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Matthew J. Townson

Abstract

Ground based telescopes suffer from degraded resolution due to aberrations
induced by the atmosphere which prevent them from reaching the diffraction
limit. Adaptive Optics (AO) is a technology which corrects for this effect in
real-time, restoring the resolution of a telescope. However, it only corrects for
a very narrow field of view (FOV) around the guide source. Tomographic AO
uses multiple guide sources to increase the size of the corrected FOV, however,
these forms of AO are affected by the vertical distribution of turbulence in the
atmosphere (turbulence profile). This thesis presents work to develop turbu-
lence profiling instruments for daytime astronomy and improve centroiding
techniques for correlating wavefront sensors (WFS) which are used in slope
based turbulence profiling instruments.

The development of centroiding techniques for use on extended objects is based
on cross-correlation techniques. Two methods are presented, one for optim-
ising centroiding parameters on cross-correlation images and another for im-
proving the signal to noise in cross-correlation images created from images with
large relative shifts by using supersized reference images. Choosing optimal
centroiding parameters for correlating WFSs is demonstrated in simulation,
optimising a windowed, thresholded center of mass. The creation and use of
supersized reference images is also demonstrated in simulation, where they
are created from WFS data and shown to drastically improve the accuracy of
centroiding for centroiding extended objects which have continuous structure
across the whole field.

So-SLODAR (solar-slope detection and ranging) was developed as a slope
based instrument for measuring the turbulence profile on the Swedish Solar
Telescope (SST), La Palma. The technique is based on SLODAR, with de-
velopments to take advantage of the continuous structure of the solar surface
offering multiple guide sources. A full description of the technique and its
data reduction is presented, along with the first results from on-sky tests on
the SST.

Supervisors: Dr. Christopher Saunter and Prof. Gordon D. Love
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Chapter 1

Introduction

1.1 Adaptive Optics Overview

1.1.1 Brief History of Astronomy

The main problem facing astronomers is the extreme distances between them and

the objects they measure. This manifests itself as making the objects appear both

very faint and very small. It is the job of the telescope to remove these problems,

allowing these dim objects to be observed in detail at high resolution.

The first telescopes enabled astronomers to observe objects at higher resolution

than with the naked eye. This allowed, amongst others, the observation of the

structure on the surface of the Sun, leading to the confirmation of the rotation

of the Sun by Galilei (1632). As technology developed the eye became a redund-

ant observing instrument, being replaced initially by photographic plates before

reaching the current standard of electronic charge-coupled device (CCD) detectors

(Karttunen et al., 2007). These developments allowed for much fainter objects to be

observed, as exposure times could be increased to collect more photons. CCDs have

also become extremely sensitive (Howell, 2006), allowing them to detect individual

photons, with minimal noise.

As telescopes increased in size to accommodate the requirements of astronomers

1



1.1.2. Adaptive Optics

supporting technologies also developed. However, large telescopes are unable to

reach their diffraction limit due to the effects the atmosphere on light passing

through it. This has been known since the 18th century, with Newton (1730) talking

of the “confusion of the Rays which arises from the Tremors of the atmosphere”.

One solution to this problem is to place the telescope outside the atmosphere by

placing it in space. In orbit above the atmosphere space telescopes can reach

resolution which is unattainable on Earth, with the most notable example being

the Hubble Space Telescope (Trauger et al., 1994). However, there are serious

disadvantages to placing a telescope in orbit. These include the cost of placing

the telescope in orbit and the inability to easily modify or change instruments or

elements on the telescope.

1.1.2 Adaptive Optics

In recent times advances in technology have allowed for systems which can cor-

rect for the effects of the atmosphere in real-time, adaptive optics (AO), allowing

near diffraction-limited capabilities for ground based telescopes which employ these

methods. The concept of correcting for the aberrations induced by the atmosphere

was first introduced by Babcock (1953), where a layer of oil could be manipulated

on a mirror for the “correction of seeing”. However it wasn’t until Hardy et al.

(1977) that this was realised with the first AO system capable of correcting for

atmospheric turbulence in real-time. An example of an aberrated point spread

function (PSF) shown alongside a corrected PSF taken from Hardy et al. (1977) is

given in Fig. 1.1.

The atmosphere is a continuously evolving entity, in order to correct for it continu-

ously the corrections applied need to be continuously updated. This mandates the

use of a bright light source to act as a reference from which the aberrations induced

by the atmosphere can be measured. As the changes are continuous a system to

correct for it can benefit from operating in closed-loop, where only the changes in

2



1.1.2. Adaptive Optics

TOP

(a) (b) (c)

FIG. 8. Test data from experimental RTAC system. The contour plots were made from interferograms of actual wave fronts at
X =0. 633 jim with contour spacings of O. 05X. The corresponding point-spread functions were computed from these contour plots.
(a) Residual wave-front error of the RTAC with a plane-wave input, 0. 04X, rms, 0. 21X peak to peak. (b) Input wave-front distor-
tion producing 0. 27X rms, 1. 28X peak to peak at system output with RTAC off. (c) Same input as (b) with RTAC on. Residual
wave-front distortion has been reduced to 0. 06X rms, 0. 35X peak to peak.

erence is shown in Fig. 9, 9(a) being the uncorrected
PSF and 9(b) the corrected PSF. The effective telescope
aperture diameter for this test was 30 cm, with each
of the 21 subapertures measuring 6x6 cm.

An example of the performance of the 21-zone RTAC
with an extended image is shown in Fig. 10. A stan-
dard USAF 3-bar resolution target, illuminated with
white light, was located in the same isoplanatic patch
as the He-Ne laser reference source which was masked
out of the image area. The wave-front distrubance was
provided by a figured glass plate and amounted to 1. 5
waves peak to peak across the aperture. Both the laser
reference and the imaging light passed through the same
area of the figured plate. With the RTAC in operation,
it is possible to resolve the bars in target group 6-6
corresponding to 114 cycles/mm, which is 88% of the
diffraction-limited resolution as defined by the Rayleigh
criterion.

The potential improvement in resolving power ob-
tainable with real-time atmospheric correction in-
creases with the number of correction zones across
the aperture. For perfect compensation (no photon or
prediction error and an arbitrarily large number of
correction zones) the ratio of the angular resolution
obtainable with active wave-front correction to that with
no correction is ro/D, the ratio of the atmospheric co-

herence length to the telescope aperture.

For a 1 m diameter telescope and atmospheric tur-
bulence characterized by a 10 cm coherence length, the
ultimate improvement in angular resolution would be a
factor of 10. Practical limitations impose constraints
on the number of correction zones that can be imple-
mented. Analysis of the dependence of the residual
wave-front fitting error U2 FIT on subaperture spacing
L and turbulence parameter ro shows that this error is
only significant when L is comparable with or greater
than ro. In practice, therefore, it is possible to obtain
close to the optimum improvement in resolution with
a reasonable number of correction zones.

CONCLUSION

The feasibility of compensating atmospheric optical
distortion in real time using only the light received
from a distant reference source has been demonstrated
in a practical system.

The main principles on which the RTAC system is
based are summarized as follows.

(a) A zonal wave-front correction system is used,
with each correction zone directly related to the corre-
sponding subapertures of the wave-front sensor.
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Figure 1.1: Example aberrated wavefront (left) and AO corrected wavefront (right)
taken from Hardy et al. (1977). These images are of a He-Ne laser source after
passing through static turbulence.

aberrations are measured and the correction adjusted accordingly. A schematic of

a typical closed-loop AO system is given in Fig. 1.2.

Traditional AO relies on a bright source in order to sense the aberrations with a

WFS. For a Shack-Hartmann wavefront sensor (SH-WFS) this is done by splitting

the telescope pupil into sub-pupils which measure the gradient of local turbulence.

Short exposure times are required, as the whole system is required to update in

the range of 100-1000Hz in order to maintain the correction with the changes in

the turbulence. The requirement for a bright guide star limits the regions of the

sky that are accessible for AO corrected astronomy. This has been overcome to

a certain extent with the development of LGS, where a laser beacon is launched

and used as the guide source for wavefront sensing. This was first developed by

J. Feinlieb and R. Hunter independently (Benedict et al., 1994) and has brought

nearly all-sky coverage for AO systems which employ LGS, with these systems being

used consistently in many observatories, such as Gemini (Neichel et al., 2014).

With the development of more complex AO techniques which use tomography,

such as multi-conjugate adaptive optics (MCAO) and multi-object adaptive op-

tics (MOAO), the vertical distribution of atmospheric turbulence has become im-

portant, as the total integrated strength of the turbulence alone doesn’t provide
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1.1.2. Adaptive Optics

InstrumentDeformable
mirror

Beamsplitter

Wavefront
sensor

Control	
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Atmospheric	turbulence

Corrected
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Figure 1.2: Cartoon of a closed-loop AO system. Aberrated wavefronts incident to
the telescope are corrected with a deformable mirror before passing through to the
science instrument and WFS. The WFS measures the residual of the turbulence
after correction, then feeds back this to the control system, where the deformable
mirror’s shape is updated. This enables the long exposure on the science image to
maintain near diffraction-limited performance.

enough information to operate these systems. For the European extremely large

telescope (E-ELT) the turbulence profile is important as many of the proposed in-

struments use these types of AO correction, including EAGLE (Cuby et al., 2010)

and MAORY (Diolaiti, 2010).

