
Durham E-Theses

Advances in photostop

WARNER, NEIL,ROBERT

How to cite:

WARNER, NEIL,ROBERT (2016) Advances in photostop, Durham theses, Durham University.
Available at Durham E-Theses Online: http://etheses.dur.ac.uk/11785/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/11785/
 http://etheses.dur.ac.uk/11785/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Advances in photostop

Neil Warner

Department of Chemistry

University of Durham

A thesis submitted in partial fulfilment of the requirements for the

degree of Doctor of Philosophy

2016



ABSTRACT

This thesis is an expansion on previous work using the photostop technique for

the production of near-zero velocity atoms and molecules. The goal is to produce

stopped SH molecules and trap them in a permanent magnetic trap and the aim of

this project was to construct a new experimental apparatus to accomplish this.

During initial tests of the apparatus, the Rayleigh scattering cross-section of N2 was

measured to provide a reference point for future experiments. The uncertainty and

systematic errors in the measurements was such that definitive quantitative results

of this were not be obtained at this stage.

The emerging technique of cavity-enhanced laser-induced fluorescence (CELIF) was

used to perform absolute number density measurements of a molecular beam of

SO2. CELIF was then applied to measuring the photostop of SD/SH. This showed

that CELIF would not have the required sensitivity to measure the trapped SD/SH

molecules due to issues of stray light from the lasers. As a result of this we elected

to use resonance-enhanced multi-photon ionisation (REMPI) as an alternative.

We devised and constructed a novel ion extraction system for use in performing

REMPI, which was based on a time-of-flight mass spectroscopy system, but utilis-

ing the magnets themselves as electrodes, as well as some ion lensing components.

This was initially tested using Xe, showing a strong signal and good mass resolution.

Using this, the photostop of SH and S was measured showing that the detection ap-

paratus is able to distinguish signal over a range of 9 orders of magnitude. However,

despite this sensitivity, the trapping of these stopped molecules could not initially

be demonstrated as the signal from these stopped molecules was obscured by signal

from the inadvertent dissociation of the background parent molecules by the probe

laser. More recent measurements in the group have directly addressed this issue

with background subtraction and the results have now demonstrated the trapping

of SH.

Significant headway has been made in the demonstration of the trapping of SH

produced by photostop. From the results produced using REMPI the detection limit

has improved significantly over the prior experiments and very recent measurements

have successfully demonstrated the trapping of SH.
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Part I

BACKGROUND AND EXPERIMENTAL DESIGN



1. INTRODUCTION AND LITERATURE REVIEW

The field of ultracold physics has become a matter of significant interest in recent

years not only due to academic curiosity but also on account of the potential applica-

tions. Experimental work performed with molecular gases at ultracold temperatures

has provided insight into a number of areas such as many-body physics, quantum

dynamics of complex systems, quantum chemistry and fundamental forces of nature.

To explore this area a variety of new experimental techniques have been developed

including magnetic and electric decelerators, magneto- and photo-association, buffer

gas cooling and more recently Sisyphus cooling. The photostop technique is one such

method of producing cold molecules and is the focus of this project. In order to fully

understand this experiment and its place in the field we must first discuss the domain

of ultracold molecules as a whole.

1.1 Cold and Ultracold regimes

Before we can properly examine this field, the exact nature of what is meant by cold

and ultracold needs to be defined. These two states are often defined in relation to

the de Broglie wavelength, which is a manifestation of the wave/particle duality and

is defined by the equation

λdB =
h

p
=

(
2π~2

mkBT

)1/2

, (1.1)

where λdB is the de Broglie wavelength of the molecule, h is the Planck constant, p is

the momentum of the particle, ~ is the reduced Planck constant, kB is the Boltzmann

constant, m is the mass of the particle and T is its temperature. The cold region is

defined as being a temperature at which the de Broglie wavelength of the molecule
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is the same order of magnitude as the classical size of the molecule and typically lies

in the region of 1 K to 1 mK. The ultracold region is defined where the de Broglie

wavelength is in the same order of magnitude as the average molecule separation of

the ensemble and in terms of temperature tends to lie below 1 mK. In this region

the dynamics of the molecules are predominantly wavelike as the wavepackets of

individual molecules overlap. This can lead to unique quantum mechanical events

such as the formation of Bose-Einstein condensates (BECs) where a dilute gas of

bosons are cooled to such a degree that the vast majority occupy the lowest quantum

state which results in the manifestation of macroscopic quantum phenomena [1, 2].

An illustrative summary of the different properties of the temperature regimes is

given in Fig. 1.1.

Fig. 1.1 Illustration of the phenomena associated with various ranges of en-
ergy/temperature taken from [3]. From left to right the columns indicate: the energy
splitting at this temperature, the frequency of the transitions that occur at this temper-
ature, the absolute value of the temperature in this state (in K), typical environments
that exist at this temperature and different cooling methods that are used to reach this
temperature.

1.2 Applications of cold molecules

Considering the quantum mechanical nature of cold and ultracold molecules there

are many potential applications to which they could be utilised. Additionally, the

fact that the velocity of these molecules is significantly reduced gives rise to potential



1. Introduction and Literature Review 4

use in spectroscopy and related fields. Furthermore, the low temperature of these

molecules may allow them to be held in magnetic, electric or optical traps, which in

turn may lead to more complex applications.

1.2.1 Chemical Reaction Dynamics

As previously mentioned, at ultracold temperatures the quantum mechanical nature

of the molecules’ translational properties become more dominant (in particular with

regards to translational degrees of freedom). This allows a direct insight into the

fine quantum mechanical nature of chemical reactions as the molecules can no longer

be accurately described as particles that collide but are more akin to interfering

waves [4, 5]. Because of this, the dynamics of ultracold molecules are characterised

by quantum effects which could potentially lead to the production of hard to produce

molecules. To illustrate this let us consider an example where a desired product is

separated from the reactants by an insurmountable reaction barrier. Classically the

product would not be able to be produced on account of the barrier but in the

quantum regime the products could effectively tunnel through the reaction barrier.

This effectively means that measurements of chemical reaction rates of these species

allow for an assessment of the roles of tunnelling, zero-point energy and quantum

reflection effects have in chemical reactivity. This can also potentially provide new

reaction pathways to be used as, when molecules are cooled to low temperatures,

the likelihood of populating specific rovibrational states is enhanced due to the state

selectivity of inelastic and reactive collisions. In addition to this, as the durations for

ultracold interactions tends to be longer than at room temperature, which increases

the molecules’ sensitivity to weak external fields and potentially allows a greater

degree of control over them.

One of the avenues of investigation is the production of entangled molecules. En-

tanglement is a phenomena where if one entangled species changes state the other

automatically changes state as well regardless of distance. This phenomena is vital

for the study of quantum information transfer and the development of quantum

computing schemes based on the manipulation of atomic and molecular systems.
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Photodissociation of molecules in a BEC can be used for the controlled preparation

of entangled pairs of radicals [6]. The production of entangled molecules may also

be applied to realising the coherent control of bimolecular chemical reactions [7].

The production of ultracold molecules drastically changes the nature of intermolecu-

lar interactions and may allow for coherent control of bi-molecular collision processes

with laser fields. Coherent control of molecular processes is based around quantum

interference between distinct interactions leading to the same outcome. This relies

on creating coherent superpositions of internal states of molecules which are mov-

ing with different relative momenta corresponding to the same momentum state of

the centre of mass motion [7]. Creating such coherent superpositions in a gas with

random molecular motions is highly problematic. However, methods have been pro-

posed to create coherent superpositions of different Zeeman or Stark states in the

presence of a magnetic or electric field [8]. At certain field strengths the energy split-

ting between different angular momentum states of the colliding molecules becomes

equal, which enables coherent control of these collisions.

In order for this potential to be realised it is clear that methods for the production

of dense ensembles of ultracold molecules will be required. As will be outlined in

Section 1.3, there are a number of techniques in development to achieve this but it

remains a significant challenge. However if this obstacle can be overcome then it

will lead the way into the study of new avenues of ultracold chemistry as well as the

production of new quantum materials.

1.2.2 High-resolution spectroscopy

In the majority of cases spectroscopic measurements are taken at room temperature

where the average velocity of gas-phase molecules is around 500 m s−1 [9]. At this

velocity the molecules being examined by the spectroscopic methods often spend a

relatively short time in the measurement device. This can also result in Doppler

broadening, whereby the thermal motion of the species will result in different tran-

sition frequencies for those travelling toward the detector and those moving away
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from it. Commonly the time available to study a molecule will be limited to a few

milliseconds, which gives a limit of a few kHz on the width of the spectral lines

observed. Given these considerations it would naturally be beneficial to cool the

molecules and increase the interaction time and thus the resolution of the spectra.

Precision laser tools are in development to make such advances in spectroscopy

based on samples of cold molecules. This could allow for coherent control of the

production processes, excitation pathways, spatial confinement, coupling to the en-

vironment and sensitive trace molecule detections. In fact cold molecules have been

used in collision and chemical reaction studies [10, 11]. This precision control in

both external and internal degrees of freedom allows for an assessment of some of

the most fundamental molecular interactions. In turn this will provide an insight

into more complex molecular processes.

1.2.3 Variation in Fundamental Constants

With the potential to perform high resolution spectroscopy, high precision measure-

ments can be made. This is particularly prevalent as a concept as there is some

evidence to suggest that fundamental constants may vary, in particular the fine-

structure constant α [12] and the proton to electron mass ratio µ = mp/me [13–16].

Atomic clocks have been used to set limits on the α variations, but atoms tend to lack

transitions that can show variations in µ. However for molecules, if µ changes, the vi-

brational (and rotational) energy levels of molecules move relative to their electronic

potentials. This has a greater effect on the moderately bound vibrational levels at

intermediate inter-nuclear distances than the stronger (near potential minimum) or

weak bound levels [15, 16]. This potentially can allow for accurate determinations

of ∆µ/µ by using the least sensitive levels as frequency anchors.

The J = 3/2 Λ-doublet of OH [12] is at the focus of significant astrophysical research

because it can be used to measure the variation of the fine-structure constant and

electron mass ratio by comparing the energy levels of cosmological and Earth-bound

OH molecules [17–19]. In order to accurately make this comparison, more precise
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measurements of these transition frequencies need to be made in order to match the

high resolution radio telescope data. Such precise measurements can be performed

using ultracold molecules.

More recently there have been some concerted efforts in this field to perform mea-

surements on the electron’s electric dipole moment using cold YbF molecules [20,21].

This entailed measuring the interaction energy between the electric dipole moment

of the 174YbF molecule and an applied electric field which was interpreted as the

interaction energy between the electron electric dipole moment and an effective elec-

tric field. This was achieved using a specialised pulsed molecular beam experiment

as shown in Fig. 1.2. For this experiment pulses of YbF are emitted by a specialised

source [22] with the molecules occupying the F = 0 and F = 1 hyperfine levels of

the ground state. The F = 1 population is then emptied out so that the population

is state specific. These molecules are then excited from |F,mF 〉 = |0, 0〉 to the state

1√
2

(|1,+1〉+ |1,−1〉) (where mF is the component of the total angular momentum

along the z-axis). These molecules then evolve freely as they pass along the electric

field plates with a phase difference forming between the components on account of

the static electric field. From this phase difference the electron dipole moment can

be extracted.

Fig. 1.2 Schematic diagram of pulsed molecular beam apparatus for YbF measurements
of the electron dipole moment (taken from [20]).

This technique was able to obtain an upper limit of |de| < 10.5 × 10−28 e cm

with a 90% confidence. This indicates that the electron is spherical and goes some

way to exploring the validity of the current theoretical models of particle physics.
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The main barrier to further exploration at this stage is the sensitivity of the equip-

ment and issues of noise so it is very possible that future measurements may give

more precise values of the electron dipole moment. In the event that these measure-

ments can be made it would not only go some way to identifying any variations in

the fundamental constants, but also give clarification to certain models of particle

physics. Specifically, the existence of an electron electric dipole moment greater

than 10.5 × 10−38 e cm would contradict the standard model of elementary particle

physics as a violation of both parity invariance and time reversal invariance.

1.2.4 Quantum Information Processing

According to Moore’s Law, the processing power of computers doubles every 18

months [23]. In order to accommodate this, the size of transistors has become in-

creasingly smaller and, with the current rate of progress, they will soon reach atomic

scales. At this scale quantum mechanical effects will impede the operation of the

transistor, this is known as the quantum limit. To combat this it has been proposed

to use quantum mechanical systems for information processing. The advantage of

this being that whereas classical system code data in the form of ‘bits’ which are

either 0 or 1, quantum systems use ‘qubits’ which are a superposition of both. This

can potentially allow for parallel processes to be performed more efficiently and,

through use of specialised algorithms [24], speed up information processing.

Polar ultracold molecules have many properties which make them viable candidates

for use in quantum information processing. As with atomic systems, molecules

have complex internal state structures including long lived internal states, which

can be used for encoding of quantum information. In particular the large electric

dipole moment associated with rotational structure in polar molecules provides an

avenue for quantum control greater than what is viable in atoms. These electric

dipole moments can be manipulated with microwave frequency electric fields which

can be controlled to a high precision [7]. Additionally, the electric dipole-dipole

interaction is both long ranged and strong, which means that it is possible to couple

the internal states of molecules even at moderate distances. This gives a potential
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Fig. 1.3 Schematic of polar molecule quantum computer taken from [28]. In this qubit
states 0 or 1 correspond to up or down relative to the applied field.

route towards scaling to large networks of coupled qubits. In addition to this, the

rich internal structure of the molecules may make it possible to store more than one

bit of quantum information in each molecule [25–27].

There have been some potential systems devised that utilise ultracold polar molecules

as qubits where the molecules are held in an optical lattice along an electric field

gradient [28]. In this scenario (as illustrated in Fig. 1.3) molecules with a simple

rigid rotor structure are used and qubits are encoded into the two lowest rotational

energy levels encoded as the qubits (with |0〉 being encoded as the lowest energy

level of the two). For a single qubit superpositions of |0〉 and |1〉 can be prepared

by applying microwave pulses with frequency tuned to the resonance with energy

needed to flip the dipole.

This system illustrates some of the key advantages of using molecular qubits. First,

neutral polar molecules can potentially be assembled in large numbers at high den-

sity into regular structures, this provides potential for scalability. Additionally the

long range nature of the dipole interactions means that qubits can be held at some

distance and still interact. Additionally, unlike systems that use Rydberg atoms

in a similar manner, this system will have longer decoherence time allowing more

processes to be performed before the qubits collapse. Further the manipulation of

the individual qubits can easily be performed allowing for a greater control of the

system.
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1.2.5 Quantum Simulation

Although quantum mechanical simulation techniques using classical computers are

becoming ever more advanced, there are certain processes that are significantly

problematic for classical computers to perform. On account of this limitation it

has been proposed to use ultracold molecules to form a quantum simulator. The

principle of the quantum simulator is that the molecules are used to directly engineer

a system whose Hamiltonian matches that of a fully quantum many body system

whose properties are not fully understood. The long range and anisotropic dipole

interactions between molecules in an optical lattice provides an effective medium for

this purpose. Different manifestations of this idea can be used to simulate a number

of condensed matter models [29–31].

The principle behind the quantum simulator was first proposed by Feynman in

1982 [32] and in many ways is an expansion upon the ideas of quantum information

processing. In essence a quantum computer could be considered to be a quantum

simulator that can be applied to a number of different quantum simulators. However

the difficulty lies in making such a system universal so that information can be

encoded into it. An alternative for simulating a specific system is to build a quantum

simulator. For instance, if we wish to simulate the properties of a solid a simulator

could be constructed using an optical lattice of cold polar molecules in an array. As

the magnetic and electric dipole interactions of the molecules are (in certain cases)

significantly stronger than the interactions of atoms in a solid, changes in the optical

lattice structure are easier to measure; and hence one can simulate the properties of

the solid.

In order for this to be realised ultracold molecules need to be used in order to ensure

that the molecules remain in the trap for a long enough period of time to perform

the desired simulations. Additionally a large number density is required so that

enough molecules can be held to effectively simulate the desired systems. However

if quantum simulation can be achieved it could form the precursor for a universal

quantum computer.
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1.3 Production of cold molecules

Broadly speaking the methods of producing ultracold molecules fall into two cate-

gories: direct and indirect cooling. Direct cooling involves cooling intact molecules

whereas indirect cooling combines ultracold atoms to form an ultracold molecule.

For the purposes of producing ultracold molecules we are presently concerned with

the production of diatomic molecules, as triatomic molecules or higher have a greater

number of rotational and vibrational degrees of freedom and hence it becomes harder

to reduce these to ultacold temperatures.

1.3.1 Direct Cooling

As stated above direct cooling actively attempts to make molecules colder without

changing the molecule. This can be a problematic process as molecules have vibra-

tional and rotational degrees of freedom in addition to the translational freedom of

atoms. This means that in order to reduce the temperature of molecules the vibra-

tional and rotational energies need to be reduced as well as the translation of the

molecule as a whole. There are many methods by which this can be achieved some

of which are outlined below.

Supersonic Expansion

A relatively simple method to cool a gas is to let it expand from a high pressure

system through a nozzle into vacuum. Let us consider a container with high pressure

gas and a small hole through which the molecules can emerge into the vacuum. While

in the container the molecules will be able to travel a certain distance before they

collide with another molecule, and the average of this distance is the mean free path

of the gas. If the hole in the container is much smaller than the mean free path

of the gas the velocity distribution will not be disturbed inside the container and

will remain the same as the beam leaves the container. This would be an effusive

molecular beam.
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If the orifice is much larger than the mean free path, the molecules escaping the con-

tainer will collide more frequently. At the hole molecules will experience a net force

coming from collisions with molecules still in the container which will push them

out. Due to this the speed distribution of the molecules in the beam will be different

than within the chamber as the faster molecules will collide with slower molecules

flying ahead which will increase the average velocity and reduce the velocity distri-

bution. This narrower velocity distribution corresponds to a lower temperature (see

Fig. 1.4).

Fig. 1.4 Schematic representation of supersonic expansion of ammonia taken from [33].
The high pressure gas is expanded through a small hole into vacuum. Also shown is
the velocity distribution both in the chamber and in the supersonic beam. Seeding the
ammonia in a xenon carrier gas greatly reduces the mean velocity.

This process boils down to the transformation of the random thermal motion of

the high pressure gas into a directed translational motion. During this the ther-

mal energy per molecule is largely converted into kinetic energy, which implies a

significant reduction in the translational temperature in the moving frame of the

molecular beam. However, in practice finite collision cross sections and the forma-

tion of clusters limit the temperature as the beam density drops with r−2 so there

is a limit to the number of cooling collisions that can occur.
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Using this method highly directional molecular beams can be obtained when com-

bined with a skimmer. Skimmers are cone-shaped metal pieces with a small orifice at

the apex so that when the molecular beam passes through it, molecules with higher

transverse velocities are removed. Additionally the velocity and velocity distribution

can be controlled by mixing a carrier gas into the molecular beam. This is because

the collisions between the primary gas molecules and the carrier gas molecules will

be different than between the primary gas ones themselves. Noble gases are often

used as the carrier due to their non-reactive nature and can also reduce the afore-

mentioned cluster formation (although this is not the case with the more polarisable

noble gases such as Xe). This is due to the fact that noble gases only cluster at very

low temperatures and so can act as a heat sink during the expansion. It is common

practice to use a mixture of a small percentage of the molecules of interest in the

carrier gas. By this method translational temperatures below 1 K and rotational

temperatures below 5 K can be obtained; along with vibrational temperatures of

around 50 K [9]. The terminal velocity of the molecular beam with this method is

usually in the supersonic region and is altered by using different mixtures of carrier

gas.

Kinematic Cooling

As a supplement to supersonic expansion, kinematic cooling can be used to further

cool molecules in a molecular beam. Essentially this technique involves crossing

atomic and molecular beams and using the collisions to reduce the velocity in the

laboratory frame. The molecular and atomic beams are tuned such that when the

molecules and atoms the scattering process brings the molecules to rest in the lab

frame. Further, if the collision is elastic and the species are of approximately the

same mass, the scattered molecule will be in its rovibrational ground state.

The earliest experiments with this method used supersonically cooled beams of Ar

and NO and produced NO molecules with a temperature of ∼ 440 mK [35] via

inelastic collisions. However secondary collisions of the cooled molecules with the

supersonic beams make these conditions difficult to maintain. On account of this
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Fig. 1.5 Newton Diagram illustrating the process of kinematic cooling using cross beams
of Kr (taken from [34]). The fiure is drawn for atoms with identical masses and identical
velocities colliding at a laboratory frame angle of 90◦ with the most slowly scattered atoms
stationary in the lab frame.

there has been further developments with this technique [36,37], which has also been

expanded to other species [34, 38].

The primary advantage of this method is that it can potentially be applied to any

molecules as it only relies on the quantum states and momenta on the species in

question. However the process is experimentally difficult due to the reliance on

collimated supersonic beams at sensitive angles.

Laser Cooling

One of the more prominent cooling techniques of recent years has been laser cooling.

This process involves cooling atoms by many consecutive absorption-emission cycles

which results in a significant momentum transfer from photons in the laser beam

to the atoms or molecules. More specifically, laser beams are directed at an atom

or molecule such that the photons of the laser can be absorbed by it. The momen-

tum of these absorbed photons counteract the translational motion of the target

atoms/molecules thus slowing them down. Generally the method used to perform

this process also makes use of the Doppler effect. If the slowing laser is tuned to
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just below a specific absorption peak of the atoms/molecules, the atoms/molecules

moving into the laser will encounter photons which are Doppler shifted onto the

absorption peak and therefore they are slowed down by the laser. This cycle of

absorption and emission continues until the target atoms/molecules reach a velocity

such that the incoming light is no longer Doppler-shifted into an absorption peak.

These techniques have been shown to cool atoms to temperatures below 1 mK at

a density of 1010 atoms cm−3. However there are limitations as to what species

this technique can be applied to as a closed cyclic transition is required so that the

absorption of a photon is always followed by a spontaneous decay to the initial state.

This can make the process extremely problematic for molecules as their vibrational

and rotational degrees of freedom mean that they have far more energy levels and

decay routes that can lead them out of the cooling cycle. On account of this, when

the molecule is excited by the incoming photon, there are a number of states that

the excited state can decay to (via spontaneous emission). As these states are not

at the same energy as the initial state, the incoming photon is no longer resonant

with the given transition and hence the molecule in this state cannot be cooled by

the same laser.

Despite these difficulties there have been some instances where such optical methods

have been used to effectively cool molecules. Notably variations of this technique

have been used in the rovibrational cooling of Cs2 [39], the optical cooling of SrF [40]

and the rotational cooling of molecular ions [41]. More recently a variation of this

technique has been used to slow a molecular beam of SrF from a buffer gas source [42]

as well as for CaF [43]. In both cases the issue of spontaneous decay of the molecules

out of the cooling cycle was overcome by using a secondary ‘repump’ laser to re-

excite the molecules into the initially excited state. A diagrammatic illustration of

the scheme used in [43] is shown in Fig. 1.6.

In addition to the experimental findings, there have been a number of theoretical in-

vestigations into the feasibility of this method. Some of the species simulated include

BeCl and BeBr [44], C –
2 [45], MgCl and MgBr [46], which show good prospects for

use in laser cooling. It is important to note that the molecules that have been suc-
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Fig. 1.6 Illustration of the transitions used for the laser cooling of CaF from [43]. The
main cooling cycle takes place on the A (v′ = 0)↔ X (v′′ = 0) transition while the repump
laser acts on the A (v′ = 0)↔ X (v′′ = 1) transition.

cessfully laser cooled possess what is known as a ‘diagonal’ Franck-Condon factor. In

practice this means that when excited to the desired excited state the spontaneous

emission from the molecule predominantly results in a decay back to the ground

state. On the whole this technique remains somewhat in its infancy but there is

good potential looking forward for further expansion.

Sisyphus Cooling

The more recently developed method of Sisyphus cooling offers an alternative ap-

proach to optically cooling molecules held in an electric trap. A schematic illustra-

tion of this method is given in in Fig. 1.7. Initially the target molecules are held

in an electric trap with two distinct regions (high-field and low-field). Molecules

in strong low-field-seeking states (which we shall refer to as |s〉) will experience a

different potential in the trap to those in weaker low-field-seeking states (which we

shall refer to as |w〉). So, as shown in Fig. 1.7 as a molecule in the |s〉 state moves

into the high-field region it is driven into the weaker |w〉 which then moves back

the low-field region due to the favourable potential. This can then be driven to an

excited state |e〉 which will spontaneously decay back to the |s〉 state, restarting the

cycle.
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Fig. 1.7 Diagrammatic representation of Sisyphus cooling taken from [47]. When a
molecule in the strong low-field-seeking state |s〉 diffuses into the high field region it is
driven to the weaker low-field-seeking state |w〉. This then moves back to the low-field
region where the molecule is excited to the state |e〉. This decays spontaneously back to
|s〉 and the cycle repeats. As the spontaneous decay is irreversible the cycling process is
unidirectional.

This Sisyphus technique has been demonstrated using CH3F molecules which have

had the temperature reduced by a factor of 13.5 [48]. It has also been successfully

used to produce an ensemble of 3×105 formaldehyde molecules with a temperature of

approx 420µK populating a single rotational state with more than 80% purity [49].

Additionally there have been a number of theoretical studies for potential schemes

of this type [50,51].

When directly compared to more traditional Doppler-based laser cooling methods,

Sisyphus cooling has some distinct advantages. As an infra-red laser is used to

change the trapped molecules’ vibrational state, this gives the option of using high

powered and narrow band lasers, which are difficult to find for the electronic transi-

tions used in Doppler-based methods. Additionally there is no reliance on favourable

Franck-Condon factors to facilitate the cooling process. However, Sisyphus cooling

can only cool to low-field seeking states which is rarely the case for ground state

molecules, therefore further cooling would be required to reach significantly lower

temperatures.
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Buffer Gas Cooling

One of the more versatile methods for the preparation of cold molecules is that

of buffer-gas cooling. The basic principle of this method is that the molecules

are enveloped in a buffer-gas of cryogenically cooled atoms (often helium) and via

collisions with the buffer gas the molecules lose momentum and become colder.

