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Abstract

The thesis seeks a better understanding of the market microstructure

topic, evaluates an informed trading measurement tool that is avail-

able for econometricians, and attempts to measure the impact of the

presence of hidden liquidity to market quality. The two favorable pre-

vailing informed trading detection, PIN, and VPIN models are used

to investigate the informed trading activity around LIBOR manip-

ulation in the LIBOR reference futures market- Eurodollar futures.

These two models show a significant performance as an early warning

system, however, there is not statistically significant differences rela-

tive to the event in the long-run variation.

In addition to the chapter seven of this thesis, I examine the relation-

ship between market quality and hidden liquidity, uncovering a strong

positive effect from hidden order to market quality proxies.
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Nomenclature

As far as possible a single coherent notation was used. Nevertheless, sometimes

a certain variable may have dierent meanings.

Symbol Description

α Probability of information event

A Ask price

bt Buy order

b Bad News

B Bid price

δ Probability of bad news

g Good news

D Variance operator

E Expectation operator

F Distribution function

H̃DV Signed-Hidden Order Volume

i Trading period

I Trading days

I Informed trader

κ A certain cost

Continued on next page
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Symbol Description

λ Illiquidity parameter

L Lag operator

L Log-Likelihood function

L Likelihood function

µ Arrival rate of informed traders

M Data set of (Bi, Si)
I
i=1

ν Residual

n No News

N Normal Distribution

OI Order imbalance

π Profit

P Posterior expectation

P Probability

PIN Probability of Informed Trading

Q̃R Quote Revision

S Value of asset

S̃ Value of asset at the end of period

σ Variance

st Sell order

Σ Summation operator

τ Risk aversion parameter

Θ Parameter vector of (α, δ, ε, µ)

τ Time bar

t The beginning of period

Continued on next page
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Symbol Description

T Time

T̃D Signed-Trade Direction

T̃ V Signed-Trade Volume

u Order from uninformed traders

ũ Uninformed traders order

U Uninformed trader

U Utility function

ε Arrival rate of uninformed traders

V B Buy volume

V S Sell volume

x Order from informed traders

θ Payoff of the risky asset

y Market maker Price

Y Independent variable
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Chapter 1

Introduction

1.1 Market Microstructure

The Market Microstructure has become increasingly important on a financial

markets efficiency and integrity which is devoted to theoretical, empirical, and

experimental research. This study is concerned with the details of how exchange

occurs in markets , including the role of information in the price discovery pro-

cess; the definition, measurement, control, and determinants of liquidity and

transaction costs; and their implications for the efficiency, welfare, and regula-

tion of alternative trading mechanisms and market structures (Madhavan [2000]).

1.1.1 Price Formation Process

Whilst many economists of market microstructure theory focus on how specific

trading mechanisms affect the price formation process, O’Hara [1995] focuses on

the study of the process and outcomes of exchanging assets under a specific set of

rules. Later, Easley et al. [1996] developed new models on the theoretical frame-

work of Easley and O’Hara [1992] to estimate the level of information asymmetry
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in the market, called the probability of informed trading (PIN).

My first empirical analysis (chapter 4 and 5) evaluates the effectiveness of

the probability of informed trading- PIN (Easley et al. [1996]) as the PIN has

been studied as an early warning of unusual activity in financial markets. It is

a measure of asymmetric information on a trading event between informed and

uninformed trading, which produces a mixed discrete-time and continuous-time

sequential model of the trading mechanism, in which trades emerge when three

classifications of economic agents – namely market makers, informed traders and

uninformed traders collaborate. The model assumes Poisson arrival rates for

informed and uninformed traders and daily Bernoulli probabilities on the occur-

rence of news, and types of news including, good, bad or no news (Wei [2013]).

This work creates a new empirical practice for evaluating the PIN by investi-

gating the change around documented episodes of recorded manipulation of the

LIBOR by using Eurodollar futures data. Also, I examine the PIN around ma-

turity events to investigate its variation in Eurodollar futures trading over their

lifecycle, from inception to maturity. The results indicate that the PIN could

have been used as an early warning of unusual activity in the LIBOR reference

rate, and anecdotally I can demonstrate that on specific dates identified by the

CFTC and FSA the recursively estimated PIN reaches a peak over 1,000 basis

points higher for certain near-delivery contracts than for others further away in

the forward curve.

In chapter 6, the PIN and Volume-Synchronized Probability of Informed Trad-

ing (VPIN) are examined and compared. Then, I investigate the effectiveness of

PIN and VPIN in determining changes in the information structure and order flow

of a futures market around documented episodes of recorded manipulation of the
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reference rate, from the various publicly available regulatory reports. The funda-

mental mechanism behind VPIN was developed from PIN, that can be found in

Easley et al. [2008]. In Easley et al. [2010] this model is developed by introducing

time variations of the arrival rate of informed and uninformed traders in GARCH

style by estimating the expected Order Imbalance for each of block traded. I find

a very strong connection between PIN, VPIN, and time to maturity of the con-

tract that is not fully explained by the time variation in activity in the market.

However, an event study using both a new bootstrap approach and asymptotic

standard error on the VPIN and PIN respectively around documented LIBOR

manipulation cases has mixed results. For certain events we can see a substantial

change in the average detected levels of PIN and VPIN; however, a cross-sectional

analysis of all reported cases up to mid-2015, indicates no significant change in

the PIN and VPIN for the contracts in our sample.

In chapter 7, I examine the impact of hidden order to other interested vari-

ables in the market quality study. In this chapter, I adapt the OLS analysis from

Hasbrouck and Saar [2013] by considering the impact of hidden liquidity on mar-

ket quality. In addition, I extend Hasbrouck [1991] and Dufour and Engle [2000]

bivariate VAR model to the interaction between quote revisions, signed-trades,

signed-trade volume and hidden liquidity. Then the impulse response function

(IRF) of the VAR model is used to estimate the interaction impact between these

variables. The IRF also shows the speed of decline for the response of the ob-

served variables to a one standard deviation shock in other variables. In this

analysis I have start with the new algorithm of hidden order detection for the

limit order book using E-mini S&P500 data. My algorithm shows 43% of the

trade volume is involved with invisible liquidity. It is found that price impact fell

and market quality is improved with the presence of hidden order both during
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high and low-frequency trading periods. I use this measure to study the associ-

ation between the hidden order and other observed market environments. The

analysis finds aggressive hidden order activity when trading volume is increased.

1.1.2 High Frequency Trading & Big Data Analysis

For the last decade, the financial markets environment has been different in fun-

damental ways. Speed is one of the most important factors due to informa-

tion gathering and the actions prompted by this information have created high

volatility in the market (Hasbrouck and Saar [2013]). In comparison to this High-

frequency trading evolution and traditional human control, I can pinpoint human

operating time frames of minutes to time scales of microseconds of computer al-

gorithms which respond at a pace 100 times faster than it would take for a human

trader to blink. This high-frequency trading environment shows the fastest trade

updated for Eurodollar futures is 500 microseconds (chapters 4, 5 and 6) and

fastest trade updated for E-Mini S&P 500 futures is 60 microseconds (chapter

7). However, the average trade updated is 45 and 2.5 seconds for Eurodollar and

E-Mini S&P 500 respectively. At these speeds, only the microstructure matters

(O’Hara [2015]).This thesis utilizes the HFT comprehensive data set for trade,

quote and limit order book (LOB) pulled from Thomson Reuters Tick History

(TRTH) taped in millisecond time stamp.

As mentioned in the previous section, my data is recorded in millisecond time

stamp which resulted in a tremendous data size compared to the recent liter-

ature. The raw data (uncompressed CSV files) comprises 489 GB of best bid,

best offer, and trade data for all 40 Eurodollar futures contracts and 642 GB of

the limit order book and trade data for 32 E-Mini S&P 500 futures contracts,
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directly retrieved from the CME tapes. The raw tapes were streamed into a new

format ‘hdf5’ which provided a high-integrity medium for this amount of data.

With compression, the raw Eurodollar futures data 489 GB was reduced to 89

GB and 642 GB of E-Mini S&P 500 was reduced to 143 GB of compressed hdf5

data stored in separate files by maturity date, and then stored on a solid state

drive. In total, the data prepared for each data set was around three months,

from downloading the raw data from TRTH to data cleaning procedures.

Table 1.1 presents an example of the Limit Order Book data of the E-Mini

S&P 500 on May 05, 2013 (ESU3; Chapter 7), time between 22:43:06.283 and

22:43:18.809. This example visualizes the HFT data recorded in millisecond time

stamp (tick-by-tick), on each observation row including 31 columns of bids, 31

columns of ask and 4 columns of trade. These sets of data include date vector

for bid and ask, a ten deep level of bid price, bid volume, the number of traders

for bid, ask price, ask volume, the number of traders for ask. Finally, there are

four columns of date vector, price, volume and number of traders for trade. Also,

Figure 1.1 illustrates the information in Limit Order Book of the E-Mini S&P

500 on September 6, 2013 (ESU3) for the ten deep level of prices, volumes, and

number of traders.

These tremendous data sets of the Eurodollar and E-Mini S&P futures contain

a variety of data types to uncover the hidden intraday patterns or abnormal

trading. Whilst the PIN analysis usies tick-by-tick to estimate the daily PIN

(Chapter 4, 5), the daily tick-by-tick data is separated into 50 blocks to calculate

the VPIN (Chapter 6). Also, for chapter 7, the hidden order, the VAR, and

the IRF are estimated using purely tick-by-tick data. This big data analytic

has significant importance to my empirical analysis because the data of futures

5
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trading for both Eurodollar and E-Mini S&P 500 is enormous in the terms of size

with a different type of data. More importantly, this financial data changes very

fast, and somehow this type of data does not fit the structure of the primitive

models. This is why sometimes the daily or a longer period data may lead to

the poor performance of the financial model. Therefore, to gain the value of the

TRTH database and the precision of the model, this thesis also preferred to use

tick-by-tick data.

1.2 The Topics Examined

Below provides a synopsis of each topic in the dissertation. The underlying

methodology and results are presented in the individual chapters. A bibliog-

raphy closes the dissertation.

1.2.1 Preliminary Analysis of Probability of Informed Trad-

ing (PIN)

One of the main topics of the market microstructure that has become increasingly

popular is information asymmetry with forms of the standard theoretical models

(see Glosten and Milgrom [1985]; Kyle [1985]; Easley and O’Hara [1987]; Easley

et al. [1997b]). Easley et al. [1996] develops the probability of informed trading

or PIN model to estimate the level of information asymmetry in the market. This

model is based on the arrival rate of informed and uninformed traders. These

traders arrival in the market following a Poisson process with probability of two

types of news, good or bad. This chapter presents the preliminary results of

the PIN model from Easley et al. [1996] in actually detecting informed behavior

around a toxicity event. For this study, I use a data set of Eurodollar futures
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market as the pricing mechanism of this futures contract which is based on the

LIBOR. I find that the PIN reacts strongly to certain types of events and the

variation is statistically significant relative to the events. The result of the PIN

is always higher for the Eurodollar futures market compared to the PIN in equity

markets (circa 0.4 to 0.9 versus 0.1 to 0.5; see Easley et al. [1996]; Aslan et al.

[2011]; Abad and Yagüe [2012]).However, other PIN studies of interest rate fu-

tures have found something similarly high (see Kim et al. [2014]).

This topic is addressed in chapter 4.

1.2.2 Motivating Evidence of LIBOR Manipulation and

The PIN Analysis

One of the most striking evidences of the failure in financial regulation is repre-

sented by the London Interbank Offered Rate (LIBOR). Since May 2008, a huge

scandal focusing on a possibility of criminal wrongdoing by a number of the most

trusted international banks revealed manipulation of the benchmark interest rate

known as the LIBOR. This scandal became as matter of fact on June 2012 when

Barclays agreed to pay fines of $360 million and £144.5 for having rigged the

LIBOR.

This chapter provides the crucial evidence of LIBOR manipulation including

a communication evidence between interest rate derivative traders and LIBOR

submitter s described in the CFTC and FSA documents. Also, I provide statisti-

cal evidence of LIBOR manipulation including LIBOR quotes and cross-sectional

p-value correlation for banks’ quote on the LIBOR submission. Furthermore,

the chapter applies PIN with the LIBOR manipulation cases recorded in the
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regulatory reports. The objective of this empirical exercise is to examine the

effectiveness of the PIN model from Easley et al. [1996] in actually detecting in-

formed behavior around a LIBOR manipulation event. For this study, I use a

data set of Eurodollar futures market as the pricing mechanism of the futures

which is based on the LIBOR. to clearly understand why I use the Eurodollar

futures as a data set to study the PIN around the LIBOR manipulation, this

chapter provides the number of communication requested on LIBOR manipula-

tion related to a number of currencies. From this evidence, it can be seen that

the second most popular was the 3M-LIBOR which is the benched mark for the

Eurodollar futures market. Additionally, I then compute the PIN around the ma-

turity date as a normal event in the futures contract and investigate the variation

of PIN around these events. Therefore, focused on a short period, the variation of

PIN around LIBOR manipulation indicates that the PIN is a good early warning

signal. However, the general long-run variation of the PIN was not statistically

significant relative to both LIBOR manipulation and the maturity event.

This topic is addressed in chapter 5.

1.2.3 Order Flow Toxicity and Informed Trading Around

Know Market Manipulation Events: Evidence from

Interest Rate Futures

A fundamental of PIN has been extended to a volume adjusted PIN, denoted

VPIN , developed by Easley et al. [2010]; Easley et al. [2012]. However, there

is a key debate ongoing to whether the current high profile measures of the

probability-of-informed trading (PIN) and ‘market-toxicity’ (measured by a vol-
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ume adjusted PIN denoted VPIN) actually provide a substantive measurement of

the phenomena in question. Andersen and Bondarenko [2013] criticizes the fact

that the VPIN is highly sensitive to the volume of order in each volume bucket.

In a series of follow-up papers Andersen and Bondarenko [2014c], Easley et al.

[2014] and again Andersen and Bondarenko [2014b] have debated the relative

metrics of the VPIN approach. However, my results of VPIN fall somewhere

between Andersen and Bondarenko [2014a] and Easley et al. [2014].

This chapter follows a term-structure analysis to examine PIN and VPIN

around the LIBOR manipulation and maturity event. I find very mixed results.

Both PIN and VPIN vary systematically and in a statistically significant pat-

tern in respect to the term structure of the futures contracts. PIN varies in a

v-shaped pattern, with long (2000 to 3500 days) and short maturity (0 to 500

days) contracts having significantly higher PIN and VPIN measurements than

intermediate contracts (which are actually the most heavily traded). However,

when moving to documented cases of market manipulation in the reference rate,

the results are ambiguous. There are definitive cases when the PIN (and to an

extent certain flavors of the VPIN) shift systematically around a relevant doc-

umented LIBOR manipulation event. However, when building cross sectional

averages across events, we find no significant evidence of systematic shifts in ei-

ther the PIN or VPIN metric.

This topic is addressed in chapter 6.
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1.2.4 Term-structure analysis of hidden order in the limit

order book: evidence from the E-Mini S&P 500

Another fundamental of market microstructure study is a market mechanism and

what is the new information effect on the market. The standard source of infor-

mation for market participants is pieces of information, such as price and volume

from trades and quotes data. The quotes data come from two type of order,

market order and the limit order. The limit order book data normally appears

on the trading screen which provides mostly 5 to 10 levels of price and volume

from above (below) best offer (best bid). Currently, there is a new standard

feature of the electronic limit order book in most electronic trading platforms,

which allows traders to visible, entirely invisible or partially invisible their or-

ders, called hidden order, invisible order and max show. Therefore, this chapter

studies how the hidden order is incorporated into the financial market, and I

revisit and adapt the Hasbrouck and Saar [2013] ordinary least squares (OLS)

model to my hidden order study. Hasbrouck’ OLS examines the effect of the

RunsInProcess and market quality, however, my OLS evaluates the relationship

between hidden order and the market quality. Furthermore, I am able to extend

the earlier works in market microstructure utilizing VAR models for estimation

coefficients between quote revisions and trades (see Hasbrouck [1991], Dufour and

Engle [2000], Zebedee [2001], Chung et al. [2005], Viljoen et al. [2014]). Whilst

the market microstructure VAR model studies the relationship between quote

revisions and trade direction, I extend this to quote revisions, signed-trade direc-

tion, signed-trade volume and signed-hidden liquidity. Comprehensive results are

found, the coefficients estimated from the OLS between hidden order and market

quality shows similar results for low and high-frequency trading periods. Fur-

thermore, the impact of HD is greater during low frequency than high-frequency

trading periods, and it is always positive. In addition, the impulse response anal-
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ysis is also presented in this. Significantly, I provide a comprehensive innovation

of signed-hidden order detection algorithm for E-mini S&P500 using limit order

book data with Volume-Weighted Average Price trade direction indicator. I also

provide my hidden order detection algorithm in this chapter.

This topic is addressed in chapter 7.
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Chapter 2

CME And Futures Data

2.1 Thomson Reuters Tick History Data (TRTH)

A key component of the empirical analysis in this thesis has been conducted based

on tick-by-tick data from Thomson Reuters Tick History (TRTH). This unique

data provide a high-performance tick container to store real-time and historical

tick messages recorded in microsecond timestamps. The TRTH allows the re-

searcher to collect trades, quote, and limit order book data (LOB) for most of

the financial market. In doing so, in chapters four, five and six, the Eurodollar

futures trading data is able to be easily matched between trade data and quote

data at any given point in time. Furthermore, in chapter seven, I synchronize

trade data and limit order book data from the E-Mini S&P 500. The limit order

book data provided by TRTH allowed me to collect price and volume for ten

levels above the last offer and ten levels below the last bid. Another benefit of

TRTH is Reuters Instrument Codes (RICs) which is the unique and proprietary

identification system. The RICs is applied in variety financial markets among

every asset class traded globally. Therefore, this code reduced time for filtering

and identifies the data set that is used in this thesis.
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Additionally, in chapters six and seven, I have removed the weekend data for

all trade, quote and LOB data to eliminate abnormalities activity. This activity

creates an extreme value of, for example, a wide-spread, an extreme price im-

pact, and high level of an order imbalance. Also, I have removed irregular value

from our analysis, such as negative spread, NaN, and zero value. The details on

cleaning procedures are provided in the following section.

2.2 The Chicago Mercantile Exchange (CME)

The dataset used in this research comes from the Chicago Mercantile Exchange

(CME). The CME is owned by the CME Group which was merged between

the New York Mercantile Exchange (NYMEX) and COMEX. The Merc (CME),

CBOT, NYMEX and COMEX. Currently, the CME is the largest exchange for

futures and options contracts open interest (number of contracts outstanding) of

any futures exchange in the world. The CME offers the widest range of futures

and options based on global benchmark products across major asset classes, such

as, interest rates, equity index, foreign exchange, energy, agricultural commodi-

ties, metals, weather and real estate 1.

The transaction flow at the CME starts from the quote vendor systems re-

ceiving market data from market participants. The CME provides three different

trading platforms, including the CME Globex, CME Direct, and CME Clear-

Port platforms. Then, price and volume are settled through matching, pricing &

market integrity system. At the end of a trading session, all buyers and sellers

1CME Globex Reference Guide, CME Group, accessed April 14, 2016,
<http://www.cmegroup.com/globex/files/GlobexRefGd.pdf>)

15



are required to clear their trade through the CME clearing house. As the worlds

largest exchange for futures and options, the CME clearing house monitors and

processes more than one billion trades each year which is worth more than $1,000

trillion. In general, the CME opens 24 hours from Sunday to Friday, 18.00 - 17.00

New York time/Eastern Time (17.00 - 16.00 Chicago Time/Central Time) with

a one hour break each day beginning at 17.00 (16.00 Central Time).

In order to conduct any kind of trading, there has to be a venue to bring

buyers and sellers together. Before technology and computers transformed the

way of trading, the transaction took place at a much slower place and traders got

in touch more physically on the trading floor. However, since the development

of electronic trading, the buyers and sellers are now able to communicate via

computerized trading machines (CME [2005]).

2.2.1 The Open outcry

The open outcry or pits trade is a face-to-face auction operating during regular

trading hours, this method operates by floor traders who wear different colored

jackets presented as their identities (traders, runner, brokers employees). These

floor traders use complex hand signals to communicate with other market par-

ticipants for trading information. Trading hours for interest rate futures and

options on open outcry operating during normal business hours start from 7.20

until 14.00 from Monday to Friday side-by-side with the CME Globex electronic

platform. However, the E-Mini S&P 500 are operating only on the CME Globex.

Figure 2.1 shows the CME trading floor, where traders stand in the pits

making bids and offers on a specific commodity in particular locations where
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commodity trading may take place. The pits are surrounded by workstations or

desks where traders receive the orders from clients around the world. Each pit

is separated into small desks regarding the different contract delivery months.

During business hours, lots of market participants wear gold jackets as it desig-

nates employees of various financial firms by a different type of badge. The CME

members wear red, CME employees wearblue, out-trade clerks wear pale green.

These people communicate trading information from the pits to the phone by

means of hand signals, then the order is carried to and from members by runners.

2.2.2 The CME Globex electronic trading platform

The CME Globex platform was the first global electronic trading system for fu-

tures and options. This platform offers real-time market data for derivatives in

all major asset classes such as, interest rates, equity indexes, FX, agriculture,

energy, metals, weather and real estate. The Globex provides a 10 deep level of

limit order book for futures and 3 deep levels for options. The CME operates the

Globex electronic trading platform, which is approximately 80% of total volume

of the exchange trading through this platform. Whilst the electronic trading plat-

form is increasingly popular, the CME Group will shutter its New York trading

floor after December 30, 2016, due to low trading volume. However, open-outcry

options trading will continue on CME’s floor in Chicago 1.

The trading session on the CME Globex platform operates 24 hours from

18.00 until 17.00 on the next day at New York time/ET or 17.00 to 16.00 at

Chicago Time/CT with a one hour break each day beginning at 17.00 (16.00

1T., Polansek, CME to close New York options pits, shutting down the trading floor, ac-
cessed April 14, 2016, <http://www.reuters.com/article/usa-cme-options-idUSL2N17G24B>)
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Figure 2.1: CME Trading Venues for Open Outcry (Source: CME [2005])
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CT). The products that trade on the Globex platform are classified into three

trading groups based on their hour of availability (CME [2005]). First, Side-by-

Side contracts, this means the product that trades in both CME Globex platform

and is also traded via open outcry on the trading floor for a portion of day. Sec-

ond, Electronic-only is the product that trades only on the CME Globex platform.

Third, After-Hours Electronic are the contracts that trade on the CME Globex

platform only after the product stops trading on the trading floor.

The basic futures orders are buy order and sell order, however, there are dif-

ferent types of specific buy and sell order provided by the CME Globex platform.

This platform supports a broad type of order functionality and order qualifiers,

including- Market order, Limit Order, Market order with protection, Market to

limit, Stop limit, Stop order, Stop order with protection, Minimum quantity, and

Display quantity.

Market order is an order that is to be filled at the best available price im-

mediately upon receipt by the broker

Limit Order, the Globex Limit Order Book (LOB) offers a 10-deep level of

limit order for futures and 3-deep level for options. A limit order allows buyer

and sellers to define a specific minimum and maximum price to pay or accept

(the limit price), this order will remain on the book until the order is executed,

canceled or expires.

Market order with protection, this order is similar to the market order

plus a protection range to protect the risk of having missed-price at extreme

prices. The protection range is normally at 50 % above or below the current best
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bid and offer, respectively.

Stop Limit Order is the order that rests in a limit order and is triggered

and executed when the trigger price is traded on the market. This order is similar

to a Limit order with specified limit price, however, the order is executed at all

price levels between the trigger price and the limit price. For a buy order, the

trigger price is lower than the limit price and higher than the last traded price.

For a sell order, the trigger price is higher than the limit price and lower than

the last traded price. If the order is not fully executed, the un-executed order

remains on the market at the limit price.

Stop order with protection is a stop limit order with protection to avoid

the risk of being executed at extreme prices. The protection point range is the

trigger price plus (minus) 50% of the Non-Reviewable Trading Range for that

product for the limit price for a buy (sell) stop with protection.

A Minimum quantity is the order that specifies a minimum quantity that

can be immediately executed only if this certain order can be immediately matched.

If at least the minimum quantity cannot be filled, then the entire order is can-

celed; however, if the minimum quantity or more is filled, then the remaining

quantity is placed on the book.

Display Quantity, Max Show, this type of order allows market partici-

pants to visible only a specific portion of their order to the marketplace. When

the displayed order has been executed, another portion equal to the displaced

quantity is then displayed as a new order; for instance, if a trader wants to place

a Buy order for 100 quantity with a 10 displayed. Therefore, no more than Buy
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10 is exposed to the market at any time, and the remaining quantities are booked

but are not displayed. Each time the quantity of 10 instruments is executed, the

next 10 remaining orders enter the market as a new order at the bottom of the

book.

2.3 The Eurodollar Futures Data

The data used in this research are introduced in this section, together with a pre-

liminary processing of Eurodollar Futures data. As previously stated, Eurodollar

futures contracts are traded on the CME’s Globex platform and CME pit (open-

outcry) trades. Data for both electronic and open-outcry are directly obtained

from the CME tapes for the period January 1, 1996 to January 1, 2014. Pit

trades are quotes from CME by the ED code and GE for the Globex code; the

amalgamated tapes are classified under the ED moniker. The volume ratio be-

tween the Globex and open-outcry is between three and four orders of magnitude

over the sample, so separating the pit trades from the electronic trades currently

appears to be less interesting. The CME tapes data for the 44 Eurodollar futures

contracts available from the Thomson Reuter database via the Tick History sys-

tem. We have conducted an analysis on the 4 monthly contracts, however the

data is very sparse and the volumes are very small (up to 5 orders of magnitude

for busy versus busy days) compared to the 40 quarterly contracts.

The data of the Eurodollar Futures trading are collected using the RICs

(Reuter’s Information Codes), which are quoted by financial institutions in the

US Dollar exchanges. These 40 Eurodollar futures contracts are all Eurodollar

transactions trading on the CME’s Globex platform; they contain a maturity
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code, starting and ending dates, bid/ask price, bid/ask volume, trade prices and

trade volume. The data pulled from the RIC information system, is a Comput-

erized Trade Reconstruction (CTR) reported to the Commodity Futures Trading

Commission (CFTC) on instruments in the tag range set, and are given a specific

code, i.e. EDU0, EDU1,. . . , EDU9. The first two letters “ED” indicate Eurodol-

lar futures, and the third letter “H, M, U, Z” indicates the delivery month of

March, June, September and December respectively. The last character in the

Eurodollar code, 0 to 9, represents the delivery year for 10-year future contracts

from 2000 to 2009 or 2010 to 2019. For instance, in the case of EDH0, EDM1,

EDU2 and EDZ3, their delivery months and years are March 2000, June 2001,

September 2002 and December 2003 respectively (see Table 2.1).

Table 2.1 indicates the settlement year, the total volume of bid/asks, total

number of bid/asks, total volume of trade and total number of trades for each

Eurodollar futures contract. The data include all update-by-update inside quotes

and trades for a total sample size of about 1 billion rows of prices and volumes in

millisecond time-stamps and other trade information. This is believed to be an

unprecedented microstructure data set as shown in Table 2.1 and Figure 2.2.

Of the 40 Eurodollar future contracts, the largest bid volume is the EDZ3

contract at $83.84 quadrillion. EDH4 has both the highest ask volume at $92.80

quadrillion and the largest trade volume of $120 trillion. Meanwhile, the biggest

number of bids and asks belongs to EDU5 with approximately 25 million for both

bids and asks, while EDH9 and EDZ9 has the largest number of trades with about

1.95 million for both series of contracts. The total value of bid/asks and trade

from January 1, 1996 to January 1, 2014 was $1.75 quintillion, $1.76 quintillion

and $2.82 trillion, respectively. Furthermore, the total number of bid/asks and
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Table 2.1: Eurodollar Futures maturity codes, quotes volume and trades
volume.

Maturity
code

Delivery year Bid
volume
(billion)

Ask
volume
(billion)

Trade
volume
(billion)

Bid
updated
(mil-
lion)

Ask
updates
(mil-
lion)

Trades
(mil-
lion)

EDH0 2000,2010, 2020 23.60 23.90 0.05 21.32 23.14 1.69
EDH1 2001,2011, 2012 52.70 52.10 0.06 22.34 23.04 1.51
EDH2 2002,2012, 2022 40.10 42.60 0.07 23.41 23.58 1.48
EDH3 2003,2013, 2023 56.10 56.60 0.05 24.12 24.49 1.31
EDH4 2004,2014 79.30 92.80 0.05 23.11 24.33 1.50
EDH5 2005,2015 57.20 58.80 0.06 21.61 25.40 1.81
EDH6 1996,2006,2016 31.10 30.40 0.07 18.33 25.97 1.82
EDH7 1997,2007,2017 42.00 40.10 0.06 13.62 23.03 1.38
EDH8 1998,2008,2018 34.40 33.90 0.11 12.23 21.25 1.48
EDH9 1999,2009,2019 20.10 20.10 0.09 18.20 22.97 1.95
EDM0 2000,2010, 2020 27.30 27.70 0.06 21.51 23.02 1.67
EDM1 2001,2011, 2012 56.60 57.60 0.06 22.78 23.42 1.49
EDM2 2002,2012, 2022 39.10 39.50 0.06 23.67 23.93 1.48
EDM3 2003,2013, 2023 61.90 66.10 0.04 23.35 23.87 1.30
EDM4 2004,2014 83.30 80.20 0.05 23.00 24.26 1.55
EDM5 2005,2015 45.20 48.30 0.08 20.87 25.56 1.92
EDM6 1996.2006,2016 28.20 28.10 0.08 17.09 25.52 1.76
EDM7 1997,2007,2017 40.00 40.00 0.07 12.40 22.11 1.31
EDM8 1998,2008,2018 31.30 30.90 0.10 13.69 21.55 1.55
EDM9 1999,2009,2019 17.00 17.00 0.08 19.56 23.29 1.93
EDU0 2000,2010, 2020 30.80 30.10 0.07 22.79 22.86 1.63
EDU1 2001,2011, 2021 52.80 67.20 0.02 23.47 23.34 1.49
EDU2 2002,2012, 2022 38.30 38.30 0.06 24.55 24.33 1.44
EDU3 2003,2013, 2023 77.30 74.90 0.05 23.94 23.84 1.39
EDU4 2004,2014 75.70 73.80 0.06 24.60 24.40 1.64
EDU5 2005,2015 39.50 40.70 0.08 25.73 25.71 1.93
EDU6 1996,2006,2016 31.20 31.00 0.08 25.00 24.98 1.60
EDU7 1997,2007,2017 40.60 39.60 0.09 21.35 21.30 1.32
EDU8 1998,2008,2018 27.60 29.20 0.01 22.05 21.88 1.61
EDU9 1999,2009,2019 15.90 16.30 0.07 19.56 23.29 1.93
EDZ0 2000,2010, 2020 42.80 43.70 0.07 21.32 23.14 1.69
EDZ1 2001,2011, 2021 46.80 46.00 0.07 22.34 23.04 1.51
EDZ2 2002,2012, 2021 44.80 45.50 0.06 23.41 23.58 1.48
EDZ3 2003,2013, 2023 83.80 82.10 0.06 24.12 24.49 1.31
EDZ4 2004,2014 67.00 70.00 0.07 23.11 24.33 1.50
EDZ5 2005,2015 36.20 36.10 0.09 21.61 25.40 1.81
EDZ6 1996,2006,2016 36.80 36.50 0.08 18.33 25.97 1.82
EDZ7 1997,2007,2017 38.10 37.90 0.12 13.62 23.03 1.38
EDZ8 1998,2008,2018 24.00 23.70 0.11 12.23 21.25 1.48
EDZ9 1999,2009,2019 18.10 18.30 0.06 18.20 22.97 1.95
Total 1,754.60 1,767.60 2.82 831.36 946.91 63.83

Note: Eurodollar Futures maturity codes, quotes volume and trades volume from January 1,
1996 to January 1, 2014. The volume of bid/asks is reported in terms of 100 billion contracts.
The trade volume is reported in millions of contracts.
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Figure 2.2: Number of bid/ask quotes and volume of quotes per day for
EDH contracts EDH1, EDH2,. . . , EDH9 between 1996 and 2013.

trades was approximately 831.36 million, 946.91 million and 63.83 million respec-

tively.

Some information about the logistics of dealing with such a vast amount of

data can now be provided. The raw data (uncompressed CSV files) comprised

489GB of best-bid, best offer and trade data, directly retrieved from the CME

tapes. The raw tapes were streamed into a new format ‘hdf5’ which provided

a high-integrity medium for this amount of data. Price and volume data were

stored in a number format in order to reduce the amount of storage space as

much as possible (e.g. prices were stored using IEEE single-precision numbers;

volumes were stored at 16 bit integers). With compression, the raw 489GB was

reduced to 89GB of compressed hdf5 data stored in separate files by maturity

date, and then stored on a solid state drive. In the interests of speed, the data
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were replicated across three separate drives.

Given the scale of this significant data, the PIN calculations were computed

for each day by multiple instances of Matlab, on a large multiprocessor worksta-

tion with 0.5TB of RAM and virtual memory. The total computation time in

each empirical analysis was around four to six weeks.

2.3.1 ED-Data Cleaning Procedures

In the market microstructure topic, data collection is a ubiquitous function es-

pecially in high frequency data - not only for record keeping, but also to provide

a mixture of data analysis protocol which is the main part of empirical research

(Hellerstein [2008]). Despite the fact that data collection is important for this re-

search, data quality remain inescapable. Even though the ED Trades and Quotes

data is provided by a trustworthy data base, the TRTH data base, a precise data

cleaning technique is also important for correcting data processing task. The

cleaning of this data is carried out following steps S1-S5. The steps are applied

with all trades and quotes data.

Step 1: Delete entries a bid, ask or trade price lower than 80 and NaN value. This

procedure tries to reduce an unexpected price or mis-price from trades and

quotes data as the ED price covered around 95 to 100.

Step 2: Delete entries a bid, ask or trade volume equal to zero and NaN value. This

technique is to eliminate nonessential values in this time series data.

Step 3: Delete duplicate data from both Trades and Quotes data. This organization

and sorting technique helps to reduce costs time and improve efficiency in

analysis process.
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Step 4: Retain entries missing values and match with equivalent time vector for

each variable.

Step 5: Finally, trades and standing quotes is matched at the time of the trade time

stamp.

In practice the Eurodollar futures data is incredibly clean. Most outliers are

found in the 1996 to 2005 period and are easily recognizable as the price is gen-

erally quoted either near zero (circa 0.90) or near 1000, (circa 900) due to miss

recording of a pit trade.

2.4 The E-Mini S&P 500

The largest trading volume in the CME is the E-mini S&P500. The E-mini trades

exclusively on the CME Globex trading platform in a fully electronic limit order

market, 24 hours a day from Sunday to Friday 17.00 - 16.00 (Chicago Time/CT)

with 15-minute technical maintenance break each day. The E-mini futures con-

tract is in denominations 10 times smaller than the original floor-traded S&P 500

index futures contract. The contracts are cash settled against the value of the

underlying S&P 500 equity index at expiration dates in March, June, September,

and December of each year. Trades can occur up to 8.30 on the 3rd Friday of

the contract month. The notional value of one E-mini contract is $50 times the

S&P stock index, the minimum price increment or tick size is 0.25 index point or

$12.50. Since its introduction, the E-mini has become a more favorable instru-

ment to hedge exposure to baskets of U.S. stocks or to speculate on the direction

of the entire stock market. The E-mini contract attracts the highest dollar vol-

ume amongst U.S. equity index products. Kirilenko et al. [2015] states that the

E-mini features offer both pre-trade and post-trade transparency. The pre-trade

26



transparency is provided by transmitting to the public in real time, price and

quantity of buy and sell orders resting in the central limit order book up or down

ten tick levels from the last transaction price. The post-trade transparency is

provided by transmitting to the public the price and quantity of executed trans-

actions.Furthermore, Hasbrouck [2003] shows that the transparency of the E-mini

has become a price discovery market for the U.S. Equity Indices.

This work uses publicly available data from CME’s Globex. The limit order

book data and the transaction records are collected by using the RICs (Reuter’s

Information Codes) from the Thomson Reuters Tick History Service (TRTH).

I collected two sets of records from TRTH data, first transaction records, and

second the quotes updated records for buy and sell orders resting in the central

limit order book up or down ten tick levels from the last transaction price. The

sample was constructed to capture all activity in the limit order book across E-

mini S&P 500 futures trading. I began by identifying all common delivery times

for each contract. At this point, I had to study the product code. The code for

this contract start with “ES” which mean E-mini S&P 500. The third letter “H,

M, U, Z” indicates the delivery month: March, June, September and December

respectively whilst the number 0 to 9 is the last digit of the year of maturity,

up to ten years. For example, the contract that has an expiry date on the third

Friday of March 2014 is the ESH4 and on the third Friday of June 2015 is ESM5.

In total, this thesis includes 32 E-mini contracts from July 2, 2008 to June 19,

2015 which included ESU8, ESZ9, ESH0,..., ESM5. I exclude half-days adjacent

to holiday closures.
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2.4.1 ES-Data Cleaning Procedures

At this point, I acquired trade and limit order book data for ten levels from be-

low(above) best bid(offer) from TRTH, which included price, volume, and number

of traders. Both trades and limit order book data records are time stamped to mi-

croseconds, although in practice, the accuracy is to one millisecond. Even though

the E-mini S&P 500 trade and limit order book data is provided by a trustworthy

database, a precise data cleaning technique is also important to correct the data.

The cleaning procedure of this data is carried out following steps S1-S5. This

step is applied to all trades and limit order book data.

Step 1: Delete entries quotes with bids(offers) that are greater(smaller) than of-

fers(bids) or mis-priced from trades and quotes data.

Step 2: Delete entries a bid, ask or trade volume equal to zero and NaN value. This

technique is to eliminate nonessential values in this time series data.

Step 3: Delete duplicate data from both trades and quotes data. This organization

and sorting technique helps to reduce costs and time, and improve efficiency

in the analysis process.

Step 4: Retain entries missing values and match with equivalent time vector for

each variable.

Step 5: Finally, trades and standing quotes is matched at the time of the trade time

stamp.

The E-mini S&P 500 is a futures contract on the S&P index, whose normal

time to maturity affects trading activity. Trading in futures, traders have to

trade against the expiration period, with trading activity increasing for a shorter

time to maturity compared to a longer period. Therefore, this work focuses on a
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term-structure of the E-mini S&P500 instead of the whole trading period. As a

result, I separate data into 18 different data sets from one to eighteen weeks to

the maturity. The main reason for this is that the trading frequency for longer

than eighteen weeks to maturity is between two and three orders of magnitudes

lower than the trading frequency for shorter periods. For instance, the average

trade updated on the eighteenth week is about 5,000 trades, however, the average

trade updated between one to thirteen weeks before maturity varies between 1.1

to 2.8 million trades. This trades number is more than 200 times larger than

the average trade updated on the eighteenth week. Furthermore, focusing from

eighteen weeks to maturity is because the E-mini has a quarterly expiration and

mostly trades occurred within a twelve-week period. Obviously, index futures are

different from other futures contracts, such as Eurodollar futures in which normal

trading activity for index futures is located roughly within one year to maturity,

peaking at a week to maturity. This short term trading activity cannot compare

with the ten year trading periods of Eurodollar futures, as normally traders are

used to managing, hedging, or speculating their trading position against a long

or short term interest rate with anything from an overnight rate to a ten-year

interest rate.

Table 2.2 provides an average quote volume in the limit order book, trade

volume, quotes updated and trade updated from July 2, 2008 to June 19, 2015

presented as a term-structure from eighteen to one week to maturity. A summary

of trades volume and trades updated in this table confirms that trading activity

on this index futures is mostly located between fourteen and two weeks to matu-

rity, as I mentioned in the previous section. Trading volume significantly increases

from 0.067 million on the sixteenth week to 7.510 million in the fourteenth, which

is more than 100 times larger. Also, this similar pattern appears on the bid, ask
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and trade updated. Trading activity reaches a peak at eleven weeks to maturity

for both trade and quotes in the limit order book. The average weekly trading

volume for this week is 10.338 million, trade updated is 2.840 million and quotes

updated is 25.644 million. After ten weeks to maturity, trade and quotes updated

slightly decrease and finally plunge in the last week of trading period or one week

to maturity. For the last week of the trading period, the average weekly trading

volume is 0.801 million volumes, which is 13 times smaller compared with the

average weekly trading volume at eleven weeks to maturity, which is the peak

trading period. Additionally, for one week to maturity, trade and quotes updated

are 0.158 million and 3.793 million respectively, which is 18 times smaller for

trade updated and 7 times smaller for quotes updated compared with the highest

trading frequency period.

Table 2.3 reports the descriptive statistic for E-Mini S&P500 futures reported

by the number of weeks to maturity from July 2, 2008 to June 19, 2015 presented

as a term-structure from eighteen to one week to maturity. Noticeably, the spread

in this paper is calculated by using the VWAP technique from limit order book

data. The average weekly spread for eighteen to one week to maturity varies

between 1.72 and 2.19 basis-points and the average standard deviation of this

spread is 1.2 basis-points; the maximum standard deviation of spread appears

on the seventeenth week at 6.9 basis-points, then drops to just about 1.2 after

sixteen weeks to maturity. The maximum average weekly return appears on the

last week to maturity at about 0.084 basis-points and the minimum is -0.079 for

sixteen week to maturity. The maximum standard deviation of the return ap-

pears on the seventeenth week at 0.45 basis-points, then drops to just about 0.06

basis-points from fifteen weeks to maturity. The pattern of standard deviation of

return is similar to the pattern of standard deviation of spread.
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2.5 Regulation

Futures markets in the United State are currently regulated federally by the U.S.

Commodity Futures Trading Commission (CFTC). The CFTC was established in

1974 after being under Federal regulation since 1920 (www.cftc.gov). This com-

mittee is responsible for issuing the license for futures exchange and approving

the contracts (Hull [2012]). More importantly, the CFTC has the mission to look

after the public interest and to promote market integrity from a variety of mar-

ket abuses. This means it is responsible for ensuring that price and information

communicated to the public is served to all market participants. This body has

to deal with the public interest to investigate and take an action against inap-

propriate trading in the futures market.

One of the best examples of CFTC action happened in the aftermath of the

2008 financial crisis involved in a part of interest rate derivatives that leaded to

the reform of in this market known as the Dodd-Frank trading rules. The brief

history of the investigation into market manipulation for the benchmark of inter-

est rate derivatives is provided in chapter 5.

Another U.S. regulator is the Securities and Exchange Commission (SEC;

www.sec.gov), this body was created after congress passed the Securities Act in

1933. The responsibility of SEC is similar to the CFTC, the body has a mission

to protect investors and maintain fair trading for all investors. The SEC needs

to ensure that all investors should have access to certain basic information about

their investment as presented in an efficient market theory. Normally, the SEC
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conducts securities exchange, securities brokers and dealers, investment advisors,

public companies, and mutual funds to maintain fair dealing and protect market

participants against fraud.

The United Kingdom market was regulated by the Financial Services Author-

ity (FSA; fsa.gov.uk) which is an independent non-government organization. The

FSA was established in December 2001 under the Financial Services and Aarket

Act 2000 (FSMA). This body is a limited company financed by the financial ser-

vice industry, however, the FSA is accountable to the treasury minister and the

U.K. parliament. Similar to the CFTC and the SEC, FSA regulates most U.K.

financial services markets, exchange and firms to meet its standards. However,

after 2012 the FSA was separated into two regulatory authorities; The Financial

Conduct Authority (FCA) and the Prudential Regulation Authority (see figure

2.3). The mission for these two bodies is to protect investors and market partic-

ipants from fraud, market abuse, or other financial crime. Similar to the CFTC,

the highest fines was for the repeated misleading of LIBOR settlements known as

the LIBOR scandal. Since 2012 the imposed fines from FCA worth £744 million,

the biggest fines handed to the Deutsche bank accounted for £277 million, the

UBS accounted for £160, the Rabobank accounted for £105, the RBS accounted

for £87.5, the Barclays accounted for £59.5 and the Lloyds accounted for £105.
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Figure 2.3: The new system for regulating financial services in the UK
(Source: FCA [2012])
Note: This flow chart presents the new system of financial regulating service in the UK. This
new system involves a number of bodies such as, the FCA, the PRA, the Bank of England, the
Financial Policy Committe (FPC), and Her Majesty’s Treasury.
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Chapter 3

A Review of Microstructure

Models

This chapter summarizes the major information-based trading models with an

expansion to understanding how these models incorporate price behavior.

3.0.1 The Rational Expectation Model

This section provides a constructive explanation of the rational expectations (RE)

model that nests the standard Grossman and Stiglitz [1980], Hellwig [1980], Ad-

mati [1985] models. The foundation from these RE models has been expanded

into different economic phenomena: information acquisition in financial markets

(Verrecchia [1982]), the operation of information markets (Admati and Pflei-

derer [1986, 1987, 1990]), multi-asset information learning (Admati [1985]), in-

sider trading (Leland [1992]), asset-payoff and supply (Breon-Drish [2015]), price

volatility (Gao et al. [2013]).

The main RE model follows the original one-period model from the Grossman

and Stiglitz [1980] framework. The RE model depends on strong assumptions
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that all random variables are jointly normally distributed and all agents have

absolute risk aversion (CARA) preference with a risk aversion parameter (Breon-

Drish [2015]). This model considers the market of risk free and risky assets over

a single period of time T , T = 0 to 1. At the beginning of a trading period

the price of the risky asset is S and the payoff is unknown until the end of the

trading period or time = 1 represented by random variable θ. The information

of θ is defined as the value of the assets into two components: θ = κ + ν, where

κ is a certain cost of θ on condition of information from informed traders. The

second component ν is the residual that is uncorrelated with κ. Also, the κ is

uniformly distributed and the ν is independently distributed with zero mean and

finite variance σ2
ν (Grossman [1988]). Following Gao et al. [2013], the a price of

risk free assets is normalized to 1, and the payoff is certain at 1+ϕ, so, with our

loss ϕ = 0. Also, the RE model assumes that informed traders can observe s,

however, uninformed traders generally observe only the price.

For this model, the proportion of informed traders is a random number λ with

a distribution F (·) with probability P > 0. As the model assumes that trader is

CARA, the utility derived by a trader i from the return πi = (θ−S)xi of buying xi

units of the risky asset at price S is Ui(π) = E[(θ−S)xi|Fi]−0.5ρD[(θ−S)xi|Fi],

where E[·] is the expectation operator, D[·] is the variance operator, ρ > 0 is the

risk aversion coefficient, and Fi is an information set for trader i.

At the equilibrium, the demand schedules for an informed (I) trader, a position

Xi in risky asset yields a utility:

UI = E[(θ − S)XI |κ, S]− 0.5ρD[(θ − S)XI |κ, S]

= XIE[(θ − S)|κ, S]− 0.5ρX2
ID[(θ − S)|κ, S].
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The demand schedules of utility maximization is:

XI =
E[θ|κ, S]

ρD[θ|κ, S]
.

where E[θ|κ, S] = E[θ|κ] = κ, and D[θ|κ, S] = D[θ|κ] = σ2
ν . Therefore, informed

trader’s demand schedule defined as:

XI =
1

ρσ2
ν

κ− 1

ρσ2
ν

S. (3.0.1)

As, κ and S are linear function, then XI = XI(κ,S).

Gao et al. [2013] show that the demand of an uninformed (U) trader can be

calculated using the same method, however, the expectation of the payoff at time

1 depends on only the price. Therefore, the demand schedule for the uninformed

trader can be defined as:

XU =
[θ|S]− S
ρD[θ|S]

. (3.0.2)

the rational expectation equilibrium is a set of trades, conditional on the infor-

mation that traders have, XI(κ, S) for informed traders and XU(S) for uniformed

traders, and a measurable price functional S(κ, λ). For market clearing, for all

pairs (κ, λ), the price S(κ, λ) equates to the supply of the risky asset to total

demand, then

λXI(κ, S(κ, λ)) + (1− λ)XU(S(κ, λ)) = 1. (3.0.3)

At equilibrium, the REE assumes all uninformed traders believe that the

number of informed traders is completely irrelevant to the price. Therefore, the

price function S(·) depends on κ and fully revels the signal κ, then all traders

will behave as if they are informed. Hence, the equilibrium price can be found

equating demand to supply, which we have XU = XI = 1. Substituting XI = 1
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in Eq. 3.0.1, then an alternative price function to write is

S = κ− ρσ2
ν . (3.0.4)

The rational expectation equilibrium is defined by the set of functions of

XI , XU and S, however, this is not the unique equilibrium for the economy.

Therefore, the price does not reveal the informed’s signal to uninformed traders

3.0.2 The Kyle [1985] Model

In another market microstructure context that consider when trader has superior

information to derived the security price or how the prices adjust to the full in-

formation value is introduced in Kyle [1985]. This model proposes that the new

equilibrium price partially reflects the new full information with three types of

market participants: market makers, noise traders, and informed traders. Kyle

proposed a single period model which at the value of an asset is a random variable

: S ∼ N(p0, σ
2
0), at the end of period asset value of S̃ ∼ N(p0,Σ0).

There are also noise or uninformed traders who trade for exogenous reasons

and submit a market order for ũ quantity, where ũ ∼ N(0, σ2
u). Also, Kyle as-

sumes that at the beginning of trading period informed trader can get information

of the price of the asset from the value of S, and he knows the value of the asset

at the end of the period is equal to S̃ but does not know the quantity ũ;however,

an informed trader chooses to submit a market order to maximize their profit at

x quantity. At this point, the market maker observes the net order flow y = u+x

and sets a price p, however, the market maker cannot distinguish which part of

the order comes from noise or informed traders. At the equilibrium, the market
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maker earns a zero expected profit, so he takes a position −(u + x) to clear the

market and earn −(S̃−p)(u+x). The market maker sets p following the function

of u+ x, thus P (x+ u) = E[S̃|u+ x].

The informed trader chooses to submit quantity x that depends on S̃ to max-

imize his profit π̃ at the end of a period. Thus, the market maker sets the

equilibrium price as:

max
x

E[π̃|S̃] = max
x

E[(S̃ − P (x+ ũ))x|S̃] (3.0.5)

This model assumes at the equilibrium that the market maker price is a linear

function given by the posterior expectation; P (y) = µ + λy. So, the maximize

profit of the informed trader is E[π] = max
x

E[(S̃−P (x+ũ))x|S̃ = S] = max
x

E[(S−

µ− λ(x− ũ))x|S] = max
x

(S − µ− λx)x, when the last step follows from the fact

that E[ũ] = 0.

Then, maximizing the expected profit, the solution to informed trader for

optimal trade is

x = arg max
x∈R

E[π] =
S − u

2λ
= α + βv, (3.0.6)

where α = − u
2λ

and β = 1
2λ

, if λ > 0.

To solve the linear market maker pricing and trade order parameters, we

assume that the market maker sets the market price in order to earn zero profits

at p = E[S̃|u+ x]. The expected order flow is E(y) = ũ+ x = ũ+ α+ βS̃, where

S and y are jointly normally distributed, that is, E[S̃|y]. Therefore, the market

maker should follow the maximum likelihood estimator to optimal pricing rule

that equals to µ+ λy where µ and y minimize, min
µ,λ

E[(S̃ − P (y))2] = min
µ,λ

E[(S̃ −

µ−λy)2] = min
µ,λ

E[(S̃−µ−λ(ũ+α+βS̃))2] = min
µ,λ

E[(S̃(1−αβ)−αũ−µ−λα)2].
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Following assumptions E[S] = p0,E[(S − p0)2] = Σ0,E[u] = 0,E[u2] = σ2
u and

E[uS] = 0, then min
µ,λ

E(1−λβ)2(Σ0 +p2
0)+(µ+λσ)2 +λ2σ2

u−2(µ+λα)(1−λβ)p0.

The first condition respect to µ and λ are µ = −λα + p0(1− λβ), thus

λ =
βΣ0

β2Σ0 + σ2
u

. (3.0.7)

Use α = − µ
2λ

and β = 1
2λ

, we have µ = p0 and λ =
√

Σ0

2σu
.

At equilibrium, the market maker trade price is

p = p0 +

√
Σ0

2σu
(ũ+ x̃), (3.0.8)

where the informed order is

x =
(S̃ − p0)σu√

Σ0

. (3.0.9)

From equation 3.0.9, we can see that the informed order is greater or more active

in the magnitude provided by the volatility of the order from uninformed trader

σu. Substituted 3.0.9 into 3.0.8, we get p = p0 +
√

Σ0ũ
2σu

+ (S̃+p0)
2

. Thus, only one-

half of private information 1
2
ṽ is reflected to p, therefore the equilibrium price is

not fully reveled by informed trader’s information. The expected profit of the

informed trader, unconditional on knowing the value of S̃ at the beginning of

trading period is

E[π̃] =
σu(S̃ − p0)2

2
√

Σ0

(3.0.10)

Since the market maker sets the trade price in condition to earn zero profit,

the expected gain for informed traders is the expected loss from noise traders,

41



not the market maker. As the expected profit from informed order is a linear in

noise volatility, this can be assumed that informed trader hide their order with

the orders from uninformed trader to hide the position. Consider the illiquidity

parameter λ =
√

Σ0

2σu
which presents the value that the market maker rises the

price when the net order flow y = u + x increases by one unit. Therefore, the

λy =
√

Σ0
y

2σu
is liquidity risk scaled by volatility of security, and y

σu
is similar

to the percentage of volume. Hence, the amount of order that raises the price

by 1 dollar equals 1
λ

which is measured by the market depth or market liquidity.

Intuitively, the greater number of noise traders, the greater profits of informed

traders that gain from the loss of uniformed traders. However, with a greater

number of uninformed traders, an individual loss is less.

3.0.3 The Glosten and Milgrom [1985] Model

This section describes the basic sequential trading with the superior information

model proposed by Glosten and Milgrom [1985]. This model assumes that some

traders have information about price of a security(S) while others do not. Sup-

pose that S will rise at time T, so ST = {S, S}, S ≤ S̄. Uninformed traders (U)

know that ST = S or ST = S, however, they do not know whether ST = S or

ST = S will occur. Following the assumption of this model, informed traders (I)

arrive in the market at rate µ, these traders assumed to be informed (I) because

they know certainty the terminal value ST .

Next, De Prado [2011] states that the probability when the security price at

time T equals S is P(ST = S) = δ, and the security price at time T equals S

is P(ST = S) = 1 − δ. If a trade occurs at t ∈ [0, T ), the probability’s dis-

tribution when ({S, S}, {I, U}, {Buy, Sell}): for the buy’s unconditional prob-
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ability is P(Buy) = 1+µ(1−2δ)
2

, and for the sell’s unconditional probability is

P(Sell) = (1−µ)(1−2δ)
2

. Therefore, P(Buy) + P(Sell) = 1. Subsequently, the

nature of event occurs with δt = 0.5 ⇒ P(Buy) = P(Sell), P(ST = S) and

P(ST = S) = 1− δ at t = 0 (See table 3.1).

Table 3.1: Probability scenarios under event certainty (De Prado [2011])

ST = S ≤ St Buy, S Sell, S

I 0 δ(1 + µ)

U 1
2
(1− µ)δ 1

2
(1− µ)δ

ST ≤ S = St Buy, S Sell, S

I (1− δ)(1 + µ) 0

U 1
2
(1− µ)(1− δ) 1

2
(1− µ)(1− δ)

For the time interval t ∈ [0, T ), a market maker recognizes a price level at

which he intends to enter whether long position (Bid, B) or short position (Ask,

A). whilst, the market maker doesn’t know that other market participants at pe-

riod t are informed or not, he can update his belief about the value of ST as trades

are revealed, so δt+1(Buy) = P(ST = S|Buy) = P(ST = S,Buy)/P(Buy) =

δt(1−µ)/1 +µ(1− 2δ). If ST = S ≤ St informed traders lower their expectation,

since E[ST |Buy] = S(1− µ)δt + S(1 + µ)(1− δt)/1− µ(1− 2δt) and he increases

his expectation on ST , since E[ST |Sell] = S(1+µ)δt+S(1−µ)(1−δt)/1+µ(1−2δt).

Then, B is δt+1(Sell) = P(ST = S|Sell) = P(ST = S, Sell)/P(Sell) =

δt(1 + µ)/1 − µ(1 − 2δt). Therefore the spread is A − B = 4(1 − δt)δtµ(S −

S)/1 − (1 − 2δt)
2µ2. At this point, the market participant’s expectation for a

profit is zero. Therefore, in the case of (ST ) = S ≤ St informed trading (µ)
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occurs when A = E[ST |Buy] with Informed (I) traders profit is gained by direct

wealth transfer from the loss incurred by Uninformed (U) trades (ε). We can

therefore write (A − E[ST |I, Buy])P(I|Buy) = −(A − E[ST |U,Buy])P(U |Buy),

since by construction P(I|Sell) +P(U |Sell) = 1. This argument can be made for

B when (ST ) = St ≤ St.