These systems require the use of multiple LGSs in order to perform tomography.

Some of the images on the LGS WFSs will show elongated images of the laser

plume, but the slopes from these sub-apertures are required in order to estimate

the volume of turbulence properly. There has been much work on the subject of

how to best estimate the slopes using an elongated LGS image, including work by
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1.1.3. Solar Adaptive Optics

Thomas et al. (2008a, 2010), but there is currently no system which observes LGS

with the elongations expected on the edge of the E-ELT pupil on-sky. The next

phase of the CANARY experiment is designed to observe LGS at these extreme

elongations (Rousset et al., 2014) and test techniques for wavefront sensing and the

general operation of AO systems with highly elongated laser spots.

1.1.3 Solar Adaptive Optics

AO is also used in many solar telescopes and follows similar designs to their night-

time counterparts. However, they face challenges which are not experienced in

night-time AO (Rimmele, 2004). The main difficulties solar AO faces are the

typically poor day-time seeing conditions, the preferred observation wavelengths

(visible, often down to the blue) and the WFS. Solar WFSs observe some part of

the solar surface, so are required to work on low contrast, extended, time-varying

objects.

The first solar AO experiments were performed on the Dunn solar telescope (DST)

by Hardy (1980) using a shearing interferometer. SH-WFS were first used in solar

AO by Acton and Smithson (1992) on the DST. The next breakthrough in solar

WFS was the development of the correlating SH-WFS, with it first being demon-

strated by the national solar observatory (NSO) and is described in Rimmele and

Radick (1998a). This allowed solar granulation to be used in the WFS where previ-

ously small, high contrast regions were required for centroiding in WFSs for simple

centroiding techniques to work.

A major limitation in solar AO is that single conjugate adaptive optics (SCAO)

can only correct the aberrations within the isoplanatic patch of the order of a few

arcseconds (Beckers, 1988). Typically sunspots or other active regions of the Sun

extend over 1−2′ and ideally a solar AO system would correct over the whole field.

To achieve this many solar telescopes propose using MCAO systems to acieve this

correction, such as the MCAO system at the DST (Rimmele et al., 2010). Solar
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1.2. Profiling Atmospheric Turbulence

MCAO systems tend to follow similar architectures, a high order WFS which is

used to measure the ground layer of turbulence and a lower order WFS with a large

field of view (FOV) for tomography.

Future large solar telescopes, such as the Daniel K. Inouye Solar Telescope (DKIST)

(Elmore et al., 2014) and the european solar telescope (EST) (Collados et al.,

2010) are likely to operate with MCAO. Like night-time tomographic AO, the

performance of these systems will depend greatly on the turbulence profile.

1.2 Profiling Atmospheric Turbulence

As has been mentioned previously, the turbulence profile effects the performance

of tomographic AO systems. The turbulence profile is an important factor for

the functioning of wide-field AO, such as MCAO and MOAO (Fusco and Cos-

tille, 2010). The turbulence profile is also important for site-characterisation for

telescopes operating in both the day-time and night-time. The design of MCAO

systems requires knowledge of the turbulence profile (Rigaut et al., 2000) and site-

characterisation with a profiling instrument enables the optimal conjugate heights

for the deformable mirrors to be chosen for MCAO. The turbulence profile, as

measured with a profiling instrument, can also be used to optimise an AO system

to improve the tomographic performance, as demonstrated by CANARY (Vidal

et al., 2010).

There are many methods for measuring the turbulence profile at night, includ-

ing slope detection and ranging (SLODAR) (Wilson, 2002), scintillation detec-

tion and ranging (SCIDAR) (Rocca et al., 1974) and multi-aperture scintillation

sensor (MASS) (Kornilov et al., 2003; Tokovinin and Kornilov, 2007). SLODAR

and SCIDAR are triangulation techniques which require multiple sources, SLODAR

measures the correlation between the gradient of the wavefront across a pupil for

two sources and SCIDAR measures the correlation between scintillation images.

MASS probes the spatial structure of scintillation of a single star through ob-
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serving concentric rings of a pupil image. These techniques have been further

developed by instruments such as Surface-Layer SLODAR (Masciadri et al., 2010)

and Stereo-SCIDAR (Shepherd et al., 2014).

For day-time turbulence profiling there are fewer instruments available. There are

slope based, solar-differential image motion monitor + (S-DIMM+) (Scharmer and

van Werkhoven, 2010), and scintillation based, shadow band ranger (SHABAR)

(Beckers, 2001), turbulence profilers, both of which offer low resolution measure-

ments of the turbulence profiles. S-DIMM+ is capable of resolving 10 different

altitudes up to 30km and SHABAR can resolve the turbulence close to the ground,

but is unable to resolve high altitude turbulence.

1.3 Thesis Motivation and Synopsis

High resolution turbulence profiles during the day are required for the development

of advanced tomographic AO systems for solar telescopes. Measurements from

these instruments can shape the design of the AO systems for future solar telescopes

and potentially be used in tandem with AO systems, as has been demonstrated for

night-time astronomy.

The solar slope detection and ranging (So-SLODAR) instrument measures the

gradient of the phase across a telescope pupil using a wide-field SH-WFS. Like

S-DIMM+, So-SLODAR operates in open-loop, so the shifts of the sub-aperture

field measured are larger than in closed-loop AO systems. In order to perform these

centroiding measurements on an extended source cross-correlation and centroiding

algorithms are required. Noise on these measurements propagate into noise in

the measured turbulence profile, making accurate centroids important for profiling

instruments.

In this thesis I describe a wavefront gradient based method for measuring the tur-

bulence profile during the day, So-SLODAR, based on SLODAR, and methods for

improving the centroids measured from wide-field WFS measurements. A descrip-
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tion of how SH-WFSs operate, along with WF-WFSs is given in chapter 2 with

descriptions of how noise propagates through a correlating WFS to centroid meas-

urements. The statistics and measurements of atmospheric turbulence are given in

chapter 3 where the SLODAR technique is also explained. I describe a method for

estimating optimal center of mass parameters for a correlating WFS in chapter 4.

In chapter 5 I describe a technique for increasing the FOV of the reference image for

correlating WFS in order to improve the centroid estimates for open-loop WFSs.

I present the So-SLODAR method in chapter 6, including the data reduction tech-

nqiue, how it differs from the SLODAR technique and present the first measured

turbulence profiles using the instrument on the swedish solar telescope (SST) on

La Palma. Finally in chapter 7 I summarise the results of the improvements to

centroiding techniques for correlating WFS and the first results from So-SLODAR.
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Chapter 2

Shack-Hartmann Wavefront

Sensing Theory

WFSs are required in AO systems to sense the wavefront aberrations incident

to the telescope. They are an area of active research, with many different types

available , including the Pyramid WFS (Ragazzoni, 1996), curvature WFS (Roddier

and Roddier, 1988), and the SH-WFS (Shack and Platt, 1971). Each of these

different WFSs have their own set of advantages and disadvantages. In this thesis I

concentrate on the SH-WFS, as this is the most commonly employed in both solar

and LGS WFSs, being used in SPHERE (Fusco et al., 2006) and planned for use

in EAGLE (Cuby et al., 2008) and EPICS (Kasper et al., 2008). In this chapter I

describe how a SH-WFS can be used to measure wavefronts using extended sources,

specifically solar granulation and elongated LGSs, using a WF-WFS and cross-

correlation techniques.

2.1 Shack-Hartmann Wavefront Sensor

The SH-WFS works by measuring the gradient of the wavefront in different loca-

tions across a pupil plane. In order to do this a lenslet array is placed in the pupil

plane, effectively splitting it up into many separate sub-pupils. The motion of the
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2.1. Shack-Hartmann Wavefront Sensor

Detector

Figure 2.1: One dimensional cut-through of a SH-WFS. The Incident wavefront is
sectioned by the lenslets (shown in blue). Their gradients then move the location
of the image formed from the on-axis position (shown in grey), to a new position
(shown in red). The displacement of the images is proportional to the gradient of
the wavefront incident to the lenslet.

spots formed on the detector by each of these lenslets can then be measured, and is

proportional to the gradient of the wavefront incident on them. A one dimensional

cartoon of a SH-WFS is shown in Fig. 2.1. The location of the images formed

by each lenslet is measured, then the displacement from the positions for a flat

wavefront calculated. This displacement can be converted back into the wavefront

gradient for each sub-aperture using the pixel scale. From here an estimate of the

incident wavefront can be reconstructed, then corrected in a full AO system.

A similar design of SH-WFS is used in most solar AO systems. However, there are

no point sources available to observe during the day, so instead granular features

on the photosphere are observed. This causes images to be formed on the detector

rather than spots, so more pixels are used in each sub-aperture and a field-stop is

used to stop the different sub-apertures from overlapping on the detector. These

images move in the same way as spots from a point source, so if their motion is

tracked the shifts can be used in the same way as the positions of spots to measure

the gradient on the incident wavefront. However, the method for measuring the
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2.1.1. Laser Guide Star Elongation
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Figure 2.2: One dimensional cartoon showing the formation of an elongated LGS
spot on a sub-aperture. In this example the laser (shown in orange) is launched
from the side of the telescope pupil, and illuminates a plume in the sodium layer
of the atmosphere between hl and hu. A single sub-aperture is highlighted in blue.
The elongation for the sub-aperture, α, can be calculated using the position of the
sub-aperture in the pupil, and the height of the laser plume in the Sodium layer
(hu and hl).

displacements of the images requires more complex centroiding techniques.