This method has been used on a variety of atomic and molecular species such as

CaH [52], CaF [53], NH [54], Cr [55], Mn and N [7]. As result of this method the

molecules can reach a temperature of around 1 K with molecular densities that can

exceed 109 cm−3. Cold molecules produced by this method are sometimes held in a

magnetic trap as this allows the opportunity to study different aspects of the cooling

process such as the dynamics between molecules and He atoms [56].

Another direction for buffer gas cooling is the creation of cold molecular beams.

For this process the molecules are introduced into a chamber containing the buffer

gas. After a sufficient number of collisions with the buffer gas the molecules are

cooled both rotationally and translationally and the mixture is allowed to escape

the chamber via an orifice. Electric or magnetic field guides are placed at the exit

of the chamber so that only molecules that are moving sufficiently slowly will be

guided to the intended destination.

Sympathetic Cooling

A more recently developing method for cold molecule production is that of sym-

pathetic cooling. In many ways this has similar operating principles to buffer gas

cooling with the target molecule being cooled by interaction with colder atoms to

ultimately reach an equilibrium. The primary difference for sympathetic cooling is

that during the process the “buffer gas” atoms are themselves also being continu-

ously cooled via laser cooling. This ultimately leads to lower temperatures than can

be achieved through buffer gas cooling as the constant reduction in temperature of

the cooling atoms ultimately leads to lower temperatures. An illustrative analogy

for a comparison of the methods would be that buffer gas cooling is like putting an
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ice cube in a drink whereas sympathetic cooling is like having a constant flow of ice

into it.

One of the earliest realisations of this method was in the sympathetic cooling of

trapped 198Hg+ in a Penning ion trap with laser-cooled 9Be+ ions, which reached

temperatures below 1 K [57]. This early experiment served as a good demonstration

of the effectiveness of sympathetic cooling as well as illustrating some of the char-

acteristics of a cold, magnetically confined, two-species plasma. Another prominent

experiment with this technique performed sympathetic cooling between two spin

states of 87Rb [58]. In this case a double magneto-optic trap and a so-called Ioffe-

type trap was used to create condensates of the |F = 2,m = 2〉 or |F = 1,m = −1〉

states which were then overlapped causing sympathetic cooling of the former via

thermal contact with the evaporatively cooled latter. From here the method has

been applied to a number of atomic species with a variety of different techniques in-

cluding (but not limited to) the cooling of 41K using evaporatively cooled 87Rb [59],

the cooling of 6Li in a thermal bath of 23Na [60], the cooling of 6Li using the forced

evaporation of 7Li [61], the cooling of optically trapped 7Li atoms using trapped

133Cs atoms [62] and the cooling of 133Cs via elastic collisions with 87Rb [63].

The application of this technique to molecules is a more recent development with a

number of theoretical models produced [64–67]. In terms of experimental work, the

field is still developing with some promising results from the cooling of molecular

hydrogen ions with laser cooled beryllium [68], a variety of diatomic and triatomic

molecular ions [69] as well as larger organic molecules which were cooled by inter-

action with laser-cooled barium ions [70] and more recently the cooling of 40CaH+

with co-trapped 40Ca+ ions.

Stark and Zeeman Deceleration

As one of the main points of interest in ultracold molecules is their permanent

magnetic and electric dipoles it seems natural to use this property as a means to

manipulate them. This is the idea behind both the Stark and Zeeman deceleration
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techniques.

In both cases a narrow pulse of molecules is slowed by using an electric or magnetic

field gradient to oppose the motion of the molecules. If we take the example of Stark

deceleration as illustrated in Fig. 1.8, when entering an electric field molecules

the with an electric dipole moment will gain Stark energy at the cost of kinetic

energy [71]. To prevent the molecules regaining the kinetic energy the electric field

is switched to the opposite polarity. If the molecules are directed through multiple

pulsed electric fields such as this they can effectively be slowed down. The same

principles can also apply for the magnetic dipole moment of a molecule, which gives

rise to Zeeman deceleration [72].

Fig. 1.8 Schematic for Stark deceleration taken from [7]. As the molecules enter the
electric field they will gain Stark energy at the cost of kinetic energy as shown by the red
curve. The electric potentials are then switched to the dashed blue curve so the molecule is
once again at the bottom of a potential well. This process is repeated and the decelerated
molecules are often loaded into a molecular trap.

When in an electric or magnetic field the quantum states of a molecule will shift

in energy as a result of the Stark and Zeeman effects respectively. These shifts can

be positive or negative depending on the alignment of the electric/magnetic dipole

relative to the electric/magnetic field. States where the electric/magnetic dipole

is aligned with the external field will decrease in energy in higher fields (high-field

seeking states) and those where the dipole is aligned opposite to the external field

will gain energy in higher fields. As the high field seeking states are lower in energy
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the rotational ground state of a molecule is always a high field seeking state.

Given that the high field seeking states tend to be lower in energy it seems that it

would be preferable to decelerate these states. However it is often experimentally

simpler to decelerate low-field seeking states. In the case of Stark deceleration, the

technique has been used to successfully decelerate a number of molecules such as

CO [71], OH [73], SO2 [74], YbF [75] and H2CO, which have been used in high

precision spectroscopy and crossed beam collision experiments. More recent work

has shown the successful Stark deceleration of CaF [76] as well as OH radicals,

indicating the efficacy of the method for decelerating molecules.

Zeeman deceleration tends to be more difficult than Stark deceleration on account

of the requirement for strong magnetic fields that can be switched quickly. In spite

of this difficulty there have been some successes in the deceleration of metastable

Ne [77, 78], metastable Ar [79], metastable He [80] as well as more recent work in

the deceleration of electron-impact-excited metastable He atoms [81]. Applications

of this technique to molecular species are forthcoming with O2 molecules [82], and

given the complexity of the apparatus required for these experiments the progress

made thus far has been substantial.

1.3.2 Indirect Cooling

Although direct cooling methods are effective at producing ultracold molecules a

successful alternative is to assemble them from ultracold atoms. This approach

allows for the use of the cooling power of techniques available for atomic species

in producing ultracold molecules. It has also been shown that binding can be in-

duced between atoms without significant motional heating [7]. However the internal

degrees of freedom of the molecules during and after formation can be problem-

atic. Despite this it seems likely that quantum degenerate gases of molecules can be

created with these methods.

One of the main limitations of indirect cooling techniques is that they can only be

used to create ultracold molecules with atoms that can be laser cooled and trapped,
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which excludes many chemically relevant species. Presently the majority of indirect

cooling experiments have been performed with alkali metals, although the use of

alkaline earth metals is growing [83].

The first experiments in forming ultracold molecules from laser-cooled atoms was

performed using photoassociation (PA). In PA, a laser is tuned to resonance with a

transition from the free (scattering) state of the ultracold ground state atoms, to a

bound level of the excited (s + p) potential. However, because the photoassociation

often results in production of molecules in an excited vibrational state, cooling fur-

ther into lower vibrational states often requires spontaneous emission; this, in some

cases, may lead to the dissociation of the molecule. The initial experiments with

this technique focussed on homonuclear molecules [84,85] but were soon followed by

experiments with heteronuclear species [86,87].

More recent experiments have utilised Feschbach resonances in order to form ultra-

cold molecules. A Feschbach resonance occurs when a bound molecular state has

the same energy as the collision energy of two free atoms in a scattering channel.

When the difference in the quantum states of the scattering channel is associated

with a difference in magnetic moments, a tunable magnetic field can be used to bring

the energies of the quantum states of the atoms and molecules into resonance. By

performing this manipulation colliding pairs of atoms can form ultracold molecules;

this technique is known as magnetoassociation.

1.3.3 Comparison of Cooling Methods

As many of the aforementioned cooling methods are only applicable to certain species

a comprehensive comparison cannot always be made between them. However for the

majority of applications of cold molecules it is beneficial to obtain high molecular

densities at low temperatures. To make this comparison the methods outlined here

are summarised in Table 1.1.

In terms of temperatures, indirect cooling methods tend to reach far lower tem-

peratures than the direct ones. This primarily comes from the advantage that the



1. Introduction and Literature Review 23

Table 1.1 A comparison of the cooling methods outlined in terms of the temperatures
(or final velocities) reached and the number of molecules, N , in the sample. Adapted
from [88].

Method Requirements T or v N

Kinematic Cooling Applicable to all 400 mK No Data

Buffer Gas Cooling Applicable to all 400 mK > 108

Stark Deceleration A permanent or induced electric
dipole moment

5 mK 106

Zeeman Deceleration A permanent or induced magnetic
dipole moment

50 m s−1 No Data

Photoassociation Only applicable to atoms that can
be laser cooled

30 µK 2× 105

Feschbach Resonance Only applicable to atoms that can
be laser cooled

50 nK > 105

utilisation of laser cooling the atomic constituents brings. However this is also the

drawback of the methods as it fundamentally limits the species that they can be

applied to.

If we compare the direct cooling methods, although Stark deceleration reaches the

lower temperatures the number densities are also significantly lower. Coupled with

this the requirements for the electric/magnetic dipole moment in the cooled species

ultimately limits the applicability of these techniques. However, one of the main

advantages of the direct cooling methods is that they can potentially be combined,

for instance a buffer gas source can be introduced into a Stark decelerator, thus

providing the benefits of both techniques.
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1.4 Molecule detection methods

When using the above cooling techniques it is important to be able to establish

how successful they are by measuring the molecules produced. Specifically, we wish

to be able to identify the ultracold molecules as well as measure their temperature

and number density. In this regard there are a number of different spectroscopic

techniques which can be used to identify them based upon their quantum mechanical

properties. Additionally, the use of different forms of mass spectrometry can also

be used to characterise different molecules. The temperature of the molecules can

also be measured using velocity map imaging techniques, which can extrapolate the

temperature of the molecules from their velocities. However measuring the number

density of the molecules produced can become problematic requiring calibration

based on, for instance, the intensity of photons emitted from the molecules. There

are some methods that can be used to measure the number density directly, notably

the employment of a cavity and the use of cavity ring down spectroscopy. For the

sake of this work I will be discussing the techniques used in this project and by no

means is this all-inclusive of every measurement method available.

1.4.1 Resonance Enhanced Multi-Photon Ionisation

Resonance-enhanced multiphoton ionisation (REMPI) is a spectroscopic technique

that is often used for atoms and small molecules and can in some cases also be

used for large molecules. The process involves using a tunable laser to perform a

multiphoton process to ionise the atom or molecule. Initially the laser is tuned to

a frequency such that a single or multiphoton excitation will excite the atom or

molecule into an intermediate state. When in this intermediate state the molecule

is further excited above the ionisation potential, thus ionising the atom or molecule.

Additionally, the nature of this process means that the excitation to the intermediate

state is dependent on the initial state of the molecule. Thus, the quantum state of

the atom/molecule being ionised can be determined from the REMPI transition.

This process can be performed with different numbers of photons being absorbed by
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Fig. 1.9 Schematic of the transitions involved in a 2+1 REMPI scheme.

the species. However, the more photons required for the process the more difficult

it becomes as each species has a finite absorption cross-section. One such REMPI

configuration is the 2 + 1 scheme as shown in Fig. 1.9. Here two photons are

used for the initial excitation and the third ionises the species. The viability of this

process and the number of photons required will naturally vary depending on the

energy level differences in the species used and the more photons required the higher

the laser power will need to be in order for this to be efficient. Another variation

on this process involves the use of two separate excitation lasers, one to bring the

atom/molecule to the intermediate state (via however many photon absorptions are

required to do this) and another to ionise the species. The advantage of this is

that it can allow for the ionisation/measurement of species in states that would be

difficult to ionise in other circumstances, as well as allow for ionisation on or near

the ionisation threshold.

As REMPI requires specific wavelengths to excite the molecules to the intermediate

states, high intensity tunable lasers tend to be used for the excitation. Additionally

once the molecules are ionised by the REMPI process there needs to be some method

by which the ions can be measured. One such method is to use a combination of
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electrodes and a microchannel plate (MCP). In this scenario when the ions are

produced they are accelerated by a set of electrodes (known as ion optics) to an

MCP which can detect the ion.

Velocity-Mapped Ion Imaging

Fig. 1.10 Velocity-mapped ion-imaging set up taken from [89]. Schematic diagram of the
experiment. The molecules in the molecular beam are ionised and accelerated by a set of
ion optics towards a position sensitive detector to image the ions.

One of the methods that can be used to perform measurements on ions produced

by REMPI is that of velocity map ion imaging (VMI). The idea behind this is that

the velocities of species that are moving in a specific plane can be measured by

deflecting it along a path that is perpendicular to that plane. This can give a two

dimensional map of the velocities of the species in this plane. This method was first

demonstrated in 1997 [90] and has been used extensively since [34,37,89,91,92].

An example of such a VMI set up is shown in Fig. 1.101. In this case NO molecules

were ionised by a pulsed dye laser using a 1+1 REMPI scheme. The resulting NO+

ions were accelerated by an electrostatic field generated by a set of ion optics towards

a position sensitive imaging detector which consists of a pair of microchannel plates,

a phosphorescent screen and a CCD camera. The ion lens system was designed and

1 This setup was used in previous photostop experiments which will be addressed in Chapter 2
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operated such that the velocity of the original NO molecule was mapped onto a

unique position on the detector.

In order for this to provide a measure of the velocity of the NO molecules in the

laboratory frame, the velocity origin (i.e. the position on the detector where (vz, vx)

= (0,0) m s−1) needs to be found. In the aforementioned case this was achieved

by recording an ion image of thermal NO bled into the vacuum chamber. Two

one-dimensional Maxwell-Boltzmann distributions of the form

f(vx) ∝ exp

(
−mNOv

2
x

2kT

)
, (1.2)

were fitted to the ion image in the vx and vy and its centre located.

1.4.2 Laser Induced Fluorescence

Another highly useful and well established form of spectroscopy is laser-induced

fluorescence (LIF) [93, 94]. In this method the examined species is first excited

with a laser, then the excited species will fluoresce emitting light isotropically at a

wavelength longer than (or equal to) the excitation wavelength; it is this emitted

light that is measured.

The primary advantage of this technique (when compared to other spectroscopic

techniques) is that as the probing wavelength is tuned to the molecule in question,

it is virtually background free, which means it can be used for the detection of very

low concentrations in confined volumes. Additionally, the fact that the signal is

background free means that it can be used in scenarios that range from requiring

single photon detection to saturation of measurement equipment.

The applicability of this technique will vary depending upon the species used or more

specifically the properties of the excited state. If the fluorescence lifetime of the state

is short, stray light from the incident laser needs to be controlled e.g. with an optical

filter. For longer fluorescence lifetimes stray light can be discriminated against by

time-gating the signal. For some molecules the upper state may be predissociative,
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which occurs when the potential curve of the excited state overlaps with an unbound

state. In this scenario processes such as intersystem crossing (ISC) may occur and

the molecule will transfer to the unbound state and dissociate. This, along with the

current capabilities of laser technology (i.e. what wavelengths can be reached), may

make this technique inappropriate for certain species.

As the emitted light is often isotropic LIF can potentially be used to generate spatial

images of the fluorescence, which is a distinct advantage over other forms of absorp-

tion spectroscopy. Additionally, with a well designed light detection system, a high

signal-to-noise ratio for the fluorescence is easily achievable, allowing for measure-

ments of small numbers of molecules. Additionally the fact that initial excitation

needs to be tuned to specific transitions in a molecule means that to some degree it

can be used to distinguish between different species.

1.4.3 Cavity Ring-Down Spectroscopy

Cavity ring-down spectroscopy (CRDS) is a direct absorption technique which can

be significantly more sensitive than conventional absorption techniques. Instead

of measuring the magnitude of absorption from a sample this technique measures

the rate of absorption. The sample is placed in an optical cavity consisting of two

highly reflective mirrors. A short laser pulse is coupled into the cavity and the light

is reflected back and forth between the mirrors. With each pass some light leaks

out of the cavity. The amount of light that leaks out of the cavity will decay over

time and it is the rate of this decay that is measured. This allows for the rate of

absorption to be measured so that the more the sample absorbs the faster the decay

of light in the cavity2. This is a relatively simple technique that allows for accurate

measurements to be taken with little requirement for complex equipment. Further,

the fact that the absorption is determined from the decay of the signal as opposed

to the intensity it means that it is independent of pulse to pulse fluctuations of the

laser. Additionally, the effective absorption pathlength can be very long, while the

sample volume is small.

2 The full mathematical description of this will be explored in section 3.8.1
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The precursor to this technique was a method for the measurement of the reflectance

of mirror coatings by Herbelin et al. [95] and Anderson et al. [96]. In 1988 O’Keefe

and Deacon first demonstrated the sensitivity of this technique by recording the weak

b1Σ+
g (v = 1, 2) ← X3Σ−g (v = 0) bands of molecular oxygen [97]. Since then it has

been repeatedly shown to be a powerful spectroscopic technique for measurements

of either strong absorptions of species present in trace amounts or weak absorptions

of abundant species among other applications [98].

Although CRDS is significantly more sensitive than standard absorption spectroscopy

techniques, in many circumstances it cannot compete with background-free detec-

tion techniques such as LIF or REMPI. However CRDS can be applied to species

with excited states that do not fluoresce or cannot or species that are difficult to

ionise using a REMPI process. Another major advantage is that CRDS can be used

to extract quantitative absolute concentration data, which is difficult with the other

methods.

1.5 Objectives of photostop project

As a part of the larger collaboration between Imperial College and Durham Uni-

versity known as the MicroKelvin molecules in a Quantum Array (MMQA) grant

for the production of cold molecules for use in a quantum simulator, the photostop

project is focussed on developing a novel way of producing cold molecules. The

initial stage of this will be to trap the cold molecules produced in a permanent mag-

netic trap so that further cooling can be facilitated. As will be shown in Chapter 2,

the demonstration of this trapping will require the development and application of

highly sensitive detection apparatus. The crux of this project is the development of

this measurement apparatus for photostop as well as the initial application of it to

the photostop measurements.



2. PRINCIPLES OF PHOTOSTOP

2.1 The Photostop Method

Photostop is a slowing method for producing cold species based on the photodis-

sociation of larger molecules. This technique requires a molecular beam of larger

molecules (which shall be referred to as the parent molecule) with a narrow velocity

distribution centred on a well defined average velocity. When the parent molecules

are photodissociated, the fragments produced will recoil relative to the centre-of-

mass (COM) of the precursor. In the lab frame this results in a velocity given by

the difference between the recoil from the COM and the velocity of the COM (see

Fig. 2.1(a)). If the molecular beam speed matches the recoil velocity of the desired

fragment from the COM, a portion of the molecular fragments will have an effective

velocity in the lab frame of zero bringing the molecule to a standstill and hence

“stopping” them.

With this technique the key is to tune the recoil velocity from the dissociation to

match the forward velocity of the molecular beam. Although the molecular beam

speed itself can be controlled by the use of different carrier gases (see 1.3.1), the

final velocity of the fragments is also determined by the photodissociation process.

If we take the photostop of H2S to produce SH as an example, photon energies, hν,

exceeding the dissociation energy, D0, of the HS-H bond will cause the molecule

to fragment (see Fig. 2.1(b)). The excess energy, Eexcess = hν −D0, is distributed

between the kinetic and internal energies of the fragments in proportions determined

by the photodissociation dynamics. For fragments that are formed in a given com-

bination of states, the total internal energy of the fragments, Eint(frag), is fixed and
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(a)

(b)

Fig. 2.1 Schematic outline of photostop technique using a H2S parent molecule (a) along
with an energy level representation of the dissociation mechanism (b). The recoil velocity
of the SH fragments as a result of the photodissociation cancels out the velocity of the
molecular beam, resulting in zero velocity in the laboratory frame.

the total kinetic energy, Ekin, is governed entirely by the photon energy

Ekin = Ekin(SH) + Ekin(H) = hν −D0 − Eint(frag) + (Eint(H2S)
), (2.1)

where Ekin(frag) and Ekin(H) are the kinetic energies of the SH and fragments re-

spectively and Eint(H2S)
is the internal energy of the H2S at the point of dissociation.

It should be noted that the Eint(H2S)
can often be disregarded for these experiments.

This is because the ultimate effect of different internal energies of the H2S molecules

would result in a distribution of different recoil velocities. However in practical
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terms it is often the case (as it is for this experiment with H2S) that the spread of

the velocity distribution of the molecular beam far exceeds this and so this term can

be disregarded. By conservation of momentum, in the COM frame of the photodis-

sociation, the velocities of the fragments are given by

uSH =

(
2Ekin.

mH

mSH.mH2S

)1/2

, (2.2a)

uH =

(
2Ekin.

mSH

mH.mH2S

)1/2

, (2.2b)

where mH, mSH and mH2S
are the masses of the H fragment, SH fragment and

H2S molecule, respectively. For the fragment to become stopped in the laboratory

frame the condition uSH = −vbeam must be met. By manipulation of equations 2.1

and 2.2a, the wavelength of the photons required to meet the photostop condition

is given by

λSH = hc

[
1

2

(
mSHmH2S

mH

)
v2beam +D0 + Eint

]−1
, (2.3)

where λSH is the dissociation wavelength. With this consideration, it is feasible to

produce molecules with zero velocity.

Fig. 2.2 Desired molecular beam speed of H2S for different increasing wavelength of the
dissociation laser along with the absorption cross-section of H2S at the same wavelengths.

In order for the photodissociation to have the desired effect the velocity of the molec-
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ular beam should be matched to the recoil of the target fragment. The molecular

beam speed can be adjusted by mixing the target molecule with inert buffer gases

which, via collisions, will speed up or slow down the movement the gas molecules.

Similarly, the dissociation wavelength can also be adjusted to match a given molec-

ular beam velocity. Additionally, for the purposes of trapping, it would be advan-

tageous for the recoil (and therefore the molecular beam velocity) to be as small as

possible as it would produce a smaller newton sphere and therefore porportionally

produce more trappable molecules. This matching is, however, limited by the ab-

sorption properties of the parent molecule. For instance in the example of H2S given

in Fig. 2.2, performing the photodissociation at wavelengths above 220 nm would

not produce as much SH as at 190 nm and therefore would not be favourable.

2.2 Past Results from Photostop

This technique is a fairly recent development in cold chemistry. In 2007, Matthews et

al. [99] proposed that cold oxygen atoms could be made from NO2 with zero mean-

velocity by the photostop method. Since then the process has been successfully

performed on both NO2 (with NO2 as the parent molecule and NO as the target

fragment) and Br2 (with Br2 as the parent molecule and Br as the target fragment)

[89,92]. A summary of the molecules that have been assessed for use in the photostop

is given in Table 2.1; the current experiments within our group are focused on using

H2S/D2S.

A schematic representation of the experiment (as used for NO2, Br2 and H2S) is

shown in Fig 2.3. The molecular beam is formed using a pulsed and skimmed

supersonic expansion of a gas of the parent molecule mixed in with a defined ratio

of carrier gases to alter the molecular beam speed and the direction of the molecular

beam defines the z-axis of the experiment. This molecular beam is intersected at

right angles by two laser beams counter propagating along the x-axis. The first

laser is the dissociation laser and the light is either produced by a pulsed dye laser,

the fifth harmonic of a pulsed frequency doubled Nd:YAG laser or an ArF Excimer
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Table 2.1 Summary of previously assessed photostop molecules along with the positive
and negative aspects of each experiment.

Target
Molecule

Parent
Molecule

Positives Negatives

NO NO2 Easy to detect. Too few fragments in
trapping state

Br Br2 Comparatively straight-
forward.

SO SO2 Readily available Too few fragments in
trapping state

SH H2S Few quantum states pop-
ulated.

Low fluorescence quan-
tum yield and requires
fast molecular beam.

SD D2S Higher fluorescence
quantum yield than SH

Requires fast molecular
beam and D2S is not uni-
versally readily available.

laser, depending on the species used (the former was used for NO2 and the latter

for H2S). The second laser is the probe laser which is produced by a tunable pulsed

dye laser and can be altered to perform either LIF or REMPI.

The REMPI scheme used for each photostopped species will naturally vary but

the schemes requiring the smallest number of photons will be preferential in order

to maximise the signal (i.e. molecules that can be photostopped with achievable

1 + 1 REMPI schemes would be preferable to those with 2 + 1 scheme). When

using REMPI the laser beams are directed to intersect the molecular beam at the

centre of an ion lens system orientated along the y-axis. The ions produced by the

REMPI process are accelerated by the electrostatic field towards a position sensitive

imaging detector which consists of a pair of microchannel plates, a phosphorescent

screen and a CCD camera. The ion lens system is designed and operated such that

the velocity of the original dissociated diatomic is mapped onto the detector using
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Fig. 2.3 Schematic of setup to photostop SH from H2S with ion optics and VMI in the
old system.

VMI. This detected ion image corresponds to the two dimensional projection of the

three-dimensional velocity distribution of the molecules onto the (vx,vz) plane. This

allows for the direct measurement of the absolute velocity of both the molecular

beam and of the fragment molecules, allowing for optimisation of the process.

In order to demonstrate the photostopping process the stopped molecules need to be

isolated from the rest of the molecular beam. This is achieved by altering the time

delay between the probe and dissociation lasers. With increasing time delays the

faster molecules will leave the area of the dissociation leaving the slowed or stopped

molecules behind. This was illustrated for both Br2 and NO2 using a VMI detection

apparatus [89,92].

