
Durham E-Theses

Topics in graph colouring and extremal graph theory

FEGHALI, CARL

How to cite:

FEGHALI, CARL (2016) Topics in graph colouring and extremal graph theory, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/11790/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/11790/
 http://etheses.dur.ac.uk/11790/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Topics in Graph Colouring and

Extremal Graph Theory

Carl Feghali

A Thesis presented for the degree of

Doctor of Philosophy

School of Engineering and Computing Sciences

Durham University

England

October 2016



Topics in Graph Colouring and

Extremal Graph Theory

Carl Feghali

Submitted for the degree of Doctor of Philosophy

October 2016

Abstract

In this thesis we consider three problems related to colourings of graphs and one

problem in extremal graph theory. Let G be a connected graph with n vertices and

maximum degree ∆(G). Let Rk(G) denote the graph with vertex set all proper k-

colourings of G and two k-colourings are joined by an edge if they differ on the colour

of exactly one vertex. Our first main result states that R∆(G)+1(G) has a unique

non-trivial component with diameter O(n2). This result can be viewed as a reconfig-

urations analogue of Brooks’ Theorem and completes the study of reconfigurations

of colourings of graphs with bounded maximum degree.

A Kempe change is the operation of swapping some colours a, b of a component

of the subgraph induced by vertices with colour a or b. Two colourings are Kempe

equivalent if one can be obtained from the other by a sequence of Kempe changes.

Our second main result states that all ∆(G)-colourings of a graph G are Kempe

equivalent unless G is the complete graph or the triangular prism. This settles a

conjecture of Mohar (2007).

Motivated by finding an algorithmic version of a structure theorem for bull-free

graphs due to Chudnovsky (2012), we consider the computational complexity of

deciding if the vertices of a graph can be partitioned into two parts such that one

part is triangle-free and the other part is a collection of complete graphs. We show

that this problem is NP-complete when restricted to five classes of graphs (including

bull-free graphs) while polynomial-time solvable for the class of cographs.

Finally we consider a graph-theoretic version formulated by Holroyd, Spencer and
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Talbot (2007) of the famous Erdős-Ko-Rado Theorem in extremal combinatorics and

obtain some results for the class of trees.
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Chapter 1

Introduction

Graph theory is a branch of mathematics concerned with the study of graphs. A

graph is a network: it consists of nodes or vertices and lines or edges each joining

some pair of vertices. The origins of the theory can be traced back to 1736 when

the mathematician Leonhard Euler gave a simple negative answer to the well-known

Königsberg bridge problem; the problem of finding a walk that crosses each of the

seven bridges of the city exactly once. (It seems almost inevitable that graphs were

conceived in a practical setting: let vertices represent real-world objects and edges

correspond to relations between pairs of these objects.)

In general there are numerous problems in practice that can be formulated and

solved as problems on graphs (see [58] for a recent survey on applications of graph

theory). The study of graphs is, however, also interesting in its own right and

the emphasis in this work is on theoretical results. Let us nevertheless illustrate

a folklore practical problem whose graph-theoretic formulation requires a specific

notion – graph colouring – that is recurrent in this thesis:

The students at a university have a number of examinations at the end of each

term. The problem then is to determine the minimum number of time slots to be

scheduled for the examinations. Of course two examinations attended by the same

student cannot be given the same time slot. Let us describe another way to think

of this problem. A colouring of a graph is an assignment of colours to its vertices

such that no two vertices joined by an edge receive the same colour. If the vertices

are the examinations, and two vertices are joined by an edge whenever a student

1



1.1. Basic Definitions 2

must attend both corresponding examinations, then the problem may be re-stated:

determine the minimum number of colours to colour this graph.

It turns out that no efficient algorithm is known or likely to exist for solving

this problem or several others [63]. (In fact the literature on problems unlikely to

be solvable in polynomial time is immense.) One common way to circumvent this

obstacle is to restrict our attention to special classes of graphs. This will allow us

to exploit the structural properties of the graphs under consideration and thus, it is

hoped, obtain polynomial-time algorithms.

Special graph classes are also useful in a more general setting: to prove or disprove

a conjecture about a large (and possibly arbitrary) class of graphs we first establish

results on a more restricted class and then try to generalise to the original class.

As we shall see in later chapters this approach for tackling a difficult problem is

extensively used in the thesis. For a discussion and survey of various aspects related

to special graph classes we refer the reader to some classical textbooks [21, 64].

The rest of this chapter is organised as follows. In Section 1.1, we give the basic

definitions that are used throughout the thesis. The final section, Section 1.2, briefly

introduces the topics explored and highlights our main contributions – proofs and

extensive literature reviews are deferred until subsequent chapters.

1.1 Basic Definitions

A graph G is a pair of disjoint sets, V (G) and E(G), such that V (G) 6= ∅ and E(G)

is a set of unordered pairs {u, v} of elements u, v ∈ V (G). The set V (G) is the set

of vertices of G and the set E(G) is the set of edges. Let e = {u, v} ∈ E(G). Then

{u, v} is abbreviated uv. The vertices u and v are also called the endvertices of e

and are said to be adjacent and incident with e. We assume G has no loops (edges

with only one endvertex) or multiple edges (distinct edges having the same pair of

endvertices) and V (G) is finite. When the sets V (G) and E(G) are clear from the

context, we shall write V for V (G) and E for E(G). The order of a graph G is

defined as |V (G)|. Similarly the size of a graph G is defined as |E(G)|.

The degree of a vertex v, denoted deg(v), is the number of vertices adjacent to
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v. Let ∆(G) or, if clear from the context, simply ∆ denote the maximum degree of

G, that is, ∆ = max{deg(v) : v ∈ V }. The minimum degree of a graph G, denoted

δ(G) or δ, is defined analogously. If ∆ = δ, that is, every vertex of G has degree

precisely ∆, then G is said to be ∆-regular. A 3-regular graph is called cubic.

A graph H = (V ′, E ′) is a subgraph of a graph G = (V,E) and, equivalently, G

is a supergraph of H , if V ′ ⊂ V and E ′ ⊂ E. if in addition E ′ = (V ′ × V ′) ∩ E,

then H is said to be an induced subgraph of G and we write H = G[V ′]. If U ⊂ V ,

then G− U = G[V \ U ] and if U = {u} we usually write G− u instead of G− {u}.

A graph G contains a graph H if H is an induced subgraph of G. Two graphs are

said to be isomorphic if there exists a 1 − 1 correspondence between their vertex

sets that preserves adjacency. We do not distinguish between isomorphic graphs.

Given graphs G and H , G is said H-free if G does not contain an induced subgraph

isomorphic to H . If H is a family of graphs, then G is H-free if G is H-free for every

graph H ∈ H.

A path on n vertices x1, x2, . . . , xn is denoted Pn and has edge set xixi+1, i =

1, . . . , n − 1, and xj 6= xk for any distinct indices j, k. The length of Pn is its

size (that is, is equal to n − 1) and Pn is said to join the vertices x1 and xn.

The distance between two distinct vertices u, v, denoted d(u, v), is the minimum

length over all paths joining u and v. The diameter of a graph G is defined as

max{d(u, v) : u, v ∈ V, u 6= v}. A cycle on n vertices x1, . . . , xn is denoted Cn

and has edge set {x1xn} ∪ {xixi+1 : i = 1, . . . , n − 1} and xj 6= xk for any distinct

indices j, k. The length of Cn is its size or, equivalently, its order. A graph on n

vertices in which every pair of distinct vertices are adjacent is denoted Kn and is

called complete or a clique. A set of vertices such that no two vertices of the set are

adjacent is called an independent or a stable set.

A graph is connected if every pair of vertices of the graph is joined by a path.

A graph that is not connected is called disconnected. A component of a graph is

a maximal connected subgraph of the graph. Clearly a graph is connected if and

only if the graph has exactly one component. The (disjoint) union Q = G ∪ H of

vertex disjoint graphs G and H has as vertex set V (Q) = V (G) ∪ V (H) and edge

set E(Q) = E(G) ∪ E(H). Thus a graph is disconnected if and only if it can be
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expressed as a disjoint union of at least two graphs. We identify two vertices x and

y in a graph G if we replace them by a new vertex adjacent to all neighbours of x

and y in G. The complement G of graph G has vertex set V (G) = V (G) and edge

set E(G) = {xy : xy 6∈ E(G)}. Let v be a vertex of a graph G. Then v is called

universal if deg(v) = |V | − 1 and isolated if deg(v) = 0.

A k-colouring of a graph G is a mapping φ : V → {1, . . . , k} such that φ(u) 6=

φ(v) if uv ∈ E. We call {1, . . . , k} the set of colours and refer to φ(u) as the colour

of the vertex u. The chromatic number of G, denoted by χ(G), is the smallest k

such that G has a k-colouring. Let {P1, . . . ,Pq} be a collection of graph properties.

A vertex partitioning (also known as decomposition) of a graph G is a partition

V1, . . . , Vq of V into q parts such that, for i = 1, . . . , q, the subgraph of G induced

by vertices Vi satisfies property Pi. Notice that a q-colouring of G corresponds to a

vertex partitioning of G in which each Vi, i = 1, . . . , q, induces an independent set.

1.2 Overview of Thesis

Let us first mention a fundamental result in graph colouring due to Brooks [24]

that is relevant to the immediately following two chapters. The theorem draws a

connection between the chromatic number and the maximum degree of a graph.

Brooks’ Theorem. Let G be a connected graph with maximum degree ∆ ≥ 1. If

G is not K∆+1 or, if n is odd, Cn, then G has a ∆-colouring.

In Chapter 2 we show an analogue of Brooks’ Theorem in the setting of reconfigura-

tions of colourings. The k-colouring reconfiguration graph of G, denoted Rk(G), has

as its vertex set all possible k-colourings of G, and two k-colourings γ1 and γ2 are

joined by an edge if, for some vertex u ∈ V , γ1(u) 6= γ2(u), and, for all v ∈ V \ {u},

γ1(v) = γ2(v); that is, if γ1 and γ2 disagree on exactly one vertex. A k-colouring γ

of a graph is frozen if, for every vertex v, every colour except γ(v) is used on the

neighbours of v. The length of a shortest path between colourings α and β in Rk(G)

is denoted dk(α, β).

Theorem ( Theorem 2.1). Let G be a connected graph on n vertices with maximum
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degree ∆ ≥ 1, and let k ≥ ∆ + 1. Let α be a k-colouring of G. If α is not frozen

and G is not K∆+1 or, if n is odd, Cn, then there exists a ∆-colouring γ of G such

that dk(α, γ) is O(n
2).

We use the above theorem to prove that for ∆ ≥ 3, R∆+1(G) consists of isolated

vertices and at most one further component which has diameter O(n2). This re-

sult enables us to complete both a structural characterization and an algorithmic

characterization for reconfigurations of colourings of graphs of bounded maximum

degree. Chapter 2 is based on published joint work with Matthew Johnson and

Daniël Paulusma [51, 54].

In Chapter 3 we address a conjecture of Mohar [97] which can again be viewed as

an analogue of Brooks’ Theorem in the setting of Kempe equivalence of colourings.

Given a proper vertex colouring of G, a Kempe chain is a subset of V that induces a

maximal connected subgraph of G in which every vertex has one of two colours. To

make a Kempe change is to obtain one colouring from another by exchanging the

colours of vertices in a Kempe chain. Two colourings are Kempe equivalent if each

can be obtained from the other by a series of Kempe changes. Let Ck(G) be the set of

all k-colourings of G. The equivalence classes Ck(G)/ ∼k are called Kempe classes.

Notice that reconfigurations of colourings is a special case of Kempe equivalence in

which one colouring can be transformed into another by a single vertex recolouring

(note that this is s essentially a Kempe change of a Kempe chain consisting of one

vertex only). The conjecture asserts that, for k ≥ 3, all k-colourings of a k-regular

graph that is not complete are Kempe equivalent. In the next theorem we completely

settle the conjecture. (Note that, for every connected 2-regular graph G that is not

an odd cycle, it is immediate that C2(G) is a Kempe class.)

Theorem (Theorems 3.2 and 3.14 combined). Let ∆ ≥ 1. Let G be a connected

graph with maximum degree ∆. If G is not K∆+1 or if n is odd, Cn, then C∆(G) is

a Kempe class unless ∆ = 3 and G is the triangular prism.

The case k = 3 is considered in Section 3.2 and is based on published joint work with

Matthew Johnson and Daniël Paulusma [52]. Its journal version has been submitted

for publication [53]. The remaining case is addressed in Section 3.3 and is based on
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joint work with Marthe Bonamy, Nicolas Bousquet and Matthew Johnson, and has

been submitted for publication [8].

In Chapter 4 we consider the computational complexity of a vertex partitioning

problem restricted to special classes of graphs. Chudnovsky described in [29, 30] a

complete characterization of bull-free graphs (a graph is bull-free if it contains no

subgraph isomorphic to the bull graph – a graph on five vertices x1, x2, x3, x4, x5

with edge set {x1x2, x1x3, x2x3, x2x4, x3x5}). Motivated by finding an algorithmic

version of this structure theorem, the complexity of recognizing the class T1 described

in [30] was posed as an open question by Thomassé, Trotignon and Vušković [111].

A graph G ∈ T1 if there exists a partition of V (G) = V1 ∪ V2 such that V1 induces

a disjoint union of complete graphs and V2 induces an independent set together

with some prescribed adjacencies between V1 and V2 – for a full description of T1 the

reader is referred to [30]. In an attempt to answer the question, we shall consider the

following broader class of graphs. Call a graph G = (V,E) partitioniable if there is a

partition {V1, V2} of V such that G[V1] is triangle-free and G[V2] is a disjoint union

of complete graphs. Given that no adjacencies between V1 and V2 are prescribed in

the definition of partitionable graphs, the class of partitionable bull-free graphs is a

superclass of the class T1. We prove the following theorem.

Theorem (Theorems 4.3 and 4.4 combined). Recognizing partitionable graphs is

polynomial-time solvable when restricted to the class of cographs and NP-complete

when restricted to the following classes:

(1) planar graphs,

(2) K4-free graphs,

(3) bull-free graphs,

(4) perfect graphs.

Chapter 4 is based on published joint work with Faisal N. Abu-Khzam and Haiko

Müller [1].

In Chapter 5 we consider graph theoretic versions of a famous result in extremal

combinatorics due to Erdős, Ko and Rado [47]. The extremal characterization was
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given by Hilton and Milner [70].

EKR Theorem (Erdős, Ko, Rado [47]; Hilton, Milner [70]) Let n and r be positive

integers, n ≥ r, let S be a set of size n and let A be a family of subsets of S each of

size r that are pairwise intersecting. If n ≥ 2r, then

|A| ≤

(

n− 1

r − 1

)

.

Moreover, if n > 2r the upper bound is attained only if the sets in A contain a fixed

element of S.

There exists numerous proofs of the EKR theorem (see [60, 83] for example) as

well as various analogues (see [61, 62, 72, 85] for example). The graph analogue

introduced by Holroyd, Spencer and Talbot [72] is defined as follows: given a graph

G and an integer r ≥ 1, let I(r)(G) denote the family of independent sets of size r

of G. For a vertex v of G, let I(r)
v (G) denote the family of independent sets of size

r that contain v. This family is called an r-star. Then G is said to be r-EKR if

no pairwise intersecting subfamily of I(r)(G) is bigger than the largest r-star, and

if every maximum size pairwise intersecting subfamily of I(r)(G) is an r-star, then

G is said to be strictly r-EKR. Let µ(G) denote the minimum size of a maximal

independent set of G. Holroyd and Talbot conjectured that if 2r ≤ µ(G), then G is

r-EKR and strictly r-EKR if 2r < µ(G).

We consider two large subfamilies of trees: the class of depth-two claws and the

class of elongated claws with a short limb.

Theorem (Theorems 5.8 and 5.9 combined). Let r, n ≥ 1. Let G be a depth-two

claw, and let H be an elongated claw with n leaves and a short limb. Then the

following holds:

• G is strictly r-EKR if 2r ≤ µ(G) + 1.

• H is r-EKR if 2r ≤ n.

Chapter 5 is based on joint work with Matthew Johnson and Daniel Thomas and

has been submitted for publication [55].

In addition to the above-mentioned results the thesis is supplemented with the

following work. Chapter 3 investigates the implications of Theorem 3.14 on the
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ergodicity of the WSK algorithm in statistical mechanics while Chapters 2 and 5

contain further results as well as pose some conjectures and problems. All of these

can be found in their respective journal versions. Unpublished work obtained by the

author can also be found in Sections 2.5 and 3.4.

For the convenience of the reader the definitions in this section will be repeated

in later chapters.



Chapter 2

A Reconfigurations Analogue of

Brooks’ Theorem and its

Consequences

2.1 Introduction

Recall the celebrated theorem of Brooks [24] which states that a connected graph

G has a ∆-colouring unless G is the complete graph on ∆ + 1 vertices or a cycle

with an odd number n of vertices. Our goal is to translate Brooks’ Theorem to the

setting of reconfiguration graphs.

Given a search problem (a computational problem that asks for a solution to

be found), one can define a corresponding reconfiguration graph as follows: vertices

correspond to solutions and edges join solutions that are, in some sense, “close” to

one another. As this definition suggests, for a given search problem there might be

more than one way to define an edge relation of the reconfiguration graph. Recon-

figuration graphs have not only been studied for colouring, but also for many other

problems including boolean satisfiability [65, 89, 107], clique and vertex cover [75],

independent set [12, 14, 81], list edge colouring [76, 78], L(2, 1)-labeling [77], shortest

path [10, 11], and subset sum [74]; see also a recent survey of van den Heuvel [67] or

the PhD thesis of Mouawad [101] for an excellent exposition. Typical questions are:

is the reconfiguration graph connected; if so what is its diameter; if not what is the

9
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diameter of its (connected) components; and how difficult is it to decide whether

there is a path between a pair of given solutions? Recent work has included looking

at finding the shortest path in the reconfiguration graph between given solutions [80],

and studying the fixed-parameter-tractability of this problem [15, 79, 102, 103].

For the colouring problem, two closely related definitions of the reconfiguration

graph can be found in the literature. In particular we have reconfiguration steps

defined as Kempe changes or as recolourings. A Kempe change is the exchange of

colours of a component of the graph induced by two colours and a recolouring is

a Kempe change of a component containing exactly one vertex. The reconfigura-

tion graph having as reconfiguration steps Kempe changes can be traced back to

1879 in Kempe’s well known fallacious proof of the Four Colour Theorem [84]. The

Kempe change method has since proved to be a powerful tool both in theory (see,

e.g., [57, 94, 97]) and in practice (see, e.g., [104, 116, 117]) and we refer the reader

to Chapter 3 for a detailed survey and contribution on the topic. Reconfiguration

graphs having as reconfiguration steps recolourings have received much more at-

tention (see Section 2.1.1) and in the remainder of this chapter we are concerned

with the latter definition. With slight abuse of notation, we refer to the k-colouring

reconfiguration graph of G, denoted Rk(G), as the graph with vertex set all possible

k-colourings of G, and two k-colourings γ1 and γ2 are joined by an edge if γ1 is

obtained from γ2 by a recolouring step; in other words, if for some vertex u ∈ V ,

γ1(u) 6= γ2(u), and, for all v ∈ V \ {u}, γ1(v) = γ2(v); that is, if γ1 and γ2 disagree

on exactly one vertex.

As mentioned, besides determining a bound on the diameter of the reconfigu-

ration graph or of its components, another common aim in this area is to decide

whether or not there is a path between a given pair of colourings α and β in a re-

configuration graph. This leads to the following decision problem (where k denotes

a fixed integer, that is, k is not part of the input):

k-Colour Path

Instance : A graph G = (V,E) and two k-colourings α and β.

Question : Is there a path in Rk(G) between α and β?

Note that an equivalent formulation of this problem is whether there exists a se-
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quence of colourings γ0, γ1, . . . , γt with α = γ0, β = γt such that adjacent colourings

disagree on a single vertex. We call this a recolouring sequence. If, for 1 ≤ i ≤ t,

vi is the vertex on which γi and γi−1 disagree, then we can think of β as being

obtained from α by recolouring the vertices v1, . . . , vt in order. Therefore, rather

than explicitly considering the reconfiguration graph, one could seek to find a re-

colouring sequence of G; that is, to describe a sequence of vertices and to say which

colour each vertex should be recoloured (while avoiding that two adjacent vertices

are coloured alike).

2.1.1 Existing Results

The study of reconfiguration graphs of colourings was initiated by Cereceda, van

den Heuvel and Johnson [26, 27] who proved some initial results on the connectivity

of reconfiguration graphs. k-Colour Path was shown to be solvable in time O(n2)

for k = 3 by Cereceda, van den Heuvel and Johnson [28]; they also proved that

the diameter of any component of the reconfiguration graph R3(G) of a 3-colourable

graphG is O(n2). In contrast, Bonsma and Cereceda [13] proved that this problem is

PSPACE-complete for k = 4 even for bipartite graphs (and for planar graphs for 4 ≤

k ≤ 6), and examples of reconfiguration graphs with components of superpolynomial

diameter were given in all these cases.

Bonamy et al. [9] showed that reconfiguration graphs of k-colourings of chordal

graphs are connected with diameter O(n2) whenever k is more than the size of the

largest clique (and they gave an infinite class of chordal graphs whose reconfiguration

graphs have diameter Ω(n2)). The proof idea of the former result is by induction

on the number of vertices: since a pair u, v of vertices of a chordal graph G whose

identification also results in a chordal graph H can be found, it follows by induction

that all k-colourings of H can be obtained from one another by a sequence of O(n2)

recolouring steps. To complete the proof, a sequence of O(n2) recolouring steps from

any k-colouring of G to a k-colouring that colours u and v alike is described.

Bonamy and Bousquet [7] generalized this result by showing that if k is at least

two greater than the treewidth tw(G), then, again, Rk(G) is connected with diameter

O(n2); note that if k = tw(G) + 1, then Rk(G) might not be connected since, for
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example, Gmight be a complete graph on tw(G)+1 vertices and then Rk(G) contains

no edges. Their approach is as follows: say that an independent set S of vertices is

merged into a single vertex z if the vertices in S are replaced by the vertex z and,

for each vertex x ∈ V \S, xz is an edge if and only if there exists a vertex y ∈ S such

that xy is an edge in G. They show that there exists a sequence of O(n2) recolouring

steps from any k-colouring to a k-colouring satisfying the following property: there

exists a family S1, . . . , Sp of independent sets in G such that, for i = 1, . . . , p, the

vertices in Si are coloured alike and merging each of these sets into a single vertex

results in a complete graph. As Rk(Kn) is straightforwardly shown to have diameter

O(n2) provided that n ≤ k+1 the result then follows with a few extra considerations.

Bousquet and Perarnau [20] considered sparse graphs. They proved that, for all

d ≥ 0, k ≥ d and ǫ > 0, the reconfiguration graph Rk(G) of every (d+1)-colourable

graph G has a polynomial diameter provided that the maximum average degree of

G is at most d− ǫ (the maximum average degree of a graph G is defined as 2|E(G)
|V (G)|

).

The proof is by induction on the average degree of the graph: a sequence of O(n2)

recolouring steps from any (d+1)-colouring of the graph to a d-colouring is described.

As colour d+ 1 is not used in the resulting colouring, a subset S ⊂ V is recoloured

with colour d+1 with the property that the graph G−S has average degree at most

d− 1− ǫ. The proof then proceeds by applying the induction hypothesis to G− S.

This approach is also used in the proofs of Theorem 1.1 in [7] and Theorem 2.2 of

this chapter. We will mention other related results later.

2.1.2 Our Results

We study reconfigurations of colourings for graphs of bounded maximum degree.

Our first result is an analogue of Brooks’ theorem for reconfiguration graphs, that

is, we answer the question: given a k-colouring γ of G, k ≥ ∆ + 1, is there a path

from γ to a ∆-colouring in Rk(G)? (Note that, for any two integers k and k′ with

k ≥ k′, every k′-colouring of G corresponds to a vertex of Rk(G) since a k
′-colouring

is a k-colouring in which not all colours are used.)

In order to state our results we recall some definitions. A k-colouring γ of a graph

is frozen if, for every vertex v, every colour except γ(v) is used on the neighbours
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of v. Notice that a frozen colouring is an isolated vertex in Rk(G). The length

of a shortest path between colourings α and β in Rk(G) is denoted by dk(α, β).

We state our result for connected graphs as disconnected graphs can be considered

component-wise.

Theorem 2.1. Let G be a connected graph on n vertices with maximum degree ∆ ≥

1, and let k ≥ ∆+ 1. Let α be a k-colouring of G. If α is not frozen and G is not

K∆+1 or, if n is odd, Cn, then there exists a ∆-colouring γ of G such that dk(α, γ)

is O(n2).

Note that α can only be frozen if k = ∆+ 1, and only if G is ∆-regular. Let us

briefly note that such colourings do exist: for example a 3-colouring of C6 in which

each colour appears exactly twice on vertices at distance 3, or a 4-colouring of the

cube in which diagonally opposite vertices are coloured alike. In fact, as we will see,

the case k = ∆ + 1 is the only cause of difficulty in the proof of our first result,

which can be found in Section 2.2.

Using Theorem 2.1 we can, with the aid of a result of Matamala [90] on parti-

tioning graphs into two degenerate graphs, give a characterization of R∆+1(G) for

∆ ≥ 3, which is our next result and is proved in Section 2.3.

Theorem 2.2. Let G be a connected graph on n vertices with maximum degree ∆ ≥

3. Let α and β be (∆ + 1)-colourings of G. If α and β are not frozen colourings,

then d∆+1(α, β) is O(n
2).

Theorem 2.2 implies that R∆+1(G) contains a number of isolated vertices (rep-

resenting frozen colourings) plus, possibly, one further component. We observe that

the requirement that ∆ ≥ 3 is necessary since, for example, R3(Cn), n odd, has

more than one component consisting of at least two vertices [26, 27].

It is possible that the number of isolated vertices is zero; that is, there are no

frozen (∆+1)-colourings. For example, suppose that G is a connected regular graph

on n 6≡ 0 mod (∆+1) vertices with maximum degree ∆ ≥ 3, and let V1, V2, . . . , V∆+1

be the colour classes of a frozen (∆ + 1)-colouring γ. Then, by definition, for all

i, j, i 6= j, each v ∈ Vi has a neighbour in Vj and cannot have more than one

neighbour in Vj , as it has ∆ neighbours in total. Hence, |V1| = · · · = |V∆+1| and
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thus n ≡ 0 mod (∆+1), a contradiction. We note that connected ∆-regular graphs

on n vertices can always be found (unless n and ∆ are both odd): for example, take

n vertices arranged on a circle and join each to the nearest ⌊∆/2⌋ vertices on either

side and also, if ∆ is odd, to the diametrically opposite vertex.

