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Reassessing English flood frequency relationships in light of 
widespread new instrumental stage maxima 
 

James M. Thornton 

 

Flood frequency estimation typically involves applying well-established statistical methods to 

instrumental peak discharge data. However, even notwithstanding any potential climate change 

trends, such analyses may have a tendency towards underestimation. The shortness of the available 

records is the proposed cause, whilst the prominence of flood frequency results in practical 

applications heightens the concern. Following the passage of the extra-tropical storms Desmond 

and Eva in December 2015, previous river stage maxima were widely surpassed across northern 

England. Indeed, preliminary analyses indicated that peak flows on the Rivers Eden, Tyne and Lune 

were higher than any previously recorded in England and Wales (CEH, 2016). Herein, the effects of 

including these exceptional observations on flood frequency estimates produced using established 

methods are investigated. Annual maxima series were extended at 155 stations, and models fitted 

on a single-site basis with and without the additional data were compared. Predictably, return 

period flow estimates generally increased with the additional data; the mean 1-in-100-year change 

(i.e. across all sites) was +7%. Spatial patterns of change correspond closely with the event footprint, 

whilst associations between change and both record length and catchment area were found to be 

only weak. The ‘enhanced single-site’ method was then applied at a subset of stations (without 

inclusion of the latest data). Interestingly, these estimates were not substantially higher that those 

produced from the same samples using the single-site method, implying a certain dependence 

between the pooling group stations. In a final set of analyses, the estimates were found, in many 

cases, to demonstrate less sensitivity to the choice of statistical distribution than to the sample or 

method used. Overall, these findings lend some support to the notion that standard methods may 

underestimate flood frequency. However, the difficulty of disproving probabilistic predictions 

reduces the confidence with which this assertion can be made. Going forward, reinvigorating 

efforts to incorporate longer-term hydrological data more routinely into hazard assessments may 

prove fruitful. It could also be appropriate for flood frequency estimates to be updated more 

frequently as new instrumental data become available.  
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Chapter 1 
 

Introduction 

 

“Current approaches using flood frequency analysis and flood risk assessment based on                                              
40–50 year long flow records… are not fit for purpose” 

 

              Professor Mark Macklin, Aberystwyth University 

          News Article, University of Cambridge website1 

December 2015 

 

“What I mean in terms of a complete rethink is that we need to look, first of all, at the historic data                         
we are using and ask ourselves if that is still valid to predict the future” 

 

Mr. David Rooke, Environment Agency 

    House of Commons Environment, Food and Rural Affairs Committee2 

January 2016 

 

1.1. The December 2015 floods in northern England 
 

Several flood events of national significance have affected the United Kingdom (UK) in recent 

years, raising interest in flood risk-related issues. The meteorology, hydrology and impacts of these 

events have been comprehensively reviewed in the academic literature (see e.g. Met Office, 2014; 

Dale and Marsh 2002; Marsh and Hannaford, 2007; Chatterton et al., 2010, 2016), and efforts to 

learn lessons have been made (e.g. Pitt, 2008). Yet despite this growing collective experience, floods 

continue to be associated with adverse outcomes for people and property, as the events of 

December 2015 attest.  

 

Throughout much of late Autumn 2015, a pronounced north-south gradient in North Atlantic sea-

surface temperatures contributed to a strong south-westerly flow of warm, moisture-laden air 

towards Northern Europe (Met Office, 2015a). The blocking effect of an enduring high-pressure 

system over continental Europe to the east displaced this jet from its usual more southerly passage 

(Ibid.). Within this synoptic context, several notable rain-bearing systems were brought to northern 

                                                 
1 Macklin (2015). 
2 House of Commons (2016a). 
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Europe during November. As Figure 1.1 illustrates, much of Wales, the north-west of England and 

Scotland experienced high monthly rainfall totals. In fact, across the UK as a whole, November 

rainfall totals amounted to 145% of the 1981–2010 average (Met Office, 2015b). Thus, catchments 

became increasingly saturated  conditions which, in time and given subsequent intense rainfall, 

would prove favourable for flood generation.  

 

The most intense and long-lasting rainfall episodes during December were broadly associated with 

a succession of three named systems3  Desmond, Eva and Frank  which passed through the 

British Isles on around the 5th, 23rd–24th and 29th–30th December respectively. The image on the 

title page (p. 2) shows the ‘conveyor belt’ of moisture that was brought to the British Isles on the 5th 

December. Evidence that such ‘atmospheric rivers’ are linked with winter flooding in the UK has 

been presented previously (Lavers et al., 2011), and these features do seem to have contributed to 

the floods presently under discussion. Figure 1.2 shows the exceptional nature of the rainfall during 

the month, which became the UK’s wettest in the record extending back to 1910. In addition to this 

exceptional monthly total, the national 24-hour rainfall record was broken by the 341.4 mm 

observed at the Honister Pass, Cumbria, in the 24 hours preceding 1800 GMT on 5th December 

(Met Office, 2016d). Although this station was only installed relatively recently and is situated in an 

exposed, elevated and notoriously ‘wet’ location, this total is nonetheless impressive.  

 

Rainfall patterns in Figure 1.2 (December) were extremely similar to those in Figure 1.1 

(November). As already mentioned, wet antecedent conditions meant there was high potential for a 

large proportion of incident December rainfall to be converted to runoff. 

 

 

 

 

 

 

 

 

 

                                                 
3 In September 2015, a pilot project entitled Name our Storms was established by Met Éireann and the UK 

Met Office (Met Office, 2015c). This initiative hopes to increase public awareness of the adverse weather 

typically associated with extra-tropical cyclone passage. Assigning names to storm systems also provides 

commentators with useful terms of reference. That said, the diversity and complexity of the rainfall fields 

associated with extra-tropical cyclones (compared to tropical cyclones, for example) should not be 

overlooked.  
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FIGURE 1.1. UK November rainfall totals (left) and as a percentage of the 1981-2010 average (right). Source: 

Met Office (No date).  

 

FIGURE 1.2. UK December rainfall totals (left) and as a percentage of the 1981-2010 average (right). Source: 

Met Office (No date).  
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On various occasions during December, river levels rose to new maxima at many locations across 

northern England (CEH, 2016). These locations are highlighted in Figure 1.3.  

FIGURE 1.3. Locations of river gauges with a highest recorded level during the Winter 2015 flood events, 

which are said to represent 10% of the entire English network. Source: EA (2016a).  

 

Preliminary analyses by the Centre for Ecology & Hydrology (CEH) further underlined the 

exceptional nature of event flows on certain major rivers. Figure 1.4, for example, expresses the 

mean December 2015 flows relative to the long term mean flows for the same month.  
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FIGURE 1.4. December 2015 mean flows for selected rivers expressed as a percentage of the long-term 

average of December mean flows. The period of record on which these percentages are based varies from 

station to station. Source: CEH (2016). 

 

Whilst monthly mean flows are of general interest, peak flows correlate most closely with flooding. 

Those on the Rivers Eden, Lune and Tyne were identified as being particularly noteworthy; at 

approximately 1,700 m3 s-1 in each case, in fact they constitute the highest ever recorded peaks in 

England and Wales (CEH, 2016) (the largest ever Scottish flow is slightly higher). The return 

periods of these flows, i.e. the inverse of the annual probabilities of exceedance, were estimated 

using standard procedures (see Section 2.1.2) to be approximately 1-in-300-years for the Eden, 1-

in-150-years for the Lune, and 1-in-100-years for the Tyne.  
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Many rivers burst their banks, causing widespread floodplain inundation. At least 16,000 homes 

were flooded in England alone (House of Commons, 2016b). Certain communities experienced 

repeated disruption, with Glenridding in Cumbria being a notable example. The response of the 

Environment Agency (EA) to the failure of pumps on the River Foss in York, North Yorkshire, was 

particularly contentious in some quarters; a decision was made to essentially ‘sacrifice’ a number of 

homes that normally benefit from the scheme in order to protect a larger number located elsewhere 

that were thought likely to flood without intervention.  

 

Early estimates of the expected economic damage costs were in the region of £5–5.8bn (KPMG, 

2015), although these now appear slightly exaggerated. The sum of insurance claims relating to 

domestic and commercial property was expected to reach approximately £1.3bn (ABI, 2016). 

National infrastructure was also adversely affected, including numerous roads (DfT, 2015) and 

bridges. The collapse of the 300-year old bridge at Tadcaster, North Yorkshire on 29th December 

was much publicised. Its repair is expected to take approximately 12 months and cost 

approximately £3m (BBC, 2016). 

 

In terms of scale and impacts, the December 2015 floods only sit alongside those of Autumn 2000 

and Summer 2007 in recent national history. Such notable flood events naturally stimulate a great 

deal of public and political debate, and those of December 2015 were no exception in this regard. 

As they have done previously, the affordability of domestic flood insurance (Priestley and 

Edmonds, 2016) and the presence and performance of flood defences featured as prominent topics 

once again. Arguably foremost, however, was discussion around the extent to which the frequency 

or severity of flooding might be changing; especially when these events are considered within the 

context of the recent sequence, it is unsurprising that there exists a widely held perception that 

flood risk is increasing (Hannaford, 2015). At this stage, it is important that risk be clearly 

distinguished from hazard; the standard definition of “risk = probability × consequence” is 

employed throughout this thesis.  

 

Of all the various possible causal or contributory factors, there is particular interest in whether 

anthropogenic climate change might have had any impact on the hazard, in terms of either 

likelihood or severity, associated with recent major floods. (As a point of terminology, it may be 

noted that likelihood is often referred to as probability or frequency, and severity is often referred 

to as magnitude or intensity). This interest may be related to the increased prominence of climate 
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change matters in general (e.g. due to increased media coverage), or a growing societal appreciation 

of the more specific probable impacts of anthropogenic warming on the hydrological system (Bates 

et al., 2008; Wentz et al., 2007). As Section 2.2 shall reveal, questions relating to the detection, 

attribution and future prediction of trends in river flood probabilities are not straightforward ones 

to answer, although good progress is being made, mostly via computer simulation, in certain areas.  

 

1.2.  Introducing flood frequency analysis and its attendant challenges 
 

An obvious response to a non-imminent natural threat is to seek to quantify it. In particular, one 

might seek to estimate the probabilities with which certain hazard intensity levels could be 

expected to be exceeded, at locations of interest, within a specified period of time. Such exercises 

are usually known as long-term hazard assessments and are routinely undertaken, in various 

different guises, with respect all types of natural hazard. By taking the resultant information on 

hazard frequency and severity, more comprehensive risk assessments can be developed. In turn, the 

outputs of these risk assessments can aid informed, robust decision making concerning mitigation 

schemes and other possible interventions. Both hazard and risk assessment results might be 

described as probabilistic predictions because they relate to the aleatory uncertainty (i.e. random or 

natural variability) of what could happen in future.  

 

This thesis is primarily concerned with the hazard posed by fluvial flooding. In fluvial hazard (and 

therefore risk) assessment, estimating the discharge levels associated with certain annual 

probabilities of exceedance, or vice versa, plays a central role. (The terms discharge and flow are 

used interchangeably throughout to refer to the volumetric rate of water flow through a cross-

sectional area). This activity is commonly referred to as flood frequency analysis, or flood 

frequency estimation.  Hydrologists have a small number of fundamentally different approaches to 

flood frequency estimation at their disposal (Merwade et al., 2008; Rogger et al., 2012). Those that 

involve fitting statistical distributions to instrumentally measured peak flow series are particularly 

well established, and remain widely used in practice (Cunnane, 1987; Potter and Lettenmaier, 1990; 

Kjeldsen et al., 2008a).  

 

In this regard, distribution fitting is usually necessary in the first place because the available records 

are seldom long (and therefore complete) enough for high flow quantiles to be reliably estimated 

from the empirical distributions alone. In the simplest terms, future flows are not necessarily 
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constrained to the range of past observations. Thus, in enabling the extrapolation of flow 

frequency-magnitude relationships beyond their observed ranges to probability levels holding 

more practical interest, statistical modelling of this nature has the potential to be extremely useful.   

 

However, approaching flood frequency estimation from this perspective is not without its 

challenges. For instance, as with statistical approaches in general, considerable reliance is placed on 

the data as opposed to any underlying physical mechanisms or theory. Consequently, should these 

data not be sufficiently representative of the underlying processes, the resultant estimates may be 

somewhat dubious. Placing such reliance on data is especially problematic when dealing with 

extremes, as one must when assessing flood hazard, because the number of relevant observations 

naturally tends to be limited   extremes are, by definition, rare. Additionally, reliable high river 

flow measurements, from which under the statistical approach most flood hazard and risk 

assessment follows, are notoriously difficult to make in practice (see Section 2.1.3). Hence, such 

measurements are often subject to considerable uncertainty (Coxon et al., 2015). 

 

Furthermore, most statistical approaches demand that observations can be assumed to be mutually 

independent and identically distributed (i.i.d.). In other words, they should be independent samples 

from a single underlying probability distribution. The concept of stationarity – that the underlying 

stochastic process generating the observations must not be changing over time (Lins, 2012) – is 

embedded within this assumption. If the process in question were non-stationary, then no single 

underlying distribution would exist. (It is worth mentioning that few environmental datasets can 

ever be described as truly stationary in the strictest sense, Ibid.). Moreover, it is known that in 

reality, clustering of floods (i.e. non-Poissonian occurrence) can occur on various timescales due 

physical feedback mechanisms (Merz et al., 2014), calling into question the assumption of 

independence. It has been shown that not accounting for this ‘persistence’ can lead to systematic 

underestimation of temporally-aggregated flood risk (e.g. over the duration of an annual insurance 

contract) (Serinaldi and Kilsby, 2016). In summary, given the physical complexity and number of 

different processes in the hydro-meteorological system, the assumptions required are fairly 

stringent.  

 

Finally, the model fitting process itself may be complicated by the choice of different statistical 

distributions and parameter estimation methods that are available; given limited data and no well-
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established theoretical basis, it can be difficult to identify which might be most appropriate (Kidson 

and Richards, 2005; Merz and Blöschl, 2008).  

 

The upshot of the complex interaction of such factors, including the possible contravention of the 

assumptions, is that the overall uncertainty associated with return level or ‘design flow’ estimates 

(that is, the flow levels associated with certain annual probabilities of occurrence, or inversely 

return period) is known to be considerable (Kjeldsen, 2015). It is also reasonably well established, 

and logical, that the degree of uncertainty normally increases with rarity (return period), as a 

greater degree of extrapolation is required. Having said that, quantifying and combining the 

uncertainty contributed by all sources to provide an overall figure, perhaps expressed as confidence 

intervals around the central estimates, remains problematic. One reason for this is that both 

aleatory (random) and epistemic (lack of knowledge-based) uncertainties are present (Beven et al., 

2011). That said, it is possible for confidence intervals representing certain sources of uncertainty 

to be produced, and presenting such information where possible should be considered good 

practice. Madsen et al. (1997a,b) and Collier (2011), for example, estimated confidence intervals as a 

measure of uncertainty and used the information to identify most appropriate quantile estimation 

approach depending on the circumstances. Even if confidence intervals can be generated, in the 

face of multiple sources of uncertainty, including difficult-to-quantify or even non-quantifiable 

elements (e.g. high flow measurement uncertainties), all participants in the flood estimation process 

should be encouraged to appreciate and communicate the assumptions, challenges and 

uncertainties involved as thoroughly as possible.  

 

1.3. Could there be a bias towards underestimation? 
 

Given the challenges associated with flood frequency estimation outlined above, it is perfectly 

reasonable to expect such estimates to be fairly uncertain. However, one would hope that they do 

not demonstrate any particular bias, since biases generally pose more problems than unbiased 

uncertainties (which may even cancel one another out in particularly fortunate situations). 

However, interestingly, and perhaps from the perspective of flood risk management worryingly, at 

least two arguments or explanations as to why UK fluvial flood hazard estimates might be biased 

towards underestimation may be proposed – and to a certain extent already have been by others. 

These suggestions are now outlined in turn.  
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1.3.1. “Hazard may be increasing due to anthropogenic climate change” 

The first reason, which is now well rehearsed, involves anthropogenic climate change. The 

standard methods that are routinely used to estimate flood frequency in the UK, which is 

introduced in Section 2.1.2, require the assumption of stationarity to be made (IH, 1999). 

Therefore, at a general level, any changes in the frequency or severity of high river flows, 

irrespective of the cause, would invalidate this assumption (Milly et al., 2008, 2015). More 

specifically, it has variously been suggested on the basis of thermodynamic arguments (essentially 

that warmer air can hold more moisture; Wentz et al., 2007) and possible changes in atmospheric 

circulation patterns and other meteorology (see, for example, Lavers et al. (2013) with respect to 

‘atmospheric rivers’) that both total rainfall and extreme rainfall could be expected to increase in a 

warmer world; an expectation with which climate model projections appear to concur (see Section 

2.2.2). Indeed, some increases in intense rainfall have already been identified (Jones et al., 2013). 

The extension may then be made that if extreme rainfall is expected to increase or is already 

increasing, then fluvial flood hazard could be expected to broadly follow suit (although the many 

non-linear catchment processes between rainfall and flooding must be emphasised; Laizé and 

Hannah, 2010). As such, if there is a material upward trend in peak river flow frequency or severity, 

it is clear that some form of underestimation would result under the assumption of stationarity, 

since the present-day probability of exceedance of a given flow level would be higher than that 

estimated according to the integrated, effectively ‘unordered’ past record (Milly et al., 2008). 

 

In the aftermath of the December 2015 floods, the Deputy Chief Executive of the Environment 

Agency, David Rooke, suggested that as a result of the transition from a world of “known extremes 

to unknown extremes”, a “complete rethink” of flood preparation and mitigation measures was 

required (BBC, 2015; House of Commons, 2016a, p.39). These pronouncements appear to strongly 

question the performance of the existing models (specifically in the ‘direction’ of underestimation), 

and invoke climate change as a contributory factor in the events (and hence perhaps a factor in the 

model ‘failure’ which led to the degree of surprise). The notion of a “complete rethink” in particular 

suggests that observations from the event may have been somewhat inconsistent with the 

established view, and perhaps therefore might act as ‘leverage points’ to fundamentally change the 

prior understanding.  

 

Physics-based atmospheric modelling methods, that enable the contribution of anthropogenic 

climate change to the likelihood or severity of individual weather events (including flood-causing 
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rainfall), are beginning to emerge (Herring et al., 2014; Pall et al., 2011; Schaller et al., 2016). Suhc 

information is vital if which post-event debates are to be better informed. Some suggest that 

positive associations between anthropogenic greenhouse gas emissions and increased flood hazard 

are already detectable. Indeed, a study conducted in near real time proposed a link between 

anthropogenic climate change and the meteorology of early December 2015 (van Oldenborgh et al., 

2015). This field of research is considered further in Section 2.2.3. 

 

Finally for the time being, it is noteworthy that the longest river flows series do not (yet?) provide 

evidence for any notable long-term trends in either flood or severity (Hannaford and Marsh, 2008; 

Hannaford, 2015; Wilby et al., 2008). Recent research on this topic  is reviewed in greater depth in 

Section 2.2.1. 

 

1.3.2. “Even notwithstanding climate change, flood frequency may be                                         

underestimated from short records” 

The second suggested reason as to why flood hazard might be systematically underestimated does 

not require any increasing trends to be invoked. It is simply that even if the records are perfectly 

stationary, because most instrumental UK river flow records are short (typically around 40–50 

years long) and extremes by definition rare, the peak flow samples from which flood frequency 

estimates are conventionally derived are likely to contain disproportionately few extreme flows 

(Macdonald, 2013). Hence, whilst the statistical methods employed do permit some extrapolation 

beyond the range of observations as discussed, they may not be capable of raising the flood 

frequency curves enough. Put alternatively, lower-magnitude observations may be incapable of 

providing sufficient insight into characteristics of the typically heavy distribution tails.  

 

Assuming an absence of long-term trends, some apparent support for this suggestion is provided by 

studies which have sought to first extend flood records using non-instrumental (a.k.a non-

systematic) sources, and then to reassess flood frequency relationships including the additional 

data. Besides the benefit of a general reduction in uncertainty (Macdonald et al., 2014), the effect of 

incorporating these longer records is often that flow frequency-magnitude curves increase (e.g. 

Black and Fadipe, 2009). In other words, the estimated frequency with which a given flow level 

might be expected often decreases when longer series are used.  
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It perhaps follows, then, that the apparently exceptional and ‘unexpected’ nature of the December 

2015 floods are simply a reflection of the possibility that the short flow records upon which 

existing flood frequency estimates are based may not represent the full range of natural variability 

possible (CEH, no date). From this line of reasoning and the emerging supporting evidence, the 

very fitness-for-purpose of standard methods has been called into question (Macklin, 2015).    

 

Finally, it is important to emphasise that these two alternative suggestions are not mutually 

exclusive. On the contrary, if upward trends are emergent and the more fundamental ‘short record’ 

problem is also present, the overall degree of underestimation would be even more pronounced; a  

combination likely having the most considerable implications for flood risk management policy.   

 

 1.4. The difficulty of disproving probabilistic predictions 
 

The quotation of Mr. Rooke that is reproduced at the beginning of this thesis alludes to the fact that 

whenever events that appear to be exceptional or are ‘surprising’ occur, there is often a desire to re-

evaluate those existing models whose purpose it was to assign a probability to (or, if you will, to 

‘predict’) such events. In particular, one might attempt to ascertain whether or not the probabilities 

assigned initially to the occurrence of such floods were reasonable. However, taking the case of just 

a single location for simplicity, given the nature of probabilistic predictions, so long as some non-

zero probability was assigned to the flow levels that was attained in the event beforehand, the prior 

model cannot easily be overturned using the single additional observation. Quite simply, the event 

that occurred might indeed truly be extremely rare, or in other words have a very low probability 

of occurrence within the time frame in question. Under such circumstances, that it happened at all 

within the period of observation could be put down to bad luck. (Such a truly rare event occurring 

in a relatively short observed period also has the potential to distort the flood frequency 

relationship in the other direction, i.e. make the extreme intensity level attained seem more likely 

than it really is). The only scenario in which the probabilistic prediction would be invalidated if is 

the highest (/lowest probability) predicted intensity level was surpassed by an observation (i.e. zero 

probability was assigned to its occurrence). This can only occur when flood frequency relationships 

are bounded, which typically they are not.  

 

Of course, in the case of a ‘high extreme’, it may still be that too low a probability had previously 

been assigned to the event or level subsequently observed. In other words, there many have been 
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some underestimation. It can be tempting to suggest that high outliers or low-probability events 

are either consistent with or even themselves demonstrate prior underestimation, neglecting the 

subtleties associated with probabilities predictions. This should be avoided since observations of 

events or their outcomes from across time and space are generally required to build any case that a 

prior probabilistic prediction could be invalid. For instance, should several events each having very 

low individual estimated occurrence probabilities occur within a relatively short period of time at a 

single location, then (assuming temporal independence) the joint probability of the observed 

sequence happening by chance under the prior model might become so small that is can be formally 

rejected.  

 

If nothing else, the rather philosophical discussion presented in this section hopefully highlighted 

the challenge of testing or ‘validating’ predictions which seek to deal with uncertain future 

outcomes. In the next section, the present study is introduced.  

 

1.5. The present study 
 

1.5.1. Aim and objectives 

Within the context of these hypotheses that flood hazard may be somewhat underestimated, and 

fully acknowledging that any sort of definitive answer is likely to be elusive using additional data 

from only a single event, the aim of this thesis is: 

 
To explore the effect of including the latest instrumental river flow observations from 

northern England in December 2015 on flood frequency estimates produced using 

established, widely used methods.  

 

These river flows represent new record maxima in many locations.  

 

The study’s more specific research objectives are: 

 

1. To explore the effects of including December peak flow observations on flow frequency-

magnitude relationships (a.k.a. flood frequency estimates) produced using the single-site 

statistical method at as many stations as possible;  
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2. To investigate whether any associations between change in flood frequency estimates 

observed in Objective 1 and i) flow record length and ii) catchment area might be apparent; 

 

3. To compare flood frequency estimates produced using the ‘enhanced single-site’ method 

with those produced on a single-site basis (with and without the additional data) (again 

from Objective 1) and observed data where possible, and; 

 

4. To assess the sensitivity of flood frequency estimates to choice of statistical distribution 

relative to variability associated with the specific data or methodology employed (from 

Objectives 1–3).  

 

1.5.2. Rationale 

Estimating flood frequency on a single-site basis is conceptually straightforward (see Section 2.1.2 

for details). It was therefore an obvious starting point when seeking to investigate the possible 

implications of the exceptional December 2015 floods. Specifically, statistical models were fitted 

within and without the latest annual river flow maxima (AM) and then compared. Using this 

method, the necessary estimates could be produced relatively quickly at a large number of sites, 

thus enabling overall patterns of change – including spatial ones – to be identified. (Objective 1).  

 

Potential relationships between degree of change and record length and catchment area were 

investigated to consider whether there might be any underlying factors driving the sensitivity (i.e. 

change) of the estimates. In particular, it is established that single-site estimates (especially of long 

return period flows) can be quite sensitive to the particular characteristics of the record. Estimates 

produced from shorter records, which effectively represent smaller samples, are thus likely to be 

more sensitive to the additional data than longer records, i.e. a negative association between change 

and record length was expected. Expectations with respect to any relationship between change and 

catchment area were less clear. (Objective 2).  

 

Due to the sensitivity that single-site estimates can demonstrate to the characteristic of the often 

short records, it is not recommended by official UK guidance (IH, 1999 and subsequent updates) 

unless the record length is more than double the ‘target’ return period, T (assuming there is only 

one, or if not the longest). Where this is not the case, a form of spatially pooled analysis is 
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recommended. This involves essentially extending the record at the target site using data from 

other, hydrologically similar sites. For flood estimation at gauged sites, in an attempt to achieve a 

balance between the benefit of the target site data (i.e. the assured relevance of the data to the study 

location) and pooling (i.e. the increased sample size, and hence lower sampling uncertainty), the 

‘enhanced single-site’ method is endorsed. Again, further information is provided in Section 2.1.2. 