However even in this scenario the photostopped molecules would still leave the dis-

sociation area eventually as the process does not completely stop all of them. To

account for this the intention was to trap the molecules with a permanent magnetic

trap as shown in Fig 2.4. On account of both the construction of the chamber used

for the process and the effect of magnets on the motion of the ions in the VMI ion op-

tics the REMPI could not be effectively used to illustrate trapping. To compensate

for this, LIF was used as the detection method instead.

As with the REMPI process, the probe laser wavelengths used for the LIF varied for

different species but it is preferential to select transitions to states which have large
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(a) Magnet Configuration (b) Magnetic trap at t=0 (c) Trap at t=1 ms

Fig. 2.4 Permanent magnetic trap used for trapping SH in prior experiments. It is
≈ 200 mK deep for SH(X2Π3/2,MJ = 3/2). Also shown are the spatial profiles of molecules
in the trap for time delay of 0 µs and 1 ms after dissociation from Monte Carlo trajectory
simulations.

absorption cross-sections and strong fluorescence properties. The laser beams with

this method are directed to intersect the molecular beam near the focus of a set of

detection optics. These optics focused the emitted fluorescence onto a detector (in

previous cases a photomultiplier tube (PMT)), with a set of filters to remove stray

light.

Trapping was first attempted for NO from NO2 parent molecules but this encoun-

tered certain issues. The primary issue was that the LIF signal was not strong

enough to distinguish it from the background signal. Additionally less than 0.5% of

the NO molecules produced were in the correct state for trapping meaning that it

would be unlikely that sufficient molecules would be trapped for them to be easily

detected.

Thus for the more recent experiments H2S has been used as an alternative as it

was expected that almost 3% of the SH fragments would be in the correct state for

trapping and the dissociation cross-section is an order of magnitude larger than for

NO2. The results of this investigation, along with corresponding simulations are

shown in Fig. 2.5.
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Fig. 2.5 Relative number density of SH molecules in the probe volume as a function of time
delay between the dissociation and probe lasers. Experimental data (solid symbols) show
current detection limits for REMPI and LIF detection. Simulations (open symbols suggest
that trapping will only be observable after a time delay of ≈ 500 µs. These simulations do
not include loss due to absorption of blackbody radiation or collisions with background
gas.)

When performing photostop on H2S it was only possible to take measurements at

time delays up to around 100 µs. This is in part due to issues with noise in the

LIF detection. However the more dominant issue is the predissociation dynamics of

SH which weakens the fluorescence signal. As the effects of trapping only become

apparent after 500 µs, it could not be demonstrated with this species at this time.

To improve upon this issue D2S was used as an alternative to H2S. This is because

SD has a higher reduced mass than SH and subsequently a lower energy of the v′ = 0

level. This reduces the probability of predissociation and increases the fluorescence

quantum yield by a factor of 70 and so should provide a stronger fluorescence signal.

However as shown in Fig. 2.6, although signal could be obtained for longer time de-

lays, despite best efforts this did not provide sufficient improvement to demonstrate

trapping.

Due to the significant problems with noise and the inability to demonstrate the

trapping of SH/SD it was decided that the best course of action would be to design
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Fig. 2.6 Photon counting signal from the LIF detection of SD molecules in the probe
volume as a function of time delay up to 200 µs between the dissociation and probe lasers.

a new dedicated chamber from scratch. With the foreknowledge of the issues that

have arisen with the current configuration, this new system was intended to reduce

these issues and allow trapping to be demonstrated.

2.3 Limitations of prior experiment

The primary reason behind the inability to detect photostopped molecules at in-

creased time delays is that the signals at the longer time delays tend to be very

weak and get lost in noise. There are a variety of sources for this noise and with a

new dedicated chamber they can be addressed in turn.

When performing the LIF measurements with SD it became apparent that the pri-

mary source of noise that was preventing measurements at longer time delays was

a source of stray light from inside the chamber. Despite best efforts the scattering,

which we believe was the result of scattering of photons from surfaces and imper-

fections in the optics as well as fluorescence from impurities in the lens/window

materials, could not be sufficiently eliminated. This included using different optical

filters in front of the PMT to block out the stray light, use of a gated PMT to remove
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the scattered light signal and modifying the beam profile to reduce the scattering.

Filtering it out in this manner proved problematic as the wavelength of the scattered

light is very close to that of the LIF signal itself. This implies that this signal is the

result of scattering from the probe laser as SH has a very diagonal Franck-Condon

factor, meaning that a large portion of the florescence emitted will be at the same

wavelength as the initial absorption. Hence, the wavelengths of the scattered probe

laser and the fluorescence emission are similar, thus producing difficulty in filtering

one from the other.

Another issue with the current set up is that the chamber has been re-purposed from

previous work, which provides a number of limiting factors for the experiment. First

of all the centre of the magnetic trap is displaced from the centre of the ion optics

used for the REMPI process. This makes it impossible to detect molecules held

in the magnetic trap, which is especially detrimental as REMPI is often the more

sensitive of the two measurement techniques that are being used for this experiment

and so would more likely be able to detect the photostoped molecules at the longer

time delays.

A further issue is that of the number density of the molecules in the trap. The

difficulty in detecting molecules at long time delays is not entirely due to noise but

also as a result of the small number of molecules in the trap. Thus if the initial

number density in the molecular beam is larger the signal at the longer time delays

will be stronger. However there is a significant limiting factor to this in terms of

the technology available. As such it may be worth experimenting with different

molecular beam sources to maximise the number density in the trap. At present

this is a secondary concern as we have a reliable molecular beam source but this

may be examined in the future.



3. DESIGN OF NEW EXPERIMENT

In order to make significant improvements over the previous experimental apparatus,

the new chamber needed to be purpose built to perform photostop and demonstrate

the trapping of molecules. With this in mind the focus is of the new design was on

the trap itself and maximising the number of molecules that can be trapped and

measured. To this end, the following chapter outlines the considerations that were

made and how each issue was addressed.

3.1 Magnetic Trap

Arguably the most crucial aspect of the new experimental design is the magnetic

trap for containing the photostopped molecules. To fully appreciate this we need

to more thoroughly consider the Zeeman effect mentioned in Section 1.3.1 and how

it relates to molecular states. For molecules the orbital and spin angular momenta

of the electrons as well as the rotational motion of the molecule, couple to give

the total angular momentum as denoted by the quantum number J . When the

molecule is placed in a magnetic field, it will align itself with the magnetic field

direction. The alignment of J with respect to the magnetic field is quantised, and

the component of J along the field direction is given by MJ~ where MJ can take

values of J, J − 1...,−J . For a diatomic molecule following Hund’s coupling case

(a)1, the energy of the molecule in a magnetic field will vary with MJ according to

the equation [100]:

∆E =
(Λ + 2Σ)(Λ + Σ)

J(J + 1)
MJµBB, (3.1)

1 A more thorough description of this is given in [100].
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where Λ is the projection of the total orbital angular momentum of the electrons

onto the internuclear axis, Σ is the projection of the total spin angular momentum

of the electrons onto the internuclear axis, µB is the Bohr magneton, and B is the

applied magnetic field.

For this investigation, the target molecule is SH(X2Π 3
2
) and we are looking to trap

the J = 3
2

state, which we can approximate as following Hund’s coupling case (a).

This allows us to simplify Equation 3.1 to

∆E =
3MJµBB

J(J + 1)
. (3.2)

The upshot of this is that an increasing magnetic field results in an increase or

decrease in the molecule’s internal energy depending on the orientation of J in the

magnetic field. A representation of this is shown in Fig. 3.1. Molecular states

for which an increasing magnetic field results in a decrease in internal energy are

referred to as high-field seeking states and those whose energy increases are known

as low-field seeking states. Molecules in a low-field seeking state will gain internal

energy when entering a magnetic field and therefore will be repelled by it and hence

can be confined within a region of space (i.e. trapped) by a magnetic field.

Fig. 3.1 The Zeeman effect for a SH molecule with J = 1.5.
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The goal in designing the magnetic trap was to produce a deep quadrupole magnetic

trap from two magnets in an anti-Helmholtz configuration which maximises the

strength of the magnetic field whilst allowing easy access to the trap volume so

that the molecular beam and the dissociation/probe lasers can pass through it (as

well as to allow for fluorescence/ions to escape from it for detection, see section

3.8 for more details). From earlier investigations in the group, rod-shaped magnets

have been shown to produce the largest possible magnetic field by maximising the

amount of magnetic material present. However, using a closed rod restricts at least

one axis of access to trap volume so we instead opted for ring magnets. Additionally,

although decreasing the separation between magnets is an effective way to increase

the magnetic field, a compromise must be reached to allow the aforementioned

accessibility to the trap volume. As such, a minimum separation of 4 mm between

the magnets was decided upon.

Fig. 3.2 Simulated magnet configuration from Mathematica.

To design the magnet configuration of the trap a number of alternatives were simu-

lated by another member of the group using the Radia magnetostatics computation

package with Wolfram Mathematica 9.0. The final configuration was formed from

two permanent NdFeB ring magnets. The magnets, as shown in Fig. 3.2, have a

residual magnetisation along their cylindrical axes of 1.46 T, an outer diameter of

12.0± 0.1 mm, an inner diameter of 4.0± 0.3 mm and a thickness of 7.0± 0.1 mm.

For clarity in these simulations, we define the z-axis as the cylindrical axis through

the bore of the magnets and the x and y axes as radial.

Using Mathematica, the root mean square (RMS) magnetic field strength of this
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(a) (b)

Fig. 3.3 Simulated RMS magnetic field strength of the permanent magnet configuration
both axially (a) and radially (b). For these graphs the magnets are spaced 4 mm apart.

configuration was simulated both axially and radially as shown in Fig. 3.3. The

cylindrical symmetry of the magnets means that this magnetic field is radially sym-

metric. In the radial direction (Fig. 3.3(b)) the magnetic field reaches a maximum

of 0.41 T at the outer rim of the magnets after which it rapidly decays to zero as

we leave the trap volume. Also there are two subsidiary maxima in the centre of

the potential well due the central bore in the magnets. Axially (Fig. 3.3(a)) the

potential well reaches a maximum of approximately 0.62 T at a distance of 4.5 mm

from the trap centre. The significant difference between this and the radial mag-

netic field strength ensures that molecules exiting the trap will be far more likely

to do so radially. The axial magnetic field reaches the maximum at approximately

2.5 mm into the bore of the magnet. This is an unavoidable consequence of using

ring magnets but should have little effect on the trapping of the target molecules.

To give a more complete picture of the trap we have also derived a contour plot

of the full trap volume as shown in Fig. 3.4. On this graph the minimum of the

expected trap volume is shown in the centre in blue at the bottom of the magnetic

potential well and the trap itself extends as far as the outer rim of the magnets.

Also shown on the plot are a number of artificial discontinuities (shown by the black

marks). This is a known issue for field computation for subdivided objects in Radia

and results from the assignment of constant magnetisation values to each sub-object

which make up the magnets.
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Fig. 3.4 Simulated contour plot of the RMS magnetic field strength in the one of the
axial planes. Contours increase in size from blue to red in even steps.

3.2 Pumping the Trap Volume

In order to maximise the lifetime of any molecules held in the magnetic trap, the trap

volume needed to be evacuated to a high (approx 10−7 mbar) or ultra-high (below

10−9 mbar) vacuum. Given the small size of the trap, fully evacuating it between

repetitions of the experiments could become problematic. To directly counter this

issue we decided early on that the magnetic trap would be housed on the cold

head of a cryostat. For this experiment, to make the cryostat we re-purposed a

cryopump (Leybold-Heraeus, RPK1500) in its entirety. When properly cooled, this

cold head could potentially reach temperatures less than 20 K, effectively turning

every surface in the trap housing into a pump and thus more efficiently pumping

the trap volume. However, the cryostat could not be used as the sole pump because

over time adsorbed molecules would build up on the surfaces effectively saturating

them and these would be released en masse when the cryostat is turned off. Thus

we supplemented the cryostat with a large turbopump (1200 L s−1, Pfieffer HiPace

1200 U) backed by an appropriate two stage rotary vane pump (65 m3 s−1, Leybold,

Trivac D65B), that would provide a base level of high vacuum, which would then be

improved upon with the operation of the cryostat as well as providing a means to

remove adsorbed gases when the cryostat is warmed up after operation. Further, in

order to achieve the best possible vacuum, efforts were made to utilise copper-sealed
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flanges throughout the chamber design (as opposed to o-rings) due to the better

quality of seal made by them.

3.3 Experimental Apparatus Overview

Before addressing the individual components of the experimental apparatus in detail

we should first consider the structure as whole so that a better picture can be drawn

of how it fits together. As previously mentioned, the focus of this experiment is the

magnetic trap which we have elected to house on the cold head of a cryostat. As we

have re-purposed a cryopump (Leybold-Heraeus, RPK1500) to serve as this cryostat

this inherently entailed some restrictions on the design. Namely, the cryopump has a

permanent chamber structure with a 200 CF flange as the main vacuum connection.

On account of this we have utilised a specialised 10” spherical octagon (Kimball

Physics) to allow for the required laser access (which will be explored in Section 3.7)

as well as a further extension piece to allow for sufficient time of flight for the ion

optics (which will be discussed further in Section 3.8.2). Further, to account for the

fact that the cold head of the cryopump is withdrawn from the flange face, extension

pieces were required for the trap housing and outer shield (as will be explored in

Sections 3.4 and 3.5). Details of the design will be explored further in following

sections, but a complete cross-sectional overview is presented in Fig 3.5.

3.4 Magnetic Trap Housing

In order to be able to position the magnets to form the magnetic trap a permanent

housing is required. As previously mentioned, the cryostat was the base of the entire

machine and its inner stage lay at its centre. This meant that the housing for the

magnets needed to be built on the inner stage to ensure that it is centralised and to

maximise the benefits of the cryostat.

Within the magnetic trap housing shown in Fig. 3.6 there are several components

in addition to the magnets themselves (as can be seen in Fig. 3.7). These additional
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Fig. 3.5 Cross-sectional schematic of the new vacuum chamber for the photostop experi-
ment.

pieces are required for use in the ion optics as will be outlined in 3.8.2. For the ion

optics the magnets need to possess a voltage that is independent of the housing.

Thus, in order to maintain the cooling effect of cryostat a material that is thermally

conducting but electrically insulating is required to separate them. For this purpose

we elected to use the ceramic boron nitride which has a high thermal conductivity

but is electrically insulating.

For the trap, as outlined previously, the two permanent magnets needed to be held

4 mm apart in order to produce the required magnetic fields. In the trap housing

along this 4 mm gap there is a long 4 mm slit. This slit is to allow access for the

molecular beam and lasers as well as an avenue where fluorescence can escape from

the trap centre.

In terms of assembly, as shown in Fig. 3.7, the individual components can be slotted
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Fig. 3.6 Cross-section view of magnetic trap housing mounted on the cryostat.

in sequentially to form the configuration shown. The repulsive forces between the

magnets kept them separated and therefore allowed them to be held in the correct

configuration. In cases where dummy pieces are used to replace the magnets the

upper piece will be reconstructed to incorporate the electrodes and dummy pieces

separated by an insulator.

3.5 Outer Shielding

In order to maximise the efficiency of the cryostat it is best to reduce the number

of direct lines of sight to the inner stage as much possible. The purpose of this is to

minimise the heating effect of black-body radiation from room temperature surfaces

on the cold head of the cryostat. This was achieved by use of the outer stage of

the cryostat, from which an outer shield was built to form a thermal shield. As the

outer stage was also being cooled by the cryostat, the amount of thermal contact

with room temperature equipment was reduced as much as possible2.

2 Some thermal contact was unavoidable due the requirements for power supplies to the ion
optics, but this was minimised using long thin wires.
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Fig. 3.7 Magnetic trap support cross-section.

As shown in Fig. 3.8, the primary support for the outer stage comes from the base

which is attached directly to the outer stage of the cryostat. This provides a large

platform upon which different components can be mounted, for instance monitoring

components like thermocouples.

The upper piece of the outer stage consists of several components to facilitate dif-

ferent aspects of the experiment. In the structure of the core piece there are a

number of different holes on the cylindrical surface to allow for access for the lasers

and molecular beam. In addition to this there are two cylindrical extrusions with

tapped holes that lead into the centre of the trap. The purpose of these was that

the tapped holes allow for components to be mounted onto the cryostat in order

to facilitate different monitoring methods (this will be expanded upon in section

3.8). In addition to this, there was a planar surface that has been cut into the main

cylindrical structure. The purpose of this was to allow the molecular beam skimmer

to be mounted as close as possible to the centre of the magnetic trap in order to

maximise the portion of the molecular beam which enters the trap and therefore
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Fig. 3.8 Cross-section view of outer stage assembly mounted on the cryostat.

potentially increase the number of molecules that enter the trap volume and are

dissociated. On the top of the core of the outer shield there is a hole to allow for

the time-of-flight tube to be fixed to the outer stage. The time-of-flight tube forms

part of the ion optics as outlined in section 3.8.2.

The skimmer was held onto the central piece by what was known as the skimmer

plate. This piece sandwiches the skimmer to the outer stage to hold it in place. The

bolt holes used to secure the skimmer plate have been designed to be deliberately

too large in order to allow for adjustments to be made in the position so that the

skimmer is properly aligned with the centre of the trap.
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3.6 Molecular Beam Source

For the purposes of generating a molecular beam, the experiment predominantly

utilised a pulsed solenoid valve (Parker, General Valve, series 9 with IOTA ONE

pulse driver) to give short pulses of gas for the molecular beam. However there are

many other different types of valves and molecular beam sources so it is preferential

to allow for the greatest adaptability in the design.

The initial intention for the design was to utilise a custom built piezo valve for our

molecular beam source. As this has a diameter of 46 mm this meant that 35 CF

flanges on the aforementioned spherical octagon needed to be replaced with 63 CF

half nipples. During construction of this valve there were some issues with sealing so

it was not used in this experiment. However, given the size of the valve it was used

as a benchmark from which to work from as other molecular beams sources/valves

tend to be smaller.

To accommodate the operational requirements of the molecular beam source a spe-

cialised 100 CF flange was commissioned. At the centre of this flange was a cajon

fitting to secure a 1
4
” pipe which served as the connection from the external gas line

to the valve as well as a means to alter the position of the valve by simply adjusting

the pipe (i.e. pulling it in or out or turning it). To facilitate the required electrical

inputs to the nozzle a number of 16 CF half nipple extensions were added to the

flange.

Another important factor to consider is how to ensure that the nozzle of the molec-

ular beam source is aligned with the centre of the octagon. For this a support

structure is required to guide the nozzle and ensure it does not move as result of

vibrations from the cryostat. With this in mind the design of the structure shown in

Fig. 3.9 was chosen. This utilises a unique feature of the spherical octagon, namely

the grabber grooves, which are small recesses in the walls of the chamber upon which

components can be mounted. The rods shown both support the nozzle and guide

it into the right position. The points at the ends of the rods are pointed in order

to allow them to be guided to a plate that centred the nozzle with respect to the
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(a) Grabber Groove Support Structure

(b) Nozzle Support Structure Mounted on Spherical Octagon

Fig. 3.9 Grabber Groove Support Structure for guiding and securing the nozzle

skimmer (see section 3.5).

3.7 Laser Systems

Both the photodissociation and the measurement of trapped molecules require the

use of specialised laser systems as well as access for these lasers to the trap volume.

To accommodate these requirements available equipment was utilised to produce

the laser sources needed.

For the dissociation laser, from Fig 2.2 it is clear that in order to obtain the highest

yield of our dissociated SH a dissociation wavelength of around 190 nm should be
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used. In this experiment a dissociation laser with a 213 nm wavelength was generated

from the fifth harmonic of a pulsed Nd:YAG laser (Continuum, Surelite I-10). The

fifth harmonic was generated by combining the fourth and first harmonics of the

laser using a specialised BBO crystal. The other harmonics were separated out

using a series of dichroic mirrors and prisms. The final output of this resulted in a

5 ns output with a pulse energy of around 2 mJ at a repetition rate of 10 Hz.

For the probe laser, vastly different wavelengths would be required for the different

measurement processes (LIF and REMPI), which would likely need to be tunable to

account for the finer rotational structure of the target molecule. To accommodate

this, the probe laser was generated from a pulsed dye laser (Sirah, CobraStretch

with frequency conversion unit) pumped by a Nd:YAG laser (Continuum, Surelite

I-10). As the wavelengths for each measurement method were so different, different

dyes and pumping wavelengths (i.e. the second and third harmonics of the Nd:YAG)

were used for each process as will be outlined in the experimental sections in later

chapters.

One of the main goals of this new experimental set up is to allow for multiple

measurement methods to be applied to the molecules in the trap volume. This

ultimately requires that the dissociation and probe laser intersect in the trap centre

and that the trap allows for such an intersection. In a lot of experiments when

lasers need to be overlapped in this manner they can be aligned to be on the same

axis but counter-propagating to each other. However, this configuration can be

problematic as with high powered lasers the optical elements involved can quickly

become damaged. Thus for this experiment we adopted a different approach in

having the laser axes intersecting from different angles as shown in Fig. 3.10.

The vacuum chamber part shown in Fig. 3.10 is a custom made 10” spherical

octagon (Kimball Physics) which has been modified to accommodate the particular

requirements of this experiment. Specifically, a pair of 16 CF ports were added

to each side of the piece at an angle of 22.5◦ from the central axis to allow for

laser access and two of the 35 CF ports were replaced with 63 CF extensions to

accommodate the molecular beam sources.
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Fig. 3.10 Custom spherical octagon configuration for laser axes. In this picture only the
ports used directly for laser access are shown, the unoccupied ports in this diagram will
serve other purposes as outlined later. Further, the aforementioned laser baffles are fitted
into the 16 CF full nipples on the dissociation and REMPI axes. The LIF axis has longer
extensions in order to facilitate a cavity as outlined in Section 3.8.1.

Another consideration for the laser access is that of the potential sources of noise

from scattered light and fluorescing components. To reduce unwanted fluorescence,

the windows used for laser access were made from UV-grade fused-silica or CaF2

which are not strongly absorbent at the wavelengths used and so are less likely to

fluoresce. For the reduction of scattered light we allowed for the introduction of

laser baffles on the laser axes. Laser baffles are essentially a series of absorbing cone

shaped surfaces orientated along the laser beam path. For lasers propagating from

the apex of the cones to the base, the baffles block the extremities of the laser beam

profile as well as any scattered light [101].
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3.8 Measurement Techniques

3.8.1 Theory

During the course of this project a number of different measurement techniques

have been applied. Here, a brief summary of theoretical background of some of the

techniques is presented3.

Laser Induced Fluorescence

Since we are building from the previous experiments it is natural that the use of

LIF as a detection method for the photostopped molecules will continue in some

form. As outlined previously in Section 1.4.2, LIF is a highly sensitive technique

that detects molecules by exciting them with a laser and measuring the fluorescence

produced. For single-pass LIF the magnitude of the recorded output signal is given

by [102]

SLIF = ILIF · α · Γ · g, (3.3)

where SLIF is the magnitude of the fluorescence signal, ILIF is the intensity of the

excitation light source4, α is the molecular absorption coefficient, Γ is the fluores-

cence quantum yield of the excitation and g is an instrument dependent factor. As

the only measurements taken are of the fluorescence of the target molecule this tech-

nique is, in principle, background free meaning it can be used for a large range of

α (i.e. for both large and small numbers of molecules). However, in practice there

can be issues with stray light which make the detection of very small numbers of

molecules problematic. Another issue with this technique is that the instrument

dependent factor g is defined by the nature of the measurement, the instrument (i.e.

how the light is being measured and the efficiency of the detector) as well as the

nature of the optical collection system (i.e. how many of the fluorescing molecules

are actually seen)5. These factors are hard to determine and so precise absolute

3 The theory behind REMPI has already been outlined in Section 1.4.1.
4 This corresponds to the number of probe laser photons interacting with the sample
5 It should be noted that the g factor is highly dependent on the nature of the measurements

taken both in terms of magnitude and the units of the factor itself.
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density measurements are difficult to do with LIF so this technique tends to be used

in experiments where only relative numbers are significant. That said, recent work

has, with great effort, been able to calibrate this detection efficiency for a given

experiment with an error of 30% [103].

Cavity Ring-Down Spectroscopy (CRDS)

As outlined in section 1.4.3, CRDS is a form of absorption spectroscopy for mea-

suring absolute number densities which uses the Beer-Lambert law and measures

very small losses of light by weak absorbers. In these experiments a pulsed laser

is coupled into a cavity that encloses an absorption cell. At the end of the cavity

there is a light detector (often a PMT) which measures the light escaping the cavity.

As the laser is pulsed, the amount of light escaping the cavity will decay over time.

This is because, as there is no additional light input into the cavity when the pulse

is switched off, with each round trip of light inside the cavity more light is lost,

hence the amount of light escaping will decay exponentially over time following the

equation

I(t) = I0 · exp

(
− t

τ0

)
(3.4)

where I(t) is the intensity of light at time t, I0 is the initial light intensity and τ0 is

the time required for the initial intensity to decay to 1
e

of its original value; this is

known as the ring-down time (RDT). In an evacuated cavity with highly reflective

mirrors, the RDT is related to the reflectivity of the cavity mirrors by [98]:

τ0 =
L

c(1−R)
(3.5)

where L is the distance between the mirrors, c is the speed of light in vacuum and R

is the mirror reflectivity. If there is a gas that absorbs the wavelength in the cavity,

the RDT will reduce as the light in the cavity is reduced more rapidly.

