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i. ABSTRACT 

This study takes an experimental approach to investigating the reliability and repeatability of 

an airborne laser scanning (ALS) survey.  The ability to characterise an area precisely in 3-D 

using ALS is essential for multi-temporal analysis where change detection is an important 

application.  The reliability and consistency between two ALS datasets is discussed in the 

context of uncertainty within a single epoch and in the context of well known point- and grid-

based descriptors and metrics.  The implications of repeatability, verifiability and reliability are 

discussed in the context of environmental applications, specifically concerning forestry where 

high resolution ALS surveys are commonly used for forest mensuration over large areas. 

The study used a regular 10-by-10 layout of standard school tables and decreased the 

separation from 2.5 metres apart to 0.5 metres in order to evaluate the effects of object 

separation on their detection. Each configuration was scanned twice using the same ALS 

scanning parameters and the difference between the datasets is investigated and discussed. 

The results quantify uncertainty in the ability of ALS to characterise objects, estimate vertical 

heights and interpret features / objects with certainty.  The results show that repeat scanning 

of the same features under the same conditions result in a laser point cloud with different 

properties.  Objects that are expected to be present in 40 points per metre2 laser point cloud 

are absent, and the investigation reveals that irregular point spacing and lack of consideration 

of the ALS footprint size and the interaction with the object of interest are significant factors 

in the detection and characterisation of features. 

The results strongly suggest that characterisation of error is important and relevant to 

environmental applications that use multi-epoch ALS or data with high resolution / point 

density for object detection and characterisation. 

Keywords: LiDAR, Uncertainty, Object Detection 
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vii. Glossary 

Accuracy The closeness of an observation/measurement to its true value (see bias, 

precision and uncertainty) 

ALS Airborne Laser Scanning, a general term for airborne LiDAR surveys, also the name 

of the Leica Scanner 

ALTM Airborne Laser Terrain Mapper, the name of the Optech Airborne Laser scanning 

systems 

Bias The tendency of a set of observations / measurements to over or under estimate 

the true value (see also, accuracy, precision and uncertainty) 

CHM Canopy Height Model, forested digital surface model with the digital terrain 

model subtracted.  The results are the forest canopy heights referenced above the 

local ground height. 
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DSM Digital Surface Model, a model of the uppermost covering of a surface, typically 

includes trees, buildings and other permanent features.  Non-permanent features 

e.g.  vehicles are typically removed 

DTM Digital terrain model, a model of the ground surface, such that all above ground 

features are removed. 
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GNSS Global Navigation Satellite System, the name given to any satellite based 
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GSD Ground Sample Distance, the distance on the ground covered by a single pixel. 
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calibrate and validate the LiDAR scans. 

IMU Inertial Measurement Unit, a series of gyroscopes and accelerometers for 
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Lever Arm 

 

3 dimensional vector in the appropriate reference frame to determine the 

location of one object to another, for example the GNSS antenna to the IMU 

LiDAR Light Detection And Ranging, a survey technique utilising emitted laser light in 

order to measure features of interest. 

nDSM Normalised Digital Surface Model, a DTM subtracted from a DSM, giving the 

relative height of features above the ground surface 

NPP Net Primary Productivity, 
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PAR Photosynthetically Active Radiation, 

Precision Precision is the closeness of obervations/measurements to each other. See also 

accuracy, bias and uncertainty 

RADAR Radio Detection and Ranging,  

SONAR Sound Detection and Ranging, 

Uncertainty The degree to which the measured value of some quantity is estimated to vary 

from the true value. See also accuracy, bias and precision 



 

1 

 

1 Introduction 

This chapter seeks to outline the premise of the research (Section 1.1), before detailing the 

importance and therefore the wider implications in the research rationale (Section 1.2).  The 

penultimate section outlines the overarching aim and how this will be met by outlining key 

research objectives (Section 1.3) before signposting key chapters within the thesis (Section 

1.4).   

 

1.1 Research Premise 

The study seeks to use a high-resolution LiDAR (Light Detection and Ranging) data set to 

assess the suitability of LiDAR (also known as Aerial Laser Scanning (ALS)) for deriving 

environmental metrics by developing and testing simplified models.  LiDAR data is regularly 

used in a number of applications that require precise, consistent and reliable topographic 

data.  Forestry characterisation is a focal area for LiDAR analysis for environmental 

applications and as such, will be drawn upon to inform the work of this thesis.  This thesis will 

look at the effects of object identification and scan reliability and verifiability in controlled and 

natural environments.  The results from the experiments will inform best practice within laser 

scanning and environmental monitoring, while the discussion and conclusion will help form 

the basis of recommendations for the future use.  

1.2 Research Rationale 

Aerial Laser Scanning (ALS) is now in widespread use for environmental management.  

Despite this, limited work into object characterisation and repeatability of laser derived 

datasets is available in the scientific literature.  Understanding the uncertainties associated 

with this form of surveying needs further research.  As an example of this forestry is a 

significant area of interest with aerial laser survey data and as such, this study seeks to link 
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the uncertainties of environmental aerial laser surveying to applications including forestry.  

Forestry is economically, environmentally and socially important.  The sustainable 

management of forests is vital.  Forest managers need up to date, robust and accurate 

information to inform decision-making.  Current practices rely on labour intensive, potentially 

dangerous and unreliable techniques.  Measures of forestry using local site sampling, as the 

results are up-scaled to larger areas, create uncertainties in the resultant data. Remote 

sensing using passive sensors has come some way to answering these criticisms, but in turn 

can be criticised for its two dimensional approach.  Forests are 3-dimensional with the vertical 

component revealing substantial information, the effective management of these resources 

relies on the Forest Manager be aware of this information to manage the resource effectively.  

LiDAR provides a spatially expansive 3-dimensional technique that has the potential to 

provide reliable, accurate and robust information to Forest Managers, in turn promoting 

advanced, informed decision-making.  Understanding of the areas of uncertainty, reliability 

and the accuracy of the methodology must be better to progress these applications into 

mainstream way of working for foresters. 

This thesis looks to explore areas of reliability, accuracy and certainty in the data capture and 

subsequent analysis.  To do this, two experiments will be conducted, the first investigates the 

complex forest environment. This will be simplified and abstracted to look at the behaviour of 

laser scanning around regular object.  The regular object will be 100 exam tables arranged 

on a flat school field as seen in figure 4-5.  This provides a known configuration where objects 

are regular, consistent and provide the data necessary to assess detection. The controllable 

and repeatable environment will be used to explore laser-scanning characteristics. The 

second experiment investigates the repeated scans of the same area to observe differences. 

In this experiment a gravel hockey pitch will be repeatedly surveyed by the same aircraft within 

a time period of 1 hour. This ensures that no significant changes will occur within the area 

and any differences seen in the data are the result of uncertainties.  The knowledge gained 

from this experiment will be interpreted in context of common laser scanning applications, 
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including engineering and environmental applications.  An increased understanding of object 

detection by aerial laser scanning will inform the many disciplines that use ALS as a survey 

methodology including forestry. 

 

1.3 Aims and Objectives 

 

1.3.1 Aims 

 The aim of this study is to investigate the uncertainty of ALS, relating to object 

characterisation for environmental applications 

 

1.3.2 Objectives 

1. Establish the repeatability of laser scans 

2. To establish the suitability of laser-scanning to detect simple objects 

3. Investigate the effects of scale and resolution on uncertainty. 

4. To investigate the ability of aerial laser data to distinguish and discriminate between 

objects 

The objectives use two experiments. The first looks specifically at object detection by 

focussing on the exam table study. The second uses the eight overlapping flight lines to 

establish the scientific rigour and reliability of laser scanning. These experiments are 

conducted at two sites within the Hookergate School. 
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1.3.3 Introduction to the Object Detection Objectives 

The object detection experiment uses 100 exam tables arranged on flat ground at Hookergate 

School.  The exam tables move from 2.5 metres apart down to 0.5 metres apart in four 

intervals (2.5 m, 1.5 m, 1.0 m and 0.5 m) as part of the experimental design.  This will allow 

the study to establish the detection, resolution and coalescence of the exam tables. Object 

detection in this sense relates to the ability of a human interpreter with a priori knowledge to 

determine the objects presence within the dataset. As such, it must have at least one recorded 

laser strike at an elevation distinguishable from the ground to show its presence 

 

1.3.4 Introduction to the Verification / Repeatability problem 

The repeatability and verifiability experiment builds upon the outcomes of the object detection 

experiment. Repeated flights over the Hookergate school location will be used to assess this. 

The first assessment will use a flat gravel hockey pitch. Additionally, the same technique will 

be used on a small sample of forestry and of an urban area. This experiment will investigate 

the nature of replication/duplication and verifiability of laser scanning over a simple, urban 

and forested scene. Repeatability refers to the ability to capture the same objects under the 

same conditions and produce the same results within the uncertainty bounds of the 

experiment. If a result can be repeated with the same results each time the experiment is 

conducted, it is verifiable.  This work has significant implications to the uncertainty associated 

with laser scanner derived analysis.  Such analysis is commonplace in geographic, 

engineering and archaeological applications, for example DEM of difference is a common 

technique that assumes the changes present are real changes within the error bounds of the 

experiment. 

Laser scanning provides a three dimensional model of the landscape scene surveyed.  For 

this to be reliable and verifiable, the scene must be (nearly) identical for a repeat survey of 
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the same area.  Differences because of slightly different point strike locations are expected, 

but at the scale of the analysis, this should be unobservable.  It is important to understand the 

spatial scales of the artefacts (such as differences in point spacing and density) in order to 

prevent them affecting the resulting analysis. The artefacts may affect the analysis through 

the omission of objects or unexpected characterisation of the object.  Whilst the laser scanner 

produces a point cloud, many applications use a gridded raster surface derived from the 

LiDAR data for the analysis.  This thesis will investigate the error associated with point cloud 

surveys and their resulting gridded products. 

A number of safety and policy critical applications have adopted laser scanning as a trusted 

method of survey.  These applications include subsidence monitoring, deformation surveys 

for mining, and quarrying, deformation studies of dams and bridges, power line studies and 

highway engineering.  As well as the safety critical applications, LiDAR surveys inform policy 

and management decisions.  Forestry, agriculture and archaeological prospection are all 

activities that regularly use laser scanning. 

The problem with the repeatability of a survey is that any analysis performed should be 

possible to replicate given the same conditions, such that others can repeat the data collection 

and analysis and verify results.  If this basic premise cannot be fulfilled the analysis performed 

will be based upon data that represents a moment in time.  Should a repeat survey provide 

different results then the confidence in the conclusion of either study diminishes. 

This theory provides the rationale to investigate laser scanner behaviour at differing scales 

and differing landscape complexities.  It also provides the motivation to investigate the effects 

of gridding the point cloud data for analysis 

The NERC ASRF data provides an ideal dataset to investigate this topic.  The flight over 

Chopwell Wood and Hookergate School repeated a flight line over forest, urban and school 

grounds eight times.  This provides three ideal landscapes to investigate with eight over flights 
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using the same parameters and conducted over the period of an hour.  Over the period of one 

hour, the surveyed landscape will not have changed significantly. 

1.4 Thesis Structure 

The thesis is organised into seven chapters. The first introduces the study and the wider 

context and implications of the research.  Chapter 2 provides a critical review of Aerial Laser 

Survey applications to forestry.  Throughout the thesis, forestry is used as an example of 

wider environmental applications of Aerial Laser Scanning.  Chapter 3 investigates the 

characterisation, operation and behaviour of aerial laser systems.  The study site and 

methodology are described in Chapter 4, with Chapter 5 presenting the results of the study.  

The findings are discussed in Chapter 6 and conclusions, recommendations and impacts of 

the study are presented in the final chapter (Chapter 7).   
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2 A Critical Review of the use of Aerial Laser Scanning in Forestry 

The purpose of this chapter is to introduce the use of ALS for environmental applications, 

specifically this will focus on forestry. Whilst the experiments do not focus specifically on 

forestry, this does provide a useful narrative for the implications of uncertainty and error in 

ALS datasets. Laser scanning is a widely adopted technique for forest modelling and 

mensuration.  As such, it is important to investigate the uncertainties of ALS as a technique 

and as the application matures, so does the understanding of errors and uncertainties 

associated with the data collection.  Whilst forestry is a core theme to this chapter, parallels 

with many other complex environments that benefit from surveying with LiDAR are reviewed 

and discussed.  Such applications include the remote sensing of lowland raised bogs 

(Anderson et al., 2010), surveying of geomorphic and hydraulic processes (French, 2003) and 

ecology (Michez et al., 2013).   

Sustainable forest management is most effective when informed by good data (Barrett et al., 

2016).  Forest mensuration is difficult due to the spatially expansive nature of a forest, the 

difficult access and the inherent remoteness of large forests (Coops et al., 2007).  Sustainable 

management aims to conserve and enhance forest biodiversity (Forestry Commission, 2012).  

Whilst forest management varies between countries and between organizations, the UK has 

maintained a Biodiversity Action Plan since 1994 as an outcome of the 1992 Rio de Janeiro 

Convention on Biological Diversity (JNCC, 2012).  After devolution in 1998, a UK wide action 

plan was no longer appropriate; instead, the countries of the UK had individual plans.  Whilst 

each country recognized the unique landscape that it managed, the reports emphasized the 

need to work together to enact the plans.  July 2012 saw the publication of the UK Post-2010 

Biodiversity Framework (JNCC and Defra, 2012).  These plans outline the management 

techniques employed for managing UK Forests.  Notably the plan strives for mixed age and 

type of trees to promote structural diversity.  Structural diversity promotes biological diversity, 

mixing young trees through to mature and deadwood trees creating a range of habitats for 
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species to thrive (Ishii et al., 2004).  Brokaw and Lent (1999) describe structural diversity as 

a proxy for biological diversity. 

 

2.1 Forest Structure 

Forest canopy structure provides a critical insight into the functional processes and 

characteristics of tree growth, Structural metrics can reveal important information on the 

forests’ response to both natural and anthropogenic forcing at the full variety of scales 

including individual tree, stand, community, and ecosystem level (Parker et al., 2004; Rhoads 

et al,. 2004).  Horizontally and vertically, the arrangement of forest canopies can be shown to 

strongly control the absorption of photosynthetically active radiation (PAR) and subsequently 

overall stand net primary productivity (NPP) (Chasan et al., 1991; Chen et al., 2004; Hall et 

al., 2005).  Forest structure is an important factor in the suitability of the habitat for a number 

of birds, mammals and other fauna as well as a control on understorey flora (Franklin et al., 

2002; Mackinnon, 2003; Van Pelt and Nadkarni, 2004; Ishii et al., 2004) Structure also plays 

an important role in the management of forest fires (Morsdorf et al., 2004) 

 

2.2 Remote Sensing for Forestry 

Remote sensing has a long history associated with environmental applications.  Remote 

sensing has long been a tool for mapping land use and extracting variables from the 

landscape not visible to the naked eye.  Aerial photography provided the initial spark of 

interest during the application of airborne espionage during the First World War, over the next 

60 years remote sensing developed to produce satellite imagery, multispectral imagers, 

hyper-spectral imagers and active sensing techniques including SONAR, RADAR and LiDAR 

(Campbell, 2007). 
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2.3 LiDAR 

2.3.1 LiDAR Applications 

Light Detection and Ranging (LiDAR) is a remotely sensed topographic mapping technique 

using a laser fired from a platform and measuring the return to work out the distance.  LiDAR 

is a form of active remote sensing in that it creates the energy source that it measures 

(Campbell 2007; Lillesand et al., 2008).  It takes direct contactless measurements of the 

incident surface using a laser pulse.  ALS has an extensive history in applications involving 

high-resolution terrain models; these applications include but are not limited to the large 

spatial extent, national elevation models such as the Swiss National Elevation Dataset 

(Federal Office of Topography 2012). 

At a regional extent, LiDAR has many applications such as city modelling (Axelsson, 1999), 

flood inundation mapping (Neal et al., 2009; Neal et al., 2011), forest canopy height models 

(Gaveau and Hill, 2003; Pitkänen, 2004), digital terrain models (Ussyshkin and Theriault 

2011) and archaeological prospection (Devereux et al., 2005; Challis, 2006 Chase et al., 

2011).  Looking at the sub regional and local scales, high-resolution, low spatial extent data 

applications include digital documentation (Barber, 2007) and many engineering applications.  

Such applications notably include power line engineering (Usshikin et al., 2011) but also with 

applications to the rail industry (Hardy et al., 2012), roads and oil and gas processing plants.  

LiDAR has also shown use in disaster planning and response such as the recent use of 

bathymetric LiDAR for the planning and delineation of shipping lanes for Port Au Prince 

Harbour, Haiti (Roe, 2010) and in tsunami hit Fukushima, Japan (Butcher, 2011) and in the 

planning and preparation for tsunami (Aguiar, 2010). 

Aerial laser scanning has a relatively short history from the discovery of the laser to the 

common mapping technique used today.  Throughout this history, it has rapidly evolved to 

http://the.honoluluadvertiser.com/article/2010/Apr/06/ln/hawaii4060354.html
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become a useful and powerful mapping tool with many end applications.  These applications 

each require the accuracy and spatial expansiveness that aerial laser surveying provides. 

 

2.4 Aerial Laser Scanning for Forestry 

This section provides a critical appraisal of the literature on forest structure analysis using 

aerial laser techniques.  Initial exploration of the mechanics of laser interaction with the forest 

canopy are discussed, these factors are relevant regardless of analytical approach.  The 

importance of spatial scales are considered and explored with individual tree versus stand 

based modelling techniques described and reviewed.  Methodological differences in 

processing are highlighted through the exploration of point cloud filtering literature.  This 

chapter concludes with a breakdown of the current state of laser scanning for key forest 

variables. 

