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Abstract

This thesis explores the potential of emerging hardware architectures to increase

the impact of high performance computing in fusion plasma physics research. For

next generation tokamaks like ITER, realistic simulations and data-processing tasks

will become significantly more demanding of computational resources than current

facilities. It is therefore essential to investigate how emerging hardware such as

the graphics processing unit (GPU) and field-programmable gate array (FPGA)

can provide the required computing power for large data-processing tasks and large

scale simulations in plasma physics specific computations.

The use of emerging technology is investigated in three areas relevant to nuclear

fusion: (i) a GPU is used to process the large amount of raw data produced by the

synthetic aperture microwave imaging (SAMI) plasma diagnostic, (ii) the use of a

GPU to accelerate the solution of the Bateman equations which model the evolution

of nuclide number densities when subjected to neutron irradiation in tokamaks, and

(iii) an FPGA-based dataflow engine is applied to compute massive matrix multi-

plications, a feature of many computational problems in fusion and more generally

in scientific computing. The GPU data processing code for SAMI provides a 60x ac-

celeration over the previous IDL-based code, enabling inter-shot analysis in future

campaigns and the data-mining (and therefore analysis) of stored raw data from

previous MAST campaigns. The feasibility of porting the whole Bateman solver to

a GPU system is demonstrated and verified against the industry standard FISPACT

code. Finally a dataflow approach to matrix multiplication is shown to provide a

substantial acceleration compared to CPU-based approaches and, whilst not per-

forming as well as a GPU for this particular problem, is shown to be much more

energy efficient.

Emerging hardware technologies will no doubt continue to provide a positive

contribution in terms of performance to many areas of fusion research and several

exciting new developments are on the horizon with tighter integration of GPUs

and FPGAs with their host central processor units. This should not only improve

performance and reduce data transfer bottlenecks, but also allow more user-friendly

programming tools to be developed. All of this has implications for ITER and



iii

beyond where emerging hardware technologies will no doubt provide the key to

delivering the computing power required to handle the large amounts of data and

more realistic simulations demanded by these complex systems.
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Chapter 1

Introduction

Experiments, theory and computational physics are all equally important tools to

assist scientific research. Theoretical models can be validated with computational

modelling and experimental observations. As computer performance has improved

with Moore’s Law [1], the size, accuracy and detail of the problem being investi-

gated has improved. The exponential growth in computer power means problems

that were thought impossible 10-20 years ago can now be solved. Many interesting

and complex plasma physics problems can be studied with computational methods.

Additionally, improvements in algorithmic efficiency have increased performance

further and now simulations are an important tool in fusion reactor performance

predictions and design [2]. This chapter discusses the development of computa-

tional plasma physics to present day, inline with the developments in computing

technology, high-lighting the necessity to consider new emerging architectures to

maintain the improvement rate of simulation and data processing capabilities.

1.1 Development of computational plasma physics

1.1.1 Early history

Plasma physics study began in ernest in the 1950s and 1960s with interest in the

applications to nuclear fusion for energy and for weapons development. At the same

time, high-speed electronic computers were being developed. These early computers,

1
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whilst impressive, were quite restricted in terms of the plasma physics problems of

interest they could simulate; for example, the effect of small angle collisions on

longitudinal plasma oscillations was simulated in 1958 [3] and run on the IBM 704,

one of the first machines with dedicated floating-point arithmetic hardware units.

The Princeton Plasma Physics Laboratory (PPPL) aquired the IBM 650 in 1959

which had a memory of 8000 words and a speed which limited the models run on it

to be one-dimensional containing only a couple of hundred particles [4]. Nevertheless

these limitations did not affect the ability of the simulation to accurately model the

collective behaviour of plasma.

The pioneers of early plasma physics computer simulations were Dawson and

Buneman in the 1960s. Dawson used sheet charges on the high-speed computers of

the time [5] whereas Buneman followed the trajectories of charged particles. Both

used small systems of a few hundred to a thousand particles or sheet charges limited

by the current technology available; for example, Buneman’s simulations ran on a

Univac 1103 AF digital machine, taking 2 hours [6]. Hockney’s simulations a little

later [7] [8], performed on a 100 kilo-floating-point operations per second (kFLOPS)

IBM 7090 with a few thousand particles, paved the way for large scale computational

plasma simulations. As technology improved in terms of speed and memory size,

larger simulations of fifty thousand particles could be traced on machines such as

the IBM 360 and CDC 6600 [9].

By the 1970s, plasma simulation employing particle models was fairly well estab-

lished and making contributions to plasma theory and the interpretation of exper-

iments. As the computational performance improved, two-dimensional simulations

involving 104 − 105 particles were more commonly performed [10]. However, the

high runtime of these simulations restricted the number of parameters that could be

studied. Due to the computational power required, three-dimensional simulations

were much rarer. Computational plasma physicists at the time knew that due to

Moore’s law speed and memory capacity would increase by a factor of 10-100 in a

few years, making plasma simulations much more practical in the near future [10].

Whilst the complexity of computational plasma physics required problems to

be carried out on the fastest supercomputers, the reliability of machines such as



1.1. Development of computational plasma physics 3

the CDC 7600 at Lawrence Livermore National Laboratory was a problem. The

notorious CDC 7600 computer crashes limited how far a simulation could be run

and still produce recoverable data [11]. Many university groups used the CDC 7600;

for example the Stanford group ran SPLASH, a 3-dimensional fully electromagnetic

particle code with one to two hundred thousand particles [12]. However problematic

the CDC 7600 was, the machine was a key step towards modern day computers and

many of its design components are present in machines today.

Development in parallel computing in the 1980s and 1990s led to advancement

in the Numerical Tokamak project [13]. The modern parallel computers of the time,

for example the four vector processor CRAY-2, could model tokamaks and turbulent

transport using gyro-kinetic particle models with 8 million particles whose motion

was followed in three-dimensions [14]. The speed and memories of serial comput-

ers of the same time were three orders of magnitude smaller than required for the

simulation [4], hence the need to move to parallel computers. Large scale plasma

modeling has been made possible by the increase in computing power. From the late

1990s, simulations could handle the complexity of many real experiments [15]. Fully

three-dimensional simulations consisting of an increasing number of particles were

able to be performed; for example, over 100 million particles were able to run on the

IBM SP2 machine [16]. Moving to multiple instruction multiple data (MIMD) com-

puters like the 512 node Intel Touchstone Delta, 3D electromagnetic plasma particle

simulations could be run 58 times faster than on a single CPU Cray C90 or 116 times

faster than a Cray Y-MP [17]. Admittedly, the code was not optimized to run on the

C90 and only compiled with the Cray automatic vectorization and optimization so

real Cray performance would be somewhat improved. Nevertheless the performance

gain from moving to a many-core machine is evident. Later, from 2000 onwards,

global gyrokinetic codes were implemented on massively parallel platforms like the

CRAY T3E [18], which was the first machine to break the teraflop barrier, achieving

this in 1998. The Cray T3E was a distributed memory machine requiring Message

Passing Interface (MPI) to pass particle and grid information between processors.
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1.1.2 Advances in physics studies made possible by advances

in computational capabilities

The simulations of Dawson in the early 1960s [5] were based on a simple one-

dimensional model of a plasma using sheet charges. Whilst this model was simple,

it was able to reproduce a number of real plasma properties and model the plasma

quite accurately. As the model is simple and small, statistical mechanics may be

applied and statistical theories obtained for the behaviour of the system. Thus the

simulated system properties can be compared to the theoretical system properties,

and at that time, this could be done in more complete detail than with a real ex-

perimental plasma. Dawson was able to show good agreement between theory and

simulation for multiple plasma properties: the velocity distribution, Debye shielding,

drag, diffusion in velocity space, Landau damping, amplitude distribution function

and the electric field distribution. In the early days computational plasma physics

was used to validate existing theory and as a guide for non-equilibrium properties

and non-linear phenomena.

Advances in computational technology meant by the early 1970s complicated

non-linear and turbulent phenomena in plasma could be investigated [10]. Simu-

lations illuminated the mechanisms involved which in turn allowed theories for the

observed effects to be postulated. In a short space of time, simulation capability had

improved such that it could inform new theoretical theory for plasma processes. For

example, computer simulation gave the first quantitative estimate of instabilities as-

sociated with high-frequency oscillating electric fields and the associated non-linear

absorption of radiation. Whilst experiment was not precise enough to validate the

simulation, energetic particles produced by turbulence were present and there was

good qualitative agreement between experiment and simulation for the particle en-

ergy.

Another example arises from the simulation of plasma diffusion across a magnetic

field. Two-dimensional simulations could be done, but often different simplifications

to a model led to different results. One two-dimensional study [19] using a paral-

lel uniform magnetic field and particles with the E × B drift velocity showed the
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plasma diffusion across the magnetic field was Bohm diffusion. However, another

two-dimensional study from around the same time keeping the full dynamics of the

particles showed the diffusion was classical collisional diffusion. Once the compu-

tational technology was advanced enough, this lead to a fully three-dimensional

simulation being carried out [10] which verified the classical collisional theory of

plasma diffusion across a magnetic field was unsuitable at large magnetic fields. At

large magnetic fields, collective modes give rise to convective motion in the plasma

which dominates the transport. This effect was later observed in experiment.

Plasma physics made huge strides in the 80s and 90s by being able to predict

the results of experimental observations and by explaining natural plasma phenom-

ena. These advances are due to the simultaneous advances in plasma diagnostics,

in plasma theory, and particularly through vastly improved computer modelling

capability [15]. This improved computational power provded the capability for gy-

rokinetic simulation of tokamaks to study turbulence. Until the mid 1990s, turbulent

transport calculations had demanded more computing power than was available [13]

but for the first time, with the present day (1995) computing technology, calculations

in a true toroidal geometry that directly simulate a small to moderate-sized tokamak

or a slice of a large tokamak could be performed. The advances in computational

capability meant three-dimensional toroidal and quasi-toroidal simulations of ion-

temperature gradient modes and trapped-particle instabilities relevant to core trans-

port could be performed. Additionally, hybrid gyrokinetic-magnetohydrodynamic

three-dimensional simulations of energetic particles to study saw-tooth activity, fish-

bone oscillations, and toroidal Alfven eigenmodes excited by fusion alphas were able

to be performed [20].

It is clear advances in computational technology led to advancement in plasma

physics studies. Initially, simulation was mainly used to verify existing plasma the-

ory. As computational power improved, and thus simulation capabilities increased,

new plasma effects were observed which in turn led to the development of new the-

ories, or the inclusion of new physics in existing theories. From simulating small

scale one-dimensional plasmas, the advancement in computational technology now

provides the capability to perform full tokamak simulations in the toroidal geometry.



1.1. Development of computational plasma physics 6

Figure 1.1: GTC toroidal flux surface showing the quasi-2D structure of the electro-

static potential generated by the plasma particles. The elongated structures follow

the magnetic field lines [26].

1.1.3 Modern computational plasma physics

The field of computational plasma physics has grown to encompass many areas of

fusion. There are many codes studying a wide range of problems and phenomena,

and many codes are multi-purpose. What follows is a brief review of the litera-

ture for some popular codes that are currently used, but in no way is meant as a

comprehensive evaluation of this vast field.

Gyrokinetic codes

Gyrokinetic turbulence codes can be separated into those based on Lagrangian-PIC

methods such as GTC (Gyrokinetic Toroidal Code) [21] and those based on Eule-

rian schemes such as GS2 [22] [23], GENE (Gyrokinetic Electromagnetic Numerical

Experiment) [24] and GYRO [25]. GTC was developed in 1998 and designed to

run on massively parallel machines like the CRAY-T3E. GTC was one of the first

codes to run in hybrid mode MPI-OpenMP (Open Multi-Processing) on an IBM SP

Power 3, allowing an increase in concurrency from 64-processor simulations to the

full use of 1,024 processors [26], modelling one billion particles. Later, GTC needed

to be MPI-only in order to run effectively on a large number of processors of the

Earth Simulator, achieving 3.7 Teraflops on 2048 cores. The GTC torus geometry
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Figure 1.2: GTC poloidal contour plots of fluctuation potential (eφ/Ti) in the steady

state of non-linear global simulation with E × B flows included (A) and with the

flows suppressed (B) [21].

Figure 1.3: The green patches denote the reduced space time domain used in TRIN-

ITY, each of which corresponds to a nonlinear gyrokinetic flux tube simulation,

and are the grid points in the coarse space-time mesh used to solve the transport

equations [28].
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is shown in Fig. 1.1 [26] and the poloidal contour plots of the fluctuation poten-

tial in Fig. 1.2 [21]. The local non-linear gyrokinetic code GS2 was first developed

in the late 1990’s and together with GENE (2011) is used to calculate the turbu-

lent fluxes to be fed to the multiscale gyrokinetic transport code TRINITY [27]

developed in 2008. TRINITY couples transport and gyrokinetic turbulence and can

investigate micro-turbulence. Some simulations using this code are discussed [28]

and indicate the long runtime of the code; an L-mode discharge from Joint Euro-

pean Torus (JET) (shot #19649) taking four hours on 5760 CRAY XT4 processors

for 15 time steps, H-mode discharges from JET (shot #42982) taking just under

ten hours on 8640 CRAY XT4 processors with 20 time steps and ASDEX Upgrade

(shot #13151) taking 24 hours for 16 transport time steps on 16384 CRAY XT4

processors. The space-time mesh used to solve the transport equations is shown in

Fig. 1.3 [28]. These codes are still widely used as the industry standard today but

have had to be adapted for larger machines as more and more parallel processors

are added. This is not always beneficial as increasing the number of processors adds

extra communication costs and so some codes have needed to be redesigned to ex-

ploit the full parallelism of the machine. Even so, many reports show that there is a

limit to increasing performance by adding more processors. In 2005 the GTC code

shows strong scaling (fixed problem size on an increasing number of processors) on

a number of machines, up to 2048 cores shown in Fig. 1.4 [26], whereas the GYRO

code’s performance [29] doesn’t scale as well for fewer processors (see Fig. 1.5). A

few years later, the performance of the GENE code on more than 10000 cores was

investigated and is presented in Fig. 1.6 [24]. Again, the scaling weakens for higher

core count, in this case for a much larger number of cores, past 10000 cores. More

recently still, in 2015 the GS2 code was optimized to improve performance [30],

which was achieved, but the runtime does not significantly improve past a certain

number of cores as seen in Fig. 1.7.

Magneto-hydrodynamic codes

Another area of computational plasma physics is magneto-hydrodynamic (MHD)

codes, such as BOUT [31], ELITE [32] [33], JOREK [34] and BOUT++ [35], the lat-
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Figure 1.4: GTC shows strong scaling (keeping the problem size fixed and increasing

the number of processors used) on a number of machines up to 2048 cores [26].

Figure 1.5: The performance of the GYRO code on different machines [29]. It

appears that adding extra processors does not increase performance past a certain

point, most notably on the IBM SP.
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Figure 1.6: Strong scaling is observed for GENE on Hector [24], but as the number

of cores exceeds 10000, the scaling weakens. The red line shows a linear scaling with

the number of cores.

Figure 1.7: Comparison of the performance of the original and newly optimised

GS2 decompositions on Hector and Helios [30] Good scaling is observed up to 1536

processors but as the processor count is increased further the scaling gets worse.
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Figure 1.8: An image of an ELM event in the MAST tokamak showing eruption of

filaments from the plasma edge. ELMs are modelled by the BOUT++ code [35].

ter developed from BOUT and performing parallel plasma fluid simulations. These

codes are used to aid the understanding of edge phenomena such as edge localised

modes (ELMs) which is critical to the realisation of the International Thermonu-

clear Experimental Reactor (ITER) [36]. An ELM event in Mega Amp Spherical

Tokamak (MAST) [37] is shown in Fig. 1.8. The initial BOUT simulations were

carried out on the CRAY T3E at National Energy Research Scientific Computing

Center, and the IBM SP machine, modelling, and benchmarked against, the HT-7

tokamak. JOREK is a non-linear extended MHD code, parallelised using MPI and

OpenMP.

BOUT++ simulates 3D fluid equations in curvilinear coordinates, performing

large-scale 107 − 108 variable simulation, and was the first code to successfully per-

form initial-value simulations with realistic resistivity of ELMs [35]. ELMs are

also modelled with the JOREK, NIMROD and M3D-c1 codes (amongst others).

BOUT++ scales well for increasing number of processors for a fixed problem size

(strong scaling) as can be seen from Fig. 1.9. This was performed using the National

Energy Research Scientific Computing Franklin machine. The efficiency is given as:
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Figure 1.9: Efficient scaling of BOUT++ for a fixed problem size on up to 8192

processors. [35]

ε(Np) = 100
Np0T (Np0)

NpT (Np)
(1.1.1)

Fig. 1.9 shows that for a fixed problem size, 2048 processors can be used at

approximately 50% efficiency relative to 32 processors. Therefore, by rearranging

equation 1.1.1, T (N32) = 32T (N2048) and the time taken to run a fixed problem size

on 32 processors is 32 times longer than the time taken to run on 2048 processors.

Similarly, 8192 processors can be used at 20% efficiency relative to 32 processors

so T (N32) = 51.2T (N8192) and running on 8192 processors is 51 times faster than

running on 32 processors. Therefore, for a fixed problem size, increasing the number

of processors decreases the runtime of a BOUT++ simulation.

More recently, weak scaling (keeping the amount of work each processor does

fixed but increasing the overall problem size with the number of processors) has

been performed on BOUT++ (see Fig. 1.10) which shows whilst there is good

scaling for the size of the problem, m, the scaling with processor number is poor for

large number of processors due to global gather and scatter operations [38]. This

communication cost for increasing number of processors is commonly seen in many

MPI-based applications.
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Figure 1.10: BOUT++ simulations on Hector with 32 cores per node and up to

a maximum of 2048 cores. m is the size of each system, and N is the number of

separate systems which are inverted simultaneously [38]. Past 32 cores, the inter-

node communication dominates.

1.1.4 The future of computational plasma physics

Moore’s Law and frequency scaling are coming to an end. Additionally, strong scal-

ing with core count does not exist for many codes when running on a large number of

cores. Adding extra cores does not necessarily improve the performance in a number

of simulations as communication costs can start to dominate as seen above. Alterna-

tive highly parallel hardware architectures like the Graphics Processing Unit (GPU),

Intel Many-Integrated-Core (MIC) and Field-Programmable Gate-Array (FPGA)

based Data-Flow Engine (DFE) have been developed. These architectures can pro-

vide large acceleration of an application but often require a redesign of the algorithm

that specifically targets the hardware. Many of the above types of codes are being

redesigned for the GPU; for example GTC has been redesigned for the GPU [39],

as has GENE [40], and PSC is another particle-in-cell (PIC) code redesigned for the

GPU [41]. PIC codes follow the trajectories of a large number of charged particles

in self-consistent electromagnetic (or electrostatic) fields [42]. In the PIC scheme,

particles are defined in both position and velocity space where as fields are only de-
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fined at discrete locations in space at mesh points [43]. Both fields and particles are

also defined at discrete times. The algorithm works by first advancing the particle

and field values in time. Next the particle equations of motion are advanced one

time step, using fields interpolated from the discrete grid to the continuous particle

locations. The fields are then advanced one time step, the particle positions updated

and the time step loop repeats.

The performance benefits GPU technology provides for these applications is ev-

ident as PIC is demanding in terms of computing power, since a large number of

particles are needed to represent the underlying physics [44]. PIC codes are good

candidates for being ported to the GPU architecture as the large number of particles

can be followed simultaneously for each time step on the GPU, rather than sequen-

tially on non-parallel architectures. It is important to consider the type of problem

to be accelerated, before choosing a technology to do so as some types of problems

are more suited to one type of technology. For example single instruction multiple

data (SIMD) problems are well suited to a GPU architecture [45]. Other problems

such as iterative methods are generally not very well suited to the GPU architecture,

requiring more thought to achieve an acceleration [46]. Iterative methods are more

suited to a different technology such as FPGAs [47]. A lot of PIC codes are being

ported to GPUs [48], where as finite difference based codes might be better suited to

a dataflow architecture as has been demonstrated with the finite difference dataflow

application MaxGenFD [49]. Additionally, these technologies can be used for com-

pute intensive tasks other than simulation, such as data-processing, data-reduction

and signal-processing.

1.2 Emerging architectures in computational physics

and plasma physics

1.2.1 Examples of projects using emerging architectures

As performance improvements have slowed down and are not as easily achieved,

emerging architectures such as the GPU and FPGA have become more popular
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Figure 1.11: Speed-up comparison of dense matrix multiplication for an OpenMP

and OpenCL GPU implementation compared to sequential implementation. The

OpenCL implementation running on the GPU performs extremely well for large

matrix dimension [51].

in computational physics. Alternative technologies such as the GPU have become

very popular for some highly computationally demanding tasks due to the increased

floating-point compute power, greater memory bandwidth and better energy ef-

ficiency they provide compared to modern CPUs [50]. For example, multiplying

two large, dense matrices on both a multi-core architecture using only Open Multi-

Processing (OpenMP) and on a GPU shows that for larger problem sizes the GPU

far outperforms the multi-core OpenMP implementation as seen in Fig. 1.11 [51].

Solutions involving only OpenMP or only Message Passing Interface (MPI) do not

perform as well as GPU implementations [52]. Increasingly the field of compu-

tational science is turning more to accelerators like the GPU, field-programmable

gate arrays (FPGAs) and Intel Many-Integrated Core (MIC) to achieve the com-

putational power required as we approach the exascale [53]. Many problems in

computational science such as n-body problems, collision detection, probabilistic

Potts model simulations and Cellular Automata simulations, are data parallel and

ideal for acceleration with a GPU [54]. The larger problem can be broken down

into many independent smaller problems which can be solved simultaneously with
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a single instruction operating on multiple data (SIMD). Iterative solvers where the

next iteration depends on results from the previous iteration do not follow the SIMD

model and as such are poor candidates for acceleration with a GPU.

Large data experiments such as the Square Kilometre Array (SKA) are look-

ing towards alternative technologies and specialised hardware such as the GPU, in

order to ease the big data problem. Beam forming in radio astronomy has higher

performance and is more energy efficient on a GPU system compared to a multi-core

CPU system [55] and a recent analysis [56] concluded that for SKA, novel hardware

and system architectures need to be developed to achieve the required power effi-

ciency and compute capabilities. The European Organization for Nuclear Research

(CERN) and Large Hadron Collider (LHC) have investigated the potential of using

GPUs in the high-level trigger algorithms used to select the interesting data to re-

duce the raw data obtained from this experiment at the nominal LHC collision rate

of 40MHz or every 25 nanoseconds [57].

FPGAs will also be important for the SKA which needs to process signals from

multiple antennas [58] and FPGAs have demonstrated their importance in the trig-

ger and data acquisition system of the ATLAS particle detector experiment at the

LHC with the discovery of the Higgs boson [59]. Recently, the Maxeler dataflow

engine [60] has gained popularity in the field of HPC on FPGAs. Problems are

reformatted as a continuous flow of data into the dataflow engine and inputs are

buffered to maintain a constant but high bandwidth data stream. However the field

of high performance computing on FPGAs is in its infancy due to a lack of developed

compilers and a complex development cycle [61] and it is accelerators like the GPU

and MIC that are currently the most popular in computational science. Indeed,

at the time of writing, three of the top ten supercomputers in the Top500 list are

hybrid machines [62] utilizing either GPUs or MICs as an accelerator or coprocessor;

it is clear this is the direction in which computational science is going. Often on

these machines, it is a heterogeneous programming model featuring GPU, MPI and

OpenMP that achieves the best performance [63].
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1.2.2 Examples of emerging technology used in plasma physics

For current and certainly next generation fusion devices such as ITER, specialised

hardware and techniques need to be employed in data processing tasks as the amount

of data produced in experiments becomes large and difficult to handle with tradi-

tional approaches [64]. We are entering a mode of operation for tokamaks in which

large amounts of data are produced. For tokamaks such as NSTX, in 2004 camera

data amounted to 300 MB/pulse, or 600 MB/pulse if all the data had been archived

whereas shortly afterwards in 2006, one camera alone can acquire 2GB/pulse [65].

For next generation tokamaks such as ITER, between 160GB/pulse, extrapolat-

ing from existing devices, to 100TB/pulse if physics reasoning is considered and

predicted acquisition rates will be produced [66]. It is therefore worthwhile to inves-

tigate the suitability of emerging hardware like the GPU for massive data processing

tasks such as those in real-time fast control systems [67]. What follows are a few

examples of the use of GPUs and FPGAs within the fusion community, meant to

give an illustration of areas where these technologies have been successfully utilized,

but again, it is not an exhaustive review of the field.

GPUs in fusion

GPUs have been used fairly extensively in areas across fusion, for simulation, com-

putation and control systems. Examples in simulation and computation, in addition

to the ported PIC codes discussed earlier, include the Monte-Carlo code LOCUST-

GPU [68] which simulates millions of fast ions in a few hours, and the computation

of magnetic field maps using the MISTIC code [69] giving a speed-up of at least 16

over the CPU-based approach (Fig. 1.12). For problems such as EFIT, GPUs have

been demonstrated to be well suited to the problem with P-EFIT [70]. On the use

of GPUs in control systems for tokamaks, much work has been done. The plasma

control system for the HBT-EP tokamak successfully uses GPUs to magnetically

control the 3D perturbed equilibrium state [71], as does the self adaptive sampling

rate data acquisition system installed on JET [72]. The performance of a fast plant

system control prototype for ITER using GPUs to do plasma preprocessing is com-

pared to a state-of-the-art CPU based system [64], with the GPU system performing
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Figure 1.12: Speed-up of MISTIC code on a GPU compared to a CPU where

SpeedupdB = 20 ∗ log10(tCPU/tGPU) [69]. The sticks discretize a conductor in an

active coil, e.g. Central Solenoid coil.

much faster than the CPU system (Fig. 1.13).

FPGAs in fusion

Currently FPGAs are more commonly utilized in signal processing and data acqui-

sition, rather than high performance computing applications. The data-acquisition

system for the Large Helical Device is FPGA-based and set a record in the 2005-2006

campaign for acquiring 90GB for one shot, see Fig. 1.14, although normally 3GB per

shot is acquired with 80MB/s real-time data acquisition [73]. The TJ-II stellarator

diagnostic measures the line averaged electron density in real time which is used

for control purposes [74]. Another real time FPGA system is used for disruption

detection in JET [75] which uses machine learning techniques based on support vec-

tor machines (SVMs) for disruption prediction. The FPGA SVM system has been

validated with JPS (which is the real time alarm system for incoming disruptions

on JET) as shown in Fig. 1.15 [76]. The FPGA SVM predictor detects more dis-

ruptions for both unintentional disruptions (those that happen in normal tokamak

operation) and intentional disruptions (those that are triggered) in the first 200ms
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Figure 1.13: GPU execution times compared to CPU execution times for 4 and 8

cores [64].

which is coherent with the training of the system.

