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Abstract 

This thesis explores the commodity futures investment strategy with the impact of the 

Chinese specific factors. First, I study the so called Chinese specific factors. To do so, 

I investigate how commodity future price interacts with domestic macroeconomic 

variables and overseas futures prices respectively. Specifically, Chapter 2 emphasizes 

the interaction between domestic commodity futures prices and domestic 

macroeconomic variables such as interest rates, monetary growth, exchange rates and 

industrial growth. Among these variables, monetary growth should receive deeper 

attention because it is widely regarded as the main channel of monetary policy 

transmission. Subsequently, Chapter 3 focuses on the interaction between domestic 

commodity futures prices and overseas commodity futures prices. Having gained a 

clear understanding of the Chinese specific factors, a dynamic timing strategy is 

accordingly proposed in chapter 4. 

 

Chapter 2 is primarily focused on the interaction between domestic macroeconomic 

variables and domestic commodity future price movement. Specifically, I try to 

explore whether low (high) interest rates, loose (tight) money supplies, low (high) 

foreign exchange rates (Renminbi / US Dollar rate) and high (low) economic growth 

will lead to high (low) commodity prices and whether commodity prices present 

overshooting behaviour in response to the interest rate, money supply or changes in 

the foreign exchange rate. It has been argued by Frankel (1986, 2006) that commodity 

prices tend to overshoot in response to interest rates as well as to changes in the 

exchange rates based on Dornbusch’s (1976) model. Evidences from the SVAR 

models show that part of the theory regarding the relationship between 

macroeconomic variables and commodity price movement can be supported. The 

empirical also results suggest that the commodity price shock itself make the largest 

contribution to commodity price shocks in general. An interest rate shock barely 

contributes while an M1 growth shock contributes substantially in metals. Foreign 

exchange rate shocks contribute approximately 40 percent to some commodities, 
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while industrial output shocks comprise approximately 20 to 30 percent to some 

metals. 

 

In chapter 3, the thesis tries to explore the impacts between China’s futures market 

and overseas futures markets in chapter 3. Research from this angle could help reveal 

which side has stronger pricing power. Specifically, I aim to study the information 

spillover effect between the domestic spot and futures market as well as the 

information and risk spillover effects between the domestic metal futures market and 

the overseas metal futures market. Moreover, to check whether China has gained 

pricing power in the global commodities market, I also study the risk spillover effect 

between the domestic metal futures market and other overseas financial markets.  

From the empirical evidences in Chapter 3, it could be seen that asymmetry factors 

are significant in the futures market, no matter in the Chinese market or oversea 

market. The empirical results of Granger causality test in Chapter 3 show that 

movement in the SHFE market could directly guide movement in the LME market, 

indicating a rise in China’s pricing power in the global commodity market. However, 

such pricing power is limited and should not be wildly exaggerated. 

 

Chapter 4 forms an effective dynamic timing strategy in China’s commodity market 

with full consideration of the Chinese specific factors. I adopt Vrugt, Bauer and 

Molenaar’s (2004) dynamic modeling approach to predict the sign of monthly returns 

for the three metal futures listed on the Shanghai Futures Exchange: copper, 

aluminum and zinc. Following Vrugt, Bauer and Molenaar (2004), the base set of 

explanatory variables is classified into three categories: 1) business cycle indicators; 2) 

monetary environment indicators; 3) indicators of market sentiment. The empirical 

results in Chapter 4 show that the timing strategy can offer better returns, a lower 

standard deviation and, as a consequence, a higher information ratio for all three 

metal futures. 
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Chapter 1  

Introduction 

Recently, Chinese specific factors have become a hot term in the global commodity 

market. Prior to the global financial crisis in 2008, China appeared to be a complete 

“loser”. For example, a spokesman from the Ministry of Commerce confessed in a 

press conference that when China bought something, its price would go up, and when 

China sold something, its price would go down. Governments, academia and the 

public were concerned about this tendency. Then the global financial crisis, triggered 

by the bankruptcy of Lehman Brothers, hit the world economy heavily. China’s 

economy also faced a serious shock because global demand rapidly evaporated. 

Following the launch of an unprecedented 4 trillion stimulus package, a V-shaped 

recovery has been witnessed in China and in the rest of the world. The global 

commodity market has also been strongly boosted. During this recovery, China has 

gradually become a “winner” in the global commodity market. China’s fiscal, 

monetary and industrial policy appears to have an increasing impact on the market, 

and one can wonder whether Chinese specific factors actual do have such major 

influences.  

 

Commodity futures investing is a well-studied topic in academia because much 

extensive empirical evidence (Abanomey and Mathur (2001), Georgiev (2001), 

Kaplan and Lummer (1998)) has shown that commodities serve as good diversifier 

when added to the traditional asset portfolio. Due to the low correlation of 

commodities with traditional assets, overall risk is reduced while no (or a 

less-than-proportional) return is sacrificed. Investment strategies, such as dynamic 

timing (Vrugt, Bauer and Molenaar’s (2004)), have been proposed to take advantage 

of the excellent characteristics presented by commodities. Empirical results from 

developed countries have demonstrated that investors can profit from adopting these 
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strategies. It is thus natural to ask whether these strategies could also deliver superior 

performance in developing countries such as China. 

 

In this study, I explore the commodity futures investment strategy considering the 

impact of Chinese specific factors. First, I study the so-called Chinese specific factors. 

To do so, I investigate how commodity futures prices interact with domestic 

macroeconomic variables and overseas futures prices. Specifically, Chapter 2 

emphasizes the interaction between domestic commodity futures prices and domestic 

macroeconomic variables such as interest rates, monetary growth, exchange rates and 

industrial growth. Among these variables, monetary growth should receive deeper 

attention because it is widely regarded as the main channel of monetary policy 

transmission. Subsequently, Chapter 3 focuses on the interaction between domestic 

commodity futures prices and overseas commodity futures prices. Having gained a 

clear understanding of the Chinese specific factors, a dynamic timing strategy is 

accordingly proposed in chapter 4. 

 

Chapter 2 is primarily focused on the interaction between domestic macroeconomic 

variables and domestic commodity futures price movements. Specifically, I try to 

explore whether low (high) interest rates, loose (tight) money supplies, low (high) 

foreign exchange rates (Renminbi / US Dollar rate) and high (low) economic growth 

will lead to high (low) commodity prices and whether commodity prices present 

overshooting behaviour in response to the interest rate, money supply or changes in 

the foreign exchange rate. It has been argued by Frankel (1986, 2006) that commodity 

prices tend to overshoot in response to interest rates as well as to changes in the 

exchange rates based on Dornbusch’s (1976) model. Based on the literature, an 

empirical test will be conducted in the context of China.  

 

Fan, Yu and Zhang (2010) claimed that quantitative tools (including adjusting the 

required reserve rate, open market operation, window guidance and credit rationing) 

have played a more active role than price tools (setting base interest rates) in China in 
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responding to both the inflation rate and real output. I will therefore check the 

overshooting behaviour of commodity prices in response to monetary growth in 

particular. Moreover, I will also examine the possible contribution of China’s 

economic growth to the prices of other commodities. Svensson (2006) argued that an 

adequate account of the contribution of world economic growth in particular is 

required as this may lead to both higher interest rates and higher commodity prices. 

Akram (2009) found that negative shocks to world economic activity lead to lower 

real interest rates and commodity prices. Shocks to world economic activity are found 

to account for a large share of the fluctuations, particularly in oil and metal prices. 

Here, I will check whether this also holds in China’s case.  

 

The data for conducting the empirical test in Chapter 2 is from the Chinese financial 

database – the Wind system. All of the data used is stylized in month terms. The 

commodity futures prices (including three metals: aluminium, copper and zinc and 

three agricultural products: beans, cotton and wheat) are in the form of an index. 

Interest rates and foreign exchange rates are in nominal form. Monetary growth 

figures are generated from the year-on-year growth of the broad money supply and the 

narrow money supply (M2 and M1, respectively). Economic activities figures are 

generated from the year-on-year growth of industry added value. The data basically 

range from 1998.1 to 2010.12 with the exceptions of cotton (cotton futures contracts 

started in 2004.6), zinc (zinc futures contracts started in 2007.3) and foreign exchange 

rates (the floating exchange rate could be obtained starting in 2006.1). 

 

To empirically test the hypotheses above, I first apply the Granger causality test. This 

test found that most of the null hypotheses could not be rejected. Subsequently, I use 

Structural Vector Auto Regression (SVAR) models. SVAR models will, after the 

appropriate identification of shock structures, allow us to examine the response of 

commodity futures prices to unanticipated shocks, particularly to interest rates and the 

CNY/USD exchange rate, while taking into account the dynamic interaction between 

commodity futures prices and macroeconomic variables. The standard Choleski 
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scheme will be relied upon to identify the shock structures according to common 

practice. 

 

Evidences from the SVAR models show that part of the theory regarding the 

relationship between macroeconomic variables and commodity price movement can 

be supported. A negative relationship between interest rates and commodity prices can 

be shown only for zinc, while the positive “overshooting” between the interest rate 

and commodity prices, the so-called “shock dependence”, has been observed between 

the inter-bank repo rate and aluminium (copper) prices, between the exchange repo 

rate (average rate) and bean prices. As expected, a positive relationship between 

monetary growth and commodity prices can be found for several commodities with 

statistical significance. This demonstrates that monetary growth (the credit channel) 

plays a bigger role than the interest rate channel in promoting commodity prices in 

China.  

 

In chapter 2, I also find that a sudden shock in the foreign exchange market prompts a 

positive response in some commodity prices. However, it might be more appropriate 

to state that the foreign exchange rate plays a minor role in commodity price 

movement because the foreign exchange rate’s movement is unidirectional. 

Meanwhile, it could be found that output shocks could lead to dramatic responses in 

some commodity prices.  

 

Chapter 2 also adopts forecast error variance decompositions (FEVD) to investigate 

the contribution of different structural shocks to fluctuations in the modelled variables. 

The empirical results suggest that the commodity price shock itself make the largest 

contribution to commodity price shocks in general. An interest rate shock barely 

contributes while an M1 growth shock contributes substantially in metals. Foreign 

exchange rate shocks contribute approximately 40 percent to some commodities, 

while industrial output shocks comprise approximately 20 to 30 percent to some 

metals. 
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Subsequently, the thesis tries to explore the impacts between China’s futures market 

and overseas futures markets in chapter 3. Research from this angle could help reveal 

which side has stronger pricing power. Specifically, I aim to study the information 

spillover effect between the domestic spot and futures market as well as the 

information and risk spillover effects between the domestic metal futures market and 

the overseas metal futures market. Moreover, to check whether China has gained 

pricing power in the global commodities market, I also study the risk spillover effect 

between the domestic metal futures market and other overseas financial markets.  

 

From the literature consulted, I found that works on the relationship between the 

futures market and the spot market focus mainly on price discovery, and little research 

has been done on information spillover between the spot and futures markets and 

between the domestic  and overseas futures markets, particularly the metal futures 

market in China. Hong and Cheng (2005) studies information spillover between 

China’s domestic stock market and the global equity market. However, vital 

differences exist between the stock market and the futures market. One of the most 

significant differences is that short selling in stock is forbidden in China, meaning that 

a long position faces downside risk but no upside risk. This is definitely not the case 

in the futures market: heavy usage of leverage and margin calls is common practice in 

China’s futures market. Thus it will be necessary to make specific adjustments to 

study risk spillover in China’s futures market.  

 

Liu, Cheng, Wang, Hong and Li (2008) represents an up-to-date piece of research in 

my research field. This work takes the upside risk into account (the short-seller’s risk) 

rather than merely focusing on the downside risk. A more complicated research 

framework – using a kernel-based Granger causality test - has been proposed in place 

of the previously applied simplified linear Granger causality test. However, Liu, 

Cheng, Wang, Hong and Li (2008) merely explore the information spillover between 

the domestic spot and futures markets; no attention has been given to cross-border 
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information spillover. Moreover, the dataset in use includes through the middle of 

2006. The inability to take more recent data (especially the data range including the 

global financial crisis) may not help to reveal changes in China’s pricing power in the 

global commodity market, especially after the global financial crisis in 2008.  

 

To detect the cross-border spillover effect, I must ensure that the domestic futures 

market functions properly and effectively. In other word, the interaction between the 

domestic spot and futures markets should work in both directions, with the futures 

market playing the leading role. After checking the function of the domestic futures 

market, I will test whether the domestic futures market could have an impact on the 

global futures market. Moreover, I will examine whether the risk spillover effect exist 

between the Chinese domestic futures market and other overseas financial markets 

(whether it has an extensive risk spillover effect).  

 

The empirical test in chapter 3 is conducted in three steps. First, I choose the 

appropriate GARCH model to describe the volatility patterns of the time series. In 

particular, TGARCH models have been chosen for all of the financial time series that 

share the characteristic of allowing short selling. These models can help us to detect 

whether information asymmetry exists. Second, I compute both the upside and 

downside risk by adopting the Value-at-Risk (VaR) model. In particular, both upside 

and downside VaR are taken into account for all of the financial time series that share 

the characteristic of allowing short selling. In this step, backtesting is conducted to 

check whether the VaR model can deliver satisfactory results – a low percentage of 

the sample cross the upside and downside VaR. Finally, the Granger causality test is 

conducted to detect whether information spillover exists across markets. Specifically, 

this test is conducted considering three perspectives: 1) information spillover and risk 

spillover effects between the Chinese domestic metal spot and futures markets; 2) 

information spillover and risk spillover effects between Chinese and overseas metal 

futures markets; 3) the information spillover and risk spillover effects between the 

Chinese metal futures market and overseas financial markets.  
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The data used in chapter 3 range from 1995.4.17 to 2010.12.31, containing 3814 daily 

observations. The data for conducting the empirical test are taken from the Chinese 

financial database – the Wind system. All of the data used are stylized in daily terms. 

Copper is studied for spot futures interactions; the Shanghai Futures Exchange (SHFE) 

and London Metal Exchange (LME) aluminium, copper and zinc futures are studied 

for cross-commodity market futures interactions; the Australian dollar- US dollar 

(AUDUSD) foreign exchange rate and the Australian stock index (ASX) are studied 

for cross-financial market interaction.  

 

From the empirical evidences in Chapter 3, it can be seen that asymmetry factors are 

significant in futures markets, regardless of whether we are examining China’s market 

or oversea markets. In the Chinese metal futures market, the sign of the asymmetry 

factor is positive for copper and zinc futures while negative for aluminium futures. 

Therefore, although the mechanism of buying and selling is symmetrical in the futures 

market, both good news and bad news still have an asymmetric impact on market 

volatility. For copper and zinc futures, the impact of bad news is greater; for 

aluminium, the impact of good news is greater. In the Chinese futures market, people 

prefer to take long positions in speculative copper and zinc products due to 

psychological factors (Liu, Cheng, Wang, Hong and Li, 2008). When futures prices 

increase, the number of speculators also grows. With risk growing, the reaction to 

market uncertainty becomes stronger. As for aluminium, excessive supply will 

dampen its price for a long period of time. It is probable that any goods news could 

lead to a moderate rebound in price. The sign of the asymmetry factor is different in 

the LME market, however: it is positive only for copper and negative for both 

aluminium and zinc. The results show that the impact of good and bad news on 

market volatility is also asymmetric. A closer watch could tell that the sign of the 

asymmetry factor is identical for both aluminium and copper in the SHFE and the 

LME. Meanwhile, it can be seen that asymmetry factors are significant in the 

AUDUSD time series and that the sign of the factor is positive, indicating that the 



 

 18 

impact of bad news is greater than that of good news for AUDUSD. 

 

The empirical results of the Granger causality test in Chapter 3 support some of the 

proposed hypotheses. Specifically, the results indicate that in China’s domestic metal 

market, futures pricing functions quite well because a two-way causal link is found to 

exist between spot and futures products, indicating that the price discovery function 

performs effectively and steadily in China. As for the interaction between the 

domestic and overseas futures markets, a causal link does exist from the SHFE market 

to the LME market; this result also holds for the extreme upside and downside 

scenarios. To some extent, this finding shows that movement in the SHFE market 

could directly guide movement in the LME market, indicating a rise in China’s 

pricing power in the global commodity market. As for the interaction between the 

SHFE metal market and overseas financial markets, no consistent conclusions were 

found, indicating that that the Chinese specific factor may have limited impact on the 

global financial market as a whole. 

 

In chapters 2 and 3, I investigate how commodity futures prices interact with domestic 

macroeconomic variables and overseas futures prices. The findings lay a good 

foundation for my goal in chapter 4: forming an effective dynamic timing strategy in 

China’s commodity market with full consideration of Chinese specific factors. 

 

According to Abanomey and Mathur (2001), Georgiev (2001), and Kaplan and 

Lummer (1998), commodities serve as good diversifiers when added to a traditional 

asset portfolio. Edwards and Caglayan (2001) have shown that commodity funds have 

higher returns during bearish stock markets along with a lower correlation. 

Meanwhile, Pesaran and Timmermann (1995) and Bauer, Derwall and Molenaar 

(2004) have shown that well-specified dynamic timing strategies can generate better 

performance than a pure “buy-and-hold” strategy for some assets, such as stocks. 

Hence, it is natural to ask whether a dynamic timing strategy could beat the 

“buy-and-hold” strategy for commodity futures in China.  
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In chapter 4, I adopt Vrugt, Bauer and Molenaar’s (2004) dynamic modelling 

approach to predict the sign of monthly returns for the three metal futures listed on the 

Shanghai Futures Exchange: copper, aluminium and zinc. Following Vrugt, Bauer and 

Molenaar (2004), the base set of explanatory variables is classified into three 

categories: 1) business cycle indicators; 2) monetary environment indicators; 3) 

indicators of market sentiment.  

 

These three categories have been used predominantly in studies investigating the 

relationship between the macroeconomy and traditional asset classes or in timing 

studies, such as Pesaran and Timmermann (1995). However, this type of research 

framework has not been well applied to non-traditional asset classes, such as 

commodity futures, let alone commodity futures in China. Here, the variables in each 

category should be collected with full consideration of “Chinese specific factors”. 

Consequently, my findings from the two previous chapters offer great help. As for the 

data, they are taken from the Chinese financial database – the Wind system. All of the 

series are stylized in monthly terms. Due to concerns related to availability and 

practicality, all of the independent variables are lagged by one month. 

 

Econometrically, this approach involves a recursive estimation procedure that allows 

for continuous permutations among the determinants in accordance with a predefined 

model selection criterion. During the in-sample period, I estimate parameters for these 

models using standard Ordinary Least Squares (OLS). Following this procedure, each 

model generates monthly signals during a 12-month training period. Then, at the end 

of the training period, I rank all models by the realized information ratios. The 

strategy with the highest realized information ratio is used to forecast the sign of next 

month’s metal futures return. Finally, in the out-of-sample trading period, futures on 

the metal futures market are bought or sold depending on the signal. 

 

The empirical results in Chapter 4 show that the timing strategy can offer better 
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returns, a lower standard deviation and, as a consequence, a higher information ratio 

for all three metal futures. The strategy works especially well for zinc futures: it 

recorded a 2.53% return (an excess return of 2.57%) and lowers the standard 

deviation by more than 1%, leading to a much better IR ratio. The hit ratio, defined as 

the percentage of correctly predicted signals, is above 50% for all three products. 

According to the Henriksson-Merton (1981) non-parametric market-timing test, the 

active strategy possesses significant timing skill at a 5% level of significance. Clearly, 

the “buy-and-hold” strategy takes long positions 100% of the time, whereas the active 

strategy varies positions. It takes approximately 30% long positions for copper and 

less than 10% long positions for aluminium. For zinc, it takes half long positions and 

half short positions. 

 

In Chapter 4, the results also indicate that the factor inclusion does vary across the 

entire sample period for all three metals. For aluminium, the variable exchange rate 

and the lagged LME aluminium returns are included over the entire period. The 

results indicate that domestic aluminium is highly correlated to the global market. For 

copper, the factor inclusion appears to be comparatively irregular and inconsistent. 

All six variables are included during the out-of-sample period. For zinc, only four of 

the six variables are included; monetary growth and inflation variables are excluded. 

The lagged stock return index and lagged LME zinc return variable are included over 

the entire period. The result shows that zinc futures are quite speculative and highly 

influenced by global markets. Furthermore, concerns about economic intuition do not 

pose a problem.  

 

The thesis extends knowledge about commodity futures investment in the following 

ways. First, the so-called Chinese specific factors in China’s commodity market are 

studied systematically. Chapter 2 investigates the interaction between macroeconomic 

variables and commodity futures price movement. Chapter 3 explores the impacts 

between China’s futures market and overseas futures markets. Second, all of the tests 

are conducted on the Chinese commodity futures market, a hot topic that has only 
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rarely been thoroughly studied with traditional approaches. Well-specified approaches 

such as the overshooting model, information spillover and risk spillover have been 

widely used in developed markets; applying them in China’s market fills this research 

gap.  

 

Third, China’s commodity pricing power is empirically tested while checking the 

information and risk spillover effect between the domestic metal futures market and 

overseas metal futures markets. Moreover, extensions are made to check between the 

domestic metal futures market and overseas financial markets. Finally, a dynamic 

timing strategy based on understanding Chinese specific factors is proposed. Fresh 

empirical results further demonstrate that commodity futures as a non-traditional asset 

can also deliver superior returns in China.  
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Chapter 2  

Commodity prices, monetary liquidity and foreign exchange rates – an 

empirical test of the overshooting theory in China 

2.1 Introduction 

This chapter is mainly focused on the interaction between macroeconomic variables 

and commodity futures price movements. Specifically, I try to explore whether low 

(high) interest rates, a loose (tight) money supply, low (high) foreign exchange rates 

(Renminbi / US Dollar rate) and high (low) economic growth will lead to high (low) 

commodity prices and whether commodity prices present overshooting behaviour in 

response to interest rates, the money supply and changes in the foreign exchange rates. 

It has long been argued by Frankel (1986, 2006) that commodity prices tend to 

overshoot in response to interest rates and changes in exchange rates based on 

Dornbusch’s (1976) model. Based on these studies, an empirical test will be 

conducted in the context of China. Fan, Yu and Zhang (2010) claimed that 

quantitative tools (including adjusting the required reserve rate, open market 

operations, window guidance and credit rationing) have played a more active role 

than price tools (setting base interest rates) in China in responding to both the 

inflation rate and real output. Therefore, I will check the overshooting behaviour of 

commodity prices in response to monetary growth in particular. Moreover, I will also 

examine the possible contribution of China’s economic growth to the prices of other 

commodities. Svensson (2006) argued that an adequate account of the contribution of 

world economic growth in particular is required as it may lead to both higher interest 

rates and higher commodity prices. Akram (2009) found that negative shocks to world 

economic activity lead to lower real interest rates and commodity prices. Shocks to 

world economic activity are found to account for a large share of the fluctuations in 
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oil and metal prices in particular. Here, I will also check whether these findings hold 

in China’s case.  

 

The contribution of this chapter is that it checks whether the overshooting model 

holds in the context of China’s market, as no previous research has been conducted in 

this regard. In applying the overshooting model, full consideration of Chinese 

monetary variables allows insightful observations about the interaction of these 

variables and commodity price movements. 

 

The data for conducting the empirical tests are from the Chinese financial database – 

the Wind system. All of the data used are stylized in month terms. The commodity 

futures prices (including three metals: aluminium, copper and zinc and three 

agricultural products: beans, cotton and wheat) are in the form of an index. Interest 

rates and foreign exchange rates are in nominal form. Monetary growth figures are 

generated from the year-on-year growth in the broad money supply and the narrow 

money supply (M2 and M1, respectively). Economic activity figures are generated 

from the year-on-year growth of industry added value. The data range from 1998.1 to 

2010.12 with the exceptions of cotton futures contracts started in 2004.6), zinc (zinc 

futures contracts started in 2007.3) and foreign exchange rates (the floating exchange 

rate could be obtained starting in 2006.1). 

 

To empirically test the hypotheses above, I first apply a Granger causality test. I found 

that most of the null hypotheses could not be rejected. Subsequently, I use Structural 

VAR (SVAR) models. After the appropriate identification of shock structures, SVAR 

models will allow us to examine the response of commodity prices to unanticipated 

shocks, in particular to interest rate and the CNY/USD exchange rate shocks, while 

accounting for the dynamic interaction between commodity prices and 

macroeconomic variables. The standard Choleski scheme will be relied upon to 

identify the shock structures according to common practice. 
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Evidence from the impulse response functions shows that part of the theory regarding 

the relationship between macroeconomic variables and commodity price movements 

can be supported. A negative relationship between interest rates and commodity prices 

can be supported for some metals. A positive relationship between monetary growth 

and commodity prices can be supported for several commodities with statistical 

significance. These results demonstrate that monetary growth (the credit channel) 

plays a bigger role than the interest rate channel in promoting commodity prices in 

China. I also find that some commodity prices overreact to output shocks. 