2.4.1 Interaction of the Laser with the Forest Canopy 

The forest canopy represents a complex structure for the laser footprint to strike, should the 

whole footprint not strike a single object, part of the beam may be reflected back to the 

scanner with the remainder travelling onwards ready to reflect off a more distant object 

(Baltsavias, 1999; Wehr and Lohr, 1999; Amable et al., 2004).  This is not the only factor 

affecting the interaction of the laser with the forest canopy.  Harding et al., (2001) and Hofton 

et al., (2002) found that increasingly dense vegetation tends to cause multiple scattering and 

absorption of the LiDAR pulse resulting in fewer ground returns, this effect is seen to increase 

with increased canopy closure, canopy depth and complexity, due to the obscuring of the 

laser pulse.  Gaveau and Hill, (2003) showed that small footprint LiDAR (less than 1m) tends 

to penetrate the crown before returning.  Ground returns decrease as scan angle increases, 

due to the increasing depth of canopy the laser seeks to penetrate (Kalogirou, 2006).  Laser 

beam divergence affects penetration with narrower beams tending to penetrate the canopy 
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where larger footprints reflect off the surface of the canopy (Naesset, 2004).  The altitude of 

the scanner above the forest also has an effect, altering the distribution of laser returns from 

the top of the canopy and within the canopy (Naesset, 2004).  The distribution of the laser 

returns also alters with changes to the pulse repetition factor (Chasmer et al., 2006).  A 

practical demonstration of the above factors was shown by Goodwin et al., (2006) in a study 

using three different altitudes above ground (1000, 2000 and 3000 meters), two scan angles 

at 1000m (10o and 15o), and three footprint sizes (0.2, 0.4 and 0.6m at nadir) for three 

Eucalyptus Forest test sites.  The study found that higher altitudes result in a lower 

combination of first and last return couples and as such found higher altitude flights to be less 

suitable for determining forest structure.  As increased altitude results in a lower point density, 

it also results in a lower likelihood of a crown strike; shown by the underestimation of tree 

heights seen at higher altitudes.  Other factors also have an effect on scanning the forest 

structure but cannot be changed easily in the flight planning stage.  The method of echo 

detection used, trailing edge, leading edge or constant fraction discriminator can all affect the 

likelihood of over or underestimation of the forest structure parameters (Wagner et al., 2004).  

Full waveform scanning will overcome some of these challenges, allowing the user greater 

control over the detection algorithm used (Stilla and Jutzi., 2009), however, the expensive 

data storage and significant processing overheads prevent this being used as a mainstream 

technique.  System design is an important aspect with the sensitivity of the laser receiver, 

wavelength of the emitted laser pulse and laser power all having an effect (Baltsavias, 1999) 

The characteristics of topography have an impact, particularly through backscatter 

characteristics (Baltsavias, 1999).  Transmissivity (the degree of impedence to transmission) 

of the laser pulse is dependent on system transmissivity and atmospheric transmission 

characteristics (Wagner et al., 2006) 

2.5 Individual tree versus Stand based approaches 

LiDAR investigations into forestry takes two distinct approaches, the individual tree approach 

and the multiple tree or stand approaches.  With the increasing resolution of scanners, a move 
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from the holistic landscape approach to a more reductionist individual tree approach can be 

seen (Lim et al., 2003) 

Individual tree characteristics are best described using their dimensions and attributes. 

Common metrics include tree height, diameter at breast height, and upper diameter (e.g.  

diameter of tree at 4 metres), height of crown base (such as lowest green branch), species, 

age, location, basal area, volume or leaf area index (Hyyppa et al., 2009).  These metrics are 

traditionally taken in the field using Hypsometers, DBH tapes and borers.  LiDAR based 

approaches typically look to finding tree locations, tree locations with crown size attributes or 

full crown delineation (Poulieot et al., 2002).  Tree locations can be detected using local 

maxima filtering (Friedlander and Koch, 2000; Brandtberg et al., 2003).  Minima filtering 

Perrson et al., (2002) or segmentation approaches can be used for additional details about 

the tree crown attributes (Hyyppa et al., 2009).  Full crown delineation using region growing 

techniques and reconstruction of the point cloud is another method (Hyyppa et al., 2009). 

Stand based analysis typically uses larger reference data sets and lower density data.  In 

areas of dense forestry, individual tree approaches can lead to an underestimation of stem 

counts.  Stand based analysis typically relies on larger reference data sets and statistical 

inference techniques (Hyyppa et al., 2009).  Stand based characteristics typically include, tree 

densities (number of trees per hectare) mean diameter, basal area per hectare, mean 

diameter, mean height, dominant height (typically the mean height of the 100 trees per 

hectare with the largest diameter at breast height).  Lorey’s mean is another method used 

that weights the measures based on the cross sectional area of the tree, as such larger trees 

have a dominant weighting (Hyyppa et al., 2009) 

Villika et al., (2007) used a novel approach to improve the quality of an individual tree based 

inventories, using laser height distribution characteristics of individual trees combined with 

more traditional parameters of individual tree recognition such as height and diameter at 

breast height measures for improving the prediction of individual tree stem volume.  This study 
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did use approximated tree height and crown diameters for the constructed models (direct 

measurement and Finnish Standard model) but the lower height quantiles and corresponding 

crown densities hold some additional statistical explanation for the tree characteristics. 

The two most often used ground-captured variables to characterize the vertical and horizontal 

canopy structure are canopy closure and leaf area index (LAI).  Canopy closure, defined as 

the fraction of the sky no longer visible due to foliage within a stand (Lefsky et al., 1999).  

Whilst being a relatively fast technique and computationally simple, this method is subjective 

and imprecise (Rhoads et al., 2004).  LAI (m2 m–2), is typically defined as the ratio of the single 

sided surface area of leaves to the projected ground area (Barclay and Goodman, 2000; 

Lefsky et al., 1999) and has proved useful in measuring the impacts of natural and 

anthropogenic disturbances on forest ecosystems (Rhoads et al., 2004).  The direct 

measurement of LAI can involve destructive sampling of the canopy (Gower and Norman, 

1991), the use of litter fall traps, and the measurement of individual leaf area using planimeters 

(Rhoads et al., 2004) 

2.5.1 Models and Point Clouds 

Different techniques make use of different models. Typically digital terrain Models (DTM), 

digital surface models (DSM), normalised digital surface models (nDSM) and canopy height 

models (CHM) are used.  The DTM represents the bare earth terrain with all above ground 

objects removed; this is where LiDAR is particularly strong being able to return a ground 

model from beneath a forest (Baltsavias, 1999; Wehr and Lohr, 1999; Pfeifer and 

Mandlburger, 2009).  DTMs can be expressed as a raster structure (a regular grid), or using 

triangular irregular networks (a vector structure) or using the last return of the point cloud, or 

ground filtered point cloud.  The DSM gives a representation of the above ground surface, 

typically taking the order of a first return model or alternatively using the highest point within 

a grid, again to produce a raster grid or triangular irregular network.  A normalised DSM is the 

DSM minus the DTM (equation 2-1) as such it is the difference model of the DSM to DTM.  
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This has the advantage that all features within the model are referenced relative to ground 

height rather than the height above the datum.  As such, tree crowns are extracted as tree 

height.   

 

𝑛𝐷𝑆𝑀𝑥𝑦 = 𝐷𝑆𝑀𝑥𝑦 − 𝐷𝑇𝑀𝑥𝑦  

Equation 2-1 shows the per pixel location subtraction that takes place to produce a normalised 

digital surface model.  

 

2.5.2 Ground Filters 

Differentiating point clouds between ground and non-ground allows for effective derivation of 

the digital terrain model.  Ground detection is typically an automated algorithm used to filter 

the ground points.  A variety of ground filters exist, from the simplistic to the complex (Pfeifer 

and Mandlburger, 2009).  At its simplest, a ground filter may filter the last and only returns of 

the LiDAR scanner.  This is problematic, as the last return does not always refer to the ground; 

it may be lower vegetation, a building, an open manhole cover or have undergone the effects 

of multipath error. Multipath error is the effect of a signal reflecting from a surface giving an 

apparent path length that is longer than the direct path length.  As such, more complex filtering 

is necessary.  Rasterisation provides the basis of some techniques; this seeks to turn the 

irregular point cloud into a raster structure, allowing the operation to come into the more 

familiar image-processing realm. Rasterisation results in a loss of precision through the 

generalisation process (Axelsson, 1999).  The rasterisation divides the irregular point cloud 

into regular cells. This results in the need for some generalisation by averaging of the 

elevation counts for that cell, maximum height, minimum height, mean height or median height 

all provide a solution, the complexity of the gridded terrain being the control on the degree of 



 

15 

 

error being introduced.  Morphological filters provide an alternative, using maximum 

admissible height differences in the ground model over a set distance, taking a Pythagorean 

approach to deriving planimetric distance.  The maximum admissible change in height over 

that distance provides a filter of whether the area represents ground.  Larger planimetric 

distances permit larger changes in filter height, and the converse is true for smaller planimetric 

distances (Vosselman, 2000). 

Progressive densification provides an alternative means of ground classification.  The filter 

works by iteratively using the lowest cell that is not classified as ground as its start point and 

progressively densifying the ground point network through subsequent iterations, the 

densification is governed by limits of the angle between ground points (similar to the 

morphological filter) (Axelsson, 2000; Kobler et al., 2007; Pfeifer and Mandlburer, 2009). 

Surface Based filters work in an opposing way to progressive densification, these filters 

assume all points belong to ground and work to filter off the none ground points.  As such, the 

DSM is constructed and eroded to leave the DTM.   

Segmentation based filters provide a further alternative. These work by building segments of 

point cloud that are homogenous and analysing segments as opposed to the individual points.  

The segmentation approach then uses a region growing technique to grow the ground model.  

The region growing is defined by setting a change in height over distance or through setting 

parameters on the normal vector that defines the segments.  Filin and Pfeifer (2006) provide 

an example of this filter that runs on flat terrain in the first instance before filtering the rougher 

terrain in subsequent iterations.  The ISPRS Working Group III conducted tests presented in 

Sithole and Vosselman, (2004).  The evaluation used qualitative and quantitative analysis of 

twelve datasets processed using eight different filters.  The test found that all filters worked 

well in relatively flat rural areas, and ran into an increasing number of problems in complex 

urban areas.  The test also shows that the filters are insensitive to point densities for the given 

range within the test. 
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2.6 Forest Metrics 

This section introduces practical forest metrics that are increasingly derived from LiDAR data. 

The use of these techniques relies upon accurate and reliable ALS data.  

2.6.1 Tree Counting  

Friedlaender and Koch., (2000) used discrete return small footprint LiDAR to map crowns 

using a local maxima filter, and subsequent minima filters to identify areas of single crowns, 

this technique works well on dominant crowns, but the filter can omit sub dominant trees.  A 

more recent attempt that uses a stand-based approach is presented by Tesfamichael et al., 

(2009) who used a semi variogram approach to estimating stems per hectare for a eucalyptus 

forest.  The study found that the use of the semi variogram technique is very scale dependent.  

The study sought to identify the ideal window size for local maxima filtering of the CHM.  Using 

spatial resolutions of 0.2, 0.5 and 1m for the CHM, results in accuracies of 73%, 56% and 

41% respectively, showing the predictive capacity of the semi variogram to increase with finer 

spatial resolutions.  The study showed that the technique typically underestimated the number 

of stems per hectare, probably due to problem of identifying the sub dominant crowns.  The 

main advantage of this approach is the elimination of the need for prior knowledge regarding 

the tree stocking of the plantation. 

 

2.6.2 Tree heights 

Derivation of tree heights is highly dependent on correct local filtering (Vosselman, 2000; Lim 

et al., 2003; Hyyppa et al., 2009).  Takeda, (2004) showed that in dense forests the digital 

terrain model might be 10 to 20 m out.  Tree height estimates typically use the local maxima 

that identify tree height and subtract the DTM at that point to produce the tree height.  Most 

studies find tree heights are underestimated (Persson et al., 2002; Yu et al., 2004).  
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Underestimation relates to the point density, the higher the density the closer to the true value.  

Current thinking links this higher density to the increasing likelihood of a crown strike (Hyyppa 

et al., 2009).  Given the complexity of factors including sensor, system design, flight altitude, 

forest type and ground detection algorithm, it is unlikely that a universal correction factor can 

be established (Hyyppa et al., 2009).  Even with these limitations Naesset and Okland, (2002) 

assert that laser derived tree heights are more accurate than existing non-destructive 

methods. 

 

2.6.3 Canopy Height 

Canopy height is a stand-based characterisation that extracts different tree heights, different 

studies have used non-parametric or regression models for estimation of tree height, basal 

area and stem volume (Naesset, 1997; Lefsky et al., 1999; Means et al., 1999; Naesset, 

2002).  Naesset, (2002) estimated a series of canopy height and density metrics using a two 

stage field procedure, looking at the use of the percentile of the first pulse for canopy heights, 

and the proportions of first and last laser pulse hits to look at density.  Canopy tree height 

forms a strong predictor of other forest attributes, such as biomass and volume (Lim et al., 

2003) 

 

2.6.4 Forestry and Uncertainty 

The study of forestry structure and measurement using aerial laser survey techniques is 

advanced and provides significant benefit to the users of the data.  Many of the studies report 

good accuracy and precision of their studies and techniques and as such, LiDAR is reported 

as a suitable tool.  Many studies however do not take into account the sources of error 

associated with the data used. The studies assume that laser scanners behave in similar 
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ways and that derived datasets such as digital terrain models are produced consistently by 

different software or data providers.  Chapter 3 explores this in more detail.    

2.7 ALS in Forestry and uncertainty studies 

The literature reviewed within this chapter show that the work on forestry applications for 

aerial laser surveying is well developed.  The work is gaining complexity, moving from simple 

approaches of stem counting and subsequent allometric extrapolation, towards more complex 

structural metrics.  As the complexity of the application increases, so too does the need to 

understand the data being used for the analysis.  Work towards this understanding is 

beginning to emerge with Luscombe et al., (2014) providing an interesting analysis of 0.5 

metre LiDAR derived DSM’s for the investigation of upland ecosystems.  Fisher and Tate 

(2006) showed that the digital elevation models are a fuzzy concept, with need to consider 

both the conceptualisation of the surface being measured as well as the accuracy of the 

measurement.  Chu et al., (2014) extend this work looking at stochastic simulation to identify 

the effects of uncertainty of spatial features with respect to sample size.  However, the work 

to date concentrates on the derived surface models and the uncertainty rather than the point 

cloud uncertainty.  This study will focus on the effects of point cloud uncertainties.   
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3 Sources of uncertainty in Aerial Laser Survey data 

This chapter focusses on the specifics of ALS methodology and metrology.  LiDAR techniques 

are rigorously reviewed and described in order to identify sources of uncertainty.  The LiDAR 

system is described through its component subsystems: the sensor head; Global Navigation 

Satellite System (GNSS); and Inertial Measurement Unit (IMU).  Processing and filtering 

techniques are described and appraised with respect to their influence on uncertainty. 

 

3.1.1 LiDAR Components 

The LiDAR scanner consists of three component parts, a Global Navigation Satellite System 

(GNSS), an Inertial Measurement Unit (IMU) and a scanner head (Baltsavias, 1999).  Figure 

3-1 shows a diagrammetric representation of these systems.  GNSS such as GPS provide a 

constellation of satellites that provide signals that once decoded by the receiver can locate 

the receiver in 3-dimensional space.  Differentially post-processing the signal against a base 

station can provide an accurate (circa 0.02 m) 1 Hz kinematic GPS track.  The IMU works 

using a series of accelerometers to measure the roll, pitch and yaw of the aircraft at a high 

frequency (typically 200 Hz).  The IMU and post processed GNSS tracks are filtered using a 

Kalman algorithm before being merged to provide a trajectory for the rover, which is the aerial 

platform.  The accuracy of this trajectory is a function of the GNSS quality and the IMU 

performance characteristics  (Wehr and Lohr, 1999; Petrie and Toth, 2009; Wehr, 2009; El-

Sheimey, 2009).   
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Figure 3-1 Diagram representing an Aerial Laser Scanner.  Note the Inertial Reference System 

is a synonymous term with Inertial Measurement System.  Optech Incorporated (2006). 

 

3.2 Sensor Head 

The sensor head provides the mechanics of pulse emission, recording and direction.  Whilst 

it does not take positional data from the aircraft, it does record a time stamp for each pulse 
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that correlates with the GNSS timing signals.  The sensor head varies between 

manufacturers, but includes a laser, a mirror or fibre optic arrangement along with a pulse-

recording unit.   

 

3.2.1 Pulse Emission 

Pulse emission is the result of firing a laser beam.  The laser is typically in the order of 1064 

nm in order to provide optimal spectral response from the landscape limiting the laser energy 

lost to absorption and backscattering (Baltsavias 1999).  A variety of methods of pumping the 

laser to emit the energy can be used.  Diodes typically which use Q switching is a popular 

method of producing sufficient energy.  Q switching uses a shutter to delay the release of 

energy stored in the pulse until it reaches a very high power (Petrie and Toth, 2009).  Figure 

3-2 shows the schematic form of the pulse emission system. 
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Figure 3-2 Diagram showing a typical arrangement of laser pulsing technology.  Note the Q 

switching used to achieve higher emission energies.  Source Optech Incorporated 2004 

 

3.2.2 Mirror Operation 

The mirror arrangement subtends the emitted laser pulse through a series of angles to give a 

larger field of view.  The mirror system used depends on the manufacturer. Different mirror 

arrangements allow for different scan patterns on the ground.  Oscillating mirrors produce 
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fewer scans at nadir and an increasing number as the angle approaches zenith, this can be 

modelled using simple harmonic motion (Baltsavias, 1999).  Oscillating mirrors fall broadly 

into two categories: saw tooth patterns, and, sinusoidal patterns (Petrie and Toth, 2003).  

