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Katarzyna Karolina Zmarzly 

Harnessing Caenorhabditis elegans secretion to produce recombinant secreted proteins 

from other nematodes 

 

Acanthocheilonema viteae excretory-secretory 62 product can modulate the immune system, and is a 

potential treatment for rheumatoid arthritis and other autoimmune diseases. It has been shown to 

inhibit arthritis in mouse and in vitro models. However, the only known way of producing functional 

ES-62 involves growing A. viteae worms in two hosts (ticks and gerbils), isolating adult worms from 

infected gerbils and allowing them to secrete ES-62 into liquid media. This method is time-

consuming, expensive, difficult to scale up and does not yield sufficient amount of protein for 

extensive analysis. Standard recombinant expression systems are not sufficient for expressing 

recombinant ES- 62 in a correctly folded, active form, because they cannot generate the nematode- 

specific post-translational modifications required for the biological activity of ES-62. The nematode 

Caenorhabditis elegans provides an alternative expression system. C. elegans is a model organism, 

with well-understood genetics, that can be easily manipulated, has a fast reproduction rate and can be 

grown in large cultures. We hypothesised that understanding the biology and sequence of endogenous 

ES-62, as well as the biology of C. elegans secretion, will help us design the best way to use C. 

elegans as an alternative expression system for secreted recombinant ES-62.  

In this study, we characterised the endogenous ES-62 genomic fragment and found that it had a 

complex structure with a large second intron. We found that C. elegans secretes a simple mixture of 

proteins into the media, in a relatively short period of time. The most abundant of those proteins was 

identified by MALDI-TOF as an aspartyl protease ASP-6. We used control elements of asp-6 to direct 

expression of ES-62 genomic fragment into the excretory/secretory pathway of C. elegans. Despite 

strong expression of the transgene, we found that the recombinant protein expression in transgenic C. 

elegans was weaker than anticipated.        
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1. Introduction 

 

1.1 The hygiene hypothesis 

The hygiene hypothesis proposes that a lack of pathogens in areas with improved sanitation has led 

to an untrained immune system, and therefore contributed to an increase in autoimmune diseases 

(Strachan 1989). Epidemiological studies show that in developing countries, where the parasitic 

infections are endemic, the prevalence of autoimmunity and allergies remains significantly lower 

than in the industrialised world (Fleming & Cook 2006; Yazdanbakhsh et al., 2001; Rook 2012; 

Okada et al., 2010; Panda et al., 2013).  This lead to a hypothesis that helminth-derived 

immunomodulatory excretory/secretory (ES) products can protect against the development of 

autoimmunity (Harnett M et al., 2008).  

It has been observed in animal experiments that there is a negative correlation between helminth 

infection and autoimmune diseases and allergies (Weinstock and Elliot 2014). Parasitic helminths 

induce a strong Th2 (T helper Type 2) response in mammalian hosts. One consequence of this is the 

reciprocal attenuation of the Th1/Th17 branch of the immune response, thus having ameliorating 

effects on autoimmune diseases such as multiple sclerosis (MS), Crohn’s disease, Type1 diabetes 

and rheumatoid arthritis which are mainly Th1/Th17 mediated (Okada et al., 2010).  

 

1.2 Rheumatoid Arthritis 

Rheumatoid arthritis (RA) is a chronic autoimmune disease affecting between 0.5% and 1% of the 

population in the developed world (Uhlig et al 2014; Vivar et al 2014). It is characterised by joint 

inflammation which leads to swelling and erosion of the cartilage and bone. If left untreated, RA 

eventually results in severe disability, pain, reduced health-related quality of life and premature 

mortality (Vivar et al 2014).  
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Rheumatoid arthritis involves a complex interplay among genotype, environmental triggers, and 

chance. The disease onsets with increased expression of adhesion molecules and chemokines in 

synovial microvessels. This attracts leukocytes, which accumulate and later proliferate in the joint. 

Synovial tissue biopsy experiments indicate that RA synovial membrane contains a variety of innate 

effector cells, including macrophages, mast cells, and natural killer cells. Macrophages act through 

the release of cytokines (e.g., tumor necrosis factor-α (TNF-α) and interleukins-1, 6, 12, 15, 18, and 

23), reactive oxygen intermediates, nitrogen intermediates, the production of prostanoids and matrix-

degrading enzymes, phagocytosis, and antigen presentation. All of the above make macrophages 

central effectors of the inflammation in the synovial membrane (McInnes, 2011; W & M Harnett, 

2006; Tak & Bresnihan, 2000).   

Pathogenesis of rheumatoid arthritis is mainly associated with TNF-α and interleukin-6 (Il-6), which 

has been confirmed by successful therapeutic blockade of the membrane and soluble TNF-α and the 

interleukin-6 receptors in RA patients. TNF-α acts through activation of cytokine and chemokine 

expression, expression of endothelial-cell adhesion molecules, protection of synovial fibroblasts, 

promotion of angiogenesis, suppression of regulatory T cells, and induction of pain. Interleukin-6 

drives local leukocyte activation and autoantibody production but mediates systemic effects that 

promote acute-phase responses, anaemia, cognitive dysfunction, and lipid- metabolism deregulation 

(McInnes, 2011; Tak & Bresnihan, 2000). The suppression of differentiation and blocking the activity 

of regulatory T cells; shifts T-cell homeostasis toward inflammation (McInnes, 2011).  

Prolonged, increased inflammation leads to a rapid bone erosion and affects 80% of patients within 1 

year of diagnosis (McInnes, 2011). In the joint, macrophages stimulate osteoclast differentiation and 

invasion of the periosteal surface adjacent to articular cartilage. TNF-α and IL- 6 amplify osteoclast 

differentiation and activation. Osteoclasts are cells that degrade mineralized cartilage and bone with 

their acidic, enzymatic contents. Destruction of the bone and cartilage leads to deep resorption pits, 

which are filled by inflammatory tissue (Smolen et al., 2003, 2007). Therapeutic inhibition of TNF-
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α and IL-6 has been used to slow down erosion in RA-affected joints (McInnes 2011; W & M Harnett, 

2006; Tak & Bresnihan 2000).  

 

1.2.1 Current treatment 

The current treatment for RA involves initiation with the disease-modifying antirheumatic drugs 

(DMARDs) in almost all patients (Vivar et al 2014). DMARDs include cyclosporin, 

cyclophosphamide, gold injections, hydroxychloroquine, leflunomide, methotrexate, mycophenolate, 

and sulfasalazine. They act by dampening the immune system.  Available DMARDs are slow-acting 

and can only temporarily retard the progression of the disease (Uhlig et al 2014; Vivar et al 2014). 

Many patients still experience premature work disability and co-morbidities. For societies, the 

economic burden of RA is high regarding direct and indirect costs, including modern drug treatment.  

TNF-α blockers were the first biological agents approved for the treatment of rheumatoid arthritis; 

TNF-α blockade has become a central strategy of targeted anti-inflammatory therapy in the disease. 

The cytokine inhibitors that target TNF-α include adalimumab and golimumab (human monoclonal 

antibodies), certolizumab pegol (a pegylated humanized Fab’ fragment of an anti- TNF-α monoclonal 

antibody), etanercept (a TNF-α receptor-Fc fusion), and infliximab (a chimeric monoclonal antibody) 

(Clements, 2011).  

The second major advance in cytokine blockade in RA is tocilizumab, which targets the interleukin- 

6 receptor. It is a humanized monoclonal antibody, which has profound effects on systemic features, 

acute phase response, and synovitis (Clements, 2011).  

Despite its role in RA, TNF is essential for the effective immune system; it also controls tumour 

growth. Thus, anti-TNF drugs, as well as most available DMARDs that interfere with the production 

of TNF-α, are associated with increased risk of acute viral and bacterial infections as well as dose-

dependent increased risk of malignancies (Bongartz et al 2006).  Patients treated with anti-TNF drugs 
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are, also, at higher risk of tuberculosis reactivation as well as herpes zoster (caused by Varicella zoster 

virus). Treatment with anti- TNF drugs can also increase the risk of melanoma in RA patients (Vivar 

et al 2014).  There is a high demand for alternative therapies that will leave the immune system 

functional to fight infections. Filarial nematodes can modulate the immune system of the host leaving 

the defence against other infections intact (Harnett M et al 2008). The study of parasitic ES products 

provides new drug candidates for RA and other autoimmune diseases. 

     

1.3 Filarial nematodes 

Filarial nematodes are parasites of vertebrates, which require an arthropod vector host for the early 

life stages of the worm. Adult worms live in subcutaneous tissues (e.g. Onchocerca volvulus) or the 

lymphatic system (e.g. Brugia malayi, Wuchereria bancrofti) (Roberts & Janovy 2008). Most filarial 

nematodes can survive in the host for more than a decade without any symptoms for the infected 

individual (Subramanian et al., 2004). Some species, however, can cause severe medical conditions 

such as elephantitis, chronic skin lesions and eye damage that can lead to blindness (Harnett W et 

al., 2004). The parasites survival is promoted by their ability to modulate the host immune system. 

This immunomodulation consists of the reduction of the T helper (Th)1 associated interferon (INF)-

γ and an increase in the Th2 associated anti-inflammatory interleukin (Il)-10 (Harnett W et al., 2004). 

ES products released by filarial nematodes have been shown to subvert the immune system of the 

host and have helped in maintaining infection and parasite survival (Harnett W & Parkhouse 1995). 

One of those products is ES-62, secreted by the rodent filarial nematode Acanthocheilonema viteae 

(Harnett W et al., 1989).   
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1.3.1 Acanthocheilonema viteae 

Filarial parasites require two hosts to complete their lifecycle. Microfilariae of A. viteae are ingested 

by an arthropod vector (in the lab, tick Ornithodorus moubata), where they develop into infective 

larvae, which then migrate to the mouthparts of the tick. While feeding, the vector host infects the 

target host (in the lab gerbil Meriones libycus) with the larvae, which then develop into adult worms 

and produce progeny (Lucius & Textor 1995). Gerbil’s blood, infected with a new generation of 

microfilariae, can be ingested again by the tick and the cycle repeats (Figure 1.1). Only L4 and adult 

worms live under the gerbil’s skin; microfilariae are released into the bloodstream (Goodridge et al., 

2005).  

 

 

 

 

 

Figure 1.1. A. viteae lifecycle.  



15 
 

Most filarial infections result in a commensal relationship between the parasite and the host, where 

the parasite can survive for a long time, and the host is asymptomatic and appears immunologically 

tolerant to the parasite in the bloodstream (Goodridge et al., 2005). A. viteae survival inside the host 

has been attributed to the immunomodulatory activity of  ES-62.   

 

1.4 ES-62 anti-inflammatory mechanism 

ES-62 was shown to inhibit the production of TNF-α and IL-6 cytokines in mice developing collagen- 

induced arthritis (CIA). ES-62 also suppressed the inflammation and the erosion of cartilage and 

bone, without inducing a compensatory increase in other types of immune response. ES-62 was able 

to suppress the CIA progression even when administered after the onset of the disease (McInnes et 

al 2003). The therapeutic potential of the protein was further investigated in human samples, through 

observations of primary cultures from RA joint- surrounding fluid and membrane, in the presence 

and absence of ES-62. In the presence of the protein, there was a significant suppression of 

lipopolysaccharide (LPS)- induced TNF-α and IL- 6 (Harnett W & M, 2006). This indicates that ES-

62 can modify critical pro- inflammatory pathways in disease- relevant tissues ex vivo.  

ES-62 has been shown to reduce Ag-driven B and T lymphocyte proliferation. It also modulates 

dendritic cell (DC) maturation to preferentially evoke Th2 responses.  Moreover, ES-62 induces 

spleen cells and B1 B cells to produce IL-10 – an anti-inflammatory cytokine.   

The mechanism by which ES-62 inhibits TNF-α production and the complete mechanism of action 

has yet to be fully defined (Rzepecka et al., 2014; Coltherd et al., 2016). The suppression of TNF-α, 

however, has been associated with inhibition of p38 mitogen-activated protein kinase (unpublished 

observations) that is required for such cytokine induction (Feng et al., 1999).  

ES-62 has previously been shown to polarize the murine dendritic cells (DC) maturation in transgenic 

mice to induce subsequent Th2 responses. Therefore, ES-62 may modulate the cytokines through 
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altered DC function. (Whelan et al., 2000). Since DC in various maturation states are detected in RA 

synovia (Thomas et al., 1999; Page et al., 2002), this provides a potential antiarthritic action for ES-

62 in altering local synovial DC maturation, autoantigen presentation, and Th1 functional polarization 

along with downstream effects on cytokine-releasing cells, including macrophages.  

Due to the role ES-62 plays in the parasite’s survival, it is an ideal target for new anthelmintics. 

Moreover, ES-62 opens a field for novel therapies for autoimmune diseases, especially rheumatoid 

arthritis. While the results are encouraging, a lot is unknown about the mechanism of action of ES-

62, also, it is difficult to make large quantities of ES-62. 

 

1.5 Production of parasite- derived ES-62 

ES-62 is produced by L4 larvae and adult worms in the serum of an infected target host. So far, the 

only known way of producing functional ES-62 in the laboratory is to derive the protein from A. 

viteae adult females. The whole process starts with ticks that have to be infected with microfilaria. 

Infected ticks are then placed on gerbils to take blood meals. Infected gerbils are grown until parasites 

reach adulthood. A. viteae female worms live subcutaneously. Approximately ten adults can be 

isolated from one gerbil. Fifty female worms are cultured in 0.5L of glucose-rich liquid media, where 

they secrete ES-62. Liquid media with ES-62 is then separated from the parasites and subjected to 

purification and concentration steps. Approximately 6L of liquid media supernatant is needed to 

achieve 0.25 g of ES-62 (Figure 1.2) (Hewitson et al., 2009). The current process involves the use of 

a large number of animals and is time and labour intensive with not much yield at the end of the 

process (Harnett unpublished). To date, no recombinant active form exists. 
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1.6 Acanthocheilonema viteae ES-62 

ES-62 accounts for over 90% of the total protein secretions in adult-stage A. viteae worms (Harnett 

W et al., 1989), and can be detected in the serum of infected gerbils (Harnett W et al., 1989; Stepek 

et al., 2002).  The ES-62 gene is transcribed throughout the life cycle of the A. viteae worm. The 

mRNA levels are, however, much higher in the adult worms than in the L3 larvae (~ 5% of the adult 

levels), or in the microfilariae (< 0.2% of the adult levels) (Stepek et al., 2004; Harnett W et al., 

2005).  

 

1.6.1 ES-62 cDNA  

The ES-62 amino acid sequence was derived from the complementary DNA (cDNA). cDNA is a 

DNA copy synthesised from messenger RNA (mRNA) using reverse transcriptase. cDNA provides 

nucleotide sequence information of the coding region of the gene as well as any 5’ or 3’ sequences 

that are also transcribed and spliced, but not translated (Brown, 2002). An A. viteae cDNA expression 

Figure 1.2. Diagram of the current method used for ES-62 production in the laboratory. 



18 
 

library was constructed as described by Adam et al (1996) and screened using a rabbit polyclonal 

serum raised against purified ES-62 (Harnett W et al., 1999). Three complete cDNAs of size ~ 1.5- 

1.6 kbp were isolated and sequenced. The sequences were compared to the N-terminal amino acid 

sequencing of purified ES-62 (Harnett W et al., 1999).  

 

The 5’ end of ES-62 mRNA was analysed by 5’ rapid amplification of cDNA ends (RACE), which 

revealed that it codes for a signal sequence (Harnett W et al., 1999). Signal sequences are N-terminal 

extensions of newly synthesised secretory and membrane proteins. They direct the insertion of 

proteins into the membrane of the endoplasmic reticulum and are usually cleaved off by signal 

peptidase (Kapp et al., 2000). As ES-62 is a secreted protein (Harnett W et al., 1989), it is expected 

to lack the signal sequence. Protein sequencing will only reveal the N- terminal amino acids of the 

mature protein (after the signal sequence is cleaved off). RACE allows fast amplification of full-

length cDNA when the sequence is only partially known, starting with mRNA, primers inside the 

known sequence and unspecific anchors (Yeku & Frochman 2011). The results suggested that ES-

62 is synthesised as a preprotein and contains a signal sequence of 18 amino acids (Harnett et al., 

1999).  

 

1.6.2 ES-62 protein structure 

The secreted protein consists of 472 amino acids with a predicted molecular mass of 52.8 kDa, and 

an isoelectric point of 5.96. (Harnett, W et al., 1999).  On a denaturing SDS-PAGE gel, the protein 

runs at 62 kDa. The 9.2 kDa difference between the predicted and the experimentally determined 

molecular weight is likely to account for post-translational modifications.   

 

The secondary structure of ES-62, predicted by the JPRED server based on the sequence information 

is 26% α-helix, 21% β-sheet and 53% other. The secondary structure of parasite- derived ES-62, 

determined experimentally by circular dichroism (CD) spectroscopy is 40% α-helix, 15% β-sheet, 
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and 15% turn. The difference in the prediction is again likely due to post-translational modifications 

and secondary structure elements not seen in the monomeric state (Ackerman et al., 2003).  

The tertiary structure of the protein determined with DRAGON prediction software is presented in 

Figure 1.3., which was obtained from Goodridge et al., 2005. Sedimentation equilibrium experiment 

revealed that ES-62 is a tightly bound tetramer formed from dimers (Harnett W et al., 1993), which 

is a preferred structure of many aminopeptidases (Taylor 1993; Acosta et al., 1998).  

The primary amino acid sequence of ES-62 contains homology to the M28 family of aminopeptidases 

as well as to glutamate carboxypeptidases (Ackerman et al., 2003). ES-62 was extracted from A. 

viteae culture medium by fast protein liquid chromatography. The purified product was able to 

hydrolyse Leu-AMC, confirming that the complex contained aminopeptidase activity (Harnett et al., 

1989). Further confirmation was shown when the activity of ES-62 was inhibited by amastatin and 

EDTA. Amastatin is a competitive and reversible aminopeptidase inhibitor. EDTA is a known 

chelator and inhibitor of metallopeptidases. Bestatin is a transition-state analog of zinc, which makes 

it an inhibitor of zinc metalloenzymes. ES-62 activity was not inhibited by bestatin (Harnett et al., 

1989). A low resolution structure analysis suggests that the active site cation is magnesium 

(Ackerman et al., 2003). This evidence suggests that ES-62 is an aminopeptidase with a strong Mg2+ 

coordination motif in its sequence. Aminopeptidase component of ES-62 is yet to be assigned a 

function. It is not required for the immunomodulatory function, as demonstrated by the ability of PC 

moiety to mimic the effect of ES-62 (as mentioned in section 1.6.4.). Since adult females produce 

ES-62 while residing under the host’s skin, it is possible that ES-62 aminopeptidase plays a role in 

cutting through the extracellular matrix or aids the digestion of food.  

No attempts were made to crystallise ES-62 due to restrictions on the amount of available wild-type 

protein, its stability, as well as the flexible heterogeneous carbohydrate present on ES-62. Instead, 

small angle X-ray scattering data was used to determine 19Å resolution dummy atom model (DAM), 

using DAMMIN program. HYDROPRO was used to calculate a sedimentation coefficient of 10.19 
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S for the DAM, which agreed with the experimentally determined sedimentation coefficient of 9.85 

+/- 0.24 S (Harnett W et al., 2003; Ackerman et al., 2003). The results confirmed that ES-62 is an 

assembly of 2 dimers tilted by ~30° with respect to the long axis of the particle (Harnett W et al., 

2003; Ackerman et al., 2003). ES-62 is a tetrameric glycoprotein (~240 kDa), comprising identical 

monomers of ~62 kDa (Ackerman et al., 2003).  

 

Based on the analysis of the amino acid sequence as well as the homology with other proteins, ES-

62 contains a putative metal coordination motif associated with aminopeptidase function (Figure 

1.3). Atomic emission spectrum of ES-62 indeed contains a strong magnesium signal (Harnett et al., 

2003). There are no high-resolution structures for ES-62 homologues (Ackerman et al., 2003).   
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N- glycosylation sites Leucine-rich regions

Putative PC donor binding site

Nuclear localisation signal

Putative ER membrane retrieval signal

α- helix

β- sheet

N- glycosylation 
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Figure 1.3. Diagram of the ES-62 functional residues. A) A schematic diagram showing the location of signal 

sequence, N-glycosylation sites, a possible PC donor interaction site, leucine- rich regions, nuclear 

localization signal site and possible ER membrane retrieval signal. B) A possible tertiary structure of the 

ES-62 monomer, predicted using dragon. The prediction includes positions of α-helices and β-strands, 

glycosylation sites, leucine-rich regions as well as metal co-ordination residues (The figure obtained from 

Goodridge et al., 2005).  
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1.6.3 ES-62 glycosylation 

PROSITE is a database that allows determination of the function of uncharacterized proteins 

translated from genomic or cDNA sequences. It consists of descriptions of protein families, domains, 

functional sites and amino acid patterns. PRINTS is a compendium of protein fingerprints. 

PRINTS/PROSITE scanner was used to find conserved motifs for post- translational modifications 

of the ES-62 protein coding sequence. The ES-62 precursor contains four potential N-linked 

glycosylation sites at positions 4, 213, 254 and 400. The site at position 4 is in the signal sequence, 

so will be absent from the mature protein (Harnett, W et al., 1999). Schematic diagram of N-linked 

glycosylation sites is presented in Figure 1.3 (Goodridge et al., 2005).  

 

To investigate the nature of the sugar modifications, ES-62 was labelled with [3H] glucosamine. The 

labelled ES-62 was exposed to enzymes: N-glycosidase F (that cleaves N-glycans from proteins) and 

O- glycosidase (that cleaves O-glycans from proteins). Only N-glycosidase F treatment resulted in 

the loss of radioactivity, which suggests that ES-62 may lack O-type glycans (Harnett W et al., 1993). 

 

One type of previously uncharacterised N-glycan found on the molecule is trimmed to the tri-

mannose core during oligosaccharide processing and then extended by N-acetylglucosamine 

(GlcNAc) residues (with or without core fucosylation) and finally decorated with the unusual post-

translational modification of phosphorylcholine (PC) (Haslam et al., 1999; Harnett W et al., 1993; 

Ackerman et al., 2003).  

ES-62 was originally detected by antibodies in serum samples from patients infected with parasitic 

nematodes. Such serum contained anti-PC antibodies and therefore ES-62 was suspected of 

containing PC (Harnett et al., 1989). Later on, ES-62 was found to interact with a monoclonal 

antibody as well as a myeloma protein reactive for PC (Harnett et al., 1990). Furthermore, it was 

discovered that ES-62 can be biosynthetically labelled with [3H]-choline (Harnett et al., 1995) and 
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the presence of PC on ES-62 was finally confirmed by Fast Atom Bombardment-MS (Haslam et al., 

1997). 

 

1.6.4 ES-62 PC modification 

[3H] choline labels the PC modification. It was used to investigate the nature of the bond between 

PC and ES-62. Exposure to N-glycosidase F resulted in complete loss of radioactivity, suggesting 

that PC is attached via an N-type glycan. Further evidence for this was presented by culturing A. 

viteae worms with tunicamycin.  Tunicamycin inhibits N-linked glycosylation. Worms cultured with 

tunicamycin produced PC- lacking ES-62 (Houston & Harnett W 1996).  

 

Brefeldin A inhibits the transfer of proteins from the endoplasmic reticulum (ER) to the Golgi. When 

incubated with Brefeldin A, A. viteae worms did not secrete ES-62. The protein was detected in the 

worm extracts, but it lacked PC, which together with further experiments suggested that addition of 

PC is a post-ER, probably medial Golgi event (Houston et al., 1997).  

 

ES-62 immunomodulatory activity depends on the PC moiety (Harnett W et al., 1999). Some 

protease activity has been attributed to the protein backbone (Pineda et al., 2014). The PC pattern is 

expressed in a range of pathogenic organisms: from bacteria and fungi to protozoa and 

gastrointestinal nematodes. PC modification on the surface of pathogens usually enables the 

detection of those pathogens by the host’s antibodies or C-reactive protein (CRP) (Fallon, 2006).     

Only in nematodes PC can be present in glycoconjugates, specifically in phosphodiester linkage with 

N-type glycans in proteins (Houston & Harnett W 2004).  

When compared to ES-62, administration of PC alone largely mimicked the results obtained with the 

whole protein. This suggests that the main active component of ES-62 is likely to be its PC 

modification.  PC desensitizes B and T cells and dampens the proliferation of B and T lymphocytes 

in vitro and in vivo. This activity was compared to the loss of antigen receptors the phosphoinositide 
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3-kinase, protein kinase C and Ras mitogen-activating protein kinase pathways (Harnett and Harnett, 

2001), however, the full mechanism of PC action in immunomodulation is unknown. It is possible 

that PC performs a dual immunomodulatory function by allowing the parasitic invasion, as well as 

being a target for innate and adaptive immune responses. 

