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ABSTRACT	

	

It	has	been	well-established	that	primary	human	cells	possess	a	limited	proliferative	
capacity,	undergoing	an	irreversible	cell	cycle	arrest	after	a	set	number	of	population	
doublings	known	as	replicative	senescence.	However,	other	senescence	programmes	
can	also	be	activated	following	exposure	of	cells	to	subcytotoxic	oxidative	stress	and	
genotoxic	 stresses	 such	 as	 ionising	 radiation.	 Senescent	 cells	 have	 been	 linked	
through	a	multitude	of	studies	to	organismal	ageing,	and	the	dysfunction	of	these	
senescent	 cells	 can	 negatively	 affect	 tissue	 function	 through	 extracellular	 matrix	
remodelling	and	inflammatory	protein	secretion,	resulting	in	the	onset	of	a	number	
of	 age-related	 diseases.	 Furthermore,	 it	 has	 been	 previously	 proposed	 that	 this	
release	 of	 inflammatory	 proteins,	 termed	 the	 Senescence-Associated	 Secretory	
Phenotype,	may	be	exacerbated	by	aberrations	in	the	cellular	stress	response.	
The	formation	of	cytoplasmic	aggregates	of	RNA-binding	proteins	known	as	stress	
granules,	which	 repress	 translation	and	modulate	 signalling	pathways	 to	promote	
cell	survival,	is	a	widely	established	response	to	cell	stress.	Stress	granules	are	known	
to	form	more	readily	following	stress	in	replicative	senescent	cells	compared	to	in	
proliferating	cells,	but	whether	this	 is	 true	of	all	senescence	programmes	remains	
unknown.	Unexpectedly,	this	study	demonstrates	that	prematurely	senescent	cells	
possess	 a	 far	more	 limited	 granule-forming	 potential	 than	 both	 proliferating	 and	
replicative	 senescent	 cells,	 indicating	 that	 increased	 granule	 formation	 is	 not	
universal	 to	 all	 senescence	 phenotypes	 but	 differs	 between	 senescence	
programmes.	In	attempting	to	determine	potential	mechanisms	through	which	this	
differential	formation	could	be	established	it	was	further	discovered	that	exposure	
of	fibroblasts	to	X-ray	irradiation	did	not	induce	the	formation	of	stress	granules,	and	
that	 X-rays	 ablate	 the	 granule-forming	 capacity	 of	 these	 cells	 in	 the	 hours	
immediately	 following	 exposure.	 However,	 whist	 ultimately	 not	 conclusive,	 a	
subsequent	investigation	also	suggested	that	the	Wnt	signalling	pathway	was	likely	
not	responsible	for	this	loss	of	granule	formation.	
This	study	has	therefore	discovered	two	novel	circumstances	in	which	stress	granule	
formation	 is	 inhibited.	 Whilst	 the	 mechanisms	 through	 which	 this	 abrogation	 of	
stress	granule	assembly	is	brought	about	remain	unknown,	both	of	these	scenarios	
occurred	following	exposure	to	X-ray	irradiation,	both	in	the	short-	and	long-term.	
Considering	a	common	response	to	X-ray	exposure	is	the	activation	of	apoptosis,	it	
is	possible	that	stress	granule	ablation	is	a	response	intended	to	push	cells	towards	
cell	death	over	survival.	However,	further	mechanistic	studies	are	required	to	better	
elucidate	the	signalling	pathways	responsible	for	this	alteration	of	granule	formation	
before	 the	 functional	 consequences	 of	 this	 granule	 inhibition	 can	 be	 fully	
determined.	
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INTRODUCTION	
	

It	has	been	readily	established	that	human	primary	cells	grown	in	culture	maintain	

only	a	 limited	ability	 to	proliferate.	Hayflick	&	Moorhead	 (1961)	were	 the	 first	 to	

observe	 changes	 in	 the	 rate	 of	 cell	 division	 during	 serial	 culture	 passage	 and	

determined	that,	following	a	logarithmic	growth	phase	in	early	population	doublings,	

cell	division	slows	and	eventually	 stops;	 this	 state	of	proliferative	arrest	was	 later	

shown	to	be	related	to	the	number	of	divisions	undergone	by	a	cell,	and	was	termed	

cellular	senescence	(Hayflick,	1965).		

	

Senescence	 has	 since	 been	 shown	 to	 play	 important	 roles	 in	 a	 number	 of	 bodily	

processes,	and	has	a	variety	of	effects	on	tissues	containing	senescent	cells.	A	large	

body	of	evidence	 from	both	 in	vitro	and	 in	vivo	 sources	has	determined	 that	 this	

stoppage	 of	 cell	 growth	 acts	 as	 a	 safeguard	 against	 the	 development	 of	 cancer,	

effectively	halting	the	proliferative	capacity	of	cells	before	tumorigenesis	can	occur	

(Cosme-Blanco	 et	 al.,	 2007;	 Feldser	 &	 Greider,	 2007;	 Prieur	 &	 Peeper,	 2008).	

However,	 in	contrast	 to	 the	apparent	benefits	of	senescence	 in	an	anti-oncogenic	

role,	strong	correlations	have	emerged	between	the	presence	of	senescent	cells	and	

the	onset	of	a	number	of	age-related	diseases	including	atherosclerosis	(Minamino	

&	 Komuro,	 2007;	Wang	&	 Bennett,	 2012)	 and	 osteoarthiritis	 (Price	 et	 al.,	 2002),	

making	studies	of	senescent	cell	function	clinically	relevant.	Furthermore,	Krtolica	&	

Campisi	(2002)	have	proposed	that	senescent	cells	may	in	fact	establish	the	ageing	

phenotype	 due	 to	 their	 deleterious	 effects	 on	 tissue	 function	 brought	 about	 by	

secretion	 of	 inflammatory	 factors	 (Davalos	 et	 al.,	 2010)	 or	 through	 the	 loss	 of	

structural	integrity	brought	about	through	remodelling	of	the	extracellular	matrix	by	

differential	 transcription	 of	 matrix	 proteins	 (K.	 E.	 Yang	 et	 al.,	 2011)	 and	 an	

upregulation	of	matrix-degrading	enzymes	(Benanti	et	al.,	2002).	Understanding	the	

altered	function	of	senescent	cells	is	therefore	becoming	an	increasingly	important	

aspect	of	ageing	research,	and	may	lead	to	novel	treatments	for	age-related	diseases.		

	

A	subsection	of	senescence	research	has	focused	on	understanding	how	senescent	

cells	respond	to	external	stresses	such	as	oxidative	stress.	Previous	researchers	have	
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observed	that,	although	senescent	cells	activate	apoptotic	cell	death	far	less	readily	

in	 response	 to	 genotoxic	 stress	 than	 their	 proliferative	 counterparts	 (Rochette	&	

Brash,	2008;	Sanders	et	al.,	2013),	senescent	cells	are	less	able	to	respond	to	stress	

than	 young	 cells	 (Bruunsgaard	 &	 Pedersen,	 2000).	 The	 first	 conclusive	 studies	

revealing	this	focused	on	inflammatory	responses	of	different	age	groups	following	

exercise,	 finding	 that	 blood	plasma	of	 older	 age	 groups	 tended	 to	 contain	higher	

levels	 of	 the	 protein	 Creatine	 Kinase,	 associated	 with	 a	 greater	 level	 of	 muscle	

damage	 due	 to	 a	 dampened	 stress	 response	 (Cannon	 et	 al.,	 1994).	 However,	

subsequent	 studies	 have	 shown	 corroborating	 results,	 with	 senescent	 fibroblasts	

also	less	able	to	remove	damaged	proteins	via	the	proteasome	in	cells	undergoing	

peroxide-induced	oxidative	stress	(Merker,	Sitte,	&	Grune,	2000),	and	old	hearts	less	

able	 to	 recover	 following	 periods	 of	 stress	 (Rosenfeldt	 et	 al.,	 2004).	Whilst	 some	

studies	have	attempted	 to	elucidate	 the	 stress	 responses	employed	by	 senescent	

cells	 and	 how	 they	 differ	 from	proliferating	 cells	 (Gallouzi,	 2009;	 Lian	&	Gallouzi,	

2009),	 this	 field	 remains	 poorly	 understood.	 The	 present	 study	 sought	 to	 further	

characterise	 these	 senescent	 stress	 responses	 through	 the	 study	 of	 cytoplasmic	

aggregates	 of	 RNA-binding	 proteins	 known	 as	 stress	 granules,	 which	 form	 in	

response	to	external	assaults	on	cells	(Kedersha	&	Anderson,	2002).		

	

Senesence	Programmes	
	

Since	the	work	of	Hayflick	and	Moorhead	(1961)	established	that	diploid	fibroblasts	

are	 only	 able	 to	 undergo	 a	 finite	 number	 of	 population	 doublings	 prior	 to	 the	

arresting	 of	 cell	 division,	 many	 studies	 have	 sought	 to	 discern	 the	 mechanisms	

through	which	this	growth	arrest	is	established.	Considering	the	first	observation	of	

this	 senescence	 onset	was	 as	 a	 result	 of	 serial	 cell	 division,	 the	majority	 of	 early	

research	 focused	on	alterations	undergone	by	 cells	 at	higher	population	doubling	

numbers,	 and	 therefore	 the	 first	mechanism	proposed	 and	 subsequently	 causally	

linked	to	replicative	senescence	was	that	of	telomeric	shortening	(Cooke	&	Smith,	

1986;	 Olovnikov,	 1973a),	 wherein	 the	 progressive	 attrition	 of	 chromosomal	 end	

repeats	dictates	 the	number	of	 times	each	cell	 is	 capable	of	dividing.	 Senescence	

induced	due	to	this	shortening	of	telomeres	is	known	as	replicative	senescence,	and	
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is	the	senescent	programme	most	well-linked	to	organismal	ageing	(Smith	&	Kipling,	

2004).	 However,	 other	 stimuli	 were	 later	 discovered	 that	 could	 induce	 a	 growth	

arrest	 with	 some	 morphologically	 and	 biochemical	 similarities	 to	 replicative	

senescence,	 including	 subcytotoxic	 oxidative	 stress,	 DNA	 damage,	 and	 oncogene	

activation	(Collado,	Blasco,	&	Serrano,	2007).		

	

Replicative	Senescence	
	

Telomeres	are	comprised	of	tandem	repeats	at	the	end	of	chromosomes,	providing	

an	effective	buffer	zone	against	loss	of	genetic	information	from	coding	regions	of	

DNA	(O’Sullivan	&	Karlseder,	2010).	Telomeres	are	heavily	protected	by	an	array	of	

dedicated	proteins	known	as	the	Shelterin	complex,	which	ensures	that	the	ends	of	

the	 DNA	 strands	 are	 not	 recognised	 as	 a	 double	 strand	 break	 by	 DNA	 repair	

machinery	 (de	 Lange,	 2005).	 However,	 as	 a	 consequence	 of	 DNA	 polymerases	

uniformly	 traversing	 strands	 in	 a	 5’	 to	 3’	 direction,	 DNA	 replication	 is	 inherently	

asymmetric.	This	results	in	a	fully	replicated	leading	strand	but	an	incomplete	lagging	

strand	(Olovnikov,	1973b).	Therefore	as	somatic	cells	undergo	repetitive	cell	division	

telomeres	 progressively	 shorten	 and	 eventually	 reach	 a	 threshold	 length	 below	

which	they	are	no	longer	protected	by	telomere-binding	proteins.	This	results	in	the	

recognition	of	the	DNA	ends	as	a	double	strand	break	and	the	activation	of	the	DNA	

Damage	Response	(DDR)	(Reaper,	Fagagna,	&	Jackson,	2004).	

	

A	 number	 of	 DDR-associated	 proteins,	 including	 phosphorylated	 histone	 H2AX,	

53BP1,	and	MDC1	subsequently	coalesce	at	 these	exposed	telomeric	ends	 in	cells	

approaching	 senescence	 (d’Adda	di	 Fagagna	et	 al.,	 2003).	 Considering	 the	 role	of	

MDC1	as	a	regulator	of	cell	cycle	checkpoints	(Stewart	et	al.,	2003),	the	persistent	

DDR	that	occurs	due	to	critical	telomere	shortening	results	in	a	continuous	arrest	in	

G1	 or	 G2	 phases	 (Kim	 et	 al.,	 2012).	 Further	 to	 this	MDC1-associated	 checkpoint	

control,	 telomeric	 strand-break	 recognition	 induces	 activation	 of	 ATM	 and	 ATR	

kinases	 (Bakkenist	&	Kastan,	2003),	which	 in	 turn	phosphorylate	and	activate	 the	

checkpoint	kinases	Chk1	and	Chk2,	leading	to	activation	of	the	tumour	suppressor	

p53	and	proliferative	arrest	(Herbig	et	al.,	2004).		
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A	 second	 pathway	 through	 which	 shortened	 telomeres	 transduce	 the	 senescent	

phenotype	lies	in	the	activity	of	the	tumour	suppressor	Retinoblastoma	protein	(Rb),	

a	mediator	of	transcription	factor	activity	for	the	E2F	family	(Ikeda,	Jakoi,	&	Nevins,	

1996).	At	the	end	stages	of	telomere	shortening	and	usually	therefore	during	late-

stage	 senescence	progression,	 the	 inhibitor	 of	 CDK4	 and	CDK6	 known	as	 p16INK4A	

(hereinafter	referred	to	as	p16)	is	expressed		(Alcorta	et	al.,	1996;	Brenner,	Stampfer,	

&	Aldaz,	1998).	In	proliferating	cells,	CDK4	and	CDK6	associate	with	Cyclin	D	(Morgan,	

1995)	 in	order	to	phosphorylate	Rb,	 inhibiting	binding	to	E2F	transcription	factors	

and	maintaining	various	gene	loci	in	a	transcriptionally	active	euchromatin	form	to	

allow	cell	cycle	progression	(Korenjak	&	Brehm,	2005).	The	expression	of	p16	results	

in	senescence	due	to	the	protein’s	binding	to	CDK4	and	CDK6	(Shapiro	et	al.,	1995;	

Shapiro	et	al.,	1998),	blocking	Cyclin	D	interaction	and	thus	eliminating	their	kinase	

activity.	 This	 leaves	 Rb	 hypophosphorylated	 and	 therefore	 active,	 resulting	 in	

association	 with	 the	 E2F	 family,	 blocking	 their	 transcription	 factor	 activity	 and	

recruiting	proteins	to	condense	 large	chromatin	tracts	to	transcriptionally	 inactive	

heterochromatin,	 inducing	 a	 cell	 cycle	 arrest	 and	 senescence	 (Narita	 et	 al.,	 2003;	

Siddiqui	et	al.,	2007).	Both	signalling	pathways	have	been	proven	vital	for	senescent	

induction	 to	 different	 extents	 depending	 on	 the	 cell	 line	 that	 is	 examined	

(Dannenberg	 et	 al.,	 2000;	 Dirac	 &	 Bernards,	 2003),	 and	 the	 protein	 p21waf1/cip1	

(hereinafter	 referred	to	as	p21),	activated	by	p53,	provides	a	method	of	crosstalk	

with	the	p16-Rb	pathway	by	deactivating	a	separate	inhibitor	of	Rb	activity	to	further	

suppress	E2F	activity	(Ben-Porath	&	Weinberg,	2005).	

	

Stress-Induced	Premature	Senescence	
	

In	addition	 to	 telomere	shortening,	 senescence	can	be	 induced	before	cells	 reach	

their	Hayflick	limit	through	exposure	to	adverse	culture	conditions,	or	to	sublethal	

doses	 of	 toxic	 compounds	 such	 as	 hydrogen	peroxide	which	 can	 create	 oxidative	

stress	within	the	cell	and	also	cause	DNA	damage	(Chen	&	Ames,	1994).	Oxidative	

stress	is	primarily	driven	by	the	accumulation	of	reactive	oxygen	species	within	the	

cell,	leading	to	protein	damage,	organelle	dysfunction,	changes	in	cellular	signaling,	
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and	in	extreme	cases	the	activation	of	cell	death	pathways	(Dixon	&	Stockwell,	2014;	

Lushchak,	 2014).	 The	 correlation	 between	high-oxygen	 environments	 and	 cellular	

senescence	was	first	made	by	Packer	&	Fuehr	(1977),	who	found	that	culturing	of	

fibroblasts	in	a	high-oxygen	environment	of	around	20%	resulted	in	early	senescence	

onset,	 whereas	 culturing	 at	 concentrations	 below	 physiological	 conditions	 (2%)	

resulted	in	an	extended	proliferative	lifespan.	Considering	aberrant	cellular	function,	

protein	 damage,	 and	 altered	metabolism	 are	 all	 pathways	which	 can	 lead	 to	 the	

onset	of	tumour	growth,	stress-induced	premature	senescence	is	also	considered	an	

anti-tumorigenic	 response	 to	 ensure	 that	 oxidative	 stress	 does	 not	 result	 in	 the	

development	of	cancer	(Collado	et	al.,	2005).		

	

Whilst	 oxidative	 stress	 has	 previously	 been	 implicated	 in	 the	 acceleration	 of	

telomeric	shortening	(von	Zglinicki	et	al.,	1995;	von	Zglinicki,	2002),	it	is	now	known	

that	stress-induced	premature	senescence	(SIPS)	occurs	independently	of	telomere	

length,	emerging	even	in	cells	with	long	telomeres	or	rejuvenated	telomeres	through	

telomerase	 activity	 (de	Magalhaes	 et	 al.,	 2004),	 and	 also	 utilises	 subtly	 different	

signalling	pathways	to	achieve	a	result	that	is	morphologically	indistinguishable	from	

replicative	 senescence	 (Ben-Porath	&	Weinberg,	 2005).	 Specifically,	 although	SIPS	

also	 appears	 to	 utilise	 the	 p53-Rb	 crosstalk	 signalling	 pathways	 for	 senescence	

induction	 of	 cell	 cycle	 arrest	 upon	 oxidative	 stress	 –	 evidenced	 by	 a	 greater	

proportion	of	p21-expressing	cells	in	high-oxygen	culture	conditions	as	opposed	to	a	

greater	proportion	of	p16-expressing	cells,	where	p21	acts	as	a	nexus	between	the	

p53	and	Rb	pathways	(Itahana	et	al.,	2003)	–	there	is	also	ample	evidence	to	suggest	

that	oxidative	stress	can	activate	a	dedicated	signalling	pathway	that	feeds	into	the	

p16-Rb	pathway	 via	 the	p38-MAPK	 stress	 kinase	 (Debacq-Chainiaux,	Boilan	et	 al.,	

2010;	Iwasa,	Han,	&	Ishikawa,	2003),	and	the	p16-Rb	pathway	was	first	identified	as	

the	 key	 determinant	 of	 SIPS	 progression	 (Ramirez	 et	 al.,	 2001;	 Robles	 &	 Adami,	

1998).	 The	use	of	 shared	activation	pathways	 for	 SIPS	and	 replicative	 senescence	

makes	sense	when	considering	that	oxidative	stress	has	long	been	established	as	a	

genotoxic	stress,	activating	DNA	damage	repair	machinery	similar	to	that	used	during	

telomere	shortening	as	a	result	of	DNA	strand	breaks	(Barzilai	&	Yamamoto,	2004;	

Honda	et	al.,	2001).	
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A	third	broad	category	of	senescence,	known	as	oncogene-induced	senescence,	also	

results	in	a	stoppage	of	the	cell	cycle,	and	is	induced	as	a	result	of	the	activation	of	a	

number	of	genes	which	signal,	either	directly	or	indirectly	through	myriad	signalling	

pathways,	 through	 to	 the	common	p53	and	Rb	signals	discussed	above	 (Courtois-

Cox,	 Jones,	&	Cichowski,	 2008).	However,	 due	 to	 the	 complexity	 of	 the	 signalling	

pathways	 involved	 in	 oncogene-induced	 senescence	 onset	 (Yaswen	 &	 Campisi,	

2007),	and	due	to	the	omission	of	this	senescence	programme	from	the	scope	of	this	

study,	the	mechanisms	involved	in	regulation	of	this	senescence	model	shall	not	be	

discussed	 here.	 For	 an	 adequate	 review	 of	 oncogene-induced	 senescence,	 see	

Kuilman	et	al.	(2010).	