 

The forecast error variance decompositions (FEVD) suggest that the commodity price 

shock itself makes the biggest contribution to commodity price shocks in general. The 

interest rate shock hardly makes a contribution, while M1 growth shocks contribute 

substantially to metals. Foreign exchange rate shocks contribute approximately 40 

percent to some commodities; industrial output shocks contribute approximately 20 to 

30 percent to some metals. 

 

The rest of this chapter is organized as follows: section 2.2 presents the consulted 

literature. Section 2.3 provides a description of the variables used, the descriptive 

statistics for their data series and the methodology adopted. Estimation and empirical 

results are presented in section 2.4. Finally, section 2.5 concludes the chapter. 

 

2.2 Literature Review 

2.2.1 The Overshooting Model 

2.2.1.1 Commodity prices overshooting in response to interest rates 

Dornbusch (1986) developed a theory of exchange rate movements under the 

assumptions of perfect capital mobility, a slow price adjustment of goods markets 

relative to asset markets, and consistent expectations. He derived a perfect foresight 

path, and it has been shown that along that path, monetary expansion causes the 
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exchange rate to depreciate. An initial overshooting of exchange rates (reflected in 

depreciation beyond that under the equilibrium state) is shown to derive from the 

differential adjustment speeds of markets. The magnitude and persistence of the 

overshooting is developed in terms of the structural parameters of the model. To the 

extent that output responds to a monetary expansion in the short run, this has a 

dampening effect on exchange depreciation and might, in fact, lead to an increase in 

interest rates. Specifically, if real output is fixed, a monetary expansion will, in the 

short run, lower interest rates and cause the exchange rate to overshoot its long-run 

depreciation level. If output, on the contrary, responds to aggregate demand, the 

exchange rate and interest rate changes will be dampened. While the exchange rate 

will still depreciate, it may no longer overshoot, and interest rates may actually rise. 

 

Frankel (1986) applied the Dornbusch overshooting model to study the impact of 

monetary policy on agricultural commodity prices. He argued that a decline in the 

nominal money supply could be understood as a decline in the real money supply in 

the short run. An increase of the real interest rate as a consequence of a tightened 

money supply would cause a decrease in real commodity prices. Commodity prices 

overshoot their new equilibrium (in other words, commodity prices will experience a 

proportionately greater fall than the money supply) so that an expectation could be 

generated that futures appreciation would be sufficient to offset the higher interest rate. 

As the general price level rises over time, the reduction in the real economy and its 

effect on the real interest rate and real commodity prices also wanes. Frankel (1986) 

also noted that a decline in the money growth rate would also result in commodity 

prices overshooting.  

 

Frankel (2006) studied that connection between monetary policy and agricultural and 

mineral commodities. The author conducted empirical tests on the US and then on 

smaller countries to test the claim that low real interest rates would lead to high real 

commodity prices. Supported by empirical results, the author found that one probable 

channel for this effect is that higher interest rates may dampen the desire to carry 
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commodity inventories.  

 

Boschi (2009) argued that the overshooting phenomenon should be attributed to the 

higher speed of adjustment for agricultural and mineral prices compared to most other 

prices: in many non-ferrous metals industries, producers and consumers sign annual 

contracts specifying quantities and grades. He specified a theoretical framework based 

on a Cournot competition that modelled the market behaviour of aluminium to test the 

overshooting theory in the world aluminium market. Incorporating incomplete 

adjustments to shocks occurring near the delivery date of futures contracts, the author 

aimed to discover a probable high persistence in the aluminium spot price. The 

empirical results indicated that the impact of the real interest rate on the aluminium 

price is small, although statistically significant. 

 

Svensson (2006) argued that an adequate account of the contribution of world 

economic growth in particular is required, as it may lead to both higher interest rates 

and higher commodity prices. In other words, the relationship between real interest 

rates and commodity prices is likely to be shock dependent. Therefore, a positive 

relationship between real interest rates and commodity prices may emerge due to 

simultaneity bias if the interest rate is not treated as an endogenous variable. 

 

2.2.1.2 Commodity prices overshooting in response to the foreign exchange rate 

Ridler and Yandle (1972) originally built a simplified model for analysing the effects 

of exchange rate changes on the prices of primary commodities. Real appreciation of 

the US dollar with currencies of other countries may immediately lead to an increase 

in the local relative prices of commodities in other countries if they are unable to 

maintain purchasing power parities. Therefore, the foreign demand for commodities 

would decline and the foreign supply would rise, leading to a decrease in commodity 

prices in world commodity markets. Similarly, real depreciation of the US dollar may 



 

 27 

result in an increase in world commodity prices. 

 

Hua (1998) used quarterly data for 1970 q2–1993 q3 with the application of the 

cointegration technique to test the hypothesis of a long-run quantifiable relationship 

between non-oil primary commodity prices and macroeconomic variables. The author 

reached the conclusion that cointegration existed between commodity prices and the 

real effective exchange rate of the dollar.  

 

Hamilton (2008) revealed the negative relationship between the value of the dollar 

and prices of commodities denominated in dollars. The negative relationship followed 

from the law of one price for tradable goods. A decline in the value of the dollar, 

accordingly, must be outweighed by an increase in the price of commodities 

denominated in dollars and/or a fall in their foreign currency prices to ensure the same 

price when measured in dollars. In addition, because many commodities are priced in 

dollars in international markets, a weaker dollar may increase the purchasing power 

and commodity demand of foreign consumers, while reducing the returns of foreign 

commodity suppliers and their supplies. If the demand or supply of commodities is 

relatively price inelastic, which is generally believed to be the case for many 

commodities, especially crude oil, the price impact of shifts in the demand and supply 

of commodities may be particularly large. 

 

2.2.1.3 The impact of economic activity on commodity prices 

Cooper and Lawrence (1975) discovered that economic activities are generally 

considered to be a major factor in non-oil primary commodity demand. An increase in 

industrial production will directly boost demand for raw materials such as metals, 

minerals, and agricultural products as intermediate inputs and will indirectly boost the 

demand for food and tropical beverages as final consumption items through the 

consequent increases in incomes. However, scholars have had doubts about the 
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hypothesis that economic activities have permanent effects on prices. Ramanujam and 

Vines (1990) showed large short-run effects from the industrial production of 

developed countries on the prices of primary commodities as well as small significant 

permanent effects. 

 

Using quarterly data for 1970 q2 – 1993 q3 with the application of the cointegration 

technique, Hua (1998) tested the hypothesis of a long-run quantifiable relationship 

between non-oil primary commodity prices and macroeconomic variables. The author 

found that cointegration exists between commodity prices and economic activities.  

 

Labys, Achouch and Terraza (1999) applied dynamic factor analysis to determine the 

impact of macroeconomic influences on LME metal prices. They adopted five 

macroeconomic variables including industrial production, consumer prices, interest 

rates, stock prices, and exchange rates to test the response of metal prices. The 

empirical results confirmed a strong relationship between international business 

cycles and the estimated common factor in metal price cycles. Nevertheless, the 

influences of macroeconomic variables other than industrial activity appeared to be 

much lower. 

 

Bhar and Hamori (2008) empirically examined the information content of commodity 

futures prices for monetary policy. They used the cross-correlation function approach 

to empirically analyse the relationship between commodity futures prices and 

economic activities (for example, consumer prices and industrial production) between 

1957.1 and 2005.2. Moreover, the empirical results also showed that commodity 

prices could serve as information variables for monetary policy not only in mean, but 

also in variance. 

 

2.2.2 The financial market in China 

2.2.2.1 Monetary policy in China 

Fan, Yu and Zhang (2010) investigates the responsiveness of the Chinese 
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government's monetary policies in terms of the money supply and interest rates to 

economic conditions and the effectiveness of these policies in achieving the goals of 

stimulating economic growth and controlling inflation. They analyse the 

responsiveness and effectiveness by estimating the Taylor rule, the McCallum rule, 

and a vector autoregressive model using quarterly data for the period 1992-2009. The 

results indicate that, overall, the monetary policy variables respond to economic 

growth and the inflation rate, but the magnitudes of the responses are much weaker 

than those observed in market economies. The money supply responded actively to 

both the inflation rate and the real output and had certain effects on the futures 

inflation rates and real output. Official interest rates, on the other hand, responded 

passively to the inflation rate and did not respond to the real output. Official interest 

rates also do not have any effect on futures inflation rates or real output. 

 

2.2.2.2 Interest rates and monetary growth in China 

China regulated savings rates until the mid-1980s. Due to the short history of China’s 

market economy and the attention given to developing the stock market, the Chinese 

bond market and interest rate liberalization are underdeveloped. China’s spot interest 

rate is determined in two main markets: the inter-bank borrowing/offering market and 

the bond repurchase market. Chinese inter-bank borrowing/offering markets appeared 

in the 1980s at different locations over China and were united into a single market in 

1996.1 with ‘‘CHIBOR” as its uniform rates. CHIBOR mainly consists of short-term 

interest rates, with four months as the longest maturity. On 2007.1.4, the Chinese 

inter-bank borrowing/offering centre located in Shanghai began to report the Shanghai 

inter-bank offered rate, which is called SHIBOR. CHIBOR and SHIBOR primarily 

characterize China’s short-term interest rates. 

 

Chinese collateralized bond repurchases began in 1991 at four stock exchanges. 

(Shanghai, Wuhan, and Tianjin together with the STAQ system) In 1997, to prevent 

banks from entering into stock markets, the Chinese central bank, the People’s Bank 

of China, prohibited all commercial banks from collateralized bond repurchases on 
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stock exchanges and opened another bond repurchase sub-market within the 

inter-bank market. This led to two independent and segmented bond repurchase 

markets in China: the OTC market at inter-bank markets and the electronic market at 

stock exchanges. These two markets are artificially segmented, with different prices 

for the same bond. 

 

The long-term interest rates are determined by China’s long-term bond market. There 

are also two segmented long-term bond markets, the OTC bond market at the 

inter-bank market and the electronic market at stock exchanges. The interest rates of 

middle maturities are controlled tightly by the Chinese central bank. They do not 

change every day to reflect market information but remain unchanged for a relatively 

long period, changing only when the Chinese government uses them as an instrument 

of interest rate policy. 

 

There are two main deficiencies in the current interest rate mechanism in China that 

hinder its fundamental roles in the Chinese economy. First, there exist two 

independent bond markets that share similar functions and trade the same products, 

i.e., the inter-bank OTC market and the exchange electronic market. Because they are 

artificially segmented, the same bond has different prices at these two markets, 

resulting in two different interest rates between the inter-bank market and the 

exchange market. The difference in the interest rate levels of the two segmented 

markets reflects different investor expectations. It is very difficult, if not impossible, 

to develop derivative markets without a uniform market interest rate. Second, the 

deposit rates in China are still heavily regulated by the Chinese central bank. They 

cannot be changed by commercial banks to reflect market information. Therefore, 

there is a large gap between the regulated deposit rates and the market interest rates, 

and serious problems and arbitrage opportunities can arise (Lin and Zheng, 2004). 

 

Fan and Zhang (2006) stated that the inter-bank repo market in China has provided 

the best information about market-driven short-term interest rates since its inception 
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due to the lack of short-term government bonds. They examined the behaviour of the 

repo rates of various terms and their term premiums. It is found that the pure 

expectations hypothesis is statistically rejected, although the term premiums are 

economically small. It is shown that the short-term repo rate, repo rate volatility, repo 

market liquidity, and repo rate spreads are all important in determining the term 

premiums. 

 

Fan and Chu (2007) compared China’s exchange-traded and inter-bank-traded repo 

markets with identical products but different interest rates. For the sample period of 

2000.1 through 2005.12, the apparent difference across the two markets is not 

arbitraged away due to market segmentation. When the sample period is divided into 

two halves, however, they see striking differences between the two. In the first half, 

the differences between the exchange repo rates and the inter-bank repo rates are 

positive on average and the standard deviations of the differences are large. However, 

the cross-market repo rate differences in the second half of the sample period are on 

average near zero, with standard deviations only slightly smaller than those in the first 

half. In addition, the cross-market repo rate differences exhibit much stronger 

persistence in the first half of the sample period than they do in the second half. This 

is indicative of systematic forces in the first sub-period that drive apart the repo rates 

of the two markets. Over time, they observed a trend that differences in the repo rates 

across the two markets become smaller on average but remain volatile from time to 

time. 

 

Fan and Chu (2007) also identified two types of variables helpful in explaining the 

cross-market repo rate differences. The first type is measures of alternative investment 

opportunities. In the first sub-period, the exchange repo market was heavily used by 

investors in the IPO market due to institutional arrangements. New issue subscriptions 

and central bank interest rates explain much of the rate differences across the two repo 

markets. The other type of variable is the volatility difference in the short-term repo 

rates across the two markets. Volatility is important because it is a component of the 
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risk premium in the interest rates. In combination, these variables explain more than 

40% of the variation in the rate discrepancies across the two repo markets.  

 

2.2.2.3 Foreign exchange rates in China 

From 1988 to 1994, China ran a complicated dual-track system of exchange rates in 

which the official exchange rate and a market-determined exchange rate coexisted. 

From 1994 to 2005.7, the Chinese currency, known as the Renminbi, was pegged to 

the US dollar. Under pressure from China's trading partners, the Renminbi has 

appreciated more than 20% against the US dollar since 2005.7. The global financial 

crisis in the fall of 2008 caused a sharp downturn in China's export growth, and the 

monetary authority of China re-pegged the Renminbi to the US dollar until 2010.3. 

While the nominal exchange rate between the Renminbi and the US dollar was 

invariant for most of the sample period in this study, the exchange rate between the 

Renminbi and the basket of currencies for China's trading partners varied, as those 

other currencies varied with the US dollar. In addition, because the inflation rates in 

China and in all of its trading partners fluctuated and the weight of trading volume 

with its partners changed over time, China's real effective exchange rate also 

fluctuated. 

 

Huang and Guo (2007) investigated the extent to which the oil price shock and three 

other types of underlying macroeconomic shocks impact the trends in China's real 

exchange rate. By constructing a four dimensional structural VAR model, the results 

suggest that real oil price shocks lead to a minor appreciation of the long-term real 

exchange rate due to China's lesser dependence on imported oil than those trading 

partners included in the RMB basket peg regime and to rigorous government energy 

regulations. Real shocks, as opposed to nominal shocks, are found to be dominant in 

the variations of the real exchange rate. 

 

Economic activities in China 

China began its economic reforms in the early 1980s. Through its open-door policy, it 
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attracted a large amount of foreign direct investment, which propelled its high 

economic growth. The People's Bank of China became the central bank in 1984 and 

started to play an important role in fine-tuning economic activity. Between 1984 and 

1994, the central bank's main objectives were to stimulate economic growth and to 

maintain stability in commodity prices. Balancing these two objectives, however, 

proved to be difficult. The real economy experienced dramatic, albeit turbulent, 

growth. Prior to 2009, the highest growth occurred in 1984, with a real GDP growth 

rate of 15.2%, and the lowest occurred in 1990, with just 3.8%. Overall, real GDP 

growth averaged around 10% per year. In 1995, after reaching the highest inflation 

rate seen since the economic reform, the central bank revised its policy goals and set 

inflation fighting as its priority. Various measures were adopted to cool off the 

economy, and they eventually proved effective. Both real economic growth rates and 

inflation rates fell considerably. The 1997 Asian Financial Crisis resulted in a serious 

decline in demand. The GDP growth rate dropped to below 8%, the inflation rate fell 

sharply, and interest rates followed suit. 

 

Given the literature consulted above, the three hypotheses of this chapter are set out as 

follows. Hypothesis 1: Commodity prices in China tend to present overshooting 

behaviour in response to interest rate changes/monetary growth. The null hypothesis: 

Commodity prices in China tend not to present overshooting behaviour in response to 

interest rate changes/monetary growth. Hypothesis 2: Commodity prices in China 

tend to present overshooting behaviour in response to foreign exchange rate changes. 

However, this overshooting behaviour tends to be less significant than in the case of 

interest rate changes/monetary growth. The null hypothesis: Commodity prices in 

China tend not to present overshooting behaviour in response to foreign exchange rate 

changes. Hypothesis 3: A positive relationship exists between commodity prices in 

China and shocks from its economic activities. The null hypothesis: No positive 

relationship exists between commodity prices in China and shocks from its economic 

activities. 
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2.3 Data specification and methodology 

2.3.1 Data specification 

Due to the short history of the China’s market economy and the government’s heavy 

focus on developing the stock market, China’s money market and interest rate 

liberalization are underdeveloped. However, the degree of marketization in China has 

been gradually improving. Until now, only the deposit rate and the lending rate have 

been officially controlled. The spot rate is basically driven by market-wide factors. 

China’s spot interest rate is determined in two main markets: the inter-bank 

borrowing/offering market and the bond repurchase market.  

 

To study the overshooting behaviour of commodities in response to interest rates, it is 

necessary that the interest rate should be market determined. This restraint rules out 

using the deposit rate or the lending rate, which are set by the central bank. In fact, the 

1-year deposit changed only 19 times from 1997-10-23 until now (the lending rate 

changed a mere 21 times). Here, I follow Hong, Lin and Wang’s (2009) idea of using 

the Chinese collateralized 7-day repo rates as the proxy for Chinese spot rates. Due to 

the segmentation of the OTC market (the inter-bank borrowing/offering market) and 

the bond repurchase market, I use the average of these two segmented collateralized 

7-day repo rates as the interest rate variable, known as ir . The proxy for monetary 

growth should be the annual growth rate of the narrow money supply and the broad 

money supply (M1 and M2, respectively), known as im
. 

 

From 2005.7.21, China ceased to peg the Yuan with the US dollar. The RMB started 

to float. Its value appreciated 21% until it re-pegged to the US dollar as one of the 

monetary measures taken to counter the shock of the global financial crisis. Under 

international pressure, especially from the US and EU governments, a second 

de-pegging of the RMB was initiated on 2010.6.21 Studying overshooting behaviour 

also requires that the foreign exchange rate be a market rate. Therefore, the effective 

range of the variable (the CNY/USD rate, known as ifx
) should start from 2005.7.21 
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One variable that can comprehensively describe economic activity is gross domestic 

product (GDP). (Dong, 2011) However, GDP data are released quarterly in China. In 

other words, 20 years (from 1990 to 2010) will only generate 80 GDP figures, and 

less available data might impact the significance of the empirical result. I adopt 

Akram’s (2009) approach and choose added industry production growth (data 

released monthly) for the variable, known as iy
.  

 

The commodities to be studied include industrial raw metals as well as agricultural 

commodities. Industrial raw metals include aluminium, copper and zinc, while 

agricultural commodities include cotton, wheat and soybeans. The commodity price is 

denoted with ipc
. 

 

All of the data used are taken from the Wind system, a China-based financial database. 

The data used are stylized in month terms. The commodity futures prices (three 

metals: aluminium, copper and zinc; three agricultural products: bean, cotton and 

wheat) are indexed with their original value set as 100. The treatment of indexation 

could offer us a more standard and unified view of the price changes in futures prices. 

Interest rates and foreign exchange rates are in nominal terms. Monetary growth 

figures are generated from the year-on-year growth of narrow money supply and 

broad money supply, (M1 and , respectively). Economic activity figures are generated 

from the year-on-year growth of industry added value. The data basically range from 

1998.1 to 2010.12. For aluminium and copper, data start from 1995.4; for cotton, they 

start from 2004.6; for zinc, they start from 2007.3; for the foreign exchange rate, the 

floating rate could be obtained from 2006.1 and the rest start from 1998.1. 

 

From Table 2.1, I find that the futures prices of beans, copper and cotton have higher 

means, medians and standard deviations. In contrast, the futures prices of aluminium, 

wheat and zinc have smaller first and second derivatives. None of the commodity 
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futures price time series follow a normal distribution. Since the outbreak of the global 

financial crisis after the Lehman Brothers’ bankruptcy, copper has experienced the 

most dramatic movement in prices: free fall followed by a rapid uptick – a V-shaped 

recovery. The beans futures price gained momentum prior to the crisis; it also 

plummeted in the crisis has not yet recovered its loss. Aluminium, cotton and zinc 

experienced minor losses. The notable exception is wheat, as its price went up during 

the crisis. 

 

Insert figure 2.1 here 

 

Insert Table 2.1 here 

 

From Table 2.2, it can be found that the mean values of the repo rates in the two 

segmented markets are similar. The standard deviation of the exchange market repo 

rate is nearly 2 times of that of the inter-bank market repo rate. Looking closely at 

figure 2.2, I find a difference in the volatility pattern between the two types of repo 

rate. More impulse shocks occurred in the exchange market, while the volatility of the 

inter-bank repo rate was lower. The characteristics of the exchange market repo rates 

should be explained by the frequent presence of alternative investment opportunities 

such as equity IPOs and convertible bond IPOs. During the financial crisis period, I 

find that both rates were at historically low levels. The more stable inter-bank rate 

stayed at that low level for 8 months. 

 

Insert figure 2.2 here 

 

Insert Table 2.2 here 

 

Table 2.2 also shows that the mean and standard deviation of the growth in M1 and 

M2 are of comparable scale. However, I could see that from the beginning of 2005, 

M1 behaved in a more dramatic manner despite their similar trends. M1 growth 

dropped much more deeply and climbed much higher than M2 growth during the 

global financial meltdown.  
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Table 2.2 and figure 2.2 very clearly show the movement of the Chinese Yuan (CNY): 

float, then re-peg during the global financial crisis, and then float again. Figure 2.2 

shows a quite volatile pattern in the growth of industrial value added. It is interesting 

to observe its movement during the global financial crisis: It fell sharply a few months 

prior to the Lehman bankruptcy and then picked up a bit. When concern of a double 

dip appeared, it began to rebound robustly. 

 

Table 2.3 presents the correlation between commodity futures prices and interest rates, 

monetary growth, foreign exchange rates and economic activities. Only wheat futures 

prices are negatively correlated with the two repo rates. Other commodity futures 

prices have positive correlations. The correlation between commodities and inter-bank 

repo rates is higher than that between commodities and exchange repo rates. All 

commodities have a positive correlation with M1 growth except for beans, while all 

commodities have a negative correlation with M2 growth except for wheat. All metals 

have positive correlations with the foreign exchange rate (metal prices increase with 

depreciation of the CNY), while all agricultural futures have negative correlations 

with the foreign exchange rate
1
. All metals have strong positive correlations with the 

growth of industrial value added, while agricultural products have weak positive or 

negative correlations with the growth of industrial value added. 

 

Insert Table 2.3 here 

 

2.3.2 Methodology 

2.3.2.1 SVAR model 

Previous studies employing single equation models to investigate the relationship 

between commodity prices and financial and real economic variables have two 

drawbacks. One is simultaneity bias if the interest rate (or foreign exchange rate) is an 

endogenous variable. The other drawback is that single equation models cannot 
                                                             
1 Prices for agricultural products increase with the appreciation of CNY 
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capture the dynamic interaction between commodity prices and financial and real 

economic variables over different time horizons. 

 

The empirical analysis of chapter 2 is based on SVAR models. SVAR models, after an 

appropriate identification of shock structures, allow us to examine the response of 

commodity prices to unanticipated shocks, particularly to interest rates and the 

CNY/USD exchange rate, while taking into account the dynamic interaction between 

commodity prices and macroeconomic variables. The standard Choleski scheme is 

adopted to identify the shock structures.  

 

The basic SVAR model is as follows: 

t 1 t-1 2 t-2 p t-p tz = A  z  + A z  + ...+ A  z  + u                                    2.1 

Here iA  refers to a k k  matrix of adjusted structural coefficients, u follows the 

normal distribution of N u(0, ) , and u  is the variance–covariance matrix of the 

reduced form residuals consisting of 
k(k 1)

2
distinct elements. Four main 

macroeconomic variables are tested here, namely interest rate changes
2
, foreign 

exchange rate changes, economic activity and commodity prices
3
. Hence, k should 

equal four.  

 

In addition to the usual diagnostic checks, the Lagrange Multiplier (LM) test for 

autocorrelation should be conducted to ensure that the VAR is well specified. The 

Durbin-Watson (DW) test cannot be used with the VAR as it contains lagged 

dependent variables. If there is evidence of autocorrelation, more lags need to be 

added until the autocorrelation effect has been eliminated. The common methods for 

estimating the optimal lag length for a VAR are the Akaike information criterion, final 

prediction error, the Hannah–Quinn criterion and the Schwarz-Bayesian information 

                                                             
2 To avoid increasing complexity, the monetary growth variable will not enter the equation simultaneously with 

the interest rate 
3 I do not intend to include all of the commodity prices simultaneously in the model to limit the size of the model. 