By measuring the reduction in RDT and with an application of the Beer-Lambert

law the particle density in the cavity can be measured. If we take the Beer-Lambert
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law as defined by

I(t) = I0exp(−σρct), (3.6)

where σ is the absorption cross section of the absorbing particle and ρ is the particle

density. The decay in intensity will occur simultaneously to the ring-down decay

defined in equation 3.4, meaning that they can be combined thus

I(t) = I0exp

(
− t

τ0
− αct

)
, (3.7)

with α as the molecular absorption coefficient α = σρ. This can be rewritten as

I(t) = I0exp

(
− t
τ

)
, (3.8)

where τ is the reduced RDT of the filled cavity defined by

1

τ
=

1

τ0
+ αc. (3.9)

This can be rearranged to give

α =
1

c

(
1

τ
− 1

τ0

)
= σρ. (3.10)

From this, provided that σ is known, absolute values of the particle density of the

cavity can be measured.

Cavity Enhanced Laser Induced Fluorescence (CELIF)

To combat the background signal due to scattered light we considered the use of

an optical cavity along the LIF probe laser axis to perform cavity-enhanced laser-

induced fluorescence (CELIF). In essence optical cavities are simply a set two mirrors

whereby the laser light enters through one mirror and reflects back and forth between

them and would assist in reducing stray light in the chamber.

The reason that an optical cavity will reduce the stray light is that the only light
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that is coupled into the cavity will remain in the cavity. The resonant modes of a

cavity are those of the wavelengths that are capable of producing standing waves

in the cavity. Light entering the cavity which is not resonant with a cavity mode

will destructively interfere with reflections from the mirrors and therefore will be

removed. This will significantly reduce the potential occurrence of stray light from

the probe laser thus reducing the background level.

CELIF combines CRDS and LIF by placing the fluorescence probe laser in an optical

cavity and essentially performing both techniques simultaneously. The full descrip-

tion of this method is given in [102, 104] but in basic terms, a probe laser, as used

in conventional LIF, is coupled into an optical cavity and the fluorescence produced

measured. Simultaneously the ring-down decay from the cavity is measured and

provides a measure of the intensity of light used in the fluorescence process such

that ILIF ∝ ICRD where ICRD is the time integrated light intensity as measured by

the CRD detector. From this we can define the CELIF signal as [102]:

SCELIF =
SLIF

ICRD
= α · Γ · 2g

T
, (3.11)

where T is the transmission of the exit cavity mirror. This is effectively the LIF

signal normalised with the shot-to-shot integrated CRD intensity. By using this

measurement, the shot-to-shot fluctuations in the probe laser intensity are directly

accounted for and the instrument dependent 2g
T

factor can be determined by cal-

ibrating the recorded CELIF signal with absolute absorption measurements from

CRDS. Additionally, as the probe laser is coupled into cavity, only longitudinal and

transversal modes of the cavity can exist within it, meaning that there is a significant

reduction in stray light from the probe laser.

3.8.2 Application

The measurement techniques described above require some specialist equipment

to be used. Here an outline of the apparatus used for these measurements are
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presented6.

LIF Detection Apparatus

If the previous experiments are to be improved upon it will require a careful consid-

eration of a number of factors. First and foremost there is the issue of background

signal that has hampered the previous investigation. One of the more significant is-

sues was that of stray light, which we define as a background level of light signal that

arises as a consequence of imperfections in the optical aspects of the experiment; for

instance back reflections of the probe laser from an optical element could contribute

to this stray light. This clearly needs to be significantly reduced in order to reduce

background levels and hence improve upon the limit of detection. In addition to

this, a reduction in the electrical noise would also increase the signal to noise ratio

and allow for readings of smaller number densities of molecules.

In order for the LIF detection to be as efficient as possible one must consider where

to place the light detection device in relation to the centre of the magnetic trap. As

with previous investigation we will be utilising a PMT as the photon detector.

The photons are emitted from the fluorescence process isotropically, meaning that

the PMT can be placed at any position provided that there is a line of sight to the

centre of the trap. In principle the PMT could also be mounted inside the vacuum

chamber. However if this was the case the PMT would detect all light inside the

chamber and would likely have greater issues with stray light.

As an alternative to mounting the PMT inside the chamber a lens system can be

used to focus the light from the fluorescence onto the PMT. As shown in Fig. 3.11,

with a lens placed at a distance larger than the lens’ focal length, the light emitted

from the trap is focused into an image behind the lens. If an aperture is placed

at this distance that is the size of the image then the majority of light from other

sources that enter the lens should be blocked by it. Then the light that passes

through the aperture can be refocused onto the PMT by a second set of lenses.

6 Although more detail on the apparatus used will be presented as required in later chapters.



3. Design of new Experiment 59

(a) On axis Ray Tracing

(b) Off axis Ray Tracing

Fig. 3.11 Ray tracing diagrams for the LIF detection both on and off axis. The first lens
has a 1/2” diameter and a focal length of 14.3 mm and the other two are both 1” diameter
with a focal length of 33.3 mm. The PMT in this diagram is mounted at 185 mm. It should
be noted that these ray tracing diagrams use the small angle approximation which is not
entirely accurate but was used to give a rough outline that was then optimised during
construction.
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With this configuration the impact of scattered light should be reduced.

Fig. 3.12 Lens system assembly for LIF detection. Although the first and last lenses are
at a fixed position, both the aperture and the second lens can be moved within the lens
tube if the lens system needs to be reconfigured. Additionally the last lens can be replaced
on the flange with a window allowing for the last lens to be mounted further back.

On account of the improvement in terms of stray light, we decided to utilise the

lens system as opposed to mounting the PMT inside the chamber. In order to allow

for the greatest ease of access and assembly the most straightforward method to

mount these optics is to mount them from the spherical octagon inside a Thorlabs

lens tube (see Fig. 3.12). In order to maximise the solid angle collection of the first

lens (and therefore examine more of the trap) the first lens needs to be placed as

close as possible to the trap centre and hence it was mounted on the outer stage

assembly. Although it is feasible to focus the emitted light onto the PMT with two

lenses we have opted to use three. The reasoning behind this is that the size of the

chamber puts restrictions on where the PMT could be mounted and although a two

lens system could focus light onto the PMT, size restrictions of the lens tube and

previous experience in the group with two lens systems suggest that a three lens

system is preferable. However, the current lens configuration, shown in Fig. 3.11,

was designed to be adaptable so that it may be altered if problems were found.
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Fig. 3.13 Schematic of confocal optical cavity. This shows the outline of a light beam
that fits itself between the mirrors. The rays consisting the outline are curved as a beam
of limited width spreads by diffraction.

Cavity-Enhanced Laser-Induced Fluorescence

In terms of constructing the cavity itself, it is not simply a case of mounting and

aligning cavity mirrors on each end of the laser axis. In order to maximise the

effectiveness of the cavity one needs to consider the behaviour of the laser in the

cavity. First if we consider the shape of the cavity mirrors, it is preferable to use

confocal mirrors as this will trap the maximum amount of light into the cavity (see

Fig. 3.13). The exact shape of the pathways shown in Fig 3.13 is determined by the

nature of the laser beams themselves. Laser beams that couple into optical cavities

are usually of Gaussian-Hermite form. As these beams propagate the curvature of

their wavefronts and the diameter of the beam will vary as function of distance.

This is described by the equations [105]

R(z) =
z2 + z2R

z
, (3.12a)

ω(z) = ω0

(
1 +

(
z

zR

)2
)1/2

(3.12b)

where z is the direction of propagation, R is the radius of curvature of the wavefront,

ω is the radius of the spot size (where the intensity of the spot has dropped to 1/e

of the maximum), ω0 is the minimum radius of the beam (known as the beam waist)

and zR is the Rayleigh range which in turn is defined by the equation

zR =
πω2

0

λ
(3.13)
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where λ is the wavelength of the laser light. For a symmetric cavity in order to

maintain low loss modes the cavity must obey the condition

0 <

(
1− L

RM

)2

< 1 (3.14)

where L is the length of the cavity and RM is the radius of curvature. As shown in

Fig. 3.13 in the symmetric cavity the beam waist lies in the centre or at 1
2
L, which

means that R(1
2
L) = RM for a cavity mode. Substituting this into Equations 3.12a

and 3.12b we find that the beam waist is given by

ω0 =

√
λ

2π

(
2RML− L2

) 1
4 . (3.15)

As we wish to probe as many molecules as possible it is advantageous to maximise

the size of the beam waist. If equation 3.15 is differentiated with respect to L and

set to zero we get

∂ω0

∂L
=

√
λ

8π
(RM − L) ((2RM − L)L)−

3
4 = 0. (3.16)

From this it appears that there are three solutions for the optimised length namely

L = RM , L = 2RM and L = 0. The latter is obviously not viable but the first two

can both be used. If we consider the first two scenarios along with equation 3.15 by

setting RM = L the revised equation for the beam waist is

ω0 =

√
λL

2π
, (3.17)

and by setting RM = L
2

the beam waist is given by

ω0 =

√
λ

2π

(
2
L

2
L− L2

) 1
4

= 0. (3.18)

Hence based upon this the optimum cavity length and mirror radius of curvature is

RM = L. Additionally this shows that for longer cavities and mirrors with larger

radii of curvature we will produce a larger beam waist. However there are still limits
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in terms of the practicality of constructing the cavity itself and the availability of

the mirrors with the required radius of curvature. On account of this we elected to

use a 1 m long cavity and a beam waist of approximately 227 µm.

In order for this cavity to be realised there needs to be some method to mount

the cavity mirrors in place. For this, specialised cavity mirror mounts have been

designed as shown in Fig. 3.14. This mount not only holds the mirrors in place but

also allows for the alignment of mirrors using fine adjustment screws.

Fig. 3.14 Schematic cross-section of cavity mirror mount. This assembly can be directly
mounted onto a 16 CF flange and the mirrors aligned with the precision screws. There are
three precision screws arranged 120◦ from each other. As they are tightened the screws
will push on the mirror washer and adjust the angle of the mirror. The mirror washer
serves to protect the mirror and precision screws from damage by over-tight contact and
allows for space to mount the PMT directly into the mount.

Resonance Enhanced Multi-photon ionisation (REMPI)

For the REMPI measurements a specialised configuration of elements is required in

order to optimise the ion detection. As previously mentioned, the primary element is

a specialised set of ion optics in order to guide the ionised molecules to the detector.

To design these ion optics, specialist simulation software (SIMION) was applied and

a variety of configurations simulated until a final configuration was decided upon.

The simulations indicated a preferred configuration of ion optics which incorporated

the magnets as electrodes (see Fig. 3.15). During the simulation process efforts were
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Fig. 3.15 Ion Optics assembly used for REMPI detection. Each component is electrically
isolated using boron nitride and the electrical feedthroughs are fed into the chamber via
dedicated ports.

made to both maximise the number of ions from the trap that reach the detector

along with the mass resolution of the ions. However in practice this was not found

to be fully feasible and so we have opted to provide the utility of two different modes

of operation: a signal maximising configuration and a mass resolving configuration

(see Fig. 3.16). To illustrate the differences between these two modes of operation

simulations were performed by generating a 10 mm line of SH and SD molecules

perpendicular to the direction of the extraction and recording the time of arrival at

the microchannel plate (MCP). The results of this are shown in Fig. 3.17.

Table 3.1 Voltages applied to each of the components for the two ion-optics settings. V1
and V2 are the lower and upper magnets respectively, V3 is the extraction tube and V4
is the ion shield (also referred to as the time-of-flight tube).

V1 V2 V3 V4 MCP

Signal Maximising 0 V 0 V −100 V −400 V 1 kV

Mass Resolving 1 kV 400 V −300 V −400 V 1 kV

As shown in 3.17 there are significant differences between the ion times of flight

using the different configurations. The most notable difference is in the magnitude
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(a) Signal-maximising configuration (b) Mass resolution configuration

Fig. 3.16 SIMION simulations of the ion optics configuration with potential contours and
example ion trajectories. The blue contours halve in size from top to bottom starting at
−320 V and the green contours are evenly spaced from −200− 800V, increasing from top
to bottom. With the configurations shown there are two modes for either maximising the
signal or allowing mass resolution and for each, different voltages are applied to each of
the electrodes.

of the flight times as the signal-maximising configuration gives ions a much longer

time of flight. This is a result of the relatively shallow potential gradient that the

ions experience from the extraction tube as shown in Fig. 3.16. This results in

a slower extraction from the trap and onto the MCP, ultimately leading to longer

flight times. Additionally the spread in ion arrival times is much larger when using

the signal maximising mode with a long tail of ions at longer flight times. This is

also likely due to the slow extraction of the signal maximising mode which means

that the ions at the wings of the extraction volume take significantly longer to reach

the detector. In any case it is clear from this that given the temporal breadth of the

signal maximising configuration and minimal difference between the different mass

peaks, it is not suitable for distinguishing different mass peaks, hence the necessity

of the mass-resolving configuration.

In order for this configuration to be applicable, the MCP needs to be mounted

directly above the centre of the magnetic trap at a sufficient distance to allow for

the TOF signal to distinguish between different masses. In order to meet the length

requirement a custom built extension piece is required as shown in Fig. 3.15, with
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(a) Signal maximising (b) Mass resolution

Fig. 3.17 Time of flight SIMION simulations for the signal maximising and mass resolving
configurations of the ion optics.

additional 35 CF ports added to provide additional access for other monitoring

processes (see Section 3.8.2). It was decided early on that in order to maximise

pumping and minimise the volume of the chamber that the turbopump would be

mounted directly above the cryostat. This means that the MCP needs to be mounted

in-between the two, thus making it impossible to perform VMI without mounting

the phosphor screen and camera in vacuum. Instead, as shown in Fig 3.15, the

MCP needed to be mounted on a double-sided 200 CF flange with the electrical

feedthroughs required connected radially through the flange.

As with the PMT, in order to consider the potential for noise in the system we

must examine the workings of the MCP. A microchannel plate is a slab of highly

resistive material typically of < 2 mm thickness with a regular array of tiny tubes

or mirochannels through it which are densely distributed over the surface. The

microchannels are in the order of 10 µm in diameter with spacings of around 15µm.

They are also parallel to each other and often enter the plate at a small angle to the

surface. Each microchannel acts as an electron multiplier in the presence of a strong

electric field. Due to the angle of the channel in relation to the plate, particles or

photons that enter the channel are guaranteed to hit the channel wall. This impact

starts a cascade of electrons that propagates through the channel, thus amplifying

the signal. The electrons produced exit the channels on the opposite side where

they are detected by another means.
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Often two microchannel plates are used to achieve the required gain of electrons and

they are arranged in a chevron configuration so that ions cannot fly through them

without impacting the channels and generating an electron signal. In this case the

electrons that exit the first plate start the cascade on the second. This gives greater

gain than a single plate configuration and reduces ion feedback.

For our MCPs we elected to use a Hamamatsu F12334-11 model, which was mounted

on a specialised double-sided 200 CF flange with electrical and output connections

fed in radially. The internal electronics of the MCPs were configured such that there

is a negative potential bias at the face of the MCPs and the emitted electron signal

is collected by a grounded anode.

In terms of noise considerations, assuming any ion gauges in the chamber are

switched off, there is unlikely to be very many ions in the chamber that are not

produced by the REMPI process and so the background noise on this front should

be reduced. As with the PMT, the output voltage from the MCP was fed into an

oscilloscope using coaxial cables to reduce noise from external electrical signals.

Molecular Beam Profiling

In order to test the efficiencies of different molecular beam sources it would be highly

advantageous to allow for some mechanism to monitor the molecular beam profile.

To this end this design incorporates a number of different monitoring devices to

fulfil this function.

The primary molecular beam monitoring components are all housed on a Kimball

Physics spherical square (see Fig. 3.18). It was the intention to allow the incorpora-

tion of three different methods for monitoring the molecular beam in this structure,

namely: an optical cavity, a MCP and a fast ionisation gauge (FIG). It should be

noted that for the course of this experiment only the FIG apparatus was constructed,

although the other components could easily be added later.

For the optical cavity, as is the case for the LIF measurements, both CRDS and

CELIF can be performed on the beam as it passes through. CRDS can be used to



3. Design of new Experiment 68

(a) Spherical Square Assembly (b) Spherical Square Cross-Section

Fig. 3.18 Schematic of the proposed Spherical Square assembly for molecular beam mon-
itoring. For 3.18(b) this is a half section view from a plane perpendicular to the cavity
axis.

monitor the molecular beam profile by taking readings of the change in RDT (when

compared to vacuum) at different delays between the nozzle and the laser. This will

allow measurements of the number density of molecules in the cavity as a function

of time and thus show the shape of the molecular beam. Additionally it could be

potentially feasible to perform CELIF on the beam to allow a direct comparison

between the beam and the molecules held in the magnetic trap.

As shown in Fig 3.18 an MCP is situated directly on the molecular beam path.

In a similar fashion to the use of CRDS, the MCP could be used to monitor the

molecular beam by measuring the output in voltage over a set time period to give

the longitudinal shape of the molecular beam.

The most direct approach to monitoring the molecular beam would be to use the

FIG. The FIG is a Bayard-Alpert hot filament gauge consisting of a filament, a

grid and a collector wire. An electron current is emitted from the heated filament

and the electrons are attracted to the grid by a potential of around 160 V. Most of

the electrons pass through the grid and collide with gas molecules in the enclosed

volume, which ionises some of them. These ions are attracted to the collector and the

current that results from their impact is amplified to give a measure of the number
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of gas molecules. In distinction to the standard Bayard-Alpert gauges, the FIG is

specially optimised to give a fast response time by having a smaller grid so that

it can effectively measure the changes in pressure in detail along the length of the

molecular beam. If the FIG is placed in the path of the molecular beam it can give a

measure of the number of gas molecules passing through it as a function of time and

hence gives a molecular beam profile. Instead of mounting the FIG in the molecular

beam path permanently, it is mounted on a linear push-pull feedthrough to allow

for the greatest flexibility. Additionally we are incorporating into the design the

capability of mounting an additional FIG onto the outer stage shielding to monitor

the pressure near the trap centre.

Additional monitoring methods

In addition to the primary measurements that have already been outlined there are

a number of other parameters that need to be monitored in order to optimise the

experiment. The most significant of these is the vacuum pressure of the chamber as

this has a major role in the experiment. Additionally the temperature of the two

stages on the cryostat should also be measured. Another factor to be considered

is that of leak detection for the chamber and how to monitor the contents of the

chamber (i.e. to determine if there is contamination in the molecular beam).

For the sake of vacuum measurement we adopted a number of Pirani and ion gauges.

A Pirani gauge consists of a metal filament suspended in a tube that is connected to

the system to be measured. The filament is heated and when gas molecules collide

with it the filament will lose heat. As the rate of heat loss is directly related to the

number of gas molecules present measuring it is a direct indication of the pressure.

Ion gauges operate using the same operational principles as the FIG outlined above.

The primary pressure measurement of the chamber used a combination Pirani and

ion gauge mounted on an unused port of the spherical octagon or on the extension

piece. It should be noted that this will measure the ambient pressure in the chamber,

but in the trap itself this is likely to be much lower on account of the pumping factor

of the cold surfaces of the cryostat.
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In order to monitor contamination and detect leaks we opted to use a Hiden An-

alytical (HALO 201-RC) residual gas analyser (RGA). A RGA is a small mass

spectrometer that can be connected directly to a vacuum system and analyses the

gases inside it. There are three main components to the RGA: an ion source, a mass

analyser and a detector. The ioniser consists of a hot emission filament which pro-

duces an electron beam for ionising the gas in the system. After the ionisation the

ions are sorted according to mass by the mass analyser. This is commonly performed

by use of a radio-frequency quadrupole which prevents the ions with the incorrect

mass-to-charge ratio for the given frequency from passing onto the ion collector,

thus sorting the masses of the ions. These sorted ions are then measured using the

detector, which may be either a Faraday cup or an electron multiplier depending on

the sensitivity of the frequency range used. The RGA produces a mass spectrum

which allows us to observe what gases are in the chamber and thus if there is an

unexpected reading on the RGA (e.g. large amounts of N2) or by performing a He

leak check then it will be apparent that there is a leak. Both of these options are

viable and they may be used in combination.

In terms of temperature measurements of the cryostat, the ideal method to monitor

this would be to use a calibrated resistor. Essentially this would be a resistor where

the resistance had been measured for cryogenic temperatures and therefore a direct

measurement of the resistance will provide a means to determine the temperature.

However, realistically the exact temperature of the cryostat is not, at this stage,

vital to the experiment so precise measurements would not be required. Therefore,

for the sake of simplicity, we opted to use a flange mounted K-type thermocouple,

which was secured onto the outer stage of the cryostat.
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CAVITY-ENHANCED LASER-INDUCED

FLUORESCENCE



4. N2 RAYLEIGH SCATTERING CROSS-SECTION

MEASUREMENTS

4.1 Introduction

The initial experiments performed were focused on the measurement of the Rayleigh

scattering cross-section of N2 (σN2
) between 320 nm to 325 nm using cavity ring-down

spectroscopy (CRDS). At first, the reasoning for this at the time was to comple-

ment a concurrent experiment which utilised cavity-enhanced laser-induced fluores-

cence (CELIF) for absolute density measurements of SD molecules [104]. However,

these measurements could not be taken within sufficient time for use in that exper-

iment. These experiments continued after the aforementioned paper had been sent

for publication as it was deemed that accurate values for σN2
could be useful for the

calibration of CELIF detection systems in circumstances where there is insufficient

molecules for a measurable change in ring-down time (RDT).

4.2 Experimental

The vacuum chamber was set up as shown in Fig. 4.1. The chamber was evacu-

ated using a rotary pump (Oerlikon Leybold DC65), allowing the chamber to reach

pressures in the order of ≈ 10−4 mbar (measured using a Pfeiffer Vacuum Compact

Fullrange BA gauge). A nitrogen supply was attached to the chamber with a reg-

ulating valve to provide a nitrogen supply to the chamber with a dry ice trap to

remove any water from the system and ensure purity. With the nitrogen line filled

with a high pressure (≈ 2 bar) and the valve to the rotary pump closed, the valve to

the N2 supply was partially opened. This allowed for N2 to slowly fill the chamber
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Fig. 4.1 Schematic diagram of chamber used for the Rayleigh Scattering Cross-section
measurements.

which would slowly increase the round trip losses from the cavity ring-down process.

As this leak was occurring, the ring-down transient was recorded and measured si-

multaneously with the chamber pressure (measured using a Pfeiffer APR260 piezo

gauge). From this the ring-down time was recorded as a function of pressure and

hence the Rayleigh scattering cross-section could be determined.

Laser wavelengths used were between 320 nm to 325 nm and generated using the

aforementioned dye laser (Sirah, CobraStretch). A DCM laser dye (Exciton) was

used and pumped using the second harmonic (532 nm) of a Surelite Continuum

Nd:YAG laser with a 10 Hz repetition rate. The emitted light was frequency doubled

using a frequency conversion unit from Sirah. The doubled light was guided into the

cavity with the use of a set of three UV-enhanced aluminium mirrors. Additionally

the size of the probe laser was reduced using a 2:1 telescope and a coupling lens was

placed directly in front of the cavity entrance. The purpose of this is to ensure that

the majority of the laser is coupled into the central transverse mode of the cavity

(the TEM00 mode) and the coupling lens is placed at a distance to ensure that the

laser light enters the chamber at an angle that matches the shape of the TEM00

mode.

A major issue with previous experiments using this method is that of the cavity

mirrors moving with pressure changes in the chamber. To counter this the new

mirror mounts were specifically designed to hold the mirrors as tightly as possible
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and during the experiment the mirrors were secured as tightly as possible so that a

good vacuum tight seal is maintained but the mirror positions cannot significantly

move. A more detailed overview of these mounts was given in 3.8.2.

The ring-down photomultiplier tube (PMT) was mounted inside a Delrin cylinder

that was screwed into the mirror mount to avoid detecting ambient light. The ring-

down signal was digitised by a 12-bit digitiser PCI card (National Instruments PCI-

5124, 150 MHz, 200 MS s−1). A LabVIEW program processed the signal to ensure

any baseline voltage is compensated for as well as selecting particular portions of the

trace for measurement. More specifically, to remove the baseline, a portion of the

trace on the oscilloscope from before the laser was fired was averaged and subtracted

from the total signal. The measurements of the ring-down time were obtained by

using a least-squares exponential fit on a portion of the ring-down trace after the

start of the decay so as to remove any biasing contribution from uncoupled light

into the cavity1.

4.3 Results

During the initial stages of the experiment the leak rate of the nitrogen was altered

to examine the precision of the different measurements. From this it was found that

slower leak rates tended to produce more precise results (which stands to reason as

there will be more data points to fit to). An example of one such run is shown in

Fig. 4.2. This shows clearly that there is a linear trend as the reciprocal of the

RDT increases with pressure. This was fitted using a linear least-squares fit for each

measurement which routinely produced uncertainties in the gradient (and thus the

measured cross-section) of less than 1 %. However there is a great deal of scatter in

the results which is a result of variations in the measurement of the RDT. Although

in principle the RDT should not change with the shot-to-shot variations of intensity

from the dye laser, there will still be a certain degree of spread in the final results.

1 This is in reference to an initial spike we observed at the start of the ring-down decay which
was a result of not all of the probe laser being coupled into the cavity and therefore not reflecting
back and forth between the mirrors and just passing straight through.
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Fig. 4.2 Plot of pressure against 1/τ for a single cross-section measurement taken at 325
nm. The fit line shown is a least squares fit.

A possible reason for this is that the laser beam from the dye laser is not entirely

Gaussian. The output from the dye laser has an oval shape meaning that there may

be some variations in the beam shape between laser shots thus affecting the shape

of the RD trace. During the process of aligning the cavity efforts were made to

attempt to minimise this as well as lengthen the RDT in order to counteract this

issue. Specifically the telescope was used to adjust the beam profile of the dye laser

by focussing the laser to a point and using a 50 µm optical pinhole positioned at this

point to reshape the beam profile by blocking the non-circular aspects of the profile.