	 12	

	
Figure	1.	An	overview	of	pathways	contributing	to	senescence	onset	(Gorospe	&	Abdelmohsen,	2011).	

	

	

Stress	Granules	as	Translational	Regulators	
	

Following	transcription,	gene	expression	can	be	effectively	modulated	once	mRNA	

translocation	to	the	cytoplasm	has	been	completed,	primarily	through	the	regulation	

of	RNA	stability	and	translation.	In	order	to	bring	about	this	regulation,	RNA	is	often	

localised	to	dense,	cytosolic	aggregates	of	RNA-binding	proteins.	The	first	of	these	

granules	is	known	as	the	P-body,	and	contains	an	assortment	of	proteins	associated	

with	RNA	degradation,	including	decapping	enzymes	which	prime	RNA	for	cleavage	

(van	Dijk	et	al.,	2002)	as	well	as	ribonucleases	such	as	XRN1	(Bashkirov	et	al.,	1997).	

P-bodies	are	also	capable	of	associating	closely	with,	and	exchanging	mRNAs	with,	
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the	second	RNA	granule	known	as	the	stress	granule	(Wilczynska	et	al.,	2005).	Stress	

granules	were	first	observed	following	exposure	of	chicken	embryonic	fibroblasts	to	

heat	stress,	containing	aggregates	of	small	heat	shock	proteins	(Collier	&	Schlesinger,	

1986).	However,	stress	granules	have	since	been	shown	to	form	as	a	rapid	response	

to	a	number	of	other	external	assaults	 including	oxidative	stress	 (Souquere	et	al.,	

2009),	hypoxia	(van	Der	Laan	et	al.,	2012)	and	UV	radiation	(Moutaoufik	et	al.,	2014).	

Since	their	discovery,	much	of	the	mRNA	and	protein	composition	of	these	granules	

has	been	characterised	(Anderson	&	Kedersha,	2006),	with	the	primary	constituents	

including	subunits	of	stalled	preinitiation	complexes	including	the	initiation	factors	

eIF2a	and	eIF4E	(Kimball	et	al.,	2003),	along	with	proteins	previously	established	to	

play	roles	 in	RNA	stability	and	metabolism,	 including	G3BP1	(Matsuki	et	al.,	2013;	

Tourrière	et	al.,	2003),	TIA1	and	TIAR	(	Kedersha	et	al.,	1999).	The	major	component	

of	these	granules	being	a	precursor	to	translation	complexes	is	crucial,	as	this	allows	

for	RNAs	to	be	bound	and	held	 in	a	 translationally	 repressed	state,	and	therefore	

stress	granule	formation	is	generally	associated	with	a	global	suppression	of	mRNA	

translation,	 with	 	 the	 exception	 of	 several	 specific	 genes	 associated	 with	 stress	

recovery,	which	are	tightly	regulated	to	allow	for	their	continued	translation	(Buchan	

&	 Parker,	 2009).	 Transcripts	 encoding	 genes	 crucial	 for	 cell	 survival	 and	 recovery	

from	 stress,	 such	 as	 Hsp70,	 are	 excluded	 from	 these	 granules,	 allowing	 their	

translation	to	continue	unimpeded	(Kedersha	&	Anderson,	2002)	

	

The	primary	mechanism	associated	with	the	formation	of	stress	granules	is	through	

the	phosphorylation	of	the	initiation	factor	eIF2a	by	activated	stress	kinases	such	as	

PERK	 (Teske	 et	 al.,	 2011).	 This	 phosphorylation	 results	 in	 the	 stoppage	 of	 eIF2a	

dissociation	 from	 factors	 which	 catalyse	 GTP-GDP	 exchange	 during	 translation	

(Kedersha	&	Anderson,	2002).	As	a	result,	the	level	of	the	ternary	complex,	required	

to	 initiate	 methionine	 ribosomal	 loading,	 is	 severely	 reduced,	 preventing	 the	

assembly	of	the	48S	ribosomal	pre-initiation	complex	(Srivastava,	Kumar,	&	Kaufman,	

1998).	This	stalls	complex	assembly,	and	these	stalled	complexes	are	shuttled	into	

stress	granules	through	the	prion-like	aggregation	of	TIA1	and	TIAR	(Gilks	et	al.,	2004)	

as	well	as	through	the	action	of	the	endoribonuclease	G3BP1	(Tourrière	et	al.,	2003).	

However,	hydrogen	peroxide	stress	is	known	to	induce	stress	granules	independently	
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of	eIF2a	phosphorylation,	suggesting	that	other	as-yet	unknown	mechanisms	may	

play	a	role	in	granule	assembly	(Emara	et	al.,	2012).	

	

Since	 their	 discovery,	 the	 importance	 of	 stress	 granules	 in	 cell	 responses	 to	

extracellular	conditions	has	been	increasingly	uncovered.	Stress	granules	are	known	

to	modulate	the	inhibitory	abilities	of	G3BP1	against	the	protein	USP10,	which	has	a	

known	antioxidant	activity	during	oxidative	stress,	resulting	in	a	decrease	in	reactive	

oxygen	 species	 and	 consequent	 decrease	 in	 apoptosis	 (Takahashi	 et	 al.,	 2013).	

Granule	 formation	 is	 also	 correlated	with	 enhanced	 survival	 following	heat	 shock	

(Groušl	 et	 al.,	 2009)	 and	 cold	 shock	 (Hofmann,	 Cherkasova,	 Bankhead,	 Bukau,	 &	

Stoecklin,	 2012).	 These	 granules	 also	 function	 to	 regulate	 a	 number	 of	 signalling	

pathways	 including	 the	 MAPK	 and	 mTOR	 pathways,	 in	 doing	 so	 enhancing	 the	

likelihood	of	successful	recovery	from	stress	(Kedersha,	Ivanov,	&	Anderson,	2013).	

Understanding	how	these	granules	function	in	different	cellular	contexts	is	therefore	

crucial	to	understanding	how	altered	cellular	stress	responses	differ	dependent	on	

the	environment.	

 
	

Figure	2.	The	currently	understood	schematic	for	stress	granule	assembly	(Anderson	&	Kedersha,	2002).	
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Stress	Granule	Function	in	Senescence	
	

Recent	studies	have	revealed	that	oxidative	stress	can	induce	inflammation	in	nearby	

cells	 through	 the	 secretion	 of	 inflammation-related	 proteins	 in	 proliferating	

macrophages	 (Salzano	et	 al.,	 2014).	Whilst	 the	 results	 of	 this	 study	 are	 yet	 to	be	

replicated	in	other	cell	lines,	they	underscore	the	importance	of	understanding	how	

responses	 to	 stress	 can	 affect	 diverse	 cellular	 processes.	 However,	 despite	 the	

knowledge	that	senescent	cells	possess	a	more	 limited	capacity	to	recover	from	a	

variety	 of	 stresses	 compared	 to	 proliferating	 cells	 (Rochette	 &	 Brash,	 2008),	 the	

stress	 response	of	 senescent	 cells	 remains	 relatively	uncharacterised.	Considering	

stress	 granules	 are	 a	 crucial	mechanism	 through	which	 cells	modulate	 the	 stress	

response	 (Kedersha	 et	 al.,	 2013),	 the	 examination	 of	 their	 formation	 upon	 stress	

onset	could	help	to	elucidate	why	stress	responses	differ	 in	these	senescent	cells.	

Lian	and	Gallouzi	(2009)	were	the	first	to	examine	stress	granules	in	the	context	of	

senescence,	 and	 found	 that	 upon	 treatment	 with	 sodium	 arsenite,	 senescent	

fibroblasts	formed	a	significantly	greater	number	of	stress	granules	than	proliferating	

fibroblasts,	 with	 these	 stress	 granules	 assembling	 faster	 during	 stress	 and	

disassembling	 slower	 after	 removal	 of	 stress	 in	 the	 senescent	 population.	

Furthermore,	 the	granules	 that	 formed	were	 shown	 to	have	differential	 function,	

rapidly	inhibiting	the	translation	of	p21	in	late	senescent	cells	but	not	in	proliferating	

cells.	Gallouzi	(2009)	later	posited	that	the	altered	dynamics	of	these	granules	could	

explain	 the	 more	 limited	 capabilities	 of	 senescent	 cells	 to	 respond	 to	 stress,	

suggesting	that	altered	heat	shock	protein	expression	may	be	responsible	for	these	

altered	kinetics,	and	further	proposed	that	this	aberrant	granule	function	may	play	a	

role	in	inducing	the	senescence-associated	secretory	phenotype.		

	

However,	there	are	several	limitations	to	the	study	that	require	the	validation	of	this	

study	 prior	 to	 any	 further	 research	 based	 on	 their	 conclusions.	 Firstly,	whilst	 the	

major	 finding	 of	 the	 study,	 that	 stress	 granule	 number	 is	 increased	 in	 stressed	

senescent	cells,	is	replicated	in	two	cell	lines,	much	of	the	work	of	Lian	and	Gallouzi	
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(2009)	relies	on	the	use	of	the	IDH4	cell	line	as	a	senescence	model.	The	IDH4	line	is	

a	 fibroblast	 cell	 line	 immortalised	 through	 infection	with	 the	 simian	virus	40,	and	

induces	 senescence	when	 deprived	 of	 dexamethasone	 in	media	 (Wright,	 Pereira-

Smith,	 &	 Shay,	 1989).	 Whilst	 this	 model	 is	 useful	 logistically,	 due	 to	 the	 faster	

turnaround	to	senescence,	it	is	possible	that	the	infection	itself	could	alter	the	overall	

function	of	these	cells.	 	Secondly,	whilst	Gallouzi	(2009)	does	appear	to	show	that	

heat	 shock	proteins	are	delayed	 in	 their	expression	 in	 senescent	cells,	which	may	

correlate	with	the	 longer	recovery	period	of	senescent	cells,	 this	result	would	not	

explain	 why	 senescent	 stress	 granules	 form	 more	 rapidly	 than	 granules	 in	

proliferating	cells,	and	 therefore	more	 research	 into	 the	mechanisms	surrounding	

assembly	and	disassembly	in	senescent	cells	is	required.	

	

Therefore,	 the	 initial	 findings	of	Lian	and	Gallouzi	 (2009)	were	tested	again	 in	the	

fibroblast	DD1	cell	strain,	discussed	further	in	Materials	and	Methods,	to	confirm	that	

stress	granule	increase	can	be	found	across	multiple	replicative	senescent	fibroblast	

cell	strains.	However,	whilst	initial	studies	believed	that	there	was	no	distinguishable	

difference	between	replicative	and	stress-induced	premature	senescent	cells	due	to	

their	 morphological	 similarities	 (Ben-Porath	 &	 Weinberg,	 2005),	 it	 is	 being	

increasingly	 established	 that	 different	 senescence	 programmes	 possess	 distinct	

expression	profiles	 in	 relation	 to	 genes	 implicated	 in	 growth,	morphogenesis	 and	

metabolism	 (Pascal	 et	 al.,	 2005).	 Notably,	 this	 study	 showed	 that	 stress-induced	

premature	senescence	results	in	the	differential	regulation	of	a	smaller	number	of	

genes	than	replicative	senescence.	This	suggests	that	stress-induced	senescence	is	a	

more	targeted	response	to	a	specific	form	of	toxicity,	due	to	the	lower	number	of	

genes	that	undergo	altered	transcription,	compared	to	the	more	sweeping	changes	

to	the	transcriptional	landscape	undergone	following	telomeric	shortening	(Dierick	

et	al.,	2002;	Kalume	et	al.,	2002).	This	was	further	supported	by	their	 finding	that	

certain	stress-related	proteins,	such	as	apolipoprotein	J	(Patrick	Dumont	et	al.,	2000),	

were	upregulated	to	a	greater	extent	in	stress-induced	senescence	than	in	replicative	

senescence.	 Considering	 these	 phenotypic	 differences,	 and	 stress-related	

transcriptional	 differences,	 between	 replicative	 and	 premature	 senescence,	 the	

possibility	 was	 considered	 that	 different	 senescence	 systems	 could	 also	 respond	
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differently	when	exposed	to	stress.	As	a	result,	the	stress	response	of	stress-induced	

senescent	 fibroblasts	 was	 also	 examined	 in	 order	 for	 comparisons	 to	 be	 drawn	

between	different	 senescence	 phenotypes.	 Exposure	 of	 cells	 to	 ionising	 radiation	

such	 as	 X-rays	 is	 known	 to	 induce	 a	 persistent	 DNA	 damage	 response	 in	 cells,	

associated	with	growth	arrest	and	the	onset	of	premature	senescence	(Fumagalli	et	

al.,	2012;	Kim	et	al.,	2013),	and	was	therefore	used	to	induce	senescence	in	otherwise	

proliferating	fibroblasts.	
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Materials	and	Methods	
	

Chemicals	
	
All	chemicals	were	sourced	from	Sigma-Aldrich	(Dorset,	UK)	unless	otherwise	stated.	

	

Cell	Strains	and	Tissue	Culture	
	
The	human	dermal	fibroblast	cell	strain	DD1,	derived	from	the	foreskin	of	a	healthy	

adolescent	male,	was	utilised	 in	 the	present	work	due	to	 its	use	 in	several	 recent	

studies	relating	to	fibroblast	stress	responses	and	senescence	(Gibbs-Seymour	et	al.,	

2015;	Pekovic	et	al.,	2011).	Due	to	the	recent	derivation	of	this	cell	strain	minimising	

the	effects	of	genetic	drift,	as	well	as	the	health	of	the	donor,	this	strain	was	used	to	

ensure	 that	 stress	 experiments	were	not	 carried	out	 on	 cells	which	were	 already	

unhealthy	 or	 stressed.	 These	 cells	 were	 grown	 from	 initial	 batches	 of	 passage	

number	12	and	13.	DD1	cells	were	cultured	via	serial	passage	at	37oC	in	a	humidified	

5%	 CO2	 atmosphere	 in	 Dulbecco’s	 Modified	 Eagle	 Medium	 (Gibco,	 Paisley,	 UK)	

supplemented	with	1%	 (v/v)	penicillin-streptomycin	and	10%	 foetal	bovine	 serum	

(LabTech).	Once	cultures	reached	90%	confluence,	they	were	washed	twice	in	warm	

PBS	prior	to	incubation	in	Trypsin	for	5	mins	at	37oC.	When	passaging	into	flasks,	a	

1:2	split	ratio	was	maintained	consistently.	 In	order	to	induce	oxidative	stress	and	

subsequent	stress	granule	formation,	cells	were	incubated	with	sodium	arsenite	(AS)	

diluted	 to	 0.5mM	 in	 complete	media	 for	 30	mins	 prior	 to	 further	 processing.	 All	

experiments	were	performed	on	cells	plated	to	90%	confluence.	

	

Culture	Irradiation	
	
Cells	 were	 exposed	 to	 ionising	 radiation	 in	 a	 320kV	 high-stability	 X-ray	 chamber	

irradiator	 (Gulmay	 Inc.,	 Byfleet,	 UK)	 at	 an	 irradiation	 rate	 of	 0.24	 Gy/min,	 with	

exposure	 time	adjusted	 to	produce	 the	 required	dosage.	 In	order	 to	discount	 the	

possibility	of	confounding	factors	producing	false	positive	results,	control	treatments	

were	taken	to	the	 irradiator	but	were	not	exposed	to	X-ray	 irradiation.	 If	cultures	

were	maintained	for	more	than	24h	post-irradiation,	such	as	during	stress-induced	
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premature	 senescence	experiments,	 cells	were	washed	once	 in	warm	phosphate-

buffered	saline	(PBS)	after	24h,	and	media	replaced,	to	ensure	that	cells	were	not	

continuously	kept	in	an	environment	rich	in	reactive	oxygen	species.	

	

Fixation	and	Immunofluorescence	
	
DD1	cells	were	seeded	at	a	density	of	1.8	x	104	cells	per	well	of	a	24-well	dish	and	

grown	 to	70%	confluence	on	glass	 coverslips,	 treated	as	 required,	 and	washed	 in	

warm	PBS	prior	to	fixation	for	10	minutes	in	warm	4%	(w/v)	paraformaldehyde.	Cells	

were	permeabilised	in	0.5%	Triton-X100/PBS	for	5	minutes,	washed	twice	in	PBS,	and	

subsequently	incubated	in	a	blocking	solution	of	1%	(v/v)	newborn	calf	serum	(NCS)	

diluted	in	PBS	for	30	minutes	prior	to	a	further	two	washes	in	PBS.	Primary	antibodies	

were	diluted	in	this	blocking	solution	(see	Table	1)	and	applied	to	coverslips	for	1h	at	

room	 temperature.	 Coverslips	 were	 then	 washed	 five	 times	 in	 PBS	 before	 the	

application	 of	 secondary	 antibodies	 for	 1h	 diluted	 in	 blocking	 solution	 to	 the	

following	 concentrations:	 Mouse	 FITC,	 1:500;	 Rabbit	 FITC,	 1:500;	 Mouse	 TRITC,	

1:500;	 Rabbit	 TRITC,	 1:500;	Mouse	 AF488,	 1:100;	 Rabbit	 Cy3,	 1:100.	 The	 nuclear	

marker	4’,6-diaminido-2-phenylindole	(DAPI)	was	also	applied	to	the	coverslips	for	

the	final	10	minutes	of	this	incubation	at	a	dilution	of	1:1000.	Following	a	further	five	

PBS	washes	performed	in	a	dark	chamber,	coverslips	were	mounted	in	Vectashield	

Mounting	Medium	(Vector	Laboratories,	Peterborough,	UK)	and	stored	in	the	dark	

at	4oC	until	imaging.	In	order	to	distinguish	between	genuine	signal	and	background	

noise	 when	 examining	 slides,	 secondary	 antibody	 controls	 were	 performed	 by	

following	the	above	protocol	without	the	addition	of	a	primary	antibody.	
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Table	1.	A	list	of	primary	antibodies	utilised	during	immunofluorescent	staining,	with	dilutions	
used	during	course	of	study.	

Antibody	Species,	Target	 Dilution	 Company	

Rabbit	G3BP1	 1:200	 ProteinTech	

Mouse	gH2AX	 1:200	 Millipore	

Rabbit	b-catenin	 1:250	 Abcam	

Rabbit	TIAR	 1:200	 Cell	Signalling	

Mouse	G3BP1	 1:100	 BD	Transduction	

	

	

Fluorescent	and	Confocal	Microscopy	
	
Stained	samples	were	imaged	with	an	Axioskop	40	inverted	microscope	loaded	with	

the	Axiovision	Rel.	4.8	programme	(Carl	Zeiss	Ltd.,	UK)	with	epifluorescence	optics	

using	a	40x/1.3	oil	immersion	lens.	Where	slides	required	a	confocal	microscope	for	

further	resolution,	the	LSM	880	(Carl	Zeiss	Ltd.,	UK)	was	utilised	equipped	with	a	C-

Apochromat	40x/1.2	W	Corr	objective.	Images	were	then	exported	from	Zen	Blue	0.2	

and	figures	collated	in	Microsoft	Powerpoint.	

	

Protein	Extraction	
	
For	creation	of	whole	cell	lysate	protein	extracts,	DD1	cells	were	seeded	at	a	density	

of	8.1	x	104	cells	per	well	of	a	6-well	dish	and	grown	to	70%	confluence	before	being	

washed	twice	in	ice-cold	PBS,	scraped,	and	centrifuged	at	4000	rpm	for	5	mins	at	4oC.	

