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Abstract

In this thesis, I theoretically explore shear banding of entangled linear poly-

mer solutions and melts in large amplitude oscillatory shear strain (LAOStrain) and

stress (LAOStress) protocols. This work moves beyond that of Moorcroft and Field-

ing [32,135,136] who showed time-dependent shear banding in shear startup and step

stress protocols. These protocols are only transiently time-dependent. LAOStrain

and LAOStress have a sustained time-dependence. I consider the criteria derived

in [135] to predict the onset of shear banding in the transient material response for

shear startup and step stress, relative to the triggers of shear banding in LAOS-

train and LAOStress. I find that stability to the formation of shear banded flow in

the LAOS protocols can be understood - to a good approximation - by the known

triggers of shear banding in these simpler transiently time-dependent protocols.

I employ the Rolie-Poly (RP) model [110] to investigate the existence of shear

banding in LAOStrain and LAOStress over a wide range of imposed amplitudes

and frequencies. I find shear banding to occur in the alternance state (where time-

translational invariance is achieved), even in materials that are known to remain

homogeneous at the steady state.

For each protocol I consider the relative influence of the constraint-release stress

relaxation RP parameter β and entanglement number Z on the intensity of shear

banding across the phase space. I find significant shear banding to occur in both

LAOStrain and LAOStress for experimentally-realistic values of Z, both in materials

that shear band to steady state, and those that don’t. The main results of these

investigations are submitted for publication in the Journal of Rheology [24].

Finally, I consider the shortcomings of using a single-mode RP model when char-

acterising the full chain dynamics of entangled linear polymers in flow. I employ a

multimode approach and fit a power-law spectrum to experimental linear rheology

data and investigate time-dependent shear banding in the presence of higher-order

relaxation dynamics. For this, I use the simpler shear startup protocol and in-

vestigate the limits under which significant shear banding exists for well-entangled

polymers and discuss the possible importance of considering edge fracture as a mech-

anism for shear banding.
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1
Introduction

The term ‘rheology’ originates from the Greek word ‘rheos’ meaning ‘flow’. It is

the study of flow and deformations in matter. Whilst flow is a concept typically

associated in the study of fluid dynamics with simple liquids, rheology extends to

materials of more complex microstructure and more solid-like properties, encom-

passing ‘complex fluids’ or ‘soft materials’ materials such as polymers, emulsions,

foams and liquid crystals, amongst many others. These have mesoscopic substruc-

tures (such as entangled polymeric molecules or emulsion droplets, for example) that

dominate their rheological response to deformation in different flow protocols [104].

Viscoelastic materials exhibit both liquid-like viscous properties and solid-like elas-

tic properties. At short times, a viscoelastic material will respond elastically to an

applied strain, storing energy and recovering its original form from any imposed

deformation. On longer timescales the material will dissipate energy and relax its

internal microstructure.

1
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Many members of this class of Non-Newtonian fluids have been shown to be

unstable to the formation of shear banded flow at high enough flow rates. Shear

banding is a regime where two (or sometimes more [25]) co-existing macroscopic

banded regions of high and low shear rates form within the gradient direction of the

flow [14,26,45,61,63,119,139,140,165]. This gradient banding phenomenon resembles

a phase transition, as separate structures form in the flow following an onset to

instability. The instability to the formation of these banded macroscopic regions of

flow at the steady state occurs when the underlying constitutive curve of the material

is non-monotonic. This signature of the constitutive curve, where stress decreases

over a range of applied shear rates, was shown to be mechanically unstable to the

formation of shear bands in viscoelastic fluids [185]. However, the findings from

these two theoretical studies were not confirmed immediately in experiment. It was

not until the mid-90’s that shear banding was first visualised in NMR experiments

of a wormlike micellar solution under steady shear [22, 116–118] and until 2006 for

entangled polymeric fluids in step shear [181].

In the studies presented within this thesis, it is only this gradient-direction band-

ing that is considered. The possibility of vorticity banding - in an orthogonal direc-

tion - is discussed in [73, 139]. Shear bands form in a material in which a state of

initially homogeneous shear flow becomes unstable to the growth of heterogeneous

perturbations in the flow-gradient direction. They may be seen in a steady flowing

state or only during the initial startup of deformation [2, 134–136].

The occurrence of steady state shear banding has been well studied in a wide

range of complex materials. Theoretical calculations have largely been able to cap-

ture the dynamics of shear banding transitions in materials where steady state

shear banding has been seen in experiment. For example in wormlike micelles [16,

22, 77, 87, 104, 116–118, 160], carbopol gels [44, 46], emulsions [33], foams [154],

lamellar surfactant phases [161], triblock copolymers [15, 120], star polymers [158]

and, though subject to ongoing controversy, entangled linear polymer solutions and

melts [107,108,152,152,172,173,179,180]. Molecular dynamic simulations have also

shown steady state banding in long-chain polymers [23].

In more recent years, shear banding has also been seen to occur transiently during
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time-dependent flows. This occurs for materials with a monotonic underlying con-

stitutive curve and thus preclude shear banding at the steady state. This transient

shear banding has been experimentally seen in shear startup for entangled linear

polymers [19, 28, 88, 107, 152, 179, 180], star polymers [158], wormlike micelles [16],

carbopol microgels [44,46], clays [125], emulsions [33] and foams [154]; in step strain

of entangled linear polymers [7,16,17,57,181], and in step stress of entangled linear

polymers [18, 19, 85, 88, 173], wormlike micelle surfactants [16, 86, 87, 167], carbon

black suspensions [72] and carbopol microgels [43].

Whilst steady state shear banding has long been associated with the overshoot

in stress with strain rate in the underlying constitutive curve of the material [185],

it has more recently been suggested that transient shear banding occurs in the

shear startup protocol due to the stress overshoot in time (or strain, for fixed-

rate protocols) [2,65,92,121,123,134–136]. This has been experimentally confirmed

for polymeric fluids [19, 88, 151, 152], carbopol gels [44, 46] and laponite clay [125].

Reference [135] defined a fluid- and model-independent set of criteria for the onset

of shear banding in time dependent flows such as strain-controlled shear startup and

stress-controlled step stress protocols. In the step stress protocol, the corresponding

signature to the stress overshoot in strain for the onset to shear band formation in

strain-controlled protocols is the increasing, upward-curving shear-rate response to

imposed fixed stress amplitude. This has been seen in experiments for entangled

linear polymers [16,19,85,88,151,173], colloidal gels [72], carbopol microgel [43] and

wormlike micelle surfactants [86,87].

Recent studies have also considered edge fracture to be the trigger to these insta-

bilities in flow [85,107,108,164,171,179] and the discussion remains controversial. It

was suggested by Hu [85] that edge fracture - often considered to originate from the

imbalance between the second normal stress and surface tension of a given sample -

acted as a stress perturbation to the fluid surface, leading to shear band formation

across the sample. Indeed, ref. [85] contains a good overview of existing papers that

consider the influence of edge fracture on the presence of shear banding in entangled

polymeric fluids.

Li and McKenna [108] outline some of these outstanding issues within the shear
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banding community. They provide an overview of experimental and modelling pa-

pers that, for linear polymer solutions with similar entanglement numbers, shear

banding under constant controlled shear does not always exist. Indeed, they pre-

sented experimental evidence of the absence of shear banding during startup shear

in highly entangled (Z = 61) polymer solutions that had previously been reported

to do so elsewhere (ref. [152], Z = 27 − 40). Moreover, the only banding seen for

Z = 61 was for the highest imposed shear rate and only transient, despite the asser-

tion in [152] that transient shear banding occurred in insufficiently well entangled

systems.

Li et al. [107] found that, for a well entangled polymer solution, shear bands were

only seen for experiments where edge fracture effected the measurements. Moreover,

in ref. [108], it was suggested that it is in highly entangled polymeric solutions,

with strong elasticity and thus a relatively flat modulus plateau, that edge effects

become problematic and shear banding is prominent. It could therefore be suggested

that it is edge fracture that drives a shear banding instability during rheological

experimentation, though further investigations are still required in this area.

Although the inclusion of these effects would be an interesting study, the results

shown in this thesis are achieved through one-dimensional modelling techniques

where there are no free surfaces available for edge effects to be addresses. I there-

fore cannot numerically consider edge effects in the polymer systems. However, in

chapter 6, I revisit this on-going discussion on the origin of shear banding seen in

polymeric systems. Fitting a multimode version of the RP model to real polymer

data, I allow for heterogeneity and do not find any shear banding for the parameters

set directly by the data-fitting process. This could be argued to indicate the need

for further dynamics to be considered in the current modelling techniques used here

to capture existing experimental results.

It has more recently been suggested that long-lived transient shear bands have

been mistaken for steady state shear banding in soft glassy materials due to their

slower relaxation dynamics [63,134]. It has also been shown that steady state shear

banding can exist for materials with a monotonic constitutive curve provided there

is strong concentration coupling [34, 35, 67], though this dynamic is not considered
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in this thesis and is left for future studies. Other instabilities in the flow of complex

fluids have been suggested other than shear banding [58], including instability of

the interface between the shear banded regions [60, 138] or in the high shear band

itself [62], though these are not included in the focus of the studies presented here.

Whilst it has been shown that shear bands may develop transiently in time-

dependent flows, protocols such as shear startup, step strain and step stress have only

a transient time-dependence. In recent years there has been growing interest in the

rheological community for oscillatory shear protocols, in particular Large Amplitude

Oscillatory Shear Strain (LAOStrain) and Stress (LAOStress), where the nonlinear

materials effects in the flow of complex materials can be probed over a wide range of

imposed frequencies and amplitudes [39,51–55,89,90,106,137,155–157,172,187,189].

The notation here (where the second ‘S’ is dropped for clarity) is adopted from

[42] following convention in the communtiy. These oscillatory techniques have an

advantage over the simple protocols due to their time-dependent deformation: a

range of shear rates and stresses can be imposed gradually, using strain-controlled

or stress-controlled rheometers [12,130] rather than as a step signal [137]. A recent

review of complex materials in LAOS can be found in [90].

Oscillatory protocols have an inherit time-dependence that is sustained through-

out experimental measurement. It therefore follows from the evidence of shear band-

ing in time-dependent flows that shear banding might be expected to manifest in

time-dependent protocols where the flow is continuously changing with time. Oth-

erwise transient short-lived shear bands (in shear startup) may be captured by the

oscillatory flow, resulting in a persistent banded state throughout repeated oscil-

lations. However, this inherently time-dependent protocol has rarely been studied

from the viewpoint that heterogeneity may arise during deformation and thus allow

for the existence of shear banding to occur in the flow [90]. Early exceptions are

shown in [58,187,188] for a wormlike micelle surfactant model with a non-monotonic

constitutive curve. A study by Adams and Olmsted [4] considered this heteroge-

neous flow regime for an underlying monotonic constitutive. They found - through

numerical study - shear banding in LAOStrain.
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Indeed, shear banding in LAOS has since been experimentally observed in poly-

mer solutions [28,150,172] , dense colloids [30] and wormlike micelle surfactants [41,

77, 78, 187, 188] that are known to shear band in steady state. In chapters 4 and 5

I consider the strain-controlled and stress-controlled LAOS protocols and allow for

the possibility of shear banding. I find shear banding to be a prevalent feature for

both protocols, over a range of imposed amplitudes and frequencies, for materials

with non-monotonic and monotonic underlying constitutive curves.

Previous theoretical studies of the LAOS protocols have used a number of meth-

ods to interpret and quantify the nonlinear response data. Unlike in the small am-

plitude regime (SAOS) where response signals are sinusoidal and decomposable into

their viscous and elastic contribution functions (G′ and G′′, defined in chapter 2),

LAOS response signals are distorted, non-sinusoidal and thus more difficult to de-

compose into simple basis functions. In recent years, studies have focussed primarily

on strain-controlled LAOS when attempting to address this issue of interpretation.

These include quantifying the signal via whole waveform analysis, in the form of

Fourier transformations [182, 183], identifying measures for quantifying the elastic

representation (in strain) or viscous representation (in strain-rate) of the material

response [176], a decomposition of the signal into characteristic sine, square and

triangular wave prototypical response functions [94, 95], generalised stress decom-

position using symmetry arguments into elastic and viscous contributions [29] and

calculating Chebeyshev coefficients of these elastic and viscous contributions [52,53].

In many cases, this representation of data is a useful tool and enables sufficient inter-

pretation of the material response. Indeed, these mathematically-focused interpre-

tations are attractive to theoretical studies [137], particularly FT-Rheology, as it is

widely used by experimentalists. However a drawback of Fourier transform rheology

and other orthogonal basis functions is that the coefficients and higher harmonics

lack any physical meaning [38,101].

It was recently discussed in a series of papers by Rogers et al. (2011-2012) [155–

157], that these numerical interpretations of the physical material response do not

give a complete illustration and rather only provide the reader with a set of numbers
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in which to draw their conclusions and record information from. Moreover, it was

suggested that these ‘linear algebraic periodic techniques’ implicitly assume the per-

manent existence of basis states (an infinite set of sinusoidal waves, of which, higher

‘harmonics’ have not been given a physical interpretation) in the stress response

signal waveform. It is thus suggested that these numerical techniques are more

suited to the linear, sinusoidal responses, for which they were originally designed,

and function well. Rogers et al. suggested instead that LAOS stress responses could

be interpreted as a ‘sequence of physical processes’ [155–157]. In this approach,

sections of the waveform signal are taken separately. By doing this, the elastic and

viscous contributions can be considered almost independently. One complete stress

response cycle can be built up of regions of linear elastic solid-like behaviour, flow-

ing viscous behaviour, and nonlinear viscoelasticity. Connecting these signatures of

known material responses allows a natural illustration to the reader of the real phys-

ical material response to deformation. It is this physical approach to interpreting

LAOS response data that I adopt throughout this thesis.

In the studies presented within this thesis, I apply known results of time-dependent

shear banding in the flow of complex materials [135, 136] to the LAOStrain and

LAOStress protocols.

I find that in LAOStrain, low- and high-frequency regimes correspond to the

viscous- and elastically-dominated regimes of viscoelastic flow. Moreover, I find that

the criterion for instability to the formation of shear bands under shear startup [135]

applies - to a good approximation - in its viscous limit (where stability of the stress

response depends only on the rate of deformation) and in its elastic limit (where

stability is governed by material response to strain). Furthermore, I find that in

the material response to LAOStress, there exists a regime where the step stress

criterion [135] applies - again, to a good approximation - for predicting the onset of

shear banding in the flow. It is via these known criteria, and the ‘sequence of physical

processes’ interpretation of LAOS response data that I explore the existence of shear

banding in the oscillatory shearing of entangled polymeric solutions and melts.
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1.1 Layout of thesis

In the following chapter I define the theoretical rheology that underlies all linear

viscoelastic constitutive models used in the current literature. I describe the ori-

gins of the viscoelastic stress contribution in polymeric fluids and the tube model

for the dynamics of Rouse linear entangled polymers [47, 127]. I then introduce

the constitutive model I use throughout the studies in this thesis: the Rolie-Poly

model [110], the single-mode approximation to the full microscopic theory of entan-

gled linear polymers [75]. I introduce the mathematical and numerical techniques

I employ throughout my simulations and discuss the influence of cell geometry in

the rheometer during measurement. Finally, in chapter 3 I complete the introduc-

tory sections of my thesis by reproducing results for the existence of time-dependent

shear banding in the shear startup and step stress of polymeric flows. I then take

the first steps to understand the more complicated protocol of LAOS by using this

earlier work. I introduce a LAOS caricature of repeating, forward and backward

constant shearing to provide an initial insight into the prevalence of heterogeneous

flow in the inherently time-dependent full LAOStrain protocol.

Chapters 4 and 5 present my findings for shear banding in LAOStrain and

LAOStress flows, respectively. In each protocol, a combination of time-integrated

heterogenous perturbations to linearised equations and full nonlinear spatiotempo-

ral dynamics are used to explore the existence and time-dependent nature of any

resultant shear banded flow. For the LAOStrain and LAOStress protocol I have pro-

duced a phase diagram for the intensity of shear banding as a function of the number

of entanglements per polymer chain and convective constraint release mechanisms

in the flow. I find that shear banding exists in both the LAOStrain and LAOStress

protocols for sufficiently entangled polymers (within the experimentally-achievable

range of entanglements) in both materials with a non-monotonic and monotonic

underlying constitutive curve.

The main results of chapters 4 and 5 are accepted for publication to the Journal

of Rheology’s special edition on shear banding [24].
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In chapter 6 I extend the previous studies showing the theoretical existence for

steady state and transient shear band formation in the shear startup of polymeric

fluid and wormlike micellar flows [2, 4, 135, 136]. I use a form of the Rolie-Poly

model that is generalised to include a spectrum of relaxation times for the polymer

chain. This multimode approach attempts to capture the higher-order relaxation

dynamics of the full polymer chain [11, 13, 82, 147, 166,169]. I fit experimental data

for polyisoprene [10] to form a power law spectrum of τdn and Gn and discuss the

influence of the separation of the relaxation timescales on the prevalence of shear

banded flow during startup briefly considering the possible impact the inclusion

of edge fracture may have on the interpretation of results. As in the oscillatory

protocols, I build a phase diagram in entanglement number and the degree of con-

vective constraint release for the intensity of shear banded flow during shear startup.

Finally, in chapter 7 I conclude my findings and discuss the studies that would

further the research presented in this thesis. In all chapters, results are presented

through Grace [177] and gnuplot [184] plotting softwares.



2
Numerical procedures, rheological set-up

and the Rolie-Poly model

In this chapter I introduce the constitutive models that are used to describe the

rheology of entangled linear polymers. In particular, I introduce the Rolie-Poly

model [110]. This model is the coarse-grained approximation to the full GLaMM [75]

model, a tube-based [47,48,127] constitutive model shown to capture the linear and

nonlinear rheology of entangled linear polymer solutions and melts [31, 79,113].

I then consider the numerical tools required to undertake the theoretical studies

presented throughout this thesis. I describe linear stability analysis as a tool to

interpret the susceptibility of a given fluid to the formation of shear bands under

imposed deformation in any given flow regime. This process involves adding small

heterogeneous perturbations to an initially homogeneous base state and linearising

the resultant constitutive equations to form a set of linear equations governed by a

10
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time-dependent stability matrix.

Finally, I will discuss the effect of different commonly-used geometries of a

rheometer cell. Specifically, I introduce a toy method to approximate a weakly

curved geometry such as that found in a rheometer cell of concentric cylinders with

a narrow gap between them [69]. I discuss the effects of the resultant stress gradients

within the flow as a trigger to the onset of shear band formation. I also consider

the addition of random noise as an alternative seed to trigger shear banding. This

serves as an approximation to the resultant heterogeneous perturbations arising in

the material, e.g. during experimental sample preparation or due to mechanical

noise in feedback-controlled flow protocols.

2.1 Rheology: the relationship between stress and

strain

Rheometers are widely used to characterise the deformation and flow properties

of materials [12, 50, 56, 59, 102, 130, 176]. For example, by applying a deformation

across a sample of material, the rheometer can measure the viscosity and the complex

modulus of the material (defined below), amongst other relevant properties. Before

I describe the geometry in which the polymeric fluids are modelled in the theoretical

studies of this thesis, I first explore the origin of stress in an entangled polymeric fluid

and discuss the underlying ideas underpinning the rheological constitutive models

used in the literature [98,99].

2.1.1 Viscoelasticity and Linear Rheology

Polymeric fluids are a subset of a wider class of complex viscoelastic materials.

These materials have a time-dependent response to deformation: at short times,

they show elastic-like behaviour, approximately obeying Hooke’s law for linear elas-

tic solids. At long times, their response to deformation is viscous-like, and they flow

as a Newtonian fluid of viscosity η. These behaviours differ fundamentally as elastic

responses are reversible: the energy expended during deformation is stored, and can
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be regained by reversing the deformation. Conversely, viscous responses dissipate

energy during deformation and material distortions are permanent. A viscoelastic

material, such as a polymeric fluid, exhibits a time-dependent response to defor-

mation that spans both of these respective limiting behaviours at short and long

timescales with a continuous crossover in-between.

In the limit of small deformations, a viscoelastic fluid has a linear relationship

between its deformation history and its current shear stress:

σ(t) =

∫ t

−∞
G(t− t′)γ̇(t′)dt, (2.1)

where γ̇(t) is the rate at which deformation is applied and G(t) is the relaxation

modulus of the material. Using small amplitude oscillatory shear (SAOS) rheology

techniques (where γ̇(t) is a small amplitude sinusoidal wave) the underlying linear

rheology of the material can be assessed. For imposed SAOS with frequency ω, equa-

tion 2.1 leads to the definition of the complex modulus (via a change of integration

variable):

G∗(ω) = iω

∫ ∞
0

e−iωtG(t)dt (2.2)

= G′(ω) +G′′(ω), (2.3)

which, for viscoelastic materials, is a function of ω. G′(ω) and G′′(ω) are known

as the storage (or elastic) and loss (or dissipative) moduli respectively. It follows

that G′(ω) dominates when the material responds elastically to deformations (as-

sociated with short relaxation timescales the in viscoelastic fluid compared with

the timescale 2π/ω of deforamtion) and G′′(ω) dominates for viscous (long-time)

fluid-like behaviours. G′(ω) and G′′(ω) for the Maxwell model (a simple viscoelastic

model with associated relaxation modulus G and timescale τ) are plotted in fig-

ure 2.1. For a Maxwell model with relaxation modulus G any shear stress will relax

as

G(t) = Ge−t/τ (2.4)

The crossover point at G′(ω) = G′′(ω) defines the characteristic relaxation time
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Figure 2.1: Linear rheology, crossover at characteristic relaxation time, and intrinsic
timescale to the polymer ω = 1/τ , G = τ = 1.

of the material, τ . This is an intrinsic timescale to the material response to any

imposed deformation. Indeed, it follows from equation 2.2 that G′(ω) and G′′(ω)

satisfy:

G′(ω) = G
ω2τ 2

1 + ω2τ 2
, (2.5)

G′′(ω) = G
ωτ

1 + ω2τ 2
, (2.6)

and G′(ω) = G′′(ω) occurs at ω = 1/τ .

In entangled polymeric fluids, the entanglement points formed around a single

chain by surrounding polymers may be modelled as a smooth continuous tube of

confinement. τ = τd is defined on the microscopic scale as the time required for an

entangled polymer to relax all its initial stresses and orientational constraints via

longitudinal movement along its own length, called ‘reptation’ [36]. This assumes

that interactions between polymer chains become dominant for chains that are suf-

ficiently long and entangled and forms part of the tube model [36,47,48], defined in

greater detail in section 2.6.

Throughout this thesis I primarily use a single-mode constitutive model with one

characteristic timescale for the polymer τd (and corresponding modulus G). To non-

dimensionalise calculations, I chose time and modulus units τd and G such that τd =

G = 1, unless stated otherwise. However, in chapter 6 I use a multimode approach.
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This uses a combination of characteristic timescales to capture the higher order

dynamics of the polymer chain and is required to fully characterise a material [75].

A relaxation spectrum of τdn and Gn for each nth mode of a total of N modes is

formed. Equation 2.4 therefore becomes a summation of N modes each contributing

to the relaxation spectrum in linear rheology:

G(t) =
N∑
n

Gne
−t/τdn . (2.7)

Details of how a relaxation spectrum is defined relative to experimental SAOS data

using the linear theory of polymer dynamics [75,111] are described in chapter 6.

2.2 Molecular modelling of polymer dynamics

A linear polymer chain consisting of N monomers can be coarse-grained and mod-

elled by subchains of NR+1 spherical beads joined by NR springs. This is the Rouse

model and describes the rheology of isolated, unentangled linear polymer chains and

is defined in full in reference [47]. It provides the underlying relaxation time used

in the Doi-Edwards (DE) [47] tube model for entangled polymers. It is this class

of polymeric material, where the entanglement (due to the overlapping of chains)

dominates the material response in flow that is studied in this thesis. In particular, I

focus on the constitutive model based on the DE model: the Rolie-Poly model [110],

a single-mode approximation of the GLaMM model [75] which includes the multi-

ple relaxation time dynamics of the entangled network of polymer chains. This is

defined in section 2.6.

2.2.1 Force balance and fluid incompressibility

In general, the stress in any complex fluid can be decomposed into viscoelastic and

Newtonian solvent contributions, plus an isotropic pressure. This takes the general

form, for the viscoelastic conformation tensor σ of:

Σ = G(σ − I) + 2ηD − pI. (2.8)
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Here p quantifies the pressure, determined from the condition that the flow is incom-

pressible, i.e. ∇ · v = 0. D = 1
2
(K + KT ) where Kαβ = ∂αvβ, the velocity gradient

tensor. G is the elastic modulus for the viscoelastic structure. This is a material

property found from linear rheology on the material and, as noted above, is set to

G = 1 (unless stated otherwise) throughout this thesis. The expression G(σ − I)

defines the viscoelastic stress contribution from the material substructure, defined

to relax to I at rest. η defines the Newtonian solvent viscosity.

Polymeric stress For polymers, this viscoelastic contribution to the stress is

denoted here as σp. For a cube element of side-length L, the polymeric stress

component originates from polymeric chains within the cube: for a surface of the

cube element, with normal â and area L2, a section of polymer chain cutting through

that surface carries a force (F ) across it. This is calculated relative to the number

of polymer chains in the cube and the probability (r/L) that one chain section will

cross the surface in question and summed over all the modes in the chain. This gives

rise to an associated (polymer) stress such that

σαa =
1

L3

∑
chains,n

〈rnαFnα〉 . (2.9)

Fn is a function of local chain configuration and is defined by the force-extension

law of a Gaussian chain [127]. In the continuous limit, where the polymer chain is

integrated along the contour variable s, the viscoelastic stress becomes:

σαβ =
c

N

3kBT

b2

∫ N

0

〈
∂Rα

∂s

∂Rβ

∂s

〉
ds (2.10)

where c/N is the polymer concentration and the polymer chain contour variable

varies from 0 to N [133].

Solvent contribution The origin of η may indeed be a solvent present in the ma-

terial solution or used to encompass all the fast dynamics of the polymer chains (or
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Figure 2.2: The shear stress response to applied strain: constant velocity v is applied
in the x̂ direction, resulting in a shear rate γ̇ across the cell in the flow-gradient ŷ
direction. The plates are positioned at y = 0, L. This is the ‘shearing cell’ referred
to throughout this thesis. Reprinted with permission of R.L.Cooke [32].

other complex structures in other materials) by assuming they relax on an infinitely

fast timescale. Based on a survey of the experimental data, a range of 10−7 to 10−3

for η (in units such that G = τd = 1) is suggested [74]. Reference [6] suggests that

values of η < 10−5 are unfeasible to explore numerically due to a resulting large sep-

aration of timescales between τd and η/G. In the studies presented in this thesis, I

use η ranging between 10−4 and 10−5 as used in references [5,135,135] that preceded

this work on shear banding in the RP model.

In the experimental regimes studied within this thesis, the viscous and viscoelas-

tic forces in the flow are usually far greater than the inertial forces, This results in

a very small Reynolds number: Re = inertial forces/viscous forces � 1. It follows

that the creeping flow limit (Re → 0) is used throughout my work. Moreover, this

limit leads to the following force balance equation:

∇ · Σ = ∇ ·
[
G(σ − I) + 2ηD − pI

]
= 0 (2.11)

2.2.2 The Rheometer cell

The rheological properties of materials can be measured experimentally using a

rheometer [176]. Typically, a sample of material is sandwiched between two plates

of some geometry and strain is applied by moving the plates relative to each other.

Common geometries include the cylindrical Couette cell with a narrow gap and

the cone and plate with a narrow angle. These are all discussed in greater detail
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later within this chapter in section 2.5. Here I describe the idealised geometry of

two infinitely long parallel plates separated by some finite distance, L. The material

sample within the cell is assumed not to experience edge effects. I define the x̂, ŷ and

ẑ as the velocity, flow-gradient and vorticity directions respectively (shown in figure

2.2). It is assumed throughout the calculations in the studies presented within this

thesis that spatial structures (due to shear banding instabilities) only form in the

flow gradient direction; translation invariance is imposed in the velocity and vorticity

directions. During a protocol, the bottom plate at y = 0 remains stationary whilst

the top plate at y = L moves with some velocity, V x̂. This imposes a shear rate

across the cell which is defined for y ∈ {0, L} as:

γ̇ =
V

L
. (2.12)

and the velocity gradient tensor K
ij

= ∂ui
∂xj

. For shear flow:

K =


0 0 0

γ̇ 0 0

0 0 0

 . (2.13)

It thus follows that for the shear component of the stress, equation 2.8 becomes

Σxy = Gσxy + ηγ̇ (2.14)

Moreover, it follows from the condition in equation 2.11 that

∂yΣxy = 0. (2.15)

2.3 Nonlinear Rheology

In section 2.1.1 above, I have only considered linear rheology which holds for only

relatively small deformation rates. Once the rate of deformation increases beyond

the linear regime, that is, at rates faster than the intrinsic characteristic relaxation

timescale of the material, nonlinear material behaviours dominate and the response
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to deformation is no longer independent of the rate at which it is applied. It is

within this nonlinear regime that forms the focus of the studies within this thesis.

The nonlinear regime of a viscoelastic material’s response to deformation is de-

pendent on the rate of deformation, the history of the material behaviour (for ex-

ample, to previous deformation) and the geometry under which the deformation is

applied. Material behaviour to nonlinear deformation rates is often very different

than in the linear regime and thus nonlinear rheology has the ability to explore

further behaviours and dynamics of complex materials. For shear rates larger than

the inverse characteristic relaxation time of the material, the nonlinear shear stress

response with increasing shear rate no longer maintains a constant gradient (as in

Newtonian flow). Non-Newtonian fluids may (for example) have decreased viscosity

when deformed (shear thinning fluid), increase their viscosity with increased defor-

mation rate (shear thickening fluid) or require a finite yield stress to be attained

before beginning to flow (yield stress fluid).

2.3.1 The underlying constitutive curve and flow curve

The underlying constitutive curve of a material is one way to view the material linear

and nonlinear behaviours over a wide range of imposed shear rates. In a theoreti-

cal study, a constitutive curve is built up through recording the steady state shear

stress of the material in a system that is constrained to be spatially homogeneous.

The experimental counterpart of the constitutive curve is the material flow curve,

again formed by the steady state stress recorded at the terminal time of a series

of startup experiments. The difference in these curves was markedly different in

the original Doi-Edwards theory as the constitutive curve showed a (physically im-

possible) non-monotonic relationship in Σ(γ̇). It was predicted that homogeneous

flow was unstable in the negatively-sloping regime of the underlying constitutive

curve [185]. This instability formed two co-existing localised macroscopic regions

of flow with different shear rates, separated by an interface region [168]. These are

known as “shear bands”. Figure 2.3(a) shows a schematic of this response. The

corresponding non-monotonic constitutive curve can be seen in figure 2.3(b). Later

additions to the DE model such as chain stretch and convective constraint release
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Figure 2.3: Left:The homogeneously-constrained constitutive curve of the material
(the ‘s’ shape), combined with the heterogeneous flow curve (made up of the thick
lines on the stable lower and upper branches of the constitutive curve and the
dashed plateau bridging the two). The values of the coexisting shear rates in the
shear banded region (γ̇l, γ̇h) are marked, as well as the stress maximum, minimum
and plateau values. Right: The corresponding shear banded flow profile within
the shearing cell as defined in figure 2.2. Spatial invariance is assumed in the x̂
and ẑ directions. Heterogeneity is allowed in the flow-gradient ŷ direction such that

γ̇ = γ̇(y, t) = ∂v
∂y

. Shear bands form with two coexisting shear rates γ̇l and γ̇h which

spatially average to the ‘global’ shear rate ¯̇γ = 1
L

∫ L
0
γ̇(y, t)dy. Images reprinted with

permission of R.L.Cooke [32].

(defined later) removed the unstable non-monotonic region of the constitutive curve

and thus precluded the possibility of shear banding at the steady state.

The thick black lines of figure 2.3 mark the high and low viscosity branches of

the constitutive curve. Here, the material is experiencing deformation rates within

the linear regime (γ̇ → /τd, rates approaching the intrinsic relaxation time of the

material) or is comparable to the solvent viscosity (γ̇ � 1/η). Within these regimes,

the material is stable to the formation of shear bands.

The non-monotonic region of the constitutive curve (where stress is decreasing

with increasing shear rate) is marked in figure 2.3(a) by the long-dashed black line.

Within this region a state of initially homogeneous flow is linearly unstable to the

formation of shear banded flow in the steady state. The short-dashed line marks

the plateau-region of the curve formed when spatial heterogeneity is accounted for

and shear banded flow is measured at the steady state. This plateau region is the

material response seen in practice in the steady state, unlike the non-monotonic

nature of the underlying constitutive curve. The resultant monotonic curve (formed

by joining the plateau region to the high and low viscosity branches of the linear
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regimes) can be recorded in experiment and constitutes the aforementioned flow

curve of the material at the steady state. The points at which the plateau region

(defined for Σ = Σp) cross the constitutive curve mark the high and low shear rates

that pertain in the co-existing shear bands in the steady state flow, γ̇h and γ̇l as

shown in figure 2.3(b). Within this plateau, an imposed ¯̇γ such that γ̇l < ¯̇γ < γ̇h

leads to shear banded flow, where the proportions of the flow with γ̇h and γ̇l follow

the lever rule: ¯̇γ = αγ̇l + (1−α)γ̇h, where α is the fraction of the cell dominated by

the low shear rate band and the ¯̇γ recorded on the Σ(¯̇γ) flow curve is the spatially-

average ‘global’ shear rate ¯̇γ = 1
L

∫ L
0
γ̇(y, t)dy.

Finally, the thin-solid black lines of the constitutive curve in figure 2.3(a) indi-

cate the regions of metastability to shear banding. These regions fall between the

onset (and exit) of the plateau region of the constitutive curve and the local stress

maximum (Σmax) and minimum (Σmin) that bound the negatively-sloping region of

the curve. Consider instead the transit of the Σ(γ̇) curve by a slow upward γ̇ sweep.

On the approach to Σmax for increasing γ̇, the material does not experience linear

instability to the formation of shear bands until the negatively-sloping region of the

constitutive curve is reached, i.e. once the curve satisfies ∂Σ/∂γ̇ < 0. The shear

stress response to an upward γ̇ sweep would follow the solid lines of the constitutive

curve until the material becomes unstable to the formation of shear bands and the

stress response drops down to the plateau with Σ = Σp. The stress remains at Σp as

γ̇ continues to increase until the low-viscosity branch of the curve is met. However,

if the sweeping were reversed and the curve was now traversed by a downward γ̇

sweep, the same path would not be traced back [76]. Once already in the shear

banded form (within the plateau region where Σ = Σp) the material does not in-

crease its stress (to ∼ Σmax) as γ̇m is approached (from the right, in figure 2.3).

The plateau extends to the linear high-viscosity branch at low γ̇. This difference in

Σ(γ̇) pathway for upward and downward γ̇ sweeps creates a hysteresis loop in the

combined - increasing and decreasing - stress response. This hysteresis behaviour is

not unique to the direction and would indeed be seen if the γ̇ sweep directions were

reversed, starting with an initial downward sweep from large γ̇ and Σ. Experiments

have visualised this hysteresis in shear-rate sweep tests [76,105].