   

1.6.5 ES-62 homology to proteins from other parasites 

At the beginning of this investigation, the only available sequence information for ES-62 was 

published cDNA sequence (Harnett et al., 1999). The cDNA sequence consists of 90 bp long 5’UTR, 

1482 bp long protein coding region and 137 bp long 3’UTR followed by a polyadenylation chain. 

This sequence was used to establish if ES-62 is conserved in other nematode species including C. 

elegans. The nucleotide blast search revealed the high similarity between A. viteae ES-62 gene 

(coding sequence only) and that of human parasite proteins leucyl aminopeptidase from the ‘eye 

worm’ Loa loa (80% identity, 80% coverage) and Brugia malayi (78% identity, 47% coverage) 

(Figure 1, Appendix). However, other species contained highly similar short parts of the sequence 

that are likely to code for specific active domains (Figure 1.4). The protein sequence was analysed 

for similarities with other proteins. The analysis revealed highly conserved zinc- peptidase domains 

present in ES-62 (Figure 1.5).  
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Figure 1.4. Distribution of blast alignments to the A. viteae ES-62 cDNA sequence query (including 5’ and 

3’ untranslated regions). There appear to be two conserved parts between 300 and 900 nucleotide 

positions, especially a stretch around 600 nucleotides and at the end 3’ end of the gene between 1300 and 

1500 nucleotide position. These are likely to code for important, conserved domains (BLAST).  

 

Figure 1.5. Graphical summary of conserved domains on ES-62 (protein BLAST). The BLAST alignment includes 

ES-62 in the Zinc-peptidase-like superfamily, due to the structural similarities, however, it was found that the 

active site of ES-62 contains a magnesium cation (Section 1.6.2.).    
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The blast search of the amino acid sequence again revealed a high degree of similarity amongst other 

species. The most similar being three leucyl aminopeptidases, two from Loa loa (71% identity, 90% 

coverage and 72% identity, 80% coverage) and one from Brugia malayi (67% identity, 80% 

coverage) (Figure 2, Appendix), as well as plasma glutamate carboxypeptidase from the pig 

roundworm Ascaris suum (57% identity, 87% coverage) and many other proteins from nematodes 

including Pristionchus pacificus (free-living nematode, satellite model organism to C. elegans), 

Wuchereria bancrofti (human parasitic roundworm) and Ancylostoma ceylanicum (hookworm of 

humans and other mammals). The alignment to aminopeptidases was mainly due to a stretch of amino 

acids between ~250 and ~350 in ES-62 sequence. Aminopeptidases are usually metalloproteins 

(Taylor 1993), and examination of the sequence classified ES-62 to the zinc-peptidase-like 

superfamily (Figure 1.5). N-linked glycosylation sites predicted for ES-62 are not conserved in leucyl 

aminopeptidases. 

Aminopeptidases are enzymes capable of degrading proteins by catalyzing the cleavage of amino 

acids from the amino terminus of protein or peptide substrates. They perform a wide variety of 

functions in organisms of animal and plant kingdoms. Some aminopeptidases contain a metal ion in 

their active site and, besides being enzymes, contribute to electron transfer reactions (cytochromes) 

or act as storage or transport proteins (Hoppert, 2011). Many aminopeptidases have been found in the 

secretory material of nematodes. Those aminopeptidases perform a wide variety of functions and can 

be involved in food metabolism, moulting, or fighting pathogens (Hoppert, 2011). Due to their 

enzymatic function, aminopeptidases have a potential to serve as effectors or inhibitors of biological 

processes. Filarial aminopeptidases have been found to play roles in modulating the host's immune 

response, embryogenesis, larval development, neuromodulation and digestion of peptides absorbed 

from the lumen of the intestine. They are potential drug targets and candidates for vaccines. 

Human parasites produce ES-62 homologues with a high similarity at the amino acid level (Brugia 

malayi >70% and Loa loa- 80% homology) (BLAST). However, ES-62 homologue found in B. 
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malayi has been reported to lack PC raising the possibility of PC and protein moieties in A. viteae 

ES-62 having unconnected functions. Comparative studies on the N-glycans present in extracts of A. 

viteae, O. volvulus and Onchocerca gibsoni have revealed a high conservation of PC-containing N-

glycans within filarial parasites (Pineda et al., 2014). As far as we are aware there is no ES-62 

homologue found in free-living nematodes (Al-Riyami & Harnett W 2012). 

Nevertheless, PC seems to be active regardless of the molecule that it is attached to. PC conjugated 

to ovalbumin (OVA) or BSA can protect mice against CIA in a similar fashion to that of ES-62 

(Pineda et al., 2014). Confirming this, recombinant ES-62 produced in yeast (which lacks PC), failed 

to reduce the severity of CIA disease and the levels of pro-inflammatory cytokines in the joints. 

Interestingly, PC-OVA, unlike ES-62, did not alter the levels of anti-collagen IgG2a antibodies 

indicating that this aspect of ES-62 inhibition is PC-independent and might rely, at least partially, on 

the protein backbone or the attached glycans (Pineda et al., 2014). 

 

1.7 Recombinant ES-62 

Recombinant ES-62 lacking PC was expressed in yeast Pichia pastoris in order to investigate the 

function of the ES-62 protein backbone and confirm the role of the PC modification in 

immunomodulation (Egan et al., 2006). Pichia pastoris lacks the post-translational machinery 

necessary to attach PC to secreted proteins. The ES-62 gene was amplified and cloned into E. coli. 

The plasmid containing the ES-62 gene was sequenced, linearized and transformed into P. pastoris. 

Successful clones were allowed to express the recombinant protein. After 48 hours, the supernatant 

was separated by centrifugation and analysed by dot blotting with KK6 mouse monoclonal antibody 

that recognizes a conformational epitope on ES-62 (Egan et al., 2006). A positive clone was selected 

for a large-scale preparation of recombinant ES-62. This time, after the separation of the supernatant 

from the cells, it was filtered and concentrated by buffer exchange using a tangential flow system, 
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followed by further concentration step using Amicon centrifuge tubes with a 100 000 cut-off 

membrane (Egan et al., 2006).  

The recombinant protein was recognised by a monoclonal antibody against a conformational epitope 

on the parasite- derived ES-62. However, the mouse polyclonal antibodies raised against the A. viteae 

ES-62 did not recognise the recombinant protein. Moreover, the mouse antisera generated against 

recombinant ES-62 failed to react with the parasite- derived ES-62 (Egan et al., 2006).  

On a native-PAGE, under non-denaturing and non-reducing conditions, parasite-derived ES-62 runs 

as a tetramer. Under native conditions, recombinant ES-62 stained with Blue Colloidal-G stain ran 

as three, smear-like bands. The first smear ran slightly higher than the parasite- derived ES-62 and 

was identified as the tetramer of recombinant ES-62. Lower smeared bands were identified as dimers 

and monomers, which could lack secondary structure features stabilised by tetramerization (Egan et 

al., 2006). Under denaturing conditions parasite- derived ES-62 monomerizes (from a tetramer). The 

recombinant ES-62 failed to monomerize when examined by SDS-PAGE, under reducing conditions. 

The tetramer of the recombinant ES-62 was, however, recognised by the polyclonal rabbit α ES-62 

serum (Egan et al., 2006).     

Biophysical analysis of the recombinant ES-62 and comparison to A. viteae ES-62 revealed that the 

two varied in their secondary structure. The authors of the paper argued that the lack of 

immunological cross-reactivity would be due to the less folded structure of the recombinant material.  

The recombinant protein had most of its α-helix structures converted to β-sheets, which was likely 

to result in a shape change (Egan et al., 2006).  

Finally, three single amino acid mutations were discovered in the recombinant protein. Each of those 

amino acids in native, A. viteae ES-62 is also conserved in Brugia malayi ES-62 and could take part 

in the correct protein folding. However, a mutation-free recombinant ES-62 was generated and 

accordingly to Egan it also failed to tetramerize completely. Similarly to the mutated recombinant 
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protein, the mouse antibodies raised against the mutation-free recombinant ES-62 failed to recognise 

the parasite-derived ES-62 (Egan et al., 2006).   

The P. pastoris recombinant protein turned out to be much less effective and failed to inhibit arthritis 

in mice (Elliot & Weinstock 2012). The results suggest that the function of the ES-62 depends on the 

presence of the PC modification and a complete tetramerization. To date, the ability to post- 

translationally attach PC to an N-type glycan has only been attributed to nematodes.    

 

1.8 C. elegans  

Caenorhabditis elegans is a free-living nematode. In the lab, it is cultured on lab strains of 

Escherichia coli and grows exponentially at temperatures between 20-25°C. The full life cycle of C. 

elegans (egg to gravid adult) takes approximately three days. Gravid adult hermaphrodites produce 

up to 300 progeny each over the next three days leading to an incredible rate of growth. Most C. 

elegans are self-fertilizing hermaphrodites, they are homozygous and generate genetically identical 

progeny. Males arise infrequently, but male mating facilitates the isolation and maintenance of 

mutant strains as well as moving mutations between strains. C. elegans is usually grown on agar 

plates, but there are well-studied methods of harvesting the worms using liquid media (Brenner 

1974). 

 

Transgenic C. elegans can be made using a well-established microinjection technique (Evans 2006). 

A PCR fragment or a plasmid of the DNA coding for the desired protein can be introduced into the 

worm by injection into the gonad. Rescue selective markers, complementing the mutation, are 

included in the injection mix to enable selection of transgenic worms. The successful injection results 

in extrachromosomal arrays that are inherited by the progeny in a mosaic fashion. The resulting array 

has multiple copies of the transgene. Ionising irradiation can later be used to integrate the 
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extrachromosomal array into a chromosome and allow the stable transmission to all progeny and all 

cells.  

The chosen DNA can be PCR- fused to C. elegans control elements (promoter, 5’UTR, 3’UTR), 

allowing C. elegans promoters to direct the desired expression of proteins from other species (Boulin 

et al., 2006).  

C. elegans has previously been explored as an alternative expression system for genes from parasitic 

nematodes. A recombinant cystatin gene from A. viteae was detected in transgenic C. elegans, 

although it could not be purified by nickel chromatography (Pillai et al., 2005). More recently, an 

active cysteine protease of Haemonchus contortus has been expressed and purified using C. elegans 

(Murray et al., 2007). The purified protein resembled the native protein.  

C. elegans has the potential to be a suitable expression system for parasitic nematode proteins as it 

provides machinery for correct folding and appropriate post-translational modifications (Pillai et al., 

2005; Murray et al., 2007). 

 

1.9 Excretory- Secretory system of nematodes 

It is not entirely understood how C. elegans secretes proteins, what proteins are secreted and what 

are their functions. The secreted proteins could be a result of molting, uterine contents released with 

eggs or digestive enzymes. They could diffuse or leak from the soma, be released with pharyngeal 

pumping or be excreted through the cuticle (in C. elegans it is water permeable at all stages). The ES 

system of C. elegans was analysed by electron microscopy. It was found to consist of four cell types: 

excretory duct cell, excretory canal cell, excretory pore cell and excretory gland cells (Nelson et al., 

1982). The morphology differs between the species, with some nematodes even lacking an excretory 

system (Davey & Kan 1968). However, many nematodes are permeated with excretory canals, part 

of a single H- shaped canal cell placed behind the pharynx (Figure 1.6).  
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The rate of excretion correlates to the osmotic strength of the media, which suggests that one of the 

functions of E-S system is osmoregulation (Weinstein 1952; Croll et al., 1972). The canal cell is 

often compared to a kidney responsible for maintaining the salt balance- excreting saline fluid via 

the duct and pore cells. The removal of metabolites has been hypothesised as another function of E-

S system, and some nematodes concentrate injected dyes and use the excretory duct to expel them 

(Nelson et al., 1983). Gland cells are associated with excretions in many species; the secreted 

products  
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Figure 1.6. Adult excretory- secretory system in C. elegans. 

A) Schematic showing the full length of the H-shaped excretory cell as seen from lateral side. In an adult 

animal, the excretory canals reach from the nose of the nematode to the tail region (WormAtlas). 

B. Epifluorescent image of a transgenic adult animal (dorsal oblique view) expressing 

the F22E10.1::GFP reporter in the excretory cell. Asterisk marks the pharyngeal gland, which also 

expresses GFP (Image source: R. Newbury and D. Moerman, WormAtlas). 

C. Epifluorescent micrograph of an animal showing expression of B0403.4::GFP in the excretory gland 

cell, ventral oblique view. The two small arrows point to regions where two cells fuse to make one 

syncytial cell. The anterior arrow marks the region where the excretory gland cell is suggested to receive 

synaptic input from the nerve ring. Pharyngeal gland cells also express this marker (asterisks) (Image 

source: R. Newbury and D. Moerman, WormAtlas). 
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could be released through the excretory duct. Gland cells concentrate secretory granules, their walls 

have membrane-like features and could be used for transporting products outside of the cell. The 

number of secretory granules is significantly higher in L4 and adult compared to younger C. elegans 

stages. Dauer larvae that undergo developmental arrest as well as starved larvae lose the secretory 

granules and the functional E-S system (Riddle et al., 1981). The pharynx was found to contain 5 

cells that open into the lumen via short ducts (Albertson & Thomson 1976) and could be responsible 

for secreting digestive enzymes (Nelson et al., 1982) and release of molting peptidases (Singn & 

Sulston 1978).    

The excretory-secretory molecules produced by parasitic nematodes have been postulated to 

originate from the excretory gland, connected to the duct and pore cells. The gland secretes materials 

from large membrane-bound vesicles (Lightowlers 1988). ES-62 was experimentally found in cells 

that underlie the gut and oesophagus of A. viteae. The protein was localised by the Immuno-Electron 

Microscopy with an antibody directed against the protein backbone. ES-62 was detected in secretory 

granules and the lumen of the worm gut (Harnett W 2003). It has been speculated that A. viteae ejects 

ES-62 protein through the pharynx, using pharyngeal pumping (Harnett W unpublished).  

 

1.10 C. elegans excretory-secretory protein 

ASP-6 is an aspartyl protease. It was reported to be excreted by C. elegans in a phosphorylcholine- 

substituted form, confirmed by the reactivity with the anti-PC antibody (TEPC-15) (Lochnit et al., 

2006). The function of ASP-6, other than unspecific lysosomal protein degradation remains unclear. 

ASP-6::GFP fusion protein was used to localise the protein expression in adult worms. Diffuse 

fluorescence throughout the body cavity was observed, suggesting that the chimeric protein was 

secreted (Figure 1.7) (Lochnit et al., 2006), however, not necessarily externally. The translational 

fusion protein was seen in the pharynx. It is possible that the worm feeding organ is responsible for 

expelling the protein out of the body cavity.  
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Figure 1.7. Expression of GFP labelled ASP-6 protein in adult transgenic C. elegans. A) The arrow indicates 

expression of asp-6 promoter+ASP-6::GFP in the pharynx (the feeding organ). B) The arrow indicates 

expression in the intestine. The diffuse expression can be observed in the body cavity. The detailed 

expression is shown in the bottom right corner. C, D) Transgenic animals expressing ASP-6 promoter::GFP 

in the intestinal cells (C- arrows) and in the epithelial cells (D- arrowheads) (Lochnit et al., 2006).   
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According to Lochnit et al ASP-6 protein is expressed in the intestine and the pharynx of gravid adult 

C. elegans. The pharynx is a feeding organ that works like a filter. Pharyngeal pumping consists of 

series of contractions and relaxations. During the contraction, pharynx takes in bacteria together with 

the liquid they are suspended in. During relaxation, the pharynx retains the bacteria and expels the 

fluid (Riddle, Blumenthal, Meyer et al., 1997). If ASP-6 protein is expressed in or reaches the 

pharynx from the intestine, it could be ‘spat out’ together with the bacterial fluid expelled by the 

pharynx during relaxation.  

 

1.11 Challenges 

Currently, ES-62 cannot be used as a drug. As a protein of ~240 kDa, it would be extremely costly 

to produce and purify it at industrial scale using current techniques for making parasite- derived 

protein. Moreover, ES-62 activity is attributed the post-translational attachment of the PC 

modification to an N-type glycan and, therefore, the production of the protein is highly nematode- 

dependent. The only functional ES-62 is the native, parasite- derived protein. In the lab, A. viteae 

ES-62 is made by growing parasites in gerbils, which leads to the death of all of the infected gerbils 

used for parasite recovery.  

This dissertation aims to explore proteins secreted from C. elegans ES system as an alternative 

system for parasitic protein production.  

 

The primary goal of the project was to find a method of engineering C. elegans to secrete foreign 

proteins into liquid media. If successful, the project would enable analysis of small parts of ES-62 to 

search for those suitable for therapeutic use. It would allow mutational analysis of ES-62 to define 

the functions of the amino acids of the protein.  C. elegans as an expression system for recombinant 

foreign proteins would enable further investigation of proteins from human parasites.  The 



36 
 

mechanism would also contribute to further understanding of the nematode excretory- secretory 

system.  

C. elegans injected with ES-62 coding gene fused with the correct C. elegans promoter gene 

expressed in the excretory-secretory system, could produce C. elegans worms secreting large 

quantities of recombinant ES-62 while in liquid media. 

 

1.12 C. elegans gene structure and regulation  

Expression of genes, transcription into mRNA and translation into proteins are essential processes 

that are highly controlled in any organism. The number of regulators increases with the complexity 

of the organism (Vogel & Chothia 2006), but the core factors are highly conserved. Control elements 

for each gene are usually encoded for by the DNA regions located near that gene itself. The promoter 

is a DNA region directly upstream (5’ end) from the transcription initiation site. It is a binding site 

for transcription factors, which determine if the gene will be active or silent (Levine & Tjian 2003). 

The promoter region can be used for directing the expression of genes in specific cells.  In C. elegans, 

the control elements sufficient for correct expression of a gene are usually located in the DNA region 

up to 2000bp upstream from the translational start codon within the intergenic sequence (Reinke, 

Krause & Okkema 2005). Translational control relies on cis-regulatory elements including 5’ 

untranslated region (UTR), which can regulate the length, secondary structure, upstream open-

reading frames and specific sequences interacting with RNA binding proteins (Rhoads et al., 2006).    

C. elegans introns are known to provide additional control of gene expression, especially larger 

introns may contain regulatory elements and need to be taken into consideration (Nam 2002; Okkema 

et al., 1993; Kostrouchova et al., 1998). 

3’UTR plays a major role in mRNA expression. It can affect mRNA stability as well as the efficiency 

of translation. Moreover, 3’UTR and some introns contain micro RNAs (miRNAs), which function 
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as post-transcriptional regulators by targeting specific mRNAs for degradation or repression of 

translation (Wahid et al., 2010). unc-54 3’UTR is commonly used in C. elegans transformations to 

ensure transcript stability and efficiency (Boulin et al., 2006). 

The regulation of transcription in C. elegans is mediated by RNA Polymerase II (Pol II) and is typical 

for eukaryotes. Protein coding genes contain a core promoter, where Pol II acts together with TATA 

Binding Protein (TBP) and TBP-Associated Factors (Dantonel et al., 2000; Kaltenbach et al., 2000; 

Lichtsteiner and Tjian, 1993; Walker et al., 2004). The regulation of transcription determines whether 

a gene will be active or not. The core promoter, upstream and downstream promoter regions, positive 

and negative enhancers act as the functional, regulatory parts. They contain cis-acting sequences, 

which bind trans-acting transcriptional factors (Levine and Tjian, 2003). 

One unusual mechanism that C. elegans transcriptional regulation is capable of is trans-splicing. 

During trans-splicing the initial transcript 5’ untranslated region (5’UTR) is replaced with a leader 

sequence (SL1), which is 22 nucleotides in size (Allen et al., 2011; Krause and Hirsh, 1987). The 

occurrence of trans- splicing accounts for the presence of polycistronic operons in C. elegans (Spieth 

et al., 1993). Polycistronic operons cluster genes and use a single set of transcriptional machinery to 

co-regulate them all. Trans-splicing is not, however, the only mean of transcriptional regulation. The 

promoters upstream differ from those within operons, which can account for independent regulation 

of some mRNAs (Allen et al., 2011; Huang et al., 2007; Yin et al., 2010; Morton and Blumenthal, 

2011).  

The core promoter sequence elements typically present in C. elegans have been investigated by 

Grishkevich et al. (2011). He observed that the five elements commonly present are a Specificity 

protein 1 (Sp1) like site (CNCCGCCC), T-blocks, which correlate with nucleosome eviction and 

gene expression levels (TTTT[N/T]), a TATA box (GTATA[TA][TA]AG), a trans-splicing site 
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(TTnCAG), and a Kozak site that includes the translation initiation codon ([CA]AA[CA]ATG) 

(Grishkevich et al., 2011 as mentioned by Reinke et al., 2005). 

 

1.13 Aims and hypothesis  

The primary aim of this thesis was to identify Caenorhabditis elegans excreted/ secreted proteins. 

The second aim was to characterise the genomic DNA structure of the gene coding for a secreted 

protein from Acanthocheilonema viteae - Excretory-Secretory 62 (ES-62) protein. The final aim was 

to use the ES-62 genetic information and the C. elegans excretory- secretory system information to 

make transgenic C. elegans that secreted functional recombinant ES-62 protein into the surrounding 

media. We hypothesised that understanding the biology and sequence of endogenous ES-62, as well 

as the biology of C. elegans secretion, will help us design the best way to use C. elegans as an 

alternative expression system for secreted recombinant ES-62. 
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2. Materials and methods 

 

2.1 Media and Buffer Preparation 

Nematode Growth Medium (NGM) was used for the maintenance of C. elegans. Worms were 

maintained on 6 cm or 9 cm plates. NGM (Brenner 1974) was prepared by dissolving 2.25 g (for 6 

cm plates) or 4.5 g (for 9 cm plates) peptone, 18 g agar, and 2.75 g NaCl in 900 ml distilled water. 

After autoclaving for 20 minutes at 121°C, 0.9 ml of 5 mg/ ml cholesterol in ethanol, 0.9 ml 1 M 

MgSO4, 0.9 ml 1 M CaCl2 and 22.5 ml 1 M KH2PO4, buffer pH 6.0 were added in that order. 15 ml 

of media was poured into Petri dishes (6 cm). After agar solidification, the plates were stored at 4°C, 

for long- term storage.  

Luria Broth medium was used for the culture of E. coli. This media consists of 10 g tryptone, 5 g 

yeast extract, and 10 g NaCl in 1 litre of distilled water, autoclaved for 20 minutes at 121°C.  

M9 buffer was used as a media where worms were allowed to secrete proteins. To make the M9 

buffer, 5.8 g Na2HPO4 · 2H2O, 3.9 g KH2PO4, and 5 g NaCl were dissolved in 1 L distilled H2O, 

autoclaved for 20 minutes at 121°C. 

S-media for liquid culture was prepared by adding autoclaved solutions of 10 ml 1M potassium 

citrate pH 6, 10 ml trace metals solution, 3 ml 1 M Cacl2 and 3 ml 1 M MgSO4 in 1 L of S-basal 

solution.   

S Basal was prepared by dissolving 5.85 g NaCl, 1 g of anhydrous K2HPO4, 6 g of anhydrous 

KH2PO4, 1 ml cholesterol (5mg/ml in ethanol) in 1 L distilled H2O, autoclaved for 20 minutes at 

121°C. 

Trace metals solution was prepared by dissolving 1.86 g disodium EDTA · 2H2O, 0.69 g FeSO4 · 

7H2O, 0.2 g MnCl2 · 4H2O, 0.29 g ZnSO4 · 7H2O, 0.025 g CuSO4 · 5H2O in 1 litre of distilled H2O, 

autoclaved for 20 minutes at 121°C, and kept in the dark until needed.  
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Potassium citrate 1M pH 6.0 solution was prepared by dissolving 21.01 g of citric acid in 80 ml of 

distilled H2O, adjusting pH to 6.0 with solid KOH and finally adjusting the volume to 100 ml with 

distilled H2O, autoclaved for 20 minutes at 121°C. 

  

2.2 Preparation of bacterial culture  

E. coli is the food source for C. elegans. To prepare a culture, 30 ml of LB was pipetted into sterile 

50 ml falcon tube. A disposable inoculating loop was used to inoculate the LB with OP50 E. coli 

bacteria from a frozen stock prepared previously. Once inoculated tubes were placed at 37°C on an 

orbital shaker set at 220 rpm and allowed to grow overnight. Cultures were then used for seeding 

NGM plates or stored at 4°C until needed. 

