, which were based on 

micro-encapsulation or injection of liquid healing agents (4MeOSt, DVB, St, and their 

mixtures) with solid healing agents (MA, MeMal, and EtOCN) added to the epoxy resin 

matrix. According to the polymer product formed by copolymerisation of healing agents, 

there are two self-healing system: linear polymer system and cross-linked polymer system. 

The specimens prepared for healing performance assessment of linear polymer system via 

injection of liquid healing agents are shown in table 6.1. 

Table 6.1: The self-healing specimen for linear polymer system via injection 

Specimen 
Liquid healing agents Solid healing agents 

Name mL Name wt.%, g 

LI01 4MeOSt 0.1 MA 10, 2 

LI02 St 0.1 MA 10, 2 

LI03 4MeOSt 0.1 MeMal 10, 2 

LI04 4MeOSt 0.1 EtOCN 10, 2 

The specimens prepared for healing performance assessment of linear polymer system via 

micro-encapsulation of liquid healing agents are shown in table 6.2. 

Table 6.2: The self-healing specimen for linear polymer system via micro-capsules 

Specimen 
Micro-capsules Solid healing agents 

Name wt.%, g Name wt.%, g 

LM01 

4MeOSt 

10, 2 

MA 

10, 2 

LM02 15, 3 10, 2 

LM03 20, 4 10, 2 

LM04 

St 

10, 2 

MA 

10, 2 

LM05 15, 3 10, 2 

LM06 20, 4 10, 2 

LM07 

4MeOSt 

10, 2 

MeMal 

10, 2 

LM08 15, 3 10, 2 

LM09 20, 4 10, 2 

LM10 

4MeOSt 

10, 2 

EtOCN 

10, 2 

LM11 15, 3 10, 2 

LM12 20, 4 10, 2 

The specimens prepared for healing performance assessment of cross-linked polymer system 

via injection of liquid healing agents are shown in table 6.3. 
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Table 6.3: The self-healing specimen for cross-linked polymer system via injection 

Specimen 
Liquid healing agents Solid healing agents 

Name mL Name wt.%, g 

XI01 DVB 0.1 MA 10, 2 

XI02 4MeOSt+DVB 0.08+0.02 MA 10, 2 

XI03 St+DVB 0.08+0.02 MA 10, 2 

XI04 DVB 0.1 MeMal 10, 2 

XI05 4MeOSt+DVB 0.08+0.02 MeMal 10, 2 

The specimens prepared for healing performance assessment of cross-linked polymer system 

via micro-encapsulation of liquid healing agents are shown in table 6.4. 

Table 6.4: The self-healing specimen for cross-linked polymer system via micro-capsules 

Specimen 
Micro-capsules Solid healing agents 

Name mL Name wt.%, g 

XM01 

DVB 

10, 2 MA 10, 2 

XM02 15, 3  10, 2 

XM03 20, 4  10, 2 

XM04 

4MeOSt+DVB 

10, 2 MA 10, 2 

XM05 15, 3  10, 2 

XM06 20, 4  10, 2 

XM07 

St+DVB 

10, 2 MA 10, 2 

XM08 15, 3  10, 2 

XM09 20, 4  10, 2 

XM10 

DVB 

10, 2 MeMal 10, 2 

XM11 15, 3  10, 2 

XM12 20, 4  10, 2 

XM13 

4MeOSt+DVB 

10, 2 MeMal 10, 2 

XM14 15, 3  10, 2 

XM15 20, 4  10, 2 
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6.5 Results and discussion 

6.5.1 Self-healing performance for linear polymer system 

6.5.1.1 Via injection of liquid healing agents 

In order to evaluate the healing efficiency of the self-healing system, the liquid healing 

agents were injected into the crack of the specimen containing solid healing agents. The 

liquid and solid healing agents were expected to polymerise and formed linear polymer to fill 

the crack based on previously results discussed in Chapter 2. The fracture toughness of 

specimen after healed was investigated and compared with the virgin fracture toughness of 

the specimen using Eq. 6.1 to give the healing efficiency. 

The self-healing performance for linear polymer system via injection of liquid healing agents 

(LI01-04) was investigated. LI01 and LI02 is the specimen containing MA and injected 

4MeOSt and St, respectively, into the crack. LI03 is the specimen containing MeMal and 

injected 4MeOSt into the crack. LI04 is the specimen containing EtOCN and injected 

4MeOSt into the crack. The healing process was undertaken at 50 °C for 24 h. The fracture 

toughness tests were undertaken at ambient temperature. Figure 6.3 shows that LI01-04 

exhibited 42%, 49%, 32%, and 57% healing efficiency.  

 

Figure 6.3: the healing efficiency of LI01-04 at 50 °C for 24 h via injection 
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6.5.1.2 Via micro-encapsulation of liquid healing agents 

The specimen prepared by adding micro-capsules containing liquid healing agents and solid 

healing agents are expected to exhibit an autonomous self-healing process, upon the release 

of liquid healing agent when crack propagates through the matrix. The self-healing 

performance for linear polymer system via micro-encapsulation of liquid healing agents 

(LM01-12) was investigated. 

Specimen LM01 containing MA (solid healing agents, 10 wt. %) and 4MeOSt (micro-

capsules, 10 wt. %) was investigated for their self-healing performance by fracture toughness 

recovery using the compact tension test. The self-healing process was carried out at 50 °C for 

24 h, the compact tension test was at ambient temperature and the results were recorded by 

the force-displacement curve. 

The specimen was investigated for the self-healing performance by fracture toughness 

recovery using the compact tension test. The fracture tests were carried out at ambient 

temperature using the compact tension geometry (60 mm × 50 mm × 5 mm) with a pre-crack 

ended at position 1, figure 6.4. This was chosen because the specimen size (60 mm × 50 mm 

× 5 mm) is both a convenient volume for synthesis but also wide enough so that on fracture 

the crack does not travel completely across the specimen. This is critical because in order to 

assess healing, the specimen has to be first cracked, healed, and then retested.   

 

Figure 6.4: the crack propagated positions in the specimens 

For the first test, the specimen was loaded in tension until the crack started to propagate. 