2.3. Nonlinear Rheology 21

Numerically allowing for heterogeneous flow

When shear banded flow forms due to spatial heterogeneity, the viscoelastic (or

polymer) shear stress σ (= σxy, where the subscript is dropped from here for clarity)

and the shear rate γ̇ may vary with space (y). However, the total shear stress

Σ (= Σxy) remains constant. It is this force balance equation that is employed

during numerical simulations to calculate the spatially-dependent quantities as the

governing constitutive equations are evolved during an applied protocol.

In the original constitutive models based on the tube theory, only local terms

were included. These evolved the equations to describe the material dynamics with

respect to time, but did not account for any non-local diffusive behaviour. Without

these additional terms, shear banding is an unphysical concept. The existence of

two banded regions of flow, shearing at different rates whilst at a common, uniform

stress, leads to a strongly inhomogeneous interface between the bands [115]. Consti-

tutive models were therefore amended to include non-local diffusive terms to allow

for this transition to a heterogeneous flow profile. This was first attempted in models

for wormlike-micelles, where shear banding was first seen in experiment [22]. Refer-

ence [168] used numerical methods to compute the formation, width and interface

position across cell for two co-existing shear bands when the constitutive equations

allowed for inhomogeneity in the material. References [114, 148, 186] added a diffu-

sion term to the Johnson-Segalman model (forming the dJS model) to study shear

banding. The interface between the co-existing shear bands was given a finite width

set much smaller than the cell width (L). This finite width in the flow of polymeric

fluids is defined in one example to originate from Brownian dynamics of the polymer

chains within the flow, moving back and forth across the interface region [148].

For a general constitutive model, viscoelastic dynamical variables can be defined

by a vector s = (σ, σxx, σyy, . . .)
T . For a projection vector p = (1, 0, 0, . . .), the

total shear stress defined in equation 2.14 can instead be written Σxy = Gp ·s(y, t)+

ηγ̇(y, t). Moreover, when modelling the dynamics of a complex material, a general
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governing constitutive equation can be defined:

∂ts = Q(s, γ̇), (2.16)

where Q is a function specific to the constitutive model. A general diffusive term

can then be added to this equation:

∂ts = Q(s, γ̇) +D∇2s. (2.17)

where D = l2τ0 is a diffusion constant, defined for a microscopic timescale τ0 and

where l� L defines the width of the interface.

This is included in the studies presented in this thesis for the RP model as

the mechanism for the emergence of shear banded flow. To numerically perform

these simulations on entangled polymer solutions I employ computational numerical

methods. In Appendix 2.7, I outline these in detail, though they originate from

Ref. [146] and [145].

Aside: calculation of Z

I present a short aside here on a potential confusion in the literature about the

calculation of the entanglement number Z between theoretical and experimental

studies. The original tube theory from which most constitutive models are derived,

defines [47]:

τd = 3ZτR = 3Z3τe,

τR = Z2τe.

However, this is a approximation from the linear theory. The full version, as derived

by Likhtman and McLeish in ref. [111] is defined by the two functions:

τdf (Z)/τ
(0)
d (Z) = 1− 2C1√

Z
+
C2

Z
+

C3

Z3/2
,

G̃f (Z) = 1− C1√
Z

+
C4

Z
+

C5

Z3/2
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where τ
(0)
d (Z) is the reptation or disentanglement time as denoted by τd throughout

this thesis and τdf (Z) and G̃f (Z) are renormalisations of a dimensionless plateau

modulus and reptation time due to contour length fluctuations. Constants C1 to C5

are found via data fitting over a wide range of Z values.

It therefore follows from these higher order correction terms to the calculation of

τd, that the separation between τd and τR as defined in the RP model (and the tube

theory more generally) is reduced. However, as Z becomes large, these correction

terms become less important. Table 2.1 gives an illustrative example of this.

Zexperiment Ratio τd/τR|linear theory Ratio τd/τR|thesis
6 3.77 18.0
48 85.59 144.0
96 200.68 288.0
144 322.44 432.0
192 447.67 576.0
240 575.12 720.0

Table 2.1: The difference between the calculated versions of τd and τR showing the
decreased influence of the corrective terms as Z is increased.

It was also discussed in [100] that τe was defined in [47] as the Rouse relaxation

time of a chain of length equal to one tube segment. In [132], however, τe is defined

as the Rouse time of one entanglement segment (with molecular weight Me) giving

τR =
(4

5

)2
Z2τe.

Moreover, for both these definitions, the entanglement number Z 6= M/Me, rather

Z = 5
4
M
Me

. It is in reference [59] that indeed Z = M
Me

as used throughout this thesis

and in references [27, 165]. In reference [59] the entanglement molecular weight is

scaled by 4
5

to account for reduced stress in the tube model due to the ‘sliding of

chains’. This dynamic is restricted for a cross-linked classical rubber on which the

other definitions of Me are derived from [100]. Reference [111] deduced that the

1
5
-difference in the values was accounted for in the Doi-Edwards theory by the stress

stored in the tubes of confinement after deformation is relaxed along its length.
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However, it is possible that this difference of 20% in the value of Z may account for

differences in the values of Z for which shear banding is seen experimentally (where

Z is a material property defined by measured M and Me) and for what is predicted

theoretically (where Z is a ratio of relaxation times τd and τR). An example of such

differences in opinion between experimental data and theoretical prediction over

polymer entanglement in reference [3], though this dispute goes beyond the slight

scaling issue in defining Z discussed here.

This discrepancy is not discussed further in this thesis, but is perhaps of interest

when comparing further theoretical and experimental data for entangled polymeric

fluids.
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2.4 Linear stability analysis

A linear stability analysis of a constitutive model assesses the response of a par-

ticular initial flow state of the fluid to an externally imposed infinitesimally small

perturbation [60]. These perturbations may arise from thermal or mechanical noise

during an experiment or from cell curvature and are added numerically to the the-

oretical studies presented here. As the dynamical quantity is evolved through the

constitutive equations, the added perturbations to the system will either die away,

or grow, exponentially, with time while in the linear regime. The former indicates

a stable state of the system, whilst exponential growth in perturbations reveals in-

stability of the initial flow state.

Following the introduction of a generalised governing constitutive equation defined

in eq. 2.16, I define the homogeneous base state ŝ(t) of the material such that ho-

mogeneity is artificially enforced in the flow

Σ̂(t) = Gp · ŝ(t) + ηˆ̇γ, (2.18)

∂tŝ = Q(ŝ, ˆ̇γ) +D∇2ŝ, (2.19)

where ŝ is a vector containing the dynamical variables from the model-specific consti-

tutive equations. The diffusive term D∇2ŝ is neglected in the following calculations

as the wavelength of perturbations of interest here are � l. Indeed, the contribu-

tion of the diffusive term to the resultant linear perturbation equations is weakly

negative, thus a suppressant force on perturbation growth. Linear instability to het-

erogeneous perturbation growth is therefore not masked by neglecting this diffusive

term.

Infinitesimally-small perturbations (δsn, δγ̇n), decomposed into Fourier modes,

are added to a stable (well relaxed and at rest) base state (ŝ(y, t), γ̇(y, t)):

Σ̂(y, t) = Σ̂(t), (2.20)

ŝ(y, t) = ŝ(t) +
∞∑
n=1

δsn(t) cos(
nπy

L
), (2.21)

γ̇(y, t) = ˆ̇γ(t) +
∞∑
n=1

δγ̇n(t) cos(
nπy

L
). (2.22)
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Note here that no perturbation is added to the total stress (δΣ̂ = 0) as the shear

stress is uniform across the flow cell.

Expanding in terms of the small heterogeneous perturbations to the homogeneous

base state:

∂t(s+ δs]) = Q(ŝ+ δs, ˆ̇γ + δγ̇) (2.23)

= Q(ŝ, ˆ̇γ) + ∂sQ(ŝ, ˆ̇γ)δs+ ∂γ̇Q(ŝ, ˆ̇γ)δγ̇ +O(δ2) (2.24)

then neglect terms that are higher than the first order and subtract the base state:

∂tδŝ = ∂sQ(ŝ, ˆ̇γ)δs+ ∂γ̇Q(ŝ, ˆ̇γ)δγ̇. (2.25)

Adding perturbations to equation 2.19:

Σ̂(t) + 0 = Gp · (ŝ+ δs) + η(ˆ̇γ + δγ̇), (2.26)

linearising and subtracting the base state leaves:

0 = Gp · δs+ ηδγ̇ (2.27)

δγ̇ = −G
η
p · δs (2.28)

This leaves linearised equations to enable the prediction of the onset of instability

to the formation of shear banded flow in a polymeric material. Combining equa-

tions 2.25 and 2.28 gives

∂tδs =

(
M(t)− G

η
qp

)
· δs, (2.29)

where M(t) = ∂sQ|ŝ,ˆ̇γ, and q = ∂γ̇Q|ŝ,ˆ̇γ. P (t) is defined as the time-dependent

stability matrix:

P (t) =

(
M(t)− G

η
qp

)
. (2.30)

The solution of equation 2.29 necessitates finding the eigenvalue of the stability

matrix P (t) on the right-hand side of the equation: for the eigenvalue solution λ,
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heterogeneous perturbations will grow - and thus lead instability and growth of shear

banded flow - when λ > 0. Positive eigenvalues found from linear stability analysis

indicate the onset of instability in the material and to the formation of shear banded

flow.

There are a number of eigenvalues of the stability matrix. It follows from equa-

tion 2.29 that just one positive eigenvalue (λn > 0) facilitates exponential perturba-

tion growth and material instability to shear banding, however, it is required that all

λn < 0 for stability in the material flow. This was stated (and shown) in Ref. [32].

Time-dependent stability In classical stability theory, the use of linear stability

analysis to predict the onset of unstable dynamics depends upon a time-independent

base state [170]. This is not the case for the constitutive models used in the studies

presented here. Moreover, the stability matrix within the dynamical equation is

itself time-dependent. Thus material stability due to the positivity of the eigenvalue

and the subsequent growth of the heterogeneous perturbations within the linearised

system are only considered at any one precise instant in time. Taking the most pos-

itive eigenvalue for each numerical timestep gives a good indication of whether the

material is stable, or unstable, at that instant to the growth of heterogeneous per-

turbations. A negative eigenvalue only predicts the decay of perturbations when the

respective eigenvectors of the stability matrix are orthogonal [141]. When consider-

ing a time-dependent system this may not be the case and I therefore check these

during simulations by numerically integrating the time-dependent perturbations to

the linearised system. Whilst a positive eigenvalue is sufficient for perturbation

growth, a negative eigenvalue does not guarantee stability. The system may expe-

rience transient or non-normal growth in the perturbations, however, I follow the

work of reference [32] and neglect the possibility of any significant heterogeneous

behaviour due to these undesired perturbations.

Breakdown of the linear limit The linear stability analysis of the governing

constitutive dynamical equations described here can only accurately predict the

growth of heterogeneity (in a full nonlinear system where full spatial-temporal dy-

namics are employed) when the growth of perturbations is small. At larger material
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heterogeneity, the higher order terms (that were dismissed upon linearisation of the

homogeneous equations) would become important; it is therefore here that this ap-

proximation breaks down.
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2.5 Geometries

Figure 2.4: Parallel plate, cone-and-plate and Couette rheometer geometries.
Reprinted with permission of E. J. Hemingway [80].

In section 2.2.2 I defined the parallel plate cell geometry. This is shown in

diagram (a) of figure 2.4. Rheological experiments are also performed in other

geometries such as cone-and-plate (diagram (b)) and Couette - or concentric cylinder

- flow (diagram (c)), amongst others. In any of these geometries, the material sample

is placed between two plates and deformation is applied across the sample. Typically

one plate is held stationary while the other moves with some imposed velocity (or

rate of rotation).

Rheometers impose deformation to the sample within the geometry via a strain-

controlled (where stress response is measured) or stress-controlled (where strain

response is measured) protocol. A comparison of these protocols and the two types

of rheometers for large amplitude oscillatory shear (LAOS) is discussed in references

[12,130].

In this section I introduce the addition of toy curvature stress gradients to a

simple parallel plate geometry to capture the curvature imposed on a flow within a

Couette device. Whilst it is possible to perform numerical calculations for a curved

geometry, this simple approximation to the geometry could, and indeed has been,

used to describe the physical effects of the curved geometries whilst remaining sim-

ple to implement in numerical practice [69]. In the majority of the work in this

thesis I use this toy-approximation to curvature.

This toy curvature approximation is defined as follows:

Considering a Couette flow between two concentric cylinders of radii R1 and R2,
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the curvature between the cylinders can be parameterised by q = ln R2

R1
[5]. That

is, for smaller q, the geometry is less curved (or equivalently, larger q results in a

larger cell curvature). The choice of values for q in this thesis are an approximate

value based on the arguments used in reference [5]: in the paper, values of 2× 10−3

and 2 × 10−4 are used and noted to be consistent with reported stress gradients in

experimental literature.

To approximate the effect of this curvature in a simple, planar cell, a biasing

stress gradient is added in the y-direction, modifying the force balance equation.

This bias is added alongside the addition of heterogeneous perturbations (δsn, δγ̇n)

in linear stability analysis, as described in section 2.4. Equation 2.26 becomes:

Σ̂(t)(1 + qh(y)) = Gp · (ŝ+ δs) + η(ˆ̇γ + δγ̇), (2.31)

where h(y) =
∑

k hk cos(ky). It is assumed here that hk 6= 0 only for k = π
L

(i.e.

curvature only effects the lowest mode across the cell). This adds a curvature term

to the right-hand side of equation 2.29, which becomes:

∂tδs =

(
M(t)− G

η
qp

)
· δs+

qhkΣ(t)

η
q. (2.32)

where, as before, M(t) = ∂sQ|ŝ,ˆ̇γ, q = ∂γ̇Q|ŝ,ˆ̇γ and the scalar q defines the magnitude

of toy curvature added as a stress gradient to the planar cell. Note that the scalar

q (for curvature) and vector q are distinct quantities.

Toy curvature adds spatial variation to the material stress within the flow cell,

enabling the assessment of the emergence of any shear band formation during mea-

surement. It is a constant stress gradient (in time) and does not account for any

mechanical noise (caused during initialisation, or imperfections in the measurement

environment in the duration of the protocol) that may add random (Brownian-like)

heterogeneous kicks to the material and also play a role in triggering shear banding

instabilities [76]. This is perhaps a shortcoming of solely using toy curvature as a

seed for heterogeneity in the constitutive model, however I found that adding noise

or imposing toy curvature had qualitatively the same effects. I found the addition

of random perturbations in the LAOS protocol resulted in a noisy oscillatory sig-
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nal. I therefore favour the toy curvature approach throughout the LAOS studies in

this thesis. In chapter 6 I revisit the shear startup protocol and employ noise (in

the form of continuous random perturbations) in order to compare my results with

previous simulations [32]. I therefore define random noise as a seed to heterogeneity

in the same form as in reference [32]:

Random initial condition A random number from distribution between −0.5

and 0.5 is drawn each time the addition of noise is added to the numerical system.

In the case of the addition of noise solely upon initialisation:

s(y, t = 0) = qX cos(πy/L). (2.33)

An infinitesimally small kick δsk = qX where q here is the magnitude of the imposed

noise and X is the distribution of random numbers between −0.5 and +0.5. This

seeds an initial spatial heterogeneity in the material sample and is left to evolve

(leading to growth or decay) as governed by the constitutive equations.

Continuous random noise Alternatively, randomly noise may be added every

numerical timestep. Here,

s(y, t+ dt) = s(y, t) + q
√
dtX cos(πy/L), (2.34)

where again q defines the noise magnitude, X is the distribution of random num-

bers between −0.5 and +0.5. It is this approximation of mechanical noise that is

employed in the numerics of chapter 6.

Aside: mistaken shear banding for strong stress gradients

The imposition of a stress gradient onto the flow may cause smooth, bowed velocity

profile signatures. Indeed, for a high stress gradient, these have been mistaken

for shear banded profiles [4, 152].This confusion of these smooth bowed profiles is

born of the wider range of shear rates available to the material with the imposed

stress gradient and does not correspond to the formation of distinct regions of shear
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banded flow [4]. Larger curvature in the rheometer cell affects the plateau-like region

of the material flow-curve: otherwise weakly-increasing slopes (within the plateau-

like region) of the monotonic flow curve may become steeper with an increased stress

gradient across the cell [4]. Steady state stress values for imposed shear rates within

the weakly increasing plateau-like region of the flow curve may be slightly higher or

lower than expected from a flat cell. It is here that the steady state velocity profiles

are bowed due to curvature-imposed stress gradients, not shear banded.

Throughout the studies carried out within this thesis I found the imposition of

toy cell curvature to the nonlinear flows required an additional caveat to account for

the effect of curvature when assessing the significance of heterogeneity that formed

in the resultant flow. As a precaution to this, I accounted for the influence of cell

curvature by defining regions of significant shear banding in the flow to also satisfy

δσ/G > q, i.e. the growth in heterogeneous perturbations to the polymer shear

stress component of the linearised equations must exceed the curvature ratio of the

cell.
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2.6 Rolie-Poly model

In section 2.2 the Rouse model for studying the dynamics of a polymer chain was

briefly introduced. In this section I describe a constitutive model based on the tube

theory [36, 48, 127] where a polymer - a chain of repeating monomer units - is de-

scribed by its primitive path. This describes the shortest path from the end-to-end

of the polymer chain with the same topology of the tube. The original chain may

therefore be much longer than the primitive path if it were to be pulled out to its

full extension. For entangled polymeric fluids, each polymer chain forms part of

entangled network where each chain restricts the free movement and orientation of

its neighbours. Any individual polymer can freely move along its own length (or

reptate [36], so called due to its ‘snake-like’ motion), but is constrained in perpendic-

ular directions by a tube of entanglement-point confinements. This forms the basis

for the tube theory [36, 48, 127]. A schematic of the tube of confinements surround-

ing a polymer chain in figure 2.5(a), blue dots represent the entanglement points of

surrounding chains in the entanglement network. In figure 2.5(b) the polymer chain

is described instead by its primitive path.

The extent of entanglement within a polymeric fluid is quantified by the entan-

glement number Z. This is an experimentally measurable quantity that depends

on the molecular weight and entanglement weight of the material. The molecular

weight Mw is determined during polymerisation but the entanglement weight Me is

an intrinsic material property. Z is defined such that Z = Mw/Me and the tube

surrounding the polymer chain consists of Z segments spanned by s ∈ (0, Z). Note

here s is used as a parametric counting parameter along the length of the polymer

chain, not the general vector s used in earlier sections. In the constitutive model

described here, based on tube theory, the position vector of tube segment s at time t

is described by R(s, t) and the material relaxation times are related to Z such that:

τd = 3ZτR = 3Z3τe,

τR = Z2τe



2.6. Rolie-Poly model 34

where τe is defined in the tube theory by the Rouse time of a chain of length equal

to one entanglement. τd is the full chain relaxation timescale and τR is the Rouse

time, on which chain stretch relaxes. Sufficiently well entangled polymers have well

separated relaxation timescales such that τd � τR � τe.

(a)

X

1)

2)

3)

(b)

Figure 2.5: A schematic diagram of the polymer dynamics captured by the Rolie-
Poly model: (1) reptation, (2) convective constraint release and (3) chain retraction.
Reprinted with permission of R. L. Cooke [32].

The numbered processes in figure 2.5(b) describe the relaxation mechanisms of

the polymer chain as described by the GLaMM model for linear entangled poly-

mers [75]. The GLaMM model derived a stochastic constitutive model for the mi-

croscopic dynamics of linear entangled polymers with position vector R(s, t). In

full, the equation is:

R(s, t+ ∆t) = R(s, t) + ∆ξ(t)
Z

Z∗(t)

∂R

∂s
+

∆ξ(t)2

2

Z2

Z∗(t)2

∂2R

∂s2
(2.35)

+∆t
[
K ·R +

3ν

2

a

|R′(s)|
R′′(s) + g̃(s, t) +

1

2π2τe

(
R′

∂

∂s
l(R′ ·R′)

)]
, (2.36)

where Z∗(t) is the instantaneous number of entanglements. The second and third

terms on the right-hand side describe reptation: the curvilinear diffusion of the

entire chain along its own contour (motion (1) in figure 2.5(b)) where ∆ξ(t) describes

the displacement of the chain along the tube due to Brownian motion (reptation).

The polymer reptates out of the original tube on a timescale τd. The fourth term

describes the effect of convection in the flow. The fifth and sixth terms correspond to

the constraint release mechanisms due to convection, modelled as a series of Rouse
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tube hops assumed to occur at an equal rate at all points along the chain, and to

random events, respectively. This mechanism is described in figure 2.5(b) by motion

(2). The seventh term describes chain retraction arising from Rouse motion of the

chain inside the tube (shown by motion (3)). Retraction thus does not depend on

tube constraints themselves and occurs on the timescale of the Rouse time (τR).

Each of these time-dependent mechanisms relax the polymer stress. Polymer

chains that reptate out of the tube constraints are then free to choose their own

isotropic distribution (and thus chain orientation relaxes on the timescale of repta-

tion, τd). Within the linear regime, it is the reptation events of surrounding polymer

chains that causes the tube constraint release. The constraint release mechanism

includes the possibility that whenever a chain-end segment passes through a tube

segment, the constraint that is then lost from the tube (once the polymer chain no

longer occupies that tube segment) may in turn release an entanglement point on a

neighbouring chain. That is, the neighbouring chain is free to explore a wider region

in space via its own lateral reptation motion.

Constraint release events occur within the linear and nonlinear regime. It was

predicted in the original Doi-Edwards model that ‘reptative’ or ‘thermal’ constraint

release within the linear regime occurs on a relatively negligible lengthscale and thus

negligible timescale when compared with the relaxation of whole chain dynamics.

However, constraint release from contour length fluctuations (due to the end-chain

segments undergoing faster relaxation than mid-chain segments) can be a significant

for moderately entangled polymers even in linear flow. Once in the nonlinear flow

regime (γ̇ > 1/τd), constraint release becomes an increasingly significant relaxation

mechanism through retraction [122] and the convective flow. In the nonlinear regime,

this mechanism is thus known as Convective Constraint Release (CCR). Recall that

it is within this regime that the original DE-theory begins to fail and thus more

complex dynamics are assumed to be occurring within the flow. Indeed, CCR is the

dominant relaxation mechanism in the regime of 1/τd � γ̇ � 1/τR.

In previous studies [91, 129] constraint release events in the nonlinear regime

have been assumed to be of microscopic origin, where the relaxation time depends

on the molecular-level response to imposed deformation. In the GLaMM model
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is was suggested that this method of inclusion of the relaxation mechanism does

not hold with the assumption that constraint release itself acts in a global manner

thus neglecting any detail smaller than the lengthscale of the whole polymer chain.

Instead, the GLaMM model followed the previous work of Likhtman et al. [109] and

Milner et al. [133], conceptualising the constraint release mechanism as a behaviour

of the tube itself, treating constraint release as a localised Rouse-like tube-hopping

motion. Moreover it was speculated the constraint release events are dependent

upon chain retraction. A number of retraction events are required before one tube

hop of the magnitude of one tube diameter is achieved and there is thus an effective

efficiency of CCR built into the final version of the model.

The relaxation mechanism via convective constraint release (i.e. constraint re-

lease in the nonlinear regime) can also relax chain stretch: the Rouse-like tube hops

within the chain length are influenced by the existence of chain stretch. Chain

stretch occurs when the length of occupied tube exceeds its equilibrium value. It

relaxes on the timescale of Rouse time, τR. The inclusion of chain stretch into the

tube model enabled the short-time transient behaviour of polymers during startup

to be better captured. If the stretch is caused by the local entrapment of the polymer

chain by a neighbouring chain, it is energetically favourable to release the entan-

glement point via constraint release. It thus follows that in the constitutive model,

the convective constraint release mechanism will have some dependence on the local

potential (due to stretch) of the polymer chain. Chain stretch also has an effect on

reptation: stretch increases the monomer-to-monomer length within the chain and

thus effectively accelerates the reptation of the chain along the tube.

The GLaMM model takes into account the full relaxation dynamics of a spec-

trum of timescales (and indeed lengthscales) of the polymer chain. This model is

complex and computationally expensive, therefore, in reference [110] a one-mode

approximation to equation 2.35 was derived. The so-called ROuse LInear Entan-

gled POLYmers (or Rolie-Poly) model described the microscopic dynamics of linear

polymers for one fixed relaxation time and modulus τ = τd (the longest timescale of

polymer relaxation) and G. It was developed as a simplified version of the GLaMM

model to describe spatially inhomogeneous flows and flows in more complex rheome-
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ter geometries. In the generalised constitutive model defined in equation 2.16,

s = (σxy, σyy, . . . )
T and the model-specific governing equation ∂ts = Q(s, γ̇) is de-

fined below.

In its full tensorial form, the governing equation for the RP model (in homoge-

neous flow) is:

∂tσ = K · σ + σ ·KT − 1

τd
(σ − I)− 2(1− A)

τR
[σ + βA−2δ(σ − I)], (2.37)

where A ≡
√

3
T

, T ≡ trσ is the chain stretch in system. K is the deformation rate

tensor. The four expressions correspond to advection, reptation, chain retraction,

and CCR, respectively. Timescales τd and τR are related by the number of entangle-

ments on a chain, Z = τd
3τR

. δ is related to the convective constraint release (CCR),

following reference [110] I set δ = −1
2

throughout this thesis. β is a parameter that

describes the efficiency of CCR in the system such that 0 ≤ β ≤ 1. When consider-

ing the full nonlinear dynamics of spatially heterogeneous flows, the diffusive term,

defined in equation 2.17 is added to the right-hand side of equation 2.37.

Equation 2.37 can be simplified further in the limit that chain stretch occurs

infinitely quickly. In this limit, T → 3 and equation (2.37) reduces to:

∂tσ = K · σ − 1

τd
(σ − I)− 2

3
tr(K · σ)[σ + β(σ − I)], (2.38)

For the case of imposed simple shear flow, the tensorial equations (2.37) and (2.38)

can alternatively be written in component form, where σ = {σxy, T, σyy}, the full

stretching Rolie-Poly model (sRP) becomes:

∂tT = 2γ̇σ − 1

τd
(T − 3) − 2(1− A)

τR
[T + βA(T − 3)],

∂tσ = γ̇σyy − 1

τd
σ − 2(1− A)

τR
(1 + βA)σ,

∂tσyy = − 1

τd
(σyy − 1) − 2(1− A)

τR
[σyy + βA(σyy − 1)],

(2.39)

and the non-stretching case (nRP):
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∂tσ = γ̇[σyy −
2

3
(1 + β)σ2)]− 1

τd
σ,

∂tσyy =
2

3
γ̇[βσ − (1 + β)σyyσ]− 1

τd
(σyy − 1),

(2.40)

where now only two dynamical variables are required. Again, note here that

these equations apply for homogeneous shear flow.

It is these component-forms of the RP model that I apply in the results presented

within this thesis. I consider both the stretching and non-stretching limit and employ

the numerical techniques to evolve the constitutive equations that are outlined in

Appendix I (section 2.7).
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2.7 Appendix I: Numerical methods

This section outlines the numerical methods used to solve the constitutive equations

detailed in this thesis [146]. Note in all cases the material sample within the shearing

cell is constrained to be homogeneous in the x and z directions. In this section I

first consider the case where a sample is constrained to remain homogeneous in the

flow gradient direction. There is no spatial variation and hence the system will only

evolve in time. Here I discard tensorial notation for the constitutive equations and

focus on a scalar model example, with a single dynamical variable φ . It is assumed

that all the spatial components will start from some initial state φ(t = 0) = 0 and

evolve from this state. Numerically, this is studied using simple Euler time-stepping

to integrate the constitutive equations in time. This is illustrated here for a single

degree of freedom φ(t), where ∂tφ(t) = ψ(φ(t)) for some dynamical variable ψ(φ(t)),

but the method easily generalises for many coupled ordinary differential equations.

Using the fundamental theorem of calculus we have:

φ(t+ dt)− φ(t)

dt
= ψ(t). (2.41)

Discretising time into n timesteps of size dt, such that t = ndt for n = 0, 1, 2, ...,

(2.41) can be written as:
φn+1 − φn

dt
= ψn. (2.42)

This is the ‘Explicit Euler’ method [146], where the next timestep at n + 1 is

completely determined by the state of the system at timestep n.

Allowing for the possibility of shear banding in the flow requires spatial depen-

dence to be introduced throughout the governing equations. Thus, the equation

becomes ∂tφ(t) = ψ(φ(t), γ̇) + D∂2φ(t). Whilst the explicit Euler method could

be applied again to solve this, a more numerically stable method to employ is the

Crank-Nicholson algorithm [146]: Consider the discretisation of y: j spatial steps

of size dy, such that, for cell size L, y = jdy for j = 1, 2, ..., J . Then, taking steps
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either size of y in the function φ and performing a Taylor expansion, we have:

φ(y + dy) = φ(y) + φ′(y)dy +
1

2
φ′′(y)(dy)2 +O(dy)3, (2.43)

φ(y − dy) = φ(y)− φ′(y)dy +
1

2
φ′′(y)(dy)2 +O(dy)3, (2.44)

gives

φ′′(y) =
1

(dy)2
(φ(y + dy)− 2φ(y) + φ(y − dy)) . (2.45)

For the diffusive part (ie. ∂tφ(t) = D∂2φ(t)), we again discretise t with n timesteps

of size dt (n = 0, 1, 2...) and the Crank-Nicholson algorithm averages over all neigh-

bouring spatial steps to point y, for the current and following timesteps (t and

t+ dt):

φn+1
j − φnj
dt

=
D

2(dy)2

[
(φn+1

j+1 − 2φn+1
j + φn+1

j−1 ) + (φnj+1 − 2φnj + φnj−1)
]
. (2.46)

The ‘shearing cell’, defined for yε {0, L}, j = 1...J , thus requires the points j = 0 and

j = J + 1 to describe y = 0, L respectively in (2.46) which do not exist. Prescribing

the boundary condition ∂yφ = 0 resolves this problem; these ‘phantom’ points are

defined as those mirrored just inside the boundary at j = 2, J − 1. Therefore (2.46)

may be re-written in vector form (where φ denotes φ∀jε {1, J}) as follows:

φn+1 − φn =
Ddt

2(dy)2
C
(

(φ)n+1 − φn
)
, (2.47)

or, more instructively:

φn+1 =

[
I − Ddt

2(dy)2
C

]−1 [
I +

Ddt

2(dy)2
C

]
φn, (2.48)
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where

C =



−2 2 0 0 . . . 0

1 −2 1 0 0 . . . 0

. . . . . . . . .

1 −2 1

0 0 0 2 −2


(2.49)

and the matrix on the left hand side of (2.47) is inverted using the Thomas algo-

rithm for tridiagonal matrices [145].

Evolving ψ, the system is determined at each timestep by first locally updating

the reaction terms at each point using explicit Euler, then the diffusive terms using

Crank Nicholson. Finally, to describe the state of the system, force balance (∂yΣ =

0) must be enforced. Here the local shear rate, γ̇(y, t), is updated at each timestep,

thus allowing for the possibility for shear banding across the cell. Equating the

terms, force balance is numerically implemented at each spatial step as:

γ̇j = ¯̇γ − G

η
(σ̄ − σj), (2.50)

where the over-bars indicate spatially-averaged values. It is important to note here

the following inequality relations:

√
2Ddt < dy � l� L, (2.51)

where l =
√
Dτ0 defines the interface width between the shear bands in the shearing

cell (for the microscopic relaxation time of the system, τ0). This interface width

must be sufficiently narrow compared to the width of the cell itself, and large enough

compared to the spatial stepsize that it is effectively resolved numerically. These

relations are described in the second two inequalities in (2.51). The first of these

inequalities is required to ensure the stability of the Crank-Nicholson algorithm used

in the above numerical formulation.
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Further to these numerical iterations, the results must be checked for convergence

in both time and space. In other words, the results must be independent of the

stepsizes used, dt and dy [32]. For time, this is confirmed by halving the timestep

and comparing the results; for space, the time convergence must be performed at

both dy and dy
2

, then compared to ensure successful convergence. If unsuccessful,

the spacestep is decreased and the convergence checks repeated.



3
Existing studies on time-dependent

protocols: shear startup and step stress

In this chapter I give a detailed review of the existing literature concerning shear

banding in time-dependent flows of entangled polymeric solutions and melts. A

succinct review of this, as well as the results from the studies here in chapters 4

and 5 is given in a short précis by Prof. Suzanne Fielding, submitted for review as

part of a special edition of the Journal of Rheology, focussing on the shear banding

phenomenon [64].

Although LAOS protocols have attracted a lot of interest in recent years, the

existence of shear banded flow within the material response to the LAOStrain or

LAOStress protocol has rarely been considered, though exceptions can be found

in [4, 187, 188]. In this chapter I reproduce results from previous studies on shear

banding in time-dependent flows. These flows are simpler than LAOS to introduce

43
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the concepts of the formation of shear bands that will be built on in subsequent

results chapters. I discuss two forms of shear banding: transient shear banded flow

which regains homogeneity at steady state and persistent, steady state shear band-

ing. The study of these time-dependent heterogeneous behaviours will then underpin

the understanding of the emergence of shear banding in the LAOS protocols: these

more complex protocols have a sustained time-dependence and thus a ‘steady state’

is not met and rather continually time-dependent material responses are observed.

Starting with the shear startup protocol, I reproduce the results of Moorcroft

and Fielding [135,136]. These confirm the existence of time-dependent shear band-

ing even in materials that have a monotonic constitutive curve and thus do not

exhibit heterogeneity at the steady state. I also confirm the criteria derived in [135]

to predict the onset of instability to the formation of shear bands during the time-

dependent protocol. Following this, I consider a simplified caricature of LAOStrain

using a series of fixed end-strain shear startup protocols to approximate an oscilla-

tory protocol. This provides an insight into the time-dependent material suscepti-

bility to form shear banded flow in the LAOStrain protocol.

I then look at the step stress protocol. Again, I reproduce the results of Moorcroft

and Fielding [135,136] and find transient shear banding within the time-dependent

material response on the approach to the steady state. The criterion for the onset

of shear banded flow (derived in [135]) is indeed coincident with the regions of shear

banded flow within this time-dependent material flow.

Both of these time-dependent simple protocols are modelled here using the non-

stretching limit of the Rolie-Poly (RP) model for entangled linear polymer solutions

and melts. In this chapter, material response curves are presented in conjunction

with the calculation of the eigenvalue evolution for the linearised system (found

from the stability matrix in linear stability analysis, see chapter 2). In calculations

that allow for spatial heterogeneity, the magnitudes and spatial profiles of any shear

bands that may form during the protocols are also shown. Though chain stretch is

not included here, very similar behaviours are seen when the full stretching version

of the RP model is instead employed. Indeed, the results shown here hold provided

the imposed shear rate γ̇ � 1/τR, where τR is the chain stretch relaxation time.
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3.1 Shear startup

3.1.1 The shear startup protocol

0

t

γ
.