E. coli pellets were prepared for liquid culture. The OP50 starter culture was prepared by inoculating 

bacteria in 1.5 ml of LB and shaking for 18 hours at 220 rpm at 37°C. On the next day 500ml of LB 

was inoculated with 1ml of OP50 starter culture in 2 L flasks, and was left shaking for 16 hours at 

170 at 37°C. Bacteria were pelleted down at 5000 x g for 20 minutes, and the supernatant was 

discarded. The pellets were kept at 4°C or frozen at -80°C for long term storage.   

 

2.3 Maintenance and synchronisation of C. elegans cultures  

The protocol of C. elegans preparation was consistent with previously published guidelines 

(Stiernagle 2006) and used for all the experiments conducted during this study. 

Eggs were prepared by treating adult hermaphrodites with alkaline bleach (7:8: NaOCl: 4 M NaOH) 

to remove the cuticle and any microbes attached to the worms. The eggs were washed with M9 buffer 

three times and then placed and pre-seeded on NGM plates with 100 µL OP50 bacteria (Weinkove 

et al., 2006). Animals were then left to grow at 20°C until starved, and then a ‘chunk’ was transferred 
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onto fresh NGM plates, pre-seeded with OP50 bacteria. Those animals were left to starve at 20°C. 

Newly starved plates were used for the preparation of plates for secretion experiments. A ‘chunk’ 

from the starved plate was transferred onto a fresh NGM plate, pre-seeded with OP50 bacteria. 

Worms were left at 20°C for 3- 4 days, until they were mostly young gravid adults (for liquid culture- 

just cleared of the bacteria). Those worms were later used for the secretion experiment or to establish 

a liquid culture.   

 

2.4 Preparation of C. elegans plate culture for protein secretion  

Nine cm plates were seeded with 200 µl of OP50 bacterial culture, and the culture was spread out to 

cover most of the plate. Plates were kept at room temperature for two days to allow the bacterial lawn 

to grow. A chunk from previously prepared starved worm plates was transferred onto the fresh plates 

with the bacteria. Worm plates were kept at 25°C for 3- 4 days until the cultures synchronized to 

mainly young gravid adults. The worms were washed off each plate with 3ml of sterile M9 and 

allowed to settle for 10 minutes. The supernatant was discarded, and the worms were washed with 

30 ml of fresh M9 3 times. After the last wash, most of the M9 was removed, and the worm volume 

was estimated. An equal volume of fresh M9 was added to the worms. The worms were left to shake 

at 23°C, 177 rpm for 4 or 19 hours. 

 

2.4.1 Harvesting the worms and secreted media after protein secretion (for plate culture C. 

elegans) 

The mixture of worms and media was transferred into 2 ml Eppendorf tube and centrifuged at 828 x 

g for 1 min. The supernatant was transferred to a fresh tube and centrifuged at 9200 x g for 10 min 

to remove any remaining worm debris. The supernatant was transferred to a fresh tube and kept as 

the secreted worm media. The worm pellet was washed three times with 1 ml of fresh M9. It was 
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centrifuged at 828 x g for 1min after each wash, and the supernatant was removed. Protease inhibitors 

(cOmplete™ Protease Inhibitor Cocktail tablets, Roche) were added to both media and pellets. The 

media was stored at 4°C, and the pellets were frozen in aliquots at -20°C. 

 

2.5 Preparation of C. elegans liquid culture for protein secretion  

Bacterial pellets were thawed on ice (if taken from -80°C) and re- suspended in 10 ml of S medium. 

Two hundred and fifty ml of S Medium was added to a sterilized 1 L flask. The S Medium was 

inoculated with re- suspended  E. coli OP50 pellet made from 2 L of an overnight culture. Four 9 cm 

plates of C. elegans (just cleared of bacteria) were washed with 5 ml of S media and added to 1 L 

flasks with 250 ml S Medium. The flask was kept on a shaker at 23°C at 220 rpm. Cultures were 

monitored every day under the microscope by pipetting 200 µl of the culture onto a clear NGM plate. 

As soon as the food supply was depleted (the solution was no longer visibly cloudy) and there were 

many adult animals in each drop, the culture was considered ready to be harvested. Usually on the 

5th or 6th day.  

 

2.5.1 Harvesting the worms and secreted media after protein secretion (for liquid culture C. 

elegans) 

The liquid culture of worms was transferred from a 1L flask to a fresh 250 ml conical flask. The flask 

was kept tilted to allow the worms to settle and then the supernatant was removed. The worms were 

washed 5 times with 100 ml of fresh M9, each time adding the M9, swirling, allowing the worms to 

settle for 10 min, tilting the flask and allowing the worms to settle for another 5 min. Each time the 

supernatant was completely removed from the worms. After the final wash, the worms were removed 

into a fresh 50 ml conical tube to estimate the worm volume. The M9 volume of 1.5 x the volume of 

the worm pellet was used to inoculate the worm pellet inside a sterile 250ml flask. The worms were 
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left to shake at 200 rpm, at 23°C for 4 hours. After that, the worms and media mix was transferred 

to a 50 ml conical tube. The worms were pelleted by centrifuging at 3000 x g for 3 min. The 

supernatant was transferred to a fresh tube. Both worms and the media were kept. The media was 

centrifuged twice at 4000 x g for 15 minutes to pellet down any debris. The supernatant was removed 

and retained as the secreted worm media sample. The worm pellet was washed three times with 20 

ml of fresh M9 by centrifuging at 3000 x g for 3 min, removing the supernatant and repeating. 

Protease inhibitors (cOmplete Protease Inhibitor Cocktail tablets, Roche) were added to both the 

media and the worm pellets. Media was kept at 4°C, and worm pellets were frozen at -20°C. 

 

2.6 Extraction of genomic DNA from C. elegans 

Fresh 1.5x Lysis Buffer was prepared on the day. To prepare the lysis buffer the following solutions 

were added: 0.6 ml 5 M NaCl, 1.5 ml 1 M Tris-HCl pH 8- 8.5, 1.5 ml 0.5 M EDTA, 0.75 ml of 10% 

SDS and 95.5 ml of distilled H2O. Worms were washed off the plate with sterile M9, allowed to 

settle and the supernatant was removed. The volume of the pellet was estimated, and the lysis buffer 

was added at a volume of 1.5x the volume of the worm pellet. Finally 10 mg/ ml proteinase K (Sigma) 

solution was added to the lysis reaction in the ratio of 2:100. The lysis reaction was kept at 56°C for 

2 hours, with shaking, at least, every 30 minutes. The worm lysis solution was used to extract the 

genomic DNA using an isolation column. (Sigma, bacterial genomic DNA extraction kit). 

 

2.7 Extraction of genomic DNA from A. viteae 

Fresh 1.5x Lysis Buffer was prepared on the day as described before. Frozen A. viteae worms were 

received from Harnett lab at Strathclyde University. 2- 3 worms were placed in the Eppendorf tube 

and sliced using a sterile scalpel. The volume of the pellet was estimated, and the lysis buffer was 

added at a volume of 1.5x the volume of the worm pellet. Finally, a volume of 2% of the lysis reaction 
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of 10 mg/ ml proteinase K solution was added to the lysis reaction. The lysis reaction was kept at 

56°C for 3-4 hours (until there were no visible worm pieces left), with shaking, at least, every 30 

minutes. The worm lysis solution was used to extract the genomic DNA using an isolation column. 

(Sigma, bacterial genomic DNA extraction kit). 

 

2.8 PCR  

All PCRs were carried out using Phusion high fidelity polymerase (New England Biolabs) in Techne 

TC-5000 Gradient Thermocycler. The reactions were set-up accordingly to the manufacturer’s 

instructions.  Specific primers used for each reaction are outlined in Table 1, Appendix. 

 

2.8.1 Nested PCR amplification of the genomic ES-62 fragment 

To amplify the genomic ES-62 fragment a nested PCR was carried out, that consisted of two PCR 

steps. Step 1 PCR used the pair of external primers for initial amplification of the ES-62 fragment 

from A. viteae genomic  DNA. At this stage the product was not detectable by gel electrophoresis. 

Step 2 PCR used the step 1 PCR product as a template DNA and the pair of internal (or nested) 

primers to re- amplify the ES-62 fragment. Internal primers were designed so that, if successful, the 

second reaction would result in a slightly smaller fragment than that from the first reaction. 

Conditions for each reaction were set-up according to the manuacturer’s instructions (Phusion, New 

England Biolabs).   

 

2.9 Amplification of asp-6:: genomic ES-62 DNA fusions  

A rapid, PCR- based fusion was used to create transgenes (Hobert, 2002). The idea entails a simple 

fusion PCR, which joins two primary PCR products with a set of nested primers. C. elegans asp-6 

promoter fragment was amplified  from C. elegans genomic DNA using a 5’primer (external) and a 
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3’ fusion primer with ES-62 genomic DNA overhang that will act as the 5’ primer to attach the ES-

62 genomic fragment to result in the final 2-way fusion product for injections.  

The primer exhausting PCR was performed to exhaust the left-over primers from the previous 

reactions (amplification of the promoter and amplification of the ES-62 genomic fragment) and stop 

them from interfering with the fusion PCR reaction. PCR products from the amplification of the 

promoter and amplification of the ES-62 genomic fragment were used as the template for the fusion 

PCR and were mixed in 1:1 ratio (based on the nucleotide content calculated as concentration x 

fragment size). No primers were used in this step. The product of the primer exhausting PCR is 

referred to as a ‘seed’.  

The seed was used as a DNA template for the PCR fusion. The pair of internal primers was used to 

amplify the final product: internal 5’ primer inside asp-6 promoter sequence and internal 3’ primer 

inside ES-62 sequence.   

 

2.10 Sequencing PCR products 

Fusion PCR reactions were mixed with 6X DNA Loading Dye (Thermo Scientific), which prepares 

the samples for loading on agarose gels. The loading dye contains bromophenol blue and xylene 

cyanol FF, which allows for visual tracking of DNA migration during electrophoresis. The samples 

were loaded onto 1% agarose gels, which were run at 100V. The bands of the size expected for the 

fusion PCR were excised from the gel under UV light. The excised bands were purified using a gel 

extraction kit (Qiagen), according to manufacturers’ instructions and eluted in Milli-Q® purified 

H2O. If necessary, the samples were concentrated in a centrifugal dehydrator to a final concentration 

of 5 ng/ ml in 25 µl of the solution required for sequencing. The concentration was checked with the 

Nanodrop (Thermo Scientific). 
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2.11 Microinjection of C. elegans 

Lin-15 C. elegans mutant worms were thawed and kept for at least two generations at 15°C. A 

‘chunk’ from starved plates was cut out and transferred onto a seeded plate and maintained at 15°C 

for 4- 5 days until the worms were young gravid adults with a single row of eggs.  

Preparation of injection pads: Injection pads were used to ‘hold’ the worm and keep it stationary for 

the microinjection. Pads were made with 2.5% agarose solution in water. The solution was mixed 

and boiled. Using a P200 pipette with its tip cut off, a drop around 100 µl of hot agarose was placed 

onto 50 × 22 mm glass coverslip. A clean coverslip was immediately placed on the top of the drop 

and lightly tapped. After 2 minutes when the agarose solidified, the coverslips were slid apart and 

left to dry overnight.  

Preparation of needles: Injection needles were pulled, using the PC- 10E needle puller, which pulls 

the needle vertically from capillary using gravitational force of its weight. Settings used:  1 stage- 

pull, 68 °C, 2 heavy weights and 1 light weight.  

Preparation of DNA for microinjection: Approximately 100 ng of fusion PCR product was mixed 

with 250 ng of pEKLI5 lin-15 rescue plasmid. The injection mix was centrifuged at 15,550 x g for 

10 minutes to pellet any debris. The supernatant was transferred to a fresh tube and stored at -20 °C. 

Shortly before microinjection, the DNA was thawed on ice. It was centrifuged at 15,550 x g for 5 

minutes.   

Microinjection set-up: The needle was back-loaded with 0.5 µl of DNA, placed in the collar of the 

instrument holder, connected to the injector and mounted on the manipulator to the optimal position 

under highest magnification (400x). The well maintained, well fed C. elegans Δlin-15 mutants 

(preferably young gravid adults with a single row of eggs) were chosen for microinjection. A small 

drop of oil was deposited on the side of the agarose on the injection pad. An eyelash attached to the 

glass capillary was used as a worm-pick to minimize the amount of OP50 bacteria on the injection 
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pad. The eyelash pick was firstly sterilized in 70% clean ethanol. A single young adult was picked 

by first aligning the eyelash pick with the worm, then angling it under the worm and letting it curl 

around the pick. The worm was picked from the area of the plate away from the bacterial lawn to 

avoid bacteria transferred to the injection pad. Working under the dissecting microscope, the worm 

was moved to the injection pad and placed on the side of the oil droplet. The worm was allowed to 

crawl off the eyelash and then was gently oriented and pressed down to ‘stick’ to the agarose. The 

injection pad with stationary worm was placed under the injection microscope. The highest 

magnification (400x) was used to position the worm in the middle, and the microscope was focused 

on the gonad. The loaded needle was brought into the picture and moved until it reached the same 

plane with the gonad. The needle was directed into the gonad, and the worm was injected. To recover 

the injected animals, the pad was transferred back under the dissection microscope. The worm was 

covered with a drop (2- 5 µl) of fresh M9 and transferred with an eyelash pick onto a clean NGM 

OP50 seeded plate. No more than 3 injected worms were placed on each fresh plate. Plates were kept 

at 20°C to allow the injected worms to recover and lay eggs. Worms were monitored daily for the 

presence of progeny. Approximately 7 days after injection the progeny was ready for initial 

screening. Each non-MUV worm was transferred onto a single, OP50 seeded plate. The worms were 

incubated at 25°C and allowed to lay eggs. After 3- 4 days the progeny was screened again. Each 

worm that produced non-MUV progeny was considered an independent transgenic line.   

 

2.11.1 List of C. elegans transgenic strains used 

6B – asp-6 (5’UTR + promoter + signal sequence) :: ES-62 genomic DNA fragment + 3’UTR 

10A- asp-6 (5’UTR + promoter + signal sequence) :: ES-62 genomic DNA fragment + 3’UTR 

IIL- asp-6 (5’UTR + promoter + signal sequence) :: ES-62 cDNA :: asp-6 3’UTR 

9*- integrated 6B asp-6 (5’UTR + promoter + signal sequence) :: ES-62 genomic DNA fragment + 

3’UTR 
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3-3 control- ∆lin-15 mutant rescued with lin-15 plasmid  

 

2.12 Single worm lysis and diagnostic PCR 

The protocol for single- worm PCR was adapted from the Plasterk lab protocols. Single worm lysis 

buffer was prepared by adding 50 mM KCl, 2.5 mM MgCl2, 10 mM Tris-HCl pH 8.3, 0.5% NP40, 

0.5% Tween 20 and 0.01% gelatine. The buffer was kept at -20°C and thawed on ice before the lysis 

reaction. After thawing 0.1 mg/ml of proteinase K was added to the lysis buffer just before adding 

worms. Single worms were picked from plates and placed in a PCR tube in 5µl lysis buffer. The 

reaction was kept at 60°C for 60 minutes, followed by 15 minutes deactivation at 95°C. Then 5µl of 

MQ H2O was added to the reaction. Diagnostic PCR was performed with Dream Taq Green PCR 

Master Mix 2x solution (Thermo Fisher Scientific) accordingly to the manufacturer’s instructions.   

 

2.13 C. elegans pellets lysis after secretion   

To lyse the large worm pellets after liquid culture, the 1x Lysis buffer was used. The lysis buffer 1x 

was prepared by adding the following ingredients: 50 mM HEPES pH 7.4, 1 mM EGTA, 1 mM 

MgCl2, 100 mM KCl, 10% glycerol, 0.05% NP-40 and 0.5 mM DTT.  

The volume and the weight of the pellet were estimated at the beginning. The worms were freeze- 

thawed 3 times by keeping the tubes in liquid nitrogen for 30 seconds and then in a 45°C water bath 

until the worm pellet just thaws. The lysis buffer was chilled on ice. Approximately 1.7 g of the 

worm pellet was suspended in 5 ml of lysis buffer. More lysis buffer was added to the final 1:1 

volume ratio of worm pellet to the lysis buffer. The worms were sonicated for 15 seconds (while on 

ice), using the 30% power and then left on ice for 45 seconds. The sonication and chilling cycle was 

repeated 3 times in total. After that, the worms were checked under the microscope. In order to break 

them open a second round of sonication was performed 6 times as follows: 20 seconds at 50% power, 
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40 seconds on ice. The sonicated mix was centrifuged at 16,000 x g for 30 minutes. After 

centrifugation the lysis separated into 3 layers, they were each kept separately. The concentration of 

each fraction was checked using the Nanodrop.   

 

2.14 Concentration of C. elegans lysate 

The lysate samples were concentrated using mini Amicon centrifuge filters. Lysates were centrifuged 

at 14,000 x g for 20 minutes until the volume decreased approximately 4 times. The concentrate was 

recovered by reversing the filter and centrifuging at 1000 x g for 2 minutes. The concentration was 

measured using a Nanodrop and with the 4 x volume reduction increased approximately 3 times.    

 

2.15 Concentration of C. elegans media 

Media was concentrated using Amicon centrifuge filters at 4°C in a centrifuge with a swing out rotor. 

It was centrifuged for 45 minutes at 4000 x g until the volume was reduced 10 times. If the volume 

of the media for concentration was larger than 15ml the same filter was reused. Flow through was 

kept to make sure there was no protein left. The concentrations of original media, concentrated media 

and flow- through were compared using Nanodrop measurements. With a 10 times volume reduction, 

the concentration increased approximately 10 times. The concentrated sample was further 

concentrated using mini Amicon centrifuge filters. It was centrifuged at 14,000 x g for 30 minutes 

until the volume decreased 5 times. The concentrate was recovered by reversing the filter and 

centrifuging at 1000 x g for 2 minutes. The concentration was measured using a Nanodrop and with 

the 5 x volume reduction increased approximately 3 times.    
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2.16 SDS-PAGE  

Precast Run Blue SDS Protein gels and buffers (Expedeon) were used for SDS-PAGE according to 

manufacturer’s description. The gels were either 10% or 12%. RunBlue LDS Sample Buffer 4X 

Concentrate from Expedeon was used to denature the samples and prepare them for running on the 

gel. The sample buffer consisted of a trace of bromophenol blue, 0.3125M Tris-HCl pH 6.8, 50% 

Glycerol, 10% SDS and 5% DTT (for denaturing gel). SDS is a detergent, which disrupts the tertiary 

structure of proteins. DTT is a reducing agent, which breaks down protein-protein disulphide bonds. 

SDS, DTT and high temperature bring folded proteins down to linear molecules. SDS has a second 

function of coating the protein with a negative charge, making the charge of the protein proportional 

to its molecular weight. The samples were mixed with the sample buffer and incubated for 10 minutes 

in 70°C water bath.  

 

2.17 Silver staining 

Plus one silver staining protocol devised by Joanne Robson (Durham University Proteomics) was 

followed to stain all SDS protein gels. Immediately after running, the gel was briefly washed in MQ 

water and then transferred to a fix solution (40% methanol, 10% acetic acid), the fixing step was 

performed twice for 30 minutes each time (or overnight with one change of the fixing solution) with 

shaking. After that the gel was placed in sensitizing solution (75ml methanol, 0.32g of anhydrous 

Na- thiosulphate and 17g Na-acetate trihydrate made to 250ml with MQ water) and kept for 30 

minutes with shaking. Next the gel was washed 3 times for 10 minutes each time with MQ water. 

The gel was transferred to a silver solution (0.625g of silver nitrate made to 250ml with MQ water) 

and kept for 20 minutes with shaking. After that the gel was washed twice in MQ water, briefly and 

transferred to a developing solution (6.25g anhydrous Na-carbonate made to 250ml with MQ water, 

100 µl formaldehyde added just before treatment) and shaken gently until the bands became visible. 

The reaction was stopped by discarding the developing solution and covering the gel with the stop 
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solution (3.65 g EDTA made to 250 ml with MQ water) for at least 10 minutes. After that, the gel 

was washed and kept in MQ water.   

 

2.18 Western blot analysis  

The transfer was prepared as follows: The PVDF membrane (Millipore) was dipped in methanol, 

washed with distilled water and then presoaked in transfer buffer for 10 minutes. The ready protein 

gel was taken out from the apparatus and presoaked in transfer buffer for 10 minutes. The sponges 

and filter papers were soaked in transfer buffer; the transfer was assembled. The transfer was carried 

out at 4°C at 25V overnight (approximately 23 hours). The blot was then washed with distilled water 

and blocked in 5% milk or BSA in TBS-Tween 0.1% for at least 2 hours at room temperature on a 

rotator. The blot was covered with primary antibody in 5% BSA or milk solution in TBS-Tween 

0.1%, and the blot was incubated overnight in cold room 4°C (on a rotator). On the next day, the blot 

was washed with TBS-Tween 0.1%, 3X for 10 minutes. The blot was covered with secondary 

antibody in 5% milk or BSA solution in TBS-Tween 0.1% at room temperature for 30 minutes (on a 

rotator). The blot was washed with TBS-Tween 0.1%, 3X for 15 minutes and then with 1x TBS for 

10 minutes. ECL solution (Chemiluminescent Substrate Reagent Kit, Pierce) was used accordingly 

to the manufacturer’s instructions. The blot was placed in a film cassette and visualized in the dark 

room using film and developing machine.  

 

2.18.1 Antibodies 

Rabbit α ES-62 antibody and rabbit α de-glycosylated ES-62 antibody were used as primary 

antibodies as detection systems as described previously (Harnett et al., 1993). 
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2.19 Preparation of samples for silver stain (TCA precipitation followed by acetone 

precipitation) 

The media with protease inhibitors was TCA precipitated. Fresh, cold 20% TCA was added to the 

media sample to a final concentration of 10%. The sample was mixed by inverting. It was kept on 

ice for 30min – 1 hr. After that, the solution was centrifuged at 15,550 x g for 15 min at 4°C. The 

supernatant was removed and then the sample was centrifuged again at 15,550 x g for 2 minutes at 

4°C. The remaining supernatant was removed. Acetone was pre-chilled at -20°C overnight. 500 µl 

of cold acetone was added to the solution and vortexed. It was kept at -20°C for 10 minutes and then 

centrifuged at 15,550 x g for 10 min at 4°C. The supernatant was removed carefully without 

dislodging the pellet. The acetone wash was performed 3 times. The pellet was air-dried at RT for 5-

10 min. The rehydration buffer was added. The solution was kept on ice for 1 hour and vortexed 

every 10 minutes.  

 

2.20 Buffer exchange for media samples before MALDI-TOF MS analysis 

Buffer exchange was performed for the samples in preparation for in- liquid trypsin digestion and 

MALDI-TOF MS.  The buffer was changed from M9 to 50 mM Triethylammonium bicarbonate 

buffer. The buffer exchange was performed using Centrifugal Filter Units for concentration and 

purification of biological solutions Amicon Ultra- 15 Ultracel 100K accordingly to manufacturer’s 

instructions.  

 

2.21 StageTip fractionation of trypsin- digested samples 

After trypsin- digestion, peptide samples were desalted and fractionated using ion exchange 

chromatography, performed with multi-StageTips. Step 1C from the protocol by Rappsilber et al 

(2007) was followed. Stagetips were used in order to prepare trypsin digested samples for MS 
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analysis. Stagetips are pipette tips containing small disks of beads with reversed phase and, in this 

case, anion- exchange surfaces. The anion-exchange disk allows for the separation of peptides in the 

mix based on their charge. The separation and elution of different fractions is allowed by passing 

increasing salt concentrations through the stagetip. The reversed phase disk is used for desalting of 

the sample. Fractionated samples are clean of salt and contain a simpler mixtures of peptides, which 

aids more accurate recognition (Rappsilber et al., 2007)      
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3. Results 

 

3.1 C. elegans secrete proteins into the media over a relatively short time period 

In order to find out if C. elegans secrete proteins into the media, several experiments were performed 

where wild- type C. elegans worms grown on agar plates were washed off and separated from the E. 

coli bacteria. C. elegans were then allowed to swim in liquid media (method described in Section 

2.4.). After 4 hours the worms and the media were separated by sedimentation and the media was 

analysed for the protein content using Sodium Dodecyl Sulfate- Polyacrylamide Gel Electrophoresis 

(SDS-PAGE). SDS-PAGE is a method of separating proteins in their denatured form accordingly to 

their size. After the separation, proteins can be detected and visualised using staining methods. Silver 

staining was chosen for this experiment due to its sensitivity (in the very low nanogram range) and 

compatibility with downstream processing such as mass spectrometry. During silver staining the 

proteins separated by SDS-PAGE bind silver ions, which can later be reduced under appropriate 

conditions to visible silver metal (Chevallet et al., 2006).  