3.0.4 The Easley et al. [1996] Model - Probability of In-

formed Trading (PIN)

The PIN is a measure of asymmetric information on a trading event between

informed and uninformed trading, which was developed on the theoretical frame-

work of Easley and O’Hara [1992], although the original PIN approach was in-

troduced by Easley et al. [1996]. They produced a mixed discrete-time and

continuous-time sequential model of the trading mechanism, in which trades

emerge when three classifications of economic agents – namely market makers,

informed traders and uninformed traders collaborate. Abad and Yagüe [2012],

explain that on a trading day, a market maker is competitive or strategic trader,

while informed and uninformed traders are risk neutral with probability of profit

or loss at 0.5. Also, informed and uninformed traders arrive in the market with

their unique arrival rate with a view to a trading game between the liquidity

provider and trader. Despite this, the PIN is not a direct measurement observa-

tion, but rather a parameter of a microstructure model which is estimated by the

numerical maximization of the likelihood function. This is explained by Easley

et al. [1996], as considering the likelihood of the arrival of three different types

of information on a trading day: no news, good news, and bad news. This set

of options for market agents can be summarized in a standard tree diagram rep-

resenting the trading process. This diagram gives the structure of the trading
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process, where α is the probability of an information event, δ is the probability

of a low signal, µ is the rate of informed trade arrivals, and ε is the rate of unin-

formed buy and sell rate arrivals.

The original PIN is a measure by Easley et al. [1996] of asymmetric informa-

tion, fitted via maximum likelihood estimation directly from measurements of the

order flow. The tree diagram in Figure 3.1 presents the dynamics of the game

and frames the original PIN type model in terms of the information structure of

the ED futures market.

The tree diagram in figure 3.1 describes the trading process of Easley et al.

[1996]. Individual trading periods of a single risky asset on trading days are in-

dexed i = 1, 2, . . . , I time is continuous within a trading day, and is indexed by

t ∈ [0, T ]. The competitive market makers are ready to buy or sell the asset

at bid and ask posted price during the trading period. Information events are

independently distributed at the beginning of each trading day, and occur with

probability α. However, informed traders will only trade on information event

days; they will buy an asset if they receive a signal of good news with probability

1 − δ and sell if they receive a signal of bad news with probability δ. As εb and

εs are the selling and buying rate of uninformed traders, which are supposed to

have the same intensity (0.5), therefore the probability of uninformed traders is εs

= εb = ε. In this way, the set of parameters are reduced to only four: α, δ, µ and ε.

On a trading day, trade occurs from both uninformed and informed traders

who trade on condition of a received signal. Both types of uninformed buyers

and sellers arrive in the market at rate ε. Competitive informed traders who are

risk neutral will arrive on the trading days on which the information events have
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Information
Event (St)

Information
Does Not

Occur: 1− α
(ST = St) Sell Arrival Rate ε

Buy Arrival Rate ε

Information
Does Occur:
α – Signal

transmitted

Signal Low
δ (Bad news

occured),
ST < St Sell Arrival Rate ε+ µ

Buy Arrival Rate ε

Signal
High 1 − δ
(God news
occured),
ST > St Sell Arrival Rate ε

Buy Arrival Rate ε+ µ

Figure 3.1: Tree diagram of the sequential trading progress [Easley et al.,
1996].
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occurred. If they receive a signal of good news, they will arrive to buy orders;

conversely, they will submit sell orders if they receive a bad signal or news. The

arrival rate for this process is µ. These arrival processes are assumed to be inde-

pendent. Then, on good event days, the arrival rate for buy orders is ε + µ and

for sell orders is ε. On the other hand, if there is any bad news or bad signal on

any trading day, the arrival rate of sell orders is ε+ µ and buy orders arrive at a

rate of µ. Finally, if there is no news or no signal on that day, only uninformed

traders arrive for both buy and sell orders at arrival rate ε.

In each period the news arrival contains one of the three types of information.

The market maker knows that there is some probability attached to each branch,

and he knows the order arrival process for this branch. However, the market

maker does not know which of the three branches has been naturally selected.

Since he cannot directly observe which type of branch has been selected, Easley

et al. [1996] assumes that the market maker is a Bayesian who uses the arrival

of trade and the rate of trading to update his beliefs about the nature of the in-

formation event on the trading day. Let P(t) = (Pn(t),Pb(t),Pg(t)) be a liquidity

provider’s belief about the occurrence of information event “no news” (n), “bad

news” (b), and “good news” (g) at time t. Then, his prior beliefs at time 0 is

P(t0) = (1− α, αδ, α(1− δ)).

To determine quotes at time t, the market maker updates his prior belief on

the condition of an arrival order of the relevant type. For instance, the bid at

time t, B(t), is the expected value of the asset conditional both on the history of

the process prior to the arrival of order at time t and on the fact that someone

wants to sell the asset. Let (st) denote the event that a sell order arrives at time

t. Let Pn(t|st) be the market maker’s updated belief vector conditional on the
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history prior to time t and on the event that a sell order arrives at time t.

Following Bayes’ rule, the market maker’s posterior probability on no news at

time t, if an order to sell arrives at t, is

Pn(t|st) =
Pn(t) · ε
ε+ Pb(t)µ

, (3.0.11)

the posterior probability on bad news is

Pb(t|st) =
Pb(t) · (ε+ µ)

ε+ Pb(t)µ
, (3.0.12)

and the posterior probability on good news is

Pg(t|st) =
Pg(t) · ε
ε+ Pb(t)µ

. (3.0.13)

Comparable to the case of buy orders (bt) the posterior probability on good news

at time t is

Pg(t|bt) =
Pg(t) · (ε+ µ)

ε+ Pg(t)µ
, (3.0.14)

the posterior probability on bad news is

Pb(t|bt) =
Pb(t) · ε
ε+ Pg(t)µ

, (3.0.15)

and the posterior probability on no news is

Pn(t|bt) =
Pn(t) · ε
ε+ Pg(t)µ

. (3.0.16)

At the end of the trading on any period, the full information value of the asset

is realized. If it is good news on the trading period (i) the informed trader knows
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that the value of the asset at the end of this period is worth S̄i, similarly it is Si

if it is bad news on period i and the asset on day i is worth S∗i = δSi + (1 + δ)S̄i,

(so, S̄i > S∗i > Si) if there is no news at all.

To complete the bid or ask at time t, the liquidity provider updates his position

on the condition of arrival order according to information type. At time t the

expected value of the asset, conditional on the history of trade prior to time t, is

E[Si|t] = Pn(t)S∗ + Pb(t)Si + Pg(t)S̄i , (3.0.17)

where S∗i = δSi + (1 + δ)S̄i is the prior expected value of the asset.

The bid is the expected value of the asset conditional on someone wanting to

sell the asset to a liquidity provider. Thus, it is

B(t) = E[Si|t]−
µPb(t)

ε+ µPb(t)
(E[Si|t]− Si) . (3.0.18)

Similarly, the ask is the expected value of the asset conditional on someone

wanting to buy the asset from a liquidity provider. Thus, it is

A(t) = E[Si|t] +
µPg(t)

ε+ µPg(t)
(S̄i − E[Si|t]) . (3.0.19)

If there is no news on a trading day, thus there are no informed traders (µ = 0),

then both bid and ask are equal to the expected value of the asset. Generally,

both informed and uninformed traders will be in the market, so A(t) > E[Si|t] >

B(t).
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The bid–ask spread at time t is denoted by Σ(t) = A(t)−B(t). This spread is

Σ(t) =
µPg(t)

ε+ µPg(t)
(S̄i − E[Si|t]) +

µPb(t)
ε+ µPb(t)

(E[Si|t]− Si) . (3.0.20)

The first term in the bid–ask spread equation is a probability of a buy order

based on information and the second is the term for sells. The spread for the

initial quotes in the period, Σ, has a particularly simple form in the natural case

in which good and bad events are equally likely. That is, if δ = 1− δ, then

Σ =
αµ

αµ+ 2ε
(S̄i − Si) . (3.0.21)

The key component of this model is the probability that an order is from an

informed trader, which is called the PIN:

PIN =
αµ

αµ+ 2ε
, (3.0.22)

where αµ + 2ε is the arrival rate for all orders and αµ is the arrival rate for

information-based orders. Therefore, the PIN is a measure of the fraction of or-

ders that arise from informed traders relative to the overall order flow, and the

spread equation shows that it is the key determinant of spreads. These equations

clarify that liquidity providers need to correctly estimate the PIN in order to iden-

tify the optimal levels at which to enter the market. An unanticipated increase in

PIN will result in losses to those liquidity providers who do not adjust their prices.

It is difficult to estimate the parameter vector Θ = (α, δ, ε, µ) because it can-

not be directly observed in either the occurrence of information events or the

associated arrival of uninformed and informed traders. In fact, in terms of mea-

suring the daily arrival rate of sell (st) and buy (bt) it is possible to infer these
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values using maximum likelihood and assuming that the trading process follows

a Poisson process [Karyampas and Paiardini, 2011].

The Easley et al. [1996] PIN approach considers the likelihood of order arrivals

on a day of known type. In this model, the likelihood of observing sell S and buy

B orders on each type of information occurs on a no event day with probability

1−α, a bad event day with probability αδ and a good event day with probability

α(1− δ). Thus, the likelihood is

L((B, S)|Θ) =(1− α)e−εb
(εb)

B

B!
e−εs

(εs)
S

S!

+ αδe−εb
(εb)

B

B!
e−(εs+µ) (εs + µ)S

S!

+ α(1− δ)e−(εb+µ) (εb + µ)B

B!
e−εs

(εs)
S

S!
. (3.0.23)

Since only one type of information occurs on trading days, the maximum

likelihood estimator of the information event parameters α and δ will be either 0

or 1. However, these parameters can be estimated from the daily number of buy

and sells, assuming that the days are independent. The likelihood of observing the

data M = (Bi, Si)
I
i=1 across I periods is just the product of the daily likelihood

function

L(M |θ) =
I∏
i=1

L(Θ|Bi, Si) . (3.0.24)

The PIN estimates are computed by maximizing the parameter vector θ from any

data set M , which is normally taken to be from the daily trades and quotes.
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3.0.5 The Easley et al. [2012] Model - Volume-Synchronized

Probability of Informed Trading (VPIN)

The fundamental mechanism behind VPIN was developed from PIN that can be

found in Easley et al. [2008]. Easley et al. [2010] develop this model by intro-

ducing time variations of the arrival rate of informed and uninformed traders

in GARCH style by estimating the expected Order Imbalance or OI at time τ ,

E
[∣∣V ∗Bτ − V ∗Sτ

∣∣] as an approximate of PIN(αµ), then compared with total num-

ber of trades E
[∣∣V ∗Bτ + V ∗Sτ

∣∣] which equals αµ+ 2ε in the PIN model.

Easley et al. [2010] develop this model to measure the volume time in an

attempt to match the speed of arrival of new information to the marketplace

which called the Volume-Synchronized Probability of Informed Trading (VPIN),

provides a simple metric for measuring order toxicity in a high-frequency envi-

ronment while the PIN is difficult to work with the HFTs. The different system

of time between PIN and VPIN is the PIN work on clock time while the VPIN

works on volume time. The PIN works on a daily order imbalance between trad-

ing volume from informed traders and total order under independent process and

price efficiency while the VPIN works on constant amount of volume or volume

bucket. The volume bucket divides a trading section into a comparable informa-

tion period, in this way a trading period is reduced to a small trading section

with buy and sell volume that is classified by normal distribution and standard

price changes to determine the percentage of buy and sell volume.

A volume bucket is a collection of trades with total volume V . In this the-

sis I calculate buy and sell volume (V B
τ andV S

τ ) using tick-by-tick data and also
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compromising with volume bars.

V B
τ =

t(τ)∑
i=t(τ−1)+1

Vi.Z

(
Pi − Pi−1

σ∆P

)

V S
τ =

t(τ)∑
i=t(τ−1)+1

Vi.

[
1− Z

(
Pi − Pi−1

σ∆P

)]
= V − V B

τ , (3.0.25)

where t(τ) is the index of the last volume in the bar included in the τ volume

bucket. Z is the cumulative distribution function(CDF) of the standard normal

distribution. σ∆P is the estimate of the standard derivation of price changes be-

tween time bars.

Let OIτ = |V B
τ −V S

τ | be the order imbalance in volume bucket τ the measure

is,of course, an approximation to actual order imbalance as it is based on the

probabilistic volume classification. First, how E[OIτ ] relates to the rate of trad-

ing by showing that it is unaffected by a simple rescaling of trading. Suppose that

each time bar’s volume is rescaled by a factor of β > 0, V ∗i = βVi,and that vol-

ume imbalance is homogeneously distributed within the bucket. Then expected

number of time bars required to fill a bucket will be inversely proportional to

β, t(τ)−t(τ−1)
β

. The expected order imbalance, E[OIτ ], unaltered ,

E[OI∗τ ] = E
[∣∣V ∗Bτ − V ∗Sτ

∣∣] =
1

β
E
[∣∣βV B

τ − βV S
τ

∣∣] = E[OIτ ] . (3.0.26)

For each period the expected trade imbalance is E[|V S
τ − V B

τ |] ≈ αµ and the

expected total number of trades is E[V B
τ + V S

τ ] = αµ + 2ε. Volume bucketing

allows us to estimate this specification very simply. In particular, imagine that

we divide the trading day into equal-sized volume buckets and treat each volume

bucket as equivalent to a period for information arrival. That means that V B
τ +V S

τ
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is constant, and it is equal to V , for all τ . We then approximate expected trade

imbalance by average trade imbalance over n buckets.

From the values computed above, we can write the volume-synchronized prob-

ability of informed trading, the VPIN flow toxicity metric, as

VPIN =
Σn
τ=1|V S

τ − V B
τ |

nV
, (3.0.27)

Since Σn
τ=1|V S

τ − V B
τ | ≈ αµ, then PIN = αµ

αµ+2ε
, this can be shown that VPIN is

an approximate of PIN (Easley et al. [2010]).
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Chapter 4

Preliminary Analysis of Informed

Trading

4.1 Introduction

This chapter provides the preliminary analysis of probability informed trading.

The PIN proposed by Easley et al. [1996] has been employed in a wide range of

market microstructure applications. To estimate this model, the number of buy

and sell-initiated trades is needed. However, in many markets this requirement

is not publicly available such as, CME, NASDAQ, NYSE. Normally, the trade

classification is usually inferred between trade and quote data by comparing the

trade price to previous trade prices or to prevailing quotes (Boehmer et al. [2007]).

The widely used trade classification algorithm is tick-rule, quote-rule and Lee and

Ready [1991] algorithm. Whilst the PIN algorithm is substantially precise, the

poor performances of these trade-classifications may have a great impact on the

result of the PIN (Ke [2014]). However, this chapter follows Easley et al. [1996]

by using the Lee&Ready algorithm.
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The chapter is a preliminary empirical study on the PIN, so the standard PIN

approach and the Lee&Ready algorithm are used to analyze the informed trading

in the Eurodollar futures market. Therefore, I examine the performance of PIN

by stimulating the PIN on Eurodollar futures market to investigate how it reacts

to major toxicity events. The result shows that the PIN appears to have dropped

around the time of the sub-prime crisis (circa 2007) and then bounced back af-

terwards, and sharply dropped again with the collapse of Lehman Brothers and

then bounced back once again indicating that systematic market uncertainty has

played a role in information asymmetry. Significantly, the result of the PIN in

this thesis is always higher for the Eurodollar futures market than those recorded

in the equity market (circa 0.4 to 0.8 versus 0.1 to 0.5; see Abad and Yagüe, 2012;

Aslan et al., 2011; Easley et al., 1996); however other PIN studies of interest rate

derivatives have found similarly high, if not higher PIN measurements, in partic-

ular Kim et al. [2014] find the PIN for the Eurodollar market to be substantially

higher on average than that detected in the equity and FX markets.

This paper is organized as follows §(4.2) reviews the current research on de-

tecting informed trading. §(4.3)provides information about trade classification

related to the PIN. §(4.4) explores the PIN and presents the empirical results.

Finally, §(4.5) provides the preliminary result of PIN analysis in the Eurodollar

futures market.

4.2 Background and Motivation

Markets are mechanisms that process information. When forward pay-offs follow

a semi-martingale process, the act of buying and selling claims on these pay-offs
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should approach a fair bet. The act of buying and selling assets in a continuous

Walrasian is a mechanism by which the fragments of information possessed by

each trader are disseminated into the market as a whole. Classical models of

markets, such as those that underlie the capital asset pricing model and most

base-models of derivatives pricing, assume that, while information provided by

traders in the market may not be homogeneous, individual traders make homo-

geneous statistical assumptions about the quality of their private signals. Thus,

the semi-martingale assumption of the evolution of the fundamental value and

the resulting price of the asset is preserved. However, most models of market

microstructure assume that traders both receive heterogeneous signals and have

heterogeneous information about the quality of those signals.

The study of market microstructure in the presence of information asymme-

tries in the financial securities market has received considerable attention from

academics and practitioners, and in their seminal work Grossman and Stiglitz

[1980] explain the relationship between market efficiency and pieces of informa-

tion. They argue that it is impossible for markets to be perfectly efficient in

terms of information because if they were, the return for gathering information

would be nil, in which case there would be little reason to trade and the markets

would eventually collapse. Alternatively, the degree of market inefficiency deter-

mines the effort investors are willing to expend to gather and trade information;

hence a non-degenerate market equilibrium will only arise when there are suffi-

cient opportunities for profit, i.e. inefficiency, to compensate investors for the cost

of trading and information-gathering. The profits earned by these industrious in-

vestors may be viewed as economic rents that accrue to those willing to engage

in such activities.

57



Hellwig [1980] outlines some theoretical models of how asset prices evolve

when a subset of traders hasprivate information. He explains how a competitive

market serves to disseminate information between the market participants. The

communication process in a market is usually described by the phrase that the

equilibrium price reflects all the available information in the market and com-

municates it to participants. This area of study has expanded in the last two

decades and in terms of approaches, the noisy rational expectation equilibrium

of Admati [1985] uses price information for a model of multi-asset risk.

Building on work published in the preceding year on the industrial organi-

zation of futures markets, Kyle [1985] constructs a dynamic model of insider

trading with sequential auctions, structured to resemble a sequential equilibrium

to examine the informational content of prices, the liquidity characteristics of a

speculative market, and the value of private information to an insider. Glosten

and Milgrom [1985] propose that the trading of informed traders who have su-

perior information leads to a positive bid–ask spread, even when the specialist

is risk neutral and makes zero expected profits. Although, the informed trader

is risk neutral, the profit that he gets is the loss from uninformed trader. The

work of Admati and Pfleiderer [1988] developed a research model in which traders

determine when to trade and whether to become privately informed about assets’

future returns. The study was inspired by three questions, the first of which was

why does trading tend to be concentrated in particular time periods within the

trading day? Secondly, why are returns (or price changes) more variable in some

periods and less variable in others? Thirdly, why do the periods of higher trading

volume also tend to be the periods of higher return variability? Thus, the model

development is based on research in which traders determine when to trade and

whether to become privately informed about assets’ future returns. Easley and
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O’Hara [1987] investigate the effect of trade size on security prices when informed

traders prefer to trade larger volumes at any price, so that market makers’ trad-

ing strategies should depend on the size of the trade. As a result, market makers

pricing strategies must also depend on trade size with large trades being made at

less favorable prices. This model provides an explanation for the price effect of

block trading and demonstrates that both the size and sequence of trades matter

when determine the price-trade size relationship.

Easley and O’Hara [1992] developed a model that observes the informed trad-

ing of a sequential trade model from the learning process of order flow similar

to that of Glosten and Milgrom [1985] and Easley and O’Hara [1987] in which

arriving orders are updated in a probabilistic fashion, independent of any param-

eters. This model was nicknamed the PIN and has subsequently proved to be

very popular because of its ease of implementation. It is used to measure the

impact of different portions of information from traders on market liquidity and

price formation. The PIN can explain the link between the existence of infor-

mation, trading time and security prices. The time affects the prices, trading

can move price quotes, and the time between trades affects the spread; for in-

stance, the spread decreases as the time increases and whether informed trader

trade or do not trade will correspond to the volume. Informed traders will reveal

their private information for trade; they will buy (sell) if they observe good (bad)

news. Therefore, this method is built on a pattern of buy and sell orders, which

is interpreted as stemming from information arrivals that appear in the market.

Easley et al. [1996] investigate the differences in spreads for active and in-

frequently traded stocks by using an information-based trading approach with a

sample of stocks listed on the New York Stock Exchange (NYSE). The findings
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show that the probability of informed trading is lower for active than inactive

stock; however, although high volume of stock tends to have more informed

traders, the increase of uninformed traders has a greater effect. Easley et al.

[1996] proceed with a mixed continuous and discrete time-sequential trade model

of the trading process in which the trading day’s trade arises from a group of

informed traders and uninformed traders, and also price movements arise from

the quotes. Informed trading occurs on the trading day and the decisions are

made based on their private information. This information trade-based approach

is different in application from that of Hasbrouck [1991] who examines the infor-

mation in trade innovations as a vector autoregressive.

Possible explanations of price processes and the number of trades influenced

by information content are demonstrated by Easley et al. [1997a,b] when they

examine the trade and price process in the electronic market order flow using

high-frequency data, as well as by Brown et al. [1999]. Easley et al. [1997b]

criticize Kyle [1985] and Glosten and Milgrom [1985], both of which identify the

behaviour of uninformed traders who are assumed to be serially independent;

however, if uninformed traders act strategically, then these microstructure mod-

els are misspecified. The Easley et al. [1997b] model enables uniformed traders

to become buyers and sellers following independent or dependent processes. The

model includes variations in trade sizes to estimate informational versus trade

volumes. The results of these studies show that both large and small traded

stocks are widely affected by private information; however, large trades have ap-

proximately twice the information content of small trades and uninformed traders

who make decisions based on their recent trading are more likely to buy (sell)

when the last trade was a (buy) sell.
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The PIN has been widely adopted in a variety of studies in empirical finan-

cial literature; for instance, Easley et al. [2001] use NYSE common stocks that

had two to one splits in 1995 to investigate how stock splits affect trading in the

presence of uninformed and informed traders. After stock splits, there is a slight

increase in uninformed trading and a tendency to execute trades using market

orders. This evidence is consistent with the increase in uninformed trading so

that the problem of adverse selection is not materially reduced. Also, the param-

eter estimates after stock splits suggest that it does not significantly change the

stock information environment. Moreover, the results of the Heidle and Huang

[2002] information-based study of the probability of informed trading in dealer

and auction markets show that associated changes in the probability of trading

with informed traders are related to changes in the bid–ask spread; also, there

is more probability of an informed traders’ confrontation in dealer markets than

in auction markets. Grammig et al. [2001] extend the Easley et al. [1996] model

to allow for a simultaneous estimation of two parallel markets in order to anal-

yse whether the number of anonymous traders is related to information-based

trading using the German stock market to answer the question, which trading

platform do traders prefer? They find that the probability of informed trading

is significantly lower in floor-based trading systems than in anonymous electric

trading systems.

Easley et al. [2002] and Aslan et al. [2011] expand the main financial literature

that focuses on asset pricing to theoretical market microstructure pricing models

in the presence of asymmetric information. They investigate the effect of the

role of private information-based trading on asset returns. Easley et al. [2002]

uses individual NYSE-listed stocks between 1983 and 1998 to measure the prob-

ability of information-based trading incorporated with a Fama and French asset
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pricing framework. The main outcome of their study is that information does

affect asset prices; specifically, where there is a 10% difference in the probability

of informed trading between two stocks, this leads to a 2.5% percent difference in

their expected return. Similarly, Aslan et al. [2011] investigate the link between

private information-based trading and accounting and asset pricing by developing

a proxy for the PIN (PPIN) to investigate the role of information risk in asset

pricing over longer time periods. They conclude that informed trading captured

by the PPIN is both statistically and economically significant for asset returns;

for instance, firms with higher PPINs have higher returns, and this conclusion is

robust in every asset pricing structure explored.

The structure of private and public information and post-earnings announce-

ment drift by using the PIN has been extensively analysed by Vega [2006] using a

comprehensive public news database. The results of this study are that informed

traders tend to learn about the true value of an asset and stocks linked with a

high PIN from public surprising news; conversely, low media coverage causes an

insignificant drift. Also, most small stocks realise a greater post-announcement

drift than large stocks, which tend to be more transparent. Another analysis in-

volving the PIN appears in Ascioglu et al. [2008] who try to fill the gap between

the investment issue in corporate finance literature and liquidity in the market

microstructure. This study provides strong evidence that asymmetric information

decreases firm investment and increases the sensitivity of investment expenditure

to fluctuation in internal funds. It also illustrates that the strength of the results

of the PIN is consistent with the evidence in the market microstructure, that the

PIN is by far the most relevant and direct measure of asymmetric information

and it should be one of significant factor for asset pricing in the Fama and French

framework. Another study involving the corporate investment decision is that of
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Chen et al. [2007], the results of which show that the measure of the amount of

private information in stock prices and the probability of informed trading have

a strong positive effect on the sensitivity of corporate investment to stock prices.

Also, Brockman and Yan [2009] study the stock value with the relationship of

the block holders and the amount of specific information. The results strongly

support that block ownership and firm-specific information have a significant im-

pact on the stock return.

Studies of the market microstructure in the presence of the PIN that impacts

the price of risky assets were undertaken by Kang [2010], Idier and Nardelli [2011]

and Chen and Zhao [2012]. Firstly, Kang [2010] investigates the relationship be-

tween the probability of information-based trading and the January effect, the

so-called “January PIN effect”. He finds that the mean stock returns decrease

with the PIN in January, contrary to other calendar months, and that this effect

is more significant for small stocks. As stated in his work, the January PIN effect

is associated with selling pressure in December, especially of small stock. As a

result, this seasonal effect leads to a negative relationship between the PIN and

returns, and when the price bounces back in January, low-PIN stocks will exhibit

a larger return within a small stock group. Secondly, Idier and Nardelli [2011]

apply the PIN model developed by Easley et al. [1996] to analyse the role and

impact of information-based trading on the Euro overnight market rate. They

find that the PIN sharply declined after the reform of the Eurosystem’s opera-

tional framework in March 2004 and the recent financial market turmoil. Finally,

Chen and Zhao [2012] use the New York Stock Exchange (NYSE) and the Amer-

ican Stock Exchange (AMEX) to investigate the effect of informed trading (PIN)

and information uncertainty when determining the price momentum. The results

show that momentum trading strategies based on buying high-uncertainty good-
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news stocks and short selling high-uncertainty bad-news stocks only work well

when applied to stock with a high PIN. In contrast, this pattern is not exhibited

with low-PIN stocks, even when the uncertainty level of those stocks is high.

In view of all that has been mentioned so far, one may suppose that the

studies of market microstructure in the presence of informed trading by using

a probability of informed trading approach is a stabilized measurement tool for

asymmetry information. While the PIN approach is quite popular for securities

trading, only a tiny portion of the literature is involved with the interest rate

derivative market. Thus, the gap in these previous studies offers a great oppor-

tunity to test some of the current measures of informed trading such as the PIN

approach of Easley et al. [1996] with a very liquid interest rate derivative market.

4.3 PIN and Trade Classification Algorithms

Since the classification of trades is one of the fundamental issues for analysis of

the PIN, it is essential to identify the direction of trading in terms of buying

or selling. An important feature of the ED futures contract database is that it

only records transactions that include Trades and Quotes, in particular price and

quantity, but is not able to classify the trades as buy or sell. In order to determine

whether a trade is initiated by a buy-side or sell-side, it is necessary to use trade

classification techniques developed in the literature.

I mentioned in the introduction of this chapter that the accuracy of PIN be-

longs to the trade classification. So, how well does the trade classification work?

To answer this question, therefore, the comparison of standard trade classifica-
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tions such as, tick rule, quote rule and, Lee&Ready algorithm are provided based

on the existing works. For example, Ellis et al. [2000] report the accuracy of

these trade classifications, they find that the tick rule, the quote rule and the

Lee&Ready algorithm correctly 77.66%, 76.40% and 81.05% of trades, respec-

tively. Odders-White [2000] report the Lee&ready successively 85% of trades.

Chakrabarty et al. [2012] report tick rule correctly classifies 90.80% of trade vol-

ume. To illustrate how trade classification effects PIN, Boehmer et al. [2007]

report that the misclassification of Lee&Ready algorithm leads to a large bias

of 18% of the estimate PIN for their sample stock in the NYSE. These different

results of trade classification cause the difficulty of PIN computation. However,

the PIN computation in this thesis follows the original work of Easley et al. [1996]

by using the Lee and Ready [1991] algorithm for trade classification. Therefore,

a brief description of trade classification approaches is provided in the following

section.

4.3.1 Tick Rule

The tick rule is widely used for trade classification and captures the natural in-

tuition that buyers pay a higher price and sellers get a lower price. Therefore,

it assumes that trades are buys if the trade price is higher than the previous

one; on the other hand, if the trade price is lower than the previous one, it is

assumed that the trade is a sell. If the trade price remains stable compared to

the previous price, the trade is assumed to be the same as the previous trade.

Price data (Level 1 data) is needed for this classification and every trade can be

classified.
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Easley et al. [2012] criticizes this approach because the tick rule focuses only

on price movements. The questions about the accuracy of this classification are

especially relevant in HFT. In the HFT, where the price moves up and down

at super-speed succession within the order book, trades tend to be misclassified.

Another problem is misclassification from hidden orders when there is no price

movement. For instance, if the direction of the previous trade was a buy followed

by trade with a hidden sell order at midpoint the same as the buy price, this

trade will later be incorrectly classified as a buy.

4.3.2 Quote Rule

The quote rule classification demands more data than the tick rule, since it re-

quires the best bid and ask quotes. This method classifies a trade as a buy when

it occurs above the best bid and ask midpoint and conversely, it will be classified

as a sell when it occurs below the midpoint. When the trade appears at the

midpoint it is unclassified. Despite the fact that this method requires more data

than the tick rule and should therefore provide more accurate results in classi-

fying the trade, it is problematic given that a large number of trades appearing

at mid-quote are misclassified [Easley et al., 2012]. This incorrect classification

should increase in HFT when quotes change more frequently than trades execute,

which means that a trade may be classified as ask at the current trade when, in

fact, it took place as a bid. Equally, this incorrect classification occurs in less

liquid trading with thinner order books.
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4.3.3 Lee–Ready Algorithm

Another widely used technique to classify the direction of trade is the Lee and

Ready [1991] algorithm, which is a combination of the tick rule and the quote

rule. Lee and Ready examined a sample of the trading of 150 NYSE companies

in 1988 when criticizing the tick rule, and the Lee–Ready algorithm also identifies

some problems with the quote rule. The original Lee–Ready algorithm specified

a 5 s delay in comparing trades to quotes. The following rules apply when using

this method to classify trades:

1. For a trade, if the inside (best bid (ask)) quote has not changed within
the preceding 5 s and the price is equal to the bid (ask), the trade is then
classified as a sell (buy).

2. When the current quotes appear for less than 5 s, the trade direction is
compared with the previous quotes.

3. When the trade price is outside the inside spread, so that the current trade
price is lower (higher) than the best bid (ask), the trade is classified as a
sell (buy).

4. If the transaction is at the midpoint the Lee–Ready algorithm uses a tick
rule to classify the trade.

5. Tick rule: when the price is between the spread but not at the midpoint,
the trade is classified as a sell (buy) when the price is closer to the bid (ask).

The Lee–Ready algorithm is the main classification for the PIN because of

its accuracy. Lee and Radhakrishna [2000] reported a 93% success rate when

they applied this method to 144 NYSE stocks traded between November 1990

and January 1991 using a TORQ database. Finucane [2000] reported an 84.4%

accuracy of 337,667 trades for all 144 firms in the NYSE TORQ database, while

Odders-White [2000] found 85% accuracy using a TORQ database of 318,364

transactions. Ellis et al. [2000] used a data set of 313 NASDAQ firms that con-

tained 2,433,019 trades and Lee–Ready correctly classified 81.1% of them. How-

ever, there is some evidence that the Lee–Ready classification is less accurate for

HFT, as Chakrabarty et al. [2012] found when using TAQ data from INET for
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342 stocks in NASDAQ, since the results showed that the Lee–Ready algorithm

had misclassified 31% of all trades.

4.4 Preliminary Analysis and Implications

My empirical analysis follows the PIN approach as described in section 3.0.4. The

PIN is a measure of asymmetric information on a trading event between informed

and uninformed trading, which was developed on the theoretical framework of

Easley and O’Hara [1992], although the original PIN approach was introduced by

Easley et al. [1996]. They produced a mixed discrete-time and continuous-time

sequential model of the trading mechanism, in which trades emerge when three

classifications of economic agents – namely market makers, informed traders and

uninformed traders collaborate. Abad and Yagüe [2012], explain that on a trading

day, a market maker is a competitive or strategic trader, informed and uninformed

traders are risk neutral with probability of profit or loss at 0.5. Also, informed

and uninformed traders arrive in the market with their unique arrival rate with a

view to a trading game between the liquidity provider and trader. Despite this,

the PIN is not a direct measurement observation, but rather a parameter of a

microstructure model which is estimated by the numerical maximization of the

likelihood function. This is explained by Easley et al. [1996], as considering the

likelihood of the arrival of three different types of information on a trading day:

no news, good news, and bad news. This set of options for market agents can be

summarized in a standard tree diagram representing the trading process. This

diagram gives the structure of the trading process, where α is the probability of

an information event, δ is the probability of a low signal, µ is the rate of informed

trade arrivals, and ε is the rate of uninformed buy and sell rate arrivals.
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Table 4.1: Comparison between averages PIN estimates across various stud-
ies and markets.

Author Asset Sample Period Min–max Mean

Easley et al. [1996] NYSE – 90 stocks Oct. 1, 1990 to Dec. 23, 1990 0.120–0.342 0.197
Idier and Nardelli [2011] Euro overnight interbank

rate, Money market
Dec. 2000 to Mar. 2008 0.200–0.580 0.480

Easley et al. [2011] E-mini S&P 500 (CME) Jan. 1, 2008 to Oct. 30, 2010 0.205–0.830 0.393
Easley et al. [2012] E-mini S&P 500 (CME) Jan. 1, 2008 to Oct. 30, 2010 0.205–0.830 0.393

T-Note (CBOT) Jan. 1, 2008 to Oct. 30, 2010 0.200–0.800 0.401
EUR/USD(CME) Jan. 1, 2008 to Oct. 30, 2010 0.150–0.780 0.327
Brent Crude Oil (ICE) Jan. 1, 2008 to Oct. 30, 2010 0.200–0.770 0.384
Silver (COMEX) Jan. 1, 2008 to Oct. 30, 2010 0.200–0.840 0.411

Abad and Yagüe [2012] Spanish Stock Exchange – 15
stocks

Jan. 1, 2009 to Dec. 31, 2009 0.104–0.501 0.227

Kim et al. [2014] Intra day trading – Eurodol-
lar Futures (CME)

Jan. 3, 2005 to Dec. 29, 2006 0.760–0.970 0.880

Yan and Zhang [2014] NYSE/AMEX stocks that
have data in the ISSM and
TAQ databases

Jan, 1, 1983 to Dec. 31, 2004 0.177–0.227 0.201

My PIN 40 Eurodollar Future con-
tracts

Jan. 1, 1996 to Jan 1, 2014 0.369–0.992 0.688

Note: This table presents a sample result of PIN between other PIN and the PIN in my research.
The result from this table indicates that the PIN in the ED market is always high and higher
than the equities market, however, the PIN result from my work coincides with those of Kim
et al. [2014] on the Eurodollar futures market.

I compute the PIN measure in the following sections using various rolling win-

dows to record time series variation in the Eurodollar Futures PIN. The estimated

PIN averages over 0.5 for the majority of the sample and this is high relative to

comparable equity market studies, see Table 4.1. However, the results coincide

with those of Kim et al. [2014] on the CME Globex trades within Eurodollar

futures samples and Easley et al. [2012] for the US Dollar Treasury note.

Although the PIN estimates range between 0.1 and 0.8 in the equities mar-

ket, in the derivatives market the range is higher, with minimum and maximum

values of 0.20 and 0.97, respectively. Also, in the derivatives market the min–

max spread is higher than in the equities market, particularly in the interest rate

derivatives market. The highest mean of PIN appears in Kim et al. [2014] with
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value of 0.880 ;however, the highest actual value of PIN is shown in this work

with the maximum value of 0.992. Interestingly, the value of PIN in Eurodollar

Futures is higher than the equity market and always high as in this work the PIN

is mostly higher than 0.5 and in Kim et al. [2014] the PIN varies between 0.76

and 0.97. Given the higher PIN that appears in the Eurodollar market in both

these cases, it would be interesting to investigate this in the future.

4.4.1 Eurodollar and PIN Analysis

The data used in this research is the Eurodollar futures data traded on the CME’s

Globex platform (see section 2.3). The data are directly from the CME tapes

for the period January 1, 1996 to January 1, 2014. In total, I included the 40

quarterly ED contracts that are available from the Thomson Reuter database via

Tick history system. The PIN calculations were computed for each day by mul-

tiple instances of Matlab, on a large multiprocessor workstation with 0.5TB of

RAM and virtual memory. The total computation time was around four weeks.

The data for the 40 Eurodollar future contracts is separated into two different

time-frames, the first of which was from January 1, 1996 to July 31, 2007, and

the second, from August 1, 2007 to January 1, 2014. The descriptive statistics

for each ED futures contract in the two periods are shown in Tables 4.2 and 4.3.

In terms of the first period, the highest mean bid/ask spread belongs to EDU1,

and EDZ0 has the highest mean trades returns. The smallest mean bid–ask spread

belongs to EDH6, and EDU6 has the lowest mean trade returns. As for the second

period, EDM7 presents both the largest mean spread and mean returns, while

EDZ9 shows the lowest mean spread, EDZ9 shows the lowest mean spread, and

EDM9 presents the lowest mean return.
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4.4.1.1 Maximum Likelihood and PIN Estimation

The parameters of the PIN term structure model are estimated in this section.

In fact, the trade process depends on four parameters – namely the probabil-

ity of an information event; the probability of bad or good news; the arrival

rate of informed traders; and the arrival rate of uninformed traders, presented

as α, δ, µ and ε respectively. These parameters determine the probability of in-

formed trading that is observed by order imbalance on information-based trading

in the Eurodollar Futures market.

These four parameters of the trading process for each Eurodollar future series

in a total of 40 data sets are estimated by maximizing the likelihood function, as

described in Section 4. The mean estimate of the parameters and their standard

deviation for each series are provided in Tables 4.4 and 4.5. Table 4.4 presents the

results obtained from a preliminary analysis of the mean estimated parameters

by Eurodollar futures series contracts.

The mean value of the information event parameter α for Eurodollar contracts

is 0.6444, which indicates that, on average, 3/5 of trading days are information

driven. The second information parameter in the PIN approach is δ, which is the

probability of bad news, so that the signal is low (resp. high) during informed

days with a probability δ (resp. 1− δ). These results indicate that a high signal

is observed with an estimated probability δ of 0.3517, and 1 − δ is 0.6483. This

means that the order is more likely to be buy than sell when an information event

occurs. Thus, traders tend to believe that information in trading day-driven or-

ders reveals an excess liquidity in demand on the Eurodollar futures market more
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Table 4.4: Mean value of PIN estimators and PIN for Eurodollar Futures
market.

α δ µ ε PIN
Mean 0.6444 0.3517 0.5604 0.5414 0.2501
Std dev. (0.0533) (0.0389) (0.0087) (0.0216) (0.0068)

than supply.

Thirdly, the estimated mean value of the rate of arrival of the informed trader

µ is 0.5604, which suggests that Eurodollar traders tend to believe that observed

orders based on an information-driven probability of 56.04% or just above half of

the total orders that trade on the Eurodollar futures market come from informed

traders.

Fourthly, the mean estimate ε is 0.54144, which indicates that the probabil-

ity of liquidity trading is just above half. On informed days, the parameter ε

represents the market liquidity that comes from uninformed traders, while on

uninformed days, it coincides with the total liquidity available in the market be-

cause only uninformed traders have arrived in the market.

Having estimated the parameters α, δ, µ, ε, all four are used to calculate the

PIN, where the probability of information-based trading is PIN = αµ
αµ+2ε

, the

PIN depends on the arrival rate of informed and uninformed traders and the

probability of the occurrence of an information event.

The average value of the probability of informed trading or PIN on the Eu-

rodollar Futures market for the whole Eurodollar futures series contracts was also

calculated using the average value of α, δ, µ, ε is reported in Table 4.4 as 0.25001.
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This suggests that investors who trade in the Eurodollar futures market face a

25.01% probability of trading with a counter-party who is better informed about

the direction of the key rate.

The average value of parameters and the PIN for all 40 Eurodollar futures

contracts was presented in Table 4.5. The results shown in Table 4.5 illustrate

separate descriptive statistics of the PIN value and PIN parameters on 40 Eu-

rodollar futures series contracts from January 1, 1996 to January 1, 2014. These

results are consistent with those of Easley et al. [1996], in that the parameters

and the PIN measure are between 0 and 1. The interesting result in Table 4.5 is

that the highest PIN value appears on EDH5 and EDM6 contracts, which have

the same value of 0.7, and EDH2 has the lowest PIN value of 0.677 (see Table 4.5).

4.4.1.2 PIN on the Eurodollar futures market

The next step is to analyse the way in which some events, such as turmoil in the

financial market or maturity effects, which have taken place in the Eurodollar

futures market may have affected the trading strategies, and also the probability

of informed trading. In order to particularly assess the evolution of informed

trading over time, the model parameters were estimated on samples using 78

overlapping days. Then, the historical PIN was plotted separately into 10 sub-

plots to illustrate the pattern of the PIN value. Each sub-plot contained four

different ED contracts with an expiry date within the same years; for instance,

the first sub-plot included EDH0, EDM0, EDU0 and EDZ0. These four ED con-

tracts were due to expire in 2000 and 2010. The historical PIN is presented in

Figure 4.1. Surprisingly, a similar trend of PIN appears in all 10 sub-plots. Fur-

thermore, some landmarks of the historical PIN are indicated to assess whether
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Table 4.5: Maximum likelihood and PIN estimation.

α δ µ ε PIN α δ µ ε PIN
EDH0 0.585 0.407 0.551 0.540 0.679 EDM0 0.591 0.401 0.553 0.679 0.679

(0.358) (0.317) (0.234) (0.253) (0.237) (0.359) (0.318) (0.237) (0.257) (0.242)

EDH1 0.601 0.396 0.549 0.542 0.679 EDM1 0.607 0.397 0.547 0.537 0.681
(0.359) (0.321) (0.238) (0.260) (0.243) (0.353) (0.321) (0.235) (0.262) (0.241)

EDH2 0.599 0.395 0.546 0.540 0.677 EDM2 0.648 0.361 0.550 0.529 0.687
(0.360) (0.321) (0.239) (0.262) (0.246) (0.344) (0.319) (0.233) (0.269) (0.239)

EDH3 0.665 0.339 0.556 0.520 0.694 EDM3 0.671 0.337 0.559 0.526 0.693
(0.340) (0.315) (0.228) (0.273) (0.235) (0.338) (0.316) (0.227) (0.272) (0.232)

EDH4 0.685 0.319 0.564 0.521 0.696 EDM4 0.697 0.315 0.562 0.520 0.695
(0.325) (0.307) (0.227) (0.271) (0.229) (0.316) (0.305) (0.225) (0.271) (0.228)

EDH5 0.716 0.296 0.572 0.533 0.700 EDM5 0.714 0.297 0.569 0.541 0.694
(0.307) (0.290) (0.225) (0.273) (0.224) (0.314) (0.203) (0.229) (0.274) (0.229)

EDH6 0.713 0.291 0.575 0.545 0.695 EDM6 0.705 0.301 0.578 0.539 0.700
(0.315) (0.290) (0.227) (0.275) (0.224) (0.319) (0.300) (0.229) (0.279) (0.228)

EDH7 0.665 0.334 0.572 0.538 0.694 EDM7 0.654 0.336 0.570 0.544 0.692
(0.338) (0.313) (0.229) (0.276) (0.226) (0.347) (0.313) (0.227) (0.274) (0.226)

EDH8 0.628 0.365 0.559 0.550 0.680 EDM8 0.628 0.366 0.561 0.547 0.682
(0.354) (0.318) (0.233) (0.264) (0.232) (0.354) (0.318) (0.232) (0.261) (0.23)

EDH9 0.599 0.390 0.556 0.541 0.683 EDM9 0.604 0.390 0.557 0.546 0.682
(0.354) (0.314) (0.226) (0.250) (0.227) (0.354) (0.317) (0.228) (0.252) (0.229)

α δ µ ε PIN α δ µ ε PIN

EDU0 0.595 0.404 0.558 0.554 0.683 EDZ0 0.598 0.401 0.550 0.547 0.678
(0.3653) (0.3246) (0.2427) (0.2603) (0.2452) (0.3643) (0.3234) (0.2404) (0.2613) (0.2453)

EDU1 0.605 0.393 0.552 0.536 0.686 EDZ1 0.623 0.387 0.548 0.533 0.684
(0.353) (0.3162) (0.2358) (0.2606) (0.2402) (0.3457) (0.3173) (0.2362) (0.2651) (0.2424)

EDU2 0.653 0.357 0.552 0.527 0.687 EDZ2 0.659 0.348 0.557 0.523 0.694
(0.3438) (0.3186) (0.2368) (0.2724) (0.2442) (0.3435) (0.3181) (0.2275) (0.2717) (0.233)

EDU3 0.673 0.332 0.557 0.524 0.691 EDZ3 0.673 0.333 0.559 0.523 0.693
(0.3336) (0.3129) (0.2268) (0.2674) (0.2321) (0.3332) (0.3126) (0.2279) (0.2682) (0.2308)

EDU4 0.702 0.309 0.564 0.527 0.696 EDZ4 0.712 0.300 0.566 0.534 0.694
(0.3155) (0.3059) (0.225) (0.2729) (0.2281) (0.3101) (0.3029) (0.2263) (0.2727) (0.2276)

EDU5 0.718 0.295 0.570 0.548 0.690 EDZ5 0.722 0.292 0.576 0.546 0.697
(0.3127) (0.3059) (0.2305) (0.2725) (0.2298) (0.3106) (0.3043) (0.2287) (0.2761) (0.2251)

EDU6 0.692 0.307 0.574 0.540 0.696 EDZ6 0.681 0.318 0.568 0.541 0.690
(0.3289) (0.3071) (0.2282) (0.2769) (0.2255) (0.3295) (0.3059) (0.2366) (0.2766) (0.2317)

EDU7 0.452 0.348 0.569 0.543 0.691 EDZ7 0.639 0.353 0.566 0.548 0.686
(0.3521) (0.3174 (0.2307) (0.2734) (0.2304) (0.3494) (0.3151) (0.2303) (0.2671) (0.2299)

EDU8 0.619 0.371 0.563 0.550 0.685 EDZ8 0.615 0.380 0.557 0.548 0.681
(0.3541) (0.315) (0.2277) (0.2582) (0.2245) (0.3482) (0.3117) (0.2248) (0.2509) (0.2232)

EDU9 0.595 0.399 0.552 0.542 0.679 EDZ9 0.581 0.410 0.552 0.542 0.681
(0.3539) (0.3146) (0.2303) (0.2497) (0.2323) (0.3609) (0.3167) (0.2271) (0.252) (0.2308)

Note: The table presents the mean and standard deviations of parameters of the PIN model, and
the mean value of PIN for 40 Eurodollar futures series contracts. The parameter α represents
the probability of an information event, δ is the probability of a low signal, µ is the rate of
informed trade arrival, and ε is the rate of uninformed buy and sell trade arrivals. PIN is the
probability of informed trading.
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some turning points in the trend of the PIN can be associated with major events

that took place in the Eurodollar market, as shown in Figure 4.1.

Overall, the PIN estimates for the majority of Eurodollar futures contracts

were high and widely fluctuated between 1996 and 2000; however a decreas-

ing trend can be observed from 2002 until around 2005 for the majority of ED

contracts and this was reversed to an upward trend between 2005 and 2006. In-

terestingly, this increasing trend after 2006 is before the sub-prime crisis. The

PIN remained steady at around 0.6 from 2010 but was still below the historical

PIN from the first period (1996–2000) (see Figure 4.1).

It can be seen from Figure 4.2 that four particular events in the four periods

appear to have exerted some influence on the historical development of the PIN.

The first period that influenced the PIN was between 1996 and 2000, when the

PIN widely and highly fluctuated. This can possibly be related to the fact that,

in this period, the Eurodollar Futures market was not popular or traded less

frequently than today. There were very few quotes and trade volumes in that

period of time – for example, in the EDM series (Figure 4.3). As a result, the

Eurodollar market was uncomplicated and it was easy for informed traders to

manipulate it by modifying their trading behaviour to reflect a different degree

of PIN. After this period, a decreasing trend of the PIN could be observed after

2002 and one possible explanation for this is that the number of quotes increased

rapidly, from less than 100 to more than 10,000 per day, and around 50 trades

per day increased to more than 1,000. Therefore, these results of a decreasing

PIN could be affected by more frequent trading in futures contracts.

The third period of historical events that affected the value of the PIN was
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the market turmoil. The sub-prime crisis mainly affected the money market and

used the market to reduce the liquidity in the financial market. The PIN sharply

decreased at the beginning of the financial turmoil, approximately in mid-2007,

after which the PIN changed rapidly because of some spiking in most Eurodollar

contracts. This was possibly affected by the reduced liquidity at the beginning of

the crisis, and subsequently the panel bank tried to maintain the key interest rate

in the LIBOR submission to protect the reputation of the banks, as explained in

the next section.

The final event that affected the historical PIN occurred in 2012. This was

when the CFTA and the FSA ordered Barclays Bank, UBS, RBS and Rabobank

to pay a penalty for manipulating the LIBOR. The effect of the announcement

was visible in the marked decrease of the PIN in 2012 and it became more stabi-

lized in most ED futures contracts after 2013.

4.5 Summary Chapter

Overall, the PIN appears to have dropped around the time of the sub-prime crisis

(circa 2007) and then bounced back afterwards and sharply dropped again with

the collapse of Lehman Brothers; then it bounced back once again indicating that

systematic market uncertainty has played a role in information asymmetry. Sig-

nificantly, the result of the PIN in this thesis is always higher for the Eurodollar

futures market than those recorded in the equity market (circa 0.4 to 0.8 versus

0.1 to 0.5; see Abad and Yagüe, 2012; Aslan et al., 2011; Easley et al., 1996).

However other PIN studies of interest rate derivatives have found similarly high,

if not higher PIN measurements, in particular Kim et al. [2014] find the PIN for
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the Eurodollar market to be substantially higher on average than that detected

in the equity and FX markets.

In summary, in terms of illustrating the presence of informed trading in the

Eurodollar futures market, the initial results are somewhat inconclusive over the

time period.
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Chapter 5

Motivating Evidence of LIBOR

Manipulation and The PIN

Analysis in the LIBOR Reference

Rate Derivative Market

Since 2008 a series of allegations emerged in regard to systematic attempts to

manipulate the London Interbank Offered Rate (LIBOR). The first controversial

study released by the Wall Street Journal suggested that during the financial

crisis (2007 - 2008) banks may have understated the interbank borrowing rate to

keep them look healthier than the reality. In June 2012 this controversy came

to the fore when Barclays was fined £290 million for having rigged the worlds

benchmarking borrowing rate. Therefore, this chapter applies a classical test

of Pearson Spearman’s rank correlation to a series of participating bank s for a

LIBOR submission. The results show a very obvious pattern, the Ranking cor-

relation for bank’s quotes is effectively identical up to mid 2007 then there is a

break in correlation subsequent to the start of the sub-prime crisis. Furthermore,
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the document catalog of recorded communication between interest rate deriva-

tive traders and LIBOR submitters gives a strong support evidence of this market

abuse. The evidence is provided in this chapter.

This chapter also implements a version of the probability of informed trading

measures first introduced in Easley et al. [1996], for the Eurodollar futures market

over the LIBOR manipulation period. The Eurodollar future is one of the most

actively traded US Dollar LIBOR benchmarked derivatives in the world with total

traded volume in excess of half a quadrillion US dollars in 2011 (Source: CFTC)

and is possibly the world’s largest financial market. The objective of this chapter

is an ex-post review of the effectiveness of the PIN in determining changes in

the information structure of the market around documented episodes of recorded

manipulation of the benchmark rate, from the various publicly available regula-

tory reports. In keeping with previous studies on interest rate derivatives, the

findings indicate that the average PIN is far higher than for the equity market at

or around 2/3 to 3/4. When implementing a rolling measure of the PIN to detect

time variation I find a clear pattern of increases and decreases in informed trading

relative to the recorded activity in the current regulatory reports. Furthermore,

this analysis also finds a strong maturity effect that appears to arise from the

strong time variation in trading in these contracts over their life-cycle, from in-

ception to maturity. This work constructs a series of experiments to determine

the significance of the trading time for different epochs from 1996 to 2014 , us-

ing all inside quotes and trades in these contracts. The results indicate that the

PIN could have been used as an early warning of unusual activity in the LIBOR

reference rate and anecdotally this chapter demonstrates that on specific dates

identified by the CFTC and FSA the recursively estimated PIN reaches a peak

over 1,000 basis points higher for certain near-delivery contracts than for others
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further away in the forward curve.

5.1 Introduction

The London InterBank Offered Rate (LIBOR) and the European InterBank Of-

fered Rate (EURIBOR) act as a reference rate for the majority of interest rate

derivatives traded in global markets. However, the probity of this rate-setting

mechanism has been called into question and several cases of manipulation of

the LIBOR fix have been recorded since 2008. This chapter exploits new infor-

mation released by the various regulatory cases and uses it to conduct a field

test of a commonly used method to assess the degree of asymmetric information

from the order flows of traded assets, in this case LIBOR referenced Eurodollar

futures. The Eurodollar futures market is referenced to the three-month dollar

LIBOR rate (henceforth 3M-LIBOR) for maturities out to ten years. The anal-

ysis utilizes a large sample of trade and quote data to estimate the probability

of informed trading (PIN) using the model of Easley et al. [1996]. The results

paint a mixed picture of the effectiveness of the PIN for interest rate futures.

In most of the documented cases the PIN varies from the long-run averages in

a statistically distinctive manner; however, other effects, such as high-frequency

quoting around maturity dates, are found to generate noise that has a similar

impact on the PIN.

Evidence is provided for the effectiveness of the PIN model in actually de-

tecting informed behavior in the Eurodollar futures market. To accomplish this,

I collect all trades and inside quotes for Eurodollar futures from 1996 to 2014, a

data set in excess of two billion observations. I believe this to be the largest study
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of its type ever conducted. This work will compute the PIN using a variety of ap-

proaches and construct test groups to see whether the PIN varies systematically

with the events suggested in the regulatory filings, versus a set of controls. In

general, the control groups show average PIN variation around “normal” events

in the futures contract life-cycle – in this case the maturity of the contract.

The reports on LIBOR manipulation for each bank provide us with a unique

field experiment to test the PIN as the number of events is very large and the

specificity of the objectives of those involved is very clearly stated. It is worth

reviewing the rationale behind this approach. The PIN seeks to detect trades

that appear to be the result of informed signals prior to some pay-off event. For

equities the future dividend is often somewhat nebulous at higher frequencies,

however in futures markets it is not. Each day the outstanding contracts are

marked to market using the last one minute of trading or the mid-price of the

final outstanding quotes. At maturity the contracts are settled to cash based on

the price of 100 minus the 3M-LIBOR on the third Wednesday of the settlement

month. It should be stressed that for all “manipulation” is supposed to take place

in the reference rate (the 3M-LIBOR) and not directly in the Eurodollar itself.

My foundational assumption is that given that a particular bank is able to

influence the reference rate and hence possibly influence the mark to market and

certainly influence the final settlement price, then the traders of this bank will

have more complete information on the final payoff of this asset over both the

trading days and over the overall maturity of the contract. This informational

advantage should then be reflected in the PIN, relative to days when no ma-

nipulation of the reference rate took place. I will illustrate using examples and

summary statistics from the regulatory reports that requests from derivatives
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traders tended to take place with relatively short notice periods of between one

day and one week. The degree of variation in the reference rate that can be cre-

ated by “high or low balling” the rate is relatively small. However, in this chapter

I will also illustrate that the size of the notional positions in the Eurodollar mar-

ket is so large that there is still a significant incentive to shave the reference rate

in your favour.

Overall, the findings are mixed. I find that the PIN reacts strongly to certain

types of events and the variation is statistically significant relative to the con-

trol group. However, the PIN is always very high for Eurodollar futures market,

averaging over 0.5 for the majority of the sample, compared to the equity mar-

ket where observed PIN, for which IT usually varies between 0.1 and 0.6 from a

survey of prior studies. This work also finds that IT is not stable relative to the

various estimation assumptions. However, because this is almost entirely driven

by the instability of the “trade classification” algorithm used to determine buying

pressure, I leave full investigation of this issue to future work.

The contribution of this chapter is threefold. First, it provides a comprehen-

sive statistical analysis of market abuse related to LIBOR manipulation. Second,

to implement my analysis I provide, fully catalogued, the manipulation dates of

the LIBOR manipulation especially the 3-month LIBOR, from the legal docu-

ments proceedings against multinational bank from the U.S. and UK. regulators.