After a number of attempts at different wavelengths in the given region it was

found that although the linear fits on the individual measurements of 1
τ

against

pressure were precise, repeated measurements at the same wavelength would yield

significantly different results as illustrated in Fig. 4.3. On account of this variation

it is difficult to definitively observe a distinguishable difference between the higher

and lower wavelengths in this region.
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Fig. 4.3 Plot of measured N2 Rayleigh Scattering cross-sections over the wavelength
region of 320 nm to 325 nm. The red vertical error bars represent the standard deviation
of the averaged measurements and the black points represent a selection of the individual
measurements of σN2 such as the one shown in Fig 4.2.

4.4 Discussion

Owing to the significant variation in the measurements taken at each wavelength

there is insufficient evidence here to define a trend in the Rayleigh scattering cross-

section or give absolute values for specific wavelengths. The primary reason for this

seems likely to be the variation in temperature over time due to cycles in the air

conditioning. This is evident in Fig. 4.2 from the periodic spikes and dips in the 1/τ

value. The most obvious effect this would have is that it would alter the calculated

number density of the molecules from the ideal gas law:

P = ρkBT, (4.1)

where P is the pressure (corrected for the calibration of the piezo gauge) and kB

is the Boltzmann constant. However, if we consider this further, it is unlikely that

small changes in temperature will have a significant impact on the pressure. Another
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possibility is that slight changes in temperature may result in a change in alignment

on account of the thermal contraction/expansion of the chamber. Although this

effect would be small, the CRD signal is highly sensitive to the laser/cavity mirror

alignment so even on this small scale subtle changes may have had a significant

impact.

Unfortunately due to the heat generation from the rotary pump the air conditioning

could not remain off for a significant time without leading to an increase in the

chamber temperature and thus the same effect. An alternative would be to make

continuous measurements of the temperature in the chamber along with the RDT

and pressure measurements. To do this a USB thermocouple adapter was obtained

but not in time to be incorporated into these measurements.

Another issue with this experiment is that of small movements of the mirrors as

a result of pressure changes in the chamber. Although some steps were taken to

reduce this (namely by tightening the mirrors to the point where the would not

move) there is still some evidence of a small amount of movement in the mirror

positions. A simple way of reducing this would be to construct the optical cavity

in such a way that the cavity mirrors remain secured in vacuum. If the cavity is

pre-aligned before pumping out, the effects of pressure changes in this circumstance

should be minimal as there are no flexible o-rings involved. However in order to

be able to align this effectively the mounts themselves would have to be far larger

than the current photostop chamber will allow. Also for a system to incorporate

such a cavity it would require an increased amount of volume over a long distance

in order to facilitate long RDTs and hence provide a lot of volume which will make

the chamber harder to evacuate effectively.

4.5 Conclusions and next steps

To summarise, although each set of results is highly precise the lack of accuracy and

repeatability mean that definitive values for the Rayleigh scattering cross-section

in this region could not be obtained. However with a few alterations, namely the
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continuous measurement of temperature or some form of temperature stabilisation,

the accuracy and repeatability of these results could be significantly improved thus

allowing for more precise measurements to be made. Unfortunately the time was

not available to further pursue this enquiry at this time, but this experiment (or a

variation on it) may be revisited in the future. Despite the difficulties in this mea-

surement the possibility of calibrating the absolute number density measurements

from CELIF remains via a direct calibration using cavity ring-down spectroscopy.

Therefore we proceeded to undertake CELIF measurements of a molecular beam.



5. CELIF OF SO2

5.1 Introduction

To serve as an initial test for the measurement apparatus of the machine we decided

to perform cavity-enhanced laser-induced fluorescence (CELIF) on a molecular beam

of SO2. The primary purpose of these experiments was to test the limits of sensitivity

of the CELIF technique, however we also took the opportunity to further characterise

the nature of the fluorescence signal as well as determine the accuracy of the absolute

number density measurements taken using CELIF when compared to cavity ring-

down spectroscopy (CRDS).

5.2 Experimental

The probe laser set up was altered from the previous Rayleigh scattering measure-

ments (in chapter 4) on account of difficulties with alignment that occurred from

small changes in the telescope lens position. To compensate for this, the telescope

was moved from being positioned directly in front of the first cavity mirror, to reside

in-between the first and second alignment mirrors. This meant that the second and

third alignment mirrors were used to centre the telescoped laser beam on the cavity

axis. The primary addition to the optical arrangement was the inclusion of a second

photomultiplier tube (PMT) with a lens system mounted on a specialised 35 CF

flange on one of the 45◦ 35 CF ports of the spherical octagon. This additional de-

tector was for the measurement of the emitted fluorescence and shall be henceforth

referred to as the fluorescence PMT. Further it should be noted that at this point

in the experiment the internal structure of the chamber was not installed and the
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Fig. 5.1 Schematic diagram of chamber used for CELIF of SO2. The lenses in the LIF
optics are positioned to be in the equivalent position as for the fully constructed photostop
chamber (see Fig. 3.11).

molecular beam is unskimmed.

The molecular beam for these measurements was provided by a Parker Series 9

General Valve controlled by an Iota One control box. The SO2 was supplied using a

specialised gas mixing system and was used pure for the majority of measurements

with a consistent 1.5 bar backing pressure at the nozzle.

A Quantum Composers series 9000 pulse generator was used as the primary control

source for the experiment. Specialised LabVIEW software was written to allow for

each channel of the pulse generator to be manipulated in an automated process.

The fluorescence signal was measured from the output of the fluorescence PMT,

which was connected to the digitiser card and processed to remove the baseline (as

with previous CRDS measurements) with a section isolated for measurement of the

fluorescence signal. The magnitude of the fluorescence signal was measured using

two methods; first by taking a numerical integral of the trace and the second by mea-
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suring the event (or photon) count of the signal. The photon count of the signal was

determined by distinguishing individual spikes on the PMT which were attributed

to single photons and counting the number of spikes in a given fluorescence mea-

surement. To distinguish the photons from the background a threshold limit was

set above the background noise so that only spikes in signal above this point would

be counted. These individual counts could then be averaged over a number of shots

to give an clearer picture of the fluorescence signal. Additionally, from an averaged

measurement over several shots a temporal picture of the fluorescence can be built

to form a photon counting histogram. This entails recording the time point in the

trace that each photon is detected at the PMT and, by segregating the fluorescence

signal into discrete time bins, generating a histogram of the temporal locations of

incoming photons over several shots.

Another addition to the experimental apparatus was a gas mixing cell for preparing

different mixtures of the target gas (in this case SO2). In essence this consists of

a 1 L gas cylinder which forms a part of two circuits of 6 mm stainless steel pipes.

These two circuits are of different sizes so that when gas enters this systems it will

flow around the two different parts and they will return to the central gas cylinder at

different times, depending on which path is taken. This will allow for gas mixtures

to be more effectively mixed as the different gases will return from each channel at

different times, thus allow more a uniform mixing.

For this experiment we examined the fluorescence and absorption properties of SO2

between 320 nm to 315 nm. This corresponds to transitions from the 1A1 ground

state to the 1B1 excited electronic state with a number of distinct vibrational and

rotational states contained therein [106].

5.3 Results

In order to perform the required measurements the molecular beam needed to be

optimised in order to ensure that the opening of the nozzle produced a short sharp

pulse of gas of a high density. To this end the intention was to utilise a fast ionisation
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Fig. 5.2 Molecular beam profiles of a pure SO2 beam at 1.5 bar backing pressure measured
using CELIF with different pulse durations. This was measured using a 318.05 nm laser
by altering the delay between the firing of the nozzle and probe lasers using the pulse
generator and recording the average signal over 10 laser shots at each point.

gauge (FIG) to allow for active manipulation of the pulse width and nozzle position

to maximise the number density at the peak of the molecular beam. However

technical issues with the FIG prevented this so scans using the fluorescence signal

from the probe laser were performed to trace the shape of the molecular beam. This

was achieved by altering the delay between the triggering of the General Valve and

the firing of the probe laser.

An example of this optimisation process is shown in Fig. 5.2. By altering the nozzle

pulse width the length of the current pulse used to open the nozzle changes and

therefore, in principle, increasing the pulse length should result in a longer beam

pulse. However, the degree that the nozzle will open during the current pulse is

also determined by the tightness of the nozzle connection1. Thus, by adjusting the

pulse width and observing the shape of the pulse from the measured fluorescence

signal, the molecular beam profile can be optimised. Performing the optimisation

in this manner is not ideal as in order for it to be valid one must assume that the

1 This refers to an internal component of the General Valve where a spring is used to push a
teflon seal (known as a poppet) into the output orifice of the valve. The construction of the valve
allows for the tension of this spring to be adjusted by tightening/loosening a threaded connection
from the valve face to the valve body.
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wavelength being used for the scan corresponds to an absorption/fluorescence from

a state that is uniformly distributed in the molecular beam.

Fig. 5.3 Molecular beam profile of a pure SO2 beam at 1.5 bar backing pressure measured
using CELIF with a 250 µs nozzle pulse duration. This was measured using a 319.74 nm
laser by altering the delay between the firing of the nozzle and probe lasers using the
pulse generator and recording the average signal over 100 laser shots at each point. The
significant artefact here is the secondary peak 100 µs after the main peak.

Another issue that arose from the molecular beam generation is illustrated in Fig.

5.3. The secondary peak occurring around 100 µs after the primary peak was an

artefact that would occur for some measurements and not others and the exact

nature of this is not certain at this point. One possibility is that, as previously

mentioned, the distribution of molecules in the necessary quantum state for the

absorption/fluorescence to occur at the given laser wavelength may not be uniform

hence producing several peaks across the molecular beam profile. Another potential

source for this secondary peak could be a function of the mechanical action of the

General Valve itself. Specifically, when the current pulse is switched off the poppet of

the nozzle is pushed back to the seal by a spring. It is possible that the poppet may

recoil after being pulled back in place, hence effectively giving a second smaller gas

pulse superimposed upon the initial pulse. However without a more direct method
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of measuring the number density across the molecular beam profile (i.e. with a FIG)

the exact nature of this secondary peak cannot be confirmed.

5.3.1 Absolute Number Density Measurements

In previous CELIF experiments [104], the initial number densities of the SD molecules

were not sufficient for the CELIF signal to be calibrated with CRDS. Hence for these

tests the primary goal is to test this method of calibration. In order to perform this

calibration we need to re-examine equations 3.10 and 3.11. By substituting 3.10

into 3.11 we obtain

SCELIF =
1

c

(
1

τ
− 1

τ0

)
Γ · 2g

T
. (5.1)

From this the unknown factor Γ· 2g
T

can be found simply by plotting SCELIF against 1
τ

and performing a linear fit. Admittedly this could also be done with measurements

of α directly from CRDS, however to do this one would have to measure both τ

and τ0 whereas in this method only the RDT with the analyte present is required.

This should speed up the process and reduce the uncertainty in the measurement

as a calculated value of α would contain the propagated uncertainties of both τ and

τ0 whereas with the single measurement only the error in τ remains. Additionally,

using the fit, a value of τ0 could be obtained from the y-intercept and compared to

a measured value to assure the accuracy of the fit.

Using the pure SO2 molecular beam, the fluorescence signal measured was relatively

weak and seemed to vary between a photon counting (a series of individual photon

spikes) and a time integrated signal where photons are coming so rapidly that it

becomes difficult to distinguish between them on the detector. On account of this

the CELIF calibration was performed on both the integral and photon count of the

same signal to see if they could both be calibrated in this regime. To perform the

calibration, a section of the temporal molecular beam profile was selected where the

SCELIF signal drops at a steady rate indicating a slow decline in the number density

in the probe volume2. Although this calibration could be performed using the entire

2 In this case we took a section of the tail of the molecular beam, e.g. from 520 µs to 600 µs in
Fig. 5.2.
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molecular beam profile, if this was done it would be unlikely that there would be an

even distribution of measurements over a range of number densities, thus the linear

fit would likely be biased.

The fit itself was performed using a linear least-squares fit in much the same man-

ner as the Rayleigh scattering cross-section measurements. This was attempted

a number of times with varying degrees of success in terms of the precision of

the measurements. One such measurement of the calibration factor is shown in

Fig. 5.4. For both the photon counting and integral measurements it is clear that

SCELIF is showing a linear trend for increasing 1
τ

(and hence α). This data was

fitted using a least squares fit, and estimates of the Γ · 2g
T

calibration factors were

found to be (7.1± 0.3)× 1014 m counts V−1 s−1 for photon counting CELIF and

(1.01± 0.04)× 104 m for integrated measurements which corresponds to a 4.06%

and 4.43% error respectively3.

Using these calibration factors and spectroscopic measurements of the absorption

cross-section from [107], absolute density measurements across the molecular beam

profile were taken simultaneously with both CRDS and CELIF to examine the ac-

curacy of these calibration factors as shown in Fig. 5.5.

This graph clearly shows that on the rising and falling edges of the molecular beam

profile the CELIF measurements are in a reasonable agreement with the measured

CRDS densities. However, at the peak of the molecular beam the photon counting

CELIF number densities are significantly lower than the corresponding CRDS mea-

surements. This is likely a result of the limited sampling rate of the digitiser (200

MS/s) which means each sample point is taken at 5 ns intervals. Additionally in

this high signal regime there is the possibility that two photons would hit the PMT

in a very short time interval apart, meaning that the photon counting algorithm

could not distinguish the two photons and hence the photons are under-counted.

3 In terms of the units for these values, as previously stated, this is dependent on the nature of
the measurement. So, for the integrated measurements, we take a value of the integral of the PMT
signal and calibrate it with the integral of the CRDS trace (by dividing the former by the latter).
These units cancel each other out, leaving the m term to cancel the m−1 from the value of α in
order to give an arbitrary value of CELIF signal. Similarly, the units of the instrument dependent
factor for the photon counting measurements have been chosen to cancel out the other units in the
same manner.
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(a) Photon Counting Calibration

(b) Integral Calibration

Fig. 5.4 1
τ against SCELIF using the SO2 molecular beam with a 318.05 nm probe laser.

This was performed with both the measured integral and photon counting CELIF signals
by measuring the CELIF signal over the falling portion of the molecular beam profile.

The effect of this under-counting is also made evident by the fact that the integral

CELIF is marginally more consistent with the CRD measurements than the photon

counting signal. However there is still an inconsistency between these results, which

is most likely a result of the high uncertainty in measurement of what amounts to

a noisy signal, i.e. a multitude of photons.
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Fig. 5.5 Measured number densities using CELIF (with the measured calibration factors)
and CRDS across the molecular beam profile using a 318.05 nm probe laser.

5.3.2 Characterising the CELIF Signal

In order to fully characterise the CELIF signal one must consider exactly how it is

formed. In essence one can consider the cavity ring-down trace as a series of single

passes back and forth through the sample. This being said it would be reasonable to

assume that the fluorescence signal that arises from this would simply be a summa-

tion of fluorescence signals generated from each round trip in the cavity. Therefore

the CELIF fluorescence signal should take the form of a convolution of a single-pass

fluorescence signal and the ring-down trace.

Based upon this assumption, averaged ring-down traces as well as CELIF photon

counting histograms were recorded at several peaks in the spectrum of SO2. Addi-

tionally the chamber was reconfigured by replacing the cavity mirror mounts with

windows so that conventional single-pass LIF could be performed and traces from

this were also recorded at the aforementioned peaks. The recorded LIF and ring-

down traces are shown in Fig. 5.6.
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Fig. 5.6 Recorded LIF and RD traces at 318.05 nm.

A point of interest in the fluorescence signal is the apparent oscillations on the

decay. This appears to be the result of a phenomenon known as quantum beating

whereby the wavepackets from transitions in each fluorescence pathway interfere

with one another generating some variation in the fluorescence intensity at a ‘beat’

frequency. This has been shown to be indicative of rotational level mixing between

the Ã1A2 and the B̃1B1 vibronic states which are near resonant and observed in SO2

previously within this region [108].

Taking these recorded signals, a numerical convolution was performed as can be

seen in 5.7(a). Upon a qualitative comparison with the recorded photon counting

histogram shown in Fig. 5.7(b) it is clear that there are significant differences

between the two traces. Of particular note is the fact that the CELIF photon

counting histogram has a significantly faster initial decay before a seemingly slower

decay occurs.

To further examine this a convolution of the mathematical definitions of both the

RD trace and the LIF trace was performed. For this the RD trace was defined by
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(a) Convolution of RD and LIF traces

(b) Recorded CELIF Photon Counting Histogram

Fig. 5.7 Comparison of the numerical convolution of LIF and RD traces and recorded
CELIF photon counting histogram.

equation 3.8 and the LIF signal was defined by

ILIFFluorescence = A1e
− t
τ1 + A2e

− t
τ2 , (5.2)

where ILIFFluorescence is the intensity of the fluorescence signal, A1 and A2 are relative

amplitudes of each fluorescence pathway and τ1 and τ2 are the fluorescence lifetimes

of each pathway. Using Wolfram Mathematica these equations were convoluted and
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the resulting function was fitted to the recorded photon counting histogram as shown

by the blue line in Fig. 5.7(b).

The mathematical convolution appears to be a good match for the shape of the

photon counting histogram with no major deviations. However the fitted parameters

produce a value of the τ of 3.89 µs which is significantly different from the measured

value of 1.62µs. On account of these discrepancies these results cannot be said to

have fully characterised the CELIF signal.

5.3.3 Probing the Detection Limit

In order to examine the effectiveness of the optical system as well as the potential

utility of the CELIF technique as the detection method for Photostop it was pru-

dent to attempt to probe the detection limit of the CELIF system. This could be

achieved by sequentially diluting the SO2 molecular beam using Ar and measuring

the recorded CELIF signal until it reached background levels. Initially the gas mix-

ing system was filled with 150 mbar of SO2, which was then topped off to 1.5 bar

with Ar and this gas was left to mix in the system for 10 min with heating tape

wrapped around the mixing gas lines to speed up the mixing. For each dilution the

initial SO2 mixture was diluted by a factor of 10 so that the number of molecules

would reduce by an order of magnitude. Additionally averaged photon counting his-

tograms were recorded at each dilution to ensure that the fluorescence signal could

be distinguished from background.

As can be seen in Fig. 5.8, the initial measurement show a significant decrease

in SCELIF with each dilution. However this soon begins to level off after around

10−6 dilution. The reason for this appears to be that the SO2 has been adsorbed

onto the walls of the gas mixing and delivery system ultimately meaning that the

measured dilutions were inaccurate. Unfortunately this ultimately meant that the

detection limit could not directly be examined in this manner as the calculated

dilution from the gas mixing is ultimately meaningless and despite repeated dilutions

and evacuation of the gas line with a rotary pump the presence of SO2 was still



5. CELIF of SO2 91

(a) Dilution Curve

(b) Dilution Photon Counting Histograms

Fig. 5.8 Plot of SCELIF for increasing dilution of SO2 with Ar along with the measured
photon counting histograms at each dilution.

evident and with little change in magnitude.

5.3.4 Comparison of CELIF, single-pass LIF and CRDS

Given that during this experiment CELIF, single-pass LIF and CRDS have been

used to measure the absorption/fluorescence spectra of SO2, it seems to prudent to

make a direct comparison of these techniques.

It is consistently demonstrated by the spectra recorded and shown in Figs. 5.9, 5.10

and 5.11 that both single-pass LIF and CELIF have significantly better signal-to-

noise ratios than CRDS. This is to be expected given the high sensitivity of both

CELIF and LIF as well as the fact that CRDS requires two measurements, τ and
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τ0 thus propagating the uncertainties in both measurements, particularly when the

measurements approach the limit of detection. As a result of this, in most cases the

CRDS measurements could not definitively display the majority of the peaks shown

by the other methods.

In comparing the spectra from the two different CELIF signals (photon counting and

area integration) we can observe effects of the aforementioned region of crossover

between the two regimes. Looking at Fig. 5.9 there appears to be little discernible

difference between the two spectra, although the signal to noise ratio of the photon

counting spectrum does appear to be improved. However, Fig. 5.10 shows significant

differences between the two spectra with regards to the most intense peaks, which is

further compounded in Fig. 5.11. This appears to be the result of under-counting of

the photons in regions with high signal (as described in 5.3.1) and the reasons this

becomes more prevalent for decreasing wavelength are twofold. First it has been

previously shown that the peaks at lower wavelengths of this region have a more

intense fluorescence [108]. Second, the reflectivity of the cavity mirror coating has

its peak at 330 nm meaning that the transmittance of the mirrors is higher for these

shorter wavelengths. This ultimately means that the intensity of the probe laser light

is greater and hence there will be a stronger fluorescence signal. Although the CELIF

process does compensate for changes in intensity by measuring the RD signal the

issue here is the transition from a photon counting signal to a time integrated signal.

If the transmittance of the mirrors or the fluorescence of the molecule increases too

much the magnitude of the fluorescence signal may cross between these regimes thus

resulting in under-counting of photons, hence the discrepancy shown in Figs. 5.11

and 5.10.

In terms of comparing the LIF and CELIF spectra it is difficult to distinguish major

differences. There are of course some variations in relative peak heights between

the two as these measurements were taken independently requiring alterations to

be made to the chamber and nozzle, hence the SO2 may not have been at the same

temperature for each measurement, hence the different peak heights. In terms of the

precision of the two techniques, from these results there is no significant difference



5. CELIF of SO2 93

between them. If we examine Fig. 5.9, there do appear to be some smaller peaks in

the photon counting CELIF signal in the region of 320.2 nm which are not clear in the

single-pass LIF, which may indicate that there is an improvement in sensitivity with

CELIF. However to confirm this, a deeper analysis would need to be undertaken such

as performing a dilution measurement, which was unsuccessful in this experiment.
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Fig. 5.9 SO2 spectrum taken between 320.4 nm to 319 nm in steps of 1 pm with l0 laser
shots per point using Photon Counting CELIF, Integral CELIF, Single Pass LIF and
CRDS. This wavelength range corresponds to transitions from the 1A1 ground state to
the 1B1 excited electronic state of the SO2. It should be noted that the CELIF and CRDS
measurements were taken at the same time and the LIF measurements at a later date.
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Fig. 5.10 SO2 spectrum taken between 318.4 nm to 317.5 nm in steps of 1 pm with l0
laser shots per point using Photon Counting CELIF, Integral CELIF, Single Pass LIF and
CRDS. This wavelength range corresponds to transitions from the 1A1 ground state to the
1B1 excited electronic state of the SO2. It should be noted that the CELIF and CRDS
measurements were taken at the same time and the LIF measurements at a later date.



5. CELIF of SO2 96

Fig. 5.11 SO2 spectrum taken between 316 nm to 315 nm in steps of 1 pm with l0 laser
shots per point using Photon Counting CELIF, Integral CELIF, Single Pass LIF and
CRDS. This wavelength range corresponds to transitions from the 1A1 ground state to
the 1B1 excited electronic state of the SO2. It should be noted that the CELIF and CRDS
measurements were taken at the same time and the LIF measurements at a later date.
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5.4 Discussion

On the whole the investigation of the CELIF of SO2 has produced highly mixed re-

sults. To some degree it has been shown that absolute number density measurements

can be taken with CELIF from a calibration using CRDS. Additionally this calibra-

tion appears to have a significantly reduced error compared to directly calibrating

single-pass LIF as described in [103]. Additionally this calibration is significantly

more rapid and precise than the process required for single-pass LIF. However the

effectiveness of this calibration is inhibited by the issue of the crossover between

the area integration and photon counting regimes. The nature of the Photostop

experiment will likely result in the number density (and thus the signal) decreasing

over a large range, thus making it necessary to cross from one regime to another,

making this an important issue. In principle this could be compensated for by ei-

ther reducing the laser power to move further into the photon counting regime, or

by increasing the laser power to move the signal into the time integration regime.

However to perform this it would require on-the-fly adjustments, which may not be

efficient for some circumstances thus it would be much more preferable to find a way

to maintain the calibration over this region without such adjustments.

In terms of characterising the CELIF, ultimately the exact form and origin of the

fluorescence signal could not be entirely described by these results. The fact that

a simple convolution of the RD signal and single-pass fluorescence signal does not

provide even a qualitative match to the recorded CELIF signal clearly indicates that

a more detailed examination of the processes involved is required, in particular with

reference to the excitation of multiple excited states and the effect of the quantum

beats. Additionally, given the fact that the fitted mathematical convolution of the

equations defining the RD and single-pass fluorescence traces do provide a good

match, there may be a case to argue that the signal from particular fluorescence

pathways are inhibited by the presence of the cavity, possibly as a result of not being

modes of the cavity. Whatever the case may be, it is clear that further investigation

will be required if this is to be fully explained.
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Unfortunately due to the issue of SO2 sticking to the walls of the gas line the

detection limit of this system could not be effectively probed. This issue was not

anticipated but could have been compensated for by applying a Teflon coating to

the internal walls of the gas line.

Although some comparison can be made between the recorded CRDS, CELIF and

single-pass LIF spectra there are many aspects which require more analysis. Notably,

the relative sensitivities of the single-pass LIF and CELIF should be assessed more

rigorously. Ideally this could be achieved by performing a dilution measurement

using each technique, which could not be performed here for reasons that have been

stated previously.

5.5 Conclusions and next steps

The use of CELIF with SO2 has provided a number of useful insights into the tech-

nique which could prove invaluable for future study. Although the CELIF calibration

for absolute number density measurements proved inaccurate for high number den-

sities, this did serve to highlight the issue of under-counting of photons with this

particular set up. The characterisation of the CELIF signal has proven to be incon-

clusive with regards to de-constructing the nature of the fluorescence from CELIF in

this case. That said, this does potentially provide an interesting avenue for further

investigation in the future. Given the promise shown by these measurements the

next step was to apply this technique to the photostop experiment.
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6.1 Introduction

Although the CELIF measurements of SO2 were only partially successful, it was

decided to move forward and test the technique for the purpose of measuring the

decay of molecules in the probe volume from the Photostop process. As the detection

limit was unclear from the previous measurements it was uncertain if the technique

would prove to have sufficient sensitivity for this experiment. Thus the initial stages

of this experiment was focused on determining and improving upon the detection

limit of the CELIF system and so it is only in the later stages that the full trap

apparatus is introduced.