The experiments revealed that C. elegans secrete a simple mixture of proteins into the media. Those 

proteins can be detected by silver staining (Figure 3.1 and 3.2).  

Matrix Assisted Laser Desorption/Ionization- Time of Flight Mass Spectrometry (MALDI-TOF MS) 

technique was used to identify proteins represented by individual bands on the gel. Protein 

identification by MALDI-TOF MS relies on the principle that digestion of each protein with a 

specific protease will result in a mixture of peptides with peptide masses that are unique to that 

protein (Webster & Oxley 2012).  

The most intense bands were cut out from the gel and individually subjected to in-gel trypsin 

digestion by Joanne Robson and later Adrian Brown (Durham University Proteomics). MALDI-TOF 

MS was used to determine the mass of those peptides, which gave a characteristic dataset called a  
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Band 

no 
Best Match 

 

Protein 

score 
 
 

13 
hypothetical protein K12H4.7 

[Caenorhabditis elegans] 
60 

9 

Chain A, OmpF Porin Deletion 

(Mutant Delta 109-114) 
285 

Aspartyl Protease family member 

(ASP-6) [Caenorhabditis elegans] 
193 

8 

Chain A, OmpF Porin Deletion 

(Mutant Delta 109-114) 
       89 

Aspartyl Protease family member 

(ASP-5) [Caenorhabditis elegans] 
219 

29 

66 

45 

36 

24 

20 

14 

Marker 
[kDa]  

Figure 3.1. Silver stain of C. elegans proteins secreted into the M9 medium over 4 hours (wild type N2 worms). 

Total loaded protein- 10 µg. Individual bands were cut out from the gel and analysed by MALDI- TOF MS. The 

significant results are presented in the table 3.1. C. elegans proteins are indicated in black, E. coli proteins 

are indicated in red. Only significant matches are presented. Probabilities were converted to scores for 

reporting purposes. A protein score higher than 57 has less than a 5% probability of being a random event 

and is considered an identity match.    
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Band 
no 

Best Match 
Protein 
score 

4 
GLCM4 Putative glucosylceramidase 
[Caenorhabditis elegans]     146 

5 YM67 Putative serine protease K12H4.7 
[Caenorhabditis elegans]      373 

6 OmpF [Escherichia coli] 572 

7 
ASP6 Aspartic protease 6  [Caenorhabditis 
elegans]   149 

  OmpF [Escherichia coli] 115 

8 ASP6 Aspartic protease 6  [Caenorhabditis 
elegans]                                                       

229 

  OmpF [Escherichia coli] 826 

11 OmpF [Escherichia coli]  147 

12 YUA6 uncharacterised serine carboxypeptidase 
F13S12.6 [Caenorhabditis elegans]     

94 

  OmpA [Escherichia coli] 425 

13 
YUA6 uncharacterised serine carboxypeptidase 
F13S12.6  [Caenorhabditis elegans] 

206 

  OmpX [Escherichia coli] 230 

  
 DPS DNA protection during starvation protein 
[Escherichia coli]   

262 

11 
12 

8 

4 

7 

66 

45 

36 

24 

20 

14 

29 

6 

13 

Band 
no 

Marker 
[kDa]  

5 

Figure 3.2. Silver stain of C. elegans proteins secreted into the M9 medium over 4 hours (wild type N2 

worms). Individual bands were cut out from the gel and analysed by MALDI- TOF MS. The significant 

results are presented in the table 3.2. C. elegans proteins are indicated in black, E. coli proteins are 

indicated in red. Probabilities were converted to scores for reporting purposes. A protein score higher 

than 52 has less than a 5% probability of being a random event and is considered an identity match. 
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Peptide Mass Fingerprint (PMF). The PMF for each band was later compared to the theoretical 

trypsin digest of proteins in the sequence database to find the best match. The protein score is a 

measure of the statistical significance of a protein mass fingerprinting (PMF) match. It is the sum of 

the highest ions score for each sequence. Ion score is based on a calculated probability (P) that the 

observed match between the experimental data and the database sequence is a random event. It 

depends on how many experimental peptide sequences match a single database sequence and how 

strong those matches are. It is also affected by the signal to noise ratio, rather than the concentration 

of each peptide (Perkins et al., 1999). On a 1D SDS gel, it is highly likely that each band will contain 

a mixture of proteins of very similar sizes. Those proteins, as well as other impurities,  create noise, 

which interferes with the signal. For the investigation of the PMF data, it is possible to choose a 

specific organism database as well as the potential contaminants to reduce the unspecific 

identifications. In this case, we were interested in C. elegans proteins, but we also included the food 

source- E. coli protein database as a likely contaminant. A protein match with a significant score has 

less than 5% probability of being a random event and is considered an extensive homology or an 

identity match (Matrix science).  

The MS analysis of individual bands from the C. elegans media gel identified the most abundant 

proteins, as judged by the intensity of the silver stain, as aspartyl proteases ASP-6 and ASP-5 (Figure 

3.1 and 3.2). MS analysis consistently identified ASP-6 to be present in the medium where C. elegans 

were allowed to swim for 4 hours. Detection of ASP-6 inside the worm (Lochnit et al., 2006, Section 

1.10.) and in the medium (Figure 3.1 and 3.2) suggests that C. elegans possess an intrinsic secretory 

pathway capable of secreting proteins externally. We hypothesized that C. elegans secretory pathway 

can be harnessed to produce recombinant protein. Using excretory- secretory system for protein 

expression will aid correct folding of the recombinant protein. It is advantageous when it comes to 

purification steps as there is no requirement for breaking down worm cuticle. Also, the secretome is 

much less complex than the proteome of the whole worm, which will also aid easier and faster 

purification.  
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3.2 Characterisation of A. viteae ES-62 genomic DNA fragment  

 

3.2.1 Extraction of genomic DNA  

The first strategy was to transform C. elegans with ES-62 genomic DNA fragment. In order to 

prepare the template DNA for amplification of the ES-62 fragment, genomic DNA from frozen A. 

viteae worms was prepared using a standard protocol (Section 2.7.). C. elegans genomic DNA for 

amplification of C. elegans control elements was prepared. Both DNA templates were analysed on a 

0.8% agarose gel to check their quality and approximate concentration (Figure 3.3.). Due to past 

difficulties with the amplification of ES-62 gene from parasites, two methods were compared for 

extraction of A. viteae DNA: Edwards Prep and standard genomic DNA kit extraction. DNA 

extracted using standard genomic kit was used as the template for the PCR reaction. The kit 

extraction resulted in less concentrated DNA, with less RNA contamination, which should assist with 

the denaturation of the genomic DNA and aid amplification of ES-62.  

A. viteae genomic DNA of sufficient quality and concentration can be extracted from frozen parasites 

using standard techniques.       
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A.viteae 
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A.viteae 

genomic DNA 
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C. elegans 
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DNA       
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Figure 3.3. Electrophoresis of dilutions of genomic DNA extracted from A. viteae and C. elegans worms. 

One x is 1 µl of DNA in 5 µl of solution. Two x is 2 µl of DNA in 5µl of solution. Four x is 4 µl of DNA in 5 µl 

of solution. DNA samples were diluted with TE buffer. Ten µl of the diluted sample was mixed with 2µl 6x 

loading dye, mixed and spun down. The gel is 0.8% agarose in 1x TAE, 150 V, 45 minutes.  
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3.2.2 ES-62 coding genomic DNA fragment 

A. viteae genomic DNA extracted from frozen parasites (Section 3.2.1.) was used as a template for 

amplification of the ES-62 gene. In order to amplify the whole ES-62 gene (introns and exons) from 

A. viteae genomic DNA, primers were designed based on the cDNA sequence data.  The published 

untranslated regions included in the cDNA sequence were challenging for primer design as they were 

relatively short and very AT-rich with 5’UTR consisting of  90 base pairs (bp), 36% GC content and 

3’UTR consisting of 137 bp, 23% GC content, followed by the polyadenylation chain. In order to 

amplify the ES-62 gene from the genomic DNA, primers were designed inside 5’UTR and 3’ UTR. 

The PCR yielded a very faint band around 4000 bp long (undergraduate project, results not shown). 

This PCR product was then attached to a C. elegans promoter using the Hobert protocol for PCR 

fusion (Hobert 2002). The PCR- fusion yielded a strong band, around 4000 bp long. Sequencing of 

the band confirmed the presence of the ES-62 gene, but not that of the C. elegans promoter gene 

(undergraduate project, results not shown). Many reactions were performed in order to repeat the 

amplification of the 4000 bp fragment. However despite good DNA quality and concentration 

(Figure 3.3.), the use of different polymerase enzymes, primers and reaction conditions the result 

could not be repeated. As mentioned before during the undergraduate project, despite the lack of 

success of the fusion PCR, the re-amplification of the fragment led to increased yield, which later 

resulted in the idea to use a nested PCR to amplify ES-62.  

A standard PCR is not sufficient for amplification of ES-62 gene from genomic DNA.  

 

3.2.3 Comparison of the published cDNA sequence (Harnett) to A. viteae genome 

(sequenced by Blaxter lab)  

The sequencing of A. viteae genome was performed by the Blaxter lab (University of Edinburgh), 

and the draft assembly was made available online in August 2012. Comparison of A. viteae published 

cDNA sequence (Harnett W et al., 1999) to A. viteae genome (sequenced by Blaxter lab) revealed 
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1240 nucleotides of the coding sequence that corresponded to 7 perfectly aligned exons and revealed 

the sequence of 6 introns, intron/ exon boundaries and 137 nucleotides of 3’ UTR. Comparison of 

the cDNA to the genomic DNA confirmed the published sequence and revealed the rest of the 3’UTR 

structure. However, the 5’UTR and the N-terminal peptide from the cDNA did not align to the 

genomic DNA structure. Accordingly to the alignment, the 5’end of the cDNA (90 nucleotides of 

5’UTR and 242 nucleotides of protein coding sequence) missing from the genomic sequence was 

divided into three smaller fragments (Figure 3.4). From the 5’ end first fragment, 83 nucleotides of 

5’UTR, aligned to the scaffold 0313. The second fragment, 107 nucleotides coding for the signal 

sequence and part of the mature end of the protein, did not align anywhere in the genomic sequence. 

The third fragment, 135 nucleotides aligned to scaffold 0582 in reverse orientation, with a short 

overlap in scaffold 0047. This is not unusual considering the genomic sequence data is from the draft 

assembly, and it is likely to be incomplete.  

The large part of ES-62 cDNA aligned to the genomic fragment coding for ES-62 from A. viteae 

draft genome sequence. Three hundred and thirty three nucleotides of the 5’ end of the cDNA 

sequence did not align to the genomic DNA in a continuous fashion, with parts missing from the 

genome. This could be due to the miss-alignment of the draft A. viteae genome or differences between 

genomic DNA and cDNA.       
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Figure 3.4. Schematic alignment of ES-62 cDNA sequence to A. viteae genome showing the 

distribution of the sequence between different scaffolds.  
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3.2.4 Amplification of the ES-62 genomic fragment that aligns to cDNA 

Multiple PCRs were performed in order to amplify the full length genomic fragment using primers 

designed inside the 5’UTR (based on the cDNA sequence) and 3’UTR (based on both cDNA and 

genomic DNA sequences), which yielded no product (results not shown). Many attempts were made 

and a range of conditions used, with no effect. We hypothesised that ES-62 contains a large intron, 

missing from the genomic alignment, which makes the whole fragment difficult to amplify. 

Therefore, we decided to amplify the ES-62 gene in several parts, starting with the largest part that 

aligns to scaffold 00478.  

First amplification of the genomic fragment that aligned to the cDNA (7 exons, 6 introns and 3’UTR) 

was unsuccessful (Figure 3.5 A). Genomic DNA of ES-62 is very AT-rich, with only 28% GC 

content. Parts of ES-62 DNA, especially introns, contain repetitive sequences and long strands of 

adenine and thymine nucleotides. If this is the case with the whole A. viteae genome, then a single 

set of primers may not be specific enough to amplify the desired gene.  We attempted the re-

amplification of the ES-62 fragment using a nested PCR method. The PCR product from the first 

amplification attempt was used as a template for the nested reaction. This meant that two pairs of 

PCR primers were used for the amplification of a single ES-62 fragment, which increased the 

specificity of the reaction. The nested PCR was successful and yielded a fragment approximately 3.7 

kb long (Figure 3.5 B), which corresponded to the size of this fragment predicted by the genomic 

DNA sequence and the fragment obtained at the beginning of the investigation following the 

unsuccessful fusion reaction.   

 

 

 

 



64 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5’UTR 

ATG AAVLPD TAA 

3’UTR 

Scaf 00478 
Scaf 05826* 

Scaf 03130 

Figure 3.6. Alignment of ES-62 cDNA fragments to the A. viteae genomic DNA. ATG, the start of the mature 

protein (AAVL) and TAA are indicated. Different colours indicate parts that align to different scaffolds. Part 

of 5’UTR aligns to scaffold 03130, ATG, light green, red and light blue fragments do not align anywhere in 

the genomic sequence, the sequence following the signal peptide and before the start of first exon on 

scaffold 00478 (olive green fragment) aligns to scaffold 05826 in reverse orientation and different shades 

of grey indicate consecutive exons that align to scaffold 00478 of the genomic DNA.  

 

10, 000 bp 

4, 000 bp 

M   54  55 56 57 58  59 60 62 63  65 66  °C  

250 bp 

* 

4, 000 bp 
3, 500 bp 

M  64 65 67 68 69°C  

A 

B 

Figure 3.5. Electrophoresis picture of A) outer primers PCR and B) inner/ nested primers PCR to amplify ES-

62 fragment from scaffold 00478. PCR reaction from A 62°C (indicated by red star) was used as a DNA 

template for the nested reaction (B). Temperature gradient was used to establish optimal annealing 

temperature for the PCR. Numbers under each lane indicate annealing temperature on the thermocycler. 

The gel is 1% agarose in 1x TAE, 100 V, 45 minutes   

Nested PCR: PCR product from 62° reaction A was 

used as a DNA template for the second PCR reaction 

(B)   

1000 bp 
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A series of PCRs was performed attempting to bridge the gaps between sequences aligned to different 

scaffolds. Due to difficulties with amplifying the whole gene, it was hypothesised that exon 1 and 

intron 1 (5’ end) are long and may be missing from the draft genome assembly. Figure 3.6 shows a 

schematic representation of cDNA divided into fragments accordingly to where they align in 

genomic DNA.  

The sequence of the missing exon (olive green) and the first identified exon on scaffold 00478 (grey) 

have an overlap between scaffolds, however, they are differently orientated. The PCR with 5’ primer 

designed inside the missing exon (olive green) and the 3’ primer inside the first identified exon (grey) 

yielded one band significantly stronger than the rest (Figure 3.7). This band was purified, cloned and 

sequenced. The forward sequencing result aligned with the genomic DNA on scaffold 05826 (olive 

green region ) in reverse orientation. After the alignment to scaffold 05826 had stopped, the 

sequencing result aligned with some sequence on the scaffold 00478 in the correct orientation, 

however, the result did not reach the sequence of the first identified exon (grey part, start of an exon 

alignment of cDNA to genomic DNA). The reverse sequencing result was aligned to the first exon 

on the 00478 scaffold (grey) and when it reached the 5’ end of this exon, it covered 11bp on scaffold 

05826. This sequencing result confirmed the information obtained by the alignment of cDNA and 

genomic DNA and connected the two scaffolds, but not different parts of the cDNA sequence.  

The 5’ cDNA fragments; ATG start of the first exon (light green), signal sequence (red), and the first 

exon (light blue) were not found in the genomic DNA. The PCR between the ATG start of the first 

intron (light green) and the 3’ end of the first exon (olive green) yielded three distinct bands. They 

were all gel- purified and sequenced. The sequencing product was very short, and yielded sequence 

information only with the reverse primer for each band. It aligned with reverse 3’ end of the first 

exon sequence (olive green) on scaffold 005826 and then with correct orientation to scaffold 005826.  
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Figure 3.7. Electrophoresis of the PCR product between olive green and grey fragments (scaffold 05826 and 

scaffold 00478). A temperature gradient was used to establish optimal annealing temperature for the PCR. 

Numbers under each lane indicate annealing temperature on the thermocycler. The gel is 1% agarose in 

1x TAE, 100 V, 45 minutes.   

1000 bp 

750 bp 

250 bp 

M 65 67 68 69°C  

Figure 3.8. Electrophoresis of the result of a PCR between light green and olive fragments (within unidentified 

exon). A temperature gradient was used to establish optimal annealing temperature for the PCR. Numbers 

under each lane indicate annealing temperature on the thermocycler. The gel is 1% agarose in 1x TAE, 100 

V, 45 minutes.   
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Reactions were also performed between 5’ part of the unidentified exon (light green) and 3’ part of 

the unidentified exon (olive) as well as the signal sequence within the unidentified exon (red) and 

the start of first identified exon on scaffold 00478 (grey). Both reactions yielded very short products, 

below 300 bp, and despite successful cloning did not yield any usable sequencing information. All 

of the reactions are summarized in Figure 3.9.    

ES-62 cDNA sequence aligns to the A. viteae draft genome, but only partially. Attempts to amplify 

the whole genomic fragment failed. The part that aligns on scaffold 00478 can be amplified from the 

genomic DNA using a nested PCR and yields a 3.7 kb fragment with 7 exons, 6 introns and 3’UTR. 

The part that does not align continuously to the genomic DNA was divided into smaller fragments 

and some of them were amplified. Sequencing of those results failed to bridge the gaps between the 

fragments. This suggests that genomic ES-62 may contain a large intron and that the draft genome 

assembly may be incomplete.         
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Figure 3.9. Summary of the PCR reactions performed to characterise the 5’end of the ES-62 genomic fragment. 

Arrows indicate positions of primers for each reaction. Double arrows indicate nested PCR approach. X means 

there was no product. ‘’ means there was a product and it was sequenced. ‘?’ means there was a product 

or multiple products but the sequencing was unsuccessful. The ‘*’ indicates that the sequence is in reverse 

orientation.  
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The second assembly of ES-62 was performed in August 2015 and confirmed the presence of a large 

intron, missing from the draft genome assembly (per. Comm. Georgios Koutsovoulos, Blaxter lab). 

The ES-62 gene is approximately 10884 bp long; this size is approximate as there are still stretches 

of unknown nucleotides within introns. Based on the genomic sequence information and the 

sequencing of individual introns those unknown fragments are likely to be stretches of AT repeats. 

ES-62 consists of 10 exons and 9 introns (Figure 3.10.). The first exon is 111 nucleotides long and 

codes for the signal peptide and part of the mature protein. The first intron is 371 nucleotides long. 

The second exon is 131 nucleotides long. The second intron is approximately 6796 nucleotides long 

and is likely to be the reason of unsuccessful amplification attempts between ES-62 alignment on 

scaffold 00478 (grey) and 5’ fragments (olive, red and green). The following exons are respectively 

116, 101, 174, 159, 162, 180, 79 and 269 nucleotides long. Approximate sizes of the introns are 

respectively 520, 174, 233, 267, 290, 226 and 432 nucleotides long.     

     

 

 

 

 

 

 

 

 

 

3’UTR 5’UTR 

Figure 3.10. Schematic diagram of the full ES-62 genomic DNA. Blocks indicate positions of exons, lines 

indicate position of introns. Colors correspond to Figures 3.6 and 3.9 and indicate positions of ES-62 cDNA 

parts in the new alignment.       
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3.3 Making transgenic C. elegans  

 

3.3.1 Preparation of DNA fusion products for microinjections 

Control elements from the C. elegans gene coding for ASP-6 protein were used to direct expression 

of ES-62 in C. elegans. We hypothesised that under control of asp-6 recombinant ES-62 protein will 

be secreted into the media.  

The first strategy was to use ES-62 genomic DNA due to the gene- specific regulatory elements 

which may be present within introns. Furthermore, introns are important for stabilising the mRNAs 

and the pre-mRNA splicing promotes nuclear export and translation (Maniatis & Reed 2002; Nott et 

al., 2004). At the beginning of this study the 5’end of the genomic ES-62 fragment was unknown. 

Due to time constrains only the characterised part of the ES-62 genomic DNA was used in the fusion 

construct. 

The second strategy was to use ES-62 cDNA, which codes for the whole mature protein. Sequencing 

of the only available cDNA clone (received from University of Nottingham) revealed that it 

contained 6 mutations, two of which were single base pair deletions and caused the sequence to stop 

prematurely. The cDNA required fixing of the mutations back to the original sequence before it could 

be used (cDNA repair was performed by Dr Sushmita Maitra). 

Promoter, 5’UTR and signal sequence from C. elegans asp-6 were fused to a part of ES-62 genomic 

DNA or cDNA using PCR. The 3’UTR was either taken from the asp-6 gene (for ES-62 cDNA 

fragment) or from the ES-62 gene (for ES-62 genomic construct) (Figure 3.11).  
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Figure 3.11. Schematic diagram of the asp-6::ES-62 fusion constructs. A) The asp-6::ES-62 cDNA construct 

consists of 5’UTR, promoter, ATG and signal sequence from C. elegans asp-6 gene fused to ES-62 cDNA 

from A. viteae and to 3’UTR from C. elegans asp-6 gene. B) The asp-6::genomic ES-62 construct consist of 

5’UTR, promoter, ATG and signal sequence from C. elegans asp-6 gene fused to ES-62 genomic DNA 

fragment from A. viteae with ES-62 3’UTR. asp-6::genomic ES-62 construct contains a large part of genomic 

ES-62 fragment and not the whole gene.  
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In order to prepare DNA fusion products for microinjections, PCR fusions were performed using 

Phusion high-fidelity polymerase. Using high fidelity polymerase decreases the chances of 

mismatches occurring during the reaction. The promoter and ES-62 fragments were amplified, mixed 

and subjected to the ‘primer exhausting’ reaction in order to stop the first set of primers used to 

amplify individual fragments from interfering with the fusion reaction (Section 2.9.). This was done 

due to previous problems with performing fusion, which resulted in re-amplification of individual 

fragments rather than connecting them together. The ‘primer exhausting’ reaction was carried out 

before the fusion reaction and contained all ingredients needed for a PCR apart from the second set 

of primers (inner primers). The ‘primer exhausting’ reaction was then used as a DNA template to 

perform the fusion.  

PCR to amplify the asp-6 promoter fragment yielded a single band of around 1.8 kb size (Figure 3.12 

A). The fusion fragment was contaminated with un-fused promoter fragments and short fragments 

below 500 bp (Figure 3.12 D). Those are known to aid the transformation of C. elegans and therefore 

the whole, un-purified fusion PCR product was used for injecting the worms. The correct fusion with 

no mismatches and the presence of both C. elegans promoter and ES-62 gene were confirmed by 

sequencing of purified fusion bands.  

The C. elegans promoter DNA fragment can be attached to A. viteae ES-62 genomic DNA fragment 

to create an in-frame 2-way fusion product for C. elegans transformation. The fusion products created 

were:  asp-6 (5’UTR + promoter + signal sequence) :: ES-62 (genomic DNA fragment + 3’UTR) 

and asp-6 (5’UTR + promoter + signal sequence) :: ES-62 (cDNA coding for mature protein) :: asp-

6 3’UTR (cDNA construct was made by Dr Sushmita Maitra).   
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Figure 3.12. Electrophoresis of the fusion reaction between asp-6 and genomic ES-62 fragment. A) C. 

elegans asp-6 5’ UTR, promoter and signal sequence fragment B) nested PCR amplified A. viteae genomic 

ES-62 fragment from scaffold 00478. Fragments A and B were combined and subjected to a primer 

exhausting reaction. C) Seed- combined fragments A and B after the primer exhausting reaction. D) The 

seed (C) PCR was then used as a DNA template for the fusion reaction with 5’ primer inside asp-6 5’UTR 

fragment (A) and 3’ primer inside ES-62 3’ UTR (B). A + B fusion product- asp-6 5’UTR, promoter, signal 

sequence + ES-62 genomic fragment, ES-62 3’UTR is indicated with a red star.  