Finally, this work provides some evidence of the effectiveness of the PIN as an

early warning system for both market manipulation and market uncertainty.

The chapter is organized as follows §(5.2) provides a detailed background

to interest rate derivatives including LIBOR and Eurodollar Futures trading on
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CME’s Globex. §(5.3) explores the PIN and presents the empirical results of

PIN on the LIBOR manipulation case. §(5.4) explores the PIN and the maturity

effect. Finally, §(5.5) provides some conclusions and outlines directions for future

work in this area.

5.2 Background of Interest Rate Derivatives Mar-

ket and LIBOR Manipulation

The purpose of this research is to investigate the comparative microstructure

of the Eurodollar Future markets during the LIBOR manipulation event. As a

useful natural experiment, the incident of LIBOR manipulation offers a great

opportunity for academics to impute and observe parameters of interest in an

information asymmetry model and to study the development of those estimators

incorporated with the information content.

To understand the Eurodollar futures based on 3-M US Dollar LIBOR, it

is deemed useful to introduce the background of the London InterBank Offered

Rate or the LIBOR, since this is the benchmark or key interest rate for Eurodollar

futures. The original LIBOR was introduced in 1984, when the BBA or British

Bankers’ Association and other parties, such as the Bank of England, formed a

standard settlement rate of contractual terms on interest rate swaps. Two years

later, the BBA published the first LIBOR as an official interest rate for a variety of

financial instruments transacted across the multi-international financial market,

notably syndicated loans, forward rate agreements, interest rate futures, interest

rate swaps, and interest rate options [Abrantes-Metz et al., 2012]. The LIBOR

submission in now administered by the NYSE: ICE LIBOR unit. At 11.00 am
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on each weekday, the panel banks submit their rates to an administrator. Then,

the highest four and the lowest four of the quoted rates are removed and the re-

maining middle rates are used to calculate a simple arithmetic mean. Finally, at

11.30am LIBOR is quoted and announced by Thomson Reuters. Since Septem-

ber 2013 the ICE LIBOR unit makes the fixing available to various data vendors

(including Thomson Reuters) for distribution to the market and for settlement

on maturing interest rate derivatives set relative to this rate. Currently, the daily

LIBOR rates are quoted on 10 major currencies, including the Australian Dollar,

British Pound, Canadian Dollar, European Euro, Danish Kroner, Japanese Yen,

New Zealand Dollar, Swedish Kroner, Swiss Franc and US Dollar.

In London, the LIBOR rate is based on the rates quoted by 16 banks selected

by the BBA to provide a daily rate for LIBOR calculation. Currently in the

United States, 18 banks are selected by the BBA to form a panel to construct

the US Dollar LIBOR. Three US and 16 non-American banks are included in

the panel for the US dollar fixing. The US banks are: Bank of America, JP

Morgan Chase and Citibank. The non-US Banks are: Bank of Tokyo-Mitsubishi

UFJ, Barclays Bank, BNP Paribas, Credit Agricole CIB, Credit Suisse, Deutsche

Bank AG, HSBC, Lloyds TSB Bank, Rabobank, Royal Bank of Canada, Société

Générale, Sumitomo Mitsui Banking Corporation, The Norinchukin Bank, The

Royal Bank of Scotland Group and UBS AG.

As a benchmark of interest rates, the LIBOR is widely used for various fi-

nancial instruments including standard interbank products such as forward rate

agreement, interest rate swaps, interest rate futures, mortgage rates, standard

loan rates and Eurodollar Futures trading. Likewise, in the United States around

60 to 80% of prime adjustable rate mortgages and sub-prime mortgages were
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indexed to the US LIBOR. In addition, the American municipalities borrowed

around 75% of their money through products that were linked to the LIBOR.

5.2.1 Eurodollar futures and the current LIBOR manip-

ulation cases

This section starts with the definition of Eurodollar, the Eurodollar is US Dollar

deposits located outside the legal jurisdiction of the United States. The majority

of Eurodollar deposits are located in London, however the Eurodollar deposit

account really has very little to do with the futures contract named after it. The

Eurodollar future contract made its debut in December 1981 on the Chicago Mer-

cantile Exchange (CME), and this was the first future contract ever settled to

cash. Since the transaction market for the Eurodollar futures contract is not so

well understood outside the interest rate derivative community, I will explain the

specifics in some detail in this section.

The Eurodollar futures themselves are interest rate derivatives with reference

to the 3M London interbank offered rate (LIBOR), that have a face value of $1

million with a 3-month maturity and the futures contracts have a maturity of up

to ten years. The regular contracts expire either in March, June, September or

December, extending outwardly for 40 quarterly expiring contracts in the long

term; shorter maturity monthly contracts are traded, however, their relative vol-

ume, trading activity and quoting activity are several orders of magnitude lower

than the quarterly contracts. The last trading day is the second business day

prior to the third Wednesday of the delivery month in both New York and Lon-

don. At any given time, the exchange lists four of the monthly series, bringing

the total number of available Eurodollar future contract maturity types to 44 –
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namely, 40 quarterly and 4 monthly serial contracts.

Individually, Eurodollar futures, in effect, parallel forward rate agreements

(FRAs), but provide more liquidity by virtue of the clearing house and being

marked to market. Of key importance is the cash settlement – Eurodollar traders

will receive cash compensation on the same day rather than having to wait until

the expiry date. Moreover, large institutions tend to use Eurodollar futures to

manage their risk or portfolio to avoid interest rate risk. To hedge against this

risk, borrowers will enter into short future contracts to avoid the risk of rising

interest rates while lenders will enter into long future contracts to avoid the risk

of falling interest rates. However, there are speculators who purely seek to make

a profit from Eurodollar trading by betting on the change in interest rates (future

directional). Institutional investors will use Eurodollar futures contracts to lock

in an interest rate today for their borrowing or lending in the future. Eurodollar

futures are the most widely traded short-term interest rate futures in the world,

with average daily volume of more than 2 million. Futures contracts are the most

active interest rate futures traded in the world, typically in the 7 to 9 million

range in the shortest maturity futures.1

At this point, after the Eurodollar futures (ED) is introduced, the following

section will provide a connection between ED and LIBOR manipulation. I start

with a point of the main motivation and a background of my experiment for this

thesis, which lies in the run-up to the 2007 financial turmoil and anomalies in

the LIBOR rate in the immediate aftermath. The British Bankers’ Association’s

claims that the “BBA LIBOR is the primary benchmark for global’s short-term

interest rates(Abrantes-Metz et al. [2012]). However, there is a case that the

1CME Group, volume data, http://investor.cmegroup.com/investor-
relations/downloads.cfm [accessed August 19, 2014].
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financial market has once again impaired trust when the media reported that

several large international banks were reporting unjustifiably low LIBOR rates.

For instance, an analysis conducted by the Wall Street Journal (WSJ) on May

29, 2008 suggested that banks may have reported flawed interest data for 3M-

LIBOR1.

At this juncture, it is useful to provide some background on the events sur-

rounding the post 2008 LIBOR manipulation regulatory actions and how this

links to the Eurodollar market both directly and indirectly. In the immediate

aftermath of the October 2008 chapter 11 bankruptcy of Lehman Brothers, in-

terbank rates began to exhibit high levels of volatility. Figure 5.1 illustrates the

three month US dollar LIBOR submission (henceforth 3M-LIBOR) for submit-

ter banks from August 2008 to January 2009. It can be seen from this figure

that prior to the first announcement of Lehman Brothers impending collapse the

spread between the highest submitted rate and the lowest rate is less than 10 ba-

sis points. As I move towards the declaration of Chapter 11 the spread increases

to over one percent or 100 basis points. Subsequent to this period several articles

in industry periodicals and newspapers indicated that banks were systematically

understating their borrowing costs.

The rationale for this story was that since the interbank market had been

effectively frozen, many LIBOR maturities must have been an estimate in order

to fill in the blanks. Subsequently, an investigation into the process of fixing the

LIBOR rates uncovered systematic manipulation of the rates pre-2007, reporting

that the motivation for this activity was to assist the parts of the banks that

1The WSJ analysis suggests banks may have reported flawed interest data for LIBOR. (C.,
Mollenkamp and M., Whitehouse, Study Casts Doubt on Key Rate, http://online.wsj.com/
news/articles/SB12120070376202713)[Last accessed August 19, 2015]
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traded in interest rate derivatives. Post 2008, the systematic mis-reporting of the

LIBOR was simply a ‘beauty contest’ to provide the impression that the banks

were being offered better rates (or any rate) than was actually happening in re-

ality. Indeed, several of the reports indicated that bank regulators had pressured

institutions to report lower rates as a means of reducing market stress.

Subsequent to the results of the initial sets of investigations into LIBOR ma-

nipulation, from September 2013 the responsibility for collecting the LIBOR rates

for each bank in the submitter pool has changed from the British Bankers As-

sociation in conjunction with Thomson-Reuters to the intercontinental exchange

LIBOR unit (ICE-LIBOR) and a new set of guidance has been issued on trans-

action validity for submitters. This study will focus on the period immediately

prior to September 2013.

Table 5.1 illustrates the submission process for a selection of days. First,

banks in the submitter pool submit their borrowing costs across maturities and

currencies and their submissions are ranked top to bottom. The top and bot-

tom quartiles are eliminated and an average taken of the remaining banks. In

Figure 5.2, I plot the submitted 3M LIBOR rates alongside the p-value of the

day-to-day Spearman’s rank correlation between the banks submitted rates from

1996 to 2015. A very obvious pattern is evident, the rankings for the banks is

effectively identical day-on-day up to mid 2007. However, the p-value exhibits

substantial spikes subsequent to the start of the sub-prime crisis and then in-

creases markedly after the Lehman Brothers Chapter 11 event mid to late 2008.

Indicating substantial changes day-to-day in the ranking of the various banks

(note: for banks that do not submit a rate one day, I eliminate their submitted

rate and rank both days in their absence). However, my interest is less in the
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Table 5.1: Example of 3M-LIBOR submissions for six days between 2005–
2008.

Nov 22, 2005 May 24, 2007 Sep 4, 2007 Jun 18, 2008 Oct 15, 2008
BTMU 4.4 Norin 5.37 Barclays 5.21 BTMU 2.82 Barclays 5
Barclays 4.4 HBOS 5.365 Deutsche 5.21 Norin 2.82 Cr.Suisse 4.75
BOA 4.39 BTMU 5.36 BTMU 5.2 Barclays 2.81 RBS 4.75
Citi 4.39 Barclays 5.36 BOA 5.2 HSBC 2.81 BTMU 4.7
Cr.Suisse 4.39 BOA 5.36 Cr.Suisse 5.2 Rabo 2.81 HBOS 4.65
Deutsche 4.39 Citi 5.36 HBOS 5.2 WestLB 2.81 Deutsche 4.6
HBOS 4.39 Cr.Suisse 5.36 JPM 5.2 BOA 2.8 Norin 4.6
JPM 4.39 Deutsche 5.36 Lloyds 5.2 Citi 2.8 WestLB 4.57
Lloyds 4.39 HSBC 5.36 Norin 5.2 Cr.Suisse 2.8 UBS 4.53
Norin 4.39 JPM 5.36 Rabo 5.2 Deutsche 2.8 BOA 4.5
Rabo 4.39 Lloyds 5.36 RBC 5.2 HBOS 2.8 HSBC 4.5
UBS 4.39 Rabo 5.36 RBS 5.2 Lloyds 2.8 Citi 4.45
WestLB 4.39 RBC 5.36 UBS 5.2 RBC 2.8 Lloyds 4.45
HSBC 4.38 UBS 5.36 WestLB 5.2 UBS 2.8 RBC 4.45
RBCc 4.38 WestLB 5.36 Citi 5.14 RBS 2.795 JPM 4.1
RBS 4.38 RBS 5.35 HSBC 5.14 JPM 2.78 Rabo 4.1

3M-
LIBOR

4.39 5.36 5.2 2.8025 4.55

Note: The rates in bold are those that present the average for the submission. The first three
days, November 22, 2005, May 24, 2007 and September 4, 2007 all correspond to fixes that have
been investigated and deemed suspicious. September 4, 2007 is a fix that occurs just after the
sub-prime crisis, whilst the last two columns are samples of submissions before and after the
Lehman Brothers collapse.

period of volatile submissions, but in the preceding period when the ranking was

highly stable. There is clear evidence of attempted cartel behaviour in submit-

ting 3M-LIBOR. In Table 5.2 I have summarized the current count for individual

requests to submitters to adjust the various LIBOR fixes. I can see that the

two most popular were the 3M-LIBOR (303 requests) and the Yen LIBOR (476

requests) across all maturities.

Table 5.3 provides further depth and a timeline of the reported requests for

each of the banks that have settled (as of August 2015) with the US Commodi-

ties and Futures Trading Commission (CFTC) and the UK Financial Services
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Table 5.2: Number of communication requested on LIBOR manipulation.

LIBOR Currencies Barclays Lloyds RBS UBS Rabobank Total
1M-USD LIBOR 111 1 7 22 19 160
3M-USD LIBOR 127 36 34 57 49 303
Sterling LIBOR 22 60 21 36 63 202
Euribor 5 1 46 54 105 211
YEN LIBOR 160 53 3 81 179 476
EuroYen - - - 86 - 86
Total 425 151 111 336 415 1,438

Note: This table presents the number of requests by derivatives traders to their
LIBOR fixing desks for the 3M-USD LIBOR and other LIBOR or similar rates.
The comparison of the number of requests between 3M-USD LIBOR and other
LIBOR currencies mentioned in CFTC documents in the matter of LIBOR ma-
nipulation for Barclays, RBS, UBS, Rabobank and Lloyds Bank.

Authority (FSA, now called the Financial Conduct Authority) for the 3M LI-

BOR. The table also provides a summary of the relevant communications. In

several cases, see for instance Barclays, the requests came directly from the inter-

est rate derivatives desks, providing prima facie evidence of private information

on the reference 3M-LIBOR.

There is evidence from the summaries for several of the banks in question, see

CFTC, 2012 for an example, that the primary object of interest for the deriva-

tives traders requesting adjustments to the 3M-LIBOR and others were interest

rate swaps (IRS) and Eurodollar futures. For further analysis, I have chosen the

Eurodollar futures market for two reasons. First, data availability. The CME

provides tapes for every inside quote and trade in Quarterly and nearest month

Eurodollar futures from 1996 to 2015. From 2008 the CME provides the complete

limit order book to ten levels (in practice only five are populated) and this is in

effect, a population dataset of activity in this market. The IRS for my sample

was either completely or nearly completely an over-the-counter market, so the
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ability to collect a complete picture of market activity for these transactions is

virtually impossible (indeed it is very difficult for those with actual regulatory

oversight). Second, and arguably more importantly, the in-house traders for each

of the submitter banks were generally assigned to positions needed to offset posi-

tions the bank has taken on when facilitating its IRS activity. The most common

method for offsetting fixed or floating positions in IRSs is to use Eurodollar strips.

CME groups own analysis of the Eurodollar futures market by Sturm and Barker

[2011], illustrates the concomitant rise in Eurodollar futures activity with the

total volume of IRS activity. Hence, the provision of private information on fu-

tures fixings of the 3M-LIBOR would be available to certain traders within the

Eurodollar futures market.

As discussed previously, Eurodollar futures as a basic construct, serves as a

primitive component in a great number of other US dollar denoted interest rate

derivatives (and indeed for many cross currency derivatives with the US dollar).

Eurodollar strips and term spreads can be used to synthesize a variety of points

on the dollar forward curve. Furthermore, since the advent of the Dodd-Frank

act in 2010 the trade in dollar interest rate swaps has now increased margin re-

quirements and the cost of the synthetic provision through the Eurodollar market

has led to direct structuring rather than simple offsetting by originating banks,

see Labuszewski [2011].

To illustrate the trading connection between the 3M-LIBOR and the Eurodol-

lar it is useful to describe the crucial events in a days trading. Eurodollar futures

are traded around the clock on Central Standard Time (CST; Chicago time) from

Sunday to Friday, 23 hours a day. On a typical trading day, the CME is divided

into two stages: the per-opening trading stage and the bilateral stage. The Eu-
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rodollar futures are exchanged exclusively in the open outcry on regular CME

floor trading between 7:20 am to 2:00 pm. In addition, trading on Globex solely

begins at 5:00 pm CST on Sunday, which represents the beginning of Monday’s

trading, and continues to operate overnight until 4:00 pm CST on the following

day. However, Globex closes for regularly scheduled maintenance between 4:00

pm and 5.00 pm CST every day. For instance, 5:00 pm on Sunday represents the

beginning of the trading session for Monday’s trading day and it continues until

4:00 pm on Friday, when Globex closes for the weekend and re-opens again at

5:00 pm on Sunday to begin the next week’s trading.

At 11.00 am UK time (05:00) on each weekday, the panel banks submit their

rates to an administrator. Then, the highest four and the lowest four of the

quoted rates are removed and the remaining middle rates are used to calculate

a simple arithmetic mean. Finally, at 11.30am UK time (05:30 CST) LIBOR is

quoted and announced by Thomson Reuters. Since September 2013 the ICE LI-

BOR unit makes the fixing available to various data vendors (including Thomson

Reuters) for distribution to the market and for settlement on maturing interest

rate derivatives set relative to this rate. Currently, the daily LIBOR rates are

quoted on 10 major currencies, including the Australian Dollar, British Pound,

Canadian Dollar, European Euro, Danish Kroner, Japanese Yen, New Zealand

Dollar, Swedish Kroner, Swiss Franc and US Dollar.

Hence, each day the reference short term yield curve (out to one year) from

the LIBOR is updated. The futures themselves are exceptions of 100 minus the

3M-LIBOR at the date of maturity of the future. For instance, if the implied in-

terest rate is 0.250%, the IMM index is quoted as 99.750 (IMM Index = 100.000

– 0.250% = 99.750), and this is also the price of a futures contract. The gain
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or loss of these contracts is described by one basis point (0.01%), which equates

to a 25.00 US dollar movement in contract value, derived as follows: $1 million

notional loan ×(0.01%)× (90/360) = $25.00. However, the minimum price fluc-

tuation is set at half a basis point or 0.005%, equal to $12.50, based on $1 million

face value 90-day instruments. For example, if the price was rising from 96.99

at the beginning of the day and closed at 97.00 (implying a LIBOR decrease

from 3.01 to 3.00%), $25 is paid from the seller’s margin account into that of the

buyer so that buying the contract is equivalent to lending money, and selling the

contract short is equivalent to borrowing it.

Indeed, the Eurodollar does not deliver an actual time account, but merely

the present value cash equivalent of that account. The regular contracts expire

either in March, June, September or December, extending outwardly for 40 quar-

terly expiring contracts in the long term; shorter maturity monthly contracts are

traded; however, their relative volume, trading activity and quoting activity are

several orders of magnitude lower than the quarterly contracts. The last trading

day is the second business day prior to the third Wednesday of the delivery month

in both New York and London. At any given time, the exchange lists four of the

monthly series, bringing the total number of available Eurodollar future contract

maturity types to 44 – namely, 40 quarterly and 4 monthly serial contracts. I

have data for all contracts, but for brevity I focus on the regular quarterly con-

tracts that expire at the on 40 IMM dates out to ten years. Currently, more than

70% of Eurodollar futures are traded simultaneously on the electronic trading

platform; CME Globex platform.1

The core source for the regulatory violations in relation to the 3M-LIBOR

1CME Group, Understanding Eurodollar Futures, http://www.cmegroup.com/trading/interest-
rates/understanding-eurodollar-futures.html [accessed August 18, 2015].
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will be the CFTC reports relating to the current group of banks and brokers that

have settled fines with various national regulatory bodies. As of August 1, 2015

this group consists of Barclays, UBS, RBS and Rabobank. Each bank has been

investigated and fined by the Commodity Futures Trading Commission (CFTC)

and the Financial Services Authority (FSA). Furthermore, on April 23, 2015 the

Deutsche Bank is the latest bank that has been fined by CFTC for manipulation,

attempted manipulation, and false reporting of LIBOR and Euribor. The doc-

umentation of manipulation of the LIBOR reference rate will be based on each

bank’s report. Overall, the reports cover a period of seven years from 2005 to

2012. I also focus on the reports primarily relating to the 3M US LIBOR sub-

missions as this is the reference for Eurodollar futures.

The FSA [2012] report documents the earliest LIBOR manipulation event in

2005 in the dataset when Barclays’ derivatives employees made a total of 257

requests to Barclays LIBOR submitter to set the submission rate for LIBOR and

Euribor. This was a routine request related to their derivatives trading positions

and their own bonuses. Figure 5.3 shows an example graph showing that Bar-

clays’ submission was consistent with certain requests. For example, on November

22, 2005, Barclays’ swap trader made a request in relation to Barclays’ 3M US

dollar LIBOR submission: “We have to get kicked out of the fixings tomorrow;

we need a 4.41 fix in 3M (high fix)”. The submitter sent a positive response to

this request. Figure 5.3 shows the change in Barclays’ submission compared to

other panel banks’ submission and the final 3M rate.

Figure 5.3 shows that Barclays’ 3M US dollar LIBOR submission, which had

been at the final benchmark rate, increased to a level above the benchmark rate

on the day the swap trader requested a higher submission. It then remained
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high at the same level as the benchmark rate and finally increased again until

the benchmark rate reached 4.41 as the swap trader had requested. Therefore,

Barclays’ submissions, on November 22, 2005 and later that week, were consistent

with the request for a high 3M US Dollar LIBOR. The LIBOR investigation also

showed that the artificial rate had been tight in both high and low fixing, for

instance on May 23, 2007 the Barclays swaps trader requested the submitter to

submit a low LIBOR at 5.36 for the next day(May 24, 2007). He sent an email

to submitter “Pls., go for 5.36 again tomorrow, very long and would be hurt

by higher setting...Thank”; then on May 23, 2007 Barclays submitted the 3M-

USD LIBOR at 5.36 and the LIBOR was announced at 5.36 as their swap trader

request. Another example was on September 04, 2007 regarding CFTC report

when the UBS swap traders explained to their manager why they requested a low

LIBOR submission, so their submitter submitted a low rate at 5.2(see Table 5.1

for Barclay’s LIBOR submission).

There is substantial evidence that Barclays’ LIBOR fix was consistently ma-

nipulated during the volatile global conditions of the sub-prime crisis (circa 2007–

2008), in order to manage what it believed were inaccurate and negative public

and media perceptions that it had a liquidity problem, (by lowering its submis-

sions – which were believed to be too low (see p. 3, CFTC, 2012)). This activity

continued after BNP Paribas House’s hedge funds had been frozen, followed by the

collapse of Northern Rock and Lehman Brothers. Finally, after Barclays raised7.3

billion of capital from its Qatari shareholders, the CFTC began an investigation

in the United States into the suspected “low-balling” of LIBOR submissions by

global banks.1 In early December 2007, a Barclays’ employee alerted the U.K.

1P. Aldrick, Barclays: how the LIBOR manipulation unfolded,
http://www.telegraph.co.uk/finance/ newsbysector/banksandfinance/9360469/Barclays-
how-the-LIBOR-scandal-unfolded.html, [accessed August 19, 2014].
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Financial Services Authority (FSA) in which LIBOR rate setting at a dishonesty

level was discussed (see p. 22, CFTC, 2012).

The analysis is continued by comparing the LIBOR submission rates with

the benchmark rate before and after the collapse of Lehman Brothers. Figure

5.1 and Table 5.1 are examples of graphs and tables showing that panel banks

submitted rates that were believed to be abnormally low before the collapse of

Lehman Brothers (June 18, 2008). When the end of Lehman Brothers made it

clear to all that the crisis would last, the LIBOR rose sharply. It had dropped

heavily during the previous period to what would be an almost “normal” level

for an almost normal situation, but was a totally abnormal level for a critical

situation (October 15, 2008).

Figure 5.2 shows individual banks‘ quotes on USD 3M LIBOR (left axis) and

p-value of cross-sectional correlation from this panels’ banks (right axis). It can

be seen in this figure that the individual bank quotes are very tightly clustered

from 1996 until before the collapse of Lehman Brothers (on August 15, 2008)

where a clear structural break begins as shown in figure 5.1. Before the banks

collapse, the ranking correlation of banks’ quotes are notably high as the p-vale of

Spearman’s rank correlation test, are nearly zero. It can be assumed that bank-

ing submissions for the 16 individual banks mostly remained at the same level

or at a constant rank throughout this period. After the collapse, the submission

quotes are highly volatile and farther from the LIBOR fixing. It also appears

that the p-value of the banks rank submission is highly volatile. Since 2008, the

significant spikes of p-value show that the ranking of bank quotes is continually

changing over the period . Furthermore, the correlation breaks completely with

the collapse of Lehman Brothers. Therefore, although it is not clear whether the
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banks manipulated their submission rate before and during the crisis, the signif-

icant change of ranking correlation of the banks‘ quotes suggest that something

different was happening post crisis.

In order to track the LIBOR manipulation, Timothy Geithner, President of

the Federal Reserve Bank of New York, sent a document containing a proposal for

consultation to tackle the problem to Sir Mervyn King, the governor of the Bank

of England.1 After receiving this document from the New York Fed, the FSA in

London officially joined the international investigation, as a result of which the

CFTC broadened its investigation. It decided to cooperate with the Securities

and Exchange Commission (SEC) and began to communicate with multinational

regulators, such as the European Commission (EC), the Swiss Competition Com-

mission (ComCo), Canada’s Competition Bureau and the Japanese Regulator. A

major effect of this cooperation was that the Swiss bank UBS agreed to end a tax

dispute over US citizens and hand over 4,450 account details to assist the LIBOR

investigation.

The FSA launched an investigation into Barclays to respond to allegations of

LIBOR manipulation in June 2010, and in 2011, the FTC Capital and Charles

Schwab Corporation filed a lawsuit against 12 major banks, including Barclays,

RBS, HSBC and Lloyds, claiming that they had conspired to depress the LIBOR

artificially.2 After the investigation, some of the major banks that were found to

have manipulated the LIBOR rate, including Barclays and UBS, were fined by

1Timothy Geithner made recommendations on LIBOR to Sir Mervyn King (published on-
line June 1, 2008), http://data.newyorkfed.org/newsevents/news/markets/2012/LIBOR/June-
1-2008LIBOR-recommendations.pdf, [accessed August 19, 2014].

2M. Gilbert, G Finch and A. Worrachate, London banks seen rigging rates losing
credibility with markets, Bloomberg Markets Magazine (published online Nov 22, 2011)
http://www.bloomberg.com/news/print/2011-11-23/london-banks-seen-rigging-rates-for-
decades-losing-credibility-in-markets.html, [accessed August 19, 2014].
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Commodity Futures Trading, the US Department of Justice, and the Financial

Services Authority in the United Kingdom. Subsequently, RBS and ICAP were

fined by US and UK regulators in 2013, and later the European Commission

announced fines of six major banks for manipulating the LIBOR rate for the

Japanese Yen in the period 2007–2010. After the US Department of Justice com-

pleted a criminal investigation into the LIBOR manipulation on June 27, 2012,

Barclays was the first bank to be fined – $200 million by the Commodity Futures

Trading Commission [CFTC, 2012], $160 million by the US Department of Jus-

tice and £144.5 million by the FSA [FSA, 2012] – for attempting to manipulate

the world’s benchmarking borrowing rate, LIBOR.

From extensive textual analysis of the current settlements, it is evident that

the 3M-LIBOR is the most commonly mentioned US Dollar rate (second to the

JPY rate) , followed by the 1M-LIBOR. A summary of the evidence of the abuse

of the 3M-LIBOR and 1M-LIBOR is provided in Table 5.3, with an example of

the communication content between traders and LIBOR submitters during the

LIBOR manipulation.

5.3 PIN and LIBOR Manipulation

The following reviews the anecdotal trends in the estimated PIN coefficients for

the various contracts relative to the specific events catalogued in Table 5.3 versus

the longer run patterns observed in the data over the 1996 to 2014 sample period.

This section begins by comparing the historical PIN with specific events related

to the LIBOR manipulation records. Since the LIBOR abuse was revealed by the

US Department of Justice, FSA and CFTC investigations, I make the conjecture
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that individual events had an impact on the PIN in the Eurodollar futures market

as the ED trading is based on this key rate. A closer look at the way in which the

LIBOR investigation caused changes in the PIN begins with a document analysis

using the Commodity Futures Trading Commission (CFTC) document when the

CFTC investigated some of the major banks, such as Barclays and RBS, regarding

dishonest or manipulative submissions of the LIBOR rate. As previously noted,

two epochs appear to be important in this context, first the pre-crisis attempts

to generate competitive advantage directly in the banks proprietary interest rate

trading positions and second after the crisis as a systematic attempt to reduce

the perception of increased borrowing costs as part of a beauty contest designed

to ‘reassure’ investors and regulators.

According to the CFTC settlement document, Barclays’ traders had attempted

to manipulate the US Dollar LIBOR from at least mid-2005 to the autumn of

2007, and sporadically thereafter until 2009. For instance, on November 28, 2007,

Barclays’s employees, including the bank’s senior Treasury managers, submitted

a US Dollar LIBOR rate that was higher than the actual rate and LIBOR abuse

occurred on the following day and into early December 2007.1

This activity is investigated in this study from the PIN value of the EDH8

contract, which had the closest expiry date series to this date. The PIN in-

creased from November 24, 2007, when its value was 0.54 and reached a peak of

0.715 on December 15, 2007. Figure 5.4 illustrates the manipulation that began

on November 28, 2007. This increasing value of the PIN is consistent with the

CFTC document; for example, on November 28, 29 and 30, 2007 the PIN values

1CFTC, Order instituting proceedings pursuant to sections 6(c) and 6(d) of the Commodity
Exchange Act, as amended, making findings and imposing remedial sanctions; In the Matter
of Barclays plc, pp. 20–22.
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were 0.64, 0.65 and 0.66 respectively, and reached a peak of around 0.715 on

December 15, 2007 as Barclays’ US Dollar LIBOR traders asked the submitter

to keep the rate high.

There were many other instances of LIBOR abuse that can be illustrated by

the movement of the PIN. The final notice from the Financial Services Authority

(FSA) issued to Barclays Bank plc stated that at least 14 of the bank’s interest

rate derivatives traders had requested the LIBOR submitter to fix the LIBOR

rate. However, this was not always done only to improve their trading position,

but also sometimes to protect the bank’s reputation. For instance, on February

5, 2008, a Barclays’ US Dollar Derivatives manager instructed traders to keep the

LIBOR rate lower than the real rate to make the bank look healthier than usual

during the financial turmoil.1 It is interesting to see how this activity is reflected

in the ED PIN to determine if the level of informed trading that occurred in the

Eurodollar market during this period changed substantially. Prima facie evidence

indicates that the LIBOR abuse appears to have possibly exerted some influence

on the historical development of the PIN. The PINs of EDM8, EDU8, EDZ8 and

EDH9 are used to indicate the LIBOR setting from February 5 to 11, 2008. Of

course, the limitation of this study is that that we cannot identify the specific

trades undertaken by the specific banks as this information is not available pub-

licly.

Figure 5.5 illustrates the historical PIN during this period. The PIN indicator

shows an increasing trend from around 0.68 on February 3 2008 to just around

0.70 on February 5, 2008 reaching a peak of around 0.76–0.78 on February 11,

2008. This figure illustrates that the PIN was still in an upward trend until

1Financial Services Authority, Final Notice To Barclays Bank plc, p. 11.
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Probability Of Informed Trading in EDH8

 

 

November 28, 2007
Barclays’s Employee
submitted artificient U.S. Dollar LIBOR

December 15, 2007
The PIN reached to the peak at 0.715

Figure 5.4: Probability of informed trading between November 28 and De-
cember 15, 2007.
Note: This figure shows the development of the PIN during the LIBOR abuse be-
tween November 28 and December 15, 2007. According to the CFTC document,
Barclays’ traders attempted to manipulate the US Dollar LIBOR on November
28, 2007, when Barclays’ employees, including senior Barclays Treasury managers,
submitted a higher US Dollar LIBOR rate than the real rate.
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Figure 5.5: Probability of informed trading between February 5 and 11,
2008.
Note: This figure illustrates the development of the PINs of EDM8, EDU8, EDZ8
and EDH9 between February 3 and 10, 2008. On February 5, 2008 a Barclays’
Derivatives manager instructed traders to keep the LIBOR rate low. There ap-
pears to be an increasing trend of the PINs during this period and a drop after
the event date.
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February 5, 2008, and the increase shown in this figure is possibly evidence of the

abuse of Eurodollar Futures.

Barclays was not the only major high street bank involved in manipulating

the LIBOR. Rabobank (Coöperative Central Raiffeisen Boerenleenbank B.A.),

the Dutch multinational banking and financial services company headquartered

in Utrecht was also guilty of this ‘misdemeanour’ and fined accordingly. According

to the CFTC settlement report (CFTC [2013]), the Rabobank LIBOR submitter

submitted preferential rates in an attempt to manipulate the US Dollar LIBOR to

benefit its trading position. In fact, Rabobank employees frequently attempted to

manipulate the US Dollar LIBOR over a period from at least mid-2005 to at least

late 2008. There are many examples of submitters being requested by traders to

fix the LIBOR; for example, on September 07, 2007, Rabobank’s senior US Dol-

lar trader emailed the US Dollar submitter to keep the 3M US Dollar LIBOR

high for the rest of the week.1 The fact that this period was characterized by

an increasing trend of the historical PIN is evidence that the Eurodollar futures

market was affected by the setting of the LIBOR. This manipulation influence

on the EDU7 contract, which expired on September 19, 2007 or just about two

weeks after the event, is used to investigate this incident by matching it with the

US Dollar LIBOR. The results indicate that, on September 07, 2007 the PIN had

increased from 0.68 on September 6 to 0.70 , and it was kept higher than 0.70

for the remainder of the week (see Figure 5.6). The PIN reached a peak of 0.80

on September 17 and dropped to 0.695 on the following day. The historical PIN

for this period could provide some evidence that the Eurodollar market had been

manipulated by informed traders; moreover, another result is that the value of

1CFTC, Order instituting proceedings pursuant to detection(c) and 6(d) of the commodity
exchange act, as amended, making findings and imposing remedial sanctions in the matter of
Coöperative Central Raiffeisen Boerenleenbank B.A., p. 10.
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the PIN during this period was higher than average for EDU7 (0.6855).

Most of the LIBOR abuse activity that affected the Eurodollar futures trading

occurred before and during the sub-prime crisis; however, one major event that

had an impact on the LIBOR and Eurodollar Futures trading occurred much

later, on February 28, 2012 when the US Department of Justice was conducting

a criminal investigation into the LIBOR manipulation. Later that year, Barclays

was the first bank to be fined $200 million by the CFTC, $160 million by the

US Department of Justice, and 59.5 million by the UK’s FSA for attempting

to manipulate the key rate. Therefore, the Eurodollar Futures trading during

this period is also investigated in this paper by simulating the PINs of EDH2,

EDM2, EDU2 and EDZ2 contracts to compare them before, during and after

2012, when the LIBOR was manipulated. The action taken by the CFTC and

FSA was a warning to traders to be wary of submitting an honest LIBOR rate

and it should have reduced the instances of informed trading in the Eurodollar

market. According to the investigation in this study , there was a significant

drop in the PINs of these four contracts in mid-2012 (see Figure 5.7), especially

EDM2, which expired in June 2012 with a maturity date around three months

after the regulators announcement.

The EDM2 PIN dropped by 24% from around 0.84 to 0.60 from the beginning

of 2012 to the end of that year. The decrease of the PIN would have been affected

by the investigation, lawsuit and fines for LIBOR manipulation by the CTFC and

the FSA, which could have influenced some informed traders. This influence is

illustrated by the significant change in the historical PIN in 2012 with the down-

ward trend after the LIBOR investigation (see Figure 5.7). Furthermore, after the

LIBOR Regulation reform in July 2013, the PIN of every contract significantly
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September 7, 2007
Rababank trader requested high fixxing on LIBOR.
PIN is 0.70.

PIN is reached to the peak on September 17, 2007
PIN is 0.80.

PIN droped to 0.695 on September 19, 2007
This is last trading day for EDU7.

Figure 5.6: Probability of informed trading between September 7 and
September 22, 2007.
Note: This figure presents the value of the PIN of EDU7, which reacted to the LI-
BOR abuse between September 7, 2007 and September 22, 2007 when Rabobank’s
US Dollar LIBOR traders asked the submitter to keep the LIBOR high for the
rest of the week. As shown in Figures 5 and 6, the trend of the PIN also increased
and remained high for the rest of that week. Since this trend could have been
affected by the LIBOR abuse by Rabobank’s employees, it is probably evidence
to prove that the LIBOR was manipulated during this period.
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dropped from around 0.68 to around 0.55 in the second half that year.

An interesting observation is that after the reform of the LIBOR fixing system

and the exposure of bad practice, the PIN computed for the various Eurodollar

contracts exhibits a steady decline with lower than average value of 0.68 after

2013. However, given the degree of fluctuation in the PIN through time and

across contracts, further analysis is needed to determine the persistence of this

trend, see Figure 5.7).

5.4 PIN and the Maturity Date Effect

This section contains an illustration of the PIN before and after expiration to in-

vestigate the relationship between the PIN and the maturity date. Its evolution

is plotted with the expiration date of all 40 Eurodollar contracts to illustrate how

it reacted before and after the maturity date. The most striking result to emerge

from this figure is that, after the spiking of the PIN before the expiry date, there

was an aggressive decline until the last trading day, and finally, another increase

appears when the Eurodollar futures begin trading again on the day after the ex-

piry date (see Figure 5.8). This pattern of the PIN appears in all 40 Eurodollar

series contracts.

The PINs for individual Eurodollar futures contacts are divided into two pe-

riods, the first of which is between January 1, 1996 and December 31, 2007, while

the second is between January 1, 2008 and December 31, 2013. The average

value of the daily PINs was constructed for 60, 30, 20 and 10 days for fixed time

windows around categories of identified events. The first identified sub-event was
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Figure 5.8: The historical PIN of EDU8 with the expiry date.
Note: This figure presents the historical PIN of EDU8 around the expiry date.
The PIN for this event was dropping rapidly before the last trading day, but
increased when EDU8 began trading again on the following day. This pattern is
repeated for all the Eurodollar futures contracts.
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based on the regulatory activity around the current catalogue documenting LI-

BOR manipulation from the CFTC and the FSA, from Table 5.3 while the second

was based on contract maturity dates by year (see Table 5.4).

In terms of the first sub-events, the average value of the PINs was not signif-

icantly different between 60, 30, 20 and 10 days for fixed time windows around

regulatory based events. The smallest PINs appeared 10 days before the identi-

fied event for both the pre-2008 and post-2008 sample, whereas the highest PIN

appeared 10 days after the event. Furthermore, in the pre-2008 period, the PINs

slightly increased from the event date and reached a peak 60 days after the event

with an average value of 0.7069.

As for the second sub-event, which was around the maturity date, the average

PIN slightly increased from 60 days before the maturity date, and then the PIN

dropped on the last trading day and increased again after the expiry date. In-

terestingly, the average PIN was identical on the maturity date, before and after

2008. Although there were slight differences in the evolution of the PIN for both

regulatory-based events and around the maturity date, these differences were not

found to be statistically significant (see Table 5.4).

5.5 Summary Chapter

I have undertaken an empirical microstructure analysis of the Eurodollar futures

market, based around a rolling window adaptation of the model of Easley and

O’Hara [1992] and Easley et al. [1996]. This is probably the first attempt to apply

a simple sequential trade model to analyse the reaction between the probability of

124



Table 5.4: Comparison of the results of the mean value and standard devi-
ation.

Day be-
fore the
event

Mean value
of PIN for
LIBOR abuse
post-2008

Mean value
of PIN for
LIBOR abuse
pre-2008

PIN be-
fore/after
maturity date
post-2008

PIN be-
fore/after
maturity date
pre-2008

–60 0.6752 0.6938 0.6933 0.6926
(0.0089) (0.0196) (0.0324) (0.0223)

–30 0.6724 0.6946 0.6975 0.6933
(0.0089) (0.0237) (0.0400) (0.0278)

–20 0.6717 0.6957 0.6999 0.6926
(0.0088) (0.0260) (0.0433) (0.0313)

–10 0.6731 0.6967 0.7006 0.6930
(0.0081) (0.0287) (0.0459) (0.0354)

0 0.6732 0.6968 0.6552 0.6695
(0.0117) (0.0325) (0.4656) (0.0368)

10 0.6738 0.6995 0.7066 0.6978
(0.0053) (0.0324) (0.0448) (0.0420)

20 0.6686 0.7020 0.7097 0.6979
(0.0053) (0.0318) (0.0477) (0.0466)

30 0.6671 0.7043 0.7116 0.6970
(0.0043) (0.0322) (0.0501) (0.0488)

60 0.6663 0.7069 0.7157 0.6891
(0.0017) (0.0350) (0.0550) (0.0530)

Note: This table presents the comparison of the results of mean value and stan-
dard deviation of the PIN 60, 30, 20 and 10 days before and after the events
of LIBOR manipulation according to the CFTC and FSA documents, and also
before and after the maturity date in two periods: from 1996 to the end of 2007
and from 2008 to the end of 2013.
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informed trading and market abuse based on manipulating the LIBOR for highly

active derivatives markets, such as Eurodollar futures, or LIBOR-based deriva-

tives traded on the CME’s Globex platform. However, the difference between

equity and derivatives markets should be considered.

Overall, the evolution of the PIN appears to vary systematically with maturity

, since it dropped around the last trading day prior to maturity and then recovered

when the Eurodollar futures resumed trading the following day. The findings show

that in the lead up to some of the more blatant attempts at manipulating the

LIBOR fix the PIN provides a good early warning signal. However, the average

adjustments to the PIN relative to the dates recorded in the current catalogue of

documentation from the CFTC and the FSA on LIBOR manipulation was not

statistically significantly different relative to both the persistent variation relative

to maturity and the general long-run variation in the PIN. This may be because

the PIN approach was unsuitable or it was possibly used incorrectly for this type

of data, or the LIBOR manipulation only had a minor effect. However, I leave

full investigation of this issue to future work as more granularity emerges from

the current round of court cases provides more direct evidence of channels of

informed trading (thus allowing us to better the cases).
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Chapter 6

Order Flow Toxicity and

Informed Trading Around

Known Market Manipulation

Events: Evidence from Interest

Rate Futures

The objective of this paper is an ex-post review of the effectiveness of PIN and

VPIN in determining changes in the information structure and order flow of a

futures market around documented episodes of recorded manipulation of the ref-

erence rate, from the various publicly available regulatory reports. In keeping

with previous studies on interest rate derivatives, this analysis finds that the av-

erage PIN is far higher for futures than for the equity market at or above 60%.

Furthermore, I find a very strong connection between PIN, VPIN and time to

maturity of the contract that is not fully explained by the time variation in activ-

ity in the market. However, an event study using both a new bootstrap approach
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and asymptotic standard error on the VPIN and PIN respectively around doc-

umented LIBOR manipulation cases has mixed results. For certain events I see

a substantial change in the average detected levels of PIN and VPIN, however a

cross sectional analysis of all reported cases up to mid-2015, indicates no signifi-

cant change in the PIN and VPIN for the contracts in this Eurodollar sample.

6.1 Introduction

There are currently two key debates ongoing in the financial community related to

issues around market manipulation. First, in the policy and practitioner commu-

nity, there is evidence of manipulation of key benchmarks by financial institutions,

and there is some disagreement as to whether this occurred primarily to improve

their trading opportunities or to reduce the perception of balance sheet weakness.

Second, is an academic debate as to whether the current high profile measures of

the probability-of-informed trading (PIN) and ‘market-toxicity’ (measured by a

volume adjusted PIN denoted VPIN) actually provide substantive measurement

of the phenomena in question.

This study takes a comprehensive dataset from Chicago Mercantile Exchange

(CME) tape data, which covers every inside quote and trade from 1996 to 2015

for the 40 LIBOR referenced quarterly dated Eurodollar futures contracts. First,

I apply different flavours of the PIN and VPIN metrics over a variety of estima-

tion windows. A variety of tests is constructed to see if the pattern of the PIN

and VPIN exhibit structural changes around documented cases of manipulation

of the LIBOR reference rate. Finally, I compare this to systematic fluctuations

in these measures relative to the futures term structure.
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Unsurprisingly, given the scale of the task, this study finds very mixed re-

sults. Both PIN and VPIN vary systematically and in a statistically significant

pattern in respect to the term structure of the futures contracts. PIN varies in

a v-shaped pattern, with long (2000 to 3500 days) and short maturity (0 to 500

days) contracts having significantly higher PIN and VPIN measurements than

intermediate contracts (which are actually the most heavily traded). VPIN mea-

surements of informed trading are substantially lower, over the entire gamut of

calculation measures. However, when I move to documented cases of market ma-

nipulation in the reference rate, the results are ambiguous. There are definitive

cases when the PIN (and to an extent certain flavours of the VPIN) shift sys-

tematically around a relevant documented LIBOR manipulation event. However,

when I build cross sectional averages across events, I find no significant evidence

of systematic shifts in either the PIN or VPIN metric. It should be noted that

whilst I have included every documented case of manipulation directly linked to

the relevant reference rates, my list is necessarily incomplete as the regulatory

actions have tended to focus on sample charges to the firms involved, rather than

documenting every occurrence and its motivation.

According to the studies of PIN in chapter 4, 5, and the VPIN in chapter 6,

the results are very mixed; however, my conclusion lends support to the Andersen

and Bondarenko [2014a,b,c] results. The VPIN is very sensitive to the choice on

how to discretize the volume bucket and the number of volume in each bucket. In

addition, the long run correlation between these VPINs is low with the average

correlation coefficient of 0.32. Another remarkable result is the correlation be-

tween PIN and VPINs which is surprisingly low and extremely dismilar in value

with the average correlation coefficient of 0.11. The PIN is constantly high with
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the average of 0.688 whereas the VPIN is constantly low with the average of

0.126. Form these results, I suggest that the VPIN cannot be an approximation

of the PIN.

The contribution of this chapter is threefold. First, this is the only paper to

provide a comprehensive analysis of informed trading in Eurodollar futures from

1996 to 2015. Second, to implement my analysis I have introduced several inno-

vations in the estimation process, including an exact asymptotic representation

of the measurement error of the PIN and a new bootstrap-in-bootstrap method

for estimation of the VPIN. Finally, my methodological approach to decomposing

informed trading by both event and the term-structure is a new contribution to

this literature and my algorithms are available for other researchers to implement

such studies in different market settings.

The remainder of this paper is organized as follows. First, §.6.2 outlines the

debate on informed trading, in the academic literature in regard to the efficacy

of the PIN and more recent VPIN algorithms. To this end, §.6.3 I look more

deeply at the adaptation of the Glosten and Milgrom [1985] model of informed

trading and demonstrate how a version of the classic version of the PIN could be

used to empirically fit this model, in the spirit of Glosten and Milgrom [1985] and

Easley et al. [1996]. In this section, I document the various empirical strategies to

estimate the PIN and VPIN including several new features specific to this study

relating to the distribution of these critical statistics. §.6.4 provides a detailed

set of descriptive statistics of the comprehensive dataset of Eurodollar futures.

Subsequently §.6.5 presents the analysis of my dataset. For each contract matu-

rity, the PIN and VPIN is estimated and I construct experiments by aggregation

across the terms structure, in addition to using the LIBOR manipulation events
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discussed previously. Finally, in §.6.6 presents the summaries of the key findings

and some brief concluding comments and directions for future research.

6.2 The VPIN Debate and Further Background

The PIN model was first introduced in Easley and O’Hara [1992] and Easley

et al. [1996] and estimated over relatively high frequency data for US equities.

Subsequent work focused on the PIN as an asset pricing factor or related the anal-

ysis directly to corporate governance. The theoretical model underlying the PIN

evolved from the information based trading literature that started with Grossman

and Stiglitz [1980] and Hellwig [1980] then continued with Admati [1985], Has-

brouck [1991] and Kyle [1985]. However, the most direct theoretical antecedent

to the PIN model is Glosten and Milgrom [1985] and this is the starting point for

interpreting the impact of LIBOR manipulation on the Eurodollar futures mar-

ket. In general the theoretical models of informed trading have traveled down the

standard roots, Glosten and Milgrom [1985] and Kyle [1985] have used Bayesian

games to analyse simple information flows in single assets, whereas Hellwig [1980],

Admati [1985] and Admati and Pfleiderer [1988] have utilized a rational expec-

tations framework for single and multiple assets.

However, regardless of the solution device applied, either rational expectations

or a Bayes-Nash equilibrium, the general set-up is very similar. First, certain

traders are provided with a forward looking information endowment (usually a

noisy forecast of direction) and then there is a trading game against another group

of traders who either lack this information or whose order flow is constrained. For

instance, in the case of Eurodollar futures, we know that floating legs of IRSs are
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offset at or around international money market (IMM) dates, hence one particu-

lar institution may not have any choice in the timing and net quantity of futures

demanded whether long or short. Hence a trader with these constraints is a net

supplier of random order-flow to the market regardless of how the term structure

is updated by the new fixings.

One of the unique selling points of the PIN model is the ease of implementa-

tion. The Glosten and Milgrom [1985] model is easily to re-cast in terms of net

order flow and hence one merely needs to sign each trade as a buy or a sell to de-

termine the net order-flow imbalance. The PIN is then computed via maximum-

likelihood estimation. However, signing trades as a buy or a sell can be a difficult

process. The standard Lee and Ready [1991] algorithm matches trades based on

the distance between the transacted price and the nearest quotes. Several prior

studies have identified difficulties in estimating the PIN attributing most of the

problems to trade-classification, see Ke [2014];Yan and Zhang [2012];Boehmer

et al. [2007]. It is evident that when switching to very high frequency data (such

as that generated by futures trading) classifying trades becomes ever more prob-

lematic.

As a solution to the PIN classification problem, Easley et al. [2012] proposed

a volume based approach known as VPIN, and explicitly introduced the notion

of order-flow-toxicity. Order-flow-toxicity is defined as a systematic imbalance

in the buy and sell side volume of the order-book that leads to substantial ad-

justments in spread. This is in opposition to the normal state of affairs where

the liquidity would remain relatively constant. However, the proposed applica-

tion to the May 2010 ‘flash crash’ has proved somewhat controversial. In many

respects the ease of implementing the VPIN and the unambiguous nature of its
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measurement of market data, forms part of the issue. Andersen and Bondarenko

[2013] re-computed the VPIN metric for S&P 500 E-mini futures and refuted

the applicability of the method to forecast extreme liquidity events. Andersen

and Bondarenko [2013] concluded that the VPIN was highly sensitive to the as-

sumptions placed on discretizing the volume of orders, reducing its efficacy as a

regulatory instrument for predicting order-flow-toxicity exceed events.

In a series of follow up papers Andersen and Bondarenko [2014c], Easley et al.

[2014] and again Andersen and Bondarenko [2014b] debated the relative merits

of the VPIN approach. In another follow-up, Andersen and Bondarenko [2014a]

proposed an alternative approach to specifically capture order-flow-toxicity. My

experience with estimating VPIN falls somewhere between Andersen and Bon-

darenko [2014c] and Easley et al. [2014]. VPIN is indeed sensitive to the choice on

how to discretize volume. However, I do find the change in VPIN, and I denote

this ∆VPIN which is consistent across a variety of choices. I do not find VPIN

and the original PIN to be correlated under my trade-classification approach.

Furthermore, I do not find that the VPIN lies within a 95% confidence bound

computed from the maximum likelihood estimates for the underlying parame-

ters. This indicates that for the purposes of identification of informed trading

in Eurodollar futures markets, (which uses the same platform as the S&P 500

E-mini), the PIN and VPIN are, unfortunately, incongruent across a wide variety

of specifications (including a bootstrapped version).
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6.3 The model

6.3.1 The Market Algorithm

This section explains how the LIBOR manipulation affects the Eurodollar trad-

ing by deriving the fundamentals of sequential trading with superior informa-

tion proposed by Glosten and Milgrom [1985] . This model focuses on stylized

leadership market in which a Eurodollar price will reach at time T with value

ST = {S, S}, where S ≤ S. Uninformed traders (ε) know the Eurodollar price

will be S ≤ St ≤ S,however, they do not know either St = S or St = S will occur,

so these traders are equally likely to buy or sell. Unlikely uninformed traders,

informed traders (µ) are said to be informed of knowing the terminal value of

the asset ST . This sequential trade can be explained in terms of probability(P)

which is the one that makes most sense. With theoretical explanations incor-

porated with ED trading, on each trading period traders arrive on the market

sequentially in which knowing the value of ED futures equals ST , suppose that

P(ST = S) = δ and P(ST = S = 1−δ), which trade occurs at time t ∈ [0, T ). The

probability pay off for each possible scenario of ST is, if the ED expected price

is equal ST = S ≤ St informed traders will wait on the sell side with probability

δµ, as uninformed Traders is risk neutral, so they will locate in both buy and

sell side with rate 1
2
(1− µ)δ. If the expected price equals St ≤ S = ST informed

Traders will arrive at buy side with probability (1− δ)µ and uninformed traders

at rate 1
2
(1− µ)(1− δ).

Whilst forward knowledge of the fix has many applications it is worth pos-

tulating a specific example of a trading strategy in ED futures around LIBOR

announcements. Consider the period 2005 to 2007 from Figure 5.2. Here, the

spread of submissions for the LIBOR fix are very tight. For a set of banks
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typically sitting in the middle eight submitters, a collaborative submission (as

indicated by the cross bank emails noted previously) could allow for reasonable

fore-knowledge of the fix in the second decimal, for instance an unexpected in-

crease in the submission by one basis point or $25 for each contract. The per

day quote volume (in terms of numbers of contracts quoted at the inside best bid

best ask) for the Eurodollar market is denoted in Figure 2.2 and it can be seen

that contract volumes can exceed 715 for a single day. Therefore a $25 dollar a

contract advantage has potential for substantial profits, if a suitable shock can

be engineered against the current market expectations. It is worth noting that

as a forward rate contract, the shock can be engineered from any LIBOR fixing,

however, it is apparent that the size of the impact needs to be reasonably close

to maturity contracts.

As the update on the reference rate is at 11:00.00 GMT time we can think of

this as being the realization of a signal that will update the information set of all

traders. Prior to the update the request to the submitter pool for a ‘high’ or a

‘low’ fixing equates to ‘δ′ and ‘1− δ′ respectively.

Shortly after 11:00:00 GMT , around 11:30:00 GMT or 06:30:00 central time

(recalling that the ED future is traded around the clock) the LIBOR rate is an-

nounced, then information set for the futures are updated for all participants as

a realization. However, in a smaller scale study on ED futures Kim et al. [2014]

reports that the highest fraction of informed trading is located in the ED market

around 7.00 to 10.00 CT which is after the announcement rather than in the

lead up. I will show later that this is consistent with my macro-view argument

that maturity and activity play a much more important role in the degree of

informed trading and order toxicity within the market. After receiving the sig-
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nal, informed derivatives traders wait to ‘Buy’ or ‘Sell’ regarding which type of

information they have received from the submitter. If they arrive on buying side

then P(Buy) = 1+µ(1−2δ)/2, while on the sell side P(Sell) = (1−µ)(1−2δ)/2,

hence P(Buy) + P(Sell) = 1. Subsequently, in each trading period the nature

of the event occurs with, P(Buy) = P(sell) = 0.5 then δt = 0.5,P(ST = S) and

P(ST = S) = 1− δ at t = 0.

In the period after the LIBOR is published, informed traders arrive with a

degree of positive adverse selection that can be observed by increased spread. At

this point, a market maker recognizes a price level at which he intends to enter,

whether long position (Bid, B) or short position (Ask, A).Although the mar-

ket maker doesn’t know that other market participants at period t are informed

or not, he can update his belief about the value of ST as trades are revealed,

so P(ST = S|Buy) = P(ST = S,Buy)/P(Buy) = δt(1 − µ)/1 + µ(1 − 2δ). If

(ST ) = S ≤ St informed traders lower their expectation, since E[ST |Buy] =

S(1−µ)δt +S(1 +µ)(1− δt)/1−µ(1− 2δt) and increase expectation on ST , since

E[ST |Sell] = S(1 + µ)δt + S(1− µ)(1− δt)/1 + µ(1− 2δt). Therefore the spread

is A−B = 4(1− δt)δtµ(S − S)/1− (1− 2δt)
2µ2.

Conversely, in the case of (ST ) = S ≤ St informed trading (µ) occurs when

A = E[ST |Buy] with a profit is gained by direct wealth transfer from the loss in-

curred by uninformed trades (ε). I can therefore write (A−E[ST |µ, Sell])P(µ|Sell) =

(A−E[ST |ε, Sell])P(ε|Sell), since by construction P(µ|Sell)+P(ε|Sell) = 1. This

argument can be made for B when (ST ) = St ≤ St. Recall that the original in-

terpretation of the Glosten and Milgrom [1985] model operates in a zero sum

outcome. Definitively, a futures market can be seen in this sense as the settle-

ment at marking to market, from the price at 13:59:00 and 14:00:00 CT (19.59.00
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to 20:00.00 GMT), provides a definitive result on the days activities. Therefore,

one explanation for the post fixing informed trading is that the update of the

LIBOR curve itself generates new differentiated sets of information on E(ST ) be-

tween informed traders and uninformed traders prior to the final settlement at

14:00:00.