It is also possible that there are only isolated vertices. Consider R4(K4) for

instance; and Brooks’ Theorem tells us that complete graphs are the only graphs

for which R∆+1(G) is edgeless, since other graphs have colourings in which only ∆

colours are used and by recolouring any vertex with the unused colour we find a

neighbouring colouring.

Though we will not directly use it, let us discuss a result that implies some cases

of Theorem 2.2. First a definition: the Grundy number of a graph is the maximum

number of colours needed if the vertices of the graph are coloured greedily. In [7],

it was shown that, for any graph G on n vertices and any positive integer k, if k is

greater than the Grundy number of G, then there is a path of length O(n2) between

any pair of k-colourings of G. As it is well-known that the Grundy number of G is

at most ∆+1, this implies Theorem 2.2 except in the case that the Grundy number

of G is exactly ∆+ 1.

Grundy Number

Instance : A graph G = (V,E).

Question : Does G have Grundy number at most ∆?

The decision problem Grundy Number is coNP-complete even if we restrict our

attention to bipartite graphs [67] (notice here that ∆ is not fixed). In other words,

the class of graphs with Grundy number ∆ + 1 is coNP-complete to recognize.

Therefore the class of graphs with Grundy number ∆ + 1 is unlikely to admit a

finite list of forbidden induced subgraphs (if the list were of finite size, its members

could be recognized in constant time).

2.1.3 Two Characterization Results

Theorem 2.2 enables us to complete both a structural characterization and an al-

gorithmic characterization for reconfiguration graphs of colourings of graphs with

bounded maximum degree. In order to explain this we need to introduce some more
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terminology.

Throughout the chapter let n denote the number of vertices of a graph. We

distinguish four types of classes of k-colourable graphs for our structural character-

ization. As we will see, these four types also roughly correspond to four types of

complexity results. We say that a graph class G of k-colourable graphs is of

• type 1 if, for all G ∈ G, Rk(G) is connected and has diameter O(n2);

• type 2 if, for all G ∈ G, each component of Rk(G) has diameter O(n2)

and Rk(G) has at most one component that is not an isolated vertex;

• type 3 if, for all G ∈ G, each component of Rk(G) has diameter O(n2);

• type 4 if G contains an infinite family of graphs G such that Rk(G) is discon-

nected and has at least one component with a superpolynomial diameter.

Note that every graph class of type 1 is of type 2 and that every graph class of type 2

is of type 3. At this point the reader may wonder whether there exists a class of

graphs whose reconfiguration graph of k-colourings is connected, but does not have

an (at most) quadratic diameter. This is still an open problem (see, for example, [9]).

The structural characterization presented in Theorem 2.3 below implies that if such

a graph class exists, then it contains graphs whose maximum degree is unbounded.

For integers k ≥ 1 and ∆ ≥ 0, let G∆
k be the class of connected k-colourable

graphs with maximum degree ∆. Note that G∆
1 = ∅ if ∆ ≥ 1 and that Gi

k ⊆ Gj
k for

any two integers i and j with i ≤ j.

We are now ready to formally state the consequences of our earlier results. The-

orem 2.3 describes the connectivity and the diameter of the reconfiguration graph

of a graph of bounded degree in terms of the four types defined above. Theorem 2.4

completely determines the computational complexity of k-Colour Path restricted

to graphs of bounded degree. We obtain these two characterization results by com-

bining Theorem 2.2 with a number of results from the literature.

Theorem 2.3. Let k ≥ 1 and ∆ ≥ 0 be integers. Then:
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(i) G∆
k is of type 1 if

• k = 1 and ∆ = 0

• k ≥ 2 and ∆ ≤ k − 2.

(ii) G∆
k is of type 2 if

• k = 2 and ∆ ≥ 1

• k ≥ 4 and ∆ = k − 1.

(iii) G∆
k is of type 3 if

• k = 3 and ∆ ≥ 2.

(iv) G∆
k contains a subclass of type 4 if

• k ≥ 4 and ∆ ≥ k.

Proof. We prove each of the four statements separately.

(i) The case k = 1 and ∆ = 0 is trivial. The case k ≥ 2 and ∆ ≤ k − 2 has been

shown by Dyer, Flaxman, Frieze and Vigoda [42]; see also [13, 26, 25] for a

proof.

(ii) The case k = 2 and ∆ ≥ 1 follows from the fact that G∆
2 consists of connected

bipartite graphs. Hence, the corresponding reconfiguration graphs are either

edgeless or isomorphic to a single edge (if the bipartite graph consists of a

single vertex). The case k ≥ 4 and ∆ = k − 1 follows from Theorem 2.2.

(iii) This case has been proven by Cereceda, van den Heuvel and Johnson [28].

(iv) Let k ≥ 4 and ∆ ≥ k. Bonsma and Cereceda [13] constructed an infinite

family of k-colourable graphs whose reconfiguration graphs have components

of superpolynomial diameter. It can be observed that these graphs belong to

Gk
k , and hence, to G∆

k for all ∆ ≥ k.
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�

Theorem 2.4. Let k ≥ 1 and ∆ ≥ 0 be integers. Then k-Colour Path restricted

to G∆
k is

(i) solvable in O(n) time if

• k ≤ 2

• k ≥ 3 and ∆ ≤ k − 2;

(ii) solvable in O(n2) time if

(a) k ≥ 3 and ∆ = k − 1;

(b) k = 3 and ∆ ≥ 3;

(iii) PSPACE-complete if

• k ≥ 4 and ∆ ≥ k.

Proof. We prove each of the four statements separately.

(i) This case follows from Theorem 2.3 (i) (the answer is always yes) unless k = 2

and ∆ ≥ k−1 = 1. Recall from the proof of Theorem 2.3 (ii) that in the latter

case the reconfiguration graph is either edgeless or isomorphic to an edge. The

answer is always no in the first case and yes in the second case.

(ii)(a) If k = 3 and so ∆ = 2, then G is either a path or a cycle. We know k-Colour

Path always has the answer yes for paths [25], and can be decided for cycles

by a single traversal of the edges [28]. Now let k ≥ 4. By Theorem 2.3 (ii), it

is necessary in this case only to check for each vertex v in the input graph G,

for each of the two given k-colourings α and β, whether v and its neighbours

use every colour in {1, 2, . . . ,∆+1}. If they do not, neither colouring is frozen,

so there is a path between them.

(ii)(b) This follows from [28] for the superclass consisting of all 3-colourable graphs.
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(iii) This follows from the aforementioned result of Bonsma and Cereceda [13] as

from their proof it can be seen that the problem is PSPACE-complete for Gk
k ,

and thus for G∆
k for all ∆ ≥ k.

�

2.1.4 Further Work and Open Problems

We already mentioned the open problem on the existence of a class of graphs whose

reconfiguration graph of k-colourings is connected, but does not have an (at most)

quadratic diameter. We recall another open problem from the literature which is

on degenerate graphs and on which we can report some partial progress due to our

new results. A graph G is k-degenerate if every induced subgraph of G has a vertex

with degree at most k. Note that any graph is ∆-degenerate. Cereceda [25] made

the following conjecture.

Conjecture 2.5. For any pair of integers d, k with k ≥ d + 2, the reconfiguration

graph Rk(G) of a d-degenerate graph G has diameter O(n2).

It turns out that proving (or disproving) this conjecture is a very challenging

problem even for d = 2 and k = 4. Using Theorem 2.2 we can solve one more case,

as shown in the next theorem which summarizes our current knowledge.

Theorem 2.6. Let d ≥ 0 and k ≥ d + 2, and let G be a d-degenerate connected

graph. Then Rk(G) has diameter O(n2) if

(i) d = 0

(ii) d = 1

(iii) d = ∆− 1

(iv) d ≥ ∆.

Proof. We prove each of the four statements separately.

(i) This case is trivial.
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(ii) Cereceda [25] proved that for any two integers d and k with k ≥ 2d + 1, the

reconfiguration graph Rk(G) of any d-degenerate graph G has diameter O(n2).

Taking d = 1 proves the case. As an aside, Bousquet and Perarnau [20] proved

that for any two integers d and k with k ≥ 2d + 2, the reconfiguration graph

Rk(G) of any d-degenerate graph G has diameter O(n).

(iii) If k = d + 2 = ∆ + 1 then we can apply Theorem 2.2 after observing that a

(∆− 1)-degenerate graph has a vertex with at most ∆− 1 neighbours, so no

k-colouring α is frozen. If k ≥ d+ 3 = ∆ + 2 then we apply Theorem 2.3 (i).

(iv) This case follows from Theorem 2.3 (i).

�

Another direction for future work is to consider the problem of finding a path or

a shortest path in the reconfiguration graph Rk(G) between two given k-colourings

α and β of a graph G of maximum degree ∆. For k ≥ 4 and ∆ ≥ k this problem is

PSPACE-hard due to Theorem 2.4 (iv). However, for 1 ≤ k ≤ 3 or 0 ≤ ∆ ≤ k − 1,

this problem is not solved in statements (i)–(iii) of Theorem 2.4, which correspond

to exactly those cases for which k-Colour Path is polynomial-time solvable, but

which only provide a yes-answer or no-answer in polynomial time. Note that the

maximum degree of Rk(G) could be equal to (k − 1)n. This bound, together with

an O(n2) bound on its diameter, only imply an (kn)O(n2) bound on the running time

of a Breadth-First Search starting in one of the colourings α, β.

Let us discuss what is known for 1 ≤ k ≤ 3 or 0 ≤ ∆ ≤ k − 1. First of all,

the problem is trivial to solve if k ≤ 2. For k = 3, Johnson et al. [79] proved that

it is possible in O(n +m) time to find even a shortest path between two given k-

colourings in the reconfiguration graph R3(G) of any 3-colourable graph G with n

vertices and m edges. The case 0 ≤ ∆ ≤ k − 2 has been shown to be solvable in

O(n2) time by Cereceda [25]. This leaves us with the case ∆ = k − 1 and k ≥ 4, or

equivalently, ∆ ≥ 3 and k = ∆+ 1. For this case we have the following result, the

proof of which can be found in Section 2.4.
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Theorem 2.7. Let G be a connected graph on n vertices with maximum degree

∆ ≥ 3. Let k = ∆+ 1. If G is not regular, then it is possible to find in O(n2) time

a path between any two given k-colourings α and β in Rk(G).

Hence, the only remaining case, which we leave as an open problem, is when

∆ ≥ 3, k = ∆ + 1 and G is ∆-regular. We believe that solving this case is non-

trivial, because the straightforward approach of modifying the structural proof of

Theorem 2.2 does not work. As explained in Section 2.4, such an approach would

require us to find a maximum independent set for graphs of bounded maximum

degree in polynomial time. However, this problem is NP-complete even for cubic

graphs [63].

2.2 The Proof of Theorem 2.1

In order to prove Theorem 2.1, we need a number of lemmas that are mostly con-

cerned with (∆+ 1)-colouring. We define a number of terms we will use to describe

vertices of G with respect to some (∆ + 1)-colouring. A vertex v is locked if ∆ dis-

tinct colours appear on its neighbours. A vertex that is not locked is free. Clearly a

vertex can be recoloured only if it is free. If v is locked and then one of its neighbour

is recoloured and v becomes free, we say that v is unlocked. A vertex v is superfree if

there is a colour c 6= ∆+1 such that neither v nor any of its neighbours is coloured c.

A vertex can be recoloured with a colour other than ∆ + 1 if it is superfree. Note

there are ∆−1 distinct colours that must appear on the ∆ neighbours of v if it is not

superfree. We say that G is in (∆ + 1)-reduced form if for every vertex v coloured

with ∆ + 1, v and each of its neighbours are locked. This implies that the distance

between any pair of vertices coloured (∆ + 1) is at least 3 as no locked vertex can

have two neighbours coloured (∆ + 1).

The key to proving Theorem 2.1 will be to show that from a (∆ + 1)-colouring

one can recolour some of the vertices to arrive at a colouring in which colour ∆+ 1

appears on fewer vertices. We begin by considering the case where the colour ∆+1

appears on only one vertex. The proof of the following lemma is inspired by a proof

of Brooks’ Theorem [92], but also uses some new arguments.
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Lemma 2.8. Let G = (V,E) be a connected graph on n vertices with maximum

degree ∆ ≥ 3, and let α be a (∆ + 1)-colouring of G with exactly one vertex v

coloured ∆ + 1. If G does not contain K∆+1 as a subgraph, then there exists a

∆-colouring γ of G such that dk(α, γ) is O(n).

Proof. We can assume that G is in (∆ + 1)-reduced form since if v is not locked,

then we can immediately recolour it; if a neighbour of v is not locked, then it can

be recoloured and this will unlock v and allow us to recolour it.

Let us fix a labelling of the neighbours of v: let xi be the neighbour such that

α(xi) = i, 1 ≤ i ≤ ∆. Our aim is to find a recolouring sequence that unlocks v.

There is one recolouring sequence that we will use several times. Suppose that C

is a connected component of a subgraph of G induced by two colours i and j,

∆ + 1 /∈ {i, j}, and no vertex coloured j in C is adjacent to v. First the vertices

coloured j are recoloured with ∆+1. Then the vertices coloured i are recoloured j,

and finally the vertices initially coloured j are recoloured i. It is clear that all

colourings are proper and the overall effect is to swap the colours i and j on C.

We say that any colouring γ where G is in (∆ + 1)-reduced form, only v is

coloured ∆+ 1 and γ(xi) = i, 1 ≤ i ≤ ∆, is good. For any good colouring γ, let Gγ
ij

be the maximal connected component containing xi of the subgraph of G induced

by the vertices coloured i and j by γ.

We make some claims about good colourings. When we claim that v can be

unlocked, it is implicit that colour ∆ + 1 is not used on any other vertex in the

graph so that unlocking v allows us to reach a colouring where ∆ + 1 is not used.

Claim 1: If γ is good and xj /∈ Gγ
ij, then v can be unlocked.

If xj /∈ Gγ
ij , then the only vertex adjacent to v in Gγ

ij is xi. Thus the colours i and j

can be swapped on Gγ
ij. Then v has two neighbours with colour j and is unlocked.

Claim 2: If γ is good and Gγ
ij is not a path from xi to xj , then v can be unlocked.

By Claim 1, we can assume that xi and xj are in Gγ
ij. They must have degree 1

in Gij since, as G is in (∆ + 1)-reduced form, they are locked. Suppose that Gγ
ij is

not a path and consider the shortest path in Gγ
ij from xi to xj , and the vertex w

nearest to xi on the path that has degree more than 2. Then w has at least three
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neighbours coloured alike in G and is superfree and can be recoloured with a colour

other than i, j or ∆ + 1. Call this new colouring γ′ and note that, by the choice of

w, Gγ′

ij does not contain xj. Now Claim 1 implies Claim 2.

As G is K∆+1-free, v and its neighbours are not a clique so we can assume that

x1 and x2 are not adjacent. Let u be the unique neighbour of x1 coloured 2. For

a good colouring γ, note that u is in Gγ
12, and let Hγ

23 be the component of the

subgraph of G induced by the vertices with colour 2 and 3 that contains u.

Claim 3: If γ is good and u has more than one neighbour in Hγ
23, then v can be

unlocked.

If Gγ
12 is not a path, then use Claim 2. Otherwise u has two neighbours coloured 1;

if u has two neighbours in Hγ
23, then it also has two neighbours coloured 3 and is

superfree. Recolour it and apply Claim 1.

Claim 4: If γ is good and Hγ
23 is a path, then v can be unlocked.

By Claim 2 we can assume Gγ
23 is a path. If Hγ

23 = Gγ
23, then we can use Claim 3.

So we assume Hγ
23 6= Gγ

23 and so x2, x3 /∈ H23 and H23 contains no neighbour of v.

Let γ′ be the colouring obtained by swapping the colours 2 and 3 on Hγ
23.

By Claim 3, u is an endvertex of Hγ
23. Let the other endvertex be w. (If w = u,

then u has no neighbour coloured 3 and can be recoloured. Then use Claim 2.)

If Gγ′

12 is not a path from x1 to x2, we use Claim 2. If it is such a path, then

let the unique neighbour of x1 in Gγ′

12 be y and clearly y ∈ Hγ
23. From x2 traverse

Gγ′

12 until the last vertex z that is also in Gγ
12 is reached. Let t be the next vertex

along from z towards x1 in G
γ′

12. Clearly t is also in Hγ
23. In fact, we can assume that

w = y = t since if y or t has degree 2 in H23 as well as in Gγ′

12 it has two neighbours

coloured 1 and two neighbours coloured 3 in γ′ and is superfree. It can be recoloured

and then Claim 2 is used.

So x1wz is coloured 131 in γ so is in Gγ
13. Then z is in both Gγ

13 and Gγ
12 so is

superfree and can be recoloured so that Claim 2 can be used. This completes the

proof of Claim 4.

To complete the proof: we know that the initial colouring α is good. If none of

the four claims can be used, then consider Hα
23. We know that u has degree 1 in

H23, but H23 is not a path. So traversing edges away from u in Hα
23, let s be the
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first vertex reached with degree 3. Then s is superfree and can be recoloured so that

H23 becomes a path, and then Claim 4 can be used. �

In Lemma 2.10, we shall see how the number of vertices coloured ∆ + 1 can be

reduced when more than one such vertex is present. First we need some definitions

and a lemma. Let P be a path:

• P is nearly (∆ + 1)-locked if its endvertices are locked and coloured ∆ + 1;

• P is (∆+ 1)-locked if it is nearly (∆+ 1)-locked and every vertex on the path

is locked.

Lemma 2.9. Let G be a graph in (∆ + 1)-reduced form. If G has a (∆ + 1)-locked

path P , then each endvertex of P is an endvertex of an (∆+1)-locked path of length

3.

Proof. As we noted, by the definition of (∆+ 1)-reduced form, a path between two

vertices coloured ∆ + 1 has length at least 3. Let u be one endvertex of P and let

Q be the shortest (∆ + 1)-locked path that ends at u (so Q is induced). Let v be

the vertex on Q at distance 2 from u. Then, as v is locked and not a neighbour of

u, it has a neighbour w coloured ∆ + 1 that is not u and the path from u to w has

length 3.

�

A path is nice if it is a nearly (∆ + 1)-locked path, it contains free vertices and

the endvertices and their neighbours are the only locked vertices. Notice that a

nice path is not necessarily induced and, in particular, may contain a (∆+1)-locked

subpath. Notice that the definition implies that a nice path has at least five vertices.

Lemma 2.10. Let G be a connected graph on n vertices with maximum degree

∆ ≥ 3, let α be a (∆ + 1)-colouring of G, and suppose that G is in (∆ + 1)-reduced

form. If G has at least two (∆ + 1)-locked vertices and is not frozen, then there

exists a (∆ + 1)-colouring γ of G, such that d∆+1(α, γ) = O(n) and fewer vertices

are coloured ∆+ 1 with γ than with α.
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Proof. We consider a number of cases.

Case 1: There exists a free vertex u adjacent to a (∆ + 1)-locked path P .

Let b be the vertex on the path adjacent to u. As b is locked it has a neighbour a

coloured ∆ + 1. Let c be a neighbour of b on P other than a. As c is locked it has

a neighbour d coloured ∆ + 1.

Since G is in (∆ + 1)-reduced form, u is not adjacent to a or d, but might be

adjacent to c. In each case, it is routine to verify that by recolouring u to ∆ + 1, b

and c can both be recoloured unlocking a and d and allowing them to be recoloured.

Thus the number of vertices coloured ∆ + 1 is reduced.

Case 2: G has a nice path.

Let P be a shortest nice path. Let the endpoints be v and w with neighbours s and

t on P respectively. If s and t are adjacent, then the path vstw is (∆ + 1)-locked

and has a free vertex adjacent to s so use Case 1. Thus assume that P is induced

since the presence of any other edge would imply either a shorter nice path could

be found or that the graph was not in (∆ + 1)-reduced form.

We use induction on the number ℓ of free vertices in P to show that there is a

sequence of recolourings that lead to a colouring that has fewer vertices coloured ∆+

1.

If ℓ = 1, let u be the free vertex in P . Recolour u to ∆ + 1. Now s and t have

two neighbours coloured ∆ + 1 and can be recoloured. Then v and w are unlocked

and can both be recoloured, and this leaves one vertex on P coloured ∆ + 1 rather

than two.

Suppose that ℓ = 2. Let P = vsu1u2tw where u1 and u2 are free vertices. First

suppose that u1 or u2, say u1, is superfree: recolouring u1 to a colour c 6= ∆ + 1

unlocks s; recoloured s unlocks v which, in turn, allows us to recolour it, and the

number of vertices coloured ∆ + 1 has been reduced as required. Similarly if u1 is

not superfree, but a neighbour x is, then x can be recoloured to a colour c 6= ∆+ 1

and if xs is an edge, then s is unlocked and so v can be recoloured, and otherwise

u is now superfree, the colours in the neighbourhood of s are unchanged, and the

preceding argument can be applied.

Thus henceforth we can assume that u1, u2 and their neighbours are not superfree
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which implies that they have degree ∆.

Subcase 2.1: u1 and u2 do not share a neighbour. Let x1 and x2 be neighbours of

u1 and u2 not in P . Clearly x1 6= x2 and u1x2 and u2x1 are not edges.

Subcase 2.1.1: x1 is locked. We know x1 has a (∆+ 1)-locked neighbour, and this

must be v (if it is some other vertex z, then vsu1x1z is a nice path that is shorter

than P ).

Suppose x1s is not an edge. Recolour u1 to ∆ + 1. This unlocks x1 which can

be recoloured with α(u1) which, in turn, unlocks v and allows us to recolour it with

α(x1). If u1 is free, it can be recoloured and the number of vertices coloured ∆ + 1

is reduced and we are done. If u1 is locked, then note that s has been unlocked

(as it no longer has a neighbour coloured α(u1)). Thus we can recolour s and then

recolour u1 with α(s) and again we have removed one instance of the colour ∆ + 1.

Suppose instead that x1s is an edge. Notice that α(s), α(u1) and α(x1) are

distinct as the three vertices form a triangle. Recolour u1 with ∆ + 1 and then s

with α(u1). Now v is unlocked and can be recoloured with α(s). If u1 is free, then

recolour it and we are done. Otherwise this sequence of recolourings leaves u1 locked

(with α(u1) and α(x1) as the colours on s and x1 respectively). So, from α, we do

the following instead: again start by recolouring u1 with ∆ + 1, but then recolour

x1 with α(u1) to unlock v. Now that α(x1) is not used on a neighbour of u1, u1 is

free and can be recoloured.

Subcase 2.1.2: x1 is free. If x2 is locked, we can, by symmetry, use the previous

subcase, so we can assume that both x1 and x2 are free. Recolour u2 to ∆ + 1.

Then t is unlocked and can be recoloured which, in turn, unlocks w allowing us to

recolour it too. If u2 is free, we recolour it and are done. If u1 is free, we recolour it

and unlock u2 and, again, recolour it.

If u1 and u2 are both locked, observe that x1 is still free as it has no neighbour

coloured ∆ + 1 since u2x1 is not an edge. Recolour x1 to ∆ + 1, and then recolour

u1 to α(x1). Note that now s has no neighbour coloured α(u1) and is free and can

be recoloured. Thus v is unlocked and can also be recoloured. By recolouring u1,

we also unlock u2, so we recolour it and are done.

Subcase 2.2: u1 and u2 share a neighbour. Let x1 be a neighbour of u1 and u2.
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Since P is induced, x1 is not in P . If x1 is locked, then let its neighbour coloured

∆ + 1 be y. Then vsu1x1y is a shorter nice path unless y = v. By an analogous

argument we need y = w. This contradiction tells us that x1 must be free.

If x1 is joined to both s and t, then vsx1tw is a shorter nice path. So, without

loss of generality, assume that x1t is not an edge. Thus as u2 has a neighbour that

is not adjacent to x1, x1 has a neighbour x3 that is not adjacent to u2 since both

have degree ∆.

Subcase 2.2.1: x3 = s. Recolour u1 with ∆ + 1 and then s with α(u1). Now v is

unlocked and can be recoloured with α(s). If u1 is free, then recolour it and we are

done. If u2 or x1 is still free, then recolour one of them to unlock u1, which can, in

turn, be recoloured and we are done. Otherwise this sequence of recolourings leaves

u1, u2 and x1 locked so x1 is the only neighbour of u2 coloured α(x1). So, from α,

we do the following instead: recolour x1 with ∆ + 1 to unlock s and then v. If x1

can be recoloured, then we do so and we are done. Otherwise notice that α(x1) is

not used on a neighbour of u2. It is thus free and can be recoloured to unlock x1

which can then be recoloured.

Subcase 2.2.2: x3 6= s, and x3 is free. First, suppose x3s is an edge. Recolour u2

to ∆ + 1, t to α(u2) and w to α(t). If either u2 or one of its neighbours is now free,

u2 can be recoloured and we are done. Otherwise u1, u2 and x1 are all locked, but

x3 is still free since it has no neighbour coloured ∆ + 1. Recolour x3 to ∆ + 1 to

unlock x1; then recolour x1 to unlock and recolour u2. As x3s is an edge, s has two

neighbours coloured ∆ + 1. Thus we recolour s to unlock v.

If x3t is an edge we can use a similar argument. So suppose x3s and x3t are not

edges. Recolour u2 to ∆+1, to unlock and recolour first t and then w. It is possible

to recolour u2 unless it and all its neighbours are locked. This implies that u1, x1

and u2 are locked. We consider two subcases.

Subcase 2.2.2.1: u1x3 is not an edge. We recolour x3 to ∆ + 1 to unlock and

recolour x1 and then u2. Notice that u1 is now free since it has no neighbour

coloured ∆+1. Recoloured u1 unlocks s, so we recolour it, which in turn unlocks v.

Observe that x1 now has two neighbours u1 and x3 with colour ∆ + 1 so is free.

If u1 or u3 is free, we can recolour at least one of them directly and we are done.
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Otherwise, we recolour x1 so that x3 and u1 can now be recoloured.

Subcase 2.2.2.2: u1x3 is an edge. Recolour u3 to ∆+1, then recolour u1, s and v.

Observe that x1 now has two neighbours u2 and u3 with colour ∆ + 1. If u2 or u3

are free, we are done. Otherwise, recolour x1, then recolour u2 and x3, and we are

done.

Subcase 2.2.3: x3 6= s, and x3 is locked. Then x3 has a (∆ + 1)-locked neigh-

bour y. If y = v, the path H = vx3x1u2tw is nice with two free vertices x1 and

u2. Furthermore, u1 is free and a neighbour of x1 and u2, in which case H satisfies

the previous subcase unless x3 and t are adjacent in which case use Subcase 2.1. A

similar argument can be made if y = w or y 6∈ {v, w}.

This completes the case ℓ = 2. (We note that if we wished to use the proof to

construct an algorithm, we would first check whether x3 is superfree as in this case

the proof can be simplified in many places.)