2.1.1 Laser Guide Star Elongation

For extremely large telescopes (ELT), which use LGS, the images of the LGS in the

sub-apertures of the WFS will appear extended instead of spot like. This elongation

of the LGS spot is due to the laser illuminating a plume in the extended layer of

sodium atoms in the mesosphere (typically 80 − 105km) (Pfrommer and Hickson,

2014). When viewing this plume off-axis an elongated spot image is formed on the

detector. This is illustrated in one dimension in Fig. 2.2. From this diagram the

elongation, α, seen by the sub-aperture can be found using;

α = θu − θl (2.1)

where θu is the angle from the telescope pupil to the upper limit of the sodium

plume, hu, and θl is the angle from the telescope pupil to the lower limit of the
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2.1.1. Laser Guide Star Elongation

Sodium plume, hl. These θ values can be calculated using;

θu = arctan
(
hu
x

)
θl = arctan

(
hl
x

)
,

(2.2)

and can be substituted back into equation 2.1, which becomes;

α = arctan
(
hu
x

)
− arctan

(
hl
x

)
. (2.3)

If we take a simplified E-ELT, where the laser is launched from the edge of the

telescope pupil, the elongation of the LGS on the WFS varies dramatically. The

sub-apertures next to the laser launch site observe very little elongation and the

opposite side of the pupil observes the maximal elongation seen on the WFS. Using

a typical sodium profile, as measured by Pfrommer and Hickson (2014), we get

measured values of hu = 100km and hl = 85km. Using a value of x = 39m

(McPherson et al., 2012), for the most elongated sub-aperture on an E-ELT the

elongation measured will be ∼ 15′′.

On top of this effect the orientation of the plume on the WFS detector will be

different for each sub-aperture, due to the projection of the laser in two dimensions.

To calculate this elongation along the x and y dimensions can be treated separately

using equation 2.3, and a vector, θe, created;

θe =

 θx

θy

 , (2.4)

where θx and θy are the x and y components of the elongation respectively, cal-

culated separately with equation 2.3. This geometry is shown in Fig. 2.3, with a

cartoon of a single, elongated, sub-aperture image in a WFS given in Fig. 2.4.

The vector, θe can be converted into a size and angle using;

|θe| =
√
θ2
x + θ2

y

θ = arctan
(
θy
θx

)
.

(2.5)

where |θe| is the elongation size and θ is the rotation angle of the laser plume (as

shown in Fig. 2.4). Combining this with data from Pfrommer and Hickson (2014)
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Figure 2.3: Cartoon showing the formation of an elongated laser spot to two di-
mensions. If the elongation is split into x and y dimensions, a vector θe can be
calculated using equation 2.3 for each dimension independently. This gives the
elongation, and orientation, seen by a sub-aperture in a WFS in any location on
the telescope pupil, as shown in Fig. 2.4.
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Figure 2.4: Cartoon of the image in a WFS for a single sub-aperture observing an
elongated LGS. The laser plume is elongated in an arbitrary direction, which can
be calculated from the elongation if the x and y dimensions, θx and θy respectively.
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2.1.2. Solar Granulation

Figure 2.5: Simulated LGS WFS image for the E-ELT with no noise or turbulence.
The upper right section shows the lest elongated part of the WFS, and the lower
right section shows the most elongated part of the WFS. The full WFS image is
shown on a log scale to make the elongated sub-apertures easier to see.

it is possible to create simulated WFS frames for the E-ELT, for a given sodium

profile. A simulated LGS WFS frame for an ELT is shown in Fig. 2.5, for no

atmospheric turbulence. These “perfect” WFS images can then be perturbed with

the effects of atmospheric turbulence and different levels of noise added to create

realistic WFS images expected for the LGS WFS on the E-ELT.

2.1.2 Solar Granulation

WFSs on solar telescopes require a large FOV to capture enough solar structure

to allow reliable image shift measurements. Solar WFSs typically observe the solar

granulation in the photosphere (Michau et al., 1993), which are visible around

500nm and use small small bandwidth, less than 10nm, to reduce chromatic effects.

For SCAO the FOV used is ∼ 5 − 10arcseconds (Soltau et al., 2013; Rimmele
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2.2. Centroiding Extended Objects

and Radick, 1998b; Rimmele and Marino, 2011). This is a compromise between

including as much structure as possible, for reliable image shift measurements, and

minimizing the effect of averaging the wavefront information (Lühe, 1983).

High resolution, processed, images of solar granules are readily available e.g. Carls-

son et al. (2003). For this thesis simulations of solar WFS use one such high res-

olution image, taken from Carlsson et al. (2003). This chosen image was taken at

430.5nm, by Mats Carlsson, Viggo Hansteen, Luc Rouppe van der Voort, Astrid

Fossum, and Elin Marthinussen, with the image processing performed by Mats

Löfdahl. It has a pixel scale of 0.04′′/pixel. The full resolution image, along with

one which has been resampled to the resolution and FOV typical of a solar WFS

(0.4′′/pixel) is shown in Fig. 2.6. The contrast seen in Fig. 2.6 is representative of

solar granulation used in solar AO (∼ 10%).

2.2 Centroiding Extended Objects

In solar AO the only available source for WFSs is the sun itself. This poses a

problem in that the solar disk is an extended object, which is continuous and has a

low contrast value (∼ 10%). This problem has been overcome to some degree, with

a number of different solar AO systems currently in operation (Scharmer et al.,

2003; Rimmele and Radick, 1998b; Michau et al., 1993). These instruments all use

some form of Shack-Hartmann WFS (Shack and Platt, 1971) with a large FOV,

to image a region of granules on the solar surface. The images of the granules

are then correlated with a reference image, which is typically taken to be one of

the sub-aperture images from the WFS frame. The generated cross-correlation

images then need to be centroided in order to determine the relative shifts of

the sub-apertures with respect to the reference image. For solar AO the global

tip/tilt term is typically not measured by the WFS, so is removed from the WFS

measurement, giving relative shifts of all of the sub-apertures, including the one

used as the reference image.
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Figure 2.6: Image of solar granulation used as the input image in simulations for
this thesis. The full image is 75 × 75′′. This image is re-sampled and windowed
to simulate images of solar WFS, with an example shown on the right. It has
been re-sampled from the original resolution of 0.04′′/pixel to 0.4′′/pixel. The high
resolution, full image was obtained from the SST on-line Gallery (Carlsson et al.,
2003).

The location of the peak of a cross-correlation image is usually performed in a

two-step process (Michau et al., 2006). Initially an integer shift measurement is

performed by locating the region of peak intensity in the cross-correlation image

and secondly the sub-pixel shift is estimated. The determination of the peak loc-

ation to sub-pixel accuracy limits the accuracy to which the shift measurement

can be performed, assuming the correct part of the cross-correlation image has

been selected. Alternative approaches exist, such as simply performing a center

of mass measurement on the entire cross-correlation image, to more complicated

fitting, such as matched-filter (Gilles and Ellerbroek, 2006). However the accuracy

of the resultant centroid position depends greatly on the parameters chosen for the

centroiding algorithm and cannot be predicted.
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2.2.1. Cross Correlation Image Generation

2.2.1 Cross Correlation Image Generation

There are a number of methods for generating cross-correlation images between

sub-aperture images. These have been compared many times, and a synopsis of

the most popular methods is given by Löfdahl (2010). Here I give an outline

of these methods, all descriptions follow a similar nomenclature with the mis-

alignment between images being described with i and j for the x and y directions

respectively. This means that i and j also represent the pixel locations in the cross-

correlation image, with the origin at the center of the cross-correlation image. The

methods are described for each pixel in the cross-correlation image, i, j.

2.2.1.1 Square Difference Function

The square difference function is simply calculated for each pixel, i, j, using;

∑
x,y

(Im(x, y)− Ref (x+ i, y + j))2, (2.6)

where Im represents the sub-aperture image, and Ref represents the reference

image. It corresponds to a least squares exploration of the possible alignments

of the two images. If we expand out the squared term;

∑
x,y

(Im2(x, y) + Ref 2(x+ i, y + j)− 2Im(x, y)Ref (x+ i, y + j)), (2.7)

we get three terms, two corresponding to the square of the intensity in the two

images, and the cross term between the two images. The cross term contains the

information on the displacement between the images, and forms the basis of the

covariance function, calculated in the image domain, used by the Dunn Telescope

(Rimmele and Radick, 1998b).
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Figure 2.7: Example solar sub-aperture images, with their cross-correlation image.
The left side shows two simulated sub-aperture images from a WFS observing solar
granulation. The image on the right shows the cross-correlation image generated
using the covariance function on the two images. The peak of the cross-correlation
image is visible, as is the noise, which arises from the noise on the sub-aperture
images.

2.2.1.2 Covariance Function

This method of generating the covariance function uses the Fourier transform to

generate the cross-correlation image, as proposed by Lühe (1983).