The	resulting	pellet	was	then	lysed	in	ice-cold	RIPA	buffer	[50mM	Tris-HCl,	pH	7.4,	

150mM	NaCl,	1%	NP-40,	0.5%	Na-deoxycholate,	0.1%	SDS,	50mM	NaF,	2mM	EDTA]	

supplemented	with	1x	protease	 inhibitor	cocktail	and	1x	phosphatase	 inhibitor	 (G	

Biosciences,	 St	 Louis,	 MO,	 USA),	 and	 suspended	 on	 ice	 for	 30	 mins	 prior	 to	

centrifugation	at	14000x	g	for	15	mins	at	4oC.	The	supernatant	was	then	stored	at	-

80oC	until	use.	Protein	isolation	was	confirmed	through	coomassie	blue	staining.	
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Sodium	Dodecyl	Sulfate	Polyacrylamide	Gel	Electrophoresis	(SDS-PAGE)	
	
Electrophoresis	was	carried	out	broadly	following	the	specifications	established	by	

Laemmli	(1970).	A	12%	separating	gel	[2.5ml	1.5M	Tris-HCl	pH	8.8,	3.33ml	30%	(w/v)	

Bis/Acrylamide,	100µl	10%	(w/v)	SDS,	50µl	10%	(w/v)	APS,	5µl	TEMED,	4ml	dH2O]	

was	 prepared	 using	 a	 casting	 frame	 (BioRad,	 Herts,	 UK),	 with	 water-saturated	

butanol	pipetted	onto	the	gel	before	setting	for	30	mins.	Once	the	gel	was	set,	this	

butanol	was	removed	with	tissue	and	dH2O.	A	4%	stacking	gel	[1.25ml	1.5M	Tris-HCl	

pH	6.9,	0.67ml	30%	(w/v)	Bis/Acrylamide,	50µl	10%	(w/v)	SDS,	75µl	10%	APS,	5µl	

TEMED,	3ml	dH2O]	was	then	poured	onto	the	separating	gel	to	the	top	of	the	casting	

apparatus	with	a	12-well	comb	inserted.	Once	set,	the	comb	was	removed	and	gels	

were	placed	in	a	clamp	and	electrophoresis	tank	containing	1x	running	buffer	[0.1%	

(v/v)	SDS,	192mM	glycine,	25mM	Tris	pH	8.3].	Samples	were	then	loaded	using	a	fine-

tipped	 pipette	 alongside	 2µl	 of	 the	 PageRuler	 Prestained	 Protein	 Ladder	 Plus	

(Fermenta,	UK)	molecular	weight	marker.	Following	loading,	gel	electrophoresis	was	

performed	at	 a	 constant	100V	 for	2	hours	or	until	 samples	had	migrated	entirely	

through	 the	 separating	 gel.	 Following	 resolution	 with	 SDS-PAGE,	 gels	 were	 first	

transferred	to	a	staining	chamber	and	stained	with	0.1%	Coomassie	Blue	R250	in	50%	

methanol,	 40%	 water	 and	 10%	 glacial	 acetic	 acid	 for	 2h,	 followed	 by	 destaining	

overnight	in	50%	water,	40%	methanol	and	10%	glacial	acetic	acid,	to	confirm	equal	

protein	loading	between	wells.	Once	confirmed,	replicate	gels	were	run	to	allow	for	

western	blotting	to	occur.	

	

Western	Blotting	
	
Whilst	gel	electrophoresis	was	run,	18	pieces	of	Whatman	3MM	Chr	papers	were	cut	

to	dimensions	of	7.5cm	x	6.5cm.	6	pieces	were	placed	into	buffer	A	[0.3M	Tris,	20%	

(w/v)	methanol],	 3	pieces	 into	buffer	B	 [0.025M	Tris,	 20%	 (w/v)	methanol]	 and	9	

pieces	 into	 buffer	 C	 [0.025M	Tris,	 14mM	glycine,	 20%	 (v/v)	methanol].	 Following	

removal	from	electrophoresis	tanks,	gels	were	placed	into	buffer	B.	Once	soaked	the	

gel,	Whatman	paper	and	a	0.45µm	pore	size	nitrocellulose	membrane	were	placed	

into	 a	 Transblot	 SD	 Semi-Dry	 Transfer	 Cell	 (BioRad,	 Herts,	 UK),	with	 papers	 from	
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buffer	A	placed	first,	followed	by	papers	in	buffer	B,	nitrocellulose	membrane	soaked	

in	 buffer	 B,	 gel,	 and	 papers	 from	 buffer	 C.	 To	 elicit	 transfer	 of	 proteins	 to	 the	

membrane,	 the	 transfer	 machine	 was	 run	 at	 constant	 0.8mA/cm2	 for	 90	 mins.	

Membranes	were	then	removed	and	washed	in	dH2O	for	10	mins	prior	to	blocking	at	

room	temperature	for	2hr	in	blocking	solution	[5%	(w/v)	milk	powder	in	TBS-T	(0.1%	

(w/v)	 Tween-20,	 25mM	 Tris-HCl	 pH	 7.4,	 150mM	 NaCl)].	 Following	 blocking,	

membranes	 were	 washed	 in	 TBS-T	 three	 times,	 for	 five	 minutes	 each	 wash.	

Membranes	 were	 then	 cut	 where	 necessary	 to	 allow	 for	 multiple	 stainings,	 and	

incubated	 in	 a	 falcon	 tube	 containing	 primary	 antibodies	 (Rabbit	 G3BP1,	

ProteinTech;	 1:500,	 Rabbit	 b-catenin,	 AbCam;	 1:1000;	 Rabbit	 GAPDH,	 1:10,000)	

diluted	in	5%	(w/v)	milk	powder	in	TBS-T	overnight	at	4oC.	Membranes	were	again	

washed	 three	 times	 in	 TBS-T	 for	 5	 minutes	 prior	 to	 incubation	 in	 secondary	

antibodies	(Rabbit	IgG.HRP,	Sigma;	1:2000)	diluted	in	5%	(w/v)	milk	powder	in	TBS-

T.	Following	a	 further	 five	washes,	membranes	were	developed	 in	 the	absence	of	

light	for	5	minutes	using	a	mixture	of	ECL1	[1ml	1M	Tris-HCl	pH	7.5,	44µl	coumaric	

acid	and	100µl	luminol,	8.85ml	dH2O]	and	ECL2	[100mM	Tris-HCl	pH	8.5,	0.02%	(v/v)	

H2O2]	in	equal	proportions,	and	imaged	under	the	chemiluminescence	filter	of	the	

LAS-1000plus	Fuji	luminescent	image	analyser	(FujiFilm,	Japan).	

	

Senescence-Associated	β-Galactosidase	Assay	
	
Following	 fixation	 as	 described	 above,	 coverslips	 were	 washed	 twice	 in	 PBS	 and	

incubated	 at	 37oC	 overnight	 in	 a	 staining	 solution	 comprised	 of	 8.8ml	 SA-	 β-Gal	

solution	[150mM	NaCl,	200mM	MgCl2,	40mM	citric	acid,	12mM	sodium	phosphate,	

adjusted	 to	 pH	 6],	 1ml	 Potassium	 Solution	 [5mM	 potassium	 ferrocyanide,	 5mM	

potassium	 ferricyanide]	 and	 0.2ml	 5-bromo-4-chloro-3-indolyl-βD-

galactopyranoside	 (X-gal)	 20mg/ml	 stock	 solution.	 Coverslips	 were	 then	 washed	

three	times	in	PBS,	mounted	in	Vectashield	Mounting	Medium,	and	imaged	using	a	

bright	field	microscope.	
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RESULTS	
	
	
Characterisation	of	senescence	
	

In	 order	 to	 examine	 how	 the	 progression	 of	 senescence	 programs	 affected	 the	

capacity	 for	 human	 fibroblasts	 to	 form	 stress	 granules,	 it	was	 firstly	 necessary	 to	

confirm	that	the	cell	strain	to	be	used	was	capable	of	reaching	senescence,	and	to	

briefly	characterise	the	extent	of	this	senescent	phenotype.	Whilst	the	DD1	fibroblast	

cell	strain	has	been	used	in	previous	studies	of	progeria	and	ageing,	being	cultured	

to	 senescence	 via	 serial	 passage	 (Pekovic	 et	 al.,	 2011),	 their	 use	 as	 a	 model	 for	

senescence	remains	less	common	than	other	cell	strains	such	as	MRC5	fibroblasts,	

and	as	a	result	the	extent	to	which	the	common	markers	for	senescence	are	exhibited	

in	senescent	DD1	cells	is	unknown.	

	

Prior	 to	 the	 quantification	 of	 the	 extent	 of	 replicative	 senescence	 in	 culture,	 a	

population	of	DD1	cells	were	firstly	cultured	by	serial	passage	to	confluence,	prior	to	

counting	 using	 a	 haemocytometer.	 These	 cells	 were	 then	 split	 1:2	 to	 ensure	

approximately	equal	cell	numbers	were	seeded	into	new	flasks	with	each	subsequent	

passage	and	to	avoid	excessive	perturbation	of	the	cells	through	higher	split	ratios,	

which	 is	known	to	affect	proliferation.	The	population	size	of	each	confluent	flask	

was	then	used	to	plot	a	population	growth	curve,	providing	an	initial	 indication	of	

DD1	population	dynamics.	As	seen	in	Fig.	3B,	DD1	cells	exhibit	a	marked	slowing	of	

growth	at	later	passages,	taking	longer	periods	to	reach	confluence.	This	is	indicative	

of	 a	 gradual	 progression	 towards	 full	 senescence,	with	 a	 greater	 number	 of	 cells	

becoming	senescent	with	each	progressive	passage	number	due	either	to	telomeric	

shortening	or	to	premature	senescence	activation	due	to	bystander	effects.	Whilst	

this	curve	is	not	enough	to	confirm	that	DD1	cells	display	senescent	characteristics	

at	 later	 passages,	 it	 shows	 that	 they	 exhibit	 population	 dynamics	 that	 would	 be	

expected	 during	 senescence	 onset.	 To	 confirm	 that	 this	 slowing	 of	 cumulative	

population	number	was	due	to	senescence,	several	methods	were	used	to	validate	a	

senescent	phenotype.	
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Figure	3.	DD1	fibroblasts	reach	replicative	senescence	following	serial	passage.	A)	Immunofluorescent	stain	for	
phosphorylated	H2AX,	imaged	at	40x.	DAPI	is	nuclear	stain.	Scale	bar=10µm.	B)	Population	growth	curve	for	
DD1	fibroblasts.	C)	Sen-b-gal	staining	of	proliferative	and	senescent	coverslips.	

The	 most	 commonly-used	 method	 for	 the	 detection	 of	 senescence	 is	 the	

examination	of	 senescence-associated	beta-galactosidase	 (Sen-b-gal)	 activity.	 This	

marker	 is	 based	 around	 the	 observation	 that	 only	 cells	 that	 are	 undergoing	 the	

transformation	 to	 a	 senescence	 phenotype	 stain	 blue	 following	 a	 pH	 6.0	 b-

galactosidase	 assay,	 initially	 proposed	 to	 be	 the	 result	 of	 a	 hydrolase	 capable	 of	

catalysing	the	hydrolysis	of	b-galactosides	that	would	only	be	expressed	during	the	

onset	 of	 senescence	 (Dimri	 et	 al.,	 1995).	 Whilst	 it	 is	 now	 known	 that	 the	 b-

galactosidase	 that	 is	 responsible	 for	 this	 staining	 is	 actually	 lysosomal	 in	origin	as	

opposed	to	a	novel	protein	(Kurz	et	al.,	2000;	Lee	et	al.,	2006),	the	assay	itself	remains	

a	 readily-used	 marker	 for	 senescence,	 and	 is	 widely	 considered	 to	 be	 a	 reliable	

indicator	of	senescence	in	culture.	Considering	the	robustness	of	this	assay,	Sen-b-

gal	activity	was	determined,	as	detailed	in	Materials	and	Methods,	to	validate	the	

occurrence	of	DD1	replicative	senescence.		
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Cells	cultured	to	passage	numbers	x+4	and	x+19	were	plated	onto	glass	coverslips	in	

24-well	plates,	and	considered	to	be	representative	of	the	general	population	of	DD1	

cells	at	 their	 respective	passage	numbers	 in	 terms	of	 the	proportion	of	senescent	

cells.	When	stained,	cells	maintained	at	passage	x+19	showed	a	significant	level	of	

blue-stained	cells	(Fig.	3C),	indicating	higher	b-galactosidase	activity.	Considering	the	

majority	of	 cells	 stained	 this	 colour,	 compared	 to	almost	no	 cells	possessing	blue	

staining	in	the	x+4	sample,	this	suggests	that	cells	used	in	passage	numbers	of	x+19	

or	 above	 are	 largely	 senescent	 in	 nature	 and	 suitable	 for	 use	 as	 representative	

replicative	senescent	samples.		

	

Further	 to	 late	 passage	 cells	 staining	 positive	 for	 b-galactosidase	 activity,	 the	

morphology	of	the	stained	cells	was	then	examined	to	determine	whether	any	gross	

changes	 had	 occurred.	 Bayreuther	 et	 al.	 (1988)	 demonstrated	 that	 fibroblast	

morphology	 alters	 as	 cells	 become	post-mitotic	 and	 senescent,	with	 cells	 tending	

towards	 an	 enlarged	 and	more	 rounded	 cell	 shape	 at	 later	 stages	of	 senescence.	

Further	 studies	 also	 confirmed	 that	 fibroblasts	 can	 be	 consistently	 characterised	

using	these	different	morphologies	(Toussaint,	Houbion,	&	Remacle,	1992),	and	that	

different	fibroblast	classes	also	differ	in	terms	of	gene	expression,	therefore	pointing	

to	 functional	 differences	 underlying	 these	 classes	 (Rodemann	 et	 al.,	 1989).	

Therefore,	analysing	which	classes	of	cells	are	most	prevalent	in	cultures	of	different	

passage	numbers	may	 lend	 further	support	 to	 the	evidence	 that	 the	cells	at	x+19	

have	 become	 post-mitotic.	 Fibroblasts	 from	 the	 x+19	 sample	 displayed	 a	 greater	

proportion	of	type	F	V	and	F	VI	fibroblast	morphologies	that	correspond	to	the	later	

senescent	 phenotypes,	 whereas	 cells	 at	 x+4	 remain	 largely	 fibrous	 in	 shape,	

possessing	largely	F	I	and	F	III	morphotypes,	which	are	characteristic	of	normal	cell	

function	 proliferation	 (Bayreuther	 et	 al.,	 1988).	Whilst	 these	 observations	 on	 cell	

shape	 are	 qualitative,	 and	 the	 exact	 morphotype	 of	 each	 cell	 remains	 open	 to	

interpretation	 and	 therefore	 is	 not	 reliable	 in	 itself	 as	 a	 senescence	marker,	 this	

further	 supplements	 the	 findings	 of	 the	 Sen-b-gal	 assay.	 When	 considered	 in	

conjunction	 with	 the	 population	 growth	 curve’s	 findings	 (Fig.	 3B)	 indicating	 the	

plateauing	 of	 DD1	 cell	 growth	 at	 higher	 passage	 numbers,	 this	 data	 provides	 a	
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convincing	case	for	the	onset	of	senescence,	with	the	process	beginning	to	occur	at	

approximately	passage	x+19.		

	

Whilst	the	above	data	provides	a	convincing	case	to	suggest	that	the	DD1	fibroblasts	

had	undergone	senescence	by	passage	x+19,	there	are	inherent	problems	with	these	

markers	 that	 mean	 that	 in	 isolation	 they	 are	 not	 robust	 enough	 to	 confirm	

senescence.	Sen-b-gal	activity	at	pH	6.0	has	been	shown	to	be	 induced	through	a	

number	of	culturing	conditions	(Severino	et	al.,	2000),	and	can	also	occur	in	some	

quiescent	cell	cultures	(Yegorov	et	al.,	1998),	which	would	also	produce	the	stoppage	

of	the		population	growth	represented	in	Fig.	3B.	Whilst	the	alteration	of	morphotype	

discussed	above	 lends	 credence	 to	 the	potential	 for	 senescence	 induction,	 it	was	

concluded	 that	 a	 further	 marker	 should	 be	 used	 to	 independently	 verify	 this	

phenotype.		

	

One	method	often	used	to	detect	senescence	in	vitro	is	to	examine	the	formation	of	

foci	of	phosphorylated	histone	H2AX	(gH2AX)	in	the	nuclei.	As	a	component	of	the	

DNA	damage	 response	 apparatus,	 gH2AX	 localises	 to	 strand	 breaks,	 comprising	 a	

large	complex	that	is	visible	via	immunofluorescent	staining.	It	has	been	previously	

established	 that	 the	 number	 of	 gH2AX	 foci	 present	 in	 the	 nucleus	 is	 directly	

correlated	to	ionising	radiation	dosage	following	exposure,	and	therefore	is	regarded	

as	 a	 reliable	 marker	 for	 DNA	 damage	 (Hernández	 et	 al.,	 2013).	 As	 discussed	

previously	 in	the	 introduction,	 the	pathways	 leading	to	replicative	senescence	are	

induced	following	shortening	of	chromosomal	telomeres	past	a	critical	length,	after	

which	cells	detect	further	degradation	as	DNA	damage	and	activate	mechanisms	to	

halt	any	further	mitosis	(Rai	&	Chang,	2011;	Takai,	Smogorzewska,	&	de	Lange,	2003).	

The	result	of	this	degradation	past	the	critical	length	is	that	DNA	damage	response	

foci	assemble	to	attempt	to	repair	this	perceived	damage.	However,	whilst	most	foci	

are	known	to	disassemble	up	to	24h	following	initial	damage,	gH2AX	foci	detected	in	

senescent	cells	are	known	to	persist.	Therefore,	a	greater	number	of	gH2AX	foci	in	

the	nucleus	under	standard	culture	conditions	is	being	increasingly	used	to	confirm	

the	senescent	phenotype.		
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In	the	putative	senescent	population,	a	greater	proportion	of	cells	exhibited	gH2AX	

foci	than	in	their	proliferating	counterparts,	indicating	a	greater	recognition	of	DNA	

damage	occurring	in	the	late	passages	consistent	with	telomere-associated	foci	that	

form	during	the	onset	and	maintenance	of	senescence	(Fig.	3A).	Furthermore,	when	

comparing	 cells	 which	 stained	 positive	 for	 foci	 in	 proliferating	 versus	 senescent	

populations,	the	number	of	foci	per	nucleus	was	significantly	greater	 in	senescent	

cells,	 with	 many	 of	 these	 foci	 appearing	 more	 defined	 than	 in	 controls.	 Taken	

together,	this	data	suggests	a	greater	number	of	cells	have	activated	DNA	damage	

response	 mechanisms	 in	 the	 later	 passage,	 and	 that	 this	 response	 is	 more	

pronounced	than	in	proliferating	cells.	Whilst	is	should	be	noted	that	several	cells	at	

low	population	doublings	do	possess	a	small	number	of	foci,	previous	studies	have	

investigated	 such	 foci	 in	 lung	 fibroblast	 liness	 and	 have	 found	 them	 not	 to	 be	

associated	with	 telomeric	DNA	and	 therefore	are	not	 an	 indicator	of	 senescence,	

instead	appearing	to	be	an	inherent	characteristic	of	the	cell	line	(Nakamura	et	al.,	

2008).	 Assuming	 that	 the	 same	 is	 true	 of	 the	 foci	 present	 in	 proliferating	 DD1	

cultures,	the	increasing	gH2AX	staining	in	later	passages	corroborates	the	findings	of	

the	Sen-b-gal	assay.	 It	 should	be	noted,	however,	 that	 this	 increase	 in	gH2AX	foci	

formation	at	later	passages	has	not	been	confirmed	to	be	due	to	telomere	shortening	

in	DD1	cells	as	no	colocalisation	has	been	demonstrated	between	telomeric	DNA	and	

gH2AX	foci.	Whilst	this	can	be	confirmed	through	the	use	of	other	methods	such	as		

staining	for	telomere	probes	alongside	DNA	repair	apparatus	(Herbig	et	al.,	2004)	or	

through	the	use	of	DNA	microarrays	following	immunoprecipitation	with	gH2AX	to	

confirm	the	location	on	the	chromosomes	that	foci	are	binding	(d’Adda	di	Fagagna	

et	 al.,	 2003),	 and	 these	would	 provide	more	 evidence	 for	 replicative	 senescence	

occurring	 with	 increasing	 passage	 number,	 the	 confirmation	 of	 increasing	 H2AX	

phosphorylation	coupled	with	a	progressive	 slowing	of	 cell	division	 in	Fig.	3B	and	

positive	sen-b-gal	staining	(Fig.	3C)	was	considered	to	provide	sufficient	evidence	of	

senescence	for	experiments	to	continue	in	earnest.	
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Considering	the	aims	of	this	project	require	the	comparison	of	replicative	and	stress-

induced	premature	senescence,	it	was	also	necessary	to	confirm	that	senescence	was	

induced	in	early	passage	DD1	cultures	following	exposure	to	10Gy	ionising	radiation,	

as	opposed	 to	other	mechanisms	 that	arrest	 the	 cell	 cycle	 such	as	quiescence.	 In	

order	 to	do	so,	 the	Sen-b-gal	assay	and	 immunostaining	 for	persistent	gH2AX	foci	

were	 also	 performed	 on	 cultures	 that	 were	 maintained	 for	 14	 days	 following	

radiation	exposure.	Similar	to	replicative	senescent	cultures,	DD1	cells	exposed	to	

ionising	radiation	also	tested	positive	for	senescence	in	Sen-b-gal	assays,	with	almost	

all	 cells	exhibiting	 some	 level	of	blue	colouration	 following	staining.	Furthermore,	

many	 of	 these	 cells	 had	 begun	 to	 adopt	 morphologies	 indicative	 of	 post-mitotic	

fibroblasts,	 supporting	 the	 stoppage	 of	 the	 cell	 cycle	 as	 a	 response	 to	 ionising	

radiation	exposure	(Fig.	4B).		