Figure 6.5(a) shows the force displacement curve, with the load falling rapidly as the crack 

propagated unstably from position 1 to 2.  After the unstable fracture, the specimen was 

immediately removed from the testing machine and left to heal for the 24h. A second test 
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was then carried out. If the specimen had healed, then on loading it would be expected to 

follow the gradient of the first test until the healed surface cracked, at which point the crack 

would propagate to the end of the healed section (figure 6.4, position 2). As the gradient, or 

compliance, is governed by the crack length, this is a very good indication of whether 

healing has taken place. Figure 6.5(b) shows the force displacement curve for the second 

test. With the initial loading of the healed section, the fracture of the healed section (figure 

6.4, position 1 to 2), then the loading of the specimen at crack position 2 until unstable 

fracture again occurs and the crack travels to position 3, opening more capsules and starting 

the healing process between positions 2 and 3. 

 

(a)                                                                (b) 

 

(c) 

Figure 6.5: the force displacement curve of self-healing specimen SHA1, (a) the first test 

curve, (b) the second test curve, and (c) the three tests combined curve. 

Figure 6.5c shows the superposition of the force displacement curves for the first and second 

tests. It is seen that the gradient of the second test is very similar to the first test on the virgin 
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material. Once the healed section fractures, the gradient is seen to be lower (the crack now 

being loaded at position 2), and passes through the position of the first test where the test was 

stopped. The fracture toughness of the healed section is given by the load at position 1 from 

the second tests and this is compared to the ‘virgin’ material value from position 1 from the 

first test. 

After the second test, the specimen was again left for the requisite healing time, which for 

this specimen was 24 h, and then retested. Figure 6.5c shows the force/displacement curve of 

the third test superimposed on the first and second tests. For the third test, healed back to 

position 2, the gradient is similar to that of the second test when loading at position 2. After 

the healed section fractured, the gradient was lower and intersected the force/displacement 

test of the second test as it was stopped at position 3. 

The fracture force (P) is obtained from the force-displacement curve, figure 6.5c (in section 

6.4.1). A value of the critical stress intensity factor, KIC, is calculated for each fracture event 

and the results are shown in table 6.5.  The fracture toughness of original specimen is given 

by Test 1, Test 2 (when the crack propagating from position 2-3), and Test 3 (when the crack 

propagating from position 3 to the end of the specimen), which is found to be KIC = 0.775 ± 

0.010 MPa·m1/2.  Therefore, the first and second healing process gave 31% and 43% healing 

efficiency, respectively.  

Table 6.5: The fracture toughness of LM01 

Test 
*Crack 

position 

a 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 1 12 6.45 206 5.344 0.763 (Original) 

2 
0-1 10 6.45 66 5.194 0.238 (Healed) 

2 24 6.45 124 9.060 0.779 (Original) 

3 
1-2 24 6.45 54 9.060 0.336 (Healed) 

3 37 6.45 43 26.549 0.782 (Original) 

*The crack position is showed in figure 6.4.  

Specimen LM02 containing MA (solid healing agents, 10 wt. %) and 4MeOSt (micro-

capsules, 15 wt. %) was investigated for their self-healing performance by fracture toughness 

recovery using the compact tension test. The self-healing process was carried out at 50 °C for 

24 h, the compact tension test was at ambient temperature and the results were recorded by 

the force-displacement curve.  
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Figure 6.6: the force displacement curve of self-healing specimen LM02 

The fracture force (P) is obtained from the force-displacement curve, figure 6.6. A value of 

the critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 6.6.   

Table 6.6: The fracture toughness of LM02 

Test 
*Crack 

position 

a 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 1 14 5.22 161 5.575 0.769 (Original) 

2 
0-1 10 5.22 73 5.194 0.325 (Healed) 

2 27 5.22 83 10.888 0.774 (Original) 

3 
1-2 27 5.22 37 10.888 0.345 (Healed) 

3 42 5.22 17 53.453 0.779 (Original) 

*The crack position is showed in figure 6.4. 

The fracture toughness of original specimen is given by Test 1, Test 2 (when the crack 

propagating from position 2-3), and Test 3 (when the crack propagating from position 3 to 

the end of the specimen), which is found to be KIC = 0.778 ± 0.047 MPa·m1/2.  Therefore, the 

first and second healing process gave 42% and 45% healing efficiency, respectively.  

Specimen LM03 containing MA (solid healing agents, 10 wt. %) and 4MeOSt (micro-

capsules, 20 wt. %) was investigated for their self-healing performance by fracture toughness 

recovery using the compact tension test. The self-healing process was carried out at 50 °C for 

24 h, but the compact tension test was at ambient temperature and the results were recorded 
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by the force-displacement curve. 

 

Figure 6.7: the force displacement curve of self-healing specimen LM03 

The fracture force (P) is obtained from the force-displacement curve, figure 6.7. A value of 

the critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 6.7.  The fracture toughness of original specimen is given by Test 1, Test 2 

(when the crack propagating from position 2-3), and Test 3 (when the crack propagating 

from position 3 to the end of the specimen), which is found to be KIC = 0.762 ± 0.015 

MPa·m1/2.  Therefore, the first and second healing process gave 43% and 45% healing 

efficiency, respectively.  

Table 6.7: The fracture toughness of LM03 

Test 
*Crack 

position 

a 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 1 11 5.31 169 5.265 0.749 (Original) 

2 
0-1 10 5.31 74 5.194 0.324 (Healed) 

2 23 5.31 108 8.567 0.779 (Original) 

3 
1-2 23 5.31 49 8.567 0.354 (Healed) 

3 39 5.31 27 33.303 0.757 (Original) 

*The crack position is showed in figure 6.4. 

The healing efficiency of specimen LM01-03 was compared in the figure 6.8.  The micro-

capsules were added in an ascending order (10%, 15%, 20%) to the specimen LM01-03, 
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which was supposed to increase the amount of 4MeOSt releasing from the micro-capsules. 

As the concentration of micro-capsules increased, the healing efficiency of the specimens 

kept steady. It is caused by the distribution of micro-capsules in the matrix was 

uncontrollable as well as the amount of micro-capsules broken by the crack, whether the 

amount of 4MeOSt releasing from those micro-capsules was increasing was actually 

uncertain.  