The other commodity prices will be added and checked in turn. 
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criterion. The number of lags could then be decided based on these criteria.  

 

Akram (2009) claimed that two lags of the variables (aside from the intercept) could 

adequately characterize the VAR models. Here, up to five lags of each of the variables 

is allowed. I check for various commodities and find that two lags of the variables for 

most of the commodities is sufficient, while three lags of the variables is necessary for 

the wheat SVAR equation. 

 

Based on Akram’s (2009) model, the variable ordering of t z  should be

i

i

i

i

y

r

fx

pc
.

 , which 

is then set as the benchmark ordering. However, alternative orderings are also allowed, 

so that new conclusions could be reached. 

 

To check whether the commodity price in China exhibits overshooting behaviour in 

response to interest rate/ monetary growth shocks and foreign exchange rate shocks as 

well as to explore the relationship between commodity prices and economic activities, 

I tend to use the impulse response function and the forecast error variance 

decompositions. The following sections address the basic mechanisms of how these 

work.  

 

2.3.2.2 Impulse response function 

The impulse response function is used to produce the time path of the dependent 

variables’ response to shocks from all explanatory variables. If the equation system is 

stable, any shock should fade away. If the equation system is unstable, shocks would 

diverge, and an explosive time path could be observed 

 

Consider a simplified VAR (1) model: 

t 1 t-1 tz = A  z  + u
                                                     2.2
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where z is the variable vector

i

i

i

i

y

r

fx

pc

; then the matrices and vectors in full should be 

yi11i i 1

21 22i i 1 ri

31 32 33i i 1 fxi

i 41 42 43 44 i 1 pci

u a   0    0   0y y

 a  a   0   0 r r u
= +

 a  a  a  0fx fx u

pc  a  a  a  a pc u

. 

The next step is to calculate the value of each dependent variable given a unit 

temporal shock to variable y at time t=0. The value of each dependent variable can be 

determined at t=0, 1, 2, 3, etc. In this case, there is no effect in the r/m, fx and pc 

variable due to how the model is set. Specifically, the lower triangle matrix rules out 

the effect.  

Suppose

0

0

0

0

y

r

0

fx

pc

u 1

u 0
z

u 0

0u

, 

11 11

21 22 21

1

31 32 33 31

41 42 43 44 41

 a   0    0   0 a1

 a  a   0   0 a0
z *

 a  a  a  0 a0

0 a  a  a  a a

 

2
11 11 11

21 22 21 21 11 22 21

2

31 32 33 31 31 11 32 21 33 31

41 42 43 44 41 41 11 42 21 43 31 44 41

 a   0    0   0 a a

 a  a   0   0 a a a +a a
z *

 a  a  a  0 a a a +a a +a a

 a  a  a  a a a a +a a +a a +a a

; 

 

This process continues until the value of the dependent variable either becomes zero 

(stable) or very large (unstable). For variables r, m and fx, the procedure is the same. 

 

The time paths in the form of figures are depicted. With the figure of the impulse 

response function, I could gain initial insight into whether a sudden shock from 

economic activity might result in dramatic real interest rate changes/ foreign exchange 

rate changes/ commodity prices changes; whether a sudden shock from interest rates 

or monetary growth might result in dramatic commodity price changes (the 

overshooting behaviour); whether a sudden shock from the foreign exchange rate 

might result in dramatic commodity price changes (overshooting behaviour). 
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Specifically, there are three curves in the impulse response function figures, one 

actual time path and two dashed lines marking the 95% confidence intervals. With the 

dashed lines, I could judge whether the overshooting is statistically significant at the 5% 

level in the short term.  

 

2.3.2.3 Forecast error variance decomposition (FEVD) 

Forecast Error Variance Decomposition is an alternative method for capturing the 

effects of shocks to the dependent variables. This technique determines the proportion 

of the forecast error variance of any variable in a system that is explained by 

innovations to each explanatory variable. It is usually the case that the series shock 

explains most of the error variance, although the shock will also affect other variables 

in the system. It is also important to consider the ordering of the variables when 

conducting these tests, as the error terms of the equations in the VAR are correlated. 

Therefore, the result is dependent on the order in which the equations are estimated in 

the model. 

 

Take the likely figure of FEVD of pc as an example. Pc’s FEVD should initially be 

attributed to itself. Over time , I might find that other variables, such as y, r, m and fx, 

also have explanatory ability for commodity price shocks. Conclusions could then be 

made accordingly. 

 

2.4 Empirical results 

2.4.1 Granger causality test 

Before establishing the structural vector autoregressive (SVAR) model, a Granger 

causality test should be conducted to check whether the lagged variables could be 

incorporated into equations for other variables. Specifically, I need to know whether 

macroeconomic and monetary policy respond to changes in commodity prices or if 

commodity prices react to a shift in macroeconomic and monetary policy. Here, I set 

the lag to 2, identical to the lagged number in the SVAR equations. 

 



 

 42 

Table 2.4 shows the Granger causality test result. I found that most of the null 

hypotheses could not be rejected. Interestingly, the hypotheses that all three metals do 

not Granger-cause industry activity are rejected. Intuitively, I could say that the quick 

response of metal prices should be seen as an expectation of future increased 

industrial activities. Meanwhile, it cannot be rejected that the 7-day inter-bank repo 

rate and M2 growth Granger-cause copper prices; that the 7-day exchange repo rate 

and M2 growth do not Granger-cause the zinc prices are rejected. Moreover, the null 

hypothesis that the foreign exchange rate does not Granger-cause the wheat price is 

rejected. Finally, I find that it might be probable that wheat and zinc prices 

Granger-cause the exchange interest rate and M1 growth; bean prices might 

Granger-cause M1 growth. 

 

Insert Table 2.4 here 

 

2.4.2 Impulse Response Function 

In this section, I analyse the impulse responses based on the SVAR model. I present 2 

standard deviations for the confidence intervals obtained from the structural shock as 

described in the model specification section.  

 

As claimed in the model specification section, I first follow Akram’s (2009) ordering 

of variables in the Structural Vector Autoregression. The SVAR equations are tested 

on the three types of interest rate (exchange repo rate, inter-bank repo rate and 

average rate) and two types of monetary growth rate (M1 and M2 growth rates). It 

should be noted that the impulse responses are quite uncertain in general, as the 

corresponding two structural standard deviation confidence intervals are relatively 

broad. 

 

Before checking the commodity price response to macroeconomic variable shocks, I 

first observe how the macroeconomic variables interact with each other. Generally, I 

find that some of the impulse response could be quite well explained by economic 
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theory. Monetary growth (both M1 and M2 growth) presents better results than the 

interest rate; the inter-bank rate presents better statistical significance than the 

exchange rate while the exchange rate characteristics dominate the average rate in 

impulse response. 

 

A sudden positive shock in the inter-bank 7-day repo rate results in slower 

appreciation of the foreign exchange rate and a moderate slowdown of industrial 

activities. Shocks from the exchange rate and the average rate have similar but much 

weaker effects. A shock from monetary growth leads to depreciation of the Chinese 

Yuan; it also boosts industrial activity for the next 5 months. It is worth mentioning 

that M1 growth has a stronger effect in prompting CNY depreciation and boosting 

industrial activity. I could say that monetary growth has played a significant role in 

boosting the economy.  

 

A sudden shock to the Chinese Yuan, such as sharp depreciation, causes a minor 

increase in monetary growth (both M1 and M2) and a moderate increase in industrial 

activity. The impact of shock on the inter-bank repo rate is also significant. The 

consistency in these variables shows that monetary policy in China is likely to be 

launched in the form of packages so that economic growth could be forcefully 

boosted. 

 

A sudden shock in economic activities (specifically industrial value added), for 

example, an overheating economy, might lead to dramatic tightening in monetary 

growth (both M1 and M2) and an instant increase in the inter-bank repo rate. The 

impacts of the exchange repo rate and the average rate are much weaker. Putting these 

together, I can see that the central banks have used both quantitative and qualitative 

monetary tools to cool down the economy when it is overheating.  
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2.4.2.1 Commodity price impulse responses 

The results for the SVAR models depicted in figures 2.3 to 2.32 are generally 

consistent with theories suggesting a negative relationship between interest rates and 

commodity prices, a positive relationship between the monetary growth rate and 

commodity prices, and a positive relationship between economic activity and 

commodity prices. The results also confirm the hypothesis that some commodity 

prices, especially metals, overshoot after monetary growth shocks. However, the 

theories suggesting a negative relationship between the foreign exchange rate and 

commodity prices cannot be supported by the empirical evidence. I present the results 

for the SVAR models in detail in Figure 2.3-32. (5 monetary terms: R007_IB, 

R007_EX, RAVG, M1_GR, M2_GR; 6 commodity prices: aluminium, beans, copper, 

cotton, wheat, zinc) 

 

Shocks in the interest rate should lead to overshooting commodity prices in response. 

However, evidence is quite scarce. I only find that a sudden shock in the exchange 

rate (the average rate) prompts overshooting behaviour in zinc futures prices. 

Meanwhile, positive “overshooting” between the interest rate and commodity prices, 

so-called “shock dependence,” has been observed between the inter-bank repo rate 

and aluminium (copper) prices and between the exchange repo rate (average rate) and 

bean prices. The prices peaked within 2 to 3 months after the interest rate shock and 

then subsided. 

  

As I claimed in the introduction and model specification, the shock of monetary 

growth shows a better result than that of interest rate. All metals present overshooting 

behaviour to a sudden shock in the M1 growth rate; metals except aluminium also 

overshoot to shock in M2 growth rate. For agricultural products, beans overshoot in 

response to both M1 and M2 growth rate shocks. Generally, I find that commodity 

prices overshoot much more quickly in response to M2 growth shocks than to M1 

growth shocks. It takes nearly 8 to 9 months to reach the peak for M1 shocks while 
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only 3 to 6 months for M2 shocks. 

 

A sudden shock in a foreign exchange market prompts positive responses in some 

commodity prices. Specifically, I find that aluminium, beans and copper “reverse 

overshoot” to the foreign exchange shocks. Taking a look at the line graph for the 

foreign exchange rate again, I can find that the foreign exchange rate’s movement is 

unidirectional. Significant depreciation in the Chinese Yuan can rarely be observed 

during the sample period. Hence, it might be more appropriate to judge that the 

foreign exchange rate plays a minor role in commodity price movements. 

 

Shocks in output could lead to a dramatic response in some commodity prices. In the 

case of the inter-bank repo rate and M1 growth, I find that aluminium, beans and 

copper overreact to industrial activity shock. In the case of M2 growth, aluminium, 

beans, copper and zinc present overreacting behaviour. In the case of the exchange 

repo rate and the average rate, all metals overreact to an output shock. For different 

combinations of macroeconomic variables, I find that bean prices respond the most 

quickly, almost instantly overreacting, while copper prices respond the most 

dramatically. The peak levels are generally the same across the three interest rate 

cases. The M2 growth rate scenario, however, shows a more significant result than the 

M1 growth rate.  

 

Insert figure 2.3 to figure 2.32 here 

 

2.4.3 Forecast Error Variance Decomposition 

In this section, I investigate the contributions of different structural shocks to 

fluctuations in the modelled variables. Figures 2.33 to 2.37 show forecast error 

variance decompositions (FEVD) for different commodities over different forecasting 

horizons (in months) under different monetary terms. They display percentages for the 

variance of the error in forecasting a variable at a given horizon responding to four 

specific shocks. The shocks are denoted by the numbers 1, 2, 3 and 4: 1 for various 
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types of interest rate or monetary growth rate; 2 for the foreign exchange rate; 3 for 

industrial value added; and 4 for commodities. 

 

I find that fluctuations in commodity prices are generally driven by shocks to 

commodity prices. From figures 2.33-2.35, it can be seen that the commodity price 

shock, presented with a black line, accounted for more than a 50% share in the long 

run for all commodities except aluminium and beans. For aluminium and beans, the 

foreign exchange rate tends to make a greater contribution in the long run.  

 

From figures 2.36-2.37, a similar observation can be made. In the M1 scenario, the 

commodity price shock accounted for more than a 50% share of the shock in the long 

run for all commodities except aluminium. In the M2 scenario, the commodity price 

shock accounted for more than a 50% share in the long run for copper, cotton and zinc. 

For aluminium and beans, the foreign exchange rate tends to make a greater 

contribution in the long run. For wheat, the contributions made by the commodity and 

by the foreign exchange rate converge at 40% in the long run. 

 

Shocks to foreign exchange rates account for some share of the shocks to certain 

commodity prices, while shocks to interest rates account for a negligible share of the 

shocks to all commodity prices (the only exception is zinc). Shocks to monetary 

growth (M1 growth, specifically) account for some share of the shock to all metal 

prices. Shocks to industrial value added account for some share of the shock to some 

metals. 

 

In the inter-bank repo rate scenario, I detect that interest rate shocks account for an 

increasing share of price fluctuations for all of metals together with wheat. 

Specifically, interest rate shocks account for approximately 20% of fluctuations in 

aluminium and zinc prices in the long run. As for agricultural food prices, their 

fluctuation could be well explained by shocks to foreign exchange rates in the long 

run. In particular, the fluctuation of foreign exchange rates could account for more 
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than 40% of the bean price fluctuation. The intuition is that China’s bean futures 

prices are closely connected to US bean prices. Any volatility in the USD/CNY rate 

will have a direct impact on the purchase cost of beans. The shock in economic 

activities accounts for approximately 30% for the fluctuation in aluminium and 

copper prices. The exception of zinc in this regard can be mainly attributed to its 

relatively short sample period.  

 

In the exchange repo rate scenario (which is similar to the average repo rate scenario 

because the characteristics of the average rate are generally reflected by the more 

volatile exchange repo rate), the share that the repo rate could account for is 

negligible for all of the commodity futures prices. Similar to the inter-bank repo rate 

scenario, agricultural food price (aluminium prices as well) fluctuations could be well 

explained by the shocks to foreign exchange rates in the long run. The shocks to 

economic activity could account for approximately 30% of aluminium and copper 

price fluctuations.  

 

In the M1 growth rate scenario, I find that the shocks in the M1 growth rate account 

for an increasing share of the price fluctuations for all of the metals. Foreign exchange 

rate shocks still account for a large share in the agricultural food price fluctuations. It 

is worth mentioning that the share that economic activity could account for is 

negligible for all of the commodity futures prices. 

 

In the M2 growth rate scenario, I find that the share that the M2 growth rate could 

account for is negligible for all of the commodity futures prices in the long run. 

Foreign exchange rate shocks still account for a large share of the agricultural food 

price fluctuations in this scenario. I also find that shocks in economic activity account 

for an increasing share of price fluctuations for all of the metals except for zinc. 

Output shocks could contribute up to 20 percent of aluminium and copper shocks.  

 

Combining all of the monetary scenarios, I find that the foreign exchange fluctuations 
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contribute to more than 20 percent of aluminium, beans and wheat fluctuations in all 

monetary scenarios. It is particularly notable that it accounts for nearly 20 percent of 

the volatility in cotton price fluctuations because the rest can only be attributed to the 

commodity price change itself.  

 

Insert figure 2.33 to figure 2.37 here 

2.5 Conclusion 

In this chapter, I try to investigate the empirical relationship between commodity 

prices, real interest rates, the foreign exchange rate and economic activity in China’s 

context. The analysis is based on structural vector autoregressive (SVAR) models. To 

incorporate the fact that China’s spot interest rate market is segmented, my test is 

conducted with three different interest rate scenarios: the inter-bank repo rate, the 

exchange repo rate and the average repo rate. Moreover, to check whether quantitative 

monetary policy tools play a more effective role than price setting tools in China (Fan, 

Yu and Zhang, 2010), I add two monetary growth (M1 and M2 growth) variables. 

 

My empirical evidence from the impulse response function support part of the theory 

between macroeconomic variables and commodity prices. A negative relationship 

between interest rates and commodity prices can be demonstrated for some metals. A 

positive relationship between monetary growth and commodity prices can be shown 

with statistical significance for several commodities. These results demonstrate that 

the monetary growth channel (mainly through the credit channel) plays a bigger role 

than the interest rate channel in promoting commodity prices in China. I also find that 

some commodity prices overreact to output shocks. 

 

The forecast error variance decompositions (known as FEVD) suggest that the 

commodity price shock itself make the biggest contribution to the commodity price 

shock, generally. The fluctuation of the inter-bank interest rate could contribute an 

increasing share to the price volatility in all of the metals and wheat. The exchange 
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repo rate and average rate, however, have negligible explanatory power for 

commodity price shocks. Similarly, the M1 growth rate shock could help to explain 

an ever-increasing share of metal price fluctuation, while the M2 growth rate is 

negligible for explaining commodity price shocks. Foreign exchange rate shocks 

contribute to more than 20 percent of all commodity price shocks. Industrial output 

shocks comprise a 20 to 30 percent contribution to aluminium and copper. 

 

The investigation of the overshooting behaviour of these commodities offers clear 

suggestions for investors. Indicators such as monetary growth and industrial value 

added growth could be added to their investment calendar. Prior to the announcement 

of these data, they could use their expectation for the data to decide what futures 

positions to take. Meanwhile, with the rapid pace of interest rate liberalization in 

China, changes in the interest rates of different markets should also be given 

increasing attention because it is likely that this price channel will have a greater and 

greater impact on commodity prices. For policy makers, the finding in this chapter is 

also crucial. Because the industrial economy is highly sensitive to changes in 

monetary policy, adjustment with quantitative rather than a qualitative tool could 

exert direct and powerful impact on the economy in the short term. However, the 

improvement of the interest rate pricing mechanism and the institutional framework 

should be prioritized if the government wants to let market factors play a bigger role.
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Figures and Tables in Chapter 2 

Figure 2.1: The line graph of commodity prices 

 

Note: ALU_IDX1 refers to the indexed value of the aluminium futures price; 

BEAN_IDX1 refers to the indexed value of the beans futures price; COPP_IDX1 

refers to the indexed value of the copper futures price; COTT_IDX1 refers to the 

indexed value of the cotton futures price; WHEAT_IDX1 refers to the indexed value 

of the wheat futures price; ZINC_IDX1 refers to the indexed value of the zinc futures 

price 
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Table 2.1: Descriptive statistics for commodity prices 

 

  COPP_IDX1 ALU_IDX1 ZINC_IDX1 WHEAT_IDX1 COTT_IDX1 BEAN_IDX1 

Mean 122.41  81.35  61.24  98.04  109.47  145.42  

Median 100.14  80.46  57.55  97.66  103.78  135.00  

Maximum 251.73  107.49  111.26  142.38  225.55  283.10  

Minimum 48.17  58.94  30.35  64.97  84.64  85.12  

Std. Dev. 68.19  11.53  19.71  18.55  24.49  44.40  

Skewness 0.47  0.53  0.84  0.24  3.16  0.89  

Kurtosis 1.62  2.52  3.13  2.29  13.64  3.37  

Jarque-Bera 16.68  8.17  5.39  4.44  503.95  20.03  

Probability 0.00  0.02  0.07  0.11  0.00  0.00  

Observations 144  144  46  144  79  144  

 

Note: ALU_IDX1 refers to the indexed value of the aluminium futures price; 

BEAN_IDX1 refers to the indexed value of the bean futures price; COPP_IDX1 

refers to the indexed value of the copper futures price; COTT_IDX1 refers to the 

indexed value of the cotton futures price; WHEAT_IDX1 refers to the indexed value 

of the wheat futures price; ZINC_IDX1 refers to the indexed value of the zinc futures 

price 
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Figure 2.2: Line graphs of interest rates, monetary growth, foreign exchange rate and 

economic activities 

 

     

 

     

Note: R007_IB refers to the nominal 7-day inter-bank market repo rate; R007_EX 

refers to the nominal 7-day exchange market repo rate; RAVG refers to the average 

rate; M1_GR refers to the year-on-year growth of M1; M2_GR refers to the 

year-on-year growth of M2; FX_CNY refers to the nominal Chinese Yuan / US dollar 

exchange rate; INDUSTRY refers to the year-on-year growth of industrial value 

added 
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Table 2.2: Descriptive statistics for interest rates, monetary growth, foreign exchange 

rate and economic activities 

  IB EX RAVG M1_GR M2_GR FX_CNY 
INDUST

RY 

Mean 2.25  2.19  2.22  17.57  17.66  7.21  13.70  

Median 2.22  2.00  2.12  17.06  17.34  6.85  14.45  

Maximum 5.17  14.98  8.94  38.96  29.64  8.06  23.20  

Minimum 0.88  0.13  0.51  6.63  12.03  6.62  2.10  

Std. Dev. 0.71  1.61  1.01  5.67  3.74  0.49  4.02  

Skewness 0.76  4.23  2.66  1.05  1.36  0.55  -0.54  

Kurtosis 4.85  31.52  16.89  4.74  5.12  1.62  2.87  

Jarque-Be

ra 
34.24  5310.48  1327.61  44.43  71.44  7.80  7.18  

Probabilit

y 
0.00  0.00  0.00  0.00  0.00  0.02  0.03  

Observati

ons 
144  144  144  144  144  60  144  

Note: IB refers to the nominal 7-day inter-bank market repo rate; EX refers to the 

nominal 7-day exchange market repo rate; RAVG refers to the average rate; M1_GR 

refers to the year-on-year growth of M1; M2_GR refers to the year-on-year growth of 

M2; FX_CNY refers to the nominal Chinese Yuan / US dollar exchange rate; 

INDUSTRY refers to the year-on-year growth of industrial value added 
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Table 2.3: Correlations between commodity prices and interest rates, monetary growth, 

foreign exchange rates and economic activity 

 IB EX M1_GR M2_GR FX_CNY INDUSTRY 

ALU_IDX1 0.545 0.128 0.139 -0.394 0.700 0.801 

BEAN_IDX1 0.460 -0.043 -0.143 -0.245 -0.235 0.166 

COPP_IDX1 0.625 0.039 0.361 -0.262 0.425 0.830 

COTT_IDX1 0.388 0.076 0.283 -0.023 -0.343 0.132 

WHEAT_IDX1 -0.127 -0.128 0.279 0.454 -0.824 -0.310 

ZINC_IDX1 0.243 0.28 0.267 -0.229 0.842 0.774 

Note: ALU_IDX1 refers to the indexed value of the aluminium futures price; 

BEAN_IDX1 refers to the indexed value of the beans futures price; COPP_IDX1 

refers to the indexed value of the copper futures price; COTT_IDX1 refers to the 

indexed value of the cotton futures price; WHEAT_IDX1 refers to the indexed value 

of the wheat futures price; ZINC_IDX1 refers to the indexed value of the zinc futures 

price; IB refers to the nominal 7-day inter-bank market repo rate; EX refers to the 

nominal 7-day exchange market repo rate; RAVG refers to the average rate; M1_GR 

refers to the year-on-year growth of M1; M2_GR refers to the year-on-year growth of 

M2; FX_CNY refers to the nominal Chinese Yuan / US dollar exchange rate; 

INDUSTRY refers to the year-on-year growth of industrial value added 
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Table 2.4: The Granger causality test between commodity futures prices and interest 

rates, monetary growth, foreign exchange rates and economic activity 

X1 X2 Test 1 Test 2 

ALU_IDX1 R007_IB 1.813 (0.167) 0.959 (0.386) 

ALU_IDX1 R007_EX 1.887 (0.155) 0.618 (0.541) 

ALU_IDX1 RAVG 1.561 (0.214) 0.189 (0.827) 

ALU_IDX1 M1_GR 2.479 (0.08*) 2.009 (0.138) 

ALU_IDX1 M2_GR 2.396 (0.09*) 0.668 (0.514)  

ALU_IDX1 FX_CNY 0.920 (0.404) 5.938 (0.004***) 

ALU_IDX1 INDUSTRY 5.336 (0.006***) 0.865 (0.423) 

BEAN_IDX1 R007_IB 0.928 (0.400) 0.025 (0.975) 

BEAN_IDX1 R007_EX 0.511 (0.600) 1.496 (0.228) 

BEAN_IDX1 RAVG 0.249 (0.780) 1.024 (0.362) 

BEAN_IDX1 M1_GR 2.860 (0.06*) 2.287 (0.105) 

BEAN_IDX1 M2_GR 1.472 (0.233) 1.446 (0.239) 

BEAN_IDX1 FX_CNY 4.876 (0.001***) 2.529 (0.089*) 

BEAN_IDX1 INDUSTRY 1.096 (0.337) 0.293 (0.747) 

COPP_IDX1 R007_IB 2.119 (0.124) 4.910 (0.009***) 

COPP_IDX1 R007_EX 1.564 (0.213) 0.124 (0.884) 

COPP_IDX1 RAVG 1.395 (0.251) 0.551(0.577) 

COPP_IDX1 M1_GR 2.004 (0.139) 1.654 (0.195) 