FPGAs have also been used for fast filtering in logic such as for the MAST Thom-

son scattering system [77] and in the neutron diagnostic data acquisition system at

JET to perform real-time data validation [78]. FPGA technology has been used in

image processing tasks such as that for the real-time infra-red image acquisition and

processing system at Tore Supra which is vital to avoid damage to the plasma facing

wall components of the tokamak [79].

1.2.3 Scope of thesis

This introduction has highlighted the close relationship between the capability of

computation in plasma physics and the developments in computational technology.

As a new era of exascale computing is beginning, it is becoming more common for

alternative, accelerating technology to be used in a wide range of fields, including

the fusion industry. Nevertheless GPU programming for fusion applications is still

relatively rare, and FPGA programming for general high performance computing
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Figure 1.14: Acquired data per shot for the LABCOM data acquisition system for

LHD. A new world record of 90 GB per shot was set in 2005 - 2006 campaign [73].

(a) (b)

Figure 1.15: Warning times (disruption time minus alarm time) for all the disruptive

pulses from JET campaign C1 till campaign C19; (a) the cumulative percentages of

unintentional and all detected disruptions for the FPGA SVM method are compared

with the JET JPS alarm results, (b) the cumulative percentages of intentional and

all detected disruptions for the FPGA SVM method are compared with the JET

JPS alarm results [76].
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applications is a field very much in its infancy. In this thesis, the use of these emerg-

ing technologies is further investigated for some specific new fusion applications.

GPUs are used in two ways to accelerate two different fusion applications, one on-

line and one off-line. In the first, GPUs are used to accelerate the data-processing

of the high data-rate SAMI diagnostic [80] expanding on their use in other large

data experiments such as CERN. In the second application the solution of the Bate-

man equations which are central to the FISPACT-II nuclear burn-up simulations

are ported to GPUs, again following other plasma physics simulations that have

started to be ported to GPUs. Finally, the potential of an FPGA dataflow engine is

investigated. A massive dense matrix multiply problem, which is common to many

fusion applications, was chosen to accelerate and to demonstrate the capabilities of

this technology.

The thesis is organised as follows. Chapter 2 introduces the emerging architec-

tures, the GPU and FPGA (in the form of a dataflow engine), which have been

used to carry out the work. The hardware architecture of each technology and the

software in each of the programming models is described. Chapter 3 and Chapter

4 discuss the use of the GPU in the high data rate SAMI diagnostic data process-

ing task and the neutronics Bateman solver calculations. Chapter 5 investigates a

fusion relevant problem on the dataflow engine. In Chapter 6 a summary is pre-

sented, highlighting the benefits these new and cutting edge technologies provide to

many problems and challenges encountered across fusion research and their impor-

tance going forward for projects such as ITER and DEMOnstration Power Plant

(DEMO) [81].



Chapter 2

Emerging architectures

Conventional serial computing has only a single CPU so there is a logical sequence

of operations within a program. The CPU executes the instructions in order, with

only one operation in action at one time. Parallel computing uses many CPUs to

produce the same result in less time, or to handle larger problem sizes. A pop-

ular method for programming shared-memory machines is to use a conventional

language with additional compiler directives such as OpenMP which is discussed

in detail in [82]. Programming with a distributed memory architecture uses MPI.

It follows the SPMD paradigm (Single Program Multiple Data) so the code may

branch so that different processors do different jobs or work on different copies of

the data. A complete description of parallel programming with MPI and OpenMP

is given in [83]. High-performance computing applications are now demanding more

than processors alone can deliver. In this chapter, a review of three different emerg-

ing architectures and accelerating technologies used in high performance computing

is given; the graphics processing unit (GPU), the field-programmable gate-array

(FPGA) and many-integrated cores (MIC). The different hardware architectures

and programming models are discussed and comparisons of benchmark performance

for each technology are presented.

22
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Figure 2.1: A schematic of a hybrid CPU-GPU system adapted from [85]. Memory

sizes are typical values and the speed is the maximum memory bandwidth. Different

GPUs have different memory size and bandwidth.

2.1 GPUs

2.1.1 GPU architecture

A description of the background, hardware and programming model for GPU com-

puting is given in [84]. A GPU is a massive vector processor meaning the hardware

operates on multiple data elements (making up a vector) simultaneously, rather

than on only a single data element. GPUs contain hundreds of processing units

which can collaborate and have large memory bandwidth. This means that certain

types of problems may be solved more efficiently on a GPU. The GPU devotes more

transistors to data-processing and is good at doing lots of numerical calculations

simultaneously. It is useful as a co-processor as the GPU can be working at the

same time as the CPU; GPU efficient calculations are offloaded to the GPU whilst

the CPU continues with the rest. Examples of the types of problem well suited to

GPUs, including some fusion applications, has been discussed in Chapter 1.

A GPU is attached to a CPU via PCIe (see Fig. 2.1) and expensive parts of
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Figure 2.2: A full vector unit of length 32 makes up a warp. One warp is processed

simultaneously by the hardware.

a computation are offloaded to the GPU. GPUs work by making massive use of

long vector units. A full vector unit, of length 32, is known as a warp, and a warp

is processed in parallel by the hardware as shown Fig. 2.2. CUDA threads are a

software construct described in section 2.1.2. There are 1536 or 2048 CUDA threads

(depending on the GPU) per streaming multi-processor and each CUDA thread is

mapped to one element of a hardware vector unit. It is beneficial to have consecutive

CUDA threads, making up a warp, point to consecutive data elements in memory.

GPUs are essentially designed to do massive parallel computations and provide

the largest acceleration for data parallel problems with all threads executing the

same instructions on different data.

2.1.2 GPU software - CUDA parallel programming model

Since 2006, with the introduction of the GeForce 8800, GPUs have been more readily

adopted by the scientific community for high performance computing. This is mostly

due to the effort made by companies like Nvidia in the development of languages

and programming paradigms such as CUDA which make programming GPUs more

accessible to the scientific community [86]. Prior to this, it was difficult to write

programs to carry out scientific computation on a GPU because non-graphics com-

putations needed to be expressed with a graphics API such as OpenGL [87]. On

the software level, CUDA threads are grouped into thread blocks, with a maxi-

mum hardware limit of 1024 threads per block so that a thread block can fit onto

one streaming multi-processor. Thread blocks are arranged in a grid which is then

used to call the CUDA kernel so there is a fixed number of CUDA threads in flight

throughout the kernel execution. A small example is illustrated in Fig. 2.3 for a
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Figure 2.3: A grid used to launch a kernel, adapted from [85]. This is a 2D grid

of blocks, where each block is a 2D block of threads. Each thread has a unique

identifier labelled by the thread index within a block (specified by threadIdx) and

the block index within the grid (specified by blockIdx).

3x3 grid where each block is a 3x3 thread block. In practice a grid of 32 blocks with

256 threads each would be launched for example so there would be 8192 threads in

flight at once.

Each CUDA thread has a unique identifier used to access data, based on it’s

unique thread number within a thread block, as specified by the thread index (threa-

dIdx), and it’s unique thread block number within the grid as specified by the block

index (blockIdx). For example, considering a 1D grid of blocks containing 1D blocks

of threads each unique thread index is given by:

int tid = threadIdx.x + blockDim.x*blockIdx.x;

where blockDim.x specifies the number of threads in each block. The unique

thread index label can then be used within kernels to access the data. For example,
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a simple kernel adding two long vectors is given:

__global__ void vectorAdd(int *a, int *b, int *c, int size){

int tid = threadIdx.x + blockDim.x*blockIdx.x;

int i;

for(i=tid; i<size; i+= blockDim.x*gridDim.x){

c[i] = a[i] + b[i];

}

}

When launching a kernel from host CPU code, the user specifies the number of

threads per block and the number of blocks per grid to launch with. For example:

vectorAdd <<<32, 256>>>(a, b, c, size);

launches the vectorAdd kernel with 32 blocks each having 256 threads so there

are 8192 threads in flight in total. In this way, CUDA gives users an intuitive way

to exploit the underlying parallelism of the GPU hardware.

2.2 FPGAs

FPGA programming requires mapping the problem to the FPGA architecture and

resources, such that most of the resources available on chip are utilized. FPGAs can

provide effective acceleration when presented with a constant stream of data to be

processed which keeps each logic element working every clock cycle.

FPGAs are essentially lots of reconfigurable logic blocks, meaning they can be

designed to suit the application at hand which complements the structure of the

application and the data in the problem. Unlike application-specific integrated cir-

cuits (ASICs) which are designed for a specific application and then fixed in this

configuration permanently, FPGAs can be redesigned and configured for another

problem with a different architecture. They also contain a variety of special purpose

blocks such as internal memory, I/O blocks, and specialised arithmetic circuits. A

unique feature FPGAs have is that they can be used as reconfigurable processors
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and can exploit fine grained parallelism tailored to a specific application [88].

In fusion applications, FPGAs have mostly been used in signal processing and

data acquisition and have not really been used for high performance computing

tasks yet. The dataflow engine was chosen over other FPGA based systems (such as

Xilinx Vivado High-Level Synthesis) as the architecture to investigate in this thesis

because it is a relative newcomer to the field and is marketed specifically for high

performance computing on FPGAs.

2.2.1 Dataflow engines

Dataflow engines (DFEs) have been developed by Maxeler Technologies as an alter-

native to parallel programming for accelerating applications in a wide range of fields

such as molecular mechanics simulations and the calculation of induced dipoles [89],

sorting algorithms such as the bitonic mergesort algorithm [90], stencil computation

known to be computationally demanding and prevalent in many scientific areas [91]

and a specific finite difference library in the form of MaxGenFD [92]. Recently bet-

ter energy efficiency of machines is also highly desirable as power and cooling costs

are ever increasing and green computing is becoming a major concern for users and

applications. The top 23 green supercomputers are based on heterogeneous architec-

tures, using accelerator technology [93] so it is clear there is a shift towards energy

efficient computing using emerging technology and the Maxeler dataflow engine can

provide such a solution.

The programming paradigm for DFEs differs significantly from traditional CPU

programming where a program’s source code is transformed into a list of instructions

for a particular processor which is then loaded into the memory attached to that

processor [94]. Data and instructions are read from CPU memory into the processor

core where operations are performed and results written back to memory as illus-

trated in Fig. 2.4. This model is inherently sequential and performance depends on

the latency of memory accesses and CPU clock time.

In the dataflow scenario, the program source code is transformed into a dataflow

engine configuration file which describes the operations, layout and connections of

a dataflow engine. Data streams from memory into the FPGA chip where data is



2.2. FPGAs 28

C, C++, 

Fortran... 

Compiler 

Instructions 

(executable) Main memory 
Memory 

controller 
Cache 

Computing with control flow cores 

CPU 

Data and instructions 

Data  

Figure 2.4: A schematic showing the instruction fetch and computation cycle over

time in a CPU [94].

forwarded directly from one arithmetic unit to another, without being written to off-

chip memory until the chain of processing is complete (Fig. 2.5). With a dataflow

engine, the emphasis is to program in space meaning to effectively use all of the

FPGA chip as all of the code (or operations) is executed simultaneously [94]. This

is in contrast to the more usual models of programming in time where operations

happen in order moving from one line of code to the next.

Fig. 2.6 shows the overall Maxeler system connecting the dataflow engine to the

CPU via PCIe. The dataflow engine is programmed using a kernel (or many kernels)

and a manager.

2.2.2 DFE software - MaxJ, kernel and manager code

DFE applications have three components: (i) the host code usually written in C,

(ii) the kernel code and (iii) the manager code both written in MaxJ, an extension

to Java. Kernels implement computation on the DFE whilst the manager organizes

data movement to, from and within the dataflow engine. Together, the kernel and

manager files are compiled with MaxCompiler [95] which generates dataflow imple-

mentations in the form of dataflow engine configuration (.max) files. This generates
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a DFE function which can then be called from the CPU via the Simple Live CPU

(SLiC) interface. The overall system is managed by MaxelerOS which sits within

Linux. Kernel and manager code is written in MaxJ, removing the need for knowl-

edge of VHDL or Verilog traditionally used for programming FPGAs. The Max-

eler architecture, toolchain and programming model is described fully in [95], [96]

and [97] and specifically for the finite difference application MaxGenFD in [98].

In section 2.1.2 a vector addition kernel for the GPU was given. Here a vector

addition kernel for the DFE is shown:

package vectorAdd;

class vectorAddKernel extends Kernel {

vectorAddKernel(KernelParameters parameters) {

super(parameters);

// Input

DFEVar a = io.input("a" , dfeUInt (32));

DFEVar b = io.input("b" , dfeUInt (32));

// Addition

DFEVar result = a + b;

// Output

io.output("c" , result , dfeUInt (32));

}

}

This would then be called from the CPU as:

vectorAdd(size , a, b, c);

where size is specified in the manager code and is the length of the vectors. This

parameter size in the manager also specifies the number of ticks (or clock cycles)

for the DFE kernel to run for as a data element is read from a and b, the addition

performed and the first data element of c output in the same clock tick.
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2.3 Intel MIC co-processor

Another emerging technology is the Intel Xeon Phi Coprocessor which is a Many

Integrated Core (MIC) architecture and uses legacy programming models such as

OpenMP and MPI. This architecture is not studied in depth in the thesis as in

a lot of cases, it’s performance is not as promising as the GPU. For example, a

one-dimensional electrostatic PIC code was ported to a MIC and GPU [99] but

performance on the MIC was slower than on the GPU. Mention of the MIC is

included here for completeness.

2.4 Comparison of the accelerating technologies

2.4.1 Performance comparison of example applications

The optimum technology to use is very dependent on the type of application or

problem that needs to be accelerated. For example, Table 2.1 which summarises

the time taken for a multi-threaded CPU, a GPU and an FPGA to perform a FFT

benchmarch [100], appears to show that an FFT has the best performance on a GPU

architecture. However, there is an overhead related to the data transfer between the

CPU and GPU which limits the speed up. The data transfer overhead has not been

taken into account. For the size of data used in this example the transfer time is

69ms so the GPU is actually slowest across the three platforms. Therefore it would

appear this problem is best suited to an FPGA. The size of the problem needs to be

large enough to compensate for the data transfer time to the GPU, or data transfer

times need to be reduced. Although the FPGA now apparently has the fastest time

for the FFT, there is no mention of the transfer time associated with the FPGA

system in this study which can also be a bottleneck.

A comparison of the architecture and performance of a GPU and MIC is given

in [101] and it is demonstrated that the MIC has similar performance, or even

outperforms the GPU in some applications.

Fig. 2.7 shows a comparison for the implementation of gaxpy (a matrix-vector

multiplication) implemented in C, Intel Math Kernel Library (with a single thread
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Table 2.1: FFT benchmark on different architectures from [100]

FFT benchmark 262155 points

Device CPU GPU FPGA

Threads 2 4 8 12 24 Max threads Virtex-5

Time
76.17

ms

45.41

ms

31.63

ms

27.85

ms

31.36

ms

8.13 µs

(execution)
2.59 ms

and in parallel), CUDA, and an FPGA implementation [102]. Performance results

for small matrix sizes show that FPGA has similar performance (and at a higher

energy efficiency) when compared to the CPU and GPU platform. A comparison

of implementations of sum of absolute differences, 2D convolution and correntropy

is shown in Fig. 2.8. This shows the FPGA often has the most acceleration over

the C++ application, especially for large kernel size, with the GPU acceleration not

as good. The FPGA is also the most energy efficient in these applications and the

GPU has better energy efficiency than the CPU based applications.

2.4.2 Other factors to consider for a fair comparison

Whilst the most important factor to consider when choosing an architecture to use

for acceleration of an application is the suitability of the architecture for the problem,

and the expected performance or speed achieved, there are also other factors to

consider. These include the cost of each device, the running cost or energy efficiency

of each device and the programmability of each device. GPUs tend to be much

cheaper than equivalent specification FPGA boards and are certainly much cheaper

than the bespoke Maxeler dataflow engine architecture, but FPGAs are more energy

efficient as they run at a slower clock speed. Energy efficiency is becoming an ever

more important factor to consider with increasing running costs. However, FPGAs

have traditionally been known to be difficult to program, with users facing a steep

learning curve to achieve a successful acceleration of an application. Development

time is significantly higher when porting to the new dataflow architecture when

compared to porting an application to a GPU as GPU computing is a more mature
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Figure 2.7: Comparison of BLAS Level 2 on CPU, GPU and FPGA in terms of (a)

performance and (b) energy efficiency [102]. The GPU has the worst performance

particularly for larger problem sizes, and the worst energy efficiency. This is due

to the system and driver overhead for short and fat matrix dimensions and short

vector effects for long and thin matrices. The FPGA has better performance and is

by far the most energy efficient.
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Figure 2.8: Comparisons of (a) performance and (b) energy efficiency tested on

720p images on CPU, GPU and FPGA [103]. The FPGA implementations have the

highest acceleration whilst being the most energy efficient.
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field and there is a lot of support for the technology. Potential users need to weigh

up these options when deciding which technology to use. For example, if having a

low running cost is the most important factor, then this comes at the expense of

a longer development time. However, if an accelerated implementation is required

immediately it might make more sense to choose a GPU. There is no “right” answer

to the question “which is the best technology to use?”: it is a complicated question

with many factors to consider and weigh against each other.

To summarise, it is clear that these emerging architectures have the potential to

provide large acceleration of applications, over traditional CPU-only applications.

As experiments and simulations get larger, the use of these new technologies will

become essential. There are however decisions to be made as to which technology to

use with cost, availability and ease of use affecting the decision. As GPU technology

is cheaper, more widely available and easily programmed, the thesis focuses mostly

on the use of GPU technology for massive data-processing tasks such as those found

with the Synthetic Aperture Microwave Imaging diagnostic (SAMI) and simulations

of the burn-up and Bateman equations found in neutronics applications. This is cov-

ered in the following two chapters. In the final chapter, the use of FPGA technology

in the form of the Maxeler dataflow engine is investigated as an energy efficient

alternative in the context of a large dense matrix multiplication problem which is

a common feature of many applications not only within the fusion community but

more generally across all areas of scientific computing.



Chapter 3

GPU-based data processing for

the SAMI diagnostic

In this chapter we present an application of GPU hardware acceleration to the

processing of data from the synthetic microwave imaging (SAMI) diagnostic [104].

The necessity for an accelerated GPU code is highlighted and the GPU CUDA

techniques presented, along with the acceleration results. Finally the multi-shot data

analysis that has been enabled due to the accelerated processing of raw data by the

GPU is discussed. Section 3.1 introduces the principles behind synthetic aperture

microwave imaging and section 3.2 describes the SAMI diagnostic on MAST. Section

3.3 discusses the motivation for a GPU code to process the data before going on

to discuss the GPU code in section 3.4. The acceleration results and the accuracy

of the GPU code are presented in section 3.5 and a brief cost-performance analysis

is carried out in section 3.6. Finally, in section 3.7 the multi-shot data analysis

is carried out. Different models have been explored, based on an understanding of

underlying physical processes which may be occurring, to try to explain the observed

correlations between electron cyclotron and deuterium-alpha emission.

3.1 Synthetic aperture microwave imaging

Low frequency electromagnetic waves in a plasma cannot propagate in tokamaks

like MAST, which have a high density, and so cannot be detected outside of the

36
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plasma. There are however thermally induced electrostatic waves in the plasma

called electron Bernstein waves [105] which can convert to electromagnetic modes

and escape the plasma [106]. SAMI can detect these waves at certain frequencies

with an array of antennas and use the signals to reconstruct images of the mode

conversion process. This is useful as the mode conversion process contains informa-

tion about local plasma parameters such as the magnetic field structure [107]. Two

types of electromagnetic wave propagation considered here are ordinary (O) mode

and extraordinary (X) mode. The O-mode is linearly polarised with the electric

field and the X-mode is elliptically polarised with a component of the electric field

perpendicular to the magnetic field. There are two types of mode conversion that

can occur: conversion of the Bernstein mode into the X-mode directly or conversion

of the Bernstein mode into the ordinary O-mode via the X mode. However, the op-

posite processes are usually considered, where electromagnetic waves are launched

into the plasma for heating purposes. The direct tunnelling from X-mode to Bern-

stein wave [108], and the conversion of the O-mode to X-mode [109] followed by the

X-mode to Bernstein wave [110] have been studied widely [111]. By the reciprocity

theorem [112], the inverse processes hold and SAMI can image the mode conversion

process.

The O and X modes are the modes for propagation perpendicular to the magnetic

field. The dispersion relations for the O and X modes are:

c2k2 = ω2 − ω2
p (O −mode) (3.1.1)

c2k2 = ω2 − ω2
p

(
ω2 − ω2

p

ω2 − ω2
uh

)
=
ω4 − (ω2

uh + ω2
p)ω

2 + ω4
p

ω2 − ω2
uh

(X −mode) (3.1.2)

where ω2
uh = ω2

p + ω2
c and ωuh is the upper hybrid frequency which is a plasma

oscillation where the electrons have elliptical orbits that are a combination of the

plasma oscillation and the cyclotron oscillation. The plasma frequency, ωp, and

electron cyclotron frequency, ωc, are defined by:

ω2
p =

nee
2

meε0
ωc =

eB

m
(3.1.3)
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A resonance occurs when k → ∞ meaning the wave is absorbed and a cut-off

occurs when k → 0 meaning the wave is reflected. Therefore the O-mode has a cut-

off at ω = ωp, the X-mode has a resonance at ω = ωuh and two cut-offs at ω = ωl,h

for the low and high density cut-offs where:

ωl,h =

(
ω2
p +

ω2
c

2
± ωc

√
ω2
p +

(ωc
2

)2) 1
2

(3.1.4)

which follows from equation 3.1.2 with k = 0 implying:

ω4 − (ω2
uh + ω2

p)ω
2 + ω4

p = 0 (3.1.5)

Solving the bi-quadratic formula for ω2:

ω2 =
1

2

(
ω2
uh + ω2

p

)
± 1

2

√(
ω2
uh + ω2

p

)2 − 4ω4
p (3.1.6)

and substituting ω2
uh = ω2

p + ω2
c , the result in equation 3.1.4 follows.

The cut-offs and resonances can be seen in Fig. 3.1 which plots the dispersion

relations for the O-mode and X-mode. The O-mode and X-mode cannot propagate

in the plasma because of the cut-off surfaces. The electrostatic Bernstein waves

inside the plasma convert to electromagnetic X-mode at the upper hybrid resonance

when the upper hybrid resonance is close to the low density cut-off via tunneling.

Alternatively, at the upper hybrid resonance the Bernstein wave converts to X mode

and propagates to the high-density cut-off and then to the plasma density cut-off

where it converts to an O mode which can then be detected outside of the plasma.

The mode-converted Bernstein waves escape the plasma where they can be detected

and images formed of the mode conversion window.

The images are formed by applying the van Cittert-Zernike theorem [113] [114]

for an incoherent source in the far-field:

Γi,j =

∫
G(η, ξ)I(η, ξ)eik(uη+vξ)dηdξ (3.1.7)

where Γi,j is the cross-correlation function, G(η, ξ)I(η, ξ) is the intensity distri-

bution, η = cos θ sinφ and ξ = sin θ are the direction cosines of an antenna on a

distant source, u = bx
λ

and v = bz
λ

are the components of a unit vector between
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Figure 3.1: Dispersion relations for O and X modes indicating the cut-off frequencies

ωl, ωp and ωh, and the upper hybrid resonance ωuh.
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antenna pairs with λ being the vacuum wavelength. Equation 3.1.7 can be seen

as the Fourier transform of the brightness distribution of the source or the mutual

coherence function [104]. This is equivalent to the cross-correlation function:

Γi,j =

∫
sis
∗
jdt (3.1.8)

where si is the total power (voltage) received in SAMI antenna i [115] defined

by:

si =

∫
g(η, ξ)E(η, ξ)eik(ax,iη+az,iξ)dηdξ (3.1.9)

where g(η, ξ) is the voltage received by the antenna and ax,i and az,i describe

the location of the antenna. Measuring the voltage received by each antenna in

the array, the cross-correlations between each antenna pair can be calculated and

applying the van Cittert-Zernike theorem, performing an inverse Fourier transform

to reconstruct the image. With the eight antenna SAMI configuration, there are 28

independent antenna pairs (nAnt(nAnt− 1)/2) for which the cross-correlations need

to be calculated [104]. This gives enough samples in Fourier space so that an inverse

Fourier transform can be used to reconstruct the brightness distribution image from

the cross-correlations.

3.2 Description of the SAMI diagnostic

The SAMI diagnostic has the highest data rate of any diagnostic on MAST. For a

typical shot on MAST, the amount of data produced by diagnostics excluding SAMI

amounts to approximately 120-140 MB and the images produced by diagnostics

excluding SAMI account for approximately 350 MB. SAMI scans over 16 frequency

channels in the range 10 GHz-35.5 GHz and the signals are digitised by 14-bit ADCs

sampling at 250 MSPS, giving a data rate of 8GB/s. So for a single 500ms shot on

MAST 4GB raw data is acquired [116]. MAST aims for 30 shots a day meaning

SAMI acquires 120 GB/day making SAMI a good test case for future high data rate

diagnostics and the associated data handling expected for ITER [66], as discussed

in Chapter 1.



3.3. Motivation for GPU data processing code 41

The SAMI system installed on MAST is a phased array of eight linearly po-

larized Vivaldi antennas with a configuration that has been optimized to achieve

maximum synthetic aperture efficiency satisfying both space and bandwidth require-

ments [117]. For typical MAST parameters, thermally born electrostatic electron

Bernstein waves (EBWs) are emitted anisotropically and coplanar with the density

gradient and the magnetic field at the mode conversion surface. Since the density

gradient is known from other diagnostics, SAMI can be used to deduce the magnetic

field line pitch. SAMI operates in two modes simultaneously: the passive imaging

mode detecting spontaneous EBW emission, and the active probing mode measuring

the back-scattered signal from a probe source. The data is acquired on two ADC

boards (each digitizing eight channels) by two FPGA boards running embedded

Linux for control. The data is streamed as a series of UDP packets over ethernet

from the FPGAs via fibre optic cable to a file on the data storage computer. A

schematic of the SAMI data acquisition system is presented in Fig. 3.2 showing the

plasma on the left and both the active probing signal (indicated by the solid arrow)

and spontaneous emission from the plasma (indicated by the dashed arrows). SAMI

has produced the first ever 2D thermal electron Bernstein emission (EBE) maps of

a plasma, identifying the location of B-X-O mode conversion windows in over-dense

plasmas. SAMI is also the first diagnostic to measure magnetic pitch angle through

simultaneous 2D Doppler backscattering [118]. Fig. 3.3 is the image reconstruction

for shot 27022 at 260ms showing the brightness distribution or microwave intensity

as a function of angular position. The location of the mode conversion windows is

clearly identified. The images are reconstructed from the cross-correlations between

each pair of antenna signals which are calculated by the data processing code post

shot.