A temperature gradient was used to establish optimal annealing temperature for the PCR. Numbers under 

each lane indicate annealing temperature on the thermocycler. The gel is 1% agarose in 1x TAE, 100 V, 45 

minutes.    
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3.3.2 Screening injected worms for expression of the transgene 

Each DNA fusion product was injected into ∆lin-15 mutant C. elegans together with the lin-15 rescue 

plasmid. Δlin-15 mutants are temperature sensitive and express multiple vulva phenotypes when kept 

at 20°C or higher. Worms that received the rescue plasmid expressed a wild-type phenotype when 

kept at 20°C or higher. We hypothesised that C. elegans rescued from Δlin-15 mutation (wild type 

at 20 °C) also received the injected fusion product and expressed the ES-62 gene under control of 

the C. elegans promoter. However, after microinjection the injected genes form random 

extrachromosomal arrays, so in order to find transgenic lines the worms were subjected to three 

rounds of screening. For the initial screening injected mothers were kept at 20°C, allowed to 

reproduce and carefully monitored for the first set of progeny (F1 generation). When the F1 progeny 

reached the adult stage, worms which expressed a wild-type phenotype were separated and allowed 

to grow and reproduce. Those worms that produced wild- type progeny (passed the lin-15 rescue 

plasmid on to the next generation) were considered a stable line. For the final screening, individual 

worms from each line were picked, lysed and analyzed by single-worm PCR in order to check for 

the presence of the injected product. The negative control was a WT C. elegans DNA, and a positive 

control was a fusion fragment used for the microinjection. PCR reactions were performed using Taq 

green polymerase and aimed to amplify the fragment of the injected gene across the fusion junction. 

All of the transgenic lines yielded the expected- sized product (Figure 3.13), which was later purified 

and confirmed by sequencing.  
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The progeny of injected worms was screened for the presence of the transgene. The results suggest 

that stable transgenic lines were created. The progeny (F1) of injected worms that show a wild-type 

phenotype at 20°C and produced wild-type progeny (F2) at 25°C was assumed to be a transgenic 

line. An additional third screening step was added to check for the presence of the transgene in the 

DNA of randomly selected F2 worms. Multiple PCRs were performed on DNA from individually 

picked worms, with primers spanning the fusion junction of injected transgene. All of the PCRs 

yielded the desired product suggesting that the stable lines indeed contained the transgene.          
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Figure 3.13. Electrophoresis of single-worm PCR to screen for transgenic lines. Numbers indicate repeats. 

DNA from ∆lin-15 mutant worms rescued with lin-15 plasmid was used as a template for the negative 

control. Fusion PCR product (asp-6::ES-62 genomic DNA) was used as a template for the positive control. 

The fragments were expected to be 308 bp long. M is a DNA hyperladder. The gel is 1% agarose in 1x TAE, 

100 V, 45 minutes.    
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genomic DNA line 

10A 
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3.4 Expression of recombinant ES-62 protein in transgenic C. elegans 

 

3.4.1 Identification of recombinant ES-62 in transgenic C. elegans lysates (Western Blot 

analysis of small scale plate cultures) 

Three transgenic lines were used for the purpose of this study. One line made with (asp-6 

5’UTR+promoter+signal sequence::ES-62 cDNA::asp-6 3’UTR)- IIL (cDNA construct and 

transgenic worms were supplied by Dr Sushmita Maitra) and two independent lines with (asp-6 

5’UTR+promoter+signal sequence::ES-62 genomic DNA fragment+3’UTR)- 6B and 10A. 

Individual transgenic lines were maintained in plate cultures. Between four to fifty plates were 

prepared for each analysis. The preparation of samples is fully described in Materials and Methods 

(Sections 2.3. and 2.4.). Worms were allowed to swim in M9 phosphate buffer for 4 hours with 

shaking. Media were separated from worm pellets by sedimentation (Section 2.4.1.). Media for each 

transgenic worm were analysed by silver staining of SDS gels. There were, however, no detectable 

differences between the control and the transgenic worm media, which could be due to the very low 

concentration or lack of the secreted transgenic protein (results not shown). Moreover, the 

complexity of the proteins was higher than previously anticipated, which also dramatically affected 

the silver stain profile, making it challenging to distinguish between different bands.  1D gels separate 

proteins only accordingly to their size; this allows proteins of very similar size to travel together, and 

the less abundant proteins are covered by the more prominent ones.  

Media and pellets were sent to our collaborators at Strathclyde University. Dr Kara Bell lysed worm 

pellets and concentrated both media and pellets using Amicon centrifugal filters. Concentrated media 

and concentrated worm lysates were analysed for the presence of recombinant ES-62 using western 

blotting with three antibodies used to detect the parasite- derived ES-62 (Dr Kara Bell, where 

indicated). The rabbit α ES-62 serum antibody (raised against the whole native protein) is a 

polyclonal antibody that recognizes the protein and possibly PC epitopes on ES-62. Rabbit α de-
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glycosylated ES-62 is directed against the protein backbone of ES-62, as the N-glycans and PC – N-

glycans were cleaved before immunization. The deglycosylation is carried out under denaturing 

conditions and, therefore, the antiserum may primarily recognize sequential rather than 

conformational epitopes: this may be particularly useful if recombinant ES-62 is folded differently 

in transgenic C. elegans. TEPC 15 is an IgA myeloma protein that specifically binds to 

phosphorylcholine (PC) (SIGMA).  

Transgenic worm lysates from sample 6B (asp-6::genomic ES-62 fragment) reacted with all three of 

the antibodies, each time yielding a band relative to A. viteae ES-62 size (Figure 3.14 red stars, Dr 

Kara Bell). Two antibodies raised against parasite- derived ES-62 detected a 46 kDa band, also in 

6B worm lysates.    None of the secreted media samples showed any difference between the 

transgenic and the control (results not shown). Antibodies detected two protein bands, that could be 

the recombinant ES-62 in the concentrated worm lysates of one genomic DNA transgenic (6B). 

However, it was not detected in the second genomic DNA transgenic (10A), nor in the respective 

secreted media from 6B worms. Since the 10A transgenic line arose independently, a spontaneous 

mutation could have occurred, which resulted in miss-folding of the recombinant protein in one of 

the transgenic lines, but not the other.  

In order to check for sequence differences in those two lines a series of sequencing reactions was 

performed (PCR reactions amplifying short, overlapping fragments were performed by Kyle Main- 

project student), however, no sequence differences were detected. We hypothesized that the 

difference between 6B and 10A worms arose due to different levels of protein expression in those 

independent lines, and the differences were further investigated.   
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Figure 3.14. Western blot of concentrated worm 

lysates after isolation from plate culture. Samples: 

T.6B- 6B asp-6 ES-62 genomic fragment transgenic 

line; T.10A- 10A asp-6 ES-62 genomic fragment 

transgenic line; C- control- ∆lin-15 mutants rescued 

with lin-15 plasmid. Red stars indicate a ~70 kDa 

band, black stars indicate a ~46 kDa band present 

in 6B genomic DNA transgenic line, but not in the 

10A or control lines. Samples were probed with: A- 

rabbit α ES-62 serum antibody used at 1:500 in 5% 

BSA in TBS, 0.1%tween, B- rabbit α ES-62de-

glycosylated antibody used at 1:200 in 5% milk in 

TBS, 0.1%tween, C- TEPC15 antibody used at 1:200 

in 5% BSA in TBS, 0.1%tween (All of the samples 

were prepared by the author of this thesis, sample 

concentration and Western Blot analysis was 

performed by Dr Kara Bell).  
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3.4.2 Identification of a recombinant ES-62 breakdown product in transgenic C. elegans 

media (large scale liquid culture)  

In order to increase the amount of material and the concentration, C. elegans were grown in liquid 

media. The first liquid culture experiment was performed with the [asp-6 5’UTR+promoter+signal 

sequence::ES-62 genomic DNA fragment+3’UTR] 6B transgenic worms, [asp-6 

5’UTR+promoter::ES-62 cDNA::asp-6 3’UTR] IIL transgenic worms and the control [∆lin-15 

rescued line]. Worms were grown in liquid culture (150 ml) for five to six days. Worms were 

separated from the growth media by sedimentation, washed and allowed to secrete into M9 buffer 

for 4 hours. Media and worms were separated as described in materials and methods (Section 2.5.1.). 

Media was concentrated using Amicon ultracentrifuge filters and analysed. Worm pellets were lysed, 

concentrated using Amicon ultracentrifuge filters  and analysed alongside the media samples.  

Experiments revealed the presence of a 27 kDa band on western blots. Rabbit α ES-62 serum 

antibody detected a 27 kDa polypeptide in the media (Figure 3.15) and worm lysates (Figure 3.16) 

from the 6B genomic ES-62 line, which was not present in the IIL ES-62 cDNA line or the control.  

The 27 kDa polypeptide was detected by the rabbit α ES-62 serum antibody in 6B genomic ES-62 

lines (media and lysates), which has not been detected in IIL cDNA ES-62 lines or the control. This 

may be a breakdown product of recombinant ES-62, which could be less stable than the parasite- 

derived protein. Rabbit α ES-62 serum antibody has a wide detection spectrum. It may recognise PC 

epitopes. The multiple polypeptides detected in the samples may reflect PC-containing proteins. The 

samples were tested with α de-glycosylated ES-62 antibody.  
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Figure 3.15. Western blot of worm secreted media after isolation from liquid culture (rabbit α ES-62 

antibody). Samples: T.6B- 6B asp-6 ES-62 genomic fragment transgenic line; T.IIL- cDNA- IIL asp-6 ES-

62 cDNA transgenic line; control- ∆lin-15 mutants rescued with lin-15 plasmid. Samples were 

concentrated using Amicon filters as described in materials and methods. The white star indicates a 

band of ~27kDa present in genomic DNA samples, but not in the cDNA or control lines. Samples were 

probed with rabbit α ES-62 serum antibody used at 1:500 in 5% BSA in TBS, 0.1%tween. 
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Figure 3.16. Western blot of worm lysates after isolation from liquid culture (rabbit α ES-62 antibody). 

Samples: T.6B genomic- 6B asp-6 ES-62 genomic fragment transgenic line; T.IIL cDNA- IIL asp-6 ES-62 

cDNA transgenic line; C- control ∆lin-15 mutants rescued with lin-15 plasmid. White star indicates a 

band ~27kDa present in genomic DNA samples, but not in the cDNA or control lines. Samples were 

probed with rabbit α ES-62 serum antibody used at 1:500 in 5% BSA in TBS, 0.1%tween. 
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In order to further investigate the nature of the 27 kDa polypeptide detected in genomic ES-62 

transgenic line, a second antibody was used. Rabbit α ES-62 de-glycosylated antibody is directed 

against the protein backbone of ES-62 as the N-glycans and PC– N-glycans were cleaved before 

immunization. Also, deglycosylation is carried out under denaturing conditions, therefore, the 

antiserum may primarily recognize sequential rather than conformational epitopes: this may be 

particularly useful if ES-62 is folded differently by C. elegans.  

The 27 kDa polypeptide was detected, however, this time in the secreted media from IIL ES-62 

cDNA line, not in the ES-62 genomic line or the control (Figure 3.17 and 3.18).  

 

The rabbit α ES-62 antibody recognized high MW bands (70 kDa) in the genomic and cDNA media 

samples (Figure 3.18 B red star). The bands appeared to be of the same size in both media samples 

from transgenic lines and were not seen in the control sample media. The 70 kDa band was similar 

to that detected previously in 6B genomic ES-62 transgenic worm pellets (Figure 3.14, Dr Kara Bell).  

However, the ES-62 cDNA and the genomic ES-62 transgenics were predicted to produce different 

recombinant ES-62 products. The genomic DNA line carries only a part of ES-62 (412 amino acids) 

and its predicted molecular weight is 46 kDa, if unmodified. The cDNA line carries the whole mature 

protein (474 amino acids), without the signal sequence, and its predicted molecular weight is 52.8 

kDa without modifications. The 27 kDa polypeptide was recognised by the rabbit α ES-62 antibody 

in 6B genomic ES-62 transgenic media (Figures 3.15. and 3.18. B) and worm lysates (Figure 3.16) 

and could be a breakdown product of recombinant ES-62. The rabbit α de-glycosylated ES-62 

antibody does not recognise the 27 kDa polypeptide in 6B genomic ES-62 samples. Interestingly, the 

last antibody recognises a 27 kDa polypeptide in the IIL ES-62 cDNA secreted media (Figures 3.17 

and 3.18 A).    
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Figure 3.17. Western blot of worm secreted media and worm lysates after isolation from liquid culture 

(rabbit α de-glycosylated ES-62 antibody). Samples: T.6B genomic- 6B asp-6 ES-62 genomic fragment 

transgenic line; T.IIL cDNA- IIL asp-6 ES-62 cDNA transgenic line; C- control- ∆lin-15 mutants rescued with 

lin-15 plasmid. Samples were concentrated using Amicon filters as described in materials and methods. 

White star indicates a band ~27kDa present in ES-62 cDNA transgenic samples, but not in the genomic 

ES-62 or control lines. Samples were probed with rabbit α ES-62 de-glycosylated antibody used at 1:200 

in 5% milk in TBS, 0.1%tween. 
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Figure 3.18. Western blots of un-concentrated worm secreted media 45 days after isolation from liquid 

culture. Samples: T.6B genomic- 6B asp-6 ES-62 genomic fragment transgenic line; T.IIL cDNA- IIL asp-6 ES-

62 cDNA transgenic line; C- control- ∆lin-15 mutants rescued with lin-15 plasmid. A) Black star indicates a 

band ~27kDa present in secreted media from ES-62 cDNA transgenic lines, but not in the genomic ES-62 or 

control lines, detected by α ES-62 de-glycosylated antibody used at 1:1000 in 5% milk in TBS, 0.1%tween. B) 

White star indicates a band ~27kDa present in secreted media from genomic ES-62 transgenic lines, but not 

in the ES-62 cDNA or control lines, detected by α ES-62 serum antibody used at 1:1000 in 5% BSA in TBS, 

0.1%tween. Red stars indicate a higher MW band ~70kDa recognised by α ES-62 serum antibody in 

transgenic media samples (genomic ES-62 and ES-62 cDNA) and not in the control.  
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3.4.3 Identification of the recombinant ES-62 in transgenic C. elegans lysates (Silver stain 

analysis of large scale liquid cultures) 

Silver staining was chosen as an initial method of analysis of transgenic worm media. Results showed 

that C. elegans secrete a simple mixture of proteins that can be easily identified and distinguished on 

silver- stained SDS-PAGE gel (Figures 3.1. and 3.2.). First results of analysis of C. elegans secreted 

media confirmed that silver stain was sensitive enough to identify ASP-6 in the worm media. We 

expected to be able to see a difference in the SDS-PAGE profile of transgenic worms compared to 

the control. Using the silver staining method would allow us to excise this protein band and confirm 

its identity by MALDI- TOF mass spectrometry.  

Originally transgenic worms were maintained in plate cultures. Between 4- 50 plates were prepared 

for each analysis of secreted proteins. Secreted worm media from each transgenic line were analysed 

by SDS-PAGE and silver staining. There were, however, no detectable differences between the 

control and the transgenic worm media, which could be due to the very low concentration or lack of 

the secreted transgenic protein (results not shown). Moreover, detected protein mixtures were more 

complex than previously anticipated. 1D gels separate proteins only accordingly to their size. There 

is a high chance that proteins of very similar size will run together, and the less abundant ones will 

be ‘masked’ by the more prominent bands.  

Using large scale liquid culture for growing transgenic C. elegans increased the yield and allowed 

for the concentration of the product. We hypothesised that the silver stain of those concentrated 

proteins would allow better resolution and, therefore, better detection of transgenic proteins. Worm 

lysates were also prepared and concentrated in a similar manner to the secreted worm media. The 

concentration steps were performed using MW cut- off columns as described in Sections 2.15 and 

2.14.  
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The liquid culture experiment was performed for the 6B asp-6::ES-62 genomic DNA and the IIL 

asp-6::ES-62 cDNA transgenic lines. The 6B transgenic worm lysates previously reacted with three 

antibodies were used to detect parasite- derived ES-62 (Figure 3.14, Dr Kara Bell).  

The silver stain profile of C. elegans secreted media was complex. The MW cut-off and concentration 

did not show expected differences between concentrated and un- concentrated samples. Despite the 

use of a size- exclusion concentration method, lower MW polypeptides were detected. The silver 

stain of the secreted worm media did not show any difference between transgenic lines and the 

control (Figure 3.19).  

The silver stain analysis was repeated for the 6B ES-62 transgenic C. elegans secreted media. The 

flow-through from the Amicon colums was analysed in order to investigate if the concentration step 

was working properly. A 46 kDa band was identified in the 6B ES-62 transgenic secreted media 

sample (Figure 3.20). A very faint high MW band was identified in the flow- through. No low 

molecular weight bands were retained by the column, which suggests that the size exclusion step was 

not working.   

A 46 kDa band was also recognised in the 6B transgenic C. elegans lysates (Figure 3.21), this could 

be the truncated recombinant ES-62 that did not undergo any modifications. A 35 kDa band was 

identified in both genomic DNA and cDNA transgenic C. elegans lysates, which could be a 

breakdown product of recombinant ES-62.   

The silver stain detected a 46 kDa band in the concentrated media (Figure 3.20) and concentrated 

lysates (Figure 3.21) from the 6B transgenic C. elegans. A similar band was previously identified by 

two antibodies raised against the parasite- derived ES-62, however only in 6B transgenic worm 

lysates and not in the media (Figure 3.14, Dr Kara Bell). 46 kDa is the predicted MW for truncated 

recombinant protein produced by genomic ES-62 transgenics. The results suggest that the 



87 
 

recombinant ES-62 is expressed in 6B transgenic C. elegans, but may not be secreted or is secreted 

in very low quantity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19. Silver stain of worm secreted media after isolation from liquid culture genomic ES-62 vs 

ES-62 cDNA transgenic lines. Samples: T.6B genomic- 6B asp-6 ES-62 genomic fragment transgenic line; 

T.IIL cDNA- IIL asp-6 ES-62 cDNA transgenic line; C- control- ∆lin-15 mutants rescued with lin-15 plasmid. 

Samples were concentrated using Amicon filters (Section 2.15.) 
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Figure 3.20. Silver stain of worm secreted media after isolation from liquid culture genomic ES-62 

transgenic line. Samples: T.6B genomic- 6B asp-6 ES-62 genomic fragment transgenic line; C- control- ∆lin-

15 mutants rescued with lin-15 plasmid. Samples were concentrated using Amicon filters (Section 2.15.). 

Red stars indicate a 46 kDa band detected in concentrated media from 6B transgenic worms. Black stars 

indicate faint 60 kDa bands present in the un-concentrated media from 6B transgenic worms and in the 

flow-through from the concentration step.  
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Figure 3.21. Silver stain of worm pellets, worm lysates and concentrated worm lysates after isolation 

from liquid culture. Samples: T.6B genomic- 6B asp-6 ES-62 genomic fragment transgenic line; T.IIL cDNA- 

IIL asp-6 ES-62 cDNA transgenic line; C- control- ∆lin-15 mutants rescued with lin-15 plasmid. Red star 

indicates a 46 kDa band in T.6B. Green stars indicate a 35 kDa band in concentrated lysates of transgenic 

worms. Samples were concentrated using Amicon filters as described in materials and methods (Section 

2.14.). Worm pellets were mixed with sample buffer and 0.1M DTT and kept at 70°C for 10 minutes. The 

samples were mixed, centrifuged and the supernatant was loaded on the gel.  
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3.4.4 MALDI-TOF MS analysis of transgenic C. elegans secreted media (large scale liquid 

culture) and parasite-derived ES-62 

The samples were not concentrated enough in order to be excised from the gel and subjected to 

individual, in-gel trypsin digestion. Instead, the samples were subjected to buffer exchange as 

described in materials and methods (Section 2.20.) and then subjected to an in- liquid trypsin digest 

(Adrian Brown). This means that all of the proteins present in the media were digested by trypsin. 

Samples were analysed for the presence of recombinant ES-62. Results are shown in the Appendix 

(Tables 3, 4 and 5).  

There was no ES-62 detected in any of the samples. This could be due to recombinant ES-62 not 

being secreted into the media. However, if the recombinant protein is secreted in low quantities, it is 

likely to be ‘masked’ by the abundance of other peptides. A large number of bacterial proteins were 

detected, not only E. coli proteins, but also proteins from pathogens.  

The 6B [asp-6 ES-62 genomic fragment] line secreted media was most likely to contain recombinant 

ES-62. In order to decrease the contamination by other peptides, 6B sample was fractionated using 

the StageTip (Section 2.21.). This method cleans, concentrates and separates peptides into fractions 

according to their isoelectric point. Each fraction contained a simpler mixture of peptides, which 

improved the number of identified proteins.  

There was no ES-62 detected in the sample, even after fractionation. However, ASP-6 was 

consistently identified in the C. elegans secreted media (Table 6, Appendix). 

In order to confirm the presence of A. viteae ES-62 in the available search- databases, the protein 

sample was analysed by MALDI-TOF MS. The ES-62 monomer was excised from the silver-stained 

SDS-PAGE gel and subjected to in-gel trypsin digestion. ES-62 was successfully identified by NCBI 

database, with the protein score of 698. Matched peptides covered 50% of the protein sequence 

(Figure 3.23). Individual peptides with their scores are presented in the Appendix (Table 2).  
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1 MLLNSSTFFF LVTLTVVLGA AVLPDKTVAP KNYIQETFGK EVAELIQYIT 

51 KGEEVGLAYQ WLSKLVDGFG HRMVGSDSLE KSIAFLEESL KNDNFDKVHT 

101 EEVPNLPHWV RGNDVVEMIE PRNQRLNVLA IGGSEPASAT GEVTVIYDLD 

151 DVKPDDVRGK IVVTAQTFAG YPLTLKYRRS VKLFEQLGAI GVLVKSITSF 

201 SINSPHTGTG AENTTIPAAC LTIEEAEMLE RLYRSGKKIV IRMDMKSHYE 

251 EPINSSNLIF EITGSERPSE VVLLSAHVDS WDVGQGALDD GAGCAVVWSA 

301 LHSLKKLAER NPKFKPKRTI RGIFWTSEEQ GYGGAKHYYI THKNDSPEKF 

351 YFVSETDTGT FKSTNWLAHL SFSGDKKSML RLKEITRLLS RNGIALGLIN 

401 SSVQGDVTFW AKDGIPSVNY IPDKAVDYYF YFHHTAGDYM TVLKDGDLEY 

451 TTSIFATLGH VIANMDDWGS DPNQPQQLNS KQSTTEKSDR KKL 

 

 
Figure 3.23. A. viteae ES-62 sequence coverage by peptides identified by MS. Matched peptides are 

shown in red.  
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3.4.5 Identification of the recombinant ES-62 protein in secreted media from integrated 6B 

transgenic lines  (small scale plate culture) 

The genomic lines, which presented promising results were irradiated in order to integrate the 

extrachromosomal arrays into a chromosome to help mitigate their genetic instability and variability. 

Irradiating transgenic strains induces chromosomal breaks and ligation of arrays to chromosomes 

during DNA repair. Because of this, mutations can arise in treated animals, so the recovered 

integrated strains were outcrossed by mating with wild type males (integration experiments and the 

initial screening of the integrated lines were performed by Dr Sushmita Maitra).   

Integrated C. elegans transgenic lines were maintained on plates and later allowed to secrete proteins 

into liquid M9 media for 4 hours or overnight. Media samples were analysed by Western Blotting 

with the rabbit α ES-62 antibody in order to determine a transgenic line with the highest expression 

level of the recombinant ES-62 (Figure 3.24 supplied by Dr Sushmita Maitra). The media sample 

from 9* (asp-6::genomic ES-62 integrated) transgenic C. elegans reacted with the rabbit α ES-62 

antibody and yielded a band pattern similar to that of parasite- derived ES-62.     

The medium from the highest expressing line (9*) was tested under non-denaturing conditions 

(native- PAGE), in order to find out if the recombinant protein can form a tetramer. The native gel 

was probed with the rabbit α ES-62 antibody. A band of a similar MW to the parasite- derived ES-

62 was identified in the transgenic C. elegans media (Figure 3.25). However, the identified protein 

was only present in the media, when C. elegans were allowed to secrete overnight.  