These patterns are the result of mirror movement patterns but the names are the result of the 

characteristic scan pattern seen in the data.  An alternative pattern is Palmer scanning; this 

nutating (a rocking motion) rather than oscillating mirror system provides scans fore and aft 

of the scanners location resulting in redundant measurements.  This system is not a common 

scan pattern despite the scientific merit of sampling each area twice to provide a redundant 

and thus more reliable point cloud.  Figure 3-3 and figure 3-4 provide a diagrammatic overview 

of the alternative mirror systems. 

The aim of laser scanning is to take measures from the area of interest.  This area of interest 

is typically nadir of the aircraft (especially in corridor applications).  The oscillating mirror 

systems provide fewest points at nadir concentrating the point density instead at zenith.  The 

zenith point is furthest away from the area of interest and is where accuracy suffers from the 

limb effects of high scan angles. High scan angles have a greater path length through the 

atmosphere and strike the surface with an elliptical footprint that has a greater surface area 

than its nadir counterpart. 
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Figure 3-3- Showing a comparison of the scan patterns between a saw tooth (Optech) pattern 

(left) and Sinusoidal (Leica) pattern (right).  Taken from Petrie and Toth (2003) pp 44 
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Figure 3-4 Showing the scan pattern produced by a rotating mirror resulting in redundant scan 

measurements.  Taken from Petrie and Toth (2009) pp 46 

3.2.3 Pulse Measurement  

An emitted pulse provides the energy to interact with an object; the subsequent returned pulse 

is measured as either a comparison of the phase difference of the emitted and returned light, 

or the time of flight of the laser pulse.  Phase difference scanners are highly accurate but only 

operate over a short distance, typically less than 100 m, although ScaLARS, the University of 

Stuttgart research scanner is a notable example of phase based aerial laser scanning (Petrie 

and Toth, 2009 ; Wehr and Lohr, 1999); as such for topographic mapping the time of flight 
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measurement is used  (Petrie and Toth, 2009).  The phase comparison works based on the 

principle that a measurement wave at a lower frequency is modulated by a higher frequency 

carrier wave. This modulated wave is reflected back to the scanner where the signal is 

deconstructed through a process known as demodulation. This allows for a comparison 

between the emitted and returned signal to identify a phase offset.  Thus, the distance is 

solved using ambiguity resolution calculations synonymous with those used in GNSS carrier 

phase calculations to give the integer number of wavelengths plus the final phase angle 

difference that results in the scanner to target distance.  The frequency of the modulated 

signal varies based on controller information to allow the increase in precision of the result 

aiming for an exact integer waveform count.   

Time of flight laser systems emit a short pulse of light; the length of this pulse affects the 

precision of the return with longer pulses providing lower precision (Baltsavias, 1999; Wehr 

and Lohr, 1999; Beraldin et al., 2011).  This is the method employed by airborne scanners.  

This requires the scanner to output discrete pulses of light.  In its simplest form the time taken 

for the pulse to reflect back from the object to the scanner is used to calculate the distance 

the pulse travelled based on the constant speed of light, this is then halved to give the time of 

flight to the object equation 3-1.  A diagram showing the difference between the methods can 

be seen in figure 3-5. 
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Figure 3-5 Diagram showing the difference between the time of flight method (top) and phase 

difference method (bottom) of determining an objects distance from the scanner.  Source Wehr 

and Lohr, (1999) page 71 



 

28 

 

 

Thus, the equation can be considered as: 

R = c
t

2
; ∆R = c

∆t

2
 

Equation 3-1 showing the time of flight equation.  R = range, c is speed of light, t is time. 

The equation 3-1 shows the principle of time of flight measurements.  This combined with 

scan angle gives the location relative to the aircrafts perpendicular axis, for an oscillating 

mirror as: 

𝑥 =  
𝑐 𝑡

2
sin 𝜃 ; 𝑜𝑟 𝑠𝑖𝑚𝑝𝑙𝑦 𝑎𝑠 𝑥 = 𝑅 sin 𝜃 

Equation 3-2 showing the relationship between scan angle and the distance from nadir.  

Assuming flat ground and aircraft perpendicular to ground surface where t is time, c is the speed 

of light and R is the range of laser scan. 

Alternatively, for a given flying height, the change in point spacing in the aircrafts x axis (wing 

to wing axis) can be given as: 

𝑋 = ℎ 𝑡𝑎𝑛𝜃 

Equation 3-3 showing the distance from nadir for a given scan angle and flying height.  Assuming 

flat ground and aircraft perpendicular to scanned surface. 



 

29 

 

The pulse length affects the precision of any recorded laser pulse.  The pulse must be 

sufficiently long to give a reflection from the target of interest yet not be too long as to affect 

the ranging calculation.  The effect is shown in equation 3-4. 

 

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑝𝑢𝑙𝑠𝑒 𝑙𝑒𝑛𝑔𝑡ℎ

𝑐
 

Equation 3-4 showing the relationship between vertical precision and pulse length. 

Therefore, for a vertical precision of 0.01 m the pulse time would need to be 33.356 

picoseconds. 

Vertical precision depends in part on the pulse length but is also affected by footprint dynamics 

and sensor location systems (GNSS and IMU). 

 

3.2.4 Footprint 

The sensor footprint is the instantaneous field of view (iFOV) of the scanner.  This important 

parameter determines the area sampled.  The footprint is dependent upon laser aperture, 

beam divergence, scan angle and incident surface (Baltsavias, 1999; Petrie and Toth 2009).  

Figure 3-6 shows the effect of aperture, divergence and distance to target.   
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Figure 3-6 Diagram showing the effect of aperture (D), beam divergence (γ) and height (h).  When 

the incident surface is flat.  Source Baltsavias, 1999. 

This gives rise to equation 3-5, showing the relation between aperture, beam divergence and 

flying height.   

𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 𝑠𝑖𝑧𝑒 =   𝐷 + 2ℎtan 
𝛾

2
 

Equation 3-5 showing the relation between footprint size, aperture (D), Height above ground (h) 

and beam divergence (gamma).  Source Baltsavias, 1999. 

Where the iFOV intersects with a non-perpendicular plane, the angle of incidence must be 

taken into account, thus giving equation 3-6: 
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𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 =
(cos(𝜃 + 𝑖) + sin(𝜃 + 𝑖) tan (

𝜃 + 𝑖 + 𝛾
2

) ∗ (2 ℎ sin
𝛾
2

)

cos (𝜃 −  
𝛾
2

)
 

Equation 3-6 showing the relationship between instantaneous scan angle, incident plane angle 

(defined away from the laser beam) (i), and beam divergence (gamma).  Adapted from Baltsavias, 

1999 

Footprint size affects the incident energy intensity on a target; as such, a larger footprint will 

return a less intense reflection than a narrow footprint.  For a given point-density, large 

footprints sample a greater proportion of the ground as such a trade-off is necessary between 

precision and sample size. 

The energy distribution across the laser footprint is not even, the peak intensity is at the centre 

of the footprint with the energy decreasing towards the edge.  This forms a two dimensional 

(axis) Gaussian distribution of energy within the footprint, the circular Gaussian loss is known 

as a Van Mieses distribution.  A diagram showing this can be seen in figure 3-7.   
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Figure 3-7 showing the Van Mieses distribution seen within a laser footprint.  Source Ussyshkin 

(2009)  

 

3.2.5 Pulse – Object interactions 

LiDAR pulses interact with an object of interest as the reflected energy from that interaction 

is recorded at the scanner.  The nature of the interaction between the incident laser light and 

the object of interest is complex.  Many factors affect the interaction including reflectivity, 

relative beam size, incident angle, directional reflectance and emitted wavelength.   
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The wavelength of the emitted light is important; the wavelength should allow for atmospheric 

transmission and for reflection by the objects of interest, these windows are shown in figure 

3-8.  Whilst this spectral response is well understood within passive remote sensing, the 

collimated coherent light source of a laser scanner does not conform to the bidirectional 

models established (Harding, 2009).  Although most objects are diffuse, very rarely are they 

truly Lambertian (Campbell, 2007; Harding, 2009) resulting in uneven reflectance patterns.  A 

number of studies have noted the increase in laser reflectivity when the phase angle 

approaches 0o (Kaasalainen and Rautiainen, 2005; Kaasainalainen et al., 2006; Harding, 

2009). 

 

Figure 3-8 showing the transmission of energy through the atmosphere at different wavelengths.  

Note the high transmission at 1064nm.  Source Exelisvis (2014)  

Object reflectivity represents an important control on the ability to detect the object 

(Baltsavias, 1999). Usshykin and Smith, (2007) go further to provide approximations for 
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reflectivity, range, scan angle and linear target diameter. Figure 3-9 provides a visualisation 

of the linear target problem. 

 

Figure 3-9 Diagramatic representation of footprint interaction with object of interest.  Source 

Ushykin and Smith, (2007) page 8 

𝑷𝒂𝒓𝒆𝒂 ∝  
𝝆𝒂𝒓𝒆𝒂

𝑹𝟐
 

Equation 3-7 Power returned from an area acting as a Lambertian scatterer where ρ is reflectivity 

and R is range.  Source Usshykin and Smith, 2007 

𝑃𝑙𝑖𝑛𝑒𝑎𝑟 ∝  
𝜌𝑙𝑖𝑛𝑒𝑎𝑟𝐷

𝜃𝑅3
 

Equation 3-8 power returned from a linear target (where target size is smaller than footprint size) 

where Ro is reflectivity, D is diameter of object, theta is scan angle and R is range.  Source 

Usshykin and Smith, 2007 
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Equation 3-7 and equation 3-8 demonstrate the comparative difficulty in detecting an object 

at or below the footprint size, such that it reflects back an increasingly decreased energy for 

a small change in size, or where the beam does not fully strike the object of interest. 

 

3.2.6 Waveforms and discrete returns 

The returned pulse may be simple or complex, as the laser strikes the first reflective surface, 

depending upon the size of the footprint relative to the reflective surface. All of or some of the 

energy is returned, whilst any non-reflected or absorbed energy continues on to the next 

reflective surface, creating the potential for multiple returns.  Two methods of recording these 

reflections are commonplace. The first is to record all received energy as a function of time 

creating a histogram of energies known as a waveform. The alternative method that is more 

commonplace discretises the returned energies into pulses and records discretised pulses. 

Discrete return scanners can record up to a set number of pulses. Early scanners are able to 

measure two pulses, later scanners four pulses, and recent announcements by Optech 

suggest seven pulse systems are coming (Gelhar, 2010), this is even higher in other systems 

such as Leica.  The pulses returned depend on the manufacturers set logic, for a two return 

system, the first and second pulse may be recorded, alternatively the first and last pulse may 

also be chosen as the logical pair to record (Petrie and Toth, 2009; Gelhar, 2010).  The last 

return is the last reflective surface struck by the scanner; this is typically the ground surface.   

The returned pulse is often complex, being a composite of the surfaces that the pulse struck 

and interacted with, as such the returned pulse is not represented by a quantised pulse, it is 

instead often considered to be a series of Gaussian curves that need to be discretised to  

single pulses .  A variety of pulse detection methods are in use, the most common types being 

leading edge detection, constant fraction discrimination, trailing edge detection or 
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thresholding.  Most LiDAR manufacturers use the thresholding technique in addition to 

detection of a point on the pulse to provide the discrete return (Harding, 2009). 

The alternative and increasingly popular method is the recording of the full waveform.  In this 

case, the scanner records the returned energies for set time bins.  The smaller the time bin 

the more complex the waveform can be recorded (higher temporal resolution) and the more 

precisely it can be located.  Larger bins allow greater energies to be recorded that may be 

useful in areas of poor reflectivity.  The waveform is decoded during post processing yielding 

significant information about the nature and complexity of the topography.  Figure 3-10 

provides a comparison of the two methods. 

 

Figure 3-10  showing the difference in pulse recording between Full wavefom (left) and discrete 

return (right) taken from Lim et al., (2003) page 92 
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The energy returned from the reflection is recorded by both methods; this is known as the 

intensity.  The intensity value can be recorded based on the integral of the returned pulse 

complex, that is the energy under the curve, or alternatively by taking the energy return value 

at the point the pulse is recorded (Petrie and Toth, 2009; Wehr, 2009) 

Whilst waveform data yields greater information, it is difficult to analyse and greater storage 

needs prevent its greater uptake.  Ussyshkin and Theriault (2011) provide an overview of the 

advantages and disadvantages of each system, Gelhar (2010) takes the work further 

suggesting discrete return data from high vertical resolution scanners can yield very similar 

data to a full waveform system when intensities are accounted for. 

 

3.3 GNSS Navigation 

Global navigation satellite systems provide a means of fixing a precise location within the 

Earth’s terrestrial reference frame.  Many techniques for positioning can be utilised with GNSS 

ranging from 0.02 m accuracy to 15 m accuracy.  Code based positioning using the coarse 

information contained within the emitted signal provides a low accuracy rapid means of 

location, when augmented by a broadcast known signal accuracies of 1m are possible.  This 

suits applications such as navigation.  For survey grade applications carrier phase 

measurements are required to meet the typical accuracies required (Wehr and Lohr 1999).   

In order to calculate a position, the receiver must interpret the signals provided by the 

numerous satellites, each signal provides a distance from the satellite but no further 

information and as such, the satellite provides a sphere about which the receiver may be 

positioned.  The receiver is located at the intersection of these spheres, a process known as 

trilateration calculates this.  Trilateration is a 3D spherical approach that is similar to the 
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familiar, straight-line triangulation approach.  Trilateration works for both code and carrier 

phase positioning techniques. 

 

Table 3-1 Showing typical values for error sources found in the space and user segment of a 

GPS system.  Source Trimble 2007 

Carrier phase differencing is necessary to achieve the accuracies required for aerial survey 

(Wehr and Lohr 1999; Petrie and Toth 2009).  Carrier phase positioning uses the short 

wavelength (L1 0.023 m, L2 0.019 m) waves to compute a position.  Figure 3-11 shows the 

principle.  The counting of integers of the two waves and then performing an ambiguity 

resolution calculation upon the signal allows for centimetre level accuracies. 
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Figure 3-11 Showing the carrier phase signal to be calculated.  source Trimble 2007. 

Code or carrier phase positioning relies on the user segment being capable of resolving its 

position with as little uncertainty as possible.  The number of satellites and their geometry 

used in the calculation can affect the uncertainty significantly.  Satellites rely on good signals 

received from different views form the user segment, the ideal geometry places satellites at 

relatively low elevations (circa.  25 degrees) relative to the receiver and one satellite 

overhead, this results in a very small solution space, as such small uncertainty.  This 

geometric arrangement is well understood, and for any location on earth, a forecast of that 

geometry can be made.  Geometry predications allow the calculation of the dilution of 

precision of the satellite constellation for any given time and location.  As such, a high dilution 

of precision gives a lower accuracy reading.  The dilution of precision is expressed in terms 

of positional, time or the combined geometric dilution of precision.  Equation 3-9 shows the 

calculation of the positional dilution of precision, as the root of the sum of the location 

variances of the horizontal and vertical components.  GNSS systems calculate position, time 
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and subsequently velocity as core calculations.  TDOP, the time dilution of precision is given 

in equation 3-10.  To give an overall precision for the system, the geometric dilution of 

precision is calculated as the root of the sum of the location and timing variances, this is 

expressed in equation 3-11 

𝑃𝐷𝑂𝑃 =  √𝜎𝑥
2 +  𝜎𝑦

2 +  𝜎𝑧
2

 

Equation 3-9 Positional Dilution of Precision equation, taking the variance of X, Y and Z 

𝑇𝐷𝑂𝑃 =  √𝜎𝑡
2 

Equation 3-10 Dilution of precision of the timing element of the system 

𝐺𝐷𝑂𝑃 =  √𝑃𝐷𝑂𝑃 
2 +  𝑇𝐷𝑂𝑃 

2 

Equation 3-11 Geometric dilution of precision equation, showing the link to the time and 

positioning elements 

 

3.3.1 Inertial Measurement Unit 

Inertial measurement units record the attitude and acceleration of the aircraft; in order to do 

this they contain a series of gyroscopes and accelerometers.  A very high measurement 

interval is used (typically 200 Hz) to record rapid and small changes in the aircrafts attitude 

and acceleration (El-Sheimy, 2009).  Whilst very sensitive the IMU suffers from drifts over 

time, in part due to the rotations of the gyrospcopes aligning, or in ring laser gyroscopes 
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decohering.  In addition as the IMU navigation uses an additive approach, summing the last 

recorded vectors to the sum of the previous recorded vectors, known as Dead Reckoning, 

this error increases over time (El-Shiemy, 2009) as such is not suitable for long periods of 

time.   

 

3.4 Integrated Positioning Solution 

LiDAR systems need to be able to know their position at any instant in time.  This is necessary 

to directly georeference the emitted laser pulses.  A typical laser system records a GNSS 

location every second (1 Hz), and an IMU location every 200th of a second (200 Hz).  Neither 

system provides sufficient information to accurately locate the aircraft at any moment in time, 

by merging the two navigation solutions.  For any moment in time, the aircraft position is 

calculated as: 

𝑃𝑂𝑆 =  (
𝑋𝐺𝑁𝑆𝑆 𝑌𝐺𝑁𝑆𝑆 𝑍𝐺𝑁𝑆𝑆

𝑋𝐼𝑀𝑈 𝑌𝐼𝑀𝑈 𝑍𝐼𝑀𝑈

𝜔𝐼𝑀𝑈 𝜑𝐼𝑀𝑈 𝜅𝐼𝑀𝑈

) 

Equation 3-12 Showing the 9 parameter matrix for the instantaneous position of a Laser Scanner.  