3.3 Motivation for GPU data processing code

SAMI acquires 4GB raw data per shot and an existing Interactive Data Language

(IDL) data processing code which calculates the cross-correlations between antenna

pairs takes approximately 20-30 minutes per shot to run and as such is unsuitable
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Figure 3.2: A schematic of the SAMI data acquisition system showing both active

probing (solid arrows) and passive imaging (dashed arrows) modes.
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Figure 3.3: A typical image reconstruction showing the brightness distribution for

shot 27022 at 13 GHz and 260ms into the shot. The location and size of B-X-O

mode conversion (MC) windows are clearly identified by peaks in the brightness

distribution.
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for inter-shot processing. Faster data processing would allow the SAMI images to

be examined between shots and used to update parameters of the next shot ac-

cordingly. To reduce the image reconstruction time, a GPU-based Compute Unified

Device Architecture (CUDA) code has been developed demonstrating a significant

acceleration of the data processing, making it possible for inter-shot processing in

future campaigns on the National Spherical Torus Experiment (NSTX-U) [119] and

MAST-U [120] thus greatly improving the capabilities of the SAMI diagnostic on

these machines. Further, the GPU code will enable data-mining of many MAST

shots from previous campaigns which has until now been impossible due to the long

runtime of the existing IDL code.

For the M8 (2011 and early 2012) and M9 (2013) campaigns on MAST, raw data

for approximately 3000 shots was obtained, requiring a 12TB RAID data storage

system. On this system, with an AMD Phenom(TM) II X2 560 processor, it takes

approximately 30 minutes to calculate the cross-correlations for one shot with the

existing IDL code. MAST operates on a cycle of 8 hours on, 16 hours off and aims

to carry out 30 shots per day. Therefore with the IDL code, SAMI data could be

processed in 15 hours. In reality, the raw data for SAMI was not processed overnight

as it was acquired but was stored for processing at some later date. Despite the

length of data acquisition on MAST being relatively short (a MAST pulse is 500

milliseconds) and the time between consecutive pulses on MAST being relatively

long (between 15 and 20 minutes in most cases), the IDL data processing code has a

significantly longer runtime. For devices like MAST-U and future devices like ITER

with much longer pulse lengths, this processing time will increase further so it is

essential to dramatically speed up the processing time. The accelerated GPU code

presented below has enabled overnight data processing. More impressively, in the

future, data can be processed between shots on MAST-U moving into a new regime

of inter-shot data processing.

Data mining SAMI multi-shot cross-correlation data could also help derive scal-

ing laws; for example early analysis indicates a dependence between electron Bern-

stein wave power and deuterium-alpha Dα emission, but it is essential to inves-

tigate multiple shots to find correlations between plasma parameters. Many-shot
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analysis has previously proved to be vital in the derivation of scaling laws such as

ITER98Y2 [121] which is now the commonly used model for ITER design. This is

based entirely on empirical scaling from regression analysis of data in the ITPA [122]

database which includes a large number of shots from a number of different toka-

maks.

3.4 GPU code

3.4.1 Data processing requirements

The raw data SAMI collects needs extensive processing to: (i) correct for phase

drift between in-phase (I) and quadrature (Q) components of the data signal, x

(which is expressed as x(t) = I(t) + iQ(t) so that I is the real part of the signal

and Q is the imaginary part), (ii) perform sideband separation and (iii) correct for

phase differences between antennas due to RF electrical lengths. Sideband separa-

tion results in two sidebands, the upper sideband and the lower sideband which have

opposite phases making the measurement of the phase difficult. However, sideband

suppression can completely suppress either the upper or the lower sideband by shift-

ing either sideband signal by 90◦ in phase so that only the other sideband remains.

Better sideband suppression is obtained if the phase dispersion between I and Q

signals introduced by the IF signal cables and filters is corrected first. Once the

sidebands are successfully separated, the phase difference between antenna channels

can be corrected. This phase is affected by differences in path lengths giving rise to

unknown phases between the RF signals. Once the raw data has been corrected for

these effects, the cross-correlations between each antenna pair are calculated from

which the images can be formed. This process is shown schematically in Fig. 3.4

with the most significant system bottlenecks enclosed in circles. The Fourier filter

operations and the cross-correlation steps dominate the data processing time.

The numerical operations carried out in the data processing chain are presented

in Table 3.1 for a typical MAST shot and the data is processed as a series of many

independent vectors for acceleration processes. At the start of the processing chain

we have 16 real signals and for a typical MAST shot 16 frequency channels and
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Figure 3.4: The data processing chain for SAMI data. Computationally expensive

calculations are enclosed in circles and include the Fourier filter and cross-correlation

steps.

3119 time sweeps each containing 2500 time points. After extracting the middle

of each time sweep to remove noise introduced by switching frequency channel,

each time sweep contains 2000 points. With sideband separation 16 real signals get

converted to 8 complex signals and there are now two data arrays for the upper and

lower sidebands. There are nAnt × (nAnt − 1)/2 = 28 unique cross-correlations to

calculate where nAnt = number of antennas, and therefore there are 28 associated

baselines. The image is then formed by aperture synthesis as the sum of the products

of antenna cross correlations and associated basis functions.

3.4.2 Suitability of SAMI for GPU acceleration

The suitability of the SAMI data processing code for parallelization by a GPU and

CUDA is demonstrated in Fig. 3.5. The data is organised as a series of vectors

of length nInt for each of the 8 antennas and each of the 16 frequency channels,

nf, which are switched between nSweeps times. Essentially, the time series is split

into nSweeps blocks of nInt points and each block of nInt points is operated on

identically. As seen in Table 3.1, for a typical MAST shot where nInt = 2000, nf

= 16 and nSweeps = 3119, the numerical computations consist of almost 800,000

vector operations of length 2000 elements being operated on identically, and the

cross-correlation calculation consists of almost 2,800,000 vector operations. This is

a SIMD scenario which is ideal for parallelization on a GPU using CUDA. Threads

are grouped into thread blocks on the software level, typically each thread block

represents a new vector and threads in the thread block represent individual data
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Table 3.1: Numerical operations and typical size

PHYSICS

OPERATION

MATHEMATICAL

OPERATION

TYPICAL VECTOR

LENGTH

TYPICAL NUMBER

OF VECTORS

data conditioning

box-car average smooth 2500 798464

extract middle 2500 ->2000 798464

shift (not applied to all channels) 2000 199616

filter

FFT 2000 798464

bandpass filter 2000 798464

IQ filter 2000 798464

inverse FFT 2000 798464

IQ correction vector-scalar multiplication 2000 798464

sideband suppression
vector addition 2000 399232

copy (for upper and lower sideband) 2000 399232

filter

FFT 2000 798464

bandpass filter 2000 798464

inverse FFT 2000 798464

RF phase calibration complex vector scalar multiplication 2000 798464

cross-correlations

vector mean 2000 798464

subtract vector mean 2000 798464

vector dot product 2000 2794624
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Figure 3.5: A schematic of the SAMI data structure highlighting the SIMD na-

ture. The data is processed as a series of vector operations on vectors of size nInt

where nInt is the number of data points collected before SAMI switches to the next

frequency channel.

points in the vector. CUDA kernels are then launched with multiple thread blocks

and multiple threads per block to process the data simultaneously. A typical kernel

launch would include 32 thread blocks each with 256 threads.

3.4.3 Description of the GPU code

The raw data is stored in binary files where the frequency channels are multiplexed

in time. The raw data is read by demultiplexing the different frequency compo-

nents by looping over each frequency channel, nf, and sweep, nSweeps, reading

nInt*nAnt points from the two data files (one for channels 0-7, one for channels

8-15) and placing it in the correct location in the data array for efficient process-

ing. Since the switching period and frequency order may vary from shot to shot,

a bootconFig.rfctrl.ini file is consulted which informs where to start reading

the binary file from on each iteration. The data is then copied to the GPU and

the necessary signal processing tasks and data conditioning are performed in the

following sequence. The noise of the local oscillator switch is first removed using a

smoothing box-car average on each set of nInt points; the first and last 250 data

points in each set of nInt points is discarded to avoid any residual switching noise

when switching to the next frequency channel. The data corresponding to channel 0,

channel 1, channel 8 and channel 9 is then shifted to correct for ADC timing errors.

Finally, the data is filtered with a bandpass and notch filter to remove any unwanted
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Figure 3.6: A schematic of the SAMI CUDA data processing code showing an

initial data copy to the GPU, all data processing performed on the GPU and finally

a resulting data copy back to the CPU.

signals from each block of nInt data points and the IF dispersion between I and Q

components caused by cable lengths is corrected. Performing sideband separation

converts 16 real signals into 8 complex signals and another filter is performed for

upper and lower sidebands, with calibration data correcting for phase offsets and

balancing amplitudes between the I and Q components. Calibration of the RF phase

is also performed to correct for any phase drifts in the RF channels after sideband

suppression. Once these corrections have been made, the cross-correlations between

the signals for each antenna pair, frequency sweep and upper and lower sideband are

calculated. This overall process is illustrated in Fig. 3.6. In total, 14 CUDA kernels

were constructed (see Appendix A) to process the data and the CUFFT library was

used to perform the Fourier transforms.

As indicated in Fig. 3.4, the most computationally expensive parts of the pro-

gram are performing the Fourier filtering, and the cross-correlation calculation itself.

However, a lot of the initial data conditioning, as operations on a set of vectors, is

ideal to target with a GPU. The data is therefore transferred to the GPU as soon as

possible, all the processing performed on the GPU and the result copied back to the

CPU once all the processing has completed, with no intermediate data traffic. Data

movement is often the bottleneck to hybrid CPU-GPU computation and is hence

avoided here.
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3.4.4 CUDA streams and concurrency

There is however a problem with the above model for the SAMI computation, and

for any large data problem such as those expected in the next generation of fusion

diagnostics. GPUs have limited memory available and very few models have enough

to process an entire SAMI shot at once. Each SAMI shot is 4GB of 14 bit (or

two byte) integers. Immediately in software, the amount of data is doubled as each

two byte integer is converted to a four byte float to perform scientific computation,

so each SAMI shot is actually an 8GB data processing problem. It is therefore

necessary for big data problems like SAMI to carve the data up into chunks and

process each separately, exploiting CUDA streams and concurrency as a means to

overlap a memory copy to the GPU with kernel execution on the GPU. The GPU

can be effectively kept busy by copying the next chunk of data to the GPU whilst

computing on the previous chunk. High-end GPUs such as the Tesla K40C can do

even better as these GPUs have two copy engines to facilitate bi-directional memory

copies. Therefore chunki−1 can be copied from the GPU, whilst computation is

being performed on chunki and the copying of chunki+1 to the GPU, is occurring

simultaneously. This advantage is illustrated in Fig. 3.7 for an idealized scenario

where the copy time and kernel execution time is assumed to be equal. Instead of

having a single CUDA stream where successive data chunks are processed serially

(although the data in each chunk is processed in parallel), if there are multiple

CUDA streams, each with their own instruction queue, memory copies and kernel

execution can be overlapped between streams and the time taken to process the

data can be significantly reduced.

There is a balance between the number of streams used and the size of each

data chunk, as each stream needs its own memory to hold different data chunks

simultaneously but ideally as much data as possible should be processed at once so

there are fewer data chunks. For example, with SAMI, if the whole 8GB (which

doesn’t fit in the GPU memory) was carved up into four data chunks each having

size 2GB and there were four CUDA streams processing the data, then the memory

requirements would still be 8GB and this scenario would not work as the GPU does

not have enough memory for all of the streams. In practice, SAMI used three CUDA
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(b) The benefit of exploiting three CUDA streams and concurrency is illustrated.

Figure 3.7: A schematic showing (a) the order of execution using a single CUDA

thread where the total time to process the data is 18 units of time, and (b) using

three CUDA streams to process the data reduces the units of time required to process

the data to eight.

streams and the size of each data chunk depends on the parameters nInt, nf and

nSweeps which vary from shot to shot due to the switching period and frequency

order varying from shot to shot. Typically the data is carved up into many smaller

chunks and the number of data chunks would be on the order of 100 chunks.

3.5 Results

Code development was carried out on a machine with an Intel (R) Xeon(R) CPU

E5-2670 @ 2.60 GHz with a Tesla K40C GPU with 12GB GDDR5 memory and PCIe

3.0 x16 lanes, which is independent to the SAMI data storage machine. The data for

a few shots was made available on this machine to verify the code and obtain some

preliminary acceleration results, shown in Table 3.2. The original IDL code averaged

a time of 17 minutes and 18 seconds to calculate the cross-correlation data for a full

shot. A serial C version developed as an intermediate step to the CUDA version was

able to complete in 7 minutes and 44 seconds, giving an acceleration of 2.2x over
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Table 3.2: Acceleration Results

CUDA

Tesla K40C GeForce GTX770

IDL C /dev/shm hard drive /mnt/ramdisk hard disk

Total time (s) 1038.38 464.55 17.42 76.02 25.44 70.34

Acceleration 2 59 13 40 14

the IDL version of the code. The raw data for both the IDL and C implementations

was loaded in /dev/shm shared memory in the form of a RAM disk. Accelerating

further with CUDA on the Tesla K40C gave an execution time of just 17 seconds,

an acceleration of 26x over the serial C and 59x over the original IDL. The total run

time of 17 seconds for the Tesla K40C is for raw data loaded in /dev/shm. If the data

is retrieved from a conventional hard drive, the run time of the code is significantly

increased to 76 seconds. After demonstrating this acceleration on the Tesla K40C,

a dedicated GPU card was obtained for SAMI which was a GeForce GTX770 with

4GB GDDR5. Running the code and retrieving the raw data from hard disk gives a

runtime of 70 seconds for one shot but if we mount the data in a RAM disk, again

the run time is significantly reduced to 25 seconds which is comparable to the Tesla

K40C system. It is evident that as the GPU processes the data so quickly, retrieving

the data from hard disk creates a serious bottleneck.

The CUDA times given in Table 3.2 are the total time taken for the code to run

which can be further split up into CPU processor time and GPU processor time as

shown in Table 3.3 for the GeForce GTX770. The time taken to read the raw data

dominates the run time. The GPU time, including memory copies to and from the

GPU, is consistent between the two cases but if the data is mounted in a RAM disk,

the time taken to read all of the raw data from file is significantly reduced by 3.7x.

The unaccounted for time contributing to the total run time is due to the setup

of the correction data and filter functions used to calibrate and condition the data

which is shot dependent. The GeForce GTX770 on the SAMI system was then used

to cycle through the SAMI data for 1837 shots in 30 hours, averaging a total run

time of 58 seconds per shot.



3.5. Results 52

Table 3.3: Read times on SAMI system

/mnt/ramdisk hard disk

CPU read (s) 16.38 60.81

GPU incl. memcopies (s) 7.32 7.40

Total runtime (s) 25.44 70.34

Table 3.4: Runtimes for different numbers of streams on Tesla K40C

Number of streams

1 2 3 4

CPU read (s) 12.77 12.86 12.94 12.94

GPU incl. memcopies (s) 11.96 6.32 6.82 6.85

Total runtime (s) 24.89 19.39 20.01 20.06

Looking at Table 3.4 and Table 3.5 the benefit of using CUDA streams and

overlapping kernel execution and memory copies is evident. Table 3.4 shows the

execution times for a single stream implementation and multi-stream implementa-

tions on the Tesla K40C. For a single stream, the total GPU time including memory

copies is 12 seconds whereas if multiple CUDA streams are used, the GPU time is

nearly halved to between six and seven seconds. In this case, increasing the number

of streams further provides no reduction to the GPU time as the GPU streaming

multiprocessors, where computation is performed, are already fully utilized with

two streams. So whilst there is space in memory for more streams, the computa-

tional resources are fully loaded with the kernels running for two streams. Table

3.5 shows the division of GPU time for the single stream case. The GPU time is

dominated by the kernel execution and copying the result from the GPU is fast since

we are reducing the amount of data by two orders of magnitude when calculating

the cross-correlations. By referring to the multi-stream times in Table 3.4 it is clear

that successful overlap of the memory copies has been achieved as the latency of

the memory copies is hidden by the kernel execution time. The total GPU time

including memory copies for multi-stream implementations is approximately equal

to the kernel execution time for a single CUDA stream.
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Table 3.5: Split of GPU time on the Tesla K40C for one stream implementation

Time (s)

Copying to device 4.85

Kernel execution 6.94

Copying from the device 0.17
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correlations calculated by the CUDA code.

Figure 3.8: The images reconstructed for shot 27022 at 13GHz and 320ms for (a)

the IDL code and (b) the CUDA code . The images are in good agreement with

relative error less than 10−4.

Having achieved a nearly 60x acceleration over the IDL code, it is important

to ensure the CUDA calculation is accurate. Using shot 27022 as an example, the

cross-correlations were calculated using both the IDL code and the CUDA code.

Fig. 3.8 shows the images of microwave emission on MAST at 13GHz and 320ms

reconstructed from the cross-correlation data. The images produced for the IDL cal-

culation and the CUDA calculation match well. In fact, the absolute error between

the IDL cross-correlations and the CUDA cross-correlations is less than 10−8 and

the relative error is less than 10−4. The relative error is greater than the absolute

error as some of the cross-correlation values are less than one.
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3.6 Cost-performance analysis

It is important to emphasise that in Table 3.2 the C version is a serial implemen-

tation, utilizing a single core on a multi-core CPU. A fairer comparison would be

to compare a parallel implementation utilizing all eight cores of the E5-2670 CPU

using OpenMP. Assuming perfect scaling, using eight cores would give a time of

58 seconds and using 16 threads, two per core with Intel’s hyper-threading would

give a time of 29 seconds which is competitive with both GPU implementations.

However, it is unlikely this kind of perfect scaling would occur and the multi-core

times would be worse than this in reality so the GPU implementation maintains the

best performance. Looking at the cost of each device, at launch in October 2013

the Tesla K40C with 12GB GDDR5 was $7699 and has a double precision peak

performance of 1.4 TFlops where as the E5-2670 had a launch price in March 2012

of $1552 and peak performance of 166.4 GFlops based on a clock speed of 2.6 GHz,

eight cores and eight instructions per cycle. In addition, the cost of 12GB DDR3

RAM must be included for the E5-2670 processor to make this a fair comparison;

four 3GB cards can be purchased for approximately $80. Therefore, the Tesla K40C

has a slightly better performance per dollar of 0.181 GFlops/$ compared to the E5-

2670 system which has a performance per dollar of 0.102 GFlops/$. However, since

the launch of each device the price of the Tesla K40C has fallen considerably and

if it was purchased today, it would cost approximately $4600 where the cost of the

E5-2670 has remained roughly constant and only fallen by $100 or so. Therefore, at

current prices, the Tesla K40C GPU has a much better performance per dollar of

0.298 GFlops/$. For SAMI, since the amount of resulting data being copied back

from the device is much reduced, the benefit of moving to the high-end Tesla K40C

with bi-directional memory copies is small, as can be seen by comparing the GPU

run times of the Tesla K40C and GeForce GTX770 in Table 3.3 and Table 3.4. The

performance gain by moving to the Tesla K40C is only one second. However, the

GeForce GTX770 with 4GB GDDR5 costs approximately $460, an order of mag-

nitude less than the Tesla K40C, so the performance per dollar for the GeForce

GTX770 is an order of magnitude greater in the SAMI data reduction and analysis

case.
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3.7 Multi-shot analysis

In this section we use the GPU code presented in section 3.4 to process SAMI data

from many plasma shots taken at MAST in the M8 (2011 and early 2012) and M9

campaigns (2013). The processed data for many SAMI shots is then able to be

analysed for the first time.

3.7.1 Observed relationship between Dα emission and ECE

power

The accelerated GPU code has enabled the raw SAMI data from previous MAST

campaigns to be processed and analysed for the first time. A relationship has been

observed between the ECE power and the Dα emission in multiple shots. To observe

this relationship it must be guaranteed that: (i) the reflectometer is off, (ii) it is a

double null shot and (iii) it is a H-mode shot. MAST has a microwave reflectometer

diagnostic [123] used for density profile measurements. The reflectometer needed to

be off to obtain useful SAMI shots as it can affect the ECE power measurements.

To tell if it was on or off, the SAMI data for the toroidal field (TF) test shots at

the start of each day were analysed and it was determined from the ECE signal if

the reflectometer was on for that day or not. Unfortunately, there are only 19 TF

test shots (i.e. 19 days) for which SAMI data was also taken and of these, only

11 were guaranteed to have the reflectometer off for that day so this significantly

reduced the number of shots available for analysis. An additional requirement that

the shot be double null is so that we are observing on the midplane which removes

the requirement for ray tracing, and a requirement that the shot be a H-mode shot is

because the observed relationship between ECE power and Dα emission is occurring

just before the shot enters H-mode.

The ECE power is extracted from the self-cross-correlations for each antenna,

i.e. from the diagonal elements for each frequency and time slice. The Dα emission

is the MAST signal AIM DA/HM10/T*. The Dα signal has then been interpolated so

that it is on the same time-base as the SAMI data. To identify the time windows

of interest the data for each shot was looped over with increasing window size to
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find the window that had the best negative correlation, as measured by the Pearson

correlation coefficient, between ECE power and Dα emission. If the best negative

Pearson correlation coefficient was above a threshold then the shot was considered

not to exhibit this relationship and was not included in this analysis.

The plots in Fig. 3.9 and Fig. 3.10 show eight different shots (26869, 27150,

27171, 27566, 27556, 27668, 28149, 28829 and 29144) with Dα emission on the x-axis

and the natural log of the ECE power on the y-axis. The data points are colour

coded with respect to time in the shot. These plots show there are time periods in

each shot where the ECE power increases, in some shots dramatically, whilst the

Dα emission decreases.

There appears to be a log-linear relationship between the ECE power and the

Dα emission which can be expressed as:

ln(PECE) = GDα + c =⇒ PECE = A ∗ eGDα (3.7.1)

where ec = A and parameter c is the intercept and G is the gradient of the line

of best fit drawn through each data set for each shot. The aim is to relate these

parameters, particularly G, for each shot to plasma parameters to discover a general

relationship for multiple shots which explains this observed correlation between the

ECE power and Dα emission.

3.7.2 Plasma parameters effecting ECE power

The ECE power detected depends on properties of the mode conversion window like

the thickness of the layer or mode conversion scale length LMC and the temperature

Te [124] [125]. If LMC is thick, less ECE power will be received at the antenna as the

emission can not escape the plasma as easily. So over the time period shown, LMC

is expected to decrease as PECE increases. If Te is high, the electrons have more

energy and so it is easier to penetrate the mode conversion (MC) layer and escape

the plasma and so more ECE power will be detected at the antenna. Additionally a

higher temperature plasma is more ionized which suppresses Dα emission. So over

the time period shown in the plots Te is expected to increase as PECE increases and

Dα decreases.
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Figure 3.9: Plots of ECE power in antenna 0 vs. Dα emission for shots 26869,

27150, 27171 and 27566 for frequency channel six (15 GHz). The gradient G is the

exponent defined in equation 3.7.1.
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Figure 3.10: Plots of ECE power in antenna 0 vs. Dα emission for shots 27668,

28149, 28829 and 29144 for frequency channel six.
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The SAMI frequency channel used in the above plots is frequency channel six,

nf = 6, or fSAMI = 15GHz. We can use the plasma dispersion relation to determine

the electron density of the plasma at the mode conversion location:

fpe = 8980
√
ne (3.7.2)

where ne is the density per cubic centimetre cm−3. Using fpe = fSAMI gives a

electron density of ne = 2.790 x1018m−3.

Looking at the Thomson scattering data [126] for the relevant time intervals gives

radial electron density and temperature profiles for each time step in the interval.

Using the density at the MC layer, the radial location of the MC layer for each

time step can be inferred and then the electron temperature at this location so that

temporal plots of LMC (density divided by density gradient) and Te can be obtained.

For illustration, Fig. 3.11 and Fig. 3.12 show the radial density and temperature

profiles at the first time step in the interval where the relationship between ECE

power and Dα emission is observed. The same eight shots discussed in section 3.7.1

are shown with the density profile on the left and the temperature profile on the

right. Using the density at the MC layer, it is shown how the position of the MC

layer is obtained. This radial location is then used to deduce the temperature.

Carrying this analysis out for each time step in the interval gives temporal profiles

of the ECE power, Dα, radial location of MC window, density gradient at the MC

layer, temperature at the MC layer and the density scale length at the MC layer.

This is illustrated in each of the eight shots in Fig. 3.13 and Fig. 3.14 here and in

Figs. A.1 - A.6 in Appendix A.6.

These shots show similar behaviour, with all shots exhibiting the increase in

ECE as the Dα decreases. Most of the shots have increasing major radius R so the

plasma is moving out and expanding over the time window of interest. Most of the

shots show the temperature Te increasing over the time window, as expected, the

exception being shot 28149. However, the density gradient, and therefore the scale

length LMC , does not decrease as expected and the signal is rather noisy. This is

due to the Thomson scattering data often not being stable enough in the edge to

calculate the density gradient accurately there.
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Figure 3.11: Radial density and temperature profiles for shots 26869, 27150, 27171

and 27566 for frequency channel six at t = t0.
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Figure 3.12: Radial density and temperature profiles for shots 27668, 28149, 28829

and 29144 for frequency channel six at t = t0.
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Figure 3.13: Temporal profiles of ECE power (top left), Dα emission (top right),

radial location of MC window (middle left), density scale length (middle right),

electron temperature at MC window (bottom left) and density gradient (bottom

right) for shot 26869.
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Figure 3.14: Temporal profiles of ECE power, Dα emission, radial location of MC

window, density scale length, electron temperature at MC window and density gra-

dient for shot 27150.
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The Thomson scattering density, temperature and radial data can be time av-

eraged over the window of interest to improve the signal-to-noise ratio. Then the

scale length, density gradient and temperature at the MC location can be calculated.

Doing this for each shot that is: (i) guaranteed to have the reflectometer off, (ii) be

a double null shot and (iii) be a H-mode shot, results in a dataset of 66 shots where

the dependent variable is d(ln(PECE))
d(Dα)

and the independent variables are LMC , Te and

∇ne for each shot. A fitting function can then be applied to the data to decide if

the data is a good fit to a particular model.

3.7.3 Plasma parameters effecting Dα emission and poten-

tial models

The Dα signal used is a line integrated measurement which depends on the density,

temperature and scrape off layer width (scale length). Naively, (i) Dα ∼ LMCneT
− 1

3 .

However Dα light emission in C-Mod and NSTX [127] implies there could be two

other dependencies for the Dα emission to consider (ii) Dα ∼ n0.6T 0.5 and (iii)

Dα ∼ n0.7T 0.5.