The integrated 6B genomic ES-62 transgenic line (9*) secreted a protein which was recognised by 

the rabbit α ES-62 antibody in its denatured and native form. Under both denaturing and non- 

denaturing conditions, the media sample from 9* integrated transgenic yielded a similar band pattern 

to that of parasite- derived ES-62. Under non-denaturing conditions, the rabbit α ES-62 antibody 

recognised a band in the control media sample. The band in the control had a different profile to the 
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parasite- derived ES-62. However, the result suggests that C. elegans may possess an endogenous 

protein, which has similar modifications to parasite-derived ES-62.    
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Figure 3.24: Western blot analysis of media from integrated 6B genomic ES-62 lines (small scale plate 

culture, rabbit α ES-62 antibody). Samples: C1- 3- integrated control lines (∆lin-15 mutants rescued with 

lin-15 plasmid). I.T.1- 5- integrated transgenic line (6B asp-6 ES-62 genomic fragment). The rabbit α ES-62 

antibody was used at 1:1000 in 5% BSA in TBS, 0.1%tween. (Integrated lines were prepared by Dr Sushmita 

Maitra, the figure was supplied by Dr Sushmita Maitra)  
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     C         I.T.9*           C       I.T.9*              ES-62             

Figure 3.25. Western blot analysis of media from integrated transgenic line 9* under non-denaturing 

conditions (small scale plate culture, rabbit α ES-62 antibody). Samples: C- integrated control line (∆lin-

15 mutants rescued with lin-15 plasmid). I.T.9*- integrated transgenic line (6B asp-6 ES-62 genomic 

fragment). Worms were allowed to secrete into the M9 media for 4 hours or overnight (o/n). The rabbit 

α ES-62 antibody was used at 1:1000 in 5% BSA in TBS, 0.1%tween. The ES-62 protein was used as the 

reference, instead of the marker.  
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3.4.6 Comparing 6B and 10A genomic ES-62 transgenic C. elegans (large scale liquid 

culture) 

Transgenic worms 6B and 10A are independent lines, however, they should be genetically identical. 

The transgenes were extracted from both lines and confirmed by sequencing (PCR reactions 

amplifying short, overlapping fragments were performed by Kyle Main- project student). 

There were no differences in the protein coding sequences of the two transgenics and no deviations 

from the native ES-62 gene sequence. Nevertheless, 6B and 10A transgenic lysates yielded different 

results when probed with the rabbit α ES-62 antibody (Figure 3.14, Dr Kara Bell).  

In order to investigate the difference in recombinant protein expression in two genomic ES-62 

transgenics, 6B and 10A, C. elegans were maintained in liquid culture. The secretion experiment was 

carried out as described before (Sections 2.5. and 2.5.1.). Secreted media samples from 6B and 10A 

genomic ES-62 transgenic C. elegans were probed with the rabbit α ES-62 antibody.        

Figure 3.26 was supplied by Kyle Main, a project student in the laboratory. The liquid culture, sample 

preparation and Western Blot analysis was performed by Kyle Main under supervision of the author 

of this thesis. Figure 3.26 A 70 kDa band was detected in the 10A un-concentrated media (asp-6::ES-

62 genomic DNA) (Figure 3.26, red star). It was not detected in the concentrated media, which 

suggest that the recombinant protein may be incompatible with the concentration columns. Another 

band only present in the un-concentrated 10A sample was 140 kDa (Figure 3.26, red star), which 

could represent a dimer form of the 70 kDa band. The profile of the 10A sample looked similar to 

the profile of parasite-derived ES-62 (a monomer at 62 kDa and a dimer at 124 kDa). However, the 

expected MW of correctly modified recombinant protein from genomic ES-62 transgenic C. elegans 

is 55 kDa. 

Concentrated media from both 6B and 10A transgenics showed a 27 kDa band (Figure 3.26, white 

star), similar to the band previously detected in 6B genomic media (Figure 3.15 and 3.18 B) and 6B 



96 
 

worm lysates (Figure 3.16). There is also a 92 kDa band detected in all concentrated transgenic media 

(Figure 3.26, black star). 92 kDa corresponds to the predicted size for the recombinant ES-62 protein 

dimer.    
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Figure 3.26. Western blot of C. elegans secreted media immediately after isolation from liquid culture 

(rabbit α ES-62 antibody). Samples: T.6B- 6B asp-6 ES-62 genomic fragment transgenic line; T.10A- 

10A asp-6 ES-62 genomic fragment transgenic line; C- ∆lin-15 mutants rescued with lin-15 plasmid. 

After isolation media was concentrated using Amicon centrifugal filters with 10 kDa MW cut-off and 

later with 100 kDa MW cut-off. Red stars indicate an ES-62- like band pattern in 10A transgenic media 

with a 70 kDa lower MW band and a 140 kDa higher band MW. Black star indicates 92kDa bands 

present in concentrated media samples from transgenic lines, but not in the control lines. White star 

indicate 27 kDa bands in concentrated transgenic media. Antibody: α ES-62 serum used at 1:1000 in 

5% BSA in TBS, 0.1%tween (figure was supplied by Kyle Main a project student in the lab, the liquid 

culture, sample preparation and Western Blot analysis was performed by Kyle Main under 

supervision of the author of this thesis).  
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The media samples were kept at 4°C with protease inhibitors (cOmplete™ Protease Inhibitor 

Cocktail Tablets, Roche). In order to further investigate the nature of the 70 kDa and the 140 kDa 

bands as well as check for degradation products, the same samples were tested again after two weeks.  

After two weeks the 70 kDa band could no longer be detected in 10A un-concentrated media (Figure 

3.27). Instead, smaller MW bands, previously not seen were identified. A 35 kDa band was present 

in 10A transgenic media. A 27 kDa band was present in all of the transgenic samples and has been 

consistently been identified in genomic ES-62 transgenic worm lysates (Figure 3.16.) and media 

(Figures 3.15. and 3.18. B). This band appeared in all transgenic samples, which were concentrated 

or not analysed immediately after isolation, which suggests that it may be a product of degradation. 

Since the protein was only present in the transgenic samples, it may be a degradation product of 

recombinant ES-62.  

The 92 kDa band was consistently identified in the concentrated transgenic media samples and not 

in the control, even after 2 weeks (Figure 3.27.). The MW prediction of recombinant genomic ES-

62 is 46 kDa. If the protein is not modified, the ~92 kDa band could be a dimer of recombinant 

genomic ES-62, which is more stable than a monomer and does not degrade as easily. All of the 

bands would need to be investigated further in order to draw any conclusions about their nature.   
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Figure 3.27. Western blot of worm secreted media two weeks after isolation from liquid culture (rabbit 

αES-62 antibody). Samples: 6B asp-6 ES-62 genomic fragment transgenic line; 10A asp-6 ES-62 genomic 

fragment transgenic line; Ct- ∆lin-15 mutants rescued with lin-15 plasmid. The red star indicates a ~32 kDa 

band present in all samples from 10A transgenic lines. The black star indicates a band ~92kDa present in 

concentrated media samples from transgenic lines, but not in the control lines. The white star indicated a 

~27 kDa band previously detected in genomic ES-62 samples, now present in all transgenic samples and 

not in the control. Antibody: α ES-62 serum used at 1:1000 in 5% BSA in TBS, 0.1%tween.  
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The media sample from the 10A genomic ES-62 line reacted with α ES-62 serum antibody and 

produced a band pattern similar to that of parasite- derived ES-62. In order to further investigate the 

nature of those bands, samples were analysed by SDS-PAGE and silver staining. Once detected on 

the gel, the band could be excised, subjected to a trypsin digest and analysed by MALDI- TOF MS.  

The mixture of proteins secreted by the liquid culture worms identified by silver staining was 

complex (Figure 3.28). A 62 kDa band was identified in the un- concentrated 10A genomic ES-62 

transgenic media (Figure 3.28 A). This band corresponds to the MW of parasite- derived ES-62. 

However, the predicted MW of recombinant genomic ES-62 protein is 55 kDa, if modified correctly. 

Moreover, a 62 kDa band was not identified in any previous experiments. The band could be an 

unspecific result arising from sample- to- sample variation. 

The concentration of media using a MW cut-off columns yielded no difference in sample profiles. In 

fact, the proteins were best separated in un-concentrated samples.          
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Figure 3.28 Silver stain of worm secreted media after isolation from liquid culture. Samples: T.6B- asp-6 

ES-62 genomic fragment transgenic line; T.10A- asp-6 ES-62 genomic fragment transgenic line; C- control- 

∆lin-15 mutants rescued with lin-15 plasmid. Samples were concentrated using Amicon filters as described 

in materials and methods. The red star indicates a 64 kDa band detected in un-concentrated media from 

10A transgenic worms. A) Close-up of the silver stain section, where the band was identified.   
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4. Discussion 

 

4.1 C. elegans secrete proteins into liquid media 

This study found that C. elegans secrete a simple mixture of proteins into the media in a relatively 

short period of time (4 hours). Results in figures 3.1., and 3.2. come from relatively small culture 

volume. The aim of the experiment was to detect the most abundant proteins, which can be seen on 

the silver stain. Moreover the worms were allowed to secrete the proteins over a relatively short period 

of time, to minimize overcrowding and worm lysis, which would result in contamination with C. 

elegans internal proteins. The fact that only simple mixture of proteins was detected could be due to 

the low concentration of the secreted media.  

The most abundant proteins consistently identified in the externally secreted mix were proteases. 

They are likely to play part in C. elegans digestion by serving as enzymes breaking down bacterial 

cell wall. Wong et al (2006) observed that the expression of asp-6 increases when C. elegans is 

infected with pathogens. Moreover, the asp-6 knockout mutant expresses an altered response to a 

change in the environment (particularly different bacteria) compared to the control (unpublished 

comment on Wormbase by Herman, M.).  This suggests that C. elegans secretes proteases as tools 

for interacting with the environment. Secreted proteases could play a role in defence against 

pathogens.  

The media was fractionated by SDS-PAGE and proteins were detected by silver staining. MALDI-

TOF MS analysis of bands excised from the silver stained gel consistently identified the most 

abundant proteins (as judged by the intensity of the silver stain) as aspartyl proteases (ASP-6 and 

ASP-5) (Figure 3.1 and 3.2). ASP-6 was also identified by direct MS analysis of C. elegans media 

subjected to in-solution trypsin digest (Table 3, Appendix). ASP-6 was previously described as a 

secreted protein by Lochnit et al (2006) (Section 1.10.). Considering the expression pattern of ASP-

6 GFP reporter fusions in C. elegans intestine and pharynx (Lochnit et al., 2006) with our 
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identification of ASP-6 in the C. elegans media, we conclude that ASP-6 is secreted externally. This 

is why we used the asp-6 promoter and UTRs to drive expression of ES-62 in C. elegans. We 

hypothesised that if we use control elements of an endogenous C. elegans gene coding for a secreted 

protein, to drive the expression of ES-62, then the recombinant protein would be likely to be secreted.  

Many E. coli proteins were also identified in the C. elegans secreted media. This was expected as 

worms were fed on E. coli in the experiment. Despite extensive washing of the worms before the 

secretion step and thorough removal of the bacteria, E. coli proteins were abundantly present in the 

secreted worm media. The most often identified was an E. coli outer membrane protein OmpF 

(Inokuchi et al., 1982), which is likely to remain ‘stuck’ to the worms during the washing process 

and, therefore, is still detectable by MALDI- TOF MS analysis. Small parts of the broken down E. 

coli membrane could also remain in the C. elegans gut during the washing and only be released later 

from the worms.  

The identification of the recombinant ES-62 relies on the simplicity of the media, especially if 

secreted at a low level. The abundance of bacterial products is likely to interfere with the MALDI-

TOF MS readings and “mask” the much lest concentrated recombinant protein. E. coli proteins could 

also interfere with the purification. In the future, better methods could be employed to separate E. 

coli from C. elegans before collecting worm secretions. Alternatively, C. elegans could be grown in 

a nutrient rich media without bacteria as the source of food (Avery 1993). This would, however, be 

a dramatic change of conditions and its effect on C. elegans secreted products would need to be 

investigated.   
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4.2 The structure of the ES-62 genomic DNA fragment 

This study aimed to characterise the full genomic ES-62 fragment. We compared the complete cDNA 

sequence of ES-62 (Harnett W et al., 1999) to the draft A. viteae genome sequence (Nematode 

Genomes, Blaxter lab, online release August 2012) and found that they did not align completely. 

Analysis of the A. viteae genome sequence revealed that the major part of the gene, from the third 

exon to the end, is represented in one scaffold (00478), but the first two exons are in different 

scaffolds. Several parts of the cDNA sequence did not align with any genomic sequence (Figure 3.4 

and 3.6).  

We performed a series of PCRs attempting to bridge the gaps between scaffolds (Figure 3.9). Based 

on our sequencing results and the cDNA sequence, the ES-62 genome fragment was reassembled 

(per. Comm. Georgios Koutsovoulos, Blaxter lab). We found that the genomic DNA fragment coding 

for ES-62 has a complex structure, with very large second intron (Figure 3.10). The ES-62 genomic 

sequence for the coding region is approximately 10884 bp long,consisting of 10 exons and 9 introns. 

The first exon is 111 nucleotides long and codes for the signal peptide and part of the mature protein. 

The first intron is 371 nucleotides long. The second exon is 131 nucleotides long. The second intron 

is approximately 6796 nucleotides long. A short part of the second intron is conserved in sequences 

from other parasitic nematodes (Wuchereria bancrofti, Elaeophora elaphi, Brugia pahangi, Brugia 

malayi and Loa loa) and is likely to code for important gene regulators. The following exons are 

respectively 116, 101, 174, 159, 162, 180, 79 and 269 nucleotides long. Approximate sizes of the 

introns are respectively 520, 174, 233, 267, 290, 226 and 432 nucleotides long.  

The major region of genomic ES-62 from scaffold 00478 was amplified and was used as the 

transgenic fragment for the transformation of C. elegans. Due to the lack of 243 nucleotides from the 

5’ region, if produced, the recombinant protein would be truncated. The missing nucleotides code 

for 81 amino acids, including the signal sequence and 62 amino acids of the mature protein. Despite 

being truncated, the recombinant ES-62 contains all of the functional N-glycosylation sites. 
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Therefore, we hypothesised that the major fragment of the ES-62 gene could still form a modified 

recombinant protein.  

We focused on using a genomic DNA construct for making transgenic animals rather than the cDNA 

due to the following reasons. Introns are important for stabilising the mRNAs and the pre-mRNA 

splicing promotes nuclear export and translation (Maniatis & Reed 2002; Nott et al., 2004). 

Furthermore, long introns are likely to contain gene- specific regulatory elements. The addition of 

synthetic introns was reported to substantially increase expression of reporter transgenes in C. 

elegans (Okkema et al., 1993). Use of cDNAs for protein expression in C. elegans is likely to be 

inefficient unless at least one intron is inserted. Furthermore, sequencing of the only available ES-62 

cDNA clone (received from University of Nottingham) revealed that it contained 6 mutations, two 

of which were single base pair deletions and caused the sequence to stop prematurely. The cDNA 

required revision of the mutations back to the original sequence before it could have been used 

(cDNA repair was performed by Dr Sushmita Maitra). 

Despite the presence of introns in the transgenic gene construct, the recombinant protein was not 

expressed correctly in transgenic C. elegans. Introns from the parasite have large stretches of As and 

Ts, which can interfere with the PCR amplification, and might cause problems with the C. elegans 

transgenes. In the future, specific introns, especially the second intron from the ES-62 genomic DNA 

could be incorporated into the cDNA and used as the transgene. Alternatively, synthetic ES-62 gene 

could be made with adapted codons designed by C. elegans codon adapter web tool for better 

expression of the recombinant protein in C. elegans (Redemann et al., 2011).   

 

4.3 Expression of the recombinant protein  

The final aim of this thesis was to produce transgenic C. elegans, which secrete recombinant ES-62 

protein into the media. We made stable transgenic lines with the truncated ES-62 genomic fragment 

(missing 81 amino acids) under the control of asp-6 5’UTR, promoter and signal sequence. The 
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presence of the transgene was identified by single-worm PCR and confirmed by sequencing of the 

PCR product. Two independent genomic ES-62 transgenic lines (6B and 10A) had the entire ES-62 

fragment sequenced and were found to have no mutations when compared to the A. viteae genome 

and ES-62 cDNA. Despite the presence of the transgene detected by PCR, we found the recombinant 

protein expression to be variable and weaker than anticipated.       

Despite being truncated, the recombinant ES-62 contained all of the functional N-glycosylation sites. 

Therefore, we hypothesised that the major fragment of the ES-62 gene could still form a modified 

recombinant protein. The MW of A. viteae ES-62 under reducing and denaturing conditions is 62 

kDa, with modifications accounting for 7 kDa,as the predicted MW of the protein, without any 

modifications, is ~55 kDa. The recombinant protein is 412 amino acids long, and its predicted MW 

is ~46 kDa. Despite being truncated, the recombinant ES-62 contains all of the functional N-

glycosylation sites. Hence, if modified correctly, the recombinant ES-62 would be expected to be 

~53 kDa. 

 

4.3.1 Expression of recombinant ES-62 in transgenic C. elegans lysates 

Western blot and silver stain analysis showed evidence of the recombinant ES-62 expressed inside 

transgenic C. elegans. Initially, transgenic C. elegans pellet samples and secreted media samples, 

from worms maintained on plates (small scale), were sent to Strathclyde University and analysed for 

the presence of recombinant ES-62. Western blot experiments detected a protein band of a size 

similar to the A. viteae ES-62 band in the 6B transgenic C. elegans lysed worm pellets. A polypeptide 

at ~70 kDa was recognised by two antibodies raised against parasite-derived ES-62 (whole native 

protein and de-glycosylated ES-62) and with the TEPC15 antibody directed against the PC 

modification (Figure 3.14., Dr Kara Bell). This band was not detected in the control, which suggests 

that it is specific to the 6B transgenic line. None of the antibodies reacted with lysates from the other 
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transgenic line of the same genotype- 10A, which suggests that there is a difference in the levels of 

expression between different transgenic lines.  

6B sample also yielded a band at ~46 kDa, when stained with two antibodies raised against parasite-

derived ES-62, but not the TEPC15. 46 kDa is an estimated size for the unmodified recombinant ES-

62. A band of a similar size was also identified by the silver stain of 6B transgenic C. elegans lysate 

(Figure 3.21.). 

It is possible that the ~46 kDa band accounts for the recombinant ES-62 that was not glycosylated or 

missing the PC modification. The attachment of the PC is likely to be a medial- Golgi event (Section 

1.6.4.). It is possible that the recombinant protein cannot be transferred out of ER, is not modified 

and remains ‘stuck’ inside the C. elegans worm and, therefore, is not secreted.  

Dr Sushmita Maitra transformed C. elegans worms with asp-6::ES-62cDNA labelled with GFP. She 

observed GFP fluorescence in intestinal cells of adult transgenic C. elegans (Figure 4.1.), which 

supports our theory that the recombinant protein is expressed inside the body of transgenic C. 

elegans.    
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Figure 4.1. Expression pattern of asp-6::ES-62cDNA::GFP fusion inside the intestinal cell  of adult C. 

elegans (figure supplied by Dr Sushmita Maitra). 
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4.3.2 Expression of recombinant ES-62 in transgenic C. elegans secreted media 

We found limited evidence for the presence of the recombinant ES-62 in the transgenic C. elegans 

secreted media. Concentrated transgenic C. elegans media samples from plate cultures (small scale) 

were sent to the Strathclyde University, however, they showed a very weak signal and no difference 

between the control and the transgenic lines in any of the samples (results not shown).  

Secreted C. elegans media, from large-scale liquid culture grown worms, were concentrated and 

analysed by western blotting, silver staining and MALDI-TOF MS.  

Silver stain analysis detected a ~46 kDa band in the concentrated media from 6B genomic ES-62 

transgenics (Figure 3.20). However, western blot analysis only recognised a 46 kDa product in the 

worm lysates and not in the media.  

Secreted media from the integrated 6B transgenic line reacted with the rabbit α ES-62 antibody when 

the sample was run under non-denaturing conditions (native gel) (Figure 3.25.). Transgenics yielded 

a band of a similar size to parasite-derived ES-62, but only when the worms were allowed to secrete 

overnight. If this is recombinant ES-62 then it may be modified similarly to the parasite-derived 

protein. Since the band was not detected in 4-hour samples, it is possible that transgenic C. elegans 

require more time in the media for sufficient secretion. 

Under native conditions, a band was also detected in the control media, however, it was larger than 

A. viteae ES-62 and the transgenic polypeptide. The result suggests that there may be an endogenous 

C. elegans proteins that react with the antibodies raised against a parasite- derived ES-62. 

Identification of recombinant ES-62 by MALDI-TOF is essential for the reliability of the result.      
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4.3.3 Differences in recombinant protein expression in ES-62 genomic lines with identical 

transgenes  

Two independent lines, with identical transgenes with genomic ES-62 fragment, were compared (6B 

and 10A). Initially, only the 6B worm lysates reacted with the antibodies raised against the parasite-

derived ES-62 (Figure 3.14. Dr Kara Bell), which suggested that there is a difference in expression 

between different lines.  

Comparison of 6B and 10A transgenic C. elegans after growing them in liquid culture revealed a 

very prominent band ~70 kDa in un-concentrated media from 10A asp-6::ES-62 genomic DNA 

transgenic worms (Figure 3.26.). There was another band only present in the un-concentrated 10A 

sample ~140 kDa, which could be a dimer form of the ~70 kDa band. The profile of this sample 

looked similar to the profile of A. viteae ES-62, which forms a monomer at 62 kDa and a dimer at 

124 kDa. This suggests that the correctly modified transgenic protein could be present in the un-

concentrated media. This band was, however, not recognised by any other antibodies and is not a 

predicted MW for the recombinant protein. When tested after 2 weeks (sample kept at 4°C), the ~70 

kDa and the ~140 kDa bands were not detected in the 10A transgenic un-concentrated media. Instead, 

two smaller MW bands were detected.  

The ~27 kDa band was not detected in un-concentrated media immediately after isolation. It was, 

however, detected in concentrated transgenic samples (Figure 3.26.). This band appeared in all 

transgenic samples, which were processed (concentration) or not analysed immediately after 

isolation, which suggests that it can be associated with degradation. Recombinant ES-62 may be less 

stable than the parasite- derived protein. Since the band is only present in the transgenic samples, it 

may be a degradation product of recombinant ES-62.  

The rabbit α ES-62 serum antibody has a wide detection spectrum, it may recognise PC epitopes. 

The multiple polypeptides detected by this antibody may reflect PC-containing proteins in C. 

elegans.  
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Both 10A and 6B transgenic media (10k and 100k concentrated) show a band that is not present in 

the control, at ~92 kDa, which did not degrade after two weeks. The MW prediction of recombinant 

genomic ES-62 is 46 kDa. If the protein is not modified, but still capable of folding, the ~92 kDa 

band could be a dimer of recombinant genomic ES-62, which is more stable than a monomer and 

does not degrade as easily. It is also possible, that the recombinant ES-62 was not denatured properly 

and hence the lack of the monomer. A 92 kDa band was not recognised by any other antibodies. A 

similar result was found when recombinant ES-62 was expressed in Pichia pastoris (Egan et al., 

2006). The recombinant ES-62 from yeast reacted only with the rabbit α ES-62 antibody and failed 

to monomerize (Section 1.7.).  

4.3.4 Regulation of folding and detection of recombinant protein  

Many secreted proteases are synthesized in a preprotein form as precursors. The prepeptide or signal 

peptide (Von Heijne, 1986) transports the protein across the membrane of the endoplasmic reticulum, 

allowing the protein entry to the secretory pathway (Pfeffer and Rothman, 1987). The prepeptide is 

followed by the propeptide, a further N-terminal extension (30–250 amino acids in length). The 

propeptide has been found to be specific and essential in assisting the correct folding and the secretion 

of its associated protein (Eder and Fersht, 1995; Beggah, 2000). When the folding is complete, the 

propeptide is removed to generate the active enzyme. The lack of the N-terminal peptide specific for 

ES-62 in the transgenic construct may therefore impede the exit of the recombinant protein from the 

ER. It could also result in incorrect folding of the recombinant protein, which cannot be “externally” 

secreted, or, even if secreted, cannot be recognised by antibodies raised against native ES-62. This 

explains the difficulties in detection of recombinant protein in the secreted media. Asp-6 was chosen 

to drive the expression of recombinant protein, however the presence of native asp-6 could reduce 

the expression of the transgene. Asp-6 deletion mutant is viable under standard conditions, therefore, 

in the future, the recombinant protein could be injected in the mutant background. Moreover, asp-6 
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may not be the best promoter to use for the expression of secreted proteins and other promoters could 

be tested.   

Aminopeptidase H11 from Haemonchus contortus was previously expressed in C. elegans under 

control of C. elegans cathepsin L protease (promoter and 3’UTR), signal peptide of H. contortus 

Hmcp-6 gene and synthetic C. elegans intron. Recombinant H11 was linked to a His tag and 

successfully purified by cobalt chelation chromatography (Roberts et al., 2013). This suggests that 

the protein may need a signal sequence from its native parasite gene in order to be properly expressed. 

Recombinant H11 was, however, not as effective as the native protein and failed to induce protective 

immunity in treated animals. This has been explained by the differences in preparation of native and 

recombinant proteins and suggests that harnessing the secretory pathway is a promising new way of 

expressing functional proteins.  