As part of the work to address this objective, some model-to-data comparisons were carried out. 

These complement the model-to-model comparisons, of which one must always be a little wary 

(Objective 3).  

 

Finally, there remains much debate regarding what the most appropriate statistical distribution to 

describe peak flows might be. Therefore, attempts were made to explore how large the variability 

(or uncertainty) associative with the choice of ‘equally valid’ statistical distributions might, in 

typical cases, be relative to the variability (or uncertainty) associated with the data available or 

method followed (Objective 4).  

 

Following a detailed review of the subject in Section 2.2, for ease of implementation and to provide 

consistency with current practice, it was decided that this study should proceed under the 

assumption of stationarity. Further justification of this decision is given in Section 2.2. However, 

this does not preclude the first possible reason proposed above from being responsible for any 

underestimation. Rather, making this assumption means that irrespective of whether hazard 

estimates are revised upwards with the inclusion of the additional event flow data, the revised 

estimations may still represent underestimations if any sort of increasing trend is emerging.  

 

In comparison with studies that seek to extend records of flooding backwards, extending forwards 

as here has three benefits. Firstly, uncertainties associated with the magnitude of the recent 

instrumentally measured flows, whilst by no means negligible (see Section 2.1.3), are likely to be 

lower than those associated with flows reconstructed from historical or palaeoflood data. Secondly, 

the climatic and catchment land use conditions under which recent flows have been produced are 

likely to be more relevant with regard to future flooding than those under which generated 

historical or palaeofloods. Since in many cases the largest floods can exert a major influence over 

the fitted distribution and hence the estimates produced, this question of relevance is often of 

major concern. Thirdly, employing approaches that are widely and routinely used for flood 

estimation by practicing hydrologists in the UK water industry has the additional benefit that any 
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findings, conclusions or recommendations may have more direct relevance than they might if non-

standard methods had been used.  

 

That attempts can now be made to update English flood hazard estimates so rapidly after high-

impact flood events is largely thanks to the Environment Agency’s (EA) Open Data initiative (Open 

Data Institute, 2016). Whereas previously river observations only became freely via the National 

River Flow Archive (NRFA), which is operated by the Centre for Ecology & Hydrology (CEH), after 

a significant delay, continuous river level observations from gauging stations across England are 

now publically available in real time. As such, despite still being provisional (having not yet 

undergone the rigorous quality assurance needed for their re-release on the NRFA), when 

combined with other data from the NRFA, observations from December 2015 provide an excellent 

resource for further improving our collective understanding of flood frequency in the UK, forming 

the foundation of the analyses conducted herein.   

 

As persisting with the assumption of stationarity implies, this research specifically does not set out 

to revisit the question of whether any firmer conclusions to be made concerning trends in 

empirical flow series can be made in light of the new data. Previously reported limitations of 

empirical change detection, to which attention is drawn in Section 2.2.1, likely still apply; in 

particular, should the latest data be included, the high ‘outlier’ that would be present at the very end 

of the series in many locations might lead to spurious trend results (Wilby et al., 2008). As alluded 

to above, further research, especially the probabilistic attribution of flood-causing weather events 

to anthropogenic climate change, holds the promise to the address such problems associated with 

empirical analysis (although are subject to their own uncertainties). Several other potentially 

interesting topics also lay out of scope, including flood frequency estimation at ungauged locations, 

the consideration of complex multivariate stochastic models that can be applied to produce 

plausible future rainfall and river flow data in time and space, other types of flooding such as 

pluvial flooding, and the notion of flood risk.  

 

In summary, although flood frequency estimation is inherently an extremely challenging 

endeavour, the levels of investment that depend on it necessitate that it be addressed and continual 

improvement pursued. By means of discussion of the recent literature throughout, this study seeks 

to position itself at the forefront of contemporary research and practice in relation to the pertinent 

topic of flood frequency estimation in the content of natural variability and possible anthropogenic 
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climate change impacts. It is hoped that the findings will in some way complement the ongoing the 

National Flood Resilience Review, which was established following the flooding of December 2015  

and is due to be published in Summer 2016 (Defra, 2015). Overall, the significance and novelty of 

the proposed work lies in its timely application of the very latest observations to the important and 

challenging research question of how well flood frequency estimates can be made; no existing 

studies are known of which have explored changes to flood frequency across many locations in 

light of any recent exceptional floods. 

 

1.5.3. Thesis structure 

The remainder of this thesis is structured as follows: 

 

Chapter 2 consists of a review of relevant literature, and is arranged into three main sections. In 

Section 2.1,  further background to the field of fluvial flood hazard and risk assessment is provided, 

Specifically, the continued need for long-term assessment is emphasised, and standard statistical 

methodologies for flood frequency estimation that are widely used in UK practice are introduced in 

more detail. The measurement of high river flows and associated sources of uncertainty is also 

discussed. In Section 2.2, recent research tackling potential non-stationarity in UK peak river flows 

– past, present and future – is evaluated. Both empirically-based and simulation-based studies are 

considered. The view on how the present work should proceed in this regard, to assume 

stationarity, was only reached after considering this material. Thereafter, Section 2.3 focuses on 

some of the historically-informed flood frequency assessments that have been undertaken, and 

other relevant research. Taken together, the findings of such studies suggest that even irrespective 

of any potential climate change-induced trends, flood hazard could be underestimated using 

conventional approaches which rely heavily on relatively short records.  

 

Thereafter, the research methods that were followed in order to address the aim and objectives are 

described in Chapter 3, whilst the results are presented and discussed in Chapter 4. Finally, 

conclusions are drawn and recommendations are made in Chapter 5. 
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Chapter 2 
 

Review 

 

2.1. Established practice in flood hazard and risk assessment 
 

The aim of this section is to demonstrate the continued importance of fluvial hazard and risk 

assessment. Some typical applications are presented first, before the standard statistical flood 

frequency estimation techniques that often underpin them are described. Finally, the process of 

obtaining measurements of high river flows and sources of uncertainty therein are briefly 

discussed.  

 

2.1.1. The continued need for long-term flood assessment 

In contrast to short-term flood forecasting, where the aim is to predict areas that may be inundated 

and perhaps also timing and severity several hours or days in advance of a flood (Werner et al., 

2009), long-term assessments express hazard (or risk) in the absence of an imminent threat. This 

activity is crucial because, even if perfect short-term forecasting were possible (of course it is not, 

and may never be; Weerts et al., 2011), flood mitigation and other hydraulic structures such as 

levees, retaining walls, and bridges have long intended lifespans at the time of their construction. 

They are therefore very likely to be subjected to extremely high flow levels at some stage, and so 

must be designed to withstand them. Thus, establishing the design criteria of such structures (for 

example, the peak flows associated with the desired annual probability of exceedance) constitutes 

the most direct application of flood frequency analysis (Coles and Tawn, 1994; Kidson and 

Richards, 2005; Prosdocimi et al., 2014).  

 

Flood frequency results also often provide inflow boundary conditions to hydraulic models (Bates 

and De Roo, 2000; Horritt and Bates, 2002). These design flows can be efficiently routed over high-

resolution digital terrain datasets (often now using 2D codes) in order to produce fluvial flood 

hazard maps. Indeed, it has been possible for some years now to produce such maps for large areas 

relatively quickly (Bradbrook et al., 2005). The maps usually show the spatial distribution of 

maximum water depth associated with flows of certain annual probabilities of exceedance (or, 
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inversely, return periods) (Merz et al., 2007). Figure 2.1 provides an illustration of the general 

concept, although this particular example is somewhat more sophisticated than many since it 

contains additional uncertainty information, and may therefore be described as probabilistic as 

opposed to deterministic. 

 

FIGURE 2.1. Example flood hazard map for Mexborough, South Yorkshire. To date, most such maps have 

been purely deterministic. In contrast, this map shows the likelihood of inundation, ranging from high (red) 

to low (blue), associated with the 1% Annual Exceedance Probability (AEP) (i.e. 1-in-100-year return period) 

flow. In this way, the effects of uncertainty, stemming from various sources, can be represented. Source: 

Beven et al. (2015).  

 

In the UK, planning zones are identified on the basis such maps, those produced by the EA are 

appropriated for this purpose. Accordingly, such maps also are heavily relied upon when 

conducting so-called Strategic Flood Risk Assessments (Porter and Demeritt, 2012; see also JBA 

Consulting, 2014 for an example of such a document). 

 

If risk is defined as the mathematical expectation of loss (Rougier, 2013), then it is clear that its 

calculation must incorporate not only various plausible future hazard possibilities, underpinned by 

some sort of flood frequency analysis, but also information on consequences. In this sense, the 

information typically contained within flood hazard maps – specifically the probability with which 

a water depth might be exceeded in floodplain locations – supports risk analyses at individual sites 

(Büchele et al., 2006; Penning-Rowsell et al., 2005). When aggregate risk to a portfolio of spatially 

distributed assets is of concern, due to spatial correlation in flooding patterns, it may be necessary 

to map inundation associated with for many plausible, spatially coherent scenario events. 

Generating such catalogues still typically requires at-site relationships between flows and their 
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probabilities to be established initially, however (see e.g. Thornton et al., 2014). When aggregate 

risk over time is also of concern, events must also be assigned frequencies that include the effects of 

any temporal dependence or clustering. 

 

In England, flood risk management is primarily the responsibility of the EA, whose remit includes 

the delivery of a range of flood-related infrastructure and services. Having the ability to estimate 

risk, including the reductions that might be achieved under various hypothesised interventions, 

provides a strong foundation for objective and robust decision making (Hall et al., 2003; EA, 2014). 

For instance, the likely long-term economic merits (or otherwise) of proposed flood defences can 

be demonstrated in this fashion (Harvey et al., 2012). 

 

Another outlet for flood risk modelling is the estimation of fair, risk-reflective prices for the flood 

element insurance policies at individual properties, along with associated decision making by 

insurance companies around capital allocation, reinsurance purchases etc. A wide variety of 

different approaches, with differing degrees of complexity, may be pursued to this end. Essentially, 

be it at an individual property or global level, risk modelling helps the (re)insurance industry to 

assume what may be termed the ‘residual’ risk, which is that remaining once the mitigating effects 

of flood defences and other measures have been accounted for (Dawson et al., 2011).  

 

In summary, flood risk managers in various spheres rely heavily upon flood hazard and risk 

assessment results. It follows that these results, and hence subsequent decisions, depend greatly on 

the reliability of the flood frequency estimates which underpin them. Some of the generic 

challenges in this regard were introduced in Section 1.2. In the next section, the specific methods 

by which these estimates are generated by practitioners in the UK water industry are introduced. 

 

2.1.2. Standardised statistical methods for flood frequency estimation in the UK 

The UK has a relatively long history of standardisation of (mostly statistical) flood estimation 

methods for practical applications. This began in earnest with the publication of the Flood Studies 

Report (NERC, 1975), which has now been superseded by the Flood Estimation Handbook (FEH) 

(IH, 1999) and its subsequent updates (Kjeldsen et al., 2008b).  

 

The FEH statistical method remains dominant to this day. It is based upon the ‘index flood’ 

approach, with the median of the annual maximum (AM) flow distribution, QMED, typically being 
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adopted as the index flood. Importantly, this quantity can be estimated reasonably well from 

relatively short AM series – as few as 13 data points are normally sufficient. In order to estimate 

the probabilities of more extreme flow levels, such as the 1-in-100-year flow, dimensionless growth 

factors relevant to the site in question must then be determined. When compiled together, these 

factors constitute a growth curve. Finally, in order to estimate design flows, the index flood can 

simply be multiplied by the growth factors corresponding to the required return periods. 

 

The first maxim of flood estimation according to the FEH is that “gauged is best”. In other words, 

whenever flood estimations are required for a gauged site, measurements from that particular site 

should assume a central role. As already stated, estimating QMED in such circumstances is 

normally straightforward. With regards to growth curve estimation, when the AM series length 

records exceeds twice the target return period, T (assuming there is a single target probability; 

when there is not, the longest target return period should be taken), then only data from the site in 

question are required. Several alternative statistical distributions might be selected, although 

having been identified as most suitable for the majority of UK sites, the Generalised Logistic (GL) 

distribution, coupled with the L-moments fitting method of Hosking and Wallis (1997), is 

recommended as the default (IH, 1999). The GL distribution and method of L-moments are 

elucidated in Section 3.4.1.   

 

Where the record at the target site is not so long, and especially where the number of years is less 

than T (as is usually the case given the length of most flow series), it is recommended that additional 

data be incorporated into the growth curve estimation procedure. To achieve this, several other 

gauged catchments that are hydrologically similar to the target site, defined as such according to a 

set of ‘catchment descriptors’, must first be identified. These catchments need not be geographically 

close to the target site, as Figure 2.2, which shows a pooling group that might be identified for the 

River Dee at Polhollick (12003), demonstrates. Then, a pooled growth curve can be developed from 

the combined dataset with the contribution made by each catchment weighted according to its 

degree of similarly with the target station.  
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FIGURE 2.2. The pooling group for estimation floods for the River Dee at Polhollick (12003; location 

indicated with a cross) consists of data from 20 gauged catchments (dots) considered hydrologically similar to 

the study site. The FSR regions (NERC, 1975) are shown in colour. Source: Blöschl (2013). 

 

In both single-site and pooled cases, it is possible for the fit of the model to the observations can be 

inspected graphically (e.g. Figure 2.3). Data plotting positions are usually determined using the 

Gringorten formula (Gringorten, 1963; Equation 1). The exceedance probability, P(X), is estimated 

as:                                                                                                        

  

P(X) = 
r – 0.44

n + 0.12
 

   [1] 
 

where n is the total number of years in the series and r is the rank position (arranged in descending 

order of magnitude).  

 

The formula overcomes the problem that r/n is a poor estimator when n is small.  
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Logistic reduced variate 
Ln(T – 1) 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2.3. Example flood frequency curve for the River Meig, Highland (4005). The positions of the 

observations are determined using the Gringorten formula. Source: WINFAP-FEH 3 User Manual (2009).  

 

In reality, flow gauges are rarely positioned conveniently near sites of interest. Therefore, flood 

estimation at ungauged sites is frequently required, presenting a notable additional challenge 

(Kjeldsen and Jones, 2009). To address this, empirical formulae have been derived which enable the 

estimation of QMED at ungauged sites, given parameters describing the physical characteristics of 

the catchment draining to that point. The latest version of this equation, which was developed by 

Kjeldsen et al. (2008b), is: 

 

QMED = 8.3062 AREA0.85100.1536(
1000

 SAAR
) FARL3.44510.0460BFIHOST2

                     
  [2] 

 

where AREA is catchment drainage area (in km2), SAAR is standard annual average rainfall 1961-

1990, FARL is an index of flood attenuation due to reservoirs and lakes, and BFIHOST is a baseflow 

index derived from HOST soil type data (Boorman et al., 1995). 

 

Once QMED has been estimated, a pooled growth curve can then be developed for the ungauged 

site in the same fashion as already described, using gauged sites as proxies. This process of pooling 

or ‘regionalisation’, which amounts to a substitution of space for time, is presently the primary 
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means by which standard methods attempt to deal with both the problem of short records and the 

need for flood estimation at ungauged sites. However, the focus of the present thesis is on the 

theoretically more straightforward challenge of flood estimation at gauged sites, to which 

discussion now returns. 

 
The implicit assumption in pooling observations from hydrologically similar catchments is that the 

resultant group of catchments are homogeneous in terms of their flood generating mechanisms (IH, 

1999; Archer et al., 2007). Therefore, even where considered similar enough to be included by the 

method, introducing data that is not native to the target site might compromise the overall 

relevance of the data to that site somewhat. In this regard, a careful balance between the amount of 

data and its relevance is required.  

 

A number of cases exist in the literature where pooled estimates have been rejected for different 

reasons (but all essentially related to lack of relevance) in favour of either single-site estimates or 

those produced based on alternative (e.g. historical) data. For instance, Archer et al. (2007) rejected 

pooled results for the River Tyne at Bywell, suggesting that reservoir effects in the pooling group 

may be rather different to those at the study site. Black and Fadipe (2009), meanwhile, suggested 

that due to the unusual (summer) seasonality of flooding in the Spey catchment in northeast 

Scotland confounds pooling attempts. Similarly, in assessing pooled flood frequency results for the 

River Ouse at York (compared to some historical data), Macdonald and Black (2010) suggested that 

the lack of sufficiently large analogue catchments presents a problem for pooling here.  

 

Concerns about the assumption of homogeneity are particularly evident in urbanised catchments, 

which naturally tend to form a focus for flood risk management activity due to the concentrations 

of people and property they contain. Because of the diversity, even uniqueness of flood generation 

processes in such catchments, identifying sufficiently analogous catchments is often extremely 

difficult (Reed, 2002). Consequently, the FEH does not recommend pooling of any sort (i.e. 

including the enhanced single-site variant, which is introduced below) in urbanised catchments. 

This is clearly an unfortunate situation for the hydrologist or flood risk manager, who must resort 

to making somewhat crude ‘urban adjustments’ to as-rural estimates (Kjeldsen et al., 2010) or must 

applying entirely different methods. More generally, it seems that the established concept of 

‘uniqueness of place’ (Beven, 2000) may always limit the utility of pooling somewhat. Put another 

way, if the standard similarity criteria were tightened so to that relevance or homogeneity was 

more or less guaranteed, then the pooling ‘groups’ may end up with few or no additional 
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catchments in them. Certainly, pooling should never by thoughtlessly undertaken since it by no 

means represents a perfect solution to the short record problem.  

 

In an attempt to strike an improved balance, the enhanced single-site method has been developed 

(Kjeldsen et al., 2008b). This approach, which acknowledges the particular value of data from the 

target site by assigning them a much greater weighting compared to other records in the pooling 

group, is now recommended for use at gauged sites. 

 

A number of additional considerations must also be made under the statistical approach. For 

instance, there is some debate as to what specific ‘cut’ of a river flow time-series is best used as a 

basis for flood frequency estimation. The choice normally comes down to either using block annual 

maxima data (AM) data or, alternatively, all peaks in exceedance of a specified threshold (Peaks 

Over Threshold, POT). To give a flavour of the particular considerations, individual AM data 

points are on the one hand are more likely to conform to the assumption of independence. On the 

other, taking only the AM may cause flows which are not annual maxima but are nevertheless 

potentially important to be discounted. Taking a POT approach can ensure that more potentially 

relevant peaks are included. However, in this case, the choice of threshold (to which results can be 

sensitive; Beguería, 2005) is arbitrary. The present study employs the AM approach.  

 

As mentioned previously, there is also a degree of choice regarding the statistical distribution and 

parameter estimation method to be employed. It has been suggested, for instance, that distributions 

founded in Extreme Value Theory (EVT), such as the Generalised Extreme Value (GEV) 

distribution, have a stronger theoretical basis than certain alternatives – annual series of block 

maxima are believed to converge to a GEV distribution as the sample size increases (Faranda et al., 

2011). Despite this, as already mentioned, GL distributions often appear to fit the UK peak data 

better (IH, 1999; Kjeldsen and Jones, 2004). In terms of fitting methods, the main alternative to L-

moments, which is the approach recommend by the FEH and hence employed in this study, is 

Maximum Likelihood Estimation (e.g. Martins and Stedinger, 2000).  

 

Alternatives to statistical approaches to estimating present-day flood frequency are available. In 

many, the degree of process representation may be much greater than simply distribution fitting, 

although calibration using empirical data is still typically required. For example, return period peak 

flow estimates may be produced by following the FSR/FEH rainfall-runoff method, which was 

reworked a decade ago to give the Revitalised Flood Hydrograph (ReFH) model (Kjeldsen et al., 

https://scholar.google.ch/citations?user=QEL8DQoAAAAJ&hl=en&oi=sra
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2005). This method requires the specification of hyetographs for storms of design return period in 

terms of total volume, duration and the profile shape (again using statistical modelling). Then, given 

some assumed antecedent conditions, a conceptual rainfall-runoff model is applied. The T-year 

flood assumed to be simply a product of the T-year rainfall event.  

 

To overcome some of the limitations associated with such an approach, more advanced methods 

that involve continuous simulation of river flows, usually driven by some stochastically generated 

rainfall data either at individual sites or across multiple sites, (e.g. Calver et al., 2009; Grimaldi et al., 

2012; Wheater et al., 2006) are increasingly favoured. Although both the ReFH approach and the 

continuous simulation approaches aim to represent effect of antecedent catchment conditions (e.g. 

soil moisture volumes) on flood frequency and severity, continuous approaches have the benefit of 

being less sensitive to uncertain initial conditions, since they are continually updated and so can be 

‘spun up’ (Svensson et al., 2013). A possible detraction is that the rainfall generator must function 

well over the full range of intensities, including lower ones (Ibid.) 

 

Both approaches can potentially benefit from fact that longer rainfall records are often available 

than river flow records (Jones et al., 2004). Being less than straightforward to conduct, continuous 

simulation in particular remains very much in the research domain. Although standard tools 

(previously a spreadsheet, although this has now been superseded) are available to ease the 

implementation of the ReFH method, due to the additional components in the modelling chain (and 

therefore extra sources of uncertainty), it is only recommended in circumstances which require a 

design volume (i.e. a full hydrograph).  

 

2.1.3. Uncertainty in the measurement of high river flows 

Hydrometric measurements are the responsibility of different monitoring authorities in each 

nation of the UK; the EA are responsible in England, the Scottish Environmental Protection 

Agency (SEPA) in Scotland, and so on. Once their quality is assured, the observations are compiled 

into the NRFA. 

 

As already discussed, instrumental observations of river flows play a fundamental role in flood 

frequency estimation. It is therefore appropriate to consider some of the sources of uncertainty 

associated with such measurements. As one might expect, the measurement of very high flows, 
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which are naturally most influential in flood estimation, is particularly challenging. Some specific 

sources of uncertainty are briefly highlighted. 

 

According to Freer et al. (2013), the UK’s hydrometric monitoring network was established 

primarily for low-flow (i.e. drought) monitoring. Perhaps because many gauging structures are 

designed for this purpose, and more generally because most natural channels do not provide 

sufficient ‘control’ in times of flood, out-of-bank flows of flood can bypass gauging stations. This 

often results in the underestimation of flood levels (Wilby et al., 2008). Incidentally, this is another 

possible explanation for the underestimation of flood frequency when compared to reality, 

although not when comparing one modelled estimate to another.  

 

A second major source of uncertainty stems from the fact at the majority of monitoring stations, 

discharge is not continuously measured directly. Rather, only water stage (i.e. level) is recorded. 

This necessitates the application of pre-calibrated rating equations, which based on available and 

relevant contemporaneous stage-discharge measurements at each site, to associate stage and 

discharge. These relationships are often constructed from measurements made at low to moderate 

levels, and so in order to estimate flood discharges, extrapolation beyond their calibrated ranges is 

frequently necessary.  

 

Furthermore, many stations may exhibit ‘multi-stage behaviour’, whereby the equation governing 

the stage–discharge relationship varies according to the stage range (Reitan and Petersen-Øverleir, 

2009). In the example shown in Figure 2.4, for instance, a small change point seems to 

approximately coincide with the level of bankfull capacity, which is not atypical.  
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FIGURE 2.4. Rating curves relating water level with peak discharge for the River Wharfe at Addingham, 

West Yorkshire (27043). Here, a small but noticeable shift in the stage-discharge relationship occurs at 

approximately bankfull stage. Calibration points are show as small red crosses. This rating appears relatively 

well constrained; others demonstrate much more ‘scatter’ and complexity. Source: CEH. 

 

Changes in channel geomorphology, instrumentation location and type over time, meanwhile, can 

impinge on flow record consistency (i.e. stationarity) (Hannaford, 2015). Unsurprisingly, the 

construction of reservoirs and dams can have has an even more pronounced effect, usually 

rendering any ‘pre-construction’ observations irrelevant (Archer et al., 2007). Alternatively, 

attempts may be made to ‘correct’ for past changes.  

 

Finally, instrumentation failure always remains a possibility, with such failures surely more likely 

in times of flood. Consider Figure 2.5, for example, which shows the data returned from the station 

on the River Derwent at Malton, North Yorkshire (27858) during late 2015, obtained as part of the 

present study. Unlike most others, ultrasonic instrumentation is installed at this station and so 

rating curves are not required. (Discharge can be measured directly with such instrumentation; 

Herschy (2009; Ch. 12) provides a description of the method). The constant discharge 

measurements of 200 m3 s-1 are clearly erroneous (and were removed from the study). 
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FIGURE 2.5. Time-series plot of discharge series for the River Derwent at Malton, North Yorkshire (27858) 

from March 2015 onwards. It is apparent that the data returned during late December and January, that is for 

much of the period when flows were known to be highest, are erroneous.  

 

Coxon et al. (2015) recently quantified the overall uncertainty associated with UK instrumental 

discharge measurements at 500 stations. Although a wide range of overall uncertainty in discharge 

measurements (10–397%) was reported, at 80% of locations ‘high-flow’ estimates (defined to be 

QMED; so not particularly high in the context of this study) were found to be associated with 

uncertainties of less than 40%. The methodology employed was incapable of extrapolating beyond 

the limits of the stage-discharge measurements, however, and larger uncertainties would surely be 

expected in the region considered in this study. Another important finding of the work was that 

uncertainty was dominated by local sources (Ibid.), which complicates generalisation attempts.  