COPP_IDX1 M2_GR 0.254 (0.776) 2.950 (0.056*) 

COPP_IDX1 FX_CNY 2.442 (0.091*) 1.890 (0.161) 

COPP_IDX1 INDUSTRY 4.631 (0.01**) 0.343 (0.709) 

COTT_IDX1 R007_IB 18.264 (0.000***) 1.842 (0.166) 

COTT_IDX1 R007_EX 0.306 (0.737) 0.037 (0.964) 

COTT_IDX1 RAVG 1.643 (0.200) 0.056 (0.946) 

COTT_IDX1 M1_GR 0.812 (0.447) 0.741 (0.480) 

COTT_IDX1 M2_GR 0.748 (0.477) 1.441 (0.243) 

COTT_IDX1 FX_CNY 2.114 (0.130) 1.500 (0.232) 

COTT_IDX1 INDUSTRY 0.127 (0.881) 0.524 (0.594) 

WHEAT_INDX1 R007_IB 3.814 (0.024**) 0.312 (0.732) 

WHEAT_INDX1 R007_EX 1.055 (0.350) 1.558 (0.214) 

WHEAT_INDX1 RAVG 0.328 (0.721) 1.608 (0.204) 

WHEAT_INDX1 M1_GR 0.365 (0.694) 1.184 (0.309) 

WHEAT_INDX1 M2_GR 2.937 (0.056**) 0.761 (0.469) 

WHEAT_INDX1 FX_CNY 1.516 (0.229) 2.634 (0.08*) 

WHEAT_INDX1 INDUSTRY 0.143 (0.867) 0.984 (0.376) 

ZINC_IDX1 R007_IB 1.738 (0.189) 0.281 (0.757) 

ZINC_IDX1 R007_EX 12.950 (0.000***) 3.186 (0.05*) 

ZINC_IDX1 RAVG 11.152 (0.000***) 1.577 (0.219) 

ZINC_IDX1 M1_GR 3.376 (0.04**) 2.363 (0.108) 

ZINC_IDX1 M2_GR 1.680 (0.199) 2.723 (0.08*) 
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ZINC_IDX1 FX_CNY 0.321 (0,727) 0.138 (0.872) 

ZINC_IDX1 INDUSTRY 5.701 (0.000***) 0.652 (0.526) 

Note: Test 1: Granger non-causality from X1 to X2; 

     Test 2: Granger non-causality from X2 to X1; 

ALU_IDX1 refers to the indexed value of the aluminium futures price; BEAN_IDX1 

refers to the indexed value of the beans futures price; COPP_IDX1 refers to the 

indexed value of the copper futures price; COTT_IDX1 refers to the indexed value of 

the cotton futures price; WHEAT_IDX1 refers to the indexed value of the wheat 

futures price; ZINC_IDX1 refers to the indexed value of the zinc futures price; 

R007_IB refers to the nominal 7-day inter-bank market repo rate; R007_EX refers to 

the nominal 7-day exchange market repo rate; RAVG refers to the average rate; 

M1_GR refers to the year-on-year growth of M1; M2_GR refers to the year-on-year 

growth of M2; FX_CNY refers to the nominal Chinese Yuan / US dollar exchange 

rate; INDUSTRY refers to the year-on-year growth of industrial value added 
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Figure 2.3: Impulse response functions of aluminium to shocks R007_IB, CNY, 

Industry and Aluminium 

 
Note: shocks 1, 2, 3 and 4 refer to the shocks from aluminium, the 7-day inter-bank 

repo rate, the CNY/USD rate and industrial value added, respectively 
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Figure 2.4: Impulse response functions of beans to shocks R007_IB, CNY, 

Industry and Beans 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from beans, the 7-day inter-bank repo 

rate, CNY/USD rate and industrial value added, respectively 

 

  

-20

-15

-10

-5

0

5

10

15

5 10 15 20 25 30 35 40 45 50

Response of BEAN_IDX1 to Shock1

-20

-15

-10

-5

0

5

10

15

5 10 15 20 25 30 35 40 45 50

Response of BEAN_IDX1 to Shock2

-20

-15

-10

-5

0

5

10

15

5 10 15 20 25 30 35 40 45 50

Response of BEAN_IDX1 to Shock3

-20

-15

-10

-5

0

5

10

15

5 10 15 20 25 30 35 40 45 50

Response of BEAN_IDX1 to Shock4

Response to Structural One S.D. Innovations ± 2 S.E.



 

 59 

Figure 2.5: Impulse response functions of copper to shocks R007_IB, CNY, 

Industry and Copper 

 
Note: shocks 1, 2, 3 and 4 refer to the shocks from copper, the 7-day inter-bank repo 

rate, the CNY/USD rate and industrial value added, respectively 
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Figure 2.6: Impulse response functions of cotton to shocks R007_IB, CNY, 

Industry and Cotton 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from cotton, the 7-day inter-bank repo 

rate, the CNY/USD rate and industrial value added, respectively  
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Figure 2.7: Impulse response functions of wheat to shocks R007_IB, CNY, 

Industry and Wheat 

 

Note: shock 1, 2, 3 and 4 refer to the shocks from wheat, the 7-day inter-bank repo 

rate, the CNY/USD rate and industrial value added, respectively 
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Figure 2.8: Impulse response functions of zinc to shocks R007_IB, CNY, Industry 

and Zinc 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from zinc, the 7-day inter-bank repo rate, 

the CNY/USD rate and industrial value added, respectively 
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Figure 2.9: Impulse response functions of aluminium to shocks R007_EX, CNY, 

Industry and Aluminium 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from aluminium, the 7-day exchange 

repo rate, the CNY/USD rate and industrial value added, respectively 
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Figure 2.10: Impulse response functions of beans to shocks R007_EX, CNY, 

Industry and Beans 

  

Note: shocks 1, 2, 3 and 4 refer to the shocks from beans, the 7-day exchange repo 

rate, the CNY/USD rate and industrial value added, respectively  
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Figure 2.11: Impulse response functions of copper to shocks R007_EX, CNY, 

Industry and Copper 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from copper, the 7-day exchange repo 

rate, the CNY/USD rate and industrial value added, respectively 
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Figure 2.12: Impulse response functions of cotton to shocks R007_EX, CNY, 

Industry and Cotton 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from cotton, the 7-day exchange repo 

rate, the CNY/USD rate and industrial value added, respectively  
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Figure 2.13: Impulse response functions of wheat to shocks R007_EX, CNY, 

Industry and Wheat 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from wheat, the 7-day exchange repo 

rate, the CNY/USD rate and industrial value added, respectively 
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Figure 2.14: Impulse response functions of zinc to shocks R007_EX, CNY, 

Industry and Zinc 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from zinc, the 7-day exchange repo rate, 

the CNY/USD rate and industrial value added, respectively  
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Figure 2.15: Impulse response functions of aluminium to shocks RAVG, CNY, 

Industry and Aluminium 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from aluminium, 7-day average repo 

rate, CNY/USD rate and industrial value added, respectively 
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Figure 2.16: Impulse response functions of beans to shocks RAVG, CNY, 

Industry and Beans 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from beans, the 7-day average repo rate, 

the CNY/USD rate and industrial value added, respectively  
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Figure 2.17: Impulse response functions of copper to shocks RAVG, CNY, 

Industry and Copper 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from copper, 7-day average repo rate, 

CNY/USD rate and industrial value added, respectively 
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Figure 2.18: Impulse response functions of cotton to shocks RAVG, CNY, 

Industry and Cotton 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from cotton, the 7-day average repo rate, 

the CNY/USD rate and industrial value added, respectively 
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Figure 2.19: Impulse response functions of wheat to shocks RAVG, CNY, 

Industry and Wheat 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from wheat, the 7-day average repo rate, 

the CNY/USD rate and industrial value added, respectively  
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Figure 2.20: Impulse response functions of zinc to shocks RAVG, CNY, Industry 

and Zinc 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from zinc, the 7-day average repo rate, 

the CNY/USD rate and industrial value added, respectively 

 

  

-10

-5

0

5

10

5 10 15 20 25 30 35 40 45 50

Response of ZINC_IDX1 to RAVG

-10

-5

0

5

10

5 10 15 20 25 30 35 40 45 50

Response of ZINC_IDX1 to FX_CNY

-10

-5

0

5

10

5 10 15 20 25 30 35 40 45 50

Response of ZINC_IDX1 to INDUSTRY

-10

-5

0

5

10

5 10 15 20 25 30 35 40 45 50

Response of ZINC_IDX1 to ZINC_IDX1

Response to Cholesky One S.D. Innovations ± 2 S.E.



 

 75 

Figure 2.21: Impulse response functions of aluminium to shocks M1_GR, CNY, 

Industry and Aluminium 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from aluminium, the M1 growth rate, 

the CNY/USD rate and industrial value added, respectively 
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Figure 2.22: Impulse response functions of beans to shocks M1_GR, CNY, 

Industry and Beans 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from beans, the M1 growth rate, the 

CNY/USD rate and industrial value added, respectively 
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Figure 2.23: Impulse response functions of copper to shocks M1_GR, CNY, 

Industry and Copper 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from copper, the M1 growth rate, the 

CNY/USD rate and industrial value added, respectively 

 

  

-10

0

10

20

5 10 15 20 25 30 35 40 45 50

Response of COPP_IDX1 to Shock1

-10

0

10

20

5 10 15 20 25 30 35 40 45 50

Response of COPP_IDX1 to Shock2

-10

0

10

20

5 10 15 20 25 30 35 40 45 50

Response of COPP_IDX1 to Shock3

-10

0

10

20

5 10 15 20 25 30 35 40 45 50

Response of COPP_IDX1 to Shock4

Response to Structural One S.D. Innovations ± 2 S.E.



 

 78 

Figure 2.24: Impulse response functions of cotton to shocks M1_GR, CNY, 

Industry and Cotton 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from cotton, the M1 growth rate, the 

CNY/USD rate and industrial value added, respectively 
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Figure 2.25: Impulse response functions of wheat to shocks M1_GR, CNY, 

Industry and Wheat 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from wheat, M1 the growth rate, the 

CNY/USD rate and industrial value added, respectively  
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Figure 2.26: Impulse response functions of zinc to shocks M1_GR, CNY, 

Industry and Zinc 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from zinc, the M1 growth rate, the 

CNY/USD rate and industrial value added, respectively 
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Figure 2.27: Impulse response functions of aluminium to shocks M2_GR, CNY, 

Industry and Aluminium 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from aluminium, the M2 growth rate, 

the CNY/USD rate and industrial value added, respectively 
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Figure 2.28: Impulse response functions of beans to shocks M2_GR, CNY, 

Industry and Beans 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from beans, the M2 growth rate, the 

CNY/USD rate and industrial value added, respectively 
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Figure 2.29: Impulse response functions of copper to shocks M2_GR, CNY, 

Industry and Copper 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from copper, the M2 growth rate, the 

CNY/USD rate and industrial value added, respectively 
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Figure 2.30: Impulse response functions of cotton to shocks M2_GR, CNY, 

Industry and Cotton 

 
Note: shocks 1, 2, 3 and 4 refer to the shocks from cotton, the M2 growth rate, the 

CNY/USD rate and industrial value added, respectively 
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Figure 2.31: Impulse response functions of wheat to shocks M2_GR, CNY, 

Industry and Wheat 

  

Note: shocks 1, 2, 3 and 4 refer to the shocks from wheat, the M2 growth rate, the 

CNY/USD rate and industrial value added, respectively 
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Figure 2.32: Impulse response functions of zinc to shocks M2_GR, CNY, 

Industry and Zinc 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from zinc, the M2 growth rate, the 

CNY/USD rate and industrial value added, respectively 
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Figure 2.33: FEVD with shocks scenario: R007_IB, FX_CNY, Industry, and 

Commodity 

 

 

Note: shocks 1, 2, 3 and 4 refer to the shocks from the inter-bank repo rate, the 

CNY/USD rate, industrial value added and the commodities, respectively; from the 

top left to the bottom right, the six commodities shown are aluminium, beans, copper, 

cotton, wheat and zinc 
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Figure 2.34: FEVD with shocks scenario: R007_EX, FX_CNY, Industry, and 

Commodity 

 

 

Note: shocks 1, 2, 3 and 4 refer to the shock from the exchange repo rate, the 

CNY/USD rate, industrial value added and the commodities, respectively; from the 

top left to the bottom right, the six commodities shown are aluminium, beans, copper, 

cotton, wheat and zinc 
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Figure 2.35: FEVD with shocks scenario: RAVG, FX_CNY, Industry, and 

Commodity 

 

 

Note: shocks 1, 2, 3 and 4 here refer to the shock from the average repo rate, the 

CNY/USD rate, industrial value added and the commodities, respectively; from the 

top left to the bottom right, the six commodities shown are aluminium, beans, copper, 

cotton, wheat and zinc 
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Figure 2.36: FEVD with shocks scenario: M1_GR, FX_CNY, Industry, and 

Commodity 

 

 
Note: shocks 1, 2, 3 and 4 refer to the shock from M1 growth, the CNY/USD rate, 

industrial value added and the commodities, respectively; from the top left to the 

bottom right, the six commodities are aluminium, beans, copper, cotton, wheat and 

zinc 
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Figure 2.37: FEVD with shocks scenario: M2_GR, FX_CNY, Industry, and 

Commodity 

 

 
Note: shocks 1, 2, 3 and 4 refer to the shock from M2 growth, the CNY/USD rate, 

industrial value added and the commodities, respectively; from the top left to the 

bottom right, the six commodities shown are aluminium, bean, copper, cotton, wheat 

and zinc 
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Chapter 3 An empirical test on information spillover effects between the 

Chinese metal futures market and the global financial market 

3.1 Introduction 

Prior to the global financial crisis in 2008, China faced difficulties in the global 

commodity market: regardless of the commodity, when China bought it, its price 

would go up; when China sold it, its price would go down. This phenomenon 

indicated that China had practically no pricing power in the global commodity market. 

Generally speaking, pricing power is the ability to influence the price of goods in the 

market. Specifically, a country’s pricing power in the global commodity market 

means that it can play an active role in promoting reasonable global commodity prices. 

With strong pricing power, the country’s enterprises can gain a favourable position in 

the global commodity trade and achieve economic benefits. Clearly, pricing power is 

held by the dominant buyers and sellers. Spillovers occur from the dominant to the 

subordinate players.  

 

In Chapter 3, I try to explore the impacts that China’s futures market and the overseas 

futures market have on each other. Research from this angle could help reveal which 

side has stronger pricing power. Here, concepts should be clarified beforehand. 

Information spillover refers to the transmission of information across various financial 

markets. Under extreme market situations, information spillover could also be 

understood as “risk spillover” or "volatility spillover". Specifically, I aim at studying 

the information spillover effect between the domestic spot and futures markets as well 

as the information spillover effect and risk spillover effect between the domestic 

metal futures market and the overseas metal futures market. Moreover, to check 

whether China has gained pricing power in the global commodities market, I also 

study the risk spillover effect between the domestic metal futures market and other 

overseas financial markets. 
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From the literature consulted, the studied relationships between the futures market and 

the spot market focus mainly on price discovery, and few studies have been conducted 

on information spillover between the spot and futures markets or between the 

domestic futures market and the overseas futures market, especially the metal futures 

market in China. Hong and Cheng (2005) study information spillover between 

China’s domestic stock market and the global equity market. However, vital 

differences exist between the stock market and the futures market. The broad adoption 

of leverage and margin call schemes, which are common practices in China’s futures 

market, does not exist in stock markets. Therefore, it is necessary to make specific 

adjustments to study risk spillover in China’s futures market.  

 

Liu, Cheng, Wang, Hong and Li (2008) empirically studied information spillover 

effects between the Chinese copper futures market and the spot market. They take the 

upside risk into account (short-seller’s risk) rather than merely focusing on the 

downside risk. They propose a more complicated research framework compared to 

those previously applied by scholars. However, this framework merely explores the 

information spillover between the domestic spot and futures markets; no attention is 

given to cross-border information spillover. Moreover, the dataset they use is out of 

date.  

 

This chapter contributes to academia by filling an extant research gap. Scholars have 

rarely used the GARCH model specification and incorporated the Value-at-Risk 

model to test the information and risk spillover effect between the Chinese future 

market and the global financial market. This more sophisticated approach combined 

with a new data set enables us to explore cross-market interaction. More importantly, 

I can check whether China has recently gained power in international commodity 

pricing from the perspective of the information and risk spillover effects.  

 

Practically, the empirical results could help practitioners gain a better understanding 
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of China’s position in the global metal futures market, allowing them to take 

advantage of Chinese specific factors in their trading, hedging, and arbitrage 

strategies and global asset allocation.  

 

To detect the cross-border spillover effect, I must ensure that the domestic futures 

market functions properly and effectively. In other word, the interaction between the 

domestic spot and futures markets should work in both directions, with the futures 

market playing the leading role. After checking the function of the domestic futures 

market, I will test whether the domestic futures market could impact the global futures 

market. Moreover, I try to find whether the risk spillover effect exists between the 

Chinese domestic futures market and other global financial markets (whether it has an 

extensive risk spillover effect).  

 

The data used here range from 1995.4.17 to 2010.12.31, containing 3814 daily 

observations. The data for conducting the empirical test are taken from the Chinese 

financial database – Wind system. All of the data used are stylized in daily terms. 

Copper is studied for the spot futures interaction; Shanghai Futures Exchange (SHFE) 

and London Metal Exchange (LME) aluminium, copper and zinc futures are studied 

for cross-commodity market futures interactions; the Australian dollar- US dollar 

(AUDUSD) foreign exchange rate and the Australian stock index (ASX) are studied 

for cross-financial market interactions. The GARCH model specification and a 

Value-at-Risk model have been incorporated in the empirical research. In particular, 

both upside and downside value at risk have been taken into account for all of the 

financial time series that share the characteristics of allowing short selling. Then, a 

Granger causality test is conducted to see whether a causal link exists between the 

markets.  

 

The empirical results clearly support some of my hypotheses. Specifically, the results 

indicate that in China’s domestic market, futures pricing functions quite well because 

a two-way causal link is found to exist between spot and futures products, indicating 
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that the price discovery function performs effectively and reliably in China. As for the 

interaction between domestic and overseas futures markets, a causal link does exist 

from the SHFE to the LME; these results also hold for the extreme upside and 

downside scenarios. To some extent, this shows that movement in the SHFE could 

directly guide movement in the LME, indicating an increase in China’s pricing power 

for commodities. As for the interaction between the SHFE metal market and overseas 

financial markets, no consistent conclusions are found, indicating that that the 

Chinese factor may have limited impact on the global market as a whole. 

 

The remainder of this chapter is organized as follows: section 3.2 introduces the 

literature consulted. Section 3.3 gives a description of the variables used, descriptive 

statistics of their data series and the methodology adopted. Then estimation and 

empirical results are presented in section 3.4. Finally, section 3.5 concludes the 

chapter. 

 

3.2 Literature review 

3.2.1 Literature 

Garbade and Silber (1983) present a model for examining the price discovery role of 

futures prices and the effect of arbitrage on price changes in the spot and the futures 

commodity markets. Their empirical results suggest that that the degree of market 

integration over the short term is a function of the elasticity of supply of arbitrage 

services. Grain commodities are well integrated over a month or two, while gold and 

silver markets are highly integrated even over one day. Moreover, their study on the 

role of the futures market in providing price information shows that the futures market 

generally dominates spot market because price change in the futures market lead price 

changes in the spot market.  

 

Engle and Granger (1999) propose using cointegration analysis to study the 

equilibrium between imbalanced economic variables. This novel approach has been 
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widely used to explore the dynamic relationship between spot and futures prices. 

Haigh (1998) uses cointegration analysis to study the relationship between futures 

market and spot market prices. According to previous studies, for most futures 

products, a cointegrating relationship exists between the futures market and spot 

market prices. Hasbrouck (1995) defines price discovery in terms of the variance of 

innovations to the common factor, based on which the futures and spot markets’ 

relative contributions to this variance can be examined. Tse (1999) investigates the 

minute-by-minute price discovery process and volatility spillovers between the Dow 

Jones Industrial Average (DJIA) index and the index futures. So and Tse (2004) use 

data from Hong Kong’s Hang Seng Index, Hang Seng Index futures and the Tracker 

Fund to examine the price discovery function of the Hang Seng Index market via the 

Hasbrouck Gonzalo and Granger information sharing techniques and the Multivariate 

Generalized Autoregressive Conditional Heteroskedasticity (M-GARCH) model. 

Empirical evidence shows that the movements of the three markets are interrelated 

and that they have different degrees of information processing abilities.  

 

In the Chinese futures markets literature, Hua and Zhong (2002) study price discovery 

in the Chinese futures market using the Garbade and Silber (1983) model. Hua (2005) 

study the relationship between spot and futures copper prices in China and propose an 

equation for copper futures pricing. Xu and Tang (2006) explore the interaction 

between volatility, trading volume and open interest in China’s futures market. Tong 

(1997) and Ma (2005) investigate price discovery in the Mainland Chinese futures 

market. Hua and Zhong (2005) use cointegration analysis to study the relationship 

between the futures and the spot prices for copper and aluminium traded at the SHFE 

(Shanghai Futures Exchange). Gao (2004) studies the relationship between the 

soybean futures price and the spot price as well as the relationship between the SHFE 

copper price and the LME (London Metal Exchange) copper price. Pan and Zhang 

(2007) study the risk contagion between the Chinese oil market and overseas oil 

markets. 
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3.2.1.1 Information spillover effect and risk spillover effect 

According to Wu, Wang and Xin (1997), no cointegration relationship existed 

between the Shanghai copper futures price and the London copper futures price prior 

to 1997. Moreover, it was not found that either market could dominate the other in 

terms of futures prices. 

 

Kim (2005) investigated the nature of the information leadership of the US and Japan 

in the advanced Asia-Pacific stock markets. Instead of just relying on returns and 

return volatility spillovers from major markets, specific and disaggregated news 

events are also utilized with the aim of examining the nature of spillover effects from 

scheduled announcements covering US and Japanese macroeconomic variables in the 

advanced Asia-Pacific stock markets of Australia, Hong Kong and Singapore for the 

period 1991.1.2 to 1999.5.31. The investigation reveals that both US and Japanese 

announcement news exert significant first and second moment influences on the 

returns of the other markets, in general. Meanwhile, there is a complex array of 

significant market responses to various news announcements. There is also strong 

evidence that markets respond differently to bad news announcements compared to 

overall news (including both good and bad news) announcements, which indicates 

that the information content of each economic announcement is a source of tradable 

information rather than the act of releasing economic figures.  

 

Zhou (2004) used the dataset ranging from 1997.9.21 to 2001.12.10, and found that 

the 3-month London copper price led the 5-month Shanghai copper price in lagged 

terms. However, the Shanghai copper futures price has not been found to lead the 

London futures price. 

 

Hong and Cheng (2005) provided an empirical study on the spillover of extreme 

downside market risk among Shares A, B and H in the Chinese stock market and 

between the Chinese stock market and overseas equity markets. They find that strong 
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risk spillover exists between the Share A and Share B markets and that the occurrence 

of a high downside risk in Share B markets can help predict the occurrence of a 

similar risk in Share A markets. There also exists strong risk spillover between Share 

A and Share H markets and particularly between Share B and Share H markets. The 

latter have significant risk spillover with international stock markets. In contrast, 

although Share A markets have some risk spillover with the Korean and Singapore 

stock markets due to a closer economic relationship, they have no risk spillover with 

the equity markets in Japan, the U.S. and Germany. 

 

Wu, Liu and Wu (2007) examine the volatility spillover effect of daily returns in the 

futures copper market between Shanghai and London by adopting a multivariate 

GARCH model. Their empirical result indicates that a volatility spillover effect 

existed between Shanghai and London during the entire period. Specifically, before 

2001, the London copper futures market had a one directional spillover effect on the 

Shanghai copper futures market. However, after 2001, a bi-directional volatility 

spillover effect has been detected between the Shanghai copper futures market and the 

London copper futures market, thanks to the restructuring of the futures market in 

Shanghai. This shift marks increasing power for China in global commodity pricing.  

 

Liu, Cheng, Wang, Hong and Li (2008) employ a parametric approach based on 

TGARCH and GARCH models to estimate the value at risk (VaR) of the copper 

futures market and spot market in China. Considering the short-selling mechanism in 

the futures market, the paper introduces two new notions: upside VaR and extreme 

upside risk spillover. The downside VaR and upside VaR are examined by adopting 

the above approach. Also, they use Kupiec’s back-test mechanism to test the power of 

these novel approaches. In addition, they investigate information spillover effects 

between the futures market and the spot market by employing a linear Granger 

causality test, and Granger causality tests in mean, volatility and risk. Moreover, they 

also investigate the relationship between the futures market and the spot market using 

a test based on a kernel function. Empirical results indicate that significant two-way 
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spillovers exist between the futures market and the spot market, and the spillovers 

from the futures market to the spot market are much more striking than those in the 

other direction. 