 

Figure 6.8: the healing efficiency of LM01-03 at 50 °C for 24 h 

Specimen LM04 containing MA (solid healing agents, 10 wt. %) and St (micro-capsules, 10 

wt. %) were investigated for their self-healing performance by fracture toughness recovery 

using the compact tension test.  

 

Figure 6.9: the force displacement curve of self-healing specimen LM04 
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The self-healing process was carried out at 50 °C for 7 days, but the compact tension test 

was at ambient temperature and the results were recorded by the force-displacement curve. 

The fracture force (P) is obtained from the force-displacement curve, figure 6.9. A value of 

the critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 6.8.   

Table 6.8: The fracture toughness of LM04 

Test 
Crack 

position 

a 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 1 13 5.06 139 5.54 0.680 (Original) 

2 
0-1 10 5.06 18 5.19 0.083 (Healed) 

2 33 5.06 46 17.58 0.715 (Original) 

3 
1-2 33 5.06 8 17.58 0.091 (Healed) 

Cracked 50 5.06 0 121.70 0 

*The crack position is showed in figure 6.4. 

The fracture toughness of original specimen is given by Test 1, Test 2 (when the crack 

propagating from position 2-3), and Test 3 (when the crack propagating from position 3 to 

the end of the specimen), which is found to be KIC = 0.697 MPa·m1/2.  Therefore, the first 

and second healing process gave 12% and 13% healing efficiency, respectively.  

Specimen LM05 containing MA (solid healing agents, 10 wt. %) and St (micro-capsules, 15 

wt. %) were investigated for their performance by fracture toughness recovery using the 

compact tension test.  

 

Figure 6.10: the force displacement curve of self-healing specimen LM05 

157

20

114

14

43

0

50

100

150

200

0 0.1 0.2 0.3 0.4 0.5

F
o

rc
e 

(N
)

Displacement (mm)

Test 1

Test 2

Test 3



Chapter 6 Assessment of Self-Healing Performance 

166 
 

The self-healing process was carried out at 50 °C for 7 days, but the compact tension test 

was at ambient temperature and the results were recorded by the force-displacement curve. 

The fracture force (P) is obtained in the force-displacement curve, figure 6.10. A value of the 

critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 6.9.  The fracture toughness of original specimen is given by Test 1, Test 2 

(when the crack propagating from position 2-3), and Test 3 (when the crack propagating 

from position 3 to the end of the specimen), which is found to be KIC = 0.727 MPa·m1/2.  

Therefore, the first and second healing process gave both 12% healing efficiency.  

Table 6.9: The fracture toughness of LM05 

Test 
Crack 

position 

a 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 1 12 5.14 157 5.344 0.730 (Original) 

2 
0-1 10 5.14 20 5.194 0.090 (Healed) 

2 20 5.14 114 7.324 0.726 (Original) 

3 
1-2 20 5.14 14 7.324 0.089 (Healed) 

3 34 5.14 43 19.365 0.725 (Original) 

*The crack position is showed in figure 6.4. 

Specimen LM06 containing MA (solid healing agents, 10 wt. %) and St (micro-capsules, 20 

wt. %) were investigated the self-healing performance by fracture toughness recovery using 

the compact tension test.  

 

Figure 6.11: the force displacement curve of self-healing specimen LM06 
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The self-healing process was carried out at 50 °C for 7 days, but the compact tension test 

was at ambient temperature and the results were recorded by the force-displacement curve.  

The fracture force (P) is obtained from the force-displacement curve, figure 6.11. A value of 

the critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 6.10.  The fracture toughness of original specimen is given by Test 1, Test 2 

(when the crack propagating from position 2-3), and Test 3 (when the crack propagating 

from position 3 to the end of the specimen), which is found to be KIC = 0.708 MPa·m1/2.  

Therefore, the first and second healing process gave 13% and 14% healing efficiency, 

respectively.  

Table 6.10: The fracture toughness of LM06 

Test 
Crack 

position 

a 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 1 13 5.27 152 5.476 0.706 (Original) 

2 
0-1 10 5.27 22 5.194 0.097 (Healed) 

2 29 5.27 67 12.535 0.713 (Original) 

3 
1-2 29 5.27 10 12.535 0.106 (Healed) 

3 38 5.27 28 29.697 0.706 (Original) 

*The crack position is showed in figure 6.4. 

The healing efficiency of LM04-06 was compared in the figure 6.12. As the concentration of 

micro-capsules increased, the healing efficiency of the specimens increased slightly.  

 

Figure 6.12: the healing efficiency of LM04-06 at 50 °C for 7 days 
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Specimen LM07 containing MeMal (solid healing agents, 10 wt. %) and 4MeOSt (micro-

capsules, 10 wt. %) were investigated for the self-healing performance by fracture toughness 

recovery using the compact tension test. The self-healing process was carried out at 50 °C for 

7 days. The compact tension test was at ambient temperature and the results were recorded 

by the force-displacement curve, figure 6.13. 

 

Figure 6.13: the force displacement curve of self-healing specimen LM07 

The fracture force (P) is obtained from the force-displacement curve figure 6.13. A value of 

the critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 6.11.  The fracture toughness of original specimen is given by Test 1, Test 2 

(when the crack propagating from position 2-3), and Test 3 (when the crack propagating 

from position 3 to the end of the specimen), which is found to be KIC = 0.711 MPa·m1/2.  

Therefore, the first and second healing process gave 22% and 25% healing efficiency, 

respectively.  

Table 6.11: The fracture toughness of LM07 

Test 
Crack 

position 

a 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 1 12 5.54 167 5.344 0.720 (Original) 

2 
0-1 10 5.54 38 5.194 0.159 (Healed) 

2 25 5.54 91 9.603 0.705 (Original) 

3 
1-2 25 5.54 23 9.603 0.187 (Healed) 

3 37 5.54 33 26.549 0.707 (Original) 
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Specimen LM08 containing MeMal (solid healing agents, 10 wt. %) and 4MeOSt (micro-

capsules, 15 wt. %) were investigated for the self-healing performance using the compact 

tension test. The self-healing process was carried out at 50 °C for 7 days. The compact 

tension test was at ambient temperature and the results were recorded by the force-

displacement curve. 