F−1 {F{Im(x, y)}.F ∗{Ref (x, y)}} , (2.8)

where F represents a Fourier transform. These calculations can be performed

quickly with the use of Fast Fourier Transforms (Frigo and Johnson, 2001), and

the fastest fourier transform in the west (FFTW) (Frigo, 1999), so are simple to

implement. For these reasons this method was selected for the generation of cross-

correlation images in this thesis. An example of two sub-aperture images of solar

granulation with noise and the cross-correlation image generated from them using

this technique is shown in Fig. 2.7.
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2.2.1.3. Absolute Difference Function

2.2.1.3 Absolute Difference Function

This algorithm can be very fast, as it can be implemented efficiently in many CPU

architectures, especially for 8-bit data (Keller et al., 2003). It is similar to the

square difference function described previously (§2.2.1.1), with the modification of

taking the absolute value of the difference rather than the squares;

∑
x,y

|Im(x, y)− Ref (s+ i, y + j)|. (2.9)

This method was developed further by Scharmer et al. (2000) in order to perform

better with quadratic fitting around the correlation peak, described in §2.2.2.3,

creating the “absolute difference function, squared”;(∑
x,y

|Im(x, y)− Ref (x+ i, y + j)|
)2

, (2.10)

and is in use on the SST (Scharmer et al., 2003).

2.2.2 Centroiding Cross-Correlation Images

The position of the peak of a cross-correlation image from the center gives the shift

between the sub-aperture and the reference image. Standard centroiding techniques

can be used to measure the location of the correlation peak to sub-pixel accuracy.

For point sources and the resultant Airy functions they produce on WFSs there are

analytical methods to determine optimal parameters for peak location, at a given

SNR (Pan et al., 2008). However, no such analytical treatment exists for images

of arbitrary content, such as cross-correlation images.

There are a number of different methods for measuring the location of the peak in

cross-correlation images, with the most commonly employed ones described below.

The centroid vector is defined as;

Ri,ref =

 x0

y0

 , (2.11)

19



2.2.2.1. Center of Mass

where Ri,ref is the vector representing the shift between sub-aperture image, i, and

the reference image, ref , with x0 and y0 corresponding to the x and y components

of the centroid respectively.

2.2.2.1 Center of Mass

A simple method to determine the location of the peak of the cross-correlation

image is to use a center of mass such as the one described by Stone (1989);

Ri,ref = 1
I

ymax∑
y=1

xmax∑
x=1

Cx,yri,ref
x,y , (2.12)

where I represents the total intensity in the cross-correlation image, Cx,y represents

the intensity in pixel x, y in the cross-correlation image and ri,ref
x,y is the vector

between pixel x, y and the center of the cross-correlation image. This method

allows for a sub-pixel estimation of the location of the cross-correlation image, but

is susceptible to noise in the cross-correlation image.

2.2.2.2 Windowed, Thresholded Center of Mass

The simple center of mass measurement utilises all of the information in the cross-

correlation image, including the noise from the two input images. This is not

necessarily the best case, as outside of the peak of the cross-correlation pixels only

introduce noise into the center of mass measurement. The contribution of these

pixels can be removed by placing a window around the cross-correlation peak,

and by using a threshold level to remove the contribution of pixels which aren’t

contributing to the cross-correlation peak. One method of performing a windowed,

thresholded center of mass is described here.

Initially the cross-correlation image, C, has its background removed by subtracting

the minimal value, Cmin, from all pixels, forming C0;

C0 = C − Cmin. (2.13)
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A threshold value can then be calculated using;

Ithresh = C0,max × α, 0 ≤ α ≤ 1. (2.14)

Ithresh is the threshold intensity, C0,max is the maximum intensity in the background

subtracted correlation image C0, and α is the threshold value. When α = 0 all

data in the cross-correlation image is retained, and when α = 1 only the brightest

pixel is retained. The threshold is applied to C0 by setting all pixel values where

Ci,j < Ithresh to the background value, 0. This creates the thresholded cross-

correlation image, Cthresh .

The threshold intensity, Ithresh , is calculated for each cross-correlation image, so

it is sympathetic to the magnitude of the cross-correlation peak. This ensures

that proportionally the same amount of the core of the cross-correlation peak is

used in every cross-correlation image. This reduces differential effects between

cross-correlation images, and possible effects from scintillation, which would cause

intensity differences between different sub-aperture images, resulting in a different

cross-correlation peak intensity.

Cthresh , is then masked to the chosen window size, centered around the peak of the

cross-correlation image, Cw,thresh . The center of mass measurement is then made on

the windowed, thresholded cross-correlation image, as given in equation 2.12. The

centroid is then calculated by combining the location of the windowed region in the

full cross-correlation image, and the center of mass measurement of the windowed

region, for the x and y dimensions using;

x0 = imin + xcom

y0 = jmin + ycom,
(2.15)

where xcom and ycom are the x and y center of mass measurements, and imin jmin

are the locations of the peak in the cross-correlation image.

If we take the cross-correlation image from Fig. 2.7 and apply the threshold and

window the generated cross-correlation image appears like the one shown in Fig. 2.8.

Here we see the threshold value has removed a large number of pixels from the cross-
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2.2.2.3. Two-Dimensional Quadratic Interpolation

Figure 2.8: Example thresholded, windowed cross-correlation image. The threshold
value has removed a large number of pixels which would add noise to a center of
mass measurement. By only performing the center of mass in the green windowed
region, the effect of the remaining pixels outside of the window are removed. This
further reduces the noise on the center of mass measurement.

correlation image, which would add noise to the center of mass measurement. Also

the window, shown in green, further removes pixels which would add noise far away

from the cross-correlation peak.

2.2.2.3 Two-Dimensional Quadratic Interpolation

It has been found by November and Simon (1988) that the best interpolation meth-

ods for measuring the peak of a cross-correlation image generated from images of

solar granules are polynomial fits of second order. Higher order fits tend so under-

estimate the shift when the displacement is small, and linear fits systematicallly

overestimate the shift. A two-dimensional quadratic fit can perform as well as a

Gaussian fitting algorithm, but is substantially less computationally expensive (Löf-
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2.2.2.3. Two-Dimensional Quadratic Interpolation

dahl, 2010). The parabolic fitting occurs on a small 3× 3 pixel region, s, centered

on the peak of the cross-correlation image, as described by Löfdahl (2010);

si,j = Ci+imax,j+jmax , i, j = −1, 0, 1 (2.16)

where i and j go from −1 to 1 around the cross-correlation peak in the x and y

directions respectively. s0,0 corresponds to the peak of the cross-correlation image,

in the center of the region. The parabola fitted to s is of the form;

f(x, y) = a1 + a2x+ a3x
2 + a4y + a5y

2 + a6xy. (2.17)

The prefactors for the powers of x and y are then given by;

a2 = (s1,0 − s−1,0) /2

a3 = (s1,0 − 2s0,0 + s−1,0) /2

a4 = (s0,1 − s0,−1) /2

a5 = (s0,1 − 2s0,0 + s0,−1) /2

a6 = (s1,1 − s−1,1 − s1,−1 + s−1,−1) /4

. (2.18)

The location of the minima can be found analytically from the above formulae in

x and y using;
xpoly = (2a2a5 − a4a6)/(a2

6 − 4a3a5)

ypoly = (2a3a4 − a2a6)/(a2
6 − 4a3a5),

(2.19)

where the values of a1 − a6 are given by equation 2.18. Then, in a similar manner

as was done for the windowed, thresholded center of mass, this is combined with

the location of the region in the full cross-correlation image, imin and jmin, to give

an estimate of the centroid;

x0 = imin + xpoly

y0 = jmin + ypoly.
(2.20)

In high signal to noise ratios (SNR) the limiting factor of this technique arises from

the biased sampling of the core of the cross-correlation peak, shown in Fig. 2.9.

The under-sampling of the cross-correlation peak results in a systematic rounding

effect, which biases the shift estimates towards integer values. This is especially
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2.3. Noise in Cross-Correlation Images

obvious in Fig. 2.9b, where both the x and y directions follow the same sawtooth

pattern of residual error, with the error increasing as the cross-correlation peak

moves away from being centered on a pixel.

The cause of the bias is illustrated in Fig. 2.10. Here we see the regions windowed

for use in the 2D parabolic fit to the cross-correlation peak highlighted in red. This

is a good mask for Fig. 2.10a, where the cross-correlation is well centered on a single

pixel. However, this approach does not work as well in Fig. 2.10b, where centering

around the brightest pixel in the cross-correlation image causes a bias towards the

brightest pixel. This occurs because the areas around the “true” location of the

peak are not being sampled equally. This leads to the parabolic fit estimating the

location of the peak to be closer to the brightest pixel in the cross-correlation image

than it actually is.

2.3 Noise in Cross-Correlation Images

There are two main ways noise enters a cross-correlation image. The noise in the

images used to create the cross-correlation images manifest themselves in the cross-

correlation image, described in § 2.3.1. The other major source of noise is from

the correlation of regions of the images which are not common to both images,

described in § 2.3.2.