Now suppose that for all i < ℓ, if there is a nice path containing i free vertices,

the number of vertices coloured ∆+1 can be reduced. Suppose that the shortest such

path is P = vsu1u2 . . . uℓtw where ℓ ≥ 3. We recolour uℓ to ∆ + 1, then t and then

w. If uℓ or one of its neighbours is free, then uℓ can be recoloured and we are done.

Otherwise, uℓ and uℓ−1 are locked. Consider the path P ′ = vsu1 . . . uℓ−2uℓ−1uℓ. By

our inductive hypothesis, the number of colour ∆+1 vertices in P ′ can be reduced.

Case 2 is complete. (Let us remark that if ℓ = 2, then we can construct P ′ in this

way, but it will not be nice so it was necessary to consider that case separately.)

After Cases 1 and 2 we are left with:

Case 3: There does not exist a free vertex adjacent to a (∆ + 1)-locked path

and G has no nice path.

As G contains more than one (∆ + 1)-locked vertex, it contains a nearly (∆ + 1)-

locked path; let P be the shortest such path and let v and w be its endvertices. As

G is in (∆ + 1)-reduced form, v, w and their neighbours are locked. If P contains

no other vertices, it is (∆ + 1)-locked. Otherwise, since there are no nice paths, P

contains another locked vertex u. Let y be the neighbour of u coloured ∆ + 1. If y

is on P , then we can assume, without loss of generality, that it is not between v and

u. Then, whether or not y is on P , the subpath from v to u plus the edge uy is a
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shorter nearly (∆ + 1)-locked path. This contradiction proves that G must contain

a (∆ + 1)-locked path.

As G is not frozen, it contains a free vertex. Let Q be the shortest path in G

that joins a free vertex to a (∆ + 1)-locked vertex. Let v be the (∆ + 1)-locked

endvertex. So v is an endpoint of a (∆ + 1)-locked path R, and, by Lemma 2.9, we

can assume that R has length 3.

Let u be the endvertex of Q that is free. By the minimality of Q, u is the only free

vertex in Q. Let a be the neighbour of u in Q. As a is locked it has a (∆+1)-locked

neighbour z. Thus we must have z = v and Q = vau.

Let R = wtsv. Observe that us, ut, uv and uw cannot be edges as no locked

path has a free neighbour. Thus the vertices of R and Q other than v are distinct.

Consider the (not necessarily induced) pathM = wtsvau. Notice also that at is not

an edge, else the free vertex u is adjacent to the (∆ + 1)-locked path vatw.

Suppose M is an induced path. Recolour u with ∆ + 1 to unlock and recolour

a and then v. If u is not locked, then recolour and we are done. Else notice that

the vertices v and s are free, and the vertices u, a, t, w are locked. Consequently, we

have that M is a nice path, and by Case 2 we are done.

The only edge that might be present among the vertices of M is as so suppose

this exists. Recolour u with ∆ + 1 to unlock and recolour first a and then v. If u

or any of its neighbours are free, u can be recoloured and we are done. Otherwise

note that recoloured v unlocks s. It follows that the path H = uastw is nice, and

we can use Case 2. This completes Case 3.

As each vertex is recoloured a constant number of times, the lemma follows. �

We are now ready to prove Theorem 2.1, which we first restate.

Theorem 2.1. Let G be a connected graph on n vertices with maximum degree ∆ ≥

1, and let k ≥ ∆+ 1. Let α be a k-colouring of G. If α is not frozen and G is not

K∆+1 or, if n is odd, Cn, then there exists a ∆-colouring γ of G such that dk(α, γ)

is O(n2).

Proof. If k > ∆ + 1, then, by Brooks’ Theorem, a ∆-colouring γ exists in Rk(G)

unless G is complete or an odd cycle. We know that, in this case, Rk(G) is connected
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and has diameter O(n2) so certainly dk(α, γ) is O(n
2).

Suppose that k = ∆+1 and G is in (∆+ 1)-reduced form with α: if not, we try

to recolour each vertex with colour ∆ + 1 either directly or by first recolouring one

of its neighbours. Repeatedly applying Lemma 2.10 starting from α, we obtain a

(∆+ 1)-colouring γ′ by O(n2) recolourings such that at most one vertex is coloured

(∆ + 1) with γ′. Lemma 2.8 can now be applied to obtain a ∆-colouring γ from γ′

by O(n) recolourings. Hence, d∆+1(α, γ) ≤ O(n2) as required. �

2.3 The Proof of Theorem 2.2

First we need the following result of Matamala [90]. We use ω(G) to denote the

number of vertices in the largest clique in G.

Lemma 2.11 ([90]). Let G = (V,E) be a graph with maximum degree ∆ ≥ 3 and

ω(G) ≤ ∆. Let p1 and p2 be non-negative integers such that p1 + p2 = ∆− 2. Then

there is a partition {S1, S2} of V such that S1 induces a maximum size p1-degenerate

graph in G and S2 induces a p2-degenerate graph.

We also need the following two lemmas.

Lemma 2.12. Let G be a connected (∆ − 1)-degenerate graph on n vertices with

maximum degree ∆ ≥ 3, and let k ≥ ∆+1. Let α be a k-colouring of G. Then there

exists a ∆-colouring γ of G such that dk(α, γ) is O(n
2).

Proof. The result follows immediately from Theorem 2.1 by observing that a (∆−1)-

degenerate graph has a vertex with at most ∆ − 1 neighbours, so α is not frozen

and G is not K∆+1 or Cn. �

Lemma 2.13. Let G = (V,E) be a graph on n vertices with maximum degree ∆ ≥ 1.

Let γ1 and γ2 be ∆-colourings of G. Then d∆+1(γ1, γ2) is O(n
2).

Proof. We use induction on ∆. If ∆ ∈ {1, 2} the statement is trivially true. Let ∆ ≥

3. We observe that ω(G) ≤ ∆ because G is ∆-colourable. Applying Lemma 2.11

with p1 = 0 and p2 = ∆ − 2, we obtain a partition {S1, S2} of V such that S1 is
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a maximum independent set and S2 induces a (∆ − 2)-degenerate graph that we

denote by H .

From γ1 and γ2 recolour the vertices of S1 with colour ∆ + 1 (the colour that is

not used in either γ1 or γ2). This can be done by at most 2n recolourings. So now

we can focus on the colourings restricted to S2, and as long as we do not use the

colour ∆ + 1 we do not need to worry about adjacencies with S1. So let γH1 and

γH2 be the colourings of H that are obtained by taking the restrictions of γ1 and γ2

to S2, and if we can recolour from γH1 to γH2 by O(n2) recolourings without using

colour ∆ + 1, we will be done. We note that

• γH1 and γH2 use only colours from {1, 2, . . . ,∆};

• each component of H has maximum degree at most ∆− 1 (since every vertex

in S2 has at least one neighbour in S1 by the maximality of S1);

• each component of H is (∆− 2)-degenerate.

Thus we can apply Lemma 2.12 on each component of H to recolour each of γH1

and γH2 to a (∆ − 1)-colouring using at most O(n2) recolourings. By the inductive

hypothesis, there is a path of length O(n2) between these two (∆ − 1)-colourings

that includes only ∆-colourings so does not use colour ∆ + 1. Because at most 2n

recolourings were needed to recolour γ1 and γ2 to γH1 and γH2 , the total number of

recolourings is O(n2). This completes the proof of Lemma 2.13. �

The lemma says that there is a path between any pair of ∆-colourings, but,

because we are working with R∆+1(G), the intermediate colourings might use ∆+1

colours. We are now ready to prove Theorem 2.2, which we restate below.

Theorem 2.2. Let G be a connected graph on n vertices with maximum degree ∆ ≥

3. Let α and β be (∆ + 1)-colourings of G. If α and β are not frozen colourings,

then d∆+1(α, β) is O(n
2).

Proof. Theorem 2.1 implies that from each of α and β there is a path in R∆+1 to a ∆-

colouring; Lemma 2.13 implies that there is a path between these two ∆-colourings

that completes the path from α to β. �
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2.4 The Proof of Theorem 2.7

The degeneracy of a graph G is the least integer k such that G is k-degenerate.

We start with the following easy lemma, which is well known (see, for exam-

ple, [90]). We give a short proof for completeness.

Lemma 2.14. Let ∆ ≥ 1. Every connected graph with maximum degree ∆ that is

not regular is (∆− 1)-degenerate.

Proof. Let G be a smallest possible counterexample, so G has degeneracy and max-

imum degree equal to ∆ and contains a vertex v with deg(v) < ∆. If G − v has

degeneracy ∆, then, by the minimality of G, we find that G− v is ∆-regular. This

means that in G every neighbour of v has more than ∆ neighbours, which is not

possible. Hence, G − v has degeneracy ∆ − 1. Every induced subgraph G′ of G is

either an induced subgraph of G− v or contains v. Hence, G′ has a vertex of degree

less than ∆ contradicting the claim that G has degeneracy ∆. �

Lemma 2.14 tells us that Theorem 2.7 is a statement about (∆− 1)-degenerate

graphs.

We introduce some additional definitions. We let G[S] denote the subgraph

of a graph G = (V,E) induced by some set S ⊆ V . It is well-known that G is

p-degenerate for some integer p if and only if there exists a degeneracy ordering

v1, v2, . . . , vn of its vertices such that vi has at most p neighbours vj with j < i.

One can compute such an ordering in O(n2) time (let vn be a vertex of minimum

degree in G and, for i = n − 1, . . . , 1, let vi be a vertex of minimum degree in

G[V \ {vi+1, . . . , vn}]).

We need an algorithmic version of a result of Mihók [96], which was proven in-

dependently by Wood [118]. We present a slightly modified version of the proof of

Wood which was implicitly algorithmic (it suffices to make a few additional algo-

rithmic observations).

Lemma 2.15 ([96, 118]). Let r ≥ 1 and k ≥ r−1. Let G = (V,E) be a k-degenerate

graph on n vertices. Let p1, . . . , pr be non-negative integers so that
∑r

t=1 pt = k −

r + 1. Then it is possible to compute in O(n2) time a partition {V1, . . . , Vr} of V

such that G[Vt] is pt-degenerate for t = 1, . . . , r.
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Proof. We first compute a degeneracy ordering v1, . . . , vn of G in O(n2) time. For

i = 1, . . . , n, we define Xi = {v1, . . . , vi}. Then, by definition, vi has at most k

neighbours in Xi−1. It suffices to show that, for 2 ≤ i ≤ n, we can compute in O(n)

time a partition {Y1, . . . , Yr} of Xi, where G[Ys] is ps-degenerate for s = 1, . . . , r,

if we have as input such a partition of Xi−1. We note first that finding a partition

of X1 is trivial. Let i ≥ 2. Let {Z1, . . . , Zr} be a partition of Xi−1 where G[Zs] is

ps-degenerate for s = 1, . . . , r. If vi has more than ps neighbours in every G[Zs],

then vi has at least
∑r

i=1(pi+1) = k+1 neighbours in Xi−1, a contradiction. Hence,

vi has at most pq neighbours in at least one set Zq, which we can find in O(n) time.

We put vi into Zq to get the desired partition for Xi in O(n) time. �

Recall that Cereceda [25] proved that for any k ≥ 2d + 1 the reconfiguration

graph Rk(G) of every d-degenerate graph G on n vertices has diameter O(n2). We

adapt his proof to show the following lemma.

Lemma 2.16. Let G be a graph on n vertices with maximum degree ∆ ≥ 1 and

degeneracy ∆ − 1. Let α be a (∆ + 1)-colouring of G. It is possible to compute a

∆-colouring γ of G in time O(n2) such that d∆+1(α, γ) ≤ n2.

Proof. We first compute a degeneracy ordering v1, . . . , vn of G in O(n2) time. Also

in O(n2) time we record, for each vertex v, the neighbour of v that is latest in the

ordering, and the set of colours that are not used on neighbours of v.

Let h be the lowest index such that α(vh) = ∆+1. We will describe an algorithm

that finds in time O(n) a sequence of recolourings such that

• for i < h, vi is not recoloured,

• for i ≥ h, vi is recoloured at most once, and

• vh is recoloured with a colour other than ∆ + 1.

By repeatedly using such sequences, we can obtain a colouring γ in which colour

∆+1 is not used. At most n such sequences are needed, so each vertex is recoloured

at most n times and the lemma follows.

We must describe the algorithm. First we find a sequence S of pairs of vertices

and colours (wj , cj) as follows:
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• the first vertex w1 is vh;

• for each vertex wj, if there is a colour that is not used on it or any of its

neighbours, then this is cj, and (wj, cj) is the final pair in S;

• otherwise let wj+1 be the neighbour of wj that is latest in the degeneracy

ordering and let cj = α(wj+1).

If all ∆+1 colours appear on wj and its neighbours, then wj must have degree ∆, each

neighbour of wj must have a distinct colour, and, as at most ∆− 1 neighbours can

be earlier in the degeneracy ordering, at least one neighbour is later in the ordering.

Thus each vertex in S is later in the degeneracy ordering than its predecessor and

so the algorithm will terminate and S is finite. Moreover, this also implies that each

vertex in vh+1, . . . , vn is considered at most once during the computation of S and

so, as the information required about each vertex was found during our preliminary

computations, we can find S in O(n) time.

Let s denote the number of pairs in S. We can recolour the vertices of S in time

O(n) by simply recolouring wj with cj, starting with ws and working backwards

through S. Each colouring obtained is proper since ws has no neighbour coloured

cs and when a vertex vj, j < s is recoloured, its unique neighbour wj+1 coloured

cj has just been recoloured and it is not adjacent to any other vertex that has

been recoloured since they are later in the degeneracy ordering than any of its

neighbours. Finally note that w1 = vh has been recoloured with a colour other than

α(vh) = ∆ + 1, so the recolouring sequence achieves its aim: the index of the first

vertex in the ordering coloured ∆ + 1 is now greater than h. This completes the

proof. �

Finally we need an algorithmic version of Lemma 2.13 for the special case of (∆−

1)-degenerate graphs; to prove it we follow the line of the proof of Lemma 2.13, but

need Lemma 2.15 instead of Lemma 2.11 and Lemma 2.16 instead of Lemma 2.12.

The question whether there exists an algorithmic version for the remaining case of ∆-

regular graphs is still open; note that one cannot replace Lemma 2.15 by Lemma 2.11

in the proof of Lemma 2.17, as that would require solving the NP-complete problem
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of finding a maximum independent set in graphs of bounded maximum degree in

polynomial time.

Lemma 2.17. Let G = (V,E) be a (∆ − 1)-degenerate graph on n vertices with

maximum degree ∆ ≥ 1. It is possible to find in O(n2) time a path between any two

given ∆-colourings γ1 and γ2 in R∆+1(G).

Proof. We use induction on ∆. If ∆ ∈ {1, 2} the statement is trivially true. Let

∆ ≥ 3 and assume that we have an O(n2)-time algorithm for connected (∆ − 2)-

degenerate graphs on n vertices with maximum degree ∆− 1.

Applying Lemma 2.15 with p1 = 0 and p2 = ∆ − 2 gives us in O(n2) time a

partition {S1, S2} of V such that S1 is an independent set and S2 induces a (∆−2)-

degenerate graph that we denote by H . We modify the pair (S1, S2) in O(n
2) time

by moving vertices from S2 to S1 until S1 is a maximal independent set. Let γH1 and

γH2 be the colourings of H that are the restrictions of γ1 and γ2 to S2. We note that

• γH1 and γH2 use only colours from {1, 2, . . . ,∆};

• H has maximum degree at most ∆− 1 (by the maximality of S1);

• H is (∆− 2)-degenerate.

Thus we can apply Lemma 2.16 to recolour each of γH1 and γH2 to a (∆−1)-colouring

in O(n2) time. We then apply the induction hypothesis to find in O(n2) time a path

between these two (∆ − 1)-colourings that includes only ∆-colourings. Hence the

total running time is O(n2), as required. �

We are now ready to prove Theorem 2.7, which we first restate.

Theorem 2.7. Let G be a connected graph on n vertices with maximum degree

∆ ≥ 3. Let k = ∆+ 1. If G is not regular, then it is possible to find in O(n2) time

a path between any two given k-colourings α and β in Rk(G).

Proof. By Lemma 2.14 we find that G is (∆ − 1)-degenerate. By Lemma 2.16 we

can find in O(n2) time a path from α to some ∆-colouring γ1 and a path from β to

some ∆-colouring γ2. Applying Lemma 2.17 completes the proof. �
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2.5 Final Remarks

Let us mention an observation concerning the computational problem of deciding if

a graph with maximum degree ∆ ≥ 3 admits a frozen (∆ + 1)-colouring. We can

formulate this problem in the language of graph homomorphism. Let G and H be

graphs. A homomorphism from G to H is a function f : V (G) → V (H) that maps

adjacent vertices of G to adjacent vertices of H ; that is f(u)f(v) ∈ E(H) whenever

uv ∈ E(G). In addition f is said to be surjective if for each x ∈ V (H) there exists at

least one vertex v ∈ V (G) with f(v) = x. Further, f is said to be locally surjective

or strongly locally surjective if, for every vertex v of G, f becomes surjective when

restricted to respectively the open neighbourhood N(v) or closed neighbourhood

N(v) ∪ {v} of v. The following proposition follows easy from the definitions.

Proposition 2.18. Let G be a graph with maximum degree ∆ ≥ 3. Then G has a

frozen (∆+ 1)-colouring if and only if G has a strongly locally surjective homomor-

phism to the complete graph K∆+1.

To the best of our knowledge, the complexity of deciding if a graph with maximum

degree ∆ ≥ 3 admits a strongly locally surjective homomorphism to K∆+1 is not

known. We conjecture that this problem is NP-complete since, for example, the

problem of deciding if a graph has a locally surjective homomorphism to the complete

graph on at least 3 vertices is NP-complete [56]. (Notice that in the latter result the

input graph does not necessarily have bounded maximum degree).

We end this section with a final remark on Conjecture 2.5. It turns out that

Conjecture 2.5 is equivalent to the following conjecture that is easier in appearance.

Conjecture 2.19. Let G be a k-degenerate graph, and let α be a (k + 2)-colouring

of G. Then there exists a (k + 1)-colouring γ of G such that dk+2(α, γ) ≤ O(n2).

Proposition 2.20. Conjectures 2.5 and 2.19 are equivalent.

Proof. As any k-degenerate graph admits a (k + 1)-colouring, Conjecture 2.5 im-

mediately implies Conjecture 2.19. For the other direction we use induction on the

degeneracy k of G.
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If k = 1 Conjecture 2.5 is known to be true [25]. Assume now that the result

holds for all graphs of degeneracy less than k. Let α and β be two (k+2)-colourings

of G. Applying Conjecture 2.19 to α and β gives us (k + 1)-colourings α′ and β ′

respectively such that d∆+2(α, α
′) ≤ O(n2) and d∆+2(β, β

′) ≤ O(n2). Applying

Lemma 2.15 with p1 = 0 and p2 = k − 1 we find a partition {S1, S2} of V such that

S1 is an independent set and S2 induces a (k − 1)-degenerate graph that we denote

H . From α′ and β ′ recolour the vertices of S1 with colour k + 2 (the colour that is

not used in either α′ or β ′). This can be done by at most 2n recolourings. Denote

by α′
H and β ′

H the restrictions of α′ and β ′ to H . By the induction hypothesis, there

is a sequence of O(n2) recolourings from α′
H to β ′

H without using colour k+2. This

implies the proposition. �



Chapter 3

On a Conjecture of Mohar

Concerning Kempe Equivalence of

Regular Graphs

3.1 Introduction

We start by recalling some of the notation and terminology from Chapter 1. For a

colouring α and colours a and b, Gα(a, b) is the subgraph of G induced by vertices

with colour a or b under α. A connected component of Gα(a, b) is known as an

(a, b)-component under α of G (we will omit the reference to α if the dependency

on α is clear from the context). These components are also referred to as Kempe

chains. If a colouring β is obtained from a colouring α by exchanging the colours

a and b on the vertices of an (a, b)-component of G and α, then β is said to have

been obtained from α by a Kempe change. Let Ck(G) or Ck
G denote the set of all

k-colourings of G. Two colourings α, β ∈ Ck(G) are Kempe equivalent, denoted by

α ∼k β, if each can be obtained from the other by a series of Kempe changes. The

equivalence classes Ck(G)/ ∼k are called Kempe classes.

In this chapter we are concerned with a conjecture of Mohar which asserts that

for all connected k-regular graphs that are not complete, the set of k-colourings form

a Kempe class [97].

37
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Conjecture 3.1 ([97]). Let k ≥ 3. If G is a connected k-regular graph that is not

Kk+1 then Ck(G) is a Kempe class.

We prove that the conjecture holds with the only exception being the triangular

prism depicted in Figure 3.1.

Theorem (Theorems 3.2 and 3.14 combined). Let k ≥ 3, and let G be a connected

k-regular graph. If G is not K∆+1, then C∆(G) is a Kempe class unless G is the

triangular prism.

Notice that we need not have included the condition that G is not complete

since one can say that if a graph has no k-colourings, then this set of colourings (the

empty set) is a Kempe class, but it is neater to exclude this case.

Let us describe another way to think of Conjecture 3.1. Let Kk(G) be the graph

that has vertex set Ck(G) and an edge between two vertices α and β whenever the

colouring β can be obtained from α by a single Kempe change. Conjecture 3.1

states that, for k ≥ 4, for any connected non-complete k-regular graph G, Kk(G) is

connected.

We might call Kk(G) a solution graph; it represents all possible solutions to the

problem of finding a k-colouring of G. Or we can call it the reconfiguration graph of

k-colourings ofG and refer to Kempe changes as reconfiguration steps. As mentioned

in the preceding chapter, reconfiguration graphs of k-colourings have been much

studied when the edge relation is defined by the alternative reconfiguration step of

trivial Kempe changes where a Kempe chain is trivial if it contains a single vertex

v and the corresponding Kempe change alters the colour of only v, and so pairs of

colourings are connected in these reconfiguration graphs if they disagree on only one

vertex.

Reconfiguration graphs defined by Kempe changes have received less attention.

Kempe changes were introduced in 1879 by Kempe in his proof of the Four Colour

Theorem [84]. Though this was fallacious, the Kempe change technique has proved

useful in, for example, the proof of the Five Colour Theorem and a short proof of

Brooks’ theorem [92].

We review the purely graph theoretical studies of Kempe equivalence. Fisk [57]

showed in 1977 that the 4-colourings of a Eulerian triangulation of the plane are
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Kempe equivalent. Afterwards Meyniel [94] showed that the 5-colourings of a planar

graph are Kempe equivalent. The proof can be summarised as follows. Let v be a

vertex of a planar graph G with degree at most 5 (such a vertex exists since planar

graphs are 5-degenerate). Let α and β be 5-colourings of G and let {u, w} and {x, z}

be pairs of neighbours of v that are coloured alike under α and β, respectively. Since

the graphs G1 and G2 obtained from the graph G−v by identifying the pairs {u, w}

and {x, z} respectively are planar we can apply the induction hypothesis to the

graph Gi to find that the set of 5-colourings of the graph Gi is a Kempe class for

i = 1, 2. The proof ends by considering the cases {u, w} = {x, z}, {u, w}∩{x, z} = ∅

and |{u, w}∩ {x, z}| = 1 independently. In the final section, we give a new proof of

this result.

Meyniel’s result was later extended by Mohar [97] who proved that the set of

4-colourings of a 3-colourable planar graph is a Kempe class. Mohar essentially

shows that for a planar graph G and a 4-colouring α of G there exists a 4-colouring

α′ of G that is Kempe equivalent to α, a supergraph G′ of G such that G′ is a

triangulation of the plane, and that α′ is extendible to a k-colouring of G′. Since the

k-colourings of G′ are known to be Kempe equivalent by the aforementioned result

of Fisk [57], it follows with the aid of an easy lemma that the k-colourings of G are

Kempe equivalent.

Las Vergnas and Meyniel [114] showed that the set of 5-colourings of a K5-

minor free graph is a Kempe class. Their result is an extension (rather than a

generalisation) of Meyniel’s result since the proof relies on Wagner’s well-known

characterization of K5-minor free graphs. The paper uses the powerful methods

developed in [94] such as vertex identification and reverse induction on the number

of edges. It also contains a number of interesting observations and conjectures

related to Hadwiger’s conjecture.

Bertschi [5] proved that the set of k-colourings of a perfectly contractile graph

is a Kempe class (a perfectly contractile graph is defined recursively as either the

complete graph or the graph having a pair of vertices x, y such that every induced

path from x to y has even length and the graph obtained by identifying x, y into

a new vertex is also perfectly contractile).The proof is straightforward and only
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constitutes a fraction of the paper, which chiefly aims at showing that perfectly

contractile graphs are perfect. Meyniel [95] conjectured that the k-colourings of a

Meyniel graph are Kempe equivalent. Since Meyniel graphs are perfectly contractile,

Bertschi’s result settled this conjecture in the affirmative. The Kempe equivalence

of edge-colourings has also been investigated [3, 91, 97].

From a practical viewpoint, the Kempe change method has proved to be a pow-

erful tool with applications to several areas such as timetables [104], theoretical

physics [116, 117], and Markov chains [115]. The reader is referred to [97, 108] for

further details.

3.2 Cubic Graphs

In this section, we address Conjecture 3.1 for the case k = 3. For this case the

conjecture is known to be false. A counter-example is the 3-prism displayed in

Figure 3.1. The fact that some 3-colourings of the 3-prism are not Kempe equivalent

was already observed by van den Heuvel [113]. Our contribution is that the 3-prism

is the only counter-example for the case k = 3, that is, we completely settle the

case k = 3 by proving the following result for 3-regular graphs also known as cubic

graphs.

Theorem 3.2. If G is a cubic graph that is neither K4 nor the 3-prism, then C3(G)

is a Kempe class.

2 3

1

2

13
1 2

3

2

13

Figure 3.1: The triangular prism with two non-Kempe-equivalent 3-colourings.
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Figure 3.2: A number of special graphs used in Section 3.2.

3.2.1 The Proof of Theorem 3.2

We first give some further definitions and terminology.A separator of G is a set

S ⊂ V such that G−S has more components than G. We say that G is p-connected

for some integer p if |V | ≥ p+ 1 and every separator of G has size at least p. Some

small graphs that we will refer to are defined by their illustrations in Figure 3.2.

Besides three new lemmas, we will need the aforementioned result of van den

Heuvel, which follows from the fact that for the 3-prism T , the subgraphs T (1, 2),

T (2, 3) and T (1, 3) are connected so that the number of Kempe classes is equal to

the number of different 3-colourings of T up to colour permutation, which is two.

Lemma 3.3 ([113]). If G is the 3-prism, then C3(G) consists of two Kempe classes.

Lemma 3.4. If G is a cubic graph that is connected but not 3-connected, then C3(G)

is a Kempe class.

Lemma 3.5. If G is a 3-connected cubic graph that is claw-free but that is neither

K4 nor the 3-prism, then C3(G) is a Kempe class.

Lemma 3.6. If G is a 3-connected cubic graph that is not claw-free, then C3(G) is

a Kempe class.