6.3.2 The Asymptotic Standard Error of The PIN

The previous discussion indicates why a binomial high versus low fix model is very

appropriate for this setting, indeed one could argue the relatively clean mecha-

nism for discerning the days winners and losers makes this far more appropriate

than the many other applications of this approach. The original PIN is a measure

by Easley et al. [1996] of asymmetric information fitted via maximum likelihood

estimation directly from measurements of the order flow. The tree diagram in

Figure 6.1 presents the dynamics of the game and frames the original PIN type

model in terms of the information structure of the ED futures market.

I restrict my interest and the estimation of the model to each contract indi-

vidually. Whilst attempting to build a simultaneous equation model across all

40 contracts seems attractive there are substantial drawbacks in terms of numer-

ical tractability. This analysis index discrete trading time by i = 1, 2, . . . , I and

time is considered to be continuous within discrete trading block and is denoted

by t ∈ [0, T ). Market participants buy or sell the asset at bid and ask prices

posted on the limit order-book during the trading period. Information events are

independently distributed at the beginning of each trading block, and occur with

probability α. However, informed traders will only trade when they perceive that

their LIBOR fixers will be able to generate an information event; they will buy

137



In
fo

rm
at

io
n

E
ve

n
t

(L
IB

O
R

fi
x
in

g
ra

te
w

as
re

q
u
es

te
d

p
ri

or
to

11
:0

0:
00

G
M

T
)

In
fo

rm
at

io
n

d
o
es

N
ot

O
cc

u
r:

1
−
α

(F
ai

r
ra

te
o
cc

u
rr

ed
(N

o
m

an
ip

u
la

ti
on

ev
en

t)
)

S
el

l
A

rr
iv

al
R

at
e:
ε

B
u
y

A
rr

iv
al

R
at

e:
ε

In
fo

rm
at

io
n

d
o
es

O
cc

u
r:
α

(A
rt

ifi
ci

al
ra

te
o
cc

u
rr

ed
as

re
q
u
es

t)
–

S
ig

n
al

tr
an

sm
it

te
d S

ig
n
al

L
ow

:
δ

(H
ig

h
L

IB
O

R
fi
x
in

g
su

b
m

it
te

d
as

re
q
u
es

t,
E

D
p
ri

ce
=

10
0

-
L

IB
O

R
)

S
el

l
A

rr
iv

al
R

at
e:
ε

+
µ

B
u
y

A
rr

iv
al

R
at

e:
ε

S
ig

n
al

H
ig

h
:

1
−
δ

(L
ow

L
IB

O
R

fi
x
in

g
su

b
m

it
-

te
d

as
re

q
u
es

t,
E

D
p
ri

ce
=

10
0

-
L

IB
O

R
)

S
el

l
A

rr
iv

al
R

at
e:
ε

B
u
y

A
rr

iv
al

R
at

e:
ε

+
µ

F
ig

u
re

6
.1

:
T

h
e

E
u

ro
d

o
ll
a
r

p
ri

c
e

a
n

d
a

tr
e
e

d
ia

g
ra

m
o
f

th
e

se
q
u

e
n
ti

a
l

tr
a
d

in
g

p
ro

g
re

ss
N

ot
e:

th
at

af
te

r
11

.0
0

G
M

T
th

e
L

IB
O

R
F

IX
is

p
u
b
li
sh

ed
,

if
th

e
ra

te
th

at
o
cc

u
rr

ed
h
as

b
ee

n
re

q
u
es

te
d

b
y

d
er

iv
at

iv
es

tr
ad

er
s,

th
en

th
e

p
u
b
li
sh

ed
d
at

a
is

si
m

il
ar

to
a

si
gn

al
w

it
h

ra
te
α

.
W

h
en

th
e

fi
x

is
h
ig

h
,

th
e

p
ri

ce
of

th
e

co
n
tr

ac
t

w
il
l

d
ec

re
as

e
(E

D
p
ri

ce
=

10
0

-
L

IB
O

R
)

an
d

w
h
en

th
e

fi
x

is
lo

w
th

e
p
ri

ce
w

il
l

b
e

h
ig

h
er

,
if

th
e

b
an

k
ca

n
gu

ar
an

te
e

th
at

it
s

fi
x

w
il
l

im
p
ac

t
on

th
e

L
IB

O
R

av
er

ag
e

d
et

er
m

in
at

io
n
.

138



an asset if they receive a signal of good news with probability 1−δ and sell if they

receive a signal of bad news with probability δ. As εb and εs are the selling and

buying rate of uninformed traders, who are supposed to have the same intensity

(0.5), therefore the probability of uninformed traders is εs = εb = ε. In this way,

the set of parameters is reduced to α, δ, µ and ε.

Within each trading block, order-flow arrives from both uninformed traders

and informed traders subject to the receipt of their signal. Both uninformed

buyers and sellers arrive in the market at rate ε. Competitive informed traders

who are risk neutral will arrive when information events have occurred. If they

receive a definitive signal of an up tick, they will arrive to buy orders; conversely,

they will submit sell orders if they receive a bad signal or bad news. The arrival

rate for this process is µ. Following convention, the arrival processes are assumed

to be independent. On good event days, the arrival rate for buy orders is ε + µ

and for sell orders is ε. On the other hand, if there is any bad news or bad signal

on any trading day, the arrival rate of sell orders is ε+µ and buy orders arrive at

a rate of µ. Finally, if there is no news or no signal on that day, only uninformed

traders arrive for both buy and sell orders at arrival rate ε.

In each block, the news arrival contains one of three types of information.

On the CME Globex market makers provide liquidity via the ‘mass-quote’ sys-

tem whereby a single market marker can control a very large number of standing

quotes within the various levels of the limit order book (effectively mimicking

a larger group of individual traders). Following Easley et al. [1996] it can be

presumed that the market maker knows that there is some probability attached

to each branch and has some knowledge of the order arrival process for each

branch. However, the market maker does not know which of the three branches
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has been selected. Since he cannot directly observe which type of branch has

been selected he uses Bayesian updating from the observed order-flow to adjust

his beliefs about the nature of the information events during a single trading

block. Let P (t) = (Pn(t), Pb(t), Pg(t)) be a liquidity provider’s belief about the

occurrence of information event “no news” (n), “bad news” (b), and “good news”

(g) at time t. Then, his prior beliefs at time 0 is P (t0) = (1− α, αδ, α(1− δ)) .

To determine quotes at time t, the market maker updates his prior belief on

the condition of an arrival order of the relevant type. For instance, the bid at

time t, B(t), is the expected value of the asset conditional both on the history of

the process prior to the arrival of order at time t and on the fact that someone

wants to sell the asset. Let (st) denote the event that a sell order arrives at time

t. Let Pn(t|st) be the market maker’s updated belief vector conditional on the

history prior to time t and on the event that a sell order arrives at time t.

Following Bayes’ rule, the market maker’s posterior probability on no news

at time t, if an order to sell arrives at t, is Pn(t|st) = Pn(t) · ε/ε+ Pb(t)µ, the

posterior probability on bad news is Pb(t|st) = Pb(t) · (ε+ µ)/ε+ Pb(t)µ and the

posterior probability on good news is Pg(t|st) = Pg(t) · ε/ε + Pb(t)µ. Compa-

rable to the case of buy orders (bt) the posterior probability on good news at

time t is Pg(t|bt) = Pg(t) · (ε + µ)/ε + Pg(t)µ the posterior probability on bad

news is Pb(t|bt) = Pb(t) · ε/ε + Pg(t)µ and the posterior probability on no news

is Pn(t|bt) = Pn(t) · ε/ε + Pg(t)µ. At the end of the trading on any day, the full

information value of the asset is realized. If it is good news on trading day (i) the

informed trader knows that the value of the asset at the end of the day is worth

S̄i, similarly it is Si if it is bad news on day i and the asset on day i is worth

S∗i = δSi + (1 + δ)S̄i, (so, S̄i > S∗i > Si) if there is no news at all.
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To complete the bid or ask at time t, the liquidity provider updates his po-

sition on the condition of arrival order according to the information type. At

time t the expected value of the asset, conditional on the history of trade prior to

time t, is E[Si|t] = Pn(t)S∗ + Pb(t)Si + Pg(t)S̄i where S∗i = δSi + (1 + δ)S̄i is the

prior expected value of the asset. How might this work in practice on Globex?

Well the market maker uses the mass quote system to place a large number of

resting quotes at various levels within the order-book. If one side of the order-

book receives a disproportionate number of trades then resting quotes on the

opposite side (at level one of the limit order book) update and are canceled, and

new quotes are instigated to restore balance and maintain the magnitude of the

spread. New quotes deeper in the order book on the side with the draw down are

instigated automatically. Whilst, in principle, this should ensure that price shifts

are driven by supply and demand, the ‘Flash Crash’ of May 2010, originating on

the Globex platform, indicates that this mechanism is not always perfectly func-

tional. From this adjustment process the bid is the expected value of the asset

conditional on someone wanting to sell the asset to a liquidity provider. Thus,

the bid–ask spread at time t is denoted by Σ(t) = A(t) − B(t). This spread is

Σ(t) = µPg(t)

ε+µPg(t)
(S̄i − E[Si|t]) + µPb(t)

ε+µPb(t)
(E[Si|t] − Si) . The first term in the bid–

ask spread equation is a probability of buy order based on information and the

second is the term for sells. The spread for the initial quotes in the period, Σ,

has a particular simple form in the natural case in which good and bad events

are equally likely. That is, if δ = 1− δ, then Σ = αµ
αµ+2ε

(S̄i − Si) . The key com-

ponent of this model is the probability that an order is from an informed trader,

which is called the PIN = αµ
αµ+2ε

, where αµ + 2ε is the arrival rate for all orders

and αµ is the arrival rate for information-based orders. Therefore, the PIN is a

measure of the fraction of orders that arise from informed traders relative to the
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overall order flow, and the spread equation shows that it is the key determinant

of spreads. These equations clarify that liquidity providers need to correctly esti-

mate the PIN in order to identify the optimal levels at which to enter the market.

An unanticipated increase in PIN will result in losses to those liquidity providers

who do not adjust their prices.

It is difficult to estimate the parameter vector θ = (α, δ, ε, µ) because it can-

not be directly observed in either the occurrence of information events or the

associated arrival of uninformed and informed traders. In fact, in terms of mea-

suring the daily arrival rate of sell (st) and buy (bt) it is possible to infer these

values using maximum likelihood and assuming that the trading process follows

a Poisson process [Karyampas and Paiardini, 2011].

The Easley et al. [1996] PIN estimator considers the likelihood of order arrivals

during a discrete trading block. In this model, the likelihood of observing sell S

and buy B orders on each type of information occurs on a no event block with

probability 1− α, a bad event block with probability αδ and a good event block

with probability α(1− δ). Therefore, similar to the Eq. 3.0.4, the likelihood is

Li(Θ) =(1− α)e−εb
(εb)

Bi

Bi!
e−εs

(εs)
Si

Si!

+ αδe−εb
(εb)

Bi

Bi!
e−(εs+µ) (εs + µ)Si

Si!

+ α(1− δ)e−(εb+µ) (εb + µ)Bi

Bi!
e−εs

(εs)
Si

Si!
. (6.3.1)

Since only one type of information occurs in each trading block, the maximum

likelihood estimator of the information event parameters α and δ will be ei-

ther 0 or 1. However, these parameters can be estimated from each block of

buy and sells, assuming that the blocks are approximately independent. The
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likelihood of observing the data M = (Bi, Si)
I
i=1 across I trading block is just

the product of the daily likelihood function: L(M |Θ) =
I∏
i=1

L(Θ|Bi, Si) , where

M = ((B1, S1), ..., (BI , SI)) represents the data set for every 1, 5, and 10 minutes1.

The PIN estimates are computed by maximizing the parameter vector θ from

any data set M , which is normally taken to be from the daily trades and quotes.

As a quantity estimated by maximum likelihood I can make use the ‘delta method’

to compute analytical confidence bounds. First, let the log-likelihood function of

the PIN be given by:

L [M |Θ] =
∑I

i=1 log(Li(Θ))

=
∑I

i=1 log
(
−α(δ−1)εSi (µ+ε)Bi+αδεBi (µ+ε)Si−(α−1)εBi+Si

Bi!Si!

)
− (2ε+ µ).

. (6.3.2)

The analytical gradient, ∇L [M |Θ] = ∂
∂θ

∑l
i=1 Li(Bi, Si|Θ), of L [M |Θ] is

given by:

∇L [M |Θ] =

l∑
i=1



(
α− εBi+Si

(δ−1)εSi (µ+ε)Bi −δεBi (µ+ε)Si +εBi+Si

)−1(
εSi ((α−1)εBi −α(µ+ε)Bi )
α(εSi (µ+ε)Bi −εBi (µ+ε)Si )

+ δ

)−1

εSi (α(δ−1)(µ+ε)Bi (Biε+Si(µ+ε))+(α−1)(Bi+Si)ε
B
i (µ+ε))−αδεBi (µ+ε)Si (Bi(µ+ε)+Siε)

ε(µ+ε)(α(δ−1)εSi (µ+ε)Bi −αδεBi (µ+ε)Si +(α−1)εBi+Si)
− 2

α(Bi(δ−1)εSi (µ+ε)Bi −δSiεBi (µ+ε)Si )
(µ+ε)(α(δ−1)εSi (µ+ε)Bi −αδεBi (µ+ε)Si +(α−1)εBi+Si)


(6.3.3)

Let ∇2L [M |Θ] be the Hessian matrix of second order derivatives such that

1The PIN’s parameters is calculated by the maximum likelihood from the data set M where
the M = ((B1, S1), ..., (BI , SI) is the data set for every 1, 5, and 10 minutes. Then the daily
PIN’s parameters α, δ, µ, ε is calculated by using the mean average.
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∇2L [M |Θ] = ∂2

∂θ∂Θ′

∑I
i=1 Li(Bi, Si|Θ). For the maximized likelihood, with pa-

rameter vector Θ̂ the Hessian (Fisher information matrix) is denoted by∇2L [M |Θ̂].

Let ∇P[Θ] = ∂
∂Θ

P[Θ] and is derived analytically by:

∇P[Θ] =


µ

αµ+2ε
− αµ2

(αµ+2ε)2

0

− 2αµ
(αµ+2ε)2

α
αµ+2ε

− α2µ
(αµ+2ε)2

 (6.3.4)

at the maxima, asymptotically, the PIN estimator is derived from a standard

binomial tree and as such the likelihood estimator will obey the standard central

limit theorems. Subsequently, let Θ̄ be the true parameter estimates, from the

standard Gaussian limit theorem the Cramér-Rao bound is given by
√
I(Θ̄−Θ̂) ∼

N(0,∇2L [M |Θ̂]−1). From the standard delta method, the variance of the PIN

estimates will be given by:

√
I(P[Θ̄]− P[Θ̂])→d N(0,∇P[Θ̂]′∇2L [M|Θ̂]−1∇P[Θ̂])

It is relatively straightforward to observe that the variance of the PIN estimates

∇P[Θ̂]′∇2L [M|Θ̂]−1∇P[Θ̂] is easily specified as follows. Let IΩ̂ = ∇2L [M |Θ̂]−1,

with elements [ω̂ij] where i, j ∈ {α, δ, ε, µ} be the covariance matrix of the phys-

ically estimated parameters, {α, δ, ε, µ} 1. To test the significance of shifts in

the PIN, I compute cumulative sums of the PIN estimates and use the standard

central limit theorem to compute confidence intervals. I will now move on to look

at the VPIN, which is computed directly from the moments of the order-flow so

1Whilst the point estimates of the PIN are commonly used across academic and practitioner
implementations the exact identification of the asymptotic standard deviation has not been
written down and it is useful for determining the significance of adjustments in the level of
the PIN around specific events. The exact derivation was computed using the Mathematica
mathematics processing tool.
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I compute the error variance of VPIN via iid. bootstrap resampling.

Proposition 1. The standard error of the estimated PIN: the asymptotic

standard error of the PIN is given by

ŝt.dev(P[Θ̄]− P[Θ̂])→d

√
4α̂
(
µ̂
(
2ε̂(ε̂− α̂)ω̂ε̂µ̂ + α̂µ̂ω̂ε̂ε̂ − 2µ̂ε̂ω̂δ̂ε̂

)
+ α̂ε̂2ω̂µ̂µ̂

)
+ 4µ̂2ε̂2ω̂α̂α̂

(α̂µ̂+ 2ε̂)4

(6.3.5)

Proof. Follows from the statements above and a detailed derivation is given in

the following section.

Traditional implementations of PIN (see for instance the Matlab implemen-

tation by Paolo Zagaglia on the Mathworks webpage and the SAS standard cal-

culation) invoke an unconstrained optimization to compute the PIN. However, I

take advantage of the analytical nature of the gradient function and make full

use of a standard Newtonian approach, this is both faster and less prone to an

erroneous exit. The matrix of second order derivatives allows us to compute an

asymptotic standard error, which I can then use to construct my rolling z-tests

to detect the significance of changes in PIN over time.

To compute the asymptotic variance of the PIN from the maximum likelihood

estimate, I take advantage of the implicit asymptotic normality of the variance co-

variance matrix from the estimator and proceed using the standard Delta method

approach.

Let Bi and Si be the observed counts of buys and sells from the order-flow,

using my trade classification mechanism. Unfortunately, I do not have a good

way of measuring the error covariance matrix on Bi and Si therefore I have to

treat the estimates as non-stochastic in this instance. The log-likelihood of the i

observation of Bi and Si from i ∈ {1, . . . , I}, given my model setting is identical to
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the standard PIN formulation, with parameter vector Θ = [α, δ, ε, µ]′, is denoted

by

Li(Θ) = log

(
−α(δ − 1)εSi(µ+ ε)Bi + αδεBi(µ+ ε)Si − (α− 1)εBi+Si

Bi!Si!

)
− 2ε

(6.3.6)

summing over the I observations L(θ) =
∑

i Li(θ) and taking the first derivative

yields the analytic gradient:

∇L(Θ) =
∑
i



(
α− εBi+Si

(δ−1)εSi (µ+ε)Bi−δεBi (µ+ε)Si+εBi+Si

)−1

(
εSi((α−1)εBi−α(µ+ε)Bi)
α(εSi (µ+ε)Bi−εBi (µ+ε)Si)

+δ

)−1

εSi(α(δ−1)(µ+ε)Bi (Biε+Si(µ+ε))+(α−1)(Bi+Si)ε
Bi (µ+ε))−αδεBi (µ+ε)Si (Bi(µ+ε)+Siε)

ε(µ+ε)(α(δ−1)εSi (µ+ε)Bi−αδεBi (µ+ε)Si+(α−1)εBi+Si)
−2

α(Bi(δ−1)εSi (µ+ε)Bi−δSiε
Bi (µ+ε)Si)

(µ+ε)(α(δ−1)εSi (µ+ε)Bi−αδεBi (µ+ε)Si+(α−1)εBi+Si)


(6.3.7)

with analytical second derivative H = ∇2L[M |Θ], with elements [hij] where
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i, j ∈ {α, δ, ε, µ} the unique (upper triangular) elements are given as follows:

hαα =
∑
i

−
(
(δ − 1)εSi (µ+ ε)Bi − δεBi (µ+ ε)Si + εBi+Si

)2
A 2

(6.3.8)

hαδ =
∑
i

εBi+Si
(
εBi (µ+ ε)Si − εSi (µ+ ε)Bi

)
A 2

(6.3.9)

hδε =
∑
i

µDεBi+Si−1

A 2(µ+ ε)
(6.3.10)

hεµ =
∑
i

DεBi+Si

A 2(µ+ ε)
(6.3.11)

hδδ =
∑
i

−
α2
(
εSi (µ+ ε)Bi − εBi (µ+ ε)Si

)2
A 2

(6.3.12)

hδε =
∑
i

αµ(E G )εBi+Si−1

A 2(µ+ ε)
(6.3.13)

hδµ =
∑
i

−
(E G )εBi+Si

A 2(µ+ ε)
(6.3.14)

hεε =
∑
i

A B − F2

ε2(µ+ε)2

A 2
(6.3.15)

hεµ =
∑
i

C

A 2ε(µ+ ε)2
(6.3.16)

hµµ =
∑
i

(−α)A D
(µ+ε)2

−
(
αBi(δ − 1)εSi (µ+ ε)Bi−1 − αδSiεBi (µ+ ε)Si−1

)2
A 2

(6.3.17)
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where the functions A , B, C , D , E , F and G are defined as follows:

A =α(δ − 1)εSi (µ+ ε)Bi − αδεBi (µ+ ε)Si + (α− 1)εBi+Si (6.3.18)

B =α(Bi − 1)Biδε
Bi−2(µ+ ε)Si + 2αBiδSiε

Bi−1(µ+ ε)Si−1 (6.3.19)

− α(δ − 1)(Si − 1)Siε
Si−2(µ+ ε)Bi − 2αBi(δ − 1)Siε

Si−1(µ+ ε)Bi−1

− α(Bi − 1)Bi(δ − 1)εSi (µ+ ε)Bi−2

+ αδ(Si − 1)Siε
Bi (µ+ ε)Si−2 − (α− 1)(Bi + Si − 1)(Bi + Si)ε

Bi+Si−2

C =α(Ca + Cb + Cc) (6.3.20)

Ca =δSiε
Bi (µ+ ε)Si

(
εSi (µSi + ε)

(
α(δ − 1)(µ+ ε)Bi + (α− 1)εBi

)
− αδεBi+1(µ+ ε)Si

)
(6.3.21)

Cb =Bi(δ − 1)εSi (µ+ ε)Bi

(
αδεBi (µ+ ε)Si (ε− 2µSi) + εSi+1

(
−α(δ − 1)(µ+ ε)Bi − (α− 1)εBi

))
(6.3.22)

Cc =−Bi2(δ − 1)µεBi+Si (µ+ ε)Bi

(
(α− 1)εSi − αδ(µ+ ε)Si

)
(6.3.23)

D =Bi(δ − 1)εSi (µ+ ε)Bi − δSiεBi (µ+ ε)Si (6.3.24)

E =(α− 1)Siε
Bi + α(Bi − Si)(µ+ ε)Bi (6.3.25)

F =αδεBi (µ+ ε)Si (Bi(µ+ ε) + Siε) (6.3.26)

− εSi

(
α(δ − 1)(µ+ ε)Bi (Biε+ Si(µ+ ε)) + (α− 1)(Bi + Si)ε

Bi (µ+ ε)
)

G =(µ+ ε)Si − (α− 1)Biε
Si (µ+ ε)Bi (6.3.27)

setting Θ̂ = [α̂, δ̂, ε̂, µ̂]′, to the be the numerically evaluated parameters such

that ∇L(Θ̂) = 04. Where 04 is a 4 × 1 vector of zeros. Under mild regularity

conditions the maximum of the function L(Θ) can be quickly computed via the

Newton-Raphson approach.

The estimate of the asymptotic covariance matrix Ω̂ = cov[Θ̄− Θ̂], where Θ̄ is

the true parameter vector is computed from the Hessian matrix following Fisher’s

theorem by IΩ̂ = H−1.

6.3.2.1 The Asymptotic Estimate Variance of PIN

From the theoretical composition the formulation of the estimated PIN is P[Θ] =

αµ
αµ+2ε

. Inserting my estimated values yields P[Θ̂] = α̂µ̂
α̂µ̂+2ε̂

. My presumption is

that
√
I(P[Θ̄] − P[Θ̂])→d N(0, ς2), where ς2 is an asymptotic variance. I can
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confirm this presumption relatively easily, first by confirming that the gradient

∇P[Θ], is a smooth function of the underlying parameters:

∇P[Θ] =


µ

αµ+2ε
− αµ2

(αµ+2ε)2

0

− 2αµ
(αµ+2ε)2

α
αµ+2ε

− α2µ
(αµ+2ε)2

 (6.3.28)

and second I can derive the exact formulation via the Delta method: ς2 =

∇P[Θ̂]′Ω̂∇P[Θ̂]. Substitution and rearrangement yields
√
I(P[Θ̄]−P[Θ̂])→d N(0,∇

P[Θ̂]′∇2L[M|Θ̂]−1∇P[Θ̂]). Evaluating the term ∇P[Θ̂]′∇2L[M|Θ̂]−1∇P[Θ̂], divid-

ing by I and taking the square root, yields the standard error in the proposition 1

6.3.3 The implementation of Volume-Synchronized Prob-

ability of Informed Trading (VPIN)

This work uses a variety of choices for implementing VPIN with arrival rate of

informed and uninformed traders in Realized Volatility(RV) style. For original

work Easley et al. [2011], the fixed number of volume buckets VPIN(n) is fixed

at 50, however I consider n = 20, 50, 100, 200 and compute the bucket size (Vi)

as a fraction of daily trading volume to avoid the bias of activity or inactivity

of trading period. So, the VPIN is calculated with Vi = 1/20, 1/50, 1/100, and

1/200. My choices for complimenting VPIN not only calculate with different n

and Vi but also using tick-by-tick data instead of one-minute interval as in the

original work. I work with tick-by-tick data because I want to implement this

approach with the real high frequency world, trading at the speed of light or in a

fraction of millisecond, to investigate how the VPIN performs when it is applied
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with HFTs data.

Prior implementations of VPIN have utilized it as a separate pricing factor

within a standard Fama and Macbeth style cross sectional asset pricing model.

Given that the purpose of this chapter is to look specifically at the time series

variation in the PIN and VPIN measures around well understood events in the

life-cycle of the contract then I need to deal specifically with identification of the

variation in the measures. For the PIN I can appeal to the asymptotic prop-

erties of the maximum likelihood estimator to build a standard error; however

the suggested calculation of the VPIN does not lend itself to direct derivation of

the input parameters Cramér-Rao bound and hence a standard error. I therefore

choose a double block bootstrap to compute the confidence intervals. It should

be noted that consistency of a bootstrap in this case is effectively a tautology,

in that I impose consistency on the estimator as each individual step is known

to be consistent, but the actual order-flow imbalance does not have a structural

meaning from deep model parameters (although one could reconstruct a model if

necessary).

It can be seen that from the delta method approach used to compute the error

variance for the PIN it is quite possible that the likely data generating process

(from the original PIN type model) results in a VPIN that is not a pivotal statistic

(i.e. the distribution of the VPIN statistic is dependent on the true parameters of

the model); as such I iid the bootstrap in both the major steps in the calculation,

the construction of the volume buckets and the calculation of the resulting VPIN,

to compute the confidence intervals for the point estimates.

My suggested two stage nested bootstrap requires 9,801 resampled proceeds
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as follows:

Step 1: Bootstrap across buckets. This is the outer loop. Let V , P , PA and

PB be the matrices of volumes, transacted price and nearest preceding

bid and ask quote prices over a day with V †, P †, PA† and PB† being a

draw from their equivalent i.i.d. bootstrap with replacement counterparts.

For my purposes I assume that the rows are jointly bootstrapped such

that the resorted rows for V ∗∗, P †, PA† and PB† are all identical. As

the trade classifications for matched sets of the bootstrapped matrices is

identical. The calculation in Equation 3.0.25 proceeds exactly, with V †i and

P †i replacing Vi and Pi.

Step 2: For each V †i and P †i compute the bootstrapped V B†
τ and V S†

τ and con-

struct the collection of bootstrap order imbalancesOI† = [V S∗∗
τ −V B†

τ ]τ∈{1,...,N}.

Step 3: I now add an interior loop. For each OI† = [V S†
τ − V B†

τ ]τ∈{1,...,N} iid

resample with replacement 99 times OI†, with each bootstrap resample

labelled OI‡ and compute V PIN ‡. Retain the median V PIN ‡ and return

this as V PIN †.

Step 4: Sort the collection of 99 outer loop resampled median V PIN ‡ and then

collect the desired confidence intervals (in my case I choose a 95% confidence

interval).

These confidence bounds are applied in the subsequent plots for VPIN presented

in subsequent sections and the cumulative error is computed for the confidence

bounds in the tabulated VPIN adjustments.
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6.4 Data Sources and Data Pre-processing

The data used in this research are introduced in this section, together with a pre-

liminary processing of Eurodollar Futures data. As previously stated, Eurodollar

futures contracts are traded on the CME’s Globex platform and CME pit (open-

outcry) trades. Data for both electronic and open-outcry are directly obtained

from the CME tapes for the period January 1, 1996 to January 1, 2014. Pit

trades are quotes from CME by the ED code and GE for the Globex code; the

amalgamated tapes are classified under the ED moniker. The volume ratio be-

tween the Globex and open-outcry is between three and four orders of magnitude

over the sample, so separating the pit trades from the electronic trades currently

appears to be less interesting. The CME tapes data for the 44 Eurodollar futures

contracts is available from the Thomson Reuter database via the Tick History

system. I have conducted an analysis on the 4 monthly contracts, however the

data is very sparse and the volumes are very small (up to 5 orders of magnitude

for busy versus busy days) compared to the 40 quarterly contracts, so for brevity

this is excluded from the results.

6.4.1 Eurodollar futures descriptive statistics

The data records for 40 quarterly Eurodollar future contracts is separated into

two different time-frames, the first of which was from January 1, 1996 to July 31,

2007, and the second, from August 1, 2007 to January 1, 2014. The descriptive

statistics for each ED futures contract in the two periods are shown in Tables 4.2

and 4.3.

In terms of the first period, the highest mean bid/ask spread belongs to EDU1,
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and EDZ0 has the highest mean trades returns. The smallest mean bid–ask spread

belongs to EDH6, and EDU6 has the lowest mean trade returns. As for the second

period, EDM7 presents both the largest mean spread and mean returns, while

EDZ9 shows the lowest mean spread, EDZ9 the lowest mean spread, and EDM9

the lowest mean return (see Table 4.2 and 4.3).

6.4.1.1 The descriptive of the term-structure of PIN and PIN’s pa-

rameters

Table 6.1 presents an estimated PIN and Tables 6.2, 6.3, 6.4, 6.5 present PIN’s

parameters with its standard deviation for ten to one year to maturity on the

period of 1996 until 2013. The results in this table show that the probability of

information event between 1996 and 2001 is high, then begins to drop around

2002; the highest of α is in 2000 at 0.968 and 0.933 for ten and one year to matu-

rity, respectively. This trend may be consistent with the PIN as both parameters

have a similar trend, however, the highest PIN appears in 1997 with 0.844 and

0.830 for ten and one year to maturity, respectively. During the same period the

arrival rate of informed traders and uninformed traders µ, ε fluctuates mostly be-

tween 0.4 and 0.6, except for 2000 when ε fluctuates around 0.2. After an upward

trend of information based trading for Eurodollar trading in the first period, the

downward trend appears between 2002 and 2003. This trend can be investigated

from the decreases of α and PIN. After 2003, the PIN and the α are increasing,

then turning to a downward trend around 2007. The highest α appears in 2007

at 0.945 for ten year to maturity, however, the PIN is just about 0.631, which is

lower than 2004, 2005 and 2006 for the same ten year to maturity. From these

results, focusing on PIN and α, this analysis finds that the PIN is not purely

driven by α or the probability of information that occurs on the trading day. The
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Table 6.1: The Term Structure of PIN Coefficient

Time To Maturity

Year 10 9 8 7 6 5 4 3 2 1

1996 0.8098 0.7647 0.6914 0.7150 0.7153 0.6993 0.7623 0.7713 0.8092 0.8170
(0.2788) (0.2848) (0.2887) (0.3087) (0.3015) (0.3263) (0.3099) (0.3043) (0.2780) (0.2772)

1997 0.8444 0.8103 0.7483 0.6866 0.6975 0.7456 0.7374 0.7836 0.8056 0.8300
(0.2517) (0.2577) (0.2728) (0.2718) (0.2525) (0.2917) (0.3073) (0.2879) (0.2716) (0.2646)

1998 0.8065 0.8068 0.7802 0.7366 0.7154 0.6922 0.7360 0.6876 0.7278 0.8073
(0.2724) (0.2699) (0.2813) (0.2694) (0.2653) (0.2787) (0.2425) (0.3036) (0.2999) (0.2717)

1999 0.7276 0.7817 0.8105 0.7850 0.7607 0.7632 0.6647 0.7087 0.6933 0.7109
(0.3015) (0.3071) (0.2893) (0.2922) (0.3121) (0.2721) (0.1925) (0.2421) (0.2554) (0.2823)

2000 0.6997 0.7331 0.7671 0.7560 0.7698 0.7546 0.7360 0.6667 0.6778 0.6757
(0.2434) (0.2447) (0.2464) (0.2546) (0.2731) (0.2654) (0.2770) (0.2073) (0.2194) (0.2310)

2001 0.6388 0.6522 0.6796 0.7133 0.7203 0.7458 0.7090 0.7106 0.6832 0.6962
(0.2132) (0.2229) (0.2537) (0.2747) (0.2759) (0.2829) (0.2502) (0.2578) (0.2259) (0.2019)

2002 0.6381 0.6073 0.6251 0.6698 0.6834 0.7152 0.7634 0.7364 0.7050 0.6215
(0.1838) (0.2027) (0.2351) (0.2567) (0.2875) (0.2731) (0.2852) (0.2538) (0.2418) (0.1799)

2003 0.6167 0.6161 0.5717 0.5974 0.5957 0.6568 0.6989 0.7195 0.7078 0.6927
(0.1817) (0.1629) (0.1830) (0.2061) (0.2002) (0.3044) (0.2989) (0.2949) (0.2601) (0.1959)

2004 0.7098 0.6468 0.6279 0.5763 0.5526 0.5789 0.6672 0.7043 0.7282 0.7128
(0.1951) (0.1662) (0.1625) (0.2106) (0.2160) (0.2618) (0.3165) (0.3137) (0.3069) (0.2752)

2005 0.7122 0.7101 0.6849 0.6645 0.6748 0.5695 0.5816 0.6060 0.6807 0.7503
(0.2551) (0.2464) (0.1237) (0.1463) (0.1658) (0.2214) (0.2352) (0.2856) (0.2944) (0.2958)

2006 0.7046 0.6888 0.6922 0.6922 0.6852 0.6705 0.6431 0.5489 0.5885 0.6941
(0.3113) (0.2662) (0.2590) (0.1300) (0.1345) (0.1247) (0.1588) (0.2764) (0.2989) (0.3212)

2007 0.6314 0.6687 0.6797 0.7076 0.6874 0.6798 0.6627 0.6588 0.6383 0.5902
(0.2956) (0.3046) (0.3022) (0.2549) (0.1736) (0.1300) (0.1297) (0.1001) (0.1703) (0.2684)

2008 0.6338 0.6585 0.6612 0.7146 0.7142 0.6843 0.6794 0.6721 0.6572 0.6289
(0.1935) (0.2315) (0.2903) (0.2832) (0.2702) (0.2283) (0.1043) (0.1254) (0.1352) (0.1870)

2009 0.6692 0.6450 0.6496 0.6510 0.6975 0.6924 0.6960 0.6840 0.6696 0.6584
(0.1006) (0.1502) (0.1805) (0.2376) (0.2376) (0.2342) (0.2073) (0.1017) (0.1210) (0.1311)

2010 0.6782 0.6685 0.6728 0.6480 0.6599 0.6653 0.6960 0.7054 0.6845 0.6869
(0.1149) (0.1226) (0.1025) (0.1327) (0.1275) (0.1631) (0.2048) (0.1713) (0.1281) (0.1163)

2011 0.6884 0.6828 0.6839 0.6806 0.6634 0.6340 0.6245 0.6146 0.6731 0.6814
(0.1048) (0.1214) (0.1164) (0.0979) (0.1212) (0.1998) (0.2392) (0.2971) (0.2308) (0.1194)

2012 0.6976 0.6961 0.6776 0.6845 0.6676 0.6721 0.6552 0.6520 0.6293 0.7058
(0.1190) (0.1153) (0.1101) (0.0987) (0.1206) (0.1282) (0.1356) (0.1747) (0.2129) (0.1735)

2013 0.6866 0.6876 0.6854 0.6784 0.6825 0.6705 0.6811 0.6593 0.6537 0.6341
(0.1401) (0.1379) (0.1041) (0.0853) (0.1086) (0.1200) (0.0984) (0.1177) (0.1356) (0.1788)

Note: This table present the term structure of PIN between 1996 until 2013.
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Table 6.2: The Term Structure of α

Time To Maturity

Year 10 9 8 7 6 5 4 3 2 1

1996 0.6862 0.4397 0.3694 0.6110 0.5798 0.8135 0.7971 0.8427 0.8444 0.8241
(0.4172) (0.4599) (0.4425) (0.4523) (0.4530) (0.3238) (0.3365) (0.3084) (0.3012) (0.3215)

1997 0.8397 0.6715 0.4508 0.3725 0.3328 0.5229 0.7255 0.7540 0.8000 0.8392
(0.3043) (0.4132) (0.4367) (0.4275) (0.4167) (0.4702) (0.3800) (0.3791) (0.3468) (0.3130)

1998 0.8959 0.8844 0.7302 0.4949 0.5258 0.5335 0.3227 0.8212 0.8005 0.8366
(0.2522) (0.2619) (0.3890) (0.4274) (0.4232) (0.3774) (0.4406) (0.3408) (0.3570) (0.3305)

1999 0.9298 0.9261 0.9233 0.8853 0.8506 0.6524 0.4157 0.3710 0.5723 0.9254
(0.2191) (0.2156) (0.2249) (0.2477) (0.3224) (0.4398) (0.3204) (0.4701) (0.4867) (0.2356)

2000 0.9541 0.9620 0.9612 0.9594 0.9556 0.8109 0.6672 0.3857 0.4373 0.9333
(0.1925) (0.1614) (0.1583) (0.1481) (0.1587) (0.3394) (0.4331) (0.3629) (0.4262) (0.2304)

2001 0.9683 0.9851 0.9643 0.9645 0.9612 0.9740 0.8149 0.6860 0.6992 0.5722
(0.1575) (0.0972) (0.1633) (0.1554) (0.1622) (0.1090) (0.2865) (0.4060) (0.3771) (0.4806)

2002 0.6755 0.9828 0.9677 0.9571 0.9569 0.9419 0.9209 0.8182 0.7052 0.5992
(0.3670) (0.1190) (0.1621) (0.1746) (0.1713) (0.1761) (0.2088) (0.2702) (0.3065) (0.3175)

2003 0.5988 0.7065 0.9769 0.9909 0.9904 0.9624 0.9572 0.9390 0.7771 0.6109
(0.3169) (0.2925) (0.1379) (0.0848) (0.0767) (0.1627) (0.1533) (0.1779) (0.2984) (0.2919)

2004 0.5980 0.5023 0.5978 0.7392 0.8601 0.9028 0.9586 0.9374 0.9291 0.7428
(0.2987) (0.2621) (0.2893) (0.3532) (0.2875) (0.2731) (0.1633) (0.1996) (0.2053) (0.3145)

2005 0.7553 0.7535 0.4468 0.4667 0.4357 0.6762 0.8120 0.9315 0.9634 0.9427
(0.3012) (0.2942) (0.1807) (0.2188) (0.2498) (0.3245) (0.3071) (0.2232) (0.1441) (0.1769)

2006 0.9342 0.7797 0.7320 0.4393 0.4435 0.4517 0.4578 0.6563 0.7772 0.9482
(0.1766) (0.3052) (0.3152) (0.1761) (0.1789) (0.1855) (0.1988) (0.3587) (0.3337) (0.1631)

2007 0.9457 0.9563 0.9019 0.7725 0.5291 0.4455 0.4720 0.4978 0.5703 0.8735
(0.1843) (0.1595) (0.2247) (0.3003) (0.2530) (0.1837) (0.1658) (0.1389) (0.2200) (0.2680)

2008 0.6584 0.6865 0.9094 0.9414 0.8248 0.6707 0.4517 0.4701 0.4811 0.4864
(0.2726) (0.3322) (0.2159) (0.1759) (0.2727) (0.2991) (0.1622) (0.1836) (0.1698) (0.2538)

2009 0.4845 0.4891 0.5514 0.6466 0.6862 0.6782 0.6019 0.4497 0.4627 0.4806
(0.1628) (0.1991) (0.2519) (0.3087) (0.3077) (0.3016) (0.2790) (0.1613) (0.1515) (0.1536)

2010 0.4397 0.4598 0.4721 0.4822 0.4741 0.4311 0.3419 0.4302 0.4533 0.4363
(0.1827) (0.1814) (0.1708) (0.1773) (0.1885) (0.2395) (0.3009) (0.2676) (0.1695) (0.1780)

2011 0.4585 0.4399 0.4397 0.4453 0.4638 0.4619 0.4168 0.4388 0.4217 0.4484
(0.1481) (0.1749) (0.1829) (0.1781) (0.1924) (0.2192) (0.2958) (0.3440) (0.3001) (0.1528)

2012 0.4462 0.4565 0.4628 0.4675 0.4564 0.4290 0.4592 0.4096 0.4162 0.4631
(0.1588) (0.1410) (0.1403) (0.1315) (0.1445) (0.1882) (0.1667) (0.2393) (0.2548) (0.2430)

2013 0.4589 0.4524 0.4718 0.4829 0.4743 0.4621 0.4496 0.4763 0.4741 0.4715
(0.1892) (0.1789) (0.1279) (0.1188) (0.1395) (0.1522) (0.1580) (0.1751) (0.1764) (0.1950)

Note: This table present the term structure of α between 1996 until 2013.
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Table 6.3: The Term Structure of δ

Time To Maturity

Year 10 9 8 7 6 5 4 3 2 1

1996 0.4535 0.5493 0.6443 0.5895 0.5895 0.4178 0.4014 0.3395 0.3288 0.3233
(0.3907) (0.3529) (0.3358) (0.3858) (0.3750) (0.3983) (0.3926) (0.3903) (0.3832) (0.3732)

1997 0.3127 0.4052 0.5780 0.6575 0.6946 0.5805 0.4662 0.4160 0.3529 0.3434
(0.3632) (0.3633) (0.3319) (0.3181) (0.2871) (0.3645) (0.3889) (0.3966) (0.3837) (0.3893)

1998 0.2308 0.2495 0.3900 0.5104 0.4949 0.5785 0.6735 0.3481 0.3738 0.2973
(0.3472) (0.3475) (0.3758) (0.3225) (0.3339) (0.3093) (0.3105) (0.4010) (0.4062) (0.3888)

1999 0.1739 0.2012 0.2253 0.2654 0.3102 0.4356 0.5907 0.6026 0.4469 0.1657
(0.3244) (0.3353) (0.3551) (0.3496) (0.3856) (0.3607) (0.2397) (0.3510) (0.3927) (0.3299)

2000 0.1007 0.0844 0.1275 0.1280 0.1638 0.3092 0.4081 0.5945 0.5438 0.1326
(0.2752) (0.2362) (0.2878) (0.2762) (0.3182) (0.3630) (0.3755) (0.2773) (0.3376) (0.3033)

2001 0.0537 0.0467 0.0938 0.1015 0.1148 0.1119 0.3045 0.4048 0.3820 0.4013
(0.2055) (0.1914) (0.2576) (0.2598) (0.2770) (0.2573) (0.3212) (0.3678) (0.3440) (0.3873)

2002 0.3212 0.0479 0.0682 0.1234 0.1623 0.1618 0.1930 0.3328 0.4128 0.4266
(0.3130) (0.1955) (0.2258) (0.2957) (0.3302) (0.3045) (0.3133) (0.3176) (0.2828) (0.2766)

2003 0.4166 0.3342 0.0368 0.0287 0.0327 0.1116 0.1381 0.1963 0.3578 0.4599
(0.2780) (0.2919) (0.1732) (0.1574) (0.1712) (0.2749) (0.2831) (0.3264) (0.3260) (0.2437)

2004 0.4586 0.4809 0.4219 0.2621 0.1627 0.1515 0.1747 0.2263 0.2422 0.3938
(0.2539) (0.2228) (0.2595) (0.3112) (0.2947) (0.3151) (0.3390) (0.3656) (0.3597) (0.3179)

2005 0.3839 0.4024 0.5176 0.5252 0.5334 0.3796 0.2374 0.1696 0.1599 0.1818
(0.3184) (0.3228) (0.1381) (0.1824) (0.1906) (0.3175) (0.3114) (0.3339) (0.3185) (0.3270)

2006 0.2402 0.3617 0.3889 0.5309 0.5269 0.5333 0.5166 0.3997 0.3428 0.2034
(0.3508) (0.3348) (0.3081) (0.1446) (0.1449) (0.1438) (0.1625) (0.3307) (0.3522) (0.3357)

2007 0.1413 0.1668 0.2340 0.3519 0.4718 0.5308 0.5168 0.5137 0.4559 0.2203
(0.3013) (0.3173) (0.3362) (0.3331) (0.1977) (0.1344) (0.1300) (0.1116) (0.1936) (0.3253)

2008 0.4101 0.3802 0.2172 0.1620 0.3005 0.4014 0.5187 0.5211 0.5231 0.5032
(0.2581) (0.3011) (0.3225) (0.2958) (0.3186) (0.2681) (0.1144) (0.1346) (0.1363) (0.1988)

2009 0.5130 0.5188 0.4940 0.4618 0.4369 0.4206 0.4560 0.5169 0.5206 0.5216
(0.1197) (0.1572) (0.1986) (0.2882) (0.2831) (0.2730) (0.2292) (0.1190) (0.1120) (0.1233)

2010 0.5214 0.5240 0.5229 0.5177 0.5343 0.5196 0.5598 0.5180 0.5106 0.5244
(0.1277) (0.1333) (0.1330) (0.1366) (0.1509) (0.1682) (0.2295) (0.1976) (0.1425) (0.1366)

2011 0.5046 0.5117 0.5151 0.5305 0.5207 0.5331 0.5662 0.5671 0.5501 0.5145
(0.1248) (0.1351) (0.1297) (0.1364) (0.1448) (0.1727) (0.2276) (0.2624) (0.2290) (0.1172)

2012 0.5177 0.5092 0.5236 0.5142 0.5309 0.5345 0.5165 0.5562 0.5589 0.5474
(0.1374) (0.1145) (0.1185) (0.1135) (0.1178) (0.1375) (0.1233) (0.1836) (0.1992) (0.1688)

2013 0.5288 0.5268 0.5092 0.5074 0.5091 0.5159 0.5210 0.5156 0.5258 0.5301
(0.1452) (0.1494) (0.1112) (0.0977) (0.1039) (0.1190) (0.1149) (0.1316) (0.1335) (0.1579)

Note: This table present the term structure of δ between 1996 until 2013.
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Table 6.4: The Term Structure of µ

Time To Maturity

Year 10 9 8 7 6 5 4 3 2 1

1996 0.6826 0.6188 0.5320 0.5583 0.5474 0.5476 0.5721 0.6128 0.6569 0.6950
(0.3179) (0.3002) (0.2658) (0.2909) (0.2840) (0.3023) (0.2981) (0.3058) (0.3006) (0.3054)

1997 0.7043 0.6745 0.6056 0.5340 0.5286 0.5756 0.5249 0.5617 0.6136 0.6594
(0.2907) (0.2914) (0.2863) (0.2561) (0.2381) (0.2758) (0.2915) (0.2866) (0.2905) (0.2948)

1998 0.6654 0.6885 0.6415 0.5941 0.5846 0.5127 0.5785 0.5160 0.5459 0.6177
(0.2755) (0.2873) (0.3052) (0.2770) (0.2714) (0.2554) (0.2376) (0.2712) (0.2801) (0.2817)

1999 0.6009 0.6665 0.7056 0.6927 0.6700 0.6678 0.5077 0.5837 0.5728 0.5820
(0.2803) (0.3050) (0.3001) (0.3060) (0.3223) (0.2911) (0.1709) (0.2326) (0.2350) (0.2502)

2000 0.5863 0.6235 0.6907 0.7003 0.7116 0.6612 0.6402 0.5118 0.5380 0.5358
(0.2202) (0.2299) (0.2368) (0.2554) (0.2769) (0.2791) (0.2808) (0.1856) (0.2044) (0.1951)

2001 0.5353 0.5714 0.6037 0.6539 0.6547 0.6988 0.6292 0.6203 0.5711 0.5849
(0.1822) (0.2000) (0.2392) (0.2649) (0.2681) (0.2762) (0.2599) (0.2629) (0.2253) (0.1899)

2002 0.5307 0.5186 0.5490 0.5975 0.6215 0.6597 0.6983 0.6562 0.6024 0.4833
(0.1742) (0.1721) (0.2119) (0.2384) (0.2712) (0.2708) (0.2926) (0.2713) (0.2582) (0.1527)

2003 0.4775 0.4924 0.4973 0.5352 0.5345 0.6129 0.6536 0.6729 0.6151 0.5674
(0.1552) (0.1372) (0.1593) (0.1893) (0.1838) (0.2954) (0.2918) (0.2938) (0.2668) (0.2079)

2004 0.5721 0.4992 0.4918 0.4727 0.4584 0.4955 0.6074 0.6304 0.6567 0.6029
(0.2080) (0.1502) (0.1390) (0.1778) (0.1838) (0.2378) (0.3043) (0.3162) (0.3110) (0.2828)

2005 0.6163 0.6097 0.5164 0.5060 0.5114 0.4630 0.4858 0.5449 0.6257 0.6969
(0.2669) (0.2615) (0.1247) (0.1391) (0.1657) (0.1953) (0.2132) (0.2678) (0.2877) (0.2966)

2006 0.6374 0.5939 0.5845 0.5166 0.5172 0.5051 0.4911 0.4479 0.5000 0.6233
(0.3060) (0.2689) (0.2604) (0.1345) (0.1377) (0.1214) (0.1348) (0.2389) (0.2740) (0.3098)

2007 0.5492 0.5916 0.5942 0.6100 0.5331 0.5029 0.5035 0.5004 0.4891 0.5035
(0.2648) (0.2816) (0.2808) (0.2569) (0.1762) (0.1190) (0.1163) (0.0960) (0.1433) (0.2350)

2008 0.5157 0.5675 0.6171 0.6744 0.6480 0.5741 0.5120 0.5061 0.4967 0.4874
(0.1790) (0.2345) (0.2876) (0.2817) (0.2786) (0.2344) (0.1044) (0.1172) (0.1189) (0.1673)

2009 0.5118 0.4950 0.5129 0.5397 0.5852 0.5819 0.5650 0.5160 0.5035 0.4964
(0.1052) (0.1323) (0.1731) (0.2324) (0.2448) (0.2447) (0.2211) (0.1050) (0.1098) (0.1106)

2010 0.5122 0.5037 0.5089 0.4919 0.5087 0.5162 0.5628 0.5493 0.5111 0.5151
(0.1150) (0.1169) (0.1004) (0.1165) (0.1213) (0.1561) (0.2077) (0.1876) (0.1300) (0.1224)

2011 0.5169 0.5082 0.5171 0.5142 0.5061 0.4944 0.5025 0.5075 0.5398 0.5068
(0.1161) (0.1175) (0.1162) (0.1026) (0.1105) (0.1801) (0.2223) (0.2812) (0.2317) (0.1136)

2012 0.5254 0.5259 0.5000 0.5144 0.4968 0.5121 0.4983 0.5095 0.4955 0.5438
(0.1292) (0.1192) (0.1165) (0.1140) (0.1045) (0.1237) (0.1224) (0.1651) (0.1925) (0.1857)

2013 0.5277 0.5226 0.5169 0.5017 0.5121 0.5032 0.5123 0.4990 0.4953 0.4870
(0.1425) (0.1475) (0.1210) (0.0955) (0.1024) (0.1106) (0.1043) (0.1089) (0.1179) (0.1544)

Note: This table present the term structure of µ between 1996 until 2013.
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Table 6.5: The Term Structure of ε

Time To Maturity

Year 10 9 8 7 6 5 4 3 2 1

1996 0.4180 0.3983 0.4433 0.4559 0.5022 0.5236 0.4469 0.4824 0.4537 0.4505
(0.2939) (0.2399) (0.2219) (0.3008) (0.2785) (0.3344) (0.3431) (0.3546) (0.3429) (0.3302)

1997 0.4303 0.4161 0.4138 0.4720 0.4391 0.4752 0.4590 0.4096 0.4088 0.4006
(0.3281) (0.3008) (0.2411) (0.2188) (0.1878) (0.2866) (0.3095) (0.3284) (0.3328) (0.3406)

1998 0.4414 0.4908 0.4410 0.4473 0.4842 0.4589 0.4954 0.5319 0.5018 0.4334
(0.3693) (0.3618) (0.3240) (0.2599) (0.2547) (0.2336) (0.1996) (0.3257) (0.3390) (0.3547)

1999 0.5075 0.4977 0.5163 0.5377 0.5323 0.5250 0.5076 0.5465 0.5573 0.5157
(0.3673) (0.3859) (0.3849) (0.3538) (0.3563) (0.2988) (0.1504) (0.2082) (0.2439) (0.3469)

2000 0.5648 0.5380 0.6025 0.6524 0.6327 0.5675 0.5656 0.4973 0.5224 0.5441
(0.3181) (0.3387) (0.3958) (0.3721) (0.3896) (0.3557) (0.3204) (0.1383) (0.1753) (0.2755)

2001 0.6293 0.6844 0.6769 0.6708 0.6507 0.6719 0.6107 0.5842 0.5783 0.5787
(0.2460) (0.2808) (0.3250) (0.3584) (0.3737) (0.3699) (0.3323) (0.3070) (0.2604) (0.1815)

2002 0.6221 0.6801 0.6970 0.6839 0.6985 0.6641 0.5945 0.5748 0.5695 0.5648
(0.1689) (0.2258) (0.2677) (0.3189) (0.3570) (0.3444) (0.3553) (0.3075) (0.2608) (0.1466)

2003 0.5518 0.6066 0.7263 0.7431 0.7490 0.7027 0.6813 0.6503 0.5707 0.5343
(0.1535) (0.1718) (0.1766) (0.2305) (0.2144) (0.3425) (0.3496) (0.3481) (0.3087) (0.2245)

2004 0.5231 0.5206 0.5635 0.6433 0.6670 0.6847 0.7014 0.6732 0.6494 0.5584
(0.2335) (0.1403) (0.1577) (0.1884) (0.1953) (0.2443) (0.3476) (0.3515) (0.3589) (0.3175)

2005 0.5641 0.5725 0.4613 0.5008 0.5187 0.6296 0.6537 0.7211 0.6872 0.6181
(0.3011) (0.2900) (0.1284) (0.1210) (0.1448) (0.1880) (0.2295) (0.3108) (0.3422) (0.3577)

2006 0.6274 0.6044 0.5766 0.4445 0.4533 0.4841 0.5265 0.6419 0.6613 0.6133
(0.3551) (0.3164) (0.3050) (0.1475) (0.1333) (0.1178) (0.1222) (0.2370) (0.2885) (0.3555)

2007 0.6690 0.6567 0.6227 0.5901 0.4757 0.4587 0.5003 0.5143 0.5427 0.6882
(0.3515) (0.3757) (0.3712) (0.3251) (0.2121) (0.1297) (0.1109) (0.0684) (0.1647) (0.2951)

2008 0.6122 0.6559 0.7418 0.7132 0.6333 0.5898 0.4738 0.4973 0.5160 0.5585
(0.2271) (0.2615) (0.3059) (0.3444) (0.3343) (0.2754) (0.0859) (0.0990) (0.0944) (0.1412)

2009 0.5104 0.5352 0.5686 0.6160 0.5960 0.5619 0.5145 0.4743 0.4823 0.5030
(0.0754) (0.1256) (0.1786) (0.2524) (0.2742) (0.2641) (0.2230) (0.1072) (0.0995) (0.1055)

2010 0.4766 0.4923 0.4973 0.5191 0.5263 0.5281 0.5174 0.4590 0.4457 0.4550
(0.0972) (0.1122) (0.0906) (0.0889) (0.0971) (0.1485) (0.1848) (0.1815) (0.1341) (0.1134)

2011 0.4547 0.4503 0.4659 0.4827 0.5083 0.5366 0.5755 0.5900 0.5241 0.4522
(0.1206) (0.1231) (0.1018) (0.0925) (0.0871) (0.1490) (0.1822) (0.2228) (0.2000) (0.1280)

2012 0.4463 0.4531 0.4582 0.4598 0.4684 0.5039 0.5068 0.5434 0.5663 0.4724
(0.1512) (0.1362) (0.1300) (0.1221) (0.1047) (0.1110) (0.1024) (0.1352) (0.1549) (0.1811)

2013 0.4943 0.4861 0.4657 0.4692 0.4612 0.4746 0.4756 0.5052 0.5143 0.5368
(0.1515) (0.1528) (0.1200) (0.1118) (0.1181) (0.1117) (0.0951) (0.0969) (0.0997) (0.1436)

Note: This table present the term structure of ε between 1996 until 2013.
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low(high) of α does not follow the low(high) of PIN, however, they have a similar

trend but are slightly overlapping for some period(I leave a full investigation for

future research). Interestingly, after 2008, there is a small variation for all pa-

rameters, for instance from 2009 to 2013 the α for ten to one year to maturity

shows an average value at 0.4, the average estimate of δ, µ and ε are 0.5. Finally,

the average estimated PIN from 2009 has a small variation around 15% from the

identical PIN at 0.667.