 

Figure 6.14: the force displacement curve of self-healing specimen LM08 

The fracture force (P) is obtained from the force-displacement curve, figure 6.14. A value of 

the critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 6.12.  The fracture toughness of original specimen is given by Test 1, Test 2 

(when the crack propagating from position 2-3), and Test 3 (when the crack propagating 

from position 3 to the end of the specimen), which is found to be KIC = 0.724 MPa·m1/2.  

Therefore, the first and second healing process gave 27% and 24% healing efficiency, 

respectively.  

Table 6.12: The fracture toughness of LM08 

Test 
Crack 

position 

a 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 1 14 5.05 142 5.645 0.710 (Original) 

2 
0-1 10 5.05 42 5.194 0.193 (Healed) 

2 39 5.05 25 33.303 0.737 (Original) 

3 
1-2 39 5.05 6 33.303 0.177 (Healed) 

Cracked 50 5.05 0 121.700 0 

*The crack position is showed in figure 6.4. 
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Specimen LM09 containing MeMal (solid healing agents, 10 wt. %) and 4MeOSt (micro-

capsules, 20 wt. %) were investigated for the self-healing performance using the compact 

tension test. The self-healing process was carried out at 50 °C for 7 days. The compact 

tension test was at ambient temperature and the results were recorded by the force-

displacement curve. 

 

Figure 6.15: the force displacement curve of self-healing specimen LM09 

The fracture force (P) is obtained in the force-displacement curve, figure 6.15. A value of the 

critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 6.13.  The fracture toughness of original specimen is given by Test 1, Test 2 

(when the crack propagating from position 2-3), and Test 3 (when the crack propagating 

from position 3 to the end of the specimen), which is found to be KIC = 0.706 MPa·m1/2.  

Therefore, the first and second healing process gave 23% and 28% healing efficiency, 

respectively.  

Table 6.13: The fracture toughness of LM09 

Test 
Crack 

position 

a 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 1 11 5.42 164 5.250 0.711 (Original) 

2 
0-1 10 5.42 39 5.194 0.167 (Healed) 

2 24 5.42 91 9.060 0.680 (Original) 

3 
1-2 24 5.42 26 9.060 0.194 (Healed) 

3 31 5.42 60 14.699 0.728 (Original) 
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The healing efficiency of LM07-09 is compared in the figure 6.16. As the concentration of 

micro-capsules (10-20%) increased, the healing efficiency of the specimens (LM07-09) 

increased slightly. 

 

Figure 6.16: the healing efficiency of MeOSt-MeMal self-healing system at 50 °C for 24 h 

Specimen LM10 containing EtOCN (solid healing agents, 10 wt. %) and 4MeOSt (micro-

capsules, 10 wt. %) were investigated for the self-healing performance using the compact 

tension test. The self-healing process was carried out at 50 °C for 24 h. The compact tension 

test was at ambient temperature and the results were recorded by the force-displacement 

curve. 

The fracture force (P) is obtained from the force-displacement curve, figure6.17. A value of 

the critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 6.14.  The fracture toughness of original specimen is given by Test 1, Test 2 

(when the crack propagating from position 2-3), and Test 3 (when the crack propagating 

from position 3 to the end of the specimen), which is found to be KIC = 0.792 MPa·m1/2.  

Therefore, the first and second healing process gave 48% and 53% healing efficiency, 

respectively.  
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Figure 6.17: the force displacement curve of self-healing specimen LM10 

Table 6.14: The fracture toughness of LM10 

Test 
Crack 

position 

a 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 1 12 5.46 181 5.344 0.792 (Original) 

2 
0-1 10 5.46 91 5.194 0.387 (Healed) 

2 28 5.46 84 11.658 0.802 (Original) 

3 
1-2 28 5.46 45 11.658 0.430 (Healed) 

3 37 5.46 36 26.549 0.783 (Original) 

The healing efficiency of LM10-12 is showed in the figure 6.18.  As the concentration of 

micro-capsules (10%-20%) increased, the healing efficiency of the specimens (LM10-12) 

increased slightly. 

 

Figure 6.18: the healing efficiency of LM10-12 at 50 °C for 24 h 
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6.5.2 Self-healing performance for cross-linked polymer system 

6.5.2.1 Via injection of liquid healing agents 

The self-healing performance for cross-linked polymer system (XI01-05) via injection of 

liquid healing agents was investigated. XI01-03 is the specimen containing MA and injected 

DVB, the mixture of 4MeOSt and DVB (ratio of 4:1), and the mixture of St and DVB (ratio 

of 4:1) into the crack, respectively. XI04-05 is the specimen containing MeMal injected 

DVB and the mixture of 4MeOSt and DVB (ratio of 4:1) into the crack, respectively. The 

healing process was undertaken at 50 °C for 48 h. The fracture toughness tests were 

undertaken at ambient temperature. Figure 6.19 shows that XI01-05 exhibited 41%, 52%, 

21%, 35%, and 37% healing efficiency. 

 

Figure 6.19: the healing efficiency of XI01-05 at 50 °C for 48 h 

6.5.2.2 Via micro-encapsulation of liquid healing agents 

The self-healing performance for cross-linked polymer system via micro-encapsulation of 

liquid healing agents (XM01-15) was investigated. 

Specimen XM01 containing MA (solid healing agents, 10 wt. %) and DVB (micro-capsules, 

10 wt. %) were investigated for the self-healing performance using the compact tension test. 

The self-healing process was carried out at 50 °C for 48 h. The compact tension test was at 

ambient temperature and the results were recorded by the force-displacement curve. 
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Figure 6.20: the force displacement curve of self-healing specimen XM01 

The fracture force (P) is obtained from the force-displacement curve, Figure 6.20. A value of 

the critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 6.15.  The fracture toughness of original specimen is given by Test 1, Test 2 

(when the crack propagating from position 2-3), and Test 3 (when the crack propagating 

from position 3 to the end of the specimen), which is found to be KIC = 0.721 MPa·m1/2.  

Therefore, the first and second healing process gave 35% and 38% healing efficiency, 

respectively.  

Table 6.15: The fracture toughness of XM01 

Test 
Crack 

position 

a 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 1 13 5.37 157 5.476 0.716 (Original) 

2 
0-1 10 5.37 58 5.194 0.251 (Healed) 

2 30 5.37 62 13.541 0.699 (Original) 

3 
1-2 30 5.37 24 13.541 0.271 (Healed) 

3 39 5.37 27 33.303 0.749 (Original) 

*The crack position is showed in figure 6.4. 