	

	
Figure	4.	DD1	fibroblasts	reach	senescence	14	days	after	X-ray	exposure.	A)	 Immunofluorescent	stain	 for	
phosphorylated	 H2AX,	 imaged	 at	 40x.	 DAPI	 is	 nuclear	 stain.	 Scale	 bar=10mm.	 B)	 Sen-b-gal	 staining	 of	
proliferative	and	senescence	coverslips.	
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Staining	for	gH2AX	also	demonstrated	a	marked	increase	in	foci,	with	a	majority	of	

cells	maintaining	persistent	foci	14	days	post-exposure,	with	cells	staining	positive	

for	foci	containing	a	significantly	higher	number	than	in	unirradiated	cells	(Fig	4A).	

Whilst	persistent	gH2AX	foci	in	replicative	senescent	cells	represent	the	activation	of	

the	DNA	repair	machinery	due	to	critical	 telomeric	shortening,	 the	 foci	present	 in	

irradiated	cells	instead	represent	sites	of	double	strand	breaks	in	DNA,	and	therefore	

are	not	entirely	analogous	to	those	found	 in	replicative	senescence.	Furthermore,	

the	link	between	high	DNA	damage	and	senescence	activation	is	less	elucidated	than	

that	between	telomere	length	and	senescence.	However,	both	Marková	et	al.	(2011)	

and	 Fumagalli	 et	 al.	 (2012)	 have	 previously	 demonstrated	 that	 a	 persistent	 DNA	

damage	 response,	 as	 represented	 by	 long-term	 gH2AX	 foci,	 occurs	 following	

exposure	 to	 high	 doses	 of	 ionising	 radiation,	 and	 Fumagalli	 et	 al.	 (2012)	 further	

demonstrated	 that	 inactivating	 the	 damage	 response	 resulted	 in	 continuing	

proliferation	as	opposed	to	the	development	of	senescence.	Considering	this	data	

suggests	 that	a	consistent	DDR	 is	heavily	associated	with	and	 is	necessary	 for	 the	

induction	of	 senescence	 following	 ionising	 radiation	 exposure,	 the	observation	of	

gH2AX	foci	up	to	14	days	post-irradiation	in	DD1	cells,	coupled	with	the	stalling	in	cell	

division,	supports	the	onset	of	senescence	as	opposed	to	quiescence.	As	a	result,	it	

was	assumed	from	hereon	that	cells	cultured	for	14	days	after	irradiation	could	be	

used	to	represent	stress-induced	premature	senescence.			

	

Having	established	with	confidence	that	both	culture	by	serial	passage	and	exposure	

to	X-ray	irradiation	are	capable	of	inducing	a	state	of	proliferative	arrest,	and	further	

linking	 this	 growth	arrest	 to	 replicative	and	 stress-induced	premature	 senescence	

respectively,	subsequent	experiments	were	undertaken	to	examine	the	assembly	of	

stress	granules	during	these	different	senescence	programmes.	

	

	 	



	 30	

Replicative	and	Stress-Induced	Premature	Senescence	Differentially	Form	
Stress	Granules	
	

Prior	to	examining	the	potential	for	different	senescence	phenotypes	to	form	stress	

granules,	it	was	firstly	necessary	to	confirm	the	presence	of	bona	fide	stress	granules	

in	 the	DD1	 cell	 strain,	 and	 to	 determine	 an	 appropriate	 concentration	 of	 sodium	

arsenite	for	use	in	further	experiments.	Sodium	arsenite	is	a	well-characterised	and	

widely	used	inducer	for	stress	granule	formation	due	to	the	strong	oxidative	stress	

cells	undergo	during	treatment.	In	order	to	provide	cells	with	adequate	time	to	form	

stress	granules,	and	in	line	with	other	studies,	cells	were	exposed	for	30	minutes	to	

varying	 concentrations	 of	 sodium	 arsenite	 and	 fixed	 as	 detailed	 in	Materials	 and	

Methods.	In	order	to	confirm	stress	granule	formation	had	occurred	in	response,	the	

colocalisation	 of	 two	 different	 stress	 granule	 markers	 was	 analysed	 using	

immunofluorescence.	G3BP1	 is	a	universal	marker	 for	stress	granules,	and	plays	a	

crucial	role	in	the	signalling	pathways	facilitating	protein	aggregation	and	subsequent	

nucleation	of	stress	granules,	and	is	thus	a	commonly	used	marker	for	stress	granule	

formation.	TIAR	is	a	nuclear	protein,	closely	related	to	the	stress	granule	nucleating	

protein	 TIA1,	 which	 has	 been	 demonstrated	 to	 shuttle	 from	 the	 nucleus	 to	 the	

cytoplasm	following	the	onset	of	oxidative	stress	where	 it	acts	as	a	stress	granule	

component.		

	

In	 order	 to	 quantify	 the	 effect	 of	 different	 sodium	 arsenite	 concentrations	 on	

cultured	cells,	blind	sampling	was	used	to	locate	a	field	of	view	containing	100	cells	

with	a	20x	objective,	and	the	proportion	of	cells	forming	granules	was	measured.	In	

cells	not	treated	with	sodium	arsenite,	G3BP1	remained	diffuse	within	the	cytoplasm,	

not	assembling	into	any	detectable	granule	structures.	Furthermore,	TIAR	remained	

nuclear	 in	 unstressed	 cells	 and	 therefore	did	 not	 colocalise	with	G3BP1	 (Fig.	 5A).	

Following	treatment	with	sodium	arsenite	at	all	concentrations,	G3BP1	assembled	

into	granules,	colocalising	with	TIAR,	therefore	confirming	that	DD1	cells	are	capable	

of	forming	stress	granules	and	are	therefore	a	suitable	cell	strain	for	study.	84%	of	

cells	treated	with	0.25mM	sodium	arsenite	formed	stress	granules,	 indicating	that	

even	comparatively	low	doses	of	stress	granule	inducers	were	capable	of	eliciting	a	
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robust	 stress	 response	 in	 the	 majority	 of	 cells.	 However,	 this	 was	 still	 a	 lower	

percentage	of	granule-positive	cells	than	was	observed	in	cells	incubated	with	higher	

concentrations	 of	 sodium	 arsenite;	 92%	 of	 cells	 exhibited	 granule	 formation	

following	a	0.5mM	arsenite	dose,	whilst	96%	and	98%	of	cells	formed	granules	after	

treatment	 with	 1mM	 and	 2mM	 sodium	 arsenite,	 respectively.	 Considering	 the	

difference	 in	 percentage	 of	 granule-positive	 cells	 was	 significant	 between	 the	

0.25mM	 and	 0.5mM	 treatments,	 but	 not	 between	 0.5mM	 and	 either	 of	 the	 two	

higher	 concentrations,	 it	 was	 determined	 that	 a	 concentration	 of	 0.5mM	 was	

sufficient	 for	 future	 treatments,	 and	 is	 also	 consistent	 with	 the	 body	 of	 work	

regarding	arsenite-induced	stress	granules.	
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Figure	5.	An	arsenite	titration	to	determine	optimum	concentration	for	granule	formation.	A)	Confocal	images	
of	stress	granule	markers	G3BP1	and	TIAR	at	63x.	DAPI	is	nuclear	stain.	Scale	bar=10µm.	B&C)	A	graph	depicting	
the	percentage	of	cells	staining	positive	for	stress	granules,	and	the	number	of	stress	granules	respectively,		at	
differing	concentrations.	Error	bar=1SD.	

A	second	metric	used	for	quantification	of	stress	granule	formation	in	response	to	

oxidative	 stress	 is	 the	 number	 of	 stress	 granules	 formed	 by	 each	 cell	 following	

arsenite	exposure.	This	factor	likely	differs	heavily	dependent	on	the	nature	of	the	

cell	liness	utilised,	and	it	was	therefore	necessary	to	establish	the	parameters	of	DD1	

stress	 granule	 formation	 before	 comparative	 analysis	 could	 occur	with	 senescent	
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cells	 could	occur.	Considering	 that	 fibroblasts	 in	particular	are	capable	of	 forming	

several	 distinct	 cell	 shapes,	 with	 different	 sizes	 and	 likely	 altered	 cytoskeletal	

networks,	it	was	necessary	to	collect	data	from	multiple	cells	per	replicate	to	ensure	

that	any	perceived	differences	in	granule	numbers	were	not	artificial	as	a	result	of	

analysing	different	cell	shapes.	As	a	result,	blind	sampling	with	a	63x	oil	objective	was	

used	to	locate	a	field	of	10	cells,	and	the	number	of	granules	formed	in	response	to	

sodium	arsenite	exposure	was	counted	from	each	cell	and	summed	to	give	an	overall	

indication	 of	 stress	 granule	 formation	 across	 the	 field	 of	 view.	 This	 cumulative	

number	of	stress	granules	was	collected	in	triplicate,	and	analysed	to	see	whether	a	

linear	dose-response	is	observed	with	respect	to	stress	granule	formation	at	different	

sodium	 arsenite	 concentrations.	 Treatment	 with	 all	 concentrations	 of	 sodium	

arsenite	resulted	in	the	formation	of	granules,	and	cells	treated	with	2mM	sodium	

arsenite	 formed	 significantly	more	 stress	 granules	 than	 those	 treated	with	 1mM,	

with	means	 of	 769	 and	 571	 granules	 per	 10	 cells	 respectively	 (Fig.	 5C)	 However,	

0.5mM-treated	cells	 formed	691	granules	on	average,	which	was	not	 significantly	

higher	 than	0.25-treated	cells,	and	a	 further	doubling	of	sodium	arsenite	 to	1mM	

resulted	 in	 a	 mean	 granule	 number	 of	 673,	 representing	 very	 little	 alteration	 in	

formation.	 Furthermore,	whilst	 these	means	were	 both	 lower	 than	 the	mean	 for	

2mM-treated	cells,	the	differences	between	them	were	not	considered	statistically	

significant	due	to	the	inherent	variation	in	results.	Therefore,	whilst	small	differences	

in	stress	granule	number	may	result	from	large	changes	in	concentration,	many	of	

these	were	 not	 significant	 and	 there	 does	 not	 appear	 to	 be	 a	 linear	 relationship	

between	dosage	and	granulation	in	DD1	fibroblasts.	Considering	the	limited	effect	

that	 a	 higher	 dose	 had	 on	 the	 number	 of	 granules	 formed	 per	 cell,	 it	 was	 again	

decided	 that	 0.5mM	 concentrations	 of	 sodium	 arsenite	 should	 be	 used,	 as	 there	

would	be	no	benefit	from	using	any	higher	concentration	in	terms	of	visualisation	of	

stress	granules.	

	

Having	 confirmed	 that	 DD1	 cells	 form	 bona	 fide	 stress	 granules	 in	 response	 to	

oxidative	stress,	determined	that	0.5mM	was	the	optimal	concentration	of	sodium	

arsenite	for	usage	in	further	stress	experiments,	and	parameterised	the	number	of	

stress	granules	formed	by	cells	following	varying	severities	of	stress,	a	comparative	
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study	of	 the	 response	of	 proliferating	 and	 senescent	 cells	 to	oxidative	 stress	was	

performed.	 Populations	 of	 proliferating	 cells,	 as	 determined	 by	 passage	 number	

compared	 against	 the	 population	 growth	 curve,	 as	 cells	 cultured	 to	 replicative	

senescence,	 were	 plated	 on	 glass	 coverslips	 and	 treated	 with	 0.5mM	 sodium	

arsenite.	A	further	population	of	proliferating	cells	were	exposed	to	10Gy	of	X-ray	

radiation	and	cultured	for	a	further	14	days	to	stress-induced	premature	senescence	

prior	to	treatment.	

	

Whilst	 all	 three	 populations	 of	 cells	 contained	 significantly	 higher	 percentages	 of	

G3BP1	 granule-positive	 cells	 following	 arsenite	 treatment	 compared	 to	 their	

untreated	counterparts	which	did	not	form	granules	(t-test;	p<0.01),	there	was	also	

a	significant	difference	in	the	percentage	of	cells	forming	stress	granules	between	

the	proliferative	 and	 senescent	populations,	 as	 seen	 in	 Fig.	 6B	 (One-way	ANOVA;	

p<0.01).	 With	 an	 average	 of	 97%	 of	 cells	 forming	 stress	 granules,	 replicative	

senescent	cells	appear	to	form	stress	granules	more	readily	than	their	proliferative	

counterparts,	 where	 only	 92%	 of	 cells	 contained	 granules	 (Tukey	 HSD;	 p<0.05).	

However,	 both	 the	 proliferative	 (Tukey	 HSD;	 p<0.01)	 and	 replicative	 senescent	

(Tukey	HSD;	p<0.01)	populations	contained	a	far	greater	proportion	of	stress	granule-

positive	 cells	 in	 comparison	with	 the	 stress-induced	 senescent	 population,	where	

only	 7%	 of	 cells	 on	 average	 formed	 granules	 30	minutes	 post-stress,	 indicating	 a	

severe	 abrogation	 of	 stress	 granule	 formation.	 Concomitantly,	 the	 number	 of	

granules	formed	by	cells	in	the	prematurely	senescent	population	was	significantly	

lower	 than	 in	both	 the	proliferative	 and	 replicative	 senescent	populations	 (Tukey	

HSD;	p<0.01),	with	 post-irradiation	 cells	 forming	only	 57	 granules	 per	 10	 cells	 on	

average,	 compared	 to	 691	 granules	 in	 the	 proliferative	 population	 (Fig.	 6C).	 In	

contrast,	replicative	senescent	cells	formed	an	average	of	1546	granules	per	10	cells,	

indicating	a	significantly	larger	granule-forming	potential	in	these	cells	compared	to	

both	proliferative	and	prematurely	senescent	populations	(Tukey	HSD;	p<0.01).	
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Figure	6.	Differing	senescence	programmes	possess	a	differential	capacity	to	form	stress	granules.	A)	Confocal	
images	of	G3BP1-stained	cells	imaged	with	a	63x	objective.	Nuclear	stain	is	DAPI.	Scale	bar=10µm.	B&C)	A	
graph	depicting	the	percentage	of	granule-positive	cells,	and	number	of	granules	formed	per	cell,	in	
proliferating	or	senescent	populations	exposed	to	0.5mM	sodium	arsenite.	Error	bar=1SD.	
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The	above	findings	that	replicative	senescent	cells	form	stress	granules	more	readily	

following	exposure	to	sodium	arsenite	is	heavily	consistent	with	the	work	of	Lian	&	

Gallouzi	 (2009),	 and	 strengthens	 the	 evidence	 in	 favour	 of	 differential	 stress	

responses	between	proliferating	and	senescent	cells	(Merker	et	al.,	2000;	Servais	et	

al.,	2005).	However,	whilst	no	discernable	change	in	granule	formation	would	have	

been	significant	in	itself,	the	lack	of	stress	granules	following	arsenite	treatments	in	

stress-induced	premature	senescent	cells	is	even	more	unexpected,	and	is	in	stark	

contrast	with	 the	 replicative	 senescent	phenotype.	This	 finding	also	 suggests	 that	

other	aspects	of	the	stress	response	regulated	by	stress	granules	may	differ	between	

the	 two	 senescence	 programmes.	 For	 example,	 this	 could	 indicate	 that	 stress-

induced	 prematurely	 senescent	 cells	 would	 be	more	 likely	 to	 undergo	 apoptosis	

following	exposure	to	oxidative	stresses,	due	to	a	loss	of	granules	which	are	known	

to	reduce	levels	of	reactive	oxygen	species	(Takahashi	et	al.,	2013).	

	

Whilst	a	number	of	functional	studies	could	have	been	undertaken	to	examine	how	

a	lack	of	granule	formation	affects	the	stress	responses	in	both	the	short-	and	long-

term	 in	prematurely	senescent	cells,	 it	 remained	 important	 to	determine	 through	

which	 mechanisms	 these	 different	 phenotypes	 were	 established.	 It	 is	 well-

established	 that	 stress	 granule	 formation	 is	 heavily	 dependent	 on	 shuttling	 of	

components	 along	 the	 cytoskeleton	 (Rajgor	 &	 Shanahan,	 2014).	 The	 majority	 of	

studies	have	 focused	on	 the	 roles	of	 the	microtubule	network	 in	 the	assembly	of	

stress	granules,	with	live	imaging	studies	confirming	that	stress	granules	move	across	

microtubules	 (Nadezhdina	 et	 al.,	 2010),	 and	 disruption	 of	 microtubule	

polymerisation	using	the	drug	nocodazole	has	been	shown	previously	to	abrogate	

the	 formation	 of	 stress	 granules	 upon	 treatment	 with	 sodium	 arsenate	 (Ivanov,	

Chudinova,	&	Nadezhdina,	2003).	Other	cytoskeletal	components	are	also	known	to	

affect	formation	of	stress	granules.	Ivanov	et	al.	(2003)	demonstrated	that	disruption	

of	 the	actin	 cytoskeleton	 through	 latrunculin	B	 treatment	enhanced	 the	 speed	of	

stress	 granule	 formation.	When	 considered	 in	 conjunction	with	observations	 that	

filamentous	actin	can	sequester	the	stress	granule	component	Elongation	Factor	1a	

(G.	Liu	et	al.,	2002),	these	results	suggest	that	the	actin	skeleton	may	act	to	negatively	

modulate	 stress	 granule	 dynamics.	 However,	 following	 their	 observations	 that	
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replicative	senescent	cells	form	a	greater	number	of	stress	granules,	Lian	&	Gallouzi	

(2009)	undertook	an	examination	of	the	actin	cytoskeleton	but	found	no	alterations	

in	the	network	itself	during	senescence,	or	in	the	morphology	of	the	cells	following	

stress	induction,	suggesting	that	alterations	in	actin	filaments	were	not	responsible	

for	 the	 observed	 changes.	 There	 is	 also	 little	 to	 no	 evidence	 to	 suggest	 that	 the	

microtubule	 cytoskeleton	 is	 altered	 during	 senescence	 and,	 whilst	 the	 body	 of	

evidence	 supporting	 a	 role	 for	microtubules	 in	 assisting	 stress	 granule	 formation	

makes	their	network	worthy	of	further	investigation	in	the	context	of	senescence,	

priority	in	study	was	instead	given	to	a	cytoskeletal	network	with	better-established	

roles	in	senescence	and	stress	responses.	