 

The NRFA goes to some lengths to provide carefully document information on the characteristics 

of each catchment and station, and to identify data of questionable quality. Despite this, the 

practical difficulties associated with thoroughly assessing measurement uncertainty and record 

consistency can be considerable. This especially the case when the number of stations is high and 

the scientific focus is placed elsewhere, as it is here. Overall, it is apparent that the measurements 

upon which much subsequent hydrological science is based are inherently uncertain. River flow 

data, and most especially of all flood observations, should never simply be treated as ‘correct’, as 

they are in some studies (Clarke, 1999). 
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2.1.4. Summary 

This section has re-emphasised the continued need for long-term flood hazard and risk assessment, 

which is distinguished from short-term forecasting. Standard statistical approaches to flood 

frequency estimation have described, along with some of their limitations and alternatives. Finally, 

with an emphasis on the attendant sources of uncertainty, the process by which river flow 

measurements are typically made has been explained. This material provides solid background 

from which the present study may develop.  

 

 

2.2. Potential non-stationarity in UK peak flows 
 

This section reviews recent research that has explored the challenging topic of whether flood 

hazard in the UK might be changing, that is to say, is non-stationary. It is clear that the mere 

occurrence of record breaking floods such as those of December 2015 does not constitute evidence 

for increasing hazard; records will continue to be broken whether trends are real or perceived 

(Matalas, 1997). Hence, some form of more advanced analysis is required.  

 

In general, non-stationarity may take the form of abrupt shifts, cycles or monotonic trends. Of 

these (provided they happened in the past and were captured in the records), abrupt shifts in a 

time-series are usually the easiest changes to detect. This can be done either visually, or by 

searching for jumps in the mean calculated across rolling windows, for instance. Therefore, in 

actuality, most attention is paid the identification of cycles and trends. In the case of fluvial flood 

risk management, any possible changes in the probabilities of high river flow occurrence, as 

opposed to other components of the hydrograph (such as changes in seasonal or low flow 

distributions), are of most concern. Readers who are interested in such other aspects are referred to 

Hannaford and Marsh (2006) and Hannaford and Buys (2012), for example.  

 

The topic is particularly pertinent for the reason given in Chapter 1; namely that whilst the 

assumption of stationarity is routinely made when conducting standard statistical flood frequency 

analyses, there is a growing perception that UK flood hazard or risk might be increasing, and that 

this could be as a result of anthropogenic climate change. If there is indeed an increasing trend in 

the frequency of peak flows (i.e. hazard), then flood risk in both the immediate and longer-term 

future might be being underestimated. It was felt that no study in the general field of flood hazard 

and risk assessment could overlook the topic of stationarity. Having said that, following the review 
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presented below, it was decided that non-stationarity would not be explicitly considered in the 

subsequent research. Justification for this decision is presented in due course.  

  

Conceptually, the numerous factors that could be responsible for changes in peak flows (and other 

elements of the hydrograph besides) are easily identifiable. They include natural weather and 

climate variability (Scaife et al., 2008), changes in rainfall patterns and other meteorological 

phenomena associated with anthropogenic climate change (e.g. temperature and snow 

accumulation) (Huntingford et al., 2014; Watts et al., 2015; Wilby et al., 2008), urbanisation and 

other land use changes (Beven et al., 2008; Wheater and Evans, 2009), and direct modification of 

the hydrological system (such as channel engineering, reservoir construction and abstraction; see 

e.g. Marsh and Harvey, 2012).  

 

As has already been mentioned, in the aftermath of particular events, there is often intense debate 

about the extent to which past greenhouse gas emissions might have contributed (BBC, 2014; 

Hannaford, 2015; Watts et al., 2015), although care must be taken not to conflate meteorology 

(specifically precipitation) and flooding. Robust detection of past changes and subsequent 

attribution to underlying causal mechanisms, coupled with reliable projections of future changes, 

could lead to both more informed debate and improved policy responses. However, as this section 

reveals, meeting these aspirations is, at present, highly demanding.    

 

2.2.1. Empirical analyses 

Empirical analyses can be conducted to explore past changes. Jones et al. (2013) conduced regional 

frequency analyses on extreme rainfall over the period (1961–2009). Some evidence was found for 

increases in frequency, with variability in the changes depending on region, seasonality and event 

duration. In certain locations, decreases in return period estimates for a given volume were sharp. 

The authors suggested that “these result may have significant implications for flood defence design 

and planning” (p. 1178). However, catchment characteristics and non-linear physical processes 

mean that peak river flow responses need not necessarily follow changes in rainfall (Laizé and 

Hannah, 2010). For example, with respect to the Thames catchment, Hannaford (2015) states that 

despite increases in air temperature, tendency for winter rainfall and increased annual runoff all 

being observed, there is no trend in fluvial flood magnitude.  
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Accordingly, many studies have attempted to find evidence for past changes in more direct 

indicators of flooding (normally peak flows – either AM or POT – but sometimes also duration 

above a certain threshold, and so on). Various statistical approaches are available to interrogate 

instrumental flow records; Robson (2002) and, more recently, Chiverton et al. (2015) provide useful 

summaries. Least-squares linear regression with focus on the gradient, and the Mann-Kendall test 

(Kendall, 1975), are two often-favoured methods of investigate trends.  

 

The study of Hannaford and Marsh (2008), which used such approaches, makes an important 

contribution. It reported that in near-natural ‘benchmark’ catchments16 with only moderate record 

lengths (<55 years; most of which started in the 1960s), some upward trends in flood frequency and 

severity were apparent. Catchments in northern and western areas, which are under maritime 

influence, demonstrated this most clearly. In contrast, records from lowland catchments were 

found to demonstrate no obvious trends (Ibid.).  

 

However, in such short records, the number of extreme observations are limited. Moreover, the 

extremes tend to exhibit a high degree of inter-annual variability. Consequently, establishing 

whether such trends are genuine is often extremely difficult on an empirical basis (Hannaford and 

Marsh, 2008; Pattison and Lane, 2011). Dixon et al. (2006) even showed that trends that can be 

considered statistically significant can be undermined if the sample start or end dates are arbitrarily 

changed. The results of such trend analyses are also known to be highly sensitive to precisely where 

high outliers are located temporally (Wilby et al., 2008). Prosdocimi et al. (2014), who conducted a 

more recent national scale examination of both peak flows and precipitation, summarise the 

situation nicely. They state that "one striking feature of the estimated trends is that the high 

variability found in the data leads to very inconclusive test results” (p.1125). An additional 

consideration that must be made when conducing such tests across a network of stations, with a 

view to arriving at an ‘overall’ statement, is their spatial correlation. Tests of ‘field significance’, 

which account for correlation between sites, must be applied to address this (Wilks, 2006). 

Guerreiro et al. (2013), for example, assessed the significance of changes in rainfall on the Iberian 

Peninsula in this fashion.   

 

                                                 
16 Most research on hydrological change to date has been undertaken in ‘near-natural’ benchmark 

catchments (Bradford and Marsh, 2003). Whilst this approach is useful for distinguishing between natural 

and anthropogenic changes, any findings might have only general relevance to flood risk. More work on 

urbanising and urbanised catchments in future would therefore seem sensible 
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Attribution of any detected change on an empirical basis is even more problematic. Whilst inherent 

hydrological complexities mean that changes in several drivers may induce similar hydrograph 

responses, only one realisation exists with which to work (i.e. what actually happened), and so 

deconvolution to establish cause and effect is rarely possible. A notable example where empirical 

attribution has been possible is the recent study by Prosdocimi et al. (2015), who did manage to 

attribute observed changes in high-flow frequency and magnitude with urbanisation in a 

catchment in North West England by using a nearby non-urbanised catchment as the control.   

 

In view of the difficulties that confront analyses of fairly short records, longer instrumental flow 

records have the potential to provide useful additional insight. Fortunately, some such records are 

available in the UK, although they are few in number. Their analysis has yielded two particularly 

important findings. The first is that there is very little, if any, evidence for significant long-term 

trends in UK peak river flows (Hannaford and Marsh, 2008; Hannaford, 2015). The AM record 

from the River Thames at Teddington (Figure 2.6), which is one of the longest continuous flow 

records anywhere in the world, is a case in point; even when the series is ‘naturalised’ to remove 

effects of historical abstractions, it is evident that the very largest peaks occurred in the earlier 

portion of the record.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2.6. Naturalised annual maxima (AM) daily mean river flows for the River Thames at Teddington. 

Naturalised refers to normalisation to account for abstraction and other anthropogenic processes. The 

smoother line is a locally weighted regression smoothing curve (LOESS) (Cleveland, 1979). Source: Marsh 

and Harvey (2012).  

 

The second important feature revealed by longer records is that flood peaks often tend to 

demonstrate some clustering into so-called ‘flood-rich’ and ‘flood-poor’ periods on multi-decadal 
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timescales (Black, 1995; Hannaford and Marsh, 2008). These fluctuations are believed to be the 

signature of some form of climatic variability, with changes in westerly airflow associated with 

variability in the North Atlantic Oscillation (NAO) – which is the dominant mode of climatic 

variability in the UK – a possible contender. Indeed, an association between positive NAO phase 

and high flows has already been exposed (Biggs and Atkinson, 2011). That said, Jones and Quinn 

(2013) found little change in flood generating synoptic systems since the 1930s that could easily 

explain these intervals, which demonstrates the degree of complexity involved.   

 

Whilst on the topic of flood-rich periods, it may be noted that one possible explanation for the 

upward trends identified in some of the shorter records is that the opening of many gauging 

stations in the 1960s could have coincided with the start of one; since this period, NAO has 

generally been positive (Hannaford and Marsh, 2008). Nevertheless, variability on shorter 

frequencies is strong, and the recurrence of any flood-rich periods remains poorly understood. 

Should it become possible at some point to forecast with reasonable skill whether the future (on an 

appropriate timescale) might be relatively flood-rich or poor, then one could theoretically adjust 

future flood probabilities relative to those given by the integrated records such that they are more 

appropriate to the specific timescale in question.  

 

Lastly, Hannaford (2015) reviewed whether there might be any specific evidence for climate change 

impacts specifically in empirical UK river flow series. It was stated that although some of the 

regime changes reported above are consistent with future projections (see the next section; Section 

2.2.2.) are present, others appear to be in contradiction. From this, it was ultimately concluded that 

any observed changes cannot generally be attributed to climate change. 

 

2.2.2. Coupled climate-hydrological model simulations 

In contrast to empirical approaches, the application of climate models allows synthetic experiments 

to be conducted (e.g. changes in land use on flood frequency) and possible future changes in 

flooding to be explored (Prudhomme et al., 2010; Cloke et al., 2013). Focussing on the latter, a long 

chain of coupled models is normally required. Firstly, due to the coarseness of Global Climate 

Model (GCM) grids, Regional Climate Models (RCMs) (which are produced by means of dynamical 

downscaling, and hence are nested within GCMs) are better suited to hydrological applications. 

Given an assumed future emissions scenario (or scenarios), future rainfall data may be generated. It 
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is normally necessary to further downscale these precipitation data so that they are ‘meaningful’, i.e. 

there is some spatial variability, at the catchment scale. The opportunity to correct biases in the 

models’ output rainfall, as diagnosed by their inability to replicate observed statistics over the 

historical control period, is often also taken at the downscaling stage (Kay et al., 2009; Lafton et al., 

2013).  

 

It is then possible to force previously calibrated rainfall-runoff models by these simulated future 

rainfall data. In this way, continuous time-series of future river flows can be generated, 

theoretically in a large number of catchments. Thereafter, changes in flood frequency expected by 

some future (simulated) time period of interest can be calculated and compared to statistics 

representing the present. For instance, if ‘the 2080s’ are the period of interest, then flow quantiles 

from the period 2069–2099 might be estimated. The ‘present’ estimates might be produced from 

1980–2010 observations (Prudhomme and Reynard, 2009). Of course, the usual challenges 

associated with flood frequency estimation come into play, and so the significance of any changes 

should ideally be viewed in light of the estimation uncertainty. An example of a national scale UK 

project that follows this general outline is called Future Flows. Transient, 1-km resolution climate 

projections were used to generate daily flow time-series in 281 catchments for the period 1951–

2098, for 11 ensemble members (the role of ensembles is explained shortly) (Prudhomme et al., 

2012; Haxton et al., 2012). 

 

In terms of results, many such studies indicate that peak flow return periods are expected to 

‘shorten’ in future (Fowler and Kilsby, 2007; Bell et al., 2012; Kay and Jones, 2012; Quinn and 

Horswell, 2014; Smith et al., 2014). Wilby et al. (2008) describe the difference between this 

prediction and the lack of trends in most observed series so far as an “emerging mismatch” (p. 

2511).  

 

Numerous limitations and sources of uncertainty are associated with this approach. They include 

irreducible uncertainty with respect to the evolution of future greenhouse gas emissions, 

uncertainty in GCM structure, the severe inability of RCMs to replicate observed rainfall over the 

historical period (Cloke et al., 2013), structural and parametric hydrological model uncertainty (e.g. 

New et al., 2007), and uncertainty in flood frequency analysis (Cameron, 2006; Smith et al., 2014). 

The failure of the models to replicate observed rainfall, for example, necessitates the use of bias 

correction factors that are conditioned on a past control period. Despite knowledge of the highly 
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non-linear nature of the climate system, it is assumed that the adjustment factors will hold for the 

future (Beven, 2011). Moreover, multiple valid corrections can produce highly contrasting 

hydrological outputs (Fowler et al., 2007). 

 

These uncertainties are often compounded as they propagate through the modelling chain, as the 

conceptual diagram of Wilby and Dessai (2010), reproduced in Figure 2.7 illustrates.  

 

FIGURE 2.7. The cascade and envelope of uncertainty in future flood impact studies. The increasing number 

of triangles as one proceeds down the cascade reflects the increasing number of permutations at each level. 

Source: Wilby and Dessai (2010). 

 

Kay et al. (2009) evaluated the significance of the contribution made by no less than six different 

sources of uncertain to overall uncertainty, finding those related to GCM structure to be  

particularly notable. 

 

In order to represent some of the uncertainty and variability, ensemble simulations are often 

conducted. In addition to the divergent results (both between and within catchments) that different 

ensemble members are prone to produce, the computational burden associated with this approach 

is high. When national scale rather than only catchment scale analysis is required, and (or) when 

more than one plausible emissions scenario must be considered, and (or) several future time slices 

are of interest, both the degree of variability in the results and the computational challenge may 

grow exponentially.  
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As an alternative to full simulation, approaches based on ‘response surfaces’ have been recently 

pioneered (Prudhomme et al. 2013). These surfaces, which are produced via sensitivity analysis, 

reduce the computational burden involved. Figure 2.8 shows expected changes (and their ranges) in 

1-in-20-year peak flows by major river-basin region for the 2080s generated in such a fashion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2.8. Central estimates of regional climate change flood impacts ranges for the 1-in-20-year annual 

probability of exceedance (black) for river-basin regions in England and Wales under the medium UKCP09 

emissions scenario (Murphy et al., 2009).The upper and lower additional grey box-plot diagrams for each 

region show the results with the +2 and -2 standard deviation response surfaces added to the central estimate 

for each projection. This reflects the uncertainty from using composite response surfaces to represent what is 

actually a range of possible catchment responses classified as the same response type. Whiskers show the 10th 

– 90th percentile range, boxes the interquartile range (IQR) and median. Source: Kay et al. (2014).  

 

As the few examples that have been cited demonstrate, simulation-based assessments of future 

flood hazard tend to focus on fairly distant future periods. This is presumably because climate 

change impacts on high flows do not emerge clearly from natural variability in the shorter term. It 

does, however, mean that this approach is capable of providing little assistance to problems 

requiring a relatively short-term view of future flood hazard.    



 53 

Even when the problem at hand does relate to the longer-term future, due to the complexity of the 

modelling chain, the computational resources required, and the large uncertainty/variability 

typically associated with the results, coupled climate-hydrological modelling does not represent a 

viable means by which practicing hydrologists might generate future flood frequency estimates. 

 

Rather, the established statistical method based on past flood event data prevails. Having said this, 

the results of model-based simulations of the type described above do play some part in ensuring 

that hydraulic design and critical floodplain infrastructure is resilient to possible, albeit highly 

uncertain changes in flood hazard that might be realised over their intended lifespans (EA, 2011). 

Specifically, official guidance specifies relatively crude uplift factors that should be applied to 

‘baseline’ design flow estimated, under the assumption of stationarity, in the traditional manner  

(Wilby and Keenan, 2012). Until recently, a uniform 20% uplift was advocated for any period 

between 2025 and 2115, and for any location in the UK (Defra, 2006); an approach which was 

considered precautionary (Reynard et al., 2009).  

 

Following further modelling work (Prudhomme and Reynard, 2009), the guidance has been 

updated. In particular, it is now advised that these allowances be varied both spatially and 

according to the nature of the application at hand (for example whether or not the design relates to 

‘essential infrastructure’) (EA, 2016b). Especially where they are fairly precautionary, it could 

perhaps be suggested that these guidelines provide some ‘leeway’ for any potential contravention of 

the initial assumption of stationarity; essentially, when such allowances are applied, any potential 

non-stationarity is ‘dealt with’ in a phase following flood estimation. Having said that, it is 

established that over-design can, in its own way, be just as costly and under-design. 

 

2.2.3. Probabilistic event attribution 

Recently, an extremely novel method of exploring the links between climate change and 

contemporary flood events has begun to emerge. These so-called probabilistic event attribution 

studies (e.g. Kay et al. 2011; Pall et al., 2011; Schaller et al., 2016) also rely on the coupling of 

atmospheric (weather) and hydrological models. They attempt to quantify the contribution made 

by past greenhouse gas emissions to the weather that led to recent flood events, and thereby 

attribute a proportion of the ‘risk’ directly to this cause (note that in these studies, risk is not always 

used in the strictest sense defined earlier, but rather is used to refer to probability or likelihood). As 
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a consequence of the large degree of natural variability (independent of any anthropogenic 

influence), accessing enough computational capacity to run the very large number of high-

resolution simulations necessary for meaningful conclusions as to any anthropogenic contribution 

to be drawn from such studies has been an important consideration in the past. Massey et al. (2015) 

describe an innovative solution.  

 

The most recent study of this nature is that of Schaller et al. (2016). In this work, a hydrological 

model was forced by many simulated realisations of the weather of Winter 2013/2014 under both 

‘counterfactual’ pre-industrial conditions and present day atmospheric concentrations. 

Anthropogenic emissions were found to have increased the 30-day peak flow on the lower Thames 

associated with the 1-in-100-year monthly precipitation by a best estimate of 21%. Despite the 

variability, this result was considered to represent  a relatively strong climate change ‘fingerprint’ 

on the balance of probability (JBA Trust, 2016). Interestingly, a much less pronounced impact on 

peak flows – which correlate much more closely with flooding – was detected (best estimate: +4%).  

 

Nevertheless, as the previous statement alludes to, wide uncertainty bands are associated with these 

results; the 30-day best estimate statistic reported above, for instance, was associated with an 

uncertainty range of -12% to +133% (Schaller et al., 2016). Boundary condition uncertainties and 

inherent variability contribute to this range, however (i.e. the uncertainty is not only that associated 

with anthropogenic impacts).  

 

By their nature, these experiments support only quite nuanced conclusions regarding the 

contribution that anthropogenic climate change has made to past individual floods. These 

conclusions can be rather difficult for non-experts to interpret. Furthermore, because the 

methodology has so far only been applied to a few events, it is not yet possible to make more 

generalised statements about the extent to which flood hazard might have increased due to past 

greenhouse gas emissions (i.e. across all flood types, or flood-causing meteorological setups). 

Consequently, at this early stage in the development of such research, practising hydrologists and 

flood risk managers might, with some justification, be unclear as to how best respond to such 

findings.  
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2.2.4. Summary 

The large and growing literature on the subject of possible non-stationarity in UK fluvial flood 

hazard attests to the considerable importance of this topic. From the review that has been 

presented here, it is apparent that the insight empirical assessments are capable of providing is 

often limited by the records being short and ‘noisy’. That said, the longest instrumental records 

provide little indication for any notable long-term trends in either the frequency or severity of high 

flows. Simulation-based approaches can be applied to explore possible future changes, although 

their results tend to be highly uncertain, and moreover typically only relate to relatively distant 

future periods. For these and more practical reasons, the approach is not yet seen as viable means 

by which routine flood frequency estimates, including for future hydraulic design, might be made. 

Such modelling work has, however, informed climate change allowances that are often combined 

with flow estimates produced conventionally. Probabilistic attribution studies show much promise, 

and in cases suggest that anthropogenic emissions are already contributing to enhanced flooding, 

although this is by no means a clear picture across all events that have been assessed in this way. An 

important additional point is that introducing non-stationarity requires more complex models, and 

hence yet more uncertainty (Montanari and Koutsoyiannis, 2014; Serandi and Kilsby, 2015). 

Finally, maintaining the assumption of stationarity enables existing industry practice to be followed 

as closely as possible. For these reasons, the issue of non-stationarity is placed largely to one side 

for the remainder of this thesis. In the next section (Section 2.3), attention turns to an arguably even 

more fundamental reason as to why flood frequency might be routinely or systematically 

underestimated.  

 

2.3. Is flood frequency underestimated per se? 

 

The possibility that flood frequency relationships may be underestimated ‘per se’, i.e. even 

notwithstanding any possible increasing trends associated with anthropogenic climate change, was 

introduced in Chapter 1. One could even contend that this possibility has been somewhat 

overlooked at the expense of the highly politicised ‘hot topic’ of climate change. This section, and to 

a certain extent the subsequent research, seeks to redress this.  

 

Much of the work that is cited here in support of the hypothesis that flood frequency might be 

underestimated on the basis of short records involved extending records back in time. If this 
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possible explanation is to be proposed, therefore, then the assumption of long term stationarity 

over the studies periods must be established at the outset. More precisely, it must be assumed that 

flood hazard was not significantly ‘higher’ or ‘greater’ in the historical periods to which these 

studies relate.  

 

2.3.1. Support for the short-record underestimation hypothesis:                                              

historical and palaeohydrology 

Historical flood hydrology may be defined as the study of floods that occurred before the advent of 

instrumental (a.k.a. systematic) measurement, but which were recorded by humans in other ways 

(e.g. documentary records or epigraphic marks) in such a way that useful information may be 

recovered (Bayliss and Reed, 2001; Brázdil et al., 2006, Stedinger and Cohn, 1986). Palaeoflood 

hydrology, meanwhile, involves reconstructing floods that were neither measured systematically 

nor recorded by humans in other ways, but which left traces in the natural landscape. Baker (1987) 

presented a relatively early review of some of the approaches that might be taken in palaeoflood 

studies, whilst Baker et al. (2002) sought to deconstruct some of the perceived limitations 

associated with such an approach. A more recent summary of the state of the discipline, albeit with 

a strong focus on the United States, is provided by the same author (Baker, 2008).  

 

Both disciplines theoretically enable longer-term flood chronologies, which have potential to bring 

considerable benefits to the task of flood frequency estimation, to be reconstructed. Of course, the 

temporal scales supported by systematic (i.e. instrumental), historical and palaeoflood methods can 

crossover to some extent. For instance, depending on the arrangement of monitoring networks, 

very recent floods in ungauged locations may fall best under the ‘historical’ definition. With 

reference to floods in Continental Europe, Benito et al. (2004) evaluated all three data types and 

their potential for integration. Figure 2.9 provides an excellent comparison of the approaches, 

whilst Figure 2.10, in a somewhat simpler fashion, shows a classic illustration of the additional 

insight that reconstructed flow data can provide. 
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FIGURE 2.9. Sources of quantitative flood information. (a) Sketch of a cross section showing various flood 

level indicators from palaeofloods (sediments and damage on trees), and documentary-based floods (i.e. those 

able to cause damage or socio-economic disruption). For historical hydrology, only floods exceeding a flood 

level related to a perception threshold (Xi ) over a period of ni years (n1 > n2 > n3) are recorded. Palaeofloods 

from stratigraphic records are related to geomorphic thresholds. (b) Organization of historical and 

palaeoflood data, using the described thresholds (Xi), and multiple types of observations to support flood 

frequency analysis. Ki corresponds to the number of flood peaks during the last ni years that exceeded the Xi 

threshold but not the Xi −1 threshold. Upper bound level (Xu) may be used to limit the maximum discharge. 

Data types: E: flood peak is known. LB: flood was bigger than Xi which is known; UB: the upper flood level of 

known magnitude (Xu) was not exceeded over a certain time period. DB: flow level was within the interval 

given by Xu and Xi. (c) Data source characteristics, timing, stage information, and typical temporal framework 

of systematic (instrumental) and non-systematic data (palaeoflood and documentary evidence). Source: 

Benito et al. (2015). 
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FIGURE 2.10. Illustrative flood frequency curves for the systematic gauge record alone (solid line) compared 

to a curve that incorporates paleoflood data (dashed) for the San Juan River, Utah, United States. Source: 

Orchard (2001).  

 

As the date of some of these citations reveals, the realisation that extended records can add value to 

flood hazard assessments exercises is not an entirely new one. Indeed, in a UK context, the 

inclusion of historical data was advocated in the FSR (NERC, 1975). In a similar spirit, the sixth 

‘maxim’ of flood estimation, as set out in the FEH, is that that “there is always more information” 

(EA, 2012). However, despite this and the beginnings of a movement towards a standardised 

approach for the inclusion of historical data in flood estimation at the turn of the century (Bayliss 

and Reed, 2001), there has been little concerted uptake of these methods by practising hydrologists. 

Possible reasons include the time-consuming nature of searching for the necessary data and a lack 

of dedicated software programs to ease their integration.  

 

That said, a small but steadily increasing number of UK-focussed studies have sought to investigate 

the impacts of incorporating alternative forms of hydrological data pertaining to longer time 

periods. It must of course be noted that where historical flows can be reconstructed, they are likely 

to be somewhat uncertain. Even still, the benefit of the longer record might represent a ‘net gain’ 

(Macdonald et al., 2014).  