(a)

t

Σ

(b)

Figure 3.1: The shear startup protocol: in (a), constant shear rate imposed at time
t = 0. In (b), the shear stress response of a material to the imposed shear rate.

As previously defined in chapter 2, in the shear startup protocol a chosen shear

rate (γ̇) is applied at a time t = 0 and held constant for all t > 0. The material

sample is initially at rest and is well relaxed. The initial response to the imposed

deformation is time-dependent; steady state is later reached once the stress is un-

changing with increasing time. Simple illustrations of the shear startup protocol and

the associated shear stress time-dependent response on the approach to the steady

state are shown in figure 3.1.

In figure 3.1(b), there is an overshoot (∂Σ
∂t

< 0) in the measured shear stress

response, on the approach to the steady state. This is a characteristic feature

of a time-dependent stress response during the shear startup protocol due to a

competition between early-time elastic response and long-time flowing behaviour.

This overshoot in time (or equivalently strain, as γ = ¯̇γt and ¯̇γ is fixed) has been

shown to be linked to transient shear banding in a number of complex fluids [2,134–

136].

3.1.2 Steady state constitutive curve

In a theoretical calculation, the underlying constitutive curve of a material can be

built up by imposing a fixed shear rate, ¯̇γ, and recording the shear stress value at the
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γ
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Σ

Figure 3.2: Homogeneous steady state constitutive curves, formed from a series of
shear start up protocols, using the Rolie-Poly model. Stretching effects are ignored.
The blue-dashed line has non-monotonic features (i.e. ∂γ̇Σ < 0) over a window of
shear rates; the black-solid line is monotonic. Here, the blue line has CCR-parameter
β = 0.4; the black line has β = 1.0; both curves have solvent viscosity η = 10−3.

steady state, where the flow is constrained to be homogeneous with an enforced a

uniform flow gradient across the rheometer cell. Imposed ¯̇γ span the full relaxation

spectrum of the polymer in question, from γ̇ � 1
τd

to γ̇ � G
η

, the inverses of

the largest and smallest relaxation timescales of the polymeric fluid in this model.

Following each imposed ¯̇γ, the material is allowed to fully relax (the system is

reinitialised) before subsequent shear rates are applied.

Figure 3.2 shows a non-monotonic (blue-dashed line) and monotonic (black-solid

line) underlying constitutive curve for two polymeric fluids as modelled by the non-

stretching Rolie-Poly (nRP) model. The decreasing region of stress with shear rate

in the non-monotonic constitutive curve has been shown to lead to steady state

shear banded flow [185] and has been observed in linear entangled polymers [107,

108, 152, 173, 179, 180], star polymers [158]. tri-block copolymers [15, 120], lamellar

sufactant phases [161], foams [154], emulsions [33], microgels [46], carbopol gels [44]

and wormlike micelles [16, 77, 87, 104, 160]. However, as introduced briefly above,

shear banding may also arise transiently during startup even in materials that do

not shear band at the steady state, due to a monotonic underlying constitutive curve,

as seen in theoretical [2, 65, 92, 121, 123, 134–136] and experimental studies [17–20,

88,151,152,173].

In the following section, I examine in further detail the time-dependent shear

stress response to the shear startup protocol for a fixed ¯̇γ that lies within the non-

monotonic or plateau region of these material constitutive curves. For both a non-
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monotonic and monotonic underlying steady state constitutive curve, I consider the

evolution of any heterogeneous shear band formation and the analytically-calculated

eigenvalue (found from the linear stability analysis; recall chapter 2).

3.1.3 Transient and steady state banding in shear startup

Figure 3.3 shows a material response to the shear startup protocol for an imposed

shear rate ¯̇γ = 30.0. This reproduces the results of Moorcroft [32] but is my own

work and numerically uses a weakly curved cell as a heterogeneous seed to the onset

of shear banding, rather than randomly-distributed noise at each timestep. The

purpose here in reproducing the results of Moorcroft is twofold: (i) to introduce

the concepts of time-dependent shear banding in a simpler flow protocol and (ii) to

provide a benchmark to check my own numerical code.

The top row of figure 3.3 shows results for parameters such that the material has

a non-monotonic underlying constitutive curve (β = 0.4). The results in the bottom

row have parameters such that the underlying constitutive curve is monotonic (β =

1.0). (a) and (e) show the shear stress response to the imposed shear rate. The blue-

dashed line gives the stress response once heterogeneity is allowed. The black line

shows the response for a flow profile that is constrained to be homogeneous. During

this time-dependent response to the imposed ¯̇γ, the stress overshoots in strain (∂Σ
∂γ
<

0). The heterogeneous stress response can be clearly seen to relax at a faster rate

than for the homogeneously-constrained system: allowing for heterogeneity enables

the stress to relax more quickly after attaining the maximum stress (overshoot).

The stress then continues to evolve until it reaches its steady state value. This time-

dependent behaviour and overshoot signature occurs for both the non-monotonic

and monotonic underlying constitutive curves. This overshoot is due to the short-

time elastic effects of the material response to imposed shear. It is independent of

any long-time steady state (viscous-dominated) behaviour. It has thus been termed

the ‘elastic instability’ [135] to the formation of shear bands. It can indeed be seen

to coincide with the growth of heterogeneity in the flow shown in the other data

representations in figure 3.3, as described further here.

Plots (b) and (f) show the evolution of the eigenvalue (found from linear stability
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Figure 3.3: Transient stress, eigenvalue, degree of banding and velocity profiles
resulting from an imposed shear startup protocol on the non-stretching Rolie-Poly
model. A shear rate of γ̇ = 30.0 is applied with equation parameters: {η, J, l, q} =
{10−4, 512, 0.02, 10−4}. The top row has CCR parameter β = 0.4 (non-monotonic
constitutive curve) and the bottom row has β = 1.0 (monotonic constitutive curve).

analysis) for a material with a non-monotonic and monotonic constitutive curve

respectively. The eigenvalue becomes positive, and strongly so, upon the approach to

and after the elastic overshoot. Following the overshoot, the eigenvalue then quickly

begins to decrease. Where the underlying constitutive curve is non-monotonic, the

eigenvalue remains positive for all further times. In the case of the monotonic

constitutive curve, however, the eigenvalue becomes quickly negative following the

overshoot region of the stress response curve.

A positive eigenvalue indicates growth in the linear heterogeneous perturbations,

thus predicting the onset of banding. If the eigenvalue becomes negative - as in the

material with a monotonic constitutive curve here - material stability against shear

banding is regained and any shear banded flow decays away. This behaviour is

reflected in (c) and (g) where the time-dependent heterogeneity is quantified by the

degree of banding. This is defined simply as the difference between the maximum

shear rate magnitude and the minimum shear rate magnitude at any location in the
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flow cell, normalised by the applied shear-rate, at each point in time:

∆γ̇(t) =
1
¯̇γ

[
γ̇MAX(t)− γ̇MIN(t)

]
, (3.1)

Significant banding (where banding in the material is measurable) is defined as

∆γ̇ > 5%. An initial peak in the degree of banding is seen after the overshoot in

both cases of a non-monotonic and monotonic underlying constitutive curve. This

coincides with the peak in positive eigenvalue. Shear banding can then be seen

to decay away for the monotonic constitutive curve material where the eigenvalue

is negative. However, for the material with a non-monotonic constitutive curve

where the eigenvalue remains positive, appreciable shear banding persists even once

a steady state flow is attained.

The coloured symbols in (a)-(c) and (e)-(g) reflect the times at which snapshots

of the velocity profiles across the flow cell were taken. These profiles are shown in

(d) and (h). The steady state is indicated by the thick magenta dashed line: steady

state shear banding is seen in (d) where the underlying constitutive curve is non-

monotonic. In (h) the underlying constitutive curve is monotonic and shear banded

flow profiles are only seen for times shortly after the elastic overshoot in the startup

curve; homogeneous flow is recovered at the steady state.

The results shown in figure 3.3(a)-(h) give a detailed insight into the material

response to a constant imposed shear rate starting from an initial rest state. This

is, however, only for one shear rate. To provide a comprehensive overview of the

behaviour across a wide range of shear rates on the material constitutive curve,

Moorcroft and Fielding presented a ‘stability profile’ [135, 136]. This profile was

used to describe what behaviours the sample exhibits at the onset of instability to

shear band formation during a shear startup experiment. This is reproduced here,

although I replace the initial heterogeneous seeding of noise into the system (as used

by Moorcroft) instead with a constant curvature to the cell, in figure 3.4. Each hori-

zontal slice of the plane represents one shear startup experiment. The left-hand side

marks the initialised (at rest) system and the steady state is reached at the right-

hand side. Each startup experiment is performed for a homogeneously-constrained



3.1. Shear startup 50

10
0

10
1

γ

10
1

10
2

10
3

γ
.

(a) β = 0.4

10
0

10
1

γ

10
1

10
2

10
3

γ
.

(b) β = 1.0

Figure 3.4: The stability profile for a series of shear startup protocols in the nRP
model. Each horizontal slice of the graph represents one shear startup, for fixed γ̇,
plotted against strain γ. Red, open circles enclose the region of positive eigenvalue,
where the ‘full criterion’ (eq. 3.4) for the onset of instability to the formation of
shear bands in shear startup is satisfied; red, filled circles enclose the region where
the ‘reduced criterion’ (eq. 3.8) is satisfied; the black-dotted line shows the time
of the stress overshoot (∂γΣ < 0); the green-solid line gives the ‘elastic criterion’
(eq. 3.5); the red dashed line in (a) indicates where the ‘viscous criterion’ (eq. 3.7)
is satisfied; blue diamonds show where significant shear banding is measured (∆γ̇ >
5%) as measured by full nonlinear simulation, and the thin, black contours show
the growth of linear perturbations (where each line marks a growth through 10M ,
Mε Z;M ≥ −2).

system, where the growth of heterogeneity is measured by the integration of lin-

earised equations (growth in the γ̇-field) unless stated otherwise. This differs from

the results shown in figure 3.3 where the constitutive model was evolved using full

heterogeneous nonlinear simulations.

Recall from the linear stability analysis performed in chapter 2 on a general

dynamical model with variables defined by the vector s = (σ, σxx, σyy, . . .)
T 1, that

infinitesimal heterogeneous perturbations to an initially homogeneous base state

1Recall the notation σ = σxy
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obey:

∂tδs =

(
M − G

η
qp

)
· δs, (3.2)

= P · δs, (3.3)

where M = ∂sQ|ŝ,ˆ̇γ, and q = ∂γ̇Q|ŝ,ˆ̇γ. Recall for the RP model, s = (σ, σyy, T )T .

It was shown in [135] that the onset of instability to the formation of shear bands

in the shear startup protocol occurs when the following criterion is satisfied:

∂γ̇Σ|γ − p ·M−1 · ∂γs|γ̇ + γ̇∂γ̇∂γs < 0. (3.4)

The region where this is satisfied for the chosen set of parameters in figure 3.4 is

indicated by the open red circles. This region is also satisfied when the eigenvalue

(found from the stability matrix) is positive.

At short times, the response of the system is predominantly elastic and therefore

is dominated by strain, rather than strain-rate. Taking ∂γ̇ → 0, equation 3.4 reduces

to:

−p ·M−1 · ∂γs|γ̇ < 0, (3.5)

where p = (1, 0, 0) is the projection vector and s = (σ, σyy, T )T , as above. For

the non-stretching limit (as used in figure 3.4) where there are only two dynamical

variables (s = (σ, σyy)
T ), this reduces to:

−trM∂γΣ|γ̇ + γ̇∂2
γΣ|γ̇ < 0. (3.6)

This is the elastic criterion for the onset of instability to the formation of shear

banding in time-dependent flows.

The second term here accounts for the negative curvature of the stress as a function

of strain as the overshoot (leading to ∂γΣ < 0) is approached. The elastic criterion

is satisfied in figure 3.4 at the green line where the onset of the elastically-driven

instability is captured. As seen in figure 3.4, the negative curvature may be signifi-

cantly strong to cause linear instability ahead of the overshoot region (indicated by
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the black dotted line).

Conversely, at long times it is the viscous behaviour associated with the strain-

rate that dominates the flow. Indeed, at steady state the sample’s behaviour no

longer evolves as a function of time t (or accumulated strain γ). Taking ∂γ → 0,

equation 3.4 becomes

∂γ̇Σ|γ < 0, (3.7)

which is satisfied within the region bounded by the red dashed line in figure 3.4.

Combining these elastic and viscous criteria gives the ‘reduced criterion’

∂γ̇Σ|γ − p ·M−1 · ∂γs|γ̇ < 0. (3.8)

This combined expression of the elastic and viscous criteria is shown in figure 3.4 by

the red filled circles. It can be seen that the reduced criterion captures most of the

information of the full criterion, without the more numerically and experimentally

difficult cross-term in the equation 3.4.

These criteria and material signatures indicate the time-dependent material re-

sponse to steadily applied shear. The well known steady state shear banding (vis-

cous) criteria is recovered here for the case of a non-monotonic constitutive curve:

the right-hand side of the plane represents the regions of banded and homogeneous

flow at the steady state, for intermediate γ̇ a region of steady-state shear banded flow

(bounded by the blue-dashed line where the viscous criteria is also satisfied) is seen

where the underlying constitutive curve is known to be non-monotonic. Significant

shear banding is also seen for γ̇ greater than that bounded by the viscous criterion

dashed line. This is due to material metastability and is discussed in the following

paragraphs. Significant transient heterogeneity is also seen for both the case of a

non-monotonic and monotonic underlying constitutive curve even when (for the case

of the monotonic constitutive curve) there is no shear banding at the steady state.

This shows clear time-dependence in the material behaviour to externally imposed

deformation in polymeric solutions and melts.

The thin black lines describe the growth of linear perturbations to the γ̇-field

during each startup experiment. As each contour line is crossed (from left to right)
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there has been growth through 10M , Mε Z;M ≥ −2. Equivalently, crossing the

same contour again indicates a decay through 10M , Mε Z;M ≥ −2. Contours are

open-ended in figure 3.4(a) where shear banding persists to the steady state; in

figure 3.4(b), contours are closed loops showing the decay to homogeneity at long

times. There is, however, a discrepancy between the contour lines and the blue

diamonds which calculate the degree of banding using full nonlinear dynamics. This

is due to the breakdown of the linear approximation used in the calculation of the

contour lines once the degree of shear banding becomes large. Linearised models

can only predict the onset of instability to flow heterogeneity; they do not hold for

the large amplitude limit.

Moreover there is a further discrepancy between both the contour lines (indi-

cating steady state heterogeneity for the integrated linearised equations), the blue

diamonds (signifying steady state shear bands in full nonlinear simulation) and the

dashed-blue line which bounds the values of γ̇ such that the viscous criterion is sat-

isfied. This is due to the metastability of the underlying constitutive curve of the

material: for applied γ̇ within the non-monotonic region of the constitutive curve,

the steady state stress achieved will be a stress plateau with Σ = Σp (recall chap-

ter 2). Allowing for heterogeneity in the material causes the material flow curve

to exhibit a stress plateau at Σ = Σp between the linearly-increasing high and low

viscosity branches of the constitutive curve. This plateau region exists beyond the

negatively-sloping region of the constitutive curve, until Σp coincides with the lin-

ear low viscosity branch. This is therefore outside the regime in which the viscous

criteria is satisfied. Indeed, for even larger γ̇, where the corresponding steady state

stress lies in the linear low viscosity branch of the constitutive curve, a return to

homogeneous flow at the steady state is seen in figure 3.4(a).

In the following section of this chapter, I look to create a caricature of an os-

cillatory protocol using a series of positively- and negatively-shearing shear startup

experiments. This creates a preliminary insight into the behaviour of polymeric

solutions and melts in oscillatory flow, building on the intuition just developed for

the simpler case of shear startup in this section. This will be studied in full in



3.2. Trajectory colour maps 54

(a) β = 0.4 (b) β = 1.0

Figure 3.5: Trajectory colour maps for a material with non-monotonic (β = 0.4, (a))
and monotonic (β = 1.0, (b)) constitutive curve. As in figure 3.4, each horizontal
slice is formed from one shear startup experiment with fixed γ̇ = γ̇0. The colour
indicates the magnitude of heterogeneous perturbation growth to the initially ho-
mogeneous flow and is quantified by the scale on the right-hand side. The flow cell
is curved with q = 2 × 10−3 and solvent viscosity is η = 10−4. Note the growth of
heterogeneous perturbations, and thus the contours, are cut-off above 104. Contours
are automated by gnuplot [184].

chapter 4 with the large amplitude oscillatory shear strain (LAOStrain) protocol.

Furthermore, this preliminary study gives insight as to how that more complex

protocol can be fundamentally understood through those simpler protocol response

signatures.

3.2 Trajectory colour maps

In this section, I introduce a new data representation: trajectory colour maps. These

maps give a visual description of the regions of instability to heterogeneous pertur-

bations in an initially homogenous system during an experiment. As in figure 3.4,

one startup experiment is represented by one horizontal line on the map, running

from left to right. The thin black contour lines in figure 3.4 showed the growth of

heterogeneous perturbations - as integrated with time from the linearised consti-

tutive equations - across the γ̇ − γ-plane. In figure 3.5 this heterogeneous growth

is instead represented as a continuous trajectory colour map and quantified by a
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logarithmic colour scale shown to the right of each map.

Brighter regions in figure 3.5 indicate where the degree of shear banding, as

calculated by integrating linearised equations, is largest. As shown in figure 3.4, this

unstable region exists only transiently when the material has a monotonic underlying

constitutive curve (in (b)), but persists to the steady state when the constitutive

curve is instead non-monotonic (as in (a)).

3.2.1 Oscillatory caricature

Oscillatory strain-controlled flow (e.g. LAOStrain) can be crudely approximated

by a top-hat function of imposed shear rate. Repeating a series of positively- and

negatively-shearing startup protocols (where γ̇ = ±γ̇0, alternates for fixed strain

periods) approximates an oscillatory LAOStrain protocol where there is little time

between the peak (γ̇0) and trough (−γ̇0) in the rate of the input signal. Note,

the material is not allowed time to relax its stress between the change in shearing

directions.

Figure 3.6: The shear startup protocol: γ̇(t) = γ̇0 is applied until strain γ0 = 2.5
is reached. The applied strain-rate is then reversed γ̇(t) = −γ̇0, until γ(t) = −γ0.
This is repeated with each reversal in strain-rate occurring at γ = |γ0|. From left
to right, γ̇ is plotted against t, γ and γ − γ0. The red and blue lines mark the first
quarter- and last half-cycle where γ̇ is positive, respectively. A series of these are
used to form in the colour plots in figure 3.7.

Starting the system from rest (where the material is well relaxed), a constant

strain-rate γ̇0 is applied for a period of time, t, until a desired end-strain, γ0 = γ̇0t,
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is reached at time t = tmax:

γ̇ = γ̇0, (3.2.9a)

γ = γ̇0t, (3.2.9b)

tmax =
γ0

γ̇0

. (3.2.9c)

This initial startup is shown in red in figure 3.6. Once the end strain (+γ0) has

been attained, the strain-rate is reversed γ̇ → (−γ̇) until the negative end strain

(−γ0) is reached. This process is repeated for a large number of cycles (where one

cycle corresponds to one complete forward shearing and backward shearing motion)

until time-translational invariance between two cycles is reached (t → t + Tcycle).

Figure 3.6 illustrates this oscillatory caricature for just a few cycles, representing

the final forward shearing as a blue line.

In figure 3.7 I set the end strain to be γ0 = 2.5 ∼ 100.4. In figure 3.5(a) and

(b) this end strain lies just within the region of instability to the formation of shear

bands where heterogeneous perturbations are significant. It follows that for both

the cases of non-monotonic and monotonic constitutive curve, shear bands will exist

in the flow at γ(t) = γ0 for a range of γ̇0.

The trajectory colour maps in figure 3.7 shows the magnitude of any growth

of heterogeneous perturbations to the otherwise homogeneously-constrained system

during the initial (red-line) and final (blue-line) oscillatory caricature as trajectory

colour maps. The trajectories here are for positive γ̇ and thus run from left to

right across the plane. Though not shown here, identical information for negative

γ̇ is seen for trajectories running from right to left in the plane; this is due to the

symmetry of the protocol within this time-translational invariant state.

The left-hand plots show the perturbation growth from rest during the initial

startup (shown in red in figure 3.6). Heterogeneous growth can be seen for both the

non-monotonic (a) and monotonic (b) constitutive curve, indicated by the colour

transition from the blue to the yellow end of the logarithmic colour scale as the

strain approaches the fixed end-strain. Recall γ0 indeed lies just within the bright
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region of instability to heterogeneous perturbation growth in figure 3.5, hence shear

banding is seen for strains near the end-strain in figures 3.7(a) and (b) (left).

Figure 3.7: The linear perturbation growth during a series of shear startups. (a) has
a non-monotonic constitutive curve, with β = 0.4; (b) has a monotonic constitutive
curve, with β = 1.0. All are performed in a theoretical curved cell and have param-
eters {η, q} = {10−4, 10−4}. The left-hand plots of (a) and (b) are the initial shear
startup for each γ̇0 (the red line in figure 3.6); the right-hand plots are measured
after 10 cycles of imposed γ̇0 (the blue line in figure3.6). The colour scale on the
right-hand side of the figures indicates the value of log( δγ̇

γ̇0
); with δγ̇

γ̇0
capped at 104.

The right-hand plots show the corresponding results for the final forward-strain

cycle shown in blue in figure 3.6. As can be seen, significant heterogeneity for

moderate γ̇0 persists across the plane. This is seen for both the non-monotonic and

monotonic underlying constitutive curves. Reversing the shearing flow whilst still

within the region of transient banding (as seen in figure 3.5) therefore causes shear

bands to be ‘locked’ persistently into the flow. This occurs even for materials that

have homogeneous flow profiles at the steady state.

It is therefore seen here that the time-dependent nature of the oscillatory car-
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icature protocol used here causes shear banding to occur for end-strain value γ0

within the transient shear banding region of a corresponding startup protocol. It

is important to note that this is irrespective of the monotonicity of the underlying

constitutive curve of the material and inherently depends on the time-dependent

nature of the material response before the steady state is reached.

It thus follows that shear banding is an important phenomenon to understand in

protocols with sustained time-dependence (such as LAOStrain). This is explored in

greater detail in chapter 4.
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3.3 Step stress

3.3.1 The step stress protocol

0

t

Σ
0

Σ

Figure 3.8: The step stress protocol: a constant stress of Σ = Σ0 is applied for all
time t ≥ 0

The step stress protocol is another well studied simple time-dependent protocol

used in the characterisation of materials. In the following section I recap previous

results achieved in recent years [135, 136] (though results shown here are again my

own work) to form a basis for the concepts introduced in chapter 5 of this thesis

where the oscillatory stress-imposed protocol (LAOStress) is introduced.

In the step stress protocol a constant stress amplitude is applied to a material

sample. The material is initially at rest, then, at time t = 0, the stress (Σ = Σ0) is

applied and held constant for the duration of the experiment. A schematic of this

is shown in figure 3.8. The shear rate (γ̇) response to this imposed deformation is

then measured as a function of time.

Figure 3.9 gives an example of the time-dependent shear rate response (in (b))

to a range of stress amplitudes along the material’s underlying constitutive curve

(in (a)).

The red-dashed regions of the shear rate responses in figure 3.9(b) indicate the

region where the criterion for linear instability to the formation of shear bands is

satisfied in this step stress protocol. First derived in [135], this criterion predicted

the onset of shear banded flow on the approach to steady state for this step stress

protocol. Note that this criterion is model and fluid independent and only depends
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Figure 3.9: Step Stress in the nRP model for Σ0 = 0.5, 0, 55...0.8. Circles in (a)
show the positions on the constitutive curve these values of Σ0 sit; the same values
of Σ0 are used in (b) to show the time-dependent shear rate response to the step
stress protocol on the approach to steady state. Red dashed lines in (b) indicate
where the criteria for instability to the onset of shear bands (eq. 3.3.10) is satisfied.

upon the time derivatives of the shear rate itself:

∂2
t γ̇

∂tγ̇
> 0. (3.3.10)

This criterion tells us that the onset of instability to the formation of shear bands

in the step stress protocol occurs when the shear rate response is both increasing

and curving upwards (for a positive step stress amplitude). In principle, instability

is also predicted the for a shear rate signal that decreases and curves downward,

though I do not know of any materials that show this in practice.

As seen in figure 3.9, the typical shear rate response to step stress envolves via

a fast initial decrease in shear rate, followed by a sharp increase to the final steady

state value. This has its most pronounced form for Σ0 closest to the weakest slope

of the monotonic constitutive curve in (a). Here, the dramatic decrease and increase

in γ̇ spans several decades in magnitude. It is important to note here that whilst the

time-dependent shear rate response is dramatic for these values of Σ0, the evolution

of the signal occurs over a short interval of time. It is unlikely that the initial decay

of γ̇(t) is experimentally measurable. However, the rise of γ̇ upon the approach to

steady state has indeed been measured [16,43,72,86–88,173].
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Figure 3.10: Step stress in the nRP model for Σ0 = 0.7, η = 10−4, q = 10−3 and
β = 0.8 (which has a monotonic constitutive curve at steady state). Left:Shear rate
response with time. Middle: Degree of banding with time. Right: The velocity
profiles at snapshots in time (symbols and colours correspond to those in the middle
and left graphs).

Indeed, simulations in [135,136] confirmed the validity of the step stress criteria

in equation 3.3.10 to predict the onset of shear banding in step stress. Transient

banding was seen on the approach to the steady state for materials with underlying

non-monotonic or monotonic constitutive curves. In figure 3.10 I reproduce an

example of these findings for an entangled polymeric solution within a curved cell

geometry ( [135, 136] used a flat parallel plate cell) with a monotonic constitutive

curve.

In figure 3.10 a stress amplitude of Σ0 = 0.7 is applied to a sample, with spatial

heterogeneity allowed. Any heterogeneity of the shear rate across the cell is quan-

tified by a ‘temporarily’ localised form of the degree of banding used earlier for the

startup protocol. In particular, due to the sometimes dramatic change in γ̇(t), the

degree of shear banding is normalised by the overall shear rate at each point in time

so not to be ‘swamped’ by the large γ̇steady state value:

∆γ̇ =
1

N
[γ̇MAX − γ̇MIN] , (3.3.11)

where the normalisation factor N = γ̇(t), the instantaneous measured shear rate

when heterogeneity has been allowed.

The degree of banding plot in figure 3.10 shows a pronounced growth during

the regime where the shear rate response is both increasing and curving upwards,

thus satisfying the criterion for shear banding instability. Snapshots of the spatial



3.3. Step stress 62

velocity profiles during this region of transient shear banding are shown (with cor-

responding symbols) in the right-hand plot. They show a distinct bowed profile

between the low and high shear rate regimes (black and magenta lines).

From this discussion, it can be concluded that step stress - a protocol which leads

to a time-dependent material response - also exhibits time-dependent transient shear

banding on the approach to the steady state. Moreover, shear bands form in mate-

rials with a non-monotonic or monotonic constitutive curve. It therefore naturally

follows from this to progress onto the Large Amplitude Oscillatory Shear Stress

protocol (LAOStress) which, like LAOStrain, has a sustained time-dependence and

thus similar shear banding signatures might be expected. In Chapter 5 I call upon

the results and criteria from the step stress protocol shown here to form a basis for

understanding a material response to the more complex LAOStress protocol.



4
LAOStrain in the Rolie-Poly model

In this chapter, I focus on the nonlinear oscillatory protocol, Large Amplitude Oscil-

latory Shear Strain (or LAOStrain, where the repeated ‘S’ is dropped for clarity, as

per the convention [42]), calculated within the Rolie-Poly (RP) model for entangled

polymer solutions and melts. In this protocol, the stress response of an entangled

polymeric fluid to imposed oscillatory shearing is measured. An alternative coun-

terpart protocol to this is Large Amplitude Oscillatory Shear Stress (LAOStress),

where stress is instead imposed, and strain-rate response is measured. I consider

this later in chapter 5. These protocols have become increasingly popular in studies

within the rheological community and provide a complementary approach to shear

startup or other large accumulative strain protocols from an experimental perspec-

tive: they are easier to perform and the smaller total accumulated strains (than in

continuous strain experiments) reduce edge effects during measurement [150].

The RP model itself was introduced in full detail earlier, in chapter 2. For the

63
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majority of this chapter, I focus on the non-stretching limit of the model (nRP) in

which polymer chain stretch is assumed to relax infinitely quickly. Chain stretch

(sRP) will be incorporated later in section 4.5. Through these versions of the RP

model, I interpret the response of polymeric fluids to LAOStrain, after using sim-

plified arguments that recall known triggers of instability to the formation of shear

banding in simpler protocols [64, 135] (recall chapter 3). I shall also demonstrate

that material response to LAOStrain can be understood and explained on a pre-

dominantly physical level, without the use of (for example) more common Fourier

Transform methods [182, 183] used in experimental and theoretical studies in the

current literature [51,81,163].

In chapter 3, I recapped the findings from current literature on shear banding in

time-dependent flows. In particular, I recalled the work of Moorcroft and Fielding

in deriving a set of model- and fluid-independent criteria to predict the onset of

instability to the formation of shear banding in time-dependent protocols [135].

These criteria moved understanding on from the long-standing knowledge that an

overshoot in a material’s underlying constitutive curve shear stress, leading to a

negative slope in Σ(γ̇) indicates that the material exhibits shear banding at the

steady state [185].

Moreover, it was shown that transient shear bands may form even when the

underlying constitutive curve is monotonic and thus where no shear banding is seen

at the steady state. An overshoot in shear stress with increasing strain Σ(γ) during

the startup to steady state is a typical trigger for (and signature of) this short-time

short-lived banding in the flow. Whilst the simple criterion ∂γΣ < 0 has indeed been

shown to hold for soft glassy materials [63], there have been cases reported where this

∂γΣ < 0 overshoot does not appear to coincide with observable shear banding [108].

It was derived in [135] that for elastically-dominated flow, the onset to the formation

of transient shear bands occurs when the elastic limit (eq. 3.5) of the full criterion

(eq. 3.4) is satisfied. This differs from the simple ∂γΣ < 0 criterion by the addition

of a term that takes into account the curvature of the Σ(γ) response. Though

discussions on the validity of this when capturing elastic behaviour in experiment

still continue [108]. At long times, steady state shear banding instead depends on
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Σ(γ̇) as described by the monotonicity of the underlying constitutive curve of the

material and the viscous limit of the criterion (eq. 3.7).

In section 3.2, I created a caricature of an oscillatory strain-rate-controlled proto-

col by performing a series of constant shear rate (±γ̇) deformations (from an initial

startup experiment) without allowing the polymer time to relax its stress before the

deformation direction was reversed. I found that fixing the end-strain (where γ̇ was

reversed) within a region of significant heterogeneity of the initial time-dependent

response from startup, resulted in shear banding to persist throughout each revers-

ing shear flow for a wide range of applied γ̇. That is, at long times (once a time-

translationally invariant result was achieved) the oscillatory caricature predicted the

prevalence of shear banded flow of entangled polymeric materials under this sim-

ple caricature of LAOStrain. Importantly, this occurred both for materials with

non-monotonic and monotonic underlying constitutive curves. It is these concepts,

together with the use of the viscous and elastic criteria for short- and long-timescale

behaviour, I explore further within this chapter with the full LAOStrain protocol.

After first describing the LAOStrain protocol, I will use the numerical methods

and linear stability analysis outlined in chapter 2 to explore the underlying mate-

rial stability of an initially homogeneous flow state to heterogeneous perturbations

within the nonlinear regime. Indeed, I find that there exist regimes in the desired

parameter space where significant measurable shear banding is found.

4.1 LAOStrain protocol

LAOStrain allows oscillatory experiments to probe and measure nonlinear responses

of a material to an imposed strain. A recent review [90] gives a general overview

of current studies in LAOS. As a protocol, it uniquely allows for amplitude and

frequency to be varied independently from one another, enabling the user to assess

a wide range of material responses in a methodical fashion [38,90].

For a fixed frequency, ω, and strain amplitude γ0, the imposed strain and strain-
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rate in this protocol are defined, respectively, as:

γ(t) = γ0 sinωt, (4.1.1a)

γ̇(t) = γ̇0 cosωt, (4.1.1b)

where γ̇0 = ωγ0.

During measurement, the material sample is sandwiched between two rheometer

plates. One plate is held steady whilst an oscillatory deformation is imposed on the

other, resulting in a time-dependent velocity to be imposed on the material sample

from the moving rheometer plate, V (t). The resultant stress response Σ(t) to the

time-dependent shear rate across the cell γ̇(t) is recorded. This allows the calcula-

tion of viscosity and other material characterisation properties. Typical geometries

of a rheometer include the parallel plate, cone-and-plate and the Couette cell (of

concentric cylinders). In this work, I use a weakly curved geometry formed by im-

posing a constant (in time) stress gradient across parallel plates. This toy curvature

approach is discussed fully in chapter 2.

The strain and strain rate signals, defined by equations (4.1.1a) and (4.1.1b),

are shown in figure 4.1. Letters A-D are used here, and in further diagrams, as an

illustrative tool: at each moment in time where the strain passes through zero, the

strain rate is at its maximum, or minimum, value; indicated by A and C respectively.

Similarly, B and D refer to the instants in time where strain is at its respective

maximum or minimum, and the associated strain rate passes through zero.

These trajectories, in time, of the imposed strain and strain-rate during one cycle

of LAOS input could instead be considered in the strain vs. strain-rate plane; in this

representation, they form an ellipse (of course, the special case of unitary fixed fre-

quency and amplitude γ0 = ω = 1 gives a circle).For any given protocol, the height

and width axes of the ellipse trajectory are defined by the applied strain amplitude

(γ0) and frequency (ω) (and thus, in turn, the strain-rate amplitude γ̇0 = ωγ0). Fig-

ure 4.2 provides an example of the two extremes of these defining parameter choices:
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Figure 4.1: One cycle of the LAOS input. Black-solid line: imposed strain; black-
dashed line: imposed strain-rate. γ0 = γ̇0 = ω = 1, here.

the ellipses are traversed for a high strain amplitude, low frequency (and therefore

low strain-rate amplitude, relative to strain) protocol, in (a), and a low strain, high

frequency (therefore, high strain-rate amplitude, relative to strain) protocol, in (b).

Each cycle of the applied protocol traverses the space round the ellipse in a clock-

wise direction, starting at {γ, γ̇} = {0, γ̇0}. This is illustrated in figure 4.2, where

the starting point is indicated by A, as in figure 4.1. The ellipse then follows the

lettering indicators: B, C, and D, respectively, as one complete cycle is traversed.

In order to study the effect of LAOStrain on a polymeric material, the time-

dependent inputs defined in eq. (4.1.1a) and eq. (4.1.1b) are applied to the Rolie-

Poly model described in chapter 2. In the subsequent results presented here, where

I focus on the non-stretching limit of the Rolie-Poly model, materials with mono-

tonic constitutive curves have the CCR parameter value β = 1.0; those with non-

monotonic curves have β = 0.4. This follows on from, and provides natural com-

parison with, the work of Moorcroft in the shear startup protocol [135,136]. In each

case the solvent viscosity η = 10−5.