	

Intermediate	 filament	 proteins	 are	 a	 family	 of	 over	 70	 cytoskeletal	 components	

(Szeverenyi	 et	 al.,	 2008;	 Zimek,	 Stick,	 &	 Weber,	 2003)	 which	 can	 assemble	 into	

filaments	 	 which	 are	 10nm	 in	 diameter	 on	 average,	 which	 possess	 visoelastic	

properties	 that	 are	 notably	 resistant	 to	 mechanical	 stress	 (Janmey	 et	 al.,	 1998;	

Kreplak	et	al.	,	2005).	Vimentin	is	a	type	III	intermediate	filament	protein	expressed	

in	 cells	 with	 a	 mesenchymal	 origin	 that	 assembles	 into	 cytoskeletal	 networks	

(Steinert	et	al.,	1981).	Vimentin	networks	play	a	number	of	functional	roles	within	

the	cell	including	maintenance	of	organelle	distribution	within	the	cytosol	(Chang	et	

al.,	2009)	and	the	preservation	of	cell	integrity	upon	mechanical	stresses	(Goldman	

et	 al.,	 1996).	 However,	 vimentin	 networks	 also	 interact	 with	 other	 cytoskeletal	

components,	including	a	close	association	with	microtubules	in	parallel	arrays	(Chang	

&	Goldman,	2004;	Goldman,	1971)	as	well	as	interactions	with	the	F-actin	network,	

though	 it	 is	 not	 yet	 known	whether	 this	 binding	 is	 direct	 or	 via	 an	 actin-binding	

protein	(Kim	&	McCulloch,	2011).	Furthermore,	a	recent	study	has	shown	that	the	

rate	of	 transport	of	 vimentin	 through	 the	cell	 is	 influenced	by	both	 the	actin	and	

microtubule	networks	 in	concert	 (Robert	et	al.,	2014).	These	studies	demonstrate	

that	 vimentin	 is	 capable	 of	 linking	 actin	 and	 microtubules	 together,	 helping	 to	

integrate	the	separate	networks	into	a	cohesive	cytoskeleton.	It	is	therefore	possible	

that	vimentin	could	influence	stress	granule	formation	and	dynamics	both	through	

direct	interactions,	or	through	alterations	in	the	actin	and	microtubule	cytoskeletons.	
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A	 number	 of	 studies	 have	 also	 suggested	 that	 vimentin	 may	 play	 roles	 in	 the	

induction	or	maintenance	of	senescence.	Firstly,	Nishio	et	al.	(2001)	observed	that	

senescent	 fibroblasts	 possessed	 up	 to	 four	 times	 as	much	 vimentin	 protein	 than	

proliferating	fibroblasts,	and	that	this	increase	in	expression	was	likely	the	result	of	

an	 increase	 in	vimentin	mRNA.	Furthermore,	when	vimentin	was	 transfected	 into	

cells	to	induce	overexpression,	the	cells	undertook	shape	changes	that	recapitulated	

the	senescent	morphotype.	A	subsequent	study	also	showed	a	strong	colocalisation	

between	 vimentin	 and	 p53	 –	 a	 key	 regulator	 of	 cell	 proliferation	 and	 senescent	

induction	 -	 	 in	 senescent	 cells,	 indicating	 that	 vimentin	 may	 play	 a	 role	 in	 the	

cytoplasmic	anchorage	of	p53	(Nishio	&	Inoue,	2005),	and	cleavage	of	vimentin	was	

found	to	release	p53	into	the	cytosol	where	it	underwent	translocation	(X.	Yang	et	

al.,	 2005).	 	 Furthermore,	 vimentin	 is	 also	 specifically	 targeted	 for	 modification	

through	glycation	in	both	senescent	primary	human	fibroblasts	(Ahmed,	et	al,	2010),	

which	was	associated	with	a	loss	of	contractility	due	to	network	disruption	(Kueper	

et	 al.,	 2007).	 These	 findings	 all	 suggest	 that	 the	 alteration	 of	 vimentin	 networks	

during	 the	 onset	 of	 senescence	 are	 more	 pronounced	 than	 changes	 to	 other	

cytoskeletal	 components,	and	 therefore	vimentin	 is	a	prime	candidate	 for	 further	

study	in	the	context	of	senescence.	

	

Furthermore,	 studies	 of	 vimentin	 have	 found	 that	 it	 possesses	 various	 roles	 in	

response	 to	 cell	 stress.	 Firstly,	 the	 vimentin	 network	 undergoes	 a	 strong	

reorganisation	in	response	to	heat	shock,	mediated	by	the	small	GTP-binding	protein	

Rac1	 (Lee	 et	 al.,	 2001),	 and	 is	 also	 hyperphosphorylated	 (Cheng	 &	 Lai,	 1994),	

indicating	that	vimentin	networks	have	a	bona	fide	response	to	heat	stress.	A	similar	

rearrangement	 of	 the	 vimentin	 cytoskeleton	 can	 occur	 in	 response	 to	 oxidative	

stress,	 induced	by	covalent	binding	of	a	 family	of	 lipids	known	as	cyclopentenone	

prostaglandins	 which	 are	 produced	more	 abundantly	 during	 oxidative	 challenges	

(Stamatakis,	Sánchez-Gómez,	&	Pérez-Sala,	2006).	Recent	research	has	also	shown	

that	mutation	of	the	cysteine	residue	required	for	the	binding	of	zinc	also	significantly	

reduced	 the	 capability	 of	 vimentin	 to	 respond	 to	 a	 variety	 of	 electrophilic	 and	

oxidative	 stresses,	 suggesting	 that	 as-yet	unidentified	 signalling	pathways	exist	 to	

regulate	 vimentin	 networks	 (Pérez-Sala	 et	 al.,	 2015).	 Vimentin,	 along	 with	 other	
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intermediate	filament	proteins,	can	also	be	both	 	upregulated	and	downregulated	

during	heat	stress	depending	on	tissue	 type,	 further	supporting	 its	 role	 in	cellular	

responses	 to	 stress	 (Bechtold	 &	 Brown,	 2003;	 Fisher,	 Heredia,	 &	 Brown,	 1996;	

Vilaboa	et	al.,	1997).	

	

Whilst	vimentin	is	increasingly	becoming	implicated	in	stress	responses,	no	studies	

have	yet	demonstrated	a	functional	link	or	association	between	vimentin	networks	

and	stress	granule	formation.	However,	considering	the	previously	discussed	rapid	

reorganisation	of	vimentin	cytoskeletons	in	response	to	stress,	it	is	possible	that	one	

function	of	this	is	either	to	assist	in	the	maintenance	of	stress	granules,	or	to	aid	in	

their	disassembly	following	removal	of	stress.	This	hypothesis	is	further	supported	

considering	vimentin	also	associates	with	a	number	of	small	heat	shock	proteins	such	

as	HSP27	 and	HSP90	 (Perng	 et	 al.,	 1999;	 Zhang	 et	 al.,	 2006)	which	 are	 known	 to	

shuttle	into	granules	during	certain	cellular	stresses	and	have	been	implicated	in	the	

formation	of	granules	themselves	(Kedersha	et	al.,	1999;	Matsumoto	et	al.,	2011).	In	

order	to	perform	a	preliminary	study	of	whether	vimentin	could	help	to	explain	the	

difference	 between	 the	 stress	 responses	 of	 different	 senescent	 phenotypes,	

coverslips	 were	 co-stained	 with	 G3BP1	 and	 vimentin,	 both	 before	 and	 after	

treatment	with	sodium	arsenite,	before	immunofluorescent	analysis.	
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Figure	7.	G3BP1	may	associate	with	the	vimentin	network	during	granule	formation.	Confocal	image	of	
costained	vimentin	(AF488)	and	G3BP1	(Cy3)	taken	with	a	63x	objective.	Scale	bar=10µm.	

	

Fig.	7	shows	that	the	vimentin	network	and	diffuse	G3BP1	do	not	tend	to	align	 in	

unstressed	cells.	The	insert	from	the	untreated	proliferating	fibroblast	in	particular	

indicates	 a	 point	 in	 the	 randomly	 sampled	 cell	 where	 the	 vimentin	 network	 is	

particularly	dense	with	no	concordant	increase	in	G3BP1	density	or	signal.	However,	

upon	 stress,	 there	 appears	 to	 be	 colocalisation	 between	 stress	 granules	 and	

vimentin.	with	many	granules	forming	adjacent	to	filaments	and	occupying	spaces	

between	vimentin	filaments.	This	result	can	be	observed	best	in	proliferating	cells,	

as	indicated	by	the	insert,	but	appears	to	be	less	pronounced	in	replicative	senescent	

cells,	where	there	are	a	much	greater	number	of	granules	that	do	not	align	as	clearly	

with	 holes	 in	 the	 vimentin	 network.	 However,	 it	 should	 be	 noted	 that	 the	 larger	

granules	in	the	replicative	senescent	sample	appeared	to	form	in	areas	where	the	

vimentin	network	was	less	dense,	potentially	indicating	that	vimentin	constrains	the	

size	 of	 granules	 under	 normal	 conditions.	 Given	 that	 the	 vimentin	 network	 is	
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particularly	 dense	 throughout	 the	 cytoplasm	 in	 these	 senescent	 cells,	 this	 would	

provide	some	explanation	for	the	large	number	of	granules	if	they	were	less	able	to	

shuttle	 across	 the	 cytoskeleton	 and	merge	with	 adjacent	 granules.	 However,	 this	

thick	 and	 bundled	 vimentin	 cytoskeleton	 apparent	 in	 the	 replicative	 senescent	

samples	was	also	present	in	the	prematurely	senescent	samples,	despite	the	much	

larger	size	and	altered	morphotype	observed	in	the	majority	of	these	cells.	Therefore,	

the	overall	structure	of	the	vimentin	cytoskeleton	is	unlikely	to	contribute	to	the	loss	

of	granule	formation	in	a	significant	manner.		One	observation	that	can	be	made	from	

Fig.	7	is	that,	in	both	stressed	and	unstressed	proliferative	and	replicative	senescent	

cells,	some	vimentin	filaments	accumulate	into	a	thin	perinuclear	ring,	with	a	curving	

of	the	vimentin	skeleton	around	the	nucleus.	Whilst	the	vimentin	cytoskeleton	at	this	

ring	is	not	as	thick	as	some	other	bundles	observed	towards	the	periphery	of	the	cell,	

which	may	 indicate	 sites	where	 vimentin	 is	 contributing	 to	 cell	 adhesion	 (Ivaska,	

Pallari,	Nevo,	&	Eriksson,	2007),	it	is	most	notable	in	unstressed	cells	in	the	replicative	

senescent	 image,	 followed	by	the	proliferating	 image.	 In	arsenite-treated	cells,	an	

apparent	 increase	 in	 vimentin	 bundles	 surrounding	 the	 nucleus	 may	 suggest	 a	

thickening	of	this	perinuclear	ring	in	response	to	oxidative	stress.	However,	in	both	

the	treated	and	untreated	stress-induced	senescent	cells	this	ring	is	far	less	apparent,	

with	 no	 such	 bundling	 of	 filaments	 immediately	 surrounding	 the	 nucleus.	 Such	

vimentin	rings	have	been	previously	observed	in	several	studies,	as	a	feature	of	the	

normal	network	(Helmke,	Goldman,	&	Davies,	2000),	as	well	as	a	component	which	

can	 be	 induced	 through	 signalling	 and	 treatment	 (Palladini,	 Finardi,	 &	 Bellomo,	

1996).	Whilst	their	purpose	remains	unknown,	it	should	be	noted	that,	both	in	this	

study	 and	 in	 prior	 studies,	 many	 stress	 granules	 cluster	 in	 a	 perinuclear	 fashion	

(Hinton	et	 al.,	 2010;	 Thomas	et	 al.,	 2005),	 and	 this	 has	previously	 been	 linked	 to	

mature	 granules.	 It	 is	 possible,	 therefore,	 that	 such	 a	 ring	 could	 assist	 granule	

formation	through	providing	nuclear	anchorage	for	granules,	or	potentially	through	

propagation	 of	 nuclear	 signalling	 into	 the	 cytoplasm	 (Georgatos	 &	 Blobel,	 1987)	

which	could	assist	in	stress	granule	formation.	However,	given	that	no	further	data	

regarding	vimentin	function,	expression,	or	network	modulation	was	collected	in	the	

project,	the	above	discussion	of	perinuclear	rings	remains	purely	speculative.	
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Whilst	these	changes	to	the	vimentin	network	are	unlikely	to	explain	the	wholesale	

abrogation	of	granule	formation,	considering	this	cytoskeletal	component	appears	

to	change	conformation	as	opposed	to	being	wholly	disrupted,	this	alteration	could	

be	a	contributing	factor	towards	a	lower	potential	for	granule	formation,	which	could	

play	an	additive	role	in	blocking	their	assembly,	and	conversely	a	thickened	vimentin	

network	 could	 be	 implicated	 in	 the	 increased	 granule	 formation	 observed	 in	

replicative	senescent	cells.	Whilst	this	study	was	ultimately	preliminary	due	to	time	

constraints,	the	pilot	data	demonstrating	that	stress	granules	appear	to	interact	with	

the	 vimentin	 cytoskeleton	 in	 granule-positive	 cells	 may	 identify	 intermediate	

filaments	as	novel	factors	influencing	granule	assembly.	In	order	to	further	test	to	

what	 extent	 vimentin	 regulates	 granule	 formation,	 it	 is	 recommended	 that	 live	

imaging	 with	 fluorescent	 constructs	 for	 vimentin	 and	 stress	 granule	 markers	 be	

performed	to	observe	whether	granules	are	transported	along	filaments,	following	

the	protocols	of	Nadezhdina	et	al.	(2010).	Furthermore,	disruption	of	the	vimentin	

cytoskeleton	 through	 treatment	with	 the	 anti-filament	 antibody	 (Lieber	 &	 Evans,	

1996;	 Pruss	 et	 al.,	 1981)	 could	 also	 help	 to	 determine	 to	 what	 extent	 vimentin	

functions	in	granule	maintenance,	assembly,	and	transport.		
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Stress	Granule	Formation	is	Inhibited	Following	X-ray	Exposure	
	

In	order	to	determine	potential	factors	underlying	the	differential	dynamics	of	stress	

granule	 formation	between	proliferating,	 replicative	senescent	and	stress-induced	

premature	 senescent	 cells,	 it	 was	 necessary	 to	 establish	 whether	 stress	 granule	

formation	 occurred	 as	 an	 initial	 response	 to	 ionising	 radiation	 exposure.	 It	 is	

becoming	 increasingly	 established	 that	 stress	 granules	 act	 as	 a	 nexus	 for	 several	

signalling	pathways	(Kedersha	et	al.,	2013),	and	their	formation	has	recently	been	

linked	to	inhibition	of	the	mTOR	(Thedieck	et	al.,	2013;	Wippich	et	al.,	2013)	and	JNK	

pathways	(Arimoto	et	al.,	2008),	as	well	as	alteration	of	RhoA/ROCK1	signalling	(Tsai	

&	 Wei,	 2010).	 It	 is	 therefore	 possible	 that	 the	 formation	 of	 stress	 granules	 in	

response	 to	 ionising	 radiation	 may	 induce	 alterations	 in	 signalling	 that	 are	

responsible	for	the	abrogated	stress	granule	formation	observed	in	SIPS	cells.	

	

A	number	of	studies	have	demonstrated	that	exposure	to	non-ionising	radiation	such	

as	UV	results	in	the	cytoplasmic	shuttling	of	established	stress	granule	components	

such	as	hnRNP	A1	and	B1	(Guil,	Long,	&	Cáceres,	2006;	van	der	Houven	van	Oordt	et	

al.,	2000),	and	the	subsequent	formation	of	bona	fide	stress	granules	albeit	with	non-

canonical	 disassembly	 kinetics	 (Moutaoufik	 et	 al.,	 2014).	 However,	 no	 published	

work	has	yet	demonstrated	such	cytoplasmic	shuttling	or	stress	granule	assembly	in	

response	 to	 exposure	 to	 ionising	 radiation	 (Haley	 et	 al.,	 2009),	 leading	 some	 to	

conclude	that	stress	granules	do	not	form	in	response	to	ionising	radiation	exposure	

and	 to	 categorise	 stresses	 depending	 on	 their	 capacity	 to	 induce	 stress	 granules	

(Arimoto	et	al.,	2008;	Takahashi	et	al.,	2013).	Despite	the	lack	of	evidence	supporting	

radiation-induced	stress	granule	formation,	it	remained	important	to	examine	their	

potential	role	in	the	radiation	response,	as	stress	granule	induction	appears	to	differ	

depending	on	a	number	of	factors	including	the	cell	strain	examined	and	the	stress	

itself;	 this	 phenomenon	 is	 exemplified	 by	 the	 inconsistent	 results	 regarding	 the	

extent	to	which	stress	granules	form	in	response	to	hydrogen	peroxide	treatment,	

wherein	some	papers	observed	stress	granule	formation	(Emara	et	al.,	2012;	Isabelle	

et	al.,	2012)	where	others	did	not	 (Takahashi	et	al.,	2013).	 It	 is	 therefore	possible	

that,	 although	 previous	 studies	 did	 not	 observe	 radiation-induced	 granules,	 their	
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formation	 could	 still	 occur	 albeit	 under	 non-canonical	 conditions.	 Furthermore,	

recent	 research	 examining	 post-translational	 protein	 modification	 in	 response	 to	

ionising	 radiation	 found	 that	 a	 number	 of	 proteins	 involved	 in	 stress	 granule	

formation,	 including	 the	 Initiation	 Factor	 EIF5A,	 underwent	 acetylation	 following	

exposure	to	a	2	Gy	dose,	and	further	detected	an	upregulation	in	the	histone	acetyl	

transferase	 KAT2B	 (Barjaktarovic	 et	 al.,	 2015).	 Considering	 KAT2B	 has	 previously	

been	implicated	in	stabilising	stress	granules	following	formation		

	
Figure	8.	Initial	characterisation	of	stress	granule	formation	in	response	to	10Gy	X-rays.	Fluorescent	microscope	
image	(40x)	showing	a	large	increase	in	phosphorylated	H2AX	(TRITC),	but	no	concordant	G3BP1	
(FITC)granulation.	Nuclear	stain	is	DAPI.	Scale	bar=10µm.	

In	 order	 to	 determine	 the	 extent	 to	which	 ionising	 radiation	 doses	 induce	 stress	

granule	 formation,	 the	 response	 of	 the	 DD1	 cell	 strain	 to	 ionising	 radiation	 was	

characterised	 through	 fluorescence	 microscopy,	 as	 discussed	 in	 Materials	 and	

Methods,	prior	to	more	in-depth	analysis	through	confocal	microscopy.	Cultures	of	

DD1	fibroblasts	were	fixed	1h	and	3h	after	exposure	to	10	Gy	of	X-rays.	Coverslips	

were	then	stained	with	an	antibody	for	the	stress	granule	marker	G3BP1,	and	with	

an	antibody	for	the	DNA-damage	response	marker	γH2AX.	As	seen	in	Fig.	8,	exposure	

to	 a	 10	 Gy	 dose	 of	 ionising	 radiation	 did	 not	 result	 in	 the	 formation	 of	 G3BP1-
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containing	 stress	 granules	 either	 1h	 or	 3h	 post-irradiation	 despite	 a	 significant	

increase	in	the	number	of	γH2AX	foci.	This	indicates	that	stress	granule	assembly	is	

not	an	immediate	response	to	X-ray	irradiation,	and	further	seems	to	suggest	that	

stress	granules	do	not	form	indirectly	as	a	result	of	DNA	damage	response	signalling	

or	of	an	 increase	 in	reactive	oxygen	species,	both	of	which	would	occur	 following	

irradiation.	 This	 result	 is	 contrary	 to	 a	 previous	 study	 examining	 cellular	 stress	

responses	activated	following	UV	exposure,	wherein	stress	granules	were	found	to	

form	 as	 early	 at	 1h	 post-irradiation	 and	 peak	 after	 4h,	 playing	 a	 crucial	 role	 in	

promoting	 cell	 survival	 (Pothof	 et	 al.,	 2009).	 This	 observed	 contrast	 between	 a	

concerted	granule	formation	in	response	to	UV	radiation,	and	lack	thereof	following	

X-ray	 exposure,	 is	 likely	 the	 result	 of	 differential	 responses	 to	 different	 forms	 of	

ionising	radiation,	but	suggests	that	stress	granule	formation	is	not	a	component	of	

the	DDR	itself	but	may	complement	this	response	under	certain	conditions	to	help	

enhance	survivability.		