Note GPS positions are in the mapping frame, All IMU positions are in aircraft frame and need 

translating prior to solution.  Source El-Shiemy, 2009 

Equation 3-12 is only valid when all the measurements occur simultaneously (same epoch 

and resolution), because the IMU captures at a significantly higher rate, the data must be 

filtered and merged. 

The integration of the two sources of positional information helps to eliminate the 

shortcomings of each individual technique, (low temporal resolution and not attitude 
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information for GNSS, no absolute measurements and drift problems for the IMU) (Schwarz, 

1993).  Several techniques exist for the integration of this data, but each uses a hind and 

forecasting filter that takes the position and error estimates to establish a best estimate travel 

path, this filtering is known as Kalman Filtering (El-Shiemy, 2009). 

Two approaches to the integration of the data are possible; the first offers a tightly coupled 

approach, taking the GPS and IMU data simultaneously.  Figure 3-12 shows the block 

diagram input of this system.  The technique has been implemented with success by Knight, 

(1996), Scherzinger and Woolven, (1996), Moafipoor et al., (2004) and is integrated in the 

latest Trimble post processing software PosPac MMS (Scherzinger and Hutton, 2006).  Boba 

et al., (2008) demonstrate the effectiveness of tightly coupled processing approaches for 

LiDAR data.  
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Figure 3-12 Diagram showing the inputs and processes of a tightly coupled navigation solution.  

Source Scherzinger and Hutton 2006 

For a tightly coupled solution, the state vector at any point can be considered as the vector 

sum shown in equation 3-13.   

𝑥 = (𝜺, 𝛿𝑹, 𝛿𝑽, 𝒅, 𝒃, 𝛿𝑵)𝑡 

Equation 3-13 State vector for a tightly coupled solution, where ε is the attitude errors, R position 

errors, V, velocity errors, d, gyro drift about the gyro axes, b, is the accelerometer bias and N the 

GNSS ambiguity vectors all vectors are with respect to time.  Source El-Shiemy 2009 



 

44 

 

In equation 3-13 , all components are vectors defined within the same reference frame, where 

each vector has 3 components (XYZ or ω,φ,κ) except N, which has components equal to the 

sum of satellites visible – 1 components. 

Loosely coupled solutions consider the IMU and GPS filtering separately prior to merging the 

data; this has advantages when the incoming data is of poor quality or from multiple sources.  

Using the nomenclature from equation 3-13, the loosely coupled state vectors can be 

considered for the GNSS and IMU as equation 3-14 and equation 3-15 respectively. 

𝑋𝐺𝑁𝑆𝑆 = (𝛿𝑹, 𝛿𝑽, 𝜹𝑵)𝑡 

Equation 3-14 showing the state vectors for GNSS errors.  Source El-Shimey 2009 

𝑋𝑖𝑚𝑢 = (𝜀, 𝛿𝑹, 𝛿𝑽, 𝒅, 𝒃)𝑡 

Equation 3-15 showing the state vectors for IMU errors.  Source El-Shiemy 2009 



 

45 

 

 

Figure 3-13 showing the generic architecture of a loosely coupled filter.  Source Scherzinger and 

Hutton 2006 

The main advantage of the loosely coupled approach is that any blunder in one stream has a 

desensitised effect upon the other data stream (El-Shiemy, 2009). 

Georeferencing of LiDAR point clouds requires the understanding of several reference 

frames.  Firstly the sensor frame; this maps all data relative to the position of the sensor, the 

IMU frame which maps data relative to the alignment of the IMU, the aircraft frame provides 

a framework relative to the aircraft, and the mapping frame relative to an arbitrary terrestrial 

reference frame.  In order to provide information in the final mapping frame it is necessary to 

translate, rotate and scale the data appropriately to correspond to the final mapping frame. 

Georeferencing of the point cloud is decoupled from the navigation optimisation.  The 

navigation is provided in the mapping frame, typically as a series of longitudes, latitudes and 
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ellipsoidal elevations relative to WGS84.  Georeferencing can be seen within the mapping 

frame as an implementation of equation 3-16. 

𝒓𝑖
𝑚 =  𝒓𝑠

𝑡(𝑡) + 𝑹𝑠
𝑚(𝑡) (

−𝑑𝑠𝑖𝑛𝛼
0

−𝑑𝑐𝑜𝑠𝛼
)

𝑖

𝑠

 

Equation 3-16 showing the georeferencing with respect to time, where r(mi) is the posion vector 

of an object in the mapping frame, r(ms) is the transform between the S and M frames, and the 

final matrix the position vector for an object (i) in the sensor frame.  Source El-Shiemy 2009 

LiDAR uncertainty is a complex and difficult subject, a number of factors aggregate to produce 

the overall error budget, some factors are mutually exclusive of other values whereas others 

are dependent upon other values, this makes quantitatively expressing the uncertainty at any 

given point very difficult.  The effect of this uncertainty is less well understood, this table study 

seeks to enhance the understanding of uncertainty estimates on aerial laser scanning 

mapping and object detection.   
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4 Materials and methods 

This section will describe the methodology, study location and outline the reasoning of the 

method and location with respect to the experiments.  The experimental design and controls 

are discussed and evaluated in this chapter.  The experiments are at Hookergate High School, 

located 10 miles southwest of Gateshead. The school provides a variety of target surfaces for 

the study as well as providing a series of tables for the table study. The school is adjacent to 

Chopwell Forest, an ancient woodland site, this area has been captured by the LiDAR flight 

passes. 

4.1 Study Site 

The study is located at Hookergate School, Rowlands Gill near Gateshead. Hookergate 

school is a large secondary school providing a range of terrain to scan. This includes a flat 

hockey pitch, a concrete area that the table study can be located and grassy fields. The school 

also kindly provided students to assist with experimental set up and configuration. The school 

is located at 54.9277482 N,1.7746738 W. The map of the area is shown in figure 4-1.  
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Figure 4-1 Map showing the study area with inset map showing the detailed view of the study 

area and the trajectory of the aircraft for the data used in the study 
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4.2 Data description 

The LiDAR data for this project will be conducted by NERC’s Airborne Science Research 

Facility (ASRF).  The NERC data collected using a fixed wing Dornier 228 aircraft using a 

Leica ALS50 scanner with an attached multispectral scanner.  The research will use a variety 

of techniques, focussing on point cloud data rather than derived surfaces. The techniques are 

likely to include surface differencing to produce an nDSM, manual object identification, and 

statistical analysis and display of the data. 

The Leica ALS50 scanner uses a 1064nm laser with a pulse repetition factor of 87 KHz, 

returning up to four pulses per emitted pulse, the vertical resolution between pulses is 2.8 

meters and Leica uses the constant fraction discriminator to discretise pulses.  The data was 

captured at 800m above ground level. 

4.3 LiDAR Plan and Capture 

The survey was captured using the NERC ASRF Leica ALS 50 system.  The system was 

fitted to a Dornier 228 fixed wing aircraft (D-CALM).  The system is fitted with a full waveform 

digitiser and discrete return digitiser.  Figure 4-2 shows the Leica ALS50 mounted in the 

Dornier 228, as used for the capture of table study data. Figure 4-3 shows the trajectory of 

the aircraft relative to the study areas. 
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Figure 4-2 Leica ALS-50 System used for capture.  IMU and data control in the foreground and 

the laser sensor is mounted in the grey box towards the background. 
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Figure 4-3 map showing the area of trajectory used for the table and hockey pitch studies 

4.4 Table Study Experiment Design and Methods 
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Figure 4-4 showing the NERC ASRF aircraft at Newcastle Airport (mobilisation site for the study). 
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Figure 4-5 showing the table arrangement. 

Flight planning was undertaken using Google Earth and ALTM NAV.  NERC ASRF converted 

these into Leica ALS flight plans.  A Leica GPS 1200 base station was set up 300 meters from 

the study site.  This gives an exceptionally short base-line and will constrain differencing 

errors to 0.005 m.  The base station is shown in figure 4-6 

Each table has black plastic wrapped around the legs in order to prevent a laser strike 

penetrating beneath the table and giving difficult or inaccurate readings (although this was 

subsequently tested and showed to have no impact on the 1064 nm wavelength light).  The 

capture day proceedings can be seen in figure 4-4, figure 4-5, figure 4-6 and figure 4-7. 
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Figure 4-6 Leica GNSS base station set up for differential processing of the flights.  Note the 

tables in the background showing the very short baseline used in processing. 
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Figure 4-7 showing the tables with polythene wrapped around to prevent laser strikes under the 

table legs 

The table study will be used to provide experimental results to aid the understanding of a laser 

scanning performance and characteristics.  The data will be used to study the effects of 

vertical resolution, object definition, identification and characterisation, point cloud gridding 

techniques, and scan patterns.  The aim is to work towards a better understanding of laser 

scanning and the commissioning of laser scanner data collection.   

Object characterisation is often the primary purpose of a survey, in the fields of archaeology, 

as-built engineering, forestry and prospection surveys.  For these surveys, correct definitions 

of the objects of interest are integral, failure.  Other surveys hold topographic representation 

as their aim, for this characterisation of a landscape at a given scale is paramount.  The 



 

56 

 

gridding study will seek to expose the differences that subtle changes in processing technique 

can produce and the artefacts that may be introduced through such techniques.  These 

findings will inform the use of these point generalisation techniques. 

The processing steps outlined are utilised to produce data for the experiments as outlines in 

the following section.  Where specific processing has occurred, these steps will be outlined in 

the sections below. 

 

4.5 Table Experiments 

The table experiments simplify the complex forest canopy into regular objects spaced at 

repeating distances, this allows for the investigation of the effects of uncertainty and accuracy. 

In the context of this study the use of uncertainty refers to the ability to predict the likely 

outcomes through scientific approaches, for example, the use of repeatability to assess the 

certainty with which overlapping flight lines of the same area record features in similar ways. 

Accuracy refers to the closeness to which the recorded data matches the real world scene it 

captured. Determining accuracy and uncertainty within this experiment is likely to be through 

use of comparative and observational methods. The use of numeric techniques is limited by 

the nature of the captured dataset.  

4.5.1 Point cloud Experiment 1 

This experiment will produce a footprint of the laser beam using established formulae 

(Baltsavias 1999), project these footprint diameters to the area covered.  Produce statistics 

relating to area illuminated and table illumination.  This will allow a comparison to the concepts 

of point spacing and point density as parameters to consider when commissioning a LiDAR 

survey. 
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4.5.2 Point Cloud Experiment 2 

A comparison of data for the same table spacing.  Each table spacing was covered with two 

flight passes; this creates a test of verifiability of the point cloud.  The scan reproducibility is 

an important factor to consider in many different applications.  This work will be valuable in 

the decision making process to scan an area twice for point density requirements, or to fly 

lower and slower to achieve the same point density in a single pass.  The former being an 

often cost effective and safer method. 

4.6 Table experiment controls  

It is integral to the experiments that variables are controlled and changed systematically in 

order to explore their effect upon the experimental outcomes.  The tables represent a 

systematic approach to understanding object detection and characterisation using laser 

scanning.  The variables controlled were terrain, aircraft speed, table orientation, table type, 

scan setting and altitude.  The two variables considered are table spacing and flight direction. 

The terrain was flat over a hockey pitch, whilst some of the tables at the larger configurations 

were on a gentle slope; this effect was removed using ground level subtraction.  The degree 

of slope is minimal and unlikely to have a significant effect on the table detection. 

The tables were exam style tables used by the school, each table had the same dimensions 

(W: 0.6 m, L: 0.6 m, H: 0.7 m), the tables were equally spaced and black plastic bags were 

used to prevent laser strikes under the table (experimental results later showed the black 

bags are effectively transparent at 1064 nm so had no effect).  The table surface was not 

uniform across each table so this may become a variable at a later stage; this will be 

investigated in the results section.  As the tables were moved between configurations, each 
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table kept it respective position, as such should a table occupy position F4; it will remain as 

F4 for each table configuration. 

The scan settings remained constant for each over flight; the aircraft speed naturally varies 

slightly as it moves, but the pilots intended to keep the same altitude, attitude and speed.  

Given the small area that the tables occupy, the aircraft can be considered to be at a constant 

speed, checks on the aircraft trajectory show that the aircraft held a constant speed over the 

site.   

Table spacing was systematically altered over the flights.  This is the primary variable 

investigated.  The tables, initially spaced at 2 metres apart were moved closer towards the 

centre by 0.5 metres each configuration, this configuration. 

Each table configuration was overflown twice. The flights were from opposing directions but 

otherwise the variables remained the same. This will allow for an increased point density 

overall as well as investigation into how multiple overflights can capture different details.   

 

4.7 Pre Processing for the Point Cloud Experiments 

The registered LiDAR data points must be manipulated into a format fit for analysis and 

processing.  The Point cloud contains massive amounts of information, notably each point 

includes easting, northing, height, intensity and echo number.  This information is stored in 

the LAS (LiDAR Archive Format), the open format from the ASPRS designed for LiDAR point 

cloud information.  This format is the industry standard.  The LiDAR point cloud is produced 

per flight strip, each strip being an individual file and needing to be agglomerated into a 

dataset covering the area of interest.  The point cloud is loaded into Terrascan to form a 

project; this provides the facility within Terrascan to deal with mass point cloud data.  The 

area of interest is split into blocks of 500 m2.  The LiDAR point cloud is then stored in one of 
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the 500 m2 blocks allowing for overlapping flights to be stored as well, albeit with an identifier 

showing the flight it is related to.  Point cloud filtering techniques are applied to the point cloud; 

this routine seeks to eliminate noisy and spurious points to a separate class, classify the 

ground using a combination of progressive densification filtering and morphological filtering 

and to classify points by their respective position above the ground surface.  This last step 

allows for easier visual interpretation of the point cloud. 

 

4.7.1 Relative and Absolute accuracy assessments 

Each LiDAR strip will show small variances in height; this is a result of tropospheric changes, 

sensor heating and performance degradation through operation.  As such, two adjacent strips 

may show a small vertical error.  This is expected and Terramatch software is used to adjust 

each point cloud to match its neighbours.  This adjustment is performed by creating a TIN of 

the classified ground points, these points are likely to be stable and unchanging over a short 

period, other features such as vegetation may sway in the wind or objects such as vehicles 

may move.  The ground however is assumed at this point to be constant.  The software works 

to adjust the two TIN surfaces to match; this uses a least squares adjustment procedure.  

Once the point clouds match, this ensures their relative accuracy to each other; such that 

measuring from strip 1 to the top of a tree covered in strip 2 as well will yield the same result. 

 

4.7.2 Absolute Accuracy 

In order to check the point cloud is in the correct position relative to its projection and datum, 

it must be checked against conventional survey data.  The first survey used a car park at the 

north east of Chopwell Wood, surveyed using stop go GPS differencing techniques, the 

second data set is fitted to the first dataset to provide control, additionally the GPS base 
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station set up at Hookergate School will be used to verify the adjustments.  The adjustment 

is performed as a single block adjustment across the LiDAR project, this is due to the shift 

being systematic and the dataset already being adjusted for internal inconsistencies. 

The LiDAR data is initially processed into the appropriate UTM zone, this provides a base 

projection for the registration to work to as a mapping frame, however needs to be referenced 

against Ordnance Survey Great Britain National Grid.  This is a Transverse Mercator 

projection based on an old terrestrial reference frame.  The frame is no longer valid and as 

such, a rubber sheeting transform has been approved, this is known as OSTN02.  The 

transform cannot be applied using a simple 7-parameter Bursa-Wolfe projection or 9-

parameter time dependent projections (as is common when translating between many 

coordinate systems).  This transformation was carried out using Terrascan and verified 

adjusting the ground truthing data in Leica Geo Office (LGO).  The OSTN02 transform also 

transforms the WGS84 ellipsoidal heights (based on GRS80) to heights based on the Newlyn 

datum.   

4.7.3 Verifiability Study Design and Methodology 

The experimental is designed to maximise the information that can be gathered from multiple 

overlapping flight lines with all other variables kept constant.  The experiment keeps the flight 

parameters and platform constant, repeats the survey many times over a short time period 

and uses statistical visualisation techniques and descriptive statistics to describe and 

compare the datasets.   

In order to assess objective one, the ground surface will be classified for the same overlapping 

areas using the same algorithm, the ground surface is exported with a flight line identifier 

producing a point cloud of the derived ground surface with each overlapping flight line 

identified.  There are eight flight lines overlapping each scene, flown in the same direction 

and within a short time period. 
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The data over the areas of interest will be tiled into grids at 10m, 20m and 50m.  The difference 

between the tile sizes will show the sensitivity of the point cloud to aggregation techniques.  

For the gridded digital terrain model experiment, a single grid per flight line will be made using 

the full area of interest. 

It is an assumption of this methodology that once temporary objects such as cars and people 

are removed from a scene, that scene will not change significantly over the short time of the 

flight. 

The resulting point cloud for each area will be processed using a Python script, making use 

of the MatPlotLib library for graphing.  The graphs will show the resulting violin plot for each 

flight line. 

Violin plots provide an overview of the data distribution and descriptive statistics.  Providing 

the median, inter quartile range and a descriptor of the distribution of the data they make an 

ideal plot for comparing the complex and variable LiDAR data. 