Systematic record 
Paleoflood 
Frequency curve for systematic record 
Frequency curve using paleoflood data 
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Including such data in the model fitting process can be technically challenging. Archer (2010) 

describes an adaptation of the maximum likelihoods method of Stedinger and Cohn (1986) which 

facilitates the inclusion of historical data. Specifically, the distribution that best fits a combination 

of gauged and historical information can be identified. Importantly, not only historical floods 

whose flows could be estimated but also those that could not be fully quantified but which were 

believed to have exceeded a certain threshold can be dealt with. Of course (where flows can be 

quantified), as with systematic measurements, frequency-magnitude plotting positions of historical 

observations can be determined using the Gringorten formula (Gringorten, 1963), allowing the 

resultant model fits to be inspected visually. Further information on the graphical procedures 

which enable gauged and historical data to be plotted on the same scale, and other considerations 

related to the inclusion of historical data, are provided by Bayliss and Reed (2001). Next, some key 

findings arising from such work are summarised below.  

 

Many years ago now, Archer (1987) extended the gauged record for the River Wear at Durham, 

which began in 1958, by estimating historic flood discharges from 1771 onwards. The extended 

catalogue suggested that using the gauged record alone was likely to lead to the severe 

underestimation of flood frequency at this location. Bayliss and Reed (2001) presented a similar 

case study of the River Avon at Evesham, Worcestershire (54002). Here, textual sources describing 

historical floods were evaluated for authenticity and completeness, and a ranked flood series was 

produced. Approximate flow magnitudes were then assigned using stage-discharge relationships 

developed from the systematic records. Once again, the inclusion of historical data indicated that 

conventional methods seem to underestimate flood frequency.  

 

Slightly more recently, Black and Fadipe (2009) used Manning’s equation to reconstruct discharges 

for the notable floods of 1968 and 1829 from available water level records at four sites in the Spey 

Catchment, Scotland. Compared to estimates produced by standard pooled analysis of the 

instrumental records, the 1-in-100-year flow was found to increase by more than 50% at three of 

the four sites upon inclusion of the historical data. Remarkably, Archer (2010) reported that 

including historical data increased flood estimates at all 12 of the locations he considered in the 

northeast of England, although the gauged record covering a relatively flood-poor period was 

proposed as a possible explanation for this. Finally, Foulds and Macklin (2016) took a somewhat 

different approach, producing multi-centennial length flood records from lichen-dated torrential 

sedimentary deposits from upland areas across the UK. Their subsequent analysis indicated that 
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twenty-first century floods are relatively unremarkable in terms of both frequency and magnitude 

when placed within this longer context. The strong conclusion that “reliance solely on mid-late 

twentieth century flood series is underestimating current risk in the UK uplands” (p. 268) was 

drawn. 

 

For balance, it must be noted that the estimates do not necessarily always increase. For example, 

Archer et al. (2007) found that single-site analysis results for the River Tyne at Bywell, 

Northumbria (23001) broadly aligned with a historically derived frequency-magnitude curve. (In 

this case, the pooled analysis results were not considered appropriate, and were rejected, with 

gravel extraction and reservoir construction (Kielder Water) in the past highlighted as factors 

which complicate flood estimation in this catchment. More generally, it is increasingly recognised 

that the impacts of such local factors on flood estimation can be large more generally, and efforts 

are being made to better include such information; Dixon et al., in press). Examples of studies 

which have reported reductions in flood frequency estimates with longer-term data even exist. 

Macdonald and Black (2010), for instance, reassessed flood frequency for the River Ouse at York. 

Introducing data going as far back as the year 1200, they suggested that historically informed 

estimates were both “lower and considered to be more credible” than those produced by 

conventional means (p. 1152). Finally, Macdonald et al. (2014) considered the Sussex Ouse at 

Lewes, East Sussex. Here, historical data was again found to slightly decrease the frequency-

magnitude curve.  

 

Such results emphasise the more general benefit that inclusion of historical data often brings – a 

reduction in estimation uncertainty. The uncertainty around the 1-in-100-year flow estimate was 

reduced by 40% relative to the systematic uncertainty in the case presented by Macdonald et al. 

(2014). Essentially, an important suggested benefit of employing longer records is their ability to 

‘iron out’ some of the variability in conventionally made estimates that is simply a function of 

whether there happened to be relatively many, or relatively few, large peaks in the instrumented 

period. Irrespective of whether flood hazard estimates increase or decrease, it is clear that in many 

cases, and despite their own (sometimes perceived) uncertainties, making use of longer records can 

reduce uncertainties in the estimation of high flow frequencies.  

 

Yet, even with the best of intentions, incorporating such additional information across many 

locations (perhaps in some form of national scale assessment) would be extremely difficult from a 
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practical perspective. In additional to the effort that sourcing and compiling historical data or 

palaeo-records demands, another concern which accompanies the inclusion of data on past floods, 

especially very old ones, is that the climatic regime and catchments conditions under which 

historical and palaeoflood were produced might not be relevant to the future. In other words, that 

some long-term stationarity may exist (e.g. the emergence of Europe from the Little Ice Age). This 

concern is represented as ‘increasing stationarity uncertainty’ in Figure 2.10.  

 

2.3.2. Another means by which longer flow records might be generated:                          

continuous simulation 

The general problem associated with short records in flood frequency estimation – that whatever 

characteristics the limited sample happens to capture may exert a strong influence on the results – 

has been well appreciated for some time, and has already been discussed at some length in this 

thesis. In particular, a form of regionalisation (pooling) and the augmentation of systematic records 

using alternative, longer-term data to effectively extend the number of station-years worth of data 

available at locations at which estimates are required have been summarised.  

 

A third broad approach, which has not yet been considered, involves generating synthetically 

extended continuous flow time-series using hydrological (a.k.a rainfall-runoff) models (Lamb and 

Kay, 2004; Calver et al., 2009). Rainfall records tend to be much longer than river flow records in 

the UK (Jones et al., 2004), perhaps because rainfall is by far the easier quantity to measure. As such, 

by forcing rainfall-runoff models with these longer series directly, flow series can be extended back 

in time. Examples include the studies of Jones and Lister (1998) and Jones et al. (2007).  

 

Alternatively, synthetic (stochastic) rainfall data may be generated from existing records and then 

used to force runoff models. This approach may enable some of the variability that is as yet 

unobserved but is nevertheless possible variability even under present conditions to be 

encapsulated (Burton et al., 2008; Wilks and Wilby, 1999). Where simulations are long enough, 

flood frequency statistics can be directly extracted from the empirical distributions. Further still, 

climate forgings may be incorporated into the stochastic generators (Cameron, 2000; Kilsby et al., 

2007). Some drawbacks appear to be limiting the uptake of this method for practical flood 

estimation also. Certainly discharge predictions produced by both conceptual and physically-based, 

spatially distributed hydrological models for given (‘known’) rainfall inputs are always somewhat 



 62 

uncertain. Model structure and parameter uncertainties (Beven, 1993, 2006; Wagener et al., 2003; 

Gupta et al., 2005), as well as the challenge of their transfer to ungauged locations (Blöschl, 2013; 

Wagener and Wheater, 2006), all contribute to overall predictive uncertainty. 

  

From the discussion hitherto, it is clear that no single ideal or preferable method for flood 

frequency estimation exists. Rather, each has its own particular benefits and weaknesses, which is 

an important conclusion in itself. Presently, each of the ‘alternative’ methods are less 

straightforward to implement than the established statistical one. This is a crucial consideration 

given the time and budgetary pressures practising hydrologists often work under. In response, 

comparing the results given as many different methods as possible, as Macdonald (2013) suggest, 

represents an eminently sensible approach. In this context and spirit, regularly revisiting results 

given by the established statistical methods as new systematic data becomes available – the 

approach taken by this study – retains the potential to yield valuable insight. 

 

2.3.3. Updating estimates with new instrumental observations of exceptional floods:                                 

an analogy to the present study? 

The study by Miller et al. (2013) may be analogous to the present one. Flood frequency in Cumbria 

was reassessed following the severe 2009 floods using the extended instrumental series, with 

particular consideration given to the effects of lakes on river levels. As Figure 2.11 shows, a 

considerable shift in even the enhanced single-site analysis (i.e. pooled) analysis results, which 

should be less sensitive to the addition of a single observation than single-site analyses, was seen.  

 

A criticism that might be levelled at ‘reactive’ studies of this nature, including the present one, is 

that by reassessing flood frequency so rapidly (only) following floods that are known to have been 

extraordinary or record breakers, a bias is introduced in the sense that estimates are almost certain 

to rise (Beran, 2002; Luo, 1987). Having said that, although the inclusion of record breakers may 

bias estimates upwards, their exclusion may bias them downwards (Archer, 2010). Thus, not 

including the latest data – effectively pretending that the events did not happen – simply enables 

the status quo to prevail. 

 

Indeed, especially where the records are relatively short and so the estimates unstable, the growth 

curves may increase sharply immediately flooding a notable flood, as shown, but then decrease 

steadily if reassessed subsequently as time passes without any further exceptional floods. If there 
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was some feeling that flood estimates are generally stable and robust (i.e. approximate well the 

underlying distribution) in the first place, then excluding additional data could be acceptable. 

Unfortunately, as many of the examples cited show, changes to the data and methods continue to 

induce large increases. As such, and whilst acknowledging its potential drawbacks, the 

experimental design proposed – which hinges on the inclusion of the additional data – was deemed 

appropriate.  

 

 

 

FIGURE 2.11. Flood frequency curves (enhanced single-site method) for the River Derwent at Camerton 

(75002) prior to the November 2009 event (black) and including the event (red). Source: Miller et al. (2013). 

The authors note that the plotting positions of such large floods can be extremely uncertain.  

 

A final, important related point of note, which is emphasised by both Matalas (1997) and Beran 

(2002), is that the occurrence of record breakers is not itself evidence of non-stationarity.  
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Chapter 3 
 

Research methods 

 

3.1. Introduction and overall workflow 
 

This chapter describes the methods that have been followed in order to address the objectives. 

Figure 3.1 provides a simple illustration of the overall workflow that was followed.  

 

 

 

 

FIGURE 3.1. The workflow that was followed in order to address the objectives of the study.  
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3.2. Study area 

 

Following initial assessment of the patterns of extreme UK rainfall and river discharges in late 

2015, a study area intended to encompass all parts of northern England that may have been affected 

was defined. This area is shown in Figure 3.2.  

 

Topographically, the area is divided along a broadly north-south axis by the Pennine hills. It 

includes the uplands of the Lake District (which rise to the highest point in England, Scafell Pike at 

987 m), the Yorkshire Dales and North York Moors. Slope angles are steep in places. Vegetation 

cover across the study is rather varied, reflecting the diverse quality of the agricultural land 

(Natural England, 2016). The region is predominantly underlain by Carboniferous limestones, 

mudstones and sandstones, although some older metamorphic rocks are present in the Lake 

District (BGS, 2016). 

 

Several major urban conurbations including Manchester, Liverpool, Leeds, Sheffield and Newcastle 

lie within the area, as do numerous smaller towns and villages. In steeper regions such as the Calder 

Valley in West Yorkshire, settlements are clustered in the valley bottoms, where their industrial 

growth was aided by abundant water supplies. Even in flatter areas, many settlements have 

developed alongside rivers.  
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FIGURE 3.2. The region considered in the present study, which was affected most severely by the flooding in 

December 2015. Other parts of the UK, notably northern Wales and southern Scotland were also affected by 

flooding over the winter, but flooding in these areas is not considered here. All original maps in this thesis 

were produced open-source software, QGIS; http://www.qgis.org/en/site/ 
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3.3. Hydrometric data 
 

3.3.1. Obtaining and pre-processing December 2015 river observations 

The length, spatial distribution, and archiving standards of environmental datasets in the UK are 

generally excellent, and hydrological data is of no exception. Although the present study focuses on 

river flows, readers may be interested that much past rainfall data can be obtained from the Met 

Office21. A gridded precipitation dataset called CEH-GEAR (Keller et al., 2015) has also recently 

been developed with hydrological applications in mind (with the benefit that ‘gaps’ in time and 

space are interpolated).  

 

River measurements are the responsibility of different monitoring authorities in each nation of the 

UK. Therefore, limiting the scope of this study to England meant the necessary ‘event’ flow data 

(which are distinguished from past series and other information, e.g. rating equations) could be 

obtained from a single source – the EA.  

 

15-minute instantaneous measurements at all returning gauging stations within the study area 

were downloaded from the EA’s Real Time flood-monitoring API22. In this way, 15-minute time-

series of river observations spanning December were produced, initially for 166 stations. The 

database management system PostgreSQL23 facilitated efficient data processing and storage. While 

direct measurements of river discharge were available at a small number of sites at which ultrasonic 

flow gauges had been installed, at the vast majority of monitoring locations, only stage was 

recorded. Stage measurements were made in metres relative to a local site datum.  

 

Once the data acquisition phase was complete, the stage time-series were plotted and visually 

inspected. In this way, some clearly erroneous data such as that caused by the instrumental failure 

at Malton (27858), highlighted in Section 2.1.3, was identified. This station was removed from the 

study. Following this, at each site, the maximum stage observation (or, where ultrasound 

instrumentation was installed, the peak discharge) during the entire month were identified. The 

peak discharge data measured directly via ultrasound were then put to one side whilst the further 

processing of the water level observations that was necessary was conducted.  

 

                                                 
21 https://data.gov.uk/metoffice-data-archive 
22 https://environment.data.gov.uk/flood-monitoring/doc/reference 
23 http://www.postgresql.org/ 
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3.3.2. Matching EA and NRFA station reference numbers 

NRFA collates, checks, and eventually publishes river flow observations from all UK measuring 

authorities. Daily mean discharges24, AM series, and rating equations25 corresponding to a large 

number of stations are all available from this source. Because flow data are only added to the NRFA 

database some months or even years after having been observed, the data used in this study were 

obtained directly from the EA, as previously described.  

 

Perhaps a little strangely, the EA and CEH do not refer to monitoring stations using a common 

reference system. (All monitoring station references quoted here are NRFA references). For a given 

station to be included, the December event peak flow, the appropriate rating equation and the 

previous AM series all had to be available. This necessitated the matching of EA stations which 

provided event data with the corresponding station on the NRFA database. Initially this proved 

problematic, although a lookup table was eventually obtained. 11 of the 166 stations providing peak 

December observations could not be matched with a NRFA station reference, contained obviously 

erroneous data, or else did not have rating or previous AM data available. Thus, data from 155 

stations were taken forwards. 

 

3.3.3. Estimating December 2015 peak flows 

For stations at which only peak water levels were available, appropriate site and stage-specific 

rating curves were applied to estimate peak discharge. At many stations, rating specific to different 

stages are provided. In such circumstances, the most appropriate given the observed stage was 

applied. The necessary rating information was obtained from each station’s NRFA webpage28. A 

worked example is provided below, whilst the full set of equations used are given in Table A1 (see 

Appendix A).  

 

The example given is for the Sheepmount station on the River Eden in Carlisle, Cumbria (76007). 

The peak December 2015 level recorded at this station, of 7.806 m above the site datum (ASD), was 

measured on the 6th December following the intense precipitation associated with Storm Desmond. 

                                                 
24 http://nrfa.ceh.ac.uk/news-and-media/news/nrfa-releases-expanded-data-download-facility 
25 Various hydrological data including AM series and peak flow rating equations from individual gauging 

stations can be readily obtained using the interactive map and search functionality of the NRFA website, 

http://nrfa.ceh.ac.uk/data/search 
28 see e.g. http://nrfa.ceh.ac.uk/data/station/peakflow/76007 
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A time-series plot from the GaugeMap29 website (Figure 3.3), which is a very useful resource, 

corroborates the validity of the reading.  

 

 

 

 

FIGURE 3.3. Time-series plot of river level for the River Eden at Sheepmount, Carlisle, Cumbria (76007) in 

early December 2015. The GaugeMap website continuously plots the same real-time water level data that 

were used in this study, and maintains an easily searchable history.  

 

Figure 3.4 illustrates the rating curve at this site. In this case (and due to the severity of the event in 

many others also),  it was necessary to apply the rating relationship considerably beyond its 

calibration range to estimate the flow level associated with the maximum stage. Wherever this was 

necessary, a note was made in Table A1; see Appendix A). 

 

 

 

                                                 
29 www.gaugemap.co.uk 
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FIGURE 3.4. Rating curve relating water level with peak discharge for the River Eden at Sheepmount, 

Carlisle, Cumbria (76007). Calibration points are show as small red crosses. Source: CEH.  

 

At this example site, only a single rating curve is given, which simplifies matters. Incidentally, the 

stage-discharge relationship here appears much better constrained than many. The information 

given indicates that the relationship is applicable providing the stage, h, exceeds 0.99 metres ASD. 

Discharge, Q, may be estimated as follows:  

 

Q = 56.612 × (h – 0.2980)1.699                                                                                                                                                                          

 [3] 
 

Given the observed peak December stage, h = 7.806 

 

Q = 1,739.5 m3 s-1 

 

This process was completed at all ‘stage only’ stations. The resultant flow estimates were then 

compiled, along with the few directly measured discharge maxima, into Table A1 (see Appendix A).  
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3.3.4. Extending the annual maxima (AM) series  

Next, the existing annual maximum river flow (AM) series for the 155 stations were downloaded 

from the NRFA website30. Naturally, these series had variable start dates. Rejected records, i.e. 

those which for whatever reason were believed to be of questionable quality, were clearly indicated 

as such in the incoming data.  

 

Presumably because of the amount time it takes to thoroughly check the quality of the observations 

and update the database, in January 2016 (when the research was begun), the most recent AM data 

available from this source were from the 2011/2012 hydrometric year. (That the latest flows were 

not already on the database necessitated the stage-discharge conversion work described above). 

Fortunately, the absence of observations between 2011/2012 and 2015/2016 does not affect the 

analyses from a methodological perspective, although important floods during that in that period 

being missed remains a possibility.  

 
The AM series length distribution at the 155 study stations (not including any 2015 data) is 

illustrated by Figure 3.5. The mean record length was 39.7 years. Figure 3.6 shows record length by 

location, in which there appears to be little obvious spatial pattern (apart from perhaps that some of 

the longest records are towards the south of the regions, where populations are highest).  

 

 

 

 

 

 

 

 

FIGURE 3.5. The distribution of AM series length (up to and including the 2011/2012 hydrometric year) at 

all 155 stations included in the study. The thicker line shows the median value, and the grey box the 

interquartile range (IQR). Whiskers encompass all points which lie beyond the IQR but within 1.5IQR of Q1 

and Q3. Remaining outliers are plotted as circles.  

 

                                                 
30 These data were obtained packaged into a single folder, called WINFAP-FEH v3.3.4 Data; see 

http://nrfa.ceh.ac.uk/winfap-feh-files 

Record length (years pre-2011/2012 hydrometric year) 
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FIGURE 3.6. Spatial distribution of AM series length (up to and including the 2011/2012 hydrometric year) 

at all 155 stations included within the study. Watercourses are shown in blue.  

 

To facilitate the intended analyses, it was necessary to assume that the peak December 2015 flows 

represent the annual maxima for the present hydrometric year (i.e. 1st October 2015–30th 

September 2016) at all stations. At the time of writing, this period is still ongoing. Therefore, there 

is a possibility that in time these data could be revealed to not be the true 2015/2016 AM flows, 

although the likelihood of them being widely surpassed is thought to be extremely slim. Having 

made this assumption, two AM series could be generated at each station – one with the additional 

2015/2016 AM data, the other without.  
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3.4. Flood frequency analyses 
 

3.4.1. Single-site analyses at all stations with and without the latest observations 

At each of the 155 stations, statistical flood frequency analyses were conducted – first using the AM 

series without the additional 2015/2016 data points and then with them (Objective 1). In 

accordance with recommended UK practice, the Generalised Logistic (GL) distribution was fitted 

to the data series, with a variant of the method of L-moments method used for parameter 

estimation (Hosking and Wallis, 1997; IH, 1999).  

 

L-moments are linear combinations of probability weighted moments (PWM). The theory of PMW 

is summarised by Greenwood et al. (1979), who defined them as: 

 

φr= E { X [F(X) ]r}                                                                                                                   

[4] 

 

where φ r is the rth-order PWM and F(x) is the cumulative distribution function (cdf) of the 

random variable X. (φ is used here in place of the more usual β to prevent any confusion with 

Equation 8.  

 

Unbiased estimators (bi) of the PWM are given by Hosking and Wallis (1997) as: 

 

 

br =  n-1 ∑
(j –1)(j – 2)…(j – r)

(n –1)(n –2)…(n – r)

n

i = r +1

 xj:n 

   [5] 

 

where n is the sample size and xj:n represents an ordered sample x1:n ≤ x2:n ≤ … xn:n from the 

distribution of X.  

 

The sample L-moments (r) are then linear combinations of sample PWMs, calculated as: 

 

1 = b0 

 

2 = 2b1 – b0                                                                                                                                                                                                          
 

3 = 6b2 – 6b1 + b0 

 

4 = 20b3 – 30b2 + 12b1 – b0                                                                                                                                                                 
[6] 
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Sample L-moment ratios, r, are based on the sample L-moments. Since 1 relates to the mean (or 

‘L-location’) and 2  relates to dispersion (‘L-scale’), 2/1  gives a quantity analogous to the 

coefficient of variation, known as L-CV (). Higher order L-moment ratios are given by the 

following formula:  

 

r = r / 2, r = 3, 4…                                                                                                       

  [7] 

 

3 is known as L-SKEW and 4 L-KURTOSIS, although only L-CV and L-SKEW were used in this 

instance. Like ordinary product moments, L-moments can be used to summarise probability 

distributions (and samples thereof).  

 

For a GL distribution, the relationship between return period, T (expressed in years), and 

corresponding peak flows, Q, is given is defined using the inverse of the cumulative distribution 

function (or quantile function) as follows (reproduced from Miller et al., 2013): 

 

QT = ξ + 
α

κ
 (1 – (T –  1)-κ) = ξ [1 + 

β

κ
 (1 – (T –  1)-κ)] = ξ zT                                      

[8] 

 

where ξ, , β = /ξ and κ are GL model parameters, and zT is the growth factor                                            

is the growth factor at at return period, T defined by the term within the square brackets.  

 

The location parameter ξ is defined as QMED. The  and  parameters, which control the growth 

curve, are estimated using L-CV and L-SKEW. These estimators are given in full by, for instance, 

Kjeldsen and Jones (2006), and so are not needlessly repeated here. In the single-site case, L-CV and 

L-SKEW are obtained directly from the AM series. In the pooled case (which is relevant to Section 

3.4.2), they are obtained via a weighted average of the collection of L-moment ratios (according to 

catchment similarity, plus any additional weight that may be assigned to the target site in the case 

of the enhanced single-site method).  

 

In this way, flows estimates associated with the following annual exceedance probability 

percentages (% AEP; with the equivalent return periods in parentheses) were obtained: 
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 50% (1-in-2-years) 

 20% (1-in-5-years) 

 10% (1-in-10-years) 

 4% (1-in-25-years) 

 2% (1-in-50-years) 

 1% (1-in-100-years) 

 0.2% (1-in-500-years) 

 

The model fitting process was carried out using JFes, an application developed by JBA Consulting31 

which largely replicates other more established (but expensive to licence) flood estimation 

programs such as WINFAP-FEH. Unfortunately, the software did not support the calculation of 

confidence intervals around the estimates; ideally, the change in estimate given the inclusion of the 

latest data would have been assessed in light of the confidence intervals around the ‘before’ and 

‘after’ models. Given more time, minimum confidence intervals could have been generated by 

applying Bootstrap or Jack-Knife resampling (Hall et al., 2004) in software such as R. That said, as 

has already been discussed, understanding and comprehensively quantifying uncertainty around 

flood estimates very much remains as ongoing research challenge (Kjeldsen, 2015). The following 

figures, which again relate to the Sheepmount station, seek to illustrate the key inputs and outputs 

of the process.  

 
 
 
 
 

 
 

 

 

 

 

 

FIGURE 3.7. Annual maxima (AM) river flows for the River Eden at Sheepmount, Carlisle, Cumbria (76007). 

The dashed red line donates the break point in between the samples with and without the latest data.  

                                                 
31 http://www.jbaconsulting.com/project/flood-estimation-software-jfes 
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FIGURE 3.8. Fitted Generalised Logistic (GL) distribution to annual maxima (AM) river flows without the 

additional 2015/2016 data point (i.e. to the left of the dashed line in Figure 6.6) for the River Eden at 

Sheepmount, Carlisle, Cumbria (76007). The L-moments method fitting method was used. Data points are 

plotted using the Gringorten formula (Gringorten, 1963).  

 

 

 

 

 

 

 

 

FIGURE 3.9. Fitted Generalised Logistic (GL) distribution to annual maxima (AM) river flows with the 

additional 2015/2016 data point (i.e. the entire data series shown in Figure 3.6) for the River Eden at 

Sheepmount, Carlisle, Cumbria (76007). The L-moments method fitting method was used. Data points are 

plotted using the Gringorten formula (Gringorten, 1963).  
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Having derived these return period flow estimates, the percentage change in 1-in-100-year flow, 

δQ100(%), was calculated at each station. This probability level, which is extreme but still perceptible, 

is often of particular interest to practitioners practical applications, for example as a standard for 

flood defence design. Moreover, it appears have become something of a standard reference 

probability level when changes in flood frequency estimates due to the use of different data and 

methods are reported in the literature. Calculating this measure of change would therefore 

eventually facilitate straightforward comparison with other reported changes (e.g. those of Black 

and Fadipe, 2009). δQ100(%) was given by: 

 

𝛿Q100(%) = [(
Q100b

Q100a
) – 1 ]  ×100            

                                                                         

[9] 

 

where Q100a is the 1-in-100-year flow estimate without the additional event data and Q100b is 1-in-

100-year flow estimate with the additional data.  