6.2 Experimental

The apparatus for this experiment remains largely unchanged from the SO2 mea-

surements, the only addition being the dissociation laser. The 213 nm dissociation

laser is generated from the fifth harmonic of a Surelite Continuum Nd:YAG laser.

The laser was equipped with a second and fourth harmonic doubling crystals to

produce 266 nm light. Immediately after the exit of the laser this was combined

with the fundamental (1064 nm) using a BBO crystal. The fifth harmonic was then

separated from the other wavelengths using a set of specialised dichroic mirrors and

prisms. For the initial measurements there was no internal structure in place except

an extension from the flange, which held the optical elements required for detecting

fluorescence signal (as was used in the SO2 measurements); this however changed

during the later stages as will be specified below. The molecular beam source was
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once again a pulsed Parker General Valve driven by an IOTA ONE driver and the

backing gas was pure H2S unless otherwise specified below. To compensate for the

slow acquisition rate of the digitiser card the outputs from the PMTs of the cavity

and fluorescence detection were fed into a LeCroy Waverunner 610Zi (which shall

henceforth be referred to as the fast scope), which in turn was connected to the

main PC by an Ethernet cable for further signal processing and data acquisition.

6.3 Results

6.3.1 Rayleigh Scattering calibration of CELIF

As the production of SH/SD by necessity requires the dissociation of H2S it was

reasonable to assume that the number of molecules may not be sufficient to produce a

definitive change in ring-down time. Thus it seemed prudent to first determine some

form of calibration using Rayleigh scattering in a manner similar to the one used

in [104] and using the same wavelength. More specifically, we need to determine the

instrument calibration factor 2g
T

as outlined by equation 3.11 and as was measured

in the previous chapter. The principle of this is to measure the Rayleigh scattering

CELIF signal for increasing pressures of N2 and thus by measuring the pressure (and

therefore the number density) the CELIF calibration factor can be determined. This

is similar to the measurements taken in Chapter 4 and in fact the measurements

taken there were repeated to supplement this calibration. An example of one of

these measurements is given in Fig. 6.1.

In order for this calibration to be valid there must also be a consideration of the dif-

ferences in the processes of Rayleigh scattering and fluorescence. If the fluorescence

occurs faster than the expected rotation of the molecule (as it does in this case) the

light will be emitted isotropically, whereas Rayleigh scattering is dependent on the

polarisation of the excitation photons. This is because during Rayleigh scattering

the absorbed photon acts as a perturbation on the electronic orbitals of the target

molecule. In simple terms, the electric field of the absorbed photon causes the elec-
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Fig. 6.1 Calibrated CELIF signal vs number density of N2 along with CRDS measure-
ments taken simultaneously. These measurements were taken using a probe laser wave-
length of 323.17 nm.

tronic orbital of the molecule to oscillate in the direction of the polarisation of the

photon (i.e. the orientation of the electric field). This oscillation gives rise to the

production of photons perpendicular to this direction as a result of the changing

electric field of the molecular orbitals. The ultimate result of this is the production

of photons in a sin2 distribution perpendicular the orientation of the polarisation of

the absorbed photon.

To examine this effect a combination of a quarter-wave plate and linear polariser

was added to the probe laser beam path. The purpose of this was to first make

the initially linearly polarised light circularly polarised with the waveplate and then

isolate a selected linear polarisation using the linear polariser. The linear polariser

was mounted on a rotating mount so that a range of linear polarisations could be

isolated. This combination does result in the loss of probe laser intensity but as

the CELIF measurements are calibrated against probe laser intensity, this is not

an issue for these measurements. The different CELIF calibration factors found for

varying polarisation angles are shown in Fig. 6.2.

From these results, the CELIF calibration factor corresponding to the detection of
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Fig. 6.2 Angular dependence of Rayleigh scattering CELIF calibration factor. Polarisa-
tion angle in this case is measured from an initial vertical orientation (i.e. 0◦ is vertically
polarised light).

fluorescence signal can be determined on consideration of the angles of the detection

optics. For instance, if the detection optics were perpendicular to the orientation

of the laser propagation in the plane of the polarisation then the amount of light

detected would be reduced as the scattered light is predominantly produced per-

pendicular to this. Thus in order to obtain the correct calibration factor the angle

of polarisation must be such that the intensity of the distribution from Rayleigh

scattering is equivalent to the distribution of fluorescence. This is known as the

‘magic angle’ and has a value of 54.7◦. The effect of this is that a measurement at

this angle is independent of the angular distribution of the outgoing photons from

either Rayleigh scattering or fluorescence. This assumes that the angular distribu-

tion can be described via I(θ) = I0(1 − βP2(cos θ)), where P2(x) = 3
2
x2 − 1

2
is the

2nd order Legendre polynomial. In our case, the detection optics are not aligned

perpendicularly to the laser axis as shown in section 3.7. Given this, the ‘magic

angle’ for our system is not at 54.7◦ but instead at 38.7◦ which compensates for the

change in orientation. From a measurement at this angle a CELIF calibration factor
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Table 6.1 Measured N2 Rayleigh scattering cross-section and photon counting CELIF
calibration factor taken at the magic angle along with corresponding uncertainty (this
corresponds to the 1σ standard deviation).

Value % Uncertainty

CELIF calibration
(
2g
T

)
3.9± 0.2× 1013 m counts V−1 s−1 4.7%

σN2
4.9± 0.2× 10−26 cm2 4.6%

was obtained as shown in Table 6.1.

Given the similarity between this experiment and the previous measurements of the

Rayleigh scattering cross-section of N2, it was prudent to repeat those measurements

at our target wavelength to see if any improvements could be made. Additionally,

after taking the initial set of measurements shown in Fig 6.2 the detection optics

were optimised in order to maximise the calibration factor and thus the sensitivity of

the apparatus. The result of this is also shown in Table 6.1 and indicates something

of an improvement in terms of uncertainty compared to the previous measurements.

6.3.2 CELIF measurements of SH and SD

Now armed with a CELIF calibration, the initial step was to attempt to measure

fluorescence signal from our target molecule. Initially, the chosen target was to

be SD produced by the photodissociation of D2S as this has a significantly higher

fluorescence quantum yield than the more readily available SH/H2S. However, due

to the difficulty in procurement, the D2S needed to be synthesised from the reaction

of deuterated phosphoric acid and iron (II) sulphide1:

2D3PO4 + 3FeS→ 3D2S + Fe3(PO4)2. (6.1)

This process was performed in single batches and with relatively small yields, mean-

ing that the D2S would need to be mixed with noble gases in order to provide enough

backing pressure for a molecular beam. However when we attempted to make mea-

surements of the SD molecules using CRDS/CELIF, we were unable to distinguish

any unique signal from the SD molecules. As such we switched to using H2S as an

1 More details on this process are given in [109].
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alternative as, although the fluorescence quantum yield is much smaller, the ready

availability meant that we could use pure H2S molecular beams. Using a pure H2S

molecular beam, CRDS and CELIF spectra of SH were obtained in the region of

interest for the ground state transition as shown in Fig. 6.3. These spectra were

produced with a 5 ns delay between the 213 nm dissociation laser and the probe

laser.

Fig. 6.3 Spectrum of calibrated CELIF and CRDS signal of SH between 325 nm and
323.5 nm, this corresponds to the A2Σ+ ← X2Π3/2 transition of SH. It should be noted
that the CELIF and CRDS measurements were take simultaneously.

It is apparent in Fig. 6.3 that there is significant noise in the CELIF signal from

SH, so much so that the signal to noise is comparable to the CRDS measurements.

Upon deconstruction of the signal it appeared that this was most likely due to a

combination of the contribution of Rayleigh scattering of the H2S molecules, which

was significant and occurred at all wavelengths, and stray light from the dissociation

laser. As we believed that this effect would be reduced at longer delays as the H2S

would leave the probe volume, we proceeded to make measurements of the photostop

decay from increasing delays between the dissociation and probe lasers using a pure

H2S molecular beam and measuring the decrease in signal with both CRDS and

CELIF. The results from this are shown in Fig. 6.4.



6. Photostop CELIF measurements 105

Fig. 6.4 Decay in absorption coefficient (from CRDS) and calibrated CELIF signal for
increasing delays between the dissociation and probe lasers for the production of SH from
H2S photodissociation. It should be noted that the CELIF and CRDS measurements were
take simultaneously.

Fig. 6.4 clearly shows that using CELIF we have been able to measure a decay in

signal of around three orders of magnitude before the signal begins to level off at

around 30µs, indicating that the signal has been lost into the background noise.

As this is clearly not at the required sensitivity to measure the predicted trapping

of photostopped molecules2 we decided to de-construct the measured fluorescence

signal in terms of the individual contributing factors to the molecular beam, i.e. the

dissociation laser, the probe laser and the molecular beam. The result of this is

shown in Fig. 6.5.

From 6.5, it is self evident that, of the two lasers, the primary contributor to the

measured signal at the fluorescence PMT is the dissociation laser. Initially this could

be considered to be the result of scattered light inside the chamber, however the

signal remains for significantly longer than one would expect for scattered light and

it is also exacerbated by the presence of the molecular beam, indicating that there is

some form of fluorescence occurring. Upon examination of the literature, we found

2 This prediction is based on the results from the previous simulations from the group presented
in Fig. 2.5.
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Fig. 6.5 Photon counting histograms showing the breakdown of CELIF signal from probe
and dissociation lasers

no such transition for this to occur in H2S or SH using the 213 nm dissociation laser,

but there is such an absorption for SO2. Evidently some SO2 may have remained

in the gas mixing system from the previous CELIF measurements in spite of the

extensive cleaning and evacuation of the chamber.

Another matter for consideration is the ultimate detection limit of CELIF. In prin-

ciple, CELIF is, by necessity, background free as the probe laser is entirely trapped

in the cavity, thus eliminating stray light. To confirm this we measured the CELIF

fluorescence signal with and without a molecular beam present in the cavity which

is shown in Fig. 6.6. It is evident from this that even without the presence of

the molecular beam, there is still a significant amount of background signal which

continues during the the entirety of the ring-down decay.

6.3.3 Cooling Effects

As the focus of this experimental design is the cryostat to provide a form of differ-

ential pumping, we needed to examine the operation of the cryostat as well as the

effects the cryostat may have on the CELIF measurements. For these measurements

the internal structure of the chamber was fully constructed with the magnetic trap
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Fig. 6.6 Background signal from the probe laser interacting with the cavity.

secured onto the head of the inner stage of the cryostat. To do this the cryostat

was activated and the temperature was measured (using a K type thermocouple

mounted on the base of the outer stage) as well as the background CELIF signal.

The results from this are shown in Fig. 6.7.

It is clear from this that as the temperature reduces there is a significant increase

in the background CELIF signal. Coupled with this is also a reduction in the ring-

down time indicating that there are additional cavity losses on each round trip. This

suggests that as the internal structure contracts, the gap that the laser is aligned

through moves relative to the position of the laser. This means that the cavity

becomes partially intersected by the internal surfaces during the cooling process

resulting in increased cavity losses (hence a reduced ring-down time) and increased

stray light. An additional feature to notice is the discontinuity in the temperature

decrease at around 50 min. This is an artefact of the functioning of the cryostat.

To make the pumping surfaces cold compressed helium is pumped through internal

pipes inside them. The helium is compressed by an external compressor unit which

is water cooled and possesses a temperature sensor to prevent overheating. In our

case the cooling water flow through the compressor was maximised but the internal

sensors of the cryostat detected the compressor was overheating and so stopped the
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Fig. 6.7 Measured cooling rate of the cryostat using a thermocouple mounted on the base
of the outer stage along with the measured background CELIF signal and ring-down time.
Each measurement of CELIF signal and ring-down time is an averaged measurement of
1000 laser shots taken at each time point.

pump. As a result of the pump stopping the temperature did not decrease any

further and this gave rise to the discontinuity shown.

6.4 Discussion

The initial N2 Rayleigh scattering measurements have shown some promise with re-

gards to the precision of the absolute number density calibration of the CELIF mea-

surements. Compared to previous work with this method [104], there is an improve-

ment in terms of the precision of both the calibration factor as well as σN2
. However

the limiting factor for projecting this calibration onto the measurements of another

fluorescing species is the knowledge of the absorption cross-section/fluorescence
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quantum yield of the target molecule. In the case of the Photostop measurements

this would be SH/SD, both of which are not widely known and difficult to measure

directly. Additionally, a major limiting factor on these measurements remains the

uncertainty on the value of σN2
. When comparing the results given by these mea-

surements and the extrapolated value of 4.12× 10−26 cm2 from [104], we can see that

very similar values have been found although they rely outside of each other’s error.

That said, given that the value used in [104] was extrapolated from literature data,

this small discrepancy is unsurprising and does not necessarily bring the accuracy

of these measurements into question. Although the uncertainty was improved when

compared to the prior work in this project, the lack of reproducibility in the measure-

ments is ultimately a result of the range of uncontrolled variables in the experiment

and so more stringent controls may be required to reduce this uncertainty further.

That being said, when comparing the direct calibration measurements, there is an

improvement in precision when compared to the CRDS calibration performed with

the SO2 CELIF measurements. However this increased precision may also be the

result the larger number of measurements taken to reach the said calibration factor

with the Rayleigh scattering measurements.

The poor performance of CELIF when applied to SD/SH was unexpected, but in

hindsight there is good evidence as to why this is. First and foremost is the issue

with background signal from the dissociation laser. Given that the probe laser is

coupled into a cavity and therefore loses a significant portion of its intensity, it is

unsurprising that scattered light from the significantly more powerful dissociation

laser would be problematic. Although attempts were made to minimise this with

bandpass filters on the detection apparatus to filter out the dissociation wavelength,

ultimately, the intensity of this laser was too great to fully overcome the issue in this

manner. Another issue that arose from the dissociation laser is the fluorescence of

the laser windows from interaction with the dissociation laser. This ultimately lead

to a certain degree of background signal that could not be effectively removed using

filters and thus provides an additional limiting factor to the experiment. To combat

this, plans were made to have the entrance windows to the chamber perpendicular to
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the desired propagation of the dissociation laser (see Fig. 6.8). Ultimately however

these plans were not implemented as the other difficulties that arose essentially

negated the utility of CELIF in this case, but these ideas may be applicable in the

future.

Fig. 6.8 Cut-away schematic of planned system to reduce fluorescence signal from disso-
ciation laser windows.

The fluorescence signal, presumed to be from leftover SO2 in the pipes, was entirely

unexpected as great efforts were taken to clean the gas mixing system after those

experiments. In fact the residual gas analyser, which was positioned along the

path of the molecular beam, could not detect the SO2 present. This might lead

to the conclusion that the signal was not due to SO2, however successive flushes

of the gas line with pure Ar produced a visible decrease in the signal from the

dissociation laser interacting with the molecular beam, suggesting that it must be a

contaminant. Ultimately, the only method that seemed to remove the SO2 entirely

was to dismantle the gas mixing system and coat its inner walls with PTFE (DuPont,

PTFE dispersion N-3011). This involved heating the components to about 400 ◦C,

which ultimately lead to a much cleaner system as a whole.

The further analysis of the background levels of the CELIF measurements has ul-
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timately lead to a far better appreciation of the limiting factors of the technique.

Although the CELIF method should be background free, a significant level of back-

ground photon counting signal was observed along the full decay of the ring-down

signal. The justification for the background free moniker is that if the laser light is

fully coupled into the cavity, it can only exist in cavity modes and therefore there

should be minimal stray light. In practice, the laser beam is often not a perfect

Gaussian shape, so not all of the light from the probe laser would be coupled into

the cavity, which leads to a small amount of scattered light at the beginning of

the ring-down decay. The additional photons along the full temporal length of the

decay cannot be due to this as this would mean scattering over multiple surfaces

for a significant pathlength. It is most likely that these photons are in fact a result

of the florescence of the cavity mirror substrate. The justification for this is thus,

for each round trip in the cavity the photons will interact with the mirror surface.

As the probe laser in this case is in the UV range of the spectrum, it is more likely

that light can be absorbed by the mirror substrate and thus fluoresce giving rise to

a low-level fluorescence signal as long as light remains in the cavity. This effect ulti-

mately determines the detection limit of the CELIF method as fluorescence signals

weaker than this background will be difficult to distinguish. However this may only

be a limiting factor at this wavelength, as for lower energy photons, the likelihood

of the mirrors fluorescing reduces, thus meaning that the background level will be

lower.

The cooling fault with cryostat is somewhat problematic but not crippling for the

experiment. The main effect of this discontinuity in the temperature drop that was

shown is that the cooling process took longer as the compressor recovered. This may

however present an issue for future measurements with the cryostat in operation as,

when the experiment is in progress if the cryostat stops as it did in this case it may

produce an influx of gas into the trap volume as gas trapped on the surfaces starts

to desorb. That said, this shut down is less likely to occur when the cryostat has

fully cooled down as the heat load at these low temperatures is relatively minimal

and so should not cause the cryostat to overheat. Another factor to consider in
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the cryostat measurements is the method of measurement method itself. In our

case we used a K-type thermocouple to measure the temperature on account of

the ready availability of them. In practice the measurements made with a K-type

thermocouple are normally only accurate to around 70 K so measurements below this

temperature may be unreliable. However in our case the exact temperature of the

cryostat is not vital to the operation of the experiment, as long as the background

gas is effectively pumped by the chamber surfaces. In practice we are more concerned

with the trend in the temperature measurements so when the measured temperature

stops dropping (with the cryostat in operation) we can assume that the pump has

reached the lowest temperature it can. In the event more accurate temperature

measurements are needed, these could be achieved in a similar manner using a

calibrated resistor mounted on the outer stage.

The effect of applying the cryostat is a significant concern for any future efforts

to reincorporate CELIF into this experiment. The cooling is clearly causing a sig-

nificant contraction of the inner structure which results in movement of the access

points for the lasers as well as the positions of the magnets. This results in light on

the edges of the cavity scattering off surfaces of the magnets and other components.

Consequently, the RDT decreases, as more light is lost with each round trip, and

the scattered light increases the level of background signal. On account of this it

may be possible to compensate for this effect by measuring the degree by which

the structures shrink and adjusting the cavity alignment appropriately. However

exactly how this can be achieved is difficult to visualise as there is little leeway in

how the cavity is aligned through the trap. To construct the cavity, the probe laser

needs to be aligned through the cavity first and then the cavity mirrors are aligned

along the path of the probe laser. As the cavity mirrors form part of the vacuum

seal this needs to be performed before evacuating the chamber, so readjusting the

alignment of the probe laser with the chamber evacuated is difficult as any signifi-

cant adjustment is likely to destabilise the cavity. Further, given the small scale of

the trap itself, the initial construction and alignment of the cavity with the internal

structure can become problematic. In fact, during construction we had a significant
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issue with this due to a 5′ wedge on the rear surface of the mirror. The main pur-

pose of this wedge is to reduce the possibility of light exiting the mirror becoming

trapped by the rear surface and creating an interference pattern. In our case the

wedge shifted the alignment of the beam through our cavity sufficiently that some of

the cavity modes scattered off of the surfaces of the trap and outer stage, and caused

a noticeable reduction in RDT. At present the only solution to this conundrum that

presents itself is for the cavity mirrors to be mounted and aligned on the outer stage

of the cryostat and the laser to be aligned into them. This would allow for the

cavity to remain optimised as the cryopump cooled, as well as providing a means to

reduce scattering of light from surfaces. However as it would be impractical to use

a cryostat with an outer shield 1 m long, this would reduce the ring-down time of

the cavity and thus likely reduce sensitivity of the apparatus.

6.5 Conclusions and next steps

It was evident from these results that the application of CELIF to Photostop is

fraught with difficulties at this stage. The predominant issue, the background noise

from the dissociation laser, is unfortunately something that cannot be completely

eliminated due to the nature of the experiment. Additionally the background signal

from the isolated CELIF process ultimately means that there is a defined detection

limit to the method which is dependent on the quality of the experimental setup.

Further, sensitivity of the cavity measurements to disturbance means that further

accommodation needs to be made to utilise this technique with the cryostat in

operation. That being said, the Rayleigh scattering calibration has shown some

degree of promise with potential for precise absolute number density measurements

as there has been some improvement compared to previous measurements. With

all of this taken into account, it was clear that the measurement of trapped SH/SD

molecules would not be easily achieved using CELIF and thus we elected to move

on to apply REMPI to this task.



Part III

RESONANCE ENHANCED MULTI-PHOTON

IONISATION



7. TESTING REMPI APPARATUS

7.1 Introduction

On account of the significant issues that arose from the use of CELIF, we opted to

utilise the REMPI technique instead. The incorporation of REMPI was considered

during the initial design as outlined in 3.8.2 so alterations to the apparatus were min-

imal. Although this technique does not give absolute number density measurements,

there is significant potential for improved sensitivity as there is reduced influence of

scattered light and the potential for mass-resolution to isolate the target molecule

which would reduce background noise. Thus after reconstruction of the experiment

to facilitate this technique the apparatus needed to be tested and optimised, the

results of this process being shown here.

7.2 Experimental

During the process of implementing the REMPI apparatus there were some alter-

ations made to the original design of the trap as shown in Fig 7.1. Although the

primary structure remained largely the same, the shown alterations were required

in order to ensure that the individual elements could be held in place and electri-

cally isolated from each other. Initially the insulators shown were planned to be

made from boron nitride, which is a ceramic material that is electrically insulating

while being thermally conducting. However due to the mechanical softness of the

boron nitride there were significant issues during construction as the magnets, while

repelling each other, would wear away at the material thus causing the electrodes

to short out; this was a particular issue with the top magnet and the extraction
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tube due to their closeness. With the bottom magnet the shorting issue could be

attended to using Kapton tape to insulate it, but for the top section this proved

difficult due to the tightness of the structure, thus the top insulator was replaced

by an identical piece made from Macor, which has a reduced thermal conductivity

but is mechanically more stable.

Fig. 7.1 Schematic of altered trap housing for use with REMPI.

The REMPI probe laser beam was generated using the frequency doubled Sirah dye

laser with Coumarin 503 dye which is pumped by the third harmonic of a Nd:YAG

laser with a 10 Hz repetition rate. The doubled light from this was optimised in the

region of 250 − 260 nm and aligned into the chamber using a set of prisms with a

500 mm focal length UV-grade fused-silica lens in front of the entry window to focus

the laser into the centre of the magnetic trap.

Additionally, to aid in the characterisation of the molecular beam, a specialist Fast-

Ionisation gauge (FIG) was added to the structure in the spherical square (as pre-

viously described in Section 3.8.2), which shall henceforth be referred to as the FIG

chamber (see Fig. 7.2). The operation mechanism is outlined in section 3.8.2, but

the practical upshot is that it allows for rapid measurement of pressure changes.
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Fig. 7.2 Schematic of specialised mount/chamber for fast-ionisation gauge and residual
gas analyser.

This was positioned along the molecular beam axis and was tested along with the

REMPI detection apparatus to determine its utility in the larger photostop experi-

ment.

For these initial tests of the REMPI apparatus we decided to use a 2 + 1 ionisation

scheme via the Xe 5p56p, J = 2 state with a 256.02 nm excitation wavelength.

The reasons for this are threefold: first the wavelength required for the excitation

itself is in a similar region to the one required for the detection of SH; second, the

multiple isotopes of the species allows for the mass resolution of the apparatus to

be examined; and finally, we had a ready supply of Xe available as it can be used

for gas mixing to alter molecular beam speeds.

The REMPI signal defined here was measured from the output of the MCP which

was recorded by the fast oscilloscope and then transmitted to the primary control

computer. This signal was then processed to remove a baseline by averaging the

MCP signal from before the probe laser fires and subtracting this from the entire

trace. The portion of the TOF signal containing the Xe masses was then isolated

from the full trace. The magnitude of this signal was measured using two separate

methods; first by taking a numerical integral of the trace in the Xe mass region
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and the second by measuring the ion count in the region, which also entailed the

generating ion counting histograms (using the same numerical method for photon

counting outlined in 5.2).

7.3 Results

As outlined previously the REMPI apparatus has been designed to operate in two

distinct modes: the signal maximising or “Hoover” mode, which sucks up ions from

inside the trap at the expense of mass resolution, and the mass resolving mode, which

is akin to more traditional time-of-flight mass spectrometry, but with supposedly

reduced signal. As such we will examine each of these methods in turn.

7.3.1 Characterisation of Ion detection

In order to properly understand the operation of the ion detection methods we

initially opted to characterise the detection operation of the MCP for detecting

individual ions. This is so that future ion detection measurements will have some

foundation in regards to distinguishing the nature of signal from individual ions. To

perform this initial characterisation we simply turned the voltage on the MCP up to

the maximum (at the time −1500 V) and turned on the combination ion gauge used

for measuring the chamber pressure. As outlined in Section 3.8.2, the operation of

the ion gauge produces a steady flow of electrons, which ionise gas molecules. These

ions were attracted to the strong negative potential on the front of the MCP and

produced a continuous steady stream of ions for the MCP to detect. To measure

the signal the fast scope was connected to the MCP and set to be triggered by this

signal. This meant that the scope would trigger for each ion arrival and so from this

the properties of the single ion signal could be found as shown in Fig. 7.3.

A number of things can be learned from these results. First, from the peak height

distribution we can see that the ion peaks have a sharp initial rise in height followed

by a more gradual decay, with no peaks seen with a magnitude below approx 4.8 mV.
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Fig. 7.3 Characterisation of single ion signals showing (a) a single ion peak, (b) the
distribution of peak heights over 5000 single ion measurements and (c) the distribution of
peak widths over 5000 single ion measurements. For all of these measurements the trigger
level on the scope was set to 3.5 mV and the statistical distributions were accumulated
using the onboard software of the oscilloscope.