5 Experimental Results and Analysis 

This section displays all relevant information regarding the uncertainty experiment through a 

range of photographs, graphs and statistics to help achieve the aim of the research.  The 

results will be described in this section before being discussed and examined in chapter 6. 

The tables were configured with 4 separations, the aim of moving the tables closer together 

after the repeated scans is to determine how close regular discrete objects can be before 

coalescing in a scan scene.  The results of the scans were surprising, with tables left 

undetected and a range of laser strikes on tables.  This changed the direction of the study 

towards an analysis of uncertainty in laser scanning.  The results shown are those relating to 

laser scanning uncertainty. 
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The tables are equally sized and as such each table would expect to receive a similar number 

of hits for a given point density.  Point density is determined by the number of points per 

square metre; as such, a table of 0.36 m2 would expect to receive 0.36 times the point density 

in strikes.  This is under the assumption of a uniform distribution of points, the literature clearly 

shows that a number of variables can affect the distribution of points across a laser scan, 

these first order controls are scan pattern, scan frequency, footprint size and object reflectivity, 

second order controls include the pulse digitisation, system transmissivity and sensor 

performance characteristics.   

Although each table is expected to receive the same number of strikes, it is expected that the 

ability to determine tables as discrete objects will diminish as the objects are brought closer 

together. 

The tables are arranged in a grid as can be seen in figure 4-7 

The table spacing’s are outlined in Table 5-1. 

Table Configuration Distance between tables 

Table 1 2.5m 

Table 2 1.5m 

Table 3 1.0m 

Table 4 0.5m 

Table 5-1 Table showing the spacing’s between tables for each table configuration 
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The tables did not alter their relative position within the grid, as such, each table could be 

assigned an alphanumeric reference that remained constant throughout the survey, the 

positions of the tables changed as the tables moved closer together but the neighbour tables 

remained the same respectively.  The tables are given an alphanumeric reference to describe 

their relative location within the project grid as shown in figure 5-1. 

 

Figure 5-1 Alphanumeric grid to identify each table 

The table uncertainty study has revealed many interesting factors regarding aerial laser 

survey techniques.  Large-scale mapping performed as part of the table study has revealed 
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significant sources of uncertainty and raised questions regarding the repeatability of LiDAR 

studies for large-scale applications. 

The results are split by table configuration; each table configuration shows a LiDAR point 

cloud representation of the tables with the separate overpasses showing disparate results.  

Each ALS over pass was conducted on the same flight, thus the variables were minimised 

such that the tables and the scanner parameters remained constant. 

ALS survey parameters are characterised using point density and point spacing metrics.  

Thus, it is then assumed that should an object of size X be larger than the point spacing it 

shall be recorded during an ALS study.  The flight parameters for the table study are 4.5 points 

per square metre per over flight.  Thus, equation 5-1 gives a point spacing of 0.47 m.   

𝑄 =  
1

√𝑑
 

Equation 5-1 deriving point spacing from point density for an idealised point cloud.  Q is point 

spacing and d is point density 

Given a beam divergence of 0.22 mrad, the footprint size is derived to be 0.13m diameter, 

giving a footprint area of 0.0132 m2.  Figure 5-2 shows the idealised representation of the 

point cloud including the objects chances of illumination percentage.  It is clear that for an 

object near the point spacing of a point cloud, significant variations (by a factor of ten) can 

occur.  This calculation assumes a uniform energy distribution across the footprint.  When 

modelled as a Van Mieses distribution, the intensity drop off is similar to a 2-dimensional 

Gaussian distribution as shown in figure 5-3. 
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Figure 5-2 showing the different illumination an object can achieve for the same scan pattern 

Figure 5-2 is a scale diagram showing the laser footprint near nadir in an idealised gridded 

pattern, the footprint is projected using equation 3-5.  Clearly, a table can undergo a situation 

where four strikes occur on the table significantly increasing the chance that the table is picked 

up and likely to characterise the shape of the table.  Where the centre of the table has a laser 

strike, the neighbouring eight pulses intersect almost tangentially.  Figure 5-3 expands this to 

show that under a real distribution, this is a very low intensity part of the laser footprint that 

greatly reduces the likelihood of a return.  This effect is further exacerbated by the very strong 

ground return likely to occur from those pulses that may “swamp” the digitiser removing the 
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likelihood of detection further.  This diagram shows LiDAR is an under sampling approach 

that can have a significant effect on the ability of the survey to detect objects.  Where the 

object is close to the point spacing size, the object illumination is very sensitive to small 

changes in the scan characteristics.  No modelling of irregular or linear objects has been 

performed.  It would appear that these features pose an even greater sensitivity to detection 
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Figure 5-3 Map showing the laser footprints coloured by intensity and a mock up table placed 

within the survey area 
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5.1 Experimental conditions 

The experiment conducted using the NERC ASRF aircraft planned to cover the tables in four 

flight orientations.  Due to an unforeseen change in plan on the day of the flights, the table 

study location was moved to a different area of the school, as such, the study site was covered 

by opposing direction flights trending northeasterly and southwesterly but the perpendicular 

flights did not cover the table area.  The flights over the table area can be seen in figure 5-4. 

 

Figure 5-4 Diagram showing the flight directions as planned, and annotated to show what was 

flown for the table study 

 shows the change in elevation over the project area, it can be seen that the variation within 

the project area is approximately 3 metres; this is not expected to have a significant impact 

on the experiment outcomes.   
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(m) 

Figure 5-5 Map showing the change in elevation of the bare ground over the project area 
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Figure 5-6 map showing the LiDAR intensity values over the project area 
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Intensity values are shown in these vary over the project area; it is probable that the lower 

intensity shots are the second returns where part of the incident beam that was reflected came 

from a table or other object.  The higher intensity values are very prevalent outside the table 

area (white missing areas), these are where no interaction other than the ground has 

occurred.  Figure 5-7 shows the change in scan angle over the project area, scan angle is 

expected to be a fundamental control on footprint size, incident radiation and increase error 

through limb effects.  The scan angle was controlled to very nadir values and varies by 4 

degrees.  The scan angle is defined relative to motion towards the right wing, as such negative 

scan angles show the angle subtending from nadir to the left wing.  

It can be seen that the experimental variables have been closely controlled; the data was 

processed in accordance with the steps laid out in the methodology.   
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Figure 5-7 Map showing the typical scan angle range over the project area. Scan angle is 

measured in degrees from nadir 
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5.1.1 Spatial Modelling 

In order to convert the LiDAR point cloud into a surface, interpolation of the points must occur 

to form the surface.  Interpolation can be performed using a number of methods, from the 

very simple inverse distance weight method through to complex modelling techniques such 

as Kriging.  Three methods were investigated for the table surfaces.  These were natural 

neighbours, ordinary kriging and inverse distance weighting.  Natural Neighbours uses the 

surface to construct Delaunay Triangles, calculating their dual to give Veronoi diagram and 

weighting the neighbours based on the area of the interpolated surface within the intersecting 

areas of the surface and the nearest neighbours.  Ordinary Kriging uses kriging with an 

assumption of a constant mean to derive the surface interpolation, given the flat ground and 

regular tables the constant mean is a fair assumption over the surface area.  Inverse distance 

weighting uses the simpler approach of linearly interpreting a position based on its distance 

from surrounding points.  Figure 5-8 shows a map of the different interpolation methods.  The 

tables are clear in each image; the surface under the tables within the interpolated area is 

very similar across the interpolation methods.  Once the surface extrapolates beyond the table 

surfaces significant changes between the techniques can be seen. 
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Figure 5-8 shows the interpolated surface for a) natural neighbour interpolation, b) Ordinary 

Kriging and c) Inverse distance weighting All heights are in metres. 

m 

m 

m 
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In order to assess the difference in techniques a range map was produced, this can be seen 

in figure 5-9.  The differences are measured in centimetres the largest differences are in the 

order of 0.1 m; this is below the accuracy of the scanner.  As such small differences can be 

seen from the interpolation techniques, inverse distance weighting was chosen.  Inverse 

distance weighting offers a computationally simple but effective technique for the surface 

creation. 
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Figure 5-9 Map showing the range difference (dZ) between the interpolation methods, the units 

are cm, the difference between techniques is very small.  The green points are LiDAR strikes on 

the tables. 

m 

m 
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The tables will be discussed in detail as individual configurations, further discussion will focus 

on the combined results before discussing trends and patterns. 

 

5.2 Results for 2.5 m table separation experiment 

This section describes the results for the first table configuration; these tables were spaced 

2.5 m apart.  The results flow in order of processing flow, as such, the point cloud is described 

prior to the derived surfaces and the resulting analysis is then described. 
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Figure 5-10 showing the tables detected for the 2.5-metre configuration. No other LiDAR returns 

are shown in this image.  The LiDAR returns are coloured by flight line. 

Figure 5-10 shows the two table data for the two over flights for the 2.5-metre table 

configuration.  The data has many very important observations.  When considering the two 

over flights together, one table was entirely unobserved.  The remaining tables varied 

between one to four laser strikes.  Figure 5-10 shows these variations, it is clear that the 

tables were inconsistently observed by the laser system.  Figure 5-11 and figure 5-13 provide 
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a breakdown by flight.  Figure 5-11 and figure 5-13 show 8% and 24% missing tables for flight 

1 and 2 respectively.  This threefold increase in unobserved tables is difficult to explain with 

the controls placed upon the experiment. 

The results below build up the investigation into the table observations.  Individual flights are 

described using surface models normalised against the ground surface.  Both over fights are 

then combined to show the results of the doubled point density from the two over flights.  

Subtraction of the individual flight lines from each other is used to produce a difference model.  

The results are then analysed graphically using a series of bar charts and histogram to allow 

patterns to be observed. 

 

Figure 5-11 Surface model showing the normalised DSM for the flight 1 tables for the table 1 

configuration.  Table separation is 2.5 metres. 
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The surface model shown in figure 5-11 shows the table results as a surface model, the 

missing tables are clearly observable, a trend running broadly north the south can be 

observed with the tables missing at D1, 2 and 4 and the pattern continuing to C6 and C8 

locations.  Further missing tables can be observed at I2 and I4.  The 3 dimensional 

perspective model shown in figure 5-12 demonstrates the observed versus omitted tables 

well. 

 

Figure 5-12 three-dimensional perspective of surface model for flight line 1 of table 1, table 

separation is 2.5 metres. 

Figure 5-12 is orientated to display the topographic variations, the maxima and minima are 

clearly visible, the blue represents minima with red representing maxima. 
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Figure 5-13 Surface model showing the normalised DSM for flight 2 of the table 1 configuration.  

Table separation is 2.5 metres. 

Figure 5-13 shows the second over flight of the tables, this surface model has interesting 

patterns displayed, the tables found along the B column of the arrangement show 70% 

omission, row J shows 60% omission and similarly the row 4 tables show 50% omission.  

Whilst these patterns seem to exist, looking at the three dimensional view shown in figure 

5-14 the omissions are very apparent.  The recorded table heights are also clearly different 

between rows.   



 

82 

 

 

Figure 5-14 three-dimensional perspective of surface model for flight line 2 of table 1.  Table 

separation is 2.5 metres.  

Figure 5-14 is oriented to show the terrain variations clearly, along the left hand edge (row J 

in this orientation) the omitted tables are clear, the variations in height are also very apparent. 

By combining both flight lines of the same table configuration the point density doubles and 

the number of table’s unobserved decreases, the surface model showing this can be seen in 

Figure 5-15. 
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Figure 5-15 Shaded surface model showing the table surface produced by two over flights of the 

2.5 metre configuration, ground level removed to express elevations above local ground height. 

 

The tables are not all observed even with the doubled point density, the maxima exist at the 

northwest corner and the missing table to the southeast corner remains unobserved by both 

flights. 

The three dimensional perspective in figure 5-16 shows the variations in height, and equally 

shows the increased detection rate from the combining of the flights.   
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Figure 5-16 3-dimensional view of figure 5-15 showing the peaks and troughs.  Table separation 

is 2.5 metres. 

In order to view the difference between the two flight lines and to try to find an emerging 

pattern for the detection or omission of the tables, a DEM of Difference (DoD) was created, 

this subtracts flight 1 heights from flight 2 heights to show areas of difference.  Areas where 

the surfaces are congruent will show as 0 m (white) in the DoD.  Figure 5-17 shows the 

resulting surface model. 
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Figure 5-17: showing the difference model between two flights with the same parameters over 

the 2.0m table arrangement. 

Units (m) 
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Whilst the patterns described above can be seen in the DoD the overall arrangement appears 

to be random, the centre of the tables showing a stronger agreement between the flights than 

the outer edges of the configuration. 

In order to investigate this further, the number of strikes per table has been extracted from 

the point cloud data, the bar charts in the following figures are used to display the percentage 

of tables receiving the respective number of strikes.  The results from the 100 tables are 

expressed as a percentage, given the number of tables in the study; this also describes the 

absolute number of tables.   

 

 

Figure 5-18  bar chart showing the percentage of laser strikes per table for flight 1 
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Figure 5-19 bar chart showing the percentage of laser strikes per table for over flight 2 

Figure 5-18 and figure 5-19 show the results for flight line 1 and 2 respectively, Flight line 1 

has detected 92% of the tables with flight line 2 only detecting 76%, and this is a stark contrast 

given both flights have identical survey parameters.  Whilst flight 1 detected more tables 

overall, of the tables detected, a smaller proportion received two strikes the overall detection 

rate remains higher in flight 1.   
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Figure 5-20 Bar Chart showing the breakdown of laser strikes per table for 2.5 metre table 

configuration by percentage 

Merging both flights together, the analysis is shown in figure 5-20.  One table is undetected 

and the remaining tables receive between one and four strikes.  The expectation is that all 

tables should receive four strikes using the point density calculation.  14% of tables were 

observed with two returns from each flight, leaving 86% to be under observed from 

expectation.   

 

In order to assess the relative performance of one flight over another, the deviation from the 

average number of strikes for the table has been calculated.  Figure 5-21 shows the results.  

The blue line shows the difference between flight 1 and 2and associated frequency at each 

bin.  The red line shows the deviation of flight 2 from the mean number of strikes and green 
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the same for flight 1.  The central tendency of both flights is to pick up the same number of 

strikes as the other flight, with the move from zero difference showing greater discrepancies.   

The flight 1 – flight 2 graph line shows the tendency of flight 1 to observe fewer strikes and is 

shown in the skew of the curve. 

 

Figure 5-21 Graph showing the variance in table strikes for the 2.5 metre separation tables.  

Results are for the same table configuration and flight parameters 

The data for this table configuration make it clear that LiDAR has not picked up the tables in 

a verifiable manner.  The tables are inconsistently identified between the two flights. 
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5.3 Results for 1.5 m table separation experiment 

The table two results will follow the same sequence as those of table1, the individual flight 

line surfaces will be described before combining the two flights, then differencing of the flight 

lines will be used to check for variation between the flight lines.  Graphical analysis will be 

used to investigate the table detection characteristics. 

 

Figure 5-22 showing the two flight lines from the 1.5 metre table configuration.  Points coloured 

by flight line 
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Figure 5-22 shows the table configuration for the second table configuration.  The missing 

tables in the southeast quadrant can be seen clearly, as can the difference in density of strikes 

on the tables.   

The individual flight lines have been analysed to look for table detection and omission 

patterns.  Figure 5-23 shows the surface model for the table strikes for flight line 5.  This figure 

shows a number of tables undetected and a range of elevations from the surface.  Again, the 

centre of the table areas shows greater homogeneity with the outer edges clearly showing a 

number of tables undetected.  Six tables have been undetected by this flight line. 

 

Figure 5-23 shows the normalised DSM for flight 5.  Table separation is 1.5 metres. 

The omitted tables and topographic expressions can be clearly seen in figure 5-23.  The red 

areas are higher elevations with the blue areas showing minima. 

 



 

92 

 

 

 

Figure 5-24 shows a 3 dimensional view of flight line 5’s normalised DSM, this highlights the 

difference between the observations.  Table separation is 1.5 metres. 

A similar pattern can be seen in figure 5-24 the main deviation in height comes to the outer 

edges of the table area.  The southeastern corner has a very clear minima (blue) there is also 

a number of tables omitted at the northern edge. 

 



 

93 

 

 

Figure 5-25 flight 7 normalised DSM.  Table separation is 1.5 metres. 

The three dimensional representation of the flight 7 normalised DSM is shown in figure 5-26 

shows the omitted and detected tables in detail. 
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Figure 5-26 3D view of flight 7 normalised DSM.  Table separation is 1.5 metres. 

Merging both flight lines together to double the point density gives much better table detection.  

Figure 5-29 shows much better table detection with only three tables omitted.  Interestingly 

the three tables all form part of the end of a row, with the third table form the edge detected 

but the other three omitted. 
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Figure 5-27 both flights shown as a normalised DSM.  Table separation is 1.5 metres. 
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Figure 5-28 both flights merged shown in a three-dimensional view.  Table separation is 1.5 

metres.  
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Figure 5-29 Different model showing flight 5 - flight 7 heights.  Table separation is 1.5 metres. 



 

98 

 

 

The results are displayed graphically below in figure 5-30, figure 5-31 and figure 5-32 the 

individual flight lines are analysed then the combined flight lines are analysed.   

Flight 5 shows 10 missing tables with 53% of tables receiving less than the expected number 

of hits. 

 

 

Figure 5-30 Bar chart showing the percentage of tables receiving 0, 1 or 2 strikes for over flight 

5 

This compares to flight seven having 15 missing tables and a 58% rate of under detecting the 

tables (less than two strikes).  As such, flight 5 can be seen to be more successful win its 
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detection of tables.  This flight orientation proved to be more successful for the table 1 

configuration as well. 