Time to the alternance state: In every LAOS experiment, the protocol is

started when the system is initially at rest and any internal stresses are well relaxed.

During the first cycle, when the strain is initially increased from γ = 0, the stress
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Figure 4.2: The LAOS protocol for small and large frequency. Since γ̇0 = ωγ0, for
fixed γ0 on the horizontal axis, the height up the vertical axis is determined by the
frequency.

response somewhat resembles a shear startup experiment where transient overshoots

in the stress are prominent. However, these overshoots reduce in magnitude in

subsequent cycles. In most protocols, the first few cycles do not overlay one another;

it takes significant time, where a number of repeated oscillations are performed

(typically 20 cycles, for moderate frequency) before the stress response per cycle will

begin to retrace itself for every subsequent oscillation. It is this “oscillatory steady

state”, where the material response is time-translationally invariant from cycle to

cycle, t→ t+ 2π/ω, that is referred to throughout this, and subsequent, chapter(s)

as the alternance state following the nomenclature of [71]. This state ensures that

a repeatable measurement can be made from cycle to cycle. The dependence of the

stress response on the cycle number was carefully studied in wormlike micelles in

reference [70]. The results presented here are taken once the material has reached

the alternance state, unless otherwise stated.

4.2 Lissajous-Bowditch curves

The most commonly reported representation of the material response to an imposed

LAOStrain protocol is by a Lissajous-Bowditch curve [21,112,143]. This is a param-

eterised curve of the oscillating stress vs. either strain, or strain rate (σ(t) vs. γ(t),

or σ(t) vs. γ̇(t)). Generally speaking, each parameterised Lissajous-Bowditch curve

is a 2D projection of a closed-space curve in the 3D coordinate system of stress,
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Figure 4.3: Lissajous-Bowditch curves for a material stress response to LAOStrain
in the nRP model. (a) gives the full 3D curve, (b) and (c) show 2D projections
of the curve onto the σ vs. γ̇- and σ vs. γ-plane respectively. Parameters for the
homogeneously-constrained system are:{γ0, ω, β, η} = {3.0, 10.0, 0.4, 10−4}.

strain and strain rate, where the three time-dependent quantities form the orthogo-

nal axes. It is by these plane-projections that the material response can be viewed in

the elastic (stress response with strain), or viscous (stress response with strain rate)

representation. This follows the vernacular of [52, 90]. The area within an elas-

tic Lissajous-Bowditch curve represents dissipated energy during one LAOStrain

response cycle and the area within a viscous Lissajous-Bowditch curve represents

stored energy [101]. Elastic Lissajous-Bowdtich ellipses enclose less area and viscous

Lissajous-Bowditch curves enclose more area as the frequency of oscillation is in-

creased. Figure 4.3 gives an example of the 3D- and 2D-representations of a closed

curve of LAOStrain data, formed using the Rolie-Poly model for a homogeneously-

constrained system with a non-monotonic constitutive curve (β = 0.4).

In figure 4.3 colour is used in the curves as a guide to the reader: for all three

representations, the red-to-blue spectrum indicates a positive-to-negative oscillation

in the imposed strain (γ) signal, most easily identified in (c) where γ forms the



4.2. Lissajous-Bowditch curves 70

horizontal axis. This in turn indicates the depth in (a) where otherwise, apparent

intersections in the curve may seem physical; the curve in 3D-space is in fact an

‘S’-shaped surface that experiences no internal intersection. In a similar vein, the

apparent intersections (or, more recently termed ‘secondary loops’ [55]) in (b) are

simply due to the 2D projection to the σ − γ̇-plane, these are generally due to the

overshoot in σ(γ) [55, 77,78].

As previously stated, the 2D projections of the Lissajous-Bowditch stress response

curve, achieve two physically meaningful representations: the viscous representation

(figure 4.3(b)) and the elastic representation (figure 4.3(c)). The reasoning behind

these labels becomes clear when considering the limiting cases of a viscoelastic fluid:

a viscous fluid, and a linear elastic solid. In the viscous representation, where stress

is measured against the applied strain-rate, a viscous fluid’s stress response would

be a straight line; the response of a linear elastic solid, on the other hand, would

form a circle. In the elastic representation, stress is measured against strain and

results in a straight line for a linear elastic solid, and a circle for a viscous fluid.

Figure 4.4 shows schematics of these limiting responses.

These linear, limiting stress responses form a starting point from which the more

complicated case of a nonlinear viscoelastic response may be interpreted. In LAOS-

train, the material response can be thought of as being formed by a combination

of elastic and viscous effects, depending on the imposed values of amplitude and

frequency in the applied oscillation.

Indeed, between these limiting cases of viscous and elastic behaviour, lies the

more complex response of a viscoelastic fluid. For low applied strains this will still

form a linear response (an ellipse, when plotted as a Lissajous-Bowditch curve), but

for great enough strain amplitude, nonlinear effects come into play and the ellipses

become distorted. Figure 4.5(a) shows the viscoelastic elliptical response in the lin-

ear regime, and 4.5(b) shows the effect of nonlinearity on the stress response with

strain. This nonlinear curve gives an illustration of the direct combination of the

viscous and elastic physical processes.

Starting from point ‘X’ (in a clockwise direction) in figure 4.5(b), where γ̇ and
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Figure 4.4: In both (a) and (b) the elastic representation (σ vs. γ) is shown on
the left-hand side, and the viscous representation (σ vs. γ̇) on the right. Both
use the homogeneously-constrained nRP model, β = 1.0, η = 10−4, with (a) (ω =
0.001, γ0 = 0.1) and (b) (ω = 100.0, γ0 = 0.1).

γ are both positive and increasing, the sequence of material responses (here, in the

elastic representation) follow an elastic, linear growth in stress with strain, before

an overshoot is reached in the stress, ahead of the maximum strain rate γ̇0 at A.

The material then continues to flow. The stress decreases slowly with decreasing

strain-rate, until the strain-rate reverses direction (at ‘B’). This strain-rate reversal

coincides with the instant when the maximum strain amplitude (γ0) is reached. Now

experiencing a negative strain-rate, the material stress quickly responds, approach-

ing zero as the strain approaches 0 by linearly decreasing its stress, then undergoing

a negative-stress overshoot as the strain rate is ramped up to its maximum (nega-

tive) value, (−γ̇0) (at ‘C’). This process is symmetric in the regions of positive (‘D’

to ‘B’) and negative (‘B’ to ‘D’) strain rate. Clearly, nonlinear LAOStrain stress re-

sponses show signatures of elastic and viscous material behaviour. It is thus possible

to interpret results to a large extent by breaking down the full nonlinear viscoelastic



4.3. Pipkin Space 72

-1 -0.5 0 0.5 1

γ /γ
0

-0.05

0

0.05

σ

A
B

C
D

(a) Linear response, ω = 1.0, γ0 = 0.1

-1 -0.5 0 0.5 1

γ /γ
0

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

σ

A B

C
D

X

(b) Nonlinear response, ω = 1.0, γ0 =
10.0

Figure 4.5: Homogeneously-constrained stress response in the nRP model for (β =
0.4, η = 10−4, ω = 1.0). In (a), γ0 = 1.0, yielding a linear viscoelastic response. In
(b), γ0 = 10.0, giving a nonlinear viscoelastic response.

regime into separate regimes of elastic and viscous response. This is akin to the

method of interpretation of Rogers et al. [155–157] in their series of papers on the

concept of stress responses to LAOStrain as a ‘sequence of physical processes’. It is

this approach to the interpretation of the data that I mainly adopt throughout the

remainder of this chapter.

4.3 Pipkin Space

As noted above, oscillatory techniques are particularly useful in rheology as they al-

low the experimentalist to systematically vary the imposed frequency and amplitude

in the protocol, independently from one another [38, 90]. In separate experimental

runs, a large range of amplitudes at fixed frequency, and frequencies at fixed am-

plitude, can be accessed. It is then possible to create a map of material responses

to deformation, where strain amplitude and frequency are used as the coordinate

axes. This representation of data is known as the Pipkin space [144]; an illustration

is shown in figure 4.6(a). This space enables the study of the transition in material

behaviour from linear to nonlinear and elastic to viscous as the co-ordinate axes of

strain amplitude and frequency are traversed, respectively. A Pipkin diagram, built

up Lissajous-Bowditch curves of material responses within the Pipkin space has been
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Figure 4.6: The Pipkin space of γ0 vs. ω in (a) and shifted for γ̇0(= ωγ0) vs. ω in
(b). Solid lines for γ0 = 1.0 and γ̇0 = 1.0 are shown in each plot. The linear regime
beneath these lines is shaded in grey. A dashed line shows the frequency equal to
the inverse intrinsic relaxation time of the polymer ω = 1/τd = 1.0.

termed “the ‘rheological fingerprint’ of material behaviour” [52,53]. In section 4.4 I

consider the prevalence of shear banding throughout each LAOStrain response cycle

through a series of Lissajous-Bowditch curves forming a Pipkin diagram.

In the studies shown in this thesis, I found that a shifted Pipkin space, where

instead the y-axis is for fixed γ̇0 = ωγ0, provided a more useful interpretation. This

representation is shown in figure 4.6(b).

Figure 4.6 identifies regimes of material behaviour within the Pipkin space: at

low frequencies (that is, ω � 1/τd, where τd is the intrinsic relaxation time of the

material), the material is dominated by viscous effects. Conversely, in the high

frequency regime where ω � 1/τd, elastic effects dominate the material behaviour.

The line of ω = 1/τd is shown as a dashed line in figure 4.6(a) and (b).

The linear regime (where there is insufficient imposed strain amplitude for non-

linear effects to be important) is highlighted in figure 4.6(a) and (b) by the grey

shaded region. This regime has an upper bound of the lines where γ0 = 1.0 and

γ̇0 = 1.0. The lines meet (by definition) at ω = 1.0. This is the inverse characteristic

relaxation time of the material and therefore marks a macroscopic timescale above

which the flow response begins to be dominated by elastic, rather than viscous, be-

haviour. Within this linear regime, setting ω � 1/τd leads to a material response

of a Newtonian fluid. Instead setting ω � 1/τd allows material behaviour to be

accurately described as a linear Hookean elastic solid.
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At higher amplitudes, the material response becomes affected by nonlinearity.

The material response signatures will also be dependent upon the frequency of oscil-

lation in the nonlinear regime: at low frequency, LAOStrain may effectively sweep

the Σ(γ̇) response up and down the underlying constitutive curve of the material

(for a homogeneously constrained system). The material stress would have sufficient

time to fully relax its stress on the timescale on which the rate the deformation is

changed. It would therefore follow that the presence (or absence) of shear banding

in this large amplitude, low frequency regime depends upon the non-monotonicity

or otherwise of the constitutive curve of the material sample. Conversely, at large

frequency and amplitude, it may (loosely and intuitively) be expected that the Σ(γ)

response to LAOStrain traces the short-time shear startup transient curve. If so,

shear banding would be expected to emerge around the time of any elastic overshoot

in strain (recall that this feature was seen in materials with either a non-monotonic or

monotonic constitutive curve in the simpler cases of shear startup [2,121,135,136]).

At even larger frequencies, however, any heterogeneous growth in the flow is unex-

pected to be significant: the fast dynamics will not allow sufficient time for shear

bands to develop across the cell [77] regardless of other model parameters deter-

mining the monotonicity of the constitutive curve. All of these limiting cases are

considered in full detail later in the chapter: see section 4.3.2.

The remaining regime to be discussed here is the mid-frequency range of fig-

ure 4.6. Within this regime, the material response is viscoelastic and expected to

comprise a complicated combination of the limiting responses just discussed. It is

in this region of the Pipkin space that instability to the formation of shear bands

is expected to occur for both nonmonotonic and monotonic underlying constitutive

curves. Indeed, this is shown in section 4.3.2 and discussed further in section 4.4.

In the following section I consider a LAOStrain experiment for two example cases

in the shifted Pipkin plane, where predominantly low (‘viscous’) and high (‘elastic’)

material behaviours are expected. These limiting cases of low and high frequency in

LAOStrain have been previously shown in figure 4.2, where the height and width axes

of the strain vs. strain-rate plane are emphasised according to the frequency limit.
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I adopt the Lissajous-Bowditch representation to consider the stress response to

LAOStrain within these viscous and elastic regimes. I will use eigenvalues (attained

from linear stability analysis and the stability matrix as outlined in chapter 2) as a

numerical aide to identifying the regions of instability during the material response

to LAOStrain.

4.3.1 Eigenvalues in Lissajous-Bowditch curves

From linear stability analysis (recall chapter 2), it is shown that regions of instability

in a simple rheological protocol can be analytically predicted [60]. Through the for-

mation of a stability matrix, an eigenvalue, λ, is found. This eigenvalue governs the

stability of the material at a precise instant in time: if λ > 0, the material becomes

unstable to the formation of shear bands. However, note that the calculation of the

eigenvalue presumes a time-independent base state [170] and therefore only provides

an indicative guide to predicting the stability of a material to shear band formation

in the inherently time-dependent LAOS protocols. Therefore, in the assessment of

material instability to form shear banded flow, I supplement my results for the time-

dependent eigenvalue by integrating the heterogeneous perturbations to the initially

homogeneous base state with time. This method is not flawless, as the linearised

equations from which the heterogeneous perturbations are integrated break down in

the limit of nonlinear flow. In the unstable regime, the linear calculations predict

unbounded exponential growth in time. Because of this, I set a maximum of 104 for

the eigenvalue results presented here.

Figure 4.7 and 4.8 show the Lissajous-Bowditch curves’ viscous (left) and elastic

(right) representations of the material stress response to LAOStrain for a sample

with a non-monotonic, and monotonic underlying constitutive curve respectively.

In these calculations, the flow is restricted to be homogeneous. The colour scale

to the left of each set of graphs and describes the magnitude of the positive eigen-

value growth around the cycle (zero and negative eigenvalues are set to black). In

both (a) and (b), the left-hand plot gives an example of the low-frequency regime,

with an imposed strain rate in the nonlinear regime γ̇0 > 1; the right-hand plot

represents the high frequency, high strain regime. These are shown in the viscous
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Figure 4.7: LAOStrain in the nRP model where the underlying constitutive curve
is non-monotonic (β = 0.4). Solvent viscosity it taken to be η = 10−5. Left:
Viscous Lissajous-Bowditch figure showing stress Σ vs. strain rate γ̇ for an im-
posed frequency and shear rate (ω, γ̇0) = (0.001, 50.0), in the low frequency regime.
Right: Elastic Lissajous-Bowditch figure showing stress Σ vs. strain γ for imposed
frequency and strain rate (ω, γ̇0) = (31.6, 200.0), in the high frequency regime.
Colourscale shows eigenvalue. Note black colour indicates λ ≤ 0.

and elastic representations according to their predominant material effects at play:

at low frequency, the LAOStrain signal sweeps slowly up and down the material’s

underlying steady state constitutive curve. For the value of β for which the under-

lying constitutive curve is non-monotonic there is a clear positive eigenvalue during

the non-monotonic region in the Σ(γ̇) response curve shown in the left panel of

figure 4.7. This is consistent with the well known criterion for instability to shear

banding at the steady state: ∂γ̇Σ < 0 [185]. In the left panel (low frequency run) of

figure 4.8, where β is such that the constitutive curve is monotonic, the eigenvalue

remains negative, or zero, throughout the cycle; this indicates stable, homogeneous

flow.

Figure 4.8: As in figure 4.7 for a monotonic underlying constitutive curve (β = 1.0).
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The right-hand plots of figure 4.7 and 4.8 give the material responses to LAOS-

train at high-frequency and large amplitude. In this regime, the results are pre-

sented in the elastic representation Σ(γ); coloured regions of positive eigenvalue

can clearly be seen following the stress overshoot (or negative overshoot) in increas-

ing (decreasing) strain. This coincides with the elastic criterion found in the shear

startup protocol: −trM∂γΣ|γ̇ + γ̇∂2
γΣ|γ̇ < 0 (trM > 0), which was found to pre-

dict transient banding with onset just before the overshoot of stress with strain.

These time-dependent shear bands were seen for materials with a non-monotonic or

a monotonic constitutive curve. The elastic overshoot at high frequency and high

strain amplitude in LAOStrain highlights the elastic material effects within this re-

sponse regime. It is these effects that are the dominating material behaviour, arising

in any protocol with γ0 > 1, rather than γ̇0 > 1 as seen in the low frequency regime.

The material responses to LAOStrain within the high frequency, large amplitude

regime also show some (weaker) growth in the eigenvalue following the strain-reversal

at γ/γ0 = ±1. This additional unstable region in the material elastic response curve

can be accounted for by growth in the normal stress component perturbations (δn)

and could be experimentally measured by birefringence [16]. A short study into the

growth of δn is included in Appendix I, section 4.7, of this chapter. However in this

thesis I focus on the heterogeneity in the shear rate profile.

In the following sections I further the ideas developed here. I consider the shifted

Pipkin space in two distinct ways: colour maps giving an ‘at-a-glance’ perspective of

the stability of the material to shear banding within a broad spectrum of imposed

frequencies and strain amplitudes, and grids of the time-dependence of material

responses - Pipkin diagrams - giving detail into single cycles of the LAOStrain

response on a grid of particular points within the Pipkin space.

4.3.2 Colour Maps

In the following section I look to represent the stability of a polymeric material - as

modelled by the nRP model - over a wide range of strain amplitudes and frequencies.

This is achieved through pin-point colour maps:
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Pin-point colour maps provide an ‘at-a-glance’ perspective of a series of LAOS

experiments. Each experiment (where ‘experiment’ defines a LAOStrain protocol for

fixed γ0 and ω and the response once the alternance state is reached) is accounted

for by each co-ordinate pair, or pin-point, in the map. Plotting these on a grid

where strain amplitude and frequency are the coordinate axes forms a Pipkin space

in which we may assess the material behaviour. For example: with 50 fixed strains

and 50 fixed frequencies, a map can be created to represent 2500 LAOS experiments.

These experiments are performed numerically according to the methods described

in chapter 2.

By definition, in these pin-point colour maps, only one value, per experiment

with fixed (γ0, ω), can be represented by each point. In this way, time-resolved in-

formation over the cycle is lost. For each co-ordinate pair, the recorded value to

indicate the stability of the material to the formation of shear bands under LAOS-

train at fixed γ0 and ω is taken to be the maximum degree of heterogeneity during

one cycle in the alternance state. While taking the maximum values will not give

any indication into how long-lived shear bands may be throughout the cycle, it

will clearly indicate the regions within the Pipkin space where instability, and shear

banding, are manifest in some form. It is these maximised quantities that I represent

on a colour scale in the pin-point maps shown here.

The degree of heterogeneity can be calculated by integrating the heterogeneous

perturbations in the γ̇-field to the linearised equations (δγ̇(t)) or by calculating the

degree of banding (∆γ̇) across the flow cell in a full nonlinear simulation. The

latter of these is much more time-consuming and computationally expensive than

the former. I found that all qualitative features of the material stability to the

formation of shear bands in LAOStrain are retained at this zoomed-out, ‘at-a-glance’

perspective for the linearised equation (δγ̇(t)) calculations as when the full nonlinear

(∆γ̇(t)) spatiotemporal dynamics were included. I therefore solely focus on the

integrated perturbations δγ̇(t) in the γ̇-field for all pin-point colour maps shown in

this thesis.

To recap from chapter 2, the following procedure is followed to calculate the

linear stability (to shear banding) value presented in the following pin-point colour
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maps:

Using the constitutive equations of the Rolie-Poly model, the time-dependent vari-

ables are perturbed with a small, heterogeneous value

{σ, σyy, γ̇} = {(σ̂(t) + δσ(t, y), σ̂yy(t) + δσyy(t, y), ˆ̇γ(t) + δγ̇(t, y)},

where ˆ indicates the base state, calculated within the assumption of homogeneous

flow and σ = σxy; the subscript in the shear-component of the stress is dropped for

clarity. After expansion, the perturbed constitutive equations are linearised, leaving

a differential equation for the evolution of the linearised heterogeneous perturba-

tions to the base state. If δγ̇(t) experiences growth during LAOStrain, it may be

inferred that the material is experiencing instability and is susceptible to forming

shear bands. In the following pin-point colour maps this perturbation is scaled by

the strain-rate amplitude of the oscillation to give a measure better suited to com-

parison with experiments: | δγ̇
γ̇0
|.

Figure 4.9 shows pin-point colour maps for the stability of a material to the

formation of shear bands in the LAOStrain protocol for a wide range of fixed γ̇0, ω

co-ordinate pairs. In (a) the material has an non-monotonic underlying constitu-

tive curve with β = 0.4; in (b), β = 1.0 and the underlying constitutive curve

is monotonic. Both maps are shown in the strain-rate amplitude-frequency plane,

with identical axis-scaling. The plane is a shifted version of the Pipkin space as

described earlier in figure 4.6(b), allowing for a wide range of Pipkin space to be

explored. Colour, quantified by the logarithmic scales to the right of each plot, in-

dicates the maximised perturbation in the γ̇-field during one cycle in the alternance

state, normalised by γ̇0 (| δγ̇
γ̇0
|): the brighter the area, the more unstable the ma-

terial is to shear band formation in any given regime of imposed strain amplitude

and frequency. To the left-hand side of the colour maps, the material is subject

to low frequency oscillations. In (a), the material with a non-monotonic consti-

tutive curve shows significant δγ̇-magnitude extending to the low frequency limit.

However in (b), where the material has a monotonic constitutive curve, there is no
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(a) (b)

Figure 4.9: Pin-point colour maps of the maximal growth in the linear perturbations
(|δγ̇|) around a LAOS-cycle, measured in the alternance state. The CCR parame-
ter, β, is taken in (a) as 0.4, and in (b) as 1.0, corresponding to non-monotonic and
monotonic underlying steady state constitutive curves respectively. Other param-
eters taken are: {η, q} = {10−5, 10−4}, where q represents the cell curvature ratio.

The colour scale for the normalised measure: |δγ̇|
γ̇0

, is shown by the colour panel on
the right-hand side of each plot. Black crosses indicate the values of γ̇0 and ω used
to form the Lissajous-Bowditch curves within the Pipkin figures in 4.15 and 4.16.

significant heterogeneity. This is consistent with expectation as discussed earlier in

section 4.3.1: at a frequency sufficiently slower than the intrinsic relaxation time

of the polymer (ω � 1/τd) the Σ(γ̇)-response to LAOStrain traces the underlying

constitutive curve of the material. Material stresses have sufficient time to relax

on the timescale of deformation [38]. It is only the material with a non-monotonic

constitutive curve that exhibits shear bands at the steady state and it thus follows

that it is only this material class that exhibits shear banding in the low frequency

LAOStrain regime.

Figure 4.10 shows this low frequency LAOStrain response for a range of γ̇0 where

the flow is constrained to be homogeneous. The data is represented as a viscous

Lissajous-Bowditch curve, where only the regime in which both Σ and γ̇ are positive

is shown. The underlying constitutive curve of each material is shown by the dashed

blue line in (a) and (b).

When γ̇0 = 1.0, the Σ(γ̇) response to LAOStrain lies within the low-shear rate
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Figure 4.10: Low-frequency tracing of the underlying constitutive curve of an entan-
gled polymeric fluid as modelled by the nRP model. The flow that is restricted to be
homogeneous (no spatial variation and shear banding are allowed) and results are
shown for strictly positive shear rate and stress values. The blue-dashed line shows
the underlying constitutive curve for each β = 0.4 (in (a)) and β = 1.0 (in (b)).
Black, red, green and pink thick lines show the low-frequency LAOStrain response
to imposed rates of γ̇ = 1.0, 10.0, 100.0, 1000.0 respectively. Frequency is taken as
ω = 10−4; solvent viscosity is η = 10−4.

(and mostly linear) response regime of the underlying constitutive curve, preceding

the overshoot in stress. This is shown by the thick black line in figure 4.10. It is not

until γ̇0 is sufficiently large (as in the red and green lines, where γ̇0 = 10.0, 100.0)

that the strongly nonlinear regime is reached [34]. This non-linear regime of low-

frequency tracing of the underlying constitutive curve is highlighted within the Pip-

kin space by the red section (A) in figure 4.11. Note that instability to the formation

of shear bands only occurs within (A) for an non-monotonic underlying constitutive

curve.

For very large γ̇0 (∼ 1/η) the maximum amplitude of the LAOStrain oscillation

lies within the high-shear rate linearly increasing branch of the underlying constitu-

tive curve. Shear banding is not expected to occur within this regime (from shear

startup) yet bright patches indicating significant heterogeneity in the material sam-

ple are seen in the top-left corner of figure 4.9(a). In figure 4.10 it can be seen that

for any γ̇0 = ωγ0 in LAOStrain greater than the negatively-sloping region of the

constitutive curve, the time-dependent shear rate response γ̇(t) must pass through

this negatively-sloping region en route to the γ̇ = γ̇0. The material is exposed to

shear rates within the regime of instability to the formation of shear bands (albeit



4.3. Pipkin Space 82

2π /τ
d

1 /τ
d

10
-1

10
0

10
1

10
2

γ
0

10
-1

10
0

10
1

10
2

10
3

ω

γ
0
 = 1.0

γ .
0  = 1.0 A

B

C

(a)

2π /τ
d

1 /τ
d

10
-1

10
0

10
1

10
2

10
3

γ
.
0

10
-1

10
0

10
1

10
2

10
3

ω

γ
.

0
 = 1.0

γ 0
 =

 1
.0

A

B

C

(b)

Figure 4.11: The Pipkin space of γ0 vs. ω in (a) and shifted for γ̇0(= ωγ0) vs. ω in
(b). Solid lines for γ0 = 1.0 and γ̇0 = 1.0 are shown in each plot. The linear regime
beneath these lines is shaded in grey. A dashed line shows the frequency equal to the
inverse intrinsic relaxation time of the polymer ω = 1/τd = 1.0. Coloured regions
indicate regimes of low-frequency responses (red, A), high-frequency linear elastic
responses (green, B) and high-frequency large-amplitude nonlinear responses (blue,
C).

transiently) each time the constitutive curve is transited on the approach to (and

return from) +γ̇0. Therefore significant shear banding is seen in LAOStrain for

γ̇0 within the high-shear rate linear branch of a non-monotonic constitutive curve.

By symmetry, the same behaviour occurs for the negative-shearing region (towards

−γ̇0) of Σ(γ̇).

The right-hand side of the pin-point colour maps in figures 4.9(a) and (b) shows

the material response at large frequency LAOStrain. Here, there is greater similarity

in the material stability to shear banding between the material with a non-monotonic

underlying constitutive curve (in (a)) and the monotonic underlying constitutive

curve (in (b)). At small strains (γ0 = γ̇0/ω � 1.0) an initially homogeneous flow

is stable against heterogeneous perturbations, illustrated by the dark colouring in

the map. Recall in this shifted-Pipkin representation that the line of γ0 = 1.0

runs diagonally up the γ̇0 − ω-plane from bottom-left to top-right. This regime

is highlighted by the green (B) region in figure 4.11. A detailed elastic Lissajous-

Bowditch curve of the material response in this low-strain, high-frequency regime is

shown in figure 4.12.

Within this regime, the elastic Lissajous-Bowditch curve for each Σ(γ)|γ0 col-

lapses onto one ‘master curve’. The stress responds in this limit as a linear elastic
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Figure 4.12: The low-strain, high-frequency master curve showing the linear elas-
tic solid-like behaviour in this limit of LAOStrain, using the nRP model. Stress
responses are shown as elastic Lissajous-Bowditch figures and amplitudes of γ0(=
γ̇0/ω) = 0.001, 0.1, 0.316, 0.5, 1.0, where the breakdown of the limit can be seen in
the magenta line of γ0 = 1.0. Frequency is ω = 100.0; solvent viscosity in η = 10−4.

solid. However, as the boundary of the regime is approached (γ0 = 1.0) the magenta

line in figures 4.12(a) and (b) shows the break down of the is linear elastic behaviour.

The Σ(γ) response departs from the master curve as the material behaviour begins

to feel the nonlinear effects to the imposed LAOStrain.

Blue region C in figure 4.11 highlights the regime of high-frequency, high-strain

LAOStrain where elastic nonlinear effects dominate the material response to the

imposed deformation. It may initially be expected that the Σ(γ) response in this

regime of LAOStrain follows the trajectory of a fast shear startup protocol: experi-

encing a pronounced overshoot in Σ with γ before a steady state plateau is reached,

repeated for positive and negative strain-rate. This, however, is not the case. In

shear startup the material begins at a well relaxed rest state before each deforma-

tion is applied. Whilst this relates to the first startup transient in LAOStrain, it

does not apply for any further: once the shearing direction is reversed in LAOS-

train at γ = ±γ0 there is little time for the material to relax its stresses accrued

during the strain-controlled protocol relative to the intrinsic relaxation time of the

polymer. Subsequent positive and negative shearing regimes within this large am-

plitude, large frequency flow do show stress overshoots, but these are much reduced
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compared with the startup case. Moreover, in LAOStrain, γ̇(t) requires a finite time

to reach γ̇0. This differs fundamentally from shear startup where γ̇ = γ̇0 infinitely

fast, therefore subjecting the material to greater γ̇, faster.

There is, however, a second high-frequency master curve for the elastic material

response to LAOStrain. At increasingly large strains, the nonlinear Σ(γ) material

response to LAOStrain forms a larger hysteresis area within the elastic Lissajous-

Bowditch curves compared with the smaller strain linear profiles (these are shown

later, in figures 4.15 and 4.16). However, the fast ramp up (following the reversal

at ±γ0) to the stress ‘plateau’ region at ±Σmax for positive and negative shearing

regions of the curve follows the same trajectory. For fixed high frequency LAOStrain,

the transition between the positive and negative ‘plateaus’ in stress collapse on to

one master curve; it is only the length of the ‘plateau’ that differs, depending upon

the magnitude of applied γ0 (the end-strain that must be reached before shearing

reversal). Figure 4.13 shows the master curve for ω = 100.0, where γ is cut off to

the right-hand side to focus on this positive shearing transition curve. To form the

master curve, each Σ(γ)|γ0 is shifted along the γ-axis by the value at which Σ(γ)

passes through Σ = 0.0, for increasing Σ. γMIN is defined as this axis-crossing point

for each Σ(γ)|γ0 curve. By symmetry, the same master curve signature would be

found for the negative shearing transition from +γ0 → −γ0, though it is not shown

here.

In the high-frequency regime, the response of an entangled polymeric solution to

imposed LAOStain is dominated by elastic effects. Signatures within the material

response only depend on the stress response with strain, rather than the strain rate.

Generally, elastically-dominated responses to LAOStrain of frequency ω require the

period of the oscillation to be less than the intrinsic relaxation time of the material:

2π

ω
� τ. (4.3.2)

This line is shown within the Pipkin space in figure 4.11 for τ = τd = 1. A similar

conclusion was drawn in reference [38] for thixotropic gels where τ described the

timescale of micro-structure changes in the flow.
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Figure 4.13: The high-strain, high-frequency master curve showing the fast transi-
tion between ±Σmax in the nonlinear stress response to LAOStrain, using the nRP
model. Strain amplitudes of γ0(= γ̇0/ω) = 10.0, 31.6, 100.0, 316.0, 1000.0 are
applied. Frequency is fixed at ω = 100.0; solvent viscosity is η = 104.

Shear banding is predicted here by the significant growth in heterogeneous per-

turbations in the γ̇-field for large strains, γ0 � 1.0, and large frequencies, ω � 1/τd

for both non-monotonic and non-monotonic underlying constitutive curves. I have

shown that within this regime the material response is dominated by the elastic

behaviours in the polymer and depends on the stress response with strain, rather

than strain rate. It therefore follows that the emergence of shear bands here is not

dissimilar to the formation of transient shear bands following the overshoot in Σ(γ)

during shear startup. This concept is discussed in more detail in the subsequent sec-

tion where I focus on individual Lissajous-Bowditch curve of the material responses

across the Pipkin space.

To the far right of the Pipkin space shown in figures 4.9(a) and (b), the degree of

heterogeneity in δγ̇ can be seen to be tapering off in magnitude. Higher frequencies

are not shown here as they are hard to access numerically in the resolution required

for the colour map, but it can be inferred that indeed this ‘tapering-off’ of magnitude

in heterogeneity would continue for great ω. At very large frequencies there is insuf-

ficient time for any growth in heterogeneity to appreciate to a significant value [58].

The rate of change in the material response does not allow for any shear banding
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to form across the cell and thus a homogeneous flow profile persists throughout the

response cycle.

The remaining regime in γ0 and ω in the Pipkin space not discussed here is the

intermediate region of figure 4.11 (shown in white). Here, significant heterogeneity

is seen for both cases of a non-monotonic and monotonic underlying constitutive

curve. The material response in this region is a combination of viscous and elastic

behaviours and thus cannot be encompassed by any one of the limiting-case be-

haviours discussed here. At low frequency, banding is seen as ω → 0, when ∂γ̇Σ < 0;

at high frequency, where ωτd � 1, banding instead depends upon Σ(γ). At inter-

mediate frequencies, a smooth crossover between the viscous and elastic material

behaviour is expected to be seen. It is this regime of viscoelastic polymer behaviour

that the tendency to form bands is most pronounced. Accordingly, I focus on in the

following sections.

Though not shown here, the features of the plots in figure 4.9 would remain if

the degree of banding around the LAOStrain cycle were measured in a full nonlinear

simulation, rather than the linear perturbation growth. The main difference in the

results is that the amplitude of the degree of heterogeneity is tempered by nonlin-

earity.

In the next section, I perform full nonlinear calculations, allowing for heterogene-

ity in the system, and thus enabling the possibility of shear banded flow to form if

the flow experiences instability under the oscillatory deformation. I will first intro-

duce the measurement for shear banding used here (degree of banding), as relevant

to the LAOStrain protocol. Then, following some initial, more detailed results, I

revisit the Lissajous-Bowditch curves and introduce Pipkin diagrams as a way to

represent the heterogeneity of the material across a range of the Pipkin space.

4.3.3 Degree of banding

When shear bands form in a deformed material, each band has a different shear rate

associated with it. The intrinsic time-dependence of the strain imposed during the
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LAOStrain protocol results in the transient evolution of spatial size and shear rate

of the bands that may form: if in existence, these bands will change throughout

the duration of any given cycle, evolving with the external driving oscillations. By

definition, however, the bands will trace their steps exactly from one cycle to another

when in the alternance state; moreover, the evolution of their spatial size and shear

rate will be symmetric for positive and negative regions of the LAOStrain input

signal.

Recall that (as in shear startup) the extent of any shear banding during LAOS-

train can be measured during a response cycle as follows: at any given snapshot in

time, the faster-flowing shear band can be defined as having shear-rate γ̇MAX and

the slower as γ̇MIN . For an imposed strain-rate amplitude of γ̇0(= ωγ0), the degree

of banding of the material at any instant of time is

∆γ̇0 =
1

N
[|γ̇MAX | − |γ̇MIN |], (4.3.3)

where N = γ̇0. I then define significant banding (where banding in the material is

measurable) as ∆γ̇0 > 5%.

Figure 4.14 shows the time-dependent responses of a material with a non-monotonic

(top: β = 0.4) and a monotonic (bottom: β = 1.0) underlying constitutive curve.