2.3.1 Noise from correlation images

A major sources of noise in cross-correlation images arises from noise in the sub-

aperture images and the reference image. These images can be described as con-

taining both a signal, and noise part;

Im = Ims + Imσ

Ref = Ref s + Ref σ
, (2.21)

where Im represents the overall sub-aperture image, Ims describes the signal in the

image, and Imσ describes the noise associated with the image. In a similar way,
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2.3.1. Noise from correlation images
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Figure 2.9: Residual errors from using a parabolic fit around an under-sampled cor-
relation peak. Subfigure a shows the centroids for images, with the shifts applied.
The negative of the y shifts is plotted to make them easier to distinguish from the
x shifts. There is a “wobble” apparent in the two lines from under-sampling the
correlation peak. This is more clearly visible as a systematic effect in Subfig. b,
where the residuals are plotted. Here we see the under-sampling of the correlation
peak as a “sawtooth” like pattern, with the best centroid estimates around integer
pixel shifts.
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Figure 2.10: An illustrative one dimensional cut through a cross-correlation image,
with the region used by the parabolic fit highlighted in red. The locations of the
actual peak are shown by the green arrows labelled “centroid”, and the parabolic
fit location shown with the blue arrows labelled “peak center”. Using only the 3
pixels around the center of the cross-correlation peak, the shift estimate can be
biased away from the true location of the peak due to the uneven sampling. While
Subfig. a shows the ideal case for using this method, where both sides of the peak
are well sampled, there are some cases where the shift differs from the measured
position due to the limited size of the region used, as shown in Subfig. b.
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2.3.1. Noise from correlation images

Ref represents the full reference image, Ref s represents the signal in the reference

image, and Ref σ describes the noise in the reference image. When these images

are combined using a cross-correlation technique, assuming a linear regime, the

resulting cross-correlation image contains four terms;

C = CImsRef s + CImsRef σ + CImσRef s + CImσRef σ , (2.22)

where C is the total signal in the cross-correlation image, CImsRef s corresponds to

the sub-aperture image signal combined with the reference image signal, CImsRef σ

represents the sub-aperture image signal combined with the reference image noise,

CImσRef s is the sub-aperture image noise combined with the reference image signal

and CImσRef σ is the sub-aperture image noise combined with the reference image

noise. Noise in the cross-correlation image carries forward to errors on centroid

measurements, as the the noise can change the apparent location of the cross-

correlation peak.

It is not obvious how each of these terms affect the measured centroid, so I show

here how adding and removing noise to the sub-aperture images, and reference

image changes the error on the measured centroids in Fig. 2.11. This shows how

the noise terms in equation 2.22 contribute towards the error on the measured

centroid for various different Poisson SNR levels on images of solar granulation.

To ensure there was no non-common image noise (see § 2.3.2), there was no shift

added between any of the sub-aperture images, or the reference image.

Each line in Fig. 2.11 represents a different combination of noise in sub-aperture

and reference images. The effect of global tip/tilt in each data set is negligible,

apart from where noise is present only in the reference image (green lines), where

two lines are shown, one for tip/tilt included and another after removing the global

tip/tilt term. This difference demonstrates the effect of noise in the reference image

to add a global offset to the centroid estimates, as the noise is common to all of the

individual centroid estimates. Noise in the reference image can largely be ignored

in WFSs as global tip/tilt is usually subtracted from the WFS measurements and
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Figure 2.11: Noise contributions of sub-aperture and reference images to centroid
error. The coloured lines represent how noise in each of the images combined in the
cross-correlation affect the centroid estimate. The red line shows the error when
noise is included in both the reference and sub-aperture images, the blue line when
noise is included in the sub-aperture images only, the green lines when noise is
included only on the reference image and the black line when no noise is included
in either of the images. The green lines show two different cases, the dashed line
for including the global tip/tilt term in the error and the solid line for removing
the global tip/tilt term in the error, the other cases showed negligable difference
between the two regimes.

measured by some other means.

The blue, red and dashed green lines in Fig. 2.11 follow similar trends. At the

higher SNR levels the error on the centroid estimates all follow the same power

law, while at lower SNR levels the effect of the different noise sources separate.

There is a drop in the error on centroids from noise being present on both the

reference and sub-aperture images (red line) compared to noise only being present

on the sub-aperture images (blue line). This shows the effect of noise on both the

sub-aperture and reference images combined. The effect of noise in the reference

image is also apparent at low SNR when the effect of global tip/tilt is removed,
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2.3.2. Non-Common Image Noise

Figure 2.12: This simplified cartoon shows the effect on non-common image noise.
The two yellow boxes represent sub-aperture images with relative shifts sampling
the same large FOV, and are shown separately in the middle. The right side
shows the cross-correlation image generated from the two sub-aperture images.
The upper plot shows a single example structure, along with the two sub-aperture
images, and the generated cross-correlation image. The location of the centroid
on the correlation image is denoted by the yellow line, and the location of the
actual shift is denoted with a red line. The lower plot shows an example with two
structures of similar size and shape in the FOV, which affects the cross-correlation
image and adds noise to the shift estimate.

as the error on centroid estimate in the green line seperates from the other noise

sources. So while there is nothing to be gained at high SNR from removing noise

in the reference image, it will have an effect in reducing this term for lower SNR

images.

2.3.2 Non-Common Image Noise

The effect of misalignment, through differential tilt, of individual sub-aperture

images changes the location of the sub-aperture FOV on the object being observed.

This changes the structure visible in each of the sub-aperture images. The differing

structure between sub-aperture images and the reference image can add noise into

the cross-correlation images refered to from here as “non-common image noise” and

is illustrated in Fig. 2.12.
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2.4. Summary

The upper region of Fig. 2.12 shows the regime where a normal correlating WFS

gives an accurate centroid estimate for the shift in position between the two sub-

apertures. The “feature” is present in both of the sub-aperture images and the

cross-correlation image generated from this contains one peak. This allows for

an accurate centroid estimate, the red and yellow lines overlaid onto the cross-

correlation image overlap well.

The lower part of Fig. 2.12 shows the regime where a normal correlating WFS no

longer gives accurate centroid estimates. The new feature is only visible in one of

the sub-apertures and adds spurious signal to the cross-correlation image, as can

be seen by the extra peak visible in the cross-correlation image. While the peak is

not as large as the one peak from the common feature overlapping, the extra peak

adds an error to the centroid measurements, shifting the location of the centroid

away from the true centroid position.

While the case shown in Fig. 2.12 is a simplified cartoon, this effect is present

in cross-correlation images of solar granules. In the solar granule case the size

and shape of the granules is very similar across the whole FOV, meaning that all

granules correlate, to some degree, with all other ones. As there are many granules

in a WFS image the effect isn’t just a single extra cross-correlation peak, but

rather a large background, which appears to have many lumps and bumps where

the granules overlap.

2.4 Summary

In this chapter I described some of the methods currently used for centroiding

images in WFSs observing extended objects. Noise on the centroid estimates come

from two major locations, noise inherent in the individual images, and noise from

non-common structure. Centroiding techniques attempt to minimise the impact of

the noise inherent on the images through fitting to the correlation peak and there

is no attempt to remove the effect of non-common image noise.
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2.4. Summary

I investigate another method for minimising the effect of noise in the sub-aperture

and reference images in chapter 4, by estimating optimal window and threshold

parameters, which effectively remove the influence of noise from the centroid es-

timate. I also look at a method for reducing non-common image noise by using

supersized reference images in chapter 5, where I also discuss methods of generating

these supersized reference images using only the data from WFS frames.
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Chapter 3

Atmospheric Turbulence and

Turbulence Profiling Theory

A detailed understanding of the processes behind turbulence enables more precise

measurement and correction of that turbulence. An understanding of the vertical

distribution of turbulence is important for tomographic AO. To measure the ver-

tical turbulence the spatial distribution and geometry of the system making the

measurements need to be understood. In this chapter I outline the statistics un-

derlying the structure of atmospheric turbulence in § 3.1 and § 3.2. I then go on to

explain how the statistical properties of atmospheric turbulence can be measured

through the motions it induces on images of astronomical objects in § 3.3. This

is extended to describe instruments capable of measuring the vertical distribution

of turbulence in the atmosphere with SLODAR in § 3.4, S-DIMM+ in § 3.5 and

other profiling methods in § 3.6. The SLODAR technique is used in Chapter 6 as

a basis for the development of So-SLODAR.

3.1 Atmospheric Turbulence

Atmospheric turbulence is induced from energy being added to the atmosphere,

predominantly through solar heating. This heated air then mixes with air of dif-
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3.1.1. Kolmogorov Turbulence

ferent temperatures causing optical turbulence, due to the air masses of different

temperatures having different refractive indices. The spatial de-correlation of the

temperature leads to de-correlation of the refractive index, which cause variations

in the optical path length to a telescope pupil, adding aberrations to any images

formed by the telescope.

The optical properties of atmospheric turbulence occur on scales which are of the

order mm−m. Visible light has a wavelength of ∼ 500 nm, a substantially different

scale to the structure of atmospheric turbulence. This means that atmospheric dif-

fraction effects can be largely ignored for the size of pupils employed by our WFSs,

and simple geometrical propagation of the wavefronts employed in propagating

light from one turbulent region to another in simulation. The temporal evolution

of the turbulence is also relatively slow when compared to the transit time of light

through the turbulence. This allows for the assumption of frozen flow (Hardy,

1998) to be used.

3.1.1 Kolmogorov Turbulence

The processes involved in generating atmospheric turbulence are largely random, as

such the best way to describe it is through statistical properties. Kolmogorov (1941)

proposed a mathematical description of turbulence, which was further developed

by Klyatskin and Tatarskii (1972). A flow is considered turbulent if the Reynolds

number, Re, defined by;

Re = V0L0
ν0

, (3.1)

where V0 is the characteristic velocity of the flow, L0 is the characteristic size,

and ν0 is the viscosity of the fluid, exceeds a critical value (Reynolds, 1894). For

a moderately sized atmospheric disturbance in air, with L0 = 15m, ν0 = 15 ×

10−6m2s−1, and a flow velocity of 1ms−1, Re = 1 × 106, which greatly exceeds

the critical value for air, ≈ 2500 − 5000 (Vinnichenko, 2013). Velocities in the
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3.1.1. Kolmogorov Turbulence

atmosphere are expected to be greater than 1ms−1, so all atmospheric disturbances

can be assumed to be turbulent.