	

Whilst	 the	 majority	 of	 studies	 examining	 stress	 granule	 assembly	 detect	 their	

formation	 within	 the	 first	 hour	 after	 stress	 induction,	 a	 recent	 study	 using	 non-

ionising	radiation	found	that	stress	granules	could	form	up	to	18h	following	exposure	

to	stress	(Moutaoufik	et	al.,	2014).	Whilst	this	study	utilised	UV	radiation	as	the	class	

of	ionising	radiation,	which	as	shown	above	can	induce	a	different	stress	response	in	

comparison	to	X-ray	exposure,	the	finding	of	stress	granules	forming	at	later	times	

following	exposure	lead	to	the	possibility	that	X-rays	may	not	induce	stress	granules	

in	the	short	term,	but	may	instead	produce	granules	with	a	slight	delay,	potentially	

to	 aid	 in	 promoting	 survival	 and	 recovery	 only	 once	 the	 initial	 DNA	 damage	was	

repaired.	In	order	to	determine	whether	such	a	delay	in	stress	granule	assembly	was	

occurring	in	response	to	ionising	radiation,	DD1	cells	were	irradiated	at	a	dose	of	10	

Gy	and	analysed	18h	post-irradiation.		However,	the	localisation	of	G3BP1	remained	

diffuse	throughout	the	cytoplasm	with	no	discernable	difference	from	unirradiated	

cells	 (Fig.	 8).	 The	 absence	 of	 stress	 granules	 after	 18h	 was	 particularly	 notable	

considering	 the	γH2AX	 foci	had	significantly	decreased	 in	number	by	 this	point	 in	

time.	 This	 suggests	 that,	 whilst	 the	 DNA	 damage	 response	 was	 still	 ongoing	 in	

irradiated	 cells	 with	 some	 foci	 likely	 to	 remain	 persistent	 as	 observed	 previously		
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(Fumagalli	 et	 al.,	 2012;	 Marková	 et	 al.,	 2011),	 the	 majority	 of	 DNA	 repair	 had	

occurred	without	the	concordant	assembly	of	stress	granules	in	the	cytoplasm.	This	

further	 suggests	 that	 the	 DNA	 damage	 response	 itself	 does	 not	 require	 stress	

granules	to	function,	instead	suggesting	that	the	UV-induced	granules	seen	by	Pothof	

et	al.	(2009)	were	additive	in	nature	and	limited	to	a	specific	type	of	irradiation,	as	

opposed	to	being	a	key	constituent	of	the	universal	DNA	damage	response.	

	

Whilst	these	results	indicate	that	a	10Gy	X-ray	does	not	induce	formation	of	G3BP1-

containing	granules,	it	remained	important	to	consider	the	possibility	that	dosimetry	

could	play	an	important	role	in	ionising	radiation-induced	stress	granule	formation.	

An	increasing	amount	of	evidence	is	now	emerging	that	several	responses	to	ionising	

radiation	exposure	differ	in	a	nonlinear	fashion	dependent	on	dose,	with	the	extent	

of	 mitochondrial	 protein	 import	 decreasing	 then	 subsequently	 increasing	 with	

progressively	higher	doses	(Pandey	et	al.,	2006),	and	with	low-dose	ionising	radiation	

resulting	in	the	formation	of	a	proportionally	greater	number	of	DNA	strand	breaks	

compared	 with	 higher	 doses	 (Rombouts	 et	 al.,	 2013).	 Furthermore,	 DNA	 repair	

mechanisms,	examined	using	γH2AX	foci	formation	as	a	proxy,	were	more	persistent	

in	 lens	 epithelial	 tissues	 following	 low-dose	 irradiation	 than	 following	high	doses,	

suggesting	that	cells	exposed	to	lower	doses	experience	a	delay	in	the	repairing	of	

DNA	breakages	 (Markiewicz	 et	 al.,	 2015).	 These	 studies	 indicate	 that	 a	 variety	 of	

cellular	responses,	including	those	associated	with	the	repair	and	damage	mitigation,	

do	 not	 follow	 a	 linear	 trend	 against	 dose	 and	 instead	 display	 more	 complex	

patterning	likely	brought	about	by	the	interplay	between	several	different	signalling	

pathways.	 Considering	 these	 complex	 trends	 and	 differential	 responses	 are	

becoming	 increasingly	apparent,	 and	 further	 considering	 that	 low-dose	exposures	

appear	 to	 require	a	proportionally	greater	and	more	sustained	 repair	programme	

than	in	higher-dose	counterparts	(Markiewicz	et	al.,	2015),	it	remained	possible	that	

low	doses	of	ionising	radiation	could	induce	the	formation	of	stress	granules,	but	that	

this	formation	was	lost	with	increasing	doses.	To	test	this	hypothesis	DD1	cells	were	

cultured	 on	 coverslips	 and	 irradiated	 at	 0.28	 Gy,	 which	 falls	 below	 the	 currently	

accepted	threshold	for	low	doses,	and	at	2.26	Gy	which,	whilst	above	the	threshold	

for	low	doses,	still	falls	beneath	the	LD50	values	for	whole-body	exposure	calculated	
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in	 previous	 studies,	 which	 fall	 between	 3-4.5	 Gy	 (Mole,	 1984;	 Strom,	 2003),	 and	

therefore	represents	an	intermediate	value	between	low	and	high	doses.	

	
Figure	9.	Low-	and	mid-dose	ionising	radiation	do	not	induce	stress	granules.	Fluorescence	microscope	images	
of	phosphorylated	H2AX	(TRITC)	and	G3BP1	(FITC)	at	40x	magnification.	Nuclear	stain	is	DAPI.	Scale	bar=10µm.	

Immunofluorescent	analysis	of	γH2AX	foci	in	stained	samples	exposed	to	the	above	

three	doses	was	used	 to	 validate	 the	 success	 of	 cell	 exposure	 to	 different	 doses.	

Concordant	 with	 exposure	 to	 lower	 doses	 of	 radiation,	 the	 number	 of	 foci	 per	

nucleus	 was	 visibly	 lower	 in	 both	 the	 low-dose	 and	 mid-dose	 exposed	 cultures	
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compared	to	those	exposed	to	10	Gy,	as	seen	in	Fig.	9,	indicating	a	less	extensive	DNA	

damage	response	due	to	fewer	DNA	strand	breaks.	Considering	the	number	of	γH2AX	

foci	 formed	 per	 cell	 has	 been	 used	 in	 a	 number	 of	 previous	 studies	 to	 quantify	

radiation	doses,	the	differential	foci	number	observed	in	these	irradiated	DD1	cells	

acts	as	a	robust	indicator	that	cells	have	been	exposed	to	different	doses.	With	this	

confirmed,	staining	against	G3BP1	was	performed	to	determine	to	what	extent	low-	

and	mid-dose	radiation	exposure	resulted	in	short-term	formation	of	stress	granules.	

However,	 neither	 the	 0.28	 Gy	 nor	 2.26	 Gy-exposed	 cultures	 formed	 G3BP1-

containing	stress	granules	either	1h	or	3h	post-irradiation,	as	seen	in	Fig.	9.	Whilst	

only	three	doses	were	examined,	the	initial	assumption	of	this	result	is	that	stress	

granules	 are	 not	 induced	 by	 ionising	 radiation	 as	 a	 short-term	 stress	 response,	

regardless	of	dose.	Furthermore,	no	G3BP1-containing	stress	granules	formed	18h	

post-irradiation	 with	 either	 0.28	 Gy	 or	 2.26	 Gy,	 indicating	 that	 a	 delayed	 stress	

granule	 formation	 also	 seems	 unlikely	 following	 X-ray	 exposure.	 This	 result	 is	 in	

contrast	to	previous	observations	of	UVC-induced	stress	granules	(Moutaoufik	et	al.,	

2014),	and	therefore	highlights	a	potential	further	difference	in	the	response	of	cells	

to	differing	wavelengths	of	electromagnetic	radiation.	

	

Whilst	 these	results	were	consistent	with	previous	reports	referring	to	the	 lack	of	

stress	 granule	 formation	 following	 ionising	 radiation	 exposure,	 the	 result	 itself	

remains	perplexing	considering	the	extensive	body	of	literature	demonstrating	that	

stress	granules	form	to	counteract	the	deleterious	effects	of	oxidative	stress.	When	

further	considering	that	a	major	cellular	effect	of	ionising	radiation	is	the	production	

of	reactive	oxygen	species	due	to	the	lysis	of	water	molecules,	it	would	seem	logical	

for	cells	to	form	granules	as	part	of	a	stress	response.	

	

Prior	 studies	 suggested	 that	 stresses	 could	 be	 categorised	 depending	 on	 the	

prevailing	cellular	response	pathways,	primarily	whether	a	cell	attempts	to	mitigate	

damage	 to	 survive	 or	 to	 activate	 apoptotic	 pathways	 to	 bring	 about	 cell	 death.	

Although	emerging	evidence	suggests	that	ionising	radiation	can	also	induce	survival	

pathways	through	Akt	signalling	in	T-cells	(Cataldi	et	al.,	2009),	the	primary	response	

to	ionising	radiation	is	the	induction	of	apoptosis	following	both	low-	and	high-dose	
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irradiation.	 Considering	 arsenite-induced	 stress	 granules	 have	 previously	 been	

shown	 to	 modulate	 MAPK	 signalling	 to	 inhibit	 apoptosis	 (Arimoto	 et	 al.,	 2008),	

providing	 an	 example	 of	 a	 survival	 mechanism	 halting	 cell	 death	 pathways,	 it	 is	

possible	that	signalling	pathways	could	be	induced	following	an	apoptosis-inducing	

stress	to	inhibit	stress	granule	formation.	
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	 Figure	10.	Ionising	radiation	ablates	the	granule-forming	potential	of	fibroblasts.	Confocal	images	of	DD1	

fibroblasts	stained	for	phosphorylated	H2AX	(AF488)	and	G3BP1	(Cy3)	before	and	after	exposure	to	10Gy	X-ray	
radiation	and/or	sodium	arsenite,	at	63x	magnification.	Nuclear	stain	is	DAPI.	Scale	bar=10µm.	



	 51	

Whilst	the	previous	observations	suggested	that	stress	granules	were	not	formed	as	

part	of	either	a	short-	or	mid-term	radioprotective	response	to	X-rays,	and	therefore	

an	early	stress	granule	formation	did	not	explain	the	abrogation	of	granule	formation	

in	stress-induced	senescent	cells,	these	results	did	not	preclude	the	possibility	that	

exposure	 to	 ionising	 radiation	 could	 in	 itself	 affect	 the	 capacity	 for	 cells	 to	 form	

granules.	 In	 order	 to	 test	 this,	 cells	 were	 exposed	 to	 10Gy	 of	 X-rays,	 and	 were	

challenged	with	arsenite	30	mins,	1h,	3h,	6h	and	18h	post-irradiation	to	determine	

the	number	of	granules	formed	under	these	conditions,	as	well	as	the	percentage	of	

cells	capable	of	forming	granules.	In	the	first	such	experiment,	cells	were	stained	with	

antibodies	for	G3BP1	and	gH2AX.	This	allowed	granule	activity	to	be	assayed	across	

a	variety	of	time	points,	but	also	confirmed	the	efficacy	of	 irradiation	through	the	

strength	 of	 gH2AX	 staining	 and	 demonstrates	 that	 images	 are	 taken	 at	 different	

points	in	time	due	to	the	progression	of	foci	assembly	and	dispersal	than	can	be	seen	

across	 the	 time	points.	As	 soon	as	30	minutes	after	exposure	 to	10Gy	of	 ionising	

radiation,	 stress	 granule	 formation	 in	 response	 to	 arsenite	 treatment	was	 almost	

entirely	 disrupted,	 with	 only	 a	 very	 small	 number	 of	 cells	 staining	 positive	 for	

granules	containing	G3BP1	(Fig.	10).	Furthermore,	any	cells	that	did	form	granules	

indicated	 a	 much	 lower	 potential	 for	 formation,	 with	 only	 a	 few	 such	 granules	

forming	per	cell	compared	to	the	much	larger	numbers	observed	in	unirradiated	cells	

exposed	 to	arsenite.	This	 impaired	ability	 to	 form	granules	persisted	 in	 the	short-

term,	with	cells	after	both	1h	and	3h	also	showing	significantly	lower	percentages	of	

granule-positive	cells.	However,	this	inhibition	of	stress	granule	formation	appeared	

to	 remedy	 over	 time,	 as	 indicated	 by	 the	 increase	 in	 the	 percentage	 of	 granule-

positive	cells	with	each	successive	time	point	post-irradation.	The	high	variability	in	

proportions	 of	 granule-positive	 cells	 following	 6h	 (Fig.	 10B)	 likely	 reflects	 a	 slight	

stochasticity	in	the	recovery	of	normal	granule	function.		However,	challenging	cells	

with	arsenite	18h	post-irradiation	still	did	not	result	in	as	high	a	percentage	of	cells	

forming	granules	as	in	unirradiated	cultures,	with	only	83%	of	cells	staining	positive	

for	 G3BP1-containing	 granules	 compared	 to	 95%	 in	 sham-irradiated	 cultures.	

Therefore,	whilst	this	inhibition	of	granule	formation	appears	to	be	most	pronounced	

immediately	following	radiation	exposure,	it	appears	that	irradiated	cultures	contain	

a	proportion	of	cells	which	require	a	greater	amount	of	time	to	recover	their	granule-
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forming	 potential,	 and	may	 continue	 to	 lack	 this	 granule-forming	 capability	 over	

sustained	periods.	The	extent	to	which	this	is	the	case	would	require	further	study	

with	a	greater	number	of	time	points,	such	as	48h,	to	determine	whether	there	is	any	

difference	from	unirradiated	samples	by	this	time.	
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Figure	11.	Neither	G3BP1	nor	TIAR	assemble	into	stress	granules	immediately	following	ionising	radiation	and	
sodium	arsenite.	Confocal	images	of	TIAR	(Cy3)	and	G3BP1	(AF488)	at	63x	magnification.	Nuclear	stain	is	DAPI.	
Scale	bar=10µm.	
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However,	while	 these	 images	 do	 suggest	 a	 strong	 inhibition	 of	 G3BP1-containing	

granule	 formation,	 there	was	always	a	possibility	 that	 stress	granules	 still	 formed	

through	other	mechanisms	but	that	G3BP1	was	not	included.	It	has	been	previously	

established	that	G3BP1	can	play	other	roles	 following	 ionising	radiation	exposure,	

such	as	being	recruited	to	nuclear	bodies	which	regulate	the	positioning	and	post-

translational	modification	of	a	number	of	nuclear	factors	(Dellaire	&	Bazett-Jones,	

2004;	Liu	et	al.,	2010),	and	could	therefore	be	the	case	that	G3BP1	was	excluded	from	

granules	to	allow	for	functions	elsewhere	in	stress	responses	to	occur.	 In	order	to	

assay	whether	this	was	the	case,	a	G3BP1-TIAR	co-stain	was	performed.	As	seen	in	

Fig.	11,	TIAR-containing	granule	formation	was	also	decreased	following	irradiation,	

and	the	only	granules	that	formed	in	cells	contained	both	G3BP1	and	TIAR,	indicating	

that	 TIAR	 did	 not	 associate	 with	 any	 G3BP1-negative	 granules	 following	 ionising	

radiation.	This	further	suggests	that	stress	granules	in	their	entirety	were	abrogated	

as	a	short-term	effect,	as	opposed	to	the	exclusion	of	one	factor.	However,	as	with	

the	G3BP1-gH2AX	staining,	there	appeared	to	be	a	recovery	in	terms	of	stress	granule	

potential	beginning	at	approximately	3h	post-irradiation.	Therefore,	whilst	 it	does	

appear	to	be	the	case	that	exposure	to	X-rays	antagonises	stress	granule	formation	

in	DD1	cells	in	the	short-term,	this	observed	recovery	of	the	majority	of	cells	by	18h	

post-irradiation	 is	 inconsistent	 with	 the	 pronounced	 lack	 of	 stress	 granules	 in	

arsenite-treated	 cells	 14	 days	 post-irradiation.	 As	 a	 result,	 it	 is	 likely	 that	 other	

mechanisms	are	at	play	that	result	in	this	loss	of	granule	formation,	which	may	be	

related	 to	 differential	 signalling	 pathways	 activated	 during	 the	 development	 of	 a	

premature	senescent	phenotype	compared	to	a	replicative	senescent	onset.	Were	

this	to	be	the	case,	this	impeded	granule	formation	in	response	to	stress	would	only	

be	observed	several	days	following	the	irradiation.	
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Canonical	Wnt	Signalling	Activation	Does	Not	Occur	Following	Ionising	
Radiation	in	Fibroblast	Cultures	
	

Whilst	the	discovery	that	a	short-term	response	to	X-ray	exposure	is	the	loss	of	stress	

granule-forming	capabilities	in	the	DD1	cell	strain	does	not	seem	to	provide	a	direct	

explanation	for	the	lack	of	granules	in	stressed	premature	senescent	cells	due	to	the	

differences	in	time	post-irradiation	between	these	two	results,	the	finding	is	still	a	

novel	result	that	merits	further	investigation.	An	important	question	to	consider	is	

how	a	disruption	of	stress	granules	could	be	brought	about	through	known	responses	

to	X-ray	exposure.	 The	knockdown	of	G3BP1	using	RNA	 interference	 reduced	 the	

number	of	granule-positive	cells	in	the	work	of	Matsuki	et	al.	(2013).	Whilst	the	level	

of	impairment	the	authors	observed	was	not	as	pronounced	as	in	the	present	study,	

this	could	have	been	due	to	differences	in	cell	type	as	their	studies	were	carried	out	

in	embryonic	liver	cells	as	well	as	in	HeLa	cells.	It	therefore	remained	possible	that	

G3BP1	protein	levels	were	decreased	as	an	early	response	to	ionising	radiation,	and	

that	 fewer	 cells	 were	 able	 to	 nucleate	 stress	 granules	 as	 a	 result.	 Western	 blot	

analysis	 of	 whole	 cell	 lysates	 with	 a	 G3BP1	 antibody	 was	 performed	 to	 test	 this	

possibility.	However,	G3BP1	protein	 levels	remained	relatively	consistent	between	

unirradiated	 and	 irradiated	 samples	 at	 1h	 and	 3h	 post-irradiation,	 indicating	 that	

G3BP1	 degradation	 or	 downregulation	 was	 not	 responsible	 for	 the	 decrease	 in	

granule	formation	in	these	cells	(Fig.	12).	Furthermore,	a	larger	G3BP1	immunoblot	

18h	following	irradiation	may	indicate	that	G3BP1	upregulation	occurs	as	a	radiation	

response,	although	it	remains	difficult	to	draw	definitive	conclusions	from	this	data	

in	the	absence	of	either	technical	or	biological	replicates.	
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Figure	12.	G3BP1	expression	is	not	significantly	altered	following	ionising	radiation	exposure.	Western	blot	for	
G3BP1	following	exposure	to	10Gy	X-ray	radiation.	GAPDH	probing	confirms	equal	loading	of	samples.	