 

Lu, Li, Wang and Wang (2008) used Hong’s method based on the Cross Covariance 

Function (CCF) and the Error Correction Model (ECM) to study Granger causality 

and information spillovers between major global crude oil markets including London, 

New York, and Dubai as well as Tapis and Minas in Southeast Asia. Using a 

methodology introduced by Hong, they find that the London and New York futures 

markets play dominant roles in information spillover, and WTI crude oil futures have 

a slight edge over Brent crude oil futures in information transmission. In addition, the 

empirical results indicate that Hong’s method is more effective than ECM in testing 

Granger causality and information spillovers. 

 

Kim and Nguyen (2008) provide comprehensive evidence of the spillover effects 

from US Fed and the European Central Bank (ECB) target interest rate news on the 

market returns and return volatilities of 12 stock markets in Asia- Pacific over the 

period 1999–2006. As a majority of the stock markets show significant negative 

returns in response to unexpected rate increases. The news spillover effects on the 

returns are generally consistent with the literature. While the results for the 

adjustment speed to the Fed’s news are mixed across the markets, in general, ECB 

news was absorbed slowly. The return volatilities were higher in response to the 

interest rate news from both sources. Moreover, news from both central banks elicited 

tardy or persistent volatility responses. The findings have significant implications for 

all levels of market participants in the Asia - Pacific stock markets. (Kim and Nguyen, 

2008) 

 

Ding and Pu (2012) examine market linkage and information spillover across 

different financial markets: US stock, corporate bond, and credit derivatives markets 

in the pre-crisis, crisis, and recovery periods. Their results suggest that information 
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spills over across markets in a timely manner. They find that the market linkage 

became stronger in the crisis period. The findings could be explained by increasing 

volatility and deteriorating funding liquidity. In particular, volatility plays a dominant 

role in information transmission, which absorbs the liquidity effect when both 

volatility and liquidity are included as exogenous factors in a vector autoregressive 

model. (Ding and Pu, 2012) 

 

Jiang, Konstantinidi and Skiadopoulos (2012) examine the effect of US and European 

news announcements on the spillover of volatility across US and European stock 

markets. They use synchronously observed international implied volatility indices at a 

daily frequency and find significant spillovers of implied volatility between US and 

European markets as well as within European markets. A stark contrast has been 

observed in the effect of scheduled versus unscheduled news releases. Scheduled (or 

unscheduled) news releases resolve (create) information uncertainty, leading to a 

decrease (increase) in implied volatility. Nevertheless, despite the fact that news 

announcements do affect their magnitude, they cannot fully explain the volatility 

spillovers. Their results are robust to extreme market events such as the recent 

financial crisis and provide evidence of volatility contagion across markets. 

 

Sang, Cheong and Yoon (2013) provide empirical evidence of the relationship 

between spot and futures markets in Korea. In particular, the study focuses on the 

volatility spillover relationship between spot and futures markets using three 

high-frequency (10 min, 30 min, and 1 h time-scales) intraday data sets of KOSPI 200 

spot and futures contracts. The results indicate a strong bi-directional causal 

relationship between futures and spot markets, suggesting that return volatility in the 

spot market can influence that in the futures market and vice versa. Thus, the results 

indicate that new information is simultaneously reflected in futures and spot markets. 

This bi-directional causal relationship provides market participants with important 

guidance on understanding the intraday information transmission between the two 

markets. Thus, on a given trading day, there may be sudden and sharp increases or 
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decreases in return volatility in the Korean stock market as a result of positive 

feedback and the synchronization of spot and futures markets. 

 

3.2.2 Hypotheses 

It can clearly be seen in the literature that the relationship between the futures market 

and the spot market focuses mainly on price discovery, and few studies have been 

conducted on information spillover between the spot and futures markets or between 

domestic futures markets and overseas futures markets, especially the metal futures 

market in China.  

 

Hong and Cheng (2005) study information spillover between China’s domestic stock 

market and the global equity market. However, vital differences exist between the 

stock market and the futures market in China. One of the most significant differences 

is that short selling in stock is forbidden in China, meaning that a long position in a 

stock always wins if the share price goes up. It is definitely not the same in the futures 

market. The heavy use of leverage and margin call schemes are common practice in 

the Chinese futures market. These characteristics imply that it is necessary to make 

special adjustments to study risk spillover in China’s futures market.  

 

Liu, Cheng, Wang, Hong and Li (2008) provide up-to-date work in my field of 

research. They empirically study information spillover effects between the Chinese 

copper futures market and the spot market. They take the upside risk into account, 

covering the short-seller’s risk of loss. A more complicated research framework – 

using kernel-based Granger causality test - is proposed to substitute for the simplified 

linear Granger causality test applied in the previous literature. Nevertheless, this work 

merely explores the information spillover between the domestic spot and futures 

markets; no attention is given to cross-border information spillover. Moreover, the 

dataset in use covers until mid-2006. The inability to take data for more recent years’ 

(especially the data range covering the global financial crisis) may make it difficult to 

reveal the increasing pricing power of China, especially after the 2008 global 
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financial crisis.  

 

This paper aims at studying information spillover between the domestic spot and 

futures markets as well as between the domestic and overseas futures markets 

(including other overseas financial markets) using a new data set. This work will fill 

the extant research gap. More importantly, I will be able to determine whether China 

has recently gained power in international commodity pricing from the perspective of 

the information and risk spillover effects.  

 

To detect the cross-border spillover effect, I must ensure that the domestic futures 

market functions properly and effectively. In other words, the interaction between the 

spot and futures markets must work in both directions, with the futures market playing 

the leading role. Thus, I have the first hypothesis: Hypothesis 1: A bi-directional 

causal link exists between the Chinese spot and futures metal markets, with the 

futures market playing the leading role; Null hypothesis: No bi-directional causal 

link exists between the Chinese spot and futures metal markets or a bi-directional 

causal link exists between the Chinese spot and futures metal markets, with the spot 

market playing the leading role. 

 

After checking the function of the domestic futures market, I will test whether the 

domestic futures market could impact the global futures market. Thus, I have the 

following hypothesis. Hypothesis 2:  a causal link exists between the Chinese 

futures metal market and the global futures metal market, with the direction being 

from China’s market to the global futures metal market. Null hypothesis: No causal 

link exists between the Chinese futures metal market and the global futures metal 

market or a bi-directional causal link exists between the Chinese spot and global 

futures metal market, with the direction being from the global futures metal market to 

China’s market. 

 

Apart from the previous hypotheses, I am eager to know whether the risk spillover 



 

 103 

effect exists between the Chinese domestic futures market and other global financial 

markets (whether it has extensive risk spillover effect). Thus, I have the following 

hypothesis. Hypothesis 3: A causal link exists between the Chinese futures metal 

market and the global financial market, with the direction being from China’s market 

to the global financial market. 

Null hypothesis: No causal link exists between the Chinese futures metal market and 

the global financial market or a bi-directional causal link exists between the Chinese 

futures metal market and the global financial market with the direction being from the 

global financial market to China’s market. 

 

3.3  Data and model specification 

3.3.1 Data 

The Chinese metal futures market has primarily three products: aluminium, copper 

and zinc. Because the majority of aluminium traders are hedgers, the volatility of 

aluminium futures price is comparatively mild. China has exceeded the United States 

as the largest copper consuming country in 2002, and China’s copper consumption 

accounted for 21% of the world total consumption in 2004. The price fluctuations of 

copper, as an important industrial raw material, have a significant influence on 

Chinese and the world’s economies. Just as Liu, Cheng, Wang, Hong and Li’s (2008), 

copper futures is one of the most actively traded products in the Chinese futures 

market. Brought into the market in 2007, zinc futures also feature fierce price 

fluctuation.  

 

To study the interaction between the Chinese spot and futures prices, I choose copper 

as the candidate variable. To qualify as a candidate requires the spot and futures 

market to be actively traded and prices to quickly reflect market changes. The first 

requirement rules out zinc as candidate because its spot market trading is inactive. 

The second requirement rules out aluminium because the volatility of its spot price is 

too low. 
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To study the interaction between the Chinese and overseas futures markets, I choose 

Shanghai Futures Exchange (SHFE) and London Metal Exchange (LME) aluminium, 

copper and zinc futures products as qualified candidates. To study the interaction 

between the Chinese futures market and overseas financial markets, I choose SHFE 

copper futures, the Australian dollar – US dollar exchange rate (AUDUSD), and the 

Australian stock exchange index (ASX) as the candidates. SHFE copper futures share 

the characteristics of high trading volume, varied market participants, and high 

flexibility to react to domestic and foreign market information. These characteristics 

(which aluminium and zinc products do not share) ensure that information is 

effectively channelled across different financial markets. It is known that Australia’s 

economy is highly sensitive to changes in China’s demand, especially in raw materials. 

A boom or bust in the infrastructure demand in China will be rapidly reflected in the 

AUDUSD rate and the ASX stock index. Here, I want to discover how such 

transmission works and whether it is channelled from the domestic copper price to the 

AUDUSD rate or via other paths. 

 

Following Sarno and Valente (2005), all of the futures series in this chapter are 

conducted using the daily closing prices on futures contracts one month prior to the 

expiration month. The SHFE futures and spot prices are obtained from the Wind 

database (a Chinese financial database), while the LME futures prices are taken from 

the Reuters’ system. The AUDUSD and ASX indexes are also taken from the Reuters’ 

system using the data from the daily closing prices. I consider the period from 

1995.4.17 to 2010.12.31, containing 3814 daily observations. All of the financial 

series are expressed in the natural logarithm form.  

 

Insert Table 3.1 here 

 

From Table 3.1, I can see that for the mean level for the rate of return is quite low for 

spot aluminium in absolute value compared with spot copper in China’s market. In 
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both the Shanghai market and the London market, copper and zinc futures present a 

much higher rate of return than the aluminium futures product. These results indicate 

that aluminium trading is primarily conducted by hedgers, while speculative forces 

are prevalent in the copper and zinc futures markets.  

 

Compared with the mean level of the rate of return for Chinese futures prices, the rate 

of return for spot prices is a little higher. It is worth mentioning that the mean level for 

the rate of return of metal futures is similar in the LME and the SHFE. The mean level 

of the rate of return for the AUDUSD is modest due to the huge trading volume in the 

foreign exchange market; the mean level of the rate of return for the ASX index is 

similar to those of SHFE and LME copper futures. 

 

A brief observation from Table 3.1 is that the standard deviation of the aluminium 

spot and futures prices is among the lowest, only higher than that of the AUDUSD. 

The standard deviations of other time series are of comparable scale. Moreover, all of 

the time series have kurtosis significantly higher than 3, indicating a high peak and fat 

tails. Through the Jarque-Bera test, it can be confirmed that all of the times series 

follow non-normal distributions. 

 

3.3.2 Methodology 

3.3.2.1 Value-at-Risk (VaR) estimation 

Value at risk (VaR) is known as a standard quantitative measure of potential economic 

loss for market risk. It can quantify the potential risk to determine its significance. 

According to Jorion (1996, 1997), VaR is defined as the maximum amount that can be 

lost within a specified time horizon and with a certain specified degree of confidence. 

Specifically, VaR is the maximum amount that can be lost with the probability of α, at 

the given confidence level of 1 − α and given time horizon τ. Statistically, VaR is 

minus the α - quantile of the conditional distribution of the rate of return.  

 

In the Chinese studies consulted, many focus on VaR estimation in the stock market; 
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very few studies have been conducted in the Chinese futures market. As the Chinese 

futures market gradually develops, it is showing a tendency toward increasing 

volatility. Therefore, it is of great importance to estimate VaR in China’s futures 

market to quantify its risk and then to manage risks in the futures market effectively.  

 

Liu, Cheng, Wang, Hong and Li (2008) introduce a parametric approach based on 

TGARCH and GARCH models to study the potential risks in China’s futures and spot 

markets. Considering the short-selling mechanism, they separately study the risks 

associated with long positions and short positions. In particular, they introduce the 

notion of downside VaR to measure the risk of a long-side position and upside VaR to 

measure the risk of a short-side position. Specifically, they use the left α - quantile of 

the conditional distribution of the rate of return to measure the downside risk, and the 

economic implication for the spot market is the reduction in sales revenue caused by a 

significant price drop in the spot market; for the futures market, it is the risk of a price 

drop confronted by those buying futures contracts. The right α - quantile of the 

conditional distribution of the rate of return measures the upside risk; its economic 

implication is the increased loss caused by a significant price increase in the spot 

market, and the risk of price increases confronting those selling futures contracts in 

the futures market. The downside VaR and upside VaR at the 1 − α confidence level 

could be defined respectively as follows:  

-1 (  < -  ( ) | )  t t tP Y V down I                                           3.1 

-1 (    ( ) | )  t t tP Y V up I                                            3.2 

where tY refers to the rate of return, tV (down) refers to the downside VaR, tV (up) 

refers to the upside VaR, and t-1I refers to the information set available at time t-1. 

 

The core of the parametric VaR estimation is to estimate the volatility of a financial 

product. It is generally accepted that the higher the volatility is, the higher the risk. 

The conditional variance of a GARCH-type model could be used to measure the 
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volatility of an asset or an asset portfolio. J.P. Morgan (1996) brought forward 

RiskMetrics to measure risk. However, RiskMetrics cannot describe the leverage 

effect. Although a short-selling mechanism exists, the impacts of good news and bad 

news on the volatility of the futures market are asymmetric if the leverage effect is 

taken into consideration. Therefore, the asymmetric TGARCH model with normal 

innovations could be employed to estimate the conditional VaR of the futures market, 

and the GARCH model with normal innovations could be employed to estimate the 

conditional VaR of the spot market. Engle and Bollerslev. (1986), Bollerslev (1986, 

1987), Engle, Lilien and Robins (1987), and Nelson (1991) use the GARCH model to 

estimate the conditional covariance as follows: 

2

1

1 1

q p

t i i j t j

i j

h h

                                         3.3

 

Zakoian (1994), Glosten, Jaganathan and Runkle (1993) introduced a TGARCH 

model to study the asymmetric impacts of good news and bad news on market 

volatility: 

2 2

1 1 1

1 1

q p

t i i j t j i t

i j

h h d                                 3.4 

where td = 1 when t < 0, and otherwise td = 0. The threshold indicator (or signal 

variable) td describes the impact of information. When td = 1, it signals the impact 

of bad news; when td = 0, it signals the impact of good news. The parameter γ 

measures the difference between the impacts of good news and bad news on the 

financial market. A significant non-zero parameter indicates that the impacts of good 

news and bad news on volatility are asymmetric. When γ > 0, the impact of bad news 

on volatility is more significant; while when γ < 0, the impact of good news is more 

significant. 

 

Employing a GARCH-type model, downside and upside VaR in the futures and spot 

markets could be calculated as follows: 
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, , , ,(  )  -l t l t l l tV down z h , l=1, 2                                   3.5 

, , ,1 ,(  )  l t l t l l tV up z h , l=1, 2                                     3.6 

where
,l t

is the conditional expectation of market 1, 
,lz is the left α - quantile of the 

distribution, which is followed by the standardized innovation of the GARCH-type 

model of market l. 

 

The estimation of VaR depends on the probability distribution and the given 

confidence level for the futures rate of return on financial products. Backtesting is 

used to test whether the given confidence level matches reality for the estimated VaR. 

If the loss exceeds the estimated VaR, the VaR model underestimates the real risk 

level; if the loss is below the estimated VaR, the VaR model overestimates the real 

risk level. Backtesting on the VaR model provides a way to check whether the VaR 

model adequately fits reality. Kupiec (1995) proposes a likelihood ratio test that treats 

the scenario when the rate of return exceeds the estimated VaR as an independent 

event with a binomial distribution. Suppose the confidence level is 1 − α, the sample 

size is T, the days of failure is N, then the sample failure frequency is f = N/T. The 

expectation for the failure rate should be α when the VaR model is correctly specified. 

Any significant difference between f and α indicates a misspecification of the VaR 

model. To check this hypothesis, Kupiec (1995) constructs a likelihood ratio test 

statistic: 

2 ln  1 2 ln 1
T N N T N N

LR f f                        3.7 

Under the null hypothesis of the correct specification of the VaR model, it should be  

2 1LR  asymptotically. The asymptotic critical values for the 10%, 5%, and 1% 

significance levels are 2.706, 3.841 and 6., respectively. If LR is larger than the 

critical value at a pre-specified level, then the null hypothesis is rejected, indicating 

that the VaR model is inadequate. 

 

3.3.3.2 Granger causality test 



 

 109 

The Granger causality test aims to explore the information spillover effects between 

the domestic and foreign futures markets as well as between the domestic spot and 

futures markets. In this chapter, I mainly conduct a linear Granger causality test to 

understand the information spillover in returns, volatility, extreme upside risk (for the 

short term) and extreme downside risk (for the long term). 

 

Geweke, Meese and Dent, (1983) introduce test models for linear Granger causality. 

Suppose that 

10 1 1
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Y a a Y                                               3.8 
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i j

Y a a Y Y                                     3.9 

where 1{ }ia  and 2{ }ia  are the coefficients on the lagged values of tY  , { }j are the 

coefficients on the lagged values of tX  , 1t and 2t are normal white noise, and m 

and k are lag lengths. Given this specification, no Granger causality from tX  to tY  

is equivalent to the null hypothesis that 

H0: j = 0, j = 1, 2, ... , k. 

The associated F-test statistic is 

1 2

2

/

/ 1

ESS ESS k
F

ESS N k m
                                           3.10 

where ESS1 and ESS2 are the sums of the squared residuals in regressions 3.8 and 3.9; 

N is the size of sample tY . 

Under the null hypothesis, the F statistic follows an F distribution with (K, N − k − m 

− 1) degrees of freedom. At significance level α, if F > Fα (K, N − k − m − 1), where 

F > Fα (K, N − k − m − 1) is the critical value at level a, the null hypothesis is rejected, 

and tX Granger-causes tY  . 

 



 

 110 

3.4 Empirical Result 

In this section, the empirical test is conducted in three steps: first, I choose the 

appropriate model to describe the volatility patterns of the time series; second, I 

compute the upside and downside risk by adopting the Value-at-Risk model. In this 

step, backtesting is conducted to check whether the VaR model could deliver 

satisfactory results – a low percentage of the sample cross the upside and downside 

VaR; finally, a Granger causality test is conducted to detect whether information 

spillover does exist across markets. Specifically, it is conducted considering three 

aspects: the information spillover and risk spillover effects between the Chinese 

domestic metal spot and futures markets; the information spillover and risk spillover 

effects between the Chinese and overseas metal futures markets; and the information 

spillover and risk spillover effects between the Chinese metal futures market and the 

overseas financial markets. 

 

3.4.1 AR (m)-GARCH (p, q) test 

3.4.1.1 Chinese spot metal market 

From Figure 3.1, I can see that there are some irregular peaks in the spot metal market 

series. The eminent volatility clustering suggests that the daily volatility in the copper 

market is significant, abrupt, and displays conditional heteroskedasticity.  

 

Table 3.2 reports the results of the augmented Dicky–Fuller test for stationarity for the 

series. The results indicate that the null hypothesis (there exists a unit root) is rejected 

under a 1% significance level. Therefore, the series is stationary. 

 

Insert table 3.2 and table 3.6 here 

 

I use the partial autocorrelation function and the autocorrelation function to determine 

the order of an AR process in the mean equation. Based on the characteristics of the 

residual series, I determine the order of ARCH and GARCH in the variance equation. 
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Specifically, I build the AR (1) – GARCH (1, 1) model for copper spot prices. (See 

table 3.6) 

 

3.4.1.2 Chinese and overseas futures metal markets 

From Figure 3.2, irregular peaks can also be found in these six metal futures time 

series. The eminent volatility clustering shows the existence of conditional 

heteroskedasticity. Table 3.3 reports the results of the augmented Dicky–Fuller test for 

stationarity for the six series. The results indicate that the null hypothesis (there exists 

a unit root) is rejected under the 1% significance level. Therefore, the six series are 

stationary. 

 

Using methods similar to those in section 3.4.1.1, I determine the order of ARCH and 

GARCH in the variance equation. To explore the volatility asymmetry featured in the 

futures time series, I adopt the T - GARCH model for the futures time series.  

 

Insert table 3.7 to table 3.12 here 

 

From table 3.7 to table 3.12, I can see that asymmetry factors are significant in both 

Chinese and overseas futures markets. In the Chinese metal futures market, the sign of 

the asymmetry factor is positive for copper and zinc futures, and it is negative for 

aluminium futures. Therefore, although the mechanism of buying and selling is 

symmetrical in the futures market, the impacts of good and bad news on market 

volatility is still asymmetric. For copper and zinc futures, the impact of bad news is 

greater; for aluminium, the impact of good news is greater. In the Chinese futures 

market, people prefer to take long positions in speculative copper and zinc products 

for psychological reasons (Liu, Cheng, Wang, Hong and Li, 2008). When the futures 

price increases, the number of speculators also grows. With risk increasing, the 

reaction to market uncertainty consequently become stronger. As for aluminium, 

excess supply has dampened its price for a long period of time. It is probable that any 

goods news could lead to a moderate rebound in price. 
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The sign of the asymmetry factor is different in the LME market, however. It is 

positive only for copper, while negative for both aluminium and zinc. The results 

show that the impacts of good and bad news on market volatility are also asymmetric. 

A closer watch could tell that the sign of the asymmetry factor is identical for both 

aluminium and copper in the SHFE and the LME.  

 

3.4.1.3 Overseas financial market—the AUDUSD rate and the ASX stock index 

From Figure 3.2, irregular peaks could also be found in these two time series. 

Volatility clustering shows the existence of conditional heteroskedasticity. Table 3.4 

reports the results of the augmented Dicky–Fuller test for stationarity for the two 

series. The results indicate that the null hypothesis (there exists a unit root) is rejected 

under a 1% significance level. Therefore, the two series are stationary. 

 

Using the methods similar to those in section 3.4.1.1, I determine the order of ARCH 

and GARCH in the variance equation. Because taking short positions is allowed in the 

foreign exchange market, I adopt the TGARCH model for the AUDUSD time series. 

For ASX stock index, I choose to use GARCH model. 

 

Insert table 3.13 to table 3.14 here 

 

From table 3.13, I can see that asymmetry factors are significant in the AUDUSD time 

series and that the sign of the factor is positive, indicating that the impact of bad news 

is greater than that of good news for the AUDUSD. It is worth mentioning that the 

sign of the asymmetrical factor is identical for the SHFE copper and zinc futures and 

the AUDUSD. 

 

3.4.2 VaR (Value-at-risk) test 

Based on equations 5 and 6, I calculate the upside and downside VaR for all of the 

time series mentioned in section 3.4.1. The volatility used in the upside and downside 
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VaR is consistent with the model introduced in the previous section. For spot metal 

prices and the ASX stock index, the AR-GARCH model is adopted; for futures metal 

prices, the AUDUSD rate and AR-TGARCH model is adopted. 

 

3.4.2.1 Chinese spot metal market--copper spot prices 

From Figure 3.4, I could see that the upside and downside VaR model fit well for 

copper spot prices. For spot copper, it can be seen from table 3.15 that Kupiec’s (1995) 

LR tests of downside and upside VaR are insignificant at conventional significance 

levels, suggesting the adequacy of the VaR model for the series. 

 

Insert Figure 3.4 here 

Insert table 3.15 here 

 

It can be found in table 3.15 that the failure rate (the odds that the actual value 

exceeds the estimated upside and downside VaR values) in the downside is higher 

than that in the upside. The downside VaR has been crossed 82 times, 21 times more 

than the upside VaR. One probable reason for this result is that things could have 

turned out to be even worse than the worst scenario predicted by people when bad 

news came. 

 

Comparing table 3.15 with table 3.17 (or see Figure 3.7), I find that the VaR of the 

futures market is larger than that of the spot market, indicating that the futures market 

is much riskier due to the participation of many speculators and their use of leverage. 

 

3.4.2.2 Chinese and overseas futures metal market—the SHFE and the LME 

aluminium, copper and zinc prices 

From figure 3.5 and table 3.16 to table 3.21, I can see that the upside and downside 

VaR models fit well for all of the futures time series. For the SHFE and LME futures 

market, Kupiec’s (1995) LR tests of downside and upside VaR are all insignificant at 

conventional significance levels, suggesting the adequacy of the VaR model for all six 
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of these series. 