These responses are shown during a positive-Σ segment of the stress response cycle,

measured at the alternance state. Only half a cycle is considered here due to the

symmetry of material response to the LAOStrain input; the other (negative-Σ) por-

tion of the cycle would show the same patterns as seen here, up to the appropriate

switching in sign. As in the shear startup case reported in chapter 3, the symbols in

(a), (b), (d) and (e) correspond to the velocity profiles shown in (c) and (f), respec-

tively. These symbols, and associated profiles, illustrate the evolution of the shear

bands at snapshots in time during a section of one LAOS-response cycle. Comparing

the evolution of the velocity profiles with the symbol-markers in graphs (a) and (d),

the stress response with time, it can be seen that shear bands form once the stress

has gone through the overshoot region. This coincides with the regime of instability

to the formation of shear bands predicted by the positive eigenvalue regions of the
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Figure 4.14: Material responses to LAOStrain in the nRP model for γ̇0 = 31.6,
ω = 10.0. Top row: the material has a non-monotonic underlying constitutive curve
with β = 0.4. Bottom row: the material has a monotonic underlying constitutive
curve with β = 1.0. (a) and(d) show the homogeneously-constrained (solid black)
and heterogeneous (dot-dashed blue) stress response to LAOStrain with time, for
positive Σ (as the signal is symmetric). (b) and (e) show the corresponding evolution
of the degree of banding. (c) and (f) give the velocity profiles across the cell at
snapshots in time (indicated by the matching symbols in (a), (b), (d) and (e). The
cell is curved with q = 10−4; solvent viscosity is η = 10−5.

elastic Lissajous-Bowditch curves shown in section 4.3.1. Homogeneous flow is not

regained until the decreasing region of the stress response. This transient growth

and decay of shear bands during the cycle occurs for the non-monotonic and mono-

tonic cases, as previously predicted. Note here the similarity with the shear startup

transient responses in figure 3.3 in chapter 3, and the significance of the overshoot

in the stress to the onset of instability and growth of heterogeneous perturbations.

The leftmost graphs ((a) and (d)) give the homogeneously-constrained stress

response to the imposed LAOStrain protocol (solid black lines), together with the

stress response once heterogeneity, and thus banding, is allowed (dot-dashed blue

lines). For both non-monotonic and monotonic parameter choices (top and bottom
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rows of figure 4.14, respectively), the heterogeneous stress can be seen to separate

from the homogeneously-constrained stress. This is seen more drastically in the

non-monotonic case. The separation occurs due to the faster relaxation of the ma-

terial stress when shear banding across the cell is permitted. This therefore suggests

an note of caution for those in the community who seek to compare experimental

results with homogeneously constrained system calculations, in calculating a mate-

rial’s “rheological fingerprint”.

4.3.4 Shear banding in Lissajous-Bowditch curves

The use of Lissajous-Bowditch curves to represent material responses under LAOS-

train has the ability to portray a large amount of detailed information within one

curve. It is therefore useful to consider the effect of a large range of fixed frequen-

cies and strain amplitudes in the Pipkin space in this greater level of detail. This

is a representation technique used popularly in the LAOS literature. In the follow-

ing sections I will form Pipkin diagrams: a collection of Lissajous-Bowditch curves,

shown in a grid, displaying a range of the Pipkin space [144]. In figure 4.9, 4x4 grids

of black crosses were marked; these crosses indicate the regions within the colour

map where I have chosen to create Pipkin diagrams. The range of the Pipkin space

selected is where the pin-point colour maps have predicted both stable and unstable

material responses for a materials with a non-monotonic and monotonic underlying

stationary constitutive curve. In the following section, I will apply all the previously

described techniques to provide a full picture of the presence, and the persistence, of

shear banding in the LAOStrain protocol, for both materials with a non-monotonic

and monotonic constitutive curve.

Colour-coding regions of significant banding

In previous figures, the intensity of shear banding in a material that is allowed to vary

spatially has been quantified using the degree of banding, ∆γ̇0 . Recall equation 4.3.3.

Regions of significant banding (experimentally measurable heterogeneity across a

material sample) are defined as having ∆γ̇0 > 5%. The time-dependent degree of
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banding during one LAOStrain cycle has previously been presented in this thesis on

a time-axis (∆γ̇0 vs. t) in figure 4.14. In the following figures the degree of banding is

instead presented as a third dimension to the 2D-projection plots of the closed curve

in Σ(t), γ̇(t), γ(t) space (Lissajous-Bowditch curves) by the addition of a colour

gradient. This concise representation illustrates the time-dependent ∆γ̇0(t) during

one cycle of the material response at the alternance state as the system circulates

one cycle of its resultant Lissajous-Bowditch curve in either the elastic or viscous

representation. The following figures (4.15 and 4.16) use a gradient logarithmic

colour scale to represent the magnitude of the degree of banding at any point in

time during the cycle.

4.4 Pipkin Diagrams

Selecting a wide range of γ̇0 and ω across the Pipkin space enables a diagram to

be built up of the material responses to the LAOStrain protocol. These data can

be represented as a series of Lissajous-Bowditch curves [21, 112, 143] for each set of

fixed γ0 and ω, a collection of figures termed a ‘Pipkin diagram’ [144].

A Pipkin diagram of material responses to an imposed LAOStrain protocol en-

ables a comparison of features in the material behaviour across a range of amplitudes

and timescales. Frequency is constant up each column, and strain-rate amplitude

(in the shifted Pipkin space representation, consistent with the pin-point colour

maps) is constant along each row. This representation of LAOStrain response data

enables an effective characterisation of the material throughout the space of the

Pipkin diagram. In recent literature, the term has been coined that this repre-

sentation of material responses ‘provides a “rheological fingerprint” of the material

behaviour’ [52,53].

In each Lissajous-Bowditch curve within the Pipkin diagrams of figures 4.15 and

4.16, the material stress response to the imposed LAOStrain is plotted against strain

(in the elastic representation) in (a) and strain rate (in the viscous representation)

in (b) and describes the stress responses for materials with a non-monotonic and

a monotonic underlying constitutive curve respectively. The system’s full spatio-
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temporal state is evolved numerically, encompassing full nonlinear dynamics (de-

scribed in full in chapter 2) in a system where spatial variation is allowed. Any

shear bands that develop over the measured cycle are quantified by the degree of

banding and represented on the stress-response curve by the colour gradient. A

colour scale is shown to the left of each figure for reference.

At low frequency, banding can be seen to become insignificant for the material

with a monotonic underlying constitutive curve. However, as expected from the pin-

point colour maps in section 4.3.2, significant shear banding is seen for sufficiently

large strain-rate amplitude γ̇0 at low frequencies in LAOStrain for the material with

a non-monotonic underlying constitutive curve. Moreover, the degree of banding be-

comes more pronounced after the stress overshoot in strain-rate: ∂γ̇Σ < 0, where the

viscous criterion is satisfied [135]. Recall the tracing of the steady state constitutive

curve and low-frequency LAOStrain in section 4.3.2.

At more moderate frequencies, shear banding can be seen for both materials with

non-monotonic and monotonic underlying constitutive curves, as predicted by the

linear stability calculations in the pin-point colour maps (figure 4.9). It is within

this region of Pipkin space where the material response behaves as a combination

of the viscous and elastic traits of the polymeric solution that shear banding is

most evident. Moreover, it is the intrinsic time-dependence of the stress evolution

with strain (rather than strain-rate) that appears to dictate the onset of instability

and the subsequent formation of bands. This is reminiscent of previous work by

Moorcroft and Fielding [135, 136], Adams and Olmsted [4], Adams, Fielding and

Olmsted [2], that predicted the occurrence of shear bands in shear startup exper-

iments upon the approach to the steady state when there existed an overshoot in

the stress with strain (i.e. ∂γΣ < 0). These ‘transient’ bands existed for sufficiently

large shear rates, independently of whether the material is known to shear band at

steady state (i.e. even in materials that have a monotonic underlying constitutive

curves [4]). The criterion derived in reference [135] for an elastically-driven insta-

bility to shear banded flow in a time dependent protocol included a curvature term

as a correction to the overshoot term mentioned here. The inclusion of curvature

in the criterion predicts the onset of instability to occur before the overshoot in
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Figure 4.15: A Pipkin diagram of the stress response to imposed LAOStrain in the
nRP model for a material with a non-monotonic constitutive curve (β = 0.4) in
the elastic representation, in (a), and the viscous representation, in (b). Strain-rate
amplitude γ̇0, frequency ω, are employed, these are labelled at the top and right-
hand side of each column and row respectively. The solvent viscosity is taken to
be η = 10−5. Allowing for heterogeneity, a curved cell is used, with parameters
q = 1 × 10−4, J = 512, l = 0.02. The colours in the Lissajous-Bowditch curves
represent the normalised degree of banding, indicated by the coloured log-scale on
the left-hand of the grid.
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Figure 4.16: As in figure 4.15, for a material with a monotonic constitutive curve
(β = 1.0).



4.4. Pipkin Diagrams 94

strain for significantly strong negative (positive) curvature when the stress response

is increasing (decreasing). Examples of the influence of curvature on the formation

of shear-banded flow within the stress response cycle can be seen in figure 4.15 and

figure 4.16: for frequency ω ≥ 10.0 and strain-rate amplitude γ̇0 ≥ 20.0 significant

shear banding occurs before the stress overshoot, with intensity increasing after

∂γΣ < 0 is satisfied.

It therefore follows that in the elastic representation of the Pipkin diagram, where

stress is plotted against strain, that an overshoot (negative overshoot) in stress with

increasing (decreasing) strain predicts an instability in the material flow regardless

of the monotonicity of the underlying constitutive curve of the material up to the

small curvature correction just discussed. There are, however, two distinct, differ-

ent types of banding to be seen here: transient banding, and persistent banding.

Transient banding is localised after (or around) the stress overshoot and the flow re-

gains homogeneity as the strain is reversed at γ(t) = γ0, whereas persistent banding

persists throughout the LAOStrain cycle. There exists a region in the Pipkin space

where, given a specific range of parameter values, significant banding exists for the

whole of the LAOStrain cycle. This can occur for both non-monotonic and mono-

tonic constitutive curves. Akin to the preliminary study in chapter 3, moderate

frequency and strain-amplitude cause any heterogeneity that develops during the

initial startup to LAOStrain to be captured by the reversing flow: without sufficient

time for polymer stress to relax, shear bands remain in the flow as the deformation

oscillates.

An alternative representation for this data is the third projection of the closed

loop shown in figure 4.3: plotting strain vs. strain-rate. For fixed frequency (thus

traversing up one vertical column in the Pipkin space), increasing strain, or strain-

rate, will form a set of concentric circles where the diameter is determined by the

imposed amplitude. This representation provides an alternative insight into the

time-dependent nature of the LAOStrain protocol and highlights the role of the over-

shoot (in strain, or strain rate) for the onset of instability during the flow. Indeed,

the overshoot in strain (for moderate frequency) or strain rate (for low frequency)
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and the maximum degree of banding in the cycle are all located in the symmetric

quadrants of this 2D projection where both strain and strain-rate are simultaneously

increasing, or decreasing. Plots showing the data in this representation are included

in Appendix II in section 4.8.

In the following sections of this chapter I consider effect of chain stretch on the

stability to, and the existence of, shear bands within a polymeric material flow under

LAOStrain. All figures and results shown in these sections use the full stretching

version of the Rolie-Poly model [110], although still include just a single relaxation

mode and its associated stretch dynamics. This model includes Z, the entanglement

number of the material, and the associated chain-stretch relaxation time τR. The

inclusion of this timescale decreases the extent of monotonicity in the material’s

constitutive curve and, for monotonic curves, steepens the slope across the plateau-

like region. Previously, this monotonicity has been controlled by the CCR-parameter

β (for sufficiently small η) which unlike Z, is not experimentally measurable and,

at present, there exists no consensus to what β should be taken as. I therefore

include a discussion on the effects of these two parameters, and their impact on

material stability to shear banding in LAOStrain. Moreover, it is hoped that these

measurements of banding might help with the currently poorly defined β-value in

the model.
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4.5 Stretch effects

In this section I consider the stress responses, the instability of the initially ho-

mogeneous base state and any subsequent susceptibility to shear band, in the full

stretching form of the Rolie-Poly model [110]. The inclusion of stretch into this

polymeric model affects the relaxation dynamics of the polymer chain. The rate of

retraction and convective constraint release (CCR) events in the material depend

upon the amount of stretch in the system: large stretch is seen when the rate of

externally imposed deformation is faster than the stretch relaxation time. Small

stretch is seen along the polymer’s chain when the converse is true. Chain stretch

can have a stabilising effect on the material and has an associated relaxation time,

τR. In the Rolie-Poly model, τR is assumed to relate to the ‘reptation’ time (τd) by

the number of entanglements in the chain:

Z =
τd

3τR
. (4.5.4)

Taking the limit of fast chain stretch relaxation (τR → 0), or, equivalently, an

infinite number of chain entanglements (Z), the non-stretching limit of the model

is recovered. The full constitutive equations of the Rolie-Poly model with chain

stretch are defined in chapter 2.

Conceptually, the entanglement number quantifies the number of points along a

polymer chain that form entanglements with other chains in the material. These en-

tanglements restrict movement of the polymer and thus affect the relaxation dynam-

ics of a polymer chain. Z is defined by the ratio of the intrinsic material properties:

Me, the molecular weight of a segment of polymer chain between entanglements,

and the molecular weight of the polymer: Mw, such that [127]:

Z =
Mw

Me

. (4.5.5)

In the following section, I consider the effect including chain stretch has on the

underlying constitutive curve of a material as calculated by the sRP model. I then

further the early, insightful study by Adams and Olmsted [2] into heterogeneous flow
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the LAOStrain protocol. As in the non-stretching case, I consider the alternance-

state stress response to imposed strain and the polymer’s instability to the formation

of shear bands in the flow. Results are again presented through pin-point colour

maps and Lissajous-Bowditch figures. I also discuss the effect on stability to shear

banding within the Pipkin space for the range of values of the CCR-parameter and

the number of entanglements. This approach enables a stability phase diagram to be

built up for significant shear banding in polymeric materials under the LAOStrain

protocol.

4.5.1 The interplay of Z and β on the monotonicity of the

constitutive curve in the sRP model

The convective constraint release (CCR) stress relaxation mechanism has an asso-

ciated efficiency, described by the parameter β ∈ {0, 1}. The value of β has an

effect on the monotonicity of the material constitutive curve, depending also upon

the quantity Z. Very few entanglements (small Z) increases the steepness of the

intermediate γ̇ plateau-like region of the material constitutive curve, regardless of

β, compared with the counterpart curve for a highly entangled material. In terms

of the RP-model definition of Z, small Z implies a larger Rouse relaxation time τR.

This reduces the separation between the two timescales used in the sRP model, τR

and τd and thus shortens the plateau region of the underlying constitutive curve.

The relationship between the monotonicity of the material constitutive curve

and the values of Z and β is shown by the red line in figure 4.17 for a particular

value of the solvent viscosity η = 10−5. The red-shaded region indicates where the

constitutive curve is non-monotonic for any Z or β.

A comprehensive study of the tendency to form shear bands as a function of

these two parameters was performed as follows:

For each set of values (β, Z) I constructed a full pin-point colour map (γ̇0, ω). This

colour map spanned γ̇0ε{100.5, 103} and ωε{100− 102} for a resolution of 20× 20 co-

ordinate pairs. Recall, for the construction of a pin-point colour map, one LAOStrain

experiment is performed for each co-ordinate pair (γ̇0, ω). Once the alternance state

is reached, the maximum degree of banding (as measured by the heterogeneous
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Figure 4.17: Effect of CCR parameter β and entanglement number Z (and so of chain
stretch relaxation time τR = τd/3Z) on shear banding in LAOStrain. (Recall that
the non-stretching version of the model has τR → 0and soZ → ∞.) Empty circles:
no observable banding. Hatched circles: observable banding, typically ∆γ̇/γ̇0 ≈
10% − 100%. Filled circles: significant banding ∆γ̇/γ̇0 ≥ 100%. For hatched and
filled symbols we used the criterion that banding of the typical magnitude stated is
apparent in a region spanning at least half a decade by half a decade in the plane
of γ̇0, ω, by examining maps as in figure 4.18 in by eye. The square shows the
parameter values explored in detail in figure 4.18.

perturbations in the γ̇-field) over one cycle is recorded, quantified by a logarithmic

colour scale. Each pin-point colour map is described by one circle in figure 4.17.

Filled circles indicate that significant shear banding of at least 100%γ̇0 is seen in

a reasonably large region (at least one half-decade in ω and one half decade in γ̇0) of

the γ̇0 − ω plane. Hatched symbols indicate that less, but still significant (10%γ̇0),

shear banding is seen across the γ̇0 − ω plane (again, for at least one half-decade

in ω and one half decade in γ̇0). Open symbols show immeasurable heterogeneity

across the γ̇0 − ω plane. Together with the red line of the relation of β and Z to

the monotonicity of the underlying constitutive curve of the material, these circles

enable a phase diagram to be built up of shear banding intensity in LAOStrain

across the parameter space.

This phase plane gives a clear indication of the extent of heterogeneity in the

flow, at the alternance state. In particular, it is important to note that there is

significantly measurable banding in a large region of this phase plane over which the
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Figure 4.18: Pin-point colour map of the normalised degree of shear banding for
the sRP model with a monotonic constitutive curve. Each point in the γ̇0, ω plane
corresponds to one LAOStrain run with strain-rate amplitude γ̇0 and frequency ω.
For computational efficiency, these calculations are performed by integrating the
linearised equations introduced in chapter 2. Reported is the maximum degree of
banding at any point in the cycle, after many cycles. Model parameters: β =
0.7, Z = 75 (and so τR = 0.0044), corresponding to the black box in figure 4.18.
η = 10−5 and cell curvature is q = 2 × 10−3. Note the different colour scale from
figure 4.9. The model’s full nonlinear dynamics for the (γ̇0, ω) value marked by the
cross are explored in figure 4.19.

underlying constitutive curve is monotonic. At Z = 50 significant shear banding

is seen where β is such that there is a underlying monotonic constitutive curve

(β = 0.6, 0.7 in figure 4.17). This value of Z = 50 is within the region of the value

measured in a typical LAOStrain rheology experiment, which commonly range from

20-100 entanglements [10,28,107]. At fixed β, moving horizontally through the plane

where Z is increasing (thus decreasing τR), the region of measurable, significant

shear banding also increases whilst within the monotonic constitutive curve region

of the β − Z phase plane. At high Z (towards the right-hand side of the phase

plane) significant banding is measured for all values of β. As Z is increased, the

red perimeter line that encases the region of the βZ plane where the underlying

constitutive curve of the material is non-monotonic begins to reach a plateau in

β. For infinitely large Z, the non-stretching limit of the Rolie-Poly constitutive

equations is reached, where the monotonicity of the constitutive curve is no longer

dependent on Z.
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Figure 4.19: sRP model with a monotonic constitutive curve in LAOStrain of strain-
rate amplitude γ̇0 = 20.0 and frequency ω = 8.0. Model parameters β = 0.7, Z =
75, η = 105. Cell curvature q = 2× 103. Number of numerical grid points J = 512.
Left: Stress response in the elastic representation. Solid black and red-dashed line:
calculation in which the flow is constrained to be homogeneous. Red-dashed region
indicates a positive eigenvalue showing instability to the onset of shear banding.
Green dot-dashed line: stress response in a full nonlinear simulation that allows
banding (almost indistinguishable from the homogeneous signal in this case). Right:
Velocity profiles corresponding to stages in the cycle indicated by matching symbols
in left panel.

Note here that the values used previously in the initial study by Adams and

Olmsted [2] (Z = 265, β = 0.728) are indeed within the region of the β − Z phase

plane for which the underlying constitutive curve is monotonic. However, for the

range more typically used in nonlinear rheology experiments [10, 28, 107], Z = 265

is much larger. In the following figures, I focus on a value of Z within the range of

experimentally achievable values, together with a β-value that lies well within the

monotonic constitutive curve region of the phase space. Here, I use Z = 75, β = 0.7.

This is highlighted by the thick black box in figure 4.17 and is shown as a hashed

circle, indicating banding within a significantly large region (at least one half-decade

in ω and one half decade in γ̇0) of the pin-point colour map that is at least 10% of the

imposed strain-rate amplitude, γ̇0. The pin-point colour map for these parameters

is shown in figure 4.18. The region of significant shear banding is described by the

gradient colour scale to the right-hand side of the figure. This represents the degree

of banding (normalised by the strain-rate amplitude) as calculated by integrating

the linearised perturbation equations with time. Similar features are recovered at

the low and high frequency limits as seen previously in the nRP case (figure 4.9).
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The cross marked on figure 4.18 indicates the region in the γ̇0, ω-plane where the

Lissajous-Bowditch curve shown in figure 4.19 lies. The colour of the pin-point map

at this set of parameters indicates the existence of shear banding in the alternance

state. Figure 4.19 shows the Lissajous-Bowditch curve in the alternance state for

both the case where homogeneity is artificially enforced (black-solid and red-dashed

lines) and where heterogeneity is allowed (green dot-dashed line). The red-dashed

line highlights the regions of the homogeneously-constrained material response where

the eigenvalue (calculated via linear stability analysis and the associated eigenvalue

matrix) is positive. The symbols on the Lissajous-Bowditch curve indicate the

times at which the velocity profiles across the rheological cell are taken. Clear

heterogeneity in the velocity profile (shown by the non-linear, bowing signatures)

can be seen once the stress has passed the overshoot Σ(γ). Before this overshoot

(at the filled black circle) the profile is homogeneous. This homogeneity is regained

following the strain-reversal point at γ = γ0. By symmetry, the same pattern (with

negative velocities) would be seen on the negative stress and decreasing strain region

of the Lissajous-Bowditch curve.
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4.6 Conclusions from chapter 4

In this first results chapter I have studied the stability of entangled polymeric solu-

tions to the formation of shear bands under large amplitude oscillatory shear strain

(LAOStrain). I have achieved this by employing the Rolie-Poly model in both the

non-stretching and stretching limits.

Through this work, I have identified regimes of parameter space where shear

banding is significant. I have shown that materials that have a monotonic constitu-

tive curve (and therefore do not exhibit shear banding at the steady state but have

been shown to form transient shear bands in time-dependent flow [2,135,136]) or a

non-monotonic constitutive curve show significant shear banding in LAOStrain.

The following points may be concluded from the work presented in this chapter:

• Shear banding in LAOStrain is an intrinsically time-dependent phenomenon.

Crucially, the work here reiterates the message from previous studies that shear

bands form in entangled polymeric fluids during a protocol with a sufficiently

strong time-dependence. Moreover, shear banding is seen in polymers under

LAOStrain for non-monotonic and monotonic underlying constitutive curves.

• The inherently time-dependent nature of the LAOStrain protocol causes con-

tinual elastic shear banding triggers in the flow as the deformation is continu-

ally ramped up and down in magnitude. Any transitory elastic and unstable

heterogeneous effects are no longer insignificant factors when measuring at

the alternance state. Transient shear banding signatures akin to those seen in

startup protocols have insufficient time to die out on the timescale of defor-

mation and therefore shear banded flow is captured in the reversing flow.

• At low frequencies (ω � 1/τd), the material response to LAOStrain corre-

sponds to a quasi-static strain-rate sweep up and down the steady state flow

curve. Shear bands will form if the material’s underlying homogeneously-

constrained constitutive curve is non-monotonic: i.e.:

∂Σ

∂γ̇
|ω�1/τd < 0.
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This corresponds to the viscous instability derived in ref. [135] for the simple

shear startup case.

• At high frequencies (ω � 1/τd), shear banding occurs for a significant region of

parameter space for materials with non-monotonic and monotonic constitutive

curves. Here, it is the overshoot of the stress signal in strain and strong

curvature effects that are the important mechanical triggers to instability and

heterogeneous growth: i.e.:

[
− trM∂γΣ|γ̇ + γ̇∂2

γΣ|γ̇
]
ω�1/τd

< 0,

where trM > 0.

This corresponds to the elastic instability derived in ref. [135] for the sim-

ple shear startup case for high imposed strain-rates. Moreover, elastically-

dominated responses to LAOStrain require the period of the oscillation to be

less than the intrinsic relaxation time of the material:

2π

ω
� τ.

• A map of shear banding intensity within the space of the experimentally mea-

surable entanglement number Z and theoretical CCR-parameter β is shown,

providing a roadmap for further experimental and theoretical studies on this

subject. The map shows a significant region of the plane where shear banding

is sufficiently intense to be measurable, but the material constitutive curve is

monotonic.

In the following chapter I will consider the counterpart protocol to LAOStrain:

large amplitude oscillatory shear stress (LAOStress). In a similar vein to the work in

this chapter, I will consider the extent to which material response and susceptibility

to the formation of shear bands under LAOStress can be understood, and predicted,

by existing knowledge of the simpler step stress protocol (recall chapter 3). Refer-
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ence [135] derived criteria for the onset of instability in this simple protocol; I employ

this as a guide to understand the mechanisms and triggers to shear band formation

in LAOStress.
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4.7 Appendix I

4.7.1 Growth in the normal stress component, σyy

In section 4.3.1 it was suggested that the region of positive eigenvalue following the

reversal in strain rate at ±γ0 could be accounted for by growth in the normal stress

component perturbations, δn. In this appendix I present full nonlinear calculations

of the heterogeneous growth of the normal stress component, together with the

shear stress component, the degree of banding and the evolution of the viscoelastic

stress with time under LAOStrain in the nRP model. The figures shown here are the

counterparts to the right-hand panels of figures 4.7 and 4.8 in section 4.3.1 where the

flow was constrained to be homogeneous. Regions of positive eigenvalue are shown

here by the red-dashed lines within the homogeneously-constrained stress response;

recall that these regions were coloured according to magnitude in figures 4.7 and 4.8.

Figure 4.20 shows the first of these, for a material with a non-monotonic constitutive

curve, β = 0.4.
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Figure 4.20: Evolution of the shear stress ∆σxy(turquoise) and normal stress
∆σyy(purple) components, the degree of banding ∆γ̇(green) and the full viscoelastic
contribution to the shear stress with time(black and red-dashed for homogeneous;
blue dot-dashed for heterogenenous), to LAOStrain in a system where spatial vari-
ation is allowed and the underlying constitutive curve is non-monotonic (β = 0.4).
Modelled by the nRP model, frequency ω = 31.6 strain-rate amplitude γ̇0 = 200.0.
{J, q, η} = {512, 10−4, 10−5}.

Clear growth in the magnitude of heterogeneity in the normal stress component

∆σyy can be seen in figure 4.20 where the eigenvalue becomes positive around the

strain-reversal region of the response to LAOStrain. It is this region of positivity in

the eigenvalue that can not be accounted for by the overshoot in stress with strain,
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unlike the other region of positive eigenvalue in the material stress response. The

spatial profile for this at the snapshots in time defined by the symbols in figure 4.20

can be seen in figure 4.21. Each profile for the shear rate γ̇(green square), shear

stress σxy(turquoise circle) and normal stress σyy(purple diamond) components have

corresponding colour and symbol to the signal plotted against time in figure 4.20.
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Figure 4.21: Spatial profiles across the rheometer cell for the shear rate γ̇(green),
shear stress σxy(turquoise) and normal stress σyy(purple) components in LAOStrain
for a material in which the underlying constitutive curve is non-monotonic (β = 0.4).
Each time-dependent quantity is normalised by its cycle-averaged value, represented
by < >. Modelled by the nRP model, frequency ω = 31.6 strain-rate amplitude
γ̇0 = 200.0. {J, q, η} = {512, 10−4, 10−5}.

It is not unexpected that the degree of heterogeneity in the shear stress compo-

nent is η-times smaller in magnitude: recall, γ̇ ∼ Gσ
η

(G = 1). Clear shear banding

profiles can be seen in the γ̇-field, though this is not the focus of this appendix.

The spatial profile of σyy vs. y shows significant heterogeneity in the normal stress

component. When normalised by the cycle-averaged normal stress, close to 80%

banding is seen. Similar results are seen for a material with a monotonic constitu-

tive curve: the counterparts of figures 4.20 and 4.21 are shown in figures 4.22 and

4.23 for β = 1.0.
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Figure 4.22: As in figure 4.20 for an underlying monotonic constitutive curve.
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Figure 4.23: As in figure 4.21 for an underlying monotonic constitutive curve.

As before, significant growth in heterogeneity can be seen in the normal stress

component when coincident with the positive eigenvalue at the strain reversal. In

this case, where the material constitutive curve is monotonic, heterogeneity can be

seen to be approximately 40% of the cycle-averaged normal stress component.

Clearly, this short exploratory study into the growth of heterogeneity in the

normal stress component of polymeric flow in LAOStrain shows some interesting

material properties. This would be worth expanding in further work to gain deeper

insight into the unstable flow in material responses to LAOStrain. Recent work on

the role of the normal stress component in this protocol has been published for the

Giesekus model in reference [93].
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4.8 Appendix II

4.8.1 Strain vs. strain-rate plane: concentric circle plots

Recall from section 4.2 that the elastic and viscous representations of Lissajous-

Bowditch curves are 2D projections of a closed 3D curve in stress, strain and strain-

rate, where these dynamical quantities form orthogonal axis. In this appendix I con-

sider the 2D projection of strain vs. strain-rate.
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Figure 4.24: Fixed frequency
circles: γ̇(t) vs. γ(t).

In this representation, the LAOStrain protocol

forms an ellipse. For fixed frequency (thus travers-

ing up one vertical column in the Pipkin space),

increasing strain or strain-rate (as γ̇0 = ωγ0) will

form a set of concentric circles where the diame-

ter is determined by the imposed amplitude. A

schematic of this for just one amplitude is shown in

figure 4.24.

Within each of the four quadrants of the plane,

strain and strain-rate will either both be increasing

or both decreasing, or increasing while the other

decreases, and vice-versa. For instance, the top-left quadrant has γ = −γ0 → 0 and

γ̇ = 0 → γ̇0 thus both quantities are increasing. By symmetry, the bottom-right

quadrant has both of these quantities decreasing.

Figure 4.25 shows four concentric circle plots in the strain vs. strain-rate plane.

These plots are each built up for multiple γ̇0, measured in the alternance state. In

each plot, the frequency is held constant; this is directly comparable to one column

in the Pipkin diagrams in section 4.4, or one vertical line of pin-points in the colour

maps in section 4.3.2. Strain-rate is increased, resulting in expanding circle diameter.

In each plot, γ0 = 1 is marked by a white circle as a guide to the eye.

Figures 4.25(a) and (c) have a fixed frequency of ω = 1.0. As τd = 1 in the

units used here, this frequency of deformation is on the inverse timescale of the

intrinsic relaxation time of the polymer, thus the viscous dynamics are expected to

largely govern the material behaviour, though frequency is not sufficiently small for
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the material response to trace the underlying constitutive curve. Here, the black

line indicates the point at which - for each LAOStrain experiment that forms a

concentric circle in this plane - there exists an overshoot (negative overshoot) in

increasing (decreasing) stress with increasing (decreasing) strain-rate. This viscous

(∂γ̇Σ < 0) overshoot only exists for γ0 > 1. The black line in figures 4.25(b) and

(d), where frequency is fixed at ω = 10.0, shows the point where the material passes

instead through an elastic (∂γΣ < 0) overshoot in stress with increasing strain (or

the negatively-shearing alternative). At this faster frequency, material behaviour is

described by the elastic, short timescale effects. Again, there is no overshoot in the

stress when γ0 < 1.

In all cases, whether the material has a non-monotonic or monotonic underlying

constitutive curve, it is clear that the overshoot - in either strain, or strain-rate - is a

crucial factor in predicting the onset of instability in a material. Following each over-

shoot the maximum growth in the linear perturbations is attained. Moreover, both

these types of overshoot exist within the quadrants where strain and strain-rate are

simultaneously increasing, or decreasing. This is unsurprising as for simultaneously

increasing (or decreasing) γ(t) and γ̇(t) ∂γΣ = ∂γ̇Σ < 0.

It therefore follows that the pin-point colour plots in figure 4.9 could instead be

attained - and look identical - if only this simultaneously increasing (or decreasing)

strain and strain-rate quadrant, rather than the complete cycle, was considered. I

have indeed checked for this, though the data is not shown here.

In (c) the material has a monotonic underlying constitutive curve; it is thus not

expected to see any perturbation growth as the frequency reaches the lower limit

(ω � 1). However, at ω = 1.0 (as in (c)), this low frequency limit has not yet been

reached and small perturbation growth can be seen following the overshoot line.

This instability is transient and can be seen to decay away as the cycle is traversed

(before the symmetrical negative overshoot is reached). Transient instability can

also be seen in (a), (b) and (d) at for large strains. However, in these three cases,

significant heterogeneity can be seen at intermediate γ0. For γ0 > 1, there exists a

region where heterogeneity is present throughout the whole of each cycle. Any detail

in the colour graduation here is not accessible for this linearised limit: the growth
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Figure 4.25: Concentric circle plots at fixed frequencies: ω = 1.0 in (a) and (c),
ω = 10.0 in (b) and (d). One LAOStrain cycle forms one concentric circle; the
circle’s radius increases with increasing γ0 (or, equivalently, γ̇0). A white circle
indicates γ0 = 1.0. The magnitude of the growth of linear perturbations to the
system is shown by the colours; a scale is given as a guide to the right of each plot.
All LAOStrain protocols are performed using the non-stretching Rolie-Poly model
in a curved (constant imposed stress gradient) rheological cell, with parameters:
{η, q} = {10−5, 1× 10−4}. Materials in (a) and (c) have a nonmonotonic underlying
constitutive curve (β = 0.4); (b) and (d) have a monotonic constitutive curve (β =
1.0). Black lines in each circle indicate the time of overshoot of the polymer stress
with increasing strain or strain-rate, as indicated in the subfigure captions.

of these heterogeneous perturbations to an otherwise homogeneous flow profile can

only predict the onset of instability at an instant of time, any time-dependent growth

or decay in heterogeneity following this onset can only be fully described through

full nonlinear calculations (where heterogeneity in the flow is allowed).

It is this region, where heterogeneity persists throughout the whole cycle, that

gives an illustrative example of the transient shear bands captured by LAOStrain

seen earlier in the heterogeneous Pipkin diagrams (i.e. where significant shear band-

ing persisted throughout the response cycle to LAOStrain). Within this regime of

moderate applied strain amplitude and fixed frequency there is insufficient time for



4.8. Appendix II 111

full polymer chain relaxation before further deformation, thus any elastic instability

leading to the formation of shear banded flow is captured by the strain reversal at

γ = ±γ0. This feature occurs for materials with a non-monotonic and monotonic

underlying constitutive curve.



5
LAOStress in the Rolie-Poly Model

In this chapter I consider the response of an entangled polymeric fluid to an ap-

plied Large Amplitude Oscillatory Shear Stress (LAOStress, where the repeated ‘S’

has been dropped, as per convention [42]) using the Rolie-Poly (RP) model [110].