The turbulence is bound by the region where the energy is added to the atmo-

sphere, called the “outer scale”, L0. This then breaks down, until eventually an

“inner scale”, l0, is reached, where the energy is dissipated by friction between the

molecules and Re drops below its critical value. For this to happen continuously,

the rate of dissipation of the energy to heating the atmosphere must be the same

as the rate of input of energy to the region of atmosphere. If we consider a region

of turbulence between the inner and outer scale, the velocity fluctuations from the

turbulence, V (ms−1) are determined only by the scale size, l(m) , and the rate of

energy transport through the turbulent region, ε (kgm2s−3). Dimensional analysis

gives the relation;

V ∝ ε1/3l1/3, (3.2)

which implies the fluctuational energy in perturbations of size l is proportional to

l2/3 (Hardy, 1998).

The atmosphere is a non-stationary entity, which is continuously evolving. When

considering the light cone of a telescope, we are only concerned with the differences

between different regions of the atmosphere, rather than its absolute properties.

The structure function gives the intensity of fluctuations over different scales. There

are a number of other reasons why structure functions are used, which are discussed

in Roddier (1981). The structure function of velocity, DV (r), over the spatial

seperation r, is defined as;

DV (r) = 〈|V (x)− V (x + r)|2〉 = C2
V r2/3, (3.3)

where 〈〉 represents the average over all positions x, V (x) denotes the velocity at a

point, x, and V (x + r) the velocity at a point r away from x. C2
V is the structure

function for velocity, a parameter that depends on the energy flowing through the

region of atmosphere. In astronomy we are interested in the perturbations to a

wavefront of light caused by the changes in refractive index of the atmosphere.
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3.1.2. Von-Kàrmàn Turbulence

In a similar definition (Schmidt, 2010), the structure function for the refractive

index, Dn(r), can be defined;

Dn(r) = C2
nr

2/3, l0 < r < L0 (3.4)

where C2
n is the refractive-index structure parameter. This is only valid in regions

between the inner scale, l0, and the outer scale L0 of turbulence. We can attain

the refractive-index power spectral density (PSD) of the turbulence, Φκ
n;

Φκ
n = 0.033C2

nκ
−11/3,

1
L0
� κ� 1

l0
(3.5)

where κ = 2π/l and l is the spatial scale of turbulence.

3.1.2 Von-Kàrmàn Turbulence

There are other models for the refractive-index power spectrum density, one such

is the von Kàrmàn PSD. This is a modified Kolmogorov spectrum, which takes

into account the outer scale;

ΦvK
n = 0.033C2

n

(κ2 + κ2
0)11/6 , 0 ≤ κ� 1

l0
(3.6)

where κ0 = 2π/L0. A comparison between the refractive-index power spectrum

densities of Kolmogorov and von Kàrmàn turbulence are shown in Fig. 3.1. The

chosen value for the outer scale in the von Kàrmàn spectrum was 100m. The

value of the outer scale of turbulence has been measured to be anywhere between

10m − 300m (Coulman et al., 1988; Agabi et al., 1995; Lukin et al., 1999; Ziad

et al., 2000; Dali Ali et al., 2010).

3.2 Imaging Through the Atmosphere

Light passing through a turbulent layer in the atmosphere will be perturbed by

the refractive-index variations. Light in astronomy can be assumed to come from

infinity, meaning it is a plane wave when it reaches the atmosphere;

Ψh(x) = Aeiφ(x), (3.7)
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Figure 3.1: The refractive-index power spectrum of Kolmogorov and von Kàrmàn
turbulence. Both follow the same power law for high spatial frequencies, of -11/3.
However they start to differ at low spatial frequencies, where the von Kàrmàn
spectrum has an outer scale defined, removing power at larger scales.

where Ψh(x) is the wavefront, with phase φ(x) and amplitude A, over the spatial

co-ordinate x. After passing through a turbulent layer of the atmosphere, the phase

is perturbed by dΦ(x);

dΦ(x) = k

∫ h+δh

h
n(x, z)dz, (3.8)

where k = 2π/λ, the turbulent layer is at height h, has thickness δh and n(x, z) is

the refractive index. The wavefront perturbations will not be achromatic, due to

dispersion, making the optical effects of atmospheric turbulence worse towards the

blue end of the spectrum. As previously stated, we are not interested in absolute

phase, but rather the difference in phase between points, φ(x) and φ(x + r), where

r is the displacement (ξ, η). Hence, we use the structure function for φ, Dφ(r);

Dφ(r) = 〈|φ(x)− φ(x + r)|2〉. (3.9)
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3.2.1. Fried’s Parameter

Roddier (1999) showed that equation 3.4 can be used with equation 3.8 and equa-

tion 3.9 to give the structure function as;

Dφ(r) = 2.91k2r5/3
∫
C2
n(z)dz. (3.10)

Turbulent layers are typically taken to be parallel horizontal layers, with z cor-

responding to distance orthogonal to the turbulent layer. Equation 3.10 can be

modified so instead of the direction z, the turbulence is defined at height above the

ground h;

Dφ(r) = 2.91k2r5/3 cos−1(γ)
∫
C2
n(h)dh, (3.11)

where γ is the angular distance from zenith to the observed source.

3.2.1 Fried’s Parameter

Equation 3.11 can be written as

Dφ(r) = 6.88(r/r0)5/3, (3.12)

where r0 is the Fried parameter (Fried, 1966), and is given by;

r0 =
[
0.423k2(cos(γ))−1

∫
C2
n(h).dh

]−3/5
, (3.13)

and characterises the integrated turbulence for a particular direction through the

atmosphere, at a given wavelength. It describes the largest diameter of a telescope

which will produce diffraction limited images, above this diamter the performance

will begin to be limited by the effects of atmospheric turbulence (Young, 1974).

Equation 3.13 gives the wavelength dependance of r0 as;

r0 ∝
(
k2
)−3/5

∝ λ6/5. (3.14)

If the resolution is limited by the atmosphere, the r0 value can be related to a

“seeing” value using;

∆θ ∼ λ

r0
, (3.15)
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3.3. Seeing Measurements

where ∆θ is the smallest resolvable distance between two objects. This is a modified

version of the Rayleigh Criterion (Rayleigh, 1874) where instead of the telescope

diameter limiting the resolution the atmosphere is the limiting factor taking the

form of Fried’s parameter.

3.3 Seeing Measurements

For observing sites one of the site-statistics that can be measured is the integrated

turbulence along the line of sight of the telescope. This is critical in the choice of

site for a telescope to achieve the highest resolution and usually takes the form of

the width of the PSF seen on a detector. If the airmass is taken into account, this

can converted into a value for r0.

3.3.1 Differential Image Motion Monitor

A differential image motion monitor (DIMM) measures the relative motion of two

images in order to get a measure of r0 (Sarazin and Roddier, 1990). For a plane

wave of light traveling normal to a turbulent layer, the component α of the angle-

of-arrival fluctuation in the x direction induced by the turbulence is described by;

α(x, y) = − ∂

∂x
z(x, y), (3.16)

where;

z(x, y) = λ

2πφ(x, y), (3.17)

z(x, y) is the wavefront phase φ(x, y). The angle of arrival of the rays from a star

is linearly linked to the motion of the image of the star of the detector by the plate

scale, which can be measured though centroiding the image. The covariance of the

angle-of-arrival is then given by;

Bα(ξ, η) = 〈α(x, y), α(x+ ξ, y + η)〉, (3.18)
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3.3.1. Differential Image Motion Monitor

for a point (ξ, η) away from (x, y). This can be related to the covariance of the

phase fluctuations using equation 3.16;

Bα(ξ, η) = − λ2

4π2
∂2

∂ξ2Bφ(ξ, η). (3.19)

The structure function, defined in equation 3.9, can be written as;

Dφ(x, y) = 2 [Bφ(0, 0)−Bφ(ξ, η)] . (3.20)

This can be combined with equation 3.19 to give;

Bα(ξ, η) = λ

8π2
∂2

∂ξ2Dφ(ξ, η). (3.21)

The relation between the phase structure function and r0 given in equation 3.12,

and using r =
√
ξ2 + η2 can then be combined;

Bα(ξ, η) = 0.087λ2r
−5/3
0

∂2

∂ξ2
[
ξ2 + η2]5/6

= 0.145λ2r
−5/3
0

[
(ξ2 + η2)−1/6 − 1

3ξ
2(ξ2 + η2)−7/6

]
,

(3.22)

which gives the covariance of the angle-of-arrival fluctuations. This general equa-

tion can be simplified greatly if we set ξ or η to 0, corresponding to latitudinal and

longitudinal separations;

Bl(d) = Bl(d, 0) = 0.097λ2r
−5/3
0 d−1/3

Bt(d) = Bt(0, d) = 0.145λ2r
−5/3
0 d−1/3,

(3.23)

where d is the magnitude of the separation. These equations form the basis of

SLODAR, which triangulates the altitude of turbulence using the covariances of

sub-apertures which are separated across a telescope pupil, however, this descrip-

tion fails at the origin. In reality the origin is limited by the averaging over the

aperture, and is given by Fried (1966); Fried and Mevers (1974); Tokovinin (2002);

Bα(0, 0) = 0.179λ2r
−5/3
0 D−1/3, (3.24)

where D is the diameter of the aperture. This is only true for the motion in one

dimension. The two dimensional variance for the motion in a single aperture, σ2
c ,

is given by;

σ2
c = 2Bα(0, 0) = 0.358λ2r

−5/3
0 D−1/3. (3.25)
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3.3.1. Differential Image Motion Monitor

Detector

Pupil	Mask

Figure 3.2: Example DIMM instrument. A mask is placed over the pupil, with two
holes. One hole has a wedge plate placed over it, to separate the images formed
by the two sub-pupils. The relative motions of the stars on the detector can be
related to r0 through equation 3.23.