 

Figure 5-31 Bar chart showing the percentage of tables receiving 0, 1 or 2 strikes for over flight 
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Figure 5-32 Bar chart showing the number of laser strikes per table for the two overpasses at the 

1.5 metre table configuration 

Putting the flights together reduces the undetected rate to 3%, with 46% receiving the 

expected four returns. 
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Figure 5-33 graph showing the differences between flight 5 and flight 7 and the deviation of 

each flight from the average for that table. 

Figure 5-33 provides a histogram of the flights.  The blue line shows the difference in 

observations for a table, the red and green flights show the flight value minus the mean 

number of table strikes respectively.  All lines show a central tendency towards the mean and 

the same number of observations per table. 
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5.4 Results for 1.0m table separation experiment 

 

 

Figure 5-34 showing the tables observed by over fights 9 and 11.  Points coloured by flight line.  

Table separation is 1.0 metres. 

This table configuration was flown using flights 9 and 11, they are shown in figure 5-34 and 

this shows a number of missing tables, notably to the southern portion of the tables.  A number 

of tables have received strikes from only one flight line.   
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The surface model below in Figure 5-35 and Figure 5-36 show flight 9’s normalised surface 

model, the roughness from the areas of undetected tables can be seen with elevations 

ranging from 0.52 metres to 0.90 metres.   

 

 

Figure 5-35 surface model for flight 9 normalised DSM.  Table separation is 1.0 metres 

. 
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Figure 5-36 3D view of surface model for flight 9 normalised DSM.  Table separation is 1.0 metres. 

Error! Reference source not found. shows a three-dimensional representation of figure 

5-35, this gives perspective to the surface smoothness, the notable dip in blue to the centre 

of the table arrangement is a missing table. 
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Figure 5-37 surface model for flight line  11 normalised DSM.  Table separation is 1.0 metres. 

. 
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Figure 5-38 showing a 3 dimensional view of the flight 11 normalised DSM.  Table separation is 

1.0 metres. 

By combining both flight lines to produce a higher resolution model, the effective point-density 

doubles.  As such, the number of unobserved tables decreases to 2%.  Figure 5-39.  Whilst 

the number of tables observed has increased the surface model shows many linear artefacts.  

These artefacts are shown in the 3 dimensional view shown figure 5-40. 
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Figure 5-39 showing the surface model derived from overlapping two flight lines.  Table 

separation is 1.0 metres. 
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Figure 5-40 3D view of both over flights surface model.  Table separation is 1.0 metres. 

Comparing the two flights by differencing the elevation values shows interesting results, figure 

5-41 is a subtraction of flight 9 from flight 11.  It is clear that the same tables are not the ones 

being unobserved. 

The central tables show a stronger degree of agreement in terms of table height, the number 

of strikes is not being assessed in figure (DoD), just the detection or omission of the table by 

the laser scan. 
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Figure 5-41 surface model showing a DEM of difference between flight 9 and flight 11 

The table observations are broken down graphically below, figure 5-42 shows the results of 

the table observations with both over flights combined.  Two percent of flights were 

unobserved; this figure is similar to the 1% figure seen for the other table configurations.  For 

this table configuration, 83% of tables were under observed compared to expectation.   
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Figure 5-42 Bar chart showing the number of strikes on the table 3 configuration using both 

overflights. 

 

Figure 5-43 Bar chart showing the number of strikes on the table 3 configuration just using flight 

line 9 
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The single flight line shows 54% of the tables to be under detected.  Nine per cent of the 

tables were undetected, this is a similar value to the previous flights of the same orientation. 

 

Figure 5-44 Bar chart showing the number of strikes on the table 3 configuration just using flight 

line 11 

Figure 5-44 shows the number of tables detected with each number of pulses, 13% of tables 

were unobserved, with only 37% observed as expected. 
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Figure 5-45 graph showing the differences between flight 9 and flight 11 and the deviation of 

each flight from the average for that table. 

 

5.5 Results for 0.5 m table separation experiment 

The results for the final table separation scenario are outlined.  The tables are spaced 0.5 

metres apart; this is smaller than the table size of 0.6 metres along its shortest axis.  The 

results are more difficult to distinguish as separating tables out individually is more difficult. 
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Figure 5-46 Showing the LiDAR table strikes for the table 4 configuration.  Points coloured by 

flight line.  Table separation is 0.5 metres. 

 

The figure 5-46 shows the LiDAR strikes for the flight lines over this table configuration, the 

two flight lines (13 and 15) are coloured red and blue respectively.  The clustering of points 

can be seen as with the previous table configurations, however the boundaries are more 

difficult to distinguish, a priori details regarding spacing and the nature of the object allow for 

intelligent reasoning to separate the tables apart, the linear patterns seen in previous 

configurations is present but weaker.   
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Figure 5-47 shows the table detection for the single flight line 13.  The smoothness of previous 

table configurations has been replaced with a hummocky terrain; it is difficult to determine 

where individual tables are placed.  A missing table can be identified in the southwestern 

corner of the configuration. 

 

Figure 5-47 Flight 13 normalised DSM Table separation is 0.5 metres. 
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Figure 5-48 3d view of flight 13 ndsm Table separation is 0.5 metres. 
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Figure 5-49 flight 15 ndsm Table separation is 0.5 metres. 
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Figure 5-50 shows the 3 dimensional perspective view of the surface.  Table separation is 0.5 

metres. 

Flight 15 is the alternative flight line over the table 4 configuration.  This shows a number of 

minima (in green) these are numerous and although are shown all over the surface there is a 

cluster towards the northeast quadrant.  The results show 13 missing tables; these can be 

identified in the surface. 

 

Using both flights to characterise the tables is shown in figure 5-51 this has only one missing 

table.  The surface is varied with many maxima and minima within the table area; no clear 

delineation of tables is possible at this separation. 
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Figure 5-51 both flights normalised Digital Surface Model. Table separation is 0.5 metres. 

The three dimensional view shows a varied surface with many maxima and minima, it is clear 

that this is not a good representation of the table surface. 
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Figure 5-52 both flights nDSM 3d table separation is 0.5 metres. 
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Figure 5-53 difference between 13 and 15 nDSM table separation is 0.5 metres. 

 

Comparing the differences between the two flight lines using a DEM of difference the 13 

missing tables from flight 13 and 3 missing tables from flight 15 are evident.  A number of 
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deviations between the surfaces can be seen as spikes; these include a large cluster to the 

southwest corner. 

Figure 5-54 shows the 3 dimensional perspective view of the DEM of Difference, the stark 

elevation changes are clear.  These appear to be randomly distributed across the table 

surface. 

 

Figure 5-54 3d view of difference between flight 13 and 15 table separation is 0.5 metres. 
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Figure 5-55 bar chart showing the number of strikes per table for flight line 13 

 

Figure 5-56 Bar chart showing the number of strikes per table for flight line 15 
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Comparing figure 5-55 and figure 5-56 it is clear that a large disparity exists between the two 

flights, flight line 15 is the first and only flight to have recorded in excess of the expected 

number of strikes per table with one table receiving three strikes.  Flight 13 showed thirteen 

omitted tables, this is the most of any of the flight lines.   

 

Figure 5-57 Bar chart showing the number of strikes per table for table 4 configuration using 

both overlapping flights 

Using both overlapping flights all the tables are detected with one table receiving five strikes.  

This is the best detection ration with 23% receiving the expected number of strikes or greater 

and 71% receiving greater than three strikes. 
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Figure 5-58 Graph showing the number of strikes per table and the deviation from the average 

strikes per table 

 

The graph shown in figure 5-58 shows the deviation of a flight from the average strikes for the 

table and the change in the number of hits from one flight line to the other. 
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5.6 Comparison of tables 

Comparing the number of strikes per table, for each table arrangement will identify any trends 

in object detection and object horizontal separation.  By separating the results by flight line, 

the verifiability of the results can be investigated.  Both flights had opposing but parallel tracks. 

Table 5-2 shows the number of hits from the flight one flights for all the table configurations.  

This is coloured red for low values, yellow for middling values and green for high values.  It is 

clear to see that the number of hits is randomly distributed across the tables.  This can be 

compared to the hits from the second set of flight lines shown in table 5-3. 

Comparing the two flights by subtraction as shown in table 5-5 shows very little agreement 

between the first and second over flights.  This suggests that surface reflectivity is not a 

significant factor in this experiment.  Table 5-4 shows the number of strikes received for each 

table in total, this again shows a disparity across the table range but no clear pattern emerges. 
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J 6 6 5 7 7 5 4 5 6 6 

I 5 6 5 6 8 7 6 7 5 6 

H 6 6 4 5 6 7 6 7 8 7 

G 7 4 6 3 8 6 8 4 6 6 

F 7 5 3 6 6 6 4 6 8 1 

E 4 6 4 5 5 5 3 6 7 5 

D 3 6 4 3 5 6 5 6 3 6 

C 7 4 7 3 7 5 5 5 5 5 

B 4 7 3 5 4 6 4 5 5 4 

A 6 4 8 4 5 6 6 6 3 4 

 1 2 3 4 5 6 7 8 9 10 

Table 5-2 Showing the number of strikes each table received for the first flight lines in total for 

all table configurations 
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J 4 4 7 6 7 6 6 7 6 6 

I 5 6 5 6 6 5 6 4 5 3 

H 7 4 5 6 6 6 3 5 4 5 

G 8 6 5 4 6 4 3 6 5 4 

F 6 6 6 7 6 6 7 4 4 4 

E 6 5 6 4 5 5 6 4 6 4 

D 7 5 5 6 5 5 3 4 3 4 

C 5 6 7 6 4 7 4 2 5 1 

B 7 4 5 4 4 6 6 4 4 7 

A 6 4 8 6 4 5 5 7 8 4 

 1 2 3 4 5 6 7 8 9 10 

Table 5-3 Showing the number of strikes each table received for the second flight lines in total 

for all table configurations 
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J 10 10 12 13 14 11 10 12 12 12 

I 10 12 10 12 14 12 12 11 10 9 

H 13 10 9 11 12 13 9 12 12 12 

G 15 10 11 7 14 10 11 10 11 10 

F 13 11 9 13 12 12 11 10 12 5 

E 10 11 10 9 10 10 9 10 13 9 

D 10 11 9 9 10 11 8 10 6 10 

C 12 10 14 9 11 12 9 7 10 6 

B 11 11 8 9 8 12 10 9 9 11 

A 12 8 16 10 9 11 11 13 11 8 

 1 2 3 4 5 6 7 8 9 10 

Table 5-4 Showing the number of strikes each table received for the all flight lines in total for all 

table configurations 

  



 

129 

 

 

J 2 2 -2 1 0 -1 -2 -2 0 0 

I 0 0 0 0 2 2 0 3 0 3 

H -1 2 -1 -1 0 1 3 2 4 2 

G -1 -2 1 -1 2 2 5 -2 1 2 

F 1 -1 -3 -1 0 0 -3 2 4 -3 

E -2 1 -2 1 0 0 -3 2 1 1 

D -4 1 -1 -3 0 1 2 2 0 2 

C 2 -2 0 -3 3 -2 1 3 0 4 

B -3 3 -2 1 0 0 -2 1 1 -3 

A 0 0 0 -2 1 1 1 -1 -5 0 

 1 2 3 4 5 6 7 8 9 10 

Table 5-5 showing the sum of first flight table strikes minus the sum of the second flights table 

strikes 
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j 0.707 0.886 0.535 0.518 0.463 0.744 0.463 0.535 0.535 0.535 

i 0.707 0.535 0.463 0.535 0.463 0.535 0.535 0.744 0.886 0.641 

h 0.518 0.707 0.835 0.518 0.535 0.518 0.641 0.535 0.756 0.756 

g 0.641 0.707 0.744 0.641 0.463 0.707 0.916 0.463 0.518 0.707 

f 0.518 0.744 0.991 0.518 0.756 0.535 0.744 0.707 0.756 0.744 

e 0.707 0.916 0.707 0.354 0.707 0.463 0.641 0.707 0.518 0.641 

d 0.886 0.744 0.835 0.835 0.707 0.518 0.535 0.707 0.707 0.886 

c 0.756 0.886 0.463 0.641 0.916 0.756 0.835 0.641 0.886 0.886 

b 0.744 0.744 0.535 0.835 0.535 0.535 0.463 0.641 0.641 0.744 

a 0.535 0.926 0.000 0.707 0.641 0.744 0.916 0.518 0.744 0.756 

 1 2 3 4 5 6 7 8 9 10 

Table 5-6 showing the standard deviation from each overfligth over each table arrangement 

Table 5-6 shows the standard deviations between the flights and table configurations, the 

table at location A3 received two strikes for each table configuration and flight all others 

received varying amounts with an average deviation of 0.66 strikes.   

For the first flight over each table set heads in a south westerly direction.  The second flights 

for each table head in the opposing north easterly direction.  They both intersect with the 

tables at a similar incident angle figure 5-59 shows the position of the aircraft relative to the 

tables.   
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Figure 5-59 showing the relation of the tables (green points) to the aircraft trajectory (coloured 

lines). N.B. lines are for flight lines running in both directions 

Looking at the flights heading in a south-westerly direction these results were graphed for 

each table configuration.  Figure 5-60 shows the results, the blue bars represent the number 

of omitted tables, the red flights those receiving a single strike and green those receiving two 

strikes.  The number of tables omitted increases as the tables move closer together this 

relationship can be observed with an R2 value of 0.70.  The values for one and two strikes 

show no relationship.   
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Figure 5-60 Bar chart showing the number of tables receiving 0 (blue), 1(red) or 2(green) number 

of strikes for the first flights over the tables 

Repeating this study for the flights in the opposing direction shows interesting results.  Figure 

5-61 shows the results.  The results for table omissions shows a very strong negative 

correlation with an agreement of R2 = 0.95, the tables receiving one, two or three strikes show 

no correlation. 
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Figure 5-61 Bar chart showing the number of tables receiving 0 (blue), 1(red) or 2(green) number 

of strikes for the second flights over the tables 

When looking at the results for both flight lines merged, the chaotic interactions can be clearly 

seen.  No strikes form a consistent relationship between the table spacing. 
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Figure 5-62 Bar chart showing the number of tables receiving 0 (blue), 1(red) or 2(green) number 

of strikes for both flights over the tables 

Comparing the number of omitted tables for each table arrangement the negative relationship 

for the first flight lines and the positive relationship for the second flight lines is clearly visible.  

This information is shown in figure 5-63 where the blue positive trending line represents the 

number of omissions from the first over flights, the red from the second over flights and the 

green the combined flights. 

The opposing relationships between the two flight directions suggest using a simple linear 

trend that the south westerly (first) flight direction would have no omissions when the tables 

reach 0.4 metres apart, given the measurement cannot be negative (distance is a ratio value) 

this becomes an implausible suggestion.  The north easterly (second flight) direction would 

show no omissions at 4.6-metre separations.  Given the contradictory evidence presented by 
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the first flight line it suggests the relationship is either non-existent or is undetectable from the 

data gathered. 

 

Figure 5-63 Graph showing the number of undetected tables per flight and table arrangement 

Results presented regarding the comparison of tables at different separations suggests that 

within the conditions of this experiment that there is no correlation between object separation 

and detection likelihood. The results strongly suggest that features that would normally be 

expected to be present in the data using an approach such as Barber (2007) is not suitable 

for real world applications.  The  
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5.7 Point Spacing and Separation 

 

Figure 5-64 Showing point spacing for a single flight line.  Points are displayed as 0.1 m circles, 

flight direction indicated by arrow.  The figure shows the irregular spacing of the point cloud. 

 

Figure 5-64 shows the distribution of points for the Leica ALS 50 on a single pass over flat 

ground.  The omission of strikes periodically across track is interesting.  The ground surface 

is flat as shown in figure 5-64 these dropouts appear to be randomly caused.  These dropouts 

can clearly have an effect on the ability to observe features.   

The point spacing along track was measured at nadir, it is expected that the points will be 

equally spaced at this point under the assumption of a constant flying speed.  Given the nature 

of a laser scanner with very high frequency across track scanning (50 Hz) and slow aircraft 

ground speeds, this assumption should be fine over a short number of oscillations.  This can 
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be backed up looking at the aircraft trajectory and calculating speed.  Figure 5-67 and figure 

5-68 shows the accelerations (the graph gradient) for flight 6 and flight 7 respectively, as can 

be seen very little acceleration occurs except for over three periods, these periods seem to 

correlate to the changing from one full second to the next.  All times are recorded as GPS 

times in seconds from the start of the GPS week.   

Figure 5-65 shows the variation in point spacing over successive scan oscillations.  A cyclical 

pattern exists in the data but it is difficult to establish a trend, extending the measures any 

further would risk introducing a significant change of speed into the measurement and affect 

the accuracy.  The values for scan distances vary between 0.50 m and 0.63 m.  This is a 

considerable distance and has an impact on the table detection.  A table is 0.60 m by 0.7 m, 

so at 0.63 m it is feasible that a table would be completely omitted.   