In chapter 3, I revisited the results found for the step stress protocol in the lit-

erature [135, 136]. Here, after a short recap, I consider how these findings, and

the derived criteria, may apply to the LAOStress protocol. This nonlinear oscilla-

tory protocol is of similar form to the previously used LAOStrain protocol. How-

ever, the oscillatory forcing is provided by controlled stress, rather than controlled

strain [42, 101]. In a LAOStress experiment, stress is applied to a material and the

corresponding strain-rate response is measured.

The current literature for LAOS protocols primarily focus on the strain-controlled

LAOStrain protocol. Any existing literature on the LAOStress protocol has largely

focussed on the response of gels and soft solids (that exhibit thixotropic behaviour

112
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and yield-like transitions) such as Carbopol microgels, doughs and Xanthan gum [37,

42, 101, 103]. It was shown in [101] that materials can behave substantially differ-

ently in LAOStrain to LAOStress protocols due to their nonlinear response under

the different cyclic loading histories. It thus follows that the use of LAOStress as a

complementary protocol to LAOStrain may provide insight into additional material

responses within the nonlinear regime.

Studies have also considered the inversion properties of measuring a stress re-

sponse signal to strain-controlled LAOS in strain-controlled and stress-controlled

rheometers [12, 101, 130]. Lauger and Stettin [101] also performed direct controlled

stress - imposing a sinusoidal stress signal to the material sample - as an independent

protocol. Results showed a large jump in strain over a small increase in stress in the

crossover region from linear to non-linear behaviour in a gel-like material [101]. A

similar feature for entangled polymeric fluids under LAOStress will be seen in the

results that follow in this chapter. Moreover, I find that it is within the region of

fast-transit in strain rate due to a small increase in stress that shear bands form in

the response flow. This shear banding instability lies just inside the nonlinear regime

of material behaviour where the non-monotonic, or weakly-sloping monotonic, re-

gion of the underlying constitutive is traversed. It is the effect of this short timescale

growth in strain rate relative to the slow evolution (long timescale) of the stress,

that is the catalyst to heterogenous growth and shear band formation in entangled

polymers.

As discussed in chapter 3, the onset of instability to shear band formation in the

step stress protocol can be analytically and numerically predicted. For fixed stress

amplitude, it was found that the onset to shear banding occurs when the shear-rate

response is both increasing and curving upwards:

∂2
t γ̇

∂tγ̇
> 0. (5.0.1)

This is a model- and fluid-independent prediction that applies to all complex mate-

rials and depends only on the derivatives of the shear rate response with time.

In this chapter, I show that this criterion for step stress can also be applied to the
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LAOStress protocol as a theoretical predictor to the onset of shear banding. I also

consider the time-dependent eigenvalue (as found from linear stability analysis) and

the evolution of heterogeneous perturbations (to the otherwise linearised system)

during LAOStress, to assess the stability of an entangled polymeric fluid to the

formation of shear bands. I extend this assessment over a range of imposed stress

amplitude and frequency in a Pipkin-like plane [37].

Unlike in the LAOStrain protocol, shear banding in LAOStress is not found

to persist throughout the whole response cycle for any regime of fixed amplitude

and frequency. This is perhaps not unexpected as shear bands are not seen to

persist to the steady state in the step stress protocol (unlike the shear startup

protocol) regardless of the monotonicity of the material constitutive curve [16, 19,

43,72,85–88,173]. Shear bands in LAOStress occur when the shear rate magnitude

increases sharply over a short, fast increase in stress magnitude, akin to the ‘yieldlike’

transition described in some experimental literature [173, 174]. Moreover, these

shear banded regions are localised to the region in the shear rate response when it is

both increasing and curving upwards (for positive stress) or decreasing and curving

downwards (for negative stress) in time, thus extending the message from the step

stress criterion to the LAOStress protocol [135].

In the calculations that follow, I will consider the time dependent eigenvalue

(calculated from the linear stability analysis matrix) and how this compares with the

step stress criterion and regions of significant shear banding. Results are represented

as responses against time, pin-point colour maps and pipkin diagrams where the

Lissajous-Bowditch curves use logarithmic colour-gradients to describe the growth

and significance of the emerging shear bands.

In the first part of this chapter, I consider the limiting case of the non-stretching

Rolie-Poly (nRP) constitutive model equations. The tensorial and component forms

of the constitutive equations for this model are given in chapter 2. Recall that

the shear stress component σxy = σ, where the subscript is dropped for clarity,

throughout this chapter (the notation σyy for the normal stress component remains

unchanged).

Later, I use the full stretching version of the Rolie-Poly model (sRP) to build up
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a phase diagram describing the intensity of shear banding across a range of CCR-

parameter (β) and entanglement number (Z) space during LAOStress. This is akin

to that shown in chapter 4 for LAOStrain.

5.1 The LAOStress protocol

The LAOStress protocol involves an imposed, time-dependent stress onto a sample

of material. The imposed stress is sinusoidally varied with time, parameterised by

the stress amplitude, Σ0, and frequency, ω:

Σ(t) = Σ0 sin(ωt). (5.1.2)

Figure 5.1 shows a schematic of this LAOStress protocol. The shear rate response

to this stress is then measured.

For large amplitudes and high frequencies, a caricature of the LAOStress could be

a square-wave function of positively and negatively imposed stress, with an infinitely

fast transition between the opposing regions. Using this caricature, it can be inferred

that a way to approximate the time-dependent oscillatory LAOStress protocol is to

combine a series of positive and negative simple step stress protocols. It therefore

seems intuitive to interpret, at least as an initial guideline, to interpret the material

response to LAOStress using the known characteristics and instability signatures of

the step stress protocol. I discuss this in greater depth in section 5.3 and focus first

π/2ω π/ω 3π/2ω 2π/ω

t

-Σ
0

0

Σ
0

Σ

Figure 5.1: The LAOStress protocol: a time-dependent, sinusoidally varying stress
is applied. The stress evolves, parameterised by the stress amplitude, Σ0, and fre-
quency ω.
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Figure 5.2: LAOStress in the nRP model with a non-monotonic constitutive curve.
Model parameters: β = 0.1, η = 10−4. Frequency ω = 0.01 and stress amplitude
Σ0 = 0.7. Left: stress versus strain rate (shown on a log scale) in the positive stress
part of the cycle. Colour scale shows eigenvalue, with negative values also shown
as black. Green dashed line: underlying constitutive curve. Right: corresponding
stress versus time plot.

here on eigenvalues as a predictor of instability to shear banding in LAOStress.

Eigenvalues as a predictor of instability

In previous chapters I have considered the role of the time-dependent eigenvalue -

found from the linear stability analysis matrix - in predicting the regimes of linear

instability to the onset of shear banding during the LAOS protocol. The role of

the eigenvalue in the step stress protocol was not explored in the previous work

of Moorcroft and Fielding for step stress [135, 136], but I introduce it here for the

LAOStress protocol. The process to find this eigenvalue for a general system is

described in full detail in chapter 2.

Figures 5.2 and 5.3 show the regions where the eigenvalue is positive around

the material response cycle to LAOStress with the amplitude being shown by the

colourscale. Recall, a positive eigenvalue indicates a region where any heterogeneous

perturbations to an initially homogeneous flow will grow, forming a heterogeneous,

shear-bands.

The frequency of LAOStress used in figures 5.2 is low (ω � 1/τd), thus the stress

amplitude is changing on a timescale lower than the intrinsic relaxation time of the

polymer. As a viscous Lissajous-Bowditch curve (Σ vs. γ̇) the LAOStress response

traces the linearly (to a good approximation) increasing branches of the material
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constitutive curve shown by the green-dashed line. Note the viscous Lissajous-

Bowditch curve shown here is in the regime of positive Σ and γ̇. It is logged along

the horizontal axis to regain the familiar signature of the underlying constitutive

curve and to enable detail to be seen at small and intermediate γ̇. The right-

hand plot shows this same data from the material response cycle as the shear rate

evolution with time. Arrows indicating the evolution direction are included in both

figure panels as a guide to the eye.

Whilst the high and low viscosity branches of the non-monotonic underlying

constitutive curve of the material are traced by the slow sweep of LAOStress at

this low frequency, the unphysical non-monotonic stress region is ‘jumped’ over.

Moreover, for increasing stress, the local stress maximum is reached before ‘jumping’

occurs; for decreasing stress this local stress maximum is not in the same place. This

behaviour is due to the metastability of entangled polymeric solutions as discussed

in chapter 2 and is not unique to the LAOStress protocol. It is important to also

note that the protocol is performed here in a weakly-curved cell and stochastic noise

is neglected. This discards the possible effect of thermal nucleation events that in

experiment are likely to trigger banding before the onset of linear instability [76].

Known to occur in low frequency experiments in particular, thermal nucleation

events seeded (in simulation) through stochastic noise would contribute to shear

banding during the ‘jumping’ mechanism in low-frequency LAOStress.

During the transit of this ‘jumping’ region, there is considerable growth in the

eigenvalue, indicating growth of instability to heterogeneous perturbations and the

region in which to expect shear-banded flow. Stability is regained as the strain-rate

approaches the linearly increasing low viscosity branch of the constitutive curve at

large strain-rate. After reaching the stress maximum (Σ0), the stress then begins

to decrease and thus, accordingly, so does the strain-rate. In a similar fashion to

the increasing stress region, the material response at the low-frequency rate follows

the steady state constitutive curve until the stress negative overshoot as stress de-

creases from Σ(t) = Σ0 is reached. At this point, ‘bottom-jumping’ is observed

and the response quickly rejoins the linear high viscosity region of the constitutive

curve. Again, positive growth in the eigenvalue is seen during this ‘jumping’ region,
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however, the extent of this growth is somewhat less and shorter-lived than in the

increasing-stress case. This is due to the requirement on the material to increase

its polymer stress compared with being forced to relax over a short period of time.

The former leads to a far greater acceleration in the shear rate than required on the

downward stress trajectory. i.e. ‘top-jumping’ is more unstable to the formation

of shear banding than ‘bottom jumping’. In this low-frequency regime, it follows

that as the shear rate responds to the sinusoidally varying stress, the material will

repeatably be exposed to an instability to the formation of shear bands as the ma-

terial is passes through this unstable region of the response curve twice in every

oscillation.

In the right-hand plot of figure 5.2 the same information is represented as the

shear rate response against time. It is clear here that these unstable (positive eigen-

value) ‘jumping’ regions seen in the left-hand plot where the shear-rate response

traverses from the high viscosity to the low viscosity branch of the material con-

stitutive curve, occur during a very short period of time within the response cycle.

This timescale is of order η/G within this low-frequency regime. The stress evolves

on a much longer timescale (for this selected low frequency) of 2π/ω. This large

difference in timescales during the fast strain-rate jumping response leads to a rel-

atively constant applied stress during the transition. It therefore follows that the

step stress criterion applies during that transition, certainly to a good approxima-

tion. Moreover, it is seen later in this chapter that the criterion is both applicable

(to good approximation) and satisfied in this region and significant heterogeneity is

measured when the model’s full spatiotemporal dynamics are considered.

Figure 5.3 shows the counterpart of figure 5.2 for model parameter values for

which the underlying constitutive curve is monotonic. The frequency of oscillation

is fixed at ω = 1.0, the inverse relaxation timescale of the polymer. The green dashed

curve in the left-hand panel (as in figure 5.2) shows the steady state constitutive

curve, where stress is plotted against shear rate. This viscous Lissajous-Bowditch

curve representation shows clear hysteresis behaviour in the material response to

LAOStress when comparing the increasing- and decreasing-Σ portions of the curve.

Again, the plot shows the region of the shear rate response to LAOStress when
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Figure 5.3: As in Fig. 5.2 but at a higher imposed frequency ω = 1.0 and for a
value of the CCR β = 0.9, for which the nRP model has a monotonic underlying
constitutive curve. Right: corresponding stress versus time plot.

γ̇ and Σ are strictly positive. There is a less full agreement with the underlying

constitutive curve of the material at this finite frequency compared with the low

frequency results shown in figure 5.2 for a non-monotonic constitutive curve. Later

in the chapter LAOStress is performed at low frequency for both non-monotonic

and monotonic underlying constitutive curves using full spatial-temporal dynamics

and good agreement is found with the steady state constitutive curve.

Positive eigenvalues (indicating regions within the shear rate response curve

where the material is unstable to the onset of banding) can be seen to occur during

the weakest slope of increasing stress. The right panel (γ̇ vs. t) confirms this region

of material instability to the formation of shear banded flow to occur when the shear

rate response is both increasing and curving upwards with time, as predicted from

the step stress criterion. However, unlike in the non-monotonic, low frequency case

of figure 5.2, there is no positivity in the eigenvalue during the decrease of stress

(Σ > 0). This is not unexpected for this higher frequency LAOStress protocol.

On the downward stress sweep, shear rate response is more gradual as the stress is

allowed to relax slower on the finite frequency timescale of LAOStress evolution.

Clearly, the analytically-found eigenvalue provides an insight into the stability

of a material to form shear bands during LAOStress. In the following section, I

use linear stability analysis to numerically analyse the growth of any heterogeneous

perturbations to the initially homogeneous system. Integrating these perturbations
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with time, I build a portrait of stability to shear banding across the plane of stress

amplitude and frequency as a guide to the regions of interest (from a shear banding

perspective) before further study.

5.2 Pin-point colour maps in LAOStress

A pin-point colour map represents the material stability to applied LAOStress over

a wide range of frequencies (ω) and amplitudes (Σ0). Each coordinate pair (pin-

point) on the colour map represents one LAOStress experiment: the sinusoidal stress

is applied to the material sample for many (roughly 20) cycles until the strain-rate

response has reached the alternance state. This is reached when any two consec-

utive cycles provide exactly the same response data, i.e. the material response is

time-translationally invariant under t→ t+ 2π/ω. Once at the alternance state, re-

liable, repeatable measurements may be taken. For the pin-point colour maps shown

below, each recorded pin-point displays the maximum value of any heterogeneous

perturbations in the shear rate field to the linearised homogeneous system around

one cycle in the alternance state. This quantity is taken as a magnitude and is nor-

malised by the (effective) magnitude of the instantaneous strain-rate (γ̇(t) + 1.0).

The (+1.0) is added to avoid division by zero when the strain rate crosses zero. This

does not significantly affect the results as shear banding tends to occur in the region

where |γ̇(t)| � 1. Thus, the degree of banding for LAOStress is defined as:

∆γ̇(t) =
1

N

[
|γ̇MAX(t)− γ̇MIN(t)|

]
, (5.2.3)

where N = |γ̇(t)| + 1.0, and γ̇(t) here refers to the instantaneous measured shear

rate where heterogeneity has been allowed.

The change in normalisation factor here compared with that used in LAOStrain

is due to the quick, localised shear banding events seen in LAOStress. This has

already been seen in the short timeframe of eigenvalue positivity in figures 5.2 and

5.3. I found in practice that, setting the normalisation factor to the maximum shear

rate during the cycle swamps any localised heterogeneity in the material flow during

LAOStress and therefore do not use it here.
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Figure 5.4: Colour map of the normalised degree of shear banding for the nRP model
with a non-monotonic constitutive curve. Each coordinate pair in this Σ, ω plane
corresponds to a particular LAOStress run with stress amplitude Σ0 and frequency
ω. For computational efficiency, these calculations are performed by integrating the
linearised equations. Reported is the maximum degree of banding that occurs at
any point in the cycle, after many cycles. Model parameters: β = 0.4, η = 10−4.
Cell curvature q = 2 × 10−3. Crosses indicate the grid of values of Σ0 and ω in
figure 5.9.

Figures 5.4 and 5.5 show the LAOStress pin-point colour maps for materials

with a non-monotonic and monotonic underlying constitutive curve, respectively.

The plots show a grid 20 x 20 experiments, where one measurement (the normalised

degree of banding measured from the integrated linearised equations of the nRP

model) is presented per grid point. Visually, significant magnitudes of heterogene-

ity in the γ̇ field are described in the colour map by brighter patches within the

plane. This is quantified by the colour scale to the right of the figure. The under-

lying constitutive curves for each are shown to the left-hand side of each colour map.

In figure 5.4 the overshoot in Σ(γ̇) of the non-monotonic constitutive curve occurs

roughly at Σ = 0.6. This coincides with the low stress amplitude boundary of

the bright region within the pin-point colour map at low frequencies (ω < 1/τd).

Moreover, at the lowest frequency shown (ω = 10−3/τd, recall τd = 1.0), significant

heterogeneity in the γ̇-field occurs for all Σ0 > Σovershoot = 0.6. At this low frequency,
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where Σ evolves at a much slower rate than the intrinsic relaxation time of the

polymer, the underlying steady state constitutive curve of the material is traced

during the LAOStress oscillation. As seen in figure 5.2, at these low frequencies,

‘top-jumping’ events occur at the top of the region of the negatively-sloping stress

in the underlying homogeneously-constrained constitutive curve. It is within this

region that growth of heterogeneous perturbations and the onset of shear banding

occurs.

Imposing Σ0 beyond the non-monotonic region of the constitutive curve (approx-

imately Σ0 ≥ 0.65 here), where the underlying Σ(γ̇) is monotonically increasing,

bright signatures of significant heterogeneity can still be seen in the pin-point colour

map. This is due to the nature of LAOStress as opposed to step stress: for the

same applied Σ = Σ0 in this monotonic region of the low-viscosity branch of the

constitutive curve, step stress protocols only experience this one imposed stress. In

contrast, LAOStress is an oscillatory function, thus requiring stress to be ramped

up (and down) to the end amplitudes, ±Σ0, and exposing the material to all stress

magnitudes up to this final maximum. LAOStress for large Σ0 therefore requires

the transition of the material through the non-monotonic region of the constitutive

curve, and thus heterogeneity will always ensue in the part of the cycle where the

overshoot of the underling Σ(γ̇) is found. It is for this reason that heterogeneity

(brightly-coloured section) extends to large Σ0 for low frequency in figure 5.4.

As the frequency is increased (moving towards the right-hand side of the Σ0, ω

plane) significant heterogeneity is still only seen for Σ0 > 0.6 and frequency ω < 1/τd.

As the frequency becomes faster than the intrinsic relaxation time of the polymer

(ω > 1/τd), any heterogeneity in the material under LAOStress significantly de-

creases. Once ω ∼ 10 there is no visible heterogeneity: the material remains homo-

geneous in its response throughout the measured alternance-state cycle. At this fast

rate of evolution in Σ, there is insufficient time for any heterogeneous perturbations

during the oscillation to grow large enough to lead to shear banded flow.

Figure 5.5 is the counterpart of figure 5.4 for a material with a monotonic con-

stitutive curve. At high frequency, as before, the flow remains homogeneous as any
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Figure 5.5: As in figure 5.4, but with a CCR parameter β = 0.9, for which the fluid
has a monotonic underlying constitutive curve. Crosses indicate the grid of values
of Σ0 and ω used in the Pipkin diagram of figure 5.10.

heterogeneous perturbations to the sample have insufficient time to grow on the

timescale of oscillation. At low frequency, where LAOStress traces the underly-

ing constitutive curve of the material, there is no observable heterogeneity for any

Σ0. Here, the constitutive curve is monotonic, thus there is no strict ‘top-jumping’

mechanism during the slow LAOStress protocol and thus the resultant flow remains

homogeneous throughout the cycle.

There is, however, significant heterogeneity in the γ̇-field recorded at intermedi-

ate frequencies. This instability to the onset of shear banding occurs for Σ0 greater

than the stress at which the plateau-like region of the underlying monotonic consti-

tutive curve is entered. For the material in figure 5.5 this is approximately Σ0 = 0.6.

Within this intermediate frequency range, the LAOStress response experiences in-

stability to the onset of shear band formation due to the rapid transit (resembling

top-jumping) of γ̇ from low to high magnitude with time. The criterion (originat-

ing from step stress)
∂2t γ̇

∂tγ̇
> 0 is satisfied. As in the non-monotonic constitutive

curve, heterogeneity is seen at each fixed frequency (vertical column) within this

region of interest for all Σ0 > 0.6 as the time-dependent criterion is satisfied for any

sufficiently large Σ0.

This significant heterogeneity within the Σ, ω plane is perhaps unexpected a

priori for the monotonic constitutive curve material, however, the criterion for the
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onset of shear banding is time dependent and irrespective of the monotonicity of

the constitutive curve. LAOStress is an inherently time-dependent protocol and

thus any time-dependent criteria may indeed apply (to some extent). I observe and

discuss this in greater detail later in this chapter.

Note here that in fact for very weak slopes in the plateau region of a monotonic

constitutive curve, homogeneity across this region at very low frequencies can not

always be achieved: this very weak increasing slope causes the jump in shear rate to

occur very quickly over a very small increase in stress, regardless of the fact that the

constitutive curve itself is indeed monotonic in this region. It is this timescale with

the applied stress in LAOStress that causes this numerical stiffness and difficulty to

produce reliable results at this limit of weak slope. I found this to occur for β = 0.7

and thus choosing the monotonic constitutive curve CCR-parameter here as β = 0.9

avoided this numerical problem.

5.3 LAOStress: similarities to step stress

In the following section I will explore in detail the time-dependent material response

to LAOStress, focussing particularly here on any similarities to the strain-rate re-

sponse to step stress.

The fast transit of γ̇(t) over a wide range of γ̇ amplitudes in response to LAOStress

occurs in a time interval over which stress is approximately constant. It is therefore

expected that the step stress criterion [135] should apply here, too. Note that in

LAOStress, due to symmetry, the same expression for the criterion holds for negative

stress and a decreasing, downward curving shear rate response.

I find that this criterion and time-dependent eigenvalue (described earlier) form

good approximate predictors of instability to the formation of shear bands in an

initially homogeneously flow. Both predictors of instability are used in the following

figures. In previous chapters, red-dashed lines on the homogeneously-constrained

flow response curves have indicated the regions of positive eigenvalue. In this chap-

ter, however, red-dashed regions identify where the step stress criterion is satisfied,
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Figure 5.6: The time-dependent material response to LAOStress in the Rolie-Poly
model for Σ0 = 0.7, and ω = 1.0, for a non-monotonic ((a)-(c), β = 0.1) and
monotonic ((d)-(f), β = 0.8) underlying constitutive curve. (a) and(d) show the
shear rate response with time. (b) and (e) show the evolution of the degree of
banding across the cell over the same time-period as in (a) and (c). Coloured symbols
in these plots correspond to the snapshots taken of the velocity profile across the cell,
these are shown in (c) and (f) . The rheological cell is curved and the parameters
{η, J, q, τR} = {10−5, 256, q = 2 × 10−3, 0} are imposed. Red dashed regions of the
leftmost plot indicate where the criterion for instability to the formation of shear
bands is satisfied.

unless stated otherwise. Note that I find that the regions where the criterion is sat-

isfied largely coincide with regions of positive eigenvalue in the shear rate response.

In figure 5.6, material responses to imposed LAOStress are shown in the same

format as that presented earlier for step stress in figure 3.10 (chapter 3). The

parameters and amplitudes are matched to the step stress case and a frequency on

the timescale of the material’s slowest relaxation time (ω = 1/τd = 1.0) is used.

This frequency choice is well within the region of the pin-point colour maps where

significant instability to the onset of shear band formation is seen for the material

with a non-monotonic and that with a monotonic underlying constitutive curve (see

figures 5.4 and 5.5). The portion of the cyclic material response to LOAStress is

focused on the region where strain-rate is strictly positive and increasing. This region

of the LAOStress shear rate response cycle is coincident with the fast ‘top-jumping’
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process seen when shown as a viscous Lissajous-Bowditch curve of increasing stress

against strain-rate as seen previously in figure 5.2.

Plots (a) and (d) show the shear rate response to imposed LAOStress for a non-

monotonic and monotonic constitutive curve respectively. The blue dot-dashed line

shows the response when heterogeneity is allowed; the solid black and re-dashed

line comprise the homogeneously-constrained response. (b) and (e) show the evolu-

tion of the degree of banding across the cell during the same segment of time as the

shown shear rate response. (c) and (f) show the velocity profiles across the cell taken

at snapshots in time during the protocol; these are indicated by the corresponding

coloured symbols in the γ̇(t) and ∆γ̇(t) plots.

There are some considerable similarities with the step stress case, as follows. In

both (a) and (d), the shear rate response (when heterogeneity is allowed) can be

seen to separate from the homogeneously-constrained shear rate during the steep,

increasing region as the stress input increases from zero. It is within - and just

ahead of - this region of separation in the shear rate, where both the imposed stress

and shear rate are increasing, and the shear rate is curving upwards, that the step

stress criterion is satisfied (red dashed line). During this region of fast increase in the

shear rate magnitude, the degree of banding (in (b) and (e)) increases, then decreases

as the flow regains homogeneity. The bowed velocity profiles in (c) and (f) give a

visual representation of the transition between homogeneous and heterogeneous flow

during this transiently shear-banded response.

Appreciable shear banding is seen here within this region for the case of a non-

monotonic and a monotonic underlying constitutive curve. Recall this region of

significant shear banding coincides with the fast transit across the Σ(γ̇) curve seen

previously for both non-monotonic and monotonic constitutive curves earlier in this

chapter.

Note here the experimental impact of this fast transient banding in LAOStress.

Within localised regions of the shear rate response there is significant transient band

formation within the material flow. However, the maximum shear rate attained dur-
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ing the response to LAOStress will be ∼ 1/η (= 104 in this case). The relative size

of the shear rate when shear banding is expected, combined with the fast transient

nature of the bands within the flow, may make this very difficult to experimen-

tally capture. One way to counter this potential problem is to instead perform

a LAOStress experiment about the weak slope of the constitutive curve: taking

the mid-plateau value of stress as Σplat and oscillating across a small Σ-spectrum,

Σ(t) = Σplat + ∆Σ sin(ωt). This could provide some interesting and useful insight in

future studies, but is however beyond the scope of this thesis.

In the following section, I introduce the Lissajous-Bowditch curve representa-

tions for reporting LAOStress material responses. I will focus on the full nonlinear

dynamical calculations and the magnitude of any shear banding. Later, as in the

previous chapter, I consider the material “rheological fingerprint” [52,53] of stability

to shear banding under LAOStress by representing the material response to a range

of imposed amplitude and frequencies.

5.4 Lissajous-Bowditch curves

The dynamical variables Σ, γ and γ̇ form a 3-D representation of a material re-

sponse to LAOS protocols. The 2-D projections of this, Σ(γ̇) and Σ(γ), are called

Lissajous-Bowditch curves [21,112] and provide physically intuitive representations

of the data [143]. The viscous Lissajous-Bowditch curve, Σ(γ̇), and elastic Lissajous-

Bowditch curve, Σ(γ), are typically used when the material stress response is dom-

inated by more fluid-like or elastic-like behaviours respectively [52,90,101].

Figure 5.7 shows the shear rate response with time (in (a) and (d)) and the

elastic ((b) and (e)) and viscous ((c) and (f)) Lissajous-Bowditch curves for the

same parameters used in figure 5.6 for one complete cycle at the alternance state

in LAOStress. The inset of figures (a) and (d) show the zoomed in region used in

figure 5.6 where shear banding is evident. The data shown here are the material

response when heterogeneity has been allowed in the material. Colour is used to

indicate the emergence of significantly shear banded regions within the material
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Figure 5.7: Heterogeneous stress responses of the LAOS(stress) protocol for Σ0 = 0.7
and ω = 1. The transient degree of banding is indicated by the colour gradients,
quantified by the scale at the bottom of the figures . The top row has a non-
monotonic constitutive curve (with β = 0.1); the bottom row has a monotonic
constitutive curve (with β = 0.8). (a) and (d) give the transient shear-rate response
to the imposed oscillatory stress, where the inset shows a zoomed in shear-banded
region of the cycle. (b) and (e) show the same response for a Lissajous-Bowditch
curve in the elastic representation, and (c) and (f) show this for the viscous repre-
sentation.

response to LAOStress. This is quantified by the logarithmic gradient colour scale

shown beneath the figures. Insignificant (∆γ̇ < 5%) shear banding and homogeneous

flow are shown in black.

Clearly, the elastic Lissajous-Bowditch response Σ(γ) provides little information

on the nonlinear flow response and the shear banded region [101]. In this repre-

sentation, the heterogeneous flow is localised to a very small region of the curve.

Therefore, for the remainder of this chapter I will not use this elastic representation
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Figure 5.8: Low-frequency limit of LAOStress, with frequency ω = 0.01, and applied
stress Σ0 = 1. The steady state constitutive curve formed from a series of shear
startup experiments is shown in red-dashed lines. The thick, gradient-colour lines
use the log-scale code in previous figures for the degree of banding. The cell is
curved, and the parameters {β, η, J, q, dt, τR} = {0.1, 10−3, 256, 2 × 10−3, 10−6, 0}
are used.

of the data and focus only on the γ̇(t) and viscous Σ(γ̇) responses.

Combining the representations of the data in figures 5.6 and 5.7 provides an

in-depth overview of the existence of transient shear banding in an entangled poly-

meric material during LAOStress. Certainly, for Σ, ω = 0.7, 1.0 used here, signifi-

cant shear banding forms when the shear rate response quickly transits over a large

range of γ̇(t) with only a small change in Σ and t. This occurs when γ̇(t) is increas-

ing (decreasing) and curving upwards (downwards) for positive (negative) Σ(t), thus

satisfying the criterion for the onset of banding in the flow. Figure 5.7 illustrates

that this region of shear banding is indeed coincident with the sharp increase in γ̇(t)

and the ‘top-jumping’-type behaviour of the viscous Σ(γ̇) curve. For this moderate

frequency, this behaviour occurs for both a non-monotonic and a monotonic under-

lying constitutive curve. However, at low frequency (ω � 1/τd) it was shown in

figure 5.5 that homogeneity is recovered for all imposed Σ0 when the constitutive

curve is monotonic. Figure 5.8 shows this for a material where spatial heterogeneity

has been allowed.

Here, the underlying constitutive curve of the material is shown as a red-dashed

line and the stress and shear rate are strictly positive in this region. Significant

shear banding is represented, and quantified, by the gradient colour. Top- and

bottom-jumping mechanisms are seen on the increase and decrease of LAOStress
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respectively. Homogeneous flow is regained as the heterogeneous response traces

the underlying homogeneously-constrained constitutive curve in the high- and low-

viscosity branches. As the non-monotonic region of the constitutive curve is quickly

traversed by the heterogeneous response, there is significant shear banding. Indeed,

this was predicted by the positive eigenvalues in figure 5.2. Conversely, there is no

shear banding for the material with the monotonic constitutive curve. At this low

frequency, the homogeneous flow traces the underlying constitutive curve for all Σ(t).

In the following section, I focus on the mid-range frequency region of the (equiv-

alent) Pipkin space (where the vertical amplitude axis is now shear stress amplitude,

Σ) for the LAOStress protocol. I assess the material response and the emergence

of any shear banding during the protocol at a range of fixed applied stress ampli-

tudes and frequencies, as described by the crosses on the pin-point colour maps in

figures 5.4 and 5.5.

5.5 Pipkin diagrams

Figures 5.9 and 5.10 show the Pipkin diagrams for the material responses to imposed

LAOStress at a range of fixed frequency and stress amplitudes. In both figures, (a)

shows the strain-rate (γ̇(t)) response with time, and (b) gives the viscous Lissajous-

Bowditch representation (Σ(γ̇)). Each response is the measurement for one cycle

at the fixed parameters, in the alternance state. In figure 5.9, the material has a

non-monotonic underlying constitutive curve (with β = 0.4) and figure 5.10 has a

monotonic constitutive curve (with β = 0.9) with a sufficiently steep plateau-like

region to ensure feasible numerical study. Significant shear banding is quantified

by the logarithmic colour scale shown to the left of each set of Pipkin diagrams.

Homogeneous flow and insignificant shear banding (∆γ̇ < 5%) is shown as black.

As expected from the pin-point colour maps in figures 5.4 and 5.5, there is sig-

nificant heterogeneity in the material response to LAOStress within this moderate

frequency range for sufficiently large Σ0. This can be seen in both figure 5.9 and

5.10: for Σ0 = 0.6 the material response remains homogeneous throughout the cycle.
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Figure 5.9: Lissajous-Bowditch curves in LAOStress for the nRP model with a non-
monotonic constitutive curve. Results are shown as shear-rate vs. time in (a), and in
the viscous representation of stress vs. strain rate in (b). Columns of fixed frequency
and rows of fixed strain-rate amplitude γ̇0 are labeled at the top and right-hand
side. The colour scale shows the time-dependent degree of shear banding. Model
parameters: β = 0.4, η = 10−4, l = 0.02. Cell curvature: q = 2 × 10−3. Number of
numerical grid points J = 512..
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Figure 5.10: As in figure 5.9 but for a value of the CCR parameter β = 0.9, for
which the fluid’s underlying constitutive curve is monotonic. Number of numerical
grid points J = 512.
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However, for Σ0 ≥ 0.8 significant shear banding is seen for both the non-monotonic

and monotonic underlying constitutive curves. At the largest frequency shown here,

ω = 100.5, the magnitude of the shear banded regions is smaller. This is not un-

expected, as seen in the pin-point colour maps, stability to the formation of shear

bands is regained at large frequencies irrespective of the monotonicity of the consti-

tutive curve. This is due to the rate of the LAOStress oscillation: there is insufficient

time for any seed of heterogeneity to grow and form a shear band within the flow [77].

In the figures shown throughout this chapter so far, it can be noted that the step

stress criterion [135] does indeed predict the onset of instability to shear banding in

the material response. It is still the simultaneous increasing magnitude and positive

curvature of the shear rate response (here, for LAOStress, coupled with the positive,

increasing imposed stress) that satisfy the condition for instability to the formation

of shear bands. Again, by the symmetry of the LAOStress protocol, the opposite of

these conditions (for negative, decreasing stress and shear rate response) follows for

the second half of the cycle (not shown here).

Clearly, it is possible (and indeed helpful) to interpret the material response and

any susceptibility to the formation of heterogeneous, shear banded profiles, by the

understanding and experience of the simpler, step stress protocol. I have further

shown here that measurable, significant shear banding is found over a wide range

of the (Σ0, ω) space for materials with a non-monotonic and monotonic underlying

constitutive curves.

All of the above results use the non-stretching limit of the Rolie-Poly model. In

the following section I introduce polymer chain stretch effects and look to confirm

the existence of these shear banded profiles even with these additional physically rel-

evant material properties that tend to stabilise a material against banding. More-

over, I consider a range of values of the experimentally measurable entanglement

number Z, together with the convective constraint release parameter β to form a

phase plane of significant shear banding intensity in a polymeric material under the

LAOStress protocol. I hope this will prove a useful roadmap for experimentalist and
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theoreticians alike.
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5.6 Stretch effects

The inclusion of polymer chain stretch into the numerical model adds another intrin-

sic material timescale to be considered when analysing the relaxation dynamics of

an entangled polymer solution or melt. Chain stretch tends to stabilise the system

against banding. However, as will be seen later, shear banding is still nonetheless

predicted in LAOStress even in regimes where non-trivial chain stretch develops.

In contrast to the non-stretching Rolie-Poly (nRP) model used previously in this

chapter, the full stretching version of the RP model used here is referred to as the

sRP model. This three-dynamical variable model is defined in full in equation 2.39,

chapter 2. The addition of chain stretch in the sRP model includes the experimen-

tally measurable entanglement number Z and the related chain-stretch relaxation

time τR. Defined as [110,127]:

τR =
τd
3Z

. (5.6.4)

thus, τR is a faster relaxation dynamic in the polymer as τ−1
R � τ−1

d for a sufficiently

entangled solution (large Z).