If the narrowing of the density layer is causing enhanced tunnelling through the

MC layer, then we would expect a relationship PECE ∼ LMCDα as integrating the

MC formula gives PECE ∼ LMC . Therefore a linear relationship between PECE and

Dα is expected. As there is a log-linear relationship observed, it can be assumed that

the narrowing of the density layer is not responsible for the observation of increased

ECE power.

If damping is the case then PECE ∼ e−LMCvcol where vcol ∼ neT
− 3

2 =⇒ PECE ∼

e−LMCneT
− 3

2 . Therefore for each of the three cases (i), (ii) and (iii) we have:

PECE ∼ e−DαT
− 7

6 =⇒ d(ln(PECE))

d(Dα)
∼ T−

7
6 (i) (3.7.3)

PECE ∼ e−LMCDαn
0.4
e T−2

=⇒ d(ln(PECE))

d(Dα)
∼ LMCn

0.4
e T−2 (ii) (3.7.4)
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Figure 3.15: Model (i). Green points are the observed data, representing each shot.

The red line is the model prediction. Error bars are based on the error associated

with the Thomson scattering diagnostic.

PECE ∼ e−LMCDαn
0.3
e T−2

=⇒ d(ln(PECE))

d(Dα)
∼ LMCn

0.3
e T−2 (iii) (3.7.5)

Applying these models to our data results in the plots shown in Figs. 3.15 - 3.17.

Each green point refers to one shot and the red line is the model prediction. Error

bars are included and represent the error associated with the Thomson scattering

diagnostic temperature and density measurements and are of the order of 5 - 10%

[128]. A worse case scenario of a 10% error in the Thomson scattering data has

been used here. Error bars have been estimated in the standard way such that

if R = R(X, Y ), the uncertainty in measurement X is δX and the uncertainty in

measurement Y is δY then the uncertainty in R is:

δR =

√(
∂R

∂X
δX

)2

+

(
∂R

∂Y
δY

)2

(3.7.6)

For the purposes of estimating the errors, it is assumed here that the temperature

and density measurements are independent. Additionally, it is assumed the error

in the density gradient is the same as the error in the density measurement. These

assumptions may not be valid generally, but serve to provide an estimate of the
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Figure 3.16: Model (ii). Green points are the observed data, representing each shot.

The red line is the model prediction. Error bars are based on the error associated

with the Thomson scattering diagnostic.
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Figure 3.17: Model (iii). Green points are the observed data, representing each shot.

The red line is the model prediction. Error bars are based on the error associated

with the Thomson scattering diagnostic.
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Figure 3.18: Multivariate linear regression for mode conversion parameters LMC ,

Ngrad and Te. Green points are the observed data, representing each shot. The red

line is the model prediction. Error bars are based on the error associated with the

Thomson scattering diagnostic.

error for these models. We see that none of these models are a good fit for our

data. Looking more generally at these variables, a multivariate linear regression has

been performed which is shown in Fig. 3.18. None of these models agree well with

the observed data however so further plasma quantities need to be considered and

added to the model if it is possible they could be effecting the observed ECE power

or Dα emission.

3.7.4 Physical processes which may effect the ECE emission

The observed microwave emission could depend on at least three factors: the mode

conversion efficiency, the birth intensity of the emission and collisional damping

which may occur in the edge plasma. The mode conversion efficiency, or transmission

coefficient for O-X-B conversion is given by [129] [130]:

T (N||, Ny) = exp

(
−πk0Ln

√
Y

2

(
2(1 + Y )(N||,opt −N||)2 +N2

y

))
(3.7.7)
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where N|| is the parallel refractive index, Ny is the y-component of the refrac-

tive index, k0 is the vacuum wavenumber, Ln is the density scale length, Y is the

dimensionless electron cyclotron frequency ωc
ω

and N||,opt is the optimal N|| at the

optimal launch angle. Equation 3.7.7 implies that the gradient G = d(ln(PECE))
d(Dα)

will

depend on the scale length LMC in some way. However, the above plots imply this

is not the case as there doesn’t appear to be any dependence on LMC .

Now considering the birth intensity of the wave, Fig. 3.19 and 3.20 show the

birth density and birth temperature of the wave and how this evolves over the

time windows for each shot. To produce these plots, the MAST data for signals

EFM PSI(R,Z), EFM PSI AXIS, EFM PSI BOUNDARY and EFM F(PSI) (C) were used to

calculate the magnetic field. The magnetic field can be derived from the Grad-

Shafranov equation so that:

|B| = 1

R

√(
dψ

dz

)2

+

(
−dψ
dR

)2

+ F 2 (3.7.8)

where F = RBφ. Taking the midplane (z=0) to avoid the necessity for ray-

tracing and using the electron cyclotron resonance with the SAMI frequency channel:

ωce =
eB

m
=⇒ B =

2πmfsami
e

(3.7.9)

the radial location for that value of the magnetic field can be found, in a similar

way to finding the location of the mode conversion window above. The Thomson

scattering data for density and temperature was then used to find their values at this

birth location. These birth plots indicate that the birth density does not significantly

affect the microwave emission as it is roughly constant throughout the time interval.

However the birth temperature does increase, sometimes doubles, over the time

window of interest so could be an additional variable that influences the observed

microwave intensity. This agrees with the ECE occurring at long wavelengths where

the Rayleigh-Jeans law for optically thick resonance applies [131], giving the intensity

of emission as a function of temperature:

In(ω) =
ω2Te(R)

8π3c2
(3.7.10)
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Table 3.6: Chi-squared statistic for the different models

Model Chi-Squared Statistic

B ∼ T−
7
6 48.70

B ∼ LMC n0.4
e T−2 125.42

B ∼ LMC n0.3
e T−2 125.42

B ∼ 0.63 + 0.06LMC + 0.02Ngrad + 0.28Te 18.15

B ∼ -0.30 + 0.04nbirth - 0.10Tbirth + 1.36Rbirth 17.65

B ∼ -1.15 + 0.12LMC + 0.26Te + 0.36Redge

+ 0.15nbirth - 0.12Tbirth + 1.37Rbirth

16.18

It is therefore worth considering the birth temperature as a possible parameter

which affects the variable d(ln(PECE))
d(Dα)

. Performing another multivariate linear regres-

sion, adding in the birth parameters as variables results in Fig. 3.21. And including

both the birth parameters and the mode conversion parameters results in Fig. 3.22.

Error bars are calculated as above, including the spatial resolution of the diagnostic

of 1cm [126] [128] as an estimate of the error on the radial measurements. Neither

of these fits is very promising so it is likely there is still something missing from the

model.

3.7.5 Comparison of the models

As has already been seen in Figs. 3.15 - 3.18, Fig. 3.21 and Fig. 3.22, the values

for the variable G= d(ln(PECE))
d(Dα)

predicted by the different models do not agree well

with the observed data. An attempt to quantify how well each model fits the data

has been made in terms of the chi-squared statistic for each model. This is shown

in Table 3.6.

The chi-squared statistic measures the goodness of fit between the model and

the data and values closer to one imply the model is a better fit to the data and

accounts for the variance in the measurement errors in the Thomson scattering data.

Chi-squared statistics much greater than one, which is the case in all these models,

indicates a poor model fit. The smallest chi-squared error is for the model that
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Figure 3.19: Temporal profiles of birth density (left) and birth temperature (right)

of microwave emission for shots 26869, 27150, 27171 and 27566.
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Figure 3.20: Temporal profiles of birth density (left) and birth temperature (right)

of microwave emission for shots 27668, 28149, 28829, 29144.
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Figure 3.21: Multivariate linear regression with birth parameters only. The red line

is the model prediction, green points are the observed data and the error bars are

small enough to not show here.
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Figure 3.22: Multivariate linear regression with both mode conversion parameters

and birth parameters. The red line is the model prediction, green points are the

observed data and the error bars are shown in blue and based on errors in the

Thomson scattering data.
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includes plasma parameters that effect both mode conversion processes and birth

intensity of the ECE emission, as expected. Further additions to the model could

involve plasma parameters affected by the collisionality of the plasma such as the

ion temperature and density, Ti and ni, as these are likely to effect the ECE emission

and also the Dα emission.

3.8 Final words on SAMI data processing code

and data analysis

The accelerated GPU data processing code has provided a dramatically reduced

runtime to process the raw data from the SAMI diagnostic such that in the future

inter-shot processing will be able to be performed. Additionally, the GPU code

has enabled the processing of all of the stored raw data from previous MAST cam-

paigns leading to the consistent observation across many SAMI shots of a log-linear

relationship between ECE power and Dα emission. A few simple heuristic model

ideas were explored to explain this observation based on some of the underlying

physics which may be occurring. Unfortunately it has not been possible to quantify

in detail the observed relationship and relate it to any physical plasma parameters

or processes which are occurring. Further SAMI data from future campaigns, such

as the upgraded spherical tokamaks MAST-U and NSTX-U, should allow a wider

range of plasma conditions and shot parameters to be explored which may reveal

new physical insight.



Chapter 4

A GPU based Bateman solver for

nuclear burn up calculations

In this chapter a GPU-based solver for the Bateman equations [132] is introduced

which models the variation in nuclide number densities over time when irradiated

by neutrons. The underlying physical model is introduced and each part of the

simulation discussed in terms of its potential for acceleration. Results are com-

pared against the commonly used tool FISPACT-II [133] and issues with differing

numerical methods are discussed.

For a reactor model, the reactor is spatially divided into multiple cells or regions.

Currently FISPACT-II calculates the reaction rates and solves the Bateman equa-

tions for each reactor region sequentially, cell by cell. It would be advantageous to

calculate the reaction rates and solve the Bateman equations for all cells simultane-

ously. GPU technology provides this capability. The Bateman solver is used within

the neutronics community for magnetic confinement fusion, inertial confinement fu-

sion and also fission. A greater understanding of the neutron physics involved in

fusion would aid the development of reactor blanket technologies to provide shield-

ing from harmful neutron radiation as well as lead to efficient absorption of the 14.1

MeV neutrons produced, the conversion of this energy, and tritium production to

ensure reactor tritium self-sufficiency [134].

The chapter is organised as follows. In section 4.1 the Bateman equations are

introduced and possible numerical methods for solution, including time-stepping

74
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and matrix exponential methods, on a GPU are discussed. Section 4.2 discusses

the FISPACT-II code and algorithm used for the linear equation solver. Section

4.3, 4.4 and 4.5 discuss each part of the simulation in detail; (i) the nuclear data

cross-section collapse on the GPU, (ii) the activation matrix creation and (iii) the

solution of the system of linear equations on the GPU. Within section 4.5 different

numerical methods for solving the system of linear equations by calculating the

matrix exponential are considered and the decision to use the Chebyshev rational

approximation method (CRAM) is justified. In section 4.6 a FISPACT simulation

is considered and the outputs of FISPACT-II and the GPU code are compared and

in section 4.7 the acceleration the GPU code provides is presented. In section 4.8

the absolute and relative tolerance settings that FISPACT uses in the solver for the

system of linear equations is discussed and it is shown that setting the tolerances

stricter improves the agreement between the output of the GPU code and FISPACT.

4.1 Bateman equations

The Bateman equations [132] are used to model the evolution of nuclide number

densities as a function of time when they are subjected to irradiation by energetic

particles. When particles such as neutrons, protons and deuterons interact with

a material, several possible reactions can occur. Depending on the nuclides which

are being irradiated, the nuclide may absorb the incoming particle, collide with the

incoming particle causing scattering or it may split up into two smaller nuclides

as a result of fission. An activation code models these chains of reactions with

respect to time by utilizing nuclear databases that define the cross-sections and

decay constants for every nuclide. An activation or burn-up code therefore solves

the Bateman equations:

dNi

dt
= −(λi + σiφ)Ni +

∑
j

(λji + σjiφ)Nj + Si
∑
k

Nkσiφ (4.1.1)

where Ni is the number density of nuclide i at time t, λi is the decay constant

of nuclide i, λji is the decay constant of nuclide j producing nuclide i, σi is the

absorption cross-section of nuclide i, σji is the reaction cross-section for nuclide j
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producing nuclide i, φ is the neutron flux density and Si is a fission source.

The Bateman equations can also be described in matrix form as:

Ṅ = AN N(0) = N0 (4.1.2)

where A is known as the activation matrix and N is the vector of nuclide densi-

ties. The solution of equation 4.1.2 which is a first-order linear ordinary differential

equation is:

N = eAtN0 (4.1.3)

There are essentially two methods to calculate the solution to the Bateman

equations:

1. Time-stepping

2. Matrix exponential

and the matrix exponential method was chosen here as this method is better

suited to the GPU architecture. Time-stepping methods such as Runge-Kutta are

non-trivial to perform on a GPU because they are recursive and the next time

step depends on the previous time step. Runge-Kutta methods take multiple steps

through time, traversing a sequence of data-dependent stages that are ill-suited to

the GPU architecture [135]. However, positive performance gains over CPU only

approaches have been obtained by employing techniques to workaround the recur-

siveness problem. A 2016 study [136] considered three GPU methods for solving

the ordinary differential equations in a fission burn up light water nuclear reactor

scenario; (i) Runge-Kutta-Fhelberg method, (ii) Jacobi Collocation method, where

the matrix exponential is approximated by Gauss quadrature using Jacobi poly-

nomials and (iii) matrix exponential rational approximation using Padé’s diagonal

method and the scaling and sqauring method. In this fission burn up example, the

Runge-Kutta method has the fastest total runtime for the simulation and the scaling

and squaring method has the longest total runtime. All methods agreed with the

sequential algorithm with a root mean squared error of 1%. We chose to focus on
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the matrix exponential method because there are many different ways of computing

the matrix exponential [137] which will be discussed in section 4.5 and not all of the

methods have been attempted on a GPU before. The justification for the chosen

matrix exponential method will also be given in section 4.5.

4.2 FISPACT-II code solver

The full burn-up calculation can be split up into 3 parts; (i) the pre-processing or

calculation of the reaction rates from the nuclear data, (ii) the construction of the

activation matrix A and (iii) the solution of the Bateman equations by the matrix

exponential method.

The FISPACT-II code has been extensively used in the neutronics community.

A neutron shielding and activation study of MAST-U device [138] used multiple

neutron spectra on a 3D mesh modelling the tokamak which were then passed into

multiple FISPACT runs to calculate a nuclear inventory for each mesh point. How-

ever this study [138] is coarse in mesh size and cooling step size and a more detailed

and realistic model, requiring many more runs of FISPACT needs to be carried out.

A study of tritium generation in solid-type breeder blankets in DEMO [139] uses

FISPACT and it was shown a fine spatial resolution is needed to accurately predict

the tritium inventory. Whilst suitable for this study [139], for a more complex and

detailed blanket design it is suggested a mesh approach to burn-up could be advan-

tageous. In these simulations mesh cells are treated independently and there is no

interaction between cells. A GPU-accelerated version of FISPACT would aid both

of these examples by being able to perform many FISPACT runs for many mesh

cells simultaneously, rather than sequentially, and therefore a finer mesh can be used

for a more detailed and reliable simulation without becoming too computationally

expensive.

The FISPACT-II code extracts the nuclear data, in this case the energy depen-

dent cross-sections, from the TENDL2015 nuclear data library [140] [141] which

follows the ENDF-6 nuclear data format [142]. The ENDF-6 format provides rep-

resentations for neutron cross-sections and distributions, photon production from



4.2. FISPACT-II code solver 78

neutron reactions, charged particle production from neutron reactions, photo-atomic

interaction data, thermal neutron scattering data, and radionuclide production and

decay data (including fission products). The energy dependent cross-sections are

collapsed with the irradiated projectile flux, to provide an effective cross-section for

each reaction. This is essentially a matrix-vector product. The rate equations are

constructed using the collapsed cross-sections and decay constants for the coeffi-

cients, and solved to determine the time evolution of the inventory in response to

different irradiation scenarios. The assumption FISPACT uses is that the reaction

rates and decay constants are independent of the current inventory and are deter-

mined solely by the physical nuclide properties [133]. Additionally, the projectile

flux is assumed to be constant throughout the simulation and not modified by the

presence of the target material. This means the rate equations are linear. The

system is highly sparse as the activation matrix A is sparse with approximately 3%

non-zero entries. There are a few nuclides in the nuclear data library that have large

decay rates and this ensures that all practical FISPACT-II calculations with the full

inventory for many applications are always stiff [133], meaning not all numerical

methods that could be used to solve the Bateman equations are stable (unless the

step size is prohibitively small so that the simulation runtime is long) and the solver

must be chosen with care to ensure accuracy.

The core engine of the FISPACT-II linear, sparse and stiff-ODE solver is the

LSODES package [143] which is treated as a black box by FISPACT and no major

modifications have been made to the package. LSODES in FISPACT uses the

backward differentiation formula method, specifically Gear’s method [144], which is

a linear multi-step method based on the implicit Adams-Moulton method [145] [146].

LSODES is a successor to Gear’s code DIFSUB [147].

As the LSODES solver proceeds, the code automatically adjusts the method or-

der (and the step size) for optimal efficiency while satisfying prescribed accuracy

requirements. The accuracy of the calculations is controlled by refining the internal

time steps to satisfy a criterion placed on the estimate of the error. The accep-

tance criterion is based on the sum of relative (rtol) and absolute (atol) tolerances

which are user defined and specified by the TOLERANCE keyword in the FISPACT
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simulation [133]. The error associated with dominant nuclides in a FISPACT-II cal-

culation is determined by the chosen rtol parameter, while for the minor nuclides the

tolerance is relaxed by the addition of the atol parameter. This avoids the problems

that would occur for a pure relative error estimate in the case of zero or very small

nuclide inventories.

LSODES computes a vector w from the solution vector y:

wi = rtol ∗ yi + atol (4.2.4)

Estimates of the error, ei, are produced separately for each component of the

solution vector and combined with the weights wi, into a single measure of the error

using a root-mean-square:

D =

(
1

L

L∑
i=1

ei
wi

) 1
2

(4.2.5)

where L is the length of the vector y. D is used as a single measure of accept-

ability of the solution; if D >1 then LSODES refines its internal time steps until a

satisfactory D is obtained.

The source code for FISPACT-II was not available to study and use in the devel-

opment of the GPU code which was therefore written from scratch. The executable

FISPACT-II code was used to benchmark the simulations and compare output val-

ues for the nuclide density vectors with the same simulation performed on the GPU.

4.3 Cross-section collapse

The first step in the burn up simulation is to collapse the cross-sections for each

reaction. Each cell in a reactor model which has been spatially divided into multiple

cells has S isotopes and within those S isotopes there will be R types of reaction.

The calculation of reaction rates is done by collapsing the cross-sections:

〈σrφ〉 =

G∑
g=0

σrgφg

G∑
g=0

φg

(4.3.1)
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where σrg is the cross-section for reaction r in energy group g and φg is the

neutron flux in energy group g. For computational efficiency the neutron flux is

normalised so that
G∑
g=0

φg = 1. The number of energy groups is G=709.

As already stated, presently FISPACT-II calculates the reaction rates one cell

at a time and assumes cells don’t interact. To calculate the reaction rate for all

cells simultaneously the calculation of the reaction rates would become a matrix

multiplication:

Γ = ΣΦ (4.3.2)

where Σ is an NxK cross-section matrix containing N nuclear reactions each

having K energy regions, Φ is a KxM neutron flux matrix containing the neutron

flux at M cells for K energy regions and Γ is an NxM reaction rate matrix for M

burn zones each having N reactions.

An accelerated matrix multiplication is easy to achieve on a GPU using cuBLAS

[148] (see Appendix B.1). Previously a typical burn-up calculation would involve

50-100 isotopes, however the full nuclear database contains S = 3785 isotopes so

the calculation is extended to include these isotopes. Therefore the dimensions of

the calculation are N =
∑
S

RS, K = 709 and M as large as possible to represent

the different burn zones, or cells, in the reactor. M is limited only by the available

GPU memory. Once the memory required for the problem doesn’t fit inside GPU

memory there is a performance hit due to having to do the multiplication in batches

with CUDA streams as discussed in Chapter 3.

For the S isotopes each having a number of reactions R, using the TENDL2015

nuclear data library [140] [141], N = 218835. The dimensions of the matrix multi-

plication problem become Γ = [218835,M ],Σ = [218835, 709] and Φ = [709,M ].

4.3.1 Accuracy of cross-section collapse

The FNS INCONEL example is considered which is a “getting started” example as

part of the FISPACT installation simulating the five minute irradiation of an Inconel-

600 sample and is known to fit the experimental results from such an irradiation.

Inconel is an alloy consisting of Nickel, Chromium, Iron and Manganese isotopes
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that is well-suited to the extreme temperature and pressure environment present in

a tokamak. Inconel is the material the JET vessel is made out of and has been in

place for the duration of JET’s operating life [149]. Recently the ITER-like wall of

tungsten and beryllium is the plasma facing component in JET and for the ITER

vessel there will be no Inconel as the neutron irradiation expected in ITER will

activate several of the components of Inconel. However, this is a good example to

consider as it is known the FISPACT simulation matches experimental results well

so that the GPU output can be compared objectively to the FISPACT output.

Looking at just one cell for now, the collapsed cross-sections for the FNS INCONEL

simulation from the FISPACT output can be compared with the GPU output to

ensure accuracy at this stage. Fig. 4.1 shows both the collapsed cross-sections re-

turned by FISPACT (red-crosses) and the collapsed cross-sections returned by the

GPU code (blue circles) for all 106236 reactions that FISPACT considers, each with

a unique reaction ID based on the isotope MAT number and the reaction MT num-

ber. The MAT and MT number describe the nuclear data based on the ENDF-6

format. Each isotope has its own unique MAT number and each reaction is spec-

ified by a unique MT number such that the unique reaction ID = MAT*1000 +

MT. Certain reactions are not included in the simulation, those with MT = 18-21,

51-91 and MT > 200, and can be ignored. Additionally, FISPACT only outputs col-

lapsed cross-sections greater than 10−12. Once these considerations have been taken

into account the 218835 collapsed cross-sections the GPU calculates are reduced to

106236 and match very well with the FISPACT collapsed cross-sections as shown.

To emphasise this point, the relative error between the FISPACT and GPU output

for each reaction is shown in Fig. 4.2.

The GPU code is in good agreement with the FISPACT code for the cross-section

collapse stage of the simulation. Now let us consider the acceleration provided by

the GPU code.

4.3.2 Performance of cross-section collapse

Acceleration results for the cross-section collapse on the GPU using CUBLAS for

the simulation FNS INCONEL are shown in Fig. 4.3. The GPU used is the GeForce
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Figure 4.1: Collapsed cross-sections for FISPACT and GPU simulation for each

reaction identified by a unique reaction ID.

Figure 4.2: Relative error between FISPACT and GPU. Agreement is between 10e−5

and 10e−7.
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GTX 680 with a very small 2GB GDDR5 memory and FISPACT is run on the Intel

i5-5300U CPU. The available GPU memory is so small here that for a problem this

size to fit in memory, M can be at most approximately 500. As the aim is to have M

as large as possible to model many cells, the matrix Σ = [218835, 709] was split into

3 smaller matrices of size [72945, 709] to do the multiplication. This means M can

be 3000 before the problem again becomes too large to fit into memory and CUDA

streams and concurrency are used, introducing the performance hit as there is extra

time involved in organising the flux matrix for efficient processing on the GPU and

reorganising the collapsed cross-section output into the correct order. To do the

collapse in FISPACT, fispact collapse is run which collapses the reaction rates

for each isotope with the neutron fluxes for one cell in the reactor using a matrix-

vector product. Including all isotopes in the ENDF-6 TENDL2015 library and

collapsing with the fluxes has a CPU time of 62.2 seconds as reported by FISPACT.

So to do M cells, each with a different neutron flux, the time to do the full collapse

is 62.2*M seconds. This is a fair assumption to make as when doing a multi-flux

simulation with 41 flux channels the total time taken to perform the collapse is 2447

seconds so we see the time for the multi-flux simulation is approximately 41 times

longer.

Memory copy times to and from the GPU are included. The fispact collapse

command reads the raw nuclear data from the TENDL library which contains many

gigabytes of data and is therefore time consuming. Additionally, FISPACT calcu-

lates the uncertainties associated with the nuclear data by calculating the covari-

ances where as the GPU code does not. To speed up the collapse for FISPACT and

to have a fair comparison between the cross-section collapse in FISPACT and on the

GPU, the ENDF libraries can be preprocessed to create a single compressed binary

file containing only the cross-section data and none of the variance, resonance or

covariance data. This preprocessing has a CPU time of 72.5 seconds and then the

collapse can be done in 9.95 seconds CPU time. FISPACT is now approximately

six times faster when performing the collapse and only considering the cross-section

data. This fairer comparsion between GPU and FISPACT performance is shown in

Fig. 4.4 and the GPU still has a huge performance advantage over FISPACT for



4.3. Cross-section collapse 84

0 2000 4000 6000 8000 10000
M (number of reactor cells or burn regions)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000
Ac

ce
le

ra
tio

n
Acceleration of GPU compared to FISPACT

Figure 4.3: Acceleration of CUBLAS cross-section collapse over FISPACT for in-

creasing number of cells M.
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Figure 4.4: Acceleration of CUBLAS cross-section collapse over FISPACT collapse

using a preprocessed ENDF library including only the cross-section data.
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the cross-section collapse.

Both figures show a decrease in the acceleration of the GPU collapse at M = 3000

cells. This is because there is only 2GB memory on the GeForce GTX 680 which

can not fit the entire problem of this size so CUDA streams and concurrency must

be used as described in Chapter 3 to split the matrix up into chunks. Each chunk

is processed in turn, where there is overlap between memory copies and kernel

execution on the GPU. Again, memory copy times are included, as is the time taken

to rearrange the matrices into an efficient order to be processed by the GPU. This

problem can be alleviated or postponed by using a larger GPU, such as the Tesla

K40C with 12GB GDDR5.

The acceleration of the cross-section collapse on the GPU is large, even when the

ENDF library has been preprocessed and only the cross-section data is considered

for the FISPACT collapse. The ability to calculate the collapsed cross-sections for

many flux scenarios rapidly is very beneficial to the community, for example being

able to perform multi-flux studies for anticipating acceptable levels of neutron flux

for DEMO design. FISPACT has been used for a typical DEMO design study to

evaluate four different combined cooling and tritium breeding concepts and approx-

imately assess the respective damage doses experienced by the different materials

under different neutron flux scenarios [150]. Another study [151], involving tens of

thousands of FISPACT inventory simulations, evaluated the activation, transmu-

tation and primary damage response under neutron irradiation with special focus

given to the in-vessel conditions predicted for DEMO. Being able to perform a large

number of FISPACT simulations in parallel on a GPU is clearly advantageous.