These calculations can also be performed for a square aperture (such as the sub-

apertures in a SH-WFS), for one dimension (Saint-Jacques, 1998), which yields;

σ2
c = 0.162λ2r

−5/3
0 d−1/3. (3.26)

A typical DIMM consists of a small telescope with a pupil mask with two apertures,

one of which has a wedge plate over it. This adds a tilt to the light entering one

of the apertures, moving the position of the spot formed when observing a star.

The detector plane then images two separate spots, one from each aperture. An

example of this is given in Fig. 3.2. Over a series of short exposures, the covariance

of the motion of the two spots can be measured. This can then be used with

equations 3.23 to estimate r0.
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3.4 Slope Detection and Ranging

SLODAR was proposed by Wilson (2002) as a method for estimating the altitude

distribution of turbulence (from here on known as turbulence profile) in the atmo-

sphere. The turbulence profile is calculated by fitting the measured covariances of

slopes for different sub-aperture in a SH-WFS to response functions, the response

of the SLODAR to a single turbulent layer at a given altitude. Knowledge of the

profile of atmospheric turbulence is especially important, with the advent of tomo-

graphic AO systems, such as CANARY (Gendron et al., 2011), and MCAO systems

(Louarn et al., 2000), including the Dunn Solar Telescope (Langlois et al., 2004).

SLODAR splits a telescope pupil into many sub-pupils, referred to as sub-apertures,

and observes two stars simultaneously through them. The covariances of the motion

of the stars observed in these different sub-apertures can be used to estimate the

strength of the atmospheric turbulence, and its height distribution. An example of

how the height of a layer of turbulence can be sensed is given in Fig. 3.3.

Considering the example in Fig. 3.3, with two stars separated by angle θ, a turbulent

layer at altitude H and two sub-apertures separated by distance ∆w, where w is

the sub-aperture width and ∆ is the separation in units of sub-apertures. The star

separation produces “copies” of the turbulence at the ground, shifted by;

∆w = Hθ. (3.27)

There should be a peak in the cross-correlation at the separation ∆ if the turbulence

is at altitude H. The maximum number of sub-apertures across the telescope pupil,

nsub, is effectively limited by diffraction and signal, as the sub-aperture images need

to be smaller than the sub-aperture pitch, giving a minimum sub-aperture size of

5 − 10cm. The vertical resolution of a SLODAR with nsub sub-apertures is then

given by;

δH = D

nsubθ
, (3.28)
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!
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Δ$

Figure 3.3: The turbulent layer shown will induce the same spot motions in both
the blue and green sub-apertures. This peak in correlation of the motions can be
seen in the covariances, and the altitude derived from the geometry of the system.

where δH is the altitude resolution of the SLODAR and D is the diameter of

the telescope, assuming the pupil has exactly nsub sub-apertures across it. The

maximum altitude that can be sensed, Hmax, is given by;

Hmax = nsubδH. (3.29)

The full altitude resolution of SLODAR is illustrated by Fig. 3.4. The number of

sub-apertures across the pupil sets the limit on the number of resolution elements

the SLODAR will have. The altitude resolution, and the maximum sensed altitude

of resolution is then defined by the angular separation of the observed stars. For

stars which are close together, the altitude bins are large, but the maximum sensed

altitude is high. Conversely, for stars with a large separation, the altitude bins

are small, but the maximum sensed altitude is low. The measured covariances are

fitted to a series of response functions, functions which describe the response of the

system to a single layer of turbulence at a given altitude, in order to determine the

turbulence profile.
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Figure 3.4: The altitude resolution of a SLODAR is determined by the number of
sub-apertures across the pupil, and the angular separation of the observed stars.
The number of sub-apertures across the pupil defines the number of resolution
elements of a SLODAR. The spacing of the stars defines the altitude resolution,
and the maximum sensed altitude of the system.

3.4.1 Response Functions

The cross-covariance functions of the WFS slopes for each of these sensed altitudes

can be calculated and used for fitting the measured cross-covariances of a SLODAR

to estimate the turbulence profile, as described by Butterley et al. (2006). This

method uses the fact that the measured cross-covariance is simply the sum of the

individual layer responses, thus we can consider each layer independently. If we

label the sub-apertures on a telescope pupil with i, j across the x, y directions

respectively, and define the tilt in the x direction for the first star as sx[1]
i,j ;

s
x[1]
i,j =

∫
φ(wr[1]

i,j)Fx(r[1]
i,j)W (r[1]

i,j)dr[1]
i,j , (3.30)

where r[1]
i,j is the spatial co-ordinate, defined in units of the sub-aperture width, w,

with the origin being the centre of sub-aperture [i, j], and φ(r[1]
i,j) is the phase in the

plane of the sub-aperture. The sub-aperture is constrained by the pupil function;

W (r) = 1 for |x|, |y| < 1/2

= 0 otherwise.
(3.31)
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3.4.1. Response Functions

Finally Fx is the linear slope function in one direction (in this case x), normalised

such that; ∫
F 2
x (r)W (r)dr = 1. (3.32)

Similar definitions hold for the second star, sx[2]
i′,j′ .

The cross-covariance of the x slopes in two sub-apertures observing different stars

are given by;

Cxi,j,i′,j′ = 〈sx[1]
i,j s

x[2]
i′,j′〉, (3.33)

where sx[1]
i,j is the slope measured for star [1] in sub-aperture i, j, and s

x[2]
i′,j′ is the

slope measured for star [2] in sub-aperture i′, j′. The angular brackets denote an

average over a large number of independent realisations of the turbulence. The

spatial offset of the two sub-apertures, in units of w, is then simply;

u = (δi, δj) = (i′ − i, j′ − j). (3.34)

Equation 3.30 can be substituted into equation 3.33 to give;

Cxi,j,i′,j′ =
∫ ∫
〈φ[1]
i,j(wr[1]

i,j)φ
[2]
i′,j′(wr[2]

i′,j′)〉Fx(r[1]
i,j)Fx(r[2]

i′,j′)

×W (r[1]
i,jW (r[2]

i′,j′)dr[1]
i,jdr[2]

i′,j′ . (3.35)

As the gradient of the phase is measured in each sub-aperture, the mean phase (or

piston term) over the full telescope aperture is not sensed. The piston term needs

to be removed from the phase, as it it not sensed. The covariance of the slopes,

with piston removed, across two apertures has been shown by Wilson and Jenkins

(1996) to be;

〈Φ[1]
i,j(wr[1]

i,j)Φ
[2]
i′,j′(wr[2]

i′,j′)〉 = −1
2Dφ(wx)

+1
2
∫
W (r[1]

i,j)Dφ(wx)dr[1]
i,j

+1
2
∫
W (r[2]

i′,j′)Dφ(wx)dr[2]
i′,j′

−1
2
∫ ∫

W (r[1]
i,j)W (r[2]

i′,j′)Dφ(wx)dr[1]
i,jdr[2]

i′,j′ ,

(3.36)

where Φ[1]
i,j(wr[1]

i,j) is the phase with piston removed, and x = u + r[2]
i′,j′ − r[1]

i,j .

44



3.4.1. Response Functions

In order to remove the effects of telescope wind-shake, guiding errors, and other

common motion, the global tip/tilt term is subtracted from all of the slope meas-

urements. Removing the tip/tilt not only removes these error sources, but also the

tip/tilt term induced from the atmospheric turbulence. As the light from the two

stars is passing through different columns of turbulence (see Fig. 3.3), the tip/tilt

term induced by the turbulence will be different for each star. We choose to treat

each star independently, removing the tip/tilt term separately for each star. The

covariances of the tip/tilt subtracted slopes in the x direction for a turbulent layer

with an offset of ∆ sub-apertures is then given by;

C
′x
i,j,i′,j′(∆) = 〈(s[1]

i,j − s[1])(s[2]
i′+∆,j′ − s[2])〉

= 〈s[1]
i,js

[2]
i′+∆,j′〉 − 〈s

[1]
i,js

[2]〉 − 〈s[1]s
[2]
i′+∆,j′〉+ 〈s[1]s[2]〉,

(3.37)

where s represents the average tilt across the pupil, so for s[1];

s[1] = 1
Nsub

∑
valid i,j

s
[1]
i,j , (3.38)

and Nsub is the total number of un-vignetted sub-apertures observed across the

pupil. The cross terms are given by;

〈s[1]s
[2]
i′+∆,j′〉 = 1

Nsub

∑
valid i,j

〈s[1]
i,js

[2]
i′+∆,j′〉

〈s[1]
i,js

[2]〉 = 1
Nsub

∑
valid i′+∆,j′

〈s[1]
i,js

[2]
i′+∆,j′〉.