6.5 Analysis and Implications: PIN and VPIN

comparison

The following section presents various results of PIN measures on individual ED

futures contracts following the conditional imputation approach of Easley et al.

[1996]. It will also present results for VPIN drawing on Easley et al. [2012] ap-

proach but with different n and Vi. First, for the average PINs estimated they are

in excess 0.5 for the majority of the sample. This is high relative to comparable

equity market studies, see Table 6.6. However, the results coincide with those

of Kim et al. [2014] on the CME Globex trades, for a short sample within my

sample and Easley et al. [2012] for related US Dollar Treasury notes. Second,

the average VPIN from my results is 0.126 which is lower than other estimates;

however, the range of VPIN is wider and the minimum VPIN is 0.045 and the

maximum is 0.998.

Although from this study the PIN estimates cover between 0.10 and 0.80 in

the equities market, in the derivatives market the range is higher with minimum

and maximum values of 0.04 and 0.99, respectively. Also, in the derivatives mar-
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Table 6.6: Comparison between average ‘Probability of Informed Trading’
estimates across various studies and markets.

Author Asset Sample Period Min–max Mean

Easley et al. [1996],(PIN) NYSE – 90 stocks Oct. 1, 1990 to Dec. 23, 1990 0.120–0.342 0.197
Idier and Nardelli [2011](PIN) Euro overnight interbank

rate, Money market
Dec. 2000 to Mar. 2008 0.200–0.580 0.480

Easley et al. [2012],(VPIN) E-mini S&P 500 (CME) Jan. 1, 2008 to Oct. 30, 2010 0.205–0.830 0.393
T-Note (CBOT) Jan. 1, 2008 to Oct. 30, 2010 0.200–0.800 0.401
EUR/USD(CME) Jan. 1, 2008 to Oct. 30, 2010 0.150–0.780 0.327
Brent Crude Oil (ICE) Jan. 1, 2008 to Oct. 30, 2010 0.200–0.770 0.384
Silver (COMEX) Jan. 1, 2008 to Oct. 30, 2010 0.200–0.840 0.411

Abad and Yagüe [2012],(PIN) Spanish Stock Exchange
– 15 stocks

Jan. 1, 2009 to Dec. 31, 2009 0.104–0.501 0.227

Kim et al. [2014],(VPIN) Intra day trading – Eu-
rodollar Futures (CME)

Jan. 3, 2005 to Dec. 29, 2006 0.760–0.970 0.880

Yan and Zhang [2014],(PIN) NYSE/AMEX stocks
that have data in the
ISSM and TAQ databases

Jan, 1, 1983 to Dec. 31, 2004 0.177–0.227 0.201

My PIN 40 Eurodollar Future
contracts

Jan. 1, 1996 to Jan 1, 2014 0.369–0.992 0.688

My VPIN 40 Eurodollar Future
contracts

Jan. 1, 1996 to Jan 1, 2014 0.045–0.998 0.126

Note: this table compares the PIN and VPIN from this research with others for various products.
It can be seen that my PIN is higher than other PINs, which might be affected by the trading
mechanism in the futures market which is different from the stock exchange; however, my VPIN
is lower than other VPINs.

ket the min–max spread is higher than in the equities market, particularly in the

interest rate derivatives market. The highest mean of PIN appears in Kim et al.

[2014] with a value of 0.88 ;yet, the highest actual value of PIN is shown in this

work with the maximum value of 0.992. The minimum VPIN is 0.040 and the

maximum is 0.998. Interestingly, the value of PIN in the Eurodollar Futures is

higher than the equity market and always high as presented in this work the PIN

is mostly higher than 0.50. However, despite my PIN being constantly high, the

average VPIN in this study is lower than others such as in Kim et al. [2014] in

which it varies between 0.76 and 0.97. Table 6.6, illustrates this point and this

aspect of my study would be interesting to investigate in the future.
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6.5.1 Following the VPIN Dispute

The VPIN as a tool for detecting excessive levels of order imbalance has been

subject to considerable academic discussion and it is worth reviewing some of the

key input choices in determining its value. As previously noted, Andersen and

Bondarenko [2013, 2014c] and Abad et al. [2015] have criticized the VPIN pri-

marily due to the lack of a good mechanism to be able to choose the correct bulk

volume classification. Hence the number of buckets (n) and the bucket size (Vi)

are nuisance parameters with no simple method of constructing an appropriate

statistical loss function to provide guidance on their values. My solution to this

problem is to repeat the analysis over a wide range of different n and Vi and,

indeed, I will show that the VPIN, at times, can be sensitive to these choices.

Furthermore, this work computes the VPIN for VPIN20, VPIN50, VPIN100 and

VPIN200, then compares them with original point estimates of the PIN. I can

observe from this that there are substantively different values of VPIN during

January 19-29 2010; the minimal value of VPIN is VPIN20 and maximal VPIN

is VPIN200 almost continuously through this snapshot of data. For example,

PIN and VPIN estimates on January 23, 2010, for the PIN is 0.7521 and 0.0132,

0.0096, 0.0096, 0.0048 for VPIN20, VPIN50, VPIN100 and VPIN200, respec-

tively. From this example we can see that the absolute value of VPIN is sensitive

to the choice of n and Vi is certainly not in question. However, the correlations

and cumulative differences across choices of n and Vi indicate a high level of

agreement in direction, if not in level, which is in keeping with the commentary

made in Easley et al. [2014].

Table 6.7 presents the correlation matrix and p-values of VPIN and PIN. No-

ticeably, there is a positive and significant correlation between all five variables.

This indicates that there is a significant relationship between all five variables:
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Table 6.7: Long run correlation coefficients of PIN, VPIN20, VPIN50,
VPIN100 and, VPIN200 on ED?0.

VPIN20 VPIN50 VPIN100 VPIN200 PIN
VPIN20 1

VPIN50 0.9250 1
(0.0000)

VPIN100 0.3127 0.349 1
(0.0000) (0.0000)

VPIN200 0.2938 0.3297 0.2484 1
(0.0000) (0.0000) (0.0000)

PIN 0.1156 0.1362 0.1343 0.0843 1
(0.0000) (0.0000) (0.0000) (0.0051)

Note: This table illustrates the matrix of correlation between PIN, VPIN20,
VPIN50, VPIN100 and, VPIN200 also a matrix of p-values for testing the hy-
pothesis of no correlation with (p < 0.05)

the highest correlation is between VPIN20 and VPIN50 with r = 0.9250, n =

1100, p = 0.000 this decreases to r = 0.3127, 0.2938 and 0.1156 for VPIN100,

VPIN200 and PIN respectively.

Figure 6.2 also illustrates the variability of the VPIN as a function of different

choices of n and Vi. The solid line represents the VPIN estimates for March 2002

maturing futures, the dotted line represents VPIN for June 2002 maturing con-

tracts, and the dashed line represents the VPIN for September 2002 contracts.

For each contract I have five different colors that represent different n and Vi

choices (n = 20 with Vi = 20, n = 50 with Vi = 50, n = 100 with Vi = 100, and

n = 200 with Vi = 200). The sensitivity, in level, of the VPIN to n and Vi is

self-evident however, the cumulative differences are highly consistent.
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Figure 6.2: Comparison of a four different types of VPIN on EDH2, EDM2,
and EDU2.
Note: This figure presents the compared plots of five different types of VPIN such
as VPIN20, VPIN50, VPIN100 and VPIN200 between February 27 until March
09, 2012. It can be seen that VPIN is sensitive to different n and Vi, however
there is systematic trend between four types of VPINs. They can be described
as, VPIN with n = 20 with Vi = 20, n = 50 with Vi = 50, n = 100 with Vi = 100,
and n = 200 with Vi = 200, also the thick line represents EDH2, the dotted line
represents EDM2 and the dash line represents EDU2.

6.5.2 Empirical evidence, PIN and VPIN on Eurodollar

Futures Market

This section presents the results of cross-sectional PIN and VPIN on the Eurodol-

lar Futures market across 40 contracts from 1996 to 2013 (Figure 6.3). For the

entire sample, I find the PIN and VPIN fluctuate with a downward sloping trend.

The left subplot of Figure 6.3 shows the average PIN on the left axis, and

average VPIN20, VPIN50, VPIN100, and VPIN200 on the right axis. It also

shows fluctuations in PIN and VPIN. The highest PIN occurs during 1996 to

1998 with a variation around 0.80-0.82. It decreases after 1998 with its lowest
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value at 0.58 around mid 2002. The PIN, after a downward trend from 1996 to

mid 2002, bounced back and remains constantly high until 2013, at between 0.065

to 0.070. I assume the high value of PIN between 1996 to mid 2002 is caused by

trading activity that operates on an open-outcry platform. This platform, due

to its greater information content, has more effect than the electronic market,

and can increase the PIN. This has been noted by previous studies on the effect

of migration from open-outcry to electronic platforms (Shah and Brorsen [2011];

Ates and Wang [2005]; Aitken et al. [2004]; Tse and Zabotina [2001] ). This

pattern, albeit with some variation, also appeared on the VPIN.

Overall, the VPIN shows a monotonic decrease from a high point of about

0.40 in 1996 to between 0.01 and 0.02 in 2012. It gradually drops after CME

launched the Globex trading system in 2002. However, around 2004, the VPIN

bounces back. This pattern appears after routine manipulation of the LIBOR as

noted in the FSA and CFTC documents. At the same time, the VPIN is also

constantly high although not higher than pre-2002. However, I find a significant

decrease in the VPIN around May 2009, when it dropped from about 0.14 to 0.08

compared to the previous period. This decrease is a result of the launch of the

LIBOR manipulation investigation. Thus, historical analysis of both PIN and

VPIN shows variations in the ED futures market consistent with the FSA and

CFTC documents. The same pattern can be observed in PIN and four types of

VPIN.

The right subplot of Figure 6.3 presents cumulative ∆PIN and ∆VPIN. As

the PIN and VPIN have differences in their range, it is hard to compare them, so,

I had to normalize PIN and VPIN by investigating their differences - ‘∆PIN’ and

‘∆VPIN’. Using the same analysis as in the left subplot of Figure 6.3, I find the
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same results in the right. That is the major pattern of ∆PIN and ∆VPIN show-

ing a downward trend. Also, the ∆PIN and ∆VPIN had a significant drop after

the Globex was launched in 2002, then increased again around 2004. Similarly, I

find these two indicators increasing again around the time of the financial crisis,

then dropping. However, ∆VPIN appears to be more sensitive than ∆PIN, as at

the beginning of 2004 it dropped around 0.5 or 50% compared to 2002. During

the same period, ∆PIN dropped only 10%. Also, there was a rapid decrease in

VPIN after the LIBOR investigation with ∆VPIN dropping from -0.05 to -0.15

compared to the previous period.

6.5.3 Term Structure of PIN and VPIN

The left subplot of Figure 6.4 presents a cross-section of the term structure of

PIN for 40 Eurodollar futures contracts for 3,653 days. In this figure I overlay

plots of historical PIN against Days-To-Maturity (X axis) to investigate the vari-

ation of long term relationships. Although I have 40 different historical PINs,

all show a similar pattern. The figure shows that from 3,653 to 3,000 days to

maturity the PIN shows values between 0.62 to 0.92. After this period, the PIN

slightly decreases and then drops to its lowest value at 0.32 at around 1,400 days

to maturity. However, at this point PIN are highly volatile with a range of 40%

with the highest PIN about 0.72 and the lowest 0.32. However, after 365 days

to maturity the PIN had a much lower variation of around 0.15 to 0.10. One fi-

nal finding from this plot is that from 1,400 days to maturity, the term structure

of PIN tended to be V-shaped similar to the term structure of the price of futures.

The right subplot of Figure 6.4 presents a term structure of cumulative ∆ PIN

for 40 Eurodollar futures contracts for a 10 year period. In this figure, there is
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a similar pattern in the term structure of PIN and cumulative ∆ PIN. Using the

same format as in the left subplot of Figure 6.4 to illustrate the term structure

of cumulative ∆ PIN, I find a downward trend from the first trading day until

1,800 days to maturity. From the beginning of this trading period the cumulative

∆ PIN varies around 20% between 0 to 0.2, then drops to its lowest value of

between -0.5 and -0.1. Furthermore, at this point of time the cumulative ∆PIN

were extremely volatile with a range of around 40% with a high of -0.08 and a

low of -0.52. Furthermore, from around 1,400 days to maturity, the cumulative

∆ PIN increases with less variation which narrows to 10% in comparison to 40%

in the last period. Finally, it is interesting to note that the term structure of PIN

and cumulative ∆ PIN from 1,400 days to expiration have the same V-shape as

the typical term structure of futures.

Using the same format analysis from Figure 6.4, Figure 6.5 presents the term

structure of VPIN on the left subplot and term structure of cumulative ∆VPIN

on the right subplot. Although I have shown the term structure of PIN from

3,653 days to expiration, I can present only 1,100 days to maturity for VPIN due

to the volume bucket effects. That is to say, as described in the methodology

section, for the VPIN algorithm to work, the volumes have to completely fill the

volume bucket.

It can be seen from the left subplot of Figure 6.5 that from 1,100 to 700 days

to maturity the term structure of VPIN tends to be U-shaped. The VPIN fluctu-

ates from nearly 0 to just above 0.50 or 50% difference. Later, the variation range

decreases from 50% to 20% on 700 days to expiration. Next, between 700 to 400

days to maturity, the VPIN slightly increases from 0.15 to 0.27 respectively, then

decreases afterwards. The VPIN drops after 400 days and slightly increases again
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at around 120 days to expiry. During 400 to 120 days to expiry, the VPIN varies

around 10% between 0.10 to 0.20. Interestingly, the differences between the low-

est and highest tend to be narrower closer to maturity. This result is consistent

with (Ballocchi et al. [2001]) in that the range of variation on ED futures price

also decreases as the contracts approach expiration. A remarkable result from

this plot indicates that from 365 days to expiration , the term structure of VPIN

tends to be V-shaped as the term structure of futures prices.

The right subplot of Figure 6.5 presents the term structure of cumulative

∆ V PIN across 40 ED contracts with four different types of VPIN. Overall,

the term structure tends to be V-shaped similar to the term structure of futures

prices, as the range of variation decreases over the period. The highest ∆ V PIN

was at the beginning of this period with the minimum at -2.5 and maximum at

nearly 1. From 700 days to maturity, the range of variation increases, which is

consistent with the term structure of VPIN when it slightly increases at around

700-days to maturity and decreases afterwards.

For clear comparison, this analysis focuses on PIN and VPIN from 1,100 days

to maturity. Therefore, I find a similar pattern of the term structure of ∆ PIN

and ∆ V PIN , which tends to be V-shaped in respect to the term structure of

futures contracts. To this end, the behavior of PIN in Figure 6.4 and VPIN in

Figure 6.5 leads us to investigate whether time to maturity can help to explain the

change in the variation of PIN and VPIN, ∆ PIN and ∆ V PIN . The findings

show that time to expiration tends to have an effect on the value and variation

of both PIN and VPIN.
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6.5.4 Correlation Surface

The similar patterns of PIN and VPIN against day-to-maturity leads us to in-

vestigate their relationship with time to maturity. To investigate this, Pearson’s

correlation is used to test the correlation between the PIN and four different types

of VPIN from 1,000 days to maturity.

Figure 6.6 presents the correlation between PIN and VPIN20, VPIN50, VPIN100,

VPIN200 from 1,000 days to maturity to expiry date. All types of VPIN pos-

itively correlate with PIN over time to maturity. However, this varies over the

whole period as it increases nearer to maturity. The highest correlation appears

between PIN and VPIN20 around 7 days with a correlation of 0.72. Inspecting

the relationship between PIN and four VPIN, I find the PIN and the VPIN50

have a higher correlation compared to VPIN20, VPIN100, VPIN200 except after

15 days to maturity when the relationship drops lower than the relationship be-

tween PIN and VPIN20. Moreover, around 15 days before the final trading day,

the highest correlation changes from VPIN50 to VPIN20 then reaches a peak

before the end of the contract. In this period, the lowest correlation appears on

VPIN200 followed by VPIN100. This figure pinpoints conclusively a strong effect

of time to maturity for PIN and VPIN, as results show a higher correlation nearer

to maturity.

6.5.5 PIN, VPIN and the LIBOR Manipulation

This section presents PIN and VPIN with the LIBOR manipulation case. Most

market manipulation studies use general publicly available data. However, I use

specific dates of LIBOR manipulation as cataloged in the CFTC and FSA doc-

uments presented in Table 5.3. To further investigate risk surrounding these
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Figure 6.6: Surface Plot of the correlation surface between the estimated
PIN, VPIN20, VPIN50, VPIN100, and VPIN200.
Note: This figure presents the correlation matrix between PIN and VPIN20,
VPIN50, VPIN100, VPIN200 from 1,000 days to maturity. It can be seen that
the correlation between PIN and VPIN significantly increases for a shorter time
to maturity.
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specific events, I calculate PIN, VPIN20, VPIN50, VPIN100, and VPIN200 to

identify short term risk. I also observe long run behavior from 1996 to 2014.

I make the conjecture that LIBOR manipulation has an effect on PIN and

VPIN in the futures market as ED trading is based on the LIBOR rate. This

analysis begins with an analysis of FSA and CFTC documents regarding dishon-

est or manipulative submissions of the LIBOR rate issued to major banks, such

as Barclays and RBS. The findings indicate that there are two different purposes

of manipulation before and after the financial crisis. During the pre-crisis, the

banks manipulated the LIBOR, attempting to generate competitive advantage

for their trading positions to boost profits. However, during the financial crisis,

LIBOR manipulation was an attempt to reduce customer perception of the banks

high borrowing costs as this made them look desperate for cash. This was part

of a beauty contest designed to ‘reassure’ investors and regulators.

According to the CFTC settlement document, Barclays’ traders attempted to

manipulate the US Dollar LIBOR from at least mid-2005 to the autumn of 2007,

and thereafter sporadically until 2009. For instance, on March 31, 2006, Barclays

employees, including the bank’s senior Treasury managers, sent a request to a

US dollar LIBOR submitter to submit a higher rate than normal. The submitter

replied he would submit the rate requested.1 At this point, I assume that the

PIN and VPIN after the manipulation date should be higher than the previous

period, then lower afterwards.

The top of the left panel of Figure 6.7 displays PIN and VPIN around March

1CFTC, Order instituting proceedings pursuant to sections 6(c) and 6(d) of the Commodity
Exchange Act, as amended, making findings and imposing remedial sanctions; In the Matter
of Barclays plc, pp. 9–10.
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31, 2006 as recorded in the LIBOR manipulation document. In this case, I can

investigate informed trading around this event by studying the variation of PIN

and VPIN by using data from EDM6 contract, which has the closest expiry date.

I investigate PIN and VPIN on EDH6 because this contract is the nearest expira-

tion futures contract with the largest trading volume. Overall, the findings from

this analysis show a significant increase in PIN and VPIN. Three days before

the event date, the PIN, VPIN20, VPIN50 VPIN100 and VPIN200 move around

0.67, 0.16, 0.16, 0.165 and 0.125 respectively. Then, from the event date the

PIN and VPIN sharply increases, achieving a peak on April 02, with the PIN at

0.82, VPIN20 at 0.50 and VPIN50 also at 0.50. However, there is no significant

movement on VPIN10 and VPIN200.

For clarification, in the middle row of the left panel, the figure compares ∆PIN,

∆VPIN and the last row presents the PIN and VPIN based on the event date.

On the day after the event date, the PIN increases by 0.22 or 22 %, VPIN20 and

VPIN50 increases nearly three times when compared with the event date. Fur-

thermore, three days after the event, the PIN and VPIN have significant decrease

as the PIN, VPIN20 and VPIN50 shrinks by as much as it increased. Despite PIN

VPIN20 and VPIN50 having a significant movement around the event, VPIN100

and VPIN200 have no significant changes before and after.

The left panel of Figure 6.7, presents the variation in PIN, VPIN on Septem-

ber 07, 2007, when Rabobank’s senior US Dollar trader requested a US Dollar

submitter to keep the 3M LIBOR high for the rest of that week.1 This panel

shows that between 03 and 13 September 2007, PIN and VPIN have a significant

1CFTC, Order instituting proceedings pursuant to detection(c) and 6(d) of the commodity
exchange act, as amended, making findings and imposing remedial sanctions in the matter of
Coöperative Central Raiffeisen Boerenleenbank B.A., p. 10.
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movement characterized by a spike of both on the day after the event. This ma-

nipulation influences PIN and VPIN on the EDU7 contract expiring on September

19, 2007. The PIN increases from 0.68, then reaches a peak on September 09 at

0.80, falling to 0.695 on the following day. Also, VPIN20, VPIN50, VPIN100 and

VPIN200 increase from around 0.08 before the event to 0.17 on the event date,

then reached a peak at 0.29 one day after, as a nearly threefold increase. Finally,

similar to the PIN, the VPIN drops to its previous level.

I find PIN and VPIN have a systematic pattern around the LIBOR manip-

ulation events as they increase on the event date, reach a peak the day after,

and finally decrease to the previous level. However, it is interesting to note that

normally all 40 Eurodollar futures contracts trade within the same time frame.

As a result, informed traders may manipulate the ED in different contracts. The

limitation of this study is that I cannot identify specific Eurodollar futures con-

tract undertaken by specific banks as this information is not publicly available.

Hence, the appropriate way to study PIN and VPIN is to investigate via a term

structure and a term structure of variation.

Figure 6.8 presents the term structure of PIN (Top-Panel)and VPIN (Lower-

Panel) for -/+60 days around LIBOR manipulation dates. This figure presents

the overlay 2,080 plots of PIN and 8,320 plots of VPIN (dotted line) with average

PIN and VPIN (thick black line), and also presents 95% confidence interval(black

dashed line) into one plot to investigate how the PIN and VPIN react to LIBOR

manipulation. The top panel of Figure 6.8 illustrates that the PIN has a 20%

variation from 0.55 to 0.75. The cumulative differences of PIN or cumulative

∆PIN has around a 50% variation of -0.02 to 0.50. However, the average PIN

only slightly varies with the highest on the event day from 0.68 to 0.64. The
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Figure 6.8: The Term Structure of PIN, VPIN, Delta PIN and Delta VPIN
for -/+60 days around identified LIBOR manipulation date.

Note: This figure presents the term structure of PIN and VPIN for -/+60 days
around the identified LIBOR manipulation date with the overlay 2,080 plots of
PIN and 8,320 VPIN presents on a dotted line, the average PIN and VPIN on a
thick black line, and also 95% confident interval on a black dashed line. It can
be seen from this figure that the variation of PIN and VPIN around the LIBOR
manipulation event in the average daily value is slightly fluctuates.
For the upper panel, the average PIN slightly fluctuates between the lowest at
0.65 and the highest at 0.68. Also, the PIN increases on the event date, then
peaks between one or two days after the event date (day zero). Finally, the PIN
drops to normal three days after the event.
In the lower panel of figure 6.8 presents individual VPIN on a dotted line and
average VPIN on a thick black line. It can be seen that the average VPIN slightly
fluctuates between the lowest at 0.13 and the highest at 0.18. Whilst the PIN is
at a peak after the event, the VPIN spiked on the event date then drops between
two and three days after the event.
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cumulative average ∆PIN also has a small variation between 0.02 and 0.08 with

the highest on the event date.

The lower panel of Figure 6.8 presents the term structure of VPIN and cu-

mulative ∆VPIN with cross sectional average (thick line) across all events, all

ED contracts and all types of VPIN (dotted line). It can be seen that the VPIN

has higher variation than the PIN. The term structure of VPIN during the event

has a minimum value of 0.02 and a maximum of 0.35 or around 35% variation.

However, if I focus on the 95% confidence interval, I find VPIN at around 12%

variation, mostly moving between 0.10 to 0.20. The average VPIN during LIBOR

manipulation varies between 0.135 to 0.16 with the highest VPIN one day after

event at 0.16 and the second highest on event day at 1.58. Finally, the average

VPIN drops to normal around three days after the event. One remarkable result

is the variation witnessed is lowest from the event date to two days later. This

shows that during LIBOR manipulation all types of VPIN have a similar pattern,

as they rapidly increase on the event date, remain high for two days then drop

to normal.

The right subplot of the lower panel of Figure 6.8 presents the cumulative

∆VPIN. In this plot, the cumulative ∆VPIN has variation between -0.5 to 0.5

with average value at -0.0194. Also, the highest cross sectional average VPIN

on the event day, at 0.07. This increases around 10% compared with the aver-

age cumulative ∆VPIN. This result confirms that VPIN has more sensitivity to

toxicity events, as the average VPIN and the average cumulative ∆VPIN on the

event date are higher than their average. In addition the ∆ VPIN is constantly

high for at least two days after the event, then drops to normal.
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Overall, Figure 6.8 demonstrates that PIN and VPIN are able to detect toxic-

ity events in the Eurodollar Futures market as they spike around the manipulation

date. However, Table 6.8 shows that the cross sectional average PIN and VPIN

have no statistically significant differences around these events, both pre and post

2008. In the pre-2008 period, the highest PIN appears for 60 days after the event

and the lowest for 60 days before at 0.7069 and 0.6938 respectively. The highest

VPIN in this period appears on VPIN50 for 30 days before the event and the

lowest is VPIN20 for 60 days before the event at 0.1713 and 0.0487 respectively.

For the post 2008 period, the highest PIN appears for 60 days before and the

lowest for 60 days after the event at 0.6752 and 0.6663, respectively. The highest

VPIN is VPIN200 for 30 days and, on the contrary, is VPIN20 for 60 days at

0.1773 and 0.0722 respectively. This shows how PIN and VPIN can act partially

as an early warning signal for toxic events.

Table 6.9 below illustrates PIN and VPIN based on event dates both pre and

post 2008. In the case of pre 2008, the first column shows that the PIN after day

zero is higher than the previous period as the PIN is monotonically increasing

from -0.0030 for sixty days before the event and reaches a peak 60 days after,

when the PIN is 0.0101 higher than the PIN on event day. The second four

columns present four different types of VPIN in the same period as PIN. Unlike

the PIN, VPIN is not monotonically increasing. However, all four types of VPIN

increase after day zero then drop from three to ten days after the event. The

highest VPIN based on the event date is on VPIN20 for ten days after the event,

at 0.0896 higher than event day.

Post 2008, the PIN and VPIN have a similar pattern as they rapidly increase

on the event date and are constantly high for two to three days, then drop back
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to normal. The highest PIN appears for ten days after the event at 0.0006, higher

than the level on the event date. However, the PIN in this period is lower than

pre 2008. The highest VPIN based on the event date appears for 30 days to

maturity at 0.0822, 0.0905, 0.0782 and 0.0722, higher than the event date, for

VPIN20 follow by VPIN50, VPIN100 and VPIN200 respectively. Both Table 6.8

and 6.9 demonstrate that the PIN is weaker than VPIN as a signal of market

manipulation post 2008. For example, the average VPIN ten days after the event

is mostly 0.06 or 6% higher than the VPIN on the event date. This is compared to

0.0027 or 0.27% for the PIN. However, overall there is no statistically significant

difference for PIN and VPIN based on the event date around these events, for

either pre or post 2008.

Despite the PIN and VPIN not strongly capturing the market manipulation

for -/+ 60 days from the event date, focus on the variation of PIN and VPIN

for -/+ 10 days, shows evidence of market manipulation, as this toxicity event

is short lived. In general, ten days after the event PIN and VPIN are higher

than their level on the event date. Especially in the post 2008, all types of VPIN

perform well compared to the PIN. Focus on variation of PIN and VPIN based

on the event date, gives us more information as PIN and VPIN for 10 days after

the event are always higher than the level on the event date.

The results from table 6.8 and 6.9 suggest conclusively, the PIN and VPIN

are sensitive to toxicity events or informed trading in the futures market, as both

increase on the LIBOR manipulation event date. However, these parameters still

have limited ability to detect any informed trading as the statistics show no sig-

nificant difference before and after the event date for both pre and post 2008.
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6.5.6 PIN, VPIN and the Maturity Effect

This section contains an illustration of PIN and VPIN before and after expiration

to investigate the relationship between the indicators around the maturity date

known as the maturity effect. The most striking result from this figure is an

aggressive decline after the spike of PIN and VPIN around the maturity date.

Both gradually increase and reach a peak within one week of the last trading

day. When the ED starts trading again, they continuously decrease to a lower

level, although increase later. However, there is some variation between PIN and

VPIN, the VPIN continually decreasing over a longer period than the PIN, and

finally slightly increasing around thirty days after the event when the ED begins

trading again.

Figure 6.9 presents the performance of PIN and VPIN around the maturity

date. In this event, I use the EDH0 contract which has expiration on March

17,2010 as an example. This figure is separated into four subplots, first, PIN and

VPIN: second, delta PIN and VPIN: third, PIN and VPIN(based on event date)

+/-7 days from maturity date: finally PIN and VPIN(based on event date) +/-30

days from maturity date.

On the top panel of the left column, the PIN is seen on the left axis and VPIN

on the right for -/+7 days around expiration. There is similar variation between

both as the two measurements increase before the maturity date then decrease

during the five trading days before expiration. Finally, they bounce back. The

highest PIN in this contract appears on March 15, 2010 which is two days to

maturity at a value of 0.82 then rapidly decreases to 0.70 on the last trading day.

After EDH0 starts trading on the following day, the PIN continuously decreases

to around 0.50 and stays constantly low, then finally bounces back five day later.
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Figure 6.9: The historical PIN and VPIN of EDH0 with the expiry date.
Note: This figure presents an example of PIN, VPIN, ∆PIN, and ∆VPIN for the
EDH0 futures contract. It can be seen from the top left panel that the PIN and
the VPIN increase before the maturity date, then rapidly drop around two to
three days before the last trading day. Finally, the PIN and VPIN bounce back
to normal after the expiration when EDH0 starts trading again on the following
day. The top right panel presents ∆PIN and ∆VPIN. This sub-figure illustrates
that the differences of VPIN are higher than thatof PIN. A high level of ∆VPIN
assumes that the VPIN has a higher degree of sensitivity to this toxicity event
than the PIN. The lower panel presents PIN and VPIN based on their value on
the event date for -/+7 and 30 days from the maturity date. Both show a strong
variation around this event compared to its value on the LIBOR event. Clearly,
there is a significant pattern as the PIN and VPIN increase, then reach a peak
within the last week of the trading period, and dropping to normal the following
day.
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Moreover, VPIN is somewhat similar to PIN, the highest VPIN appears around

two to three days before expiry at 0.25 then decreases to 0.125 on the last trading

day with the lowest at 0.025 between one to two days after the ED starts trading

again, and finally bounces back.

The top panel of the right column presents the differences between PIN and

VPIN or ∆PIN and ∆VPIN for -/+7 days around the maturity date. Despite,

∆PIN and ∆VPIN having a similar pattern, the ∆VPIN has better performance

as it has higher variation than PIN. This subplot shows the latter has a small

drop of around 10% as the ∆PIN slides from 0 to -0.02 then bounces back to

normal on the following day. However, the VPIN drops around one and a half

times within seven days compared to the previous period, as the ∆VPIN falls

from 0 to -1.5, then rebounds to a level around two times higher than its lowest

point. Additionally, the lower panel of Figure 6.9 presents PIN and VPIN based

on the event date for -/+7 and -/+30 days around the event date. Similar to

the upper panel, there are similar patterns for both PIN and VPIN. The VPIN

performs better than PIN as a signal of market manipulation, however, the PIN

shows a higher variation for the manipulation event.

To gain further insight into the effect of maturity date on PIN and VPIN, both

have been investigated for a longer period. Figure 6.10 illustrates cross sectional

averages across all 40 ED contracts on PIN and VPIN for -/+30 and -/+60 days

around the expiry date. Overall, there is a similar pattern to Figure 6.9. The

PIN and the VPIN reach a peak within the last week of the trading period, then

drop. Finally, PIN and VPIN bounce back to normal after the last trading day

when the ED starts trading again. It can be seen from the top left panel of Figure

6.10 that from ten days to maturity, the average PIN increases from 0.67 to 0.725
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then drops to 0.70 around two days after the last trading day. Also, similar to the

PIN, the VPIN increases from 0.07 to around 0.10 three days before the maturity

date, then drops to 0.06 two days after. Finally, the VPIN slightly increases to a

normal level.

Top right panel of Figure 6.10 presents the differences of PIN and VPIN or

∆PIN and ∆VPIN for -/+30 days around the maturity date. In this period the

∆VPIN has higher variation than ∆PIN. The ∆PIN fluctuates between -0.01 and

0.01, however, the ∆VPIN fluctuates around 40% between -0.25 and 0.15. The

highest ∆VPIN appears on the seven days before the last trading day at 0.15,

then gradually drops to the bottom on the expiry date at -0.25. Finally, the VPIN

bounces back to normal. Additionally, from seven days to maturity ∆VPIN in-

creases around 25%, from -0.1 to 0.15. Whilst these two parameters have slightly

different variation before the maturity date, they have a similar pattern. The

∆PIN and ∆VPIN reach a peak within the last week of the trading period, then

rapidly decrease, and finally bounce back after the last trading day when the ED

futures start trading the following day.

The lower panel of Figure 6.10 presents PIN and VPIN based on the PIN and

the VIN on the event date for +/- 30 and +/-60 days around maturity date. These

sub-figures show a similar pattern PIN and VPIN based on the event date and

normal PIN and VPIN. Additionally, there is a similar trend between both types

. The VPIN is constantly high sixty days before expiry, then reaches a peak at

around seven days before expiration, as the VPIN based on the event date shows

a positive result before the last trading day. However, later between two to three

days to the expiration, PIN and VPIN gradually decrease continuously dropping

after the last trading day. Finally, there is a move back to normality. However,
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Figure 6.10: The cross-sectional PIN, VPIN, ∆ PIN and ∆ VPIN across all
40 ED futures contracts with the expiry date.
Note: This figure presents cross sectional average PIN, VPIN, ∆PIN and ∆VPIN across all
40 ED futures contracts around the expiry date. The red solid vertical line indicates the last
trading day on the ED futures contracts. The top left panel presents PIN and four different
types of VPIN for -/+30 days around maturity date. During the last week of the trading
period, the PIN gradually increases then drops around two to three days until the last trading
day. Finally, the PIN and VPIN bounce back. There is a significant pattern between these two
parameters. However, the VPIN shows a slightly different pattern from the PIN, as it gradually
increases for 30 days before the last trading day, reaching a peak within the last week before
the maturity date. The PIN rapidly increases from eleven days to maturity then peaks around
two to three days to maturity. Finally, both bounce back after the last trading day when the
ED commences trading again.
The top right panel presents the differences of PIN and the differences of VPIN (∆PIN and
∆VPIN). This figure shows a higher degree of difference on the VPIN(∆VPIN) than the ∆PIN.
In this case, I can assume that the VPIN has more sensitivity than the PIN on this event. The
lower panel presents PIN and VPIN based on the event date for -/+30 and -/60 days from
maturity date. These two plots show a similar result as the top panel. There is a systematic
trend between PIN and VPIN based on their value on the event date and the latter is more
sensitive to this event than the PIN.
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the PIN based on its value on the event date shows a somewhat negative value

from 60 to 5 days to maturity. However, they reach a peak within one week before

the maturity date, then rapidly drop.

The following section presents the result of the term structure of PIN and

VPIN on the maturity effect as presented for the LIBOR manipulation events.

Figure 6.11 presents the term structure of PIN and VPIN, also cumulative ∆PIN

and cumulative ∆VPIN for the maturity effect. The figure presents individual

PIN, VPIN20, VPIN50, VPIN100, and VPIN200 as a dotted line and average

PIN and VPIN as a thick line. It also presents 95% range as a 95% confident

interval as a thick dotted line. Overall, I present 40 PIN and 200 VPIN for the

term structure.

The top panels of Figure 6.11 present cross-sectionals of PIN and cumulative

∆PIN. Overall, there is a small variation on average PIN around the maturity

date with a small spike about three days to expiration. This spike has a variation

of 2% higher than the average. Despite there being a small scale of variation on

average PIN before the maturity date, the individual PIN has a higher variation

after the last trading day. The major trend of PIN (dotted lines) is constantly

moving around the identical PIN at about 0.67 (thick line) with a small spike

and there is the widest variation of PIN at three days to expiration. The lowest

PIN is 0.2 and the highest is 0.995, which is nearly 80% variation.

However, after three days to expiration the variation of PIN drops to 50%,

with the highest recording at 0.97 and the lowest around 0.30. The variation is

wider at the beginning than the previous trading period, this may be consistent

with the term structure of PIN (figure 6.4) as it has a high variation from the
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first trading day; then the variation becomes narrow when the ED futures are

nearer to maturity.

The lower panel of Figure 6.11 illustrates VPIN and cumulative of ∆VPIN for

-/+60 days from the maturity date across all 40 ED futures contracts. This panel

presents not only forty individual VPIN and forty cumulative ∆VPIN from all

ED contracts, but each contract also calculates four different types of VPIN and

cumulative ∆VPIN presented on a dotted line with the average value in a thick

line, and 95% confident interval in a thick dotted line. It can be seen from this

figure that there is quite naturally the same pattern of average of VPIN with the

PIN. The average VPIN gradually increases from 60 days from the last trading

days and reaches a peak at around two days to maturity, then rapidly drops.

Finally, the VPIN increases to a normal level after the expiration when the ED

start trading again. Also, there is a lower scale of variation on VPIN than PIN,

which is notably smaller and more systematic than the PIN. The lowest VPIN is

near to zero and the highest is about 0.8, with the average upper bound at about

0.2.

In comparison, the average PIN has a small variation around 0.67 and the

average cumulative ∆PIN is near to zero. However, the average VPIN gradually

increases from 0.05 to just above 0.20 and the average cumulative ∆VPIN in-

creases from just around zero to one on two days to the maturity date. Finally,

VPIN and cumulative ∆VPIN plunges to nearly zero on the last trading day.

The average VPIN and the average cumulative ∆VPIN reaches a peak on two

days to expiration which increases by around twofold, compared to the previous

period. the average VPIN has a higher variation than the PIN and there is a

systematic trend between different VPINs. One final concluding remark is that
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Figure 6.11: The variation of PIN and VPIN -/+60 days around maturity
date
Note: This figure presents the term structure of PIN, VPIN, cumulative of ∆PIN
and cumulative of ∆VPIN with their average value for -/+60 days around ma-
turity date. Overall, there is a systematic pattern between the average PIN and
VPIN around this event, as these parameters show a spike on two days to ma-
turity then rapidly drop on the last trading day. Finally, these two parameters
bounce back after the last trading day when the ED futures start trading again.
However, the lower panel shows that all types of VPIN have a higher scale of
variation than the PIN for both before and after the maturity date.

190



the term structure of ∆VPIN tends to be a ‘sine curve’.

After studying PIN and VPIN via the term structure around the maturity

date, I then investigate these two parameters from their standard deviation(SD).

Table 6.10 reports cross sectional average PIN and VPIN across all 40 ED con-

tracts, constructed for 60, 30, 20 and 10 days for fixed time windows around

the maturity dates with their SD. Then, the result of these two parameters is

divided into two sub-periods. The first sub-period is between January 1, 1996

and December 31, 2007 and the second sub-period is between January 1, 2008

until December 31, 2013. Moreover, this time period is separated into two parts

because there will be different results for PIN and VPIN between these two peri-

ods as Figure 5.2 shows the break in the relationship of the bank rank of LIBOR

quotes after 2008.

Overall, the variation of PIN is lower than VPIN for both periods as its stan-

dard deviation is smaller than the VPIN. However, there is a similar pattern

between these two parameters. They both increase before the last trading day,

then rapidly drop. Finally, they bounce back after the last trading day when the

ED futures starts trading again. The lowest PIN appears on the last trading day

(Day 0) at 0.6695 and 0.6552 for pre 2008 and post 2008 samples respectively.

The highest appears for 20 and 60 days after the maturity date for pre-2008 and

post-2008 respectively. For the VPIN, the lowest appears on VPIN20 for both

pre and post 2008, at 0.0471 and 0.0309 respectively. The highest VPIN mostly

appears for thirty days to maturity for all different types of VPIN, with the high-

est of 0.1639 on VPIN200 for pre 2008. This table indicates that there is a similar

trend for PIN and VPIN for both periods, however, their variation and standard

deviation (SD) are different.
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Pre 2008, the SD on PIN and VPIN are slightly different. The SD on PIN

shows that the PIN is not statistically significantly different, as the SD varies

between 0.02 to 0.05. However, the SD on VPIN during this period is slightly

higher than PIN. The highest SD for 10 days after the maturity date is 0.088,

0.089, 0.095 and 0.099 for VPIN20, VPIN50, VPIN100 and VPIN200 respectively.

Post 2008, the highest SD for PIN is 0.055 for 60 days after the maturity date.

However, the highest SD for VPIN is for 30 days to maturity at 0.108, 0.0833

and 0.085 for VPIN20, VPIN100 and VPIN200 respectively. The highest SD for

VPIN20 is 0.127 for ten days to maturity which is the highest SD for all types of

VPIN. Finally, there are two remarkable results from this table; first the maturity

effect tends to have an impact on informed trading as the PIN and VPIN have

shown a similar pattern. They slightly increase for 60 days to maturity, then fall

to the lowest PIN and VPIN on the last trading day. Next, the smallest VPIN

on this event for both the pre 2008 and post 2008 period, is VPIN20 followed by

VPIN50, VPIN100 and VPIN200.

Next, I analyze PIN and VPIN based on their value on the event date for

-/+60 days around the maturity which is presented in Table 6.11. The results

indicate that the PIN and VPIN around the maturity date are higher than the

those on regular trading days. Using the same format analysis as Table 6.10, I

find the same result. First, the VPIN has a greater magnitude of variation than

the PIN for both pre and post 2008. Secondly, the PIN and VPIN gradually

increase for 60 days to maturity then peak within five trading days. After three

to two days to maturity, they rapidly drop and finally bounce back. On pre-2008,

the highest PIN is for ten and twenty days after the maturity date at 0.0283 or

2.83%, higher than the PIN on the maturity date. Moreover, the highest VPIN

192



T
a
b

le
6
.1

0
:

P
IN

,
V

P
IN

2
0
,

V
P

IN
5
0
,

V
P

IN
5
0
,

V
P

IN
1
0
0
,

a
n

d
V

P
IN

2
0
0

-/
+

6
0

d
a
y
s

a
ro

u
n

d
m

a
tu

ri
ty

d
a
te

.

In
fo

rm
e
d

tr
a
d

in
g

a
ro

u
n

d
m

a
tu

ri
ty

d
a
te

D
ay

s
P

IN
-P

re
20

08
V

P
IN

-
P

re
2
0
0
8

P
IN

-
P

o
st

2
0
0
8

V
P

IN
-

P
o
st

2
0
0
8

20
50

1
0
0

2
0
0

2
0

5
0

1
0
0

2
0
0

-6
0

0
.6

9
2
6

0
.1

1
0
4

0
.1

2
3
8

0
.1

3
3
5

0
.1

4
2
3

0
.6

9
3
3

0
.0

7
5
3

0
.0

7
9
7

0
.0

8
0
9

0
.0

8
4
1

(0
.0

22
3)

(0
.0

85
1)

(0
.0

78
5)

(0
.0

7
3
4
)

(0
.0

7
2
1
)

(0
.0

3
2
4
)

(0
.0

9
2
4
)

(0
.0

8
5
8
)

(0
.0

7
6
4
)

(0
.0

7
5
4
)

-3
0

0
.6

9
3
3

0
.1

2
0
7

0
.1

3
9
6

0
.1

4
8
8

0
.1

6
3
9

0
.6

9
7
5

0
.0

9
1
1

0
.0

9
3
7

0
.0

9
6
8

0
.1

0
2
7

(0
.0

27
8)

(0
.0

88
1)

(0
.0

81
7)

(0
.0

7
1
4
)

(0
.0

7
7
5
)

(0
.0

4
0
0
)

(0
.1

0
8
8
)

(0
.0

9
5
3
)

(0
.0

8
3
3
)

(0
.0

8
5
0
)

-2
0

0
.6

9
2
6

0
.1

2
0
8

0
.1

3
6
8

0
.1

4
5
9

0
.1

5
6
4

0
.6

9
9
9

0
.0

8
3
3

0
.0

8
5
9

0
.0

8
7
3

0
.0

9
2
4

(0
.0

31
3)

0.
09

03
(0

.0
83

6)
(0

.0
7
5
2
)

(0
.0

7
5
1
)

(0
.0

4
3
3
)

(0
.1

0
0
1
)

(0
.0

8
7
5
)

(0
.0

7
5
8
)

(0
.0

7
7
4
)

-1
0

0
.6

9
3
0

0
.1

1
2
6

0
.1

2
8
5

0
.1

3
7
5

0
.1

4
6
6

0
.7

0
0
6

0
.0

7
4
9

0
.0

7
8
3

0
.0

7
9
3

0
.0

8
3
9

(0
.0

35
4)

(0
.0

85
3)

(0
.0

79
6)

(0
.0

7
2
1
)

(0
.0

7
2
0
)

(0
.0

4
5
9
)

(0
.0

9
2
0
)

(0
.1

2
7
6
)

(0
.0

6
9
9
)

(0
.0

7
1
5
)

0
0
.6

6
9
5

0
.0

4
7
1

0
.0

5
9
1

0
.0

7
2
4

0
.0

8
2
7

0
.6

5
5
2

0
.0

3
0
9

0
.0

3
8
4

0
.0

4
1
7

0
.0

4
4
4

(0
.0

36
8)

(0
.0

73
4)

(0
.0

68
2)

(0
.0

6
6
2
)

(0
.0

6
3
9
)

(0
.4

6
5
6
)

(0
.0

7
6
7
)

(0
.0

7
2
6
)

(0
.0

6
2
6
)

(0
.0

6
1
6
)

1
0

0
.6

9
7
8

0
.1

0
1
2

0
.1

1
7
6

0
.1

3
2
3

0
.1

3
9
7

0
.7

0
6
6

0
.0

4
9
7

0
.0

5
3
2

0
.0

5
3
1

0
.0

5
7
6

(0
.0

42
0)

(0
.0

88
8)

(0
.0

89
2)

(0
.0

9
6
5
)

(0
.0

9
9
8
)

(0
.0

4
4
8
)

(0
.0

6
4
1
)

(0
.0

5
8
6
)

(0
.0

4
8
4
)

(0
.0

5
6
8
)

2
0

0
.6

9
7
9

0
.0

9
8
1

0
.1

1
0
5

0
.1

2
2
2

0
.1

2
7
9

0
.7

0
9
7

0
.0

4
2
7

0
.0

4
7
3

0
.0

4
8
2

0
.0

5
0
7

(0
.0

46
6)

(0
.0

72
7)

(0
.0

74
0)

(0
.0

7
6
4
)

(0
.0

7
5
0
)

(0
.0

4
7
7
)

(0
.0

4
6
9
)

(0
.0

3
4
1
)

(0
.0

3
5
9
)

(0
.0

4
1
3
)

3
0

0
.6

9
7
0

0
.0

9
3
1

0
.1

0
4
9

0
.1

1
7
0

0
.1

2
2
3

0
.7

1
1
6

0
.0

5
0
1

0
.0

5
5
6

0
.0

5
6
3

0
.0

5
7
2

(0
.0

48
8)

(0
.0

66
5)

(0
.0

66
6)

(0
.0

7
0
0
)

(0
.0

6
5
8
)

(0
.0

5
0
1
)

(0
.0

5
2
2
)

(0
.0

5
1
7
)

(0
.0

4
7
1
)

(0
.0

4
8
9
)

6
0

0
.6

8
9
1

0
.0

9
8
1

0
.1

1
0
6

0
.1

2
1
0

0
.1

2
6
2

0
.7

1
5
7

0
.0

5
1
8

0
.0

5
8
0

0
.0

5
7
4

0
.0

5
9
1

(0
.0

53
0)

(0
.0

59
3)

(0
.0

55
8)

(0
.0

5
7
8
)

(0
.0

5
3
7
)

(0
.0

5
5
0
)

(0
.0

5
4
6
)

(0
.0

5
4
7
)

(0
.0

4
1
7
)

(0
.0

4
0
1
)

N
ot

e:
T

h
is

ta
b

le
co

m
p

ar
es

av
er

ag
e

P
IN

,
V

P
IN

20
,

V
P

IN
5
0
,

V
P

IN
1
0
0
,

a
n

d
V

P
IN

2
0
0
,

w
it

h
th

ei
r

st
a
n

d
a
rd

d
ev

ia
ti

o
n

fo
r

-/
+

6
0
,

3
0
,

2
0

a
n

d
1
0

d
ay

s
fr

om
m

at
u

ri
ty

d
at

e.
T

h
e

ti
m

e
p

er
io

d
is

se
p

ar
a
te

d
in

to
tw

o
p

er
io

d
s:

th
e

fi
rs

t
su

b
-p

er
io

d
is

fr
o
m

1
9
9
6

to
th

e
en

d
o
f

2
0
0
7

a
n

d
th

e
se

co
n

d
fr

om
20

08
to

th
e

en
d

of
20

13
.

O
v
er

al
l,

th
er

e
is

sm
a
ll

sc
a
le

va
ri

a
ti

o
n

fo
r

b
o
th

P
IN

a
n

d
a
ll

ty
p

es
o
f

V
P

IN
b

ef
o
re

a
n

d
a
ft

er
th

e
ev

en
t

d
a
te

s.
H

ow
ev

er
,

th
ei

r
st

an
d

ar
d

d
ev

ia
ti

on
p

re
-2

00
8

ar
e

h
ig

h
er

th
a
n

p
o
st

-2
0
0
8
.

A
d

d
it

io
n

a
ll

y,
V

P
IN

h
a
s

a
h

ig
h

er
st

a
n

d
a
rd

d
ev

ia
ti

o
n

th
a
n

P
IN

.
It

ca
n

b
e

as
su

m
ed

th
at

V
P

IN
is

m
or

e
se

n
si

ti
v
e

to
th

e
m

a
tu

ri
ty

eff
ec

t
th

a
n

P
IN

,
a
s

it
in

cr
ea

se
s

b
ef

o
re

th
e

la
st

tr
a
d

in
g

d
ay

th
en

d
ro

p
s

d
ra

m
a
ti

ca
ll

y
b
y

ov
er

50
%

on
th

e
la

st
d

ay
.

F
in

al
ly

,
th

er
e

is
a

si
m

il
a
r

p
a
tt

er
n

b
et

w
ee

n
th

es
e

tw
o

p
a
ra

m
et

er
s.

H
ow

ev
er

,
n

ei
th

er
a
re

st
a
ti

st
ic

a
ll

y
si

g
n

ifi
ca

n
tl

y
d

iff
er

en
t

d
u

ri
n

g
th

e
L

IB
O

R
m

an
ip

u
la

ti
on

ev
en

t,
as

th
ei

r
st

a
n

d
a
rd

d
ev

ia
ti

o
n

va
ri

es
b

et
w

ee
n

0
.0

2
to

0
.0

9
.

193



T
a
b

le
6
.1

1
:

T
h

e
P

IN
,

V
P

IN
2
0
,

V
P

IN
5
0
,

V
P

IN
5
0
,

V
P

IN
1
0
0
,

a
n

d
V

P
IN

2
0
0

b
a
se

d
e
v
e
n
ts

d
a
te

-/
+

6
0
d

a
y
s

a
ro

u
n

d
m

a
tu

ri
ty

d
a
te

.

In
fo

rm
e
d

tr
a
d

in
g

a
ro

u
n

d
m

a
tu

ri
ty

d
a
te

D
ay

s
P

IN
-P

re
20

08
V

P
IN

-
P

re
2
0
0
8

P
IN

-
P

o
st

2
0
0
8

V
P

IN
-

P
o
st

2
0
0
8

20
50

1
0
0

2
0
0

2
0

5
0

1
0
0

2
0
0

-6
0

0
.0

2
3
1

0
.0

6
3
3

0
.0

6
4
7

0
.0

6
1
1

0
.0

5
9
6

0
.0

3
8
1

0
.0

4
4
4

0
.0

4
1
3

0
.0

3
9
2

0
.0

3
9
7

(0
.0

22
3)

(0
.0

85
1)

(0
.0

78
5)

(0
.0

7
3
4
)

(0
.0

7
2
1
)

(0
.0

3
2
4
)

(0
.0

9
2
4
)

(0
.0

8
5
8
)

(0
.0

7
6
4
)

(0
.0

7
5
4
)

-3
0

0
.0

2
3
8

0
.0

7
3
6

0
.0

8
0
5

0
.0

7
6
4

0
.0

8
1
2

0
.0

4
2
2

0
.0

6
0
2

0
.0

5
5
3

0
.0

5
5
1

0
.0

5
8
3

(0
.0

27
8)

(0
.0

88
1)

(0
.0

81
7)

(0
.0

7
1
4
)

(0
.0

7
7
5
)

(0
.0

4
0
0
)

(0
.1

0
8
8
)

(0
.0

9
5
3
)

(0
.0

8
3
3
)

(0
.0

8
5
0
)

-2
0

0
.0

2
3
1

0
.0

7
3
7

0
.0

7
7
7

0
.0

7
3
5

0
.0

7
3
7

0
.0

4
4
7

0
.0

5
2
4

0
.0

4
7
5

0
.0

4
5
6

0
.0

4
8
0

(0
.0

31
3)

(0
.0

90
3)

(0
.0

83
6)

(0
.0

7
5
2
)

(0
.0

7
5
1
)

(0
.0

4
3
3
)

(0
.1

0
0
1
)

(0
.0

8
7
5
)

(0
.0

7
5
8
)

(0
.0

7
7
4
)

-1
0

0
.0

2
3
5

0
.0

6
5
5

0
.0

6
9
4

0
.0

6
5
1

0
.0

6
3
9

0
.0

4
5
4

0
.0

4
4
0

0
.0

3
9
9

0
.0

3
7
6

0
.0

3
9
5

(0
.0

35
4)

(0
.0

85
3)

(0
.0

79
6)

(0
.0

7
2
1
)

(0
.0

7
2
0
)

(0
.0

4
5
9
)

(0
.0

9
2
0
)

(0
.1

2
7
6
)

(0
.0

6
9
9
)

(0
.0

7
1
5
)

0
0

0
0

0
0

0
0

0
0

0

1
0

0
.0

2
8
3

0
.0

5
4
1

0
.0

5
8
5

0
.0

5
9
9

0
.0

5
7
0

0
.0

5
1
4

0
.0

1
8
8

0
.0

1
4
8

0
.0

1
1
4

0
.0

1
3
2

(0
.0

42
0)

(0
.0

88
8)

(0
.0

89
2)

(0
.0

9
6
5
)

(0
.0

9
9
8
)

(0
.0

4
4
8
)

(0
.0

6
4
1
)

(0
.0

5
8
6
)

(0
.0

4
8
4
)

(0
.0

5
6
8
)

2
0

0
.0

2
8
3

0
.0

5
1
0

0
.0

5
1
4

0
.0

4
9
8

0
.0

4
5
2

0
.0

5
4
5

0
.0

1
1
8

0
.0

0
8
9

0
.0

0
6
5

0
.0

0
6
3

(0
.0

46
6)

(0
.0

72
7)

(0
.0

74
0)

(0
.0

7
6
4
)

(0
.0

7
5
0
)

(0
.0

4
7
7
)

(0
.0

4
6
9
)

(0
.0

3
4
1
)

(0
.0

3
5
9
)

(0
.0

4
1
3
)

3
0

0
.0

2
7
5

0
.0

4
6
0

0
.0

4
5
8

0
.0

4
4
6

0
.0

3
9
6

0
.0

5
6
4

0
.0

1
9
2

0
.0

1
7
2

0
.0

1
4
6

0
.0

1
2
8

(0
.0

48
8)

(0
.0

66
5)

(0
.0

66
6)

(0
.0

7
0
0
)

(0
.0

6
5
8
)

(0
.0

5
0
1
)

(0
.0

5
2
2
)

(0
.0

5
1
7
)

(0
.0

4
7
1
)

(0
.0

4
8
9
)

6
0

0
.0

1
9
6

0
.0

5
1
0

0
.0

5
1
5

0
.0

4
8
6

0
.0

4
3
5

0
.0

6
0
5

0
.0

2
0
9

0
.0

1
9
6

0
.0

1
5
7

0
.0

1
4
7

(0
.0

53
0)

(0
.0

59
3)

(0
.0

55
8)

(0
.0

5
7
8
)

(0
.0

5
3
7
)

(0
.0

5
5
0
)

(0
.0

5
4
6
)

(0
.0

5
4
7
)

(0
.0

4
1
7
)

(0
.0

4
0
1
)

N
ot

e:
T

h
is

ta
b

le
p

re
se

n
ts

a
co

m
p

ar
is

on
of

av
er

ag
e

P
IN

,
V

P
IN

2
0
,

V
P

IN
5
0
,

V
P

IN
1
0
0
,

V
P

IN
2
0
0

b
a
se

d
o
n

th
ei

r
va

lu
e

o
n

th
e

ev
en

t
d

a
te

,
a
n

d
al

so
st

an
d
ar

d
d

ev
ia

ti
on

(S
D

)
fo

r
-/

+
60

,
30

,
20

an
d

1
0

d
ay

s
fr

o
m

th
e

m
a
tu

ri
ty

d
a
te

.
T

h
e

ti
m

e
p

er
io

d
is

se
p

a
ra

te
d

in
to

tw
o

p
er

io
d

s:
th

e
fi

rs
t

su
b

p
er

io
d

fr
om

19
96

to
th

e
en

d
of

20
07

an
d

th
e

se
co

n
d

is
fr

o
m

2
0
0
8

to
th

e
en

d
o
f

2
0
1
3
.