Observe that Theorem 3.2 follows from the above lemmas, which form a case

distinction. Hence it suffices to prove Lemmas 3.4–3.6. These proofs form the

remainder of this section.



3.2. Cubic Graphs 42

Proof of Lemma 3.4

In order to prove Lemma 3.4 we need three auxiliary results and one more definition:

recall that a graph G is d-degenerate if every induced subgraph of G has a vertex

with degree at most d.

Lemma 3.7 ([114, 97]). Let d and k be any two integers with d ≥ 0 and k ≥ d+ 1.

If G is a d-degenerate graph, then Ck(G) is a Kempe class.

Lemma 3.8 ([114]). Let k ≥ 1 be an integer. Let G1, G2 be two graphs such that

G1∩G2 is complete. If both Ck(G1) and Ck(G2) are Kempe classes, then Ck(G1∪G2)

is a Kempe class.

Lemma 3.9 ([97]). Let k ≥ 1 be an integer and let G be a subgraph of a graph G′.

Let c1 and c2 be the restrictions, to G, of two k-colourings c′1 and c′2 of G′. If c′1 and

c′2 are Kempe equivalent, then c1 and c2 are Kempe equivalent.

For convenience we restate Lemma 3.4 before we present its proof.

Lemma 3.4 (restated). If G is a cubic graph that is connected but not 3-connected,

then C3(G) is a Kempe class.

Proof. As disconnected graphs can be considered component-wise, we assume

that G is connected. As G is cubic, G has at least four vertices. Because G is not

3-connected, G has a separator S of size at most 2. Let S be a minimum separator

of G such that G = G1 ∪G2 and G1 ∩G2 = S. As every vertex in S has degree at

most 2 in each Gi and G is cubic, G1 and G2 are 2-degenerate. Hence, by Lemma 3.7,

C3(G1) and C3(G2) are Kempe classes. If S is a clique, we apply Lemma 3.8. Thus

we assume that S, and any other minimum separator of G, is not a clique. Then

S = {x, y} for two distinct vertices x and y with xy 6∈ E(G).

Because S is a minimum separator, x and y are non-adjacent and G is cubic, x

has either one neighbour in G1 and two in G2, or the other way around; the same

holds for vertex y. For i = 1, 2, let Ni(x) and Ni(y) be the set of neighbours of x

and y, respectively, in Gi. Then we have that either |N1(x)| = 1 and |N2(x)| = 2, or

|N1(x)| = 2 and |N2(x)| = 1, and similarly, that either |N1(y)| = 1 and |N2(y)| = 2,

or |N1(y)| = 2 and |N2(y)| = 1. Let x1 ∈ N1(x) for some x1 ∈ V (G1).
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We may assume that |N1(x)| 6= |N1(y)|; if not we can do as follows. Assume

without loss of generality that N1(x) = {x1} and that |N1(y)| = 1. Then {x1, y} is

a separator. By our assumption that G has no minimum separator that is a clique,

we find that {x1, y} is a minimum separator with x1y /∈ E(G). As G is cubic, x1 has

two neighbours in V (G1) \ {x, x1}. As |N1(y)| = 1 and x1 and y are not adjacent, y

has exactly one neighbour in V (G1) \ {x, x1}. Hence we could take {x1, y} as our

minimum separator instead of S in order to get the desired property. We may thus

assume that |N1(x)| 6= |N1(y)|. As this means that |N2(x)| 6= |N2(y)|, we can let

N1(x) = {x1} and N2(y) = {y1} for some y1 ∈ V (G2).

It now suffices to prove the following two claims.

Claim 1. All colourings α such that α(x) 6= α(y) are Kempe equivalent in C3(G).

We prove Claim 1 as follows. We add an edge e between x and y. This results

in graphs G1 + e, G2 + e and G + e. We first prove that C3(G + e) is a Kempe

class. Because x and y have degree 1 in G1 and G2, respectively, and G is cubic,

we find that the graphs G1 + e and G2 + e are 2-degenerate. Hence, by Lemma 3.7,

C3(G1+e) and C3(G2+e) are Kempe classes. By Lemma 3.8, it holds that C3(G+e)

is a Kempe class. Applying Lemma 3.9 completes the proof of Claim 1.

Claim 2. For every colouring α such that α(x) = α(y), there exists a colouring β

with β(x) 6= β(y) such that α and β are Kempe equivalent in C3(G).

We assume without loss of generality that α(x) = α(y) = 1 and α(y1) = 2. If

α(x1) = 2, then we apply a Kempe change on the (1, 3)-component of G that

contains x. Note that y does not belong to this component. Hence afterwards we

obtain the desired colouring γ. If α(x1) = 3, then we first apply a Kempe change

on the (2, 3)-component of G that contains x1. Note that this does not affect the

colours of x, y and y1 as they do not belong to this component. Afterwards we

proceed as before. This completes the proof of Claim 2 (and the lemma). �

Proof of Lemma 3.5

We require some further terminology and three lemmas. Two colourings α and β

of a graph G match if there exists two vertices x, y with a common neighbour in G
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such that α(x) = α(y) and β(x) = β(y).

Lemma 3.10. Let k ≥ 1 and G′ be the graph obtained from a graph G by identifying

two non-adjacent vertices x and y. If Ck(G
′) is a Kempe class, then all k-colourings

c of G with c(x) = c(y) are Kempe equivalent.

Proof. Let α and β be two k-colourings of G with α(x) = α(y) and β(x) = β(y).

Let z be the vertex of G′ that is obtained after identifying x and y. Let α′ and β ′

be the k-colourings of G′ that agree with α and β, respectively, on V (G) \ {x, y}

and for which α′(z) = α(x)(= α(y)) and β ′(z) = β(x)(= β(y)). By our assumption,

there exists a Kempe chain from α′ to β ′ in G′. We mimic this Kempe chain in G.

Note that any (a, b)-component in G′ that contains z corresponds to at most two

(a, b)-components in G, as x and y may get separated. Hence, every Kempe change

on an (a, b)-component corresponds to either one or two Kempe changes in G (if x

and y are in different (a, b)-components, then we apply the corresponding Kempe

change in G′ on each of these two components). In this way we obtain a Kempe

chain from α to β as required. �

Lemma 3.11. Let k ≥ 3. If α and β are matching k-colourings of a 3-connected

graph G of maximum degree k, then α ∼k β.

Proof. If G is (k − 1)-degenerate, then α ∼k β by Lemma 3.7. Assume that G is

not (k − 1)-degenerate. Then G is k-regular. Since α and β match, there exist two

vertices u and v of G that have a common neighbour w such that α(u) = α(v) and

β(u) = β(v). Let x denote the vertex of G′ obtained by identifying u and v.

Let S be a separator of G′. If S does not contain x, then S is a separator of G.

Then |S| ≥ 3 as G is 3-connected. If S contains x, then S must contain another

vertex as well; otherwise {u, v} is a separator of size 2 of G, which is not possible.

Hence, |S| ≥ 2 in this case. We conclude that G′ is 2-connected.

We now prove that G′ is (k−1)-degenerate. Note that, in G′, w has degree k−1,

x has degree at least k and all other vertices have degree k. Let u1, . . . , ur for some

r ≥ k− 1 be the neighbours of x not equal to w. Since G′ is 2-connected, the graph

G′′ = G′\x is connected. This means that every ui is connected to w via a path in

G′′, which corresponds to a path in G′ that does not contain x. Since w has degree
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k−1 and every vertex not equal to x has degree k, we successively delete vertices of

these paths starting from w towards ui so that each time we delete a vertex of degree

at most k−1. Afterwards we can delete x as x has degree 0. The remaining vertices

form an induced subgraph of G′ whose components each have maximum degree at

least k and at least one vertex of degree at most k − 1. Hence, we can continue

deleting vertices of degree at most k− 1 and thus find that G′ is (k− 1)-degenerate.

Then, by Lemma 3.7, Ck(G
′) is a Kempe class. Hence, by Lemma 3.10, we find that

α ∼k β as required. This completes the proof. �

Lemma 3.12. Every 3-connected cubic claw-free graph G that is neither K4 nor

the 3-prism is house-free, diamond-free and contains an induced net (see also Fig-

ure 3.2).

Proof. First suppose that G contains an induced diamond D. Then, since G is cubic,

the two non-adjacent vertices in D form a separator and G is not 3-connected, a

contradiction. Consequently, G is diamond-free.

Now suppose that G contains an induced house H . We use the vertex labels of

Figure 3.2. So, s, w, x are the vertices that have degree 2 in H , and s and w are

adjacent. As G is cubic, w has a neighbour t ∈ V (G) \ V (H). Since G is cubic and

claw-free, t must be adjacent to s. If tx ∈ E, then G is the 3-prism. If tx /∈ E,

then t and x form a separator of size 2. In either case we have a contradiction.

Consequently, G is house-free.

We now prove that G has an induced net. As G is cubic and claw-free, it

has a triangle and each vertex of the triangle has one neighbour in G outside the

triangle. Because G is not K4 and diamond-free, these neighbours are distinct.

Then, because G is house-free, no two of them are adjacent. Hence, together with

the vertices of the triangle, they induce a net. �

We restate Lemma 3.5 before we present its proof.

Lemma 3.5 (restated). If G is a 3-connected cubic graph that is claw-free but that

is neither K4 nor the 3-prism, then C3(G) is a Kempe class.

Proof. By Lemma 3.12, G contains an induced net N . For the vertices of N we

use the labels of Figure 3.2. In particular, we refer to x, y and z as the t-vertices
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of N , and x′, y′ and z′ as the p-vertices. Let α and β be two 3-colourings of G. In

order to show that α ∼3 β we distinguish two cases.

Case 1. There are two p-vertices with identical colours under α or β.

Assume that α(x′) = α(y′) = 1. Then α(z) = 1 as the t-vertices form a triangle,

so colour 1 must be used on one of them. Assume without loss of generality that

α(z′) = α(x) = 2 and so α(y) = 3. If β(z′) = β(x), then α and β match (as

x and z′ have z as a common neighbour). Then, by Lemma 3.11, we find that

α ∼3 β. Otherwise β(z′) = β(y), since the colour of z′ must appear on one of x and

y. Note that the (2, 3)-component containing x under α consists only of x and y.

Then a Kempe exchange applied to this component yields a colouring α′ such that

α′(z′) = α′(y). As y and z′ have z as a common neighbour as well, this means that

α′ and β match. Hence, it holds that α ∼3 α
′ ∼3 β, where the second equivalence

follows from Lemma 3.11.

Case 2. All three p-vertices have distinct colours under both α and β.

Assume without loss of generality that α(x) = α(z′) = 1, α(y) = α(x′) = 2, and

α(z) = α(y′) = 3. Note that Kempe chains of G are paths or cycles, as no vertex in

a chain can have degree 3 since all its neighbours in a chain are coloured alike and

G is claw-free. So, we will refer to (a, b)-paths rather than (a, b)-components.

We will now prove that there exists a colouring α′ with α ∼3 α
′ that assigns

the same colour to two p-vertices of N . This suffices to complete the proof of the

lemma, as afterwards we can apply Case 1.

Consider the (1, 2)-path P that contains x′. If P does not contain z′, then a

Kempe exchange on P gives us a desired colouring α′ (with x′ and z′ coloured alike).

So we can assume that x′ and z′ are joined by a (1, 2)-path P12, and, similarly, x′

and y′ by a (2, 3)-path P23, and y
′ and z′ by a (1, 3)-path P13.

Let G′ be the subgraph of G induced by the three paths. Note that P12 has

end-vertices y and z′, P23 has end-vertices z and x′ and P13 has end-vertices x and

y′. Hence, G′ contains the vertices of N and every vertex in G′ − N is an internal

vertex of one of the three paths. As G is cubic, this means that each vertex in G′−N

belongs to exactly one path. Moreover, as G is claw-free and cubic, two vertices in

G′ − N that are on different paths are adjacent if and only if they have a p-vertex
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Figure 3.3: Colourings of G′ in the proof of Lemma 3.5. The dotted lines indicate

paths of arbitrary length.

as a common neighbour.

In Figure 3.3 are illustrations of G′ and the colourings of this proof that we are

about to discuss. Let x′′ 6= x be the vertex in P12 adjacent to x′. From the above

it follows that x′′ is adjacent to the neighbour of x′ on P23 and that no other vertex

of P12 (apart from x′) is adjacent to a vertex of P23. As G is cubic, this also means

that x′′ has no neighbour outside G′. Apply a Kempe exchange on P12 and call the

resulting colouring γ. By the arguments above, the new (2, 3)-path Q23 (under γ)

that contains y′ has vertex set (V (P23)∪{x′′})\{x′, y, z}. Apply a Kempe exchange

on Q23. This results in a colouring α′ with α′(y′) = α′(z′) = 2, hence α′ is a desired

colouring. This completes the proof of Case 2 and thus of the lemma. �
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Proof of Lemma 3.6

We first need another lemma.

Lemma 3.13. Let W be a set of three vertices with a common neighbour in a 3-

connected cubic graph G. Suppose that every 3-colouring γ of G that colours alike

exactly one pair of W is Kempe equivalent to a 3-colouring γ′ such that γ′ colours

alike a different pair of W . Then C3(G) is a Kempe class.

Proof. Let α and β be two 3-colourings of G. To prove the lemma we show that

α ∼3 β. By Lemma 3.11, it is sufficient to find a matching pair of colourings that are

Kempe equivalent to α and β respectively (this lemma will be applied repeatedly).

As the three vertices of W have a common neighbour, in any 3-colouring at least

two of them are coloured alike. LetW = {x, y, z}. We can assume that α(x) = α(y).

If β(x) = β(y), then α and β match and we are done. So we can instead assume

that β(x) 6= β(y) and thus β(y) = β(z). If α(y) = α(z), then, again, α and β

match. Otherwise α colours alike exactly one pair of W and, by the premise of

the lemma, we can find a 3-colouring α′ that is Kempe equivalent to α and colours

alike a different pair of W . If α′(y) = α′(z), then α′ and β match. Otherwise we

must have that α′(x) = α′(z). As β(x) 6= β(y) and β(y) = β(z), there exists a

3-colouring β ′ that is Kempe equivalent to β and that colours alike a different pair

of W than β. So β ′(x) ∈ {β ′(y), β ′(z)} and β ′ matches either α or α′. In both cases

we are done. �

We restate Lemma 3.6 before we present its proof.

Lemma 3.6 (restated). If G is a 3-connected cubic graph that is not claw-free,

then C3(G) is a Kempe class.

Proof. Note that if a vertex has three neighbours coloured alike it is a single-vertex

Kempe chain. We will write that such a vertex can be recoloured to refer to the

exchange of such a chain.

We make repeated use of Lemma 3.11: two colourings are Kempe equivalent if

they match.

Let C be a claw in G with vertex labels as in Figure 3.2. Note that in every

3-colouring of G, two of s, u and v are coloured alike since they have a common
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neighbour. If some fixed pair of u, v and s is coloured alike by every 3-colouring of

G, then every pair of colourings matches and we are done. So let α be a 3-colouring

of G and assume that α(u) = α(v) = 1 and that there are colourings for which u

and v have distinct colourings, or, equivalently, colourings for which s has the same

colour as either u or v. By Lemma 3.13, it is sufficient to find such a 3-colouring

that is Kempe equivalent to α. Our approach is to divide the proof into a number

of cases, and, in each case, start from α and make a number of Kempe changes until

a colouring in which s agrees with either u or v is obtained. We will denote such a

colouring ω to indicate a case is complete.

First some simple observations. If α(s) = 1, then let ω = α and we are done. So

we can assume instead that α(s) = 2 (and so, of course, α(w) = 3). If it is possible

to recolour one of u, v or s, then we can let ω be the colouring obtained. Thus

we can assume now that each vertex of u, v and s has two neighbours that are not

coloured alike.

For a colouring c, vertex x, and colours a and b let F ab
c,x denote the (a, b)-

component at s under c. We can assume that F 12
α,s contains both u and v as otherwise

exchanging F 12
α,s results in a colouring in which s agrees with either u or v.

Let N(u) = {w, u1, u2}, N(v) = {w, v1, v2}, and N(s) = {w, s1, s2}. Note that

the vertices u1, u2, v1, v2, s1, s2 are not necessarily distinct.

Case 1. α(u1) 6= α(u2), α(v1) 6= α(v2) and α(s1) 6= α(s2).

So each of u, v and s has degree 1 in F 12
α,s and therefore F 12

α,s has at least one vertex

of degree 3. Let x be the vertex of degree 3 in F 12
α,s that is closest to u and let α′

be the colouring obtaining by recolouring x. Then u is not in F 12
α′,s which can be

exchanged to obtain ω.

Case 2. α(s1) = α(s2).

Then α(s1) = α(s2) = 1 else ω can be obtained by recolouring s.

Subcase 2.1: α(u1) = α(u2) or α(v1) = α(v2).

The two cases are equivalent so we consider only the first. We have α(u1) = α(u2) =

2 else u is not in F 12
α,s. Note that F

23
α,s consists only of s and w. If F 23

α,s is exchanged,

u has three neighbours coloured 2, and can be recoloured to obtain ω (as u and s

are both now coloured 3).
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Figure 3.4: The colourings of Subcase 2.2 of Lemma 3.6.

Subcase 2.2: α(u1) 6= α(u2) and α(v1) 6= α(v2).

We can assume that α(u1) = α(v1) = 2, and α(u2) = α(v2) = 3.

In this case, we take a slightly different approach. Let ω now be some fixed 3-

colouring with ω(s) ∈ {ω(u), ω(v)}.We show that α ∼3 ω by making Kempe changes

from α until a colouring that matches ω (or a colouring obtained from ω by a Kempe

change) is reached.

Let {a, b, c} = {1, 2, 3}. If ω(s1) = ω(s2), then ω matches α (recall α(s1) = α(s2)

in this case). So assume that ω(s1) = a and ω(s2) = b. Then ω(s) = c, and we can

assume, without loss of generality, that ω(w) = a. Note that we can assume that

ω(u) 6= ω(v) else α and ω match and we are done. So, as u and v are symmetric

under α, we can assume that ω(u) = b and ω(v) = c. If ω(u2) = a or ω(v2) = a,

then, again, α and ω match (recall that α(w) = α(u2) = α(v2)) so we assume

otherwise (noting that this implies ω(u2) = c and ω(v2) = b) and consider two cases.

For convenience, we first illustrate our current knowledge of α and ω in Figure 3.4.

(Though it is not pertinent in this case, we again observe that the six vertices of

degree 1 in the illustraton might not, in fact, be distinct.)

Subcase 2.2.1: ω(w) = a ∈ {ω(u1), ω(v1)}.

Notice that F 23
α,s contains only s and w. If it is exchanged, then a colouring is

obtained where w, u1 and v1 are coloured alike and this colouring matches ω.

Subcase 2.2.2: ω(w) = a 6∈ {ω(u1), ω(v1)}.
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Figure 3.5: The colouring α of Case 3 of Lemma 3.6.

So ω(u1) = c and ω(v1) = b. Thus F ab
ω,w contains only u and w, and the colouring

obtained by its exchange matches α as w and v1 are both coloured b.

Case 3. α(u1) = α(u2), α(v1) 6= α(v2), and α(s1) 6= α(s2).

If α(u1) = α(w), then the three neighbours of u are coloured alike and it can be

recoloured to obtain ω. So suppose α(u1) = α(u2) = 2. We may assume that

α(s1) = 1, α(s2) = α(v2) = 3, and α(v1) = 2; see the illustration of Figure 3.5.

We continue to assume that F 12
α,s contains u and v and note that s and v have degree

1 therein.

Subcase 3.1: F 12
α,s is not a path.

Let t be vertex of degree 3 closest to s in F 12
α,s. Then t can be recoloured to obtain

a colouring α′ such that F 12
α′,s does not contain v. Exchanging F

12
α′,s, we obtain ω.

Subcase 3.2: F 12
α,s is a path.

Note that F 12
α,s is a path from s to v through s1 and u.

Subcase 3.2.1: F 13
α,s2

is a path from s1 to s2.

Note that F 13
α,u 6= F 13

α,s2
since if F 13

α,u is a path, then u would be an endvertex coloured 1

implying u = s1 contradicting that C is a claw. As G is cubic a vertex can belong

to both F 12
α,s and F 13

α,s2
if it is an endvertex of one of them, and we note that s1 is

the only such vertex.

Let α′ be the colouring obtained from α by the exchange of F 13
α,s2

. If s 6∈ F 12
α′,v,

then let ω be the colouring obtained by the further exchange of F 12
α′,v.
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Otherwise, F 12
α′,v = F 12

α′,s, s and v each have degree 1 therein, and we can assume it

is a path (else, as in Subcase 3.1, there is a vertex of degree 3 that can be recoloured

to obtain α′′ and F 12
α′′,s does not contain v and can be exchanged to obtain ω). We

can also assume that F 12
α′,s contains F

12
α,s \ {s1}: if not, then F

13
α,s2

\{s1, s2} ∩F 12
α,v 6= ∅

(recall that F 12
α,s is a path from s to v through s1 and u), but their common vertices

would have degree 4. Thus, in particular, F 12
α′,s contains u and the vertex t at distance

2 from s in F 12
α,s.

As t is not an endvertex in F 12
α′,s, s1 is its only neighbour coloured 3 under α′. So

F 23
α′,w contains four vertices: w, s, s1 and t. Let α′′ be the colouring obtained from

α′ by the exchange of F 23
α′,w. If t 6∈ {u1, u2}, then u has three neighbours with colour

2 with α′′ and so can be recoloured to obtain ω. Otherwise the conditions of Case

1 are now met.

Subcase 3.2.2: F 13
α,s2

is not a path from s1 to s2.

If s1 /∈ F 13
α,s2

, then the exchange of F 13
α,s2

gives a colouring in which s1 and s2 are

coloured alike (the colour of s is not affected by the exchange and either both or

neither of u and v change colour). Thus Case 2 can now be used.

So we can assume that s1 ∈ F 13
α,s2

has degree 1 in F 13
α,s2

(recall that s1 has degree 2

in F 12
α,s). If s2 has degree 2 in F 13

α,s2
, then F 23

α,s contains only w, s and s2. If it is

exchanged, u has three neighbours with colour 2 and can be recoloured to ω.

Thus s1 and s2 both have degree 1 in F 13
α,s2

. Let x be the vertex of F 13
α,s2

closest

to s2. Then x can be recoloured to obtain a colouring α′ such that F 13
α′,s2

does not

contain s1. Exchanging F
13
α′,s2

again takes us to Case 2. This completes Case 3.

By symmetry, we are left to consider the following case to complete the proof of

the lemma.

Case 4. α(u1) = α(u2), α(v1) = α(v2), and α(s1) 6= α(s2).

If α(v1) = α(v2) = 3, then v can be recoloured to obtain ω. So we can assume that

α(v1) = α(v2) = 2, and, similarly, that α(u1) = α(u2) = 2. We can also assume that

F 23
α,s is a path since otherwise the vertex of degree 3 closest to s can be recoloured.

Define S = {u1, u2, v1, v2}. We distinguish two cases.

Subcase 4.1: |S ∩ F 23
α,s| ≥ 2.

As F 23
α,s is a path and w is an endvertex, one vertex of S, say v1, has degree 2 in
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F 23
α,s. Consider F 13

α,w: it consists only of vertices w, u, and v. After it is exchanged,

v1 has three neighbours with colour 3 and recolouring v1 allows us to apply Case 3.

Subcase 4.2: |S ∩ F 23
α,s| ≤ 1.

It follows, without loss of generality, that {u1, u2} ∩ F 23
α,s = ∅. Exchange F 23

α,u1
and

F 23
α,u2

(which might be two distinct components or just one) to obtain a colouring

α′. As w ∈ F 23
α′,s (and hence w 6∈ F 23

α,u1
∪ F 23

α,u2
), every neighbour of u is coloured

3 and it can be recoloured to obtain ω. This completes Case 4 and the proof of

Lemma 3.6. �

3.3 Regular Graphs with Degree at least 4

In this section we affirm the conjecture for larger k.

Theorem 3.14. Let k ≥ 4 be a positive integer. If G is a connected non-complete

k-regular graph, then the set of k-colourings of G is a Kempe class.

Let us note an immediate corollary of our result.

Corollary 3.15. Let G be a connected graph with maximum degree at most k ≥ 3.

Then Ck(G) is a Kempe class unless G is the complete graph Kk+1 or the 3-prism.

Proof. A connected graph with maximum degree k ≥ 3 is either k-regular or (k−1)-

degenerate. The corollary follows from Theorems 3.2 and 3.14 and Lemma 3.7. �

Our result implies that the Wang-Swendsen-Kotecký (WSK) algorithm for the

zero-temperature q-state Potts antiferromagnet is ergodic on the triangular lattice

whenever q = 6 and on the kagomé lattice whenever q = 4, thus answering some of

the questions raised in [98, 99]. We discuss this in Section 3.3.1.

In Section 3.3.2 we introduce some useful lemmas. In the final section, Sec-

tion 3.3.3, we prove Theorem 3.14. We conclude this section with some final com-

ments on our investigations towards proving Theorem 3.14. By Lemma 3.3, we now

know that, for k ≥ 3, the only non-complete connected k-regular graph whose k-

colourings are not a Kempe class is the triangular prism. So one might have hoped

to find a counterexample to Theorem 3.14 by finding, for some k ≥ 4, a connected
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non-complete k-regular graph with a k-colouring such that all Kempe changes main-

tain the colour partition. However, it is not hard to convince oneself that such a

graph does not exist. Indeed, let us consider such a graph G and k-colouring α and

obtain a contradiction. As G has more than k vertices some colour a appears on

more than one vertex. If a colour b does not appear on any vertex, then changing

the colour of one vertex from a to b gives a colouring with a different partition.

And if b appears on only one vertex u, then changing the colour of a vertex not

adjacent to u to b again changes the partition. So every colour appears on at least

two vertices. If, for any vertex u, there is a colour other than α(u) that does not

appear in its neighbourhood, then another trivial Kempe change gives a colouring

with a different partition; so on the k vertices in the neighbourhood of u, one colour

appears twice and every other colour but α(u) appears once. For every pair of

colours a and b, Gα(a, b) is connected (else a Kempe change of one component gives

a different partition). As every vertex in Gα(a, b) has degree 1 or 2, it is either a

path or a cycle. As there are at least two vertices coloured a, there is a vertex u

coloured c that has degree 2 in G(a, c). Similarly there is a vertex v coloured c that

has degree 2 in Gα(b, c); clearly u 6= v. Notice that u and v must both have degree 1

in Gα(c, d); that is Gα(c, d) is a path whose endvertices are both coloured c. But, by

the same argument, G(c, d) is a path whose endvertices are both coloured d. This

contradiction proves that such a G and α cannot exist.