The healing efficiency of XM01-03 is showed in the figure 6.21.  As the concentration of 

micro-capsules (10%-20%) increased, the healing efficiency of the specimens (XM01-03) 

increased slightly. 
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Figure 6.21: the healing efficiency of XM01-03 at 50 °C for 48 h 

Specimen XM04 containing MA (solid healing agents, 10 wt. %) and DVB with 4MeOSt 

(micro-capsules, 10 wt. %) were investigated for the self-healing performance (fracture 

toughness recovery) using the compact tension test. The self-healing process was carried out 

at 50 °C for 48 h. The compact tension test was at ambient temperature and the results were 

recorded by the force-displacement curve. 

 

Figure 6.22: the force displacement curve of self-healing specimen XM04 
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The fracture force (P) is obtained in the force-displacement curve, figure 6.22. A value of the 

critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 6.16.  The fracture toughness of original specimen is given by Test 1, Test 2 

(when the crack propagating from position 2-3), and Test 3 (when the crack propagating 

from position 3 to the end of the specimen), which is found to be KIC = 0.709 MPa·m1/2.  

Therefore, the first and second healing process gave 38% and 40% healing efficiency, 

respectively.  

Table 6.16: The fracture toughness of XM04 

Test 
Crack 

position 

A 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 1 12 5.15 153 5.344 0.710 (Original) 

2 
0-1 10 5.15 60 5.194 0.271 (Healed) 

2 25 5.15 88 9.603 0.734 (Original) 

3 
1-2 25 5.15 36 9.603 0.300 (Healed) 

3 32 5.15 49 16.035 0.682 (Original) 

*The crack position is showed in figure 6.4. 

The healing efficiency of XM04-06 is showed in the figure 6.23.  As the concentration of 

micro-capsules (10%-20%) increased, the healing efficiency of the specimens (XM04-06) 

increased slightly. 

 

Figure 6.23: the healing efficiency of XM04-06 at 50 °C for 48 h 
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Specimen XM07 containing MA (solid healing agents, 10 wt. %) and DVB-St (micro-

capsules, 10 wt. %) were investigated the self-healing performance using the compact 

tension test. The self-healing process was carried out at 50 °C for 48 h. The compact tension 

test was at ambient temperature and the results were recorded by the force-displacement 

curve. 

 

Figure 6.24: the force displacement curve of self-healing specimen XM07 

The fracture force (P) is obtained from the force-displacement curve, figure 6.24. A value of 

the critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 6.17.   

Table 6.17: The fracture toughness of XM07 

Test 
Crack 

position 

A 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 1 11 5.23 161 5.250 0.723 (Original) 

2 
0-1 10 5.23 21 5.194 0.093 (Healed) 

2 24 5.23 91 9.060 0.705 (Original) 

3 
1-2 N/A 5.23 N/A N/A No healing 

3 33 5.23 48 17.580 0.722 (Original) 

*The crack position is showed in figure 6.4. 

The fracture toughness of original specimen is given by Test 1, Test 2 (when the crack 

propagating from position 2-3), and Test 3 (when the crack propagating from position 3 to 

the end of the specimen), which is found to be KIC = 0.716 MPa·m1/2.  For the first part (from 
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0 to 51) of curve of test 2, the slop is low than the curve of test 1, indicating the crack was 

healed back to somewhere between position 1 and 2. Therefore, the crack length is unknown. 

If the healed position is at position 1, the first healing process gave 13% healing efficiency.  

The second healing process did not work due the test 3 shows the force displacement curve 

with unified slope. 

The healing efficiency of XM07-09 is showed in the figure 6.25.  As the concentration of 

micro-capsules (10%-20%) increased, the healing efficiency of the specimens (XM07-09) 

increased slightly. 

 

Figure 6.25: the healing efficiency of XM07-09 at 50 °C for 48 h 

Specimen XM10 containing MeMal (solid healing agents, 10 wt. %) and DVB (micro-

capsules, 10 wt. %) were investigated for the self-healing performance (fracture toughness 

recovery) using the compact tension test. The self-healing process was carried out at 50 °C 

for 48 h. The compact tension test was at ambient temperature and the results were recorded 

by the force-displacement curve. 

The fracture force (P) is obtained from the force-displacement curve, figure 6.26. A value of 

the critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 6.18.  The fracture toughness of original specimen is given by Test 1, Test 2 

(when the crack propagating from position 2-3), and Test 3 (when the crack propagating 

from position 3 to the end of the specimen), which is found to be KIC = 0.723 MPa·m1/2.  

Therefore, the first and second healing process gave 25% and 29% healing efficiency, 

respectively.  

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

XM07 XM08 XM09

H
ea

lin
g 

ef
fi

ci
en

cy



Chapter 6 Assessment of Self-Healing Performance 

179 
 

 

Figure 6.26: the force displacement curve of self-healing specimen XM10 

Table 6.18: The fracture toughness of XM10 

Test 
Crack 

position 

A 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 1 13 5.31 168 5.476 0.775 (Original) 

2 
0-1 10 5.31 46 5.194 0.201 (Healed) 

2 29 5.31 67 12.535 0.707 (Original) 

3 
1-2 29 5.31 20 12.535 0.211 (Healed) 

3 35 5.31 38 21.428 0.686 (Original) 

*The crack position is showed in figure 6.4. 

The healing efficiency of XM10-12 is showed in the figure 6.27.  As the concentration of 

micro-capsules (10%-20%) increased, the healing efficiency of the specimens (XM10-12) 

increased slightly. 

 

Figure 6.27: the healing efficiency of XM10-12 at 50 °C for 48 h 
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Specimen XM13 containing MeMal (solid healing agents, 10 wt. %) and 4MeOSt-DVB 

(micro-capsules, 10 wt. %) self-healing system was investigated the self-healing 

performance using the compact tension test. The self-healing process was carried out at 

50 °C for 48 h. The compact tension test was at ambient temperature and the results were 

recorded by the force-displacement curve. 