This study was repeated for another flight line over flat terrain, the results appear more regular 

and can be seen in figure 5-66, the oscillations appear more regular but have a maximum of 

0.71 m, minimum of 0.46 m, mean of 0.60 m and standard deviation of 0.08 m.  These 

contrasts to flight line 6 with a maximum of 0.63 m, minimum of 0.50 m, mean of 0.56 m and 

standard deviation of 0.03 m; the cause of these differences is unclear.   
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Figure 5-65 showing the change in scan pattern over each oscillation for a short time period 

 

Figure 5-66 showing the change in scan pattern over each oscillation for a short time period 
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The figure 5.68 below support the hypothesis that over a short period the speed remains 

sufficiently constant to take consistent measurements.  Figure 5.68 shows abnormal spikes 

in acceleration as the time approaches a whole second. Exports from the software show that  

 

Figure 5-67 graph showing speed over time (acceleration) for flight 6. The spikes in acceleration 

shown at the whole second are an artefact of the trajectory software rather than true acceleration 
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Figure 5-68 graph showing speed over time (acceleration) for flight 7 

These anomalous accelerations were investigated further, in order to determine if the cause.  

In order to investigate this, the file produced in Applanix Pos MMS™ software containing the 

trajectory information was interpreted using the Applanix API.  This ensures that the content 

of the file is written, as it is stored in the proprietary binary format.  The results show that at 

the turn of each whole second the number is represented as an integer whereas, all other 

times are represented and stored as double precision float values.  This occurs despite the 

time value being stored as a double precision float.  Table 5-7 shows an example from the 

extracted time series.   
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GPS seconds 

400459.9891 

400459.9941 

400459.9991 

400460 

400460.0041 

400460.0091 

400460.0141 

400460.0191 

Deleted for brevity 

400460.9891 

400460.9941 

400460.9991 

400461 

400461.0041 

400461.0091 

Table 5-7Showing GPS times extracted from trajectory file.  Note many values have been deleted 

to show the integer values (red) more clearly 

The rounding of integer values is clearly inconsistent and the error appears as a sudden and 

substantial increase or decrease in acceleration. 

The results presented in this chapter show the outcomes of the table study.  This study has 

raised a number of questions regarding the ability of LiDAR to pick up and detect objects 

these will be discussed in the next chapter. 

 

5.8 Repeatability Experiment Results 

The repeatability experiments looked at three main landscapes, a flat hockey pitch, a 

suburban area and a forest plot.  The flat hockey pitch tests the scans under ideal conditions 

of a flat hard surface.  Then an urban environment creates a complex environment with well-
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defined objects and hard surfaces.  The forest links to the aims of the study and provides the 

most complex of the environments. 

Initially, over the hockey pitch area, the change in elevation over the hockey pitch is seen in 

relation to the hockey field.  Subsequently the elevation scatter plot for the area is shown 

before looking at the clustering of flights and the repeatability of each flight line.  Figure 5-69 

shows the entire point cloud for the hockey pitch area.  The points are coloured by elevation 

showing a mild gradient from the northeast to the south west of the area.   

 

Figure 5-69 Map showing the elevation change over the hockey pitch.  Easting and northing used 

for X and Y axes respectively, the data points coloured by elevation. Range of elevation change 

is 1.9 m. 
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The elevation over the hockey pitch shows a change in elevation of 1.9 metres over 30 metres, 

this gives a gradient of 2.1º.  This is greater than expected but suggests the experimental 

methodology should use smaller grids of points instead of the whole hockey pitch.  A 5 metre 

grid will be used to eliminate bias as a result of the slope. 

 

Figure 5-70 elevation of each point on the hockey pitch.  Coloured by flighltline.  The 3 horizontal 

bars represent the mean and 1 sigma confidence limits. 
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Figure 5-71 shows a scatter plot of elevation against GPS time.  Each vertical cluster is a flight 

line and the spread of elevations shows the variation. 

 

Figure 5-70 shows the variation in height of each point.  This is demonstrating the outliers and 

variance within the dataset.  More usefully, figure 5-71 groups these points by flight line.  This 

grouping shows the variance within each flight line.  The maximum and minimum values are 

different but more analysis is needed to suggest any difference in distribution.  Violin plots 

provide a useful tool for this analysis, similar to a box and whisker plot but plotting a histogram 

of data along the spine of the plot.   

Figure 5-72, figure 5-73, figure 5-74 and figure 5-75 show violin plots of individual 5-metre 

sections of flat hockey pitch.  Each flight line over the area is shown as a plot of its distribution 

and quartiles.  Figure 5-72 shows similar distributions of data showing a wide but bell shaped 

distribution for each line.  The central quartiles (shown within the blue box) for each dataset 

show varying medians and dispersion of points.  This variance in different flight lines can be 

seen across the four figures.  Flight lines 12 and 15 are showing a bias towards recording 

lower elevations. 
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Figure 5-72 Violin plot showing a 5 metre sample of LiDAR data. 
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Figure 5-73 A Violin plot of another 5-metre area over the Hockey Pitch.  Note the variance in 

extreme values 

Figure 5-73 shows a separate 5-metre area of hockey pitch.  Flight lines 12 and 15 show a 

bias towards lower elevations as with the other sample areas.  There is a greater range of 

distributions between the flight lines.  Line 13 shows as skew towards positive values whilst 

the others show a flat but symmetrical distribution with a strong tendency towards the mean.  

Line 13 shows a positive elevation bias.   
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Figure 5-74 Violin plot over a 5-metre section of hockey pitch.  The plots show significantly 

different characteristics and distributions 

Flight lines 12 and 15 in figure 5-74 show a bias again, although this time flights 2 and 13 are 

showing a distinct positive bias.  The distributions of each flight line are varied with differing 

skew values being clear.  The central quartile plot of flight line 15 and 12 does not share any 

common elevations with fight line 13 or 15. 
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Figure 5-75 Violin plot over a 5-metre section of hockey pitch 

Figure 5-75 shows the final violin plots for the hockey pitch sample areas.  The four samples 

shows a consistent lack of repeatability with flight lines showing bias and differing distributions 

The 5-metre sample size ensures that the area of the study is flat and that changes in 

elevation are not the primary cause of any deviations.  To ensure the sample size is large, 

two separate 10 metre sections of hockey pitch is investigated and shown in figure 5-76 and 

figure 5-77.    
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Figure 5-76 a Violin plot of a 10 area of Hockey Pitch 



 

150 

 

 

Figure 5-77 the second 10 metre hockey pitch area violin plot 

 

The forest plots provide an interesting violin plot, shown in figure 5-78, whilst repetition and 

comparison with other areas is not possible due to the heterogeneous structure of forestry; it 

is possible to compare the overlapping flight lines for consistency in the representation of the 

environment. 
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Figure 5-78 Violin plot showing the 8 overlapping flight lines of the forest plot 
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The plots show similar overall distributions with a range of canopy shots, fewer stem and 

understorey shots with a large bulge at lower elevations showing the ground and above 

ground cover.  The mean is variable for each overlapping flight and suggests that the 

distribution although similar may be characterised as statistically dissimilar. 

 

This chapter has presented the results of the study, these investigate the ability of a LiDAR 

system to define, characterise and reliably interpret the topography that is scanned.  Whilst 

the results focus on simplifying forest characteristics to bring order and control to the 

experimental regime the results should be considered for both their impact on forestry but 

also the wider laser scanning applications.   
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6 Uncertainty Experiment Discussion 

The chapter will draw on and interpret the table experiment results.  The wider context will 

look at the suitability of LiDAR for detecting small objects, the options for increasing detection 

rates and look at LiDAR as a verifiable and objective measurement technique.  Finally, the 

outcomes of this study will be used to look at the existing methods of defining a LiDAR scan 

and look at ways this could be improved. 

 

6.1 Table Results 

The table experiment results are interesting and do not conform to the expected outputs of 

the research.  These results will be discussed in detail and explored within the literature 

framework. 

The literature regarding point spacing and object detection is limited.  An early review paper 

by Flood (2002) reviewed LiDAR post spacing in relation to FEMA mapping standards for 

flood modelling, LiDAR was found to comply with these standards, as such of the many 

recommendations made by the article, further investigation into small-scale point spacing was 

not one of them.  An interesting paper by Hodgson et al., (2005) investigating LiDAR derived 

elevations and terrain slope in leaf off conditions suggests that point spacing may be important 

but does not investigate further within the article the same research group and dataset was 

used by later studies.  Chow and Hodgson (2007) used a point cloud with 2-metre spatial 

resolution covering the Piedmont area of South Carolina.  The study down-sampled the LiDAR 

data in order to investigate the effects of DEM resolution on slope estimation.  The study 

found that higher point spacing consistently and linearly underestimated slope angle.  The 

study used a down-sampling approach of taking one in n number of points to simulate a lower 

point density.  This does not account for the uneven point spacing characteristics found in 

laser scanning.  A further study by Raber et al., (2007) using the South Carolina dataset used 



 

154 

 

by Chow and Hodgson investigated the impact of LiDAR post spacing on DEM accuracy for 

flood zone delineation.  This study found that the results from hydraulic models had varying 

sensitivities and that flood stage values were typically insensitive to the DEM resolution 

whereas flood extent mapping was sensitive.  The study once again simulates point spacing 

reductions using a down sampled technique of importing one in n points to reduce the 

resolution of the scan.   

 

6.1.1 Likelihood of single tables detected 

The likelihood of single table detection should be deterministic in nature; the factors should 

be calculable and be able to be determined prior to a survey (c.f. Barber 2007).  The results 

achieved appear stochastic with a table’s surface not showing any correlation with laser 

reflectivity.  This places the scanner as the primary control on detection or omission.   

There appear to be two mechanisms by which tables are not detected.  First, that the table is 

insufficiently illuminated and secondly that the table falls within a scan pattern void.  The latter 

essentially being a special case of insufficient illumination where no illumination occurs. 

Footprint size was kept constant throughout the experiment, and its possible impact was 

tested using the theoretical models available as shown in figure 5-3 , the lack of laser 

illumination appears to be due to two factors, the irregular scan spacing and the dropouts 

from the laser returns.  The irregular scan pattern has been investigated in figure 5-65 and 

figure 5-66; these studies show a cyclical (periodic) yet irregular pattern. 
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6.2 The effect of object spacing on detection 

A primary purpose of laser scanning is to detect objects, these objects may be of specific 

interest (for example power line mapping) or of general interest (city modelling).  It is of interest 

to determine if horizontal spacing affects the ability of a laser scanner to detect an object from 

its neighbours.  Vertical spacing is well understood (Gelhar 2010), the hypothesis tested is 

whether objects become more difficult to detect as they move closer together.  The detection 

of an object is distinct from its coalescence with neighbouring objects; an object that is 

detected is simply present.  The ability to define the object as distinct from other objects is a 

function of the number of hits received by the object and the number of hits that characterise 

the landscape around the object; as such, a complex landscape may cause coalescence at 

lower densities.   

The results from the table studies for the correlation of table spacing to detection are both 

interesting and difficult to interpret.  The south-westerly flights show a clear positive correlation 

when looking at the number of undetected tables, thus the closer the spacing of the tables, 

the more difficult they are to measure the discrete objects using LiDAR data.  This is 

juxtaposed by the results of the north-easterly flights, these show a strong negative correlation 

suggesting tables become easier to detect as they move closer together in a group.  The 

overall trend when both flights are used together is consistent detection rates of less than 5% 

with the maximum level of omission found at the 1.5 metre separation.  As such any 

correlation between detection and separation appears to be either too weak to be detected 

here or non-existent.  The separation from one object to another is independent of the size of 

the object; it is this size and orientation of the individual object that appears to have an impact 

on detection.   
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6.3 Along-track laser point spacing 

Laser scanning specifications assume the laser scanner to produce a regular pattern of laser 

returns.  The expression of key variables in hertz implies an ordered and regular periodicity 

such that should an item oscillate at 50 Hz, it is expected that each cycle occurs every 0.02 

seconds.  The along-track laser point spacing recorded by a laser scanner over flat ground 

and at a constant speed does not support this hypothesis.  The scan data shows that the line 

spacing varies with each scan.  The speed is calculated from the 200 Hz trajectory and 

accelerations derived.  To look at this the change in acceleration over time was investigated 

this change in acceleration is jerk.  These values remain very low at between -0.05 and +0.05 

m s-3 (the units are m s-3.as this is a change in the change of speed).  As such, the variation 

in scan interval can be isolated from a change in speed.   

The scan interval varies seemingly randomly.  Whilst the sample size is small, the variation 

over a short period is clear and it is distinct between flight lines.  The experimental design 

does not allow extended periods of observation.  The observation period is limited to time 

periods where the platform ground speed is constant.  As the aircraft had a variable ground 

speed (this is unavoidable and was kept as constant as possible) extended observation is not 

possible 

The flight line from flight 6 (figure 5-65) shows no regular pattern, the maximum distance 

observed is 0.63 m and minimum 0.50 m, the standard deviation is 0.0283 m.  The mean gap 

is 0.55 m.  For flight 7, the gaps appear periodic, although show a maximum of 0.71 m a 

minimum of 0.46 m and average of 0.59 m, the standard deviation is 0.8 m.  This is much 

more varied; the oscillation shows that the scan lines flip-flop between short distance and long 

distances apart.  This is more akin to a mechanical or other deterministic reasoning.  As the 

two graphs show very different results, it suggests either a pattern that has not been observed, 

temporary order to a more chaotic system seen in flight 7 or that the distances are random 

whilst governed by a scan frequency.  The sample size was small in order to keep the ground 
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speed, attitude and acceleration variables constant.  In order to test this further, an alternative 

experiment would be required.  The experiment design would consider and constrain the 

required variables in order to only test the along track spacing.  Such an experiment could 

make use of a ground-based experiment with a constant velocity platform used to mount the 

sensor.  Such a design would allow for the observation of larger time periods resulting an 

increased number of observations allowing greater investigation into the causes. 

 

6.4 Trajectory Information 

The trajectory information stores the merged and filtered IMU and GNSS values; this provides 

the position of the sensor head and is the input to the point registration solution.  When 

measuring the time the results show as a double precision float with four decimal places to 

denote the time, as a 200 Hz (0.005 seconds) measurement system, this provides sufficient 

precision to store the time values as numbers.  When an integer value is encountered, (a 

whole second is reached) the data are stored as a rounded floating value with its decimal part 

rounded to zero.  This is clearly wrong when viewed in terms of acceleration; the integer 

recording must be a generalisation as the results show a rounding up of the time to produce 

rapid periodic accelerations.  This rounding error is the result of the Applanix software and all 

programs that use the Applanix application-programming interface to extract values from the 

trajectory file exhibit this behaviour.  This rounding error appears in all the Applanix derived 

trajectory files investigated.  The extent to which this causes a problem is unknown, it is clear 

however that the problem can be cascaded to the registration program.   
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6.4.1 Experimental Limitations 

The experiment was designed to observe the coalescence of objects as the separation 

between objects decreased, this experimental objective was not fully investigated as the more 

intriguing and significant results of the experiment became clear during the exploratory data 

analysis.  The effect of missing tables was unexpected and as such, the study changed 

direction to understand the cause of these omissions.  Had the experiment been set up to 

detect this phenomena the experimental design would have looked at object reflectivity and 

object sizing as variables, instead these remained constant throughout the experiment. 

The lack of multiple incident angles caused further limitations, due to unforeseen 

circumstances noted above with the two perpendicular flights that were not properly located 

over the target area of interest.  This would have provided additional information on the effect 

of incident angle. 

 

6.5 LiDAR Sampling 

LiDAR is a sampling technique, most LiDAR surveys under sample the area of interest, the 

degree to which this is done is determined by the number of points emitted, the controls on 

the spacing of those points and the divergence of the beam.  LiDAR is capable of 

oversampling and when two flight lines cover the same area of interest, a degree of 

oversampling is probable.  This oversampling can provide redundancy to the single 

measurements taken by the LiDAR sensor. 
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6.5.1 Object characterisation through under sampling 

When a survey under samples the area of interest it is important to be able to determine the 

pertinent properties of any object in the area of interest, these properties for topographic 

surveys would typically include presence, shape (height length and width for example).  For 

forest applications, these may extend further to include properties such as canopy 

penetration, crown detection and ground accuracy. 

In order to be able to under sample effectively, the relationship between the sampling strategy 

and the ability to extract the pertinent properties must be better understood.  Ideally, the 

relationship should be understood to the point that object properties such as size, shape and 

material can be utilised to inform the required point density.   

The most basic property of an object to detect for a survey is its absence or presence.  This 

was tested through the experiments conducted.  It is clear that not all objects are detected 

using a sampling strategy that theoretically allows for the objects of that size to be detected.  

The results for the table experiments were surprising; it was unexpected that any tables would 

be omitted at the point densities sampled.  The tables were placed at near nadir scan angles 

and each had an object size greater than the predicted point spacing.  Each table should have 

received two strikes that detected the presence of the table with each table theoretically 

receiving 2.115 strikes.  When doubling the point density by adding the second flight this 

number doubles to 4.23 strikes per table.  Whilst some tables did receive, two strikes per flight 

line and one received three under the final table configuration.  In all cases except the final 

flight line for the final table configuration under half the tables received the expected number 

of hits. 

Using both flights the expected number of strikes is in excess of four, some tables were 

omitted completely, this may be caused by the lack of pulse interactions caused by irregular 

spacing or by the return energies being too small to detect.  The latter seems unlikely as the 
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same tables were observed under different table configurations.  The irregular pulse spacing 

hypothesis is supported by the evidence presented in the results chapter, the random spacing 

between scan lines is a cause for concern when detecting small objects, or any linear objects 

that run perpendicular to the flight path.  The along track detection is significantly more reliable 

as the pulses are not banded from the mirror movement and instead are spaced on time 

interval. 