3.3.1 Ergodicity of the WSK algorithm

The q-state Potts model [105, 119, 120] is one of the simplest and most studied

models in statistical mechanics with various applications from the theory of critical

phenomena to condensed-matter systems. The model uses a finite graph G = (V,E)

where each vertex v ∈ V is assigned a spin σ(v) ∈ {1, . . . , q} (that is, the spins

provide a not necessarily proper vertex-colouring of G). Furthermore, the q-state

Potts models are dynamic models where the spin state of a vertex can be modi-

fied over time with probabilities depending on the spin states of adjacent vertices.

There exist two main Potts models. In the ferromagnetic Potts model, the state of

a spin is attracted to the spin states of adjacent vertices (equilibria correspond to
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monochromatic graph colourings). This model is well-understood. In the antiferro-

magnetic Potts model, the state of a spin is repelled by the spin states of adjacent

vertices, which means that every spin “tries” to achieve a state that is distinct from

its neighbours. The behaviour of the antiferromagnetic Potts model remains elusive

even for 2-dimensional models.

For many statistical mechanics systems for which we do not know exact solu-

tions, (Markov chain) Monte Carlo simulations are valuable tools. For the anti-

ferromagnetic Potts model, the Wang-Swendsen-Kotecký (WSK) non-local cluster

dynamics [116, 117] is one of the most popular. In order to be valid (in other words,

to work properly), Monte Carlo simulations require ergodicity, which means that

there must be a positive probability of transforming each configuration into any

other. Even if this property directly applies when the temperature of the system is

positive, this condition does not necessarily hold at zero temperature.

In this latter case, the spin function corresponds to a proper q-colouring of G

and the ergodicity of the Markov chain holds if and only if the set of q-colourings is

a Kempe class. Since this property does not hold in general, the statistical mechan-

ics community has studied the ergodicity of the Markov chain on special graphs,

especially highly structured graphs that can be embedded on surfaces. Amongst

them, triangular lattices and kagomé lattices have received considerable attention.

A triangular lattice is a 6-regular graph embeddable on the torus in which every

face is a triangle, and a kagomé lattice is a 4-regular graph embeddable on the torus

in which every face is a triangle or a hexagon such that every edge of the lattice

belongs to exactly one triangle and one hexagon (see Figure 3.6. In the following

theorem we summarise what is currently known about the ergodicity of the WSK

algorithm on these lattices including new results implied by Theorem 3.14.

Theorem 3.16. The WSK algorithm for q-colourings of the triangular lattice is

valid if q ≥ 6 and is not valid if q ≤ 4.

The WSK algorithm for q-colourings of the kagomé lattice is valid if q ≥ 4 and not

valid if q ≤ 3.

Proof. For the triangular lattice, Mohar and Salas showed in [98] that the chain is

not ergodic when q ≤ 4. Theorem 3.14 ensures that when q = 6, as the triangular
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Figure 3.6: Portions of a triangular lattice and a Kagomé lattice

lattice is 6-regular, the Markov chain is ergodic and then the WSK algorithm is

valid. For larger values of q, a result of Las Vergnas and Meyniel [114] ensures that

the chain is also ergodic.

For the kagomé lattice, Mohar and Salas proved in [99] that the chain is not

ergodic when q ≤ 3. Theorem 3.14 ensures that when q = 4, as the kagomé lattice

is 4-regular, the Markov chain is ergodic and then the WSK algorithm is valid. For

larger values of q, a result of Las Vergnas and Meyniel [114] ensures that the chain

is also ergodic. �

We observe that this leaves the single open case of a triangular lattice with q = 5.

3.3.2 Preliminaries

Let d be a positive integer. Then a d-elimination ordering of the vertices of G is an

ordering such that each vertex is adjacent to at most d vertices later in the ordering.

We say that the ordering ends in S if the vertices of S are later in the ordering

than all other vertices. Recall that a graph is d-degenerate if there is a d-elimination

ordering of its vertices. From these definitions we immediately obtain:

Lemma 3.17. Let d be a positive integer. Let G be a graph, and let S be a subset

of the vertices of G. Then if G admits a d-elimination ordering that ends in S, then

any (d+ 1)-colouring of G[S] can be extended to G.
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Let us refine this in a way that will prove useful.

Lemma 3.18. Let k be a positive integer. Let G = (V,E) be a graph, and let S ⊆ V ,

|S| ≤ k, be a subset of the vertices. Suppose that G[V \ S] is connected, that the

vertices of V \ S each have degree at most k in G and there is a vertex x ∈ V \ S of

degree at most k − 1 in G. Then any k-colouring of G[S] can be extended to G.

Proof. Let the vertices of V \S be ordered according to the order in which they are

found by a breadth-first search from x. Append the vertices of S to this ordering.

This is certainly a (k − 1)-elimination ordering of G since x has at most k − 1

neighbours in total, every other vertex in V \ S has at most k neighbours but at

least one — the vertex from which is was discovered during the breadth-first search

— is earlier in the ordering, and each vertex of S is followed in the ordering only

by other vertices of S of which there are at most k − 1. So, by Lemma 3.17 with

d = k − 1, the k-colouring of S can be extended to G. �

We need some known results.

Lemma 3.19 ([114]). Let k be a positive integer. Let G1, G2 be two graphs such

that G1 ∩G2 is complete. If both Ck
G1

and Ck
G2

are Kempe classes then Ck
G1∪G2

is a

Kempe class.

Recall that we identify two non-adjacent vertices u and v in a graph G if we

replace them by a new vertex adjacent to all neighbours of u and v in G. The graph

obtained is denoted Gu+v. In the proof of Theorem 3.14 we will often think about

Gu+v when reasoning about the colourings of G. Let Ck
G(u, v) denote the colourings

of G for which u and v are coloured alike. We note that there is an obvious bijection

between Ck
G(u, v) and C

k
Gu+v

.

The proof of Lemma 3.11 first establishes the following statement which it is useful

to state explicitly.

Lemma 3.20 ([53]). Let k ≥ 3 be a positive integer. Let G be a 3-connected graph

of maximum degree k. Let u and v be non-adjacent vertices of G with a common

neighbour. Then Gu+v is (k − 1)-degenerate.
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A list assignment of a graph G = (V,E) is a function L with domain V such

that, for each vertex u ∈ V , L(u) is a set of colours. We say that G is L-colourable

if there is a colouring of G where every vertex u is coloured with a colour of L(u),

and G is degree-choosable if it is L-colourable for any list assignment L where, for

each vertex u in G, the length of the list L(u) is equal to the degree of u. The

blocks of a graph are its maximal 2-connected subgraphs. The following well-known

fact is a special case of the characterization of degree-choosable connected graphs of

Borodin [18] and Erdős et al. [48].

Lemma 3.21 ([18, 48]). Let G be a connected graph. Then G is degree-choosable

unless each block of G is a complete graph or an odd cycle.

More definitions. Given two sets S1 and S2 of vertices of G, we say that S1 dom-

inates S2 if every vertex in S2 is adjacent to at least one vertex in S1. Additionally,

S1 weakly dominates S2 if every vertex in S2 is adjacent to exactly one vertex in S1.

3.3.3 The Proof of Theorem 3.14

Wemust show that, for k ≥ 4, ifG is a connected non-complete k-regular graph, then

the set of k-colourings of G is a Kempe class. In Propositions 3.22, 3.28 and 3.29, we

show that this claim holds, respectively, whenever G is not 3-connected, 3-connected

with diameter at least 3 and with diameter exactly 2. It is clear that taken together

the propositions imply Theorem 3.14.

Graphs that are not 3-connected

We first prove that the Theorem 3.14 holds when G is not 3-connected.

Proposition 3.22. Let k ≥ 4 be a positive integer. Let G be a connected k-regular

graph that is not 3-connected. Then Ck
G is a Kempe class.

Proof. Let S be a minimal vertex cut of G that separates a connected component

C1 of G−S from the rest of the graph C2. Let G1 = G[C1∪S] and G2 = G[C2∪S].

Note that both G1 and G2 are (k − 1)-degenerate. Thus Ck
G1

and Ck
G2

are Kempe

classes by Lemma 3.7.
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If G[S] is a clique, then, by Lemma 3.19, Ck
G is a Kempe class.

As G is not 3-connected, |S| ≤ 2. So if G[S] is not a clique, then S = {x, y}

where x and y are a pair of non-adjacent vertices. We can assume that one vertex

of S has more than one neighbour in G1 and the other has more than one neighbour

in G2; suppose instead that, for example, x and y both have only one neighbour in

G1 and note that we can, in this case, let S be the cut of size 2 containing y and the

unique neighbour of x in G1 and now S does have the desired property. So we can

assume, without loss of generality, that x has at least two neighbours in G1, and y

has at least two neighbours in G2.

Let G′
1, G

′
2 and G′ be the graphs obtained from, respectively, G1, G2 and G by

adding the edge xy. As x has degree at least 2 in G1, it has degree at most k − 2

in G2 and thus degree at most k − 1 in G′
2. Similarly y has degree at most k − 1 in

G′
1. Hence G

′
1 and G′

2 are (k − 1)-degenerate and, by Lemma 3.7, Ck
G′

1

and Ck
G′

2

are

Kempe classes. By Lemma 3.19, Ck
G′ is a Kempe class.

So the set of k-colourings of G in which x and y have distinct colours are all

Kempe equivalent (since this is the set of k-colourings of G′). To prove that Ck
G is a

Kempe class, it remains to show that every k-colouring α of G such that α(x) = α(y)

is Kempe equivalent to a k-colouring where x and y are coloured differently. We

will describe how to find a series of Kempe changes that, starting from α, give us a

colouring in which x and y are not coloured alike.

We can assume that α(x) = α(y) = 1. If, for either x or y, there is a colour that

does not appear on any vertex in its neighbourhood, then we can apply a trivial

Kempe change to obtain the required colouring. So we assume that, under α, for

each of x and y, there is a neighbour of each colour and so exactly one colour appears

on two neighbours. We consider two cases.

Case 1: Either x or y has at least two neighbours in each of G1 and G2.

Let us assume that it is x that has two neighbours in both G1 and G2. There exist

two colours — let us say 2 and 3 — such that no neighbour of x in G1 is coloured 3

and no neighbour of x in G2 is coloured 2. Consider the (2, 3)-components of G that

include the neighbours of x coloured 2. Since they are included in G1, they do not

contain any neighbour of x coloured 3. So in the colouring obtained by a Kempe
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change of these components, the vertex x has no neighbour coloured 2. Thus by one

further trivial Kempe change of x, the required colouring is obtained.

Case 2: Neither x nor y has at least two neighbours in each of G1 and G2.

We can assume that x has exactly one neighbour w in G2, and y has exactly one

neighbour z in G1 and that α(w) = 2. If α(z) 6= 2, then consider the (2, α(z))-

component that contains z. From the Kempe change of this component (which does

not contain x, y or w), we obtain a colouring where z is coloured 2. Thus we can

as well assume that α(z) = 2. Consider the (1, 3)-component that contains x. As

x has no neighbour coloured 3 in G2 and y has no neighbour coloured 3 in G1, this

component does not contain y. Thus from the Kempe change of this component we

obtain the required colouring. �

3-connected graphs with diameter at least 3

We present a number of lemmas that will allow us to show that Theorem 3.14 is

true for 3-connected graphs with diameter at least 3.

If two neighbours t1 and t2 of a vertex u are not adjacent, we say that (t1, t2)

is an eligible pair of neighbours of u. Let P (u) denote the set of eligible pairs of

neighbours of u. We observe that in a regular connected non-complete graph, every

vertex has an eligible pair of neighbours.

The next lemma follows from Lemma 3.11. (In fact, it is just a special case of

Lemma 3.11, but it is helpful to have it as a separate statement.)

Lemma 3.23. Let k be a positive integer. Let G be a 3-connected k-regular graph

G. Let u be a vertex in G and let (t1, t2) be an eligible pair in P (u). Then Ck
G(t1, t2)

is a Kempe class.

It is worth noting that as Gt1+t2 is (k − 1)-degenerate it has a k-colouring so

Ck
G(t1, t2) is non-empty.

Lemma 3.24. Let k ≥ 4 be a positive integer. Let G be a 3-connected k-regular

graph. Let u and v be two vertices of G and let (w1, w2) be an eligible pair in P (v).

If, for every eligible pair (t1, t2) in P (u), there is a k-colouring of G such that t1 and

t2 are coloured alike and w1 and w2 are coloured alike, then Ck
G is a Kempe class.
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Proof. In a k-colouring of G at most k − 1 colours appear on the neighbours of u.

Thus at least two of its neighbours, which must be an eligible pair, are coloured

alike. That is, for every colouring α of G, there is an eligible pair (t1, t2) in P (u)

such that α belongs to Ck
G(t1, t2). So

Ck
G =

⋃

(t1,t2)∈P (u)

Ck
G(t1, t2),

and, as each Ck
G(t1, t2) is, by Lemma 3.23, a Kempe class, we have that Ck

G is a

Kempe class if it contains a subset that is a Kempe class and intersects Ck
G(t1, t2)

for each (t1, t2) ∈ P (u). The premise of the lemma is that Ck
G(w1, w2) intersects

each Ck
G(t1, t2) and it is, by Lemma 3.23, a Kempe class. �

So Lemma 3.24 suggests an approach to proving that Theorem 3.14 holds for

3-connected graphs. We note first that it will be easier to apply if we know that

G has diameter 3 since then we can choose u and v such that their eligible pairs

of neighbours are distinct. We just need to prove that we can find the types of

k-colourings that the premise of the lemma requires. To do this we need a number

of rather technical lemmas.

Lemma 3.25. Let k ≥ 4 be a positive integer. Let G be a k-regular 3-connected

graph with a vertex cut S of size 3 such that one connected component C of G− S

is a clique on k vertices. If S weakly dominates C, then Ck
G is a Kempe class.

Proof. As C has at least four vertices each adjacent to exactly one of the three

vertices of S, we can assume that there is a vertex in S with at least two neighbours

in C. Let this vertex be u. Let w1 be a neighbour of u in C. Let w2 be a neighbour

of u not in C. (If u does not have such neighbours, then S \ {u} is a vertex cut and

G is not 3-connected.)

By Lemma 3.23, Ck
G(w1, w2) is a Kempe class. Let α be a k-colouring of G.

The lemma follows if we can show that α is Kempe equivalent to a colouring in

Ck
G(w1, w2); that is, if by performing a number of Kempe changes we can reach a

colouring where w1 and w2 are coloured alike.

Let us assume that α(w1) = 1. If α(w2) = 1, we are done so assume that

α(w2) = 2. Let w3 be the vertex in C for which α(w3) = 2 (as C is a clique on k

vertices every colour appears on exactly one vertex).
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If w3 is a neighbour of u, then {w1, w3} is a Kempe chain and by a single Kempe

change we obtain the required colouring. Otherwise suppose that the neighbour of

w3 in S is v 6= u. As u has at least two (distinctly coloured) neighbours in C, we

can assume there is a neighbour w4 of u in C such that α(w4) 6= α(v) (possibly

w4 = w1). Then {w3, w4} is a Kempe chain. If we exchange the colours of this

chain, then either w4 = w1 and we are done or, as before, we have two neighbours

of u coloured 1 and 2 which form a Kempe chain and one more Kempe change is

needed to obtain the required colouring. �

At various points in the proofs of the following lemmas we will have defined a

graph G with vertices u and v and eligible pairs (t1, t2) ∈ P (u) and (w1, w2) ∈ P (v).

Whenever this is the case we will use the following definitions. Let G+ be the graph

obtained from G by identifying t1 and t2 and then identifying w1 and w2, and label

the two vertices created t and w respectively. Let G− be the graph obtained from

G+ by deleting t and w (so G− is the graph obtained from G by deleting t1, t2, w1

and w2).

Lemma 3.26. Let k ≥ 4 be a positive integer. Let G be a 3-connected k-regular

graph. Let u and v be two vertices of G and let (w1, w2) be an eligible pair in P (v)

neither of which is adjacent to u. Suppose that Ck
G is not a Kempe class. Then there

is an eligible pair (t1, t2) in P (u), such that G contains an induced subgraph weakly

dominated by both {t1, t2} and {w1, w2} that is isomorphic to Kk−1.

Proof. As Ck
G is not a Kempe class, we know, by Lemma 3.24, we can choose as

(t1, t2) an eligible pair in P (u) such that there is no k-colouring of G such that t1

and t2 are coloured alike and w1 and w2 are coloured alike. We note that t1, t2, w1

and w2 are distinct as the latter two are not adjacent to u. So here G+ is well-defined

and, by our choice of t1 and t2, does not have a k-colouring. To prove the lemma,

we attempt to construct a k-colouring of G+ and use the fact that we know that we

cannot succeed to lead us to the conclusion.

For a component C of G−, let G∗
C be G+[C ∪ {t, w}]. For each C, we shall show

that one of the following holds:

(1) the structure of G∗
C implies that G+ has a k-colouring, or
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(2) there is a k-colouring of G∗
C where t and w are coloured 1 and 2 respectively, or

(3) G[C] contains an induced subgraph weakly dominated, in G, by both {t1, t2}

and {w1, w2} that is isomorphic to Kk−1.

By the assumption that G+ has no k-colouring, there cannot be any component that

satisfies (1) and it cannot be the case that every component satisfies (2). Thus there

must be at least one component that satisfies (3) and the lemma follows.

Case 1: There is a vertex x in C that has degree less than k in G∗
C .

We can find a k-colouring of G∗
C with t and w coloured with 1 and 2 by applying

Lemma 3.18 to G∗
C and x with S = {t, w}. So C satisfies (2).

Case 2: Every vertex in C has degree k in G∗
C and G[C] is degree-chooseable.

We create a list assignment L for G[C]. For each vertex x in C, let

L(x) =































{1, . . . , k} if x is not adjacent to t or w,

{2, . . . , k} if x is adjacent to t but not w,

{1, 3 . . . , k} if x is adjacent to w but not t,

{3 . . . , k} if x is adjacent to both t and w.

Note that |L(x)| is equal to the degree of x in G[C] since it is k− |NG+(x)∩{t, w}|.

As G[C] is degree-chooseable, there is a colouring of G[C] that respects L and as

1 /∈ L(x) if x is adjacent to t and 2 /∈ L(x) if x is adjacent to w this provides a

k-colouring of G∗
C when t and w are coloured 1 and 2. Thus C satisfies (2).

Case 3: Every vertex in C has degree k in G∗
C and G[C] is not degree-chooseable.

By Lemma 3.21, each block of G[C] is a either a clique or an odd cycle. For an

end block B of G[C], let B− be the vertices of B that are not a cutvertex in G[C]

(so B− contains one fewer vertex than B unless G[C] contains only one block and

then B− = B). The degree of each vertex of B− in G∗
C is k and this is the sum

of the number of neighbours it has in C and the number of neighbours it has in

{t, w}. As the former is the same for each vertex (as they belong to just one block

that is a cycle or a clique), the latter must also be the same for each vertex. So let

dB ∈ {0, 1, 2} be the number of neighbours in {t, w} of each vertex of B−.

Case 3.1: There is an end block B of C with dB = 0.
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This implies that each vertex of B− is joined to k vertices in C which, as k ≥ 4,

implies that B is a clique rather than a cycle and so B is isomorphic to Kk+1

contradicting that G is connected and non-complete.

Case 3.2: There is an end block B of C with dB = 1.

Note that B must be a clique as if it were an odd cycle the degree of each vertex of

B− in G∗
C would be 3 6= k.

Suppose every vertex in B− is adjacent to t (the case where they are all adjacent

to w is equivalent). We cannot have B = B− since then t is a cutvertex and so {t1, t2}

is a cutset in G contradicting that it is 3-connected. So let x be the cutvertex of

G[C] in B. Then x has exactly one neighbour s in C \ B−. Thus {s, t1, t2} is a

vertex cut of G that weakly dominates B which is a clique on k vertices. Therefore

Ck
G is a Kempe class by Lemma 3.25; a contradiction.

So there must be vertices y and z in B− such that y is adjacent to t (but not

w) and z is adjacent to w (but not t). We show that we can colour t and w with

1 and 2 and extend this to a k-colouring of G∗
C . First colour z with 1. Then apply

Lemma 3.18 to G∗
C \ {y} with S = {t, w, z} and x being a vertex other than y and

z in B− (if B− does not contain three vertices, then the degree of y and z in G∗
C

is at most 3 < k). Finally colour y, which is possible as two of its neighbours are

coloured alike. Thus C satisfies (2).

For the remaining cases, we will need the following claim.

Claim 1. If u and v are not in C, then

A. each of t and w is adjacent to at most 2k − 2 vertices in C,

B. one of t and w is adjacent to at most 2k − 3 vertices in C,

C. if each of t and w has at least 2k − 3 neighbours in C, then t is not adjacent to

w, and

D. if the sum of the number of neighbours of t and w in C is at least 4k − 6, then

G+[V \ C] has a k-colouring in which t and w are coloured alike.

We note that this claim can be applied within Case 3 as we know that every vertex in

C has degree k in G∗
C and u and v have degree less than k since a pair of neighbours

— t1 and t2 or w1 or w2 — were identified when G+ was formed from G. We prove
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each part of the claim (we give a proof only for the statement about t when the

argument for w is equivalent). We keep in mind that for each edge incident with t

in G+ there is a corresponding edge or edges incident with t1 or t2 in G.

A. The total number of edges incident with t1 and t2 in G is 2k, but two of these

are incident with u which is not in C.

B. If t and w both have 2k−2 neighbours in C, then in G, t1, t2, w1 and w2 only have

neighbours in C∪{u, v}. Then {u, v} is a cutset as it separates C∪{t1, t2, w1, w2}

from the rest of G which is not empty as u has at least 4 neighbours and is not

adjacent to any vertex in C ∪ {w1, w2}. This contradicts that G is 3-connected.

C. If t and w both have 2k − 3 neighbours in C and are adjacent, then, in G, t1,

t2, w1 and w2 only have neighbours in C ∪ {u, v, t1, t2, w1, w2}, and, as in the

previous part, this implies that {u, v} is a cutset.

D. We can say that t and w are not adjacent: either one of t and w has 2k − 2

neighbours in C so its only other neighbour is either u or v, or they both have

2k − 3 neighbours in C and so we can apply the previous part of the claim. In

G, there are at least 4k − 6 edges from {t1, t2, w1, w2} to the vertices of C so at

most 6 other incident edges. And, as t1 and t2 are both adjacent to u and w1

and w2 are both adjacent to v, in G+[V \ C] the sum of the degrees of t and w

is at most 4. Let G† be the graph formed from G[V \ C] by identifying t and w

to form a new vertex with degree at most 4. Thus every vertex in G† has degree

at most k and the graph is not isomorphic to Kk+1 (since u, for example, has

degree less than k) so, by Brooks’ Theorem, G† has a k-colouring. From this

colouring, we can obtain a colouring of G+[V \C] in which t and w are coloured

alike. This completes the proof of the claim.

Case 3.3: For every end block B of C, dB = 2, and there is one end block B1 that

is not a clique.

So B1 is an odd cycle on at least five vertices. In G∗
C , each vertex of B−

1 has degree

k and is adjacent to two vertices in B1 and t and w so k = 4. If either B1 has

more than five vertices or C has more than one end block, then there are at least

six vertices in end blocks that are not cutvertices and so are adjacent to both t
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and w which therefore both have at least 6 = 2k − 2 neighbours in C contradicting

Claim 1.B. So C = B1 is a 5-cycle and the sum of the number of neighbours of t

and w in C is 10 = 4k− 6 so, by Claim 1.D, G+[V \C] has a 4-colouring in which t

and w are coloured alike. We can extend this colouring to the whole of G+ by using

the other 3 colours on B. So C satisfies (1).

Case 3.4: For every end block B of C, dB = 2 and B is a clique.

Notice that each end block is isomorphic to Kk−1. If there is only one end block,

then, as it is weakly dominated by {t1, t2} and {w1, w2} in G, C satisfies (3). If

there are at least three end blocks, then there are 3(k− 2) vertices in C adjacent to

both t and w. As, for k ≥ 4, we have 3k − 6 ≥ 2k − 2, this contradicts Claim 1.B.

So we can assume that C has exactly two end blocks each isomorphic to Kk−1.

Note that an “intermediate” block B of C that is a clique on more than two vertices

has vertices (the ones that are not cutvertices in G[C]) whose k neighbours are each

either in B or in {t, w}. In fact, at least one neighbour must be in {t, w} else B is

isomorphic to Kk+1 and not connected to the rest of G. Therefore B is isomorphic

to either Kk−1 or Kk.

Case 3.4.1: k ≥ 5.

No block is an odd cycle (since the vertices that are not cutvertices in the cycle

would have degree at most 4 in G∗
C). So the blocks of C are each isomorphic to K2,

Kk−1 or Kk and for each cutvertex one of the two blocks it belongs to must be K2

else it would have degree at least 2(k−2) > k. Thus the cutvertex of each end block

is also adjacent to one of t and w so there are 4k−6 edges from t and w to vertices of

the two end blocks. If there is an intermediate block that is isomorphic to Kk−1 or

Kk, then it contains at least two vertices that are not cutvertices and these are also

joined to at least one of t and w. So the sum of the number of neighbours of t and

w in C is at least 4k−4; a contradiction to the first two parts of Claim 1. Therefore

the only intermediate block is K2 and there is exactly one of these (if there are none

the two end blocks intersect and the cutvertex has degree more than k; if there is

more than 1, there are vertices that in G[C] have degree 2 so have degree at most 4

in G∗
C). So G[C] contains two disjoint cliques each isomorphic to Kk−1 joined by a

single edge. Thus the sum of the number of neighbours of t and w in C is exactly
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4k−6 and we can assume, by Claim 1.D, that G+[V \C] has a k-colouring in which

t and w are coloured alike. This can be extended to a colouring of G+ as G[C] is

easily seen to be (k − 1)-colourable. So C satisfies (1).

Case 3.4.2: k = 4.

Let the two end blocks be B1 and B2 (both are isomorphic to K3). If they intersect

in a vertex, then we can colour t and w with 1 and 2, colour the vertex in both B1

and B2 with 1 and the other vertices with 3 and 4. So C satisfies (2).

For the remaining cases, we note that Claim 1.D says that if there are at least 10

edges joining t and w to C we can assume they are coloured alike in a 4-colouring

of G+[V \ C]. And Claim 1.A and B say that there cannot be more than 11 edges

from t and w to C.

If G[C] is B1 and B2 plus an edge between them, then there are 10 edges from t

and w to C and clearly G[C] is 3-colourable so C satisfies (1).

Suppose that G[C] contains more blocks than B1 and B2 and an additional K2.

If C does not contain a K4, then either there is a block isomorphic to K3 or a longer

odd cycle that contains a vertex x that is not a cutvertex, or there is a cutvertex x

that belongs to two blocks both isomorphic to K2. In both cases x must be joined

to both t and w which are therefore again joined by at least 10 edges to C and as

there is no K4, G[C] is 3-colourable and C again satisfies (1).