Cystatin Av17 gene from A. viteae was previously expressed in C. elegans under the control of C. 

elegans hsp16/41 promoter and a synthetic intron.  Protein expressed under the control of hsp16/41 

promoter on heat shock is targeted to the gut cells of transgenic worms (Pillai et al., 2005). Two 

constructs were prepared, one containing Av17 cDNA and another containing Av17 genomic DNA.  

The constructs were also attached to a His tag. The cDNA recombinant construct was recognised by 

anti-His antibodies and antibodies specific for Av17, however the protein could not be purified using 

Ni-chelate affinity chromatography. The expression of the recombinant protein resulted in the 

reduction in the number of eggs developing to adults in transgenic worms (Pillai et al., 2005). This 

has not been assessed in our study, however the toxicity of the recombinant protein could be a reason 

for low expression and therefore difficulties in detecting secreted recombinant protein in media.  The 

expression of recombinant protease inhibitor could interfere with proteases involved in the 

differentiation or moulting of the worms.  
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In the same study, the expression pattern of Av17 was analyzed in transgenic lines of C. elegans 

obtained by microinjection of the Av17promoter::GFP construct (Pillai et al., 2005). The GFP 

expression was observed in the gland cells of the pharynx and the rectal gland cells of transgenic C. 

elegans, which was inconsistent with the immunostaining by indirect immunofluorescence using anti-

Av17 antibodies and anti-C. elegans cystatin antibodies (Pillai et al., 2005). The immunofluorescence 

localized cystatins in C. elegans to the hypodermis and in developing stages (Pillai et al., unpublished 

results). It is possible that C. elegans transcription machinery is unable to process filarial regulatory 

sequences correctly, which could be another reason for difficulties in producing recombinant ES-62. 

It is also possible that the transgenic construct used was incomplete and did not contain all of the 

elements required to correctly express a filarial gene. 
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Conclusion and future work 

 

This study has shown that C. elegans secrete a mixture of proteins into the surrounding media under 

laboratory conditions. One of those proteins was ASP-6, which has previously been reported to be 

PC- modified. After experimenting with several constructs and methods of production, we have 

shown that we can express recombinant ES-62 in the C. elegans worm, using a transgene in which a 

partial genomic fragment of ES-62 was coupled to the promoter, 5-UTR and the signal sequence of 

asp-6. However, the expression in the worm was not very strong. We found limited evidence for the 

presence of recombinant ES-62 in secreted transgenic C. elegans media.      

The results suggest that A. viteae ES-62 is challenging to make in recombinant systems. The complex 

modifications required for the protein to be functional are reflected in the sequence of the ES-62 

gene. The localisation of the very large intron in ES-62 genomic sequence contributed to our 

understanding of how ES-62 is controlled and provided a platform for future modifications.   

The mechanism of C. elegans secretion needs to be investigated further, under different conditions 

in order to find out how it can be controlled and manipulated for optimal production of secreted 

proteins. 

The main obstacle was the lack of reliable detection methods for the recombinant protein. In the 

future, this could be resolved by the use of different purification tags including a His tag or a GFP 

tag. Attachment of a His tag has previously been reported to aid detection of recombinant proteins in 

C. elegans (Roberts et al., 2013; Pillai et al., 2005) and there are commercially available anti-His 

antibodies. The use of His tag would also help with future purification of the recombinant protein.  

The use of GFP tag is currently explored by Dr Sushmita Maitra. It has already enabled the detection 

of recombinant ES-62 inside the worm body cavity. The anti-GFP antibody recognised recombinant 

ES-62 in the transgenic worm lysates. The potential of GFP tag could be explored further in order to 
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detect recombinant protein in the media. This has been attempted, however, no protein was detected, 

perhaps due to the small culture volume and low concentration of the protein.  

Finally, the available ES-62 antibodies raised against the native filarial protein may not be optimised 

for the detection of recombinant ES-62 made in different organisms. It has been reported that mouse 

polyclonal antibodies raised against the A. viteae ES-62 did not recognise the recombinant protein in 

P. pastoris (Egan et al., 2006). Moreover, during this investigation, we found that antibodies raised 

against the native ES-62 had variable reactivity with transgenic worms and media samples. In order 

to improve the reliability of the detection of the recombinant protein,   new antibodies could be raised 

against short, commercially synthesised peptides of ES-62. The use of optimised antibodies directed 

against ES-62 peptides would significantly improve the detection of the recombinant material, 

especially where the concertation is likely to be very low.             

New transgenes could be designed in order to get a better expression of recombinant ES-62. The full-

length genomic clone could be included to make transgenic lines. Alternatively, synthetic introns 

could be incorporated into full-length ES-62 cDNA to make a transgenic line, as the addition of 

introns and codon usage influences expression in C. elegans. The secretion of the recombinant 

protein could be optimised with the use of tissue-specific and inducible promoters. The expression 

of a transgene in an ASP-6 mutant background would alleviate the possibility of transgene 

suppression. Finally, to reduce variability in expression, the CRISPR/Cas9 system could be used to 

edit the genome and insert ES-62 coding sequence into C. elegans genes encoding secreted proteins. 
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Appendix 

 

Figure 1. Alignment of A. viteae es-62, Loa loa leucyl aminopeptidase, and Brugia malayi leucyl 

aminopeptidase protein coding DNA sequence. Black colour indicates conserved residues, grey colour 

indicates conservative mutations, white colour indicates a divergence in the sequence. 

A_viteae    1 ATGCTACTCAATTCCTCGACATTTTTCTTCTTGGTCACCCTAACTGTCGTTTTGGGCGCA 

Loa         1 ATGGT-----------------T-------------------G----------------- 

B_malayi    1 ATGTCATCCATATTCTCTTTCTTTTTCCTCCTTATAATTACAAC----GTTT-------- 

 

 

A_viteae   61 GCTGTCCTTCCGGACAAAACTGTCGCTCCGAAGAATTATATCCAAGAAACGTTCGGGAAG 

Loa         8 ------------------------------------------------------------ 

B_malayi   49 ------ATTGC---------TGCGAGTC---AAAATTATGTCCTCGAAAAGTTCGGGAAC 

 

 

A_viteae  121 GAAGTTGCCGAATTAATCCAGTATATTACTAAAGGTGAAGAAGTTGGATTAGCTTATCAA 

Loa         8 ------------------------------------------------------------ 

B_malayi   91 GATACTACTGAACTGATCCGTTATATTACTAAGGGTGATGGAGCCGGATTAGCTTATCAG 

 

 

A_viteae  181 TGGCTTAGCAAATTGGTCGATGGCTTTGGACATCGTATGGTTGGTTCCGATAGCTTGGAA 

Loa         8 -------------------------------------------GCTCTGATAGCCTTGAA 

B_malayi  151 TGGCTTAGCACATTGGTTGATGGTTTTGGACATCGTATGGTTGGCTCTGATAGTTTGGAA 

 

 

A_viteae  241 AAATCGATTGCTTTCTTAGAAGAAAGCTTGAAAAATGATAATTTTGATAAGGTGCACACC 

Loa        25 AAAGCCATCGATTTCTTGGCAAAAAGTTTGAAGGAGGATGGTTTCGATGATGTGCACACC 

B_malayi  211 GAAGCGATTGATTTCCTAGCAAAAAGTTTGGAAGAAGACGATTTTGATGATGTGCACACA 

 

 

A_viteae  301 GAGGAAGTACCAAACTTGCCACATTGGGTTCGTGGAAACGACGTTGTCGAAATGATTGAA 

Loa        85 GAGGATGTACCAGACTTGCCGAAATGGGTTCGTGGAGACGACAATGTTCAAATGATTGAA 

B_malayi  271 GAGGAAGTACCAAATTTGCCAAATTGGGTTCGCGAAGACGACAACGTTGAAATAATTGAA 

 

 

A_viteae  361 CCACGAAATCAACGGCTCAATGTGCTTGCTATTGGTGGATCTGAACCAGCTAGTGCGACC 

Loa       145 CCGCGATATCAACGGCTTAATGTGCTTGCTCTTGGCGGATCCGAACCAGCTGATGTAATC 

B_malayi  331 CCACGGCATCAGCGGCTTAATGTGCTAGCTCTTGGAGGATGCGAACCAGCTAATATAACC 

 

 

A_viteae  421 GGAGAAGTGACAGTTATTTATGATCTTGATGATGTCAAGCCTGATGATGTCCGTGGCAAG 

Loa       205 GGAGAAGTTGTAGTTATTCGTGAACTCGATGGTATCCAGCACGTTAACATCAGTGGGAAG 

B_malayi  391 GGAGAAGTTGTTGTCATTCGTGACCTCGATGATTCCAAGTTCATTAACGTCAGCGGAAAG 

 

 

A_viteae  481 ATTGTTGTGACGGCACAAACATTTGCTGGTTATCCGTTAACGCTTAAATATCGTCGATCA 

Loa       265 ATTGTCGTAACGGCACAAATATTTAGAGGGTACCCACAAACAGTTAAATATCGCCGATCA 

B_malayi  451 ATTGTCGTAACAGCACAACAATTTAAAGGATATCCACAAACGGTTAAATATCGACAATCA 

 

 

A_viteae  541 GTAAAATTATTTGAACAATTAGGTGCCATTGGTGTTCTGGTCAAATCAATAACATCATTT 

Loa       325 GTAAAATTATTCGAATCAATGGGGGCCATTGGCGTTTTGATAAAATCAATAACACCATTT 

B_malayi  511 GTAAAACTGTTCGAATCACTGGGTGCCATTGGCGTTTTAATAAAATCTGTAACATCATTT 

 

 

A_viteae  601 TCCATTAATTCACCTCATACCGGCACTGGTGCAGAAAATACAACAATTCCTGCTGCATGT 

Loa       385 TCCATCGGTTCACCTCATGCTGGCAGTGGTGCAGAGGGTGCAAGAATTCCAGCTGCATGT 

B_malayi  571 TCCATTAATTCACCTCATACTGGCAGTGGTGCAGAGGGTGCAAGAATACCGGCTGCTTCT 

 

 

A_viteae  661 TTAACGATTGAGGAAGCTGAAATGCTTGAACGATTGTATAGGAGCGGCAAAAAGATCGTA 

Loa       445 TTGACGATCGAACAAGCCGAAATGATCGGTCGAATGTTTCAAAACGGTGAAAGGATCGTA 

B_malayi  631 TTGACAATAGAACAAGCTGACATGATCGATCGAATGTTTCAGAACGGCGAAAAGATTGTA 

 

 

A_viteae  721 ATCCGAATGGATATGAAATCACATTATGAGGAAC---CTATAAATTCCAGCAATCTTATC 
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Loa       505 ATCCGAATGCATATAAAATCGCACAGCGAAGATC---GTACAACATCCAGAAATCTCATC 

B_malayi  691 ATCCGAATGAATATGAAGTCTCATAGCGAGAATCATACTACAACATCTAGAAATCTCATC 

 

 

A_viteae  778 TTTGAAATTACCGGTAG----------TG-----------------------AACGACCA 

Loa       562 TTTCAAATTACCGGTCA----------GG-----------------------AACGACCA 

B_malayi  751 TTCCAAATTACCGGTCCGATAATACAGTTTACTGATTTCTTTCGAAGTGAGAAATTTCCG 

 

 

A_viteae  805 TCTGAAGTGGTACTATTATCGGCACATGTGGACAGTTGGGATGTTGGACAAGGAGCATTG 

Loa       589 TCTGAAGTGGTACTGTTATCAGCGCATCTGGACAGCTGGGATGTTGGACAAGGAGCACTA 

B_malayi  811 TCTGAAGTAGTACTGTTATCAGCACATTTGGACAGTTGGGATGTTGGACAAGGCGCAATG 

 

 

A_viteae  865 GATGATGGTGCTGGTTGTGCTGTTGTATGGAGTGCTTTGCATTCATTAAAAAAATTAGCC 

Loa       649 GATGATGGTGGCGGTTGTGCTGTTGTGTGGAATGCCTTATATTCCTTAAAACAATTGGCC 

B_malayi  871 GATGATGGCGGTGGTTGTGCTGCTGTATGGAGTGCTTTATATTCTTTGAAACAATTAGCT 

 

 

A_viteae  925 GAAAGAAATCCAAAATTCAAACCAAAACGGACAATTCGAGGCATATTTTGGACATCGGAA 

Loa       709 AAAACAAATGCTGCTTTCAAGCCGAAACGAACAATTCGAGGCATATTTTGGACTGCAGAA 

B_malayi  931 AAAAAAAATGCTGCTTTCAAGCCAAAACGAACAATTCGAGGAATATTTTGGACTTCAGAA 

 

 

A_viteae  985 GAACAAGGATATGGGGGTGCAAAACATTACTACATAACACATAAAAATGATTCACCGGAA 

Loa       769 GAACAGGGATTTTTGGGTGCAAAACATTACTACATCACCCATAAAAATGATACAACAGAC 

B_malayi  991 GAACAAGGATTTTTGGGTGCAAAACATTATTATAATACTCATAAAAATGATACAAATGAA 

 

 

A_viteae 1045 AAATTTTATTTTGTATCTGAAACGGATACAGGAACATTCAAATCAACCAATTGGCTTGCG 

Loa       829 GCATTTTATTTTGTATCTGAAACCGATACAGGAGCATTCAAACCAGAAAACTGGCTTTCT 

B_malayi 1051 ACATTTTATTTTGTATCTGAAACCGATACAGGAGCATTCAGACCAGTCAATTGGTTTTCT 

 

 

A_viteae 1105 CATCTTTCATTCAGTGGTGATAAAAAATCTATGCTGCGACTTAAAGAAATAACACGTTTA 

Loa       889 CATCTTGCCTTCAGCGGTGATCAGCATCATATGAAGCGACTGGATGAAATAGTACGCCTG 

B_malayi 1111 CATCTATCCTTCAGTGGTGATCAGCAACATATGAAACGATTGGATGAAATAGTACACTTG 

 

 

A_viteae 1165 TTGAGCAGAAATGGTATAGCGCTTGGATTGATAAATAGCTCAGTACAGGGTGACGTTACT 

Loa       949 TTGAGCAGATATAACATGCCGCTTACACTGCTGAAAAATCCAAGTCAGGGTGACGTTAAT 

B_malayi 1171 TTGAACAGAAATGGTATACTGCTTG----------------------------------- 

 

 

A_viteae 1225 TTTTGGGCAAAAGATGGCATACCATCAGTTAATTATATACCTGACAAGGCTGTCGATTAT 

Loa      1009 TTCTGGGCTAAGGATGGGATACCATCAGTTAATTATATACCTGACAAGGCCATCGAATAT 

B_malayi 1196 ------------------------------------------------------------ 

 

 

A_viteae 1285 TATTTCTATTTTCATCATACTGCTGGCGATTACATGACAGTATTGAAGGATGGCGATTTA 

Loa      1069 TATTTCCATTTTCATCATACTGATGGTGATTACATAACAATATTCAAGAATGGGGATCTG 

B_malayi 1196 -----------------GACTGATG----------------------------------- 

 

 

A_viteae 1345 GAATATACAACATCAATTTTTGCCACTTTGGGCCATGTAATCGCTAATATGGATGATTGG 

Loa      1129 GAATATACGGCATCAATTTTTGCCGTTTTGGGTCATGTAATCGCCAATATGGATGATTGG 

B_malayi 1204 -AATA------------------------------------------------------- 

 

 

A_viteae 1405 GGAAGTGATCCTAATCAGCCACAGCAGCTTAATTCCAAACAATCCACTACTGAGAAATCT 

Loa      1189 GGAAATA------A---AC---------------------------------AGAAA-CT 

B_malayi 1208 -------------A---CC-------------------------C---------AA---- 

 

 

A_viteae 1465 GATCGTAAAAAGCTATAA 

Loa      1206 -----------GGTATGA 

B_malayi 1214 -----------G-T-CAG 
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Figure 2. Alignment of A. viteae ES-62, Loa loa leucyl aminopeptidase, and Brugia malayi leucyl 
aminopeptidase protein sequence. Black colour indicates conserved residues, grey colour indicates 
conservative mutations, white colour indicates a divergence in the sequence. 

 

A_     1 MLLNSSTFFFLVTLTVVLGAAVLPDKTVAPKNYIQETFGKEVAELIQYITKGEEVGLAYQ 

Loa    1 MPAVFS-LSLAIAVTF---------VVVTGQNYVLEKFGNDTTELVHYITEGDGVGLAYQ 

B_     1 MSSIFS-FFFLLIITT---------FIAASQNYVLEKFGNDTTELIRYITKGDGAGLAYQ 

 

 

A_    61 WLSKLVDGFGHRMVGSDSLEKSIAFLEESLKNDNFDKVHTEEVPNLPHWVRGNDVVEMIE 

Loa   51 WLTTLVDGFGHRMVGSDSLEKAIDFLAKSLKEDGFDDVHTEDVPDLPKWVRGDDNVQMIE 

B_    51 WLSTLVDGFGHRMVGSDSLEEAIDFLAKSLEEDDFDDVHTEEVPNLPNWVREDDNVEIIE 

 

 

A_   121 PRNQRLNVLAIGGSEPASATGEVTVIYDLDDVKPDDVRGKIVVTAQTFAGYPLTLKYRRS 

Loa  111 PRYQRLNVLALGGSEPADVIGEVVVIRELDGIQHVNISGKIVVTAQIFRGYPQTVKYRRS 

B_   111 PRHQRLNVLALGGCEPANITGEVVVIRDLDDSKFINVSGKIVVTAQQFKGYPQTVKYRQS 

 

 

A_   181 VKLFEQLGAIGVLVKSITSFSINSPHTGTGAENTTIPAACLTIEEAEMLERLYRSGKKIV 

Loa  171 VKLFESMGAIGVLIKSITPFSIGSPHAGSGAEGARIPAACLTIEQAEMIGRMFQNGERIV 

B_   171 VKLFESLGAIGVLIKSVTSFSINSPHTGSGAEGARIPAASLTIEQADMIDRMFQNGEKIV 

 

 

A_   241 IRMDMKSHYEEPI-NSSNLIFEITGS-----------ERPSEVVLLSAHVDSWDVGQGAL 

Loa  231 IRMHIKSHSEDRT-TSRNLIFQITGQ-----------ERPSEVVLLSAHLDSWDVGQGAL 

B_   231 IRMNMKSHSENHTTTSRNLIFQITGPIIQFTDFFRSEKFPSEVVLLSAHLDSWDVGQGAM 

 

 

A_   289 DDGAGCAVVWSALHSLKKLAERNPKFKPKRTIRGIFWTSEEQGYGGAKHYYITHKNDSPE 

Loa  279 DDGGGCAVVWNALYSLKQLAKTNAAFKPKRTIRGIFWTAEEQGFLGAKHYYITHKNDTTD 

B_   291 DDGGGCAAVWSALYSLKQLAKKNAAFKPKRTIRGIFWTSEEQGFLGAKHYYNTHKNDTNE 

 

 

A_   349 KFYFVSETDTGTFKSTNWLAHLSFSGDKKSMLRLKEITRLLSRNGIALGLINSSVQGDVT 

Loa  339 AFYFVSETDTGAFKPENWLSHLAFSGDQHHMKRLDEIVRLLSRYNMPLTLLKNPSQGDVN 

B_   351 TFYFVSETDTGAFRPVNWFSHLSFSGDQQHMKRLDEIVHLLNRNGILLGLMNNPSQ---- 

 

 

A_   409 FWAKDGIPSVNYIPDKAVDYYFYFHHTAGDYMTVLKDGDLEYTTSIFATLGHVIANMDDW 

Loa  399 FWAKDGIPSVNYIPDKAIEYYFHFHHTDGDYITIFKNGDLEYTASIFAVLGHVIANMDDW 

B_       ------------------------------------------------------------ 

 

 

A_   469 GSDPNQPQQLNSKQSTTEKSDRKKL 

Loa  459 GNKQKL------------------V 

B_       ------------------------- 
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Table 1. List of primers used for PCR reactions mentioned in the results section figures: 3.5., 3.7., 3.8., 
3.12., and 3.13. 
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Table 2. List of peptides and scores after MALDI-TOF MS analysis of in- gel trypsin digestion of ES-62. On 

average scores above 58 have less than 5% probability of being a random event. Significant matches are 

indicated in bold.  

Peptide score Peptide sequence 
65 R.MVGSDSLEK.S 

55 R.MVGSDSLEK.S + Oxidation (M) 

40 K.NYIQETFGK.E 

61 K.SIAFLEESLK.N 

75 R.GNDVVEMIEPR.N 

70 R.GNDVVEMIEPR.N + Oxidation (M) 

61 K.EVAELIQYITK.G 

43 K.DGIPSVNYIPDK.A 

84 K.LFEQLGAIGVLVK.S 

76 K.GEEVGLAYQWLSK.L 

73 K.FYFVSETDTGTFK.S 

96 K.STNWLAHLSFSGDK.K 

61 R.GIFWTSEEQGYGGAK.H 

51 K.STNWLAHLSFSGDKK.S 

46 K.VHTEEVPNLPHWVR.G 

79 K.IVVTAQTFAGYPLTLK.Y 

73 K.SIAFLEESLKNDNFDK.V 

117 R.NGIALGLINSSVQGDVTFWAK.D 

73 K.NYIQETFGKEVAELIQYITK.G 

42 K.AVDYYFYFHHTAGDYMTVLK.D 

70 K.NDNFDKVHTEEVPNLPHWVR.G 

90 R.LNVLAIGGSEPASATGEVTVIYDLDDVKPDDVR.G 

102 R.LNVLAIGGSEPASATGEVTVIYDLDDVKPDDVRGK.I 
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Score Identified protein 

163 membrane protein [Serratia liquefaciens] 

150 MULTISPECIES: porin [Pseudomonas] 

98 porin [Pseudomonas fluorescens] 

94 protein F, partial [Pseudomonas fluorescens] 

120 
hypothetical protein MYCGRDRAFT_49141, partial [Zymoseptoria tritici 

IPO323] 

112 transketolase [Serratia plymuthica A30] 

111 
Chain A, Conformational Variability In The Refined Structure Of The Chaperonin 

Groel At 2.8 Angstrom Resolution 

111 ABC transporter [Pseudomonas fluorescens] 

106 serine protease [uncultured organism] 

101 Transport-associated [Yersinia bercovieri ATCC 43970] 

90 hypothetical protein [Pseudomonas fluorescens] 

88 Chain A, Structure Of Fructose-Bisphosphate Aldolase 

87 Protein ASP-6 [Caenorhabditis elegans] 

87 MULTISPECIES: peroxidase [Pseudomonas] 

86 Protein CLEC-63 [Caenorhabditis elegans] 

84 polymerase beta,RNA 

82 aldehyde dehydrogenase [Acidovorax radicis] 

82 manganese superoxide dismutase [Tatumella ptyseos] 

77 RecName: Full=Azurin [Pseudomonas putida] 

74 proton-translocating ATPase b subunit (uncF; gtg start codon) [Escherichia coli] 

74 MULTISPECIES: ketol-acid reductoisomerase [Pseudomonas] 

73 
hypothetical protein AU67_04460 [Salmonella enterica subsp. enterica serovar 

Enteritidis str. SA20085285] 

70 Protein F40F4.6 [Caenorhabditis elegans] 

70 basement membrane proteoglycan [Caenorhabditis elegans] 

69 acetyl-coenzyme A synthetase [Afipia clevelandensis] 

68 MULTISPECIES: elongation factor Ts [Pseudomonas fluorescens group] 

67 hypothetical protein SLIQ_07180 [Serratia liquefaciens FK01] 

67 hypothetical protein NEMVEDRAFT_v1g221767 [Nematostella vectensis] 

65 
S-adenosyl-L-homocysteine hydrolase [Pseudomonas syringae pv. pisi str. 

1704B] 

65 Protein SPP-5 [Caenorhabditis elegans] 

Table 3. MALDI-TOF MS results after in- solution trypsin digestion of 30x concentrated media from 

control worms grown in liquid culture. Sample: Control ∆lin-15 mutants rescued with lin-15 plasmid. On 

average, individual ions scores > 57 indicate identity or extensive homology (p<0.05). Only significant 

matches and their scores are presented.  C. elegans proteins are presented in blue. E. coli proteins are 

presented in red. 
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64 extracellular solute-binding protein family 3 [Pantoea sp. aB] 

63 unnamed protein product [Escherichia coli] 

62 MULTISPECIES: peptidoglycan-binding protein [Pseudomonas] 

60 methyltransferase type 12 [Serratia liquefaciens] 

60 antioxidant, AhpC/TSA family [Proteus mirabilis ATCC 29906] 
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Score Identified protein 

132 hypothetical protein [Pseudomonas fluorescens] 

131 molecular chaperone GroEL [Serratia liquefaciens] 