 

Using data from the above example, this gives:  

 

 

𝛿Q100(%) = [(
1736.68

1464.16
)  – 1 ]  ×100  

 
 

                = 18.6% 

 
 

At this point, the single-site analyses had been completed.  

 

It was expected that estimates at stations with shorter records would be more sensitive to the 

addition of the new AM peaks than those produced from longer series. To investigate whether 

there might indeed be any relationship between the calculated changes and record length, a simple 

scatter plot was produced, the least-squares regression lines found and corresponding significance 

(p-)values determined, all using R software32. A similar process was followed to explore whether 

there might be any association between change and catchment area, although the expectation in 

this case was less clear. In this case, the common log (i.e. log10) of catchment area was taken to 

improve the normality of its distribution. This phase of work addressed Objective 2.  

 

                                                 
32 https://www.r-project.org/ 
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Whilst these single-site estimates are considered useful in their own right (and indeed formed the 

major part of this study), it is acknowledged that this approach is not typically recommended for 

flood estimation in practice unless the length of peak flow series available is long relative to the 

target return period (>2T being a ‘rule of thumb’). As previously discussed, where records are not 

this long, the results given by single-site analysis may be highly sensitive to the random presence or 

absence of large floods in the sample (relative to the true distribution). In other words, estimates of 

the underlying annual flow probability distribution on a single-site basis may not be entirely 

reliable. For this reason, and remaining mindful of the corresponding assumptions and potential 

drawbacks associated with spatially pooled analyses and other relevant matters (e.g. choice of 

statistical distribution, which is addressed in due course), a reduced number of stations at which 

further analyses might be conducted were identified. It was hoped that these detailed analyses, 

which address Objectives 3 and 4, would yield some additional insight into the wider challenges 

associated with flood frequency estimation.  

 

3.4.2. Enhanced single-site analyses at selected stations 

This section describes the work undertaken to address Objective 3. The enhanced single-site 

method employed was introduced briefly in Section 2.1.2. Here it is merely reiterated that this 

approach is the recommended means by which estimates of longer return period flows estimated 

should be obtained at gauged locations, and that the approach may be thought of as an attempt to 

get the ‘best of both’; the relevance afforded by single-site analysis and the increased sample size 

afforded by pooling. Although a pooled growth curve is derived using this approach, an enhanced 

weighting is given to the data from the target site. The ‘revised method’, which is described by 

Kjeldsen et al. (2008a,b) was followed. Advice to continue adding sites to the pooling group until 

the combined dataset exceeded 500 years was adhered to.  

 

Within the scope of this project, it was not possible to conduct enhanced single-site analyses at all 

155 stations. Rather, two subset groups of stations were identified. It was hoped that these stations 

would give representative indications of the broad range of behaviour (across all stations) observed 

during the single-site phase. The following steps were carried out to select two groups of stations, 

‘Group A’ and ‘Group B’: 
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1. The difference in 1-in-100-year growth factor (i.e. the dimensionless value one must 

multiply QMED by in order to estimate the 1-in-100-year flow) produced when the 

additional data was added was calculated from the single-site results. (Using the growth 

factor rather than the change in flow itself removes any influence of changes in QMED, 

which might be more pronounced, but are still rather small, at stations with shorter 

records) 

2. The growth factors were ordered from largest to smallest 

3. 10 stations at which a reasonably large positive change in the 1-in-100-year growth factor 

had been observed were selected in a quasi-random fashion into what was entitled ‘Group 

A’. To ensure some diversity, multiple stations in the same catchments were not chosen. 

Additionally, only those with relatively long record lengths (>~40 years) were taken, which 

made it less likely that the pronounced change was simply due to volatility in the single-

site estimates associated with a short record.  

4. A further 10 stations having a much more neutral response to the additional data in the 

single-site phase (i.e. the difference in growth factor was approximately zero) were then 

selected into ‘Group B’. Perhaps not coincidentally, Group B stations generally had longer 

record lengths. 

 

The selected stations are listed in Table 1, whilst their locations are shown in Figure 3.10.  
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Station Ref Group Easting Northing 

Caton 72004 A 352860 465290 

Low Briery 75009 A 328558 524216 

Pooley Bridge 76015 A 347236 524959 

Temple Sowerby 76005 A 360452 528312 

Beetham Weir 73008 A 349620 480590 

Elland 27029 A 412400 422000 

Sedgwick 73005 A 350883 487419 

Portinscale 75005 A 325195 523885 

Armley 27028 A 428100 434000 

Southwaite Bridge 75004 A 313090 528090 

Sunderland Bridge 24001 B 426500 537800 

Skelton 27009 B 456800 455400 

Sea Cut at Scarbrough 27033 B 502800 490800 

Portwood 69027 B 390700 391870 

Barnard Castle 25008 B 404700 516600 

Burn Hall 24005 B 425900 538700 

Woodhouse Mill Regulator 27025 B 443200 385700 

Ashton Weir 69007 B 377240 393560 

South Park 25004 B 428400 512900 

Doncaster 27021 B 457000 404000 

 

TABLE 1. Stations that were selected into the two subset groups for further analysis.  
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FIGURE 3.10.  Locations of the stations that were selected into the two subset groups.  

 

The enhanced single-site analyses were only conducted without the additional 2015/2016 data 

included – including the latest data in these analyses was unfortunately not possible in the time 

available. Although conducting these analyses with the latest peaks included might have been 

extremely interesting, an important feature of the enhanced single-site method is it should be able 

to overcome the short, unrepresentative record problem, and so conducting the analyses without 

the additional data provides a useful test in this regard.  

 

In producing these estimates, the default weightings assigned by JFes to all stations in the pooling 

group, including the higher weighting given to the target site, were maintained. The results of these 

enhanced single-site analyses were then compared with the two corresponding single-site 

estimates. A little model-to-data comparison was also possible.  

 

Finally, it must be highlighted that some catchments in the subsets were defined as urban. Although 

pooling of any sort is not recommended in urban catchments, flood risk estimates are still required 

in such catchments and so these stations were kept in for the purposes of this study.  
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3.4.3. Sensitivity to the choice of statistical distribution 

Finally, consideration is given to one of the other sources of uncertainty in design flood estimates – 

the choice of statistical distribution (Objective 4). Here, the intention was to compare, albeit on a 

relatively visual and qualitative basis, how variability flood frequency estimates associated with the 

data and method used (record length, whether pooling was undertaken etc.) might compare to that 

associated with the choice of statistical distribution assumed to ‘best’ approximate the underlying 

flow probability distribution. This is a valid line of enquiry because, although the GL distribution 

used thus far comes recommended in official guidance, different distributions may be preferred at 

different stations, as Kjeldsen et al. (2008b) demonstrate in a far more thorough assessment than 

was possible in this work.  

 

Extending this point slightly, it may be that based purely on limited and (as was discussed in 

Section X.X) uncertain data, it may not even be possible to formally identify a preferred model. (In 

this context, preferred model means a preferred distribution, but in other cases it can mean both 

model structure and parameter values). Competing models may seem to fit such data similarly well. 

In hydrological modelling, where admittedly there are often many more (and sometimes spatially 

distributed) parameters, this concept has become known as equifinality (Beven, 2006).   

 

As such, exploring alternative distributions fitted to the same data is a logical course of action. The 

GEV distribution, which may have a stronger theoretical basis in Extreme Value Theory, is a 

particularly attractive alternative to the GL distribution. Its cumulative distribution function is 

given by:  

 

𝐹(𝑥;  𝜇, 𝜎, 𝜉)  =  {

exp {− [1 +  𝜉(𝑥 −  𝜇)/𝜎]−1/𝜉},

1 + (𝑥 −  𝜇)/𝜎 >  0,   𝜉 ≠  0,

      exp{−exp[−(𝑥 −  𝜇)/𝜎]},   𝜉 =  0.

                                             

[10] 

where μ, σ and 𝜉 are the location, scale and shape parameters respectively.  

 

If γ > 0, the distribution is said to be heavy-tailed. If γ < 0, the distribution has a bounded upper 

tail. The special case of γ = 0 gives a Gumbel distribution, which has a thin, unbounded tail (Katz et 

al., 2002). The third possible choice that was considered was the Gumbel distribution. 

 



 83 

For this final stage of analysis, the number of stations considered was further reduced, with five 

stations from Groups A and a further five from Group B being selected at random. The L-moments 

fitting method was used in conjunction with these distributions also, and once again JFes was used.  
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Chapter 4  
 

Results and discussion 

 

4.1. Single-site analyses at all stations 
 

4.1.1. Distribution of change in Q100 

The return period peak flow estimates produced at all stations within the study region on a single-

site basis, with and without the 2015/2016 AM data, are presented in Table B1 (see Appendix B). 

Figure 4.1 shows the distribution of change in the 1-in-100-year flow level (δQ100) across all 

stations brought about by the introduction of the additional data. Figure 4.2, meanwhile, shows the 

spatial pattern in this measure of change. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4.1. Distribution of percentage change in the 1-in-100-year return period flow (% change Q100) 

across at all stations within the study region. The red line shows the mean change (+6.8%). 
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FIGURE 4.2. Spatial pattern of percentage change in the 1-in-100-year return period flow (% change Q100) 

across at all stations within the study region. 

 

When considering these results, it is worth firstly mentioning that a small proportion of any change 

in Q100 is likely to be associated a slight shift in QMED in response to the additional data. Shorter 

records will be more sensitive to this. However, as Figures 3.5 and 3.6 showed, record lengths are 

reasonable at all study stations. Although the factors are not specifically not separated here, by far 

the biggest contributor to δQ100 is change in the 1-in-100-year growth factor, z100.  
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At many stations (58 of the 155), a slight reduction in Q100 was observed. Indeed, the modal class in 

Figure 4.1 is in the negative region. The distribution is positively skewed however, and the mean 

change across all stations of +6.8% represents a general moderate increase. Dispersion is fairly high, 

with the 5th and 95th percentiles being –2.4% and +30.6% respectively.  

 

The absolute minimum and maximum change figures are not reported individually because to do 

so might give undue prominence to potential outliers. Indeed, during the course of the analyses, it 

was eventually realised that the peak stage observation of the station with the largest purported 

increase – 16.245 m at the Lune at Caton (72004) – was probably erroneous. A further detailed 

inspection of the time-series revealed that this gauge initially failed for a short period on the 7th 

December as stage exceeded 7.5 m, which is a level higher than any previously recorded. It then 

failed more ‘catastrophically’ on the 12th December, returning the anomalous data. Regrettably, this 

problem was not detected during the initial data checking phase. More fortunately, given the large 

number of study sites, the mean change quoted above (across all sites) is not unduly affected by this 

anomaly; discounting this station gives a mean change of +6.4%, cf. 6.8%). This situation 

demonstrates that although the time it takes for thorough quality checking to be undertaken before 

data are ‘officially’  published on the NRFA can be frustrating, it is essential when dealing with the 

difficult to measure quantity of river stage.  

 

Two possible explanations might be proposed with respect to the stations at which little change or 

slight reductions in Q100 were observed. Firstly, these stations may simply have been ‘missed’ 

somewhat by the event, which is to say were not affected by particularly high flows. If this was the 

case, then the results would seem to suggest that even the addition of a single year’s data without a 

significant flood can bring about noticeable (although small) reduction in design flood estimates 

under the single-method. In other words, a fairly high degree of sensitivity seems to be apparent.  

 

A second possible explanation, however, is that some stations had already experienced an 

influential flood previously. Under such circumstances, although the December 2015 peaks might 

still be notable positive outliers in the records more generally, much of the ‘potential’ for a positive 

increase might have already been realised. Returning to Figure 2.11 (Miller et al., 2013), which 

shows change in the estimated flood frequency relationship at a station in Cumbria (the River 

Derwent at Camerton; 75002) following the 2009 floods, provides an excellent illustration of this 

point. Should this station have been affected by a high flow in December 2015, any change would 
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have been far less marked than if the 2009 flood had not occurred. (Unfortunately, this particular 

station did not provide data to the present study, and so this example is merely hypothetical). Of 

course, the extent to which concept affects the present results depends very much on the spatial 

patterns of extremes in previous events. Spatial patterns are discussed a little further below, but it 

may briefly be remarked now that given the recent apparent upturn in serve (albeit often fairly 

localised) flooding in Cumbria in recent years (e.g. 2005, 2009, 2012, 2015), it is perhaps surprising 

that this region still appears as something of a ‘hot spot’ in Figure 4.2.  

  

The majority of sites registered positive increases, which was a largely expected result. This general 

direction of change is broadly consistent with those reported in previous studies that have 

reassessed flood frequency based on records extended backwards in time, as opposed to forwards 

as here (see Section 2.3.2). Having said that, whilst being of the same order, the magnitudes of the 

changes are perhaps not quite so large as some of those reported by historically-based studies. For 

example, at one of the sites studied by Black and Fadipe (2009), inclusion of historical data raised 

the Q100 estimate by 116%. None of the changes observed here were so large. Nevertheless, this 

absence of such large increases seems logical because in taking an historical approach, one 

essentially has flexibility to go as far back in time as is necessary (or possible) until any high ‘outlier’ 

floods are found or more generally it is felt that a reasonably representative catalogue of peak flows 

has been attained. This study simply used the singular additional data points at each station ‘as they 

were’.  

 

The possible implication of this, then, (assuming long-term stationarity) is that even with the 

exceptional December 2015 peaks now included – it should be remembered that they will be 

included in future pooling groups also – the full range of possible natural variability may still not be 

contained within the instrumental measurement series. This suggestion aligns very well with the 

views and evidence presented by Foulds and Macklin (2016), who posit that the North Atlantic 

climate system may have the capacity to produce even wetter and more prolonged flood-rich 

periods than those hitherto observed in the twenty-first century.  

 

It is clear from Figure 4.2 that some spatial pattern exists in δQ100. Given the appreciation of the 

characteristics of the event that was developed during  preliminary research, the pattern is mostly 

as expected; stations with reasonably large positive changes are distributed across the west and 

south of the study area, and more specifically across Cumbria, Lancashire and parts of Yorkshire. 
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Stations at which reductions were observed are confined to the extreme south, west and northeast 

of the area. Naturally, there is close correspondence between Figure 1.3, which shows the locations 

at which previous record maxima were exceeded, and the patterns of change in Figure 4.2. (In 

making this comparison, it is worth noting that because not all EA stations have an accessible AM 

series and rating information, many more stations are shown in Figure 1.3 than could be included 

in this study).  

 

The spatial heterogeneity in change could simply be the product of the stochastic characteristics of 

the events in question. The specific timings of tributary inputs, patterns of floodplain storage and 

such factors vary in space within individual events (and furthermore between events), affecting 

flood peaks (e.g. Porter, 2011). Likewise, channel engineering, defence construction and suchlike 

have the potential to affect these natural patterns, in the latter case perhaps increasing downstream 

peaks (although there seems to be few published studies that have sought to quantify this effect). In 

summary, it is unsurprising that in real events, flows severities (expressed either as return levels or 

return periods) can vary quite considerably from place to place. (For this reason, so one should not 

really describe any event in terms of a single return period, unless the value corresponds to an 

average across affected sites or a particular region. Furthermore, the quantity (e.g. monthly rainfall, 

instantaneous peak discharge, etc.) should also be explicitly stated).  

 

 Having said that, the patterns of change seem to make good hydrological sense; there is general 

consistency along watercourses (and within catchments), certainly in terms of the direction of 

change. There are a few locations where reductions were produced in close geographical proximity 

to positive increases, but these tend to be on tributaries of larger rivers. Perhaps the most plausible 

explanation for this observation is that these smaller catchments were spared the most extreme 

event rainfall, although once again possible influence of previous floods on the starting estimates 

(i.e. Q100a) remains possible.  

 

4.1.2. Scatter plots 

To try and investigate whether there might be any underlying controls on the observed changes 

besides simply the characteristics of the events in question, Figures 4.3 and 4.4, which show scatter 

plots of percentage change in δQ100 vs. record length and catchment area respectively, may be 

considered.  
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FIGURE 4.3. Scatter plot of percentage change 1-in-100-year flow against the length of the annual maxima 

(AM) series (years) used in the model fitting (up to and including the 2011/2012 hydrometric year) at all 

stations. The red line shows the least squares regression line. R2 = 0.0068. (p = 0.308).  

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4.4. Scatter plot of percentage change 1-in-100-year flow against the log10 catchment area (km2) at 

all stations.  R2 = 0.0185 (p = 0.091). 

 

The most obvious relationship present is that in Figure 4.3, which shows that (to some extent) as 

record length increases, δQ100 decreases. In other words, there is a weakly negative relationship. 
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This direction of trend was as expected at the outset, and is likely to reflect the fact that when 

records are long, each new AM data point is effectively averaged out across all the others and so has 

lesser influence than in shorter records. It may also reflect the possibility that larger floods are 

more likely to have been recorded at stations with longer records in the first place, meaning the 

starting estimates, Q100a may have likely to be higher (if there should indeed be some sort of ‘short 

record underestimation problem’). However, the high p-value indicates that there is no statistical 

significance to this relationship at any reasonable confidence level. The correlation could have been 

somewhat disrupted by the previously mentioned possibilities of some stations simply being missed 

by the events, or the degree of change being limited by previous major floods. 

 

Interestingly, there are some stations with quite long records at which reasonably large positive 

shifts have been observed, countering the general trend. More specifically, at five stations with 

what might be considered to be relatively long records of >50 years, an increase of more than 10% 

in Q100 was produced. These results confirm that return period estimations corresponding to 

double the record length can be highly sensitive using the single-site approach. 

 

Figure 4.4 suggests that there may be some weak positive association between catchment area and 

degree of change, although the p-value once again does not support any statement of statistical 

significance. This general trend may be a reflection of the widespread nature of the intense rainfall 

in November and December 2015. Perhaps in this event more so than predecessors, very high flows 

were might have been recorded at the outlets of the some of the larger catchments thanks to large 

proportions of the total catchment areas making ‘strong’ contributions . In contrast, perhaps in 

previous events only some sub-catchments were affected by the most intense rainfall, and so the 

overall hydrograph response at large catchment outlets was dampened by the lesser contributions 

from elsewhere. Of course, the probability of rainfall being extreme (howsoever defined) over a 

wide area is much lower than an extreme of the same level occurring only in one locality, and so 

this suggestion is loosely supported by statements regarding the exceptional nature of the 

December 2015 event.  

 

Overall, that the relationships in Figures 4.3 and 4.4 are both rather weak suggests that these 

hypothesised explanatory variables are not significant controls on the sensitivity of flood estimates 

(although they demonstrably are on the estimates themselves), at least within the explanatory 

variable ranges considered in this study.   
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4.1.3. Summary 

The fairly high sensitivity that single-site estimates displayed to only small changes in the sample 

(in terms of number of observations, if not magnitude) confirms the findings of previous studies. 

However, given the drawbacks associated with other flood frequency estimation methods, the 

possibly of single-site analyses providing the preferred estimate on some occasions should never be 

entirely discounted. In particular, the individual characteristics of the site may only be captured 

well using the at-site data itself. Therefore, assuming these new single-site estimates might be 

preferable to the alternatives at some of the study sites at least, the magnitude of the increases in 

‘baseline’ flood estimates (i.e. the degree of previous underestimation) may be large enough to 

impinge the appropriateness of design standards even once any climate change allowances (see 

Section 2.2.2) have been made. However, these differences are on the whole lower than those 

reported by historical reassessments and also those produced by the major methodological 

overhaul and data update described by Kjeldsen (2008b).  

 

The general observation that many stations saw reasonably large positive increases whilst others 

saw a relatively modest reductions seem to suggest that flood frequency estimates may demonstrate 

a sort hysteresis whereby they can increase very ‘quickly’ , for example with the addition of only 

one data point, but might then ‘fall’ somewhat more slowly as additional years without major flood 

are added to the series. Such an effect was also described by Archer et al. (2007). One must presume 

that these estimates would eventually converge to the underlying probability distribution. Should 

most estimates eventually settle higher than their initial/present starting values, this would 

substantiate the underestimation hypothesis. The question that follows is how long might it take 

for stability to be achieved; without the luxury of a long time to observe (and the true distribution 

being unknown), this may never become clear. It is certainly likely that the timescales will be too 

long to be practical.  

 

Finally, these updated results have been made under the assumption of stationarity. Although long 

instrumental peak flow datasets provide little indication of any increasing trend in flood frequency 

or severity (Hannaford, 2015), and so the assumption made is defensible, recent attribution studies 

have found a detectible anthropogenically-driven increase in hazard associated with anthropogenic 

climate change with respect to certain events (e.g. Schaller et al., 2016). Likewise, climate model-

based simulations fairly consistently project future increases in flood frequency. Hence, if climate-

induced trends are indeed beginning to emerge, then even the updated estimates presented herein 
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may in fact be underestimates. This is because under stationarity, no provision is made for the 

possibility that the expected frequency of a flood of a given magnitude ‘next year’ is any different 

(higher) than that estimated from the available record as a whole. Furthermore, the impact of 

urbanisation on changing flood frequency (associated with reduced catchment permeability, 

increased water transit times, etc.) is now empirically detectable sometimes (Prosdocimi et al., 

2015). Hence, future urbanisation has the potential to make a significant contribution to increasing 

flood hazard, despite the existence of legislation attempting to limit this.. 

 

In the next section, the results of the enhanced single-sites that were conducted at selected stations 

are considered.  

 

4.2. Enhanced single-site analyses at selected stations 
 

4.2.1. Group A and Group B enhanced single-site vs. single-site estimates                                      

Figure 7.5 shows the results of the enhanced single-site analyses conduced at the 10 Group A 

stations, whilst Figure 7.6 shows the results for the 10 Group B stations. In both cases, the 

previously obtained single-site analysis results are also plotted for comparison. These results are 

not presented in tabulated form in this thesis.  
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FIGURE 4.5. Comparisons of flow frequency-magnitude relationships (two single site analyses and one 

enhanced single-site analysis in each case) at Group A stations (i.e. a subset of those at which a significant 

change in growth curve was observed with the addition of new ‘peak’ data from December 2015 in the single-

site case). The NRFA station reference number is labelled. 

 

The uppermost-left plot in Figure 4.5 (the Group A stations), Station 72004, provides a ‘classic’ 

example of a result that might be expected if conducing analyses on short, unrepresentative records 

using the single-site basis is associated with something of an underestimation problem. In this case, 

even with the higher weight assigned to the data from the target station, pooling raises the single-

site flood frequency estimate to a level more similar to that produced via single-site analysis with 

the new flood peak included. Such a result could be explained in terms of the pooling method 

ensuring that a more representative empirical distribution for estimation, which may often happen 

to be higher. Indeed, it was expected at the outset that in many cases the enhanced single site curves 

might be more alike those produced using the single-site method but including the latest peaks 

(assuming for the moment that these estimates are reasonable and have not been forced ‘too high’, 

which is a major uncertainty in itself). This expectation – that enhanced single-site curves without 
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the latest data should be higher than single-site curves also without the latest data – is also 

conditional on the pooling group catchments being sufficiently independent from the target site. If 

they are not, and all records in the pooling group under represent large floods somewhat, then the 

result of pooling may simply be to extended ‘moderate’ records (perhaps similarly to those that 

would be obtained from resampling from the observed series, but with a potential reduction in 

relevance); it is well established that inter-site dependence within a pooling group can limit the 

effective number of sites, hence the amount of meaningful data in the pooed set, and ultimately the 

accuracy of estimations (Collier, 2011; Hosking and Wallis, 1998).  

 

However, in all other Group A sites, the enhanced curve is either lower or else barely noticeably 

higher than the original single-site estimate. This limited difference may be due to the site record is 

long. Under these circumstances, both estimates should describe the underlying distribution 

reasonably well, and hence match one another closely. Another hypothetical explanation for a close 

match is some catchment characteristic makes the single-site distribution more ‘extrapolatable’ in 

some way. In this case, where lower magnitude observations are informative of high magnitude 

observations, again both estimates might approximate well the underlying distribution (assuming 

the pooling group is acceptable), and thus could be interpreted as confirming one another. At all 

locations within the group, the single-site curve with the new flood peak is the highest, although 

this is not particularly surprising given the basis upon which the Group A stations were identified.  

 

The main conclusion that can be drawn from these results is that enhanced single site-analyses do 

not consistently raise estimated hazard relative to single-site estimates produced using the same 

dataset at stations now known to be capable of being affected by large, influential floods. On the 

contrary, in six of the 10 cases it is lower. In these cases, the pooled results seem to be in 

contradiction to any notion of an underestimation hypothesis, suggesting that the single-site 

records in these locations even without the December 2015 flood were disproportionally flood 

rich. However, the magnitude of the shifts generated when the latest data in included do call the 

lower pooled results into question somewhat.  

 

It may therefore be tentatively proposed that perhaps the pooling groups are not independent 

enough (in terms of their flood records) to be able to augment the single-site data with a greater 

proportion of flood peaks in a given time interval. This may be a function of the large spatial 

‘footprints’ of the frontal meteorological systems that typically cause the highest flows (as opposed 
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to more locally intensive, convective storms), i.e. many stations may be affected to similar relative 

levels (in terms of catchment area etc.), and so pooling may be too similar to resampling. To address 

this, a minimum geographical separation distance could be imposed on stations in pooling groups, 

although this would likely be at the expense of the similarity of their catchment descriptors relating 

to soil types, for instance. It should also be mentioned that Hosking and Wallis (1988) investigated 

this phenomena, finding any bias to be unchanged by the presence of inter-site dependence. They 

report that whilst accuracy is reduced in such cases, concerns around homogeneity are still often 

the dominant source of uncertainty in pooled flood estimates. 