If C does contain a K4, then the two vertices that are not cutvertices are both

incident to one of t and w. And the cutvertices in B1 and B2 are each either

adjacent to one of t or w or belong to a K3 or a longer odd cycle that contains a

vertex adjacent to both t and w. In any case, t and w are incident to at least 12

edges joining them to C and we have a contradiction. �

Lemma 3.27. Let k ≥ 4 be a positive integer. Let G be a 3-connected k-regular

graph. Let u and v be two vertices of G that are not adjacent. Let (w1, w2) be an

eligible pair in P (v) neither of which is adjacent to u. Then Ck
G is a Kempe class.

Proof. If Ck
G is not a Kempe class, then, by Lemma 3.26, there is an eligible pair

(t1, t2) in P (u) such that G contains an induced subgraph isomorphic to Kk−1 that

is weakly dominated by both {t1, t2} and {w1, w2}. Let C be the vertex set of this
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induced subgraph and note that each vertex in C is adjacent to the other k − 2

vertices of C and to one of {t1, t2} and one of {w1, w2} and so is not adjacent to u or

v (neither of which can be in C as they are each adjacent to both of the vertices in

either {t1, t2} or {w1, w2}). We can assume that each of {t1, t2, w1, w2} is adjacent

to at least one vertex in C: if fewer than three of them have a neighbour in C, then

G is not 3-connected, and if exactly one of them, say t1, has no neighbour in C,

then, since C ∪ t2 would induce a clique on k vertices that is weakly dominated by

{u, w1, w2} (every vertex in C is adjacent to one of {w1, w2}, but not to u, and t2 is

adjacent to u, but, considering its degree, not to either of {w1, w2}) and Lemma 3.25

is contradicted.

Assume, without loss of generality, that w1 has at least as many neighbours in

C as w2. Let x be a neighbour of w1 in C and assume, without loss of generality,

that x is also a neighbour of t1. Then (x, v) is an eligible pair in P (w1). We

apply Lemma 3.26 to u, w1 and (x, v). So, under the assumption that Ck
G is not a

Kempe class, there is a pair (t3, t4) (not necessarily distinct from (t1, t2)) of eligible

neighbours in P (u) such that G contains an induced subgraph isomorphic to Kk−1

that is weakly dominated by both {t3, t4} and {x, v}. Let C ′ be the vertex set of

this induced subgraph and, arguing as we did for C, we can assume that each of

{t3, t4, x, v} is adjacent to C ′.

Suppose that neither t1 nor t2 belongs to C
′. The k neighbours of x are C \{x}∪

{t1, w1} and we know at least one of these vertices is in C ′. By definition it is not

w1 and by assumption it is not t1 so there is a vertex y 6= x that belongs to both

C and C ′. As C ′ induces a clique, the other k − 2 vertices of C ′ are neighbours of

y. But as none of {t1, t2, w1, x} are in C ′, we must have that C ′ is C \ {x} ∪ {w2}.

So w2 is adjacent to every vertex of C except x. By our assumption that w1 has at

least as many neighbours as w2 in C, we have that C has only two vertices and so

k = 3. This contradiction tells us that, in fact, at least one of t1 and t2 belongs to

C ′; let us assume it is t1.

So t1 has k − 2 neighbours in C ′. It has two more neighbours: we know it must

be adjacent to one of {v, x} by the definition of C ′, and we know that it is also

adjacent to u. But neither of t3 and t4 belongs to C
′ ∪{u, v, x} so t1 is not adjacent
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to either of them. This contradicts the definition of C ′ and completes the proof. �

We can now conclude this subsection on graphs of diameter at least 3.

Proposition 3.28. Let k ≥ 4 be a positive integer. Let G be a 3-connected k-regular

graph with diameter at least 3. Then Ck(G) is a Kempe class.

Proof. Let u and v be two vertices in G at distance at least 3. Then every neighbour

of v is not adjacent to u and the result follows from Lemma 3.27. �

3-connected graphs with diameter 2

To complete the proof of Theorem 3.14, it only remains to consider 3-connected

graphs of diameter 2.

First two definitions. For a vertex v in a graph G, we denote by N(v) the neigh-

bourhood of v, that is, the set of vertices adjacent to v. The second neighbourhood

of v is the subgraph of G induced by the set of vertices at distance 2 from v in G.

Proposition 3.29. Let k ≥ 4 be a positive integer. Let G be a 3-connected k-regular

graph of diameter 2. Then Ck(G) is a Kempe class.

Proof. If the second neighbourhood of a vertex v contains an induced path on three

vertices, then the proposition follows immediately from Lemma 3.27. Therefore we

can assume that the second neighbourhood of each vertex is a disjoint union of

cliques.

Assume that there is a vertex v whose second neighbourhood contains two cliques

C1 and C2. Let x and y be vertices of C1 and C2 respectively. If x is adjacent to

a neighbour z of v that is not adjacent to y, then the second neighbourhood of y

contains an induced path on v, z and x and, again, we are done by Lemma 3.27.

Thus, by symmetry, the intersections of each of the neighbourhoods of x and y with

N(v) are the same and, repeating the argument, we must have that every vertex of

C1 and C2 has the same set of neighbours within N(v). Let α be a k-colouring of G.

Suppose that α(x) = 1 and α(y) = 2. Note that the (1, 2)-component that contains

x contains only vertices of C1. Exchange the colours on this (1, 2)-component and

let β be the resulting colouring. So β(x) = β(y) = 2. Thus from any k-colouring,
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we can obtain by a single Kempe change a colouring in Ck
G(x, y). The proposition

follows from Lemma 3.11.

Therefore we can assume that the second neighbourhood of each vertex is a

clique. Let α and β be two k-colourings of G. Let v be a vertex and let us denote

by C the second neighbourhood of v. Up to a Kempe change, we can assume that

α(v) = β(v) = 1. To complete the proof, we assume that α and β are not Kempe

equivalent and show that this leads to a contradiction.

Claim 2. Neither α nor β is Kempe equivalent to a colouring γ such that γ(v) = 1

and the colour 1 is not used in C.

Suppose that there is such a colouring γ that is Kempe equivalent to, say, α.

Let x be the vertex in C with β(x) = 1 if such a vertex exists; otherwise let x be

any vertex in C. In γ, v is the only vertex in G coloured 1 (since certainly there is

no vertex in N(v) coloured 1) so we can apply a trivial Kempe change to x from γ

to obtain a colouring γ′ where γ′(x) = 1. If no vertex in β is coloured 1, then we

can use the same argument; that is, apply a trivial Kempe change to x to obtain a

colouring where x is coloured 1. So we may as well assume that β(x) = 1, and thus,

as v and x are coloured 1 in both γ′ and β, we have, by Lemma 3.11 that γ′ and β,

and so also α and β, are Kempe equivalent; a contradiction that proves the claim.

One thing that Claim 2 tells us is that α and β are colourings where the colour

1 is used on C. So let u and w be vertices in C such that α(u) = 1 and β(w) = 1.

If u = w, then Lemma 3.11 implies that α and β are Kempe equivalent. So, by

assumption, we have u 6= w.

One more definition: given a colouring γ, a vertex x is locked if all the colours

distinct from γ(x) appear in its neighbourhood. Notice that if x is not locked, then

we can apply a trivial Kempe change to x from γ.

Claim 3. Each vertex in u ∪ N(u) \ w is locked in α. Moreover, only colour α(w)

appears twice in the neighbourhood of u.

First consider the (1, α(w))-component of α containing u and w. If this compo-

nent does not contain v, then the Kempe change of this component from α gives us

a colouring in which w and v are both coloured 1. By Lemma 3.11, this colouring is
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Kempe equivalent to β, a contradiction. Thus v must be in the (1, α(w))-component.

Since no other neighbour of w distinct from u is coloured 1 (every vertex in G is a

neighbour of v or u), another neighbour y of u must be coloured with α(w). If u is

not locked, then a trivial Kempe change of u gives us a colouring in which 1 is not

used on C, contradicting Claim 2. Thus all the colours appear exactly once on the

neighbourhood of u except colour α(w) which appears twice. If y is not locked, then

a trivial Kempe change of y returns us to the case where the (1, α(w))-component

of α containing u and w does not contain v. And if a neighbour z of u not in {w, y}

is not locked, then a trivial Kempe change of z returns us to the case where u is not

locked. The claim is proved.

Case 1: |C| ≥ 3.

Let z ∈ C\{u, w}. Clearly u is the unique neighbour of z coloured with 1 in α (since,

again, every in G is a neighbour of v or u). Similarly w is the unique neighbour of z

coloured with 1 in β. By Claim 3, z is the unique neighbour of u coloured α(z), and

so {u, z} is a Kempe chain in α. Similarly, noting that Claim 3 also holds for β with

the roles of u and w interchanged, {w, z} is a Kempe chain in β. By exchanging

the colours on these Kempe chains we obtain two colourings where v and z are

each coloured 1. Lemma 3.11 then implies that α and β are Kempe equivalent, a

contradiction.

Case 2: |C| = 2.

So G contains v, its k neighbours, and u and w. Each of u and w are adjacent

to all but one of the neighbours of v, so at least k − 2 of the neighbours of v are

adjacent to both u and w; let this set of neighbours be denoted S. By Claim 3, in

α a common neighbour z of u and v is coloured α(w), so it follows that S contains

exactly k − 2 vertices as it cannot contain z. As each vertex of S is locked in α by

Claim 3 and has two neighbours, u and v, coloured 1, they each have exactly one

neighbour of each other colour. Thus as w and z are coloured alike and every vertex

in S is adjacent to w, no vertex in S is adjacent to z. But then the only vertices that

can be adjacent to z are u, v and the other neighbour of v that is not in S which

contradicts that k ≥ 4. This completes Case 2 and the proof of the proposition. �



3.4. Miscellaneous Results 72

3.4 Miscellaneous Results

Let e = uv be an edge of G. The operation of removing the edge e and identifying its

ends u, v into a new vertex is called an edge contraction. A graph G is contractible

to a graph H if H can be obtained from G by successively contracting a subset of

the edges of G. Consider the following conjecture of Las Vergnas and Meyniel [114].

The Hadwiger index of a graph G, denoted by η(G), is the greatest integer h such

that G is contractible to the complete graph Kh.

Conjecture 3.30 ([114]). Cq(G) is a Kempe class for all integers q ≥ η(G) + 1.

The same authors were able to settle some special cases of the conjecture.

Theorem 3.31 ([114]). If η(G) ≤ 4, then Cq(G) is a Kempe class for all integers

q ≥ η(G) + 1.

Our next result provides a partial answer for the case η(G) = 5. Denote by H5

the class of graphs contractible to K5 such that G− v is not contractible to K5 for

some vertex v in G. Let α be a colouring of a graph G and let H be a graph obtained

from G by deleting a set S of vertices or identifying a pair x, y of vertices coloured

alike under α into a new vertex z. The restriction of α to H , denoted αH , is the

colouring that agrees with α on V (G) \ S and for which αH(z) = α(x)(= α(y)).

That we have χ(G) = 4 whenever η(G) = 4 is well-known and follows from

Wagner’s Theorem and the Four Colour Theorem:

Theorem 3.32. Let G be a graph that is not contractible to K5. Then G has a

4-colouring.

Proposition 3.33. Let G = (V,E) ∈ H5. Then C6(G) is a Kempe class.

Proof. By assumption, there is a vertex v ∈ V (G) such that the graph G′ = G− v

is not contractible to K5. Let ψ be a 6-colouring of G and assume up to a single

Kempe change that ψ(v) = 6. Define H = G− U where U = {u ∈ V | ψ(u) = 6}.

Claim 1. There exists a 5-colouring ψ′ of G such that ψ ∼6 ψ
′.
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Since v ∈ U , the graph H is not contractible to K5. By Theorem 3.31, C5(H)

constitutes a Kempe class. By Theorem 3.32, the restriction ψH of ψ to H is Kempe

equivalent to a 4-colouring φ of H in C5(H). Therefore ψ is Kempe equivalent to

a 6-colouring ψ′ of G for which ψ′
H = φ and ψ′(U) = ψ(U) = {6}. The claim is

proved.

Let α and β be two 6-colourings of G. To complete the proof we show that

α ∼6 β. Up to a single Kempe change, we may assume that α(v) = β(v) = 6. By

Claim 1, there are 5-colourings α′ and β ′ of G such that α ∼6 α
′ and β ∼6 β

′. Define

α′′ to be the 6-colouring obtained from α′ by recolouring v to colour 6. Also define

analogously the 6-colouring β ′′. Since η(G′) = 4, it follows by Theorem 3.31 that

α′′
G′ ∼5 β

′′
G′ . Thus α′′ ∼6 β

′′ implying α ∼6 γ as required. �

A graph is planar if it can be drawn in the plane such that no two of its edges

cross. A graph is apex if it can be made planar by deleting a vertex. The following

is an immediate consequence of Proposition 3.33.

Corollary 3.34. If G is an apex graph, then C6(G) is a Kempe class.

Proof. A graph is planar if and only if the graph is not contractible to K5 and

K3,3. �

We now give a short proof of a theorem of Meyniel [94] which states that all

5-colourings of a planar graph are Kempe equivalent. Our proof relies on the Four

Colour Theorem in contrast to the proof given in [94]. We shall need the following

simplified version of a theorem due to Thomassen [112].

Theorem 3.35 ([112]). Let G be a plane graph with outer face C. There exists a

partition of {V1, V2} of V (G) such that V1 induces an independent set, V2 induces a

3-degenerate graph and V (C) ⊆ V2.

Corollary 3.36. Let G be a planar graph. For all vertices v ∈ V (G) satisfying

deg(v) ≥ 3, there exists a partition of {V1, V2} of V (G) such that V1 ∋ v induces an

independent set and V2 induces a 3-degenerate graph.

Proof. Denote by u1, u2, . . . , uk the neighbours of v, k ≥ 3, and assume that they

occur in this cyclic ordering in a plane embedding of G. Consider the graph G′
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obtained from G by deleting vertex v and adding the edges u1uk and, for 1 ≤ i ≤

k − 1, uiui+1 (deleting multiple edges if necessary). Notice that G′ is planar and

the cycle C = u1u2 . . . uku1 forms the boundary of a face in G′. Thus, there exists a

plane embedding of G′ with outer cycle C. Applying Theorem 3.35 to G′ we obtain

a partition {V1, V2} of V (G′) such that V1 induces an independent set, V2 induces a

3-degenerate graph and V (C) ⊆ V2. This implies the corollary. �

We shall also need the following result which is an immediate corollary of either

of the proofs of Lemma 3.7.

Corollary 3.37. Let G be a graph and let v be a vertex of G with degree at most k.

If Ck+1(G− v) is a Kempe class, then Ck+1(G) is a Kempe class.

Theorem 3.38 (Meyniel [94]). Let G be a planar graph. Then C5(G) is a Kempe

class.

Proof. We use induction on the number of vertices n = |V (G)|. If n ≤ 6 then G is

4-degenerate so the result follows by Lemma 3.7. Suppose n ≥ 7 and that the result

is true for all graphs with less vertices. Let v be a vertex of degree at most 5 in G

(such a vertex exists since planar graphs are 5-degenerate). We start with a claim.

Claim 2. Let ψ be a 5-colouring of G. If deg(v) = 5, then there is a 5-colouring ψ′

of G Kempe equivalent to ψ such that ψ′(v) = 5 and ψ′
G−v is a 4-colouring.

Since deg(v) = 5, there exists two neighbours x, y of v such that ψ(x) = ψ(y).

Let G′ be the graph obtained from G by identifying x, y. Note that the graph G′−v

is planar and so, by the induction hypothesis, its set of 5-colourings is a Kempe class.

In particular, by the Four Colour Theorem, the restriction ψG′−v of ψ to G′ − v is

Kempe equivalent to a 4-colouring γ′ of G′−v. Since v has degree 4 in G′, it follows

by Corollary 3.37 that ψG′ is Kempe equivalent to a 5-colouring γ′′ of G′ for which

γ′′G′−v = γ′ is a 4-colouring. Applying Lemma 3.10 completes the proof of the claim.

Let α and β be 5-colourings of G. To prove the theorem we show that α ∼5 β.

If deg(v) ≤ 4, then, by the induction hypothesis, C5(G
′) is a Kempe class. By

Corollary 3.37, C5(G) is also a Kempe class.
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Finally suppose deg(v) = 5. By Claim 2, α and β are Kempe equivalent to

5-colourings α′ and β ′ respectively of G satisfying α′(v) = β ′(v) = 5 and α′
G−v

and β ′
G−v are 4-colourings. Now by Corollary 3.36 there is a partition {V1, V2} of

V (G) such that V1 ∋ v induces an independent set and V2 induces a 3-degenerate

graph. Denote by α′′ and β ′′ the colourings obtained from α′ and β ′ respectively by

recolouring the vertices in V1 \{v} to colour 5 (the colour that is not used in V2 with

either α′ or β ′). We focus on the colourings restricted to V2 and as long as we do

not use colour 5 we do not need to worry about adjacencies with V1. By Lemma 3.7,

C4(G[V2]) is a Kempe class. Therefore α′′ ∼5 β
′′ implying α ∼5 β as required. �

A graph is perfect if the chromatic number of every induced subgraph of the

graph is equal to the order of the largest clique contained in that subgraph. Recall

that Bertschi [5] showed that all k-colourings of a perfectly contractile graph are

Kempe equivalent. A natural extension of this result is to show that all k-colourings

of perfect graphs are Kempe equivalent. The following result of Meyniel [95] shows

that this is not always possible.

Proposition 3.39 ([95]). For every integer q ≥ 3 there exists a perfect graph G

with χ(G) = q − 1 and a q-colouring of G that is not Kempe equivalent to some

χ(G)-colouring of G.

We can, in fact, exclude one more case.

Proposition 3.40. For every positive integer q ≥ 3 there exists a perfect graph G

such that q = χ(G) and Cq(G) consists of at least two Kempe classes.

Proof. It suffices to describe, for each q ≥ 3, a graph Fq such that χ(Fq) = q, Fq is

perfect and Cq(Fq) is two Kempe classes. If q = 3, then we let F3 be the 3-prism.

Otherwise, Fq is defined recursively as the graph obtained from the graph Fq−1 and

an independent set Sq of vertices of any given size by joining every vertex of Fq−1 to

every vertex of Sq. It is immediate that χ(Fq) = q and, as argued for the 3-prism,

Cq(Fq) is two Kempe classes. To see that Fq is perfect, notice that the graph Q

obtained from any graph H by adding a vertex v to H and joining v to every vertex

of H has the property that, for any induced subgraph Q′ of Q, if v ∈ V (Q′) then
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χ(Q′) = χ(Q′ − v) + 1 and ω(Q′) = ω(Q′ − v) + 1. Therefore, by definition, Q is

perfect if H is perfect. This implies Fq is perfect as required. �

The remaining cases are still open.

Problem 3.41. Let G be a perfect graph. Find all integers q ≥ χ(G) + 2 such that

the q-colourings of G are Kempe equivalent in Cq(G).

We also present an easier problem in appearance.

Problem 3.42. Let G be a perfect graph. Find the smallest integer q ≥ χ(G) + 1

such that the χ(G)-colourings of G are Kempe equivalent in Cq(G).



Chapter 4

Partitioning a Graph into Disjoint

Cliques and a Triangle-free Graph

4.1 Introduction

Chudnovsky described in [29, 30] a complete characterization of bull-free graphs.

Roughly, the structure theorem states that any bull-free graph can obtained from

three basic graph classes T0, T1 and T2 by using some prescribed set of graph op-

erations. (For the purpose of this chapter we can omit the definitions of theses

classes). Motivated by finding an algorithmic version of this result, the complexity

of recognizing the class T1 was left as an open question by Thomassé, Trotignon and

Vušković [111].

Problem 4.1 ([111]). Let G be a graph. Determine the computational complexity

of recognizing whether or not G belongs to T1.

In an attempt to answer this question, we shall give for our purpose the following

simplified (that is, more general) definition of the class.

Definition 4.2. A graph G ∈ W1 if the following holds:

(1) G is bull-free,

(2) there exists a partition V = A ∪ B such that G[A] is P3-free and G[B] is

K3-free,

77
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(3) for every v ∈ G[A] there exists a partition N(v)∩B = X1∪X2 such that G[Xi]

(i = 1, 2) is a stable set and every vertex of X1 is adjacent to every vertex of

X2.

We consider a superclass of the class W1 defined as follows: a graph G is said to be

partitionable or, unless stated otherwise, has a partition if there exists a partition

{A,B} of V such that G[A] is K3-free and G[B] is P3-free (that is, A induces a

disjoint union of cliques). A graph is in-partitionable if it is not partitionable.

It is known that recognizing partitionable graphs is NP-complete [49]. On the

other hand, a result of Stacho [109, Theorems 7.7 and 7.8] shows that recognizing

partitionable graphs can be done in polynomial-time when restricted to the class

of chordal graphs. Further, as recognizing partitionable graphs can be expressed

in monadic second order logic without edge set quantification, the problem can be

efficiently solved on graphs with bounded treewidth [36] or bounded clique-width

[37]. We extend these results as follows.

Theorem 4.3. Recognizing partitionable graphs is NP-complete even when restricted

to the following classes:

(1) planar graphs,

(2) K4-free graphs,

(3) bull-free graphs,

(4) perfect graphs.

The problem of recognizing partitionable graphs restricted to the class of cographs

can be done in polynomial-time as can be seen in our next theorem.

Theorem 4.4. A cograph G is partitionable if and only if G does not contain the

graphs H1, H2, . . . , H17 illustrated in Figure 4.1.

Indeed, for every fixed graphs G and H , it is well-known that recognizing if H is an

induced graph of G can be done in constant time. Hence, since the forbidden list

in Theorem 4.4 has finite size, Theorem 4.4 immediately yields a polynomial-time

algorithm for the class of cographs.



4.1. Introduction 79

H1 H2 H3 H4

H5 H6 H7 H8

H9 H10 H11 H12

H13 H14 H15

H16 H17

Figure 4.1: Forbidden subgraphs of partitionable cographs.
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The reader may wonder if Theorem 4.3(3) settles Problem 4.1. We state without

proof that the reduction graph in our construction for the bull-free case (see Sec-

tion 4.3) violates Definition 4.2(3) and therefore leaves Problem 4.1 yet unresolved.

We end this section with a brief discussion of some of the related work by noting

that the class of partitionable graphs generalizes the following classes of monopolar

graphs and (1, 2)-partitionable graphs :

• A graph G is monopolar if there exists a partition {A,B} of V such that

G[A] is P3-free and G[B] is a stable set. Monopolar graphs have been ex-

tensively studied in recent years. Indeed, deciding if a graph is monopolar is

NP-complete [49] even when restricted to triangle-free graphs [33] and planar

graphs [86]; in contrast, the problem is tractable on several graph classes such

as the classes of cographs [45], polar permutation graphs [43], chordal graphs

[44], line graphs [32] and several others [34].

• A graph is (k, l)-partitionable if it can be partitioned in up to k cliques and l

independent sets with k + l ≥ 1. Table 4.1 contains trivial complexity results

on (k, l)-partitionable problems in special classes of graphs for k + l ≤ 2. In

[40] efficient algorithms are devised for solving the (k, l)-partition problem

on cographs, where k and l are finite. In [39] a characterization of (k, l)-

partitionable cographs by forbidden induced subgraphs is provided, where k

and l are finite. These results were later extended to P4-sparse graphs [22]

(a graph is P4-sparse if every set of five vertices of the graph induce at most

one P4). and extended P4-laden graphs [23] (a graph is extended P4-laden if

every induced subgraph with at most six vertices that contains more than two

induced P4’s is {2K2, C4}-free).

4.2 Preliminaries

Let G andH be two vertex disjoint graphs. The (complete) join ofG andH , denoted

G⊕H , is obtained by joining every vertex of G to every vertex of H . An odd hole is

an induced cycle of odd length at least 5. An odd antihole is the complement of an
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k l graph class recognition forbidden cographs forbiden others

0 1 edge-less O(n) K2 none

1 0 complete O(n+m) 2K1 none

1 1 split O(n+m) 2K2, C4 C5

0 2 bipartite O(n+m) K3 odd cycles

2 0 co-bipartite O(n+m) 3K1 odd co-cycles

Table 4.1: Some trivial complexity results on (k, l)-partitionable problems.

odd hole. Recall that a graph G is perfect if for every induced subgraph H of G the

chromatic number of H equals the order of the largest clique of H . By the Strong

Perfect Graph Theorem [31], a graph is perfect if and only if it contains no odd hole

and no odd antihole. A bull is a self-complementary graph with degree sequence

(3, 3, 2, 1, 1); an illustration of bull is given in Figure 4.2. Recall that a graph is

planar if it can be drawn in the plane such that no two of its edges cross. The

class of cographs is equivalent to the class of P4-free graphs [35] and a cograph or its

complement is disconnected unless the cograph is K1. A P3-free graph is equivalent

to a (disjoint) union of cliques and a P3-free graph is equivalent to a (complete)

join of stable sets. Split graphs are exactly the (1, 1)-partitionable graphs; they

are characterized by the absence of 2K2, C4 and C5. The intersection of cographs

and split graphs are the threshold graphs, characterized by the absence of 2K2, C4

and P4. The diamond, paw, and butterfly graph can be expressed as K2 ⊕ 2K1,

K1 ⊕ (K1 ∪K2) and K1 ⊕ 2K2, respectively. The k-wheel graph is obtained from a

cycle C of order k − 1 by joining a vertex not in C to every vertex of C.

Figure 4.2: The bull graph
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4.3 Hardness Results

In this section we prove Theorem 4.3. Firstly we provide some gadgets that we

will use in reductions from 3SAT. Let G = (V,E) be a graph and let {A,B} be a

partition of V such that A induces a K3-free subgraph of G and B induces a P3-free

subgraph of G. For short we write that a vertex v ∈ V is red if it belongs to A

and blue if it belongs to B. Recall that a partition is (unless stated otherwise) a

partition of V into red and blue vertices.

4.3.1 Negators

A graph with two designated vertices x and y is a blue negator if it has no partition

where both x and y are blue, but admits a partition where at most one of the

vertices x and y is blue and the blue vertex has no blue neighbour. In what follows

we implicitly use this partition. Examples of blue negators are given in Figure 4.3.

x y x y
x y

Figure 4.3: blue negators: the octahedron, the P 2
6 -component and the two-wheel.

Similarly, a graph with two designated vertices x and y is a red negator if it

has no partition where both x and y are red, but admits a partition where at most

one of the vertices x and y is red and the blue vertex has no blue neighbour. In

what follows we implicitly use this partition. Examples of red negators are given in

Figure 4.4.

x

y

x y

Figure 4.4: red negators: the sun component (left) and the bull-free component

(right).
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Finally, a strong negator is a graph that is both a red negator and a blue negator.

Examples of strong negators, built from red or blue negators, are shown in Figure 4.5.

x

y y

x

Figure 4.5: Strong negators: the dashed lines represent blue negators in the left

graph and red negators in the right. Their endpoints are the vertices x and y from

these negators.