From this, we can say that 3.5 mV will serve as a good threshold value to distinguish

signal from background as it remains significantly above the baseline and all of the

observed ion peaks are noticeably larger than this. The peak width distribution

indicates that on average the detected ion peaks will have a width of approximately

900 ps. This is useful information when it comes to considering the sample rate of

the data acquisition for the REMPI measurements as (in this case) if the acquisition

rate is above 1 ns per sample it is possible that some ions could be missed in the ion

counting regime.



7. Testing REMPI apparatus 120

7.3.2 Optimising the mass-resolving mode

As previously mentioned, during the construction process there were significant

issues with the extraction tube shorting against the top magnet due mechanical

failures of the boron nitride insulators. On account of this we initially tested the ap-

paratus to see if the experiment could effectively operate without these components

(i.e. with them both permanently grounded). To examine this, REMPI signal from

Xe was compared for increasing voltages on the bottom magnet as shown in Fig

7.4. It should be noted that the voltages used here differ from those specified in the

simulations performed for Section 3.8.2 as we encountered issues with the electrodes

discharging when high voltages were applied to the magnets.

Fig. 7.4 Xe REMPI signals without extraction tube or top magnet active. The voltage on
the bottom magnet increases from right to left and the voltages of the other components
were fixed at: MCP = −1500 V, time-of-flight tube = −800 V, extraction tube = 0 V, top
magnet = 0 V respectively. The signals shown are averaged over 1000 laser shots.

As can be seen in Fig. 7.4, when increasing the voltage of the bottom magnet the

time-of-flight of the ions significantly reduces. This stands to reason as with a higher

voltage the ions are accelerated more and thus reach the MCP faster. If we look

at how the REMPI signal changes for increasing voltage we can see that at higher

voltages the individual isotope peaks become less distinct. This also stands to reason
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as the faster the ions are moving, the less time there is for the individual masses

to separate. In terms of overall signal, there is little difference in the magnitude

of the signals for increasing voltages. However, at voltages below 500 V the signal

intensity dropped off rapidly. This indicates that there is a minimum amount of

energy required to push the ions to the MCP. Thus if the voltage of the bottom

magnet is too low the ions are less likely to proceed along trajectories which will

result in them reaching the MCP.

From the results shown in Fig. 7.4, it is clear that without the top magnet and

extraction tube, the ions can still be detected and mass-resolved. That said, as we

were able to fix the shorting issue we also tested the apparatus with the extraction

tube active to determine if there would be any improvement. The ion signals ob-

tained with both the top magnet and the extraction tube active are given in Fig.

7.5.

Fig. 7.5 Xe REMPI signals with extraction tube and top magnet active. The voltage on
the bottom magnet increases from right to left and the voltages of the other components
were fixed at: MCP = −1500 V, time-of-flight tube = −800 V, extraction tube = −200 V,
top magnet = 100 V respectively. The signals shown were averaged over 1000 laser shots.

From Fig. 7.5 several trends are clearly apparent. First, as with Fig. 7.4, the

resolution between the mass peaks reduces for increasing voltage on the bottom
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magnet, which is once again due to the speeding up of the ion path. However,

unlike the previous measurements, the intensity of the signal also decreases at the

higher voltages, coming to a maximum at around 400 V. Another distinguishing

feature of these measurements is that there is still significant ion signal below 500 V.

Both of these features are likely due to the influence of the extraction tube. It

is likely that because of the additional attraction from the negative charge on the

extraction tube that the ions would be accelerated by a greater degree thus allowing

extraction of ions from the trap volume with a reduced repulsive voltage from the

bottom magnet. Additionally, the shape of the electric field that emanates from the

extraction tube could explain why the ion signal reduces at higher voltages. This is

because extraction tube acts as a form of funnel sucking in ions from a broader range

as opposed to pushing them directly upwards. This means that the trajectories of

the ions moving through the time-of-flight tube are no longer linear, which would

result in a higher probability of collisions with the walls of the tube.

Fig. 7.6 Calibrated mass spectrum of Xe recorded with the REMPI apparatus along with
the natural relative isotope abundances of Xe taken from [110]. On the left hand side of
the graph for isotopes at 124 u and 126 u the MCP signal and relative abundances have
been amplified by a factor of 50. The voltages used for this measurement were: time-of-
flight tube = −800 V, extraction tube = −100 V, top magnet = 100 V and bottom magnet
= 400 V.



7. Testing REMPI apparatus 123

In terms of the mass resolution of the apparatus, the times-of-flight can be calibrated

to give a mass value by using a known mass peak in the time-of-flight spectrum, as

shown in Fig. 7.6. From this we can see that the neighbouring isotopes of Xe can

be distinguished from each other. Additionally, the results show some promise in

terms on the sensitivity of the apparatus as the low abundance isotopes 124Xe and

126Xe are measurable from this experiment, which did not approach the limits of

detection for the apparatus.

Fig. 7.7 Xe REMPI signal taken to illustrate the effect of the Coulomb explosion. The
red line shows the MCP signal taken with full probe laser power at the peak of a molecular
beam of pure Xe and the black line shows the signal taken with the residual Xe left in the
chamber. In both cases the signals were averaged over 1000 shots.

An important consideration of this detection system is the possibility of Coulomb

explosions as shown in Fig. 7.7. This occurs when the probe laser produces a

large number of ions in a small volume of space. As a result of the high density of

charge, the ions can repel each other resulting in a broadening of the mass peaks.

Fig. 7.7 shows an extreme example of this where the faster ions are saturating the

microchannels that they hit thus resulting in a flat line with no mass resolution.

The slower ions on the tail of this signal have more time to spread out and can

thus hit a larger number of channels resulting in a stronger signal and (somewhat)
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maintained mass resolution.

7.3.3 Mass-resolving mode vs Hoover mode

As the photostop experiment necessitates the measurement of molecules over several

orders of magnitude, the detection method would need to be highly sensitive in order

to detect the small numbers of trapped molecules. This is why we conceived the

signal maximising or “Hoover” mode, which required both magnets to be grounded

and the extraction tube to extract the ions in the trap. However, when tested the

signal obtained from the “Hoover” mode is significantly weaker than expected, as

can be seen with a comparison with the mass resolving mode in Fig. 7.8.

Fig. 7.8 Comparison of “Hoover” and mass resolving mode signals. In both cases the
MCP signals were averaged over 1000 laser shots and the voltages of each of the ion
extraction components was optimised to maximise the signal shown (within the bounds
of the available equipment at the time). The voltages used for the hoover mode were:
time-of-flight tube = −800 V, extraction tube = −200 V, top and bottom magnets = 0 V,
and for the mass resolving mode: time-of-flight tube = −800 V, extraction tube = −100 V,
top magnet = 100 V and bottom magnet = 400 V.
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7.3.4 Fast Ionisation Gauge Measurements

With the newly operating fast ionisation gauge, measurements were taken of the

molecular beam profile of a beam of pure Ar in an effort to characterise the operation

of the nozzle. An example molecular beam profile is given in Fig. 7.9. The profile

recorded at the FIG consists of two primary parts, a narrow sharp spike followed by

a larger, more gradual rise which then decays. The first component is the portion

of the molecular beam which passes through the molecular beam skimmer and hits

the FIG directly. The second part is the gas which does not make it through the

skimmer, but instead takes a more circuitous route around the outer stage and onto

the FIG. As the molecular beam is not sent directly into a pump, there is a certain

amount of build up of gas in the FIG chamber, but eventually the gas that remains

is pumped away; this is the root of the initial rise and gradual decay on the trace. As

shown on the graph, the FIG can be calibrated to give approximate measurements

of the number density of gas in the FIG volume by comparing the magnitude of

the FIG signal with and without the molecular signal and contrasting this with

averaged pressure measurements taken using the chamber’s ion gauge. However, in

practice the ionisation efficiencies of different molecules by the FIG can be wildly

different so this calibration process will largely be species specific. An important

feature to note is that the tail of the second part of the molecular beam trace does

not reduce down to the initial base level before the second molecular beam pulse

arrives. This effectively means that the chamber is not sufficiently pumped by the

turbopump to remove all the gas from the previous molecular beam pulse before the

next arrives. This issue could easily be combated by reducing the repetition rate of

the experiment or providing additional pumping (e.g. using the cryostat).
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(a)

(b)

Fig. 7.9 Measured Molecular beam profiles of a pure beam of Ar fired from a General
Valve with a repetition rate of 10 Hz. This has been separated into the full profile over
two shots (a) and the isolated profile that passes through the molecular beam skimmer
(b).
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7.4 Discussion

From the optimisation process it is clear that the apparatus is performing appropri-

ately in detecting ions produced by a REMPI process. Additionally, from the signals

obtained using the mass resolving mode, individual Xe isotopes can be distinguished

by mass (see Fig. 7.6), meaning that the apparatus is an effective time-of-flight mass

spectrometer.

When examining the “Hoover” mode in action the performance appears to fall sig-

nificantly short of the predictions, as the signal strength from the “Hoover” mode

is noticeably weaker than the mass resolving mode. On re-examining the SIMION

simulations we have found that there are two potential sources for this discrepancy.

The “Hoover” as simulated involves sucking the ions down a very shallow potential

gradient which gets steeper as the ions approach the extraction tube; as such the

attractive force on the ions in the trap centre with this mode is fairly weak. On

account of the weakness of this attraction the effectiveness of the ion extraction is

highly sensitive to a number of factors. One such factor, which was not accounted

for in the initial simulation was the forward velocity of the molecular beam itself,

which would deflect the ions on their path towards the extraction tube thus making

them more likely to collide with the walls. Another feature that was not accounted

for as the build up of residual charge on the magnets from ion impacts. Although

both magnets were grounded for the “Hoover” mode experiments, there remains

the possibility that there is some residual charge build up on the magnets from ion

impacts which can significantly impede the ion extraction process. In fact, on ex-

amining Fig. 7.8, some evidence of mass resolution is present in the “Hoover” mode

signal, suggesting that there is some potential difference between the magnets, as

from the simulations the “Hoover” mode should not demonstrate mass resolution.

Further, simulations using SIMION have suggested that a potential difference of

even 0.1 V can significantly disrupt the operation of the “Hoover” mode.

Despite the issues that plague the “Hoover” mode there does remain some potential

for its use. Although the velocity of the molecular beam has proved problematic



7. Testing REMPI apparatus 128

for these measurements, the velocity dependence of the extraction efficiency could

become useful for isolating slower moving molecules; specifically, by decreasing the

voltage on the extraction tube to isolate slower moving species. However, by altering

the voltage on the extraction tube the trajectories of the ions exiting the tube will

also vary meaning that the voltage of the time of flight tube would need to be

adjusted as well to ensure proper focussing of the ions onto the detector. This could

create a problem when it comes to significantly weaker signals as re-optimising

the voltage based on weak ion counting signal could be problematic. Additionally,

the current apparatus does not allow for velocity mapping of the detected ions so

although it may be possible to select out slower velocities currently there would be

no direct way to measure them. That said, if these issues could be directly combated,

the potential for the “Hoover” mode to selectively extract slow moving molecules

from the trap is a promising prospect that is worthy of further attention.

7.5 Conclusions and next steps

The results from these initial tests have shown that the apparatus is successful in

detecting ions from REMPI. Although the initial intention was to use the “Hoover”

mode for ion extraction it is clear that there a still some significant issues with this

method. As such for future experiments the mass-resolving mode would be used

as the signal from this is significantly stronger. Given the success of these tests

the next step was to use this apparatus to measure the decay in signal from the

photostop process.
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8.1 Introduction

Following on from the testing of the REMPI apparatus the clear next stage was to

apply this to measure the decay of molecules in the probe volume from photostop.

The intention of this is to show trapping of SH molecules from this process, which

requires us to identify and isolate SH signal as well as measure the molecular beam

speed, which would then be tuned to maximise the potential for producing zero

velocity molecules as outlined below.

8.2 Adjustments to experiment

For the initial stages of the experiment, much of the apparatus remained the same

as for the initial tests using Xe. However there were issues with cooling and the

difficulty in mounting the smaller outer stage without direct contact between the

inner and outer stage structures. Due to this we redesigned the outer stage to allow

easier access and greater flexibility as shown in Fig. 8.1. This new structure allows

easier access to the trap housing so that alterations can be made quickly, as well as

giving a greater volume inside the trap housing so that it is less likely that gas will

get trapped inside. Further, the inner walls of this new outer stage were coated with

activated charcoal using Stycast 2850 FT adhesive. The benefit of this being that

it effectively increases the surface area of the inner walls allowing them to adsorb

more gas onto them and therefore become more efficient pumping surfaces.

An additional alteration was made to the nozzle mount to allow for adjustment of

the tension in the General Valve in vacuo as shown in Fig. 8.2. The intention of
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Fig. 8.1 Schematic representation of the larger outer stage. The larger internal volume
is to allow for a greater ease of access.

this being to allow for greater flexibility and control of the molecular beam profile in

order to obtain a sharp and narrow molecular beam pulse. Additionally, this larger

and more sturdy structure will help avert some of the issues with distortion of the

components of the previous configuration.

Although it is a reliable and readily available molecular beam source, the Parker

General Valve is not necessarily the best molecular beam source available for produc-

ing narrow high density beams. On account of this for later stages of this experiment

an Even-Lavie valve replaced the General Valve for the majority of the results pre-

sented here1, as this has previously demonstrated the capability of producing very

narrow high density beams [111]. On account of the high densities produced by the

Even-Lavie valve some consideration needed to be made with regards to how the

molecular beam passes through the skimmer. The skimmer we had available was

designed for lower density beams and has a relatively narrow angle at the orifice.

The upshot of this was that, with a high density molecular beam travelling through

1 This will be the case for all the results in this chapter unless otherwise specified.
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Fig. 8.2 Schematic representation of the adjusted nozzle mounting assembly. To adjust
the General Valve tension the nozzle is pulled back onto two screws mounted on the
flange, which stick into the nozzle mount and provide resistance so that the nozzle can be
adjusted.

a narrow orifice, turbulence may hinder the passage of the beam. To minimise this

risk the Even-Lavie valve was positioned at a significantly greater distance from

the skimmer than the General Valve in the hopes of reducing the effect. This ulti-

mately meant that the molecular beam would likely be less dense when reaching the

trap centre, but as the Even-Lavie is significantly more directional than the General

Valve, it was still likely to be an improvement.
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8.3 Results

8.3.1 Finding SH signal

The clear first step in performing the photostop experiment is to identify signal

from the target molecule in question namely, find SH REMPI signal. To do this

we initially set the wavelength of the probe laser to be in the expected region of a

band head of SH and (with the delay between the dissociation and probe lasers set

to 5 ns) adjusted the delay between the firing of the molecular beam nozzle and the

firing of the dissociation laser. From this we were able to obtain sufficient REMPI

signal to optimise and then obtain the spectrum shown in Fig. 8.3.

Fig. 8.3 REMPI Spectrum of SH from dissociation of pure H2S. For this the REMPI
signal is measured using the integral of the MCP signal, which is optimised for changes in
the power of the dissocation and probe lasers.

Fig. 8.3 can clearly be matched up with previous measurements from the literature

[112], suggesting that this is in fact SH. However one peak at approx 254.8 nm

(78 450 cm−1) does not fit into the known peaks from SH. When looking further

into this particular peak we discovered that this peak was in fact the result of a

Coulomb explosion (see Fig. 7.7 for explanation) from a neighbouring mass region.

By examining this time-of-flight region as opposed to the SH region, we obtained
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the spectrum shown in Fig. 8.4.

Fig. 8.4 REMPI Spectrum of S from the two stage dissociation of pure H2S.For this the
REMPI signal is measured using the integral of the MCP signal, which is optimised for
changes in the power of the dissocation and probe lasers.

Upon examination we have found that the spectrum shown in 8.4 corresponds to

the 2 + 1 REMPI of sulphur atoms. Given the precursor molecule in this case, it is

reasonable to assume that this sulphur has been produced from the dissociation of

H2S so we decided to look into this further (as will be outlined in the next section).

8.3.2 SH dissociation mechanism

To determine the mechanism behind the production of sulphur atoms from H2S we

examined the power dependence of the MCP signal on the intensities of the probe

and dissociation lasers, which should indicate how many photons of each are required

to produce the signal. The results from this analysis are shown in Fig. 8.5.

By performing a linear fit on these graphs one can ascertain the power dependence

of the process, i.e. how many photons of each laser are required to produce the ions

seen by the MCP. From this we find that there is a gradient of 2.4 for the probe

laser indicating that this is a 2+1 REMPI process, and 1.8 for the dissociation laser
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(a) (b)

Fig. 8.5 log10 Power dependencies of the discovered S signal on the probe (a) and disso-
ciation (b) laser energy.

suggesting that this is a two photon process.

Based on these findings and with a further examination of the potential energy

surfaces of SH the mechanism for this process can be proposed as illustrated in

Fig. 8.7. We are using a 213 nm laser to dissociate the H2S, which should produce

SH predominantly in the ground state. However there is a strong Franck-Condon

overlap between the X2Π3/2 SH ground state and the a4Σ− unbound state for an

excitation with a 213 nm photon, meaning that the SH can dissociate from a second

absorption (see Fig. 8.6). At first glance this discovery appears detrimental to the

goal of trapping SH as we are effectively draining the supply of stopped SH molecules

to produce sulphur. However this does also pose the question as to whether sulphur

atoms could be photostopped using a two stage dissociation. In a similar manner

to the one step photostop process, the energetics of the photodissociation can be

examined in order to determine the recoil velocity of the sulphur atoms from the

second dissociation.

If we first look at the dissociation of H2S, referring back to Chapter 2, in the centre

of mass frame of the photodissociation the velocities of the SH fragment are given

by

uSH =

(
2Ekin.

mH

mSH.mH2S

)1/2

, (8.1)

where uSH is the recoil velocity of the SH in the centre-of-mass frame, mSH, mH2S



8. Photostop of SH and Sulphur using REMPI 135

Fig. 8.6 Energy transitions for the H2S and SH dissociation mechanisms.

and mH are the masses of SH, H2S and H respectively and Ekin is the total kinetic

energy of the fragments as defined by

Ekin = Ekin(SH) + Ekin(H) = hν −D0 − Eint(frag) + (Eint(H2S)
), (8.2)

where ν is the frequency of the dissociation laser photons, D0 is the threshold disso-

ciation energy of the molecule and Eint(frag) is the internal energy of both fragments

and Eint(H2S)
is the internal energy of the H2S

2. As the excitation in question is to

the ground state of SH (as well as the ground state of H) and using the value of D0

from [113], we can determine that from dissociation by a 213 nm laser will produce

a recoil velocity of

uSH = 576 m s−1. (8.3)

Thus by using a 576 m s−1 molecular beam one can expect to produce SH molecules

with velocities of approx 0 m s−1. In practice however the final recoil velocity from

this is also influenced by the initial orientation of the dissociated molecule. Not all of

the molecules will necessarily be orientated such that the target fragment will recoil

directly opposed the propagation of the molecular beam. In fact, given a random

orientation a dissociation process could result in the fragments ejecting in essentially

2 This will be disregarded for reasons outlined in Chapter 2.
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Fig. 8.7 Newton diagram of the photodissociation of SH and S performed by a 213 nm
dissociation laser.

any direction, leading to a isotropic distribution of recoil velocities. However the

excitation which initiates the dissociation of H2S has a transition dipole moment

which requires a perturbation which is perpendicular to the molecular plane. The

upshot of this is that with a linearly polarised laser (such as the dissociation laser

we have used) molecules with their plane perpendicular to the laser polarisation

will be dissociated preferentially. This ultimately means that when dissociating

with the polarised laser, the recoil velocities will occur with a cos2 distribution

with respect to the laser polarisation. In this experiment the dissociation laser is

aligned perpendicular to the propagation of molecular beam. This means that if

the polarisation of the dissociation laser is orientated perpendicular to the plane of

the molecular beam and the laser propagation, this gives rise to velocities on the

black dashed circle in the Newton diagram shown in Fig. 8.7 in the xy plane of the

experiment.

Similarly the recoil velocity of the S atoms can be determined using the same princi-
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ples. From this and using the SH dissociation energy from Equation 8.2, we find that

the direct recoil of the S atoms from the photodissociation (in the SH centre-of-mass

frame) is

uS = 627 m s−1. (8.4)

Next we need to consider the geometric environment of the photodissociation in

order to determine the total resultant recoil velocity from the combination of both

processes. In the ground state the H2S molecule has a bond angle of approximately

90.1◦, which does not change significantly during dissociation via the 1B1 and 1A2

excited states [114]. Further, the dissociative transition for the SH is also perpen-

dicular transition, so the recoil velocities from the second dissociation should be

preferentially in the same plane as the prior dissociation. Hence we can project this

onto the calculations of the recoil velocities of the H2S and SH dissociations and

thus generate a Newton diagram of the final velocity of the S atoms in the lab frame

as shown in Fig. 8.7. This gives us a target molecular beam speed of

vbeam = 834 m s−1, (8.5)

in order to produce photostopped sulphur atoms with this mechanism. It should

be noted that at this stage this model is a supposition and requires that the SH

molecule does not rotate between the dissociation of H2S and the dissociation of

SH.

8.3.3 Tuning the molecular beam speed

As the velocity of the molecular beam is critical to the photostop process, it needs

to be carefully controlled to match the recoil velocity of the photodissociation. As

this REMPI detection system does not allow for velocity map ion imaging (VMI),

we determined the molecular beam speed by measuring the molecular beam profile

at both the centre of the trap (where the probe laser intersects the molecular beam)

and the fast ionisation gauge. By measuring the time difference between the centres

of each molecular beam peak and measuring the distance between the trap centre
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and the FIG, we determined the molecular beam speed.

As outlined in Chapter 2, for a one stage photostop the desired molecular beam

velocity can be determined from the dissociation laser using the equation:

vbeam = uSH =

(
2Ekin.

mH

mSH.mH2S

)1/2

, (8.6)

where vbeam is the target molecular beam speed, where uSH is the recoil velocity of

the SH in the centre-of-mass frame, mSH, mH2S
and mH are the masses of SH, H2S

and H respectively and Ekin is the total kinetic energy of the fragments as defined

by Equation 8.2. To control vbeam the parent molecule was seeded in a mixture of

noble gases which, if properly mixed, will speed up or slow down the molecular beam

speed depending on the mass of the noble gas in question. If the seeding gas has a

greater mass than the target gas then by collisions with the seeding gas the target

molecules will slow down, resulting in a slower molecular beam; and the reverse

is true for lighter seeding gases. By using equation 8.6, we determined that for a

dissociation of H2S at 213 nm we require a molecular beam speed of 575.6 m s−1. By

successively diluting pure H2S with Kr and measuring the velocity at each dilution

we were able to determine the required mixture to produce a close approximation

to the photostop velocity as shown in Fig. 8.8.

It should be noted that the dissociation of H2S produces SH molecules in a range

of different rotational states, as evidenced by Fig. 8.3. For each of these states, the

recoil will be different as the internal energy of the SH fragments will be different for

each. Therefore to photostop each state one would need to use different molecular

beam speeds. However, in our case we are examining only the ground state for the

purposes of trapping, and so will only be using a single molecular beam speed.
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Fig. 8.8 Molecular beam profiles taken using SH REMPI signal. The fits shown were made
using a single Gaussian function. The additional rise after the main peak is indicative of
un-skimmed gas from the nozzle leaking into the chamber through the laser ports of the
outer stage structure on the cryostat.



8. Photostop of SH and Sulphur using REMPI 140

8.3.4 Room temperature photostop

Fig. 8.9 Decay in REMPI signal for increasing delays between the dissociation and probe
lasers for both SH and S without the cryostat in operation.

Measurements were made of the REMPI signal as a function of the dissociation

laser - probe laser delay. As the REMPI signal decreases over several orders of

magnitude, the MCP voltage was sequentially increased to improve the signal on

the oscilloscope. At each point the MCP voltage was increased the REMPI signal

was remeasured at the same delay to calibrate the different sections with respect to

each other.

As a starting point we measured the photostop decay of SH and S without the

cryostat in operation so that its effect can be demonstrated. The results of this

can be seen in Fig. 8.9. The trends shown clearly indicate a decay in signal with

two rises and falls after the initial decay, which we shall refer to as ‘humps’. We

believe that the first hump is due to the SH/S bouncing off of the magnet surfaces

and back into the probe volume and the second is due to gas desorption from the

surfaces of the magnets. In any case it is self-evident that in this form there is too

much background signal for trapping to be demonstrated, thus making the cryostat



8. Photostop of SH and Sulphur using REMPI 141

necessary.

8.3.5 Even-Lavie valve characterisation

Due to the requirement of the photostop experiment for a short and sharp molecular

beam we decided to replace the General Valve with an Even-Lavie valve. The Even-

Lavie valve optimisation is less extensive than for the General valve as it arrives

fully constructed with no secondary spring to adjust for shorter molecular beam

pulses. For this the only adjustment that could be made was with the length of the

driving current pulse for opening the nozzle. Thus for optimisation the nozzle was

backed with 3 bar of Ar and the atomic beam optimised by adjusting the length of

the driving current pulse. The results from this are shown in Fig. 8.10.

Fig. 8.10 FIG traces for a atomic beam of Ar with increasing driving current pulse lengths
on the Even-Lavie.