 

Insert Figure 3.5 here 

Insert table 3.16 to 3.21 here 

 

Similar to the observation in the spot copper market, I could also find in tables 3.16 to 

3.21 that the failure rate (the odds that the actual value exceeds the estimated upside 

and downside VaR value) in the downside is higher than that in the upside for all of 

the futures products, regardless which market they belong to. In the SHFE market, 

copper futures are the most typical example. The downside VaR has been crossed 87 

times, 37 more times than the upside VaR. It is often the case that such a “cross” 

occurs in clusters, especially when market is in turmoil. Here is an example: during 

the 2008 global financial crisis, the downside VaR was surpassed on three consecutive 

days, from 2008.10.6 to 2008.10.8 These findings conform to what I observe during 

the financial crisis period. After the Lehman bankruptcy, panic permeated in the 

global market, triggering a vicious cycle: asset prices fell, followed by margin calls 

and a liquidity squeeze, followed by asset fire sales to meet the need, followed by a 

deeper fall in asset price. Under these circumstances, the VaR threshold calculated is 

crossed consecutively because a small probability event occurs and ferments. Unless 

dramatic measures are taken to stop the vicious cycle, this cycle will only repeat. 

When the market is tranquil, however, the upside and downside VaR is rarely crossed. 

 

In the LME market, though, although the downside VaR is crossed more often than 

the upside VaR, the difference is narrower than that in the SHFE market. The probable 

reason is that in the SHFE market, they are trading using an “up and floor” 

mechanism to prevent prices from extremes, while in LME market, there is no similar 

arrangement. Hence, extreme market movement can be fulfilled in one day in the 

LME market, while in the SHFE, it may take several days.  

 

Comparing table 3.16 with table 3.19, table 3.17 with table 3.20, and table 3.18 with 
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table 3.21 (or see Figure 3.8), I find that the mean level of VaR is higher in the LME 

market than in the SHFE market for aluminium and copper. However, the standard 

deviation is higher in the SHFE market for aluminium than it is in the LME market. A 

probable explanation for these findings is that market liquidity is better in the LME 

market than in the SHFE market because the LME market is open to all international 

investors, while the SHFE is more or less a domestic market and has less diverse 

participants.  

 

3.4.2.3 Overseas financial market—the AUDUSD rate and the ASX stock index 

From Figure 3.6 and table 3.22 to table 3.23, I see that the upside and downside VaR 

model fits well for the AUDUSD and ASX stock index time series. Moreover, 

Kupiec’s (1995) LR tests of downside and upside VaR are insignificant at 

conventional significance levels, suggesting the adequacy of the VaR model for these 

two series. 

 

Insert Figure 3.6 here 

Insert table 3.22 to 3.23 here 

 

Similar to the previous observation, I also find in tables 3.22 to 3.23 that the failure 

rate (the odds that the actual value exceeds the estimated upside and downside VaR 

values) in the downside is higher than that in the upside for these two series. For the 

AUDUSD time series, the downside VaR has been crossed 64 times, 26 more times 

than the upside VaR. For the ASX time series, the downside VaR has been crossed 66 

times, 43 more times than the upside VaR. However, a closer watch on the data show 

that the crossings did not occur in clusters.  

 

Comparing table 3.17 with tables 3.22 and 3.23 (or see Figure 3.10), I can see that the 

VaR of the SHFE futures market is larger than that of the foreign exchange market 

and the stock index market, indicating that the former has a larger risk. These findings 

are consistent with common sense because the futures market is characterized by 
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wider usage of leverage, while the foreign exchange market and stock index market 

are characterized by better market depth and liquidity.  

 

3.4.3 Granger causality test 

Table 3.24 shows the Granger causality empirical result. I try to analyse these results 

from three perspectives. 

 

3.4.3.1 Chinese spot and futures metal market--copper spot and futures prices 

Table 3.24 shows that at the 1% significance level, there is two-way Granger causality 

between the prices of the futures market and those of the spot market, with the impact 

of the futures market on the spot market being stronger than the impact of the spot 

market on the futures market. The results also hold in the upside and downside risk 

scenarios. The results indicate that in China’s futures market, futures pricing functions 

effectively. 

 

3.4.3.2 Chinese and overseas futures metal market—the SHFE and LME 

aluminium, copper and zinc prices 

From Table 3.24, a causal link can be found between the SHFE and LME markets; 

with the direction being from the SHFE market to the LME market. Moreover, I could 

see that it is also the case in the extreme scenario (both upside risk and downside risk); 

an obvious causal link can be found from SHFE metal to LME metal (aluminium and 

copper hold at a 1% significance level while zinc holds at a 5% significance level.) 

These results indicate that under both normal and extreme market scenarios, the 

SHFE market can directly guide movement in the LME market, indicating the 

increase in China’s pricing power for commodities from one perspective.  

 

3.4.3.3 Chinese futures metal market and the overseas financial markets—the 

AUDUSD rate and the ASX stock index 
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From Table 3.24, I find that a causal link exists and the direction is from the ASX 

stock index to SHFE copper futures. However, the results do not hold in extreme 

scenarios (both upside and downside). The results suggest that unlike the SHFE and 

LME scenarios, the impact of China’s domestic futures market on the global financial 

market is still limited. The “Chinese specific factor” should not exaggerated. 

 

3.5 Conclusion 

In this Chapter, I try to explore the interaction between China’s futures market and the 

overseas futures market. Specifically, I aim to study the information spillover effect 

between the domestic spot and futures markets as well as the information and risk 

spillover effects between the domestic futures market and the overseas futures market. 

Moreover, to check whether China has gained pricing power in the global commodity 

market, I also study the risk spillover effect between the domestic futures market and 

other overseas financial markets. 

 

Hong and Cheng (2005) study the information spillover between China’s domestic 

stock market and the global equity market. However, significant difference exists 

between the stock market and the futures market. Liu, Cheng, Wang, Hong and Li 

(2008) is an up-to-date piece of research in our field. This study takes the upside risk 

into account (short-seller’s risk) rather than merely focusing on the downside risk. By 

investigating the interaction between the domestic and the overseas futures markets 

(which has never been done before) with a new data set, an extant research gap is 

filled. More importantly, I can check whether China has gained power in international 

commodity pricing from the perspective of the information and risk spillover effects. 

 

The empirical results indicate that in China’s futures market, futures pricing functions 

effectively because a two-way causal link is found between the spot and futures 

products, and the futures market plays the leading role. As the domestic futures 

market gradually matures, China has the potential to assume more pricing power in 
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the global market. As for the interaction between the domestic and overseas futures 

markets, a causal link exists from the SHFE market to LME market. Such results also 

hold for the extreme upside and downside risk scenarios. This result shows that 

movement in the SHFE market could directly guide movement in the LME market 

under any market scenario. To some extent, it also indicates that China’s pricing 

power in the global commodity market has grown. As for the interaction between the 

SHFE metal market and the overseas financial market, no consistent conclusions have 

yet been found, indicating that that the Chinese factor is largely reflected in the 

commodity market, while its impact on the global financial market as a whole is 

limited. For practitioners, these empirical results are of great practical importance. On 

the one hand, due emphasis should be laid on Chinese specific factors: both hedgers 

and speculators should make full use of the futures market. Hedgers could lock in the 

price by taking the opposite position in the futures market. Speculators could also try 

to exploit potential market mispricing opportunities between the domestic and the 

overseas futures market. On the other hand, Chinese specific factors should not be 

wildly exaggerated. Investment managers should be very careful when they try to 

exploit “mispricing opportunities” in overseas financial market (for example, stock 

markets) just based on their understanding of the domestic commodity market. 
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Figures and Tables in Chapter 3 

Table 3.1: Descriptive statistics of the time series 

 
Note: ALUM_F1 refers to the SHFE aluminium futures rate of return; ALUM_FS1 

refers to the Chinese spot aluminium futures rate of return; ASX refers to the ASX 

stock index rate of return; AUDUSD refers to the Australian dollar–dollar rate of 

return; COPP_F1 refers to the SHFE copper futures rate of return; COPP_FS1 refers 

to the SHFE copper futures rate of return; LME ALUM refers to the LME aluminium 

futures rate of return; LME COPP refers to the LME copper futures rate of return; 

LME ZINC refers to the LME zinc futures rate of return; ZINC_F1 refers to the 

SHFE zinc futures rate of return; 

 

The result of the stationary test  

Table 3.2: The stationary tests for the Chinese spot metal market--copper spot 

rate of return 

ADF test statistics (spot copper)       -31.45234           5% critical value −3.4129 

10% critical value −3.1285 

 

Table 3.3: The stationary tests for the Chinese and overseas futures metal 

market—SHFE and LME aluminium, copper and zinc rates of return 

ADF test statistics (SHFE aluminium)     -61.31938           1% critical value −3.9644 

ADF test statistics (SHFE copper)        -32.00709           5% critical value −3.4129 

ADF test statistics (SHFE zinc)           -19.49676         10% critical value −3.1285 

ADF test statistics (LME aluminium)       -63.35377 

ADF test statistics (LME copper)         -64.76101           

ADF test statistics (LME zinc)           -63.97524             

Note: SHFE aluminium, copper, and zinc refer to the Shanghai Futures Exchange 

aluminium, copper and zinc rates of return, respectively; LME aluminium, copper, 

and zinc refer to the London Metal Exchange aluminium, copper and zinc rates of 

return, respectively 

 

ALUM_F1 ALUM_FS1 ASX1 AUDUSD1 COPP_F1 COPP_FS1 LME_ALUM1 LME_COPP1 LME_ZINC1 ZINC_F1
 Mean -4.81E-05 -5.18E-05 0.000219 5.48E-05 0.000234 0.000225 4.65E-05 0.0002 0.000199 -0.000461
 Median 0 0 0.000413 0.000271 0 0 0 0.000325 0 0.00057
 Maximum 0.053988 0.043185 0.057244 0.081214 0.065999 0.06655 0.059131 0.118805 0.09135 0.059579
 Minimum -0.067094 -0.071925 -0.087043 -0.086048 -0.106115 -0.088375 -0.06581 -0.104003 -0.12138 -0.094029
 Std. Dev. 0.009065 0.008492 0.009975 0.008272 0.013743 0.013018 0.012479 0.016722 0.017659 0.020787
 Skewness -0.67406 -0.668732 -0.540581 -0.557404 -0.447238 -0.354233 -0.206736 -0.182112 -0.267551 -0.398003
 Kurtosis 10.21235 10.63669 10.0745 18.2296 7.276674 7.193532 5.505657 8.08151 7.233761 3.851288

 Jarque-Bera 8557.598 9537.119 8141.439 37066.45 3032.928 2874.427 988.0829 3982.919 2793.122 52.12537
 Probability 0 0 0 0 0 0 0 0 0 0

 Sum -0.183436 -0.197105 0.835219 0.209077 0.892956 0.857572 0.170928 0.737645 0.731922 -0.424903
 Sum Sq. Dev. 0.313421 0.274516 0.379498 0.260947 0.719937 0.646232 0.572422 1.029636 1.147579 0.397541

 Observations 3815 3808 3815 3815 3813 3814 3677 3683 3681 921
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Table 3.4: Stationary tests for the overseas financial market—the AUDUSD rate 

and the ASX stock index 

ADF test statistics (AUDUSD)         -66.02937                1% critical value −3.9644 

ADF test statistics (ASX)             -64.01139                5% critical value −3.4129 

10% critical value −3.1285 

Note: AUDUSD refers to the Australian dollar–dollar rate, and ASX refers to the 

Australian stock index 

 

The result of the AR-GARCH and AR-TGARCH models 

Table 3.5: GARCH model for the SHFE aluminium spot rate of return 

Mean equation ALUM_FS1 

ALUM_FS1(-1) 0.010811 (0.037483) 

Variance equation ALUM_FS1 

C 0.003049 ***(0.0000) 

RESID(-1)^2 0.096777 (0.1265) 

GARCH(-1) -0.005886**(0.0254) 

Note: the statistics in parentheses are t-statistics. One, two, and three asterisks indicate 

the 10%, 5% and 1% levels of statistical significance; ALUM_FS1 refers to the 

Chinese spot aluminium rate of return 

 

Table 3.6: GARCH model for Chinese copper spot rate of return 

Mean equation COPP_FS1 

COPP_FS1 (-1) 0.080232***(0.0000) 

Variance equation COPP_FS1 

C 1.48E-06 ***(0.0000) 

RESID(-1)^2 0.073848 (0.0000) 

GARCH(-1) 0.917144 ***(0.0000) 

Note: the statistics in parentheses are t-statistics. One, two, and three asterisks indicate 

the 10%, 5% and 1% levels of statistical significance; COPP_FS1 refers to the SHFE 

copper futures rate of return 

 

Table 3.7: TGARCH model for the SHFE aluminium futures rate of return 

Mean equation ALUM_F1 

ALUM_F1(-5) -0.029093*(0.0496) 

Variance equation ALUM_F1 

C 1.31E-06 ***(0.0000) 

RESID(-1)^2 0.187444***(0.0000) 

RESID(-1)^2*(RESID(-1)<0) -0.037669***(0.0000) 

GARCH(-1) 0.836915 ***(0.0000) 

Note: the statistics in parentheses are t-statistics. One, two, and three asterisks indicate 

the 10%, 5% and 1% levels of statistical significance; ALUM_F1 refers to the SHFE 

aluminium futures rate of return 
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Table 3.8: TGARCH model for the SHFE copper futures rate of return 

Mean equation COPP_F1 

COPP_F1(-2) 0.035023*(0.0321) 

Variance equation COPP_F1 

C 1.71E-06 ***(0.0000) 

RESID(-1)^2 0.071291***(0.0000) 

RESID(-1)^2*(RESID(-1)<0) 0.017566*(0.0274) 

GARCH(-1) 0.911362 ***(0.0000) 

Note: the statistics in parentheses are t-statistics. One, two, and three asterisks indicate 

the 10%, 5% and 1% levels of statistical significance; COPP_F1 refers to the SHFE 

copper futures rate of return 

 

Table 3.9: TGARCH model for the SHFE zinc futures rate of return 

Mean equation ZINC_F1 

ZINC _F1(-2) 0.057223 (0.1086) 

Variance equation ZINC _F1 

C 5.94E-05 ***(0.0023) 

RESID(-1)^2 0.144422***(0.0000) 

GARCH(-1) 0.720724 ***(0.0000) 

Note: the statistics in parentheses are t-statistics. One, two, and three asterisks indicate 

the 10%, 5% and 1% levels of statistical significance; ZINC_F1 refers to the SHFE 

zinc futures rate of return 

 

Table 3.10: TGARCH model for the LME aluminium futures rate of return 

Mean equation LME_ALUM1 

LME_ALUM1 (-2) -0.037231 (0.0235) 

Variance equation LME_ALUM1 

C 1.12E-06 ***(0.0000) 

RESID(-1)^2 0.051171***(0.0000) 

RESID(-1)^2*(RESID(-1)<0) -0.017493***(0.0017) 

GARCH(-1) 0.720724 ***(0.0000) 

Note: the statistics in parenthesis are t-statistics. One, two, and three asterisks indicate 

the 10%, 5% and 1% levels of statistical significance; LME_ALUM1 refers to the 

LME aluminium futures rate of return 
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Table 3.11: TGARCH model for the LME copper futures rate of return 

Mean equation LME_COPP1 

LME_COPP1 (-5) 0.036424*(0.0325) 

Variance equation LME_COPP1 

C 1.86E-06 ***(0.0000) 

RESID(-1)^2 0.044202***(0.0000) 

RESID(-1)^2*(RESID(-1)<0) 0.010781*(0.0241) 

GARCH(-1) 0.943265 ***(0.0000) 

Note: the statistics in parentheses are t-statistics. One, two, and three asterisks indicate 

the 10%, 5% and 1% levels of statistical significance; LME_COPP1 refers to the 

LME copper futures rate of return 

 

Table 3.12: TGARCH model for the LME zinc futures rate of return 

Mean equation LME_ZINC1 

LME_ZINC1 (-2) -0.065641***(0.0001) 

Variance equation LME_ZINC1 

C 4.17E-07 ***(0.0000) 

RESID(-1)^2 0.042931***(0.0000) 

RESID(-1)^2*(RESID(-1)<0) -0.024014***(0.0000) 

GARCH(-1) 0.968549 ***(0.0000) 

Note: the statistics in parentheses are t-statistics. One, two, and three asterisks indicate 

the 10%, 5% and 1% levels of statistical significance; LME_ZINC1 refers to the LME 

zinc futures rate of return 

 

Table 3.13: TGARCH model for the AUDUSD rate of return 

Mean equation AUDUSD1 

AUDUSD1 (-1) -0.031148(0.0585) 

Variance equation AUDUSD1 

C 5.76E-07 ***(0.0000) 

RESID(-1)^2 0.044051***(0.0000) 

RESID(-1)^2*(RESID(-1)<0) 0.013694**(0.0456) 

GARCH(-1) 0.939201 ***(0.0000) 

Note: the statistics in parentheses are t-statistics. One, two, and three asterisks indicate 

the 10%, 5% and 1% levels of statistical significance; AUDUSD1 refers to the 

Australian dollar–dollar rate of return 

 

Table 3.14: GARCH model for the ASX stock index rate of return 

Mean equation ASX1 

ASX1 (-3) -0.031148*(0.0585) 

Variance equation ASX1 

C 1.24E-06 ***(0.0000) 

RESID(-1)^2 0.092459***(0.0000) 

GARCH(-1) 0.895763 ***(0.0000) 
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Note: the statistics in parentheses are t-statistics. One, two, and three asterisks indicate 

the 10%, 5% and 1% levels of statistical significance; ASX1 refers to the ASX stock 

index rate of return 
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Backtesting results: 

Table 3.15: Backtesting result of the downside and upside VaR for the Chinese 

copper spot rate of return 

 

GARCH 

model 

Confidence level 

(%) 
Mean Std.dev. 

Failure 

time 

Failure 

rate 

LR 

statistics 

Downside 

VaR 
99 -0.027  0.013  82 2.15% 1.91  

Upside VaR 99 0.027  0.013  61 1.60% 1.96  

 

Table 3.16: Backtesting result of the downside and upside VaR for the SHFE 

aluminium futures rate of return 

GARCH 

model 

Confidence 

level (%) 
Mean Std.dev. 

Failure 

time 

Failure 

rate 

LR 

statistics 

Downside 

VaR 
99 -0.019  0.011  80 2.10% 1.91  

Upside 

VaR 
99 0.019  0.011  70 1.84% 1.94  

 

Table 3.17: Backtesting result of the downside and upside VaR for the SHFE 

copper futures rate of return 

GARCH 

model 

Confidence level 

(%) 
Mean Std.dev. 

Failure 

time 

Failure 

rate 

LR 

statistics 

Downside 

VaR 
99 -0.029  0.014  87 2.28% 1.89  

Upside VaR 99 0.029  0.014  50 1.31% 1.99  
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Table 3.18: Backtesting result of the downside and upside VaR for the SHFE zinc 

futures rate of return 

 

Table 3.19: Backtesting result of the downside and upside VaR for the LME 

aluminium futures rate of return 

GARCH 

model 

Confidence 

level (%) 
Mean Std.dev. 

Failure 

time 

Failure 

rate 

LR 

statistics 

Downside 

VaR 
99 -0.028  0.009  55 1.44% 1.98  

Upside VaR 99 0.028  0.009  51 1.34% 1.99  

 

Table 3.20: Backtesting result of the downside and upside VaR for the LME 

copper futures rate of return 

GARCH 

model 

Confidence level 

(%) 
Mean Std.dev. 

Failure 

time 

Failure 

rate 

LR 

statistics 

Downside 

VaR 
99 -0.035  0.015  58 1.52% 1.97  

Upside VaR 99 0.036  0.015  51 1.34% 1.99  

 

Table 3.21: Backtesting result of the downside and upside VaR for the LME zinc 

futures rate of return 

GARCH 

model 

Confidence 

level (%) 
Mean Std.dev. 

Failure 

time 

Failure 

rate 

LR 

statistics 

Downside 

VaR 
99 -0.037  0.017  59 1.55% 1.97  

Upside 

VaR 
99 0.037  0.017  51 1.34% 1.99  

 

  

GARCH 

model 

Confidence 

level (%) 
Mean Std.dev. 

Failure 

time 

Failure 

rate 

LR 

statistics 

Downside 

VaR 
99 -0.048  0.009  12 1.31% 1.99  

Upside 

VaR 
99 0.047  0.009  9 0.98% 2.01  
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Table 3.22: Backtesting result of the downside and upside VaR for the AUDUSD 

rate of return 

GARCH 

model 

Confidence 

level (%) 
Mean Std.dev. 

Failure 

time 

Failure 

rate 

LR 

statistics 

Downside 

VaR 
99 -0.017  0.008  64 1.68% 1.96  

Upside 

VaR 
99 0.017  0.008  38 1.00% 2.00  

 

Table 3.23: Backtesting result of the downside and upside VaR for the ASX stock 

index rate of return 

GARCH 

model 

Confidence 

level (%) 
Mean Std.dev. 

Failure 

time 

Failure 

rate 

LR 

statistics 

Downside 

VaR 
99 -0.021  0.010  66 1.73% 1.95  

Upside 

VaR 
99 0.021  0.010  23 0.60% 1.95  
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Figure 3.1: Chinese spot metal market-copper spot rate of return 

 

Note: COPP_FS1 refers to the SHFE copper spot rate of return 
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Figure 3.2: Chinese and overseas futures metal market--SHFE and LME 

aluminium, copper and zinc rates of return 
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Note: ALUM_F1 refers to the SHFE aluminium futures rate of return; COPP_F1 

refers to the SHFE copper futures rate of return; ZINC_F1 refers to the SHFE zinc 

futures rate of return; LME ALUM refers to the LME aluminium futures rate of return; 

LME COPP refers to the LME copper futures rate of return; LME ZINC refers to the 

LME zinc futures rate of return 
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Figure 3.3: Overseas financial market—the AUDUSD rate and the ASX stock 

index 

 

Note: ASX1 refers to the ASX stock index rate of return; AUDUSD1 refers to the 

Australian dollar–dollar rate of return 
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Figure 3.4: Chinese spot metal market--copper spot rate of return-upside VaR 

and downside VaR 

 

Note: COPP_FS1 refers to the SHFE copper spot rate of return; VARCOPPFS1UP 

refers to the upside VaR of the SHFE copper spot rate of return; 

VARCOPPFS1DOWN refers to the downside VaR of the SHFE copper spot rate of 

return 
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Figure 3.5: Chinese and overseas futures metal markets—the SHFE and LME 

aluminium, copper and zinc rates of return 

 

   

 

Note: ALUM_F1 refers to the SHFE aluminium futures rate of return; COPP_F1 

refers to the SHFE copper futures rate of return; ZINC_F1 refers to the SHFE zinc 

futures rate of return; LME ALUM refers to the LME aluminium futures rate of return; 

LME COPP refers to the LME copper futures rate of return; LME ZINC refers to the 

LME zinc futures rate of return; VARALUMTG1UP refers to the upside VaR of the 

SHFE aluminium futures rate of return; VARALUMTG1DOWN refers to the 

downside VaR of the SHFE aluminium futures rate of return; VARCOPPTG1UP 

refers to the upside VaR of the SHFE copper futures rate of return; 

VARCOPPTG1DOWN refers to the downside VaR of the SHFE copper futures rate of 

return; VARZINCTG1UP refers to the upside VaR of the SHFE zinc futures rate of 
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return; VARZINCTG1DOWN refers to the downside VaR of the SHFE zinc futures 

rate of return; VARLMEALUMTG1UP refers to the upside VaR of the LME 

aluminium futures rate of return; VARALUMTG1DOWN refers to the downside VaR 

of the LME aluminium futures rate of return; VARLMECOPPTG1UP refers to the 

upside VaR of the LME copper futures rate of return; VARCOPPTG1DOWN refers to 

the downside VaR of the LME copper futures rate of return; VARLMEZINCTG1UP 

refers to the upside VaR of the LME zinc futures rate of return; 

VARZINCTG1DOWN refers to the downside VaR of the LME zinc futures rate of 

return 
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Figure 3.6: Overseas financial market—the AUDUSD rate and the ASX stock 

index 

 

Note: ASX1 refers to the ASX stock index rate of return; AUDUSD1 refers to the 

Australian dollar–dollar rate of return; VARASX1UP refers to the upside VaR of the 

ASX stock index rate of return; VARASX1DOWN refers to the downside VaR of the 

ASX stock index rate of return; VARAUDUSDTG1UP refers to the upside VaR of the 

AUDUSD rate of return; VARAUDUSDTG1DOWN refers to the downside VaR of 

the AUDUSD rate of return 
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Figure 3.7: Comparison between Chinese spot and futures copper rates of return: 

upside and downside VaR 

 