 

When conducting such ‘model-to-model’ comparisons, one must also remain mindful that there is a 

danger that neither may actually be representing the true distribution well. This difficulty comes 

with the territory when the models cannot be (in)validated with reasonable confidence (as far as a 

model ever can be); in flood estimation, the true distribution is always somewhat unknown (and 

without a very long time to observe it) unknowable. Plotting the at-site observations (the 

‘realisations’ from the distribution) against the fitted model is the best that can be achieved, see 

Section 4.2.2. 
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FIGURE 4.6. Comparisons of flow frequency-magnitude relationships (two single site analyses and one 

enhanced single-site analysis in each case) at Group B stations (i.e. a subset of those at little change in growth 

curve was observed with the addition of new ‘peak’ data from December 2015 in the single-site model 

fitting). The NRFA station reference number is labelled. 

 

The most conspicuous feature of the Group B station curves, where flood frequency magnitude 

relationships were hardly affected by the inclusion of the 2015/2016 peak flows (or more precisely, 

the 1-in-100-year growth factor was hardly affected), is the degree of similarity between each of the 

three curves. The enhanced single-site results are slightly higher than the other estimates in some 

cases. However, in light of the findings at the Group A stations, one must wonder whether these 

estimates would appear high enough when presented with an extreme flow at those locations. Of 

course, there may be some physical characteristics of these catchments that limits their flood 

potential somewhat (e.g. karstic geology), and so all three estimates (since they generally confirm 

one another) may be entirely reasonable. Exploring such hypotheses, which are in many ways 

closely related to the concept of the maxim physically plausible flood, fell beyond the scope of this 
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investigation, but could form attractive avenues for future research. The extent to which these 

results might be generalised is discussed a little further in general terms in due course.  

 

Finally for the present section, it may be noted that another possible and rather obvious 

explanation for general the degree of similarity between the enhanced single-site curve and the 

single-site curve fitted without the 2015/2016 peaks in both Groups A and B exists. It is simply that 

the enhanced weighting that JFes automatically applied to the target site data under the enhanced 

single-site method might have been high. Although it would be at the expense of data relevance, if 

prior knowledge suggests that some larger difference between the curves may be more appropriate 

(e.g. the pooled result ‘should be higher’, as proposed by the underestimation hypothesis), then 

there may be some benefit in lowering this weighting, or at least exploring the sensitivity of the 

difference to it.  

 

4.2.2. Flood frequency model-data comparison (in brief) 

As has hopefully already been made clear, testing models against the data they are supposed to 

represent as far as possible is a crucial activity. In this case, given some questions around the utility 

of the pooled estimates, which it must be remembered come recommended by official guidance, 

how well the enhanced method seems to fit the data at certain locations was considered. In contrast 

to the single-site case, when a poor fit may simply be put down to the limited record, should then 

enhanced single-site curve fit appear poor, there may be an argument for rejecting it in favour of 

the single-site curve (which will naturally fit the at site data better, but perhaps ‘too well’). In this 

endeavour, it is important to remember that data plotting positions using the Gringorten formula, 

for example, can be themselves highly uncertain; an observation which Miller et al. (2013) makes, 

but which is often overlooked.  

 

In the present study, it was possible to find cases where the enhanced single-site estimates 

(conducted without the additional peaks, as all enhanced estimates were) do not seem to fit the data 

well, perhaps due to data of limited relevance being introduced. To aid this discussion, results from 

two example stations are plotted below (Figure 4.7 and 4.8). Although both these stations (which 

incidentally have reasonably long records were) affected by high flows in December 2015, it is clear 

that the model fit is poor more generally, i.e. it is not only the latest peaks which do not fit well.  
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FIGURE 4.7. AM series (top) and enhanced single-site model without additional data (bottom) for the River 

Calder at Elland, West Yorkshire (27029). The red curve shows the fitted model and the blue points are the 

AM observations (plotted using the Gringorten formula).  
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FIGURE 4.8. AM series (top) and enhanced single-site model without additional data (bottom) for the River 

Eden at Temple Sowerby, Cumbria (76005). The red curve shows the fitted model, and the blue points are the 

AM observations (plotted using the Gringorten formula).  
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In these examples, the ‘direction’ of apparent mismatch is potentially worrying; the model, shown 

by the red line, sits underneath the data. Indeed, since enhanced single site analyses were including 

the latest peaks was not possible, these peaks are not actually plotted in the lower pane in either 

Figure 4.7 or 4.8. It is apparent that if they were, the mismatch would become even greater (and the 

axes would need adjusting).  

 

Contrastingly, in cases where the pooled model-data comparison is poor but the pooled curve sits 

above the data, then this might be considered reassuring for reasons already deliberated at length. 

These alternative responses to perhaps similar mismatches in magnitude demonstrate that much 

scope (or even need) exists to introduce prior knowledge and judgement, perhaps via Bayesian 

methods, to problems where uncertainty is deep-rooted and pervasive such as flood estimation. 

 

4.2.3. Summary 

Overall, it appears that enhanced single-site results may not be capable of consistently raising flood 

frequency-magnitude curves to levels that appear to be more consistent with the latest observed 

flows. In this sense, the results presented in this section may be broadly consistent with the 

underestimation hypothesis. However, the difficulty of testing these types of predictions and 

reliance on model-model comparisons (since it is often expected that a better model may in fact 

appear to fit the data poorly) severely restrict the confidence strongly with which any firm 

conclusions can be drawn. More generally, the previous discussion has highlighted that pooled 

methodology may be associated with certain drawbacks, especially where the strong influence of 

local site conditions or lack of independence in the group records challenge the validity of the 

underlying assumptions.  

 

4.3. Sensitivity to the choice of statistical distribution 
 

Lastly, sensitivity of single-site estimations to the choice of statistical distribution is briefly 

considered. Results, which are not tabulated in this thesis, are only shown for five stations in each 

of Group A and Group B (Figures 4.9 and 4.10 respectively). 
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FIGURE 4.9. Illustration of the impact of choice of distribution of flow frequency magnitude relationships at 

Group A stations (single-site only). Generalised Logistic (GL), Generalised Extreme Value (GEV) and Gumbel 

(GEV reduces to the special case of a Gumbel when the shape parameter, ξ = 0) distributions were fitted in 

case. The ‘without additional peak’ series were used for simplicity. The L-moments fitting method was 

employed in all cases. The NRFA station reference number is labelled.  
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FIGURE 4.10. Illustration of the impact of choice of distribution of flow frequency magnitude relationships 

at Group B stations (single-site only). Generalised Logistic (GL), Generalised Extreme Value (GEV) and 

Gumbel (GEV reduces to the special case of a Gumbel when the shape parameter, ξ = 0) distributions were 

fitted in case. The ‘without additional data’ series were used for simplicity. The L-moments fitting method 

was employed in all cases. The NRFA station reference number is labelled.  

 

These graphs show that broadly speaking, the results demonstrate only limited sensitivity the 

choice of statistical distribution. Moreover, little systematic difference is apparent between Group 

A and Group B stations. Certainly variability in estimates at the 1-in-100-year level associated with 

the different choice of distribution is lower than that associated with that produced in many cases 

given additional data (Section 4.1) and whether or not pooling was undertaken or not (Section 4.2). 

These results accord with those of Kjeldsen et al. (2008) who showed that across 600 UK stations, 
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there was little to choose between the GL and GEV distributions, with the GL being marginally 

preferred overall. Given all the other difficulties encountered in many flood estimation, this at least 

provides a little reassurance.   

 

4.5. More general discussion 

 

4.5.1. Regionalisation and comparisons with ReFH results 

A key question posed by the main results (these being firstly the observation that the flood-

estimates increased overall upon the addition of single new AM observations, and secondly the 

tentative suggestion that pooled analyses conducted without the additional data may not be capable 

of sufficiently elevating the estimates) is how spatially transferrable they might be not only to those 

locations within the study area that did not happen to be severely affected in the events of 

December 2015, but also to other parts of the UK (particularly upland and western regions).  

 

More specifically, there is an outstanding question regarding whether any factors might prevent 

similarly extreme floods (relative to the prior records) to those of December 2015 from occurring 

at other locations in future. It could simply be that purely by chance, major floods have happened to 

‘miss’ certain gauges over the short instrumental period. In other words, the lack of major ‘positive 

outlier’ floods in some locations over the instrumental period may be entirely unrelated to 

locational or physical catchment characteristic. Under these circumstances, such locations clearly 

maintain the potential to be affected by notable, high impact floods in future. Should it be possible 

in future to  distinguish such locations from those at which flood potential is limited by some 

physical control, (this would, of course, not be on a binary basis), then it may be possible to 

somehow raise the frequency magnitude curves on the basis of data from locations where 

distribution shifting floods have already been observed. In this way, the ‘expectedness’ or 

appreciation of the possibility of such floods at these historically fortunate locations might be 

increased.  

 

Practically, this could involve conducting some form of alternative regionalisation of results to ‘less 

affected’ stations by spatially interpolating/extrapolating the annual flow probability distributions, 

perhaps via their parameters. In this process, one could assign additional weight based on either 

record length (upon the assumption that these will be more representative) or some more explicit 
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measure of how many large floods have affected that stations per period of time, or even how much 

the distribution has been raised recently. Such an approach could also facilitate flood estimation in 

ungauged locations. Alternatively, established regression equations used for flood estimation in 

ungauged locations could be reassessed in light of the latest data. In a similar way, Merz and Blöschl 

(2008) call for more hydrologically-informed reasoning in flood frequency estimation.  

 

Making comparisons with results given by the ReFH method may also be enlightening at this 

juncture. Interestingly, the ReFH method gives growth curves than are generally steeper than those 

produced by standard pooling of peak flow observations (Kjeldsen et al., 2005). To deal with this 

mismatch (essentially the possibility of the different methods producing conflicting results at the 

same location), an explicit recommendation is made in the relevant official guidance to effectively 

calibrate any ReFH results downwards such that the difference between them and standard pooled 

results is minimised. To this end, the necessary factors are provided (Ibid.). An illustration of the 

typical situation is given in Figure 4.11. 

 

  

 

FIGURE 4.11. Illustration of typical flood frequency curves produced by the ReFH method compared to 

those produced via statistical (pooled) analysis of peak river flow observations. In response to the general 

mismatch, adjustment factors are provided which can be applied to estimates produced via the ReFH method 

to improve agreement with the statistical method. In the diagram, the adjustment factor, d2, is seen to vary 

with return period.  Source: Kjeldsen et al. (2005).  
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In light of this situation, it would be interesting to explore further whether a proportion of the 

‘overestimation’ is associated with the fact that rainfall records are much longer than river flow 

records, and hence are more likely to be representative. If this effect makes some contribution, then 

it may be that the ReFH methods represent less of an overestimation, but rather the pooled analyses 

something of an underestimation. Perhaps the adjustment should even be the other way around.  

 

4.5.2. Stability of predictions over time 

A key theme that has run through this thesis is the difficulty of objectively evaluating alternative 

‘predictions’ that relate to aleatory outcomes drawn from an unknown distribution.  

 

According to one school of thought, it is perfectly obvious and reasonable for the addition of new, 

relevant data to the flood estimation problem to bring about changes in the estimates when the 

information available to constrain the underlying probability distribution is somewhat limited at 

the outset, and information gleaned from elsewhere or from physical theory cannot be easily 

transferred; from this perspective, the changes are likely to be thought of as improvements. 

 

On the contrary, it may be suggested that the results of a hazard assessment that is ‘good’ and 

robust in the first instance (which must surely be the aim), then it should not change significantly 

with the addition of new data from any single event36; if it does, then assuming the new model is an 

improvement, then the underlying distribution must have been poorly estimated beforehand. Any 

changes become problematic if the previous model was used as a basis for decision making and its 

uncertainty and hence instability was not fully acknowledged and accounted for.  

 

Since it is generally impossible to invalidate probabilistic predictions, the stability of flood 

frequency-magnitude relationships over time might therefore be proposed as a potentially useful 

indicator of whether a particular model can be considered ‘good’.  

 

 

 

 

                                                 
36 For analogous discussion in relation to seismic hazard assessment, where the mismatch between the 

recurrence timescales of the natural phenomena and the lengths of instrumental records is often even more 

problematic than it is in flood hazard assessment, readers are referred to Stein et al. (2012) and Stein et al. 

(unpublished). 
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4.5.3. Simulating spatially coherent plausible future flood events 

In this thesis, focus has been placed on the assessment of flood hazard at individual sites. However, 

if one is managing portfolio of spatially distributed assets or is interested in flooding probabilities 

over a wide area more generally, one must consider both spatial and temporal correlations in 

hazard. For this purpose, advanced multivariate extreme value statistical methods are normally 

applied (Heffernan and Tawn, 2004; Keef et al., 2009, 2013; Wyncoll and Gouldby, 2015). Based on 

modelled historical extremal dependence structures, these approaches can be applied to simulate 

many unobserved by nonetheless plausible future flood events or time-series that, when combined 

into a catalogue, may be considered more-or-less representative of the ‘full range’ of future flood 

hazard intensities in time and space. 

 

Neal et al. (2013), for example, simulate the inundation associated with many scenarios of joint 

fluvial flood flows on tributaries at Carlisle, Cumbria that were generated in such a way. On a 

larger, typically national or even continental scale, much stochastic modelling underpins 

catastrophe models, which are chains of hybrid statistical-physical used for calculating a range of 

flood risk metrics within the (re)insurance industry. Speight (2013) provides useful background 

information on this topic before applying it for the quantification of fluvial and coastal flood risk to 

an insured portfolio of static caravans.   

 

4.5.4. Some other factors affecting flood hazard and risk 

Flood hazard, and more precisely quantifying the flood frequency element of it, has formed the 

focus of this thesis. However, this task should not be viewed in isolation. Other factors (which are 

naturally also uncertain) must come together to ultimately produce a more useful statement of 

hazard in the form, for instance, of an expected probability of exceedance of a given water depth or 

velocity at a given location within a particular period.  

 

One important source of uncertainty in producing such a dataset is related to the fact that in 

hydraulic modelling for national scale flood hazard assessments at least, river channels are not 

explicitly represented. Therefore, their capacities must typically be assumed, with this volume 

subtracted from the inflows. Representation of floodplain friction, which can change on a seasonal 

basis as well as during an individual event (as vegetation is flattened), represents another uncertain 

parameter in hydraulic simulation, and moreover one to which flood depths and extents can be 
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sensitive. A final point to highlight in this extremely brief summary, is that the actions of flood 

defences have perhaps the most significant impact on flood hazard of all.  As Figure 4.12 reveals, 

these actions can be extremely dynamic in time; £2.3bn of capital investment in inland and coastal 

flood defences has recently been announced by the Government, making the trend over recent 

years that is shown likely to continue (EA, 2015). 

 

 
 

 
 
FIGURE 4.12. Cumulative number of households benefiting from reduced likelihood of flooding since 2003-

2004 in England. Source: EA (2009). 

 

In terms of exposure, surprisingly, a considerable number of properties continue to be built in areas 

of known floodplain in the UK; recent estimates suggest perhaps as many as 20,000 each year 

(Committee on Climate Change, 2015). This rapidly increasing exposure may be partly responsible 

for some of the recent (real or perceived) increase in flood risk that was discussed in the 

introduction. On a regional level, and in the shorter term, it is fair to suggest that changes in hazard 

and risk will be dominated by the balance between construction of new properties in ‘at risk’ areas 

and flood defences designed to protect them.   

 

In summary, attention is drawn to such factors and considerations so that the ‘materiality’ of any 

uncertainty or variability in flood frequency estimates, or potential changes in hazard overtime, can 

be evaluated within the wider context. Whilst estimated flood frequency relationships are clearly a 

major factor in flood hazard assessments, and are known to be a major source of overall 

uncertainly (compared to the hydraulic modelling stage, for instance), they are by no means the 

only one. Other factors might be similarly influential and uncertain, and accordingly the amount of 
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effort invested in each should be proportionate. Ultimately, this is another reason (besides the 

difficulties of testing them) why caution should be urged with respect to suggestions that flood 

frequency relationships might in cases have been, and still be, underestimated.  

 

4.5.5. A final note: other important types of flooding in the UK 

This research has also focussed solely fluvial flooding. Nevertheless, appreciation of the 

significance of pluvial flooding, which can be especially problematic in an urban context, is 

increasingly (Blanc et al., 2012). Indeed, in certain recent floods, a considerable proportion of the 

total monetary damage has been apportioned to non-fluvial sources (Pitt, 2008, Chatterton et al., 

2010; 2016). More generally, the close physical linkage between rainfall, runoff and eventual river 

flows means that pluvial flooding and fluvial flooding are often highly correlated in both time and 

space.   

 

With respect to coastal flooding, although interactions between the astronomical tidal cycle and 

meteorological surge (the effects of low pressure and wind-driven waves) can be complex 

(Horsburgh and Wilson, 2007), the underlying driver of large-scale, low-pressure rain-bearing 

storm systems is common to all three primary flood types (convective storms excluded). Increases 

in global mean sea-level are one of the most certain responses of the earth-system to anthropogenic 

climate change, with increases already eminently observable (Church and White, 2006). This may 

increase the expectation of coastal flooding. Having said that, since the devastating coastal floods of 

1953 (Waverley, 1954), the coastline of the UK has been rather well defended against coastal 

flooding, and accordingly significant coastal inundation has been limited in recent years (Penning-

Rowsell, 2015). 
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Chapter 5 
 

Conclusions and recommendations 

 

5.1. Conclusions 
 

In December 2015, new river flow maxima were observed widely across northern England. This 

thesis has presented the first broad scale assessment of the implications of these events on flood 

frequency estimates produced using established statistical methods. By applying rating equations to 

peak river stage measurements, annual maxima series were first extended at 155 stations. Then, 

flood frequency relationships fitted to data series with and without the additional data were 

compared. Finally, a series of further analyses were undertaken at selected stations. 

 

The research was framed in particular by the suggestion that even notwithstanding any possible 

climate change related trends in flood hazard,  flood frequency estimates based on short 

instrumental records may have a tendency towards underestimation. As part of the broad review of 

recent research into the general field of UK fluvial flood hazard that has been presented (Chapter 

2), the topical issue of non-stationarity was considered in detail, although it did not ultimately form 

a primary research focus.  

 

As was expected, inclusion of the new flow data led to increases in flood frequency estimates 

(produced using the single-site method) at many stations. The fairly high sensitivity that these 

estimates demonstrated to the addition of the data more generally, including at locations with 

relatively long record lengths, confirms the established view that the single-site method may not be 

particularly well suited the estimation of high flow quantiles in the UK given typical record lengths. 

On the other hand, in contrast to pooled analyses, conducting single-site analysis does at least 

provide assurance that the data employed for flood estimation are relevant to the location in 

question. 

 

Having said this, the increases in flood frequency estimates that were produced, as quantified by the 

change in 1-in-100-year flow, were generally not as large as some of those that have been reported 

by studies which extended records of flooding historically before re-evaluating flood frequency 

relationships on this basis. Assuming long-term historical stationarity, this situation may indicate 
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that even with the undoubtedly exceptional December 2015 flow peaks now included, the 

instrumental records may not represent the full range of possible natural variability with respect to 

flooding. Consequently, a certain degree of underestimation may persist if the updated 

instrumental series are used alone  

 

Relationships between change in the 1-in-100-year flow produced on a single-site basis and both 

record length and catchment area were found to be weak. It seems, therefore, that these factors do 

not strongly control the sensitivity of single-site flood estimates to additional data, at least within 

the record length and catchment area ranges studied.  

 

Pooled analyses, meanwhile, represent the primary means by which UK water industry practice 

seeks to overcome the short record problem. Here, a variant of the pooling approach known as 

enhanced single-site method was employed to explore the extent to which the longer, theoretically 

more representative records afforded by pooling might elevate flood frequency estimates produced 

on a single-site basis (assuming some might suffer from a degree of underestimation). Based on 

these comparisons, it could be contended that the enhanced method may not be capable of 

consistently raising hazard estimates to levels that are apparently more consistent with the latest 

observations (the need for such hedging language is explained shortly).  

 

Additionally, some model-data comparisons were made which, at least in the specific cases 

presented, appear to support this suggestion. In the final phase of analysis, the impact of the choice 

of statistical distribution of flood frequency estimates, keeping all else equal, was considered 

qualitatively. Sensitivity of the estimates to choice of statistical distribution was found to be low, 

especially when considered relative to the differences produced by using different data and/or 

methods. This provides some reassurance given the plethora of other uncertainties and challenges 

associated with the task of flood estimation.  

 

Throughout the thesis, the benefits and limitations associated with the various different flood 

frequency estimation approaches have been presented and, as far as possible, evaluated. In this 

regard, it is apparent that no single, optimal approach to flood frequency estimation exists. Hence, 

comparing estimates provided by several different methods perhaps represents an ideal approach, 

albeit one that might not be straightforward to carry out in practice.  
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Overall, it may be tentatively suggested that the results of this study provide some support for one 

(or both) of the underestimation hypotheses presented in Chapter 1, with potential implications for 

flood risk management policy. 

 

Having said that, a great deal of caution must be exercised when interpreting these results for two 

primary reasons – hence the need for hedging. Firstly, it can be extremely difficult (if not 

impossible) to distinguish between two alternative probabilistic predictions in general, and by 

using data from only an individual event more particularly; even if an extremely low initial 

probability was assigned, and so an observed event appears ‘too surprising’, rare or exceptional (and 

so underestimation is suspected), provided some probability was assigned to it at the outset, it is not 

easy to reject the prior model solely on this basis. Secondly, although uncertainty in flood 

frequency estimates are known to contribute significantly to the overall uncertainty associated 

with hazard and risk assessments, there are numerous other, perhaps similarly uncertain and 

influential factors involved in such assessments. As such, uncertainties and potential biases in flood 

frequency relationships should be evaluated in their light whenever possible. Of course, uncertainty 

in the December 2015 flow measurements (especially due to flow bypassing the gauging stations 

and rating curve extrapolation) should also not be overlooked. On this point, not being able to 

estimate some form of confidence intervals around the estimates in the time available represents a 

major limitation of the study.  

 

Another significant limitation of the study is that it was not possible to conduct enhanced single-

site analyses with the latest December 2015 peaks included. The findings of Miller et al. (2013), 

however, suggest that a high degree of sensitivity in results could have been expected even with this 

method. It might also have been interesting to consider the sensitivity of the estimates to (likely) 

measurement uncertainty around the latest high flows (although their exceptional nature means 

that quantifying this uncertainty precisely would not be possible).    

 

Finally, it should be noted finally that the revised flood frequency estimates presented herein were 

produced under the assumption of stationarity. Accordingly, even if any potential underestimation 

associated with past natural variability not being captured in short records is placed to one side, 

they may still represent underestimations if increases in flood frequency and/or severity are 

emergent. Although such trends are not yet detectible in empirical records, both recent event 

attribution studies and model-based future projections indicate that flood hazard has already 
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increased perceptibly as a result of anthropogenic emissions, and that this signal is anticipated to 

emerge more clearly from the noise over coming years and decades.  