O
v
er

a
ll

,
th

er
e

is
a

si
m

il
a
r

re
su

lt
to

T
a
b

le
6
.1

0
-

a
sm

al
l

sc
al

e
va

ri
at

io
n

b
ef

or
e

an
d

af
te

r
th

e
ev

en
t

d
a
te

s
fo

r
b

o
th

P
IN

a
n

d
V

P
IN

.
D

es
p

it
e

th
e

va
ri

a
ti

o
n

o
f

V
P

IN
b

ei
n

g
h

ig
h

er
fo

r
th

e
fi

rs
t

p
re

-2
00

8
p

er
io

d
,

th
e

va
ri

at
io

n
of

P
IN

fo
r

p
os

t-
20

0
8

is
h

ig
h

er
th

a
n

p
re

-2
0
0
8
.

N
ev

er
th

el
es

s,
th

er
e

is
a

sy
st

em
a
ti

c
tr

en
d

b
et

w
ee

n
th

es
e

tw
o

p
ar

am
et

er
s

as
th

e
P

IN
an

d
al

l
ty

p
es

of
V

P
IN

in
cr

ea
se

b
ef

o
re

th
e

la
st

tr
a
d

in
g

d
ay

th
en

d
ro

p
d

ra
m

a
ti

ca
ll

y
m

o
re

th
a
n

5
0
%

o
n

th
e

la
st

d
ay

.
F

in
al

ly
,

th
ey

in
cr

ea
se

to
th

e
n

or
m

al
le

ve
l.

194



based on the VPIN on the event date appears for thirty and twenty days before

the maturity date, at 0.0737, 0.0805, 0.0764 and 0.0812 for VPIN20, VPIN50,

VPIN 100 and VPIN200 respectively. For the second sub period, the highest

PIN based on the PIN on the event date is for sixty days after the expiration

at 0.605 or 6% higher than that on the expiry date. Similar to the first period,

the highest VPIN appears for thirty and twenty days before the maturity date at

0.0602, 0.0553, 0.0551 and 0.0583 for VPIN20, VPIN50, VPIN 100 and VPIN200

respectively.

Conclusively, I find the VPIN has a higher scale of variation than PIN except

after the maturity date for the second sub period. For the first sub period, the

average PIN for sixty days before the maturity date is at 0.023 or 2.3% higher

than the last trading day. The average VPIN from sixty days to maturity is at

0.07 or 7% higher than the VPIN on the last trading day, which is around three

times higher when compared to the PIN. The clear indication is that both have

a similar pattern around the maturity event as they increase then reach a peak

before it. Finally, they continuously drop after the last trading day when the ED

starts trading again, before bouncing back to normal. Also, the results are in

the line with the evidence, as described in the previous analysis section, that the

VPIN has more predictability for truly toxicity events than the PIN.

6.6 Summary Chapter

This paper takes a comprehensive dataset of the Chicago Mercantile Exchange

(CME) tape data, which covers every inside quote and trade from 1996 to 2015

for the 40 LIBOR referenced, quarterly dated Eurodollar futures contracts. First,
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I apply different types of PIN and VPIN metrics over a variety of estimation win-

dows. I have undertaken an empirical microstructure model of Easley and O’Hara

[1992] and Easley et al. [1996] for the PIN and Easley et al. [2011] and Easley

et al. [2012] for VPIN. I then have constructed a variety of tests to see if the

pattern of PIN and VPIN exhibit structural changes around documented cases

of manipulation of the LIBOR reference rate and the maturity event. Finally, I

compare this to systematic fluctuations in these measures relative to the futures

term structure.

Unsurprisingly, given the scale of the task, therefore, the results are very

mixed. Both PIN and VPIN vary systematically and in a statistically significant

pattern in respect to the term structure of the futures contracts. PIN varies in a v-

shaped pattern, with long (2000 to 3500 days) and short maturity (0 to 500 days)

contracts, having significantly higher PIN than intermediate contracts (which are

actually the most heavily traded). However, VPIN tends to be a v-shaped pat-

tern from 900 days to maturity to the last trading day. Similar to the PIN, the

VPIN on long and short maturity contracts, has significantly higher PIN than

intermediate contracts. The former is substantially lower than the latter over the

entire range of calculation measures. However, when I move to documented cases

of market manipulation in the LIBOR reference rate, the results are ambiguous.

There are definitive examples when the PIN and the VPIN shift systematically

around a relevant, documented case of a LIBOR manipulation. However, when

I build cross sectional averages across events, there is no significant evidence of

systematic shifts in either the PIN or VPIN metric. Consistent with Andersen

and Bondarenko [2014a] Abad et al. [2015], these findings clearly show that the

PIN and VPIN are mostly correlated with trading activity as a result of the term

structure analysis. Moreover, they have less predictive power as an early warning
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signal of market manipulation. It should be noted that whilst I have included

every documented case of manipulation directly linked to the relevant reference

rates, the list is necessarily incomplete as the regulatory actions have tended to

focus on sample charges to the firms involved, rather than documenting every

occurrence and its motivation.

The investigation extends to the maturity effect. The results are remarkable

and show PIN and VPIN have a significant pattern around this event. They

reach a peak at three days to maturity, then drop within the last week of the

trading period. Finally, both gradually increase to a normal level after the ED

starts trading again.

Another remarkable result in this study is that the cumulative of ∆PIN and

the cumulative of ∆VPIN show a clear pattern on the event study, as they spike

on the toxicity manipulation event. In line with Easley et al. [2012], the results

also show that the cumulative value of ∆VPIN performs better than the normal

value in providing information about toxicity events. Therefore, I also apply this

method to the PIN. The cumulative of ∆PIN and the cumulative of ∆VPIN show

a clear pattern on the event study, as they spike on LIBOR manipulation dates,

which are higher than the spike on the normal PIN and VPIN.

Finally, despite VPIN having a higher deviation than PIN and their cumula-

tive differences performing better than the normal value to capture these toxicity

events, they are not significantly statistically different for both the LIBOR manip-

ulation and the maturity event. The results may be because the PIN and VPIN

approach is unsuitable or because it may have been used incorrectly for this type

of data. Alternatively, the LIBOR manipulation and expiration may have only
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a minor effect. Another remark finding from the higher degree of differentiation

and a lower degree of correlation between PIN and VPIN is that the PIN cannot

be substituted by the VPIN. However, I leave full investigation of this issue to

future work, as more fine detail emerges from the current round of court cases

and provides more direct evidence of channels of informed trading.
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Chapter 7

Term-structure analysis of

hidden order in the limit order

book: evidence from the E-Mini

S&P 500

The hidden order is currently increasingly popular as a standard feature of elec-

tronic limit order book markets. The invisible order allows traders to hide all,

or partially hide their orders to avoid exposure to risk. I propose a new hidden

order detection algorithm for the limit order book to investigate the impact of

invisible orders on the market environment using E-mini S&P500 data. The al-

gorithm shows 43% all of the trade volume is involved with invisible liquidity.

This work also finds that price impact decreases and market quality is improved

with the presence of a hidden order both during high and low-frequency trad-

ing periods. I use this measure to study the association between hidden order

and other observed market environments. The analysis finds aggressively hidden

order activity when trading volume is increased.
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7.1 Introduction

Hidden liquidity, also known as iceberg order1, or Max Show in the CME Globeox

trading platform2, is the new standard feature of the electronic limit order book

market. Most trading platforms allow entirely invisible or partially invisible or-

ders. As traders can choose whether to make their orders visible or invisible, this

inevitably has an impact on market liquidity which will be addressed in some

detail later in the chapter. Although market participants who use hidden orders

commonly lose time priority to traders who submit displayed orders, this time

disadvantage is offset by the secrecy afforded by the hidden orders strategy. How-

ever, the more serious cost is that because of the time lag, some hidden orders

are not possible to execute. Clearly, hidden orders have both costs and benefits

compared to visible orders. However, the advantage of entirely or partially hidden

orders is that it reduces the risk of being undercut by aggressive or high-speed

traders and this potential loss is always greater than the cost of losses though

time priority, especially for agents who want to submit a large order. Using hid-

den order, agents can lower the incentives for incoming parasite or front runner

traders, who quote more competitive prices on the same side of the market, to

undercut their order.

There is increasingly popular debated, such as; De Winne and D’hondt [2007b],

Hautsch and Huang [2012b] and Buti and Rindi [2013], about the benefits of hid-

den order and what sort of traders that are likely to use hidden order. Slow

traders may use hidden orders as a tool to overcome their speed disadvantage

when they compete with high speed traders. Also, uninformed traders who have

1As in the wider literature, these terms will be used interchangeably in this paper; hid-
den order, hidden liquidity, invisible order, non-displayed order, iceberg order (De Winne and
D’hondt [2007a], Bessembinder et al. [2009],, Frey and Sand̊as [2009], Bloomfield et al. [2015]

2CME Globex Reference Guide, CME Group, accessed March 7, 2016,
<http://www.cmegroup.com/globex/files/GlobexRefGd.pdf>)
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no private information on asset values may rationally submit hidden orders to

reduce their costs of adverse selection when they trade against informed traders.

Strategic traders who use the tactic of entering small marketable orders to fulfilled

their large orders use reserve order to avoid risk of position exposure problem.

The usage of non-displayed order for this type of traders is to ensure about their

profit from being losses to predatory traders such as the HFT traders who use

the “Pinging” strategy. Buti and Rindi [2013] and Hautsch and Huang [2012b]

also provide empirical evidence that traders use hidden orders to manage picking

off risk and the cost of non-execution. They also find that the aggressiveness of

hidden order decreases when the HFT traders’ pinging strategy that operates on

the opposite side of the market increases.

The evolution of hidden liquidity in financial markets has gained momentum

in recent years. This growth is surprisingly large in terms of volume. For instance,

Aitken et al. [2001] report that 28% of all trading volume on the Australian Stock

Exchange is hidden order. De Winne and D’hondt [2007a] show that in 40 stocks

belonging to CAC40 index from Euronext venue has a hidden order volume ac-

counting for 39%. Bessembinder et al. [2009] report that on Euronext Paris, 44%

of all order volume is hidden. Frey and Sand̊as [2009] show that the average share

of iceberg orders is 9% of all non-marketable orders and 16% of overall volume

in German XETRA trading. Pardo and Pascual [2012] find that 18% of trade

on the Spanish Stock Exchange involves hidden order executions. Hautsch and

Huang [2012b] studied 99 NASDAQ stocks and found that 14% of all trading

volume originates from hidden order.

The growth number of hidden liquidity is continually increasing, however, it

is important to note that this trading feature existed before the advance of fully
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electronic trading platforms. Blume and Goldstein [1997] explained in Bloom-

field and O’Hara [2000] that the floor brokers in the NYSE sometimes use “not

held” orders to allow time to deliberate the order following a customer’s instruc-

tion. In this case, the order is not put into the book by the floor brokers but

instead the “not held” order allows the floor broker time and price discretion in

transacting on a best efforts basis. The “not held” orders from floor brokers are

currently being replaced with invisible orders in electronic trading platforms in

global financial exchange, such as Australian Stock Exchange, Chicago Mercan-

tile Exchange (CME), Deutsch Börse (XETRA), Euronext, NASDAQ, and SWX

Swiss exchange.

The issue of cost and benefits to the market is intensely debated, as the hidden

liquidity in an electronic order book is associated with a variety of complicated

trading strategies which may be profitable. A key benefit is improved liquidity

but this comes with increased uncertainty for this liquidity. However, it is compli-

cated to explain how hidden order impacts on financial markets. The benefits of

a hidden order (HD) are not only for opportunistic traders, but market operators

also gain a benefit from this feature. During market stress or when traders are

reluctant to reveal their trading positions, HD allows traders to provide some

liquidity into the market by submitting a hidden order instead of taking liquidity

out of the market. However, this procedure is a real trade-off between liquidity

and market transparency. On the negative side, an increase in HD activity also

imposes a certain degree of opacity in the market mechanism. This is consistent

with the finding of Bloomfield and O’Hara [2000], and Madhavan [2000].

In this analysis, I draw on the Chicago Mercantile Exchange (CME) tape

data, a very comprehensive dataset, covering every trade and quote in the limit
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order book for ten level above (below) best offer (best bid) from 2008 to 2015

for 32 E-mini S&P futures contract. The original data set includes 428,540,484

rows with 4 columns from trades data and 3,797,936,125 rows with 44 columns

from limit order book data. This analysis modulates the time-series data into a

term-structure style. The term-structure analysis helps us to avoid the bias of

the econometric statistical values. This bias is caused by the extreme trade and

quote volume and a large number of trades and quotes recorded in limit order

book when the futures contract has a short time to expiration. Furthermore, I

focus on term-structure analysis, hoping to avoid any seasonal effect that can oc-

cur in the time series studies. Also, for futures trading, a key factor that impacts

on futures pricing models is time to maturity. Next, a variety of tests are con-

structed to investigate the association between market quality and hidden order,

whilst also investigating the impulse response of hidden order to other observed

variables.

Unsurprisingly, given the scale of the task, I find comprehensive results. The

portion of hidden order activity in terms of volume during high-frequency trad-

ing periods is higher than during low-frequency periods. The highest portion of

hidden order volume per day appears in high trading activity periods which are

between ten to two weeks before maturity at about 43% of trades volume. The

lowest portion is 39% for a low frequency period (see Table 7.2). The associa-

tion between hidden order and market quality shows similar results for low and

high-frequency trading periods. However, the impact of HD is greater during low

frequency than high-frequency trading periods, and it is always positive. Further-

more, when I expand the experiment into individual buy and sell hidden order,

the result is unambiguous. It is clear that hidden order from both buyers and

sellers has improved the quality of the market, the greater impact is from buy
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hidden orders but the level of impact varies.

The contribution of this analysis is threefold. First, this is the only research

study to provide a comprehensive innovation of signed-hidden order detection

algorithm for E-min S&P500 for limit order book data. Second, to implement

the detection algorithm, this analysis applies the Volume-Weighted Average Price

(VWAP) approach with the signed-trade direction indicator to introduce the Vol-

ume Weighted Average Price-Trade Direction (VWAPTD) indicator. Last, the

empirical application of a term-structure analysis is a new contribution to the

literature in the field, and my algorithms are available for other researchers to

implement in such studies in a different market setting. Additionally, the advan-

tage of the algorithm is that it can be constructed from publicly available data,

therefore, it does not rely on special data.

The empirical study begins by systematizing E-mini S&P500 time series data

in the form of the term-structure. After this, the E-mini data is separated into 18

sets of data, which is from eighteen to one week to expiration. From this term-

structure, I find the E-mini trading becomes highly active from fourteen weeks

until two weeks to maturity. Surprisingly, from fifteen to fourteen weeks, the trade

updated jumps from 0.64 to 2.16 million updated, results for a period longer than

fifteen weeks to maturity, showing that trade updated declines continuously. For

instance, in sixteen, seventeen and eighteen weeks to maturity, the average trade

updated per week is 0.019, 0.008, and 0.005 million updated respectively. These

very small numbers allow us to focus only on the data from eighteen weeks to

maturity. Next, using the new proposal of a combination between VWAPTD and

a hidden order algorithm to classify hidden order as buy-initiated or sell-initiated

hidden order, I can investigate the price impact from both buy and sell hidden
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orders. From this, the findings show a similar pattern of price impact for both

buy and sell hidden order. One remarkable result from this analysis is that the

price impact significantly drops after the hidden order is submitted. This result

is consistent with Harris [1996], Aitken et al. [2001], Anand and Weaver [2004],

De Winne and D’hondt [2007a], and Frey and Sand̊as [2009].

Then, the study moves to investigate the association between two sides of

hidden order and the traditional market quality measures, finding the benefit of

invisible liquidity to the market illustrated through a negative relationship be-

tween the hidden order and effective spread, realized spread and the price impact.

However, surprisingly, the widening spread occurs when hidden orders are sub-

mitted onto the market. Parlour [1998], Buti and Rindi [2008] explained this

spectacle by the behavior of large traders who normally prefer to use hidden or-

der to reduce their exposure to being undercut by predatory traders by posting

their price away from the midpoint to convince new entrants to join the queue

at prices far from the best bid or best ask. At this point, I extend the empirical

study by employing a signed-hidden order volume to investigate the relationship

between hidden order and other interested variables by using Vector Auto Regres-

sion (VAR) and impulse response function (IRF) analysis. For the VAR analysis,

I find traditional results from quote revision studies as trades are serially cor-

related with the same direction of previous trade and quote mid-point increase

(decrease) after buy (sell). For the signed-hidden order (H̃DV ) equation in a

VAR system, I find the greatest impact measured by the estimated coefficient

is from signed-trade volume (T̃ V ), and the lowest is from lagged signed-hidden

order. Also, from this data set, the results from Granger’s causality test shows

there is a two-way effect in my VAR system. Furthermore, the result of an im-

pulse response analysis shows that the response of H̃DV following a shock of T̃ V
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is greater than the response of H̃DV to the shock of quote return and signed-

trade direction. Finally, from the IRF analysis, the results indicate that hidden

liquidity has an immediate positive impulse response caused by an innovation in

signed-trading volume (T̃ V ) followed by a decrease with an exponential decay

function. Also, the impulse of H̃DV response to the T̃ V is higher than the re-

sponse to Q̃R, T̃D, and H̃DV .

The remainder of the study is organized as follows. First §.7.2 outlines the

debate on hidden order, in the academic literature, with regard to the impact

of hidden order on financial markets. §.7.3 presents the adaptation of the new

approach of signed-hidden order detection algorithm and demonstrates how it

works. I also introduce a classic version of market quality measurement and

the association of hidden order to other observed variables. Subsequently §.7.4

presents the analysis of the study dataset. Finally, §.7.5 summarizes the key

findings and presents some brief concluding comments and directions for future

research.

7.2 Literature review

The research complements the theoretical and empirical literature of the market

microstructure on the electronic limit order book and hidden liquidity. This study

uses limit order book data that I believe offers a more comprehensive data set than

trades and quotes data. The main reason for using limit order book (LOB) is the

pre-trade transparency, as the LOB has a higher degree of the transparency than

market order (Madhavan et al. [2005], Baruch [2005] and Boulatov and George

[2013]). Passive traders use the limit order book to minimize the transaction cost,

as the order can be executed at a better price. Also, strategic traders participate
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in the limit order book to signal trading intention to other market participants by

posting flickering orders to attract a counterparty to increase the execution prob-

ability and reduce the time of posted position. However, Harris [1996], Hautsch

and Huang [2012b] illustrate that traders who use this strategy may be faced with

adverse effects such as: adverse price reaction (Hautsch and Huang [2012a]), the

revoking of defensive market order in the face of a larger displayed order in LOB

(Moinas [2010]), the strategic gain of parasitic traders over traders who submit

a large visible order to LOB (Harris [1996]). These adverse effects of limit order

book can be relieved by submitting a partially or fully invisible order (Buti and

Rindi [2013]). For example, Esser and Mönch [2007] reveals that large position

traders can optimize their order by submitting a fraction of hidden orders to

maintain their order continuously and balancing exposure risk against execution

risk.

Instances of hidden liquidity in financial markets are increasingly popular,

and I provide some evidence in the following section. Aitken et al. [2001] show

28% of trading volume on the Australian Stock Exchange is hidden. They also

find a similar price impact between non-displayed orders and displayed orders.

De Winne and D’hondt [2007a] show that for 40 stocks belonging to CAC40 index

from the Euronext venue, hidden orders accounted for 39%. Moreover, they find

a positive relationship between hidden orders and order aggressiveness on the op-

posite side. Bessembinder et al. [2009] report that 44% of order volume submitted

in Euronext Paris is hidden liquidity; they also document that the hidden order

reduces trading costs but increases execution time. Frey and Sand̊as [2009] shows

that the average share from hidden orders is 9% of all non-marketable orders and

16% of all trading volume in the German XETRA exchange. They also find that

in this market, the price impact of the hidden order depends on its size, also,
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the price impact increases with a higher probability of hidden order. Pardo and

Pascual [2012] find that 18% of trade volume in the Spanish Stock Exchange is

involved with hidden liquidity and their results show no significant relationship

between hidden order and price impact. A study of 99 NASDAQ stocks (Hautsch

and Huang [2012b]) find that 14% of trading volume comes from hidden orders.

Currently, empirical studies of hidden liquidity have been increasing signifi-

cant. Generally, most are related to the association between hidden liquidity and

market quality (Aitken et al. [2001]). The empirical findings from Bessembinder

et al. [2009] and Harris [1996]) show that traders prefer to hide their trading

position and size of order when the tick size is small and the order size is large.

Tuttle [2003] shows that market depth significantly increased after a hidden order

procedure was introduced on NASDAQ, and furthermore this invisible order had

more predictive power than a visible order for future price movement for this

market. He further found the presence of quote revision after the hidden order is

submitted.

To further investigate the association between hidden order and market qual-

ity, this study looks at the impact of hidden liquidity as a function of signed-

hidden order volume and other market properties, such as quote return, signed-

trade direction, and signed-trading volume. There are, so far, only a few studies

of market impact and hidden order. The main reason is that, to study the hidden

order, a researcher has to identify this invisible liquidity from trading accounts

which require a special dataset that contains this information. These unique

data sets are difficult to obtain (Torre [1997], Almgren et al. [2005]). However,

to study hidden order by using publicly available data, Moro et al. [2009] and

Vaglica et al. [2008] propose a signed-hidden order detection algorithm developed
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from Bernaola-Galván et al. [2000]. They find a concave function of temporary

price impact from intraday hidden liquidity. Pardo and Pascual [2012], using their

hidden order algorithm to study the Spanish Stock Exchange, find evidence of

no significant differences in price impact between non-displayed order compared

and displayed order.

Another area of hidden liquidity study is the market reaction to the presence

of hidden order. For example, De Winne and D’hondt [2007a] demonstrate that

traders are more aggressive when they find a signal of hidden order on the op-

posite side of the market. Frey and Sand̊as [2009] find a negative relationship

between price impact and a fraction of hidden liquidity and Pardo and Pascual

[2012] find no significant relationship between hidden order and return or volatil-

ity. Even though most empirical studies focus on hidden order motivated by

market liquidity, there are some papers focusing on the information content of

invisible orders (Biais et al. [1995], Griffiths et al. [2000], Bisière and Kamionka

[2000], Ranaldo [2004], Beber and Caglio [2005], and Veredas and Pascual [2004]).

To understand the behavior of traders who submit hidden liquidity, Gozluklu

et al. [2009] and Bloomfield et al. [2015] set up an experimental market in labo-

ratory studies to examine how hidden order activity affects traders’ behavior and

the market outcome. They find no significant difference in the market outcome

between traders who use hidden liquidity and traders who use displayed order.

Also, the result shows that both informed and uninformed traders tend to use

invisible orders when they detect an increase in trading aggressiveness.
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7.3 Methodology

7.3.1 Detecting Hidden Orders

This study uses the E-Mini S&P 500 data from the CME Globex electric trading

platform. On the Globex, price and volume are normally submitted through the

limit order book (LOB). Traders who seek immediate execution need to price the

limit order to be marketable, a buy (sell) order needs to be priced at or above (be-

low) the prevailing ask (bid) price. Also, traders who prefer to price their order at

a specific price and volume can place their order in the limit order book then the

order is waiting to be executed. However, this order might not be executed if the

price cannot be matched during the period of time in which the order is left open.

The Globex provides a 10-deep level of limit order for their futures products

with a display quantity system. This system allows traders to decide whether to

display all or partially display their order in the limit order book. In the limit

order book, displayed order is shown to the market participants on their trading

screen and the reside orders in the book are invisible to all traders. However,

the execution priority is as follows: price, displayed order, and time, so at the

same price all visible orders are executed before invisible orders. For example,

a trader wants to buy 100 futures contracts with a hidden order, in this case,

the trader may separate his buy order into 2 different orders: 10 contracts of

a displayed order and 90 contracts of a hidden order. Therefore, no more than

10 buy contracts are exposed to the market and the remainder is booked at the

bottom of the book but does not appear on the trading screen.

Since Globex provides a non-display system, in which the invisible or hidden

order is not marked on the customer trading screen, traders cannot directly iden-
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tify hidden liquidity or this type of order as it is not publicly available. Nonethe-

less, to solve this problem, I have developed a detection algorithm based on

a combination of Vaglica et al. [2008] and Pardo and Pascual [2012]. Vaglica

et al. [2008] and Moro et al. [2009] who developed their hidden order proxy from

Bernaola-Galván et al. [2000] in which the algorithm is working with signed-

traded volume. I then adopted this signed proxy with Pardo and Pascual [2012]

algorithm. Therefore, the detection algorithm is carried out using the following

steps S1-S6.

Step 1: First, the limit order book (LOB) and trade files are matched.

Step 2: Next, trade is classified as a buy or sell by using volume weighted average

price trade direction (VWAPTD) with +1 for a buy trade and -1 for a sell

trade; this trade classification is explained in the following section.

Step 3: At this point, if the trade is classified as buy-initiated then the algorithm

compares the trade reported size with the corresponding updates volume

(changes in the accumulated volume) on offer or bid side in the LOB.

Step 4: If the trade is classified as a sell-initiated, then the algorithm compares the

trading volume with the corresponding updates volume on the ask side.

Step 5: To infer the volume of hidden order or invisible order, the trade volume is

compared with the volume update in LOB. If the trade size is larger than

the corresponding updates volume, a deviation between these two volumes

can only be explained by the presence of invisible or a hidden volume.

Step6: However, for this algorithm, if the corresponding updates volume in LOB is

positive or larger than the reported trade size, the algorithm classifies this

as a modification order.
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Table 7.1: Examples of the procedure of hidden order detection algorithm
for E-mini S&P 500 on August 10, 2014 (ESU4).

Trades Volume Updated Invisible Volume
Time B/S Price Volume Bid Offer Bid Offer
15:49:33.706 Buy 1914.75 2 0 1 0 0
15:49:33.706 Buy 1914.75 2 0 3 0 0
15:49:33.707 Buy 1914.75 3 0 2 0 0
15:49:33.707 Buy 1914.75 2 0 -1 0 0
15:49:33.707 Buy 1914.75 1 10 0 0 0
15:49:33.707 Buy 1914.75 2 0 -55 2 0
15:49:33.707 Buy 1914.75 16 19 -15 0 0
15:49:33.707 Sell 1914.75 2 -960 841 0 0
15:49:33.707 Sell 1914.75 1 63 -8 0 9
15:49:33.707 Sell 1914.75 5 20 -250 0 255
15:49:33.707 Sell 1914.75 50 131 -102 0 52
15:49:33.707 Sell 1914.75 7 2 0 0 0
15:49:33.707 Sell 1914.75 1 3 0 0 0
15:49:33.718 Sell 1914.75 1 0 0 0 0
15:49:33.770 Sell 1914.75 1 -2 0 0 0
15:49:33.770 Sell 1914.75 1 1 -1 0 0
15:49:33.770 Sell 1914.75 50 0 1 0 0
15:49:33.770 Sell 1914.75 1 2 -3 0 2
15:49:33.770 Buy 1915.00 2 -8 0 6 0
15:49:33.770 Buy 1915.00 5 4 -9 0 0
15:49:33.770 Buy 1915.00 3 0 2 0 0
15:49:33.770 Sell 1914.75 1 13 -20 0 19
15:49:33.770 Sell 1914.75 19 -31 16 0 0
15:49:33.770 Sell 1914.75 4 -46 24 0 0
15:49:33.770 Sell 1914.75 8 40 21 0 0
15:49:33.770 Sell 1914.75 1 0 0 0 0
15:49:33.804 Sell 1914.75 1 27 -2 0 1
15:49:33.900 Sell 1914.75 1 31 -33 0 32
15:49:33.900 Sell 1914.75 2 0 0 0 0
15:49:33.900 Sell 1914.75 10 0 0 0 0
15:49:33.900 Sell 1914.75 7 1 0 0 0

Note: This table presents an example of the procedure of the hidden order detec-
tion algorithm that was taken from the activity in the E-mini futures on August
10, 2014 (ESU4). The table reports order activity starting around 15:49:33.706
pm and ending at 15:49:33.900 am. Shading identifies hidden order volume cor-
responding between 1 and 255 volumes for bid and offer. In total, during this
roughly 300 millisecond period, there are 9 volumes of hidden order from the
buyer and 370 volumes from the seller.
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Since traders cannot observe hidden orders as it is invisible on their screen,

one might wonder how my algorithm can detect this type of order. It is instruc-

tive to present the particular detection algorithm that I believe expresses the

volume of hidden order. Table 7.1 illustrates the procedure of the hidden order

detection algorithm from E-mini S&P500 on August 10, 2014 (ESU4) beginning

at 15:49:33.706 and ending at 15:49:33.900. Over this period, there were 31 trade

transactions’ updated, and I highlight in gray some of the hidden order during

this period to make it easier to scrutinize how the algorithm engaged in this type

of order. After trade data and the LOB data were matched, the algorithm clas-

sified trade as a buy or sell, then I recorded the corresponding volume updates

or changes in accumulated volumes in a limit order book for both bid and offer.

From this table, at 15:49:33.707, after a trade is classified as a sell-initiated with

one unit of trading volume, then this trading volume is compared with the volume

updated on offer side in the limit order book. At this point, if the corresponding

volume updated is positive, the algorithm classifies this trade as a modification.

However, if the corresponding volume is negative, which means the liquidity in

the limit order book is consumed, then the algorithm identifies this trade with

the presence of invisible liquidity. In this case, the corresponding updated volume

on the sell side or offer is compared with the trade volume, then the difference

between 1 from trade volume and -8 volume updated can only be explained by

the presence of invisible liquidity, which is 9 hidden order volumes.

With this hidden order detection algorithm, I can identify the hidden liquidity

in the limit order book for E-mini S&P500. Then, I report this hidden volume

as a term-structure from eighteen to one week to maturity. Table 7.2 provides

the results of hidden liquidity on E-mini S&P5000 limit order book, regarding

respectively the mean, maximum and minimum of the hidden order from bid and

213



Table 7.2: The number of hidden volume from bid-ask side for E-Mini
S&P500 futures reported by number of week to maturity from July 2, 2008
to June 19, 2015.

Number
of Week
to Ma-
turity

Mean ask
hidden or-
der volume

Max ask
hidden
order
volume

Min ask
hidden
order
volume

Mean bid
hidden or-
der volume

Max bid
hidden
order
volume

Min bid
hidden
order
volume

1 313,748 1,049,860 2,505 297,364 1,112,845 3,660
2 2,791,823 6,592,515 10,370 2,776,721 6,464,745 10,035
3 3,831,544 6,963,570 16,800 3,897,564 7,443,275 16,810
4 3,179,783 6,766,500 6,220 3,237,435 6,837,425 14,705
5 3,145,950 6,422,880 10,120 3,198,121 6,746,140 13,740
6 3,444,619 6,636,360 6,860 3,477,611 7,115,870 9,535
7 3,596,351 8,602,990 7,550 3,638,719 8,862,410 8,885
8 3,555,755 6,749,675 12,515 3,622,222 7,525,500 10,935
9 3,348,175 7,404,300 9,290 3,407,632 8,360,245 10,685
10 3,484,405 7,150,105 10,165 3,535,457 7,373,200 12,285
11 3,255,571 5,444,755 11,480 3,297,365 5,563,050 11,165
12 2,563,291 6,303,800 5,300 2,600,693 6,073,980 3,855
13 3,049,775 6,376,945 7,205 3,051,061 6,551,260 3,420
14 3,250,240 6,852,730 6,285 3,306,488 7,026,035 8,110
15 1,249,334 5,713,315 330 1,259,627 5,564,375 170
16 118,136 3,173,330 540 118,187 3,149,560 195
17 6,713 34,230 130 6,278 30,200 105
18 5,872 17,310 1,445 5,947 18,420 1,475

Note: This table presents average number of quotes volume within limit order book, trade
volume, quotes updated and trade updated from July 2, 2008 to June 19, 2015.

offer. Furthermore, the last column of this table compares a portion of hidden

order volume with trade volume. Over the sample period, in an average term,

the result shows 42% of trades executed on E-mini S&P500 involved with hid-

den liquidity, the minimum at 39% and the maximum at 43%. For high trading

activity periods (between fourteen to two weeks to maturity) the hidden order is

43% and 39% for low trading activity period. Also, the average hidden order on

the bid is larger than the offer for most of the sample periods. The results of the

hidden order in E-mini S&P500 is higher than reported in other research such as:

28% in the Australian Stock Exchange (Aitken et al. [2001]), 16% in the German

XETRA(Frey and Sand̊as [2009]), 18% in the Spanish Stock Exchange(Pardo and
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Pascual [2012]); however, it is similar to De Winne and D’hondt [2007a] with 39%

in the CAC40 and 44% in Euronext(Bessembinder et al. [2009]).

The figure 7.1 presents Number of Hidden Order on the E-Mini S&P 500

between July 2008 to June 2015. It can be seen from the upper sub-figure that

the average daily number of hidden orders jumps from around 50,000 orders per

day between 2008 and 2009 to around 150,000 orders per day after 2010, until

2015. The lower sub-figure presents an average weekly number of hidden orders

presented as a term-structure for eighteen to one week to maturity. The highest

number of hidden order appears on week seven at about 800,000 orders follow

by 798,000 orders for week eight, the lowest is 713 orders for week eighteen.

Interestingly, it can be seen from this sub-figure that the number of hidden order

is plunged from around 588,000 orders in week two to 60,000 orders for the last

week of the trading period. These hidden orders are consistent with the number of

hidden orders that jumped from about 200,000 for week fifteen to about 680,000

for week fourteen. This pattern can assume that the strategic trader uses hidden

order roll over futures contracts to switch from the front month contract that is

close to maturity, which is around two weeks to expiration, to another contract

in a further-out month which is around fourteen weeks to expiration.

7.3.2 Liquidity, Market Quality

This chapter is divided into three parts with three different models; in section

7.3.2.2 the OLS model is modified from Hasbrouck and Saar [2013]; in section

7.3.2.3 the vector auto-regression (VAR) model; and in section 7.3.2.4 the impulse

response analysis.
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7.3.2.1 The Volume-Weighted Average Price Trade Direction (VWAPTD)

The hidden order allows market participants to submit their orders partially or

totally invisibly, so traders can choose to display only a small fraction of their

order simultaneously. Copeland and Galai [1983] explain that agents who en-

gage with a hidden limit order are normally believed to be large liquidity traders

who need to reduce their exposure risk. These traders submit hidden orders to

protect themselves from front-running traders, undercutting and stealing price

priority in the knowledge that the price will rise or fall when the large order is

submitted to the market (Pardo and Pascual [2012],Harris and Panchapagesan

[2005]). In addition to the benefit to large liquidity traders, hidden orders also

benefit the financial market. To clearly understand this advantage, we investigate

a relationship between hidden order and liquidity risk or market quality by using

quoted spread, effective spread, realized spread and price impact, all of which

are measured based on volume-weighted average price (VWAP) from both bid

and offer in a limit order book. Berkowitz et al. [1988] explain the VWAP is a

ratio between traded value multiplied by traded price to total traded volume over

a particular time horizon. However, we adopt this VWAP into LOB data with

a ten tick level above and below the last bid and offer price. We explain this

measure as the average price at which a stock is quoted over the quoting horizon

from ten levels of LOB, so we calculate VWAP for both bid and ask side of LOB.

The VWAP is often used as a benchmark and a good approximation of expected

price by passive investors and is supported by Madhavan [2002] and Li and Ye

[2013].

To illustrate VWAP for bid and ask price, we give the following example.

Assume that at time t on a trading day, traders submit sell orders in a limit

order book. For level 1(L1) is 5 volume, L2 is 10, L3 is 12, L4 is 12, L5 is 10
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and the price is 98, 98.5, 99, 99.2 and 99.5 for L1 to L5 respectively. Thus, the

VWAP for sell (VWAPaskt) is equal to:

(98× 5) + (98.5× 10) + (99× 12) + (99.2× 12) + (99.5× 10)

5 + 10 + 12 + 12 + 10
= 98.95

For buy orders in limit order book at level 1(L1) it is 6 volume, L2 is 10, L3

is 13, L4 is 12, L5 is 10 and the price is 97, 96.5, 96, 95.5 and 95 for L1 to L5

respectively. Thus, the VWAP for buy (VWAPbidt) is equal to:

(97× 6) + (96.5× 10) + (96× 13) + (95.5× 12) + (95× 10)

6 + 10 + 13 + 12 + 10
= 96.84

In general, if we let Vj,t and Pj,t represent the submitted volume and submitted

price at time t at level j in limit order book, then the VWAP from bid(B) and

ask(A) are formulated as:

VWAPbidt =

∑n
j=1 PBjt.V Bjt∑n

j=1 V Bjt

. (7.3.1)

where, n is the number of level on limit order book, PBjt is bid price at j level

at time t, V Bjt is bid volume at j level at time t, and ask(A) are formulated as:

VWAPaskt =

∑n
j=1 PAjt.V Ajt∑n

j=1 V Ajt
. (7.3.2)

where, n is the number of level on limit order book, PAjt is ask price at j level,

V Ajt is ask volume at j level both occur at time t. Furthermore, this work uses

VWAPbidt and VWAPaskt to calculate mid price at time t equal to:

midt =
VWAPaskt − VWAPbidt

2
. (7.3.3)

Then, trade classification work with the requirement of two sets of data. First,
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mid price from midt =
VWAPaskt−VWAPbidt

2
, and second data is trade price. So,

this method classifies a trade as a buy when it occurs above the mid price and

conversely, it will be classified as a sell when it occurs below the mid price. When

the trade appears at the mid price it is unclassified.

Next, I examine the liquidity and market quality measured by quoted spread,

effective spread, realized spread and price impact. I follow the VWAP approach

to calculating these measurements. The quoted spread is the difference between

VWAPaskt and VWAPbidt divided by midt, and the effective spread is the differ-

ence between the midpoint from VWAPaskt and VWAPbidt and the trade price

pt. EffSpread is used to measure the market condition because it captures liq-

uidity flow. For instance, the wider effective spread means the market is in a

condition of less liquidity and also the market has less quality. Hendershott et al.

[2011] recommends this spread for traders or institutions who want to trade at

the inside quote because the effective spread is more meaningful as a transaction

cost at point of execution than the normal spread. Therefore, we can define the

proportion of quoted spread as,

Spreadt =
VWAPaskt−VWAPbidt

midt
(7.3.4)

and effective spread defined as:

EffSpreadt = TDt(pt−midt)
midt

. (7.3.5)

where TDt is signed-trade direction indicator that equals 1 for buy-initiated and

-1 for sell-initiated.

The EffSpread can be decomposed into two components. First, realized
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spread (RSpread) represents theoretical profits of a liquidity provider or a cost

for liquidity suppliers who want to keep their position at the midpoint after a

trade. The RSpread is defined as

RSpreadt =
TDt(pt −midt+1)

midt
. (7.3.6)

where pt is trade price, TDt is trade indicator, and midt is midpoint from VWAP

approach.

The second component is the adverse selection measured by price impact. The

PImpt shows how much mid-price moves within a given look-ahead window. Also

it, can be represented as the liquidity suppliers lost to informed traders due to

adverse selection (Chakrabarty et al. [2014]). This work uses the next midpoint

instead of time windows. So, PImpt is defined as:

PImptt =
TDt(midt+1 −midt)

midt
. (7.3.7)

This EffSpread, RSpread, and PImpt is a standard measurement of market

liquidity and market quality, so when this metric becomes narrow we assume that

the market has more liquidity and quality (Chordia et al. [2008]).

7.3.2.2 The OLS Model

To gauge the effect of the hidden order to market liquidity and market quality, I

adapt the OLS from Hasbrouck and Saar [2013] with our hidden order study. Also,

each data set is standardized to have zero mean and unit variance to facilitate

aggregation, then I present as in Hasbrouck’s work. In my model, we assume that

all measures should have a negative relationship with market quality, for instance,
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when the market quality improves, the EffSpread should be decreased, and the

market quality should have a positive association with the hidden order proxy or

hidden order intensity (HDI). The HDI is the fraction between hidden order

volume and trade volume at time t. Therefore, the first model is:

MktQualityi,t = a1MarketConcentrationi,t + a2HiddenOrderIntensityi,t + νi,t

(7.3.8)

where i = 1, ..., N indexes the number of week to maturity, t = 1, ...T indexes

of time, MktQuality represents one of the market quality measures (Spread,

EffSpread, RSpread, and PImpt), and

MarketConcentrationi,t =
TotalQuoteV olumesi,t
NumberOfTradersi,t

. (7.3.9)

This concentration ratio indicates whether the E-mini futures market is comprised

of a few large or many small traders. The MarketConcentration is assumed to

have a negative relationship with the market quality.

To allow for the possibility of hidden order from bid and offer having a dif-

ferent impact on market quality, we separate the hidden order intensity into two

components from buy and sell. Therefore, we have defined the second model as:

MktQualityi,t =a1MarketConcentrationi,t + a2AskHDCi,t

+ a3BidHDCi,t + νi,t. (7.3.10)

where AskHDCt is the function of hidden liquidity from seller and trading vol-

ume at time t and BidHDCt is the function of hidden liquidity from buyer and

trading volume at time t.
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7.3.2.3 Vector Auto-Regression Model

The Vector Auto-Regression or VAR model is one of the most effective for mul-

tiple time series analysis. It is an extension analysis on multiple time series

regression to the univariate autoregressive model. The VAR system indicates

the association amongst a set of interested variables, so it is used to analyze a

certain aspect of the relationship between observed variables. Leung et al. [2000]

and Jiang [2015] state that the VAR has proven to be a successful technique for

forecasting systems and is appropriate for characterizing the dynamic behavior

of financial time series. However, Sims [1980] ,who won a Nobel Prize in 2011,

argues that the restricted VAR conventional model has no substantive justifica-

tion, and economists should use the unrestricted VAR instead. Consequently,

this work uses unrestricted VAR as Sims recommends by including all interesting

variables in each equation.

We start with the basic VAR. The VAR is an n equation with N variable

model, and each variable is explained by its own lag with the values of the remain-

ing N -1 variables. The basic n-lag vector autoregression model can be written

as:

Yt = c+ Φ1Yt−1 + Φ2Yt−2 + · · ·+ ΦnYt−n + νt (7.3.11)

where Yt is denoted as the vector values time series variables, t is time index, c

is constant matrix, Φ is the coefficient matrices , and ν is an error term. The

reduced form of the VAR model is:

Y = ΦL + ν (7.3.12)

where Y is the dependent variables, L is the lagged operator variables, and Φ is
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the coefficient matrices of lagged terms,

Φ = [c,Φ1,Φ2, . . . ,Φn] =


c1 φ1

1,1 φ1
1,2 · · · φN−1

1,1 φN−1
1,2 . . . φN−1

1,n

c2 φ1
2,1 φ1

2,2 · · · φN−1
2,1 φN−1

2,2 . . . φN−1
2,n

...
...

...
. . .

...
...

. . .
...

cN−1 φ1
1,n φ2

2,n · · · φN−1
2,n φN−1

2,n . . . φN−1
n,n


(7.3.13)

Following the description of Hamilton [1994], the VAR(n) can be rewritten

as a VAR(1) with companion matrix representing the vector projection. The

mean− adjusted form of the VAR(n) is then

Yt − u = c+ Φ1(Yt−1 − u) + Φ2(Yt−2 − u) + · · ·+ Φn(Yk−n − u) + νt, (7.3.14)

therefore, the VAR(n) can be equivalently rewritten as:

Ŷt = FŶt−n + Vt (7.3.15)

where Ŷt = [Yt − u, Yt−1 − u, . . . , Yt−n+1 − u]−1, F is the companion matrix

F =



Φ1 Φ2 · · · Φn−1 Φn

In 0 · · · 0 0

0 In · · · 0 0
...

...
. . .

...
...

0 0 · · · In 0


(7.3.16)

where I is an identity matrix and Vn ≡ [un, 0, . . . , 0]−1. If the eigenvalues of the

companion matrix are within the boundary of the unit circle, F s → 0; s → ∞,

then a stable VAR(n) process is stationary and ergodic with time invariant means,

variances, and auto-covariances.
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At this point, I adapted the basic VAR model to provide empirical evidence

on the response or dynamic relationship of variables, such as quote revision (Q̃R),

signed-trade direction (T̃D), signed-hidden order (H̃DV ) and signed-trades vol-

ume (T̃ V ), to various exogenous impulses. At this point, the basic structure of

restricted VAR model was modified , similar to Dufour and Engle [2000], Zebedee

[2001], Chung et al. [2005], Viljoen et al. [2014] who studied quotes revision by

using Hasbrouck [1991]’s model to examine the dynamic relationship of trades

and quotes through a vector autoregression (VAR)system with five lags. The

Hasbrouck [1991]’s model can be defined as

rt =
∑n

i=1 airt−1 +
∑n

i=1 bixt−1 + νrt ,

xt =
∑n

i=1 cirt−1 +
∑n

i=1 dixt−1 + νxt , (7.3.17)

where rt is the difference in mid-quote return; t − i is the time between rt and

rt−i, i = 1, ..., n and the error term is νt.

This section start with a unit root test for all interested variables including

Q̃R, T̃D, H̃DV and T̃ V examining whether time series are stationary. Taking

the existence of a unit root as the null hypothesis, the Augmented Dickey-Fuller

(ADF) test is used for examination. The result from the ADF test for all se-

ries presents a strong rejection of the null hypothesis on non-stationary with a

significant p-value at 1% level. The rejection indicates that the data samples

are trend stationary. After testing a unit root test, i further modify the VAR

to unrestricted VAR to differentiate the associated impact of hidden order and

interested data series for E-mini S&P500. The modification system allows one

to distinguish the impact of hidden order from other variables. The standard
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proposition of the modification system in the matrix form is
Q̃Rt

T̃Dt

H̃DV t

T̃ V t

 =


α1

α2

α3

α4

+

n∑
i=1


φ11,i φ12,i φ13,i φ14,i

φ21,i φ22,i φ23,i φ24,i

φ31,i φ32,i φ33,i φ34,i

φ41,i φ42,i φ43,i φ44,i

 .


Q̃Rt−i

T̃Dt−i

H̃DV t−i

T̃ V t−i

+


ν1, t

ν2, t

ν3, t

ν4, t


(7.3.18)

To estimate the VAR system, I estimate consistently by least squares using

five lags and the covariance stationary is also assumed. The first 5 lags (n =

5) is choose as used in Hasbrouck [1991]; Dufour and Engle [2000]; Chung et al.

[2005]. Therefore, the multi-equations unrestricted VAR model is reduced to a

simple OLS form which allows easier understanding. This VAR system can be

defined as: the quote revision equation

Q̃Rt =
5∑
i=1

α1,iQ̃Rt−i +
5∑
i=1

α2,iT̃Dt−i +
5∑
i=1

α3,iH̃DV t−i +
5∑
i=1

α4,iT̃ V t−i + νqrt .

(7.3.19)

The signed-trade direction equation

T̃Dt =
5∑
i=1

α1,iQ̃Rt−i +
5∑
i=1

α2,iT̃Dt−i +
5∑
i=1

α3,iH̃DV t−i +
5∑
i=1

α4,iT̃ V t−i + νtdt .

(7.3.20)

The signed-hidden order volume equation

H̃DV t =
5∑
i=1

α1,iQ̃Rt−i +
5∑
i=1

α2,iT̃Dt−i +
5∑
i=1

α3,iH̃DV t−i +
5∑
i=1

α4,iT̃ V t−i + νhdvt

(7.3.21)
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The signed-trade volume equation

T̃ V t =
5∑
i=1

α1,iQ̃Rt−i +
5∑
i=1

α2,iT̃Dt−i +
5∑
i=1

α3,iH̃DV t−i +
5∑
i=1

α4,iT̃ V t−i + νtvt .

(7.3.22)

Where the Q̃Rt is quote revision at time t, Q̃Rt = 100 × (lnmidt − lnmidt−1),

T̃Dt is the signed-trade direction indicator at time t, H̃DV is signed-hidden order

volume and T̃ V is signed-trading volume at time t, νt is white noise, which may

be correlated with a variance-covariance matrix Σ.

7.3.2.4 Impulse Response Analysis

In the previous section, the VAR models is introduced in which represent the

correlations among a set of variables. These are often used to analyze certain

aspects of the relationships between the observed variables. Also, I am interested

to know the response of one variable to an impulse in another variable in a system

that involves a number of further variables. The impulse response analysis is an

important type of structure analysis based on the VAR model. This model pro-

vides key insights on the reaction of any dynamic system in response to external

change or it can provide the magnitude and direction of market impact.

The VAR system is transformed to an impulse response analysis in order to

examine how rapidly the Q̃R, T̃D, H̃DV , and T̃ V movements are transmitted to

the other observed variables. This impulse response is used to explain the speed of

adjustment as an indicator of the degree of the association or the feedback effect

of observed variables in this VAR system. The innovation of the impulse response

can obtain information over the concern of the interactions among the variables.
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Lütkepohl and Reimers [1992] suggest that there is no difference between VAR

and VECM models in estimating the impulse response. Now, we start with a ba-

sic of VAR, Yt = c+Φ1Yt−1 +Φ2Yt−2 + · · ·+ΦnYt−n+νt (Eq.7.3.11), where Φi are

4×4 coefficient metrics in our case. The estimation result from multivariate least

squares has an asymptotic normal distribution where a covariance matrix can be

estimated by the normal formula for stationary processes (Phylaktis [1999]).

Under the Wold Theorem, if the VAR(n) is stationary then it has an infinite

order moving average. Hence, we transform Eq.7.3.11 to a vector moving aver-

age(VMA) to examine the interaction between our four variables from the E-mini

market. The transformation model is defined as:

Yt = u+
∞∑
i=1

Φiνt−i

= Φ̂(L)νt (7.3.23)

where L is the lag operator and Φ̂(L) is matrix polynomial in L. Assuming the

time is t+ s, so the VMA system can be described as

Yt+s = u+ νt+s + Φ̂1νt+s−1 + Φ̂1νt+s−2 + · · ·+ Φ̂sνt + Φ̂s+1νt−1 + . . .

= Φ̂(L)νt+s, (7.3.24)

thus, the VMA system can be rewritten as;

Yt − u = Φ̂(L)t (7.3.25)

where Φ̂ ∈ {Φ̂1, {Φ̂2, . . . , {Φ̂s, {Φ̂s+1, . . . }, the operators Φ̂(L) and Φ(L) are re-

lated with Φ̂(L) = [Φ(L)]1. Φ̂ = F
(s)
11 is the s order moving average matrix, and

the F
(s)
11 denotes the upper left block of F s. Consequently, the Φ̂

(s)
ij is the impulse
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response of Yi,t+s to an innovation of one unit change in standard deviation of

the Yjt at the s step.

In the unrestricted VAR system, however, of the Q̃R, the T̃D, the H̃DV , and

the T̃ V , the main interesting is not only when all four responses decay in each

VAR system, but there are two interesting issues from this multivariate system.

First, the quote revision analysis in quote equation and signed-trade direction

equation and secondly the impulse response following a shock in hidden order

and trade volume equation. The issue of interest is separated into two sets be-

cause in the primary test I do not find a strong impact of the shock of H̃DV

and T̃ V to Q̃R and T̃ V . Furthermore, this study focus on the speed of cover-

age following a shock, and then compare this speed of decline between high and

low frequency trading periods following a term-structure study. In examining

the speed of adjustment in this unrestricted VAR model, I take into account the

interaction between the Q̃R, T̃D, H̃DV , and T̃ V in the quote, signed-trade di-

rection, signed-hidden order volume and signed-trade volume equations.

7.4 Analysis

7.4.1 Price impact of hidden order

Recent financial market literature has identified two interpretations of the risk of

order exposure. Firstly, traders’ risk from the front running liquidity, and sec-

ondly, the markets’ risk from a large order submission. However, this risk can

be decreased by submitting an invisible order as studied in Harris [1996], Aitken

et al. [2001], Anand and Weaver [2004], De Winne and D’hondt [2007a], and Frey

and Sand̊as [2009]. To understand whether the hidden order can manage the
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exposure risk of front running for traders who want to keep their trading position

secret or can protect the market from the risk of market stress when a large trad-

ing volume appears on a trading screen, I had to study the impact of a hidden

liquidity on the market quality. This section focuses on the price impact of hid-

den order using the tick-by-tick price impact to investigate the price improvement

granted by this type of order. If the nearby trade after the hidden order occurs

is not granted much, then we will see only one-period price impact. However, if

the hidden order is coincident with a subsequent decrease or increase in price, we

should see a long-term price impact. This work follows Reiss and Werner [2005]

in presenting the price impact in terms of median cumulative difference before

and after the hidden order occurs in the market. The result from this analysis

also agrees with Reiss and Werner [2005], that the median cumulative differences

price impact is less sensitive to outliers, and it is not different from the mean

cumulative differences price impact.

Figure 7.2 presents the median cumulative differences price impact surround-

ing twenty trade transactions before and after hidden orders submitted from seller

and buyer. For comparison, I also include the median cumulative differences price

impact from ordinary trades, from which I expect little or no short term or long

term price impact. The figures reveal that the median cumulative differences

price impact of hidden order is significantly larger than the median cumulative

price impact of ordinary trades (∗-line). Moreover, the sell hidden order has a

higher positive price impact than the buy hidden order for twenty trades before

hidden orders occur in the market. However, after this event, the price impact

shows an adverse effect. The figure also shows a similar pattern of the average

median cumulative price impact for both buy and sell hidden orders.
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The median cumulative price impact measured from twenty to nine trades be-

fore the event is near to zero for buy and sell hidden orders, however from eight

trades before the event, the price impact from the sell hidden order is increas-

ing and reaches a peak when the hidden order is submitted at 0.5 basis points.

Interestingly, there is a similar peak level of the average median cumulative dif-

ferences price impact from both buy and sell hidden orders. After, a hidden order

is submitted, the average median cumulative differences price impact from both

sides plunges to the lowest level at -0.6 basis points, then bounces back from one

trade after the event. Finally, the price impact remains stable from eight trades

after the event at around zero basis point. This result supports the view that the

hidden order, whether from a buy or sell hidden order, is more informed on the

prices than normal trade.

The main interesting pattern from this figure is that the price impact of the

hidden order from both buy and sell orders begins to move before the event.

This movement occurs because buyers and sellers who submit hidden orders are

informed about trades or these types of traders may have proceeded to the di-

rect trade. The largest cumulative differences price impact occurs on the next

trade after the hidden order submitted, which is a decrease from 0.5 to -.6 basis

points for both the buy and sell hidden order. The figure also shows that there

is a reversal in the cumulative differences price impact (or cumulative abnormal

return (Reiss and Werner [2005])) coincident with the hidden order. This pattern

explains the spike of the cumulative differences price impact on the event trade,

then drops to the bottom on the next trade. Finally, the cumulative price impact

increases to just around 0 basis points for a buyer (seller) from eight trades after

the event. Also, the price impact from buy hidden orders is slightly higher than

a sell hidden order.
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Additionally, the spike of the cumulative median price impact on the occur-

rences of hidden order, whether sell or buy, can be explained by the immediate

market reaction to a greater price impact when the order has been executed fol-

lowed by a price reversal. Also, the price effect of the hidden order is short-lived

and reaches a peak at the beginning of the event, then after the hidden order

appears a price reversal is expected. Finally, informed or sophisticated traders

can gain abnormal profits if they can detect any hidden order fast enough to

respond to a shock from this type of trade; traders can benefit from the overre-

action before the order is submitted with a price reversal afterwards.

7.4.2 Hidden order and market liquidity

In addition to examining the hidden order impact on the E-mini S&P500 mar-

ket, this analysis follows OLS regression to investigate the relationship between

hidden order, market liquidity, and market quality. Therefore, the model (1) is

MktQualityi,t = a1MarketConcentrationi,t + a2HiddenOrderIntensityi,t + εi,t;

the coefficient estimates are OLS, and p-value and R2 are also presented. This

work separates the time period into one-week blocks starting eighteen weeks be-

fore maturity, however, the table reports on the main analysis present only four

periods, eighteen, twelve, six, and one week to maturity. These four include low

and high-frequency trading periods. The low-frequency periods are week eighteen

and week one and the average trade updated for these is 0.005 million updates for

the former, and 0.158 million updates for week one. The high-frequency trading

periods are week twelve and week six, and the average trade updated for these

are 2.840 million updated for the former and 1.913 million for the latter.
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Table 7.3 presents estimated coefficients of model (1) for week eighteen, twelve,

six and one. The main interesting coefficient estimate is a2, which measures the

association of hidden order and the market quality. Overall, the result shows

that a higher portion of hidden order is associated with a wide-spread. However,

the effective spread, realized spread, and price impact is narrow. In addition, the

relationship between hidden order activity and these market quality proxies are

similar for all periods.