Note: VARCOPPFS1UP refers to the upside VaR of the SHFE copper futures rate of 

return; VARCOPPFS1DOWN refers to the downside VaR of the SHFE copper futures 

rate of return; VARCOPPTG1UP refers to the upside VaR of the SHFE copper futures 

rate of return; VARCOPPTG1DOWN refers to the downside VaR of the SHFE copper 

futures rate of return 
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Figure 3.8: Comparison between the SHFE and the LME futures rates of 

return—aluminium, copper and zinc: upside and downside VaR 

 

 

 

 

Note: VARALUMTG1UP refers to the upside VaR of the SHFE aluminium futures 

rate of return; VARALUMTG1DOWN refers to the downside VaR of the SHFE 

aluminium futures rate of return; VARCOPPTG1UP refers to the upside VaR of the 

SHFE copper futures rate of return; VARCOPPTG1DOWN refers to the downside 

VaR of the SHFE copper futures rate of return; VARZINCTG1UP refers to the upside 

VaR of the SHFE zinc futures rate of return; VARZINCTG1DOWN refers to the 
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downside VaR of the SHFE zinc futures rate of return; VARLMEALUMTG1UP refers 

to the upside VaR of the LME aluminium futures rate of return; 

VARALUMTG1DOWN refers to the downside VaR of the LME aluminium futures 

rate of return; VARLMECOPPTG1UP refers to the upside VaR of the LME copper 

futures rate of return; VARCOPPTG1DOWN refers to the downside VaR of the LME 

copper futures rate of return; VARLMEZINCTG1UP refers to the upside VaR of the 

LME zinc futures rate of return; VARZINCTG1DOWN refers to the downside VaR of 

the LME zinc futures rate of return 
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Figure 3.9: Comparison between the SHFE copper futures rate of return and the 

AUDUSD and ASX stock index rates of return: upside and downside VaR 

 

 

Note: VARCOPPFS1UP refers to the upside VaR of the SHFE copper futures rate of 

return; VARCOPPFS1DOWN refers to the downside VaR of the SHFE copper futures 

rate of return; VARASX1UP refers to the upside VaR of the ASX stock index rate of 

return; VARASX1DOWN refers to the downside VaR of the ASX stock index rate of 

return; VARAUDUSDTG1UP refers to the upside VaR of the AUDUSD rate of return; 

VARAUDUSDTG1DOWN refers to the downside VaR of the AUDUSD rate of return 
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Table 3.24 Granger causality test result using the entire sample  

X1 X2 Test 1 Test 2 

COPP_F1 COPP_FS1 151.141 (0.0000) 3.75790(0.02342) 

ALUM_F1 LME_ALUM1 4.44037(0.01185) 0.17125(0.84261) 

COPP_F1 LME_COPP1 3.69339(0.02498) 0.49668(0.60859) 

ZINC_F1 LME_ZINC1 4.58778(0.01041) 0.49299(0.61096) 

COPP_F1 AUDUSD1 1.39140(0.24885) 2.16236(0.11519) 

COPP_F1 ASX1 1.51856(0.21916) 7.34576(0.00065) 

VARCOPPFS1UP VARCOPPTGF1UP 6.69528(0.00125) 6.58140(0.00140) 

VARCOPPFS1DOWN VARCOPPTGF1DOWN 6.69528(0.00125) 6.58140(0.00140) 

VARALUMTGF1UP VARLMEALUMTG1UP 6.32997(0.00180) 0.98211(0.37461) 

VARALUMTGF1DOWN VARLMEALUMTG1DOWN 6.32997(0.00180) 0.98211(0.37461) 

VARCOPPTGF1UP VARLMECOPPTG1UP 10.1483 (0.0000) 3.12039(0.04425) 

VARCOPPTGF1DOWN VARLMECOPPTG1DOWN 10.1483 (0.0000) 3.12039(0.04425) 

VARZINCTGF1UP VARLMEZINCTG1UP 4.35426(0.01312) 0.68530(0.50420) 

VARZINCTGF1DOWN VARLMEZINCTG1DOWN 4.35426(0.01312) 0.68530(0.50420) 

VARCOPPTGF1UP VARAUDUSDTG1UP 2.07056(0.12626) 0.27004(0.76336) 

VARCOPPTGF1DOWN VARAUDUSDTG1DOWN 2.07056(0.12626) 0.27004(0.76336) 

VARCOPPTGF1UP VARASX1UP 1.51120(0.22078) 1.30134(0.27229) 

VARCOPPTGF1DOWN VARASX1DOWN 1.51120(0.22078) 1.30134(0.27229) 

 

Note: COPP_FS1 refers to the SHFE copper futures rate of return; ALUM_F1 refers 

to the SHFE aluminium futures rate of return; COPP_F1 refers to the SHFE copper 

futures rate of return; ZINC_F1 refers to the SHFE zinc futures rate of return; LME 

ALUM1 refers to the LME aluminium futures rate of return; LME COPP refers to the 

LME copper futures rate of return; LME ZINC refers to the LME zinc futures rate of 

return; ASX1 refers to the ASX stock index rate of return; AUDUSD1 refers to the 

Australian dollar–dollar rate of return; VARCOPPFS1UP refers to the upside VaR of 

the SHFE copper futures rate of return; VARCOPPFS1DOWN refers to the downside 

VaR of the SHFE copper futures rate of return; VARALUMTG1UP refers to the 

upside VaR of the SHFE aluminium futures rate of return; VARALUMTG1DOWN 

refers to the downside VaR of the SHFE aluminium futures rate of return; 

VARCOPPTG1UP refers to the upside VaR of the SHFE copper futures rate of return; 

VARCOPPTG1DOWN refers to the downside VaR of the SHFE copper futures rate 

of return; VARZINCTG1UP refers to the upside VaR of the SHFE zinc futures rate of 

return; VARZINCTG1DOWN refers to the downside VaR of the SHFE zinc futures 

rate of return; VARLMEALUMTG1UP refers to the upside VaR of the LME 

aluminium futures rate of return; VARALUMTG1DOWN refers to the downside VaR 

of the LME aluminium futures rate of return; VARLMECOPPTG1UP refers to the 

upside VaR of the LME copper futures rate of return; VARCOPPTG1DOWN refers 

to the downside VaR of the LME copper futures rate of return; 

VARLMEZINCTG1UP refers to the upside VaR of the LME zinc futures rate of 

return; VARZINCTG1DOWN refers to the downside VaR of the LME zinc futures 

rate of return; VARASX1UP refers to the upside VaR of the ASX stock index rate of 
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return; VARASX1DOWN refers to the downside VaR of the ASX stock index rate of 

return; VARAUDUSDTG1UP refers to the upside VaR of the AUDUSD rate of 

return; VARAUDUSDTG1DOWN refers to the downside VaR of the AUDUSD rate 

of return 
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Chapter 4 The application of dynamic commodity futures timing 

strategies in the context of China’s market 

4.1 Introduction 

In the previous chapters, I investigate how the commodity futures price interacts with 

domestic macroeconomic variables and overseas futures prices. These findings lay a 

good foundation for what I intend to achieve in this chapter: forming an effective 

dynamic timing strategy in China’s commodity market with full consideration of 

Chinese specific factors. 

 

According to Abanomey and Mathur (2001), Georgiev (2001), Kaplan and Lummer 

(1998), commodities serve as good diversifiers when added to a traditional asset 

portfolio. Edwards and Caglayan (2001) showed that commodity funds have higher 

returns during bearish stock markets along with a lower correlation. Meanwhile, 

Pesaran and Timmermann (1995) and Bauer, Derwall and Molenaar (2004) showed 

that well-specified dynamic timing strategies could generate better performance than a 

pure “buy-and-hold” strategy for some assets, such as stocks. Hence, it is natural to 

ask whether the dynamic timing strategy could beat a “buy-and-hold” strategy for 

commodity futures in China.  

 

In this chapter, I adopt Vrugt, Bauer and Molenaar’s (2004) dynamic modelling 

approach to predict the sign of the monthly returns of the three metal futures listed on 

the Shanghai Futures Exchange: copper, aluminium and zinc. Following Vrugt, Bauer 

and Molenaar (2004), the base set of explanatory variables is classified into three 

categories: 1) Business cycle indicators; 2) Monetary environment indicators; 3) 

Indicators on the market sentiment.  

 

These three categories have been used predominantly in studies investigating the 
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relationship between the macroeconomy and traditional asset classes or in timing 

studies, such as Pesaran and Timmermann (1995). However, this type of research 

framework has not been well applied in non-traditional asset classes, such as 

commodity futures, let alone applied to commodity futures in China. Here, variables 

in each category should be gathered with full consideration of “Chinese specific 

factors”. Thus, my findings from the previous two chapters can offer great help. As 

for the data, it is taken from the Chinese financial database – Wind system. All of the 

series used are stylized in monthly terms. Due to data availability and issues of 

practicality, all of the independent variables are lagged one month. 

 

Econometrically, the approach involves a recursive estimation procedure that allows 

for continuous permutations among the determinants in accordance with a predefined 

model selection criterion. During the in-sample period, I estimate parameters for these 

models using standard Ordinary Least Squares (OLS). Following this procedure, each 

model generates monthly signals during a 12-month training period. Then, at the end 

of the training period, I rank all models using the realized information ratios. The 

strategy is to use the model with the highest realized information ratio to forecast the 

sign of the next month’s metal futures return. Finally, in the out-of-sample trading 

period, futures on the metal futures market are bought or sold dependent on the signal. 

 

This chapter extends the knowledge of dynamic timing strategies in following ways. 

First, this chapter focuses on China’s commodity futures, an asset class not studied 

previously. Second, although Vrugt, Bauer and Molenaar’s framework is applied, the 

variables are chosen considering “Chinese specific factors”. Industrial growth, 

monetary growth, and the foreign exchange rate are gathered based on findings from 

Chapter 2; the lagged LME return data are collected based on findings in Chapter 3.  

 

The empirical results indicate that factor inclusion does vary across the entire sample 

period for all three metals. All three metal futures record good performance, and 

zinc’s performance is particularly impressive. The dynamic modelling approach could 
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provide a better information ratio than the pure “buy-and-hold” strategy, 

demonstrating that a dynamic timing strategy does perform better. Meanwhile, the 

economic intuition concern does not pose a problem.  

 

The remainder of this chapter is organized as follows: section 4.2 introduces the 

consulted literature. Section 4.3 gives a description of the variables chosen and the 

methodology adopted. Then, the empirical results are presented in section 4.4. Finally, 

section 4.5 concludes the chapter. 

 

4.2 Literature review 

4.2.1 Tactical asset allocation with commodities 

Many researchers have argued that commodities serve as good diversifiers: no or a 

less-than-proportional portfolio return is sacrificed, while the overall portfolio risk is 

reduced. (Abanomey and Mathur (2001), Georgiev (2001), Kaplan and Lummer 

(1998)) Edwards and Caglayan (2001) show that commodity funds have higher 

returns during bearish stock markets, along with a lower correlation. Related to this 

finding, Chow (1999) provide evidence that commodities perform well when the 

general financial market climate is negative. Furthermore, commodities appear to 

serve as a possible hedge against inflation, see Bodie (1983), Froot (1995) and Gorton 

and Rouwenhorst (2004), which makes them even more attractive to entities with 

fixed liabilities in real terms, such as pension funds. Nijman and Swinkels (2003) 

show that commodity investments are beneficial to pension funds within a mean 

variance framework. 

 

Based on these studies, institutional investors are increasingly integrating 

commodities in their strategic asset allocation, predominantly in a passive fashion. 

Although the literature on the strategic benefits of investing in commodities is 

growing, papers on tactical asset allocation with commodities are quite difficult to 

find. Notable exceptions are the work of Johnson and Jensen (2001) and Jensen, 
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Johnson and Mercer (2002), in which the allocation of commodities is conditioned on 

the monetary environment. Furthermore, Nijman and Swinkels (2003) examined a 

tactical switching strategy between commodities and stocks. Most of these studies use 

a small set of predetermined explanatory variables as the basis for their tactical 

decisions. Erb and Harvey (2006) found that the prospective annualized excess return 

of a rebalanced portfolio of commodity futures can be “equity-like”. Certain security 

characteristics, such as the term structure of futures prices, and some portfolio 

strategies have historically been rewarded with above average returns. These authors 

note that it is important to avoid naïve extrapolation of historical returns and to strike 

a balance between dependable sources of returns and potential sources of returns. 

 

4.2.2 Dynamic timing strategies 

Pesaran and Timmermann (1995) examine the robustness of the evidence on the 

predictability of US stock returns and address the issue of whether this predictability 

could have been historically exploited by investors to earn profits in excess of a pure 

“buy-and-hold” strategy in the market index. They concluded that the predictive 

power of various economic factors for stock returns changes over time and tends to 

vary with the volatility of returns. The extent to which stock returns were predictable 

appeared to be quite low in the relatively tranquil markets of the 1960s, but increased 

to a level where, net of transaction costs, it could have been exploited by investors in 

the volatile markets of the 1970s.  

 

Li and Lam (2002) consider optimal market-timing strategies under transaction costs. 

They assume that an asset’s return follows an autoregressive model and use long-term 

investment growth as the objective of a market-timing strategy that entails shifting 

funds between a risky asset and a riskless asset. They give the optimal trading strategy 

for a finite investment horizon and analyse its limiting behaviour. For a finite horizon, 

the optimal decision in each step depends on two threshold values. If the return value 

today falls within the interval, nothing needs to be done; otherwise, funds are shifted 

from one asset to the other, depending on which threshold value is exceeded. When 
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the investment horizon tends to infinity, the optimal strategy converges to a stationary 

policy, which is shown to be closely related to a well-known technical trading rule 

called the Momentum Index Trading Rule. An integral equation of the two threshold 

values is given, and numerical results for the limiting stationary strategy are presented. 

The results confirm the obvious guess that the no-transaction region increases as 

transaction costs increase. Finally, the limiting stationary strategy is applied to data 

from the Hang Seng Index Futures market in Hong Kong. The out-of-sample 

performance of the limiting stationary strategy is found to be better than the simple 

strategy used in the literature, which is based on a 1-step-ahead forecast of return. 

 

Bauer, Derwall and Molenaar (2004) examined whether short-term variation in the 

Japanese size and value premium is sufficiently predictable to be exploited by a 

timing strategy. In the spirit of Pesaran and Timmermann (1995), they employ a 

dynamic modelling approach in which they explicitly allow for permutations among 

the determinants in order to mitigate typical data-snooping biases. Using a base set of 

candidate regression factors; they perform an in-sample estimation of all 

economically sensible models. Subsequently, a ‘‘most suitable’’ model is determined 

according to a selection criterion. However, whereas most studies use in-sample 

model selection criteria, they also introduce an out-of-sample training period to select 

the models. Then, they implement their strategy in a second-stage out-of-sample 

period: the trading period. All stages reoccur on a monthly basis via a rolling window 

framework. The results confirm sufficient predictability under lower transaction cost 

levels. Under high transaction cost scenarios, however, it is more difficult to obtain 

incremental benefits. 

 

Vrugt, Bauer and Molenaar (2004) investigated timing strategies with commodity 

futures using factors directly related to the status of the business cycle, the monetary 

environment and the sentiment of the market. They use a dynamic model selection 

procedure in the spirit of the recursive modelling approach of Pesaran and 

Timmermann (1995). However, instead of using in-sample model selection criteria, 
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they build on the extensions of Bauer, Derwall and Molenaar (2004) by introducing 

an out-of-sample model training period to select the optimal models. The best models 

from this training period are used to generate forecasts for the subsequent trading 

period. Their results indicate that the variation in commodity futures returns is 

sufficiently predictable to be exploited by a realistic timing strategy. 

 

Brooks, Katsaris aand Persand (2005) investigated the relative profitability of several 

different methodologies using a very long dataset on the S&P 500. To overcome the 

accusations of data snooping and arbitrary parameter choices that beset much of the 

previous work in this area, they carefully consider whether the rule performance is 

sensitive to the specified user-adjustable parameters. They find that all but one of the 

approaches are able to beat a “buy-and-hold” equities strategy in risk adjusted terms, 

although a strategy based on the difference between the price-earnings ratio and 

short-term treasury yields works best.  

 

Bhaduri and Saraogi (2010) examined the relationship between yield spread and stock 

market returns. They also explore a dynamic trading strategy of timing the Indian 

stock market using the yield spread as an indicator variable. The study concluded with 

the important result that the yield spread is successful in identifying points of entry 

and exit for the Indian stock market, thereby delivering superior returns compared to a 

conventional “buy-and-hold” strategy. 

 

According to the literature consulted, commodities serve as good diversifiers when 

added to a traditional asset portfolio; meanwhile, well-specified dynamic timing 

strategies could generate better performance than a pure “buy-and-hold” strategy for 

some assets. For practitioners such as asset managers, the most convenient way to 

obtain exposure in commodities is to participate in the commodity futures market. 

Therefore, it is natural to ask whether a dynamic timing strategy could work for 

commodity futures in China. Thus, I lay the hypothesis of the empirical test as follows: 
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dynamic timing strategies could provide excess returns over pure “buy-and-hold” 

strategies in the Chinese commodities futures market. 

 

4.3 Data specification and methodology 

4.3.1 Data specification 

In this chapter, I adopt Vrugt, Bauer and Molenaar’s (2004) dynamic modelling 

approach to predict the sign of the monthly returns of the three metal futures listed on 

the Shanghai Futures Exchange: copper, aluminium and zinc. In chapter 4, simple 

returns are used because this is common practice for commodity futures practitioners 

such as traders and investors. Here, the monthly return Rt is defined as follows: 

t t t 1 t 1R   F F / F                                                        4.1 

 

 

 

As done by Vrugt, Bauer and Molenaar (2004), the base set of explanatory variables is 

classified into three categories:  

(1) Business cycle indicators; 

(2) Monetary environment indicators; 

(3) Indicators of market sentiment.  

These three categories have been used predominantly in studies investigating the 

relationship between the macroeconomy and traditional asset classes or in timing 

studies, such as Pesaran and Timmermann (1995). However, this type of research 

framework has not been well applied to non-traditional asset classes, such as 

commodities, let alone to commodities in China. Here, variables in each category are 

gathered with consideration of “Chinese specific factors”. Then, my findings from the 

previous two chapters can offer great help. 
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4.3.1.1 Business cycle indicators 

I choose the variable industrial growth with respect to the category of business cycle 

indicators, and many other variables are eliminated. Many scholars have chosen to use 

other qualified candidates to detect their timing skills. However, these variables may 

not be suitable in China due to data availability or authenticity concerns. Chen (1991) 

shows that the dividend yield and the default spread are (inversely) related to current 

business cycle conditions. However, such variables could not be easily constructed in 

China. On the one hand, because Chinese firms have no tradition of paying dividends, 

the dividend yield is not a widely accepted variable; on the other hand, bankruptcy is 

a rarity in China, and the credit rating offers little information to determine the credit 

status of firms issuing bonds. Hence, these two variables are eliminated. Chen shows 

the difference in yields between a constant maturity 10-Year T-bond and a constant 

maturity 3-month T-bill – namely, term spreads are related to more distant business 

cycle conditions. Although data quality for the 10-year T-bond is quite good, data 

quality for the 3-month T-bill is not ideal because 3-month T-bills are not actively 

traded in China’s bond market. Hence, the difference in yields is also not suitable. 

Moreover, Chen finds a positive link between the business cycle, annual production 

growth and GNP (and consumption). In chapter 2, industrial growth is chosen as the 

variable to measure economic activity. Similarly, I include the change in year-on-year 

industrial production here as the variable. 

 

4.3.1.2 Monetary environment indicator 

Froot (1995), Strongin and Petsch (1996), Jensen, Johnson and Mercer (2002) and 

Gorton and Rouwenhorst (2004) explicitly document the inflation-hedging properties 

of commodities. Commodities could possibly hedge against the rise of inflation. To 

capture this insight, I include the year-on-year rate of inflation. Jensen, Johnson and 

Mercer (2002) show that the monetary environment is helpful for discriminating 

between good and bad commodity performance. In China, however, the monetary 
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supply is more critical than the monetary price (the interest rate) most of the time. Fan, 

Yu and Zhang (2010) investigates the responsiveness of the Chinese government's 

monetary policies, in terms of the money supply and interest rates, to economic 

conditions and the effectiveness of these policies in achieving the goals of stimulating 

economic growth and controlling inflation. He finds that the money supply responded 

actively to both the inflation rate and the real output and had certain effects on futures 

inflation rates and real output. Official interest rates, however, responded passively to 

the inflation rate and did not respond to the real output; they also do not have any 

effect on futures inflation rates and real output. Moreover, it could be learned from 

chapter 2 that the monetary growth channel (mainly through the credit channel) plays 

a bigger role than the interest rate channel in promoting commodity prices in China. 

Therefore, I include the year-on-year monetary aggregate M2 in our set of regressors. 

 

4.3.1.3 Indicator on the market sentiment 

Vrugt, Bauer and Molenaar (2004) argued that stock market sentiment is usually seen 

as a predictor of future economic developments. They added the total returns of the 

S&P 500 to the database. In China, stock is also widely accepted as an asset class. 

Here, I add the month-on-month total return of the Shanghai Composite Stock Index 

to the variable set. In chapter 3, I find that movement in the Shanghai Futures 

Exchange (SHFE) market can directly guide movement in the LME market. 

Accordingly, the one-month-lagged metal futures return (in the London Metal 

Exchange (LME)) is incorporated here to check whether price discovery and guidance 

from the SHFE could potentially offer effective timing signals. Finally, I add the 

Chinese foreign exchange rate (month-on-month return on the Renminbi-US dollar 

exchange rate) to see whether the pace of Renminbi appreciation could have any 

impact on metal futures prices. 

 

To sum up, the variables to be included in these three categories are listed in the 
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following table. All of the data used in this chapter are from the Wind system, a 

China-based financial database. The data used are stylized in month terms. 

 

Insert table 4.2 here 

 

Figure 4.1 show the cumulative return and summary statistics of the metal futures 

return for the sample period. No obvious pattern can be found in the futures return 

series. However, it appears that volatility is quite high, particularly for copper and 

zinc. This variability implies that there is a huge potential for adopting dynamic 

timing strategies.  

 

Insert Figure 4.1 here 

 

4.3.2 Methodology 

In the spirit of Vrugt, Bauer and Molenaar (2004), I employ a dynamic modelling 

approach to predict the sign of the monthly returns of the three metal futures listed on 

the Shanghai Futures Exchange. Econometrically, this approach involves a recursive 

estimation procedure that allows for continuous permutations among the determinants 

in accordance with a predefined model selection criterion. Evidently, the advantage of 

this method is that all possible models can be constantly re-estimated and re-evaluated 

to reflect an investor’s continuous search for the best approximation of the most 

suitable model based on available information. The purpose of conducting this 

computationally intensive procedure is to minimize possible ex-post data-mining 

biases, which are likely to exaggerate the practical significance of the empirical 

results.  

 

During the in-sample period, I estimate parameters for these models using standard 

Ordinary Least Squares (OLS). Following this procedure, each model generates 

monthly signals during a 12-month training period. Choosing the appropriate length 

of the training period is, to some extent, arbitrary. On the one hand, the period should 
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be long enough so that I can evaluate the performance of the timing strategy; on the 

other hand, the period should not be so long that the estimated models become less 

relevant as time passes. Here, the period is set to 60 months. If the signal for 

commodities is positive, metal futures are purchased; if the signal is negative, metal 

futures are sold.  

 

Then at the end of the training period, I rank all models by their realized information 

ratios. The strategy with the highest realized information ratio is used to forecast the 

sign of the next month’s metal futures return. Finally, in the out-of-sample trading , 

futures on the metal futures market are bought or sold depending on the signal.  

 

In detail, the procedure is as follows: 

Step 1: Define a set of six predictive variables, described in the previous section. To 

ensure a more robust and parsimonious model specification, I adopt an idea from 

Pesaran and Timmermann (1995) and constrain the number of forecasting variables in 

the model within the range of [1, 5]: namely a minimum of 1 and a maximum of 5. In 

doing so, I will test 63 models. 

 

Step 2: Using an OLS modelling approach of the form 

1 1 2 2 ...t t t i ity x x x
,1 5i                                 4.2 

I estimate all possible variable combinations using a 60-month rolling model 

estimation window. To ensure the forward-looking nature of the variables and to 

account for delayed data availability, all financial variables and macroeconomic 

variables are lagged 1 month. 

 

Step 3: Then, I select the ‘‘best suitable’’ model based on the performance of the 

strategy in a rolling 12-month out-of-sample training period subsequent to the 

in-sample estimation period using a predefined selection criterion. The use of a 

selection period that postdates the model estimation sample relates to the evidence of 
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Bossaerts and Hillion (1999), who failed to find sufficient out-of-sample 

predictability using in-sample selection criteria. The selection criterion chosen is 

consistent with the main purpose of my dynamic timing strategies: to maximize a 

switching portfolio’s information ratio, defined as the ratio of the mean return to the 

standard deviation (IR). The IR criterion selects models for their performance, as 

measured by the information ratio during the out-of-sample training period. 