 

6.5.2 Achieving required point densities 

It is common practice for aerial survey providers to deliver a survey according to a specified 

point density requirement.  This can be achieved in two ways, flying lower and slower with 

high frequency equipment to scan at a given point density, alternatively the flights may be 

higher and faster but repeat over the survey area twice.  There are advantages to approaches, 

the former providing higher pulse intensity, lower transmissivity effects and a more controlled 

scan pattern.  The latter option has commercial benefits allowing pilots following linear objects 

to fly straighter lines keeping the area of interest within the swath (common for corridor 

mapping applications).  It also allows the aircraft to be kept at a higher altitude giving the pilot 

a greater safety margin in the event of a malfunction and the higher flight path reduces noise 

and disturbance to residents in the flight path. 

One of the criticisms of laser scanning is the lack of redundancy in the point measurements, 

when compared to photogrammetry where stereo pairs correlate to give a redundant image 

the single laser strike is unverified.  By flying twice, the redundancy is increased with a 

separate flight covering the same area (although not always matching the same iFOV).  This 

increased redundancy must be contrasted to the reduction in accuracy of individual points is 

reduced because of higher-flying heights.  The inertial measurement units are accurate to a 

certain angular uncertainty, atmospheric effects become more pronounced and the intensity 
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of the resulting laser strike reduces making a return less likely and the digitisation of the pulse 

more difficult. 

A major advantage of the two-flight strategy is the disruption of the ordered scan pattern, 

because the scan pattern is determined by mechanical controls for a single flight line the 

pattern of laser strikes must be ordered.  Flying twice over the area is it exceptionally unlikely 

that the two overlapping flight patterns will match exactly with the resulting scan pattern 

appearing more of a stochastic pattern of hits distributed over the overlapping swaths.  This 

increases the sampled area and decreases the risk of losing objects within the scan pattern.   

The experiments have shown that single flight lines can suffer dropouts and omit objects and 

as such, a second flight does significantly increase the likelihood of object detection.  With 

the data available, it is not possible to determine if a lower flying height would decrease the 

number of dropouts. 

 

6.6 LiDAR Verifiability 

For a LiDAR survey to be useful, it must show a true representation of the area of interest, 

whilst this representation will be abstracted from reality and presented at its captured survey 

scale, such a representation should still be accurate and repeatable.  The verifiability of an 

experiment is important, the scientific method relies upon verifiability; the ability to repeat an 

experiment and observe the same results is paramount to understanding scientific principles. 

Not only is the ability to repeat a set of observations and receive similar results important 

scientifically, it is important to many of the applied uses of LiDAR data in the fields of 

surveying, engineering and land management. 
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6.6.1 The Table Study and Verifiability 

The table results present interesting verifiability questions.  It is clear to see from the results 

that the tables are not uniformly observed, the tables show limited bias to detection based on 

arrangement or on surface type.  The detection rates are spread randomly across the tables 

and as such, bias does not appear to be a factor.  The results can be considered variable for 

each scan.  Each scan misses a differing number of tables, but more importantly, equally 

sized objects are not equally detected. 

The probability of detection of equally sized objects should be identical for a given scan.  

Either this variability is related to the object size being very close to the minimum mapping 

unit for the scan resolution or that an irregularity exists within the system that can cause 

omissions, such that localised resolutions vary significantly from the overall resolution. 

The table study brings verifiability into question for the collected LiDAR data.  The same tables 

with the same configurations are observed differently for the two over flights.  In an applied 

context, this could mean missing tree crowns, archaeological features or engineering features 

such as power line structures, or pipelines. 

 

6.6.2 Verifiability and Violin Plots 

The violin plots provide an interesting and visual means of interpreting the LiDAR data, 

removing the spatial element to focus on a single and first order variable, elevation, has 

allowed the data to be investigate thoroughly.  The results of the flat, hard and homogenous 

hockey pitch are of particular interest.  This area should not present a challenge to the laser 

scanner; the near nadir laser strikes onto a flat hard surface should create very narrow error 

bands, the data shows a range in excess of 0.35 m, each flight shows a flat, wide but bell 

shaped distribution.  The manufacturers stated accuracy is for a 0.15 m range.  This value is 
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not expressed with a confidence estimate.  Clearly, the performance of the system falls 

outside of the implied limits, only meeting the 99% confidence value.  The mean values vary 

between each flight and taken in isolation would not show the true variability in single flight 

lines.  It is known within the LiDAR industry that separate flights may have different constant 

offsets and are typically verified using ground control sites.  Overlapping flight lines can be 

adjusted using a process known as strip adjustment, this is not routinely performed and relies 

upon the data to characterise the area overlapped in the same way.  The table study suggests 

that for complex landscapes this may not be a good representation of the overlapping 

surfaces, this is because the laser characterises the micro-topography differently in 

overlapping flight lines the match is as much stochastic as it is elimination of systematic bias. 

 

6.6.3 Verifiability and scale 

The table study was conducted with the table arranged with a number of different separations, 

the point densities were varied by combining two flights together.  A credible cause for the 

lack of verifiability is that the point densities captured were insufficient for the mapping scale.  

As such, objects were not represented correctly and the minimum mapping unit 

overestimated.  The existing method of calculating point spacing in order to derive minimum 

mapping units (c.f.  Barber 2007) is ineffective.  Barber (2007) emphasises the probabilistic 

nature of this approach but the uncertainties are underestimated.  There is little alternative 

work directly relating cartographic principles to point cloud based mapping.  Given the primary 

purpose of most aerial laser surveys is mapping, often for a particular critical application this 

lack of work is clearly an area that needs further attention. 

6.7 LiDAR point cloud descriptions 

Point clouds are described using standardised terms; these are point spacing and point 

density.  Point spacing is measured along track and across track; point density is given by the 
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number of points per unit of area.  Both terms lack a rigorous definition and do not fully 

describe the point cloud. The results from this thesis show that currently the approaches to 

describing a point cloud do not adequately describe the survey characteristics of the point 

cloud.  

Point density is simply defined as the number of points per unit of area (Baltsavias 1999).  

This definition is misleading for point clouds.  The definition of a point is unclear, is this 

intended to be an emitted pulse of light or the alternative is the number of returned points. 

This eliminates the problems caused by low reflectivity surfaces and dropouts.  It does reflect 

the number of points available to the end user for mapping and analysis purposes.  The 

number of reflected returns is highly dependent on the complexity of the environment.  This 

makes it difficult to plan to capture a given point density, it also makes point density correlated 

to the sensitivity of the digitisation technique. 

Neither technique provides a wholly satisfactory measure and most importantly does not 

provide the user with an assurance of what features will and will not have been captured  

Point spacing is an alternative approach. The point spacing is measured between points in 

the respective direction (along track or across track).  The point spacing is a useful measure 

but alters with the scan angle for sinusoidal or saw tooth scan patterns.  The along track 

spacing is closer at nadir than at zenith, conversely the across track spacing is closer at zenith 

as the mirror slows to change direction.  This varied point spacing is accounted for using the 

nominal point spacing.  Nominal point measures are deceptive, as they do not express the 

variability of the measure, just the average. 

Point cloud descriptors should completely describe a point cloud such that two equal point 

clouds have equal attributes and detect features equally, a point cloud with the same 

descriptors as another should not differ significantly in the way that it surveys an area of 
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interest. Point spacing and point density both have their limits as discussed above.  The 

limitations are primarily around describing the intra point-cloud variability.   

Representation of laser footprints is a further factor in the measurement of point cloud 

descriptors and in the understanding of uncertainty of laser scanning.  The point cloud 

represents each laser interaction as a point, a point is an infinitesimally small representation 

of an object; it has no area.  The laser footprint conversely occupies a significant area and is 

complicated within that area by the distribution of light within that area.  This is not accounted 

for in the existing point cloud measures, and point spacing and density measures assume an 

infinitesimally small area and measure from that point to the next point. 

The basic premise of laser scanning is to illuminate an area of the laser this area is the 

footprint.  This gives rise to the idea of measuring area illuminated.  This is perhaps a better 

measure of resolution instead of point density; the area illuminated is directly related to the 

sampling resolution.  As such, a measure of the percentage of a square metre area on the 

ground that is covered would give a view of the area sampled. 

The area illuminated has potential as a measure, but it has downsides as well, the area 

illuminated alters between nadir and zenith, the measure per unit area also does not show 

the distribution within that measured area allowing multiple illuminations of the small area and 

sampling bias to go unreported.  Further to this, the area illuminated can be extended by 

increasing the beam divergence.  This wider footprint samples a larger area but does so with 

lower incident intensity (reducing the likelihood of a return) and reduces the precision as a 

larger area is sampled with only one measurement and reduces the accuracy, as the low 

intensity pulse is harder to digitise.  The opposite value could be utilised to measure this 

effectively, teaming area illuminated with area unsurveyed, which is the “dark” areas of the 

scan would show the number of repeat observations.  This information would allow for the 

user to understand the unsurveyed area from the surveyed area.   
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Demonstrating the difference between nadir and zenith values is difficult, whilst this could be 

established as an algorithm; this would not be intuitive to the end user.  Box and whisker plots 

showing nadir, mean and zenith values may offer an intuitive visual and complete way of 

describing the data. 

Point spacing as a measure has less flaws, it is the variability between zenith and nadir scans 

that cause the measure to be unrepresentative, the box and whisker display would again 

record the variance. 

Existing point cloud measures give a false sense of confidence when attempting to map at a 

given scale, point spacing is not equal to minimum mapping unit and the new measures will 

better describe point clouds.  Work needs to be done linking scanning resolution to mapping 

scale.   

 

6.7.1 ALS and Mapping Scales 

Linking point spacing to mapping scale is a more difficult concept; mapping scale is invariant 

of the landscape whereas laser surveying is dependent on topography and land cover.  No 

clear guidance exists on mapping scales and the equivalent point cloud resolution required.  

The table studies have highlighted the need to represent objects as scale dependent entities.  

Whilst this study has collected, insufficient evidence to relate meaningful scale information to 

scan resolutions it has highlighted the need for future work on this topic. 

The uncertainty experiments using LiDAR data are important and valuable experiments 

revealing a lot about LiDAR data.  Previously assumed knowledge regarding point cloud 

characteristics have been tested and found to require further investigation, the nature of laser 

scanning using repeated passes to gather higher point densities has been investigated and 

the positives and negatives of that approach reviewed.  The results of the experiment have 
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far ranging implications beyond the academic scope of this experiment, regular and reliable 

point cloud spacing is necessary for many applications. 

6.8 Implications for Forestry 

The results strongly suggest a need for further investigation into LiDAR remote sensing for 

object detection and recognition.  In this study, the targets were regularly shaped simple 

objects that contained none of the complexity and variability of a real forest canopy.  

Nevertheless, the results can be extrapolated back to forest structure by understanding the 

additional uncertainty that would be present.  The results show large uncertainties in the 

precise characterisation of objects by laser scanning that requires further investigation.  This 

is an area of future study that should feed into the general guidance and standards that the 

users of laser scanning community should be aware of. 

6.8.1 Tree Counting 

Tree counting has a natural synergy to the object detection experiment. The approaches to 

tree counting include finding distinct local maxima, for example the Friedlander & Koch (2000) 

study, this approach filtered the canopy height model for local peaks using these peaks as 

crown locations. A tree crown is a complex shape that has a permeability to light as the laser 

pulse can miss the tree and continue to return a ground shot. The inability to successfully 

recognise regular hard objects suggests that a greater proportion of harder to determine 

objects would be missed. Local maxima results will have error associated with irregular scan 

pattern and irregular LiDAR return, geostatisical methods potentially have a greater source of 

error. Tesfamichael (2009) used a trained semivariogram approach to identifying trees. The 

error in the ALS point cloud could potentially over train the semivariogram or produce a large 

nugget effect as a result of the measurement errors being significant compared to the 

measured objects.  

6.8.2 Tree Heights 



 

168 

 

Tree height studies have already identified significant errors with derived datasets, Takeda 

(2004) noted errors of 20 m in the DTM in comparison to true ground height. Whilst the data 

used for the table study did not have errors of that magnitude, it is a much higher resolution. 

The literature for forest measurement regularly states that the correct data is required in order 

to produce reliable results. Vosselman (2000) showed this with respect to ground filtering, Lim 

et al (2003) repeated this call and extended the errors to include missing crowns and missing 

structural information. Several authors have suggested that higher point density data would 

improve the results, such authors include Persson (2002), and Yu (2004) who both had under 

represented tree heights that were suggested to be caused by the point cloud missing the 

crown of the tree.  The use of point density is a useful metric but the results show that point 

density is a poor predictor of the likelihood of an object to be detected. 

6.8.3 ALS and Forestry 

Interesting approaches to suppressed tree identification such as the Maltamo et al., (2005) 

study using height profiles of the LiDAR data show a similar technique to the violin plots used 

in section 5.8.  The violin plots showed a different profile for the overlapping areas of the same 

feature taken at nearly the same time.  Holmgren and Perrson’s (2004) study into species 

identification uses a shape fitting approach to identification.  Using the table scans as an 

analogue to the study, the importance of repeatable and reliable laser scanning for species 

detection become clear. 

Forests grow and change over time; as such, multi-temporal studies are important for 

monitoring and managing forest environments.  Change detection in the form of growth, 

structural change and changing management practices may be masked by false positives 

shown from unrepeatable laser scans or true change masked due to the detection of false-

negative (true difference obscured due to inaccuracies in the surveyed data) type artefacts in 

the data.   
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As forest studies become increasingly complex, investigating structure, growth and other 

factors, the need to understand the underlying data is greater than ever.  Results from a study 

will always have error associated with them, understanding the magnitude of this error makes 

the results useful for estimation purposes. 

This chapter has discussed the results in light of the existing scientific literature.  It is clear 

that laser scanning has evolved to meet the needs of a number of disparate disciplines and 

applications.  Whilst each discipline collects, processes and analyses the data specific to their 

needs, there is a lack of thorough investigation into the small-scale mechanics and 

observation patterns present within a laser system that may have compelling impacts on the 

work as a whole.  The following chapter will look at the conclusions of this study, investigate 

the impacts that this may have and look towards the future with recommendations of how the 

laser scanning community and the research community can further enhance the laser 

scanning body of knowledge. 

7 Conclusions, Impact and Recommendations 

7.1 Conclusions 

This study has reached the following conclusions; these conclusions show the need for careful 

consideration when specifying, acquiring, processing and analysing aerial laser survey data. 

 Significant objects are not always detected during scans with a resolution significantly 

higher than the object size 

 Illumination intensity appears to be a strong control on the detection of an object. 

 LiDAR datasets are sensitive to small changes in the along and across track spacing 

even when configured to the same flight and sensor parameters as the comparison 

flight lines. 
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 Current LiDAR collection does not use standard measures for point cloud descriptors, 

nor does it take into account the variability that is possible within the scan tracks 

 

7.2 Impact of Uncertainty Study 

The uncertainty study has wide-ranging implications, both for the technical aspects of laser 

scanning and object detection and the procedural and industrial concerns regarding the 

effective procurement and specification of point cloud data and subsequent mapping and 

processing standards.  Many applications require repeatable and reliable survey techniques, 

the omission of substantial features (table-sized objects) raises concerns over the ability to 

detect features for a number of applications.  A number of applications are discussed below. 

7.2.1 Forestry 

Forestry applications will be considered further with the tree study; these applications seek to 

map and model a structurally complex three-dimensional environment using aerial laser data.  

The study shows that LiDAR data struggles to model structurally simple objects reliably; as 

such, environments that are more complex will need to be further investigated. 

7.2.2 Geomorphology 

Geomorphological mapping using ALS data includes applications for glacial environments, 

hydrology and flood mapping and modelling as well as geological applications.  Many 

geomorphic features are expressed as subtle perturbations in the landscape and may be 

linear sinuous features.  Eroded features and small micro-topographic expressions may be 

missed because of laser scanning at a resolution previously believed to be adequate. 
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7.2.3 Archaeology 

Archaeological applications for ALS fall into prospection and documentation studies.  

Prospection relies on exposing micro-topography and subtle features in the landscape.  

Barber (2007) provides advice on this application; the table study shows this advice needs 

reviewing in light of the findings of this study.    

 

7.2.4 Engineering 

Safety critical applications can arise from the use of ALS for engineering, notably power line 

engineering has pioneered the use of ALS for engineering studies; such applications include 

vegetation infringement studies, looking for locally clustered vegetation growth that can cause 

significant impacts to power line reliability.  Other applications include power line sag 

modelling; this requires high-resolution models of power line conductors and insulators.  

These applications are clearly safety critical and a better understanding of the data is required 

to understand what is detected and omitted within these niche applications. 

The applications above use ALS as a convenient, rapid and effective method of collecting 

data, whilst ALS does provide much of the data required to inform the research questions, 

further understanding the uncertainty of the data will enhance these applications and ensure 

suitable data is collected and ensure informed decisions are made. 

 

7.3 Recommendations 

There are several themes that run through the conclusions; these require both further 

academic research and engagement by the aerial laser scanning community. 
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The key areas for the focus of academic research are: 

 Investigate the characteristics of laser footprint interactions in simple and complex 

environments in order to better determine the factors controlling reflection. 

 Design and conduct an experiment that isolates the laser scanning system from its 

navigation components to investigate irregular point cloud spacing. 

 Investigate the processes behind the lack of verifiability within laser point clouds 

The laser scanning community should collaborate to build a standard way of working for the 

following: 

 A common convention on the comparison of laser point clouds such that two point 

clouds can be described in a similar way.  These should link to the mechanism of 

laser scanning.  Point density and point spacing are ill thought out and poor 

descriptors of point cloud resolution 

 Work towards a common mapping standard that directly relates the point cloud 

descriptors to minimum mapping unit, resolution and mapping scale. 

These recommendations are based upon the investigation and analysis work conducted in 

this study, the study has considered data from two major LiDAR system manufacturers and 

looked at simplifying complex forestry problems into simple shape investigations.   
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