The coefficient estimates from OLS can be interpreted as a causal impact

between the hidden liquidity and market quality. The result shows that while

HiddenOrderIntensity (HOI) is positively related to quoted spread (Spread),

it is negatively related to EffSpread, ReSpread, and Pimpt for all periods. The

highest impact of the hidden order wide Spread appears on week six at 0.500 and

the lowest is in week eighteen at 0.026. In contrast, the highest negative impact

of HOI to EffSpread appears on week twelve at -0.405, whilst the lowest is in

week eighteen at -0.053. The highest negative impact of HOI to ReSpread is in

week six at -0.380, whilst the lowest is in week eighteen at -0.039. Finally, the

highest negative impact of the HOI to Pimpt is in week twelve at -0.579, whilst

the lowest is in week eighteen at -0.062. This analysis also finds that the effect

of HOI on Spread for week one is not statistically significant with a p− value of

0.213. These results suggest that the hidden order may increase market quality

as the EffSpread, ReSpread, and Pimpt are narrower when the HOI is in-

creased. Nevertheless, the Spread widens when the HOI increases. I will discuss

these relationships in the following section. Furthermore, during high-frequency

trading periods the result from this OLS shows that hidden order improves the

market quality with a greater impact than low-frequency trading periods.
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To allow us to investigate the possibility of a different relationship between

buy or sell hidden liquidity to market quality, I separate the HOI into a buy

and sell hidden order. The variable AskHDC is a function of hidden sell orders

and market volume, whilst BidHDC is a function of the hidden buy order and

market volume. I call this model 2: MktQualityi,t = a1MarketConcentrationi,t

+a2AskHDCi, t+ a3BidHDCi, t+ εi,t.

Table 7.4 presents the estimated coefficients of the model (2) side-by-side for

week eighteen, twelve, six and one. Overall, the result shows that both AskHDC

and BidHDC implies higher Spread and lower EffSpread, ReSpread, and

Pimpt. The result shows that the coefficient estimates from the model (2) have

a similar positive effect from buying and selling hidden liquidity to market qual-

ity. This result is similar to model(1), however, there is a different degree of

impact for hidden buy and sell orders as the results of the coefficient estimates

are shown in table 7.3 and 7.4. Additionally, the coefficients from the model (2)

suggest that the hidden buy order has a higher impact on market quality than the

sell hidden order for all periods. Furthermore, the highest impact of AskHDC,

BidHDC to market quality appears on week six and twelve, when trading activ-

ity is high, and the lowest impact is in week eighteen when trading activity is low.

At this point, the contemporaneous positive association between AskHDC,

BidHDC and Spread may be explained by the nature of traders who tend to

hide their order when the quoted spread is wide. These results are consistent

with Bessembinder et al. [2009] who claims that traders are more likely to hide

their order when the arrival rate of order is low and the adverse selection is high.

However, the positive relationship of hidden order and Spread is statistically

significant at the 0.001 level only in weeks twelve and six. Moreover, the contem-
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poraneous negative association between hidden order and EffSpread shows that

the EffSpread tend to be narrow when the activity of hidden order is high. This

is consistent with Comerton-Forde and Tang [2009] who shows that the hidden

order reduces the cost of trade. Also, the contemporaneous negative association

between hidden order and ReSpread indicates that the transitory price move-

ment reduces, or the market tends to follow, the previous trades. Finally, there

is a significant contemporaneous negative association between hidden order and

Pimpt indicating that hidden order reduces the level of information asymmetry

in the market.

7.4.3 Vector autoregressive and serial correlation on E-

mini S&P500

In this section, the E-mini S&P500 is analyzed by using the vector autoregressive

(VAR) model. As in the previous section, this study estimates the VAR model

for one week blocks starting from 18 weeks before maturity as a term-structure

analysis. I serve the result of VAR analysis by presenting not only the coefficient

estimates but also t-statistic and p-value on each block, to determine whether

the value of estimated coefficients is significantly different from zero.

This study uses the first five lags because the coefficients for longer lags are

small; five lags have also been used in other studies such as Hasbrouck [1991];

Dufour and Engle [2000]; Chung et al. [2005]. These previous studies focused

on the bi coefficients from quote revision or Q̃Rt equation which measure the

price impact of trades and the bi coefficients in a trade direction or T̃Dt equation

which measures a serial correlation in signed trades model. However, this anal-

ysis further modified this restricted VAR to an unrestricted VAR model. The
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favorite form of VAR for trade and quote revision in a dynamic model is devel-

oped by adding another two variables, such as the signed-hidden order volume

and signed-trade volume. The following section serves the empirical results from

four different periods from week eighteen to one. I select these four periods as a

proxy of high and low trading activity sample periods. Firstly, the low-frequency

period is week eighteen and one. Secondly, the high-frequency data sample pe-

riod is week twelve and two. Furthermore, the empirical results from these four

blocks is achieved by comparing them together instead of reporting one-by-one

(See section A.1 for the result of VAR for 18-week blocks).

Panel A of table 7.5, 7.6, 7.7 and 7.8 present the estimated coefficients from the

quote revision equation from VAR analysis. First, this panel shows the positive

coefficient value of b1T̃D only on lag 1, where the p-value is highly significant

at 1 % level. The coefficient estimated for this parameter is 0.1360 for week

eighteen, 0.1328 for week twelve, 0.1229 for week six, and 0.2530 for week one.

Furthermore, there are negative coefficients from T̃D from lag 2 to lag 5. However,

the coefficient for b2 − b5) are considerably smaller than b1, which indicates that

the lagged 2 to 5 trades are the primary cause of price movement. These results

indicate that the market maker raises (lower) the quote midpoint immediately

subsequent to a buy(sell) order.

While the c1 for week one indicates that the H̃DV has negatively autocorre-

lated, the c1 (H̃DV ) for week six, twelve and eighteen show a positive coefficient

for the first lag with less than 1% significant level. The estimated coefficient

is 0.0058, 0.0090 and 0.0014 for weeks six, twelve and eighteen, respectively.

The positive coefficient for week six, twelve and eighteen indicates that the prior

change of H̃DV leads to the change of the mid-quote. Therefore, the results

of the positive impact of H̃DV indicates that after the buy-initiated hidden or-
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Table 7.5: Coefficient estimates of the vector autoregressive(VAR) model
for E-Mini S&P500 for one week to maturity

Panel A: Quote revision equation

Q̃Rt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + νqrt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 0.0283 37.87 (<0.01) b1 0.2530 267.74 (<0.01) c1 -0.0068 -7.82 (<0.01) d1 0.0156 20.60 (<0.01)
a2 0.0020 2.70 (<0.01) b2 -0.0542 -52.31 (<0.01) c2 -0.0018 -2.05 (<0.01) d2 0.0049 5.60 (<0.01)
a3 -0.0013 -1.70 (0.08) b3 -0.0108 -10.33 (<0.01) c3 -0.0023 -2.71 (<0.01) d3 0.0004 0.49 (0.62)
a4 0.0003 0.43 (0.66) b4 -0.0012 -1.15 (0.25) c4 -0.0003 -0.36 (0.71) d4 0.0000 0.02 (0.98)
a5 -0.0019 -2.67 (<0.01) b5 -0.0051 -5.29 (<0.01) c5 -0.0002 -0.25 (0.80) d5 -0.0015 -1.72 (0.08)

C 0.0016
Adj. R2 0.0502

Panel B: Trade direction equation

T̃Dt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + νtdt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0612 -96.14 (<0.01) b1 0.3550 440.54 (<0.01) c1 0.0045 6.08 (<0.01) d1 0.0228 35.34 (<0.01)
a2 -0.0049 -7.73 (<0.01) b2 0.1810 204.73 (<0.01) c2 0.0055 7.50 (<0.01) d2 0.0027 3.62 (<0.01)
a3 0.0051 7.96 (<0.01) b3 0.0602 67.46 (<0.01) c3 0.0038 5.18 (<0.01) d3 0.0014 1.94 (<0.01)
a4 0.0060 9.44 (<0.01) b4 0.0335 37.81 (<0.01) c4 0.0024 3.21 (<0.01) d4 0.0022 3.03 (<0.01)
a5 0.0124 20.80 (<0.01) b5 0.0337 41.14 (<0.01) c5 0.0023 3.55 (<0.01) d5 0.0016 2.22 (<0.01)

C 0.0039
Adj. R2 0.3093

Panel C: Hidden order equation

H̃DV t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + νhdvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0227 -34.79 (<0.01) b1 -0.0310 -37.55 (<0.01) c1 0.0144 19.07 (<0.01) d1 0.5015 759.21(<0.01)
a2 -0.0004 -0.62 (<0.01) b2 0.0484 53.42 (<0.01) c2 0.0163 21.55 (<0.01) d2 0.0168 22.10 (<0.01)
a3 0.0016 2.39 (<0.01) b3 0.0136 14.83 (<0.01) c3 0.0127 16.74 (<0.01) d3 0.0030 3.96 (<0.01)
a4 0.0031 4.70 (<0.01) b4 0.0110 12.07 (<0.01) c4 0.0060 7.94 (<0.01) d4 0.0011 1.50 (0.13)
a5 0.0039 6.33 (<0.01) b5 0.0095 11.29 (<0.01) c5 0.0069 10.41 (<0.01) d5 0.0026 3.47 (<0.01)

C 0.0011
Adj. R2 0.2747

Panel D: Trade volume equation

T̃ V t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + νtvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0229 -31.00 (<0.01) b1 0.0700 74.74 (<0.01) c1 0.0268 31.26 (<0.01) d1 0.1291 172.40(<0.01)
a2 -0.0031 -4.21 (<0.01) b2 0.0564 54.88 (<0.01) c2 0.0215 25.01 (<0.01) d2 0.0261 30.34 (<0.01)
a3 -0.0002 -0.24 (0.80) b3 0.0181 17.40 (<0.01) c3 0.0107 12.46 (<0.01) d3 0.0162 18.77 (<0.01)
a4 0.0020 2.75 (<0.01) b4 0.0112 10.86 (<0.01) c4 0.0079 9.18 (<0.01) d4 0.0130 15.13 (<0.01)
a5 0.0046 6.62 (<0.01) b5 0.0093 9.78 (<0.01) c5 0.0143 19.08 (<0.01) d5 0.0138 16.01 (<0.01)

C 0.0052
Adj. R2 0.0677

Note: This table shows the results of our vector autoregressive(VAR) model,

where Q̃R is quote return, T̃D is signed trade direction, H̃DV is signed hidden
order volume and T̃ V is signed trading volume at time t.
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Table 7.6: Coefficient estimates of VAR model on E-Mini S&P500 for six
week to maturity

Panel A: Quote revision equation

Q̃Rt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + νqrt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value

a1 0.0302 133.00 (<0.01) b1 0.1229 305.22 (<0.01) c1 0.0058 19.54 (<0.01) d1 0.0191 86.41 (<0.01)
a2 0.0064 27.98 (<0.01) b2 -0.0015 -3.48 (<0.01) c2 0.0049 16.63 (<0.01) d2 0.0098 32.91 (<0.01)
a3 0.0004 1.75 (<0.01) b3 -0.0043 -9.62 (<0.01) c3 0.0029 9.81 (<0.01) d3 0.0049 16.58 (<0.01)
a4 -0.0013 -5.50 (<0.01) b4 -0.0044 -10.01 (<0.01) c4 0.0027 9.00 (<0.01) d4 0.0045 15.07 (<0.01)
a5 -0.0030 -14.00 (<0.01) b5 -0.0048 -11.91 (<0.01) c5 0.0044 20.11 (<0.01) d5 0.0032 10.65 (<0.01)

C 0.0001
Adj. R2 0.0170

Panel B: Trade direction equation

T̃Dt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + νtdt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.1070 -809.41 (<0.01) b1 0.3833 1633.41 (<0.01) c1 -0.0020 -11.57 (<0.01) d1 0.0135 104.66 (<0.01)
a2 -0.0424 -316.18 (<0.01) b2 0.2555 1006.33 (<0.01) c2 -0.0015 -8.64 (<0.01) d2 0.0057 32.68 (<0.01)
a3 -0.0175 -130.28 (<0.01) b3 0.1142 440.93 (<0.01) c3 -0.0012 -7.16 (<0.01) d3 0.0042 24.35 (<0.01)
a4 -0.0032 -24.32 (<0.01) b4 0.0723 285.15 (<0.01) c4 -0.0010 -6.07 (<0.01) d4 0.0030 17.35 (<0.01)
a5 0.0095 76.91 (<0.01) b5 0.0609 260.27 (<0.01) c5 0.0002 1.85 (0.06) d5 0.0014 8.26 (<0.01)

C -0.0008
Adj. R2 0.6652

Panel C: Hidden order equation

H̃DV t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + νhdvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0294 -175.64 (<0.01) b1 -0.0669 -224.99 (<0.01) c1 0.0010 4.37 (<0.01) d1 0.6748 4145.18 (<0.01)
a2 -0.0087 -51.18 (<0.01) b2 0.0594 184.60 (<0.01) c2 0.0060 27.36 (<0.01) d2 0.0105 47.95 (<0.01)
a3 -0.0027 -16.14 (<0.01) b3 0.0238 72.55 (<0.01) c3 0.0034 15.39 (<0.01) d3 0.0017 7.58 (<0.01)
a4 0.0003 1.76 (0.08) b4 0.0140 43.46 (<0.01) c4 0.0035 16.22 (<0.01) d4 0.0018 8.01 (<0.01)
a5 0.0031 20.07 (<0.01) b5 0.0122 41.26 (<0.01) c5 0.0040 24.36 (<0.01) d5 0.0007 3.23 (<0.01)

C 0.0000
Adj. R2 0.4673

Panel D: Trade volume equation

T̃ V t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + νtvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0350 -156.43 (<0.01) b1 0.0546 137.53 (<0.01) c1 0.0145 49.63 (<0.01) d1 0.0724 332.64 (<0.01)
a2 -0.0141 -62.04 (<0.01) b2 0.0691 160.72 (<0.01) c2 0.0103 35.40 (<0.01) d2 0.0199 67.75 (<0.01)
a3 -0.0065 -28.71 (<0.01) b3 0.0257 58.67 (<0.01) c3 0.0069 23.71 (<0.01) d3 0.0131 44.72 (<0.01)
a4 -0.0021 -9.55 (<0.01) b4 0.0154 35.97 (<0.01) c4 0.0052 17.80 (<0.01) d4 0.0119 40.69 (<0.01)
a5 0.0016 7.53 (<0.01) b5 0.0117 29.42 (<0.01) c5 0.0096 44.23 (<0.01) d5 0.0092 31.58 (<0.01)

C -0.0005
Adj. R2 0.0491

Note: This table shows the results of our vector autoregressive(VAR) model,

where Q̃R is quote return, T̃D is signed trade direction, H̃DV is signed hidden
order volume and T̃ V is signed trading volume at time t.
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Table 7.7: Coefficient estimates of VAR model on E-Mini S&P500 for twelve
week to maturity

Panel A: Quote revision equation

Q̃Rt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + νqrt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 0.0331 118.34 (<0.01 ) b1 0.1328 276.52 (<0.01 ) c1 0.0090 25.20 (<0.01 ) d1 0.0223 81.93 (<0.01 )
a2 0.0068 23.80 (<0.01 ) b2 -0.0062 -12.03 (<0.01 ) c2 0.0083 23.00 (<0.01 ) d2 0.0120 33.37 (<0.01 )
a3 0.0018 6.26 (<0.01 ) b3 -0.0064 -12.12 (<0.01 ) c3 0.0056 15.63 (<0.01 ) d3 0.0061 16.89 (<0.01 )
a4 -0.0018 -6.40 (<0.01 ) b4 -0.0068 -13.02 (<0.01 ) c4 0.0043 11.99 (<0.01 ) d4 0.0056 15.51 (<0.01 )
a5 -0.0031 -11.88 (<0.01 ) b5 -0.0075 -15.65 (<0.01 ) c5 0.0056 20.57 (<0.01 ) d5 0.0041 11.41 (<0.01 )

C 0.0006
Adj. R2 0.0188

Panel B: Trade direction equation

T̃Dt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + νtdt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.1087 -645.31 (<0.01 ) b1 0.3777 1307.35 (<0.01 ) c1 -0.0033 -15.25 (<0.01 ) d1 0.0136 83.01 (<0.01 )
a2 -0.0430 -251.47 (<0.01 ) b2 0.2567 821.87 (<0.01 ) c2 -0.0030 -13.98 (<0.01 ) d2 0.0055 25.41 (<0.01 )
a3 -0.0176 -103.24 (<0.01 ) b3 0.1133 355.49 (<0.01 ) c3 -0.0015 -7.06 (<0.01 ) d3 0.0051 23.34 (<0.01 )
a4 -0.0033 -19.79 (<0.01 ) b4 0.0717 229.70 (<0.01 ) c4 -0.0018 -8.17 (<0.01 ) d4 0.0030 13.78 (<0.01 )
a5 0.0093 59.06 (<0.01 ) b5 0.0597 207.19 (<0.01 ) c5 0.0000 -0.13 (<0.01 ) d5 0.0017 7.95 (<0.01 )

C -0.0009
Adj. R2 0.6441

Panel C: Hidden order equation

H̃DV t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + νhdvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0283 -134.34 (<0.01 ) b1 -0.0624 -172.64 (<0.01 ) c1 -0.0032 -11.85 (<0.01 ) d1 0.6593 3220.56 (<0.01 )
a2 -0.0087 -40.87 (<0.01 ) b2 0.0566 144.69 (<0.01 ) c2 0.0057 21.05 (<0.01 ) d2 0.0132 48.84 (<0.01 )
a3 -0.0027 -12.55 (<0.01 ) b3 0.0230 57.61 (<0.01 ) c3 0.0025 9.25 (<0.01 ) d3 0.0037 13.59 (<0.01 )
a4 0.0008 3.69 (<0.01 ) b4 0.0139 35.61 (<0.01 ) c4 0.0024 8.98 (<0.01 ) d4 0.0028 10.17 (<0.01 )
a5 0.0031 15.47 (<0.01 ) b5 0.0108 29.94 (<0.01 ) c5 0.0039 19.23 (<0.01 ) d5 0.0019 6.86 (<0.01 )

C 0.0000
Adj. R2 0.4446

Panel D: Trade volume equation

T̃ V t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + νtvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0319 -115.02 (<0.01 ) b1 0.0478 100.63 (<0.01 ) c1 0.0117 32.81 (<0.01 ) d1 0.0761 283.01 (<0.01 )
a2 -0.0127 -45.07 (<0.01 ) b2 0.0621 120.99 (<0.01 ) c2 0.0099 27.94 (<0.01 ) d2 0.0201 56.57 (<0.01 )
a3 -0.0059 -21.08 (<0.01 ) b3 0.0234 44.64 (<0.01 ) c3 0.0078 21.94 (<0.01 ) d3 0.0133 37.25 (<0.01 )
a4 -0.0012 -4.23 (<0.01 ) b4 0.0163 31.84 (<0.01 ) c4 0.0036 10.03 (<0.01 ) d4 0.0100 28.21 (<0.01 )
a5 0.0023 8.94 (<0.01 ) b5 0.0087 18.33 (<0.01 ) c5 0.0094 34.87 (<0.01 ) d5 0.0107 30.16 (<0.01 )

C 0.0002
Adj. R2 0.0413

Note: This table shows the results of our vector autoregressive(VAR) model,

where Q̃R is quote return, T̃D is signed trade direction, H̃DV is signed hidden
order volume and T̃ V is signed trading volume at time t.
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Table 7.8: Coefficient estimates of VAR model on E-Mini S&P500 for eigh-
teen week to maturity

Panel A: Quote revision equation

Q̃Rt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + νqrt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0093 -1.37 (0.17) b1 0.1360 17.82 (<0.01) c1 0.0014 0.18 (0.85) d1 0.0151 2.01 (<0.01)
a2 -0.0121 -1.79 (0.07) b2 -0.0258 -3.35 (<0.01) c2 -0.0039 -0.51 (0.61) d2 -0.0041 -0.53 (0.60)
a3 0.0218 3.23 (<0.01) b3 -0.0146 -1.88 (0.08) c3 0.0021 0.28 (0.77) d3 0.0045 0.58 (0.62)
a4 0.0007 0.10 (0.92) b4 -0.0108 -1.40 (0.16) c4 0.0018 0.24 (0.81) d4 0.0036 0.46 (0.57)
a5 0.0121 1.80 (0.07) b5 -0.0009 -0.12 (0.90) c5 0.0027 0.36 (0.77) d5 -0.0039 -0.51 (0.60)

C -0.0045
Adj. R-squared 0.0202

Panel B: Trade direction equation

T̃Dt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + νtdt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 0.0195 2.90 (<0.01) b1 0.0482 6.37 (<0.01) c1 -0.0045 -0.60 (0.63) d1 0.0340 4.57 (<0.01)
a2 0.0116 1.73 (0.08) b2 0.1138 14.93 (<0.01) c2 0.0040 0.53 (0.60) d2 0.0043 0.57 (0.62)
a3 0.0104 1.55 (0.12) b3 0.0656 8.57 (<0.01) c3 0.0058 0.76 (0.44) d3 -0.0160 -2.09 (<0.01)
a4 0.0074 1.10 (0.27) b4 0.0582 7.63 (<0.01) c4 -0.0002 -0.03 (0.80) d4 -0.0137 -1.79 (0.07)
a5 0.0066 0.99 (0.32) b5 0.0627 8.25 (<0.01) c5 0.0013 0.18 (0.85) d5 -0.0063 -0.83 (0.40)

C 0.0141
Adj. R-squared 0.0399

Panel C: Hidden order equation

H̃DV t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + νhdvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 0.0119 1.81 (0.70) b1 -0.0428 -5.77 (<0.01) c1 0.0149 2.01 (<0.01) d1 0.2456 33.61 (<0.01)
a2 0.0082 1.24 (0.22) b2 0.0226 3.01 (<0.01) c2 0.0319 4.28 (<0.01) d2 0.0292 3.88 (<0.01)
a3 -0.0032 -0.48 (0.63) b3 0.0162 2.15 (<0.01) c3 -0.0034 -0.46 (0.57) d3 0.0128 1.70 (0.06)
a4 -0.0128 -1.94 (0.05) b4 0.0072 0.96 (0.34) c4 0.0205 2.75 (<0.01) d4 -0.0013 -0.17 (0.86)
a5 0.0037 0.57 (0.62) b5 0.0190 2.55 (<0.01) c5 0.0064 0.88 (0.37) d5 0.0148 1.98 (<0.01)

C -0.0022
Adj. R-squared 0.0715

Panel D: Trade volume equation

T̃ V t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + νtvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0049 -0.73 (0.47) b1 -0.0293 -3.90 (0.10) c1 0.0698 9.27 (<0.01) d1 0.1207 16.30 (<0.01)
a2 0.0091 1.36 (0.17) b2 0.0101 1.33 (0.10) c2 0.0182 2.41 (<0.01) d2 0.0851 11.18 (<0.01)
a3 -0.0066 -0.99 (0.32) b3 0.0069 0.90 (0.10) c3 0.0222 2.94 (<0.01) d3 0.0115 1.51 (0.13)
a4 -0.0066 -0.99 (0.32) b4 0.0119 1.57 (0.10) c4 0.0137 1.82 (0.10) d4 0.0040 0.52 (0.61)
a5 0.0017 0.25 (0.80) b5 0.0140 1.85 (0.10) c5 0.0351 4.77 (<0.01) d5 0.0061 0.80 (0.42)

C -0.0045
Adj. R-squared 0.0470

Note: This table shows the results of our vector autoregressive(VAR) model,

where Q̃R is quote return, T̃D is signed trade direction, H̃DV is signed hidden
order volume and T̃ V is signed trading volume at time t.
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der (sell-initiated hidden) leads to upward(downward) quote revision, or market

maker raises(lower) the quote midpoint immediately subsequent to buy(sell) hid-

den order. Lastly, the initiated trading volume (T̃ V ) shows a positive impact on

the quotes revision model for all sample periods with less than a 1% significant

level. The estimated coefficients are 0.0156, 0.0191, 0.0223, and 0.0151 for week

one, six, twelve and eighteen. The positive coefficient estimates of d1 indicate

that market maker raises(lower) the quote midpoint immediately subsequent to

a buy-initiated trade (sell-initiated trades) volume, the same as the association

of H̃DV and Q̃R.

Panel B of table 7.5, 7.6, 7.7 and 7.8 present the estimated coefficients of the

signed-trade direction process. The coefficients on this panel show the values of

bi, (i = 1, 2.., 5) for lagged trades from all sample periods are positive with 1%

significant level. This result indicates that trades are serially correlated. Next,

we find the value of c1(H̃DV ) for week one is the difference from week six and

week twelve, however, the coefficient estimates of c1 for week 18 are not statis-

tically significant. The coefficient estimates of c1 is 0.0045 and -0.0020, -0.0033,

and -0.0045 for week one, six, twelve and eighteen. This result shows that the

association between T̃D and H̃DV during the low activity trading period(one

week to maturity) has a different impact from high trading activity period(six

and twelve week to maturity). The positive coefficient estimates c1 during the

low-frequency trading period indicates that the prior buy(sell) initiated hidden

order leads to buy(sell) initiated the trade, while during the high-frequency trad-

ing period this is vice versa. Furthermore, the impact of this parameter is very

small as the estimated coefficient is the smallest compared to the estimated coef-

ficients of other variables. Lastly, the coefficient estimates of d1 for week one, six,

and twelve show that buy(sell) initiated trading volume is positively correlated
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with the same signed-trade direction. However, the estimated coefficient of d1 for

week eighteen is not statistically significant.

Panel C of table 7.5, 7.6, 7.7 and 7.8 present the estimated coefficients of the

hidden order process. First, the estimated coefficients of ai; this work focuses

only on the first lag of this variable as lag 2 to 5 has very small coefficients com-

pared to the first lag. There are negative estimated coefficients of a1 for one,

six and twelve week to maturity at 1% significant level, however, for eighteen

week the p-value is higher than the 10% level. The negative coefficients indi-

cate that when the market maker lowers (rises) mid-quote, the hidden liquidity

is increased(decreased). Next, the estimated coefficients of b1 being also nega-

tive indicates that the hidden liquidity is increased(decreased) when the previous

trade is sell(buy)-initiated. Furthermore, this panel shows the coefficient esti-

mates of ci, i = 1, 2.., 5 for lagged H̃DV are all positive with 1%significant level.

This result indicates that H̃DV are positively autocorrelated. Last, the positive

coefficient estimates of d1 for all sample periods indicate that the prior buy(sell)

initiated trade volume leads to buy(sell) initiated hidden liquidity. As this study

is interested in the H̃DV system, then the magnitude of coefficient estimates for

each variable is compared. However, this analysis is interested in only the lagged

one because the coefficient estimates for c2 to c5 are considerably smaller than

c1. In terms of magnitude, the highest coefficient estimates on the H̃DV system

is d1(T̃ V ) which is 25 and 18 times larger than that of the corresponding impact

from Q̃R and T̃D, respectively. The high coefficient estimates of T̃ V indicates

that the association between initiated-hidden liquidity and prior initiated-trading

volume has the highest degree of the impact on this H̃DV system.

Finally, panel D of table 7.5, 7.6, 7.7 and 7.8 present the estimated coefficients
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of the trade volume process. Firstly, the estimated coefficients of mid-quote re-

turn (ai) reveal there is a negative coefficient of a1 for one, six and twelve week

to maturity at 1% significant level, however, for the eighteen weeks, the esti-

mated coefficients are not significant. The negative coefficients of a1 indicate

that trading volume increases(decrease) when the previous mid-quote return is

negative(positive). However, there is the positive coefficient of b1 for week one,

six, and twelve at 1% significant level; however, in week eighteen the coefficient

is not significant. This positive coefficient of b1 indicates that trading volume

increases(decrease) when the previous trade is buy(sell)-initiated. Furthermore,

the most interesting coefficient estimates in this system is the value of the signed-

hidden order (ci). The estimated coefficient of ci, i = 1, 2..., 5 is significant at 1%

level for weeks one, six, twelve and eighteen with a positive coefficient for all lags.

This positive coefficient indicates that trade volume increases (decreases) when

a lag of hidden order is increased(decreased). Lastly, the coefficient estimates of

di(i = 1, 2, .., 5) for lagged T̃ V . The result shows positive coefficient estimates for

all sample periods, which indicates that the initiated-trading volume is positively

autocorrelated.

The result also finds a feedback effect between each variable when I examine

the result of the Granger causality test based on our unrestricted VAR system.

Table 7.9 presents the results of the Granger causality test that has rejected the

null hypothesis with two-way statistics, significant at 1% level for all relationships

between each variable. Furthermore, when moving this test to a different sample

period, there are similar results for most of E-mini S&P500 trading periods which

is from sixteen to one week to maturity. However, for week eighteen and seven-

teen, the results of the Granger causality test are not significant in some of the

feedback effects. This insignificant Granger causality test is caused by the limited
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number of observations which is around 5,000 and 8,000 updated per week. Con-

clusively, this result indicates that in our VAR system, the Q̃R, T̃D, H̃DV , and

T̃ V have a Granger cause to each other, and also they have feedback influence

from each other between sixteen and one week to maturity (see Table7.9).

7.4.4 Impulse response functions

This section performs an impulse response function (IRF) analysis on our VAR

system. The purpose of IRF analysis is to investigate an influence on one fac-

tor giving such a level of shock impact by another factor. The aim of this IRF

is to know the realized effect in each VAR system. First, quote revision equa-

tion Q̃Rt =
∑k

i=1 aiQ̃Rt−i +
∑k

i=1 biT̃Dt−i +
∑k

i=1 ciH̃DV t−i +
∑k

i=1 diT̃ V t−i +

εqrt . Second, trade direction equation T̃Dt =
∑k

i=1 aiQ̃Rt−i +
∑k

i=1 biT̃Dt−i +∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtdt . Third, initiated-hidden liquidity equation

H̃DV t =
∑k

i=1 aiQ̃Rt−i +
∑k

i=1 biT̃Dt−i +
∑k

i=1 ciH̃DV t−i +
∑k

i=1 diT̃ V t−i + εhdvt .

Finally, initiated-trading volume equation T̃ V t =
∑k

i=1 aiQ̃Rt−i+
∑k

i=1 biT̃Dt−i+∑k
i=1 ciH̃DV t−i+

∑k
i=1 diT̃ V t−i+εtvt . This section presents IRF plots for a week-

by-week to maturity from eighteen to one week to maturity. In total in this study

we have eighteen different plots of IRF, however, in this chapter there are only

four plots, which is the IRF for week one, six, twelve, and eighteen. For week

one and week eighteen they are presented as a proxy of low-frequency trading

period, for week six and week twelve presented as a proxy of the high-frequency

trading period. The following section analyzes IRF by a number of the weeks to

maturity, however, I present all results of the IRF analysis in Appendix A.2.

Figure 7.3 presents the plot of Impulse response functions analysis of Q̃R, T̃D,

H̃DV , and T̃ V for one week to maturity in E-mini S&P500 trading. The upper-
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left graph of figure 7.3 shows the structural IRF of an innovation in T̃D, H̃DV ,

and T̃ V to mid-quote return (Q̃R). This subplot clearly indicates that there is

a shock to T̃D causing Q̃R to peak at the beginning of the shock then rapidly

decrease. A one-unit shock to T̃D increases the Q̃R with a value of 0.25 unit

impacts at the beginning of the shock until the effect dies out after roughly 200

milliseconds. The shock in T̃D gives the highest response of Q̃R compared to the

shock from H̃DV , T̃ V and Q̃R. While Q̃R has positively impacted caused by a

shock of T̃D, the shock of the H̃DV shows a small negative effect on Q̃R. A one

unit shock to H̃DV decreases Q̃R with a value of -0.01 unit impacts, then the

effect dies out after 80 milliseconds.

The upper-right graph of figure 7.3 shows the structural IRF of an innovation

in Q̃R, H̃DV , and T̃ V to signed-trade direction (T̃D). The highest unit impacts

to T̃D caused by a shock of T̃D. A one-unit shock to signed-trade direction

increases the T̃D 0.35 unit impacts, then vanishes until the effect dies out after

roughly 300 milliseconds. This can indicate that trade direction tends to be the

same direction as a previous trade. Whilst the positive shock to T̃D, H̃DV , and

T̃ V causes an increase in signed-trade direction, a one unit shock to Q̃R decreases

the T̃D with -0.06 unit impacts at the beginning of the shock, then increases until

the effect dies out after 200 milliseconds.

The lower-left graph of figure 7.3 shows the structural IRF of an innovation in

T̃D, Q̃R, and T̃ V to signed-hidden order volume (H̃DV ). The highest response

of H̃DV is caused by a shock in T̃ V . A one-unit shock to the T̃ V causes an

increase in H̃DV around 0.5 unit impacts then it begins to decrease with an ex-

ponentially decaying function and vanishes after 150 milliseconds. Interestingly,

the result indicates that a one-unit shock to the T̃D causes the decrease in H̃DV
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around 0.05 unit of responses. This result indicates that the change in T̃D causes

a decrease in signed-hidden order volume. Lastly, these results indicate that all

shocks in T̃D, Q̃R and H̃DV causes to a change of H̃DV and the response for

the shock dies out after roughly 150 milliseconds.

The lower-right graph of figure 7.3 shows the structural IRF of an innovation

in T̃D, Q̃R, and H̃DV to signed-trade volume (T̃ V ). The highest response of

signed-trade volume (T̃ V ) is caused by a shock in T̃ V . A one-unit shock to the

T̃ V causes an increase in the T̃ V around 0.13 unit of responses, followed by a

decrease until the effect dies out after roughly 200 milliseconds. Next, the second

highest response of T̃ V is to the shock of T̃D and H̃DV with the unit responses

of 0.08 and 0.03 respectively. However, a one-unit shock to H̃DV causes a de-

crease in Q̃R with -0.02 unit responses followed by increase until the effect dies

out after 200 milliseconds. Additionally, during this sample period, the responses

of H̃DV to the shock of Q̃R, T̃D, H̃DV and T̃ V vanishes after 200 milliseconds.

The following section examines the IRF analysis for the period of 6 and 12

weeks to maturity. During this period, the E-mini trading is in a state of high-

frequency trading. The observed trade updated in this week is about 22 million,

which is around ten times greater compared to trade updated for one week to

maturity (see Table 2.2). However, there is a similar pattern of impulse response

between this figure and the figure 7.3 but the unit impacts and the vanishing

time of the response is different. Furthermore, for week six and week twelve, the

result shows a similar pattern of an impulse response with roughly the same unit

impacts and the vanishing time period of responses. Using the same analysis

format as explained in the previous section for Figure7.3, I will illustrate the

IRF analysis of six weeks to maturity (Figure 7.4) and twelve weeks to maturity
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(Figure 7.5) together.

Figure 7.4 and figure 7.5 present the graph of Impulse response functions of

Q̃R, T̃D, H̃DV , and T̃ V on E-mini S&P500 for six and twelve weeks to matu-

rity, respectively. The upper-left of these figures presents the structural IRF of

an intervention in T̃D, H̃DV , and T̃ V to mid-quote return (Q̃R). This graph

clearly indicates that the highest response of Q̃R is caused by a shock of T̃D. The

response reaches a peak at the beginning, a one-unit shock to T̃D that causes

an increase of Q̃R with roughly about 0.14 unit responses for both periods. The

response of Q̃R to T̃D vanishes after roughly 80 and 300 milliseconds for week

six and week twelve respectively. For an innovation in Q̃R, there is a shock to

quote return cases an increase in Q̃R, followed by a decrease, and followed by an

increase until the effect dies out after 70 and 250 milliseconds for the week six

and week twelve respectively. However, there is a small effect from innovation in

H̃DV and T̃ V on Q̃R, when the impact vanishes within 100 milliseconds.

The upper-right graph of Figure 7.4 and Figure7.5 present the plot of Impulse

response functions of Q̃R, H̃DV , and T̃ V to signed-trade direction (T̃D) for six

and twelve weeks to maturity. The highest unit response of T̃D is caused by an

innovation in T̃D. A one unit shock to signed-trade direction increases the T̃D

about 0.40 unit responses, followed by a decrease and vanishes after roughly 80

and 250 milliseconds for week six and week twelve respectively. However, the

shock in Q̃R causes a decrease in T̃D, followed by increase until the effect dies

out after roughly 60 and 200 milliseconds for week six and week twelve respec-

tively. A one-unit shock to the Q̃R decreases the T̃D -0.1 unit responses for both

periods. There is a small unit response of T̃D to a shock of H̃DV and T̃ V which

is near to zero.
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The lower-left graph of Figure 7.4 and Figure 7.5 present the structural IRF of

an innovation in T̃D, Q̃R, and T̃ V to signed-hidden order volume (H̃DV ) for six

and twelve weeks to maturity respectively. The highest unit response of signed-

hidden order (H̃DV ) volume is caused by an innovation in signed-trade volume

(T̃ V ). A one unit shock to T̃ V increases H̃DV roughly 0.70 unit responses, fol-

lowed by a decrease until the effect dies out after 50 and 150 milliseconds for week

six and week twelve respectively. Lastly, there is a small unit response of H̃DV

to a shock of Q̃R, T̃D, and H̃DV .

The lower-right graph of Figure 7.4 and Figure 7.5 present the structural IRF

of an innovation in T̃D, Q̃R, and H̃DV to signed-trade volume (T̃ V ) for six

and twelve weeks to maturity respectively. The highest positive unit response of

T̃ V is caused by an innovation in T̃ V . A one unit shock to T̃ V causes the T̃ V

to reach a peak at the beginning ,at about 0.08 unit responses, followed by a

decrease until the impact dies out roughly 50 and 150 milliseconds for week six

and week twelve respectively. Next, an innovation in T̃D causes an increase in

T̃ V 0.06 and 0.05 unit responses for week six and week twelve respectively. The

lowest negative unit responses of T̃ V is caused by an innovation in Q̃R, a one unit

shock to the Q̃R causes a decrease in T̃ V around -0.03, followed by an increase

until the effect dies out roughly after 60 and 200 milliseconds for six and twelve

weeks to maturity respectively. The innovation in H̃DV on T̃ V indicates that

the shock to H̃DV causes an increase in T̃ V and dies out very quickly roughly

after 30 and 80 milliseconds for week six and week twelve respectively.

Lastly, Figure 7.6 presents the plot of Impulse response functions of Q̃R, T̃D,

H̃DV , and T̃ V on E-mini S&P500 for eighteen week to maturity. Interestingly,
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this plot shows a similar pattern of impulse response between this period and a

shorter period. However, the figure shows that the unit impact of response and

its standard deviation (dashed line – ) are larger than other periods, as a wider

range of dotted line is present. For instance, the highest unit response of Q̃R is

caused by an innovation in T̃ V at about 0.14 unit, followed by a decrease until

the effect vanishes after five minutes. A one-unit shock to T̃D causes the T̃D

to peak at 0.05 unit responses from the beginning, followed by a decrease until

the impact dies out after seven minutes. For the H̃DV , an innovation in T̃ V

causes the H̃DV to increase 0.25 unit responses, followed by a decrease, then the

effect disappears after seven minutes. Finally, the highest unit responses of T̃ V

is caused by a one unit shock to T̃ V and H̃DV with 0.13 and 0.06 unit responses

respectively, then the effect dies out after eight minutes.

Overall, these results are consistent with the previous section. For instance,

the positive impact from the shock of T̃D indicates that the market maker rises

(low) their quote when trade appears as a buy(sell)-initiated. Furthermore, our

expectation is that the hidden order should have a minor effect on the E-mini

S&P500 market, thus, a one unit shock to H̃DV causes a minor impact on other

variables for all periods compared to the other, and this effect dies out in a very

short period. While the unit response to the shock of H̃DV shows a minor effect

on the change of Q̃R, T̃D, and T̃ V , the highest unit responses of the H̃DV are

caused by a one unit shock in the T̃ V . This pattern is also repeated for all periods.
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7.5 Summary Chapter

This analysis has undertaken an empirical analysis of the impact of hidden order

on the E-mini S&P 500 futures market, based on publicly available limit order

book data, which is the most liquid equity index futures trading traded on CME’s

electronic or Globex trading platform. On this platform, traders can choose to

make visible, partially invisible or invisible all of their order called hidden, ice-

berg order or max show order. The research has documented what motivates

those traders to make their order invisible and how this type of order impacts

on the market. At first, I believe that they are liquidity-motivated traders by

submitting hidden order because this kind of trader tries to reduce the degree of

pre-trade transparency. Second, they are price-informativeness motivated traders

who try to minimize the price impact of their trades (Buti and Rindi [2008, 2013]).

Therefore, I have analyzed the price impact and the effect from buying and selling

hidden order to market quality and the structural IRF analysis of hidden order

to other market proxies.

This chapter makes two significant contributions. First, I have developed a

detection algorithm to detect hidden order in the limit order book using publicly

available data. Second, this chapter has identified the impact of hidden order on

several dimensions of market quality: spread, effective spread, realized spread,

and price impact. Also, I separate this study into high and low trading activ-

ity period. The study also provides insights into the role of the hidden order

in the financial market. The main finding from the E-mini futures market indi-

cates that an increase in hidden order activity improves the market quality and

decreases the level of information asymmetry which is measured via the price

impact. Specifically, from the result of price impact, trade prices start moving

before hidden order occurs in the market. This may indicate that a trader using
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an invisible order strategy is a strategic trader who trades based on privileged

information and he/she knows when to submit their hidden order. Additionally,

the price impact drops to the lowest level after a hidden order is submitted, then

bounces back to equilibrium at 20 trades after the order is submitted.

One main innovation in this study is to analyze the impact of the hidden order

on E-mini S&P500 index futures via a term-structure. An empirical exercise in

this study is set by separating the whole sample starting from 2008 until 2015

into 18 different periods, which is from 18 to 1 weeks before maturity. I have

performed a direct test to investigate the association between hidden order and

the market quality for all periods. The empirical results show that hidden liquid-

ity positively improves the traditional yardsticks of market quality except inside

quote spread. The results of wide-spread may be explained by the behavior of

traders who want to submit a non-display order, when they try to reduce the

risk of being undercut from a price war by posting their price away from the

midpoint to convince the new entering traders to join the queue at prices away

from the best bid or ask (Parlour [1998], Buti and Rindi [2008]). Furthermore,

the buy-initiated hidden order shows a greater impact than sell-initiated hidden

order. The findings also indicate that during high-frequency trading period a

hidden order improves market quality more than a low-frequency trading one.

The analysis of the hidden order in a system of the dynamic equations of the

VAR model to capture the unique impact of hidden order activity suggests that

during high and low-frequency trading periods the shock of H̃DV has a similar

impact on another variable. Also, the greatest response of H̃DV is caused by

a one unit shock to the signed-trade volume. However, the impulse response of

H̃DV to the shock of T̃ V starts at the beginning and vanishes in a very short
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time. Lastly, the result also shows that the response of initiated-trade volume T̃ V

increases with the shock of the hidden order (H̃DV ). Therefore, with this result,

the impulse response shows a further support for our findings on the two-way

relationship between hidden liquidity and trading volume.

Considering the big picture, the evidence in this chapter is more favorable to

the notion that hidden order improves the market quality whether in the high

or low-frequency trading condition for E-mini S&P500 index future market. The

hidden order activity favours trading volume as the H̃DV is increased when the

T̃ V increase.
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Chapter 8

Conclusion

This thesis comprises topics on market transparency and market liquidity in mar-

ket microstructure study.

The chapter 4 examines the effectiveness of probability of informed trading -

PIN proposed by Easley et al. [1996]. PIN is an information asymmetry measure

in the market based on the arrival rate of informed and uninformed traders. The

model assumes the arrival rate which follows a Poisson process with the Bernoulli

probability on the occurrence of two type of news, good or bad news. This chapter

provides a primary results of PIN for the Eurodollar futures market. The result

indicates that the pattern of the PIN shows a systematic movement regarding the

toxicity events, such as, the introduction of CME Globex, the collapse of Lehman

Brothers. Interestingly, the PIN results in this futures market is away high and

higher than the equity market (circa 0.4 to 0.9 versus 0.1 to 0.5; see Easley et al.

[1996]; Aslan et al. [2011]; Abad and Yagüe [2012]).However, other PIN studies

of interest rate futures have found something similarly high (see Kim et al. [2014]).

The chapter 5 provides the evidence of LIBOR manipulation and evaluates

the PIN around this toxicity event. To detect informed trading, my experiment
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is somewhat different from other studies in the literature. I catalogue a specific

date on the LIBOR manipulation identified by the CFTC and FSA, then the

PIN is estimated using a data set of Eurodollar futures market. The result shows

that the PIN could have been used as an early warning of unusual activity in the

LIBOR reference rate. Extending this, the PIN is computed around the maturity

date as a normal event in the futures contract and I investigate the variation

of PIN around these events. The result shows that the PIN reacts strongly to

certain types of events and the variation is statistically significant relative to the

control group. In contrast, for the general long-run variation of the PIN was not

statistically significantly different relative to both LIBOR manipulation and the

maturity event.

The Chapter 6 compares the effectiveness of PIN and the Volume Synchronize-

PIN (VPIN) in determining changes in the information structure and order flow

of a Eurodollar futures market around LIBOR manipulation. Unlike chapter 4,

this chapter examines the PIN and VPIN as a term-structure analysis instead of

calendar time. In addition, I adapt the original VPIN upon Easley et al. [2011]

and Easley et al. [2012] by considering volume buckets 20, 50, 100, 200 and I

compute the bucket size as a fraction of daily trading volume to avoid the bias of

activity or inactivity of the trading period. Also, tick-by-tick data is used instead

of one-minute interval, as in original empirical work, because I want to implement

this approach with a real HFT environment. Finally, a new bootstrap approach

and asymptotic standard error are created on the VPIN and PIN respectively

around documented LIBOR manipulation.

The results shows a very strong connection between PIN, VPIN and time

to maturity. Both PIN and VPIN vary systematically and in a statistically sig-
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nificant pattern in respect to the term structure of the futures contracts. PIN

varies in a v-shaped pattern, with long (2000 to 3500 days) and short maturity (0

to 500 days) contracts having significantly higher PIN and VPIN measurements

than intermediate contracts (which are actually the most heavily traded). When

I move to the manipulation event, PIN and VPIN shift systematically around a

relevant documented LIBOR manipulation event. However, when I build cross

sectional averages across events, the result indicates that there is no significant

evidence of systematic shifts in either the PIN or VPIN metric.

Lastly, chapter 7 examines how hidden order impacts on the E-Mini S&P 500.

The result shows that the price impact relates to hidden order, when the price

impact increases when hidden order is submitted and dropped to bottom followed

by an increase. Finally, the impact of hidden order to the price declined 20 trades

afterwards. Also, I examine the time series relationship between market quality

and hidden order. The result shows that the presence of hidden liquidity improves

the quality and reduces the level of information asymmetry in the E-Mini market.
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Appendix A

.1 The VAR analysis on the term-structure of

E-Mini S&P500 (Supplement for Chapter 7)

This section provides a supplement information of the VAR results using E-Mini

S&P 500 data. We analyze the VAR week-by-week as a term-structure analy-

sis, from eighteen to one week to maturity. Here we show the coefficients for all

periods, however, the result for week eighteen, twelve, six and one is showed in

chapter 7.
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Table 1: Coefficient estimates of the vector autoregressive(VAR) model for
E-Mini S&P500 for Two week to maturity

Panel A: Quote revision equation

Q̃Rt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εqrt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 0.0279 109.57 (<0.01) b1 0.1340 296.51 (<0.01) c1 0.0047 14.14 (<0.01) d1 0.0148 59.46 (<0.01)
a2 0.0028 10.86 (<0.01) b2 -0.0085 -17.28 (<0.01) c2 0.0032 9.56 (<0.01) d2 0.0061 18.55 (<0.01)
a3 -0.0035 -13.65 (<0.01) b3 -0.0053 -10.47 (<0.01) c3 0.0014 4.36 (<0.01) d3 0.0023 7.08 (<0.01)
a4 -0.0040 -15.71 (<0.01) b4 -0.0034 -6.81 (<0.01) c4 0.0022 6.77 (<0.01) d4 0.0020 6.07 (<0.01)
a5 -0.0042 -17.76 (<0.01) b5 -0.0027 -5.99 (<0.01) c5 0.0019 7.51 (<0.01) d5 0.0007 1.98 (0.04)

C -0.0006
Adj. R2 0.0173

Panel B: Trade direction equation

T̃Dt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtdt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.1018 -684.50 (<0.01) b1 0.1340 296.51 (<0.01) c1 0.0047 14.14 (<0.01) d1 0.0148 59.46 (<0.01)
a2 -0.0371 -246.40 (<0.01) b2 -0.0085 -17.28 (<0.01) c2 0.0032 9.56 (<0.01) d2 0.0061 18.55 (<0.01)
a3 -0.0136 -90.47 (<0.01) b3 -0.0053 -10.47 (<0.01) c3 0.0014 4.36 (<0.01) d3 0.0023 7.08 (<0.01)
a4 -0.0012 -8.09 (<0.01) b4 -0.0034 -6.81 (<0.01) c4 0.0022 6.77 (<0.01) d4 0.0020 6.07 (<0.01)
a5 0.0103 74.46 (<0.01) b5 -0.0027 -5.99 (<0.01) c5 0.0019 7.51 (<0.01) d5 0.0007 1.98 (0.04)

C -0.0004
Adj. R2 0.6644

Panel C: Hidden order equation

H̃DV t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εhdvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0279 -147.67 (<0.01) b1 -0.0595 -177.51 (<0.01) c1 -0.0041 -16.79 (<0.01) d1 0.6670 3620.15(<0.01)
a2 -0.0074 -38.84 (<0.01) b2 0.0595 162.75 (<0.01) c2 0.0059 24.05 (<0.01) d2 0.0159 64.74 (<0.01)
a3 -0.0016 -8.54 (<0.01) b3 0.0225 60.45 (<0.01) c3 0.0045 18.29 (<0.01) d3 0.0028 11.21 (<0.01)
a4 0.0008 4.15 (<0.01) b4 0.0137 37.60 (<0.01) c4 0.0039 15.90 (<0.01) d4 0.0019 7.86 (<0.01)
a5 0.0037 20.80 (<0.01) b5 0.0110 32.85 (<0.01) c5 0.0048 26.18 (<0.01) d5 0.0015 6.07 (<0.01)

C -0.0002
Adj. R2 0.4613

Panel D: Trade volume equation

T̃ V t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0338 -135.23 (<0.01) b1 0.0657 148.04 (<0.01) c1 0.0156 48.15 (<0.01) d1 0.0746 305.96(<0.01)
a2 -0.0111 -43.96 (<0.01) b2 0.0699 144.52 (<0.01) c2 0.0121 37.31 (<0.01) d2 0.0223 68.61 (<0.01)
a3 -0.0040 -15.79 (<0.01) b3 0.0272 55.11 (<0.01) c3 0.0080 24.74 (<0.01) d3 0.0144 44.36 (<0.01)
a4 -0.0007 -2.62 (<0.01) b4 0.0130 26.94 (<0.01) c4 0.0057 17.71 (<0.01) d4 0.0130 39.86 (<0.01)
a5 0.0030 12.82 (<0.01) b5 0.0108 24.28 (<0.01) c5 0.0126 51.89 (<0.01) d5 0.0116 35.54 (<0.01)

C 0.0009
Adj. R2 0.0569

Note: This table shows the results of our vector autoregressive(VAR) model,

where Q̃T is quote return, T̃D is signed trade direction, H̃DV is signed hidden
order volume and T̃ V is signed trading volume at time t.
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Table 2: Coefficient estimates of the vector autoregressive(VAR) model for
E-Mini S&P500 for Three week to maturity

Panel A: Quote revision equation

Q̃Rt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εqrt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 0.0215 95.93 (<0.01) b1 0.1275 318.71 (<0.01) c1 0.0048 16.03 (<0.01) d1 0.0129 59.18 (<0.01)
a2 0.0026 11.52 (<0.01) b2 -0.0026 -6.08 (<0.01) c2 0.0059 20.04 (<0.01) d2 0.0095 31.87 (<0.01)
a3 -0.0017 -7.54 (<0.01) b3 -0.0037 -8.44 (<0.01) c3 0.0043 14.60 (<0.01) d3 0.0050 16.87 (<0.01)
a4 -0.0037 -16.32 (<0.01) b4 -0.0043 -9.97 (<0.01) c4 0.0043 14.52 (<0.01) d4 0.0038 12.65 (<0.01)
a5 -0.0051 -24.33 (<0.01) b5 -0.0046 -11.40 (<0.01) c5 0.0051 23.71 (<0.01) d5 0.0030 10.18 (<0.01)

C 0.0005
A dj.R2 0.0176

Panel B: Trade direction equation

T̃Dt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtdt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.1067 -823.70 (<0.01) b1 0.3908 1687.99 (<0.01) c1 -0.0019 -10.95 (<0.01) d1 0.0145 114.98(<0.01)
a2 -0.0432 -328.64 (<0.01) b2 0.2519 1002.41 (<0.01) c2 -0.0019 -10.82 (<0.01) d2 0.0058 33.76 (<0.01)
a3 -0.0176 -133.99 (<0.01) b3 0.1128 440.01 (<0.01) c3 -0.0018 -10.54 (<0.01) d3 0.0048 28.06 (<0.01)
a4 -0.0036 -28.01 (<0.01) b4 0.0716 285.04 (<0.01) c4 -0.0012 -6.90 (<0.01) d4 0.0032 18.72 (<0.01)
a5 0.0092 75.99 (<0.01) b5 0.0603 261.12 (<0.01) c5 0.0001 0.53 (¡0.01) d5 0.0013 7.60 (<0.01)

C -0.0012
Adj. R2 0.6700

Panel C: Hidden order equation

H̃DV t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εhdvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0287 -177.17 (<0.01) b1 -0.0662 -228.51 (<0.01) c1 -0.0013 -5.88 (<0.01) d1 0.6889 4377.46(<0.01)
a2 -0.0088 -53.69 (<0.01) b2 0.0593 188.47 (<0.01) c2 0.0044 20.52 (<0.01) d2 0.0136 63.10 (<0.01)
a3 -0.0026 -15.57 (<0.01) b3 0.0225 70.24 (<0.01) c3 0.0040 18.39 (<0.01) d3 0.0034 15.85 (<0.01)
a4 0.0006 3.70 (<0.01) b4 0.0144 45.64 (<0.01) c4 0.0035 16.06 (<0.01) d4 0.0017 7.78 (<0.01)
a5 0.0032 20.90 (<0.01) b5 0.0111 38.53 (<0.01) c5 0.0035 22.53 (<0.01) d5 0.0004 1.78 (<0.01)

C 0.0000
Adj.R2 0.4870

Panel D: Trade volume equation

T̃ V t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0340 -154.46 (<0.01) b1 0.0593 150.54 (<0.01) c1 0.0145 49.64 (<0.01) d1 0.0814 380.43(<0.01)
a2 -0.0135 60.38 (<0.01) b2 0.0657 153.69 (<0.01) c2 0.0116 39.68 (<0.01) d2 0.0232 79.36 (<0.01)
a3 -0.0059 -26.33 (<0.01) b3 0.0247 56.72 (<0.01) c3 0.0066 22.50 (<0.01) d3 0.0151 51.48 (<0.01)
a4 -0.0017 -7.48 (<0.01) b4 0.0136 31.93 (<0.01) c4 0.0061 20.80 (<0.01) d4 0.0132 44.96 (<0.01)
a5 0.0030 14.48 (<0.01) b5 0.0108 27.60 (<0.01) c5 0.0115 53.81 (<0.01) d5 0.0086 29.33 (<0.01)

C -0.0010
Adj.R2 0.0526

Note: This table shows the results of our vector autoregressive(VAR) model,

where Q̃T is quote return, T̃D is signed trade direction, H̃DV is signed hidden
order volume and T̃ V is signed trading volume at time t.
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Table 3: Coefficient estimates of the vector autoregressive(VAR) model for
E-Mini S&P500 for Four week to maturity

Panel A: Quote revision equation

Q̃Rt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εqrt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 0.0297 123.63 (<0.01) b1 0.1232 292.23 (<0.01) c1 0.0075 24.54 (<0.01) d1 0.0222 94.82 (<0.01)
a2 0.0057 23.22 (<0.01) b2 -0.0007 -1.63 (0.10) c2 0.0054 17.52 (<0.01) d2 0.0108 35.33 (<0.01)
a3 0.0014 5.91 (<0.01) b3 -0.0048 -10.25 (<0.01) c3 0.0037 11.99 (<0.01) d3 0.0069 22.51 (<0.01)
a4 -0.0024 -10.14 (<0.01) b4 -0.0053 -11.54 (<0.01) c4 0.0036 11.76 (<0.01) d4 0.0055 17.92 (<0.01)
a5 -0.0034 -15.24 (<0.01) b5 -0.0057 -13.48 (<0.01) c5 0.0047 20.07 (<0.01) d5 0.0037 11.98 (<0.01)