 

I estimate and select models for 1-month forecast horizons without considering 

transaction costs. Having selected the best model via training by selecting the model 

with the highest IR ratio, I can then implement the timing strategy in a second-stage 

out-of-sample period, the trading period. 

 

For copper and aluminium, the in-sample estimation period starts from 2005.1 and 

stretches to 2010.12, the in-sample model selection period starts from 2011.1 and 

stretches to 2011.12, while the trading period starts from 2012 and stretches to 2013. 

12. For zinc, however, the in-sample model selection period starts from 2007.3 due to 

the data availability concern. Zinc futures start to trade after 2007.4. 

 

This procedure described above is repeated every month (see Figure 4.2) and 

generates a ranking of preferred “best suitable” models for every time period in the 

sample and the subsequent out-of-sample timing decisions. Models are thus 

dynamically re-estimated and re-selected every month, which is in accordance with 

investors continuously searching for the best model specification given the data 

available at that point in time. To measure the effectiveness of our timing strategy in 

the trading period, I compare the information ratio of the dynamic timing strategy 

with that of a pure “buy-and-hold” strategy. 

 

Insert Figure 4.2 here 
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4.4 Empirical results 

In Figure 4.3, I present the empirical results of both the “buy-and-hold” (BH) strategy 

and the timing strategy for the three metals, copper, aluminium and zinc. It can be 

seen that the timing strategy offers better return, a lower standard deviation and as a 

consequence, a higher information ratio for all three metal futures. The strategy works 

especially well for zinc futures. It has a recorded return of 2.53% (an excess return of 

2.57%) and lowers the standard deviation by more than 1%, leading to a much better 

IR ratio.  

 

Insert Figure 4.3 here 

 

The hit ratio, defined as the percentage of correctly predicted signals, is above 50% 

for all three products, with copper 58.33%, aluminium 54.17% and zinc 91.67%. 

According to the Henriksson-Merton (1981) non-parametric market-timing test, the 

active strategy possesses significant timing skill at the 5%-level of significance. 

Clearly, the “buy-and-hold” strategy takes long positions 100% of the time, whereas 

the active strategy takes quite different positions. It takes approximately 30% long 

positions for copper and fewer than 10% long positions for aluminium. For zinc, it 

takes half long positions and half short positions.  

 

In Figure 4.4, I present the cumulative returns for the “buy-and-hold” and timing 

strategies. Moreover, I also plot the corresponding positions of the timing strategies 

(long or short in the three metal commodities futures) over time. It can be found that 

for both copper and aluminium, short positions dominate overwhelmingly. For 

aluminium, a long position is only taken in 2 months. However, the position taken for 

zinc is rather balanced: half of the time, long positions are taken and the other half, 

short positions are taken. To some extent, this suggests that the factor’s inclusion in 

zinc works in a very flexible way. 
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For both copper and aluminium futures, there appears to be a learning period for the 

strategy. After roughly 6 months, the dynamic timing strategy tends to catch up and 

provide continuous better performance. For zinc futures, it appears to work from the 

very beginning and to beat the “buy-and-hold” strategy completely.  

 

Insert Figure 4.4 here 

 

4.4.1 Factor inclusion 

A question that naturally arises is which variables are predominantly selected over 

time. Figure 4.5 plots factor inclusion over time. The figure shows that variable 

inclusion is not stable over time, demonstrating the necessity of dynamic timing.  

 

For aluminium, the variable exchange rate and the lagged LME aluminium returns are 

included over the entire period. This indicates that domestic aluminium is highly 

correlated to the global market. Meanwhile, the monetary growth variable is included 

in the first seven months of 2012 and the last seven months of 2013. It is worth 

mentioning that the monetary condition was very tight in China during these two 

ranges, while the period in between was relatively stable and tranquil. This reflects 

the sensitivity of the aluminium price to monetary tightening. Moreover, I find that in 

the range of 2012.8-2013.5, the stock index variable is included. The stock market 

provided a moderate return given the relative stability in the monetary market during 

that period. Hence, the stock market can provide better guidance than the monetary 

variable during this tranquil time. Furthermore, I find that the industry variable is 

included in the range 2013.6 – 2013.12; in this period, monetary conditions were tight 

and the macroeconomy had lost its momentum, the demand for aluminium is 

particularly weak. There were concerns in the market that some large aluminium 

plants would shut down to cut the surplus supply. Such concerns surely would 

dampen the aluminium futures price. 
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For copper, the factor inclusion appears to be comparatively irregular and inconsistent. 

All the six variables have been included during the out-of-sample period. The 

exchange rate is included in 20 months, 83% of the entire period. This result indicates 

that domestic copper, similar to aluminium, is highly correlated to the global market. 

From 2012.8, it can be seen that if industrial growth is included, M2 is excluded; if 

M2 is included, industrial growth is excluded. Several reasons could explain this 

phenomena. When the monetary environment is rather loose, as in the range of 

2012.8-2013.5, its impact on commodity futures is weak, which can be demonstrated 

by the fact that only 2 months have been included. It is likely that industrial growth or 

even the stock market has a bigger sway on copper’s futures price in that period. 

However, when the monetary environment is tight, its impact grows much greater. 

Other factors appear to be irrelevant.  

 

For zinc, only four of the six variables have been included. Monetary growth and the 

inflation variable are excluded. The lagged stock return index and lagged LME zinc 

return variable are included over the entire period, this result shows that the zinc 

futures price is quite speculative and highly influenced by global markets. Moreover, 

the foreign exchange rate is included continuously for 19 months. Last but not least, 

the industrial growth variable is added from 2013.8, indicating that a weaker 

macroeconomy also dampens the performance of zinc futures prices.  

 

Insert Figure 4.5 here 

 

4.4.2 Economic intuition 

The issue that many portfolio managers might have with this approach is the lack of 

an economic rationale to support the econometric model due to its “dynamic” variable 

inclusion. Although the selected variables are possibly related to the business cycle, 



 

 156 

monetary conditions and market sentiment, the dynamic modelling approach I adopt 

here may not perfectly fit economic theory. Based on previous empirical evidence or 

personal experience, a portfolio manager may, for example, wish to restrict the sign of 

the business cycle (monetary conditions or market sentiment variables in the model to 

be positive). It could then be argued that model specifications with counterintuitive 

signs, although optimal in a statistical sense, should then not be taken into full 

consideration. The thought behind this argument is that erroneous short-run dynamics 

are probably specific for the time period considered and may disappear as quickly as 

they appeared.  

 

However, in this chapter, this concern does not pose a problem. On the one hand, 

there are no strict signs between the independent and dependent variables that I 

should try to impose. China is experiencing a rapid transition, and thus no stable and 

consistent relationship between these variables could hold. I just try to reveal the 

relationship rather than present a precedent ide. On the other hand, the sample period 

is not long enough. Further restrictions on the sign of the parameters may cause 

statistical insignificance. 

 

4.5 Conclusion 

Scholars have shown that commodities serve as a good diversifier in portfolio 

management. Meanwhile, it has also been found that a dynamic timing strategy can 

offer better performance than a mere “buy-and-hold” strategy. In this chapter, I aimed 

at forming an effective dynamic timing strategy for China’s commodity market with 

full consideration of the Chinese specific factors based on the findings from Chapters 

2 and 3. 

 

Specifically, I adopt Vrugt, Bauer and Molenaar’s (2004) dynamic modelling 

approach to predict the sign of the monthly returns of the three metal futures listed on 

Shanghai Futures Exchange: copper, aluminium and zinc. Following Vrugt, Bauer and 
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Molenaar (2004), the base set of explanatory variables is classified into three 

categories: 1) business cycle indicators; 2) monetary environment indicators; 3) 

indicators of market sentiment.  

 

Econometrically, the approach involves a recursive estimation procedure that allows 

for continuous permutations among the determinants in accordance with a predefined 

model selection criterion. During the in-sample period, I estimate parameters for these 

models using standard Ordinary Least Squares (OLS). Following this procedure, each 

model generates monthly signals during a 12-month training period. Then, at the end 

of the training period, I rank all models by the realized information ratios. The 

strategy with the highest realized information ratio is used to forecast the sign of the 

next month’s metal futures return. Finally, in the out-of-sample trading period, futures 

on the metal futures market are bought or sold dependent on the signal. 

 

From the empirical results, it can be seen that all three of the metal futures record 

good performance, and zinc’s performance is particularly impressive. The hit ratio. 

defined as the percentage of correctly predicted signals, is above 50% for all three 

products. The fact that the dynamic modelling approach can provide a better 

information ratio than the pure “buy-and-hold” strategy proves that a dynamic timing 

strategy can deliver better results. It can be found that factor inclusion does vary 

across the entire sample period for all three metals. Meanwhile, it is worth mentioning 

that any concern regarding economic intuition does not pose a problem.  

 

In this chapter, transaction costs have not been taken into account. It should be noted 

that transaction costs can be seen as incremental. Because futures have a finite life, a 

buy-and-hold strategy with futures also incurs transaction costs because the contract 

need to be rolled over. Timing strategies should suffer from higher transaction costs 

because they involve more frequent trading than the buy-and-hold strategy, with the 

information ratio lowered. However, incorporating a reasonable level of transaction 

cost will not fundamentally change the result because the excessive return delivered 
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by dynamic timing strategies is expected to fully cover those added costs compared to 

that of the buy-and-hold strategy. 

 

Some lessons can be learned from the empirical results. First, factor inclusion can 

offer better performance: the implication is that in different stages, the effect of the 

same variable may be completely different. As is shown in the chapter, during the 

second half of 2013, the tight monetary environment is the primary focus, and a high 

interest rate lowers all asset prices including commodities and stocks; in other time 

ranges, when the monetary environment is moderately loose, the asset price is more 

influenced by other factors, such as the exchange rate and industrial growth. 

Therefore, practitioners such as asset managers should collect and analyse 

information on China’s market accurately and carefully to determine which variable is 

the key indicator at different stages. Second, Chinese specific factors should be taken 

into consideration but should not be wildly exaggerated. From both chapters 2 and 4, 

it can be clearly seen that the monetary environment, measured by the money supply, 

has a major influence on China’s asset price: to some extent, it does constitute a 

Chinese specific factor. Meanwhile, it can also be found under the same background 

of excess supply, that the futures price of aluminium is more influenced by domestic 

factors, while zinc is more influenced by global factors. Hence, Chinese specific 

factors should be treated with more objectivity.  
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Figures and Tables in Chapter 4 

Figure 4.1: The descriptive statistics of the time series 

 

Note: SHFEAL refers to the SHFE aluminium futures rate of return; SHFECP refers to the SHFE 

copper futures rate of return; SHFEZC refers to the SHFE zinc futures rate of return 
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Table 4.1 Descriptive statistics of time series 

 

Note: SHFEAL refers to the SHFE aluminium futures rate of return; SHFECP refers to the SHFE 

copper futures rate of return; SHFEZC refers to the SHFE zinc futures rate of return; Industry 

refers to year-on-year industry production growth; CPI refers to the year-on-year rate of inflation; 

M2 refers to the year-on-year monetary aggregate; Stock refers to the month-on-month total return 

of the Shanghai Composite Stock Index; USDCNY refers to the month-on-month return on the 

Renminbi-US dollar exchange rate; LMEAL-1 refers to the one-month-lagged metal futures return 

for LME aluminium; LMECP-1 refers to the one-month-lagged metal futures return for LME 

copper; LMEZC-1 refers to the one-month-lagged metal futures return for LME zinc. 

INDUSTRY CPI M2 STOCK USDCNY LMECP_1 LMEAL_1 LMEZC_1 SHFECP SHFEAL SHFEZC

 Mean 13.07 3.47 17.82 -0.02 0.29 0.44 -0.34 -0.28 0.00 -0.37 -0.48

 Median 13.30 3.20 16.44 0.66 0.19 1.32 -0.77 0.14 0.71 -0.04 -0.01

 Maximum 21.30 8.70 29.64 20.64 1.65 19.31 16.33 17.00 19.57 12.89 17.22

 Minimum 5.40 -1.80 12.40 -24.63 -0.27 -34.87 -15.41 -32.14 -41.15 -11.90 -36.13

 Std. Dev. 3.61 2.52 4.69 9.15 0.39 8.82 6.97 8.97 8.26 4.28 8.37

 Skewness 0.10 -0.18 1.22 -0.41 1.15 -0.84 0.28 -0.53 -1.46 0.22 -1.14

 Kurtosis 2.12 2.70 3.48 3.31 3.99 5.48 2.83 3.77 9.47 4.66 6.42

 Jarque-Bera 2.68 0.73 20.49 2.60 20.77 29.97 1.15 5.64 168.22 9.83 56.48

 Probability 0.26 0.69 0.00 0.27 0.00 0.00 0.56 0.06 0.00 0.01 0.00

 Sum 1045.35 277.30 1425.31 -1.66 23.45 35.05 -27.32 -22.12 -0.24 -29.34 -38.32

 Sum Sq. Dev. 1028.82 502.83 1739.20 6607.21 12.19 6141.27 3838.10 6360.36 5394.08 1445.18 5534.22
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Figure 4.2: graphical presentation of the dynamic timing approach 
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Figure 4.3: performance statistics for buy-and-hold and dynamic timing strategies 

This figure shows the performance statistics for the “buy-and-hold” strategy and the commodity 

dynamic timing strategy. Signals are from the optimal model in the training period. This training 

period consists of 12 months, whereas the estimation period is 60 months 

 

 

 

Timing BH Timing BH Timing BH

average % 0.49 -0.15 0.58 -0.49 2.53 -0.04

std % 4.31 4.34 1.83 1.86 2.61 3.67

information ratio 0.11 -0.03 0.32 -0.26 0.97 -0.01

median % 0.88 0.71 0.45 -0.19 1.86 0.03

minimum % -9.50 -7.85 -3.44 -4.21 -0.89 -6.06

maximum % 7.85 9.50 4.21 3.44 8.58 8.58

hit ratio 58.33% 54.17% 91.67%

months long 7 24 2 24 12 24

months short 17 0 22 0 12 0

Copper Aluminum Zinc
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Figure 4.4: Cumulative performance of the buy-and-hold strategy and the dynamic 

timing strategies 

The figures on the left show the cumulative excess returns for the buy-and-hold strategy and the 

dynamic timing strategy. The figures on the right provide the aggregate positions of the active 

strategy taken in the futures positions: 1 represents taking the long position, while -1 is taking the 

short position. 
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Figure 4.5 Factor Inclusion over Time 

This figure presents the inclusion in the optimal model of the 6 factors in every time period for the 

three metal futures. Total inclusion in percentages is noted in parentheses. 

Aluminium 
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Copper 
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Zinc 

  

  

  

Note: Industry refers to year-on-year industry production growth; CPI refers to the year-on-year 

rate of inflation; M2 refers to the year-on-year monetary aggregate; Stock refers to the 

month-on-month total return of the Shanghai Composite Stock Index; USDCNY refers to the 

month-on-month return on the Renminbi-US dollar exchange rate; LMEAL-1 refers to the 

one-month-lagged metal futures return for LME aluminium; LMECP-1 refers to the 

one-month-lagged metal futures return for LME copper; LMEZC-1 refers to the 

one-month-lagged metal futures return for LME zinc. 
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Table 4.2 Indicator categories and variable specification 

Indicator category Specific variables included 

Business cycle indicators Production: year-on-year industry production 

Monetary environment indicators Inflation: the year-on-year rate of inflation 

Money supply: year-on-year monetary 

aggregate M2 

Indicators of market sentiment Stock return: month-on-month total return of 

the Shanghai Composite Stock Index 

LME: one-month-lagged metal futures return 

Exchange rate: month-on-month return on the 

Renminbi-US dollar exchange rate 
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Chapter 5 Conclusions, implications and limitations 

5.1 Conclusions 

This study focuses on commodity futures investment considering the impact of 

Chinese specific factors. In chapter 2, I apply the overshooting model to investigate 

the empirical relationship between commodity prices and macroeconomic variables; 

in chapter 3, I explore the impact that China’s futures market and the overseas futures 

market have on each other by investigating the information and risk spillover effects; 

moreover, I also examine China’s pricing power in the global commodity futures 

market; then in chapter 4, I propose a dynamic timing strategy based on the 

understanding of Chinese specific factors developed in the previous two chapters. 

 

Evidence from the SVAR models show that part of the theory of the relationship 

between macroeconomic variables and commodity price movement can be clearly 

supported. A negative relationship between interest rates and commodity prices can be 

demonstrated only for zinc, while positive “overshooting” between the interest rate 

and commodity prices, so-called “shock dependence,” has been observed between the 

inter-bank repo rate and aluminium (copper) prices as well as between the exchange 

repo rate (average rate) and bean prices. As expected, a positive relationship between 

monetary growth and commodity prices can be demonstrated for several commodities 

with statistical significance. This shows that the monetary growth (credit) channel 

plays a bigger role than the interest rate channel in promoting commodity prices in 

China.  

 

In chapter 2, I find that a sudden shock in the foreign exchange market prompts 

positive responses in some commodity prices. However, it might be more appropriate 

to consider that the foreign exchange rate plays a minor role in commodity price 

movement because the foreign exchange rate’s movement is unidirectional. 
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Meanwhile, it can be found that shocks in output can lead to dramatic responses in 

some commodity prices.  

 

Forecast error variance decompositions (FEVD) have been used to investigate the 

contributions of different structural shocks to fluctuations in the modelled variables. 

The empirical results suggest that the commodity price shock itself make the biggest 

contribution to commodity price shocks generally. An interest rate shock barely 

makes a contribution, while M1 growth shocks contribute much to metals shocks. 

Foreign exchange rate shocks provide a 40 percent contribution to some commodities. 

Industrial output shocks provide 20 to 30 percent contributions to some metals. 

 

In Chapter 3, it can be seen that asymmetry factors are significant in both China’s and 

the overseas futures market. In the Chinese metal futures market, the sign of the 

asymmetry factor is positive for copper and zinc futures while negative for aluminium 

futures. Therefore, although the mechanism of buying and selling is symmetrical in 

the futures market, the impacts of good news and bad news on market volatility are 

still asymmetric. For copper and zinc futures, the impact of bad news is greater; for 

aluminium, the impact of good news is greater. In the Chinese futures market, people 

prefer to take long positions in speculative copper and zinc products for psychological 

reasons (Liu, Cheng, Wang, Hong and Li, 2008). When the futures price goes up, the 

number of speculators also grows. With risk increasing, the reaction to market 

uncertainty consequently becomes stronger. As for aluminium, excessive supply has 

dampened its price over a long period of time. It is probable that any good news could 

lead to a moderate rebound in price. The sign of the asymmetry factor is different in 

the LME market, however. It is positive only for the copper product and negative for 

both aluminium and zinc products. The results show that the impacts of good news 

and bad news on market volatility are also asymmetric. A closer watch show that the 

sign of the asymmetry factor is identical for both aluminium and copper in the SHFE 

and the LME. Meanwhile, it can be seen that asymmetry factors are significant in the 

AUDUSD time series, and the sign of the factor is positive, indicating that the impact 
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of bad news is greater than that of good news for AUDUSD. 

 

The empirical results for the Granger causality test in Chapter 3 support some of my 

proposed hypotheses. Specifically, the results indicate that in China’s domestic 

market, futures pricing functions quite well because a two-way causal link is found 

between spot and futures products, indicating that the function of price discovery 

performs effectively and reliably in China. As for the interaction between the 

domestic and overseas futures markets, a causal link does exist from the SHFE market 

to the LME market; these results also hold for the extreme upside and downside 

scenario. To some extent, they show that the movement in the SHFE market can 

directly guide the movement in the LME market, indicating the increase in China’s 

pricing power in commodities. As for the interaction between the SHFE metal market 

and the overseas financial market, no consistent conclusions have yet been found, 

indicating that that the Chinese factor may have a limited impact on the global market 

as a whole. 

 

The empirical evidence in chapter 4 suggests that the timing strategy could offer a 

better return, a lower standard deviation and, as a consequence, a higher information 

ratio for all three metal futures. The strategy works particularly well for zinc futures, 

in which case, it has a recorded return of 2.53% (an excess return of 2.57%) and 

lowers the standard deviation by more than 1%, leading to a much better IR ratio. The 

hit ratio, defined as the percentage of correctly predicted signals, is above 50% for all 

three products. According to the Henriksson-Merton (1981) non-parametric 

market-timing test, the active strategy possesses significant timing skill at the 5% 

level of significance. Clearly, the “buy-and-hold” strategy takes long positions 100% 

of the time, whereas the active strategy takes quite different positions. The active 

strategy takes approximately 30% long positions for copper and fewer than 10% long 

positions for aluminium. For zinc, it happens to take half long positions and half short 

positions. 
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In Chapter 4, the results also indicate that the factor inclusion does vary across the 

entire sample period for all three metals. For aluminium, the variable exchange rate 

and the lagged LME aluminium returns are included over the entire period. The 

results indicate that domestic aluminium is highly correlated with the global market. 

For copper, the factor inclusion appears to be comparatively irregular and inconsistent. 

All six variables were included during the out-of-sample period. For zinc, only four of 

the six variables were included, as monetary growth and the inflation variable are 

excluded. The lagged stock return index and the lagged LME zinc return variable are 

included over the entire period, showing that the zinc futures price is quite speculative 

and highly influenced by global markets. Furthermore, concerns about economic 

intuition do not pose a problem. 

 

5.2 Implications 

The results of this study provide implications for both researchers and commodity 

futures practitioners. Systematic research on Chinese specific factors suggests that 

these factors should be treated fairly. On the one hand, it can be said that Chinese 

specific factors do exist. A typical example is the monetary supply variable. From 

both chapters 2 and 4, it is clear that the monetary environment, measured by the 

money supply, has a large influence on China’s asset price. Unlike developed 

countries, interest rate marketization in China is still in progress, and the pricing 

mechanisms for the interest rate need to be further improved. Consequently, monetary 

policy is mainly transmitted through the quantitative channel and not the price 

channel. On the other hand, I must emphasize that Chinese specific factors should not 

be wildly exaggerated. In chapter 4, under the same background of excess supply, 

results show that the futures price of aluminium is more influenced by domestic 

factors, while zinc is more influenced by global factors. Hence, the Chinese specific 

factors should be treated with objectivity. 
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This study can also offer investment specialists and portfolio managers insights and 

guidance for futures investment. First, the investigation into the relationship between 

futures prices and macroeconomic variables offers clear insights for investment 

specialists, who can add indicators such as monetary growth and industrial growth 

into their investment calendar. Prior to the announcement of these data, they can 

consider their expectation of the data to decide what positions to take. With the rapid 

pace of interest rate liberalization in China, changes in the interest rates of different 

markets should also be given increasing attention because it is likely that the price 

channel will have a growing impact on commodity prices. 

 

Second, the study on China’s pricing power over global commodities also carries 

weight. To some extent, the results in chapter 3 have demonstrated that China’s 

commodity pricing power has grown stronger. Considering their expectations for 

domestic price movement and their judgment regarding the direction of information 

flow, portfolio managers could hold overseas commodity positions to conduct 

cross-market arbitrage. However, the strengthened pricing power is mainly reflected 

in the commodity market. Any extension to other capital markets might be quite risky. 

 

Third, this study provides dynamic timing strategies for portfolio managers. Its 

simplified procedure and flexible factor inclusion offers them a better understanding 

for exploring investment opportunities. The implication is that in different stages, the 

effect of the same variable may be completely different. As shown in chapter 4, 

during the second half 2013, the tight monetary environment was the primary focus, 

and high interest rates brought all asset prices down, including commodities and 

stocks; in other time ranges, when the monetary environment is moderately loose, 

asset prices are more influenced by other factors, such as the exchange rate and 

industrial growth. Therefore, practitioners such as asset managers should collect and 

analyse information in China’s market more accurately and delicately so that they can 

figure out which variable is the key indicator at different stages.  
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5.3 Limitation 

The results have some limitations, and some interesting avenues are available for 

future research. In chapter 2, the empirical relationship has been checked between 

macroeconomic variables and all of the commodities. However, in Chapter 3, the 

information and risk spillover effect is mainly checked on metal futures because one 

key task is to detect whether pricing power has been strengthened in the metal market. 

Efforts could also be made in this area on agricultural futures to see whether any 

interesting conclusions can be reached. 

 

In chapter 4, focus is mainly on dynamic timing strategies due to their simplicity, 

convenience and effectiveness. To incorporate the factors explored in Chapters 2 and 

3 more thoroughly, other investment strategies should also be fully studied.  
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