	

	

Although	a	number	of	proapopotic	and	prosurvival	signalling	pathways	are	activated	

in	 response	 to	 ionising	 radiation	 (Valerie	 et	 al.,	 2007),	 few	 of	 these	 have	 been	

observed	 to	 directly	 influence	 the	 formation	 of	 stress	 granules.	 Whilst	 the	 JNK	

pathway	 has	 previously	 been	 implicated	 in	 the	 localisation	 of	 the	 neuropathy-

associated	protein	TDP-43	to	stress	granules,	these	granules	were	still	able	to	form	

following	JNK	inhibition,	suggesting	that	this	pathway	is	not	likely	to	play	a	role	in	

granule	 formation	 itself	 (Meyerowitz	 et	 al.,	 2011).	 Furthermore,	 while	 the	 same	

study	 did	 show	 that	 inhibition	 of	 both	 the	 ERK1/2	 and	 p38	 pathways	 abrogated	

granule	 assembly,	 both	 of	 these	 pathways	 consistently	 show	 activation	 following	

irradiation	(Jung	et	al.,	2007;	Wang	et	al.,	2005;	Wang,	Liu,	&	Zhou,	2011),	and	would	

therefore	be	expected	to	either	have	no	effect	on	granule	dynamics	or	to	enhance	

their	formation	and	therefore	seem	unlikely	to	play	a	role	in	any	putative	blockage	

of	stress	granule	activity.	

	

Investigations	in	a	number	of	cell	lines	have	recently	revealed	that	the	Wnt	signalling	

pathway	can	also	be	activated	 following	 irradiation,	and	studies	 in	cancer	models	

suggest	 that	 increased	 canonical	 Wnt	 signalling,	 as	 determined	 through	
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quantification	of	β-catenin	expression,	is	correlated	with	increased	radioresistance,	

whilst	inhibition	of	Wnt	signalling	results	in	a	concomitant	reduction	in	cell	viability	

post-radiation	 (Asuthkar	 et	 al.,	 2012;	 Kim	 et	 al.,	 2012).	 A	 number	 of	 protein	

components	of	both	the	canonical	and	non-canonical	Wnt	signalling	pathways	were	

also	found	to	be	acetylated	following	irradiation,	further	suggesting	that	modulation	

of	the	Wnt	pathway	 is	an	early	cellular	response	to	exposure	to	 ionising	radiation	

(Barjaktarovic	et	al.,	2015).	Further	to	being	identified	as	an	increasingly	important	

radiation-associated	pathway,	the	Wnt	pathway	is	also	capable	of	antagonising	stress	

granule	 formation	 through	 sequestration	 of	 the	 stress	 granule	 protein	 G3BP1	 by	

Dishevelled-2	 (Dvl-2),	 preventing	 it	 from	 nucleating	 other	 stress	 granule	 proteins	

(Sahoo	et	al.,	2012).	Wnt	signalling	is	therefore	an	interesting	candidate	for	further	

investigation	 in	 the	context	of	 the	short-term	radiation	 response,	particularly	 in	a	

fibroblast	cell	line,	considering	most	work	on	Wnt	in	the	context	of	radiation	has	used	

cancer	 cell	models,	 and	 it	was	 hypothesised	 that	 the	 activation	 of	Wnt	 signalling	

following	exposure	to	ionising	radiation	could	result	in	the	blockage	of	stress	granule	

formation	through	a	Dvl-2-dependent	mechanism.		

	

If	 the	 activation	 of	 Wnt	 signalling	 is	 involved	 in	 the	 stoppage	 of	 stress	 granule	

formation	in	response	to	ionising	radiation	then	it	would	be	expected	that,	following	

ionising	radiation,	the	level	of	Wnt	activation	would	correspond	to	the	decrease	in	

stress	granule	formation,	most	likely	through	an	immediate	activation	that	begins	to	

subside	after	the	first	3	hours.	In	order	to	determine	whether	this	was	occurring,	cells	

were	exposed	to	10Gy	of	X-ray	radiation	prior	to	immunostaining	with	a	b-catenin	

antibody.	b-catenin	is	a	well-established	component	of	Wnt	signalling	(Kikuchi,	2003;	

MacDonald,	Tamai,	&	He,	2009),	and	a	major	transducer	of	signals	from	the	plasma	

membrane	 during	 the	 canonical	 Wnt	 pathway.	 When	 Wnt	 signalling	 is	 inactive,	

cytoplasmic	 b-catenin	 interacts	 with	 glycogen	 synthase	 kinase	 3b	 (GSK3b)	 in	 a	

complex	with	an	axin	scaffold	and	adenomatous	polyposis	coli	protein	(Metcalfe	&	

Bienz,	 2011).	 This	 complex	 facilitates	 the	 phosphorylation	 of	 the	 b-catenin	 N-

terminus	by	GSK3b,	which	in	turn	results	in	the	ubiquitination	of	b-catenin	via	the	F-

box	protein	FWD1	and	its	subsequent	degradation	by	the	proteasome	(Kitagawa	et	
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al.,	 1999).	 Therefore,	 under	 normal	 conditions,	 b-catenin	 is	 cytoplasmic	 and	

maintained	 at	 low	 concentrations.	However,	 upon	binding	 of	Wnt	 to	 the	 Frizzled	

transmembrane	 receptor	 and	 associated	 proteins,	 members	 of	 the	 Dishevelled	

protein	family	are	recruited	to	the	Frizzled	complex	(Gao	&	Chen,	2010;	Wong	et	al.,	

2003)	where	they	block	the	phosphorylation	of	b-catenin	by	GSK3b	 (Fiedler	et	al.,	

2011),	 inhibiting	 its	degradation.	As	a	result,	b-catenin	accumulates	 in	 the	cytosol	

and	is	translocated	into	the	nucleus,	where	it	regulates	binds	to	transcription	factors	

including	 Lymphoid	 Enhancer	 Factor	 1	 to	modulate	 gene	 expression	 (Eastman	 &	

Grosschedl,	 1999).	 Considering	 this	 canonical	 Wnt	 pathway	 relies	 on	 the	

translocation	 of	 hypophosphorylated	 b-catenin	 to	 function,	 immunofluorescent	

probing	would	reveal	a	nuclear	 localisation	 for	b-catenin	 following	Wnt	signalling.	

This	staining	has	been	used	in	several	previous	studies	as	a	marker	for	canonical	Wnt	

activation,	and	therefore	was	adopted	for	use	in	this	study	(Liu	et	al.,	2011;	Xie	et	al.,	

2008).	

	

In	 order	 to	 quantify	 the	 extent	 of	 Wnt	 signalling	 activation	 through	 b-catenin	

accumulation,	 the	 colocalisation	 of	 b-catenin	 with	 the	 nuclear	 marker	 DAPI	 was	

examined.	 In	 sham-irradiated	 control	 cells,	 no	 b-catenin	 nuclear	 fraction	 was	

observed	in	any	cell,	indicating	that	under	normal	conditions,	Wnt	signalling	was	not	

active	 in	DD1	cultures.	However,	 the	same	result	was	observed	 in	cells	 that	were	

fixed	30	mins,	1h,	3h,	6h	or	18h	post-irradiation	(Fig.	13).	This	result	suggests	that	b-

catenin	accumulation	was	not	occurring	at	any	of	these	time		
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Figure	13.	Wnt	signalling	is	 likely	not	activated	in	response	to	X-rays.	Confocal	 image	of	fibroblasts	stained	
with	b-catenin	(Cy3)	and	DAPI	following	exposure	to	10Gy	X-rays	at	63x	magnification.	Scale	bar=10µm.	
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points,	and	therefore	that	activation	of	canonical	Wnt	signalling	was	not	utilised	as	a	

short-term	response	to	ionising	radiation	in	DD1	cells.	

	

However,	there	still	remained	the	possibility	that	a	component	of	the	response	to	

ionising	radiation	could	have	primed	the	cells	to	activate	the	Wnt	pathway	upon	the	

onset	of	 a	 subsequent	 stress.	 This	would	 result	 in	 cells	only	 activating	Wnt	when	

necessary,	preventing	aberrant	cell	function	until	such	a	time.	In	order	to	test	this,	

irradiated	 cells	 were	 treated	 with	 sodium	 arsenite	 and	 stained	 for	 b-catenin.	

However,	exposure	of	irradiated	cells	to	arsenite	also	had	no	effect	on	the	proportion	

of	cells	containing	nuclear	b-catenin,	with	no	nuclei	appearing	to	contain	b-catenin	

in	culture	at	any	time	point.	This	result	suggests	that	Wnt	signalling	is	not	activated	

in	response	to	a	second	stress	following	ionising	radiation,	and	is	consistent	with	the	

existing	 literature	 that	 shows	 that	 a	 variety	 of	 stresses	 known	 to	 induce	 stress	

granule	 formation,	 including	 sodium	 arsenite	 and	 hydrogen	 peroxide,	 negatively	

modulate	the	canonical	Wnt	pathway	through	the	downregulation	of	b-catenin	in	a	

number	of	embryonic	stem	cell	lines	(Hong	&	Bain,	2012;	Shin	et	al.,	2004),	as	well	as	

through	the	diversion	of		b-catenin	away	from	Wnt-associated	transcription	factors	

(Almeida	et	al.,	2007),	alongside	observations	 in	neuroblastoma	cultures	that	Wnt	

pathway	member	overexpression	provides	a	protective	effect	against	such	chemicals	

(Zhang,	Bahety,	&	Ee,	2015).		

	

Together,	 these	 results	 appear	 to	 suggest	 that	 the	 canonical	Wnt	 pathway	 is	 not	

activated	following	X-ray	exposure	in	DD1	cells,	and	furthermore	is	not	activated	by	

exposure	to	sodium	arsenite	in	either	irradiated	or	unirradiated	cultures.	However,	

it	should	be	noted	that	several	caveats	related	to	both	experimental	design	and	to	

the	nature	of	the	Wnt	signalling	pathway	render	this	result	ultimately	inconclusive.	

Firstly,	 the	Wnt	 signalling	pathway	 is	 not	 limited	entirely	 to	b-catenin	dependent	

pathways.	 Several	 non-canonical	Wnt	 pathways	 exist	 which	 utilise	 crosstalk	 with	

other	 signalling	 pathways	 in	 order	 to	 achieve	 a	 result	 independent	 of	 b-catenin	

accumulation,	 including	 through	 cooperation	with	 JNK	 signalling	 via	 activation	 of	
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small	GTPases	such	as	Rho	and	Rac	(Rao	&	Kühl,	2010;	Yamanaka	et	al.,	2002),	as	well	

as	through	activation	of	calcium	signalling	(Dejmek	et	al.,	2006).	These	non-canonical	

pathways	 have	 been	 shown	 not	 only	 to	 function	 separately	 from	 the	 canonical	

signalling,	 but	 are	 also	 capable	 of	 modulated	 b-catenin	 in	 both	 a	 positive	 and	

negative	manner,	including	through	promoting	degradation	through	the	proteasome	

(Mikels	 &	 Nusse,	 2006;	 Topol	 et	 al.,	 2003).	 When	 investigating	 the	 mechanisms	

through	 which	 Dishevelled-2	 was	 capable	 of	 repressing	 stress	 granule	 assembly,	

Sahoo	et	al.	(2012)	determined	that	in	addition	to	canonical	Wnt	signalling	resulting	

in	the	inhibition	of	granule	formation,	treatment	of	cells	with	Wnt5a,	which	activates	

the	non-canonical	Wnt	signalling	pathway		(Grumolato	et	al.,	2010),	was	also	capable	

of	producing	a	reduction	in	stress	granule	formation.	As	a	result,	the	apparent	lack	

of	b-catenin	translocation	and	accumulation	in	irradiated	cultures	does	not	preclude	

the	possibility	that	non-canonical	Wnt	pathways	were	instead	activated,	bypassing	

b-catenin	as	a	signalling	molecule.	Further	tests	for	Wnt	signalling	activation	would	

confirm	to	what	extent	non-canonical	activation	was	occurring,	for	example	through	

the	 assaying	 of	 gene	 expression	 changes	 following	 irradiation	 using	 previously-

developed	luciferase	assays	(Ohkawara	&	Niehrs,	2011).		

	

The	second	issue	relating	to	the	b-catenin	nuclear	translocation	assay	is	the	lack	of	a	

positive	control.	 It	 is	possible	to	 induce	the	accumulation	and	subsequent	nuclear	

import	of	b-catenin	through	the	incubation	of	cell	cultures	with	Frizzled	ligands	such	

as	Wnt3a	protein,	which	is	readily	detectable	through	immunofluorescence	(Jiao	Liu	

et	 al.,	 2011).	 However,	 considering	 neither	 arsenite	 treatment,	 ionising	 radiation	

exposure,	 or	 a	 combination	 of	 the	 two	 or	 lack	 thereof	 induced	 any	 discernable	

changes	in	b-catenin	signal,	it	is	not	possible	to	determine	whether	it	is	the	case	that	

none	 of	 these	 treatments	 resulted	 in	 the	 activation	 of	 b-catenin	 signalling,	 or	

whether	the	immunofluorescence	was	unsuccessful,	potentially	due	to	the	antibody	

being	used,	and	that	an	alteration	in	b-catenin	level	and	localisation	was	not	detected	

as	 a	 result.	 In	 order	 to	 attempt	 to	 determine	 whether	 this	 was	 the	 case,	

immunoblotting	 for	 b-catenin	 levels	 in	 a	 whole	 cell	 lysate	 was	 attempted.	

Considering	Wnt	signalling	results	in	the	hypophosphorylation	and	stabilisation	of	b-
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catenin,	 a	 common	 indicator	 for	 Wnt	 activity	 is	 an	 increased	 level	 of	 b-catenin	

protein	(Gerlach	et	al.,	2014;	Khan,	Bradstock,	&	Bendall,	2007).	However,	as	seen	in	

Fig.	14,	this	western	blot	was	not	successful,	producing	no	detectable	bands	on	gels	

despite	the	success	of	loading	control	detection.	Whilst	it	could	be	argued	that	this	

lack	of	protein	signal	is	due	to	the	proteasomal	degradation	of	b-catenin	resulting	in	

very	small	quantities	present	in	lysates,	it	should	be	noted	that	previous	publications	

still	show	a	small	amount	of	protein	is	present	in	cells	even	when	Wnt	is	inactive.	As	

a	result,	it	is	recommended	that	the	experiment	be	repeated	with	a	positive	control	

in	order	to	confirm	the	efficacy	of	the	protocol	and	materials	utilised	before	further	

conclusions	are	drawn	from	the	data	presented	within	this	report.		

Figure	14.	b-catenin	is	not	detected	during	a	western	blotting	attempt.	GAPDH	probing	confirmed	equal	loading	
of	samples,	yet	no	b-catenin	accumulation,	or	expression	of	any	kind,	is	confirmed.	Blot	is	representative	of	3	
attempts.	
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DISCUSSION	AND	CONCLUSIONS	
	

The	quantification	of	stress	granule	formation	in	replicative	senescent	cells	by	Lian	&	

Gallouzi	(2009)	revealed	that	replicative	senescence	resulted	in	the	production	of	a	

far	higher	number	of	stress	granules	per	cell	compared	to	in	proliferating	cells,	and	

also	demonstrated,	using	p21	mRNA	as	an	example,	that	stress	granule	function	also	

differed	dependent	on	the	proliferative	capacity	of	the	cell.	However,	to	date	this	

paper	 and	 the	 companion	 paper	 by	 Gallouzi	 (2009)	 have	 been	 the	 only	 ones	 to	

examine	granule	formation	in	the	context	of	senescence.		

	

In	 the	 present	 study,	 a	 validation	 of	 the	 works	 of	 Lian	 and	 Gallouzi	 (2009)	 was	

performed	in	a	separate	fibroblast	cell	line	to	confirm	that	greater	numbers	of	stress	

granules	 form	 following	 oxidative	 stress	 in	 senescent	 cells.	 However,	 it	 is	 well-

established	that	replicative	senescence	through	telomeric	shortening	is	not	the	only	

pathway	through	which	a	senescent	phenotype	can	be	established,	as	this	growth	

arrest	can	also	be	established	following	the	activation	of	oncogenes	or	upregulation	

of	 p21	due	 to	oxidative	 stress	 (Muñoz-Espín	&	 Serrano,	 2014).	Whilst	 this	 stress-

induced	premature	senescence	shares	several	hallmarks	with	replicative	senescence	

(Toussaint	et	al.,	2005),	including	increased	sen-b-gal	staining	(Debacq-Chainiaux	et	

al.,	 2009)	 and	 the	 adoption	 of	 post-mitotic	morphotypes	 (Toussaint	 et	 al.,	 2000),	

more	 recent	 studies	 have	 revealed	 that	 differential	 gene	 expression	 influencing	

diverse	 cellular	 functions	 result	 in	 phenotypic	 differences	 between	 these	 two	

senescent	programmes.	(Aan	et	al.,	2013;	Pascal	et	al.,	2005)	As	a	result,	it	was	not	

possible	to	conclude	from	the	observations	of	Lian	and	Gallouzi	(2009)	that	increase	

granule	formation	was	universal	across	all	senescence	models.	This	project	therefore	

also	sought	to	expand	the	scope	of	the	investigation	to	determine	whether	increased	

granule	formation	was	also	a	hallmark	of	stress-induced	premature	senescence,	or	

whether	it	remained	limited	to	replicative	senescence.		

	

During	this	investigation	the	unexpected	observation	was	made	that,	as	opposed	to	

a	 null	 hypothesis	where	 stress-induced	 senescence	 showed	no	 change	 in	 granule	

number	from	their	proliferative	counterparts,	granule	formation	was	almost	entirely	
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abrogated	 in	 prematurely	 senescent	 populations,	 the	 opposite	 effect	 to	 that	

witnessed	 in	 replicative	 senescence.	 This	 finding	 builds	 on	 previous	 research	

demonstrating	that	these	senescent	programmes	are	biochemically	distinct,	and	is	

the	first	time	that	such	a	difference	has	been	observed	to	bring	about	a	phenotypic	

change	on	the	cellular	level.	Whilst	this	finding	in	itself	is	interesting	in	itself	due	to	

its	underscoring	of	the	contrasts	between	replicative	and	stress-induced	senescence,	

it	also	helps	to	highlight	other	potential	differences	between	these	two	systems.		

	

Studies	of	cell	death	in	senescent	fibroblasts	have	previously	shown	that	the	onset	

of	 replicative	 senescence	 can	 result	 in	 the	 downregulation	 of	 apoptotic	 factors	

(Marcotte,	 Lacelle,	 &	Wang,	 2004;	Murata	 et	 al.,	 2006),	 ultimately	 resulting	 in	 a	

resistance	 of	 senescent	 cells	 to	 apoptosis	 (Campisi	 &	 d’Adda	 di	 Fagagna,	 2007).	

Considering	stress	granules	are	able	to	inhibit	apoptotic	cell	death,	both	through	the	

reduction	 of	 reactive	 oxygen	 species	 level	 (	 Takahashi	 et	 al.,	 2013)	 and	 through	

reduction	in	the	activity	of	the	mTOR	signalling	pathway	(Thedieck	et	al.,	2013),	an	

increase	 in	 these	 granules	 would	 also	 likely	 result	 in	 the	 stoppage	 of	 apoptotis	

induction,	and	 is	 therefore	consistent	with	previous	 studies.	However,	 the	 loss	of	

granule-forming	capacity	in	stress-induced	senescent	cells	would	presumably	result	

in	no	decrease	in	mTOR	activity,	and	a	spike	in	reactive	oxygen	species	levels	in	these	

cells.	It	is	therefore	possible	that	prematurely	senescent	fibroblasts	are	less	resistant	

to	 apoptosis	 than	 their	 replicative	 senescent	 counterparts.	 This	 would	 likely	

represent	a	lower	threshold	of	resistance	to	extracellular	assaults	by	stress-induced	

senescent	cells,	and	would	be	a	broader	and	more	significant	difference	between	the	

two	programmes.	In	order	to	test	this,	proliferating	cells	along	with	both	senescent	

subtypes	should	be	exposed	to	arsenite	stress	for	30	mins	prior	to	incubation	for	a	

further	10h,	and	the	extent	of	apoptosis	in	the	population	determined	through	the	

use	 of	 common	 apoptotic	 tests	 such	 as	 the	 DNA	 fragmentation	 assay	 (Gavrieli,	

Sherman,	&	Ben-Sasson,	1992),	as	well	as	through	propidium	iodide	staining	and	flow	

cytometry	(Riccardi	&	Nicoletti,	2006).		