4.4 Creating the activation matrix

The collapsed cross-sections or reaction rates for each cell, σrφ, are placed into the

activation matrices Ab in the position specified by the reaction for the parent and

the daughter and secondary products. Each burn zone b, containing N reaction

rates creates one SxS activation matrix Ab. Each reaction rate gets subtracted

from the diagonal specified by the parent isotope in the reaction. Additionally, each
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reaction rate gets added to the location specified by its daughter product and any

secondaries. Finally, the decay constants λs need to be added to each Ab. The

location to add the decay constant to is specified by the type of decay and the

branching ratio for that decay. Each λs is subtracted from the diagonal location

specified by the isotope. Additionally, the decay constant is added to the location

specified by the decay, β−, β+, α etc. and multiplied by the branching ratio for that

decay.

A simple example to illustrate this is one in which there are three nuclides to

be considered, 3H, 6Li and 9Be, with the following reactions and collapsed cross-

sections:

�
3H (n,total), with collapsed cross-section = 4

�
3H (n,2n), with collapsed cross-section = 4

�
6Li (n,γ), with collapsed cross-section = 6

�
6Li (n,α), with collapsed cross-section = 7

�
9Be (n,total), with collapsed cross-section = 10

�
9Be (n,t), with collapsed cross-section = 8

�
9Be (n,2n), with collapsed cross-section = 2

� λtritium = 3 with branching ratio 100%, for the β− reaction

The resulting activation matrix would be a 9 × 9 matrix including the isotopes

1H, 2H, 3H, 3He, 4He, 6Li, 7Li, 7Be and 9Be:
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A =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 4 −7 3 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 7 0 7 −13 6 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 8 0 0 0 8 0 −10


To walk through this example:

�
3H (n,total) has no effect on the activation matrix as the change in proton and

neutron number, ∆p and ∆n, are both zero.

�
3H (n,2n) has ∆p = 0 and ∆n = −1 so 3H becomes 2H, the daughter nuclide,

and A[2][1] = 4. There are no secondaries. There is the loss term on the

diagonal for the parent nuclide 3H so A[2][2] = -4.

�
6Li (n,γ) has ∆p = 0 and ∆n = 1 so the daughter nuclide is 7Li and A[5][6]

= 6. There are no secondaries. The loss term on the diagonal for the parent

nuclide is A[5][5] = -6.

�
6Li (n,α) has ∆p = −2 and ∆n = −1 so the daughter is 3H and A[5][2] =

7. Secondary nuclide is 4He so A[5][4] = 7. Loss term gets subtracted from

diagonal A[5][5] = -13.

�
9Be (n,total) has no effect on A as ∆p and ∆n are both zero.

�
9Be (n,t) has ∆p = −1 and ∆n = −1 so the daughter nuclide is 7Li and

A[8][6] = 8. Secondary nuclide is 3H so A[8][2] = 8. The loss term for the

parent nuclide is A[8][8] = -8.

�
9Be (n,2n) has ∆p = 0 and ∆n = −1 so the daughter is 8Be and this isotope

is not included in the model. There are no secondaries. So there is only the

loss term for the parent nuclide subtracted from A[8][8] = -10.
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Figure 4.5: Activation matrix of size 2604 × 2604 produced for one burn cell in the

FNS INCONEL example showing the sparsity structure. There are 23856 non-zero

entries in total.

� λtritium = 3, has ∆p = 1 and ∆n = −1 and this is subtracted from the diagonal

for tritium at A[2][2] = -7. It is also added to the location specified by the

daughter 3He, A[2][3] = 3

The above activation matrix creation is for the irradiation phase. For the cooling

phase, only the decay constants need to be included in the activation matrix.

The resulting activation matrices are very sparse. An example of the sparsity

structure for the activation matrix produced in the FNS INCONEL example we

have been considering so far is shown in Fig. 4.5. There are 23856 non-zero entries

in this 2604 × 2604 activation matrix so the matrix is only 0.35% filled.

It will be important to exploit this sparsity structure in the next steps of the

simulation to save space on the GPU and avoid doing unnecessary computation.
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4.5 Calculating the matrix exponential

There are many different methods of calculating the matrix exponential, most of

which are outlined in detail in an extremely thorough review of the field [137]. Each

method has its advantages and disadvantages. However most of the methods are of

dubious numerical quality and suffer from severe round-off errors.

4.5.1 Methods for calculating the matrix exponential

The most obvious way to calculate the matrix exponential is to use a power series

or Taylor series and truncate at some point. The matrix exponential is defined in a

similar way to the scalar definition:

eA =
∞∑
n=0

An

n!
= I + A +

A2

2!
+

A3

3!
+ .... (4.5.1)

With this method there is concern where to truncate the power series for effi-

ciency. Additionally, due to round-off error in floating point arithmetic, it is known

this method fails to calculate the correct matrix exponential for some matrices.

Another method involves the Padé approximation to eA, defined by [137]:

Rpq(A) = [Dpq(A)]−1Npq(A) (4.5.2)

where

Npq(A) =

p∑
j=0

(p+ q + j)!p!

(p+ q)!j!(p− j)!
Aj Dpq(A) =

q∑
j=0

(p+ q + j)!q!

(p+ q)!j!(q − j)!
(−A)j

(4.5.3)

Round-off error also makes the Padé approximation unreliable [137].

The round-off error problem associated with these two methods can be reduced

by using the scaling and squaring method:

eA = (e
A
m )m (4.5.4)

where m is chosen to be a power of 2 so that e
A
m can be computed reliably by

the Padé approximation. The solution (e
A
m )m is then formed by repeated squar-
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ing. By restricting ‖A‖/m ≤ 1, eA/m can be computed accurately with the Padé

approximation.

Another method for calculating the matrix exponential involves calculating the

eigenvalues and eigenvectors of the matrix and is based on a similarity transforma-

tion A = SBS−1 so that etA = SetBS−1 where S is chosen to be the matrix whose

columns are eigenvectors of A. We have the eigenvalue equation Avj = λjvj for

j = 1, ..., n and taking V = [v1]...[vn] gives AV = VD for D = diag(λ1, ..., λn).

Then etA = VetDV−1 and taking S = V we have the desired similarity transforma-

tion. Now etD = diag(eλ1t, ..., eλnt) is easy to compute if we have a valid method

for calculating the scalar exponential. Difficulty occurs for this method when the

matrix A does not have a linearly independent set of eigenvectors so that the matrix

V is invertible.

Of the methods discussed in this extensive paper [137], it is generally agreed the

most stable method is the scaling and squaring method with Padé approximation.

However, as discussed in section 4.1 and the 2016 study [136] this method does not

perform well on a GPU so is not considered.

4.5.2 Chebyshev rational approximation method

Previous fission burn up studies [152] [153] discuss why the above matrix exponen-

tial methods are not good for activation matrices such as those found in burn-up

calculations where there are large differences of several orders of magnitude between

values in the activation matrix and the activation matrices are very sparse. An alter-

native method, the Chebyshev rational approximation method (CRAM) is proposed

in these studies [152] [153] which outperforms the more conventional matrix expo-

nential methods in terms of computational accuracy and efficiency. CRAM is the

best rational approximation on the negative real axis which is where the eigenvalues

of the burn up matrix lie. For a rational function rk,k(z) = pk(z)/qk(z) with pk and

qk being polynomials of order k, the CRAM approximation of order k is defined as:

rk,k(x) = α0 + 2Re

 k/2∑
j=1

αj
x− θj

 (4.5.5)
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where α0 is the limit of the function rk,k at infinity and αj are the residues at

the poles θj.

The CRAM method is able to treat both short-lived and long-lived nuclides si-

multaneously unlike other methods. This method is also mentioned in the paper

previously discussed [137]. Consider max|rk,k(x) − e−x| where rk,k is the ratio of

two polynomials. The coefficients of the particular rk,k which minimises this max-

imum can be translated into bounds for ‖rk,k(A) − eA‖. These coefficients have

been determined [154]. CRAM is effective for sparse matrices and matrices with

eigenvalues which lie on the negative real axis such as the activation matrices found

in burn-up calculations. Given the success of the CRAM method in fission burn up

calculations, and the similarities between fission and fusion burn up calculations, we

have chosen the CRAM method to accelerate with a GPU. To our knowledge the

CRAM method has not been cast onto a GPU before. The GPU implementation is

based on MATLAB codes [153] (shown in Fig. 4.6) for the method of calculating the

matrix exponential. The GPU implementation is provided in Appendix B.2. The

code follows from the rational approximation to equation 4.1.3 and can be written

as [153]:

n = α0n0 + 2Re

 k/2∑
j=1

αj(At− θjI)−1n0

 (4.5.6)

where we are using rk,k(At) as the rational approximation to eAt from equation

4.5.5 and multiplying by n0.

4.6 Accuracy of results for FNS INCONEL

Considering just one time step in the simulation, an irradiation phase of 5 min-

utes, with initial conditions listed in Table 4.1, different numerical methods can be

explored to emphasise the problems associated with calculating the matrix expo-

nential.
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function [theta, alpha, alpha_0 = quad_coeffs(k) 

    %k = 34 is degree of approximation 

 

    x = pi*(1 : 2 : k — 1)/k; 

    theta = k*(0.1309 — 0.1194*x.^2 + 0.2500*x*1i); 

    w_j = k*(-2*0.1194*x + 0.2500*1i); 

    alpha = 1i*(1/k)*exp(theta).*w_j; 

    alpha_0 = 0;

end 

function n = rat_apprx(theta, alpha, alpha_0, A, t, n_0) 

    %theta = poles of rational function  r 

    %alpha = residues at these poles 

    %alpha_0 = limit of r at infinity 

    %A is burn up matrix 

    %t is time step 

    %n_0 is initial composition vector 

 

    s = length(theta); 

    A = A*t; 

    n = 0*n_0; 

     

    for j = 1 : s 

       n = n + (A — theta(j)*eye(size(A))) \ (alpha(j)*n_0); 

    end 

 

    n = 2*real(n); 

    n = n + alpha_0*n_0;

end 

Figure 4.6: The MATLAB code for the CRAM method of calculating the matrix

exponential and solving the Bateman equation as found in [153].
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Table 4.1: Initial nuclide densities

Nuclide Initial density Nuclide Initial density

50Cr 8.03664E+19 57Fe 1.78691E+19

52Cr 1.54979E+21 58Fe 2.37805E+18

53Cr 1.75733E+20 58Ni 5.29597E+21

54Cr 4.37438E+19 60Ni 2.03999E+21

55Mn 4.27506E+19 61Ni 8.86850E+19

54Fe 4.92898E+19 62Ni 2.82703E+20

56Fe 7.73744E+20 64Ni 7.20371E+19

4.6.1 FISPACT vs. MATLAB

The activation matrix produced by the previous step in the simulation can be fed

into various MATLAB solvers to explore their numerical convergence. Fig. 4.7 shows

the results produced by the FISPACT simulation and the results produced from the

MATLAB CRAM method shown in Fig. 4.6. The results agree well, indicating

CRAM is indeed a good method to use for calculating the matrix exponential. The

MATLAB operation A\b involved in the MATLAB CRAM code means to solve a

system of linear equations Ax = b. To do this MATLAB analyses the matrix and

decides which algorithm path to follow based on the properties of the matrix [155].

All of this is done automatically, without any input from the user. Efficient methods

of solving different types of systems of linear equations is the result of years of

work by Timothy Davis and others, whose routines have been incorporated into the

MATLAB backslash operator [156] [157] [158] [159].

The comparison of FISPACT and the MATLAB routine expm [160] also agree

well, as shown in Fig. 4.8, indicating that CRAM is as accurate as this function.

The scaling and squaring method used in the MATLAB routine expmdemo1 [161] in

Fig. 4.9 also stands up and performs well with good agreement to FISPACT.

However, both the Taylor series method in Fig. 4.10 and the Eigenvalue method

in Fig. 4.11, which are the MATLAB routines expmdemo2 and expmdemo3 [161] re-

spectively perform poorly. The expmdemo2 shows massive round-off errors, a known
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Figure 4.7: FISPACT and MATLAB CRAM inventory calculation show good agree-

ment.
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Figure 4.8: FISPACT and MATLAB expm inventory calculation show good agree-

ment.
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Figure 4.9: FISPACT and MATLAB expmdemo1 performing scaling and squaring

show good agreement.

issue for this method, leading to wildly wrong results. The expmdemo3 routine,

which calculates the matrix exponential by the eigenvalue method, performs poorly

when the activation matrix A does not have a complete set of linearly independent

eigenvectors. The calculated nuclide densities are therefore inaccurate and the only

nuclide densities which agree with the FISPACT nuclide densities are for the nu-

clides that are present in the initial nuclide inventory and therefore the nuclides with

a higher density.

These results show the difficulties associated with numerical quality of some

of the different methods of calculating the matrix exponential as mentioned ear-

lier. However these results confirm that the activation matrix creation step of the

simulation is correct as the final results calculated by some of the methods are in

agreement. It should also be mentioned that in all of these examples, inventory den-

sities with less than 1000 atoms are considered statistically insignificant and so not

included in the MATLAB plots. This is because FISPACT doesn’t output nuclide

densities less than this, as set by the MIND keyword in the FISPACT simulation.
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Figure 4.10: FISPACT and MATLAB expmdemo2 calculating the Taylor series show

poor agreement. Large errors occur for almost all nuclides due to round-off errors.
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Figure 4.11: FISPACT and MATLAB expmdemo3 show poor agreement for many

nuclides. Nuclides that are present in the initial nuclide inventory agree well where

as nuclides present after the irradiation step agree less well.
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4.6.2 FISPACT vs. GPU

CUDA kernels have been written to perform the operations contained in the MAT-

LAB code in Fig. 4.6 (see Appendix B.2). The MATLAB operation A\b is a

shorthand for finding the solution of a system of linear equations Ax = b. To do

this on the GPU a library routine is used. A few options have been explored here

to evaluate their performance, specifically the MAGMA library [162] [163] and the

CuSparse library [164].

Using MAGMA

The MAGMA routine used here is magma zgesv gpu [165], which does LU decompo-

sition with partial pivoting and row interchanges to factor A as A = P∗L∗U, where

P is a permutation matrix, L is unit lower triangular, and U is upper triangular.

The factored form of A is then used to solve the system of equations Ax = b as:

Ax = b =⇒ PLUx = b

LUx = P−1b (as P is orthogonal an inverse exists)

Ly = P−1b (first solve for intermediate result y)

Ux = y (second solve for x)

As can be seen from Fig. 4.12 this routine provides good agreement with FIS-

PACT. However, it does not exploit the sparsity structure of the matrix and there is

wasted space on the GPU. Further as the routine is a hybrid GPU-CPU routine [166]

it is synchronous and there are many synchronisations and data copies between the

GPU and the CPU, hence it is slow for matrices of the size encountered for nuclear

burn up calculations, which are size 2604 × 2604 if we include all the isotopes from

the ENDF nuclear data library which have non-zero MAT number in the simulation.

This routine is optimized for very large dense matrices where the synchronisations

and data copies between the CPU and GPU are negligible and the copies can be

overlapped with GPU work. Hybrid algorithms are not as efficient for small sized

problems as they are for large sized problems. However, if multiple CPU-GPU pairs



4.6. Accuracy of results for FNS INCONEL 98

H0
01

H0
02

H0
03

He
00

3
He

00
4

Ti
04

6
Ti

04
7

Ti
04

8
Ti

04
9

Ti
05

0
Ti

05
1

V0
49

V0
50

V0
51

V0
52

V0
53

V0
54

Cr
04

9
Cr

05
0

Cr
05

1
Cr

05
2

Cr
05

3
Cr

05
4

Cr
05

5
M

n0
53

M
n0

54
M

n0
55

M
n0

56
M

n0
57

M
n0

58
M

n0
58

m
Fe

05
3

Fe
05

4
Fe

05
5

Fe
05

6
Fe

05
7

Fe
05

8
Fe

05
9

Fe
06

0
Fe

06
1

Co
05

6
Co

05
7

Co
05

8
Co

05
8m

Co
05

9
Co

06
0

Co
06

0m
Co

06
1

Co
06

2
Co

06
2m

Co
06

3
Ni

05
7

Ni
05

8
Ni

05
9

Ni
06

0
Ni

06
1

Ni
06

2
Ni

06
3

Ni
06

4
Ni

06
5

Cu
06

5102

104

106

108

1010

1012

1014

1016

1018

1020

1022

Nu
cli

de
 d

en
sit

ie
s (

# 
At

om
s)

Nuclide densities

GPU - Magma
Fispact

Figure 4.12: FISPACT and GPU inventories using magma zgesv gpu to solve the

system of linear equations show good agreement with the GPU and FISPACT nu-

clide densities overlapping.

are available then tiled LU factorisation can be performed on the multi-CPU-GPU

paired system to give a performance benefit [167].

To improve on this situation for the particular problem encountered in burn up

calculations, where we want to solve many independent matrices of size 2604 ×

2604, the possibility of using magma zgesv batched [165] to solve many matrices

simultaneously, for example all the time steps for one matrix, was investigated.

This routine is executed entirely on the GPU and worked well for smaller-sized test

matrices, for example matrix dimensions of size less than or equal to 512 [168].

However, including all the non-zero MAT isotopes in the full model means each

matrix has size 2604 × 2604 and the benefit from using magma zgesv batched is

lost. These matrices are too large to be solved efficiently with the batch processing

routine and need to be solved serially, but as discussed above this does not give the

required performance either. Additionally, the size of the full problem, including all

21 time steps at the same time, is larger than the available 2GB GDDR5 memory

on the GTX 680 card and so the whole problem will not fit on the GPU (although
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Figure 4.13: FISPACT and GPU inventories using CuSparse to solve the system

of linear equations show good agreement for some nuclides but poor agreement for

others.

could be easily alleviated by moving to a larger GPU).

Using CuSparse

As an alternative method, to exploit the sparse nature of the activation matrices,

the use of the CuSparse library for performing LU factorisation of a sparse linear

system was explored. The activation matrix is first converted to compressed sparse

row (CSR) format and A is factored as A = L ∗ U and solved similarly to the

MAGMA routines. Unfortunately, this method does not give good agreement for all

nuclides and is not in good agreement with FISPACT as can be seen in Fig. 4.13.

It is faster than the MAGMA routine however which will be discussed in the next

section.
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4.7 Acceleration of activation matrix creation and

CRAM solve

The acceleration benefits a GPU based system can provide are realised primarily

because each cell has an independent activation matrix Ab to solve. So each GPU

in a system can solve a different matrix simultaneously. Additionally, each GPU

could potentially solve more than one matrix using CUDA streams, as long as there

is enough memory on the GPU to solve the full problem. For example if three

activation matrices could fit on one GPU, three CUDA streams could run concur-

rently to solve them simultaneously. Then if there were four GPUs in a system,

12 matrices could be solved simultaneously. Unfortunately, this cannot be done

with the MAGMA routines as they are synchronous routines, meaning there is no

acceleration provided by using CUDA streams as each stream has to wait for the

previous stream to finish before it can start. In this case, in a four GPU system,

only four matrices can be solved simultaneously by launching each GPU with an

OpenMP thread. CuSparse routines could potentially benefit from using CUDA

streams as they are asynchronous routines, but as this method has been shown to

be not numerically sound for burn up activation matrices it was not investigated.

4.7.1 MAGMA acceleration

Fig. 4.14 shows the performance of the GPU CRAM routine using the MAGMA

library to solve the system of linear equations, compared to the FISPACT inven-

tory calculation for one irradiation step and 21 cooling steps. The MAGMA CRAM

routine is much slower than the FISPACT inventory calculation. As already dis-

cussed, the magma zgesv gpu routine used is a hybrid GPU-CPU routine, meaning

it is synchronous and there are many copies to and from the GPU which limits per-

formance. This routine does however provide a performance benefit over CPU-only

implementations when the matrices to be solved are large. For the matrices in burn

up calculations which have size 2604×2604, the FISPACT inventory calculation it-

self is very quick, approximately 2 seconds for each cell M. This is if the collapsed

cross-sections have already been computed and the inventory calculation is done in
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Figure 4.14: The performance of the GPU MAGMA CRAM over the FISPACT

inventory calculation. The FISPACT inventory step is actually much faster than

the GPU CRAM method using the MAGMA library.

isolation. The runtime of FISPACT is dominated by the first step, the nuclear data

cross-section collapse. Fig. 4.15 shows the overall performance for the full GPU

code and FISPACT simulation. The GPU code has similar overall performance to

FISPACT and is only a disappointing 1.5 times as fast as the FISPACT code. The

huge speed-up seen in the GPU cross-section collapse has been largely negated by

the slow MAGMA CRAM routine.

4.7.2 CuSparse acceleration

The CuSparse CRAM acceleration over the FISPACT inventory calculation for one

irradiation step and 21 cooling steps is shown in Fig. 4.16. The CuSparse method

performs better than the MAGMA method and is comparable to FISPACT in terms

of performance. However, the GPU performance is still disappointing and these

results indicate that it might be better to only perform the cross-section collapse

on the GPU as this gives a huge performance increase, and then feed the collapsed

cross-sections to FISPACT to calculate the inventory.

The total acceleration provided by the full GPU code is shown in Fig. 4.17. This
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Figure 4.15: The performance of the full GPU MAGMA CRAM over FISPACT. All

of the benefit provided by the fast cross-section collapse on the GPU is offset by the

poor performance of the MAGMA CRAM method such that both methods perform

approximately equally.

appears to level out and provide an acceleration just short of 30x over FISPACT

for many burn zones. Again this performance gain is solely due to the accelerated

cross-section collapse on the GPU.

4.7.3 Linearity of activation matrix creation and CRAM

solve parts of the code

The run time of both the activation matrix creation and CRAM is proportional to

the number of burn zones (M) as can be seen from Fig. 4.18 and Fig. 4.19.

The activation matrix creation is performed on the CPU as there is the poten-

tial for race conditions on the GPU where different threads representing different

reactions would need to access the same data element and modify it. To avoid this,

CUDA atomics could be used to ensure threads were acting on the value stored in

that memory location but performance would be significantly impacted. For this

reason it was considered that the best option is to perform the activation matrix

creation on the CPU. As such, each activation matrix for each burn zone is created
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Figure 4.16: The performance of the GPU CuSparse CRAM over the FISPACT

inventory calculation. The two methods are comparable in terms of performance.
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Figure 4.17: The performance of the full GPU CuSparse CRAM over the FISPACT.

The GPU code has accelerated the solve by 30x.
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Figure 4.18: The run times for the irradiation and cooling phases of the activa-

tion matrix creation. The cooling phase is quicker as only the decay constants are

included in the matrix creation.
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this was just one time step in the FNS INCONEL simulation, whereas the cooling

phase has 21 time steps to calculate.
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sequentially and therefore we see a linear relationship as M increases. This situation

could be improved somewhat using OpenMP to parallelise the creation of several

activation matrices for several burn zones simultaneously on the CPU machine.

There is a similar effect occurring for the CRAM solver. Each activation ma-

trix is solved on one GPU at once by launching an OpenMP thread for each GPU.

In the cluster used, there are four GeForce GTX 680 cards, so this has been par-

allelised so that each of the four GPUs is solving one matrix for a different burn

zone simultaneously. This is shown in Fig. 4.20 for a simulation considering four

burn zones so that M=4. Running the simulation on one GPU so that each matrix is

solved sequentially takes 3.9 times as long as running on four GPUs for the MAGMA

routine, and 3.2 times as long as running on four GPUs for the CuSparse routine.

Theoretically, one would expect the runtime to be four times faster running on four

GPUs. In reality there is a slight overhead when switching between GPU contexts

which is more noticeable in the CuSparse case as the run times are much shorter.

This effect is negligible in the MAGMA case as the run times involved are large. It

is clear that on a bigger system with more GPUs, this part of the simulation would

be significantly faster and is proportional to the number of GPUs in the system.

Massively parallel GPU machines, such as the RAL Emerald cluster [169] with 197

NVIDIA GPUs (two K80, three K20 and 192 M2090 GPUs), would be well-suited

to such a calculation.

4.8 Absolute and relative tolerance settings for

FISPACT to use in LSODES solver

Looking at the relative error between FISPACT and some of the apparently success-

ful methods, see Figs. 4.21 - 4.23, the agreement between FISPACT and the new

method is only 10% for some nuclides. This was found to be because the default

tolerance settings which are passed to the LSODES solver to control the convergence

of the solution are not strict enough for this FISPACT simulation. The default set-

tings have an absolute tolerance atol = 1e4 and relative tolerance rtol = 1e−3 and

give good accuracy for the major constituents of the initial inventory but may give
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can solve it’s own independent matrix simultaneosuly.
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Figure 4.21: Relative error between FISPACT and MATLAB expm routine with

default tolerance settings.
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Figure 4.22: Relative error between FISPACT and MATLAB CRAM routine with

default tolerance settings.
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Figure 4.23: Relative error between FISPACT and GPU MAGMA routine with

default tolerance settings.
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poor results for the minor constituents which may lead to inaccurate predictions of

radiological quantities when minor constituents are dominant in radiological activ-

ity [133]. Tighter tolerances must be used to ensure that the significant radiological

outputs have converged such that the inventory calculation is accurately calculated.

Setting stricter tolerances will increase the runtime of this part of the simulation,

particularly for complex simulations with many nuclides present. Table 4.2 shows

the different tolerance settings tested and the run time for this part of the simula-

tion associated with each tolerance. For each tolerance setting, the nuclide density

for 63Co as calculated by FISPACT is also shown, as is the relative error with the

nuclide density calculated by the GPU code. For this example the runtime has in-

creased by approximately 40% from the default tolerance setting to the strictest but

as the runtime is only a few seconds, this effect is negligible on the overall solution

time. The relative error between FISPACT and the GPU CRAM method using

MAGMA for atol = 1e−2 and rtol = 1e−9 is shown in Fig. 4.24 and has reduced to

less than 0.01%. After performing a pathways analysis for the FISPACT simulation,

it was found that most of the nuclides with relative error greater that 0.001% are

short-lived dominant nuclides and this may be a reason for the larger relative errors

for these nuclides. All nuclides with relative error less than 0.001% are long-lived.

Fig. 4.25 shows both the relative error at the default tolerance setting and at the

stricter tolerance setting to illustrate which nuclides have changed and by how much.

Additionally, Table 4.2 shows that we get reasonable agreement between FISPACT

and the GPU without having to use the strictest tolerance settings.