 

Figure 6.28: the force displacement curve of self-healing specimen XM13 

The fracture force (P) is obtained in the force-displacement curve, figure 6.28. A value of the 

critical stress intensity factor, KIC, is calculated for each fracture event and the results are 

shown in table 6.19.  The fracture toughness of original specimen is given by Test 1, Test 2 

(when the crack propagating from position 2-3), and Test 3 (when the crack propagating 

from position 3 to the end of the specimen), which is found to be KIC = 0.728 MPa·m1/2.  

Therefore, the first and second healing process gave 30% and 32% healing efficiency, 

respectively.  

Table 6.19: The fracture toughness of XM13 

Test 
Crack 

position 

A 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

1 1 14 5.19 144 5.645 0.700 (Original) 

2 
0-1 10 5.19 48 5.194 0.215 (Healed) 

2 31 5.19 59 14.699 0.747 (Original) 

3 
1-2 31 5.19 19 14.699 0.241 (Healed) 

3 42 5.19 18 47.431 0.736 (Original) 

The healing efficiency of XM13-15 is showed in the figure 6.29.  As the concentration of 
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micro-capsules (10%-20%) increased, the healing efficiency of the specimens (XM13-15) 

increased slightly. 

 

Figure 6.29: the healing efficiency of XM13-15 at 50 °C for 48 h 

 

6.5.3 The influence of temperature on the self-healing performance 

The study in Chapter 2 and 3 shows that the spontaneous (co-)polymerisation of electron-

donor (4MeOSt and St) and electron-accepter (MA and MeMal) carried out at ambient 

temperature produced linear polymers with 20-30% yield. Furthermore when DVB is added 

to 4MeOSt and St, cross-linked polymer upon the reaction with MA and MeMal was formed 

with 20-30% gel content. The self-healing performance of the specimens containing solid 

healing agents (MA, MeMal, or EtOCN) was investigated at ambient temperature via 

injection of liquid healing agent (4MeOSt, St, or DVB). 

The self-healing efficiency of linear polymer system (LI01-04) and cross-linked polymer 

system (XI01-05) via injection was compared at ambient temperature and at 50 °C. The 

fracture toughness tests were undertaken at ambient temperature and the healing efficiency is 

shown in figure 6.30.  
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Figure 6.30: the healing efficiency of LI01-04 and XI01-05 via injection at ambient 

temperature and at 50 °C 

The healing process was undertaken at ambient temperature for 7 days due to slow 

spontaneous copolymerisation reaction, however, it was undertaken at 50 °C for 48 h. The 

healing efficiency is obtained with greater at 50 °C.  

In the case of linear polymer formation, LI01 (4MeOSt and MA) and LI03 (4MeOSt and 

MeMal) show a healing efficiency increasing from 36% and 21% at ambient temperature up 

to 42% and 32% at 50 °C, respectively.  However, LI02 (St and MA) and LI04 (4MeOSt and 

EtOCN) did not show any healing performance at ambient temperature believed to be due to 

the lack of reactions between liquid and solid healing agents. This lack of reaction was also 

observed between St with MA and 4MeOSt with EtOCN at ambient temperature in Chapter 

2. In contrast to the room temperature, LI02 and LI04 showed self-healing efficiency of 29% 

and 57%, respectively, at 50 °C. This is due to the temperature improved the reaction rate of 

St with MA and 4MEOSt with EtOCN, which is also observed in Chapter 2. 

For the formation of cross-linked polymer system, XI01 (DVB and MA), XI02 (4MeOSt, 

DVB, and MA), and XI05 (4MeOSt, DVB, and MeMal) show healing efficiency at ambient 

temperature of 12%, 23%, and 20%, respectively. In contrast, XI03 (St, DVB, and MA) and 

XI04 (DVB and MeMal) show no healing efficiency at ambient temperature, due to the lack 

of reactions. The same observation was made during the cross-linking reaction for mixture of 

St, DVB with MA and DVB with MeMal in Chapter 3. Moreover, self-healing efficiency of 

21% and 35% was obtained for XI03 and XI04, respectively, at 50 °C. This is consistent with 

0%

10%

20%

30%

40%

50%

60%

LI01 LI02 LI03 LI04 XI01 XI02 XI03 XI04 XI05

H
ea

li
n
g
 e

ff
ic

ie
n
cy

50 °C

RT



Chapter 6 Assessment of Self-Healing Performance 

183 
 

observations made for the cross-linking reactions at 50 °C for the system involved XI03 and 

XI04 in Chapter 3. 

The self-healing performance for linear polymer system via micro-encapsulation of liquid 

healing agents (LM01-03) (4MeOst and MA) was investigated at ambient temperature and 

compared with those at 50 °C, figure 6.31. 

 

Figure 6.31: the healing efficiency of LM01-03 via micro-capsules at 50 C̊ and ambient 

temperature 

The self-healing system LM01-03 showed higher healing efficiency at 50 C̊ due to faster 

reaction rate and higher yield.  The heating may also improve the molecular diffusion 

indicating more Van der Waals forces between the resulting polymer and the crack. This 

would result in a better adhesion of the resulting polymer in the crack to the epoxy matrix. 

The self-healing performance of LI01 was investigated at 60-80 °C for 24 h via injection of 

liquid healing agent. The results are compared with the tests at ambient temperature and at 

50 °C, figure 6.32. The healing efficiency increased upon temperature increasing, indicating 

the importance of temperature in increasing the reaction rate and adhesion to the epoxy 

matrix and hence higher self-healing efficiency. 
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Figure 6.32: the healing efficiency of LI01 at ambient temperature and 50-80 °C 

6.5.4 The comparison of self-healing performance of linear and cross-linked polymer 

systems 

DVB as a difunctional monomer was selected to produce cross-linked to achieve higher 

healing performance. The self-healing efficiencies of LM01-03 (4MeOSt and MA) and 

XM01-03 (4MeOSt, DVB, and MA) via micro-capsules at 50 C̊ are compared in figure 6.33.  

This figure shows that a self-healing efficiency of about 40% is obtained in the case of linear 

and cross-linked polymer system regarding of the concentration of micro-capsules. 