	

Another	consideration	is	to	what	extent	senescent	stress	granules	can	modulate	the	

senescence-associated	secretory	phenotype.	Following	their	examinations	of	stress	
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granule	 formation	 during	 senescence,	Gallouzi	 (2009)	 postulated	 that	 the	 altered	

dynamics	of	stress	granules,	which	found	them	assembling	more	readily	in	response	

to	stress	in	senescent	cells	than	in	proliferating	cells,	when	coupled	with	an	alteration	

in	function	through	differences	in	targets	of	translational	regulation	such	as	p21	(Lian	

&	Gallouzi,	2009),	could	result	in	an	exacerbation	or	increase	in	SASP,	leading	to	the	

induction	of	senescence	in	nearby	cells	and	increased	level	of	chronic	inflammation	

which	is	known	to	promote	a	number	of	age-related	disorders	such	as	angiogenesis	

(Tchkonia	et	 al.,	 2013).	However,	 recent	 studies	of	 SASP	 regulation	 could	 suggest	

that,	while	stress	granules	may	be	able	to	modulate	 inflammatory	secretion,	their	

role	may	be	 the	opposite	 to	 that	predicted	by	Gallouzi	 (2009).	A	 recent	 study	by	

Laberge	 et	 al.	 (2015)	 identified	 the	 mTOR	 signalling	 pathway	 as	 a	 novel	 SASP	

regulator,	 through	 secretion	 of	 the	 pro-inflammatory	 cytokine	 IL1A,	 which	 has	

previously	been	shown	to	upregulate	inflammation	in	neighbouring	cells	and	induce	

senescence	onset	(Hubackova	et	al.,	2012).	A	further	study	has	also	found	that	mTOR	

upregulates	 SASP	 by	 increasing	 the	 translation	 of	 the	 protein	 kinase	MAPKAPK2,	

which	 in	 turn	 inhibits	 the	 degradation	 of	 SASP-related	 transcripts.	 These	 studies	

therefore	 identify	 the	 mTOR	 pathway	 as	 a	 crucial	 determinant	 of	 SASP	 levels	 in	

senescent	systems,	and	the	inhibition	of	mTOR	through	rapamycin	treatment	in	both	

papers	 resulted	 in	 a	decrease	 in	 SASP	and	a	presumed	ablation	of	 its	deleterious	

effects	 on	 tissues.	 However,	 treatment	 with	 the	 drug	 rapamycin	 can	 also	 have	

unintended	side-effects,	and	has	been	implicated	in	the	development	of	metabolic	

disorders	such	as	diabetes	due	to	the	wide-ranging	influences	of	the	mTOR	pathway	

(Li,	Kim,	&	Blenis,	2014).	Therefore,	a	more	targeted	therapy	to	downregulate	mTOR	

activity	 in	 only	 senescent	 cells	 could	 result	 in	 decreased	 chronic	 inflammation,	

thereby	alleviating	some	symptoms	of	age-related	disease	(Zhu	et	al.,	2014).		

	

Stress	granule	formation	has	recently	been	coupled	to	mTOR	signalling	in	two	main	

studies.	 Wippich	 et	 al.	 (2013)	 analysed	 the	 function	 of	 the	 stress-related	 kinase	

DYRK3,	which	regulates	stress	granule	assembly,	and	found	that,	when	active	DYRK3	

allows	granule	dissolution	and	simultaneously	inactives	mTOR	inhibitors,	suggesting	

a	potential	functional	link	between	stress	granules	and	mTOR	activity.	Thedieck	et	al.	

(2013)	were	able	to	further	show	that	the	mTOR	complex	1	is	sequestered	in	granules	
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by	 the	 component	 Astrin,	 resulting	 in	 an	 inhibition	 of	 mTOR	 signalling.	 Taken	

together,	 these	 papers	 suggest	 that	 stress	 granule	 condensation	 induces	 an	

inhibition	of	mTOR	signalling	in	a	multifaceted	manner	and	therefore	it	 is	possible	

that	 stress	 granule	 formation	may,	 contrary	 to	 the	 prediction	 of	 Gallouzi	 (2009),	

inhibit	 SASP	 through	mTOR	downregulation.	 This	hypothesis	 that	mild	 stress	may	

play	a	beneficial	role	in	senescence	has	some	experimental	evidence,	as	mild	heat	

shock	has	previously	been	shown	to	induce	a	prolonged	upregulation	of	heat	shock	

proteins,	 assist	 in	 the	maintenance	of	 cellular	 function	 through	 late	passage,	 and	

increase	the	capability	of	senescent	cells	to	respond	to	stress	(Fonager	et	al.,	2002).	

Given	that	Lian	&	Gallouzi	(2009)	also	showed	that	stress	granule	formation	occurs	

more	readily	in	response	to	stress	stimuli	in	senescent	cells	than	in	proliferating	cells,	

it	could	be	possible	to	 induce	stress	granules	 in	only	the	senescent	subpopulation	

through	 the	 administering	 of	 very	 low	 concentrations	 of	 stress	 granule-inducing	

compounds,	presumably	downregulating	mTOR	and	therefore	SASP	without	inducing	

the	side-effects	common	to	mTOR	inhibiting	drugs.	A	potential	compound	worthy	of	

investigation	is	the	granule-inducing	pateamine	A	(Dang	et	al.,	2006),	which	is	already	

under	consideration	as	a	treatment	for	certain	muscle-wasting	disorders	after	having	

been	shown	to	be	non-toxic	in	low	concentrations	(Di	Marco	et	al.,	2012).	However,	

it	is	recommended	that	a	functional	link	between	stress	granules	and	mTOR	should	

first	be	established	in	senescent	cells	prior	to	any	clinically-orientated	projects	being	

undertaken.	

	

However,	although	the	experiments	recommended	above	would	provide	interesting	

perspectives	on	how	stress	granule	formation	functions	in	the	context	of	senescence,	

and	 more	 broadly	 how	 different	 senescent	 phenotypes	 differ	 both	 between	

themselves	and	in	comparison	to	proliferating	cells	in	terms	of	stress	responses,	it	is	

also	 crucial	 to	 establish	 through	which	mechanisms	 the	 increased	 and	 decreased	

capacity	 for	 granule	 formation	 is	 brought	 about	 in	 replicative	 and	 stress-induced	

senescent	 cells,	 respectively.	Whilst	 attempts	 were	made	 to	 determine	 how	 this	

differential	 granule	 formation	was	established,	none	of	 the	hypotheses	examined	

were	conclusive.	Studies	of	immediate	changes	in	stress	granule	formation	following	

ionising	 radiation	 exposure,	 to	 determine	whether	 the	method	 of	 stress	 used	 to	
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induce	senescence	could	in	itself	have	brought	about	this	granule	disruption,	did	also	

reveal	that	a	severe	inhibition	of	stress	granules	occurs	in	the	short	term.	However,	

this	 inhibition	 appeared	 to	 have	 been	 largely	 lifted	 by	 18h	 post-irradiation,	 and	

therefore	is	unlikely	to	have	been	responsible	for	the	lack	of	granules	observed	14	

days	after	exposure.	It	is	more	likely	that	the	result	of	this	granule	inhibition	occurs	

at	a	later	timepoint,	potentially	during	the	onset	of	senescence,	and	a	future	study	

should	perform	a	time	course	over	14	days	to	determine	at	which	point	stress	granule	

potentially	 is	 lost	 in	 premature	 senescent	 cells.	 This	would	 help	 to	 narrow	 down	

potential	mechanisms	that	could	be	responsible	for	such	an	effect.	

	

A	 further	 staining	 of	 senescent	 and	 proliferating	 cells	with	b-catenin,	 in	 order	 to	

attempt	to	determine	whether	the	canonical	Wnt	pathway	remained	constitutively	

active	in	stress-induced	cells	–	a	result	which	would	potentially	explain	the	lack	of	

granules	formed	–	was	ultimately	unsuccessful	due	to	photobleaching	before	a	full	

image	could	be	captured	(data	not	shown).	Although	a	qualitative	analysis	suggested	

that	no	nuclear	staining	had	occurred,	as	discussed	before	there	were	still	concerns	

relating	to	the	quality	of	the	b-catenin	antibody,	which	were	further	strengthened	by	

this	bleaching,	and	a	repeat	of	this	immunofluorescent	analysis	is	recommended	to	

determine	whether	Wnt	antagonisation	of	G3BP1-dependent	granule	formation	 is	

occurring.	 However,	 considering	 Wnt	 signalling	 is	 primarily	 associated	 with	 an	

increase	 in	 proliferation	 (Masckauchán	 et	 al.,	 2005;	 Pei	 et	 al.,	 2012)	 and	 is	 also	

downregulated	in	replicative	senescence	(Ye	et	al.,	2007),	it	seems	unlikely	that	Wnt	

activation	will	be	identified	in	stress-induced	senescent	cells.		

	

Furthermore,	 an	 initial	 examination	 of	 the	 vimentin	 networks	 in	 senescent	 cells	

showed	that,	 in	proliferating	cells,	 stress	granules	appeared	to	colocalise	 to	some	

extent	with	vimentin	filaments	following	arsenite	treatment.	However,	considering	

alterations	to	the	vimentin	networks	occurred	in	both	replicative	and	stress-induced	

senescent	cells,	likely	as	a	result	of	changes	in	morphotype	associated	with	senescent	

onset	 (Dumont	et	al.,	2000),	 it	 seems	unlikely	 that	 the	vimentin	cytoskeleton	 is	a	

primary	 determinant	 of	 stress	 granule	 formation	 potential,	 as	 the	 difference	

between	 the	 two	 senescent	 networks	 is	 unlikely	 to	 be	 sufficient	 to	 induce	 the	
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wholesale	loss	of	granules	observed	in	Fig.	7.	Furthermore,	without	any	data	from	

experiments	 analysing	 how	 the	 disruption	 of	 the	 vimentin	 cytoskeleton	 affects	

granule	assembly,	any	potential	mechanism	involving	vimentin	remains	groundless.	

However,	this	potential	interaction	between	vimentin	and	stress	granules	does	merit	

further	investigation,	as	no	such	link	has	been	determined	previously,	and	it	could	be	

the	case	that	alterations	to	the	vimentin	network	ultrastructure	play	secondary	roles	

in	assembly	of	granules	that	could	allow	us	to	better	understand	their	function	or	

positioning.	In	order	to	do	so,	it	is	recommended	that	GFP-vimentin	be	transfected	

into	cells	to	allow	for	live	imaging	to	examine	whether	granules	traffic	or	aggregate	

along	 vimentin	 filaments.	 Furthermore,	 considering	 the	 established	 role	 of	

microtubules	 in	RNA	granule	 formation	 (Ivanov	et	al.,	 2003),	 live	 imaging	with	an	

expressed	 fluorescently	 tagged	 tubulin	 could	 also	 provide	 further	 insight	 into	

whether	microtubules	are	affected	by	senescence	onset.	

	

However,	 whilst	 many	 of	 the	 proposed	 experiments	 would	 provide	 insights	 into	

mechanisms	 influencing	granule	 formation	and	the	differences	observed	between	

proliferating	 and	 senescent	 stressed	 fibroblasts,	 it	 remains	 difficult	 to	 determine	

which	 hypotheses	 possess	 the	 most	 merit	 in	 explaining	 loss	 of	 granule-forming	

capacity	 during	 premature	 senescence.	 Perhaps	 an	 initial	 experiment	 to	 perform	

would	be	to	induce	senescence	through	the	use	of	other	subcytotoxic	stresses,	such	

as	 hydrogen	 peroxide	 (Kiyoshima	 et	 al.,	 2012;	 Pedro	 de	Magalhães	 et	 al.,	 2004),	

followed	 by	 stress	 induction,	 to	 determine	 whether	 all	 cases	 of	 premature	

senescence	result	in	the	stoppage	of	granule	formation	or	whether	this	is	limited	to	

radiation-exposed	senescent	cultures.	Further	experiments	could	be	to	use	a	variety	

of	stresses	such	as	heat	shock	or	peroxide	treatment	to	attempt	granule	induction,	

again	to	determine	to	what	extent	 the	 loss	of	granules	 is	universal	as	opposed	to	

situational,	as	different	stresses	are	known	to	induce	granules	with	subtly	different	

compositions	which	may	affect	to	what	extent	their	assembly	is	disrupted	(Emara	et	

al.,	2012).	These	results	would	help	to	better	conceptualise	stress	granule	abrogation	

in	 stress-induced	 premature	 senescent	 cells,	 and	 –	 if	 any	 of	 these	 differing	

treatments	 resulted	 in	 no	 loss	 of	 granule	 formation	 –	 would	 also	 help	 to	 better	
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inform	on	potential	mechanisms	through	which	their	assembly	was	inhibited	in	the	

present	study.	

	

The	second	novel	finding	of	this	research,	that	exposure	to	X-ray	irradiation	not	only	

does	not	induce	stress	granules,	but	appears	to	actively	antagonise	their	formation,	

is	also	highly	 interesting.	This	 is	 firstly	because	this	result	 is	contrasted	with	other	

studies	of	UV	irradiation-induced	stress	granules	(Moutaoufik	et	al.,	2014;	Pothof	et	

al.,	2009),	suggesting	that	exposure	to	different	forms	of	ionising	radiation	can	have	

contrasting	 effects	 on	 the	 cell.	 Considering	 this	 is	 not	 the	 first	 study	 to	 find	

differential	responses	to	different	ionising	radiation	forms	(Allan	&	Fried,	1999),	it	is	

recommended,	 as	 a	 result,	 that	 greater	 care	 be	 taken	 when	 studying	 ionising	

radiation	to	ensure	that	data	is	not	considered	universal	across	all	forms	of	ionising	

radiation,	and	this	work	also	underscores	the	need	to	study	radiation	responses	to	

all	 radiation	subtypes.	However,	 this	research	 is	also	particularly	 interesting	when	

contextualised	with	regards	to	known	responses	to	X-ray	exposure.	X-rays	have	been	

well-characterised	as	activators	of	apoptosis	across	a	variety	of	cell	types	(Jian	et	al.,	

2009;	 Nakano	 &	 Shinohara,	 1994;	 Ortenzi	 et	 al.,	 2011),	 with	 this	 response	 likely	

occurring	in	order	to	minimise	the	risk	of	damaged	DNA	resulting	in	tumorigenesis	in	

damaged	cells.	Stress	granule	formation	is	a	known	mechanism	known	to	promote	

cell	 survival	 (Arimoto	 et	 al.,	 2008;	 Takahashi	 et	 al.,	 2013),	 and	 therefore	 their	

inhibition	as	an	immediate	response	to	X-rays	would	increase	the	likelihood	of	cells	

undergoing	apoptosis.	This	research	is	therefore	consistent	with	previous	studies	of	

cell	death	responses	to	X-ray	irradiation,	and	provides	a	further	putative	mechanism	

through	which	this	can	occur,	likely	acting	in	an	additive	fashion	to	induce	apoptosis.	

Whilst	the	mechanism	through	which	this	stress	granule	depletion	is	brought	about	

remains	unknown,	the	Wnt	pathway	remains	a	promising	candidate	due	to	its	known	

modulation	during	ionising	radiation,	and	due	to	previous	observations	that,	upon	

pathway	 activation,	 the	Wnt	 component	 Dvl2	 can	 sequester	 G3BP1	 (Bikkavilli	 &	

Malbon,	2011)	 and	antagonise	granule	 formation	as	 a	 result	 (Sahoo	et	 al.,	 2012).	

However,	the	capacity	for	G3BP1	to	nucleate	granules	is	not	exclusively	affected	by	

Wnt,	and	therefore	investigation	of	other	pathways	is	also	merited.	
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In	particular,	G3BP1	is	reliant	on	dephosphorylation	of	the	serine	residue	at	position	

149	in	order	to	assemble	granules	(Tourrière	et	al.,	2003).	Therefore,	it	 is	possible	

that	the	removal	of	phosphate	groups	could	be	inhibited	by	an	as-yet	unidentified	

protein,	or	that	a	kinase	activated	as	a	result	of	X-ray	radiation	could	phosphorylate	

G3BP1,	 therefore	 counteracting	 any	 dephosphorylation	 to	 effectively	 block	

granulation.	Potential	candidate	kinases	could	be	members	of	the	mitogen-activated	

kinase	(MAPK)	family,	whose	signalling	pathways	are	activated	for	short	periods	(less	

than	 1h)	 following	 ionising	 radiation	 (Dent	 et	 al.,	 2003;	 Yacoub	 et	 al.,	 2001),	 are	

known	to	promote	apoptosis	(Wada	&	Penninger,	2004),	and	are	inhibited	by	stress	

granules	 and	 therefore	 are	 already	 known	 to	 be	 linked	 (Arimoto	 et	 al.,	 2008).	

Furthermore,	the	short-term	activation	of	MAPK	pathways	in	response	to	radiation	

would	explain	why	stress	granule	inhibition	is	only	fully	observed	in	the	first	3	hours	

following	exposure,	as	they	would	only	be	able	to	phosphorylate	G3BP1	for	a	short	

period	 of	 time.	 All	 of	 these	 potential	mechanisms	would	 require	 further	 study	 in	

order	to	determine	their	validity,	and	it	is	possible	that	more	than	one	such	pathway	

is	activated	at	once	to	provide	redundancy	in	this	inhibition.		

	

Beyond	mechanistic	studies,	it	would	also	be	interesting	to	determine	whether	the	

ablation	of	granule	formation	is	linearly	correlated	to	the	radiation	dose.	Low-dose	

radiation	is	known	to	provoke	a	nonlinear	response	in	many	aspects,	such	as	in	the	

case	of	DNA	damage	foci	persisting	for	comparatively	longer	in	lens	epithelial	cells	at	

lower	doses	than	when	exposed	to	high	doses	such	as	10Gy	(Markiewicz	et	al.,	2015).	

It	 is	therefore	possible	that	the	same	nonlinear	dosimetry	is	true	of	stress	granule	

abrogation,	and	that	even	low	doses	are	capable	of	eliciting	the	same	response.	A	

discovery	that	the	same	level	of	granule	disruption	can	be	induced	through	low	doses	

would	 provide	 a	 potential	mechanism	 through	which	 apoptosis	 is	 activated	 early	

following	 radiation	 exposure	 (Furlong	 et	 al.,	 2013)	 despite	 not	 producing	 a	 great	

enough	level	of	reactive	oxygen	species	to	cause	direct	damage	to	the	cell	(Smith,	

Willey,	&	Hancock,	2012),	as	it	would	indicate	a	lessened	capability	of	these	cells	to	

cope	with	oxidative	stress	(Takahashi	et	al.,	2013).	

	



	 71	

The	 results	 of	 the	 current	 study	 present	 two	 novel	 circumstances	 in	 which	 the	

assembly	of	cytoplasmic	stress	granules	 is	 inhibited	despite	cells	being	challenged	

with	oxidative	stress,	and	in	doing	so	elucidate	how	cellular	functions	are	altered	in	

the	contexts	of	proliferative	arrest	and	responses	to	extracellular	assault.	Although	

the	 mechanisms	 through	 which	 this	 inhibition	 is	 established	 remain	 elusive,	 a	

number	of	proposals	have	been	set	forward	through	which	these	mechanisms	could	

be	 determined,	 and	 further	 research	 should	 allow	 for	 the	 further	 narrowing	 of	

putative	mechanisms	 to	a	 subset	of	 likely	candidates	based	on	analysis	of	 further	

cellular	 alterations	 Subsequent	 studies	 to	 further	 characterise	 these	 changes	 to	

stress	granules	will	 therefore	better	 integrate	RNA	granules	 into	 the	responses	of	

cells	to	stress	and,	more	generally,	to	external	cues.		
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