It follows that chain stretch only becomes important for large imposed shear rates

(γ̇ > τ−1
R ). This corresponds to shear rates approaching the low viscosity branch of

the constitutive curve towards the end of the non-monotonic or weakly increasing

monotonic region of the constitutive curve. As already shown in this chapter, it is

within this region of fast γ̇ transit over a small increase in Σ, that shear banding

may occur. It is thus found that stretch effects in the polymer are indeed important

(to some degree) in determining the extent of any shear banding that may form in

the LAOStress protocol.

Figure 5.11 is the counterpart to figure 4.17 in chapter 4. It shows a map of

shear banding intensity in a material under the LAOStress protocol, measured over

a range of Σ0 and ω for fixed parameters β and Z. By varying these parameters, a

phase plane may be built up to enable insight into the effect on the monotonicity

of the material constitutive curve and the intensity of significant, measurable shear

band formation in the flow during the experiment (when measured in the alternance
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Figure 5.11: Effect of CCR parameter β and entanglement number Z (and so of chain
stretch relaxation time τR = τd/3Z) on shear banding in LAOStress. (Recall that
the non-stretching version of the model has τR → 0 and so Z →∞.) Empty circles:
no observable banding. Hatched circles: observable banding, ∆γ̇/(1 + |γ̇(t)|) =
10%−31.6%. Dot-filled circles: significant banding, ∆γ̇/(1+|γ̇(t)|) = 31.6%−100%.
Filled circles: strong banding, ∆γ̇/(1 + |γ̇(t)|) > 100%. For the hatched, dot-filled
and filled symbols we used the criterion that banding of the typical magnitude stated
is apparent for any of ω = 0.1, 0.316 or 1.0, given a stress amplitude Σ0 exceeding
the region of weak slope in the constitutive curve. The square shows the parameter
values explored in detail in figure 5.12. The solvent viscosity η is 3.16× 105.

state).

The inclusion of chain stretch into the RP model has an effect on the plateau-like

region in the underlying constitutive curve: larger Z (and thus smaller τR) extends

the breadth of γ̇ spanned before the low viscosity branch is reached. Conversely,

smaller Z (and thus larger τR) shortens and steepens the slope of this intermediate

γ̇ region and tends to restore monotonicity. This interplay of the CCR parameter β

and entanglement number Z affect the monotonicity of the constitutive curve. This

is shown by the red shaded region in figure 5.11, which indicates all pairs of β, Z

for which the underlying constitutive curve is non-monotonic. As Z →∞, the non-

stretch limit is reached and the transition between a non-monotonic and monotonic

constitutive curve depends only on β (for a fixed small η). The boundary of the red

shaded region in figure 5.11 can already be seen to be tapering off to a plateau for
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large values of Z.

Circles in figure 5.11 show a series of chosen parameter sets β, Z across the plane,

spanning both regions of the plane where the underlying constitutive curve is non-

monotonic or monotonic. At each circle I performed LAOStress simulations for one

sweep of the Σ0, ω plane for values of ω = 0.1, 0.316, 1.0 and Σ0 sufficiently large

that it exceeds the plateau-like region of weak slope in the material’s constitutive

curve. (Full pin-point colour maps as used in figure 4.17 are not used here due

to numerical expense of performing calculations across the full Σ0, ω plane.) For

each of these circles in the β, Z plane, open circles indicate insignificant banding

in the Σ0, ω plane. Hatched, dotted and filled circles represent significant banding:

hatched, ∆γ̇/(1 + |γ̇(t)|) = 10% − 31.6%, dotted, ∆γ̇/(1 + |γ̇(t)|) = 31.6% − 100%

and filled, ∆γ̇/(1 + |γ̇(t)|) > 100%. Together, these circles give an overview of

the intensity of shear banded flow in the LAOStress protocol for entangled poly-

mer solutions or melts for a wide range of entanglement number Z and theoretical

CCR-parameter β. Moreover, significant shear banding is seen for materials with

a monotonic underlying constitutive curve. It is hoped that this exploration of the

β, Z plane and the prevalence of shear banding within these materials with mono-

tonically increasing constitutive curves proves useful to both the experimental and

theoretical rheological communities.

The thick black box shown around the dot-filled circle in figure 5.11 indicates the

β, Z values used in figure 5.12. This selection of Z is within the typical experimental

range of entanglement numbers used [10,28,107]. With these fixed parameters, the

material has a monotonic underlying constitutive curve and therefore lacks shear

banding in steady shear flow. However, in LAOStress it exhibits significant shear

banding across the Σ0, ω plane. This can be seen in figure 5.12. The left panel

of figure 5.12 shows the shear rate response to imposed LAOStress, zoomed into

the region of positively increasing stress and shear rate where the material response

transits the fast ‘jumping’ region from low to fast shear rate. The coloured shapes

indicate the snapshots in time that velocity flow profiles are recorded. These are

shown in corresponding colours and symbols in the right-hand plot.

The shear rate response once heterogeneity is allowed in the material is shown
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Figure 5.12: sRP model with a monotonic constitutive curve in LAOStress of stress
amplitude Σ0 = 0.8 and frequency ω = 0.1. Model parameters β = 0.7, Z =
100, η = 3.16 × 105. Cell curvature q = 2 × 103. Number of numerical grid points
J = 512. Left: strain rate signal versus time. Solid black and red-dashed line:
calculation in which the flow is constrained to be homogeneous. Red-dashed region
indicates when the step stress criteria is satisfied. Green dot-dashed line: stress
response in a full nonlinear simulation that allows banding (indistinguishable from
homogeneous signal in this case.) Right: Velocity profiles corresponding to stages
in the cycle indicated by matching symbols in left panel

as the blue dot-dashed line. Here, this line is almost indistinguishable from the

homogeneously-constrained shear rate response (shown here by the combined solid

black and red dashed lines). However, during the upward curving, increasing shear

rate (with increasing, positive stress) region on the material response, shear banded

flow is seen. This is illustrated by the bowed (banded) velocity profiles in the right-

hand plot.

In this section, I have shown that shear banding of entangled polymer solutions

and melts is seen during the LAOStress protocol, even when chain stretch is signifi-

cant. This is captured here using the sRP model for linear polymers. Shear banding

is seen for a value of Z within the typical experimentally achievable range [10,28,107]

and parameter choices β and Z such that the material constitutive curve may be

either non-monotonic or monotonic.



5.7. Conclusions from chapter 5 139

5.7 Conclusions from chapter 5

In this chapter I have explored shear band formation in entangled polymer flow

under the LAOStress protocol, modelled by the nRP and sRP model. The crucial

point from the previous chapter (where LAOStrain is instead employed) is illustrated

and re-confirmed here: shear bands can form in a protocols with sufficiently strong

time dependence, even in fluids that do not shear band in steady state. This point

follows directly on from the work by Moorcroft and Fielding [134–136] which showed

that strong time dependence during the transit to the steady state can lead to the

formation of shear banded flow. However, the flows considered by Moorcroft and

Fielding were only transiently time-dependent. Here I have considered a flow with

a sustained time-dependence.

I have shown here that shear banding can occur in LAOStress for parameters such

that the underlying constitutive curve of the material is either non-monotonic, or

weakly positively increasing (monotonic) in Σ(γ̇). Shear bands form when the shear

rate γ̇ experiences a large ‘jump’ in magnitude as the flat region of the constitutive

curve is transited following a relatively very small increase in Σ. This regime of

shear band formation during the material response to LAOStress is short-lived in

comparison with the rest of the stress cycle. Whilst prominent and significant within

the small part of the cycle, the shear banded flow does not dominate the cycle. It

may thus be difficult to experimentally capture and localised measurement about

the plateau-like region may instead be required.

It is further shown here, as in the previous chapter, that the more complex

LAOS protocols can be understood, for the most part, by the already established

understanding of the time-dependent material response during the approach to the

steady state in simpler time-dependent protocols. Moreover, the set of criteria

derived for the simple protocols still hold, to good approximation, for the LAOS

protocols. It was shown for the step stress protocol that the onset of shear banding

would occur on the approach to steady shear when the shear rate was increasing

and has positive curvature as a function of time [135]. This criterion is entirely

dependent on the strain rate response to the applied stress as a function of time and

it is found to translate directly to the LAOStress protocol when combined with an
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increasing and positive stress. The same criterion is satisfied for negative, decreasing

stress (and thus with negative, decreasing and downward curving shear rate) in the

LAOStress input due to the symmetry of the protocol.

In addition to this understanding of the stability to the formation of shear bands

in the LAOStress protocol, I have also provided here the counterpart to the map of

shear banding intensity in the space of CCR-parameter β and entanglement number

Z given in chapter 4 for LAOStrain, here, for LAOStress. As for LAOStrain, a

large region in β−Z space shows significant shear banding for which the underlying

constitutive curve of the material is monotonic.



6
Multimode calculations using the

Rolie-Poly model

A number of previous theoretical studies have used the Rolie-Poly (RP) model [110]

to describe the dynamics and relaxation mechanisms of linear entangled polymers [2,

4,136] and wormlike micelles (so-called ‘living polymers’ [26]) [1]. However, the RP

model is a simplified single-mode approximation to the GLaMM model for linear

polymers [75]. This sophisticated model extended the Doi-Edwards tube theory [47]

by considering the configuration of a polymer chain down to the lengthscale of one

entanglement. It includes the strongly nonlinear regime where chain stretch and

constraint release are significant relaxation mechanisms and gives good agreement

with experimental data [75]. However, the GLaMM model is complex and compu-

tationally expensive. The RP model was derived from directly coarse-graining the

GLaMM model to capture the fundamental physics of chain reptation, retraction,

141



Chapter 6. Multimode calculations using the Rolie-Poly model 142

10
0

10
2

10
4

t

10
4

10
5

10
6

10
7

10
8

η(t)
γ
.
 = 7.112e-5

γ
.
 = 0.0002134

γ
.
 = 0.0006268

γ
.
 = 0.00188

γ
.
 = 0.006268

γ
.
 = 0.0188

γ
.
 = 0.0581

γ
.
 = 0.1937

γ
.
 = 0.581

γ
.
 = 2.1

Figure 6.1: Single-mode RP ‘fit’ using numerical simulations to experimental shear
rheology data of monodisperse polyisoprene. Solid lines have CCR parameter β =
0.0, dashed lines have β = 1.0. G = 113420.0, τd = 588.84 and τR = 8.0. Both
lines show poor fit for single mode and thus multimode modelling is required to fully
describe chain dynamics. Temperature −20◦C. Experimental data from MuPP2,
has been previously published in [10,75].

stretch and convective constraint release (CCR). Thus the RP model provides a set

of simple differential equations (2.39, chapter 2) through which complex polymer

dynamics could be explained in different flows such as rheometric shear [31] and

extensional [8] as well as more complex geometries featuring mixtures of both shear

and extension, such as cross-slot experiments [113] (through computation fluid dy-

namic simulations) [126]. The downside to this single-mode version of the GLaMM

model is the loss in detail of the full chain dynamics [74].

Figure 6.1 shows a single mode ‘fit’ to experimental shear data for entangled

monodisperse polyisoprene. The parameters are taken to be the slowest mode in

the full multimode fit (shown later, in table 6.1). In reference [10], the GLaMM

model [75] showed close agreement with the data. However, by taking just the

single mode RP model and numerically solving these dynamics, I find the ‘fit’ of

this model has poor agreement with the rheological data. The RP single-mode fit

for each imposed shear rate is shown by the lines [β = 0 (solid), β = 1.0 (dashed)] in

figure 6.1. Corresponding colours are used for the experimental shear data (shown

as squares) measured at the same shear rate. Clearly higher order dynamics are

required to correctly describe this data via constitutive modelling (as seen in [10]).
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Furthermore, industrial grade polymers are typically polydisperse and thus con-

tain a distribution of polymer chain lengths and molecular weights (Mw). A mul-

timode model would therefore be needed to capture the effects of the multiple re-

laxation timescales associated with this large variation in Mw in a material sample.

The poor fit in figure 6.1 shows that even for a monodisperse sample, a single-mode

model is insufficient to capture both the transient stress growth and the steady state

stress of the polymer. This illustrates the necessity of multiple relaxation times to

fully describe the dynamics of long-chain entangled polymers.

In this chapter I use a multimode approach [49] with the RP model. I revisit

the shear startup protocol and capture the higher order relaxation dynamics of the

full polymer chain. I use a spectrum of relaxation times τd and elastic moduli

G together with the RP-parameter for chain-stretch relaxation, τR, and employ

both the stretching and non-stretching (where stretch is relaxed infinitely fast, i.e.

τR →∞) limits of the RP model.

Summary of multimode modelling

Recall section 2.1.1 of chapter 2. Higher order relaxation dynamics of a polymer

chain can be captured in a theoretical fit to experimental data by summing over a

total of N Maxwell modes (with behaviour governed by a simple Maxwell model,

c.f. chapter 2). This forms a relaxation spectrum of the characteristic relaxation

times τdn and elastic moduli Gn for each of the n modes. Maxwell modes are

fitted first to the linear rheology of the material. A schematic of this is shown

in figure 6.2 where each Maxwell mode is described by the yellow diamonds. The

fit is then checked against the nonlinear rheology of shear and/or extension data

where additional model-dependent parameters (e.g. τR in the RP model) may be

introduced to capture the transient and steady state behaviours.

The multimode model of Maxwell modes (total N) is formed from the sum of

the relaxation dynamics of each mode (n):

G(t) =
N∑
n=1

gne
−t/τn , (6.0.1)
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Figure 6.2: A schematic of the storage and loss moduli for an entangled polymeric
fluid. Viscous-dominated rheology is recovered in the terminal regime for frequencies
less than 1/τd. Within the region of moderate frequency (between the two dotted
vertical lines) where the response is elastically-dominated, Maxwell modes are fitted
to the data (each mode symbolised by a yellow diamond) to encapsulate the higher
order chain dynamics described by the chain relaxation times τd, τR and τe.

where the set of moduli and corresponding timescales {gn, τn} form the relaxation

spectrum of the polymer.

As described in chapter 2, the longest relaxation time of an entangled polymeric

material (τd, an intrinsic material property) is defined as the inverse frequency at

which the storage and loss moduli (G′ and G′′) intersect in the linear rheology

measurement of the material. This intersection can be seen on the left-hand side of

figure 6.2, forming the boundary to the terminal relaxation behaviour of the material

at low frequency. The upper boundary for the mode-fitting is set at high frequency

such that beyond this timescale all chain dynamics are sufficiently fast that they

are well described by the solvent contribution. The right-hand intersection of G′

and G′′ at high frequency defines τe, the time taken for one single entanglement to

relax its constraints [47] beyond which the polymer dynamics are not constrained

by entanglements [159].

Recall from chapter 2 that in the RP model these timescales are related by the



Chapter 6. Multimode calculations using the Rolie-Poly model 145

experimentally measurable quantity, the entanglement number Z = Mw

Me
:

τd = 3ZτR = 3Z3τe,

τR = Z2τe,

where τR defines the chain-stretch relaxation time in the RP model. Recall that the

higher order correction terms from linear theory [111] are omitted. In the multimode

RP model Z is fitted relative to the nonlinear shear rheology data rather than defined

as τd/3Z.

Note here that polymer lengthscales are inherently tied to the relaxation timescales

defined here: τe is the fastest dynamic, associated with a single entanglement length

in the polymer chain and the slower relaxation timescales (τd, τR) are dependent on

this fundamental time.

Multimode approaches have been used to describe linear polymers (via the

Giesekus model) [11, 40], branched polymers (via the pom-pom model) [9, 83] and

used for experimental comparison in high-density polyethylene [40], polystyrene [153]

and gluten-gel [137]. In particular, a multimode version of the RP itself has also

been used: References [31] and [113] use the full stretching version of the RP model

for the first (slowest mode) and the non-stretching limit for the higher order modes.

Collis et al. [31] and Auhl et al. [8] showed good agreement of the multimode RP

model with nonlinear shear and extensional data, respectively. Lord et al. [113]

showed a good match between simulations of 3D time-dependent solutions of a mul-

timode RP model and experimental data in contraction-expansion slit and cross-slot

geometries for pressure drop and principle stress difference profiles. Hassell et al. [79]

also illustrated the good predictive ability of the multimode RP model. They con-

sidered shear in contraction-expansion slit geometries and found good agreement

in the transient evolution of principle stress differences but a failure to accurately

capture the pressure drop, highlighting the need for further work.

In the following sections I consider the effect on the time-dependent polymer dy-
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namics during shear startup when a multimode RP model is used. I fit experimental

linear rheology and shear data for monodisperse polyisoprene [10, 75] and establish

a power-law distribution for the relaxation timescales and moduli associated with

each Maxwell mode [84, 96, 97]. Indeed, I find good agreement with the data for

a theoretical power-law fit. Moreover, I consider the existence of shear banding

during the time-dependent shear startup protocol relative to the magnitude of the

power-law exponent and the separation of relaxation timescales τd and τR. As in the

oscillatory protocols in chapters 4 and 5, I build a phase diagram in entanglement

number and the convective constraint release parameter for the intensity of shear

banded flow during shear startup.

6.1 Experimental data fitting: a multimode model

for polyisoprene

I have fitted multimode RP parameters to experimental data for a well-entangled

monodisperse linear polymer melts (polyisoprene). The data was provided by the

MuPP project and thanks are given to Dietmar Ahul for these measurements. De-

tails of experimental procedure are provided in reference [10].

Polyisoprene consists of repeated units of isoprene (C5H8) monomers. Isoprene

has four possible molecular configurations (or isomers), each exhibiting different

material characteristics. The isoprene samples prepared for this study used cis-

1, 4 polymer which has elastic properties but becomes isotropically distributed in

the absence of imposed deformation. The polyisoprene was prepared using aionic

polymerisation, and samples were prepared for a wide range of molecular weights

all with a narrow molecular weight distribution, such that the material is almost

monodisperse [10].

The dynamic moduli G′ and G′′ over several decades of frequency ω are measured

by imposing small amplitude oscillatory shear (SAOS) to the material sample. The

linear and nonlinear startup transient data were plotted at each imposed shear rate

and a consistent response shape (linear viscoelastic envelope) was seen for each
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sample, ensuring the reliability of measurements.

Entanglement numbers (Z = Mw/Me) ranged from unentangled Z = 0.5 and

highly entangled Z = 235. In this study I consider the two polyisoprene (PI) samples

used in [10] with the largest number of entanglements where nonlinear startup data

was available. These have molecular weights of 95kg/mol and 226kg/mol, giving the

number of entanglements as Z = 20 and Z = 47, respectively, for Me measured as

4.82kg/mol. I continue the nomenclature of [10] and refer to the samples as PI90k

and PI200k. In [10], these samples were indicated to be experimentally difficult to

measure under shear. Moreover the steady-state theory predictions for both the

PI90k and PI200k samples were similar and showed a plateau region over a range of

shear rates where it was speculated that the uniform shear profile may be unstable to

heterogeneous perturbations. These materials were also used by Graham et al. [75]

to compare with the GLaMM model in transient shear. This therefore provides an

ideal benchmark for investigating shear banding in the coarse-grained RP model.

6.1.1 Fitting procedure

I fitted both the linear and nonlinear rheology of the experimental data using REP-

TATE 1 [149] software. Thanks are given to David Hoyle for tutorials and guidance

with REPTATE. Using the parameters given in reference [10] for the molecular

characteristics (Mw, Me, τe) of the samples, the characteristic reptation time and

chain-stretch relaxation time are then calculated using the theory of Likhtman and

McLeish [111].

For each material I fit the dynamic moduli using the following procedure:

1. Set the terminal relaxation time (slowest mode) to the reptation time predicted

by Likhtman-McLeish theory [111].

2. Fit around 7 modes in total at around 2 modes per decade in order to include

the chain-stretch regime.

1Rheology for Entangled Polymers: Toolkit for Analysis of Theory and Experiment.
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Figure 6.3: (a) Linear rheology of PI200k at −20◦C, blue and red lines show the
fit from linear theory for G′ and G′′, respectively. (b) shows the nonlinear transient
shear rheology for PI200k, solid lines show the multimode RP fit. In both fits I use
the REPTATE [149] software.

3. The nonlinear RP [110] parameters are fitted in shear startup experiments

using at least 3 stretching modes and then non-stretching modes thereafter.

The highest order mode (fastest relaxing) is attributed to the solvent viscosity

contribution.

Including the fastest relaxation dynamics of the polymer as a solvent contribution to

the constitutive model is based on the assumption that shorter lengthscale dynamics

in the polymer chain relax infinitely quickly such that the flow is Newtonian. This is

appropriate since the viscous effects of the fluid dominate the fast-relaxing Maxwell-

modes at high frequencies [147]. The resultant fit for PI200k using these techniques

is shown in figure 6.3(a) and (b). The values of Gn, τdn and τdR for each mode are

given in table 6.1. Here (following procedure 3) η = τd7G7 and RP parameters for

convective constraint release (CCR) were fitted to be β = 0.1 and δ = −0.5.

It is important to note that the multimode fit described here, where the CCR

parameter is β = 0.1, results in a monotonic underlying constitutive curve. This

is shown in figure 6.4. The steady state flow profile of the material will therefore

be homogeneous. However, the single-mode RP model for β = 0.1 results in a non-

monotonic underlying constitutive curve and thus predicts shear banding at the

steady state for shear rates within the negatively-sloping region of the curve [185].

This difference is due to the influence of the higher order dynamics captured by the

multiple relaxation times that are not accounted for by the single mode model. In
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Mode (n) G τdn τRn

1 113420.0 588.84 8.0
2 80683.0 161.61 7.0
3 54268.0 44.354 5.0
4 44963.0 12.173 3.0
5 34827.0 3.3408 0
6 27567.0 0.9169 0
7 46103.0 0.25164 0

Table 6.1: Values for the multimode RP fit to PI200k data at −20◦C. The 7th mode
forms the solvent contribution and encompasses the fast relaxation dynamics of all
6 slower modes.
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Figure 6.4: Underlying constitutive curve for the multimode RP fit for PI200k as
defined in table 6.1 with CCR parameters β = 0.1 and δ = −0.5.

the following section I consider the possibility of transient shear banding during a

shear startup protocol for the multimode RP fit of the experimental data described

here. Allowing for heterogeneity in the sample may enable this short-time elastically-

driven instability to form shear banded flow where homogeneity is regained at the

steady state (as predicted by the monotonic underlying constitutive curve).

Banding from experimental data

Figure 6.5(a) shows the transient shear response to an imposed shear rate γ̇ = 0.581

as modelled by the theoretical multimode RP fit to experimental data for PI200k.

This γ̇ is shown in figure 6.3 by the magenta squares (data) and line (multimode RP

fit). I have also considered the γ̇ = 2.1 and γ̇ = 0.1937 cases and find approximately

the same results (data not shown here).
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Figure 6.5: Shear startup protocol for γ̇ = 0.581 as modelled by the multimode RP
fit for PI200k as defined in table 6.1 with CCR parameters β = 0.1 and δ = −0.5.
Homogeneously-constrained stress response (black line) in (a) corresponds directly
to the magenta line in figure 6.3. Blue dot-dashed lines show the heterogeneous
stress response and purple lines describe the time-dependent degree of banding ∆γ̇.
The distance between relaxation times τd and τR is increased by orders of magnitude
from 10−2 to 10−4 in (a)-(c). A weakly curved cell is used with q = 10−3, there are
J = 1024 spatial grid-points, timestep dt = 10−7 and solvent viscosity η = τd7G7 ∼
10−5.

The blue dot-dashed line in figure 6.5 shows the stress signal in a calculation

once heterogeneity is allowed. The black line shows the stress signal in a calculation

where the flow is artificially constrained to be homogeneous (the quantity shown by

the solid magenta line in figure 6.3(b)). The purple line is the degree of banding

∆γ̇ = (γ̇max(t)− γ̇min(t))/γ̇imposed. Insignificant magnitudes of the degree of banding

(relative to the cell curvature) are recovered at the steady state where the flow is

homogeneous.

There is no significant transient shear banding seen for the multimode RP fit

to PI200k data in shear startup (figure 6.5). In figures 6.5(b) and (c) I artificially

increase the separation between τd and τR to investigate the influence of the stretch

relaxation time on the prevalence of transient shear banding during startup. This

effectively increases the region between τd and τe in the linear rheology, or, alterna-

tively, acts to increase the molecular weight of the polymer.

I use the notation τR ∼ 10mτd to represent the difference in magnitude of the

two material relaxation times (describing orientation and chain stretch) for the first

(slowest) mode. Recall from table 6.1 that for n = 1, τd = 588.84 and τR = 8.0, the

ratio of τR to τd is thus of order 10−2, giving ' −2. In (b) and (c), m ' −3 and
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m ' −4, respectively. A decrease in the local stress maximum is seen for larger m

where the influence of chain stretch relaxation on the short-time dynamics of the

polymer is decreased (note the change n the Σ-axis required in subfigures (b) and

(c)).

There is a clear increase in the magnitude of the degree of banding during startup

(compared to that determined by the cell curvature in steady state) for increased

separation in the orientation and chain stretch relaxation timescales. Indeed, in

figure 6.5(c), significant transient shear banding is seen for τR � τd, i.e. when

the effects of stretch on the relaxation dynamics have been reduced. There is,

however, even for τR ∼ 10−4τd, very little separation between the homogeneous and

heterogeneous stress responses. Indeed, for τR ∼ 10−2τd and ∼ 10−3τd the two lines

are indistinguishable in the plot. Importantly, no significant shear banding was seen

for the experimental fit of PI200k data in figure 6.5(a).

In the following sections I continue to explore the possibility of shear banding

in time-dependent flows as modelled by the multimode RP model. I set N Maxwell

modes to form a power law spectrum of τdn and Gn [84, 96, 97]. This will allow me

to explore the effect of increasing the number of chain entanglements, and hence the

separation of the orientation and chain-stretch relaxation times on the existence of

shear banding in the flow.

6.2 Power-law fit for Linear Rheology

Figure 6.6 shows the linear rheology data for mondisperse polyisoprene for four

different samples. The black line describes a material that is only weakly entangled

(Z = 6). The materials described by the green and blue lines are well entangled

(Z = 20 and Z = 47 respectively). These are the PI90k and PI200k samples I will

continue to discuss in this chapter. The material described by the red line is very

highly entangled, with Z = 235, resulting in it being unmeasurable in shear flow

[10]. Note here that increasing molecular weight increases the range of frequencies

encapsulated within the intrinsic material relaxation times τd and τe, defined at the

left- and right-crossover points in the linear rheology data.
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Figure 6.6: Linear rheology for mondisperse polyisoprene (all at −35◦C) for four
different molecular weight (and thus degree of entanglement) samples. Black is
weakly entangled (Z = 6). Green and blue are well entangled (Z = 20 and 47). Red
is highly entangled (Z=235) such that the rheology is unmeasurable in shear flow.

Discarding the weakly entangled polymer sample (black symbols), each of the

loss moduli (shown by the triangle data lines in figure 6.6) for frequencies beyond

the characteristic reptation time approximately follow a decreasing straight line

with constant gradient in a log-log representation. In this section I approximate the

Maxwell mode spectrum of a material (as described by the yellow diamonds in fig-

ure 6.2) by a power-law relationship, motivated by the constant gradient observation

in figure 6.6. The resultant power-law distribution of values defines the spectrum of

relaxation times and moduli that capture the full chain dynamics of the polymer.

6.2.1 Power-law fitting procedure

As motivated by the preceding discussion, here I approximate the broad range of

relaxation times (ωn = 1/τdn) seen in experimental linear rheology using a power

law. The relaxation times and moduli are related by:

Gn

G1

=
( τd1
τdn

)−α
, (6.2.2)
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with an associated stretch relaxation time for each RP mode is given by:

τRn =
τdn
κZ

, (6.2.3)

for n = 1 . . . N for a total of N modes. α is the power-law exponent, κ is a constant

for which the single-mode RP model is set to κ = 3.0. In the following sections, I

will use κ as an independent scaling variable to explore the influence of extending

the separation of τd and τR stress relaxation timescales. I show that large departures

form κ = 3.0 are needed for the multimode RP model to match shear banding profiles

seen in experimental literature. Recall Z is the entanglement number Z = Mw

Me
[110]

and it thus follows that κ = τd
ZτR

= τd
Z3τe

. Note for any non-stretching modes τRn = 0

and all fast dynamics (assuming infinitely fast chain stretch relaxation) are included

in the solvent viscosity where fast relaxation dynamics are described GNτN = η.

This viscosity encompasses all fast dynamics beyond the regime of viscoelasticity of

the Maxwell modes described by the theoretical spectrum in G and τd [147].

This power-law is fit by the following data:

1. Set the terminal relaxation time (slowest mode) to the reptation time predicted

by Likhtman-McLeish theory [111].

2. Select α to describe the power-law relationship for increasing frequency.

3. Select κ to capture the influence of the stretching modes. τR is then defined

according to the RP model relationship τRn = τdn/κZ where for the single-

mode RP model κ = 3.0.

This definition of the power-law relationship between the variables of the relax-

ation spectrum allows the exploration of parameter space determined by α, κ and

the RP parameter β to investigate and quantify where shear banding may occur

in flows modelled by the multimode RP model. This is explored in the following

sections.
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Figure 6.7: A power-law spectrum for a 7-mode Multimode RP model with 3 stretch-
ing modes (green), 3 non-stretching modes (purple) and the fastest dynamical mode
(n = 7) forming the solvent viscosity contribution, G7τ7 = η, to the entangled poly-
mer solution (magenta). The slowest mode - which would form the single-mode RP
model - is shown in blue. The relationship between the RP parameters τd and τR is
shown in the right-hand figure. Here, Z = 33 and κ = 3.0 giving τR1 ∼ τd110−2.

An example power-law spectrum is shown in figure 6.7. The single mode ap-

proximation of the RP model (used previously in this thesis) where G = τd = 1.0 is

highlighted in blue, for reference. I take the first three slower modes to be stretch-

ing modes to encompass the stretching dynamics of the polymer (employing the full

RP model with chain stretch). These are indicated in the figure by green boxes.

The second (faster) set of three modes are taken to be in the non-stretching limit

of infinitely-fast stretch relaxation (employing the non-stretching limit of the RP

equation) and are indicated by purple boxes. The fastest mode (n = N = 7) is

taken to be the solvent viscosity which includes all the fast dynamics of the slower

modes not captured by the timescales τd and τR. The solvent mode is shown in

magenta in figure 6.7.

The relationship between τd and τR for the first three (stretching) modes is shown

to the right of figure 6.7. The ratio of the two relaxation times is set at the intersect

of the vertical axis: here τd/τR ∼ 102. Increasing the separation of the two relax-

ation timescales (by decreasing τR through increasing κ in equation 6.2.3) shifts the

line in the right-hand figure of 6.7 up the vertical axis. Equivalently, Z could instead

be varied and κ held constant to alter the separation in the τd and τR timescales.

However, I have chosen to keep Z constant and within the experimentally-achievable
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regime and focus purely on the effect of scaling factor κ. I relax any physical limits on

κ to investigate the regime in which shear banding is recovered and consistent with

that seen in experiment for the shear startup protocol [19, 28, 88, 107, 152,179, 180].

Fixing Z = 33 takes the average of the two polyisoprene samples I focus on here

(with Z = 20 and Z = 47).

In order to validate the use of this multimode power-law RP model, I approximate

the experimental multimode RP fits (using REPATATE [149]) of the experimental

data for PI90k and PI200k by the power-law defined in equation 6.2.2. I then further

investigate the possibility of shear banded flows in the multimode RP model.

6.3 Power-law fit to experimental data

In the left-hand graph of figure 6.8 I have plotted the relaxation spectra for PI90k

(shown in green) and PI200k (shown in red) as found via the experimental fitting

procedure described in section 6.1.1. The spectrum for the latter is defined in

table 6.1. Each quantity is scaled by the lowest order mode: Gn/G1, τdn/τd1 , such

that the crossover in G1 and τd1 occurs at ω = 1.0, in the linear rheology. This

follows the setting of G = τd = 1.0 used throughout this thesis.
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Figure 6.8: Power-law fit with α = 0.25 to PI90k (green) and PI200k (red) multi-
mode RP data fits for left: G vs. τd and right: τR vs. τd. Relaxation spectrum
values are described in table 6.2, set by the formula outlined in section 6.2. Here
κ = 3.0 and Z = 33 giving τR ∼ 10−2τd. Any change in this relationship represents
a shift up (for increased time-separation) or down (for decreased time separation)
the vertical axis.
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Mode (n) G τdn τRn

1 1.0 1.0 0.0101
2 0.690 0.227 0.00230
3 0.477 0.0517 0.000522
4 0.329 0.0117 0
5 0.227 0.00267 0
6 0.157 0.000606 0
7 0.108 0.000138 0

Table 6.2: Relaxation spectrum values for each mode of the pow-law fit shown in
figure 6.8. The 7th mode forms the solvent contribution η and encompasses the fast
relaxation dynamics of all 6 slower modes.

Using the power-law relationship in section 6.2 for the relaxation spectrum I

found an exponent of α = 0.25 best fits the two data sets. The black line in

figure 6.8 shows this power-law fit. The spectrum of relaxation times and moduli

are prescribed for equally spaced modes along the power-law fit line. These are

indicated by the black circles. The first three (slowest) modes are taken to be

stretching RP modes (with associated τR) and the next three faster modes are taken

to be non-stretching RP modes. The fastest (n = 7) mode is taken to be the solvent

viscosity contribution such that η = τd7G7. This is shown in magenta for the power-

law fit. The final mode of the experimental fits (red and green) increases due to

fitting the upturn in the viscous modulus from its local minimum. However this final

mode is attributed to the solvent contribution and it is taken as an arbitrary value

when fitting the power law. For consistency I choose to set this solvent contribution

to η ' 10−5. Thus neglecting this fastest-relaxation mode, there is good agreement

between the power-law fit and both sets of polyisoprene data. Table 6.2 gives the

values for data points in the fit shown in figure 6.8.

The relationship between τd and the RP-parameter τR is shown in the right-

hand graph of figure 6.8. The black line (as defined by equation 6.2.3) does not fully

capture the best fit of the PI90k and PI200k experimental fit values for τR. This is

due to the fact that τRn , when fitting experimental data, are prescribed values to

fit the data, rather than using the relation τR = τd/κZ for κ = 3.0. Here, I have

ensured a good fit for the slowest mode, leaving the higher order stretching modes to
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Figure 6.9: Comparison of the linear rheology (loss and storage moduli) for the
multimode experimental polyisoprene fits (PI90k and PI200k) and the theoretical
fit model.

have τR determined by equation 6.2.3. Moreover, Z is a defined material quantity,

not a fit parameter.

Figure 6.9 shows the storage and loss moduli for the experimental data fits

by the green (PI90k) and red (PI200k) lines (dotted for G′ and dashed for G′′)

normalised by the slowest mode such that G1 = τd1 occurs at ω = 1.0 for both

samples. The solid black lines show the moduli for the theoretical power-law fit

(shown in figure 6.8) of the experimental fits’ relaxation spectrums. The theoretical

fit captures the linear rheology of both experimental fits with excellent agreement.