124 
Chain A, Structure Of The Qb Replicase, An Rna-Dependent Rna Polymerase 

Consisting Of Viral And Host Proteins 

94 MULTISPECIES: elongation factor Tu [Yersinia] 

116 Transport-associated [Yersinia bercovieri ATCC 43970] 

113 MULTISPECIES: azurin [Pseudomonas fluorescens group] 

106 acetaldehyde dehydrogenase [Serratia liquefaciens] 

102 proton-translocating ATPase b subunit (uncF; gtg start codon) [Escherichia coli] 

99 serine protease [uncultured organism] 

98 triosephosphate isomerase [Serratia liquefaciens] 

95 molecular chaperone GroEL [Pseudomonas sp. Eur1 9.41] 

91 MULTISPECIES: phosphoglycerate kinase [Rahnella] 

90 Protein CLEC-63 [Caenorhabditis elegans] 

88 Protein ENOL-1, isoform a [Caenorhabditis elegans] 

87 ABC transporter [Pseudomonas fluorescens] 

87 porin [Pseudomonas fluorescens] 

87 unnamed protein product [Escherichia coli] 

85 Chain A, Structure Of Fructose-Bisphosphate Aldolase 

79 MULTISPECIES: ketol-acid reductoisomerase [Pseudomonas] 

79 membrane protein [Serratia liquefaciens] 

79 MULTISPECIES: porin [Pseudomonas] 

79 polymerase beta,RNA 

77 MULTISPECIES: peptidoglycan-binding protein [Pseudomonas] 

77 metal ABC transporter substrate-binding protein [Serratia liquefaciens] 

76 methyltransferase type 12 [Serratia liquefaciens] 

75 MULTISPECIES: hypothetical protein [Pseudomonas putida group] 

72 Protein ASP-6 [Caenorhabditis elegans] 

71 catalase HP1 [Escherichia coli] 

71 aldehyde dehydrogenase [Acidovorax radicis] 

70 MULTISPECIES: glyceraldehyde-3-phosphate dehydrogenase [Serratia] 

Table 4. MALDI-TOF MS results after in- solution trypsin digestion of 30x concentrated media from 6B 

ES-62 genomic DNA transgenic worms grown in liquid culture. Sample: 6B asp-6::genomic ES-62 

transgenic. On average, individual ions scores > 59 indicate identity or extensive homology (p<0.05). Only 

significant matches and their scores are presented.  C. elegans proteins are presented in blue. E. coli 

proteins are presented in red. 
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69 thioredoxin [Pseudomonas sp. Eur1 9.41] 

69 von Willebrand factor A [Streptomyces seoulensis] 

69 ribosomal protein S3 [cotton phyllosphere bacterium F] 

67 unnamed protein product [Escherichia coli K-12] 

66 MULTISPECIES: peroxidase [Pseudomonas] 

65 glycerophosphoryl diester phosphodiesterase [Pseudomonas fluorescens] 

65 MULTISPECIES: ferritin [Pseudomonas syringae group genomosp. 2] 

64 Protein SPP-2 [Caenorhabditis elegans] 

61 Protein LYS-7 [Caenorhabditis elegans] 

60 unnamed protein product [Escherichia coli] 
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Score Identified protein 

140 MULTISPECIES: membrane protein [Pseudomonas] 

137 hypothetical protein [Pseudomonas fluorescens] 

129 Protein ASP-6 [Caenorhabditis elegans] 

129 OsmY [Serratia liquefaciens] 

128 MULTISPECIES: azurin [Pseudomonas fluorescens group] 

112 50S ribosomal protein L22 [Pseudomonas syringae pv. pisi str. 1704B] 

108 elongation factor Tu [Pseudomonas fluorescens] 

102 serine protease [uncultured organism] 

101 MULTISPECIES: porin [Pseudomonas] 

100 membrane protein [Serratia liquefaciens] 

99 peroxiredoxin, partial [Salmonella enterica] 

94 MULTISPECIES: thioredoxin [Serratia] 

93 PA1584, partial [synthetic construct] 

90 MULTISPECIES: porin [Pseudomonas] 

90 
polynucleotide phosphorylase/polyadenylase [Pseudomonas syringae pv. 

oryzae str. 1_6] 

88 aldehyde dehydrogenase [Pseudomonas fluorescens] 

86 MULTISPECIES: phosphoglycerate kinase [Rahnella] 

85 molecular chaperone GroEL [Serratia liquefaciens] 

85 Protein CLEC-63 [Caenorhabditis elegans] 

83 polymerase beta,RNA 

82 
hypothetical protein MYCGRDRAFT_49141, partial [Zymoseptoria tritici 

IPO323] 

74 Chain A, Structure Of Fructose-Bisphosphate Aldolase 

70 unnamed protein product [Escherichia coli] 

70 Protein K06G5.1, isoform a [Caenorhabditis elegans] 

70 proton-translocating ATPase b subunit (uncF; gtg start codon) [Escherichia coli] 

64 
amino acid ABC transporter substrate-binding protein [Pseudomonas 

fluorescens] 

63 Protein F28B4.3 [Caenorhabditis elegans] 

63 porin [Pseudomonas fluorescens] 

62 elongation factor Tu [Synechococcus sp. WH 8103] 

Table 5. MALDI-TOF MS results after in- solution trypsin digestion of 30x concentrated media from IIL 

ES-62 cDNA transgenic worms grown in liquid culture. Sample: IIL asp-6::ES-62 cDNA transgenic. On 

average, individual ions scores > 58 indicate identity or extensive homology (p<0.05). Only significant 

matches and their scores are presented.  C. elegans proteins are presented in blue. E. coli proteins are 

presented in red. 
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61 putative uncharacterized protein [Bacteroides sp. CAG:770] 

60 catalase HP1 [Escherichia coli] 

59 MULTISPECIES: peptidoglycan-binding protein [Pseudomonas] 
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Fraction  Score Identified protein 

50 170 D1086.11, isoform b [Caenorhabditis elegans] 

50 166 ILYS-5, isoform a [Caenorhabditis elegans] 

50 165 C33G8.4 [Caenorhabditis elegans] 

50 160 hypothetical protein C39D10.7 - Caenorhabditis elegans 

50 151 SRP-7, isoform a [Caenorhabditis elegans] 

50 150 SPP-5 [Caenorhabditis elegans] 

50 148 C49G7.3 [Caenorhabditis elegans] 

50 147 CBD-1 [Caenorhabditis elegans] 

50 127 F15A4.6 [Caenorhabditis elegans] 

50 118 unnamed protein product [Homo sapiens] 

50 114 CPI-1 [Caenorhabditis elegans] 

50 114 unnamed protein product [Homo sapiens] 

50 113 protein T08A9.7 [imported] - Caenorhabditis elegans 

50 113 K11D12.13 [Caenorhabditis elegans] 

50 112 GRD-5 [Caenorhabditis elegans] 

50 111 GRL-15 [Caenorhabditis elegans] 

50 108 Hypothetical protein CBG06172 [Caenorhabditis briggsae] 

50 107 T19B10.2 [Caenorhabditis elegans] 

50 106 DPY-17 [Caenorhabditis elegans] 

50 104 CLEC-223 [Caenorhabditis elegans] 

50 103 FBN-1, isoform e [Caenorhabditis elegans] 

50 96 E04F6.8 [Caenorhabditis elegans] 

50 96 C08F11.12 [Caenorhabditis elegans] 

50 95 Y57G11B.5 [Caenorhabditis elegans] 

50 95 
RecName: Full=Major outer membrane lipoprotein; AltName: Full=Murein-

lipoprotein; Flags: Precursor [Serratia marcescens] 

50 95 protein F32E10.3 [imported] - Caenorhabditis elegans 

50 91 Y69H2.3, isoform c [Caenorhabditis elegans] 

50 91 Chain A, Ompf Porin Mutant D74a 

50 89 F30H5.3 [Caenorhabditis elegans] 

50 86 Y42G9A.2 [Caenorhabditis elegans] 

Table 6. MALDI-TOF MS results for 5 fractions from 6B asp-6 ES-62 genomic fragment transgenic line 

secreted media after liquid culture. Sample were concentrated using Amicon filters and subjected to 

buffer exchange (Section 2.20.), in-liquid trypsin digestion and StageTip fractionation as described in 

materials and methods (Section 2.21.). On average, individual ions scores > 57 indicate identity or 

extensive homology (p<0.05). Only significant matches and their scores are presented. C. elegans aspartyl 

proteases are indicated in blue. E. coli proteins are indicated in red. Fraction number is the concentration 

of Ammonium Acetate used in mM.  
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50 86 protein F10G7.10 [imported] - Caenorhabditis elegans 

50 85 PHAT-5 [Caenorhabditis elegans] 

50 85 Y69H2.3, isoform d [Caenorhabditis elegans] 

50 84 unnamed protein product [Homo sapiens] 

50 83 ZC373.2 [Caenorhabditis elegans] 

50 81 M04G7.1 [Caenorhabditis elegans] 

50 81 cytokeratin 9 [Homo sapiens] 

50 80 F54D5.3 [Caenorhabditis elegans] 

50 80 DAO-2 [Caenorhabditis elegans] 

50 78 SPP-14 [Caenorhabditis elegans] 

50 77 LYS-7 [Caenorhabditis elegans] 

50 76 T12B5.15 [Caenorhabditis elegans] 

50 75 GRD-10 [Caenorhabditis elegans] 

50 74 THN-2 [Caenorhabditis elegans] 

50 73 F20A1.1 [Caenorhabditis elegans] 

50 72 D1086.6 [Caenorhabditis elegans] 

50 71 Chain A, D-Ribose-Binding Protein From Escherichia Coli 

50 70 TAG-293 [Caenorhabditis elegans] 

50 69 C08F11.11 [Caenorhabditis elegans] 

50 67 ASP-3 [Caenorhabditis elegans] 

50 67 VHA-19 [Caenorhabditis elegans] 

50 66 CCG-1 [Caenorhabditis elegans] 

50 65 major sperm protein [Caenorhabditis elegans] 

50 63 Y45F10C.4 [Caenorhabditis elegans] 

50 63 TTR-45 [Caenorhabditis elegans] 

50 60 F57F4.4 [Caenorhabditis elegans] 

50 58 D1086.10, isoform a [Caenorhabditis elegans] 

      

100 290 ILYS-5, isoform a [Caenorhabditis elegans] 

100 222 SRP-7, isoform a [Caenorhabditis elegans] 

100 213 SPP-5 [Caenorhabditis elegans] 

100 173 C08F11.11 [Caenorhabditis elegans] 

100 170 C49G7.3 [Caenorhabditis elegans] 

100 169 C33G8.4 [Caenorhabditis elegans] 

100 164 hypothetical protein C39D10.7 - Caenorhabditis elegans 

100 161 CBD-1 [Caenorhabditis elegans] 

100 158 T19B10.2 [Caenorhabditis elegans] 

100 157 D1086.11, isoform b [Caenorhabditis elegans] 

100 156 F20A1.1 [Caenorhabditis elegans] 

100 155 ILYS-3 [Caenorhabditis elegans] 
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100 151 C06A8.3 [Caenorhabditis elegans] 

100 138 THN-2 [Caenorhabditis elegans] 

100 136 protein T08A9.7 [imported] - Caenorhabditis elegans 

100 135 unnamed protein product [Homo sapiens] 

100 98 Keratin, type II cytoskeletal 1 [Tupaia chinensis] 

100 123 TTR-2 [Caenorhabditis elegans] 

100 121 C14C6.5 [Caenorhabditis elegans] 

100 73 C14C6.2 [Caenorhabditis elegans] 

100 116 F15A4.6 [Caenorhabditis elegans] 

100 112 ASP-3 [Caenorhabditis elegans] 

100 111 CPI-1 [Caenorhabditis elegans] 

100 110 IRG-3 [Caenorhabditis elegans] 

100 108 Chain A, D-Ribose-Binding Protein From Escherichia Coli 

100 106 GRD-10 [Caenorhabditis elegans] 

100 105 SPP-14 [Caenorhabditis elegans] 

100 102 Y57G11B.5 [Caenorhabditis elegans] 

100 102 H23N18.5 [Caenorhabditis elegans] 

100 102 K11D12.13 [Caenorhabditis elegans] 

100 102 F30H5.3 [Caenorhabditis elegans] 

100 99 cytokeratin 9 [Homo sapiens] 

100 98 F42A10.7 [Caenorhabditis elegans] 

100 97 LYS-1 [Caenorhabditis elegans] 

100 95 NUC-1 [Caenorhabditis elegans] 

100 94 C25E10.8 [Caenorhabditis elegans] 

100 93 ZC373.2 [Caenorhabditis elegans] 

100 92 GRL-15 [Caenorhabditis elegans] 

100 92 M04G7.1 [Caenorhabditis elegans] 

100 90 LYS-7 [Caenorhabditis elegans] 

100 89 E04F6.8 [Caenorhabditis elegans] 

100 88 F13G11.3 [Caenorhabditis elegans] 

100 87 NPA-1, isoform c [Caenorhabditis elegans] 

100 87 VHA-19 [Caenorhabditis elegans] 

100 85 GRD-5 [Caenorhabditis elegans] 

100 85 Hypothetical protein CBG06172 [Caenorhabditis briggsae] 

100 83 T24B8.5 [Caenorhabditis elegans] 

100 80 DAO-2 [Caenorhabditis elegans] 

100 79 PHAT-5 [Caenorhabditis elegans] 

100 78 D1086.6 [Caenorhabditis elegans] 

100 78 DPY-17 [Caenorhabditis elegans] 

100 78 Chain A, Glutamine Binding Protein Open Ligand-Free Structure 

100 76 F54D5.3 [Caenorhabditis elegans] 
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100 76 PREDICTED: cationic trypsin-3-like [Myotis brandtii] 

100 76 major sperm protein [Caenorhabditis elegans] 

100 75 hypothetical protein CAEBREN_15245 [Caenorhabditis brenneri] 

100 75 D1086.10, isoform a [Caenorhabditis elegans] 

100 74 unnamed protein product [Homo sapiens] 

100 74 

putative polypeptide, similar to enteropeptidase, PIR Accession Number 
A53663, enterokinase encoded by GenBank Accession Number U09859, and 

bone morphogenetic protein encoded by GenBank Accession Number L24755, 
partial [Caenorhabditis elegans] 

100 73 Chain A, Ompf Porin Mutant D74a 

100 72 TTR-45 [Caenorhabditis elegans] 

100 72 UBI 3 fusion protein (149 AA) [Neurospora crassa] 

100 71 PREDICTED: uncharacterized protein LOC106097318 [Oreochromis niloticus] 

100 70 SCL-3 [Caenorhabditis elegans] 

100 70 CPR-5 [Caenorhabditis elegans] 

100 69 F46F11.7 [Caenorhabditis elegans] 

100 68 F53F4.13 [Caenorhabditis elegans] 

100 68 CLEC-83 [Caenorhabditis elegans] 

100 68 Y69H2.3, isoform e [Caenorhabditis elegans] 

100 67 TAG-293 [Caenorhabditis elegans] 

100 67 D1054.10 [Caenorhabditis elegans] 

100 66 F48G7.8 [Caenorhabditis elegans] 

100 65 ASP-6 [Caenorhabditis elegans] 

100 65 F57F4.4 [Caenorhabditis elegans] 

100 64 T21H3.1, isoform a [Caenorhabditis elegans] 

100 63 CLEC-50 [Caenorhabditis elegans] 

100 63 FAR-3 [Caenorhabditis elegans] 

100 63 C08A9.10 [Caenorhabditis elegans] 

100 63 C. briggsae CBR-FAR-1 protein [Caenorhabditis briggsae] 

100 61 Y62H9A.5 [Caenorhabditis elegans] 

100 60 K06G5.1, isoform a [Caenorhabditis elegans] 

100 60 FIPR-28 [Caenorhabditis elegans] 

      

200 202 SPP-5 [Caenorhabditis elegans] 

200 188 C49G7.3 [Caenorhabditis elegans] 

200 159 C08F11.11 [Caenorhabditis elegans] 

200 148 TTR-2 [Caenorhabditis elegans] 

200 147 ILYS-5, isoform a [Caenorhabditis elegans] 

200 146 CBD-1 [Caenorhabditis elegans] 

200 141 hypothetical protein C39D10.7 - Caenorhabditis elegans 

200 130 protein T08A9.7 [imported] - Caenorhabditis elegans 

200 118 SPP-14 [Caenorhabditis elegans] 
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200 118 DAO-2 [Caenorhabditis elegans] 

200 112 ASP-13 [Caenorhabditis elegans] 

200 109 unnamed protein product [Homo sapiens] 

200 79 PREDICTED: keratin, type II cytoskeletal 6B-like [Macaca mulatta] 

200 107 C06A8.3 [Caenorhabditis elegans] 

200 105 F15A4.6 [Caenorhabditis elegans] 

200 104 NPA-1, isoform a [Caenorhabditis elegans] 

200 101 THN-2 [Caenorhabditis elegans] 

200 100 T19B10.2 [Caenorhabditis elegans] 

200 100 SRP-7, isoform a [Caenorhabditis elegans] 

200 98 F42A10.7 [Caenorhabditis elegans] 

200 94 ZC373.2 [Caenorhabditis elegans] 

200 90 Chain A, Ompf Porin Mutant D74a 

200 89 F13G11.3 [Caenorhabditis elegans] 

200 87 FAR-3 [Caenorhabditis elegans] 

200 86 PHAT-5 [Caenorhabditis elegans] 

200 82 PREDICTED: keratin, type I cytoskeletal 10-like isoform 2 [Macaca mulatta] 

200 81 Try10-like trypsinogen precursor [Mus musculus] 

200 81 T24B8.5 [Caenorhabditis elegans] 

200 79 D1086.11, isoform b [Caenorhabditis elegans] 

200 79 CLEC-63 [Caenorhabditis elegans] 

200 78 hypothetical protein [Streptomyces purpeofuscus] 

200 78 VHA-19 [Caenorhabditis elegans] 

200 78 LYS-7 [Caenorhabditis elegans] 

200 78 Chain A, D-Ribose-Binding Protein From Escherichia Coli 

200 78 Y47G6A.33 [Caenorhabditis elegans] 

200 77 
PREDICTED: LOW QUALITY PROTEIN: keratin, type II cytoskeletal 3 [Octodon 

degus] 

200 75 ASP-3 [Caenorhabditis elegans] 

200 73 H23N18.5 [Caenorhabditis elegans] 

200 71 unnamed protein product [Mus musculus] 

200 71 Y51F10.7 [Caenorhabditis elegans] 

200 71 C14C6.5 [Caenorhabditis elegans] 

200 71 F15B9.8 [Caenorhabditis elegans] 

200 68 Y52B11A.8 [Caenorhabditis elegans] 

200 68 F41G3.10 [Caenorhabditis elegans] 

200 67 D1054.10 [Caenorhabditis elegans] 

200 67 keratin, type I cytoskeletal 19 [Cricetulus griseus] 

200 67 INS-31 [Caenorhabditis elegans] 

200 66 F53F4.13 [Caenorhabditis elegans] 

200 65 CPG-2 [Caenorhabditis elegans] 

200 64 CPR-5 [Caenorhabditis elegans] 
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200 63 E04F6.9 [Caenorhabditis elegans] 

200 62 hypothetical protein ZK6.10 - Caenorhabditis elegans 

200 62 CPR-4 [Caenorhabditis elegans] 

200 62 W03F11.1, isoform a [Caenorhabditis elegans] 

200 60 F52E1.14 [Caenorhabditis elegans] 

      

400 202 hypothetical protein C39D10.7 - Caenorhabditis elegans 

400 184 C49G7.3 [Caenorhabditis elegans] 

400 173 ILYS-5, isoform a [Caenorhabditis elegans] 

400 145 PHAT-5 [Caenorhabditis elegans] 

400 138 PREDICTED: keratin, type II cytoskeletal 6A-like [Equus caballus] 

400 125 keratin 1 [Homo sapiens] 

400 97 Keratin, type II cytoskeletal 1 [Pteropus alecto] 

400 135 SPP-5 [Caenorhabditis elegans] 

400 117 D1054.10 [Caenorhabditis elegans] 

400 116 C08F11.11 [Caenorhabditis elegans] 

400 115 F35A5.2 [Caenorhabditis elegans] 

400 115 CBD-1 [Caenorhabditis elegans] 

400 114 DAO-2 [Caenorhabditis elegans] 

400 112 Y57G11B.5 [Caenorhabditis elegans] 

400 112 K11D12.13 [Caenorhabditis elegans] 

400 109 CLEC-83 [Caenorhabditis elegans] 

400 107 ZC373.2 [Caenorhabditis elegans] 

400 106 Y52B11A.8 [Caenorhabditis elegans] 

400 106 thioredoxin [Escherichia coli] 

400 103 LYS-8 [Caenorhabditis elegans] 

400 102 GRL-15 [Caenorhabditis elegans] 

400 101 SMO-1 [Caenorhabditis elegans] 

400 99 F13G11.3 [Caenorhabditis elegans] 

400 99 LYS-4 [Caenorhabditis elegans] 

400 99 RecName: Full=Trypsin; Flags: Precursor [Sus scrofa] 

400 97 TTR-2 [Caenorhabditis elegans] 

400 97 C06A8.3 [Caenorhabditis elegans] 

400 96 protein T08A9.7 [imported] - Caenorhabditis elegans 

400 95 T19B10.2 [Caenorhabditis elegans] 

400 95 Chain A, Ompf Porin Mutant D74a 

400 94 SRP-7, isoform a [Caenorhabditis elegans] 

400 94 M04G7.1 [Caenorhabditis elegans] 

400 92 NSPC-7 [Caenorhabditis elegans] 

400 90 K12H4.7, isoform a [Caenorhabditis elegans] 

400 89 NSPC-20 [Caenorhabditis elegans] 
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400 88 cytokeratin 9 [Homo sapiens] 

400 88 F08B12.4, isoform f [Caenorhabditis elegans] 

400 88 Y47G6A.33 [Caenorhabditis elegans] 

400 87 ASP-6 [Caenorhabditis elegans] 

400 86 SPP-14 [Caenorhabditis elegans] 

400 86 PHAT-6 [Caenorhabditis elegans] 

400 82 CPG-3 [Caenorhabditis elegans] 

400 81 T11B7.5 [Caenorhabditis elegans] 

400 80 CLEC-63 [Caenorhabditis elegans] 

400 78 F53F4.13 [Caenorhabditis elegans] 

400 78 DPY-14 [Caenorhabditis elegans] 

400 77 CPI-2, isoform a [Caenorhabditis elegans] 

400 73 D1054.11 [Caenorhabditis elegans] 

400 73 LYS-1 [Caenorhabditis elegans] 

400 73 D1086.11, isoform b [Caenorhabditis elegans] 

400 73 Hypothetical protein CBG01307 [Caenorhabditis briggsae] 

400 73 unnamed protein product [Homo sapiens] 

400 73 R09H10.3, isoform a [Caenorhabditis elegans] 

400 72 Chain A, D-Ribose-Binding Protein From Escherichia Coli 

400 71 CPR-4 [Caenorhabditis elegans] 

400 70 F41G3.10 [Caenorhabditis elegans] 

400 70 FAR-2 [Caenorhabditis elegans] 

400 70 C08A9.10 [Caenorhabditis elegans] 

400 69 F55B11.3 [Caenorhabditis elegans] 

400 68 C25E10.8 [Caenorhabditis elegans] 

400 67 F59A6.12 [Caenorhabditis elegans] 

400 65 W03F11.1, isoform a [Caenorhabditis elegans] 

400 65 F15B9.8 [Caenorhabditis elegans] 

400 64 CPG-2 [Caenorhabditis elegans] 

400 62 FAR-3 [Caenorhabditis elegans] 

400 62 C. briggsae CBR-TAG-293 protein [Caenorhabditis briggsae] 

400 62 CLEC-50 [Caenorhabditis elegans] 

400 60 TTR-51 [Caenorhabditis elegans] 

      

500 117 NSPC-7 [Caenorhabditis elegans] 

500 95 C33G8.4 [Caenorhabditis elegans] 

500 87 F20A1.1 [Caenorhabditis elegans] 

500 83 F54D5.3 [Caenorhabditis elegans] 

500 80 F41G3.10 [Caenorhabditis elegans] 

500 79 LYS-1 [Caenorhabditis elegans] 

500 75 C49G7.3 [Caenorhabditis elegans] 
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500 74 CBD-1 [Caenorhabditis elegans] 

500 72 ASP-6 [Caenorhabditis elegans] 

500 70 Chain A, Structure Of Caenopore-5 (81 Pro Cis Conformer) 

500 71 hypothetical protein T18H9.2 - Caenorhabditis elegans 

500 70 hypothetical protein C39D10.7 - Caenorhabditis elegans 
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