4.3.2 Reduction from 3SAT

We can now describe a generic reduction from 3SAT to our partition problem. Let

ϕ be an instance of 3SAT, that is, a propositional formula in CNF with clauses

c1, c2, . . . cm. Let X = {x1, x2, . . . , xn} be the variables that occur in ϕ. We may

safely assume that a variable and its negation do not occur in the same clause, a

variable does not occur more than once in the same clause, and a variable occurs in at

least two clauses. For every variable xi ∈ X we create a truth assignment component

which is a ladder, whose edges are replaced by red or strong negators, with m rungs

xi,1yi,1, xi,2yi,2, . . . , xi,myi,m, such that {xi,j | 1 ≤ j ≤ m} and {yi,j | 1 ≤ j ≤ m}

become independent sets in the truth assignment component. Note that the vertices

x and y from the red or strong negators that form the ladder uniquely partition into

two subsets, each of which can be either red or blue, see Figure 4.6. For every clause

cj we create a satisfaction test component which is a P3. For every literal xi that

appears in clause cj we identify the vertex xi,j of the truth assignment component

for xi with a vertex of the satisfaction test component for cj, and the vertex yi,j of

the truth assignment component is identified with a vertex from the satisfaction test

component if ¬xi appears in cj. This completes the construction of the reduction

graph Q.

Lemma 4.5. The graph Q is partitionable if and only if ϕ is satisfiable.

Proof. If ϕ is satisfiable we fix a satisfying truth assignment of the variables in

X . All true literals become red and all false literals become blue. Hence every
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Figure 4.6: A ladder with twelve rungs. In every partition, all black vertices belong

to one part and all white vertices belong to the other part.

truth assignment component is partitionable and every satisfaction test component

contains at least one red vertex and thus at most two (possibly adjacent) blue

vertices with no other blue neighbours. This implies Q is partitionable.

Conversely, suppose Q be partitionable. We assign the boolean value true to each

variable xi with red vertices representing the literal xi and blue vertices representing

¬xi, and false if the roles are the other way around. This defines a consistent truth

assignment for all variables in X because each truth assignment component is a

ladder with at least two rungs. Consider a clause cj of ϕ. It corresponds to a

satisfaction test component of Q which is a P3. Hence at least one vertex of this

satisfaction test component is red and therefore cj is satisfied. �

Planar Graphs

To show the NP-completeness of the partition problem restricted to planar graphs

we reduce instead from the NP-complete problem planar-3SAT [87]. We use the

planar strong negators depicted in Figure 4.5 whose dashed lines are blue negators

from Figure 4.3. The fact that Q is planar can be easily derived from [87]: it suffices

to contract every edge between a truth assignment component and a satisfaction test

component to obtain the associated (planar) graph of an instance of planar 3SAT.

K4-free Graphs

The partition problem becomes trivial when restricted to triangle-free graphs (these

are graphs that do not contain K3 as induced subgraph) because all vertices can be

made red. Restricted to K4-free graphs the problem remains NP-complete: the sun

component in Figure 4.4 can be used in the generic reduction from 3SAT.
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Bull-free Graphs

The partition problem remains NP-complete when restricted to bull-free graphs: the

graph Q is bull-free if the bull-free component from Figure 4.4 is used in the generic

reduction from 3SAT.

Perfect Graphs

Here we show NP-completeness of the partition problem when restricted to perfect

graphs. A new reduction is required for that purpose. Firstly we provide some

gadgets that will be used in the reduction.

Gadgets

We use the P 2
6 -component as the blue negator gadget shown in Figure 4.3 and the

strong negator gadget shown at the left of Figure 4.5.

The literal gadget is shown in Figure 4.7 where the double line symbolises the

strong negator gadget. The gadget is partitionable and for every partition it has at

least two blue endpoints.

The propagator gadget is shown in Figure 4.7. The gadget is partitionable and

for every partition it has exactly one or three blue endpoints.

Together the literal gadget and the propagator gadget form the satisfaction test

component.

x y

z

u

w v

Figure 4.7: The literal gadget with endpoints x, y, z and the propagator gadget with

endpoints u, v, w along with a partition where the white vertices are in the P3-free

part and the black vertices are in K3-free part. Note that the propagator gadget is

not symmetric.
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Reduction from Positive-1-in-3-SAT

We describe a reduction from Positive-1-in-3-SAT, which is known to be NP-

hard [106], to our partition problem on perfect graphs. An instance of Positive-

1-in-3-SAT is a set of variables X = {x1, x2, . . . , xn} and a set of clauses C = {cj |

i = 1, 2, . . . , m}, such that each cj = (lj,1∨ lj,2∨ lj,3) consists of three positive literals

and each literal lj,k is xi for some xi ∈ X . The problem is to determine whether

there exists a truth assignment to the variables in X such that ϕ = c1∧ c2∧ · · ·∧ cm

is satisfiable with exactly one true literal per clause.

(Note that the first steps of our construction are identical to the construction

described earlier. We include them for the convenience of the reader.)

For every variable xi ∈ X we create a truth assignment component which is a

ladder, whose edges are strong negators, with m rungs xi,1yi,1, xi,2yi,2, . . . , xi,myi,m,

such that the set {xi,j | 1 ≤ j ≤ m} of literal vertices and the set {yi,j | 1 ≤ j ≤ m}

of propagator vertices become independent sets in the truth assignment component.

Note that the vertices x and y from the strong negators that form the ladder uniquely

partition into two subsets, each of which can be either red or blue, see Figure 4.6.

For a clause c = (x1 ∨ x2 ∨ x3) where x1, x2 and x3 are the ith, jth and kth

occurrence, respectively, create a copy Hc of the literal gadget whose endpoints are

identified with literal vertices x1,i, x2,j and x3,k, and a copy Rc of the propagator

gadget whose endpoints are identified with propagator vertices y1,i, y1,j and y2,k. Hc

and Rc are said to be the literal gadget and propagator gadget, respectively, of C.

This completes the construction of the reduction graph L.

Lemma 4.6. The graph L is partitionable if and only if ϕ is satisfiable with exactly

one true literal per clause.

Proof. If ϕ is satisfiable with exactly one true literal per clause we fix a satisfying

truth assignment of the variables in X . All literal vertices corresponding to true

literals become red and all literals vertices corresponding to false literals become

blue. This implies that every truth assignment component is partitionable. For a

literal gadget Hc and a propagator gadget Rc of clause C, Hc has two blue endpoints

and Rc has one blue endpoint. Thus Hc and Rc are partitionable and hence L is
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partitionable.

Conversely, suppose L be partitionable. We assign boolean value true to each

variable xi with red vertices representing the literal xi and false otherwise. Consider

the literal gadget Hc and propagator gadget Rc of clause C. If for contradiction all

endpoints ofHc are blue then all endpoints of Rc become red, a contradiction. Hence

exactly one endpoint of Hc is red and therefore C has exactly one true literal. �

The next lemma in conjunction with the above lemma completes the proof of

Theorem 4.3(5).

Lemma 4.7. The graph L is perfect.

Proof. We first prove that L contains no odd hole. The next two properties follow

by a careful examination of L.

(1) The gadgets and truth assignment component are odd hole-free

(2) Each induced path between the endpoints of a literal or propagator gadget has

even length

Let C be an induced cycle of length at least 4 in L. By (1), if C is an induced

subgraph of a gadget or truth assignment component then C has even length. Oth-

erwise, let R1, . . . , Rk be induced subgraphs of truth assignment components occur-

ring on C in that cyclic order. Clearly there exists a 2-colouring φ of R1 ∪ · · · ∪Rk

where colour class 1 are literal vertices and colour class 2 are propagator vertices.

Observe that the segment Pi of C joining Ri and Ri+1 is a path contained in a

literal or propagator gadget whose endpoints are endpoints of that gadget. Since

the endpoints of Pi have the same colour under φ and Pi has even length by (2), φ

can be extended to a 2-colouring that includes Pi. This implies G contains no odd

hole.

It remains to show that L contains no odd antihole. We already established that

L does not contain C5 = C5. Moreover, L is K5-free and hence C2k+1-free, k ≥ 5.

Now K4 is contained in C7 (and hence C9). The only occurrences of K4 in L are

in a literal or strong negator gadget. By considering adjacencies between such a K4

and the rest of the graph it can be verified that L does not contain C7 and C9. �
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4.4 Cographs

In this section we prove Theorem 4.4. We start by characterizing subclasses of

partitionable cographs by forbidden induced subgraphs. These results will be useful

in establishing the main theorem.

4.4.1 Subclasses of Partitionable Cographs

A set of definitions and lemmas is initially required.

Definition 4.8. A bi-threshold graph is a bipartite or threshold graph.

Definition 4.9. Amonopolar nearly split graph is a monopolar or (1, 2)-partitionable

graph.

Lemma 4.10. Let G be a graph. If G contains P3 and K3, then G contains F1 =

P3 ∪K3, F2 = diamond, or F3 = paw.

Proof. Consider the triangle. If there is a vertex with exactly one or two neighbours

in the triangle we have F3 or F2, respectively. If two non-adjacent vertices with

three neighbours in the triangle exist we have F2. If none of these cases applies to

any triangle in G then all triangles form a clique with no neighbours in the rest of

the graph. Consequently we find F1. �

Lemma 4.11. Let G be a cograph. If G contains P3 and 2K2, then G contains

Q1 = P3 ∪K2, or Q2 = butterfly.

Proof. Consider the disjoint edges e1 and e2 in 2K2. Let G1 be the component

that contains e1. First suppose G1 contains e2. Let v be a vertex adjacent to some

endpoint of e1 and on a path between e1 and e2. Since G is a cograph any induced

path between two vertices in a component of G has length at most 2. As e1 and e2

have no edges between them every induced path between e1 and e2 has length 2. It

follows that v must be adjacent to every vertex in e1 and e2, in which case Q2 is

found. Finally suppose G1 does not contain e2. If there is a vertex with exactly one

neighbour in e1 then Q1 is obtained. If this case does not apply to any vertex in G1

then G1 forms a clique with no neighbours in the rest of the graph and Q1 is again

obtained. �
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Lemma 4.12. Let G be a cograph. If G is C4-free and contains P3, 2K2 and K3,

then G contains S1 = F1, S2 = Q2, S3 = K2 ∪ paw, or S4 = K2 ∪ diamond.

Proof. Consider the disjoint edges e1 and e2 in 2K2. Let G1 be the component

containing e1. If G1 contains e2 then, by the same argument as in the proof of

Lemma 4.11, we find S2. So suppose G1 does not contain e2. We distinguish a

number of cases. If there exists two non-adjacent vertices with two neighbours in

e1 then S4 is obtained. If there exists two non-adjacent vertices with one and two

neighbours, respectively, in e1 then S3 is obtained. If there exists two adjacent

vertices with one and two neighbours, respectively, in e1 then S4 is found. If none

of these cases applies to any edge in G1 then, by considering the absence of P4 and

C4, G1 either forms (i) a star graph with no neighbours in the rest of the graph, or

(ii) a clique with no neighbours in the rest of the graph. In the case of (i) we find

S1. In the case of (ii) if G1 contains a triangle then S1 is obtained and if G1 is a

single edge we find S1, S3 or S4, by Lemma 4.10. �

Lemma 4.13. Let G be a cograph. If G contains P3 and 2K3, then G contains

W1 = 2K3 ∪ P3, W2 = K3 ∪ diamond, W3 = K3 ∪ paw, or W4 = K1 ⊕ 2K3.

Proof. Consider the disjoint triangles t1 and t2 in 2K3. If t1 and t2 share a neighbour

then, by considering the absence of P4, W4 is obtained. Otherwise, by a similar

argument to that in Lemma 4.10, we find W1, W2, or W3. �

Bi-threshold Cographs

This section establishes the following theorem.

Theorem 4.14. Let G be a connected cograph. Then G is bi-threshold if and only

if G does not contain the graphs B1, . . . , B6 depicted in Figure 4.8.

(1) B1 = butterfly.

(2) B2 = C4 ⊕K1.

(3) B3 = 2K1 ⊕ (K2 ∪K1).

(4) B4 = K2 ∪ diamond.

(5) B5 = K3 ∪ P3.

(6) B6 = K2 ∪ paw.
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B1 B2 B3 B4 B5 B6

Figure 4.8: The graphs B1, . . . , B6.

Proof. (⇐) Recall that a threshold graph is (C4, P4, 2K2)-free and a bipartite graph

is triangle-free. But the graphs B1, . . . , B6 each contain a triangle, and C4 or 2K2.

(⇒) Let G be a connected cograph that is neither bipartite nor threshold and

vertex minimal. If G is complete the result is easily seen to be true. So suppose that

G contains P3. In particular G must contain K3, and C4 or 2K2. We distinguish

two cases.

Case 1: G contains C4.

Since G is connected and P4-free there exists a triangle and a quadrangle that share

an edge. The third vertex of the triangle has another neighbour in the quadrangle,

otherwise there would be a P4. Consequently G contains B2 or B3.

Case 2: G contains 2K2.

By Lemma 4.12, G contains B1, B4, B5 or B6. This completes the proof. �

Monopolar Cographs

In [45] a forbidden induced subgraph characterization of monopolar cographs, de-

fined in the paper as (s, k)-polar cographs where min(s, k) ≤ 1, is presented. (Note

that our definition of monopolar graphs is different). Essentially, the same proof

shows the following result.

Theorem 4.15. Let G be a connected cograph. Then G is monopolar if and only if G

has no induced subgraph isomorphic to the graphs J1, . . . , J4 depicted in Figure 4.9.

(1) J1 = 5− wheel.

(2) J2 = K1 ⊕ (P3 ∪K2).

(3) J3 = K2 ⊕ 2K2.

(4) J4 = (K2 ∪K1)⊕ (K2 ∪K1).



4.4. Cographs 91

J1 J2 J3 J4

Figure 4.9: The graphs J1, J2, J3, J4.

Proof. (⇐) Recall that a monopolar graph is a graph that can be partitioned into

an independent set and a union of cliques. Since every Ji is not a union of cliques, it

must contain a join of stable sets in any partition. It is routine to verify that there

exists no partition of these graphs such that their join of stable sets in the partition

is a stable set.

(⇒) Since G is connected it is the join of two cographs G[A] and G[B]. Since a

threshold graph is (C4, P4, 2K2)-free, it suffices to consider the following cases.

Case 1: G[A] is not a threshold graph.

Subcase 1.1: G[A] contains C4.

Since G[B] is non-empty, G contains J1.

Subcase 1.2: G[A] contains 2K2.

If G[B] contains K2 then G contains J3. So suppose G[B] is a stable set. If G[A]

contains P3 then, by Lemma 4.11, G[A] contains Q1 or Q2. If G[A] contains Q2 then

G contains J3 = Q2 ⊕K1, and if G[A] contains Q1 then G contains J2 = Q1 ⊕K1.

Finally if G[A] is P3-free then G = G[A]⊕G[B] is monopolar. This completes Case

1.

It may be assumed by symmetry that both G[A] and G[B] do not contain C4,

2K2 and P4 and hence form threshold graphs.

Case 2: G[A] and G[B] are threshold graphs.

Subcase 2.1: G[A] contains a triangle.

(1) If G[A] is a clique then G[B] being a threshold graph, G is also a threshold

graph and therefore monopolar.

(2) Suppose G[A] contains a paw or a diamond. In both cases G[A] contains P3. If

G[B] contains 2K1 then G contains J1 = P3 ⊕ 2K1, and if G[B] is a clique then G
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is a threshold graph.

(3) Suppose G[A] contains at least one isolated vertex besides the triangle. If G[B]

contains P3 then G contains J1 = P3⊕2K1. So we may assume that G[B] is a union

of cliques. If G[B] contains K2 ∪K1 then G contains J4 = (K2 ∪K1)⊕ (K2 ∪K1).

If G[B] is a non-trivial stable set then G is monopolar. Finally if G[B] is a clique

then G forms a threshold graph.

Subcase 2.2: Both G[A] and G[B] are triangle-free.

(1) Suppose G[A] contains P3. If G[B] contains 2K1 then G contains J1 = P3⊕2K1.

If G[B] is a clique then G is a threshold graph.

(2) We may thus assume, by symmetry, that G[A] and G[B] are P3-free. First

suppose G[A] contains K2 ∪ K1. If G[B] contains K2 ∪ K1 then G contains J4 =

(K2 ∪K1)⊕ (K2 ∪K1). So let G[B] be (K2 ∪K1)-free. If G[B] is a stable set then

G is monopolar. Otherwise, G[B] is a clique in which case G is a threshold graph.

Second suppose G[A] is a clique. Since G[B] is a threshold graph, it follows that G

is a threshold graph. Finally if G[A] is a stable set, G[B] being P3-free it follows

that G is monopolar. This completes the proof. �

Remark 4.16. The graphs J1, J2, J3 and J4 are (1, 2)-partitionable connected cographs.

Proof. If C(Ji) denotes a maximum clique of Ji, i = 1, . . . , 4, then Ji[V \ C(Ji)] is

bipartite. �

Monopolar Nearly Split Cographs

In this section we characterize monopolar nearly split cographs by a finite list of

forbidden induced subgraphs. First we need an auxiliary result.

D1 D2 D3 D1 D2 D3

Figure 4.10: The graphs D1, D2, D3 and their complements.

Proposition 4.17 ([40]). A cograph is (2, 1)-partitionable if and only if it does not

contain the graphs D1, D2, D3 depicted in Figure 4.10.
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Corollary 4.18. A cograph is (1, 2)-partitionable if and only if it does not contain

the graphs D1 = 3K2, D2 = 2K2 ⊕ 2K1, D3 = 2K3 depicted in Figure 4.10.

We are now ready to prove the theorem.

Theorem 4.19. Let G be a connected cograph. Then G is a monopolar nearly split

graph if and only if G does not contain the graphs R1, . . . , R8 depicted in Figure 4.11.

(1) R1 = 2K1 ⊕ 2K1 ⊕ 2K1.

(2) R2 = 2K2 ⊕ (K2 ∪K1).

(3) R3 = 2K1 ⊕ (P3 ∪K2).

(4) R4 = K1 ⊕ (2K1 ⊕ 2K2).

(5) R5 = K2 ⊕ 2K3.

(5’) R5 = K1 ⊕ (K1 ⊕ 2K3).

(6) R6 = K1 ⊕ (P3 ∪ 2K3).

(7) R7 = K1 ⊕ (K3 ∪ (P3 ⊕K1)).

(8) R8 = K1 ⊕ (K3 ∪ (K1 ⊕ (K1 ∪K2))).

R1 R2 R3 R4

R5 R6 R7 R8

Figure 4.11: The graphs R1, . . . , R8.

Proof. (⇐) This is proved by a careful case analysis.

(⇒) Suppose G is neither monopolar nor (1, 2)-partitionable and vertex minimal.

Since G is connected it is the join of two cographs G[A] and G[B]. By the minimality

of G, G[A] and G[B] are either monopolar or (1, 2)-partitionable. We distinguish a

number of cases.

Case 1: G[A] and G[B] are (K2 ∪K1)-free.
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It follows that G is a join of stable sets. Hence G either contains R1 = 3K2 or is

(1, 2)-partitionable.

Case 2: G[A] and G[B] contain K2 ∪K1.

(1) If G[A] contains C4 then G contains R1 = C4 ⊕ 2K1.

(2) If G[A] contains 2K2 then G contains R2 = 2K2 ⊕ (K2 ∪K1).

(3) By symmetry ifG[A] andG[B] are threshold graphs thenG is (1, 2)-partitionable.

Case 3: G[A] is (K2 ∪K1)-free, and G[B] contains K2 ∪K1.

Subcase 3.1: G[A] is a clique.

If G[B] is (1, 2)-partitionable then G is (1, 2)-partitionable. Otherwise, G[B] must

be monopolar. By Corollary 4.18 and given that J1 ⊂ D1 it follows that G[B]

contains D2 or D3.

(1) If G[B] contains D2 then G contains R4 = K1 ⊕D2.

(2) Suppose G[B] contains D3. If G[A] has at least 2 vertices then G contains

R5 = K2 ⊕ D3. So suppose G[A] is a single vertex. If G[B] is P3-free then G is

monopolar. If G[B] contains P3 then, by Lemma 4.13, G[B] contains W1,W2,W3 or

W4. It follows that G contains R6 = K1 ⊕W1, R7 = K1 ⊕W2, R8 = K1 ⊕W3, or

R5 = K1 ⊕W4, respectively.

Subcase 3.2: G[A] is an independent set.

The case where G[A] is a single vertex is covered in Subcase 3.1. We may thus

assume that G[A] contains 2K1. If G[B] is P3-free then G is monopolar. If G[B]

is a threshold graph then G is (1, 2)-partitionable. Otherwise, G[B] contains C4, or

P3 and 2K2. If G[B] contains C4 then G contains R1 = 2K1 ⊕C4. If G[B] contains

P3 and 2K2 then, by Lemma 4.11, G[B] contains Q1 or Q2. Hence G contains

R3 = 2K1 ⊕Q1 or R4 = 2K1 ⊕Q2, respectively.

Subcase 3.3: G[A] contains 2K1 ⊕ 2K1.

Since G[B] contains K2 ∪K1, it follows that G contains R1 = 2K1 ⊕ 2K1 ⊕ 2K1.

Subcase 3.4: G[A] = qK1 ⊕Kr for some integers q ≥ 2 and r ≥ 1.

If G[B] is a threshold graph then G is (1, 2)-partitionable. Otherwise, G[B] contains
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2K2 or C4. It follows that G either contains R4 or R1, respectively. This completes

the proof. �

4.4.2 The Proof of Theorem 4.4

Before proving Theorem 4.4, we need the following auxiliary results. The first lemma

is implicit in [45].

Lemma 4.20. Minimal in-partitionable cographs are connected.

Proof. Let G be a cograph. Suppose to the contrary that G is disconnected and

vertex minimal in-partitionable. Let {A,B} be a partition of V such that G =

G[A] ∪ G[B]. By the minimality of G, G[A] and G[B] are partitionable. Let C

and D be a partition of G[A], P and Q a partition of G[B] such that G[C], G[P ]

are bipartite, and G[D], G[Q] are P3-free. It follows that G[C ∪ P ] is bipartite and

G[D ∪Q] is P3-free, which is a partition of G. �

Lemma 4.21. Let G be a cograph, and let {A,B} be a partition of V such that

G = G[A]⊕G[B]. If both G[A] and G[B] are threshold graphs then G is partitionable.

Proof. Let G′ = G[A] and G′′ = G[B]. Let {C,D} be a partition of V (G′) such

that C induces a clique and D induces a stable set. Similarly, let {F, P} be a

partition of V (G′′) such that F induces a clique and G induces a stable set. Since

G = G[A]⊕G[B], it follows that G[C∪F ] = G[C]⊕G[F ] is a clique and G[D∪P ] =

G[D]⊕G[P ] is a complete bipartite graph. �

The following graphs depicted in Figure 4.1 will be used:

(1) H1 = 2K1 ⊕ 2K1 ⊕ 2K1 ⊕K1

(2) H2 = P3 ⊕K1 ⊕ 2K2

(3) H3 = 2K1 ⊕ (K2 ∪K1)⊕ (K2 ∪K1)

(4) H4 = P3 ⊕ (K2 ∪ P3)

(5) H5 = (K2 ∪K1)⊕K1 ⊕ 2K2

(6) H6 = (K2 ∪K1)⊕ (K3 ∪ P3)
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(7) H7 = (K2 ∪K1)⊕ (K2 ∪ (P3 ⊕K1))

(8) H8 = (K2 ∪K1)⊕ (K2 ∪ (K1 ⊕ (K2 ∪K1)))

(9) H9 = K1 ⊕ (K3 ∪ (C4 ⊕K1))

(10) H10 = K1 ⊕ (K3 ∪ (K1 ⊕ (P3 ∪K2)))

(11) H11 = K1 ⊕ (K3 ∪ (K2 ⊕ 2K2))

(12) H12 = K1 ⊕ (K3 ∪ ((K2 ∪K1)⊕ (K2 ∪K1)))

(13) H13 = K2 ⊕ (P3 ∪ 2K3)

(14) H14 = K2 ⊕ (K3 ∪ (P3 ⊕K1))

(15) H15 = K2 ⊕ (K3 ∪ (K1 ⊕ (K1 ∪K2))

(16) H16 = (K3 ∪K2)⊕ (K3 ∪K1)

(17) H17 = K3 ⊕ 2K3

We are now ready to prove the theorem.

Proof of Theorem 4.4. (⇐) This follows by a careful case analysis.

(⇒) Suppose G is vertex minimal in-partitionable. By Lemma 4.20, G is con-

nected. We prove that G must contain one of the graphs H1, . . . , H17. We make use

of the fact that since a cograph contains no odd hole, G is partitionable if and only

if there exists a partition {X, Y } of V such that X induces a P3-free graph and Y

induces a bipartite graph.

Claim 3. If G has no universal vertex then G contains one of the graphs H1, . . . , H8,

H16.

Proof of Claim 3. Since G is connected it is the join of two cographs G[A] and

G[B]. By the minimality of G, G[A] and G[B] are partitionable. Since G has no

universal vertex, G[A] and G[B] have no universal vertex. Consequently G[A] and

G[B] each contain 2K1. We consider a number of cases.

Case 1: G[A] is P3-free.

G[A] is a union of at least two cliques C1, C2 because it contains 2K1.

Subcase 1.1: G[B] is P3-free.
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Similarly G[B] is a union of at least two cliques C3, C4. If G[B] or G[A] is bipartite

then G is partitionable. So it may be assumed, without loss of generality, that

|C1|, |C3| ≥ 3. Moreover C2 or C4 contains K2, otherwise G[A] and G[B] form

threshold graphs and G is partitionable by Lemma 4.21. Hence G contains H16 =

(K3 ∪K2)⊕ (K3 ∪K1).

Subcase 1.2: G[B] contains P3.

(1) G[A] is a stable set of order at least two.

If G[B] is monopolar then G is partitionable. Otherwise, by Theorem 4.15, G[B]

contains one of the graphs J1, J2, J3, J4. It follows that G contains H1 = 2K1 ⊕ J1,

H2 = 2K1 ⊕ J3, H3 = 2K1 ⊕ J4, or H4 = 2K1 ⊕ J2, respectively.

(2) G[A] = Kr ∪K1 for some integer r ≥ 2.

If G[B] is a threshold graph then G is (1, 2)-partitionable. If G[B] is bipartite then

G is partitionable. If, on the other hand, G[B] contains K3, and C4 or 2K2 then, by

Theorem 4.14, G[B] contains one of the graphs B1, B2, B3, B4, B5 or B6. It follows

that G contains H5 = (K2 ∪ K1) ⊕ B1, H1 = 2K1 ⊕ B2, H3 = (K2 ∪ K1) ⊕ B3,

H7 = (K2 ∪K1)⊕B4, H6 = (K2 ∪K1)⊕B5, or H8 = (K2 ∪K1)⊕B6, respectively.