C 0.0003
Adj. R2 0.0179

Panel B: Trade direction equation

T̃Dt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtdt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.1062 -750.67 (<0.01) b1 0.3821 1538.48 (<0.01) c1 -0.0020 -10.94 (<0.01) d1 0.0138 99.86 (<0.01)
a2 -0.0419 -292.27 (<0.01) b2 0.2532 943.37 (<0.01) c2 -0.0018 -9.75 (<0.01) d2 0.0053 29.15 (<0.01)
a3 -0.0173 -120.69 (<0.01) b3 0.1146 418.73 (<0.01) c3 -0.0017 -9.56 (<0.01) d3 0.0040 21.98 (<0.01)
a4 -0.0027 -19.19 (<0.01) b4 0.0734 273.70 (<0.01) c4 -0.0016 -9.13 (<0.01) d4 0.0028 15.48 (<0.01)
a5 0.0099 74.77 (<0.01) b5 0.0619 249.90 (<0.01) c5 -0.0002 -1.19 0.23 d5 0.0016 8.66 (<0.01)

C -0.0011
Adj. R2 0.6586

Panel C: Hidden order equation

H̃DV t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εhdvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0294 -161.58 (<0.01) b1 -0.0587 -183.89 (<0.01) c1 -0.0006 -2.51 (<0.01) d1 0.6517 3676.22(<0.01)
a2 -0.0087 -47.05 (<0.01) b2 0.0573 165.94 (<0.01) c2 0.0053 22.91 (<0.01) d2 0.0137 58.83 (<0.01)
a3 -0.0027 -14.51 (<0.01) b3 0.0233 66.17 (<0.01) c3 0.0031 13.53 (<0.01) d3 0.0033 14.35 (<0.01)
a4 0.0004 2.22 (<0.01) b4 0.0143 41.34 (<0.01)) c4 0.0017 7.31 (<0.01) d4 0.0026 11.02 (<0.01)
a5 0.0031 17.96 (<0.01) b5 0.0115 36.16 (<0.01) c5 0.0030 17.14 (<0.01) d5 0.0022 9.53 (<0.01)

C -0.0006
Adj. R2 0.4390

Panel D: Trade volume equation

T̃ V t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0345 -145.57 (<0.01) b1 0.0567 136.22 (<0.01) c1 0.0138 45.57 (<0.01) d1 0.0753 326.00(<0.01)
a2 -0.0137 -56.82 (<0.01) b2 0.0667 148.42 (<0.01) c2 0.0100 33.12 (<0.01) d2 0.0199 65.58 (<0.01)
a3 -0.0064 -26.75 (<0.01) b3 0.0237 51.78 (<0.01) c3 0.0077 25.46 (<0.01) d3 0.0135 44.56 (<0.01)
a4 -0.0019 -7.90 (<0.01) b4 0.0147 32.64 (<0.01) c4 0.0045 15.05 (<0.01) d4 0.0110 36.32 (<0.01)
a5 0.0020 8.98 (<0.01) b5 0.0112 27.02 (<0.01) c5 0.0099 43.14 (<0.01) d5 0.0105 34.79 (<0.01)

C -0.0002
Adj. R2 0.0484

Note: This table shows the results of our vector autoregressive(VAR) model,

where Q̃T is quote return, T̃D is signed trade direction, H̃DV is signed hidden
order volume and T̃ V is signed trading volume at time t.
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Table 4: Coefficient estimates of the vector autoregressive(VAR) model for
E-Mini S&P500 for Five week to maturity

Panel A: Quote revision equation

Q̃Rt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εqrt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 0.0254 104.72 (<0.01) b1 0.1275 298.52 (<0.01) c1 0.0071 22.78 (<0.01) d1 0.0195 83.12 (<0.01)
a2 0.0039 15.65 (<0.01) b2 -0.0025 -5.41 (<0.01) c2 0.0052 16.90 (<0.01) d2 0.0105 33.71 (<0.01)
a3 -0.0002 -0.92 (<0.01) b3 -0.0054 -11.48 (<0.01) c3 0.0037 12.05 (<0.01) d3 0.0068 21.82 (<0.01)
a4 -0.0034 -14.07 (<0.01) b4 -0.0058 -12.57 (<0.01) c4 0.0028 9.03 (<0.01) d4 0.0047 15.27 (<0.01)
a5 -0.0040 -17.88 (<0.01) b5 -0.0058 -13.60 (<0.01) c5 0.0045 19.20 (<0.01) d5 0.0037 11.82 (<0.01)

C 0.0006
Adj. R2 0.0177

Panel B: Trade direction equation

T̃Dt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtdt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.1098 -771.89 (<0.01) b1 0.3795 1514.45 (<0.01) c1 -0.0023 -12.87 (<0.01) d1 0.0136 98.54 (<0.01)
a2 -0.0440 -304.50 (<0.01) b2 0.2558 944.54 (<0.01) c2 -0.0023 -12.40 (<0.01) d2 0.0055 29.94 (<0.01)
a3 -0.0185 -128.32 (<0.01) b3 0.1156 418.32 (<0.01) c3 -0.0017 -9.12 (<0.01) d3 0.0045 24.80 (<0.01)
a4 -0.0034 -23.93 (<0.01) b4 0.0731 270.06 (<0.01) c4 -0.0014 -7.74 (<0.01) d4 0.0030 16.60 (<0.01)
a5 0.0092 68.92 (<0.01) b5 0.0613 245.11 (¡0.01) c5 0.0002 1.21 (0.27) d5 0.0014 7.68 (<0.01)

C -0.0011
Adj. R2 0.6612

Panel C: Hidden order equation

H̃DV t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εhdvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0314 -171.95 (<0.01) b1 -0.0629 -195.59 (<0.01) c1 0.0002 0.81 (0.44) d1 0.6584 3723.76(<0.01)
a2 -0.0093 -50.17 (<0.01) b2 0.0586 168.68 (<0.01) c2 0.0067 28.55 (<0.01) d2 0.0109 46.85 (<0.01)
a3 -0.0034 -18.40 (<0.01) b3 0.0236 66.52 (<0.01) c3 0.0035 14.93 (<0.01) d3 0.0009 3.79 (<0.01)
a4 0.0003 1.39 (0.16) b4 0.0140 40.23 (<0.01) c4 0.0027 11.65 (<0.01) d4 0.0019 8.22 (<0.01)
a5 0.0031 17.97 (<0.01) b5 0.0122 38.03 (<0.01) c5 0.0034 19.19 (<0.01)) d5 0.0014 6.12 (<0.01)

C -0.0006
Adj. R2 0.4461

Panel D: Trade volume equation

T̃ V t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0364 -151.78 (<0.01) b1 0.0536 126.97 (<0.01) c1 0.0122 39.77 (<0.01) d1 0.0692 298.27(<0.01)
a2 -0.0143 -58.81 (<0.01) b2 0.0678 148.70 (<0.01) c2 0.0106 34.78 (<0.01) d2 0.0213 69.49 (<0.01)
a3 -0.0066 -27.03 (<0.01) b3 0.0257 55.25 (<0.01) c3 0.0068 22.31 (<0.01) d3 0.0129 42.00 (<0.01)
a4 -0.0018 -7.52 (<0.01) b4 0.0140 30.74 (<0.01) c4 0.0063 20.73 (<0.01) d4 0.0123 40.05 (<0.01)
a5 0.0020 8.95 (<0.01) b5 0.0112 26.65 (<0.01) c5 0.0099 42.60 (<0.01) d5 0.0083 27.21 (<0.01)

C -0.0002
Adj. R2 0.0465

Note: This table shows the results of our vector autoregressive(VAR) model,

where Q̃T is quote return, T̃D is signed trade direction, H̃DV is signed hidden
order volume and T̃ V is signed trading volume at time t.
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Table 5: Coefficient estimates of the vector autoregressive(VAR) model for
E-Mini S&P500 for Seven week to maturity

Panel A: Quote revision equation

Q̃Rt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εqrt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 0.0275 126.00 (<0.01) b1 0.1288 332.89 (<0.01) c1 0.0056 19.88 (<0.01) d1 0.0169 79.54 (<0.01)
a2 0.0060 27.26 (<0.01) b2 -0.0048 -11.46 (<0.01) c2 0.0047 16.76 (<0.01) d2 0.0095 33.72 (<0.01)
a3 0.0011 5.16 (<0.01) b3 -0.0055 -12.85 (<0.01) c3 0.0025 9.02 <0.01(<0.01)d3 0.0053 18.90 (<0.01)
a4 -0.0026 -11.87 (<0.01) b4 -0.0056 -13.24 (<0.01) c4 0.0021 7.59 (<0.01) d4 0.0049 17.49 (<0.01)
a5 -0.0030 -14.67 (<0.01) b5 -0.0053 -13.75 (0.07) c5 0.0038 17.97 (<0.01) d5 0.0033 11.63 (<0.01)

C 0.0008
Adj. R2 0.0168

Panel B: Trade direction equation

T̃Dt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtdt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.1045 -822.04 (<0.01) b1 0.3901 1730.70 (<0.01) c1 -0.0023 -13.76 (<0.01) d1 0.0122 98.56 (<0.01)
a2 -0.0415 -321.81 (<0.01) b2 0.2537 1037.66 (<0.01) c2 -0.0012 -7.49 (<0.01) d2 0.0054 32.96 (<0.01)
a3 -0.0168 -130.38 (<0.01) b3 0.1130 452.85 (<0.01) c3 -0.0014 -8.77 (<0.01) d3 0.0035 21.34 (<0.01)
a4 -0.0030 -23.50 (<0.01) b4 0.0704 288.25 (<0.01) c4 -0.0007 -4.21 (<0.01) d4 0.0030 18.03 (<0.01)
a5 0.0091 76.13 (<0.01) b5 0.0593 263.75 (<0.01) c5 0.0002 1.79 (<0.01) d5 0.0009 5.60 (<0.01)

C -0.0014
Adj. R2 0.6655

Panel C: Hidden order equation

H̃DV t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εhdvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0288 -176.73 (<0.01) b1 0.0579 151.50 (<0.01) c1 0.0123 44.35 (<0.01) d1 0.0718 343.25(<0.01)
a2 -0.0082 -49.61 (<0.01) b2 0.0656 158.42 (<0.01) c2 0.0099 35.57 (<0.01) d2 0.0225 80.98 (<0.01)
a3 -0.0029 -17.83 (<0.01) b3 0.0255 60.34 (<0.01) c3 0.0066 23.85 (<0.01) d3 0.0138 49.44 (<0.01)
a4 0.0005 2.82 (<0.01) b4 0.0151 36.45 (<0.01) c4 0.0059 21.40 (<0.01) d4 0.0121 43.58 (<0.01)
a5 0.0032 20.62 (<0.01) b5 0.0100 26.20 (<0.01) c5 0.0104 50.01 (<0.01) d5 0.0086 31.10 (<0.01)

C -0.0005
Adj. R2 0.4538

Panel D: Trade volume equation

T̃ V t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0338 -156.92 (<0.01) b1 0.0579 151.50 (<0.01) c1 0.0123 44.35 (<0.01) d1 0.0718 343.25(<0.01)
a2 -0.0135 -61.88 (<0.01) b2 0.0656 158.42 (<0.01) c2 0.0099 35.57 (<0.01) d2 0.0225 80.98 (<0.01)
a3 -0.0061 -27.77 (<0.01) b3 0.0255 60.34 (<0.01) c3 0.0066 23.85 (<0.01) d3 0.0138 49.44 (<0.01)
a4 -0.0011 -5.14 (<0.01) b4 0.0151 36.45 (<0.01) c4 0.0059 21.40 (<0.01) d4 0.0121 43.58 (<0.01)
a5 0.0024 11.74 (<0.01) b5 0.0100 26.20 (<0.01) c5 0.0104 50.01 (<0.01) d5 0.0086 31.10 (<0.01)

C 0.0004
Adj. R2 0.0481

Note: This table shows the results of our vector autoregressive(VAR) model,

where Q̃T is quote return, T̃D is signed trade direction, H̃DV is signed hidden
order volume and T̃ V is signed trading volume at time t.
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Table 6: Coefficient estimates of the vector autoregressive(VAR) model for
E-Mini S&P500 for Eight week to maturity

Panel A: Quote revision equation

Q̃Rt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εqrt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 0.0261 118.58 (<0.01) b1 0.1369 350.13 (<0.01) c1 0.0041 14.11 (<0.01) d1 0.0140 65.90 (<0.01)
a2 0.0060 26.65 (<0.01) b2 -0.0048 -11.20 (<0.01) c2 0.0045 15.35 (<0.01) d2 0.0102 34.80 (<0.01)
a3 0.0002 0.68 (<0.01) b3 -0.0055 -12.74 (<0.01) c3 0.0030 10.38 (<0.01) d3 0.0046 15.76 (<0.01)
a4 -0.0013 -5.93 (<0.01) b4 -0.0054 -12.77 (<0.01) c4 0.0026 8.91 (<0.01) d4 0.0039 13.36 (<0.01)
a5 -0.0042 -20.27 (<0.01) b5 -0.0065 -16.57 (<0.01) c5 0.0039 18.44 (<0.01) d5 0.0032 10.89 (<0.01)

C 0.0009
Adj. R2 0.0183

Panel B: Trade direction equation

T̃Dt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtdt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.1068 -832.75 (<0.01) b1 0.3983 1749.54 (<0.01) c1 -0.0018 -10.65 (<0.01) d1 0.0136 109.99(<0.01)
a2 -0.0416 -319.67 (<0.01) b2 0.2525 1017.50 (<0.01) c2 -0.0015 -8.88 (<0.01) d2 0.0050 29.64 (<0.01)
a3 -0.0163 -125.27 (<0.01) b3 0.1097 433.59 (<0.01) c3 -0.0008 -4.58 (<0.01) d3 0.0046 26.79 (<0.01)
a4 -0.0030 -23.19 (<0.01) b4 0.0674 271.67 (<0.01) c4 -0.0004 -2.43 (<0.01) d4 0.0028 16.21 (<0.01)
a5 0.0092 76.96 (<0.01) b5 0.0562 247.15 (<0.01) c5 0.0009 7.42 (<0.01) d5 0.0012 7.07 (<0.01)

C -0.0013
Adj. R2 0.6660

Panel C: Hidden order equation

H̃DV t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εhdvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0290 -181.52 (<0.01) b1 -0.0644 -227.02 (<0.01) c1 -0.0039 -18.50 (<0.01) d1 0.6890 4460.47(<0.01)
a2 -0.0078 -48.26 (<0.01) b2 0.0592 191.53 (<0.01) c2 0.0065 30.85 (<0.01) d2 0.0165 78.07 (<0.01)
a3 -0.0021 -13.24 (<0.01) b3 0.0221 70.06 (<0.01) c3 0.0039 18.30 (<0.01) d3 0.0013 6.06 (<0.01)
a4 0.0004 2.29 (<0.01) b4 0.0129 41.63 (<0.01) c4 0.0038 17.99 (<0.01) d4 0.0004 2.02 (<0.01)
a5 0.0032 21.25 (<0.01) b5 0.0105 37.06 (<0.01) c5 0.0037 24.15 (<0.01) d5 0.0009 4.02 (<0.01)

C -0.0006
Adj. R2 0.4867

Panel D: Trade volume equation

T̃ V t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0339 -156.28 (<0.01) b1 0.0600 155.61 (<0.01) c1 0.0124 43.04 (<0.01) d1 0.0813 387.20(<0.01)
a2 -0.0133 -60.43 (<0.01) b2 0.0651 154.87 (<0.01) c2 0.0095 33.00 (<0.01) d2 0.0226 78.44 (<0.01)
a3 -0.0052 -23.68 (<0.01) b3 0.0250 58.31 (<0.01) c3 0.0077 26.64 (<0.01) d3 0.0138 47.83 (<0.01)
a4 -0.0021 -9.72 (<0.01) b4 0.0133 31.62 (<0.01) c4 0.0053 18.45 (<0.01) d4 0.0102 35.50 (<0.01)
a5 0.0021 10.30 (<0.01) b5 0.0102 26.60 (<0.01) c5 0.0114 54.43 (<0.01) d5 0.0083 29.00 (<0.01)

C -0.0004
Adj. R2 0.0506

Note: This table shows the results of our vector autoregressive(VAR) model,

where Q̃T is quote return, T̃D is signed trade direction, H̃DV is signed hidden
order volume and T̃ V is signed trading volume at time t.
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Table 7: Coefficient estimates of the vector autoregressive(VAR) model for
E-Mini S&P500 for Nine week to maturity

Panel A: Quote revision equation

Q̃Rt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εqrt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 0.0309 133.71 (<0.01) b1 0.1307 320.63 (<0.01) c1 0.0068 22.68 (<0.01) d1 0.0174 77.41 (<0.01)
a2 0.0073 31.35 (<0.01) b2 -0.0030 -6.84 (<0.01) c2 0.0053 17.67 (<0.01) d2 0.0093 31.11 (<0.01)
a3 0.0020 8.76 (<0.01) b3 -0.0050 -11.05 (<0.01) c3 0.0034 11.37 (<0.01) d3 0.0054 18.09 (<0.01)
a4 -0.0016 -6.79 (<0.01) b4 -0.0061 -13.75 (<0.01) c4 0.0035 11.75 (<0.01) d4 0.0044 14.76 (<0.01)
a5 -0.0032 -14.98 (<0.01) b5 -0.0089 -21.82 (<0.01) c5 0.0044 19.82 (<0.01) d5 0.0027 9.11 (<0.01)

C 0.0004
Adj. R2 0.0175

Panel B: Trade direction equation

T̃Dt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtdt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.1059 -784.67 (<0.01) b1 0.3825 1604.19 (<0.01) c1 -0.0015 -8.56 (<0.01) d1 0.0138 105.23(<0.01)
a2 -0.0411 -300.49 (<0.01) b2 0.2562 993.00 (<0.01) c2 -0.0012 -6.87 (<0.01) d2 0.0054 30.68 (<0.01)
a3 -0.0165 -120.59 (<0.01) b3 0.1145 434.84 (<0.01) c3 -0.0012 -6.82 (<0.01) d3 0.0042 23.66 (<0.01)
a4 -0.0026 -19.20 (<0.01) b4 0.0722 279.87 (<0.01) c4 -0.0008 -4.43 (<0.01) d4 0.0032 18.45 (<0.01)
a5 0.0095 75.48 (<0.01) b5 0.0603 253.37 (<0.01) c5 0.0005 4.15 (<0.01) d5 0.0015 8.61 (<0.01)

C -0.0012
Adj. R2 0.6630

Panel C: Hidden order equation

H̃DV t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εhdvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0274 -159.93 (<0.01) b1 -0.0615 -203.07 (<0.01) c1 -0.0001 -0.38 (<0.01) d1 0.6703 4023.73(<0.01)
a2 -0.0072 -41.47 (<0.01) b2 0.0585 178.62 (<0.01) c2 0.0058 26.25 (<0.01) d2 0.0128 57.53 (<0.01)
a3 -0.0023 -13.00 (<0.01) b3 0.0216 64.61 (<0.01) c3 0.0033 14.86 (<0.01) d3 0.0027 12.19 (<0.01)
a4 0.0006 3.62 (<0.01) b4 0.0140 42.63 (<0.01) c4 0.0029 12.95 (<0.01) d4 0.0027 11.89 (<0.01)
a5 0.0031 19.09 (<0.01) b5 0.0100 33.07 (<0.01) c5 0.0037 22.37 (<0.01) d5 0.0025 11.06 (<0.01)

C -0.0004
Adj. R2 0.4619

Panel D: Trade volume equation

T̃ V t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0340 -149.22 (<0.01) b1 0.0555 137.84 (<0.01) c1 0.0141 47.52 (<0.01) d1 0.0760 343.34(<0.01)
a2 -0.0136 -59.06 (<0.01) b2 0.0646 148.39 (<0.01) c2 0.0103 34.73 (<0.01) d2 0.0219 73.99 (<0.01)
a3 -0.0061 -26.27 (<0.01) b3 0.0254 57.05 (<0.01) c3 0.0087 29.32 (<0.01) d3 0.0152 51.11 (<0.01)
a4 -0.0015 -6.68 (<0.01) b4 0.0140 32.28 (<0.01) c4 0.0062 20.79 (<0.01) d4 0.0109 36.80 (<0.01)
a5 0.0021 9.98 (<0.01) b5 0.0109 27.15 (<0.01) c5 0.0119 54.08 (<0.01) d5 0.0095 32.03 (<0.01)

C -0.0005
Adj. R2 0.0486

Note: This table shows the results of our vector autoregressive(VAR) model,

where Q̃T is quote return, T̃D is signed trade direction, H̃DV is signed hidden
order volume and T̃ V is signed trading volume at time t.
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Table 8: Coefficient estimates of the vector autoregressive(VAR) model for
E-Mini S&P500 for Ten week to maturity

Panel A: Quote revision equation

Q̃Rt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εqrt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 0.0271 116.30 (<0.01) b1 0.1296 314.76 (<0.01) c1 0.0055 18.21 (<0.01) d1 0.0201 89.01 (<0.01)
a2 0.0061 25.99 (<0.01) b2 -0.0030 -6.80 (<0.01) c2 0.0053 17.75 (<0.01) d2 0.0117 38.88 (<0.01)
a3 0.0001 0.61 (0.54) b3 -0.0059 -12.94 (<0.01) c3 0.0037 12.28 (<0.01) d3 0.0054 18.06 (<0.01)
a4 -0.0019 -7.95 (<0.01) b4 -0.0057 -12.75 (<0.01) c4 0.0026 8.64 (<0.01) d4 0.0046 15.41 (<0.01)
a5 -0.0038 -17.65 (<0.01) b5 -0.0075 -18.17 (<0.01) c5 0.0041 18.21 (<0.01) d5 0.0035 11.73 (<0.01)

C 0.0002
Adj. R2 0.0176

Panel B: Trade direction equation

T̃Dt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtdt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.1079 -795.36 (<0.01) b1 0.3813 1587.78 (<0.01) c1 -0.0023 -13.33 (<0.01) d1 0.0131 99.94 (<0.01)
a2 -0.0428 -310.80 (<0.01) b2 0.2565 987.00 (<0.01) c2 -0.0021 -11.97 (<0.01) d2 0.0056 31.78 (<0.01)
a3 -0.0172 -124.85 (<0.01) b3 0.1156 435.77 (<0.01) c3 -0.0017 -9.56 (<0.01) d3 0.0042 23.94 (<0.01)
a4 -0.0030 -22.01 (<0.01) b4 0.0729 280.74 (<0.01) c4 -0.0008 -4.46 (<0.01) d4 0.0029 16.72 (<0.01)
a5 0.0094 74.27 (<0.01) b5 0.0608 253.58 (<0.01) c5 0.0003 2.06 (0.04) d5 0.0009 5.31 (<0.01)

C -0.0008
Adj. R2 0.6649

Panel C: Hidden order equation

H̃DV t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εhdvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0303 -174.82 (<0.01) b1 -0.0657 -213.99 (<0.01) c1 0.0004 1.76 () d1 0.6665 3965.80(<0.01)
a2 -0.0088 -50.19 (<0.01) b2 0.0585 176.17 (<0.01) c2 0.0085 38.08 (<0.01) d2 0.0151 67.55 (<0.01)
a3 -0.0026 -14.59 (<0.01) b3 0.0231 68.01 (<0.01) c3 0.0055 24.81 (<0.01) d3 0.0023 10.17 (<0.01)
a4 0.0009 4.91 (<0.01) b4 0.0135 40.70 (<0.01) c4 0.0037 16.55 (<0.01) d4 0.0027 11.83 (<0.01)
a5 0.0032 19.64 (<0.01) b5 0.0110 35.79 (<0.01) c5 0.0058 34.89 (<0.01) d5 0.0026 11.77 (<0.01)

C -0.0003
Adj. R2 0.4576

Panel D: Trade volume equation

T̃ V t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0353 -153.59 (<0.01) b1 0.0492 120.99 (<0.01) c1 0.0169 57.03 (<0.01) d1 0.0753 338.41(<0.01)
a2 -0.0146 -62.85 (<0.01) b2 0.0631 143.56 (<0.01) c2 0.0140 47.35 (<0.01) d2 0.0257 86.48 (<0.01)
a3 -0.0067 -28.61 (<0.01) b3 0.0226 50.43 (<0.01) c3 0.0101 34.08 (<0.01) d3 0.0185 62.26 (<0.01)
a4 -0.0020 -8.90 (<0.01) b4 0.0140 31.97 (<0.01) c4 0.0093 31.32 (<0.01) d4 0.0147 49.67 (<0.01)
a5 0.0025 11.49 (<0.01) b5 0.0099 24.41 (<0.01) c5 0.0154 69.50 (<0.01) d5 0.0142 47.94 (<0.01)

C -0.0001
Adj. R2 0.0487

Note: This table shows the results of our vector autoregressive(VAR) model,

where Q̃T is quote return, T̃D is signed trade direction, H̃DV is signed hidden
order volume and T̃ V is signed trading volume at time t.
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Table 9: Coefficient estimates of the vector autoregressive(VAR) model for
E-Mini S&P500 for 11 week to maturity

Panel A: Quote revision equation

Q̃Rt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εqrt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 0.0308 127.37 (<0.01) b1 0.1329 316.19 (<0.01) c1 0.0099 34.69 (<0.01) d1 0.0288 123.23 (<0.01)
a2 0.0082 33.33 (<0.01 ) b2 -0.0076 -16.67 (<0.01 ) c2 0.0067 23.30 (<0.01 ) d2 0.0135 46.80 (<0.01 )
a3 0.0014 5.55 (<0.01 ) b3 -0.0069 -14.90 (<0.01 ) c3 0.0035 12.11 (<0.01 ) d3 0.0074 25.62 (<0.01 )
a4 -0.0014 -5.85 (<0.01 ) b4 -0.0065 -14.37 (<0.01 ) c4 0.0027 9.37 (<0.01 ) d4 0.0058 20.14 (<0.01 )
a5 -0.0038 -16.67 (<0.01 ) b5 -0.0092 -21.88 (<0.01 ) c5 0.0045 19.14 (<0.01 ) d5 0.0047 16.46 (<0.01 )

C 0.0000
Adj. R2 0.0188

Panel B: Trade direction equation

T̃Dt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtdt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.1095 -762.75 (<0.01 ) b1 0.3803 1526.59 (<0.01 ) c1 -0.0027 -16.10 (<0.01 ) d1 0.0109 78.55 (<0.01 )
a2 -0.0437 -300.14 (<0.01 ) b2 0.2585 960.50 (<0.01 ) c2 -0.0029 -16.96 (<0.01 ) d2 0.0038 22.57 (<0.01 )
a3 -0.0176 -120.99 (<0.01 ) b3 0.1150 418.56 (<0.01 ) c3 -0.0023 -13.70 (<0.01 ) d3 0.0035 20.40 (<0.01 )
a4 -0.0035 -24.14 (<0.01 ) b4 0.0716 266.30 (<0.01 ) c4 -0.0015 -9.05 (<0.01 ) d4 0.0025 14.65 (<0.01 )
a5 0.0094 70.10 (<0.01 ) b5 0.0591 237.81 (<0.01 ) c5 -0.0009 -6.82 (<0.01 ) d5 0.0006 3.55 (<0.01 )

C -0.0009
Adj. R2 0.6547

Panel C: Hidden order equation

H̃DV t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εhdvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0323 -164.30 (<0.01 ) b1 -0.0453 -133.05 (<0.01 ) c1 0.0016 6.70 (<0.01 ) d1 0.5868 3101.99(<0.01 )
a2 -0.0082 -41.26 (<0.01 ) b2 0.0560 152.12 (<0.01 ) c2 0.0055 23.78 (<0.01 ) d2 0.0127 54.42 (<0.01 )
a3 -0.0027 -13.50 (<0.01 ) b3 0.0219 58.28 (<0.01 ) c3 0.0027 11.69 (<0.01 ) d3 0.0035 15.21 (<0.01 )
a4 0.0008 4.02 (<0.01 ) b4 0.0132 35.88 (<0.01 ) c4 0.0022 9.51 (<0.01 ) d4 0.0038 16.11 (<0.01 )
a5 0.0034 18.31 (<0.01 ) b5 0.0100 29.48 (<0.01 ) c5 0.0033 17.51 (<0.01 ) d5 0.0015 6.45 (<0.01 )

C 0.0001
Adj. R2 0.3603

Panel D: Trade volume equation

T̃ V t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0347 -144.42 (<0.01 ) b1 0.0463 110.99 (<0.01 ) c1 0.0128 44.92 (<0.01 ) d1 0.0659 284.56 (<0.01 )
a2 -0.0129 -52.95 (<0.01 ) b2 0.0673 149.34 (<0.01 ) c2 0.0092 32.25 (<0.01 ) d2 0.0191 67.02 (<0.01 )
a3 -0.0064 -26.36 (<0.01 ) b3 0.0240 52.03 (<0.01 ) c3 0.0058 20.37 (<0.01 ) d3 0.0132 46.18 (<0.01 )
a4 -0.0017 -7.08 (<0.01 ) b4 0.0138 30.54 (<0.01 ) c4 0.0051 17.93 (<0.01 ) d4 0.0112 39.13 (<0.01 )
a5 0.0021 9.52 (<0.01 ) b5 0.0103 24.66 (<0.01 ) c5 0.0085 36.80 (<0.01 ) d5 0.0084 29.55 (<0.01 )

C -0.0008
Adj. R2 0.0399

Note: This table shows the results of our vector autoregressive(VAR) model,

where Q̃T is quote return, T̃D is signed trade direction, H̃DV is signed hidden
order volume and T̃ V is signed trading volume at time t.
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Table 10: Coefficient estimates of the vector autoregressive(VAR) model
for E-Mini S&P500 for 13 week to maturity

Panel A: Quote revision equation

Q̃Rt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εqrt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 0.0333 136.44 (<0.01) b1 0.1307 303.92 (<0.01) c1 0.0097 30.60 (<0.01) d1 0.0196 82.47 (<0.01)
a2 0.0070 28.16 (<0.01) b2 -0.0055 -11.77 (<0.01) c2 0.0080 25.21 (<0.01) d2 0.0099 30.93 (<0.01)
a3 0.0010 3.88 (<0.01) b3 -0.0066 -13.88 (<0.01) c3 0.0048 15.09 (<0.01) d3 0.0050 15.64 (<0.01)
a4 -0.0005 -2.16 (<0.01) b4 -0.0064 -13.80 (<0.01) c4 0.0043 13.37 (<0.01) d4 0.0047 14.69 (<0.01)
a5 -0.0038 -16.52 (<0.01) b5 -0.0083 -19.43 (<0.01) c5 0.0056 23.46 (<0.01) d5 0.0036 11.22 (<0.01)

C -0.0002
Adj. R2 0.0178

Panel B: Trade direction equation

T̃Dt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtdt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.1038 -725.09 (<0.01) b1 0.3865 1533.42 (<0.01) c1 -0.0028 -15.03 (<0.01) d1 0.0136 97.39 (<0.01)
a2 -0.0402 -276.84 (<0.01) b2 0.2570 940.87 (<0.01) c2 -0.0020 -10.69 (<0.01) d2 0.0058 31.16 (<0.01)
a3 -0.0155 -107.22 (<0.01) b3 0.1128 404.67 (<0.01) c3 -0.0019 -10.32 (<0.01) d3 0.0045 23.93 (<0.01)
a4 -0.0025 -17.22 (<0.01) b4 0.0707 259.00 (<0.01) c4 -0.0010 -5.50 (<0.01) d4 0.0033 17.51 (<0.01)
a5 0.0094 69.96 (<0.01) b5 0.0588 233.73 (<0.01) c5 0.0003 2.45 (<0.01) d5 0.0012 6.61 (<0.01)

C -0.0004
Adj. R2 0.6618

Panel C: Hidden order equation

H̃DV t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εhdvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0264 -146.05 (<0.01) b1 -0.0619 -194.22 (<0.01) c1 -0.0025 -10.46 (<0.01) d1 0.6721 3814.64(<0.01)
a2 -0.0076 -41.61 (<0.01) b2 0.0567 164.03 (<0.01) c2 0.0060 25.42 (<0.01) d2 0.0153 64.82 (<0.01)
a3 -0.0020 -10.80 (<0.01) b3 0.0228 64.71 (<0.01) c3 0.0041 17.23 (<0.01) d3 0.0026 10.83 (<0.01)
a4 0.0005 2.85 (<0.01) b4 0.0131 38.00 (<0.01) c4 0.0038 15.98 (<0.01) d4 0.0018 7.81 (<0.01)
a5 0.0031 18.25 (<0.01) b5 0.0111 35.03 (<0.01) c5 0.0040 22.56 (<0.01) d5 -0.0001 -0.53 (<0.01)

C 0.0000
Adj. R2 0.4630

Panel D: Trade volume equation

T̃ V t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0312 -129.39 (<0.01) b1 0.0562 132.25 (<0.01) c1 0.0111 35.41 (<0.01) d1 0.0761 324.06 (<0.01)
a2 -0.0126 -51.37 (<0.01) b2 0.0645 140.04 (<0.01) c2 0.0087 27.59 (<0.01) d2 0.0214 67.99 (<0.01)
a3 -0.0052 -21.46 (<0.01) b3 0.0232 49.33 (<0.01) c3 0.0064 20.43 (<0.01) d3 0.0156 49.36 (<0.01)
a4 -0.0018 -7.51 (<0.01) b4 0.0138 30.08 (<0.01) c4 0.0057 18.18 (<0.01) d4 0.0115 36.60 (<0.01)
a5 0.0021 9.31 (<0.01) b5 0.010149 23.95 (<0.01) c5 0.0093 39.55 (<0.01) d5 0.0088 27.93 (<0.01)

C 0.0004
Adj. R2 0.0458

Note: This table shows the results of our vector autoregressive(VAR) model,

where Q̃T is quote return, T̃D is signed trade direction, H̃DV is signed hidden
order volume and T̃ V is signed trading volume at time t.
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Table 11: Coefficient estimates of the vector autoregressive(VAR) model
for E-Mini S&P500 for 14 week to maturity

Panel A: Quote revision equation

Q̃Rt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εqrt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 0.0244 103.41 (<0.01) b1 0.1484 362.37 (<0.01) c1 0.0088 29.96 (<0.01) d1 0.0223 97.79 (<0.01)
a2 0.0087 36.44 (<0.01) b2 -0.0050 -11.25 (<0.01) c2 0.0069 23.56 (<0.01) d2 0.0147 50.22 (<0.01)
a3 0.0020 8.24 (<0.01) b3 -0.0094 -20.60 (<0.01) c3 0.0053 18.05 (<0.01) d3 0.0083 28.44 (<0.01)
a4 -0.0009 -4.00 (<0.01) b4 -0.0102 -23.04 (<0.01) c4 0.0042 14.25 (<0.01) d4 0.0063 21.44 (<0.01)
a5 -0.0025 -11.30 (<0.01) b5 -0.0133 -32.55 (<0.01) c5 0.0066 28.86 (<0.01) d5 0.0050 16.97 (<0.01)

C 0.0005
Adj. R2 0.0214

Panel B: Trade direction equation

T̃Dt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtdt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.1049 -744.56 (<0.01) b1 0.3914 1602.66 (<0.01) c1 -0.0034 -19.65 (<0.01) d1 0.0137 100.72 (<0.01)
a2 -0.0396 -277.17 (<0.01) b2 0.2550 960.12 (<0.01) c2 -0.0027 -15.32 (<0.01) d2 0.0052 30.00 (<0.01)
a3 -0.0144 -101.06 (<0.01) b3 0.1109 409.24 (<0.01) c3 -0.0014 -8.16 (<0.01) d3 0.0042 24.05 (<0.01)
a4 -0.0015 -10.50 (<0.01) b4 0.0675 254.19 (<0.01) c4 -0.0015 -8.51 (<0.01) d4 0.0025 14.11 (<0.01)
a5 0.0098 75.04 (<0.01) b5 0.0576 236.16 (<0.01) c5 -0.0003 -2.55 (<0.01) d5 0.0009 5.07 (<0.01)

C -0.0010
Adj. R2 0.6511

Panel C: Hidden order equation

H̃DV t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εhdvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0278 -151.63 (<0.01) b1 -0.0528 -166.23 c1 -0.0006 -2.64 d1 0.6336 3583.30()
a2 -0.0079 -42.51 b2 0.0563 163.09 (<0.01) c2 0.0063 27.71 (<0.01) d2 0.0130 57.27 (<0.01)
a3 -0.0018 -9.46 (<0.01) b3 0.0228 64.53 (<0.01) c3 0.0049 21.53 (<0.01) d3 0.0018 8.10 (<0.01)
a4 0.0010 5.63 (<0.01) b4 0.0125 36.26 (<0.01) c4 0.0023 9.95 (<0.01) d4 0.0004 1.92 (0.60)
a5 0.0028 16.56 (<0.01) b5 0.0095 29.88 (<0.01) c5 0.0035 19.92 (<0.01) d5 0.0022 9.81 (<0.01)

C -0.0004
Adj. R2 0.4147

Panel D: Trade volume equation

T̃ V t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0328 -140.18 (<0.01) b1 0.0531 130.84 (<0.01) c1 0.0132 45.40 (<0.01) d1 0.0791 350.08 (<0.01)
a2 -0.0129 -54.43 (<0.01) b2 0.0631 142.78 (<0.01) c2 0.0079 27.18 (<0.01) d2 0.0195 66.92 (<0.01)
a3 -0.0054 -22.64 (<0.01) b3 0.0236 52.30 (<0.01) c3 0.0080 27.49 (<0.01) d3 0.0150 51.50 (<0.01)
a4 -0.0015 -6.55 (<0.01) b4 0.0128 29.09 (<0.01) c4 0.0044 15.25 (<0.01) d4 0.0097 33.31 (<0.01)
a5 0.0016 7.50 (<0.01) b5 0.0090 22.14 (<0.01) c5 0.0099 43.72 (<0.01) d5 0.0083 28.72 (<0.01)

C -0.0004
Adj. R2 0.0436

Note: This table shows the results of our vector autoregressive(VAR) model,

where Q̃T is quote return, T̃D is signed trade direction, H̃DV is signed hidden
order volume and T̃ V is signed trading volume at time t.
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Table 12: Coefficient estimates of the vector autoregressive(VAR) model
for E-Mini S&P500 for 15 week to maturity

Panel A: Quote revision equation

Q̃Rt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εqrt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 0.0238 58.87 (<0.01) b1 0.1840 276.25 (<0.01) c1 0.0021 4.07 (<0.01) d1 0.0117 29.02 (<0.01)
a2 0.0080 19.65 (<0.01) b2 -0.0459 -62.00 (<0.01) c2 0.0040 7.69 (<0.01) d2 0.0111 21.07 (<0.01)
a3 0.0031 7.67 (<0.01) b3 -0.0150 -19.88 (<0.01) c3 0.0038 7.32 (<0.01) d3 0.0053 10.03 (<0.01)
a4 -0.0026 -6.48 (<0.01) b4 -0.0096 -12.98 (<0.01) c4 0.0023 4.46 (<0.01) d4 0.0038 7.27 (<0.01)
a5 -0.0011 -2.79 (<0.01) b5 -0.0143 -21.42 (<0.01) c5 0.0041 10.14 (<0.01) d5 0.0041 7.75 (<0.01)

C -0.0001
Adj. R2 0.0203

Panel B: Trade direction equation

T̃Dt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtdt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0660 -258.16 (<0.01) b1 0.4408 1044.97 (<0.01) c1 0.0014 4.27 (<0.01) d1 0.0139 54.61 (<0.01)
a2 -0.0170 -66.01 (<0.01) b2 0.2341 499.48 (<0.01) c2 -0.0007 -2.18 (<0.01) d2 0.0001 0.29 (<0.01)
a3 -0.0042 -16.41 (<0.01) b3 0.0856 179.74 (<0.01) c3 -0.0021 -6.41 (<0.01) d3 0.0014 4.16 (<0.01)
a4 0.0010 3.95 (<0.01) b4 0.0500 106.73 (<0.01) c4 -0.0015 -4.56 (<0.01) d4 0.0013 3.84 (<0.01)
a5 0.0094 38.69 (<0.01) b5 0.0492 116.42 (<0.01) c5 -0.0010 -3.96 (<0.01) d5 0.0000 0.04 (<0.01)

C -0.0010
Adj. R2 0.6067

Panel C: Hidden order equation

H̃DV t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εhdvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0178 -57.97 (<0.01) b1 -0.0471 -93.24 (<0.01) c1 0.0021 5.39 (<0.01) d1 0.6511 2132.39(<0.01)
a2 -0.0025 -8.22 (<0.01) b2 0.0527 93.84 (<0.01) c2 0.0082 20.64 (<0.01) d2 0.0144 36.13 (<0.01)
a3 0.0000 0.16 (<0.01) b3 0.0172 30.05 (<0.01) c3 0.0051 12.71 (<0.01) d3 -0.0010 -2.40 (<0.01)
a4 0.0014 4.71 (<0.01) b4 0.0104 18.55 (<0.01) c4 0.0033 8.35 (<0.01) d4 -0.0016 -3.99 (<0.01)
a5 0.0025 8.60 (<0.01) b5 0.0090 17.82 (<0.01) c5 0.0037 12.23 (<0.01) d5 0.0008 1.88 (<0.01)

C -0.0006
Adj. R2 0.4367

Panel D: Trade volume equation

T̃ V t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0212 -53.35 (<0.01) b1 0.0796 121.23 (<0.01) c1 0.0150 28.97 (<0.01) d1 0.0889 224.21 (<0.01)
a2 -0.0056 -13.88 (<0.01) b2 0.0585 80.20 (<0.01) c2 0.0118 22.78 (<0.01) d2 0.0185 35.66 (<0.01)
a3 -0.0025 -6.33 (<0.01) b3 0.0175 23.55 (<0.01) c3 0.0072 13.95 (<0.01) d3 0.0114 22.04 (<0.01)
a4 -0.0006 -1.50 (<0.01) b4 0.0092 12.67 (<0.01) c4 0.0060 11.53 (<0.01) d4 0.0093 17.92 (<0.01)
a5 0.0015 4.07 (<0.01) b5 0.0062 9.48 (<0.01) c5 0.0097 24.42 (<0.01) d5 0.0079 15.30 (<0.01)

C 0.0004
Adj. R2 0.0507

Note: This table shows the results of our vector autoregressive(VAR) model,

where Q̃T is quote return, T̃D is signed trade direction, H̃DV is signed hidden
order volume and T̃ V is signed trading volume at time t.
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Table 13: Coefficient estimates of the vector autoregressive(VAR) model
for E-Mini S&P500 for 16 week to maturity

Panel A: Quote revision equation

Q̃Rt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εqrt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0057 -3.99 (<0.01) b1 0.1863 90.933 (<0.01) c1 -0.0086 -4.415 (<0.01) d1 0.0023 1.457 (<0.01)
a2 -0.0055 -3.84 (<0.01) b2 -0.0773 -35.066 (<0.01) c2 -0.0036 -1.850 (<0.01) d2 0.0077 3.920 (<0.01)
a3 -0.0024 -1.64 (<0.01) b3 -0.0165 -7.396 (<0.01) c3 0.0002 0.095 (0.34) d3 0.0032 1.644 (<0.01)
a4 0.0140 9.77 (<0.01) b4 -0.0130 -5.894 (<0.01) c4 0.0030 1.525 (<0.01) d4 -0.0005 -0.259 (<0.01)
a5 -0.0080 -5.69 (<0.01) b5 -0.0144 -6.964 (<0.01) c5 0.0001 0.083 (<0.01) d5 -0.0033 -1.677 (<0.01)

C 0.0025
Adj. R2 0.0206

Panel B: Trade direction equation

T̃Dt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtdt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0113 -10.270 (<0.01) b1 0.3496 223.990 (<0.01) c1 0.0193 12.948 (<0.01) d1 0.0191 16.209 (<0.01)
a2 -0.0049 -4.431 (<0.01) b2 0.2203 131.176 (<0.01) c2 0.0058 3.912 (<0.01) d2 -0.0094 -6.317 (<0.01)
a3 -0.0012 -1.068 (<0.01) b3 0.0931 54.659 (<0.01) c3 0.0028 1.875 (0.11) d3 -0.0018 -1.199 (0.27)
a4 -0.0042 -3.843 (<0.01) b4 0.0538 31.975 (<0.01) c4 0.0022 1.489 (0.14) d4 0.0011 0.745 (0.46)
a5 0.0053 4.900 (<0.01) b5 0.0543 34.579 (<0.01) c5 0.0035 2.999 (<0.01) d5 -0.0003 -0.211 (<0.01)

C 0.0042
Adj. R2 0.4318

Panel C: Hidden order equation

H̃DV t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εhdvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0020 -1.781 (<0.01) b1 -0.0622 -39.156 (<0.01) c1 0.0098 6.451 (<0.01) d1 0.6239 520.205(<0.01)
a2 0.0009 0.827 (<0.01) b2 0.0543 31.759 (<0.01) c2 0.0062 4.066 (<0.01) d2 0.0129 8.500 (<0.01)
a3 0.0010 0.918 (0.36) b3 0.0210 12.099 (<0.01) c3 0.0102 6.719 (<0.01) d3 0.0085 5.586 (<0.01)
a4 -0.0015 -1.313 (0.19) b4 0.0142 8.308 (<0.01) c4 0.0085 5.588 (<0.01) d4 0.0029 1.929 (0.05)
a5 0.0010 0.887 (0.38) b5 0.0139 8.675 (<0.01) c5 0.0094 7.871 (<0.01) d5 0.0015 0.995 (0.37)

C -0.0013
Adj. R2 0.4105

Panel D: Trade volume equation

T̃ V t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0079 -5.676 (<0.01) b1 0.0968 49.026 (<0.01) c1 0.0289 15.319 (<0.01) d1 0.1150 77.137 (<0.01)
a2 -0.0012 -0.853 (0.29) b2 0.0680 31.967 (<0.01) c2 0.0172 9.144 (<0.01) d2 0.0250 13.245 (<0.01)
a3 -0.0016 -1.142 (0.29) b3 0.0234 10.868 (<0.01) c3 0.0124 6.556 (<0.01) d3 0.0192 10.182 (<0.01)
a4 -0.0026 -1.889 (0.29) b4 0.0115 5.389 (<0.01) c4 0.0055 2.912 (<0.01) d4 0.0196 10.398 (<0.01)
a5 0.0010 0.722 (0.29) b5 0.0089 4.457 (<0.01) c5 0.0142 9.556 (<0.01) d5 0.0183 9.672 (<0.01)

C -0.0011
Adj. R2 0.0898

Note: This table shows the results of our vector autoregressive(VAR) model,

where Q̃T is quote return, T̃D is signed trade direction, H̃DV is signed hidden
order volume and T̃ V is signed trading volume at time t.
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Table 14: Coefficient estimates of the vector autoregressive(VAR) model
for E-Mini S&P500 for 17 week to maturity

Panel A: Quote revision equation

Q̃Rt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εqrt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 0.0079 1.82 (0.07) b1 0.1416 29.59 (<0.01) c1 0.0011 0.22 (0.83) d1 0.0016 0.34 (0.73)
a2 -0.0060 -1.37 (0.17) b2 -0.0369 -7.63 (<0.01) c2 0.0039 0.78 (0.44) d2 0.0014 0.27 (0.78)
a3 0.0027 0.63 (0.53) b3 -0.0143 -2.94 (<0.01) c3 0.0031 0.63 (0.53) d3 0.0028 0.55 (0.58)
a4 0.0196 4.50 (<0.01) b4 -0.0065 -1.34 (0.18) c4 -0.0003 -0.06 (0.95) d4 0.0003 0.06 (0.95)
a5 -0.0033 -0.77 (0.44) b5 -0.0032 -0.66 (0.53) c5 0.0026 0.57 (0.58) d5 -0.0073 -1.46 (0.14)

C 0.0035
Adj. R2 0.0204

Panel B: Trade direction equation

T̃Dt =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtdt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 0.0203 4.72 (<0.01) b1 0.0395 8.36 (<0.01) c1 0.0116 2.37 (<0.01) d1 0.0327 7.19 (<0.01)
a2 0.0131 3.05 (<0.01) b2 0.1209 25.25 (<0.01) c2 -0.0018 -0.36 (0.71) d2 0.0023 0.46 (0.71)
a3 0.0108 2.51 (<0.01) b3 0.0795 16.54 (<0.01) c3 0.0061 1.25 (0.21) d3 -0.0068 -1.37 (0.14)
a4 0.0084 1.96 (<0.01) b4 0.0568 11.87 (<0.01) c4 -0.0035 -0.72 (0.47) d4 -0.0083 -1.68 (0.09)
a5 0.0067 1.57 (0.11) b5 0.0468 9.80 (<0.01) c5 -0.0016 -0.35 (<0.01) d5 0.0058 1.19 (0.23)

C -0.0115
Adj. R2 0.0431

Panel C: Hidden order equation

H̃DV t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εhdvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 0.0075 1.86 (0.06) b1 -0.0779 -17.50 (<0.01) c1 -0.0104 -2.25 (<0.01) d1 0.4023 93.95 (<0.01)
a2 0.0038 0.94 (0.34) b2 0.0201 4.46 (<0.01) c2 0.0158 3.43 (<0.01) d2 0.0221 4.75 (<0.01)
a3 0.0038 0.95 (0.34) b3 0.0155 3.43 (<0.01) c3 0.0001 0.02 (0.98) d3 0.0009 0.19 (0.84)
a4 0.0017 0.43 (0.73) b4 0.0181 4.02 (<0.01) c4 -0.0148 -3.21 (¡0.01) d4 -0.0127 -2.72 (<0.01)
a5 0.0034 0.86 (0.39) b5 0.0017 0.39 (0.78) c5 0.0096 2.26 (¡0.01) d5 0.0167 3.59 (<0.01)

C 0.0022
Adj. R2 0.1534

Panel D: Trade volume equation

T̃ V t =
∑k
i=1 aiQ̃Rt−i +

∑k
i=1 biT̃Dt−i +

∑k
i=1 ciH̃DV t−i +

∑k
i=1 diT̃ V t−i + εtvt

Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value Coeff. t-stat p-value
a1 -0.0013 -0.30 (0.76) b1 0.0166 3.47 (<0.01) c1 0.0232 4.68 (<0.01) d1 0.0970 21.09 (<0.01)
a2 -0.0012 -0.28 (0.77) b2 0.0372 7.68 (<0.01) c2 0.0118 2.39 (<0.01) d2 0.0344 6.89 (<0.01)
a3 -0.0025 -0.57 (0.79) b3 0.0244 5.02 (<0.01) c3 0.0084 1.70 (0.09) d3 0.0103 2.06 (<0.01)
a4 -0.0005 -0.12 (0.94) b4 0.0189 3.90 (<0.01) c4 0.0047 0.94 (0.37) d4 -0.0133 -2.67 (<0.01)
a5 0.0063 1.47 (0.14) b5 0.0073 1.51 (0.13) c5 0.0157 3.44 (<0.01) d5 0.0119 2.38 (<0.01)

C 0.0078
Adj. R2 0.0233

Note: This table shows the results of our vector autoregressive(VAR) model,

where Q̃T is quote return, T̃D is signed trade direction, H̃DV is signed hidden
order volume and T̃ V is signed trading volume at time t.
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.2 Impulse response analysis on the term-structure

of E-mini S&P500 (Supplement for chapter

7)

This section provides a supplement information of the impulse response function

analysis using E-Mini S&P 500 data. We analyze the IRF week-by-week as a

term-structure analysis, from eighteen to one week to maturity. Here we show

the coefficients for all periods, however, the result for week eighteen, twelve, six

and one is showed in chapter 7.
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Figure 1: Impulse response function of Q̃R, T̃D, H̃DV and T̃ V on E-mini
S&P500 for one week to maturity.
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Figure 2: Impulse response function of Q̃R, T̃D, H̃DV and T̃ V on E-mini
S&P500 for two week to maturity.
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Figure 3: Impulse response function of Q̃R, T̃D, H̃DV and T̃ V on E-mini
S&P500 for three week to maturity.
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Figure 4: Impulse response function of Q̃R, T̃D, H̃DV and T̃ V on E-mini
S&P500 for four week to maturity.
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Figure 5: Impulse response function of Q̃R, T̃D, H̃DV and T̃ V on E-mini
S&P500 for seven week to maturity.
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Figure 6: Impulse response function of Q̃R, T̃D, H̃DV and T̃ V on E-mini
S&P500 for eight week to maturity.
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Figure 7: Impulse response function of Q̃R, T̃D, H̃DV and T̃ V on E-mini
S&P500 for nine week to maturity.
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Figure 8: Impulse response function of Q̃R, T̃D, H̃DV and T̃ V on E-mini
S&P500 for ten week to maturity.
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Figure 9: Impulse response function of Q̃R, T̃D, H̃DV and T̃ V on E-mini
S&P500 for 11 weeks to maturity.
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Figure 10: Impulse response function of Q̃R, T̃D, H̃DV and T̃ V on E-mini
S&P500 for 12 weeks to maturity.
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Figure 11: Impulse response function of Q̃R, T̃D, H̃DV and T̃ V on E-mini
S&P500 for 13 weeks to maturity.

Milliseconds
103 104

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Resp. of Quote Return to QR, TD, HDV and TV

QR

TD

HDV

TV

Milliseconds
103 104

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Resp. of Trade Direction to QR, TD, HDV and TV

QR

TD

HDV

TV

Milliseconds
103 104

0

0.1

0.2

0.3

0.4

0.5

0.6

Resp. of Hidden Order Volume to QR, TD, HDV and TV

QR

TD

HDV

TV

Milliseconds
103 104

-0.02

0

0.02

0.04

0.06

0.08

Resp. of Trade Volume to QR, TD, HDV and TV

QR

TD

HDV

TV

Figure 12: Impulse response function of Q̃R, T̃D, H̃DV and T̃ V on E-mini
S&P500 for 14 weeks to maturity.
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Figure 13: Impulse response function of Q̃R, T̃D, H̃DV and T̃ V on E-mini
S&P500 for 15 weeks to maturity.
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Figure 14: Impulse response function of Q̃R, T̃D, H̃DV and T̃ V on E-mini
S&P500 for 16 weeks to maturity.
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Abad, D. and J. Yagüe (2012). From pin to vpin: An introduction to order flow

toxicity. The Spanish Review of Financial Economics 10 (2), 74–83. 9, 44, 56,

68, 69, 81, 160, 261

Abrantes-Metz, R. M., M. Kraten, A. D. Metz, and G. S. Seow (2012). Libor

manipulation? Journal of Banking & Finance 36 (1), 136–150. 88, 91

Admati, A. R. (1985). A noisy rational expectations equilibrium for multi-asset

securities markets. Econometrica 53 (3), pp. 629–658. 36, 58, 131

Admati, A. R. and P. Pfleiderer (1986). A monopolistic market for information.

Journal of Economic Theory 39 (2), 400–438. 36

Admati, A. R. and P. Pfleiderer (1987). Viable allocations of information in

financial markets. Journal of Economic Theory 43 (1), 76–115. 36

Admati, A. R. and P. Pfleiderer (1988). A theory of intraday patterns: Volume

and price variability. The Review of Financial Studies 1 (1), pp. 3–40. 58, 131

Admati, A. R. and P. Pfleiderer (1990). Direct and indirect sale of information.

Econometrica: Journal of the Econometric Society , 901–928. 36

287



BIBLIOGRAPHY

Aitken, M. J., H. Berkman, and D. Mak (2001). The use of undisclosed limit

orders on the australian stock exchange. Journal of Banking & Finance 25 (8),

1589–1603. 201, 205, 207, 208, 214, 228

Aitken, M. J., A. Frino, A. M. Hill, and E. Jarnecic (2004). The impact of

electronic trading on bid-ask spreads: Evidence from futures markets in hong

kong, london, and sydney. Journal of Futures Markets 24 (7), 675–696. 164

Almgren, R., C. Thum, E. Hauptmann, and H. Li (2005). Direct estimation of

equity market impact. Risk 18 (7), 58–62. 208

Anand, A. and D. G. Weaver (2004). Can order exposure be mandated? Journal

of Financial Markets 7 (4), 405–426. 205, 228

Andersen, T. and O. Bondarenko (2013). Assessing vpin measurement of order

flow toxicity via perfect trade classification. Available at SSRN 2292602. 11,

133, 161

Andersen, T. G. and O. Bondarenko (2014a). Assessing measures of order flow

toxicity and early warning signals for market turbulence. Review of Finance,

Forthcoming . 11, 129, 133, 196

Andersen, T. G. and O. Bondarenko (2014b). Reflecting on the vpin dispute.

Journal of Financial Markets 17, 53–64. 11, 129, 133

Andersen, T. G. and O. Bondarenko (2014c). Vpin and the flash crash. Journal

of Financial Markets 17, 1–46. 11, 129, 133, 161

Ascioglu, A., S. P. Hegde, and J. B. McDermott (2008). Information asymmetry

and investmentcash flow sensitivity. Journal of Banking & Finance 32 (6), 1036

– 1048. 62

288



BIBLIOGRAPHY

Aslan, H., D. Easley, S. Hvidkjaer, and M. O’Hara (2011). The characteristics

of informed trading: Implications for asset pricing. Journal of Empirical Fi-

nance 18 (5), 782 – 801. 9, 56, 61, 62, 81, 261

Ates, A. and G. H. Wang (2005). Information transmission in electronic versus

open-outcry trading systems: An analysis of us equity index futures markets.

Journal of Futures Markets 25 (7), 679–715. 164
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