There is a slight deviation for the second (green) fit in the high-frequency regime.

Banding from the power-law fit

Figure 6.10 shows two underlying constitutive curves for the power-law fit to the

experimental PI data (α = 0.25) outlined in table 6.2. κ is artificially increased

in subfigure (b) from κ = 3.0 to 300.0 such that the resulting separation of τd

and τR relaxation timescales is increased (and thus so is Mw) from τR ∼ 10−2τd to

τR ∼ 10−4τd. This large separation in timescales is where transient shear banding

features were most prominent in the time-dependent startup flow shown in figure 6.5.

By setting the RP CCR-parameter β = 0.0 and β = 0.2 the underlying constitutive

curves are non-monotonic and monotonic respectively.
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Figure 6.10: Constitutive curves for 6-mode RP model for τR ∼ 10−2τd (as defined
in table 6.2) and τR ∼ 10−4τd (attained by artificially increasing κ = 3.0 to 300.0).
Dashed lines are monotonically increasing and have β = 0.2, solid lines are non-
monotonic and have β = 0.0. Increasing the ratio of τd and τR lengthens the
plateau-like region in the curves. α = 0.25 and Z = 33.

Figures 6.11(a)-(h) show the time-dependent material responses for the power-

law fit material (α = 0.25 and varying τR/τd between 10−2, 10−3 and 10−4), with un-

derlying constitutive curves as described in figure 6.10, in the shear startup protocol.

These time-separations are increased by setting κ = 3.0, 30.0, 300.0 respectively, for

fixed Z = 33. Velocity profiles are shown for the largest ratio τR ∼ 10−4τd in subfig-

ure (d) (where the underlying constitutive curve is non-monotonic) and (h) (where

the constitutive curve in monotonic) where shear banding was most significant. The

applied shear rate γ̇ = 342.12 (where τd = 1.0). This has the same Weissenburg

number (Wi = γ̇τd) used in figure 6.5; where γ̇ = 0.581 and τd = 588.84, giving

Wi = 342.12.

Steady state shear banding can be seen for the top row for each value of κ

where the underlying constitutive curve of the material is non-monotonic. In the

bottom row, the material has a monotonic underlying constitutive curve and thus

precludes shear banding at the steady state under steadily applied shear (chapter 3).

Significant transient shear banding is seen to occur only in the case of artificially-

increased values to κ = 30.0 (subfigure (f)) and particularly κ = 300.0 (subfigure

(g)). Indeed, the shear banded velocity profiles shown in (d) and (h) for κ = 300.0

are consistent with those seen in experiment for the shear startup protocol [19, 28,
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Figure 6.11: Transient shear stress, degree of banding and associated velocity profiles
at snapshots in times (indicated by corresponding colours and symbols) under shear
startup (γ̇ = 342.12) using the power-law RP multimode model with α = 0.25, Z =
33. In (a) and (e), κ = 3.0 (τR ∼ 10−2τd), (b) and (f) have κ = 30.0 (τR ∼ 10−3τd)
and (c), (d), (g) and (h) have κ = 300.0 (τR ∼ 10−4τd.). 3 stretching modes and 3
non-stretching modes are used. η ' 10−5. Top row: β = 0.0 and the material has
an non-monotonic underlying constitutive curve. Bottom row: β = 0.2, and the
material has a monotonic underlying constitutive curve. Simulations are performed
using full nonlinear spatio-temporal dynamics with a weakly curved cell (q = 10−3)
and J = 1024 spatial gridpoints. dt = 10−7.

88,107,152,179,180]. As before, the finite degree of banding seen at long times in (f)

and (g)) is insignificant compared with the effects of the weak curvature of the cell:

at the steady state a weakly-curved velocity profile may occur for imposed γ̇ within

the weakly-increasing (plateau-like) region of the underlying constitutive curve [4]

(recall chapter 2). It can be seen in subfigure (h), however, that the steady state

velocity profile (magenta line and stars) is indeed homogeneous to the eye.

The initial pronounced peak in the degree of banding seen for κ = 30.0 and 300.0

follows the stress overshoot in strain. It is around this time that the heterogeneous

stress relaxes at a faster rate than its homogeneously-constrained counterpart. This

is seen for both the non-monotonic and monotonic underlying constitutive curves.

Moreover, the increased values of κ can be seen to decrease the local stress maximum

and decrease the strain at which the onset of instability to the formation of shear
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banding occurs. The change in stress is not unexpected as the increase of κ decreases

the influence of chain stretch (with relaxation time τR = τR(κ)). Recall chain stretch

helps capture the short-time dynamics (on the onset to, and at, the local stress max-

imum). However, the earlier (and indeed increased) instability to shear banding seen

for larger κ recovers banding profiles seen in experiments [19,28,88,107,152,179,180].

It is thus suggested here that chain stretch in the RP model perhaps overly sup-

presses shear banding in shear startup.

Recall that when fitting the experimental data, Z and τRn are fixed and thus

the relationship defined in equation 6.2.3 for the power-law fit (as based on the RP

model) is not required. If, however, κ was to be calculated for the first mode of each

multimode fit, κ is then a function of Z. Indeed from Likhtman and McLeish linear

theory [111] and confirmed by experimental observations [10], that for PI90k, κ = 1.3

and for PI200k, κ = 1.6. Therefore, in the following sections I use the contraction

κZ = κZ without loss of generality. Again I relax the physical constraints on this

value to determine the existence of significant shear banding in the multimode model.

In the following sections I compare my findings with two case studies of theoret-

ical papers for the existence of shear banding in startup flows. In these case studies,

I confirm the use of the power-law multimode RP model’s ability to reproduce pre-

viously published -and cited- results. In these studies, τd/τR(= κZ) ranges from 102

to 104, thus justifying the inflation of κ used previously in this chapter to capture

the shear banding found in experiment for similarly-entangled linear polymers.

A summary of the parameters I use to consider the case studies (Cooke [32],

Adams and Olmsted [4]) is shown in table 6.3. For both case studies, I chose

α = 2.75 to more closely approximate the single-mode modelling for similar values

of β used in the references, whilst investigating the higher order relaxation.

α β κZ

Case study (a) 2.75 0.4 102 − 104

Case study (b) 2.75 0.65 & 0.85 103 − 104

Table 6.3: A summary of parameters for the theoretical case studies (a) and (b).
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Figure 6.12: Shear startup transient stress and degree of banding as modelled by
a power-law multimode RP model (α = 2.75, Z = 61, κ = 1.6 initially). κ is
increased by factors of 10 in (b) and (c) such that: (a) has τR ∼ 10−2τd, (b) has
τR ∼ 10−3τd and τR ∼ 10−4τd. These timescale separations have all been cited
in previous theoretical work on shear banding. Underlying constitutive curve for
the material is non-monotonic. Heterogeneous seed provided by continuous random
noise with amplitude q = 1e− 2 as in [32]. β = 0.4, J = 512, dt = 10−7.

Theoretical case study (a)

Cooke, in figure 5.4.3 of reference [32] describes the behaviour of an entangled poly-

meric fluid under the time-dependent material response to shear startup for the

single-mode RP model. In [32], significant transient shear banding was seen for

τR ∼ 10−2τd and τR ∼ 10−4τd. A pronounced overshoot in the degree of band-

ing ∆γ̇(t) (spatial heterogeneity in the γ̇-field, measured with time) was seen for

τR ∼ 10−4τd following the stress overshoot in strain (∂γΣ < 0). Both samples had a

non-monotonic underlying constitutive curves and thus exhibited steady state shear

banding. In figure 6.12 I reproduce these results for the 6-mode RP model with fit

parameters: α = 2.75, κZ = 102, giving τR ∼ 10−2τd and then increase κZ to give

τR ∼ 10−4τd (consistent with the two values used in [32]). I include τR ∼ 10−3τd in

figure 6.12 for comparison. The width of the spectrum in time and moduli is set

such that the fastest mode gives gNτdN ∼ 10−5. The results shown in figure 6.12

use the addition of random mechanical noise as the numerical seed to growth in

heterogeneity (as in [32]), though I found consistent results for a weakly curved cell

in the absence of noise.

Between (a)-(c) in figure 6.12, I consider the influence of the τd/τR ratio on the

transient ‘peak’ in the degree of banding by increasing κ by factors of 10. It can
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be seen in figure 6.12 that ∆γ̇(t) ∼ τd/τR. The ratio of relaxation times τd/τR,

acts to lengthen the decreasing (or weakly increasing plateau for monotonic curves)

region of the constitutive curve since this is indicative of increasing Mw (and thus

an increase in Z) and hence the separation between material timescales τd and τe.

It is as this separation in polymer chain relaxation timescales is increased that a

pronounced peak in the degree of banding can be seen following the overshoot in

the time-dependent stress response with increasing strain (∂γΣ < 0). This peak is

not seen for τd/τR = 102. It therefore follows that the two relaxation timescales

must be sufficiently well separated for this transient shear banding signal to be

seen. Moreover, that an increased influence of chain stretch on polymer relaxation

suppresses transient shear banding in the material response to shear startup.

Theoretical case study (b)

Adams and Olmsted, in reference [4] showed results of transient shear banding in

shear startup for the absence of a non-monotonic constitutive curve. Two values for

β, the CCR-parameter, were chosen such that the underlying constitutive curve of

the material only varied slightly between non-monotonic and monotonic (β = 0.65

and β = 0.728 for the single-mode RP model). In figures 6.13 and 6.14 I use cor-

respondingly closely separated values of β in the multimode RP model (as defined

by the same power-law fit as in comparison (a)). I set β = 0.65 and β = 0.85, and

choose the power-law exponent to be α = 2.75 to closely reproduce the weakly non-

monotonic and weakly monotonic underlying constitutive curve seen in [4] respec-

tively. I also use a weakly curved cell formed by imposing a constant stress gradient

across an infinitely-long parallel plate geometry with toy curvature q = 10−3 (as

used in [4]). For both cases, I set τd/τR = 103 (as used in [4]) and τd/τR = 104, for

comparison. Both ratios show transient shear banding during the time-dependent

flow, shown by the pronounced magnitude of ∆γ̇(t) following the transient stress

overshoot. However, for both β = 0.65 and β = 0.85, τd/τR = 104 resulted in a

significantly larger peak in the degree of banding.

Note also that in both comparisons (a) and (b), the increase in the relaxation
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Figure 6.13: Transient stress and degree of banding for a shear startup as modelled
by a multimode RP model (power law exponent α = 2.75) for a material with a
non-monotonic underlying constitutive curve (β = 0.65). κ = 16.0 and 160.0 for
Z = 61 giving τd/τR = 103 and 104. J = 512, dt = 10−7. Cell curvature q = 10−3.
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Figure 6.14: As in figure 6.13 for a monotonic underlying constitutive curve (β =
0.85).

time separation of τd and τR reduces the strain (or equivalently time, for constant

γ̇) at which the onset of shear banding occurs in the transient stress curve. Recall

that earlier, in figure 6.12(a), where τd/τR = 102, significant shear band formation

does not occur until far beyond the overshoot region in the stress and rather ap-

pears to be a steady state property. Conversely, for τd/τR = 103, 104, this onset of

shear banding occurs much closer to the overshoot region. It is therefore suggested

that increased relative chain stretch relaxation time (smaller Z or Mw) dampens

the elastically-driven instabilities in the flow during the startup transient. It is the

inclusion of stretch effects on the polymer chain that helps capture the short-time

transient shear rheology of the polymer. The increased chain stretch here can be

seen to act as a stabilising influence against the formation of shear banded flow

during shear startup.
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In the following section I consider the relative influence of fit parameters α and

κ on the growth of transient shear banding in flow for a monotonic underlying

constitutive curve.

6.4 Power-law fit: the influence of α and κ fitting

parameters

Recall that in the power-law fit of linear rheology, α sets the gradient of the relax-

ation spectrum. Infinitely large α recovers the single-mode RP model. κZ = κZ

relates the separation of stretch relaxation time τR and tube disentanglement time

τd, required in the RP constitutive model to describe the dynamics of an entangled

polymer chain in nonlinear flow.

Figure 6.15 shows a brief overview of a comparison between α and κZ , resulting

from a extensive study where I explored a wide range of β-values. Here I focus on

the case of a monotonic constitutive curve and take β = 0.6. I varied α and κZ for

α ∈ (0.1, 5.0) and κZ ∈ (102, 104); I show here α = 0.5 and 2.0, with κZ = 102 and

104. The corresponding constitutive curves are shown at the top of figure 6.15. At

the bottom of the figure, plots (a), (b) and (c) show the time-dependent material

response to shear startup with γ̇ = 50.0. The solid-black constitutive curve corre-

sponds to subfigure (a), the red-dashed constitutive curve corresponds to (b) and

the blue dot-dashed curve corresponds to (c). As in section 6.3 this value of γ̇ lies

within the weakly-sloping plateau region of each monotonic underlying constitutive

curve.

For both α values, homogeneous flow is recovered at long times, relative to the

finite degree of banding due to cell curvature. Larger α decreases the dependence

of the multimode model on the higher-order modes. In (b), larger α can be seen

to reduce the stress maximum at the overshoot but slightly increases the degree

of banding (associated with the elastically-driven flow instabilities). In particular,

the reduction in the stress maximum and increased degree of banding is due to the

reduced influence of the stretching modes for increased steepness of the power-law
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Figure 6.15: Importance of α and κ in the emergence of transient shear band forma-
tion in shear startup. Multimode model, with 3 stretching, 3 non-stretching modes
and the effective solvent viscosity η = 10−5. Bottom row γ̇ = 50. β = 0.6.

(larger α). The inclusion of chain stretch is known to help capture the short-time

dynamics of the transient stress response to shear startup [124,128,142]. Moreover,

a larger chain-stretch influence suppresses the transient shear banding dynamics.

In (c) α is set to the lower value and κZ is increased by two decades to give

κZ = τd/τR = 104. It is at the large separation in τd and τR that significant transient

shear banding was seen in sections 6.1.1 and 6.3. Recall that this corresponds to an

increase in the molecular weight of the polymer. Again, as in section 6.2 increasing

Mw decreased the stress maximum since all parameter sets have τd set to unity (and

thus each plot (a)-(c) is at the same Weissenburg number, Wi = 50.0). Moreover,

a significant peak in the degree of banding (to ∆γ̇ ∼ 100%γ̇) is seen following the

stress overshoot. However, for all plots there is no significant difference between the

homogeneous and heterogeneous stress response.

Transient shear banding is a more pronounced feature for well separated timescales
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τd and τR (and large Mw). It is at this artificially inflated separation (via κZ) in

the timescales that shear banding profiles are seen that are consistent with what

is seen in experiment [19, 28, 88, 107, 152, 179, 180]. Indeed, it was at large separa-

tions (τd/τR = 103 and 104) that significant transient shear banding was seen in

theoretical studies (recall case studies (a) and (b)).

An alternative interpretation of the results shown in this chapter is to consider

the possibility that in order to achieve shear banding profiles consistent with that

seen in experiment, there may be a significant influencing factor that is not consid-

ered here. In each study shown here, there has been no appreciable shear banding

for values consistent with the fit found for real polymer data. It is only by artifi-

cially increasing molecular weight - or indeed the degree of entanglement - that shear

banding profiles are seen. Whilst this is consistent with Wang’s group [152] (despite

their issues with the tube theory) it has been suggested by groups such as Hu [85]

and Li and McKenna [107,108] that edge fracture is an important influencing factor

on the presence of shear banding in flow. It could therefore be argued that the

results presented here - where edge effects are neglected and cannot be modelled -

present a compelling case for edge fracture as a trigger for shear banding. Further

work here is needed to establish if this indeed could be the case.

In the present study, where physicality is relaxed on κZ , as κZ is increased, the

non-stretching limit of the RP model is recovered for each mode since τR → 0.

Performing a multimode non-stretch RP model for the experimental fit data shown

earlier in figure 6.5 I found very similar results for the transient stress response to

shear startup as seen in 6.5(c) where τd/τR = 104 (data not shown).

This suggests that it is the ratio of τd/τR (or indeed the value of κZ) is an

important quantity when studying transient shear banding through the multimode

RP model in time-dependent flows. α is certainly important too, though taking

α → ∞ (and thus recovering the single-mode RP model) may provide a useful

tool in exploring the prevalence of transient shear banding over a wide range of

entanglement numbers Z and RP CCR-parameter β and thus the dependence of

shear banding during startup on the chain stretch relaxation time τR = τR(Z).

In the following section I include a study of shear banding intensity in the limit
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of finite (multimode) and infinite (single-mode) α for non-monotonic and monotonic

underlying constitutive curves. For finite α, I focus on the influence of κZ which,

so far, I have shown that chain stretch in the RP model overly suppresses the levels

of shear banding. Recall that varying κ or Z is an arbitrary choice and I have

chosen to relax physicality on κ (and hence the contraction κZ) here for a fixed,

experimentally achievable Z. Following similar analyses in chapters 4 and 5 for

large amplitude oscillatory protocols, I build two maps of shear banding intensity

across the (β, Z) and (β, κZ) planes for transiently time-dependent flow within the

shear startup protocol. These maps provide the final roadmaps for time-dependent

shear banding in the RP model for entangled polymer solutions and melts presented

in this thesis.

6.4.1 Shear banding intensity in the (β, Z) and (β, κZ)

planes

I present two roadmaps for shear-banding intensity across the space defined by the

convective constraint parameter β and entanglement number Z. I consider two key

α-values: α → ∞, recovering the single-mode RP model, and α = 0.25, found to

be a good fit to PI90k and PI200k data (section 6.3). For α = 0.25 I consider the

contraction κZ rather than Z, consistent with the work presented above.

In each case, I define transient shear banding to be significant when ∆γ̇ > 10%γ̇

during shear startup. Recall that this can decay away to regain a homogeneous

flow at the steady state. 10% transient shear banding is shown by dotted circles

and hatched circles describe stronger transient shear banding, when ∆γ̇ > 100%γ̇.

Black filled circles indicate significant shear banding at the steady state. In each

figure, the red-shaded region indicates where the underlying constitutive curve of

the material is non-monotonic.

Single-mode approximation: α→∞

It can clearly be seen from figure 6.16 that shear banding exists in the time-

dependent flow of entangled polymers for a wide region of (β, Z) parameter space.
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Despite the value of β being a poorly defined material property with respect to

theory calculations, transient shear banding is seen for a wide range of β, for Z well

within the regime of experimental measurablability. Transient shear banding arises

in shear startup for a wide region of the space where the underlying constitutive

curve is monotonic and the steady state flow is homogeneous. Moreover, the inten-

sity of the shear bands is creased as Z is increased. Whilst this directly refers to

entanglement number here, it could instead be solely considered as the separation

parameter between τd and τR, for comparison with the previous discussions in this

chapter.
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Figure 6.16: β−Z-plane for the stability to the formation of shear bands during the
shear startup protocol. This phase plane is for linear entangled polymers and melts,
described by the single-mode stretching Rolie-Poly model. Open circles indicate no
measurable banding. Dotted and hatched circles indicate significant transient shear
banding: ∆γ̇ > 10%γ̇, and ∆γ̇ > 100%γ̇ during shear startup, respectively, such that
homogeneity is regained at the steady state. Black filled circles indicate significant
shear banding at the steady state. Red-shaded region indicates a non-monotonic
underlying constitutive curve.

Note that steady state shear banding appears to occur for a monotonic underlying

constitutive curve for (Z = 75, β = 0.6), (Z = 175, β = 0.7) and (Z = 200, β =

0.7). This significant heterogeneity at the steady state is accounted for by the

imposed curvature stress gradient on the rheological cell for a weakly-increasing

plateau-like region of the underlying constitutive curve [4].
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Multimode RP: α = 0.25

In figure 6.17 I show a shear banding intensity map over the (β, κZ) plane for a

finite α-value, i.e. using the multimode RP model. Indeed, significant transient

shear banding is seen for materials with a monotonic underlying constitutive curve

for values of κZ beyond τd/τR ∼ 103. Note here that the red shaded region for which

values of β and κZ have non-monotonic underlying constitutive curves is notably

smaller in β than for the single-mode RP case in figure 6.16.
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Figure 6.17: (β, κZ) plane for the stability to the formation of shear bands dur-
ing the shear startup protocol. This phase plane is for linear entangled polymers
and melts, described by the multimode Rolie-Poly model. Open circles indicate no
measurable banding. Dotted and hatched circles indicate significant transient shear
banding: ∆γ̇ > 10%γ̇, and ∆γ̇ > 100%γ̇ during shear startup, respectively, such that
homogeneity is regained at the steady state. Black filled circles indicate significant
shear banding at the steady state. Red-shaded region indicates a non-monotonic
underlying constitutive curve.

Figure 6.17 shows that a large κZ value is required to see transient shear banding

in the multimode RP model as defined by a power-law relationship fit to experimen-

tal PI relaxation spectrum data. It is thus suggested that the way in which chain

stretch is incorporated into the RP model, whilst captures the short-time dynam-

ics of the stress response to shear, suppresses shear band formation in the regime

of experimentally-achievable entanglement number Z. Whilst the single-mode RP

model is a a helpful indicative tool when studying the stability of an entangled

polymeric fluid to the formation of shear bands in time-dependent flow regimes, it

does not capture the full chain dynamics of the polymer. Indeed, the single-mode
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RP model requires a much larger Z to capture the shear banding profiles seen in

experiment (for smaller Z).
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6.5 Conclusions from chapter 6

In this chapter I have considered a multimode Rolie-Poly (RP) model for linear

entangled polymer solutions and melts [110]. Using experimental rheology data for

a well entangled monodisperese polyisoprene [10], I have characterised the linear

rheology of the dynamic moduli and relaxation time spectrum over a wide range of

frequencies in SAOS, and under nonlinear shear.

I then further approximated the relaxation spectrum of the polymer by a power-

law distribution of multiple Maxwell modes. The slowest mode was set to the

slowest relaxation time (the characteristic reptation time, τd) of the polymer and

higher-order dynamics were described by faster-relaxing modes across the power-

law distribution of increasing frequencies (ωn = 1/τdn). In each fit (to experimental

data, and in the power-law approximation) slower modes were described by the full

stretching version of the RP model. Higher order modes used the non-stretching

version of the model, taken in the limit where chain stretch relaxes infinitely fast.

The fastest mode was taken to be the solvent viscosity contribution, allowing the

possibility of shear banding to be calculated during constitutive modelling of the

polymer dynamics under the shear startup protocol.

I found the formation of shear bands in the flow for the multimode RP model

for imposed γ̇ within the negatively-decreasing stress region, or weakly increasing

plateau-like region of the underlying constitutive curve of the material. As expected,

steady state shear banding was only seen in materials that had a non-monotonic un-

derlying constitutive curve. However, the existence of transient shear banding during

shear startup was shown to depend upon the separation of relaxation timescales τd

and τR - or equivalently, the molecular weight Mw - of the polymer. An increased

separation (or Mw) resulted in a significantly pronounced peak in the degree of shear

banding measured in the flow following the transient overshoot in stress Σ(γ).

A study of parameter space was carried out to investigate the influence of the ex-

ponent α of the negatively-decreasing power-law distribution of relaxation times and

moduli, the effective entanglement number κZ representing the separation between

τd and τR, and the RP-model CCR parameter β, on the existence (and intensity) of

shear banding in shear startup for the multimode RP model.
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Whilst α clearly influenced the material response to shear startup, I focussed on

the role of κZ on the existence and intensity of transient shear banding in the shear

startup protocol. Taking the limit α → ∞ (and thus recovering the single-mode

RP model) enables a quick exploratory study into the dependence of transient shear

band formation on the parameters β and Z, across the phase space. Indeed, I found

significant (transient) shear banding intensity across the (β, Z) phase space for a

wide range of polymers that have a monotonic underlying constitutive curve.

A comparative survey of the (β, κZ) phase plane for the multimode RP model

was shown for the power-law exponent α = 0.25. This value of α approximated

the PI90k and PI200k data characterisation. This showed significant measurable

transient shear banding for monotonic underlying constitutive curves for sufficiently

large κZ . Moreover, the underlying constitutive curve of the material was monotonic

for a wider range of β values. It was seen that large κZ (and thus a reduced influence

of chain stretch) is required to recover significant shear banding in shear startup.

Clearly, whilst the single-mode RP model provides a computationally inexpensive

and fast technique to explore the prevalence of shear banding in the time-dependent

flows of polymers, significant dynamics of the polymer chain cannot be captured

by this simplified model. The single-mode model does, however, provide a helpful

indicative measure for transient shear banding in shear startup.

It is suggested that the need for large κZ in the multimode RP model (or indeed

Z in the single mode model) to achieve the shear banded profiles seen in experiment

indicates that the way in which the RP model itself includes chain stretch relax-

ation, overly suppresses shear banding for experimentally achievable entanglement

numbers. Whilst the stress response to shear startup is well captured by the model,

the degree of banding only matches that seen in experiment for artificially inflated

(large κ) separations in the relaxation timescales τd and τR. An example of this was

seen in [178] where Wang et al. commented on a paper [4] using the RP model for

τd/τR ∼ 103, giving Z ∼ 333. Similar banded profiles were seen in the theoretical

RP study [4] as in the experimental paper [174, 175], but the experimental paper

had Z = 47, thus the RP model simulation required an inflation by nearly a decade

in the τd/τR ratio (κ, here) in order to capture the experimental results.
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An alternative interpretation of the results seen here is the possibility of edge

fracture. Though not included in the calculations performed here, it was discussed

that this, rather than any shortcomings of the RP model, may be the trigger for

instability in the flow leading to the formation of shear bands. The inclusion of edge

fracture in calculations may lead to the initial parameter fits of the multimode RP

model, when allowing for heterogeneity, to produce results consistent with that seen

in experiment.

In another experimental study by Wang et al. [28] both shear banded and ho-

mogeneous flow profiles were measured at the steady state for the strain-controlled

deformation of a well entangled polymer. The end state of the flow depended on

the slow ramping rate (as opposed to fast shear startup) of the deformation im-

posed on the polymer. There was no measurable difference in the steady state stress

value. This could be considered to coincide with the suggestion here that the RP

model captures the stress response of the polymer to imposed shear well, but overly

suppresses the otherwise possible shear banding in the flow. Alternatively, it could

be suggested that the slow ramping rate used in the experiment by Wang et al.

protected the sample from edge effects and thus precluded the possibility of shear

banding being triggered in the flow.

Another alternative may be that the suppression of shear banding for experi-

mentally used values of Z could be resolved by coupling the Maxwell modes in the

power-law distribution used here. In each mode I have assigned a distinct relaxation

time and moduli. There is no interaction between the relaxation dynamics described

by the timescale of each mode. This is perhaps undesirable as in the GLaMM and

RP models themselves, the relaxation dynamics of the polymer are dependent on

one another (e.g. stretch relaxation via convective constraint release). An interac-

tion between the modes may enable any overly suppressed shear banding by chain

stretch seen in the results presented here to be alleviated.

Finally, the work here is limited to the transiently time-dependent shear startup

protocol. An interesting progression of this would be to consider the existence of

shear banding in LAOStrain and LAOStress protocols where the flow has a sustained

time-dependence. This, however, amongst the other suggestions given here, is left
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for future study.



7
Conclusions

Throughout this thesis I have presented evidence, through numerical simulations,

of shear banding in time-dependent flows. I have predominantly focused on large

amplitude oscillatory shear strain and stress (LAOStrain and LAOStress) protocols,

using the stretching and non-stretching limits of the Rolie-Poly model. This model

is the single-mode approximation to the GLaMM model, which considers a spectrum

of relaxation times to capture the full chain dynamics of a polymer. In chapter 6 I

considered the influence of higher-order relaxation time dynamics on the existence

of shear banding in time-dependent flows for the simpler shear startup protocol.

I found numerical evidence for shear banding flows for sufficiently well entangled,

high-molecular weight polymers. I also considered the other side of the ongoing dis-

cussions over the origins of shear banding by considering the influence edge fracture

may have on these results.

175
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Extension I: A natural extension to the studies presented here would be to study

the multimode Rolie-Poly model (as defined by the power-law distribution in chap-

ter 6) in the LAOStrain and LAOStress protocols. These protocols, unlike shear

startup, have a sustained time-dependence and have been shown in chapters 4 and 5

to exhibit short-lived and persistent shear bands in flow. It was shown in chapter 6

that a multimode model is required to fully describe polymer dynamics in flow. It

would be interesting to see how the inclusion of higher order relaxation dynamics

would affect the results for shear banding shown in chapters 4 and 5.

In chapter 4 I considered strain-controlled oscillatory flow in the nonlinear regime.

This so-called LAOStrain protocol has the benefit of the experimentalist being able

to independently vary the amplitude and frequency of imposed oscillations to asses

a wide range of elastically- and viscously-dominated flow behaviours, and linear and

nonlinear flows. In this work I furthered the initial study by Adams and Olmsted [2]

that showed the existence of shear banding in entangled polymers under LAOStrain.

I referred to the criteria for shear banding in transiently time-dependent flows in [135]

and extended the work of Moorcroft and Fielding [32, 135, 136] to consider LAOS-

train: a protocol with a sustained time-dependence. Indeed, I found shear banding

in sufficiently well entangled polymers under LAOStrain, occurring over a wide range

of imposed amplitudes and frequencies.

I discussed the ability to understand - to a good approximation - the onset of

instability to the formation of shear bands in LAOStrain by the time-dependent

criteria and triggers for the onset of instability defined for the simpler shear startup

protocol in [135, 136]. At low-frequencies, such that the deformation to the fluid

is imposed at a slower rate than the inverse characteristic relaxation time of the

polymer, the material response follows the stationary flow curve of the polymer.

Shear bands form in this low-frequency regime due to an overshoot in Σ(γ̇) leading

to a negatively-sloping region in the underlying constitutive curve of the material

(formed in theoretical simulation for homogeneously-constrained flow).

At finite frequency, elastically-dominated flow responses to LAOStrain were seen

if the period of oscillation was much less than the inverse characteristic relaxation



Chapter 7. Conclusions 177

time of the polymer. In this regime, the elastic criterion for shear banding in shear

startup gives a good approximation to the onset of shear banding in LAOStrain.

This criterion is satisfied when there is an overshoot in the Σ(γ) response with an

added influence from strong curvature in Σ(γ) (which may result in instability to

shear banding ahead of the overshoot in strain).

Over a range of amplitude γ̇0 and frequencies ω, a combination of these two

limiting responses gave rise to significant shear banding across the (γ̇0, ω) plane.

This occurred for materials with non-monotonic and monotonic underlying consti-

tutive curves. Moreover, once chain stretch was included in the RP model, a phase

diagram was built up for a range of convective constraint release parameter β and

entanglement number Z for the intensity of shear banding in LAOStrain. There

was a significant regime of shear banding (seen for a wide range of imposed am-

plitude and frequency in LAOStrain) recorded for materials that had a monotonic

underlying constitutive curve.

Extension II : In appendix I (section 4.7) of chapter 4, I briefly discuss the exis-

tence of normal stress differences in the flow during LAOStrain. These approached

40− 70% of the cycle-averaged normal stress value and were significant throughout

the cycle. Normal stress differences have been known to couple with the dynamics of

concentration coupling in the flow to form shear bands [66–68,131,162]. This effect

was neglected in the calculations of this thesis but - through the findings within this

appendix - would undoubtable prove an interesting area to explore in further studies.

In chapter 5 I consider the stress-controlled oscillatory protocol: LAOStress. In

this protocol, imposed stress is the amplitude that is sinusoidally varied for a range

of fixed amplitudes and frequencies. Unlike the LAOStrain protocol, I did not find

shear banding to be a persistent feature throughout one cycle in the alternance

state. Rather, I found shear banding to be a temporally localised instability to a

sudden increase in γ̇ as the Σ(γ̇) curve was transited. In the low-frequency regime,

this transit occurred over the region of non-monotonic, or weakly-increasing mono-

tonic, underlying constitutive curve. Linear response regions at the low- and high-
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viscosity branches of the non-monotonic constitutive curve were traced by the Σ(γ̇)

response to LAOStress, whilst the fast ‘top-jumping’ (and to a lesser extent ‘bottom-

jumping’) mechanisms over the negatively-sloping stress regime provided the trigger

to shear band formation. No shear banding was seen in this low frequency regime for

a monotonic underlying constitutive curve, but the same fast-transit trigger to shear

banding is seen over the weakly increasing plateau-like region of the homogeneously-

constrained Σ(γ̇) response at finite frequency.

It is in these regions of fast γ̇ transit for a small increase in Σ(t) that means

the stress is effectively constant and therefore that the step-stress criterion for shear

banding applies for LAOStress. Although the step-stress protocol is only transiently

time-dependent, the criterion holds - to a good approximation - in the LAOStress

protocol which has a sustained time-dependence.

An additional phase plane for the interplay of the convective constraint release

parameter β and entanglement number Z - for the stretching version of the RP model

- on the intensity of shear banding across a wide range of imposed Σ0 amplitudes and

frequencies is also shown in chapter 5. As for LAOStrain, significant shear banding

is seen for the LAOStress protocol for a large region of the β − Z phase plane for

which the underlying constitutive curve of the material is monotonic.

Extension III: An additional study to further the work presented here would

be to consider the influence of inertia. At large shear rates the assumption taken

here that inertial effects are negligible and thus can be neglected may not always

be applicable. In particular, the fast transit of γ̇ on a timescale of G/η seen in

LAOStress to trigger a shear banding instability may warrant the inclusion of iner-

tia when small values of η (which thus increases the timescale of transition) are used.

Additional studies of shear banding in LAOStrain and LAOStress could be car-

ried out in the regimes that have been neglected here:

Extension IV: The studies shown here predominantly use a weakly curved cell as

the seed to spatial heterogeneity in the flow. The absence of stochastic noise in the

calculations suppresses the possibility of nucleation events in the flow which may
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further trigger shear banding instabilities. Whilst the results presented here show

consistent behaviour when weak curvature was instead replaced by small stochastic

noise, it may be an interesting future study to consider the inclusion of nucleation

kinetics in the flow for finite temperature simulations.

Extension V: As discussed in chapter 6, recent studies have considered edge frac-

ture to govern elastically-driven instabilities in flows [107,108,164]. The calculations

performed here make the assumption that edge effects are negligible and are thus ig-

nored. Including the possibility for these effects in numerical simulations by adding

a free surface may aid the understanding of these currently-debated instabilities.

Extension VI: The calculations performed in this thesis assumed, form the out-

set, that spatial variations only occurred in the flow gradient direction. I ignored

the possibility of any secondary instabilities [58] of the interface between the shear

bands [60, 138], or indeed in the high shear band itself [62]. It is unknown if these

instabilities will form, or persist, to the alternance state in any given regime of am-

plitude and frequency space. Investigations into this are left to further studies.

Through the studies and results presented in this thesis I have shown evidence

through numerical simulation of shear banding in rheological protocols with sus-

tained time-dependence. Clearly - as suggested through the proposed extensions

here - there is much of the story still to explore to further understand the full dy-

namics of entangled linear polymers in flow. I am interested to see where the field

goes next with these studies.
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