 

5.2. Recommendations 
 

Several recommendations may be proposed as a result of the literature review and original research 

phases of this work. They are as follows:  

 

 It may be appropriate to reinvigorate methods which would enable historical 

(documentary and epigraphic) and palaeoflood data to be included more routinely in flood 

frequency estimation for practical purposes 

 

 Statistical flood frequency models should be updated more regularly using the latest 

instrumental observations (but not only following major or record-breaking floods) 

 

 The instability over time and the potential biases of central flood frequency estimates 

produced in the traditional fashion, and uncertainty around these estimates, should be 

acknowledged as fully as possible when used for design purposes. The uncertainties 

considered should include not only the theoretically quantifiable (e.g. confidence intervals 

related to sample uncertainty) but also the less quantifiable (e.g. uncertainty stemming 

from errors in the measurement of high flows) 

 

 Advice to pool observations from hydrologically similar sites (either in ‘full’ pooling or in 

enhanced single-site analysis) should be followed with care, with an appreciation of the 

inherent assumptions.; due to hydrological uniqueness, pooling does not always provide a 

favourable solution to the problem of short, unrepresentative records 

 

 In light of the extreme December 2015 observations, and perhaps also historical ‘great 

flood’ data, it may also be apposite to reassess the more complex spatio-temporal flood 

hazard models that are used operationally, presently, such models also rely entirely on the 

information contained within short instrumental series 
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APPENDICES 

 
Appendix A: December 2015 peak flow estimates, northern England 

 
Station Ref Easting Northing Maximum 

December    2015 
stage (m) 

Site and stage-
specific rating 
equation 

Equation applied Peak Q         
(m3 s-1) 

Comments 

Heaton Mill 21806 389977 642381 2.155 2c Q = 3.024 * ( h + 1.551 ) ^ 2.791 117.06  

Morwick 22001 423400 604500 3.773 Db Q = 33.106* (h + 0.06400) ^ 1.428 225.86  

Shilmoor 22003 386800 608700 0.781 Ba Q = 23.862 * ( h - 0.01700 ) ^ 1.921 14.23  

Hartford Bridge 22006 424336 580000 1.312 2b Q = 33.977 * ( h - 0.02200 ) ^ 2.127 58.40  

Mitford 22007 417500 585800 2.358 4d Q = 19.476 * ( h + 0.000 ) ^ 2.027 110.83  

Rothbury 22009 406700 601600 2.708 4c Q = 31.492 * ( h - 0.2480 ) ^ 1.934 179.58  

Stamfordham 22801 408200 571800 2.264 4c Q = 1.550 * ( h - 0.1681 ) ^ 3.642 22.95  

Bywell 23001 403800 561700 6.959 2c Q = 72.522 * ( h - 0.06100 ) ^ 1.603 1603.04  

Eddys Bridge 23002 404100 550800 1.382 1b Q = 11.739 * ( h - 0.2500 ) ^ 2.771 16.55  

Reaverhill 23003 390600 573200 5.072 4a Q = 32.323 * ( h - 0.04500 ) ^ 1.918 715.52 Rating applied beyond 

max stage 

Haydon Bridge 23004 385600 564700 4.646 9c Q = 62.303 * ( h + 0.000 ) ^ 1.749 914.60  

Featherstone 23006 367200 561100 2.462 1c Q = 101.400 * ( h - 0.1500 ) ^ 1.720 428.64  

Rowlands Gill 23007 416814 558095 1.220 1c Q = 44.000 * ( h + 0.000 ) ^ 1.658 61.18  

Rede Bridge 23008 386800 583200 3.045 3c Q = 34.400 * ( h + 0.000 ) ^ 1.823 261.90  

Alston 23009 371600 546500 2.472 4b Q = 3.421 * ( h + 0.8524 ) ^ 3.504 230.27  

Kielder Burn 23011 364400 594600 1.823 1c Q = 22.530 * ( h + 0.000 ) ^ 1.842 68.10  

Team Valley 23017 424900 558500 0.867 3b Q = 6.304 * ( h + 0.2510 ) ^ 2.798 8.61  
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Woolsington 23018 419500 569900 1.106 6c Q = 1.390 * ( h + 0.2000 ) ^ 2.654 2.82  

Otterburn 23033 386400 594400 3.454 Bv2c Q = 142.410 * ( h - 2.301 ) ^ 1.644 179.96  

Sunderland Bridge 24001 426500 537800 3.263 3c Q = 82.484 * ( h - 0.2230 ) ^ 1.283 343.48  

Stanhope 24003 398300 539100 3.432 2c Q = 98.400 * ( h - 0.9000 ) ^ 0.8900 224.95  

Bedburn 24004 411800 532200 1.416 1d Q = 18.350 * ( h - 0.1000 ) ^ 1.848 30.48  

Burn Hall 24005 425900 538700 1.235 Dc Q = 20.230 * ( h + 0.000 ) ^ 2.090 31.45  

Eastgate 24006 395200 539000 1.276 1d Q = 17.450 * ( h - 0.1630 ) ^ 1.817 21.20 Rating only goes up to 

1980 

Witton Park 24008 417300 530900 4.088 2c Q = 20.355 * ( h + 0.000 ) ^ 1.943 313.93  

Chester-Le-Street 24009 428400 551200 3.434 1c Q = 89.405 * ( h + 0.000 ) ^ 1.029 318.20  

Broken Scar 25001 425900 513700 3.187 e2 Q = 381.662 * ( h - 1.539 ) ^ 1.001 629.29  

Moorhouse 25003 375900 533600 0.859 2d Q = 24.293 * ( h - 0.1950 ) ^ 1.770 11.77  

South Park 25004 428400 512900 0.985 1d Q = 32.806 * ( h - 0.2080 ) ^ 1.785 20.91  

Rutherford Bridge 25006 403400 512200 1.801 Dd Q = 37.822 * ( h - 0.1750 ) ^ 1.784 90.03  

Barnard Castle 25008 404700 516600 2.542 2d Q = 95.581 * ( h - 0.3020 ) ^ 1.746 390.76  

Low Moor 25009 436400 510500 6.231 2f Q = 9.302 * ( h - 1.207 ) ^ 2.533 555.05  

Harwood 25012 384900 530900 1.552 1a Q = 17.200 * ( h + 0.000 ) ^ 2.514 51.93  

Middleton 25018 395000 525000 2.855 1a Q = 24.200 * ( h + 0.000 ) ^ 2.424 307.75  

Easby 25019 458500 508700 0.497 1c Q = 15.000 * ( h + 0.000 ) ^ 2.347 2.91  

Preston-Le-Skerne 25020 429200 523800 1.266 1b Q = 8.818 * ( h + 0.000 ) ^ 1.464 12.45  

Bradbury 25021 431800 528500 1.307 2b Q = 4.716 * ( h + 0.000 ) ^ 1.323 6.72  

Foston Mill 26003 509300 454800 0.354 2b Q = 5.872 * ( h + 0.03300 ) ^ 1.728 1.14  

Wansford Snakeholm 

Lock 

26010 506600 455600 2.063 1a Q = 5.601 * ( h - 1.565 ) ^ 1.671 1.75  

Hunsingore 27001 442800 453000 2.852 11d Q = 7.743 * ( h + 0.000 ) ^ 3.265 297.44 Rating applied beyond 

max stage 
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Flint Mill 27002 442200 447300 3.743 2b Q = 74.004 * ( h - 0.2620 ) ^ 1.654 582.42 Rating applied beyond 

max stage 

Beal Weir Bridge 27003 453000 425500 4.130 1b Q = 7.753 * ( h + 2.353 ) ^ 1.949 296.22  

Hadfields 27006 439000 391000 1.504 3c Q = 41.337 * ( h + 0.5770 ) ^ 1.107 93.04  

Westwick Lock 27007 435600 466700 3.328 4b Q = 198.200 * ( h - 0.7370 ) ^ 1.000 513.54  

Skelton 27009 456800 455400 6.634 11d Q = 0.0004400 * ( h + 9.261 ) ^ 5.047 508.41  

Doncaster 27021 457000 404000 3.934 4b Q = 8.527 * ( h + 1.386 ) ^ 1.767 163.49  

Rotherham 27022 442500 392300 1.682 1a Q = 83.920 * ( h + 0.1130 ) ^ 1.545 207.20  

Barnsley 27023 435000 407250 1.088 2c Q = 18.616 * (h - 0.003000 ) ^ 2.545 22.91  

Woodhouse Mill 

Regulator 

27025 443200 385700 1.969 4b Q = 19.112 * ( h - 0.2930 ) ^ 1.403 39.44  

Ilkley 27027 411600 448100 3.334 1 Q = 57.284 * ( h + 0.03900 ) ^ 1.628 414.61 Rating only goes up to 

1975 

Armley 27028 428100 434000 5.214 6c Q = 14.694 * ( h + 0.3360 ) ^ 1.932 402.82 Rating applied beyond 

max stage 

Elland 27029 412400 422000 2.757 2c Q = 50.291 * ( h + 0.000 ) ^ 2.445 600.29  

Adwick 27030 447700 402000 1.226 2b Q = 31.462 * ( h - 0.09500 ) ^ 2.065 40.57  

Colne Bridge 27031 417400 419900 1.787 3c Q = 91.924 * ( h - 0.4310 ) ^ 0.8940 120.69  

Sea Cut at 

Scarborough 

27033 502800 490800 0.844 2c Q = 33.168 * ( h + 0.000 ) ^ 2.082 23.30  

Kilgram 27034 419000 486000 5.256 3c Q = 59.497 * ( h - 0.5520 ) ^ 1.140 347.62 Rating applied beyond 

max stage 

Kildwick 27035 401100 445700 4.219 2b Q = 6.144 * ( h + 0.9810 ) ^ 1.989 163.15 Rating applied beyond 

max stage 

Buttercrambe 27041 473100 458700 2.345 2g Q = 30.329 * ( h + 0.000 ) ^ 1.643 123.03 Rating applied beyond 

max stage 

Addingham 27043 409200 449400 2.463 2e Q = 77.926 * ( h - 0.2390 ) ^ 2.001 385.74 Rating applied beyond 
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max stage 

Birstwith 27053 423000 460300 3.445 3c Q = 35.350 * ( h - 0.2740 ) ^ 1.206 142.18 Rating applied beyond 

max stage 

Broadway Foot 27055 456000 488300 1.631 2e Q = 24.000 * ( h + 0.04000 ) ^ 1.300 46.78  

Pickering, Ings Bridge 27056 479100 481900 1.145 2d Q = 17.561 * ( h + 0.02300 ) ^ 1.726 22.96 Rating applied beyond 

max stage 

Ripon 27059 430100 471000 1.299 2e Q = 20.446 * ( h + 0.05600 ) ^ 1.726 34.54 Rating applied beyond 

max stage 

Skip Bridge 27062 448200 456100 N/A Ultrasonic station - 

flow measured 

directly 

N/A 247.05  

Crakehill 27071 442500 473300 5.455 3f Q = 109.650 * ( h - 3.500 ) ^ 1.000 214.37  

Snainton Ings 27073 493627 479462 0.193 2c Q = 15.570 * ( h + 0.01100 ) ^ 1.711 1.03  

Methley 27079 440900 425700 3.684 1a Q = 59.989 * ( h - 0.9600 ) ^ 1.372 237.23 Rating applied beyond 

max stage 

Oulton Lemonroyd 27080 438100 428200 2.908 1c Q = 45.931 * ( h + 0.05700 ) ^ 1.615 265.72  

Farrer Lane 27081 436500 428100 0.627 2d Q = 10.536 * ( h - 0.09100 ) ^ 1.672 3.71  

Huntington 27083 461239 454337 3.985 1a Q = 5.889 * ( h - 0.6540 ) ^ 1.181 24.39 Rating applied beyond 

max stage 

Cross Hills 27084 402100 445200 1.763 2e Q = 26.405 * ( h - 0.2510 ) ^ 1.747 54.37  

Alma Weir 27086 431600 470900 1.455 2e Q = 46.181 * ( h - 0.2230 ) ^ 1.707 65.94  

Low Marishes 27087 483300 477400 4.782 1b Q = 2.221 * ( h - 0.6490 ) ^ 1.694 24.58  

Mytholmroyd 27088 401200 426100 5.646 2b Q = 15.083 * ( h - 0.4830 ) ^ 1.432 158.26  

Tadcaster 27089 447700 444100 4.508 1c Q = 7.469 * ( h + 0.4830 ) ^ 2.808 330.97  

Catterick Bridge 27090 422600 499300 2.964 2c Q = 36.568 * ( h - 0.1000 ) ^ 2.123 341.39  

Briggswath 27092 487316 508248 2.382 1b Q = 46.152 * ( h - 0.4510 ) ^ 1.270 106.45  

Ashbrook 68001 367010 363310 1.701 14b Q = 4.108 * ( h + 0.5040 ) ^ 1.978 19.63  
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Rudheath 68003 366760 371800 2.685 8b Q = 16.952 * ( h + 0.001000 ) ^ 0.9960 45.35  

Lostock Gralam 68007 369700 375720 2.446 10a Q = 6.784 * ( h - 0.1317 ) ^ 1.344 20.95  

Bridge Trafford 68020 344830 371110 0.685 6b Q = 10.090 * ( h - 0.1600 ) ^ 1.334 4.27  

Ashton Weir 69007 377240 393560 2.778 1b Q = 85.045 * ( h - 0.6760 ) ^ 0.8957 165.44  

Wilmslow 69012 384970 381490 0.931 1b Q = 14.426 * ( h - 0.04000 ) ^ 1.860 11.64  

Compstall 69015 396240 390780 1.142 8b Q = 76.106 * ( h - 0.4456 ) ^ 0.9325 54.31  

Marple Bridge 69017 396370 389790 1.353 GBc Q = 104.836 * ( h - 1.075 ) ^ 0.4600 58.18  

London Road 69020 384900 397520 1.382 6a Q = 20.511 * ( h + 0.002000 ) ^ 1.659 35.17  

Blackford Bridge 69023 380690 407740 3.362 3c Q = 15.913 * ( h + 1.144 ) ^ 1.671 196.90  

Farnworth 69024 374340 406820 1.413 5a Q = 76.932 * ( h - 0.02268 ) ^ 1.570 129.06 Rating applied beyond 

max stage 

Manchester 

Racecourse 

69025 382070 400350 5.668 N/Ac Q = 32.533 * ( h - 0.2830 ) ^ 1.823 700.29 Rating applied beyond 

max stage 

Portwood 69027 390700 391870 1.611 14b Q = 41.871 * ( h + 0.002000 ) ^ 1.466 84.39  

Causey Bridge 69030 358760 392240 2.973 14e Q = 2.739 * ( h + 1.021 ) ^ 1.868 36.39  

Kirkby 69032 339160 398330 1.817 2c Q = 9.189 * ( h + 0.02200 ) ^ 1.498 22.89  

Broomstairs Bridge 69041 393750 395320 1.739 7a Q = 31.896 * ( h - 0.05200 ) ^ 1.712 78.08  

Collyhurst Weir 69043 384850 399690 1.146 9b Q = 28.923 * ( h + 0.3790 ) ^ 1.003 44.16  

Bury Ground 69044 379900 411400 2.178 2b Q = 128.057 * ( h -0.5237 ) ^ 1.580 283.67  

Rochdale ETW 69803 388200 412700 2.222 2a Q = 26.198 * ( h - 0.01800 ) ^ 1.601 92.84  

Wanes Blades 70002 347620 412570 N/A Ultrasonic station - 

flow measured 

directly 

N/A 84.79  

Croston 70004 349840 417980 2.994 5d Q = 41.625 * ( h + 0.000 ) ^ 0.3890 63.77  

Littlewood Bridge 70005 349740 419650 3.795 15a Q = 5.796 * ( h - 0.06000 ) ^ 1.512 42.50 Rating applied beyond 

max stage 

Samlesbury 71001 358920 430490 6.558 7c Q = 52.088 * ( h - 0.6640 ) ^ 1.692 1047.78  
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Whalley Weir 71004 372900 436030 4.642 4e Q = 1.102 * ( h + 0.000 ) ^ 4.026 532.52  

Henthorn 71006 372180 439170 3.311 5d Q = 30.158 * ( h + 0.1430 ) ^ 1.956 340.69  

Hodder Place 71008 370410 439980 2.321 1d Q = 63.159 * ( h - 0.2210 ) ^ 2.107 301.54 Rating applied beyond 

max stage 

New Jumbles Rock 71009 370250 437590 5.044 2c Q = 0.06240 * ( h + 5.431 ) ^ 4.177 1138.59 Rating applied beyond 

max stage 

Barden Lane 71010 383740 435050 3.362 10e Q = 179.340 * ( h - 2.240 ) ^ 0.8000 196.64  

Arnford 71011 383880 455580 2.255 4c Q = 10.256 * ( h + 0.5100 ) ^ 2.634 149.42  

Ewood 71013 367730 426250 2.114 2e Q = 27.613 * ( h + 0.000 ) ^ 1.044 60.33  

Blue Bridge 71014 356470 427780 3.305 6c Q = 20.100 * ( h + 0.000 ) ^ 2.000 219.55  

Wray 72003 360490 467950 2.938 4g Q = 34.412 * ( h - 0.5790 ) ^ 2.142 216.32  

Caton 72004 352860 465290 16.245 3f Q = 958.340 * ( h - 5.130 ) ^ 0.5400 3518.12 Rating applied beyond 

max stage 

Killington 72005 362200 490660 4.027 8e Q = 17.408 * ( h + 1.281 ) ^ 2.147 626.87 Rating applied beyond 

max stage 

A6 Bridge 72007 351210 440550 1.371 6b Q = 27.410 * ( h - 0.1980 ) ^ 2.178 38.80 Rating applied beyond 

max stage 

Wennington 72009 361540 470080 3.071 4d Q = 7.620 * ( h + 0.8210 ) ^ 2.350 185.72  

Brigflats 72011 363990 491090 3.909 10b Q = 9.684 * ( h + 0.04000 ) ^ 2.963 566.82 Rating applied beyond 

max stage 

Galgate 72014 348160 455370 2.532 3b Q = 6.612 * ( h + 0.06100 ) ^ 1.692 33.15 Rating applied beyond 

max stage 

Lunes Bridge 72015 361210 502900 5.120 3c Q = 95.238 * ( h - 1.323 ) ^ 1.000 361.62 Rating applied beyond 

max stage 

Scorton 72016 350120 449990 1.473 10e Q = 44.795 * ( h + 0.000 ) ^ 3.366 164.97  

Hornby 72807 358570 468390 2.452 3d Q = 105.800 * ( h + 0.1720 ) ^ 1.184 331.54  

Low Nibthwaite 73002 329450 488210 1.410 5b Q = 21.330 * ( h - 0.05200 ) ^ 1.742 36.35  
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Sedgwick 73005 350883 487419 4.276 3d Q = 49.088 * ( h + 0.5895 ) ^ 1.500 526.83  

Eel House Bridge 73006 336969 494044 1.806 12a Q = 9.215 * ( h - 0.4130 ) ^ 2.126 18.64 Rating applied beyond 

max stage 

Beetham Weir 73008 349620 480590 2.114 1c Q = 2.073 * ( h + 1.000 ) ^ 3.638 129.21  

Sprint Mill, Kendal 73009 351477 496104 1.920 5b Q = 38.561 * ( h - 0.1400 ) ^ 1.839 111.34 Rating applied beyond 

max stage 

Newby Bridge 73010 336600 486264 2.480 2c Q = 37.578 * ( h - 0.2750 ) ^ 2.260 224.41 Rating applied beyond 

max stage 

Mint Bridge 73011 352411 494470 2.688 2b Q = 21.274 * ( h - 0.1100 ) ^ 2.193 169.74 Rating applied beyond 

max stage 

Victoria Bridge 73012 351789 493070 3.874 6c Q = 73.820 * ( h - 1.185 ) ^ 1.709 400.26  

Jeffy Knotts 73014 335965 503406 3.871 15b Q = 1.454 * ( h + 0.2900 ) ^ 3.314 163.90 Rating applied beyond 

max stage 

High River Keer 73015 352320 471890 2.587 2d Q = 11.187 * ( h - 0.5986 ) ^ 1.148 24.63 Rating applied beyond 

max stage 

Duddon Hall 74001 319560 489570 1.799 5b Q = 37.044 * ( h - 0.08300 ) ^ 2.134 117.27 Rating applied beyond 

max stage 

Galesyke 74002 313537 503818 1.319 15c Q = 26.278 * ( h - 0.5270 ) ^ 0.7930 21.84  

Bleach Green Weir 74003 308390 515400 1.641 1b Q = 18.925 * ( h - 0.09000 ) ^ 1.959 44.71 Rating applied beyond 

max stage 

Braystones 74005 300909 506051 1.910 28N/A (first in the 

list) 

Q = 0.4347 * ( h + 2.427 ) ^ 3.397 63.49  

Calder Hall 74006 303490 504490 1.343 6b Q = 29.409 * ( h - 0.03500 ) ^ 2.267 54.05 Rating applied beyond 

max stage 

Cropple Howe 74007 313100 497770 2.203 14c Q = 56.844 * ( h - 0.5350 ) ^ 1.281 109.48 Rating applied beyond 

max stage 

Ulpha 74008 320910 494720 1.576 5c Q = 47.542 * ( h - 0.4150 ) ^ 1.545 59.87  
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Thirlmere 75001 331300 519500 3.262 1d Q = 18.000 * ( h + 0.1500 ) ^ 1.170 75.66 Rating applied beyond 

max stage 

Ouse Bridge 75003 319823 532151 3.891 12d Q = 75.350 * ( h - 0.9770 ) ^ 1.550 395.40  

Southwaite Bridge 75004 313090 528090 2.700 20c Q = 2.539 * ( h + 1.790 ) ^ 2.748 157.41  

Portinscale 75005 325195 523885 3.730 14v1top Q = 11.542 * ( h + 0.000 ) ^ 2.446 288.86  

Threlkeld 75007 332254 524801 2.566 18b Q = 22.364 * ( h - 0.3840 ) ^ 1.620 79.16 Rating applied beyond 

max stage 

Low Briery 75009 328558 524216 3.643 5c Q = 16.930 * ( h + 0.5360 ) ^ 2.326 471.27 Rating applied beyond 

max stage 

Bull Gill 75017 309600 538400 2.510 2c Q = 23.266 * ( h - 0.2090 ) ^ 1.079 57.18 Rating applied beyond 

max stage 

Burnbanks 76001 350750 515920 0.931 4b Q = 39.228 * ( h - 0.09294 ) ^ 1.787 28.61  

Udford 76003 357570 530450 2.872 84b Q = 31.887 * ( h + 0.2634 ) ^ 2.228 406.78 Rating applied beyond 

max stage 

Eamont Bridge, 

Beehive, River 

Lowther 

76004 352508 528562 2.934 18c Q = 1.289 * ( h + 0.5860 ) ^ 4.250 271.06  

Temple Sowerby 76005 360452 528312 4.545 26c Q = 1.222 * ( h - 0.1741 ) ^ 4.654 1170.28 Rating applied beyond 

max stage 

Sheepmount 76007 339000 557100 7.806 11b Q = 56.612 * ( h - 0.2980 ) ^ 1.699 1739.50 Rating applied beyond 

max stage 

Greenholme 76008 348618 558072 3.472 10f Q = 14.519 * ( h - 0.2990 ) ^ 2.388 228.80  

Coalburn Beck 76011 369370 577780 0.930 3b Q = 8.152 * ( h - 0.4630 ) ^ 1.636 2.35  

Kirkby Stephen 76014 377299 509694 2.731 11b Q = 38.063 * ( h - 0.3070 ) ^ 1.469 139.76 Rating applied beyond 

max stage 

Pooley Bridge 76015 347236 524959 2.429 3c Q = 108.580 * ( h - 0.6980 ) ^ 1.291 220.49  

Great Corby 76017 346810 555360 5.829 3e Q = 1027.080 * ( h - 3.932 ) ^ 0.5771 1486.20  
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Great Musgrave 

Bridge 

76806 376500 513120 3.201 3d Q = 0.3523 * ( h + 1.603 ) ^ 4.439 373.72 Rating applied beyond 

max stage 

Cummersdale 76809 339480 552727 3.238 3f Q = 4.524 * ( h + 0.000 ) ^ 3.509 279.31  

Dacre Bridge 76811 346007 526287 1.743 3b Q = 25.014 * ( h - 0.1537 ) ^ 1.823 58.21  

 

TABLE A1. Maximum observed stage levels, ratings curves applied and estimated peak December 2015 flows at the 155 stations across northern England that were included in the 

present study. For a station to be included, previous AM data had to be available in addition to December 2015 peaks. 
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Appendix B: Flood frequency estimates (single-site) across northern England with and without December 2015 data 

 
Station Area 

(km2) 
With 
December 
2015 peaks? 

QMED 
(empirical) 
(m3s-1) 

Return period (1-in-n-years) flow (m3 s-1) 
2 5 10 25 50 100 500 

21806 655.53 
F 151.60 129.85 207.96 271.97 374.43 471.34 590.40 986.83 

T 142.24 127.15 200.11 260.63 358.48 451.91 567.60 958.10 

22001 578.21 
F 147.64 146.51 212.91 266.94 352.91 433.77 532.65 859.20 

T 149.91 148.42 215.09 268.66 353.00 431.55 526.80 836.94 

22003 21.87 
F 19.22 18.83 28.65 36.62 49.28 61.17 75.68 123.53 

T 19.18 18.49 28.08 35.97 48.64 60.66 75.46 124.98 

22006 273.62 
F 52.55 56.21 87.33 112.21 151.25 187.48 231.28 373.17 

T 52.68 56.18 86.95 111.56 150.16 185.97 229.27 369.52 

22007 282.03 
F 100.86 99.99 152.25 194.52 261.41 324.02 400.26 650.30 

T 101.30 100.19 151.85 193.52 259.34 320.83 395.57 640.02 

22009 345.99 
F 133.00 131.51 189.24 234.25 303.31 366.11 440.76 675.60 

T 135.10 133.27 190.67 234.75 301.56 361.61 432.29 650.97 

22801 48.11 
F 14.06 14.87 25.97 34.89 48.95 62.05 77.95 129.75 

T 15.32 15.78 26.62 34.93 47.52 58.83 72.14 113.25 

23001 2172.36 
F 876.43 880.10 1063.29 1185.02 1348.50 1479.81 1620.34 1990.87 

T 880.58 884.41 1080.85 1215.77 1401.99 1555.43 1723.24 2181.89 

23002 118.07 
F 48.41 42.98 53.45 59.80 67.69 73.59 79.54 93.72 

T 41.22 41.47 52.91 59.42 67.13 72.62 77.94 89.83 

23003 1012.97 
F 404.00 404.00 511.43 584.52 684.61 766.49 855.47 1096.17 

T 411.17 435.10 555.85 638.20 751.21 843.83 944.65 1218.10 

23004 749.90 
F 453.51 458.47 550.68 616.65 710.85 790.98 880.97 1138.26 

T 458.64 460.22 561.24 637.04 749.69 849.14 964.39 1311.81 
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23006 322.97 
F 242.68 245.83 293.04 326.71 374.65 415.33 460.92 590.78 

T 243.67 247.39 298.22 335.54 390.02 437.31 491.34 650.35 

23007 243.84 
F 41.98 44.69 68.29 88.61 122.55 155.92 198.30 347.70 

T 42.34 45.13 68.64 88.69 121.87 154.24 195.06 337.28 

23008 345.20 
F 138.04 138.08 173.62 198.56 233.60 262.95 295.51 386.60 

T 138.63 139.45 177.41 204.63 243.58 276.78 314.13 421.19 

23009 118.62 
F 139.19 139.35 180.80 212.55 260.55 303.62 354.21 510.28 

T 142.00 141.61 184.49 217.05 265.91 309.46 360.32 515.70 

23011 58.81 
F 65.78 65.87 81.46 91.17 103.55 113.02 122.74 146.67 

T 66.05 65.95 81.30 90.84 102.98 112.24 121.74 145.07 

23017 62.35 
F 13.22 12.82 17.95 21.99 28.25 33.98 40.84 62.65 

T 13.16 12.62 17.70 21.74 28.06 33.91 40.95 63.65 

23018 10.48 
F 2.56 2.62 3.91 5.02 6.86 8.67 10.96 18.98 

T 2.67 2.62 3.89 4.97 6.77 8.53 10.75 18.53 

23033 180.63 
F 153.15 156.50 181.62 194.51 208.53 217.74 226.09 242.84 

T 159.41 159.89 183.16 194.53 206.41 213.93 220.54 233.14 

24001 661.04 
F 186.15 199.04 258.66 304.39 373.61 435.77 508.87 734.68 

T 189.27 201.46 262.58 309.04 378.84 441.10 513.87 736.45 

24003 173.41 
F 124.54 123.17 151.56 171.33 198.92 221.90 247.25 317.57 

T 125.27 123.96 154.06 175.52 206.07 231.98 261.00 343.66 

24004 74.13 
F 25.21 25.09 37.10 47.13 63.43 79.08 98.55 164.76 

T 25.30 25.22 37.14 47.03 63.03 78.32 97.25 161.22 

24005 178.95 
F 37.85 37.66 51.90 62.81 79.32 94.14 111.55 165.31 

T 37.82 37.45 51.55 62.42 78.94 93.85 111.43 166.07 

24006 36.62 
F 24.62 24.21 29.79 33.51 38.50 42.51 46.81 58.15 

T 24.52 23.93 29.42 33.14 38.24 42.40 46.91 59.11 

24008 455.10 F 212.95 209.41 255.77 285.74 325.09 356.02 388.54 471.76 
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T 222.54 211.87 259.65 290.51 330.98 362.78 396.19 481.58 