4.9 Final words on a GPU-based Bateman solver

A GPU code has been designed and tested against the FNS INCONEL example in

FISPACT and also been benchmarked against two other FISPACT examples, the

FNG Nickel (Frascati Neutron Generator from Nickel foil irradiation) and 30keV

Maxwellian (an astrophysical example with average stellar abundances). Similar

acceleration has been observed and the quality of the results has been maintained

for these further two examples. Unfortunately, a feasible GPU solution for the
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Table 4.2: Different tolerance settings for LSODES solver showing effect on runtime,

nuclide density and relative error for 63Co

atol rtol Time (s) Nuclide density 63Co Relative Error 63Co

1e+04 1e-03 1.97 7.21988e+03 8.97579e-02

1e+03 1e-04 2.08 7.67467e+03 2.51803e-02

1e+02 1e-05 2.13 7.86620e+03 2.18784e-04

1e+01 1e-06 2.21 7.87074e+03 3.57859e-04

1e+00 1e-07 2.26 7.86898e+03 1.34579e-04

1e-01 1e-08 2.48 7.86866e+03 9.39169e-05

1e-02 1e-09 2.82 7.86873e+03 1.02812e-04
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Figure 4.24: Relative error between FISPACT and GPU MAGMA routine with

stricter tolerance settings.
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Figure 4.25: Relative error between FISPACT and GPU MAGMA routine for the

default and stricter tolerance settings illustrating the improvement in agreement

between results a stricter tolerance gives.

CRAM method that is both numerically accurate and fast could not be achieved

within the time frame of the PhD. Given more time, further GPU routines to solve

sparse systems of linear equations of the type found in burn up calculations could be

investigated, for example, the MAGMA routines available through the Sparse Iter

package [170].

The GPU code developed is an incomplete model of FISPACT-II and does not

include all of the functionality of FISPACT. The activation matrix creation is in-

complete and there is data missing from the activation matrix. The self-fission

decay lambdas and branching ratios from the nuclear data have been ignored cur-

rently in the GPU implementation so these effects are missing from the activa-

tion matrix which is then passed to CRAM. Whilst this omission doesn’t effect the

FNS INCONEL simulation as there are no actinides present in the simulation, this

functionality could be included at a later date to provide the next component of the

model and to be able to perform more interesting and fusion relevant simulations.

What has been demonstrated here is that the CRAM method is suitable in

general for use in inventory calculations to solve the Bateman equations. In the



4.9. Final words on a GPU-based Bateman solver 111

future it may well be possible to implement CRAM successfully, with a significant

acceleration on the GPU, and the work in this chapter provides the ground work for

doing so. Additionally, the usefulness of the cross-section collapse on the GPU in

step one of the simulation should be mentioned. The ability to do the collapse for

many burn zones simultaneously and at an impressive speed is beneficial for many

neutronics problems, as is the ability to perform the collapse with several perturbed

fluxes at once to account for uncertainties in the nuclear data.



Chapter 5

Matrix multiplication on

FPGA-based dataflow engines

Massive, dense linear algebra such as matrix-matrix multiplication is extremely com-

putationally demanding but is widely applied in many scientific computing applica-

tions [171] [172]. For example, to clarify and predict the properties of a variety of

materials, density functional theory relying on matrix multiplication is used [173].

Massive matrix multiplications are also relevant in matrix equations describing many

fusion applications such as studying low frequency, long-wavelength plasmas [174].

New hardware is now available to offload computationally expensive parts of

an application to provide an acceleration: the dataflow engine, an FPGA-based

reconfigurable architecture providing the flexibility to adjust the architecture to

a specific problem. Previous successful work using Maxeler dataflow engines was

introduced in Chapter 2 and includes molecular mechanics simulations and the

calculation of induced dipoles [89], sorting algorithms such as the bitonic merge-

sort algorithm [90], stencil computation known to be computationally demanding

and prevalent in many scientific areas [91] and a specific finite difference library in

the form of MaxGenFD [92]. These examples provide significant improvements in

performance relative to CPU-based systems and some have demonstrated positive

comparisons with GPU implementations. Additionally, the performance per watt

is greatly improved in the dataflow based solutions [175] making them the energy

efficient alternative to more traditional approaches.

112
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To explore the capabilities of the dataflow engine, a massive matrix-matrix mul-

tiplication problem was chosen due to the high importance it has in many scientific

applications, including in plasma physics. Indeed, we have come across matrix mul-

tiplications in the SAMI data processing chain in Chapter 3 and the cross-section

collapse in the first step of solving the Bateman equations in Chapter 4. In this chap-

ter the performance and energy efficiency of a massive matrix-matrix multiplication

on a dataflow engine are compared with other known hardware solutions such as

the GPU and many-core architectures running the well developed high performance

libraries CUBLAS [148] and Intel MKL [176].

5.1 Matrix multiplication on FPGAs

Recently there has been an increased interest in matrix-matrix multiplication on

FPGAs. Most of this work has focussed on multiplying small matrices which is a

limitation due to the available resources on the FPGA, i.e. the matrices have to fit

in the small on-chip memory. One study [177] considers multiplying two four-by-

four matrices using the Simulink Xilinx platform [178]. A parallel implementation

uses a lot of hardware resources and as such means it is difficult to perform larger

matrix multiplies. An alternative design follows a serial approach and uses less

resources but takes longer to perform the calculation. Other studies [179] [180] per-

form multiplications reaching 200*200 and 1024*1024 respectively, as the maximum

size considered.

This is a well studied field, with many people working on different optimisations

to bring about the best performance. However much of the previous work has

required a deep understanding of the FPGA hardware and hardware description

languages like VHDL or Verilog, such as in [181] which considers a blocking algorithm

that allows data re-use on-chip whilst the full matrix is stored in off-chip memory.

Another study [182] chooses to focus on optimisations which improve the energy

performance in addition to latency and throughput, but again the approach requires

a detailed knowledge of the underlying FPGA hardware.

The aim with the relatively new Maxeler dataflow approach is to abstract the
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fundamentals from the programmer and provide a programming environment that

is quick to adapt to and more familiar to most research scientists. It will therefore

be accessible to a larger user base within the scientific community and quickly gain

traction in the field of high performance computing on FPGAs.

5.2 Custom dataflow engine (DFE) implementa-

tion

To explore the capabilities of the DFE a massive matrix-matrix multiplication prob-

lem was chosen due to the high importance it has in many scientific applications.

Considering a matrix-multiplication C = A ∗B, where A = [N, K], B = [K, M] and

C = [N, M], the algorithm used for the dataflow implementation, in terms of how

the data is presented to the dataflow engine, follows the optimised C approach:

for(int n=0; n<N; n++){

for(int k=0; k<K; k++){

for(int m=0; m<M; m++){

C[n][m] += A[n][k]*B[k][m];

}

}

}

This is optimised as the orders of the loop k and m have been swapped when

compared to a naive implementation. The order of the elements of A and B that

are multiplied together are contiguous so that the order that the elements of C are

computed are also contiguous. This means there are fewer cache misses as when the

first read request to B is made the cache is filled with the row-wise elements of B.

Then when the next read request to B is made, there is a cache hit as the element is

already in cache and the multiplication can be done immediately, without having to

go to main memory for the data. If the orders of loop k and m hadn’t been swapped

so the next element required from B is from the next row M elements away we have

a cache miss.

For the DFE kernel code, the dimensions of the matrices, N and K are passed as
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scalar inputs from the CPU so there is the ability to change the dimensions of the

matrices without having to recompile and build the design. The compilation and

build process for FPGA based systems is lengthy and can take up to 24 hours for

large designs because of the optimisations and timing constraints that must be met

when producing the bit stream for the FPGA. Fortunately, there is a simulation

environment for the design and testing phase which is much faster where the FPGA

code is simulated in the CPU. The dimension M is fixed and is related to the

pipeline depth of the kernel. The kernel pipeline is the chain of operations that

performs each multiplication and addition for each data element, the result of which

is then passed back into the start of the kernel pipeline to be used for the next

addition. In such a way the multiplication and accumulation performs a matrix

multiplication. The pipeline depth is greater than one unlike for the simple kernel

shown in Chapter 2 because floating point arithmetic cannot be performed in one

clock tick, the fundamental unit of time governed by the FPGA clock speed. The

minimum required value of M for the custom design to allow a successful build was

found to be M=1440. This is used in the kernel to set the stream offset and specifies

the number of data elements to offset by to link the current result element to the

correct accumulation column. For M ≤ 1440, the design fails as the cyclic loop in

the kernel has a latency greater than zero. In fact there is a latency of 15 in this

pipeline, 12 for the floating-point adder, 1 for the ternary-if operator and 2 for the

multiplication so the result of each multiply-add is available 15 ticks after it starts.

In each kernel clock tick we are operating on data the size of the burst width i.e. 96

elements of data, so we need to have a stream offset of 15×96 = 1440 to successfully

schedule the dataflow and to provide the correct final result.

The input array (or stream) A is streamed over PCIe and a new input is read

only at the start of each new row of B. The stream B is streamed from LMem which

is a large off-chip memory as discussed in Chapter 2 and illustrated by Fig. 2.6.

The LMem operates in burst sizes of 3072 bits meaning 96 32-bit floats can be read

and 96 multiplications can be done at once. The body of the kernel, performing

the matrix-matrix multiply consists of a hardware loop. At the head of the loop,

if the first row of C is being computed so that we are starting the accumulation,
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Figure 5.1: Simplified kernel for the custom matrix multiplication design showing

the controlled input, hardware loop and control counters. An element from A is

read only when the first element from a row of B is read, i.e. when counter m=0.

An element from B is read on each clock tick. The current A and B elements are

multiplied and for the first m ticks (whilst counter k=0) 0.0 is added, otherwise the

value being carried around the loop is added. This result is then offset by M elements

(i.e. the length of a row of B) to be accumulated with the next multiplication for

that column. Only when the last row of B is being read as input (i.e when counter

k=K-1) can the final result start being outputted. This describes the computation

for the first row of the matrix C.
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the value 0.0 is chosen. Otherwise the accumulated sum being carried around the

loop is choosen. The multiplication occurs and the sum is added to produce a new

value and the foot of the loop connects this new value to the head of the loop using

a stream offset. Finally the correct accumulated result is output to LMem when

the end of a row of stream A is reached. A simplified schematic of this kernel is

shown in Fig. 5.1 showing the counters k and m which count to K (the length of a

column of stream B) and M (length of a row of stream B) respectively which control

the dataflow, the controlled input A and the hardware loop performing the matrix

multiplication.

The kernel describes the computation but a manager is needed to describe the

data movement to, from and within the DFE. In the manager the matrix dimensions

are initialized and made available for use in the kernel. Input B and the output C

are connected to the LMem with a linear 1D access pattern and input A is connected

to the CPU. Interfaces for writing and reading the LMem are constructed and the

number of clock ticks for the kernel to run for is also set in the manager. Care is

needed to ensure that when the data is transferred from the CPU the input and

output matrices are buffered so they are multiples of 3072 bits, the burst size.

Compiling the DFE code creates a SLiC function as described in Chapter 2

which is then available to call from the host CPU code. First matrix B is loaded

into the LMem before calling the SLiC function which runs on the dataflow en-

gine which streams A from the CPU and reads B from the LMem, performs the

matrix-multiplication and writes the result C to LMem. The result matrix C is then

read from LMem into CPU memory after the SLiC function returns. A schematic

illustrating this data movement is shown in Fig. 5.2 with A streamed directly into

the kernel (shown in Fig. 5.1) from the CPU and B and C going via LMem. The

host code, kernel code and manager code for the custom DFE matrix multiplication

implementation is shown in Appendix C.

Having fixed M and using the kernel and manager as described above, the size

of the problem is limited to dimensions satisfying N ∗ K ≤ 372824 and M=1440.

If N*K exceeded this value, the design fails to wait for stream interrupts and the

execution fails as a result. Using these upper bounds, multiple different (N, K)
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Figure 5.3: The compute times for a CPU and dataflow engine matrix-matrix multi-

ply for different (N, K) pairs specifying the dimensions of the matrix A. The number

of columns in the second matrix B is M = 1440. The DFE provides a 3x acceler-

ation over the CPU application, apart from the extreme size configurations where

the matrix B specified by the K dimension is short or fat.
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combinations for M = 1440 starting from (1, 372824) and ending with (186412, 2)

are investigated, fully exploring the parameter space. Fig. 5.3 shows the time taken

for both a C implementation and a dataflow implementation in this regime and

demonstrates the area of parameter space where it is beneficial to use a dataflow

engine over a CPU, i.e. when the dataflow execution times are less than the CPU

execution times.

There is a clear region where the dataflow implementation is faster than the CPU

implementation and so any of these (N, K) combinations are a suitable choice when

looking to accelerate the application. For the following work, three (N, K) pairs;

(40, 9320), (300, 1242) and (1000, 372) are considered which sample the parameter

space. It is possible to achieve larger matrix multiplications by running the kernel

many times to perform a series of smaller matrix multiplications. For example,

to perform a (10240, 9320) x (9320, 11520) matrix multiplication, the matrix A is

divided into 256 chunks of size (40, 9320) and the matrix B is divided into 8 chunks

of size (9320, 1440) resulting in the matrix C being composed of 2048 chunks of

size (40, 1440). On one DFE this is implemented as illustrated in Fig. 5.4 (a)

for a smaller model with A and B divided into four chunks. The first BChunk

is loaded into the DFE LMem and the first AChunk is looped over to give the

first CChunk. Then the second BChunk is loaded into the LMem and the process

repeated to give the next CChunk and so on until the first N rows of C have been

computed. This method scales up to eight DFEs easily. The multiplication can

be performed in the same fashion as for one DFE, loading each DFEs LMem with

the different BChunks and streaming the same AChunk to the different DFEs so

each is computing simultaneously with an independent BChunk. Alternatively the

multiplication can be calculated as illustrated in Fig. 5.4 (b). In this method, the

same chunk of B is sent to the eight DFEs and different AChunks are streamed to

each DFE simultaneously so that the first M columns of the matrix C are obtained.

The preferable method is based on performance and is discussed in section 5.4.

There is a fair amount of flexibility in terms of the size of the matrix multipli-

cation as N and K can be varied without having to rebuild the design which can

be a very time consuming process. N and K are varied on the CPU and passed
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Figure 5.4: A schematic illustrating the order in which the elements of the resulting

C matrix are computed for the two different DFE methods, (a) C computed row-wise,

and (b) C computed column-wise. Solid lines represent contiguous data elements

and dashed lines represent connections to the next contiguous data element.
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as scalar inputs to the DFE, M however is hard-coded into the kernel code as the

stream offset and can not be varied without the expensive rebuild. The three (N,

K) combinations used here are examples only for different orders of magnitude for K

and it is clear these can be any value satisfying N ∗K ≤ 372824. Any sized matrix

multiplication (FullN, K) x (K, FullM) can then be done as a series of (N, K) x (K,

M) matrix multiplications where AChunks = FullN/N and BChunks = FullM/M

within system memory limitations.

5.3 DFE matrix-multiply using the Maxeler App

Maxeler have developed the Maxeler App Gallery [183] which contains applications

developed mostly by Maxeler engineers for tasks such as 1D FFT, 2D FFT, n-body

simulation, Jacobi solver and linear regression. There is also a dense matrix-matrix

multiplication app available to users of Maxeler hardware. Cloning and building

this project results in an highly optimised, matrix-multiplication application.

The Maxeler design works by splitting the matrices up into tiles. If matrix

dimensions are not a multiple of the tile size then the matrix is padded to make the

dimensions a multiple of the tile size. Splitting each matrix into tiles of size NxN

and taking a pair of tiles, one from A and one from B, then N3 multiplications are

carried out on the pair of tiles to give N2 partial results. Decomposing the matrices

into tiles allows for data re-use. Double buffering the tiles allows N multiplications

for one read from each matrix into the buffer per cycle. An entire tile from B is

loaded into the FMem and a single row of a tile of A is used to compute a row of

tile C on every cycle. The remaining rows of A are loaded and the dot-products

calculated to give the full tile of C. The matrices need to be rearranged into tile

format before computation on the DFE. The dense matrix multiplication app is

used below to compare against the custom DFE implementation from section 5.2

and other high performance solutions such as Intel MKL or CUBLAS.



5.4. Results and comparison with other hardware 122

5.4 Results and comparison with other hardware

The DFE dense matrix-matrix multiplication implementation was tested at three

different base size (N, K) combinations (40, 9320), (300, 1242) and (1000, 372) with

M = 1440. The starting point was to have AChunks = BChunks = 8 and increase

both the number of AChunks and BChunks in multiples of eight. As a baseline a

serial C implementation was compared to: (i) the custom 1-DFE implementation,

(ii) both methods of implementation for an 8-DFE system, and (iii) the imple-

mentation provided by the Maxeler App. Also included is 1-thread MKL, 8-thread

MKL, and 16-thread MKL implementations (two threads for each of the eight cores),

running on an Intel Xeon E5-2670 @ 2.60GHz, and a GPU implementation using

a single Tesla K40C running CUBLAS. For the DFE implementations, 1-DFE and

8-DFE solutions were tested on one MPC-X2000 node of the Maxeler machine at

STFC Daresbury Laboratory [184] [185] containing eight Maia DFEs each with 48GB

LMem [186]. Where relevant, all results include memory copy times to transfer data

to and from the accelerator devices, i.e. the DFE and the GPU.

Fig. 5.5 shows the performance of the various implementations for different large

sized problems using N = 40, K = 9320 and M = 1440 as the base size (top figure), N

= 300, K = 1242 and M = 1440 (middle figure) and for N = 1000, K = 372, M = 1440

(bottom figure). In the top figure, the number of AChunks and BChunks are varied

from (8,8) to (128,40) so the problem size varies from [320, 9320] x [9320, 11520] to

[5120, 9320] x [9320, 57600]. The custom 1-DFE and 1-thread MKL have similar

performance gains. Of the two 8-DFE implementations the method shown in Fig. 5.4

(a) performs better. The MaxApp matrix multiplication implementation performs

similarly to the custom 8-DFE implementations and performs slightly better for

larger problem sizes. 8-thread and 16-thread MKL perform well and CUBLAS

has increasing performance as the problem size increases, up to nearly 600x for

the largest matrix multiplication. Similar results have been obtained for the two

remaining base cases for N = 300, K = 1242 and M = 1440 (middle figure) and

for N = 1000, K = 372, M = 1440 (bottom figure). In these two figures, there are

values missing from the custom DFE implementation due to memory limitations on

the CPU for the intermediate staging arrays.



5.4. Results and comparison with other hardware 123

The Maxeler App DFE acceleration in the top case is 40x and for the remaining

2 cases is 30x over the serial C implementation. The Maxeler App DFE acceleration

compared to 1-thread MKL is between 4-5x whereas 8-threaded MKL outperforms

the Maxeler App DFE implementation by 1.5-2x and 16-thread MKL does even

better.

These results show a relatively poor compute performance for matrix-matrix

multiplication on the DFE when compared to other implementations. The reason for

the drastic differences in performance between the DFE and GPU implementation is

that the GPU doesn’t have to partition the data and do the matrix multiplications

as a series of smaller multiplications as is done for the custom DFE, or rearrange the

matrices into tiles as in done in the Maxeler App implementation. The Tesla K40C

card has 12GB GDDR5 memory so as long as both input matrices A and B and the

resulting matrix C fit in memory this is the best solution and performance increases

as problem size increases up to this limit. Once the 12GB limit is reached, the

problem does need to be split up on the GPU and CUDA streams and concurrency

used to process the data. Performance will be reduced slightly as there is time spent

arranging the data into the correct chunk format to stream to the GPU.

The DFE implementation is memory bound. For the Maxeler App implemen-

tation multiplying square matrices, there are N3 multiply-accumulates. For the

Maxeler App design running at 150 MHz with 1536 DSPs being utilized, with each

DSP able to do one multiply-accumulate in one clock cycle, the time taken for a

compute bound application is 4.34N3 picoseconds. This curve is shown in Fig. 5.6

for square matrices N=K=M, along with the experimental kernel runtimes. As the

experimental runtimes are significantly slower than the compute bound runtime the

Maxeler App matrix multiplication must be memory bound as the computation is

waiting for data from memory. One would expect the experimental runtimes to be

slightly slower than the calculated compute times in practice, but the significantly

slower experimental runtimes must be down to the slow FPGA memory bandwidth,

which is 38.4 GB/s. Matrix multiplication on the GPU is also memory bandwidth

bound [187]. This implies the GPU will outperform the DFE simply because it

has a faster memory bandwidth, a Tesla K40C has a memory bandwidth of 288
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Figure 5.5: The acceleration over a serial C implementation of matrix-matrix multi-

plication, for increasing matrix sizes. The (AChunks, BChunks) combinations refer

to the number of chunks the matrix A and matrix B are split into where the size

of a single chunk of A is [40, 9320] (top), [300, 1242] (middle), [1000, 372] (bottom)

and the size of a single chunk of B is [9320, 1440] (top), [1242, 1440] (middle) and

[372, 1440] (bottom).
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Figure 5.6: The curves for the experimental runtime and compute bound (4.34N3)

runtime for square matrices, N=K=M. Matrix multiplication on the DFE is memory

bound as the experimental runtime is slower than the compute time.

GB/s which is 7.5 times faster than the DFE memory bandwidth. Whilst the faster

memory bandwidth doesn’t account for all of the better performance, the GPU

CUBLAS implementation is also a highly optimised library that has been developed

and improved over many years, as has the Intel MKL library. The Maxeler App

dense matrix multiplication is much younger and still being developed, it is not yet

a finished product and performance can only improve as more optimisations are

made.

The custom 8-DFE implementations in theory should be 8x faster than the cus-

tom 1-DFE implementation. An acceleration of between 6.5x and 7.7x was achieved

when moving to an 8-DFE implementation from a 1-DFE implementation so the

custom DFE implementation scales well to all the DFEs within one MPC-X node

of the Daresbury machine. If (unrealistic) perfect scaling to eight DFEs is assumed,

the Maxeler App matrix multiply has accelerations ranging between 256x and 296x

over serial C. This is more comparable to the CUBLAS performance.
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Table 5.1: Total resource usage for custom DFE implementation

LUTs FFs BRAMs DSPs

524800 1049600 2567 1963
total available

FPGA resources

136895 197074 1120 100 total resources used

26.0% 18.8% 43.6% 5.1% % of available

5.5 Limitations of custom design

The reason for the custom DFE application not achieving the MaxApp application

performance is that the hardware resources; the lookup tables (LUTs), flip-flops

(FFs), BRAMs (Block RAM) and multipliers (DSPs), used for the design are not

fully utilized as shown in Table 5.1. The custom DFE design is a naive matrix-matrix

multiply and it is a non-trivial task to effectively achieve high resource usage. Not

all of the DSP blocks are being used to perform 1963 multiplications per clock tick,

the theoretical maximum. Only 5.09% are being used, with 96 DSP blocks used

for multiplication as this is the burst size of the LMem. One way to improve on

this would be to replicate the kernel graph, having a second stream from LMem,

the same cyclic computation operating on this second stream in parallel to the first

stream and another stream outputting the result to LMem so the second BChunk is

processed simultaneously within the kernel, rather than requiring the kernel to run

twice. Unfortunately, this is the limit with this idea, there can be at most 2 streams

from the LMem as already nearly half of the available BRAM is used with just one

stream.

As can be seen by the acceleration results, the Maxeler App outperforms a cus-

tom DFE implementation by approximately 10x. The custom design is a naive

implementation whereas the Maxeler App implementation has been created by ex-

perienced dataflow engineers from Maxeler. As such the Maxeler App design makes

better use of the available resources and compute capability of the DFE as can be

seen in Table 5.2. The percentage of DSP blocks which are used for multiplication

has increased from 5% to nearly 80% whilst the other resources used have doubled.

More multiplications are being done in parallel on chip. The design is running at a
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Table 5.2: Total resource usage for MaxApp implementation

LUTs FFs BRAMs DSPs

524800 1049600 2567 1963
total available

FPGA resources

287815 405977 2567 1538 total resources used

54.8% 38.7% 100.0% 78.4% % of available

frequency of 150 MHz but it is likely the design could run at 200 MHz [188] so the

performance of Maxeler App could be improved even further. Additionally, the app

does the accumulation of the partial results computed of the matrix C on the CPU

currently. It would increase performance to use LMem to store the intermediate

results and perform the accumulation on the DFE and these changes may be made

to the app in the future.

5.6 MaxApp implementation with maximum com-

pute efficiency

For a DFE compute efficiency of 1, where the matrix size is a multiple of the tile size

and no padding is required, the acceleration results are shown in Fig. 5.7 for the

Maxeler App DFE implementation provided by Maxeler, a CUBLAS implementation

and a 1-thread MKL implementation. A matrix dimension N = 384 = tile size was

chosen as a starting point, increasing up to N = 9984 = 26*tile size.

When the compute efficiency is maximum, the performance of the Maxeler App

DFE implementation has greatly improved to an acceleration of 250x over a serial C

implementation, compared to 30-40x from the previous problem dimensions where

the matrices needed to be padded to multiples of the tile size. The Maxeler App DFE

implementation outperforms the 1-thread MKL with a runtime slightly faster than

previously with 5-6x acceleration. However, the CUBLAS implementation, running

on a top-of-the-range K40 GPU card, with an acceleration increasing to 2500x still

far outperforms the Maxeler App DFE implementation running on an equivalent

top-of-the-range MPC-X dataflow solution, with at best a 2000x acceleration if all
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Figure 5.7: The acceleration over serial C of square matrix multiplication ranging

from N = 384 to N = 9984 for Maxeler DFE implementation, CUBLAS and 1-thread

MKL.

eight of the DFEs within the MPC-X are fully utilized. However, this may not be a

fair comparison in terms of resources as the K40 GPU only has 12 GB memory and

the MPC-X has 384 GB, 48GB for each DFE in the node. Additionally, the cost of

the GPU is likely to be significantly less than the unlisted price for an MPC-X node

due in part to the wider user base for GPU technology.

The Maxeler dense matrix multiplication app has a significantly reduced develop-

ment time, compared to the self-developed implementation which is highly attractive

to users in the scientific community. In addition, it provides a much greater accel-

eration. However, the Maxeler solution still provides relatively poor acceleration

when compared to the CUDA CUBLAS implementation and the development time

is roughly equal in each case. Where the Maxeler solution may compete with the

GPU solution is in terms of energy efficiency, and this is detailed further in the next

section.
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5.7 Energy efficiency

As application problem sizes have increased in recent years, the running/electricity

costs of machines and therefore their energy efficiency has become an important

consideration. The annual energy cost to power the top supercomputers exceeded

the acquisition cost of the system itself for the first time in 2008 [189]. Further,

the target of a 20 MW exaflop system would require a 56x performance improve-

ment with only a 2x increase in power consumption [189]. A 2011 study [190] found

that computations per kilowatt-hour has doubled every 1.57 years. Assuming this

trend, to get a 56x increase in performance for only a 2x increase in power consump-

tion would take approximately 1.57log228 = 7.5 years. We are expected to reach

the exascale in 2020 so reaching this performance per kilowatt hour is potentially

unachievable without new technology and architectures.