After performing this initial optimisation, the triaxial cable used to drive the current

needed to be re-purposed in another experiment and so was replaced with a coaxial

cable. After this adjustment we found that there was a noticeable difference in the

operation of the valve and different current pulse lengths were needed to open the

valve fully. At present it is not entirely certain what the root cause of this change was
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but an initial assessment seems to indicate that the most likely source is the change

in the efficiency of the grounding between the cables. The rationalisation of this is

thus, the Even-Lavie valve is driven by a current pulse through a (normally) coaxial

connection and the current pulse passes through the valve and then dissipates to

ground through the shield of the coaxial. Thus with a change in shielding in the

cables this dissipation process may occur differently resulting in slightly different

properties in the operation of the nozzle. Due to this alteration in the properties of

the nozzle the optimisation process was repeated with a beam of Ar but in addition

to this, a secondary optimisation was performed by measuring the molecular beam

profile of H2S in the trap centre using the REMPI signal from SH. The results from

this are shown in Fig. 8.11.

Fig. 8.11 Molecular beam profiles measured using the REMPI of SH with increasing
driving current pulse lengths on the Even-Lavie.

As the ideal form of the molecular beam profile for the photostop measurements is a

narrow intense molecular beam, the results shown indicate that a compromise must

be reached with this configuration. Although there appears to be some increase in

signal from 27µs to 29µs, the width of the signal appears to also increase, with

what appears to be a second peak emerging. This secondary peak could prove
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problematic as the increased density in the tail of the molecular beam may result in

stopped molecules being pushed out of the trap via collisions. Therefore we would

opt for a narrow molecular beam to reduce this possibility. As such a pulse width

of 27 µs (which corresponds to a measured full width at half maximum of approx

100µs using SH REMPI) was chosen for use in the future experiments.

8.3.6 Cryostat-assisted photostop

Fig. 8.12 Temperature of the outer stage and pressure of the chamber after the cryostat
is turned on.

As with the previous photostop measurements using CELIF with the cryostat active,

we measured the temperature of the cryostat as it cooled down to determine the

optimum time to start the experiment. However in this case the thermocouple was

positioned on the upper portion of the outer stage in order to get a a more accurate

measurement of the temperature of the pumping surfaces (i.e. the inner walls of

the outer stage). The pumping operation of the cryostat is shown in Fig. 8.12. It

is clear from this that the cooling process is taking significantly longer than for the

previous measurements. This is most likely due to a combination of the increased

mass and repositioning of the thermocouple.

On account of the contraction of the cooling components, the alignment of the
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Fig. 8.13 Decay in sulphur REMPI signal for increasing delays between the dissociation
and probe lasers for S with the cryostat in operation and the magnetic trap in place.

lasers into the chamber needed to be adjusted in order to compensate for this. This

was accomplished by optimising the dissociation laser to lie centrally through the

chamber and then adjusting the probe laser alignment to maximise the detected

REMPI signal. This process, however, needed to be performed relatively quickly to

reduce the likelihood of saturation of the pumping surfaces during the experiment.

The results from the photostop measurements taken with the cryostat active are

shown in Figs. 8.13 and 8.14.

The first set of measurements was performed with an attempt to photostop S as this

gave a far stronger REMPI signal. As can be seen in Fig. 8.13, the initial ‘hump’ as

seen in the measurements without running the cryostat appears to be still present

but the second rise has been removed. Following the initial hump, the relative signal

appears to decay continuously until it reaches a relative signal of around 5× 10−9.

That being said, there is no apparent change in this decay rate which would be

indicative of the effect of the magnetic trap on the slower molecules. On account of

this we decided to see if any kind of effect could be demonstrated with the photostop
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of SH as shown in Fig. 8.14.

Fig. 8.14 Decay in SH REMPI signal for increasing delays between the dissociation and
probe lasers for SH with the cryostat in operation and with the magnetic trap in place.

Initially it appeared that (as with S) there was no real evidence of trapping as,

discounting the first ‘hump’, there appears to be a relatively constant decay at the

longer time delays, but in this case reaching a relative signal of around 5 × 10−6.

However, if we examine this with a log/lin format we see a gradual decay emerge

after around 1 ms in a similar fashion to the trapping shown in [115]. As such we

initially examined the difference between measurements taken at different molecular

beam speeds by comparing the photostop gas mixture with pure H2S as shown in

Fig. 8.15. Although there may be some small difference in the relative signals on this

tail of the decay, the differences are not statistically valid enough to make definitive

conclusions from. So for further confirmation we removed the magnets from the

trap, replaced them with copper blanks and retook the measurement as shown in

Fig. 8.16.

The difference in the decays with and without the trap are far clearer and more

distinct than for the measurements with different velocities. From this one might be
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Fig. 8.15 Decay in REMPI signal for increasing delays between the dissociation and probe
lasers for SH with the cryostat in operation and using a range of different molecular beam
mixtures as specified in the legend.

tempted to declare victory as on the outset this appears to be evidence of trapping.

However, it would be expected that the non-trapping signal would simply continue

to decay over time as there is nothing to hold the molecules in place so they would

all eventually leave. Instead the measurements appear to show the same levelling

off as seen with the measurements with the trap.

Although the tail of the decays can be described as “levelling off”, the total magni-

tude is still decreasing for increasing delays which indicates that this effect is depen-

dent on the molecular beam. To confirm this, measurements of the REMPI signal

(still without the trap present) at 70 ms were taken with and without the dissocia-

tion laser. When compared, these measurements were statistically indistinguishable

from each other thus indicating that the signal shown is SH signal produced from

the dissociation of the remaining H2S in the trap volume by the probe laser.
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Fig. 8.16 Decay in REMPI signal for increasing delays between the dissociation and probe
lasers for SH with the cryostat in operation for both with and without the magnetic trap
in place.

8.3.7 Background subtracted measurements

Since the submission of this thesis, work on this experiment has continued by other

members of the group3 applying the use of a background reduction method to re-

duce the obscuring effect of the background gas from the molecular beam. In essence

this involves adjusting the operation of the experiment such that the dissociation

laser fires at one half of the repetition rate of the nozzle and probe laser and taking

measurements with and without the dissociation laser present. These measurements

are averaged separately and the background (without the dissociation laser) is sub-

tracted from the main signal results (with the dissociation laser). The results from

this investigation are shown in Fig 8.17.

This clearly shows a definitive change in the decay in SH signal with the trap present

after delays of around 5 ms, after which there is a slower decay rate. This is highly

similar to the previously recorded results, the main difference being that the “trap-

3 Specifically, Jack Eardley and Eckart Wrede.
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Fig. 8.17 Decay in REMPI signal for increasing delays between the dissociation and probe
lasers for SH with the cryostat in operation whilst utilising background subtraction with
and without the magnets in place (in red and blue respectively). The black line is a fit of
the trap loss rate of the trapped SH molecules

ping” level is significantly lower than the prior measurements. This however would

be expected given the introduction of background subtraction. The most striking

result from this is that there is a clear distinction between the measurements with

and without the magnetic trap in place. This definitively demonstrates the mag-

netic trapping of cold SH radicals from the photostop process as, with the magnets

in place, the background subtracted SH signal is measurable up to 80 ms, whereas

without the magnets it quickly becomes undetectable after a few milliseconds. From

performing a linear regression on the trapping results with a delay greater than 5 ms,

a 1/e trap lifetime of 40± 1 ms was obtained.

8.4 Discussion

The unexpected discovery of SH dissociation by the 213 nm laser can be seen as

something of a mixed result. The primary problem with this is that this mechanism
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ultimately leads to the depletion of SH molecules and thus will deplete the supply for

any SH photostop measurements. This can be rectified by using a shorter dissocia-

tion laser wavelength, namely the 193 nm output of an ArF excimer laser. Using this

alternative dissociation method has two benefits, first the absorption cross-section

for H2S is significantly higher at 193 nm when compared to 213 nm, thus giving a

greater yield of SH. Additionally, the Franck-Condon overlap for the dissociative

transition in SH is reduced at this wavelength, thus meaning fewer SH molecules are

dissociated (and therefore lost). Despite this dissociative issue, the production of S

in this manner does give rise to the possibility of performing two-photon photostop

experiments on S or potentially more complex molecules or other species that would

be difficult to produce in a single photodissociation process. This does, however,

rely on the assumptions regarding the mechanics of the SH dissociation being valid

which, although justified in the literature, would require additional experimental

evidence to confirm (preferably using a system with velocity map ion imaging).

Although a definitive difference was initially shown between measurements of the

photostop of SH with and without the magnetic trap, the evidence produced with-

out background subtraction was not a conclusive presentation of the trapping effect.

The reasoning behind this is predominantly on account of the issue with the dissoci-

ation of background gas, which may be masking the signal of the trapped molecules.

One might argue that the distinct difference in the signal essentially makes this a

moot point as the signal at the tail end of the photostop decay is simply a sum-

mation of the signal from the trapped molecules and the background so therefore

the difference between the signals with and without the trap in place is the result

of the trapped molecules. While this is a valid position, it is not unassailable as

by necessity the measurements with and without the trap in place needed to be

taken at different times as the chamber needed to be vented and the trap removed.

Therefore it is potentially possible that there would be some change in alignment

or optimisation between the two measurements, which could dictate the magnitude

of the background signal. That being said, the methods used for the optimisation

and alignment were the same for each set of measurements, as were the lasers used
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so it is unlikely that such a substantial difference would occur as a result of a slight

misalignment. Nevertheless, as there is some contention as to the validity of this

result, it is evident that trapping has not been sufficiently demonstrated with these

initial measurements alone.

The results from the background subtracted measurements have clearly demon-

strated the magnetic trapping of photostopped SH radicals, with a measurable trap

lifetime of 1/e trap lifetime of 40± 1 ms. These results are similar to the findings of

previous investigations of the photostop of Br atoms [115,116], but the extension of

this technique to the trapping of molecules was not trivial. The trends shown from

the background subtracted results also correlate with the previous direct (i.e. non-

background subtracted) measurements of the trapping of SH shown in Fig. 8.16.

However, the background subtracted results more definitively demonstrate the trap-

ping effect with the absence of potential background gas contribution to the signal.

That said, for future investigations with this technique, the clear preference would

be to reduce this issue so that background subtraction would not be necessary as,

by its very nature, these experiments take twice as long as direct measurements.

In terms of the overall sensitivity of the apparatus, the experiments have shown

that it is highly sensitive and able to cover a broad range of signal, covering up to

6 orders of magnitude for the REMPI of SH and up to 9 orders of magnitude for

the REMPI of S. When compared to the historical measurements where signal was

lost after an approximately 3 orders of magnitude decrease in signal, this is clearly

a vast improvement.

As has already been stated, the primary issue which has caused difficulty in the

demonstration of trapping is the background gas remaining in the trap volume.

Given the vast quantity of pumping surfaces in the area it is unlikely that this issue

is a result of insufficient pumping, instead it is more likely that this is due to the

broad temporal width of the molecular beam. There are a number of potential

methods that can be applied to reduce the width of the molecular beam, which will

be outlined in 9.1.
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8.5 Conclusions and next steps

The application of REMPI for the photostop measurements has provided a signifi-

cant improvement in terms of sensitivity when compared to the historical photostop

measurements as well as the CELIF measurements. Additionally the unexpected

discovery of the photodissociation of SH has opened up the potential for expansions

of the photostop technique using multi-stage processes. However, the issue of back-

ground signal obscuring our measurements has proven to be somewhat problematic

for the demonstration of trapping. That said, more recent results using background

subtraction have definitively demonstrated of the trapping of SH radicals using pho-

tostop.



Part IV

OUTLOOK



9. THE FUTURE OF PHOTOSTOP

9.1 Solutions to current issues

There have been a number of successes in the photostop project which have ulti-

mately culminated with the recent definitive demonstration of the magnetic trapping

of photostopped SH radicals. In particular, the REMPI apparatus has demonstrated

a significant dynamic range and sensitivity both for raw signal and with background

subtraction. That said there are still a number of issues that hamper the experiment

and could be improved upon for future investigations.

As previously stated, the predominant issue that proved problematic in the detec-

tion of trapped S/SH is the background gas that remains from the molecular beam.

Although background subtraction does reduce this issue, this solution is inefficient

as measurements by necessity take twice as long to take. Combating the background

gas issue directly will not come without difficulty, but there are some potential so-

lutions to this issue. First and foremost is the application of proprietary molecular

beam sources to generate shorter and higher density molecular beams. To this

end we have tested an Even-Lavie valve which we jerry-rigged into our apparatus.

Although this valve has previously been shown to produce molecular beams with

FWHM below 100 µs with noble gases [111], in our experiments we have not experi-

enced this. This discrepancy is likely due to a combination of different factors, first

H2S has significantly different properties from noble gases so there is no guarantee

that the supersonic expansion would perform in the same manner. Additionally,

as the Even-Lavie valve has been shown to produce much higher density molecular

than the General Valve it needed to be positioned significantly further back so that

the skimmer would not experience choking issues. That being said, with a modified
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high density skimmer this issue should dissipate so that the nozzle can be moved

closer. That said, we are currently collaborating with a group in Nijmegen to adapt

their Nijmegen Pulsed Valve (NPV) [117] for use in this experiment. Although this

could provide the narrow molecular beam width required, this valve has yet to be

tested with H2S so it is uncertain how well this will compare to previous results.

Given the resources readily available, the most promising solution to this issue would

be to incorporate a chopper to externally shorten the molecular beam as has been

applied to other experiments [118].

There are a number of options as to how a chopper could be incorporated into the

structure. A common method of chopping a molecular beam is to use a rotating

wheel with a narrow slit in it, which is set to rotate such that the wheel blocks

the molecular beam and only lets through a small portion that passes through

the narrow slit. Although this is a perfectly serviceable method, as the internal

structure of the apparatus is small, it may become difficult to mount and operate.

As an alternative we are proposing to use an arm on a pivot to serve as a shutter to

block the beam. To accomplish this we are planning on re-purposing the mechanical

arm from a hard drive to serve as a lever, which is an adaptation that has been used

previously for laser shutters [119–121]. At the time of writing some initial tests have

been performed on this idea which have unfortunately shown that the time taken to

move the lever arm the required distance to block the molecular beam is too long

to have significant effect on the molecular beam profile. That said, the principle

remains sound and could be implemented if an alternative and faster-moving lever

arm mechanism could be found.

A further addition to the chamber that has been added is the introduction of a form

of differential pumping as shown in 9.1. The purpose of this is to reduce the level

of background gas from the nozzle by effectively segregating it such that only the

portion of the gas pulse which passes through the skimmer will have a direct line of

sight to the trap centre or the outer stage. The rest of the gas from the nozzle is

guided upwards towards to the turbopump by a “chimney” structure so that it can

be pumped away more efficiently. In practice some of the gas that travels up the
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chimney may, after leaving the chimney, flow downwards towards the outer stage,

however the top surface of the outer stage is entirely closed off so there remains no

direct line of sight to the trap centre, meaning that in order for gas to reach the trap

centre it would have to take a route which makes it likely for it to hit (and become

adsorbed to) the walls of the cryostat structure.

Fig. 9.1 Schematic representation of the planned adaptations to be made to the chamber
to allow the incorporation of the chopper arm with a front view of the chopper in position
(a) and a cross-sectional view of the chopper mounted in the chamber to the trap centre
(b).

9.2 Future Advancements

Assuming that the above issues are successfully combated, the photostop experiment

could be expanded further in a range of possible directions. As of this moment the

most promising directions for advancement are the reincorporation of CELIF, cool-

ing the molecules further and potentially producing more complex cold molecules.

9.2.1 Further additions to the design

One of the primary limitations of this experimental apparatus in its current state

is the lack of velocity map ion imaging, which make measurements of the veloc-
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ity of both the dissociated molecules and the molecular beam speed potentially

problematic. The justification for the exemption of this capability was to allow for

significantly easier access to the central chamber for alterations as well as to max-

imise the efficiency of the turbopump by positioning it as close to the molecular

beam source as possible. Given how efficient the pump has demonstrated to be, it

may be possible to make adjustments to the extend the top of the chamber upwards

so that the required phosphor plate and CCD camera can be mounted behind the

MCP in vacuum. However this may not be practically possible use to the limited

vertical space in the lab where it currently sits so further additions may prevent the

pump from being easily and effectively removed.

Fig. 9.2 Schematic representation of the adaptation made to the chamber to allow the
incorporation of a double FIG mount for more accurate molecular beam speed measure-
ments.

As an alternative to incorporating VMI there is the potential to improve the molec-

ular beam speed measurements by incorporating additional FIGs as shown in Fig.

9.2. In practice this would allow the molecular beam speed to be measured by

simply recording the molecular beam profile at both FIGs and measuring the time

difference between them to determine the velocity. Although the principle of this is

identical to the current method of measuring molecular beam speeds there are some

distinct advantages. First, this apparatus has a more distinctly defined difference
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between the two points of measurement and so could provide more precise and re-

peatable measurements. Second, the measurements with the FIGs are significantly

faster to take than when using the laser as in the latter case the laser needs to move

onto each delay from the nozzle and make a recording whereas the FIG can remain

temporally stationary. This increased efficiency would be a definitive benefit as it

will allow for greater fine tuning of gas mixtures to produce molecular beam speeds

closer to the target velocity for photostop, and hence more trapped molecules.

9.2.2 Reincorporation of CELIF

Although the results from the initial CELIF measurements were less than ideal,

the CELIF technique has been shown to be a relatively straightforward and highly

sensitive method of measuring molecules and is something that should be explored

further. In the context of this experiment the main impediment to the success of

CELIF was the stray light and background signal produced by the dissociation laser.

This is a significant issue as the predominance of the stray light occurs at the short

delays where direct absolute number density calibration using CRDS would take

place and so could cause issues. However this is not insurmountable as there are

methods that could reduce this stray light such as the incorporation of laser baffles

or filters.

If the stray light can be successfully accounted for, it raises a very real possibility

of making absolute number density measurements of the trapped molecules. Given

what we have seen thus far, it is unlikely that this could be performed entirely by

CELIF as it has thus far not demonstrated the required level of sensitivity, however

this does open the possibility of a pseudo absolute number density calibration of

REMPI. What this would entail is matching up the photostop decays for both

techniques so that an absolute number density of molecules producing the REMPI

signal could be assumed from the measured number density using CELIF. This

would be admittedly an indirect calibration, but given that at present the number

of trapped molecules could only be approximated using the REMPI signal, this

would be a definitive improvement.
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9.2.3 Additional cooling

Given that photostop is somewhat of a hard and fast technique it is unsurprising

that the final temperature still lies above the ultracold regime (the magnetic trap

depth is approximately in the order of 200 mK for the target SH state). On account

of this it is clear that in order to apply this technique for use in applications like

the quantum simulator further cooling would be required. On account of how this

experiment is constructed there are numerous possibilities for advancement in this

direction. First, as the chamber is constructed around a central cryostat, there is

the possibility of feeding in a buffer gas source into the trap volume for additional

cooling. However, buffer gas cooling has limited effect for reaching sub-millikelvin

temperatures and so would not necessarily aid that much in further cooling the

stopped molecules, but it may still aid in cooling the molecular beam.

As an alternative to buffer gas cooling, there is the possibility of incorporating

sympathetic cooling to further cool the trapped molecules. Admittedly this would

require significant redesigning of the current apparatus to accommodate the required

optical access for laser cooling the atoms which will be sympathetically cooling the

target molecules. Additionally, the high density influx of the molecular beam may

result in losses of the laser cooled atoms, thus making the cooling less efficient.

Assuming that the target molecules can be reliably cooled and trapped, there is

the possibility that photostop could be used as a source of cold molecules, which

can then be further cooled by a Zeeman or Stark decelerator. In this circumstance

the target molecules would likely be first accumulated in the trap before extracting

them from the trap with and feeding them into a decelerator. If this could be

achieved it would mean that decelerator could be loaded with an initially cold and

slow moving source so that it would not need to be as long to produce significantly

slower/colder molecules. The key to this however is the extraction process from the

trap, which could involve implementing a pulsed magnetic field to push the trapped

molecules out of the trap when the trap density has accumulated sufficiently. This

could prove to be a challenging prospect on account of the small size of the trap
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but in principle this could provide a novel method of loading a decelerator and thus

produce significantly colder molecules.

Alternatively, the photostop technique could be applied to molecules that have al-

ready been decelerated. Both Stark and Zeeman decelerators generate slow moving

molecules with high rotational state purity, which could be brought to a standstill

by photostop. This has the advantage that as the decelerator significantly reduces

the velocity of the target molecules, the photostop dissociation energy can be tuned

to near threshold levels and therefore reduce the size of the Newton sphere from the

dissociation meaning that a greater proportion of the dissociated molecules will be

directly slowed by the process. Further, as the dissociation is near threshold, the

possibility of rotational heating of the fragments is significantly reduced.

Additionally, the technique could be used to create translationally cold but rotation-

ally hot molecular super rotors. Super rotors are molecules with rotational energy

that exceeds their bonding strength, so in effect they are only quasi-bound. With

the molecules rotating so fast collision events take longer than the revolutionary

period meaning that the molecules mostly perform elastic collisions, which hardly

affect their rotation [122]. Crucially, the inelastic collision rates for these molecules

are inversely proportional to the J rotational quantum number of the rotor, ulti-

mately leading to longer lifetimes for these states. As photostop can be tuned to be

rotationally selective, there is the potential of generating molecules from the out-

put of a decelerator in a single high rotational state. In effect this could lead to

the production of a translationally cold super rotors which have long lifetimes for

study. That said, this would be an ambitious undertaking and would require the

application of a functioning decelerator as well as a femtosecond laser, and would

thus require significant instrumentation development before this experiment could

be realised.



10. OVERALL SUMMARY AND CONCLUSIONS

Given the initial state of the photostop experiment at the beginning of this project,

significant advances have been made during this project. In particular the design

and construction of the new experimental apparatus has allowed for the testing of

different measurement techniques and has the potential to be easily re-purposed

for any number of applications thanks to the multiple axes of optical access to the

chamber centre and the adaptability of the structure as a whole.

Despite being not entirely successful for this experiment, the CELIF technique, has

shown some promise as a method for measuring absolute number densities of small

numbers of molecules. Although a detection limit could not be reached with mea-

surements of SO2 in this experiment, the relative simplicity of the construction and

application of this technique has shown that it could easily be applied to other sys-

tems. The primary limiting factors of this technique largely lie in the measurement

of the fluorescing light. Firstly, the issue of direct calibration with CRDS at high

number densities can be an issue as the results from SO2 have shown a significant

discrepancy between the calibrated CELIF signal and the measured CRDS signal.

This however may be an issue of the method of calibration and could be corrected

for; besides which, the primary interest for CELIF application is in the determina-

tion of lower number densities, so the poor calibration at higher number densities is

of little consequence if the calibration is consistent at lower number densities. The

major limiting issue for the application of CELIF with photostop is that of stray

light obscuring the fluorescence signal. An inevitable consequence of using a cavity

is that the light intensity of the probe laser is lost in favour of a longer interaction

with the substance in question. As such there is very little than can be done to

compensate for external sources of light (such as the dissociation laser), besides re-
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ducing the stray light with barriers or filters. However, there still remains the issue

of the fluorescence of the windows themselves, which provided a level of background

signal in the CELIF only experiments. This background level will ultimately de-

termine the detection limit of the CELIF experiment in question, and in this case

was exacerbated by the fact the probe laser wavelength is in the ultra-violet range.

That being said, CELIF experiments at longer wavelengths will have less issue with

this, which, coupled with the fact that it is easier to get higher reflectivity mir-

rors ar longer wavelengths, could lead to highly sensitive molecular measurements

if properly applied.

Although initially problematic due to the small scale of the ion optics, the REMPI

detection method has proven to be highly sensitive and capable of detecting a large

range of molecular number densities. The initial tests with Xe clearly showed that

we could obtain a strong signal with good mass resolution using the mass-resolving

mode. The under-performance of the “Hoover” mode was unfortunate, but given

the strong signal found from the mass resolving mode, this was not a significant

hindrance. That being said, now that we have a greater understanding of the failings

of the hoover mode, there could still be application for this mode in the detection

of slow moving molecules.

The initial measurements of the REMPI signal of SH confirmed the high sensitivity

and mass resolution of the ion extraction system. The unexpected discovery of the S

production from the photodissociation of SH was an added bonus which leads to the

possibility of a multi-stage photostop process, which may open up the possibility of

producing a greater range of cold molecules. The early measurements of the SH and S

photostop decays clearly demonstrated the improved sensitivity of the new apparatus

and technique when compared to the old one, as a strong signal was measured at

significant delays after the initial photodissociation. However, due to the significant

issues with background gas obscuring signal, this was not sufficient to demonstrate

the trapping of either species, hence the necessity of the cryostat. With the cryostat

in operation the sensitivity of the apparatus was further demonstrated, showing

that the REMPI detection scheme could cover at least 6 orders of magnitude of SH
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signal and at least 8 for S signal. However, despite this sensitivity, the trapping of

either species could not initially be demonstrated due to obscuring of trapping signal

at long delays by the broad molecular beam. That said, recent measurements with

the instrument using background reduction have now conclusively demonstrated the

trapping of photostopped SH.

Despite this success, the issue of the broad molecular beam obscuring the trapped

molecule signal remains a significant obstacle for further development. To combat

this, background reduction has been used to great effect. Additionally, work is

under way to incorporate a chopper system into the system as well as a high density

Nijmegen-pulsed valve to more definitively remove this issue.

Despite these advancements (and those to come) it is still self-evident that the

photostop technique is not an optimum method for producing large numbers of cold

molecules. This is self-evident given the substantial difference in the number of

dissociated molecules compared to the stopped/trapped molecules. Although there

is the possibility for accumulation of molecules in the magnetic trap over several

pulses, this is limited by the high density of the molecular beam which at a certain

point would result in losses in the trap as the molecules will effectively be knocked

out by the incoming molecular beam.

To summarise, the photostop experiment has been rebuilt from ground up and trap-

ping of cold photostopped molecules has now been demonstrated. In particular

the new apparatus has shown a significant improvement in terms of sensitivity when

compared to previous measurements. That said, there are still issues to address, par-

ticular with background gas from the molecular beam obscuring the signal. However

steps are being taken to address these issues and there is significant potential for

further development of this experiment.
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