24009 1005.00 
F 248.07 254.10 309.27 346.43 396.92 437.90 482.15 600.59 

T 254.42 256.80 311.61 347.78 396.08 434.68 475.80 583.41 

25001 847.70 
F 387.40 393.40 503.98 577.10 674.88 753.10 836.55 1055.35 

T 388.89 388.89 498.72 570.89 666.92 743.38 824.62 1036.23 

25003 11.46 
F 15.16 16.03 20.57 24.20 29.92 35.24 41.68 62.61 

T 15.14 15.89 20.42 24.05 29.77 35.08 41.52 62.47 

25004 224.58 
F 22.53 22.03 29.83 35.07 42.19 47.97 54.21 70.89 

T 21.93 21.99 29.69 34.90 41.97 47.73 53.95 70.62 

25006 86.81 
F 76.76 74.26 96.08 111.65 133.85 152.69 173.83 234.12 

T 76.76 74.19 96.29 111.57 132.77 150.33 169.62 222.70 

25008 510.17 
F 262.48 262.04 333.34 382.12 449.27 504.45 564.65 728.55 

T 263.64 265.20 337.17 385.82 452.08 506.00 564.36 721.08 

25009 1267.10 
F 410.18 398.47 493.04 545.95 607.66 651.05 692.60 783.78 

T 413.60 403.49 497.95 550.17 610.52 652.57 692.53 779.17 

25012 24.58 
F 33.27 33.85 44.18 52.12 64.13 74.94 87.65 126.98 

T 33.39 34.29 44.79 52.74 64.65 75.25 87.61 125.27 

25018 242.36 
F 214.93 210.48 270.92 311.37 366.02 410.15 457.61 583.70 

T 221.61 213.32 274.14 314.31 367.99 410.91 456.65 576.48 

25019 15.07 
F 5.54 5.61 9.07 12.17 17.52 22.95 30.01 56.05 

T 4.99 4.99 8.11 10.91 15.74 20.65 27.04 50.64 

25020 152.71 
F 15.21 14.91 18.19 20.18 22.66 24.51 26.37 30.82 

T 15.20 14.81 18.08 20.09 22.60 24.50 26.42 31.07 

25021 75.43 
F 5.81 6.09 8.45 10.39 13.50 16.46 20.11 32.32 

T 5.91 6.11 8.43 10.33 13.37 16.26 19.80 31.59 

26003 59.40 
F 1.74 1.80 2.39 2.73 3.14 3.44 3.72 4.37 

T 1.72 1.78 2.37 2.72 3.14 3.45 3.74 4.43 
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26010 49.47 
F 2.00 1.96 2.55 3.00 3.67 4.26 4.95 7.02 

T 1.95 1.94 2.52 2.96 3.63 4.23 4.92 7.06 

27001 493.89 
F 120.19 120.19 159.74 188.69 230.83 267.33 308.94 430.98 

T 120.50 120.90 162.65 193.96 240.47 281.52 329.07 472.31 

27002 759.03 
F 236.61 242.83 299.86 340.94 399.92 450.36 507.25 671.13 

T 237.21 243.22 305.14 351.94 421.92 484.06 556.42 776.36 

27003 1936.50 
F 276.23 280.11 290.29 293.87 296.77 298.19 299.21 300.62 

T 276.23 280.72 290.90 294.49 297.39 298.82 299.85 301.27 

27006 364.99 
F 86.74 84.19 116.01 140.21 176.55 208.95 246.84 362.69 

T 87.11 84.40 115.89 139.74 175.46 207.22 244.26 357.09 

27007 912.58 
F 284.57 278.10 362.87 426.50 521.09 604.62 701.45 993.46 

T 284.67 281.06 368.62 434.38 532.20 618.63 718.86 1021.34 

27009 3300.80 
F 322.00 320.15 386.75 431.06 490.64 538.53 589.82 725.25 

T 322.00 321.13 388.87 434.14 495.21 544.48 597.39 737.76 

27021 1252.88 
F 165.55 159.91 205.01 234.25 272.73 303.05 334.98 416.93 

T 163.53 160.02 204.58 233.42 271.31 301.14 332.51 412.89 

27022 824.54 
F 121.19 134.63 201.36 254.01 335.66 410.62 500.45 787.00 

T 144.73 145.34 211.28 258.86 327.30 385.90 452.11 643.19 

27023 119.53 
F 28.79 26.38 40.32 53.03 75.31 98.22 128.45 242.28 

T 28.79 26.26 40.03 52.61 74.70 97.47 127.54 241.09 

27025 351.10 
F 47.75 47.14 61.07 72.09 89.21 104.95 123.83 184.23 

T 47.07 46.88 60.67 71.64 88.75 104.55 123.57 184.77 

27027 443.00 
F 267.21 258.38 309.68 350.51 414.26 473.19 544.19 772.84 

T 271.02 267.03 326.27 372.60 443.90 508.92 586.37 830.98 

27028 687.05 
F 140.78 144.01 173.03 193.28 221.58 245.18 271.25 343.71 

T 142.69 143.38 178.41 206.30 249.85 290.12 338.64 494.98 

27029 340.75 F 133.46 135.87 197.81 244.92 315.74 378.93 452.84 679.03 
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T 135.76 135.99 205.99 263.56 356.01 443.69 551.67 912.71 

27030 310.96 
F 44.21 41.85 63.85 82.96 115.12 146.97 187.65 332.55 

T 44.05 41.75 63.42 82.28 114.04 145.52 185.78 329.32 

27031 244.77 
F 94.34 94.45 119.63 134.73 153.38 167.22 181.07 213.79 

T 96.14 95.23 120.20 135.04 153.22 166.60 179.93 211.07 

27033 33.00 
F 33.93 34.01 44.15 50.50 58.60 64.80 71.19 86.94 

T 33.31 33.65 43.82 50.25 58.54 64.95 71.58 88.16 

27034 510.90 
F 243.41 245.92 293.43 323.70 362.97 393.49 425.28 505.36 

T 248.18 248.04 296.61 327.49 367.49 398.53 430.82 511.99 

27035 283.47 
F 67.60 68.89 86.15 100.42 123.45 145.39 172.51 263.79 

T 67.95 69.47 88.49 104.81 131.98 158.62 192.37 310.83 

27041 1594.22 
F 71.52 69.93 84.02 95.58 114.10 131.63 153.18 225.05 

T 71.58 70.58 85.72 98.31 118.71 138.22 162.42 244.35 

27043 429.98 
F 262.27 266.45 330.94 371.22 422.64 461.99 502.46 602.25 

T 265.87 270.20 335.24 375.30 425.86 464.15 503.17 597.98 

27053 219.28 
F 219.28 95.76 117.88 129.88 143.51 152.86 161.64 180.27 

T 98.05 96.92 119.73 132.17 146.41 156.23 165.49 185.30 

27055 131.45 
F 40.73 36.56 58.87 83.70 135.48 197.85 292.04 742.20 

T 40.02 36.86 58.95 83.37 133.99 194.63 285.78 717.76 

27056 67.62 
F 14.95 14.68 24.32 31.62 42.54 52.24 63.54 97.93 

T 14.98 15.00 24.59 31.73 42.27 51.52 62.18 94.03 

27059 78.28 
F 21.88 22.13 30.91 38.50 51.25 63.83 79.86 136.69 

T 22.01 22.54 31.45 39.00 51.41 63.44 78.55 130.73 

27062 523.47 
F 87.39 89.11 124.49 154.76 205.01 254.16 316.30 533.61 

T 91.32 94.61 139.18 178.39 245.08 311.76 397.66 707.98 

27071 1354.42 
F 161.70 163.42 188.17 204.80 227.32 245.56 265.21 317.63 

T 162.02 164.97 190.39 207.33 230.11 248.44 268.08 320.00 
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27073 8.06 
F 0.81 0.84 1.06 1.19 1.34 1.45 1.55 1.79 

T 0.82 0.85 1.07 1.19 1.33 1.43 1.53 1.75 

27079 950.07 
F 232.35 234.92 294.85 334.09 386.16 427.50 471.32 585.01 

T 233.70 234.86 293.26 331.53 382.35 422.73 465.55 576.78 

27080 861.58 
F 154.80 156.46 190.01 213.17 245.27 271.83 300.96 381.01 

T 156.02 158.70 195.51 221.59 258.54 289.73 324.54 422.99 

27081 25.10 
F 2.32 2.40 3.45 4.31 5.67 6.94 8.49 13.59 

T 2.32 2.46 3.52 4.36 5.68 6.88 8.34 13.00 

27083 126.35 
F 11.26 11.66 13.85 15.11 16.61 17.70 18.76 21.16 

T 11.30 11.65 14.58 16.61 19.42 21.74 24.30 31.33 

27084 41.01 
F 30.85 31.84 40.48 46.16 53.70 59.70 66.07 82.64 

T 31.79 32.57 41.81 47.91 56.06 62.58 69.52 87.72 

27086 117.35 
F 27.50 27.36 39.88 51.87 73.80 97.24 129.19 256.61 

T 27.56 28.25 41.84 54.67 77.87 102.39 135.51 265.49 

27087 475.92 
F 14.70 14.12 17.45 20.04 23.99 27.57 31.82 45.09 

T 14.77 14.38 18.04 20.92 25.37 29.44 34.31 49.76 

27088 172.96 
F 89.60 90.42 123.52 149.45 189.42 225.92 269.46 407.22 

T 91.50 92.88 127.46 154.19 194.92 231.73 275.22 410.79 

27089 815.36 
F 215.44 226.17 284.67 319.50 362.25 393.78 425.22 498.88 

T 226.72 232.43 291.37 325.62 366.80 396.62 425.86 492.64 

27090 497.61 
F 323.74 319.41 390.17 433.87 489.14 531.09 573.91 678.25 

T 325.59 321.36 389.34 430.80 482.68 521.67 561.13 656.00 

27092 325.25 
F 152.23 154.91 188.70 206.79 227.15 240.99 253.87 280.87 

T 151.44 151.43 186.21 205.44 227.65 243.12 257.82 289.67 

68001 621.52 
F 48.63 48.10 63.50 74.57 90.47 104.04 119.35 163.37 

T 47.72 47.83 63.43 74.51 90.24 103.55 118.43 160.66 

68003 412.43 F 53.98 53.64 64.13 71.93 83.41 93.47 105.06 139.59 
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T 53.71 53.28 63.70 71.47 82.96 93.07 104.73 139.66 

68007 148.28 
F 20.33 20.57 23.73 25.39 27.23 28.46 29.58 31.90 

T 20.60 20.59 23.71 25.34 27.15 28.36 29.46 31.73 

68020 148.70 
F 15.79 16.04 18.83 20.26 21.81 22.83 23.76 25.62 

T 15.66 15.88 18.80 20.24 21.75 22.71 23.56 25.18 

69007 667.27 
F 156.51 163.81 200.79 221.66 246.17 263.51 280.20 317.17 

T 160.97 163.87 200.47 221.10 245.34 262.48 278.99 315.51 

69012 68.38 
F 16.50 16.24 22.29 27.11 34.66 41.65 50.08 77.31 

T 16.01 16.07 22.07 26.89 34.48 41.55 50.13 78.07 

69015 149.44 
F 51.83 54.24 70.81 81.40 95.16 105.88 117.07 145.34 

T 52.12 54.22 70.56 81.01 94.60 105.20 116.26 144.22 

69017 184.23 
F 62.16 63.51 79.64 89.63 102.31 111.95 121.82 145.93 

T 61.98 63.27 79.23 89.18 101.87 111.56 121.52 146.04 

69020 57.19 
F 23.31 22.44 29.84 35.49 44.03 51.68 60.66 88.31 

T 23.34 22.74 30.25 35.93 44.42 51.96 60.74 87.42 

69023 190.45 
F 71.92 71.31 87.01 97.16 110.49 120.96 131.97 160.14 

T 72.38 71.03 89.48 102.75 121.79 138.05 156.39 209.13 

69024 141.77 
F 65.30 65.67 84.43 97.63 116.21 131.81 149.13 197.72 

T 65.35 66.14 85.76 99.78 119.77 136.75 155.81 210.21 

69025 550.62 
F 272.00 265.65 333.97 379.24 439.90 488.51 540.44 676.94 

T 273.50 265.55 341.78 395.86 472.58 537.41 609.84 815.05 

69027 146.04 
F 61.58 60.26 74.97 84.20 96.01 105.08 114.44 137.60 

T 62.21 60.70 75.48 84.71 96.47 105.46 114.70 137.46 

69030 147.74 
F 27.83 28.07 33.32 36.16 39.38 41.58 43.63 47.99 

T 28.60 28.46 33.70 36.49 39.62 41.74 43.70 47.80 

69032 96.57 
F 17.60 17.89 21.89 24.76 28.90 32.43 36.41 47.86 

T 17.75 18.06 22.07 24.91 28.95 32.35 36.16 46.94 
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69041 115.97 
F 47.70 48.71 60.16 66.96 75.28 81.40 87.50 101.72 

T 48.78 49.13 61.10 68.32 77.27 83.95 90.65 106.59 

69043 72.30 
F 28.56 28.56 33.70 36.70 40.34 42.98 45.59 51.59 

T 29.40 30.75 37.16 41.59 47.74 52.82 58.41 73.78 

69044 141.12 
F 111.80 111.80 136.90 151.92 170.44 184.16 197.88 230.22 

T 113.57 107.99 139.30 161.33 192.36 218.40 247.34 328.55 

69803 110.53 
F 43.52 43.84 51.35 55.77 61.14 65.06 68.94 77.91 

T 44.08 43.67 54.59 62.77 74.90 85.60 97.98 135.22 

70002 190.24 
F 45.60 46.81 52.49 55.58 59.11 61.54 63.82 68.69 

T 46.40 46.56 55.65 62.31 72.03 80.45 90.08 118.37 

70004 81.42 
F 33.51 33.74 44.24 52.13 63.89 74.29 86.36 122.85 

T 33.66 34.22 45.26 53.62 66.14 77.28 90.26 129.81 

70005 54.50 
F 23.34 23.36 28.69 32.41 37.61 41.95 46.75 60.08 

T 23.41 23.59 29.36 33.51 39.44 44.50 50.19 66.52 

71001 1133.93 
F 607.20 605.57 727.61 805.95 908.22 988.19 1071.87 1284.43 

T 610.46 608.94 739.76 826.45 942.61 1035.71 1135.18 1396.63 

71004 317.29 
F 174.45 178.71 225.11 258.20 305.31 345.29 390.09 517.70 

T 175.93 178.38 234.04 278.85 349.51 415.42 495.44 756.58 

71006 446.28 
F 224.15 228.74 280.27 316.03 365.81 407.15 452.66 578.46 

T 227.76 230.93 283.78 320.37 371.20 413.33 459.65 587.32 

71008 258.14 
F 225.57 216.67 268.83 306.33 360.09 405.98 457.70 606.32 

T 226.62 218.38 271.25 309.13 363.29 409.40 461.24 609.65 

71009 1048.04 
F 533.96 538.77 674.08 772.74 915.86 1039.40 1179.89 1590.03 

T 538.06 543.22 691.92 804.91 974.63 1125.93 1302.77 1843.39 

71010 110.61 
F 81.55 81.02 107.82 126.86 153.90 176.77 202.35 274.93 

T 82.93 81.92 111.49 133.46 165.85 194.22 226.89 324.28 

71011 203.22 F 121.13 120.52 130.75 136.29 142.58 146.89 150.93 159.49 
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T 121.32 120.90 131.81 137.89 144.95 149.89 154.61 164.92 

71013 39.08 
F 28.12 27.88 34.78 40.31 49.02 57.13 66.96 98.92 

T 28.25 28.17 35.76 42.07 52.27 62.02 74.10 114.93 

71014 136.21 
F 87.33 87.78 115.78 136.33 166.32 192.34 222.06 309.49 

T 87.86 88.72 119.99 144.16 180.98 214.24 253.55 376.01 

72003 82.77 
F 134.57 134.57 179.52 228.90 330.68 452.00 633.55 1487.27 

T 134.71 131.74 177.66 226.73 325.45 440.56 609.61 1378.39 

72004 985.37 
F 727.30 716.93 897.54 1016.14 1173.88 1299.40 1432.72 1779.72 

T 727.73 698.85 956.14 1179.61 1555.45 1927.51 2402.65 4093.78 

72005 219.21 
F 262.43 252.45 322.87 367.42 424.88 469.31 515.37 630.53 

T 264.22 253.04 334.55 390.79 468.72 533.16 603.85 798.05 

72007 31.53 
F 31.41 31.93 41.42 48.75 59.93 70.03 81.97 119.18 

T 31.96 32.20 41.62 48.80 59.60 69.26 80.57 115.26 

72009 139.37 
F 108.89 112.53 137.73 154.10 175.68 192.71 210.66 256.86 

T 109.26 114.30 141.78 160.10 184.77 204.64 225.95 282.34 

72011 194.15 
F 287.18 293.93 368.32 417.85 484.47 538.06 595.48 747.19 

T 287.58 296.44 376.79 432.08 508.53 571.62 640.71 829.95 

72014 28.99 
F 17.70 17.69 22.68 25.79 29.75 32.79 35.90 43.57 

T 17.89 17.87 23.17 26.55 30.95 34.37 37.94 46.96 

72015 140.83 
F 201.71 196.00 232.36 254.19 281.14 301.15 321.19 368.56 

T 202.10 196.74 239.49 267.59 305.00 334.79 366.45 448.96 

72016 88.00 
F 90.80 89.98 106.67 119.04 137.25 153.18 171.50 226.01 

T 92.74 91.53 112.47 129.50 156.60 182.08 213.23 316.10 

72807 230.70 
F 216.09 213.31 264.40 297.69 341.70 376.52 413.31 508.31 

T 217.66 214.80 267.54 302.28 348.59 385.53 424.84 527.50 

73002 72.90 
F 19.56 20.15 25.88 29.86 35.41 40.02 45.10 59.15 

T 19.65 20.34 26.33 30.54 36.48 41.47 47.01 62.56 
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73005 212.19 
F 155.85 160.55 212.84 252.21 310.88 362.81 423.14 605.66 

T 160.75 160.91 221.48 271.42 351.80 428.20 522.45 838.51 

73006 18.77 
F 7.87 7.73 10.16 11.93 14.51 16.73 19.26 26.64 

T 7.90 7.81 10.50 12.56 15.68 18.47 21.76 31.87 

73008 127.45 
F 36.94 36.89 47.56 54.98 65.32 73.92 83.40 109.64 

T 36.97 36.66 49.82 60.41 77.12 92.70 111.61 173.31 

73009 34.80 
F 43.07 44.12 57.91 67.83 82.08 94.26 108.01 147.58 

T 44.13 44.47 59.81 71.47 88.98 104.59 122.83 178.61 

73010 247.81 
F 72.43 71.32 92.36 109.30 136.04 160.99 191.30 290.28 

T 72.56 71.47 94.45 113.97 146.18 177.51 216.92 353.62 

73011 65.59 
F 54.52 56.93 75.10 88.98 109.91 128.65 150.63 218.19 

T 54.68 57.25 77.93 94.91 122.14 147.93 179.67 285.61 

73012 183.23 
F 146.43 148.53 188.76 219.43 265.60 306.86 355.17 503.34 

T 148.29 149.42 196.81 236.40 300.84 362.71 439.72 701.88 

73014 56.59 
F 86.15 87.50 116.38 140.48 179.67 217.27 264.04 423.03 

T 86.57 88.87 118.94 143.83 184.03 222.36 269.77 429.49 

73015 30.06 
F 12.24 11.60 14.11 15.58 17.36 18.66 19.93 22.87 

T 12.29 11.63 14.96 17.26 20.46 23.11 26.03 34.07 

74001 86.01 
F 119.58 119.31 148.74 171.39 205.80 236.80 273.34 386.72 

T 119.14 119.15 148.17 170.56 204.61 235.34 271.61 384.38 

74002 43.99 
F 21.18 20.88 25.69 28.75 32.73 35.82 39.04 47.14 

T 21.44 20.92 25.65 28.65 32.54 35.55 38.68 46.52 

74003 44.58 
F 34.07 33.44 43.88 51.60 62.92 72.80 84.14 117.76 

T 34.24 33.79 44.21 51.81 62.85 72.40 83.26 115.01 

74005 129.49 
F 70.71 71.22 83.32 91.04 101.09 108.92 117.08 137.72 

T 70.14 70.86 82.88 90.65 100.85 108.87 117.31 138.90 

74006 43.93 F 55.47 56.06 80.26 100.54 133.64 165.49 205.22 340.93 
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T 55.09 55.87 79.60 99.57 132.24 163.77 203.20 338.42 

74007 70.11 
F 102.96 103.16 110.90 114.62 118.47 120.88 122.97 126.90 

T 103.46 103.43 111.02 114.63 118.34 120.64 122.63 126.34 

74008 48.05 
F 68.02 69.10 80.85 88.57 98.83 107.00 115.67 138.25 

T 67.94 68.68 80.39 88.18 98.65 107.08 116.11 139.95 

75001 41.88 
F 20.92 18.81 30.58 38.50 49.25 57.97 67.39 92.56 

T 21.65 19.11 32.69 42.59 56.93 69.30 83.35 124.33 

75003 363.01 
F 97.96 100.01 135.25 163.28 207.04 247.46 296.15 452.86 

T 100.64 100.09 141.26 177.47 239.04 300.60 379.90 666.30 

75004 116.17 
F 51.27 53.96 77.20 96.19 126.54 155.20 190.35 307.08 

T 52.15 54.75 79.82 100.84 135.14 168.17 209.37 350.16 

75005 237.26 
F 105.84 100.83 134.28 162.93 210.55 257.18 316.18 522.84 

T 106.14 106.14 144.87 179.72 240.17 301.71 382.21 680.80 

75007 64.57 
F 61.43 62.32 68.83 72.68 77.35 80.78 84.18 92.05 

T 62.39 62.64 69.49 73.60 78.66 82.40 86.15 95.00 

75009 146.97 
F 113.76 106.53 142.98 168.87 205.63 236.73 271.51 370.18 

T 114.17 105.30 151.47 190.49 254.61 316.73 394.64 663.34 

75017 102.40 
F 36.70 36.79 42.44 45.56 49.18 51.70 54.09 59.29 

T 36.74 36.96 43.32 47.05 51.59 54.90 58.17 65.74 

76001 32.34 
F 18.22 16.75 28.96 37.45 49.30 59.16 70.03 100.15 

T 18.85 17.29 29.37 37.60 48.90 58.15 68.22 95.53 

76003 407.17 
F 195.71 196.91 255.10 295.33 351.14 397.37 448.13 587.87 

T 198.32 198.74 260.65 304.47 366.48 418.79 477.13 641.95 

76004 156.20 
F 110.23 116.58 161.61 193.33 238.04 275.62 317.40 434.82 

T 110.39 118.20 165.83 199.94 248.72 290.25 336.94 470.62 

76005 618.21 
F 255.55 269.50 366.51 449.10 585.68 718.79 886.54 1470.09 

T 257.26 270.13 382.09 486.36 672.52 867.21 1127.74 2133.42 
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76007 2276.03 
F 615.49 620.83 802.50 933.43 1121.56 1282.50 1464.16 1987.73 

T 615.62 622.61 830.12 992.07 1240.84 1467.30 1736.68 2585.30 

76008 333.43 
F 139.13 151.44 183.98 207.06 239.79 267.44 298.32 385.78 

T 142.24 153.18 186.56 209.97 242.86 270.40 300.94 386.36 

76011 1.63 
F 1.84 1.85 2.36 2.78 3.46 4.13 4.95 7.78 

T 1.85 1.87 2.37 2.79 3.45 4.09 4.87 7.48 

76014 66.84 
F 84.46 87.87 107.99 119.42 132.91 142.50 151.77 172.43 

T 85.29 88.82 110.01 122.26 136.94 147.52 157.87 181.39 

76015 149.24 
F 60.17 57.82 75.61 88.85 108.39 125.53 145.30 204.37 

T 60.66 57.51 79.74 99.10 131.79 164.23 205.77 354.23 

76017 1371.70 
F 575.48 548.45 744.89 892.98 1113.93 1309.70 1537.30 2226.99 

T 580.43 564.97 811.28 1015.60 1346.11 1661.71 2052.63 3372.57 

76806 223.10 
F 200.34 201.52 245.33 272.96 308.50 335.91 364.27 434.93 

T 220.52 205.69 263.46 305.30 365.65 417.47 476.14 646.12 

76809 248.51 
F 158.80 156.05 205.91 242.58 296.15 342.70 395.94 552.84 

T 159.25 162.56 217.07 256.71 314.10 363.55 419.69 583.16 

76811 33.97 
F 54.71 54.65 66.03 73.04 81.88 88.58 95.40 111.99 

T 56.72 55.16 65.82 72.25 80.22 86.15 92.11 106.28 

 

TABLE B1. Return period peak flow estimates produced using the Generalised Logistic (GL) distribution (L-moments method) at 155 stations across northern England, on a single-

site basis, with and without the peaks of December 2015. T and F indicate true and false. 