Many studies have been performed which analyse and compare the power con-

sumption and energy efficiency of algorithms running on different devices. To cal-

culate the energy efficiency of the DFE matrix multiply application, the procedure

presented in [191] and [192] is followed here, which uses a measure of power con-

sumption in terms of the thermal design power. Here, as in [191], the performance

in giga-floating point operations per second (GFLOPS) is analysed to give energy

efficiency in terms of GFLOPS per watt, where as in [192], the authors consider

energy efficiency in terms of Joules. The number of GFLOP’s required to carry out

a matrix multiplication for square matrices with dimension N is 2× 10−9×N3. The

GFLOPS for each device and size of matrix can then be calculated based on the

runtime of the application. The power consumption figures used are those stated as

the thermal design power of the E5-2670 CPU, the average board power of the K40C

and the power figure per DFE card reported by the Maxeler maxtop command line

utility.

Using these figures for the power consumption is slightly misleading as this is

the theoretical maximum power drawn by each device. This assumes that all of the

power drawn is used in the calculation where as in reality there will be background

tasks and other operations being performed. However, in the absence of more accu-

rate techniques to measure the power consumed, the thermal design power figures
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Table 5.3: Power efficiency

GFLOPS Acceleration
GFLOPS/watt

efficiency

Normalised

efficiency

CPU 0.5 1.0x 4.4 ∗ 10−3 1.0x

MKL 19.5 38.0x 0.2 38.2x

DFE 107.7 211.0x 5.2 1168.8x

CUBLAS 1057.1 2072.0x 4.5 1015.4x

were used as in [191] and [192]. It should be noted that to get a more accurate

figure for the power consumption, an Olson remote power monitoring meter [193]

could have been used as in [194]. This would be done by measuring the idle power

consumption and the power during the application run and taking the difference.

However, this would require this equipment which was not readily available, and also

machine access which is impractical for the machines used in this work which are

located at Daresbury and Culham. Alternatively, one could use a library like Per-

formance Application Programming Interface (PAPI) [195] or Accurately Measur-

ing Power and Energy for Heterogeneous Resource Environments (Ampehre) [196].

These were investigated but proved to be difficult to install and use on the required

machines.

Fig. 5.8 shows the performance per watt for the serial CPU, DFE, CUBLAS

and 1-thread MKL implementations. We see the DFE implementation has the best

performance per watt due to its low power consumption. Whilst the CUBLAS

implementation appears to have fairly good performance per watt, this is mostly

due to its excellent performance, rather then its low power consumption. The board

power required by the GPU is an order of magnitude higher than the DFE. Table

5.3 shows the typical values for the performance per watt and power efficiency for

the different implementations with matrix dimension N = 9984.
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Figure 5.8: The performance per watt (GFLOPS/watt) for the serial C, DFE,

CUBLAS and 1-thread MKL implementations for square matrix multiplication rang-

ing from N = 384 to N = 9984.

5.8 Final words on dataflow programming

The dataflow approach provides a significant acceleration of a massive matrix-matrix

multiplication and performs on a par with its competitors whilst being much more

energy efficient which is now an important factor in choice of technology. Whilst

the DFE shows promise, there is still a large hurdle to overcome for those not

experienced in FPGA programming to enable the DFE to become more widely

adopted in the scientific community. However it is clear that the potential is there

for the DFE to perform on a par with the GPU in terms of a massive matrix

multiplication once the available DFE resources are fully exploited. Indeed, the

Himeno benchmark, a floating point computation kernel known to be bound by

memory bandwidth, performs better on a DFE than on a GPU [197]. This suggests

that memory bound applications, such as matrix multiplication, could potentially

have better performance on a DFE compared to a GPU (once the the implementation

has been fully optimized) as the Himeno benchmark is a worst case scenario for

memory bound applications.
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Programming the DFE is a lengthy process and complicated in comparison to

using a GPU or Intel MKL and this programmer effort should be taken into account

when considering which accelerator to port a code to. Fortunately, Maxeler tech-

nologies are developing an app gallery with DFE implementations of many common

problems which can be used by the scientific community. This drastically reduces

the development cycle for end users and makes the DFE a more attractive option

to non-specialists. The Maxeler dense matrix multiplication app has a significantly

reduced development time, compared to the custom implementation and provides a

greater acceleration.

This chapter has highlighted the benefit of accelerators in computationally expen-

sive problems. The GPU application provides huge speed-ups compared to a serial

and multi-threaded CPU implementation, reducing the run-time significantly and

the Maxeler App DFE implementation performs well and shows promise. Whilst the

GPU is at this time more accessible to the general scientific community with highly

optimized libraries provided such as CUFFT and CUBLAS, meaning the highest

performance is achievable with little user development, it is not inconceivable that

in the future the DFE will become more accessible. High performance libraries like

MaxBLAS [198] will be developed and the machine may outperform the GPU in the

future and become a more attractive option for the scientific community. Further,

as running costs become an important consideration, the DFE approach holds an

advantage due to the superior energy efficiency it provides. The DFE implementa-

tion has a high performance per watt ratio and low power consumption since it has

a low clock frequency, making it an ideal choice of technology for energy efficient

computing.

Whilst the Maxeler dataflow programming paradigm is quite difficult for those

beginning in FPGA programming, there are other tools available on the market

which may be easier for beginners such as Vivado High Level Synthesis (HLS) from

Xilinx [199] (formally AutoPilot from AutoESL which was acquired by Xilinx in

2011). This is a compiler that compiles C/C++ programs and performs advanced

platform based code transformations and synthesis optimizations to produce Verilog

or VHDL code for FPGAs [200]. The design time is obviously much shorter as users
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can develop in C/C++ and not require learning MaxJ, the Java-like language used

to program the DFE kernel and manager code as described in Chapter 2. Users

have reported tremendous reductions in the necessary effort for designing FPGA

accelerated systems [201]. Other HLS tools are available and are described in a 2015

survey [202]. This includes Xilinx Vivado HLS; Altera OpenCL which is a cross-

platform language targeting many parallel computing platforms including GPUs and

FPGAs and is C-like; Bluespec System Verilog, a high level hardware description

language built upon a subset of System Verilog which is somewhere between a HDL

and HLS; LegUp which takes C code in it’s entirety and compiles it for FPGA

and ROOCC, a C to VHDL compiler. LegUp and ROOCC are both research tools

where as the others are available commercially. Vivado HLS, LegUp and ROOCC

have small learning curves due to them essentially being C to HDL compilers but

to get better performance, optimisations must be made to the code. OpenCL has a

mid-level accessibility and Bluespec System Verilog has a steep learning curve as it

does not accept C code.

Global companies such as IBM and Intel are now also beginning to invest in

high performance computing on FPGAs. IBM has the Coherent Accelerator Pro-

cessor Interface (CAPI) which on POWER8 systems provides a high-performance

solution for the implementation of client-specific, computation-heavy algorithms on

an FPGA [203]. Intel acquired Altera recently and is aiming to integrate Arria 10

GX FPGA and Broadwell EP chip onto the same die [204] which will reduce power

consumption and improve communication between the CPU and FPGA. Xilinx of-

fers the Zynq-7000 family [205] of system on chip (SoC) which features an ARM

CPU and FPGA on the same chip providing a smart, intelligent system aiming for

the best performance at lowest possible power consumption. It is clear FPGA use

for high performance computing is increasing in popularity and there are many tools

now on the market to assist in the easy adoption of this architecture by the general

scientific community where FPGA use has been limited to experts previously.



Chapter 6

Conclusions

The aim of this thesis has been to investigate the potential of emerging architectures

to increase the capabilities of data processing tasks and simulations within the field

of fusion. There is a close relationship between advances in the capabilities of plasma

physics computations and the recent advances in technology such as the emergence

of GPU and FPGA architectures. Three examples from different fusion applications

have been studied and these technologies have been used to make a contribution in

different areas in plasma physics.

The summary of the field presented in Chapter 1 indicates the trend for larger,

more complex simulations requiring more computing power. We have reached an

era where to get more computing power for complex plasma physics calculations,

alternative accelerator technologies need to be explored further. Traditional CPU-

only approaches are no longer sufficient to provide the increased computing power

and more flexible architectures are required. The underlying hardware of two of

these new technologies, GPUs and FPGAs, have been discussed and the software

models used to exploit their parallelism introduced.

In Chapter 3, the application of GPU technology to the high date-rate synthetic

aperture microwave imaging (SAMI) diagnostic was investigated. The raw data

processing task was accelerated 60x compared to the original IDL data processing

code, which then enabled for the first time multi-shot analysis of the SAMI data

to be undertaken. In the future, on NSTX-U and MAST-U, the SAMI raw data

will now be able to be processed, and therefore analysed, between consecutive shots

134
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for the first time, greatly improving the capabilities of SAMI on these machines.

The GPU code has been used to process all of the stored raw data from previous

MAST campaigns which has led to a consistent log-linear relationship between the

ECE power and Dα emission across multiple shots being observed. Several physical

reasons for the observed relationship were investigated, attempting to find a model

that fully described the data. Currently, there are potentially further considerations

that need to be included in the model to accurately describe observed trends.

The potential of using GPUs to accelerate the industry standard FISPACT-II

code which calculates the nuclide inventory after neutron irradiation was investi-

gated in Chapter 4, showing promise for a partial or even a full port of the code

to the GPU architecture. The GPU code (using a new matrix exponential method

based on Chebyshev rational approximations to calculate the inventory) was tested

against a simple FISPACT example (which uses the LSODES package, a linear

multi-step method, to calculate the inventory) and the calculated nuclide invento-

ries agree to within 0.01%. The chosen MAGMA library routine which calculates

the nuclide inventory accurately is however slow, offering no acceleration over the

FISPACT calculation. There are other library routines which could be used in place

of the MAGMA routine to produce the correct results and provide an accelera-

tion. Specifically, the MAGMA Sparse-Iter package is of interest and can provide an

implementation of the current MAGMA routine but optimized for sparse matrices.

A new FPGA-based technology known as the “dataflow engine” was explored

in the context of a problem common to not only many simulations found in fusion

applications, but generally in the field of computational science. A custom imple-

mentation of a large matrix multiplication problem was investigated along with a

highly optimised Maxeler App implementation provided by Maxeler Technologies. It

was found to be difficult to achieve the same performance as the Maxeler App with-

out extensive specialised code optimisation, but the many off-the-shelf Maxeler App

implementations, available for diverse applications, provide quick, easy to use, high

performance solutions to dataflow problems. Whilst at this time more established

technologies like the GPU provide better performance for this particular problem,

the dataflow technology shows promise and certainly outperforms the GPU in terms
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of energy efficiency, which is now also an important consideration and expense for

larger simulations requiring more computing power. Additionally, the DFE outper-

forms the GPU in certain specialised applications and FPGA technology in general

looks set to gain in popularity in light of investment by large global companies in

hybrid FPGA-CPU architectures.

For modelling next generation tokamaks like ITER and DEMO, the fusion com-

munity needs to be able to run much more sophisticated models to accurately sim-

ulate physical processes occurring in these machines. Algorithms requiring massive

computing power will be employed and it is not clear, given recent trends, if this

can be provided by traditional approaches such as many-core CPU MPI-OMP based

solutions. Alternative accelerator technologies may be required to provide the nec-

essary computing power to successfully carry out these demanding simulations.

Once ITER is operational, the amount of diagnostic data produced will be at

least an order of magnitude higher than current machines like JET and MAST.

Consideration of how to handle these large amounts of data also needs to be done

now in order to prepare for ITER. The work on the GPU data processing code for

the high data rate SAMI diagnostic presented in Chapter 3 demonstrates the use

of emerging technology for handling large amounts of off-line data. The successful

implementation of a GPU data processing code will hopefully encourage others to

adopt GPU technology, where appropriate, to process the large amount of data

expected for all diagnostics on ITER due to the longer pulse length (ITER is aiming

for 400-600 second pulses). The SAMI diagnostic has the highest data rate on MAST

of 4GB per shot and the data processing with the existing IDL code was too slow for

inter-shot processing. Even overnight processing of the collected data for that day

did not occur and the raw data was stored for processing at some later date. Storing

a large amount of raw data for ITER will not be acceptable so accelerated methods

for data processing based on emerging technologies which dramatically reduce the

processing time are attractive.

Whilst the FISPACT-II code is the industry standard used to calculate nuclide

inventories of materials after neutron irradiation, it is limited to studying one region

in a tokamak at a time. Large simulations, modelling many regions in a tokamak
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can be done, but the nuclide inventory for each region is calculated sequentially

in FISPACT and takes a long time. Being able to perform these full, detailed

simulations in a sensible amount of time for tokamaks like ITER and DEMO is

essential for predicting material degradation under different flux conditions and

initial material composition. GPU technology can provide this capability. This

work has demonstrated a significantly accelerated cross-section collapse useful for

investigating different flux scenarios. Whilst further work needs to be done on the

nuclide inventory calculation involving the calculation of the matrix exponential on

a GPU, the foundation for a full GPU version of FISPACT has been made. Further

sparse libraries such as the MAGMA Sparse Iter library need to be explored for use

in the chosen CRAM method to calculate the matrix exponential. Additionally, the

potential for using a time stepping method to solve the system of linear equations,

instead of the matrix exponential method, could be explored. There have been

successful implementations of the Runge-Kutta method on a GPU for example as

discussed in Chapter 4.

FPGA-based technologies have been extensively used in data acquisition and

signal processing tasks in the fusion community. In Chapter 5 the FPGA has been

explored as a key component of a dataflow engine (DFE) for high performance com-

puting. This could include large data-processing tasks or large-scale simulations

relevant for ITER. Currently the DFE technology is not as easy to use as the GPU

technology and so requires a greater programmer effort and development time. Ad-

ditionally, most (but not all) GPU applications still outperform applications run on

the DFE due to the extensive number of highly optimized libraries and, more gener-

ally, the relative maturity of the GPU technology compared to the DFE technology.

FPGA technology in general is important to study now however, as its use is likely

to increase in the future as large global companies such as IBM and Intel invest

further in the field of high performance computing on FPGAs.

Overall, this work has achieved its primary aim of investigating the use of emerg-

ing architectures applied to problems faced by the fusion community, and shown it

is beneficial to do so in a wide range of fusion applications including the processing

of large amounts of raw data from fusion diagnostics and large scale fusion relevant
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simulations. Investigating the use of emerging high performance computing archi-

tectures will continue to be essential to the fusion community for the planning and

operation of next generation devices such as ITER and beyond.



Appendix A

SAMI data-processing CUDA

kernels

A.1 Data-conditioning kernels

1 // Calculate the low frequency switching noise and remove it

2 // Kernel to smooth an array A of size N*M (2D array with N rows , ←↩

M columns) with a boxcar average of the specified width w. ←↩

Details here http :// www.exelisvis.com/docs/SMOOTH.html

3 __global__ void smooth(float *A, float *R, int dn, int Nant , int ←↩

n_sweeps , int nf , int w){

4

5 int bid = dn*blockIdx.x;

6 int tid;

7

8 float R0, w1;

9 int l; // dummy variables

10 if(w % 2 == 0){

11 w++; // "If a Width value is even , then Width +1 ←↩

will be used instead ."

12 }

13 w1 = 1.0f / (float)(w);

14

15 int size = dn*Nant*n_sweeps*nf;

16

139
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17 //The algorithm given in link above , modified to ensure chunk[←↩

smthItt ,*] -= smooth(chunk[smthItt ,*],smth).

18 while(bid <size){

19 tid = threadIdx.x;

20 while(tid <dn){

21 if(tid >=(w-1)/2 && tid <=dn - (w+1) /2){

22 R0 = 0.0f;

23 l=0;

24 while(l<w){

25 R0 += A[tid + bid - (w-1)/2 + l];

26 l+=1;

27 }

28 R[tid + bid] = A[tid + bid] - w1*R0; //to account for ←↩

-=

29 }

30 tid += blockDim.x;

31 }

32 bid+=dn*gridDim.x;

33 }

34 }

35

36 //Take only the middle part of the data to avoid any residual ←↩

switching noise when switching between frequency channels to ←↩

extract noise from the beginning and end of each signal

37 __global__ void middle(float *A, float *R, int dn, int nInt , int ←↩

Nant , int n_sweeps , int nf , int n_delay , int incr){

38

39 int bid = nInt*blockIdx.x;

40 int obid = dn*blockIdx.x;

41 int tid;

42

43 int size = nInt*Nant*n_sweeps*nf;

44

45 while(bid <size){

46 tid = threadIdx.x;

47 while(tid <nInt){

48 R[tid + bid] = A[tid + obid + n_delay - incr];
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49 tid += blockDim.x;

50 }

51 bid+=nInt*gridDim.x;

52 obid+=dn*gridDim.x;

53 }

54 }

55

56 //This shifts the correct channels to compensate for the ADC ←↩

timing errors on data taken with firmware built on 23/09/2011.

57 // Kernel to shift data in specified column (applied to channels ←↩

0, 1, 8 and 9)

58 __global__ void shift(float *A, float *R, int nInt , int Nant , int←↩

n_sweeps , int nf , int column){

59

60 int bid = Nant*nInt*blockIdx.x;

61 int tid;

62 float temp;

63

64 int size = nInt*Nant*n_sweeps*nf;

65

66 while(bid <size){

67 tid = threadIdx.x;

68 temp = A[bid + column*nInt];

69 while(tid <nInt - 1){

70 R[bid + column*nInt + tid] = A[bid + column*nInt + tid + ←↩

1];

71 tid += blockDim.x;

72 }

73 R[bid + column*nInt + nInt - 1] = temp;

74 bid += Nant*nInt*gridDim.x;

75 }

76 }

77

78 // Kernel to recombine shifted data in specified column with full ←↩

data array to correct for ADC timing errors (applied to ←↩

channels 0, 1, 8 and 9)

79 __global__ void combine(float *A, float *R, int nInt , int Nant , ←↩
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int n_sweeps , int nf , int column){

80

81 int bid = Nant*nInt*blockIdx.x;

82 int tid;

83 int size = nInt*Nant*n_sweeps*nf;

84

85 while(bid <size){

86 tid = threadIdx.x;

87 while(tid <nInt){

88 R[bid + column*nInt + tid] = A[bid + column*nInt + tid];

89 tid += blockDim.x;

90 }

91 bid += Nant*nInt*gridDim.x;

92 }

93 }

A.2 First Fourier filter for I and Q components

1 // Kernel to make data cufft complex for the cufft's, imaginary ←↩

part zero

2 __global__ void make_complex(int Nant , int nf, int nInt , int nSec←↩

, float *dev_data , cufftComplex *dev_complex_data){

3

4 int bid = blockIdx.x*blockDim.x + threadIdx.x;

5 int size = nInt*Nant*nSec*nf;

6

7 while(bid <size){

8 dev_complex_data[bid].x = dev_data[bid];

9 dev_complex_data[bid].y = 0.0f;

10

11 bid += blockDim.x*gridDim.x;

12 }

13 }

14

15 // Kernel to apply filter function on even columns

16 __global__ void mult_three(double a, int nInt , int Nant , int nSec←↩

, int nfSelect , cufftComplex *b, cufftComplex *c, cufftComplex←↩
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*r){

17

18 cuFloatComplex newa = make_cuFloatComplex(a, 0.0f);

19

20 int bid = 2*nInt*blockIdx.x;

21 int tid;

22 int size = 2*nInt*Nant*nSec*nfSelect;

23

24 while(bid <size){

25 tid = threadIdx.x;

26 while(tid <nInt){

27 r[bid + tid] = cuCmulf(newa , cuCmulf(b[bid + tid], c[tid]))←↩

;

28 tid += blockDim.x;

29 }

30 bid += 2*nInt*gridDim.x;

31 }

32

33 }

34

35 // Kernel to apply filter function on odd columns and to apply ←↩

calibration data correctiing for the phase drift between I and←↩

Q components caused by cable lengths and filters as a ←↩

function of IF

36 __global__ void complex_mult(double a, int nInt , int Nant , int ←↩

nSec , int nfSelect , float *dev_phase , cufftComplex *b, ←↩

cufftComplex *c, cufftComplex *r, int column ){

37

38 cuFloatComplex newa = make_cuFloatComplex(a, 0.0f);

39

40 int bid = nInt + 2*Nant*nInt*blockIdx.x;

41 int tid;

42 int size = 2*nInt*Nant*nSec*nfSelect;

43

44 while(bid <size){

45 tid = threadIdx.x;

46 while(tid <nInt){
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47 r[bid + column*nInt + tid] = cuCmulf(newa , cuCmulf(b[bid + ←↩

column*nInt + tid], cuCmulf(c[tid], make_cuFloatComplex(←↩

cos(dev_phase[tid]), sin(dev_phase[tid])))));

48 tid += blockDim.x;

49 }

50 bid += 2*Nant*nInt*gridDim.x;

51 }

52 }

A.3 Sideband separation

1 //16 real signals get converted to 8 complex signals for upper ←↩

and lower sideband and apply calibration data to correct for ←↩

phase differences between antennaas due to RF electrical ←↩

lengths

2 __global__ void complexify(float *a, float *c, float *d, int nInt←↩

, int Nant , int nSec , int nfSelect , cufftComplex *data , ←↩

cufftComplex *dev_complex_data , int column , int index){

3

4 int bid = 2*Nant*nInt*blockIdx.x;

5 int cbid = Nant*nInt*blockIdx.x;

6 int obid = nInt + 2*Nant*nInt*blockIdx.x;

7 int tid;

8 int i = 1;

9

10 while(index <Nant*nfSelect){

11 while(bid < i*2* Nant*nInt*nSec){

12 tid = threadIdx.x;

13 while(tid < nInt){

14 dev_complex_data[cbid + column*nInt + tid] = ←↩

make_cuFloatComplex(a[index]*data[bid + 2* column*nInt ←↩

+ tid].x, -c[index]*data[bid + 2* column*nInt + tid].x ←↩

- d[index]*data[obid + 2* column*nInt + tid].x);

15 tid += blockDim.x;

16 }

17 bid += 2*Nant*nInt*gridDim.x;

18 obid += 2*Nant*nInt*gridDim.x;
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19 cbid += Nant*nInt*gridDim.x;

20 }

21 index += Nant;

22 i += 1;

23 }

24 }

25

26 // Kernel to make the 2 dummy matrices , one for upper and one for←↩

lower sideband

27 __global__ void makeDummy(int nInt , int Nant , int nSec , int nf, ←↩

cufftComplex *dev_complex_data , cufftComplex *dummy){

28

29 int bid = threadIdx.x + blockIdx.x*blockDim.x;

30 int size = nInt*Nant*nSec*nf;

31

32 while(bid < size){

33 dummy[bid].x = cuCrealf(dev_complex_data[bid]);

34 dummy[bid].y = cuCimagf(dev_complex_data[bid]);

35 bid += blockDim.x*gridDim.x;

36 }

37 }

A.4 Second Fourier filter

1 // Kernel to apply filter function to 2 complex matrices

2 __global__ void mult_two(double a, int nInt , int Nant , int nSec , ←↩

int nfSelect , cufftComplex *b, cufftComplex *c, cufftComplex *←↩

r){

3

4 cuFloatComplex newa = make_cuFloatComplex(a, 0.0f);

5

6 int bid = nInt*blockIdx.x;

7 int tid;

8 int size = nInt*Nant*nSec*nfSelect;

9

10 while(bid <size){

11 tid = threadIdx.x;
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12 while(tid <nInt){

13 r[bid + tid] = cuCmulf(newa , cuCmulf(b[bid + tid], c[tid]))←↩

;

14 tid += blockDim.x;

15 }

16 bid += nInt*gridDim.x;

17

18 }

19

20 }

21

22 // Kernel to apply calibration data correcting for phase offsets ←↩

and balancing amplitudes between I and Q components via matrix←↩

inversion. Differences between I and Q caused by hybrid ←↩

couplers and amplifiers.