 

Figure 6.33: the healing efficiency of LM01-03 (Linear) and XM01-03 (Cross-linked) 
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specimen after healed has two weaknesses points 1 and 2, figure 6.34. Point 1 is the polymer 

formed by the reaction of solid and liquid healing agents. Point 2 is the contact surface of the 

epoxy matrix material and resulting polymer (linear or cross-linked).  When the loading 

force open the healed crack, the new crack is likely to propagate through the contact surface 

at point 2.  The evidence could be found by the investigating the fracture toughness of the 

polymer materials formed by the healing agents.  

 

Figure 6.34: The weakness points in the healed specimen 

The fracture toughness test of resulting polymers obtained by reaction of solid and liquid 

healing agents was carried out at ambient temperature using the compact tension geometry 

(60 mm × 50 mm × 5 mm), table 6.20.  The fracture toughness of resulting polymers is found 

to be much higher than that of the epoxy matrix.  

Table 6.20: The fracture toughness of healing agent polymer 

Test 
a 

(mm) 

B 

(mm) 

Force 

(N) 
Y 

KIC 

(MPa·m1/2) 

Poly(MA+MeOSt) 12 3.12 121 5.357 0.925 

Poly(MA+MeOSt+DVB) 13 3.48 171 5.543 1.218 

Poly(DVB) 11 3.62 201 5.274 1.306 

The healing efficiency of the system studied here are lower than expected probably due to a 

poor adhesion of the resulting polymer (linear or cross-linked) to the epoxy resin matrix at 

point 2.  
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6.6 Conclusion 

Self-healing performance for linear and cross-linked polymer system in epoxy resin 

specimen was investigated both via injection and micro-encapsulation of liquid healing 

agents. 

In order to evaluate the healing efficiency of the self-healing system, the liquid healing 

agents were injected into the crack of the specimen containing solid healing agents. The 

healing efficiency at 50 C̊ for linear polymer system was found to be 56% for MA-4MeOSt; 

49% for MA-St; 32% for MeMal-4MeOSt; and 57% for EtOCN-4MeOSt.  The healing 

efficiency for cross-linked polymer system at 50 C̊ was found to be 41% for MA-DVB; 52% 

for MA-DVB-4MeOSt; 21% for MA-DVB-St; 35% for MeMal-DVB; and 37% for MeMal-

DVB-4MeOSt. 

The autonomous self-healing process was investigated by adding micro-capsules containing 

liquid healing agents. Specimen containing solid healing agents (MA, MeMal, and EtOCN) 

and micro-capsules (containing 4MeOSt, St, DVB, and their mixture) were prepared.  The 

healing efficiency at 50 C̊ for linear polymer system was found to be 40%-53% for MA-

4MeOSt; 32%-35% for MA-St; 24%-25% for MeMal-4MeOSt; and 40%-57% for EtOCN-

4MeOSt.  The healing efficiency for cross-linked polymer system at 50 C̊ was found to be 

33%-35% for MA-DVB; 37%-40% for MA-DVB-4MeOSt; 9%-15% for MA-DVB-St; 30%-

32% for MeMal-DVB; and 27%-30% for MeMal-DVB-4MeOSt.  

The self-healing efficiency at ambient temperature of the specimen was investigated by 

injection of liquid healing agents into the crack of specimen containing solid healing agents. 

The healing efficiency for linear polymer system was found to be 36% for MA-4MeOSt and 

21% for MeMal-4MeOSt. The healing efficiency for cross-linked polymer system was found 

to be 12% for MA-DVB; 23% for MA-DVB-4MeOSt; and 20% for MeMal-DVB. 

The low healing efficiency of the system studied in the project are probably due to a poor 

adhesion of the resulting polymer (linear or cross-linked) to the epoxy resin matrix. 
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7.1 Conclusions 

The spontaneous copolymerisations of electron-rich monomers (4MeOSt and St) with 

electron-poor monomers (MA, MeMal, and EtOCN) were investigated and the resulting 

linear polymer products were fully characterised. The spontaneous copolymerisation of 

4MeOSt with MA and 4MeOSt with MeMal were carried out at 50 °C and at ambient 

temperature and yellow solid was produced, which was found to be soluble in acetone and 

THF. The results confirmed that the polymer products are alternating copolymers. The test 

followed by different reaction times showed that the copolymerisations in bulk reached a 

plateau at about 50% yield. The reactions were undertaken in bulk giving solid product 

which is believed to be responsible for stopping the progress of the reaction and hence 

reaching a plateau. The spontaneous copolymerisation of 4MeOSt with EtOCN was also 

carried out at 50 °C and a red-brown solid was produced, which was found to be soluble in 

acetone and THF.  It is concluded that the poly(4MeOSt) is formed in the presence of 

EtOCN via cationic polymerisation. However, the reaction of 4MeOSt with EtOCN did not 

produce any solid at ambient temperature. The spontaneous copolymerisation of St with MA 

was also carried out at 50 °C and a yellow solid was produced, which was found to be 

soluble in acetone and THF. The results confirmed that the polymer product of St with MA 

is an alternating co-polymer. The tests followed by different reaction times shows that the 

copolymerisation of St with MA reached a plateau at 30% yield. The formation of solid 

product is believed to be responsible for stopping the progress of the reaction and hence 

reaching a plateau. However, the reaction of St with MA did not produce any solid at 

ambient temperature. 

The spontaneous copolymerisation of electron-rich monomers (4MeOSt, St, and DVB) with 

electron-poor monomers (MA and MeMal) was investigated at ambient temperature and at 

50°C. The resulting insoluble cross-linked polymer products were characterised by FTIR, 

and confirmed the presence of repeating units due to MA and MeMal monomers. The 

reactions were followed by gel content determination over a period of 7 days. Initially, the 

gel content increased for a few days, after which it reached a plateau around 23%-41% at 

ambient temperature and 33%-57% at 50 °C based on the monomers used. The plateau is 

believed to be due to the formation of cross-linked material eventually stopping the progress 

of the reaction. 

The micro-encapsulation of liquid healing agents (4MeOSt, DVB, St, and their mixtures) by 
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in-situ polymerisation of urea-formaldehyde in an oil-water emulsion was successfully 

carried out. The micro-capsules of high quality surface and good size distribution were 

produced and analysed by SEM. Micro-capsules with average diameter of 100-250 μm were 

selected to use. The deposition of UF nanoparticles was prevented by carrying out the 

reaction under constant pH (3.5) conditions and washing with DCM and deionised water. 