(3) G[A] contains 2K2.

If G[B] is bipartite then G is partitionable. We may thus assume that G[B] contains

a triangle (as G[B] is a cograph). Since G[B] contains P3, by Lemma 4.10, G[B]

contains one of the graphs F1, F2, F3. It follows that G contains H6 = (K2∪K1)⊕F1,

H2 = 2K2 ⊕ F2, or H5 = 2K2 ⊕ F3, respectively. This completes Case 1.

Case 2: G[A] and G[B] contain P3.

Since G is a cograph, it has no induced C5. Together with the fact that a threshold

graph is a (C4, P4, 2K2)-free graph it suffices to consider the following cases.

Subcase 2.1: G[A] contains C4.

Then G contains H1 = C4 ⊕ P3.

Subcase 2.2: G[A] contains 2K2.

By Lemma 4.11, G[A] contains Q1 or Q2. It follows that G contains H4 = P3 ⊕Q1

or H2 = P3 ⊕Q2, respectively.
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Subcase 2.3: G[A] and G[B] are threshold graphs.

It follows by Lemma 4.21 that G is partitionable. This completes Case 2 and the

proof of Claim 5.6. �

Claim 4. If G has a universal vertex v such that G′ = G \ v is disconnected then G

contains one of the graphs H9, H10, H11, H12.

Proof of Claim 4. Let r ≥ 2 be an integer and G = {G1, . . . , Gr} be the set of

components of G′. By the minimality of G for every graph Gi ∈ G the graphs Gi

and G′
i = v ⊕ Gi are partitionable. We claim that there exists a graph T ∈ G that

is (1, 2)-partitionable, but not monopolar.

To see this, consider a graph K ∈ G. If every partition of K into k disjoint

cliques and l independent sets has min(k, l) ≥ 2 then K ′ = v⊕K is in-partitionable.

So we may assume that each Gi ∈ G is either (1, 2)-partitionable or monopolar. But

If every Gi ∈ G is monopolar then G′
i admits a partition where v is in the bipartite

part. Hence, as the Gi’s are disjoint, G also admits a partition where v is again in

the bipartite part.

From now on, let Gj ∈ G be a graph that is (1, 2)-partitionable, but not monopo-

lar for some j ∈ {1, . . . r}. By Theorem 4.15 and Remark 4.16, Gj contains one of

the graphs J1, J2, J3, J4. For contradiction suppose there exists no p 6= j such that

Gp contains K3. Let C(Gj) and S(Gj) denote the partition of Gj into a clique

and a bipartite graph, respectively. Then V = A ∪ B where A = v ∪ C(Gj), and

B = S(Gj)∪
⋃

p 6=j Gp is a partition of V where G[A] is P3-free and G[B] is bipartite,

a contradiction.

We conclude that G contains H9 = v ⊕ (K3 ∪ J1), H10 = v ⊕ (K3 ∪ J2), H11 =

v ⊕ (K3 ∪ J3) or H12 = v ⊕ (K3 ∪ J4). �

Claim 5. If G has a universal vertex v such that G′ = G \ v is connected then G

contains one of the graphs H1, H2, H4, H5, H13, H14, H15, H17.

Proof of Claim 5. By the minimality of G, G′ is partitionable. In particular, G′

is neither monopolar nor (1, 2)-partitionable, otherwise G = G′ ⊕ v is partitionable.

Hence, by Theorem 4.19, G′ contains one of the graphs R1, . . . , R8. It follows that
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G contains H1 = v ⊕ R1, H5 = v ⊕ R2, H4 = v ⊕ R3, H2 = v ⊕ R4, H17 = v ⊕ R5,

H13 = v⊕R6, H14 = v⊕R7, or H15 = v⊕R8. This completes the proof of Claim ??

and Theorem 4.4. �

4.5 Final Remarks

Improvements of Theorem 4.3 were recently obtained by Bougueret and Ochem [19].

They showed that the problem remains NP-complete for the intersection of any two

classes amongst the first three classes considered in Theorem 4.3. They also showed

NP-completeness for other small classes, such that graphs with maximum degree 4,

line graphs, and (C1, . . . , Ct)-free graphs for any fixed t ≥ 5.

A possible extension of our result on cographs is the following. Given a finite

sequence (H1, . . . , Hk) of cographs, can we compute the finite set F of cographs such

that for every cograph G, the vertices of G can be partitioned into V1, . . . , Vk such

that G[Vi] is Hi-free if and only if G is F -free? A celebrated result of Damaschke [38]

states that, given a graph property P that is closed under taking induced subgraphs,

the class of cographs G ∈ P can be characterized by a finite list of forbidden in-

duced subgraphs. Therefore we know that such a finite set F of forbidden induced

subgraphs exists. It would be enough to prove a recursive bound on the size of the

graphs in F . Note that for k = 2, H1 = K3 and H2 = P3 we described the set F

in Section 4.4. We remark that this question has been fully settled in [50] in the

situation where, for each 1 ≤ i ≤ k, Vi either induces a clique or an independent

set, and, for any two Vj, Vh where j 6= h, each vertex vertex of Vj is joined to each

vertex of Vh.



Chapter 5

Erdős-Ko-Rado Theorems for a

Family of Trees

5.1 Introduction

In this chapter we consider graph theoretic versions of the following famous result

due to Erdős, Ko and Rado. The extremal case is characterized by Hilton and

Milner [70].

EKR Theorem (Erdős, Ko, Rado [47]; Hilton, Milner [70]) Let n and r be positive

integers, n ≥ r, let S be a set of size n and let A be a family of subsets of S each of

size r that are pairwise intersecting. If n ≥ 2r, then

|A| ≤

(

n− 1

r − 1

)

.

Moreover, if n > 2r the upper bound is attained only if the sets in A contain a fixed

element of S.

Let K1,n denote a claw. Let µ(G) denote the minimum size of a maximal inde-

pendent set in G.

Given a graph G and an integer r ≥ 1, let I(r)(G) denote the family of inde-

pendent sets of G of cardinality r. For a vertex v of G, let I(r)
v (G) be the subset of

I(r)(G) containing all sets that contain v. This is called an r-star (or just star) and v

is its centre. We say that G is r-EKR if no pairwise intersecting family A ⊆ I(r)(G)

100
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is larger than the biggest r-star, and strictly r-EKR if every pairwise intersecting

family that is not an r-star is smaller than the the largest r-star of I(r)(G).

The EKR Theorem can be seen as a statement about the maximum size of a

family of pairwise intersecting independent sets of size r in the empty graph on n

vertices. We quickly obtain another formulation of the EKR Theorem by noting

that an independent set of the claw that contains more than one vertex contains

only leaves.

Theorem 5.1. Let n and r be positive integers, n ≥ r. The claw K1,n is r-EKR if

n ≥ 2r and strictly r-EKR if n > 2r.

There exist EKR results for several graph classes. We briefly summarize some

of the related work and refer instead the reader to [16] for an excellent exposition.

One of the first results of this kind is due to Berge [4].

Theorem 5.2 ([4]). Let r ≥ 1, t ≥ 2 and G be the disjoint union of r copies of Kt.

Then G is r-EKR.

The extremal case of this result was addressed by Livingstone [88] and other proofs

were also given in [66, 100]. Some generalizations of Theorem 5.2 can also be found

in [6, 46, 59]. We state one such generalization due to Holroyd, Spencer and Tal-

bot [71].

Theorem 5.3 ([71]). If G is the disjoint union of n ≥ r complete graphs each of

order at least two, then G is r-EKR.

Let us state one more result obtained in [71].

Theorem 5.4 ([71]). If G is the disjoint union of n ≥ 2r complete graphs, cycles

and paths, and an isolated vertex, then G is r-EKR.

Theorem 5.4 was subsequently generalized by Woodroofe [118] who showed that if

G is the disjoint union of n arbitrary graphs including an isolated vertex, then G is

r-EKR if n ≥ 2r.

Let us remark on the importance of having an isolated vertex in results of this

kind. Having a largest r-star that is invariant under some graph operations makes
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it easier to show that a graph is r-EKR via an induction argument. The presence

of an isolated vertex in a graph allows us to systematically locate a largest r-star

having such a property. Indeed, consider a graph H obtained from a graph G by

some graph operations such that u belongs to and is isolated in H . For any vertex

v ∈ V (H) \ {u}, it suffices to describe an injection f from I(r)
v (H) into I(r)

u (H): for

A ∈ I(r)
v (H), let f(A) = A if u ∈ A; otherwise, let f(A) = A ∪ {u} \ {v}.

The kth power of a graph G on n vertices, denoted Gk
n, is constructed by joining

any two vertices that are joined by a path on k or fewer edges in G.

Theorem 5.5 ([71]). If k, n, r ≥ 1, then P k
n is r-EKR.

Two proofs of Theorem 5.5 were given in [71]. We note that the first proof relied on

Talbot’s [110] remarkable and complicated proof that the kth power of a cycle on n

vertices is r-EKR for k, n, r ≥ 1 (no simpler proof of this result has been found to

date).

In [72] Holroyd and Talbot proved that if G is the disjoint union of two complete

multipartite graphs, then G is r-EKR if 2r ≤ µ(G). Further, mindful of earlier

results, they made the following conjecture.

Conjecture 5.6 ([72]). Let r be a positive integer and let G be a graph. Then G is

r-EKR if µ(G) ≥ 2r and strictly r-EKR if µ(G) > 2r.

This conjecture appears difficult to prove or disprove. The reader is referred to [17,

69, 68, 72, 73] for further examples confirming Conjecture 5.6 on a number of graph

classes.

The aim of this chapter is to contribute to the conjecture for the class of trees.

Before we state our results let us briefly mention the related work. As mentioned

before, a usual technique to prove EKR results is to find the centre of the largest

r-star of a graph. Thus Hurlbert and Kamat [73] made the following conjecture.

Conjecture 5.7 ([73]). Let n and r be positive integers, n ≥ r. If T is a tree on n

vertices, then there is a largest r-star of T whose centre is a leaf.

They were able to confirm Conjecture 5.7 whenever 1 ≤ r ≤ 4 [73]. The conjecture

does not, however, hold for r ≥ 5 as shown by Baber [2].
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5.1.1 Results

We consider a subfamily of trees called elongated claws. An elongated claw has one

vertex that is its root. Every other vertex has degree 1 or 2 (it is possible that the

root also has degree 1 or 2). In other words, an elongated claw is a graph obtained

from a claw by subdividing each edge zero or more times. A vertex of degree 1 is

called a leaf. A path from the root to a leaf is a limb. A limb is short if it contains

only one edge. If every leaf is distance 2 from the root (that is, if every limb contains

two edges), then the graph is a depth-two claw.

We are now ready to state our main results.

Theorem 5.8. Let r be a positive integer and let G be a depth-two claw such that

µ(G) ≥ 2r. Then G is strictly r-EKR if µ(G) ≥ 2r − 1.

Theorem 5.8 confirms (and is stronger than) Conjecture 5.6 for depth-two claws.

Theorem 5.9. Let n and r be positive integers, n ≥ 2r, and let G be an elongated

claw with n leaves and at least one short limb. Then G is r-EKR.

Theorem 5.9 does not confirm (but only supports) Conjecture 5.6 for the class of

elongated claws with short limbs since µ(G) may be much larger than the number

of leaves in G.

We remark that similar EKR results (that is, with weaker bounds than that

of Conjecture 5.6) were obtained in [71, Theorem 8] and [118, Proposition 4.3].

Satisfying the bound of Conjecture 5.6 in Theorem 5.9, and in general for elongated

claws, is left as an open problem. In particular, the reader is referred to Section 5.4

for a brief discussion on our investigation towards EKR results for other elongated

claws.

In the immediately following two sections we prove Theorems 5.8 and 5.9.

5.2 Depth-two Claws

The following lemma is useful in the proofs of both Theorem 5.8 and Theorem 5.9.

Lemma 5.10. Let r be a positive integer, and let G be an elongated claw. Then

there is a largest r-star of G whose centre is a leaf.
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Proof. Let v be a vertex of G that is not a leaf, and let L be the limb of G that

contains v (if v is the root, then L can be any limb). Let x be the leaf of L. We

find an injection f from I(r)
v (G) to I(r)

x (G) which proves that |I(r)
x (G)| ≥ |I(r)

v (G)|

and the lemma immediately follows.

Let w be the unique neighbour of x. Let A ∈ I(r)
v (G).

1. If x ∈ A, then let f(A) = A.

2. If x 6∈ A and w 6∈ A, then let f(A) = A\{v} ∪ {x}.

3. If x 6∈ A and w ∈ A, then let X = {x = x1, x2, . . . , xm = v} be the set of

vertices in L from x towards v. Let A ∩ X = {xi1 , . . . , xij} = Y for some

m > j ≥ 1. Let Z = {xi1−1, . . . , xij−1}. Observe that |Y | = |Z| and x ∈ Z

since w ∈ Y . Then let f(A) = (A ∪ Z)\Y .

To prove that f is injective we consider distinct A1, A2 ∈ I(r)
v (G). If f(A1) and

f(A2) are defined by the same case (of the three above), then it is clear that f(A1)

and f(A2) are distinct. When they are defined by different cases, we simply note

that in the first f(A) always contains v, in the second f(A) contains neither v nor

any of its neighbours, and in the third f(A) contains a neighbour of v. �

We note that Lemma 5.10 confirms Conjecture 5.7 for elongated claws.

Remark. The property of elongated claws in Lemma 5.10 is a much weaker version

of the degree sort property ; a graph has this property if the size of an r-star centred

at u is at least the size of an r-star centred at v whenever the degree of u is less

than that of v. Hurlbert and Kamat [73] observed that depth-two claws have this

property. We note that not all elongated claws possess it. For example, consider an

elongated claw with three limbs of lengths 1, 2 and 3. Then the 4-star centred at

the neighbour of the root in the limb of length 3 has size 2, but the 4-star centred at

the leaf of the limb of length 2 has size 1. It remains to determine which elongated

claws — or, more generally, which trees — have the degree sort property. We might

also ask which trees have the following weaker property: if i < j, then the size of

the largest r-star of all those stars centred at vertices of degree i is at least the size

of the largest r-star of all those centred at vertices of degree j.
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Lemma 5.11. Let n and r be positive integers, n ≥ r, and let G be a depth-two

claw with n leaves. Then the size of the largest r-star of G is

(

n− 1

r − 1

)

2r−1 +

(

n− 1

r − 2

)

.

Proof. By Lemma 5.10, there is a largest r-star whose centre is a leaf (and clearly,

by symmetry, all leaves are equivalent). So let v be a leaf of G and let c be the root

of G. Define a partition: B = {B ∈ I(r)
v (G) : c 6∈ B} and C = {C ∈ I(r)

v (G) : c ∈ C}.

Then |B| =
(

n−1
r−1

)

2r−1 since each member of B intersects r − 1 of the n − 1 limbs

that do not contain v and can contain either of the 2 vertices (other than the root)

of each of those limbs. And |C| =
(

n−1
r−2

)

since each member of C contains r − 2 of

the n− 1 leaves other than v. The proof is complete. �

In order to prove Theorem 5.8, we shall need two auxiliary results.

Theorem 5.12 (Meyer [93]; Deza and Frankl [41]). Let n, r and t be positive

integers, n ≥ r, t ≥ 2, and let G be the disjoint union of n copies of Kt. Then G is

r-EKR and strictly r-EKR unless r = n and t = 2.

For a family of sets A and nonnegative integer s, the s-shadow of A, denoted

∂sA, is the family ∂sA = {S : |S| = s, ∃A ∈ A, S ⊆ A}.

Lemma 5.13 (Katona [82]). Let a and b be nonnegative integers and let A be

a family of sets of size a such that |A ∩ A′| ≥ b ≥ 0 for all A,A′ ∈ A. Then

|A| ≤ |∂a−bA|

The proof of Theorem 5.8 is inspired by a proof of the EKR theorem [60]. To the

best of our knowledge, the proof is the first to make use of shadows in the context

of graphs.

Proof of Theorem 5.8. Let c be the root of G and let n be the number of leaves of

G. Note that n = µ(G) so n ≥ 2r− 1. Let A ⊆ I(r)(G) be any pairwise intersecting

family. Define a partition B = {A ∈ A : c 6∈ A} and C = {A ∈ A : c ∈ A}.

Notice that each vertex in each member of B is either a leaf or the neighbour of

a leaf. For B ∈ B, let MB be the set of r leaves that each either belongs to B or is

adjacent to a vertex in B. We say that MB represents B. Let M = {MB : B ∈ B}.
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Note that each member of M might represent many different members of B. In fact,

consider M ∈ M. It can represent any independent set that, for each leaf ℓ ∈ M ,

contains either ℓ or its unique neighbour. There are 2r such sets, but they can be

partitioned into complementary pairs so, as B is pairwise intersecting, the number

sM of members of B that M represents is at most 2r−1. We also note that M is

pairwise intersecting (since B is pairwise intersecting).

We have that

|B| =
∑

M∈M

sM ≤

(

n− 1

r − 1

)

2r−1, (5.2.1)

where the inequality follows from Theorem 5.12.

For B ∈ B, let NB be the set of n − r leaves that neither belong to B nor are

adjacent to a vertex in B. Notice that MB and NB partition the set of leaves. Let

N = {NB : B ∈ B}. For any pair B1, B2 ∈ B, we know thatMB1
andMB2

intersect,

so |MB1
∪MB2

| ≤ 2r−1. The leaves not in this union are members of both NB1
and

NB2
and there are at least n− (2r−1) ≥ 0 of them. Thus we can apply Lemma 5.13

to N with a = n− r, b = n− (2r − 1) to obtain

|N | ≤ |∂r−1N|. (5.2.2)

Notice that, by definition, ∂r−1N is a collection of sets of r− 1 leaves each of which

is, for some B ∈ B, a subset of NB and is therefore disjoint to MB and so certainly

does not intersect B.

Let us try to bound the size of C. Each C ∈ C contains a distinct set of r − 1

leaves. We know this set must intersect every member of B so it cannot be a member

∂r−1N . Thus we find

|C| ≤

(

n

r − 1

)

− |∂r−1N|. (5.2.3)

We apply (5.2.2) to (5.2.3) and note that |N | = |M| to obtain

|C| ≤

(

n

r − 1

)

− |M|. (5.2.4)

Since sM ≤ 2r−1 for each M ∈ M, equality holds in (5.2.1) only if |M| ≥
(

n−1
r−1

)

.
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Thus combining (5.2.1) and (5.2.4):

|A| = |B|+ |C|

≤
∑

M∈M

sM +

(

n

r − 1

)

− |M|

≤

(

n− 1

r − 1

)

2r−1 +

(

n

r − 1

)

−

(

n− 1

r − 1

)

=

(

n− 1

r − 1

)

2r−1 +

(

n− 1

r − 2

)

. (5.2.5)

This proves that G is r-EKR by Lemma 5.10. We now show that G is strictly

r-EKR. If r = n, then r = 1 so the result trivially holds. Suppose r < n. Then,

by Theorem 5.12, equality holds in (5.2.1) and therefore in (5.2.5) only if B is an

r-star centred at a leaf x or a neighbour y of a leaf. It follows easily that C = ∅ if

A = I(r)
y (G); thus A = I(r)

x (G) as desired. �

Remark. We demonstrate that if G is a depth-two claw with n leaves, then G is not

n-EKR by describing a pairwise intersecting family that is larger than the largest

n-star. Let c be the root of G and let G′ = G − c, a graph containing n copies of

K2 each of which contains one leaf of G. Clearly G′ contains 2n independent sets

of size n which can be partitioned into complementary pairs. Let B be a family

of 2n−1 independent sets of size n formed by considering each complementary pair

and choosing either the one that contains the greater number of leaves of G, or,

if they each contain half the leaves, choosing one arbitrarily. Notice that B is

pairwise intersecting, but is not a star. Let C = {C ∈ I(n)(G) : c ∈ C}. Clearly,

|C| =
(

n

n−1

)

= n and for each pair C ∈ C, B ∈ B, we have that C ∩ B 6= ∅. Thus if

A = B∪C, then A is pairwise intersecting, maximal and |A| = |B|+ |C| = 2n−1+n.

By Lemma 5.11, A has one more element than the largest n-star in G.

The above remark motivates the following conjecture.

Conjecture 5.14. Let n and r be positive integers, n > r and let G be a depth-two

claw with n leaves. Then G is r-EKR.
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5.3 Elongated Claws with Short Limbs

In this section we will prove Theorem 5.9. We require some terminology and lemmas.

For a vertex v of a graph G, let G− v denote the graph obtained by deleting v and

incident edges from G, and let G↓v be the graph obtained from G by deleting the

vertex v and all its neighbours and their incident edges.

The following lemma has essentially the same proof as Lemma 2.5 in [73], but

we include a proof for completeness.

Lemma 5.15. Let r be a positive integer, and let G be a graph. Let v be a vertex

of G and let u be a vertex of G↓v. Then

|I(r)
u (G)| = |I(r)

u (G− v)|+ |I(r−1)
u (G↓v)|.

Proof. Define a partition of I(r)
u (G): B = {A ∈ Ir

u(G) : v /∈ A} and C = {A ∈

I(r)
u (G) : v ∈ A}. Observe that |B| = |I(r)

u (G − v)| and |C| = |I(r−1)
u (G ↓ v)|. This

implies the lemma. �

Lemma 5.16. Let r be a positive integer and let G be an elongated claw with a short

limb with root c. If x is a leaf of G adjacent to c, then x is the centre of a largest

r-star of G.

Proof. Let v be a vertex in G that is not a leaf adjacent to c. We must show that

I(r)
v (G) is no larger than I(r)

x (G). If v = c this is immediate since {A \ {c} ∪ {x} :

A ∈ I(r)
c (G)} has the same cardinality as I(r)

c (G) and is a subset of I(r)
x (G).

If v 6= c, let L be the limb of G that contains v. To prove the lemma, we find an

injection f from I(r)
v (G) to I(r)

x (G). Let A ∈ I(r)
v (G). We distinguish a number of

cases.

1. If x ∈ A, then f(A) = A.

2. If x 6∈ A and c 6∈ A, then f(A) = A\{v} ∪ {x}.

3. If x 6∈ A and c ∈ A, let X = {v = x1, . . . , xm} be the set of vertices from v

towards the neighbour xm of c in L. Let Y = A ∩X = {xi1 , . . . , xij} for some

m > j ≥ 1. Let Z = {xi1+1, . . . , xij+1} and observe that |Y | = |Z|. Then

f(A) = (A ∪ Z ∪ {x})\(Y ∪ {c}).
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It can be verified that f is injective as required. �

We now prove Theorem 5.9 using an approach based on that of the proof of [73,

Theorem 1.22].

Proof of Theorem 5.9. Let c be the root of G. Let A ⊆ I(r)(G) be any pairwise

intersecting family. We must show that A is no larger than the largest r-star. We

use induction on r. If r = 1 the result is true so suppose that r ≥ 2 and that the

result is true for smaller values of r.

We now use induction on the number of vertices in G. The base case is that G

contains only the root and n leaves; that is, G = K1,n and so the result follows from

Theorem 5.1. So suppose that the number of vertices is at least n+ 2 and that the

result is true for graphs with fewer vertices.

Let x be a leaf adjacent to c. Let v be a leaf that is not adjacent to c. Let w be

the unique neighbour of v and let z denote the other neighbour of w.

Define f : A → I(r)(G) such that for each A ∈ A

f(A) =







A\{v} ∪ {w}, v ∈ A, z 6∈ A,A\{v} ∪ {w} 6∈ A

A, otherwise.

Define the families:

A′ = {f(A) : A ∈ A},

B = {A ∈ A′ : v 6∈ A},

C = {A\{v} : v ∈ A,A ∈ A′}.

Notice that

|A| = |A′| = |B|+ |C|. (5.3.6)

Claim 1. Each of B and C is pairwise intersecting.

Proof. By the definition of f , we can partition B into B1 = {B ∈ B : B ∈ A} and

B2 = {B ∈ B : B \ {w} ∪ {v} ∈ A}. Then B1 is pairwise intersecting (since A

is intersecting) and B2 is pairwise intersecting as every member contains w. Next

consider B1 ∈ B1 and B2 ∈ B2. As B1 and B2\{w}∪{v} are both in A they intersect
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and this intersection does not contain v (since it is not in B1) so is a superset of

B1 ∩ B2. So B is intersecting.

By definition, if C ∈ C, then C ∪ {v} is in A′ and, by the definition of f , also in

A. Using the definition of f again, we must have that either z is in C, or C ∪ {w}

is in A. Let C1 and C2 be two members of C. Then either they both contain z or

if one of them, say C1, does not, then C1 ∪ {w} is in A. As C2 ∪ {v} is also in A

and A is intersecting, we have that C1 ∪ {w} and C2 ∪ {v} must intersect. By the

independence of the two sets, this intersection contains neither v nor w and so C1

and C2 must intersect. The claim is proved. �

Note that G − v is an elongated claw with a short limb, fewer vertices than G

and with n leaves. We also note that each member of B contains r vertices of G− v

and, by Claim 1, B is pairwise intersecting. By the induction hypothesis, G − v

is r-EKR and so the largest intersecting families are r-stars, and, by Lemma 5.16,

I(r)
x (G− v) is a largest r-star of G− v. Hence

|B| ≤ |I(r)
x (G− v)|. (5.3.7)

Note that G ↓ v is an elongated claw with a short limb, fewer vertices than G

and with either n or n − 1 leaves. We also note that each member of C contains

r − 1 vertices of G↓v and, by Claim 1, C is pairwise intersecting. By the induction

hypothesis, G↓v is (r− 1)-EKR and so the largest intersecting families are (r− 1)-

stars, and, by Lemma 5.16, I(r−1)
x (G↓v) is a largest (r − 1)-star of G↓v. Hence

|C| ≤ |I(r−1)
x (G↓v)|. (5.3.8)

Combining (5.3.6), (5.3.7) and (5.3.8) and applying Lemma 5.15:

|A| = |B|+ |C|

≤ |I(r)
x (G− v)|+ |I(r−1)

x (G↓v)|

= |I(r)
x (G)|

and the theorem is proved. �
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5.4 Final Remark

Let us make a remark on our investigation towards a result for elongated claws

without a short limb, but with a limb of length 2. The main obstacle lied in the

change of location of the largest r-star when using an argument by induction. We

point the reader to a notable result of Hilton, Holroyd and Spencer [69] concerned

with the EKR property of several copies of powers of cycles.

Theorem 5.17 ([69]). Let G = Ck1
n1

∪ Ck2
n2

∪ · · · ∪ Cks
ns

be the disjoint union of s

powers of cycles one of which is simple. Then G is r-EKR for r ≥ µ(G).

Theorem 5.17 is of relevant interest since their proof successfully deals with varying

star centres. We therefore believe that their approach might serve as a spring board

for future research on Conjecture 5.6 restricted to elongated claws and, in general,

to trees.
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