23 __global__ void phi(int nInt , int Nant , int nSec , int nfSelect , ←↩

cufftComplex *data , float *phi , int column , int index){

24

25 int bid = Nant*nInt*blockIdx.x;

26 int tid;

27 int i = 1;

28

29 while(index <Nant*nfSelect){

30 while(bid < i*Nant*nInt*nSec){

31 tid = threadIdx.x;

32 while(tid < nInt){

33 data[bid + tid + column*nInt] = cuCmulf(data[bid + tid + ←↩

column*nInt], make_cuFloatComplex(cosf(phi[index]), ←↩

sinf(phi[index])));

34 tid += blockDim.x;

35 }

36 bid += Nant*nInt*gridDim.x;

37 }

38 index += Nant;

39 i += 1;

40 }

41 }
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A.5 Cross-correlation calculation

1 // Kernel to calculate the mean of each group of nInt points

2 __global__ void complex_mean(double divide , int nInt , int Nant , ←↩

int nSec , int nf , cufftComplex *complex_matrix , cufftComplex *←↩

dev_mean_matrix){

3

4 int bid = nInt*blockIdx.x;

5 int nbid = blockIdx.x;

6 int tid;

7 int size = nInt*Nant*nSec*nf;

8

9 int cacheIndex = threadIdx.x;

10 __shared__ cuFloatComplex matrix [256];

11

12 cuFloatComplex new_divide = make_cuFloatComplex(divide , 0.0f);

13

14 while(bid <size){

15 cuFloatComplex mean_matrix = make_cuFloatComplex (0.0f, 0.0f);

16 tid = threadIdx.x;

17 while(tid <nInt){

18 mean_matrix = cuCaddf(mean_matrix , complex_matrix[bid + tid←↩

]);

19 tid += blockDim.x;

20 }

21

22 matrix[cacheIndex] = mean_matrix;

23 __syncthreads ();

24

25 int i = blockDim.x/2; // threads per block must be a power of ←↩

2

26 while(i!=0){

27 if(cacheIndex < i){

28 matrix[cacheIndex] = cuCaddf(matrix[cacheIndex], matrix[←↩

cacheIndex + i]);

29 }

30 __syncthreads ();
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31 i /= 2;

32 }

33 dev_mean_matrix[nbid] = cuCmulf(new_divide , matrix [0]);

34 nbid += gridDim.x;

35 bid += nInt*gridDim.x;

36 }

37 }

38

39 // Kernel to calculate each data element minus it's corresponding ←↩

mean , and the complex conjugate of that

40 __global__ void complex_minus(int nInt , int Nant , int nSec , int ←↩

nf , cufftComplex *dev_mean_matrix , cufftComplex *←↩

complex_matrix , cufftComplex *dev_complex_conj_matrix){

41

42 int bid = nInt*blockIdx.x;

43 int tid;

44 int mid = blockIdx.x;

45 int newidx = threadIdx.x + blockIdx.x*blockDim.x;

46 int size = nInt*Nant*nSec*nf;

47

48 while(bid <size){

49 tid = threadIdx.x;

50 while(tid <nInt){

51 complex_matrix[bid + tid] = cuCsubf(complex_matrix[bid + ←↩

tid], dev_mean_matrix[mid]);

52 tid += blockDim.x;

53 }

54 bid += nInt*gridDim.x;

55 mid += gridDim.x;

56 }

57

58

59 while(newidx <size){

60 dev_complex_conj_matrix[newidx] = cuConjf(complex_matrix[←↩

newidx ]);

61 newidx += blockDim.x*gridDim.x;

62 }



A.5. Cross-correlation calculation 149

63 }

64

65 // Kernel to calculate cross -correlations for each antenna pair , ←↩

frequency sweep and upper and lower sideband

66 __global__ void cross_correlations(double divide_minus_one , int ←↩

nInt , int Nant , int nSec , int nf , cufftComplex *complex_matrix←↩

, cufftComplex *dev_complex_conj_matrix , cufftComplex *final){

67

68 int bid;

69 int obid;

70 int tbid = nInt*Nant*blockIdx.x;

71 int tid;

72 int j, m;

73 int l = 0;

74

75 int cacheIndex = threadIdx.x;

76 __shared__ cuFloatComplex matrix [256];

77

78 float divide = 1.0f/nInt;

79

80 cuFloatComplex new_divide_minus_one = make_cuFloatComplex(←↩

divide_minus_one , 0.0f);

81

82 while(l<nf){

83 while(tbid <(l+1)*nInt*Nant*nSec){

84 bid = 0;

85 m = 0;

86 while(bid <nInt*Nant){

87 obid = 0;

88 j=0;

89 while(obid <Nant*nInt){

90 cuFloatComplex thread_sum = make_cuFloatComplex (0.0f, ←↩

0.0f);

91 tid = threadIdx.x;

92 while(tid <nInt){

93 thread_sum = cuCaddf(thread_sum , cuCmulf(←↩

complex_matrix[tbid + bid + tid], ←↩
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dev_complex_conj_matrix[tbid + obid + tid]));

94 tid += blockDim.x;

95 }

96

97 matrix[cacheIndex] = thread_sum;

98 __syncthreads ();

99

100 int i = blockDim.x/2;

101 while(i!=0){

102 if(cacheIndex < i){

103 matrix[cacheIndex] = cuCaddf(matrix[cacheIndex], ←↩

matrix[cacheIndex + i]);

104 }

105 __syncthreads ();

106 i /= 2;

107 }

108 final[m + Nant*j + (int)(divide*Nant*nf*tbid) - l*nSec*←↩

Nant*Nant*nf + l*Nant*Nant] = cuCmulf(←↩

new_divide_minus_one , matrix [0]);

109 obid += nInt;

110 j += 1;

111 }

112 m += 1;

113 bid += nInt;

114 }

115 tbid += nInt*Nant*gridDim.x;

116 }

117 l += 1;

118

119 }

120 }

A.6 Temporal profiles for the remaining shots
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Temporal profiles of PECE, Dα, RMC, LMC, Te  and ∇ne  for shot 27171

Figure A.1: Temporal profiles of ECE power (top left), Dα emission (top right),

radial location of MC window (middle left), density scale length (middle right),

electron temperature at MC window (bottom left) and density gradient (bottom

right) for shot 27171.
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Temporal profiles of PECE, Dα, RMC, LMC, Te  and ∇ne  for shot 27556

Figure A.2: Temporal profiles of ECE power, Dα emission, radial location of MC

window, density scale length, electron temperature at MC window and density gra-

dient for shot 27556.
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Figure A.3: Temporal profiles of ECE power, Dα emission, radial location of MC

window, density scale length, electron temperature at MC window and density gra-

dient for shot 27668.
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Temporal profiles of PECE, Dα, RMC, LMC, Te  and ∇ne  for shot 28149

Figure A.4: Temporal profiles of ECE power, Dα emission, radial location of MC

window, density scale length, electron temperature at MC window and density gra-

dient for shot 28149.
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Temporal profiles of PECE, Dα, RMC, LMC, Te  and ∇ne  for shot 28829

Figure A.5: Temporal profiles of ECE power, Dα emission, radial location of MC

window, density scale length, electron temperature at MC window and density gra-

dient for shot 28829.
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Temporal profiles of PECE, Dα, RMC, LMC, Te  and ∇ne  for shot 29144

Figure A.6: Temporal profiles for shot 29144. All the previous shots show similar

behaviour: the ECE increases, the Dα decreases and Te increases, as the plasma is

moving out. Not much information can be obtained from LMC , which depends on

the density gradient.



Appendix B

GPU code for Bateman solver

B.1 Cross-section collapse

1 //Take the reciprocal of the flux column sums

2 __global__ void reciprocal(double* vector , int Cells){

3

4 int tid = threadIdx.x + blockIdx.x*blockDim.x;

5

6 while(tid <Cells){

7 vector[tid] = 1.0/ vector[tid];

8 tid += blockDim.x*gridDim.x;

9 }

10 }

11

12 // Divide each element in a column by the sum of the flux for that←↩

column

13 __global__ void normalise(double *output , double *vector , int Iso←↩

, int Cells){

14

15 int tid;

16 int bid = Cells*blockIdx.x;

17

18 while(bid <Iso*Cells){

19 tid = threadIdx.x;

20 while(tid <Cells){

157
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21 output[bid + tid] = output[bid + tid]* vector[tid];

22 tid += blockDim.x;

23 }

24 bid += Cells*gridDim.x;

25 }

26 }

27

28 int main{

29

30 // Initial set up of data

31 //...

32

33 // Matrix multiply

34 ret = cublasDgemm(handle , CUBLAS_OP_N , CUBLAS_OP_N , M, N, K, &←↩

alpha , flux_array_cublas_dev , M, xc_array_cublas_dev , K, &←↩

beta , out_array_cublas_dev , M);

35

36 // Column sum of flux matrix (equivalent to matrix vector ←↩

multiplication with vector of ones)

37 retColSum = cublasDgemv(handleColSum , CUBLAS_OP_N , M, K, &alpha←↩

, flux_array_cublas_dev , M, vector_in_dev , 1, &beta , ←↩

vector_out_dev , 1);

38

39 // Normalise result matrix by dividing by entries in each column←↩

by the sum of the flux for that column.

40 reciprocal <<<32, 256>>>( vector_out_dev , M);

41 normalise <<<32, 256>>>( out_array_cublas_dev , vector_out_dev , N,←↩

M);

42

43 //...

44

45 }

B.2 CRAM on the GPU

1 //n_0 = 0

2 __global__ void zero(cuDoubleComplex* vector , int size){
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3

4 int tid = threadIdx.x + blockIdx.x*blockDim.x;

5

6 while(tid <size){

7 vector[tid] = make_cuDoubleComplex (0.0, 0.0);;

8 tid += blockDim.x*gridDim.x;

9 }

10 }

11

12 //A = A*t

13 __global__ void time(double* At, double* A, double t, int size){

14

15 int tid = threadIdx.x + blockIdx.x*blockDim.x;

16

17 while(tid <size){

18 At[tid] = A[tid]*t;

19 tid += blockDim.x*gridDim.x;

20 }

21 }

22

23 //A = A - theta(j)*eye(size(A))) (eye is identity matrix)

24 __global__ void thetaOp(cuDoubleComplex *newA , double *At, double←↩

theta_r , double theta_i , double *identity , int size){

25

26 int tid = threadIdx.x + blockIdx.x*blockDim.x;

27

28 while(tid <size){

29 newA[tid] = make_cuDoubleComplex(At[tid] - theta_r*identity[←↩

tid], -theta_i*identity[tid]);

30 tid += blockDim.x*gridDim.x;

31 }

32 }

33

34 //n_0 = alpha(j)*n_0

35 __global__ void alphaOp(cuDoubleComplex *newn_0 , double alpha_r , ←↩

double alpha_i , double *n_0 , int size){

36
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37 int tid = threadIdx.x + blockIdx.x*blockDim.x;

38

39 while(tid <size){

40 newn_0[tid] = make_cuDoubleComplex(alpha_r*n_0[tid], alpha_i*←↩

n_0[tid]);

41 tid += blockDim.x*gridDim.x;

42 }

43 }

44

45 //n = n + (A - theta(j)*eye(size(A))) \ (alpha(j)*n_0);

46 __global__ void Add(cuDoubleComplex *nd, cuDoubleComplex *newn_0 ,←↩

int size){

47

48 int tid = threadIdx.x + blockIdx.x*blockDim.x;

49

50 while(tid <size){

51 nd[tid] = cuCadd(nd[tid], newn_0[tid]);

52 tid += blockDim.x*gridDim.x;

53 }

54 }

55

56 //n = 2*real(n);

57 __global__ void Double(double *n, cuDoubleComplex *nd, int size){

58

59 int tid = threadIdx.x + blockIdx.x*blockDim.x;

60

61 while(tid <size){

62 n[tid] = 2* cuCreal(nd[tid]);

63 tid += blockDim.x*gridDim.x;

64 }

65 }

66

67 //n = n + alpha_0*n_0;

68 __global__ void getN(double *n, double alpha_0 , double *n_0 , int ←↩

size){

69

70 int tid = threadIdx.x + blockIdx.x*blockDim.x;
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71

72 while(tid <size){

73 n[tid] = n[tid] + alpha_0*n_0[tid];

74 tid += blockDim.x*gridDim.x;

75 }

76 }

77

78 int main{

79

80 // Initial data set up (theta , alpha etc.)

81

82 for(nitts =0; nitts <M; nitts+= ngpus){

83

84 //load each gpu with a different activation matrix

85 for(l=0; l<ngpus; l++){

86 gpuErrchk(cudaSetDevice(l));

87 gpuErrchk(cudaMemcpyAsync(A_d[l], HostMatrix + l*rows*cols ←↩

+ nitts*cols*rows , sizeof(double)*rows*cols , ←↩

cudaMemcpyHostToDevice , streams[l]));

88

89 }

90

91 for(secs =0; secs <timesteps; secs ++){

92

93 //A = A*t

94 for(l=0; l<ngpus; l++){

95 gpuErrchk(cudaSetDevice(l));

96 zero <<<32, 256, 0, streams[l]>>>(nd_d[l], rows);

97 time <<<32, 256, 0, streams[l]>>>(At_d[l], A_d[l], t[secs←↩

], rows*cols);

98 }

99

100 //A = A - theta(i)*identity , n_0 = alpha(i)*n_0

101 for(i=0; i <0.5*k; i++){

102 for(l=0; l<ngpus; l++){

103 gpuErrchk(cudaSetDevice(l));

104 thetaOp <<<32, 256, 0, streams[l]>>>(newA_d[l], At_d[l],←↩



B.2. CRAM on the GPU 162

theta[i].x, theta[i].y, identity_d[l], rows*cols);

105 alphaOp <<<32, 256, 0, streams[l]>>>(newn_0_d[l], alpha[←↩

i].x, alpha[i].y, n_0_d[l], rows);

106 }

107

108 //Solve Ax = b, i.e. A\n_0

109 #pragma omp parallel private(l)

110 {

111 l = omp_get_thread_num ();

112 gpuErrchk(cudaSetDevice(l));

113 magma_zgesv_gpu(Mn, Mnrhs , newA_d[l], Mlda , Mpiv[l], ←↩

newn_0_d[l], Mldb , &Minfo[l]);

114 }

115

116 // n = n + A\n_0

117 for(l=0; l<ngpus; l++){

118 gpuErrchk(cudaSetDevice(l));

119 Add <<<32, 256, 0, streams[l]>>>(nd_d[l], newn_0_d[l], ←↩

rows);

120 }

121 }

122

123 //n = 2*real(n), n = n + alpha_0*n_0

124 for(l=0; l<ngpus; l++){

125 gpuErrchk(cudaSetDevice(l));

126 Double <<<32,256, 0, streams[l]>>>(n_d[l], nd_d[l], rows);

127 getN <<<32, 256, 0, streams[l]>>>(n_d[l], alpha_0 , n_0_d[l←↩

], rows);

128

129 gpuErrchk(cudaMemcpyAsync(n + secs*rows + l*rows*←↩

timesteps + nitts*rows*timesteps , n_d[l], sizeof(←↩

double)*rows , cudaMemcpyDeviceToHost , streams[l]));

130 }

131 }

132 }

133

134 }
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Custom Maxeler code for matrix

multiply

C.1 Host code

1 int main{

2

3 // Allocate memory and initialise matrices

4

5 // Initialise the maxfile

6 max_file_t *maxfile = MatMul_init ();

7 max_engine_t *eng[numEngines ];

8

9 //Load each DFE with the maxfile

10 for(int i=0; i<numEngines; i++){

11 eng[i] = max_load(maxfile , "*");

12 }

13

14 //get burst size of LMem

15 int burstLengthInBytes = max_get_burst_size(maxfile , "←↩

cmd_tolmem");

16

17 // Structure specifying write LMem parameters , where to start , ←↩

the size of memory to write and the data to write

18 MatMul_writeLMem_actions_t *writeAct[nChunks ];
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19 for(int i=0; i<nChunks; i++){

20 writeAct[i] = malloc(sizeof(MatMul_writeLMem_actions_t));

21 writeAct[i]->param_size = size;

22 writeAct[i]->param_start = 0;

23 writeAct[i]->instream_fromcpu = B[i];

24 }

25

26 // Structure specifying memory location in LMem to start reading←↩

from , the size of memory chunk to read and where to place ←↩

the read data for one DFE

27 MatMul_readLMem_actions_t *readAct[nChunks ];

28 for(int i=0; i<nChunks; i++){

29 readAct[i] = malloc(sizeof(MatMul_readLMem_actions_t));

30 readAct[i]->param_size = sizeR;

31 readAct[i]->param_start = size;

32 readAct[i]->outstream_tocpu = outData[i];

33

34 }

35

36 // Structure specifying kernel parameters , scalar input N, K and←↩

M, the LMem burstsize and the input stream A, streamed by ←↩

PCIe

37 MatMul_actions_t *act[NChunks ];

38 for(int i=0; i<NChunks; i++){

39 act[i] = malloc(sizeof(MatMul_actions_t));

40 act[i]->param_K = K;

41 act[i]->param_M = M;

42 act[i]->param_N = N;

43 act[i]->param_burstSize = burstLengthInBytes;

44 act[i]->instream_A = A[i];

45 }

46

47 // Structure specifying memory location in LMem to start reading←↩

from , the size of memory chunk to read and where to place ←↩

the read data for eight DFEs

48 MatMul_readLMem_actions_t *readActN[numEngines ];

49 for(int i=0; i<numEngines; i++){
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50 readActN[i] = malloc(sizeof(MatMul_readLMem_actions_t));

51 readActN[i]->param_size = sizeR;

52 readActN[i]->param_start = size;

53 readActN[i]->outstream_tocpu = outDataN[i];

54

55 }

56

57 max_run_t *run[numEngines ]; //For running kernel

58 max_run_t *writerun[numEngines ]; //For writing LMem

59 max_run_t *readrun[numEngines ]; //For reading LMem

60

61 // Running on one DFE

62 for(int j=0; j<nChunks; j++){

63 MatMul_writeLMem_run(eng[0], writeAct[j]); //Load one chunk ←↩

of B to LMem

64 for(int i=0; i<NChunks; i++){

65 MatMul_run(eng[0], act[i]); // Compute on that chunk with ←↩

all A chunks

66 MatMul_readLMem_run(eng[0], readAct[j]); //Read each ←↩

result from LMem

67 memcpy(C + i*sizeR + j*sizeRFull , outData[j], sizeBytesR);←↩

//Place into final result matrix

68 }

69 }

70

71 // Running on 8 DFEs

72 for(int j=0; j<nChunks; j++){

73 //Load each DFE LMem with a different B chunk

74 for(int k=0; k<numEngines; k++){

75 writerun[k] = MatMul_writeLMem_run_nonblock(eng[k], ←↩

writeAct[j]);

76 }

77 //Run the kernel to do the multiplies on each chunk and read ←↩

result from LMem

78 for(int i=0; i<NChunks/numEngines; i++){

79 for(int k=0; k<numEngines; k++){

80 run[k] = MatMul_run_nonblock(eng[k], act[i*numEngines + k←↩
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]);

81 readrun[k] = MatMul_readLMem_run_nonblock(eng[k], ←↩

readActN[k]);

82 }

83 //Wait for reads to finish before moving on to next chunks ←↩

which will fill the same LMem

84 for(int k=0; k<numEngines; k++){

85 max_wait(readrun[k]);

86 }

87 //Put read data into final result matrix

88 for(int k=0; k<numEngines; k++){

89 memcpy(C8 + k*sizeR + i*sizeR*numEngines + j*FullN*M, ←↩

outDataN[k], sizeBytesR);

90 }

91 }

92 }

93

94 //Check results ...

95 }

C.2 Computational kernel

1 package matmul;

2

3 import com.maxeler.maxcompiler.v2.kernelcompiler.Kernel;

4 import com.maxeler.maxcompiler.v2.kernelcompiler.KernelParameters←↩

;

5 import com.maxeler.maxcompiler.v2.kernelcompiler.stdlib.core.←↩

CounterChain;

6 import com.maxeler.maxcompiler.v2.kernelcompiler.types.base.←↩

DFEVar;

7 import com.maxeler.maxcompiler.v2.kernelcompiler.types.composite.←↩

DFEVector;

8 import com.maxeler.maxcompiler.v2.kernelcompiler.types.composite.←↩

DFEVectorType;

9

10 class MatMulKernel extends Kernel {
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11

12 MatMulKernel(KernelParameters parameters) {

13 super(parameters);

14

15 // Define vector of floats with length LMem burstSize

16 DFEVectorType <DFEVar > vectorType =

17 new DFEVectorType <DFEVar >( dfeFloat(8, 24), 96);

18

19 //Read scalar inputs from CPU specifying size of problem

20 DFEVar rowsInA = io.scalarInput("rowsInA",dfeUInt (32)); // N

21 DFEVar colsInA = io.scalarInput("colsInA",dfeUInt (32)); // K

22 DFEVar colsInBursts = io.scalarInput("colsInBursts",dfeUInt←↩

(32)); // M/burstSize

23

24 // Control counter to read input from A at start of new row of←↩

B

25 DFEVar count = control.count.simpleCounter (32, colsInBursts);

26 DFEVar readingInput = count === 0;

27

28 //Read input A and B, A controlled by above counter

29 DFEVar A = io.input("A", dfeFloat(8, 24), readingInput);

30 DFEVector <DFEVar > B = io.input("B", vectorType);

31

32 // Counter chain , equivalent to nested loop with outer loop N,←↩

middle loop K and inner loop M (M/burstSize)

33 CounterChain chain = control.count.makeCounterChain ();

34 DFEVar Arows = chain.addCounter(rowsInA , 1);

35 DFEVar Acols = chain.addCounter(colsInA , 1);

36 DFEVar Bcols = chain.addCounter(colsInBursts , 1);

37

38 //At the head of the loop , for the first colsInBursts clock ←↩

ticks , set sum = 0.0, otherwise set sum equal to the ←↩

carriedSum being carried around the hardware loop

39 DFEVector <DFEVar > carriedSum = vectorType.newInstance(this);

40 DFEVector <DFEVar > sum = Acols === 0 ? constant.vect(96, 0.0) ←↩

: carriedSum;

41
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42 // Matrix multiplication

43 DFEVector <DFEVar > newSum = A*B + sum;

44

45 // Backward edge to connect the new sum back to the head of ←↩

the loop

46 carriedSum <== stream.offsetStriped(newSum , -1440);

47

48 // Output result data only when the full column has been ←↩

multiplied and summed

49 io.output("oData", newSum , vectorType , Acols === colsInA -1);

50

51 }

52 }

C.3 Manager code

1 package matmul;

2

3 import com.maxeler.maxcompiler.v2.build.EngineParameters;

4 import com.maxeler.maxcompiler.v2.managers.custom.CustomManager;

5 import com.maxeler.maxcompiler.v2.managers.custom.DFELink;

6 import com.maxeler.maxcompiler.v2.managers.custom.blocks.←↩

KernelBlock;

7 import com.maxeler.maxcompiler.v2.managers.custom.stdlib.←↩

DebugLevel;

8 import com.maxeler.maxcompiler.v2.managers.custom.stdlib.←↩

MemoryControlGroup;

9 import com.maxeler.maxcompiler.v2.managers.engine_interfaces.←↩

CPUTypes;

10 import com.maxeler.maxcompiler.v2.managers.engine_interfaces.←↩

EngineInterface;

11 import com.maxeler.maxcompiler.v2.managers.engine_interfaces.←↩

EngineInterface.Direction;

12 import com.maxeler.maxcompiler.v2.managers.engine_interfaces.←↩

InterfaceParam;

13

14 class MatMulManager extends CustomManager {
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15

16 private static final String KERNEL_NAME = "MatMulKernel";

17 private static final String ControlKERNEL_NAME = "←↩

ControlMatMulKernel";

18

19 private static final CPUTypes Type = CPUTypes.FLOAT;

20 private static final CPUTypes Type1 = CPUTypes.INT32;

21

22 MatMulManager(EngineParameters engineParameters) {

23 super(engineParameters);

24

25 // Instantiate kernels

26 KernelBlock k1 = addKernel(new MatMulKernel(←↩

makeKernelParameters(KERNEL_NAME)));

27 KernelBlock k2 = addKernel(new ControlMatMulKernel(←↩

makeKernelParameters(ControlKERNEL_NAME)));

28 debug.setDebugLevel(new DebugLevel (){{ setHasStreamStatus(true←↩

);}});

29

30 // Instantiate streams to/from CPU and LMem and specify LMem ←↩

memory access pattern

31 DFELink fromcpu = addStreamFromCPU("fromcpu");

32 DFELink A = addStreamFromCPU("A");

33 DFELink tocpu = addStreamToCPU("tocpu");

34

35 DFELink tolmem = addStreamToOnCardMemory("tolmem",←↩

MemoryControlGroup.MemoryAccessPattern.LINEAR_1D);

36 DFELink fromlmem = addStreamFromOnCardMemory("fromlmem",←↩

MemoryControlGroup.MemoryAccessPattern.LINEAR_1D);

37

38 // Connect the stream from CPU to LMem for writing to LMem and←↩

vice versa for reading from LMem

39 tolmem <== fromcpu;

40 tocpu <== fromlmem;

41

42 //Set kernel inputs

43 DFELink B = addStreamFromOnCardMemory("B",k2.getOutput("←↩
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AcmdStream"));

44 k1.getInput("A") <== A;

45 k1.getInput("B") <== B;

46

47 //Set kernel output

48 DFELink oData = addStreamToOnCardMemory("oData",k2.getOutput(←↩

"OcmdStream"));

49 oData <== k1.getOutput("oData");

50 }

51

52 // writes the data from the CPU to the LMem , specifying where to←↩

start writing , how many bytes to read and which stream to ←↩

connect to

53 private static EngineInterface interfaceWrite(String name) {

54 EngineInterface ei = new EngineInterface(name);

55

56 InterfaceParam size = ei.addParam("size", Type1);

57 InterfaceParam start = ei.addParam("start", Type1);

58 InterfaceParam sizeInBytes = size * Type.sizeInBytes ();

59

60 ei.setStream("fromcpu", Type , sizeInBytes );

61 ei.setLMemLinear("tolmem", start * Type.sizeInBytes (), ←↩

sizeInBytes);

62 ei.ignoreAll(Direction.IN_OUT);

63 return ei;

64 }

65

66 //reads the data back to the CPU from the LMem , specifying ←↩

where to start reading , how many bytes to read and which ←↩

stream to connect to

67 private static EngineInterface interfaceRead(String name) {

68 EngineInterface ei = new EngineInterface(name);

69

70 InterfaceParam size = ei.addParam("size", Type1);

71 InterfaceParam start = ei.addParam("start", Type1);

72 InterfaceParam sizeInBytes = size * Type.sizeInBytes ();

73
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74 ei.setLMemLinear("fromlmem", start * Type.sizeInBytes (), ←↩

sizeInBytes);

75 ei.setStream("tocpu", Type , sizeInBytes);

76 ei.ignoreAll(Direction.IN_OUT);

77 return ei;

78 }

79

80 //Sets the kernel parameters , the scalar inputs , number of ←↩

clock ticks for the kernel to run and the PCIe stream A

81 private static EngineInterface interfaceDefault () {

82 EngineInterface ei = new EngineInterface ();

83

84 InterfaceParam N = ei.addParam("N", Type1);

85 InterfaceParam K = ei.addParam("K", Type1);

86 InterfaceParam M = ei.addParam("M", Type1);

87 InterfaceParam burstSize = ei.addParam("burstSize", Type1);

88 ei.setTicks(KERNEL_NAME , (N*K*M*(Type.sizeInBytes ()))/←↩

burstSize);

89 ei.setTicks(ContolKERNEL_NAME , (N*K*M*(Type.sizeInBytes ()))/←↩

burstSize);

90 ei.setStream("A", Type , N*K*Type.sizeInBytes ());

91

92 ei.setScalar(ControlKERNEL_NAME , "totalBursts", (K*M*(Type.←↩

sizeInBytes ()))/burstSize);

93 ei.setScalar(ContolKERNEL_NAME , "rowsInA", N);

94 ei.setScalar(ControlKERNEL_NAME , "colsInBursts", (M*(Type.←↩

sizeInBytes ()))/burstSize);

95 ei.setScalar(ControlKERNEL_NAME , "colsInA", K);

96 ei.setScalar(KERNEL_NAME , "rowsInA", N);

97 ei.setScalar(KERNEL_NAME , "colsInA", K);

98 ei.setScalar(KERNEL_NAME , "colsInBursts", (M*(Type.←↩

sizeInBytes ()))/burstSize);

99

100 ei.setLMemInterruptOn("oData");

101 ei.ignoreAll(Direction.IN_OUT);

102 return ei;

103 }
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104

105 // Creates SLiC interfaces to provide DFE functions to be called←↩

from CPU

106 public static void main(String [] args) {

107 MatMulManager m = new MatMulManager(new EngineParameters(args←↩

));

108 m.createSLiCinterface(interfaceRead("readLMem"));

109 m.createSLiCinterface(interfaceWrite("writeLMem"));

110 m.createSLiCinterface(interfaceDefault ());

111

112 m.build ();

113 }

114 }
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[191] J. CARABAÑO et al., “An exploration of heterogeneous systems”, Interna-

tional Workshop on Reconfigurable and Communication-Centric Systems-On-

Chip, 8, (2013)

[192] J. CHEN et al., “FPGA-accelerated 3D reconstruction using compressive sens-

ing”, Proceedings of the ACM-SIGDA International Symposium on Field Pro-

grammable Gate Arrays, FPGA12, 163 (2012)

[193] Olsen Electronics Ltd, “Meter Range”,

http://www.olson.co.uk/meters.htm

[194] B. BETKAOUI et al., “Comparing performance and energy efficiency of FP-

GAs and GPUs for high productivity computing”, International Conference

on Field Programmable Technology, FPT10, 94 (2010)

[195] P. MUCCI et al., “Performance Application Programming Interface -

PAPI”, University of Tennessee - Innovative Computing Laboratory,

http://icl.cs.utk.edu/papi/, January 2016
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