The fill content was measured by comparing the weight of filled micro-capsules with that of 

the dried broken shells and was found to be 70-80 wt. %. 

The blank epoxy resin specimens were prepared using Bisphenol-A based epoxide and 

diethylenetriamine (DETA) (10 wt. %) as the curing agent and the fracture toughness was 

measured to be KIC = 0.801 ± 0.019 MPa·m1/2.  The inclusion of micro-capsules (5-20 wt. %) 

did not change the fracture toughness of matrix.  Specimens were prepared with 10 wt. % 

added solid healing agents (MA and MeMal) as this amount gave minimum reduction of 

fracture toughness. There is a possibility of side reaction between MA (or MeMal) and amine 

group of DETA curing agent which is likely to reduce the cross-link density and hence the 

fracture toughness. The process of preparation of specimen containing MA (or MeMal) was 

modified involving mixing bisphenol-A based epoxide with DETA and leaving it at ambient 

temperature for 4 h before the addition of solid healing agents (MA and MeMal). This 

ensured close to full consumption of primary amine and hence minimising or preventing side 

reactions. However, the fracture toughness of the specimen did not change by adding EtOCN 

solid healing agent into the epoxy resin matrix due to the lack of any side reaction between 

EtOCN and DETA. 

Self-healing performance for linear and cross-linked polymer system in epoxy resin 

specimen was investigated both via injection and micro-encapsulation of liquid healing 

agents. In order to evaluate the healing efficiency of the self-healing system, the liquid 

healing agents were injected into the crack of the specimen containing solid healing agents. 

The best healing efficiency at 50 C̊ for linear polymer system was found to be about 57% for 

MA-4MeOSt and EtOCN-4MeOSt.  The best healing efficiency for cross-linked polymer 

system at 50 C̊ was found to be about 52% for MA-DVB-4MeOSt. The autonomous self-

healing process was investigated by adding micro-capsules containing liquid healing agents. 

Specimen containing solid healing agents (MA, MeMal, and EtOCN) and micro-capsules 

(containing 4MeOSt, St, DVB, and their mixture) were prepared.  The best healing efficiency 

at 50 C̊ for linear polymer system was found to be about 50% for MA-4MeOSt and EtOCN-
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4MeOSt.  The best healing efficiency for cross-linked polymer system at 50 C̊ was found to 

be about 40% for MA-DVB-4MeOSt. The self-healing efficiency at ambient temperature of 

the specimen was investigated by injection of liquid healing agents into the crack of 

specimen containing solid healing agents. The best healing efficiency for linear polymer 

system was found to be about 36% for MA-4MeOSt. The best healing efficiency for cross-

linked polymer system was found to be about 23% for MA-DVB-4MeOSt. The low healing 

efficiency of the system studied in the project are probably due to a poor adhesion of the 

resulting polymer (linear or cross-linked) to the epoxy resin matrix. 
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7.2 Future work 

The investigation of spontaneous (co-)polymerisation of electron donor and acceptor 

monomers in bulk showed that the electron acceptor monomers (solid) exhibit poor solubility 

in electron donor monomers. Therefore, it will be interesting to investigate spontaneous (co-

)polymerisation in a solvent. However, high concentration of electron donor and acceptor 

monomers will be necessary.1  

To apply the use of solvent in the self-healing system, a multiple-capsule self-healing system 

must be designed. The electron acceptor monomer should be dissolved in a solvent followed 

by encapsulation in UF micro-capsules. The electron donor (liquid monomer) should also be 

encapsulated in UF micro-capsules. The two types of micro-capsules will then need to be 

embedded in the matrix material.  

MA and MeMal used as electron acceptor in this project are not suitable for the multiple-

capsule design due to instability of MA and MeMal in water used in the process of micro-

encapsulation. Therefore, the alternative electrophilic olefins need to be identified and used. 

Some potential examples (a) and (b) are shown in figure 7.1  

 

Figure 7.1: Alternative electrophilic olefins: methyl tricyanoethylenecarboxylat (a) and 

dimethyl dicyanofumarate (b) 

These suggest electrophilic olefins (a) and (b) are not commercially available but their 

syntheses have been reported.2 Moreover, these electrophilic olefins have also been reported 

to exhibit spontaneous polymerisation with electron donor monomers, 4MeOSt.2  
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Figure 1: The crack surface of a self-healing specimen using MA-4MeOSt healing agents 

after the micro-capsules broken and released the healing agents  

 

Figure 2: The crack surface of a self-healing specimen using EtOCN-4MeOSt healing agents 

after the micro-capsules broken and released the healing agents  
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Figure 3: The crack surface of a self-healing specimen using MA-4MeOSt-DVB healing 

agents after the micro-capsules broken and released the healing agents  

 

Figure 4: The crack healed under optical microscopy (magnification of 20×) for a self-

healing specimen using MA-4MeOSt healing agents  
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Figure 5: The crack healed under optical microscopy (magnification of 20×) for a self-

healing specimen using EtOCN-4MeOSt healing agents  

 

Figure 6: The crack healed under optical microscopy (magnification of 20×) for a self-

healing specimen using MA-4MeOSt-DVB healing agents 
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Figure 7: The distribution of micro-capsules in a self-healing specimen using MA-4MeOSt 

healing agents viewed by optical microscopy (magnification of 20×) 

 

Figure 8: The distribution of micro-capsules in a self-healing specimen using EtOCN-

4MeOSt healing agents viewed by optical microscopy (magnification of 20×) 
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Figure 7: The distribution of micro-capsules in a self-healing specimen using MA-4MeOSt-

DVB healing agents viewed by optical microscopy (magnification of 20×) 

 

Figure 7: The distribution of micro-capsules in a self-healing specimen using MeMal-

4MeOSt healing agents viewed by optical microscopy (magnification of 20×)
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Figure 7: The distribution of micro-capsules in a self-healing specimen using MeMal-

4MeOSt-DVB healing agents viewed by optical microscopy (magnification of 20×)

 

Figure 7: The distribution of micro-capsules in a self-healing specimen using MA-DVB 

healing agents viewed by optical microscopy (magnification of 20×) 