(3.39)

Now the covariance for the individual overlapping sub-apertures separated by ∆

sub-apertures can be calculated. The full two dimensional functions are not re-

quired if the velocity profile is not being calculated, as a one dimensional slice

provides all the required information to extract a profile. The one dimensional (x)

response function for SLODAR to a turbulent layer at height H is given by;

XL(∆, δi) = 1
Nsub

∑
validi,j,i′

C
′x
i,j,i′,j(∆), (3.40)

where Nsub is now the number of sub-aperture pairs which can have separation δi.

An example set of tip/tilt subtracted response functions for a single row of 10

sub-apertures across a 1m circular pupil are shown in Fig. 3.5. The shape of the
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Figure 3.5: Example longitudinal SLODAR response functions for a row of 10 sub-
apertures across a 1m telescope pupil. Only the functions for even ∆s are shown
for clarity. They have been normalised by the peak value of the auto-covariance
(∆ = 0).

auto-covariance can be seen in black, along with the response functions for the even

separations of sub-apertures. The peak decreases in height for the higher altitude

response functions (larger ∆) and the shape of the wings also change due to the

tip/tilt term, which is subtracted, differing for different altitudes.

The measured cross-covariance can then be fitted with a linear least squares min-

imisation to a set of response functions, such as those shown in Fig. 3.5, to generate

a turbulence profile.

Care needs to be taken in order to ensure that the turbulence is properly spatially

sampled. The pupil is a window on the larger scale structure of the turbulent

layers, so any individual measurement of the atmosphere will not sample all of

the larger scale structure. It is important the sample of slopes used to estimate a

turbulence profile properly samples all spatial scales of the turbulence. This can

be understood if the turbulence is assumed to follow frozen flow (Taylor, 1938),

and blows across the telescope pupil at a given velocity. The turbulence is static,
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3.5. Solar-Differential Image Motion Monitor +

but appears to change as different regions of it pass over the telescope pupil. Using

a large temporal window, typically sampling over one minute, should ensure that

all spatial scales of the turbulence have “blown” across the pupil, and hence be

properly sampled.

It should be noted that this method does not provide a direct estimate of the total

strength of the turbulence along the line-of-sight. The auto-covariance function

can be used to estimate the strength of the integrated turbulence (Butterley et al.,

2006), or the previously mentioned DIMM method can be applied to the sub-

aperture images (Sarazin and Roddier, 1990), however, this method is subject to

noise on the centroid measurements.

3.5 Solar-Differential Image Motion Monitor +

One method of estimating the atmospheric profile during the day is S-DIMM+

(Scharmer and van Werkhoven, 2010), based on the S-DIMM seeing estimation

technique (Beckers, 2001). As with the SLODAR (Wilson, 2002) technique this

only uses the longitudinal and transverse directions for correlations, as the full two

dimensional correlation is not necessary for calculating a turbulence profile.

The slopes measured by the S-DIMM+ are analysed in a similar way to the DIMM,

where the variance of differential motion between different apertures are compared.

So unlike SLODAR, where the a high covariance between slopes indicates the

presence of a turbulent layer at a given atltitude, the S-DIMM+ measures no

differential motion between sub-apertures if there is a turbulent layer present at

the overlap altitude. The resolution of this technique is similar to SLODAR, as

the same geometry is used in the WFS, the only difference is in the analysis of the

measured slopes.

The first sub-aperture is assumed to be located at the origin, on-axis to the target.

This means the measured centroid, δx1 is then given by the sum of centroids
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3.5.1. Expanding Pupil Problem

induced by all turbulent layers;

δx1(∆w, 0) =
N∑
n=1

(sn(∆w)− sn(0)), (3.41)

where the separation in the x direction is ∆w, sn(∆w) is the wavefront slope

induced by the turbulent layer n in the sub-aperture, and sn(0) is the centroid

induced by the reference sub-aperture at layer n. A measurement in the same

sub-aperture of an off-axis target at an angle α is then given by;

δx2(∆w,α) =
N∑
n=1

(sn(∆w + αhn)− sn(αhn)), (3.42)

where hn is the height of the turbulent layer n. The layers are all assumed to be

independent, so the covariance between the two measurements, 〈δx1δx2〉 will be;

〈δx1δx2〉 =
N∑
n=1
〈(sn(∆w)− sn(0))(sn(∆w + αhn)− sn(αhn))〉, (3.43)

which can be expanded to give;

〈δx1δx2〉 =
N∑
n=1

1
2〈(sn(αhn −∆w)− sn(0))2〉+ 1

2〈(sn(αhn + ∆w)− sn(0))2〉

− 〈(sn(αhn)− sn(0))2〉. (3.44)

Sarazin and Roddier (1990) have shown that the longitudinal variances of the

motion of two stars is given by;

〈(s(∆w)− s(0))2〉 = 0.358λ2r
−5/3
0 D−1/3

(
1− 0.541

(
∆w
D

)−1/3
)

= 0.358λ2r
−5/3
0 D−1/3I

(
∆w
D , 0

)
,

(3.45)

where I
(

∆w
D , 0

)
is defined in Sarazin and Roddier (1990).

3.5.1 Expanding Pupil Problem

One of the effects of using an extended source instead of a point source when

measuring image motion is that the size of the pupil as a function of altitude is not

constant. This is shown in Fig. 3.6. The size of the effective pupil, Deff, is simply
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Figure 3.6: Cartoon showing how the effective pupil grows as a function of altitude
when observing an extended object, of size ϕ. At a height h the pupil of diameter
D grows to the size Deff. This expansion of the pupil at altitude causes averaging
of the turbulence sensed at these altitudes, reducing the slopes induced from high
altitude turbulence.

given by;

Deff = D + hϕ, (3.46)

where ϕ is the extent of the extended object in radians and h is the altitude of the

projected pupil (Deff).

Combining equations 3.44 and 3.45, we get the final form of the covariance, 〈δx1δx2〉;

〈δx1δx2〉 =
N∑
n=1

0.358λ2r0(hn)−5/3Deff(hn)−1/3Fx(s, α, hn), (3.47)

where,

Fx(s, α, hn) = 1
2I
(
αhn − s
Deff

, 0
)

+ 1
2I
(
αhn + s

Deff
, 0
)
− I

(
αhn
Deff

, 0
)
. (3.48)

This can be used to generate theoretical covariance functions for a single layer at

a known altitude, in a similar manner to response functions for SLODAR. Some

example response functions for S-DIMM+ are shown in Fig. 3.7. The x axis shows

increasing field separation of the guide sources and the y axis represents the physical
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Figure 3.7: Theoretical covariance functions for single layers of turbulence at given
altitudes. The heights chosen are the ground, 2.5km, 6km and 20km. ∆ cor-
responds to spatial sub-aperture seperation and α corresponds to angular field
seperation of the guide sources. The turbulent layer leaves a dip in the differential
motion, which can be seen as the dark diagonal line in the response functions.

separation of the sub-apertures in the pupil. When sub-apertures overlap at a

turbulent layer the centroid induced on the layer is idential for both sub-apertures,

which is apparent as a darkening in Fig. 3.7.

The altitude resolution of the S-DIMM+ is limited by the effect of the expanding

pupil. The resolution close to the ground is good, and decreases at higher layers as

the effective pupil diameter, Deff increases. The chosen altitudes of the covariance

functions used in the S-DIMM+ in Scharmer and van Werkhoven (2010) was 0.0,

0.5, 1.5, 2.5, 3.5, 4.5, 6.0, 9.5, 16, and 30 km.
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3.6 Other Atmospheric Profiling Methods

There are many other optical methods for measuring the atmospheric profile both

during the day and at night, some of which are mentioned here.

In the day there are other methods for sensing the altitude distribution of tur-

bulence not discussed so far. One such method to measure turbulence profiles is

suggested by Waldmann et al. (2007, 2008). This is a method similar to S-DIMM+,

but uses fewer sub-apertures and many more field directions to estimate the atmo-

spheric profile. There also exists a method which utilises the differential motions of

images in multiple telescopes observing solar granulation to increase the resolution

of turbulence profile (En et al., 2015).

There are also a number of instruments which measure the effects of scintillation,

rather than the gradient of phase of the turbulence. These include SCIDAR (Rocca

et al., 1974), and more recently Generalized SCIDAR (Avila et al., 1997) and

Stereo-SCIDAR (Shepherd et al., 2014) for night time turbulence profiling. These

rely on the interference of the aberrated wavefront as it propagates, generating

“scintillation patterns”. By imaging the telescope pupil, the scintillation pattern

is captured. A triangulation technique, similar to SLODAR can then be used in

order to estimate the turbulence profile.

A form of SCIDAR can also be employed during the day. This includes Solar

SCIDAR (Miura et al., 2013), which directly applies the SCIDAR technique to the

solar surface, with modifications for the expanding pupil and SHABAR (Beckers

et al., 1997), which measures the scintillation from the whole solar disk over a range

of different baselines.
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3.7 Summary

In this chapter I have described the statistics of atmospheric turbulence, and how

it can be measured. The methods described are based on measuring the gradient

of the phase, through image motion, rather than the phase directly. This allows

SH-WFSs to be used to sample the turbulence. I have also shown how sub-sampling

the pupil and using triangulation the turbulence profile can be measured with

SLODAR and S-DIMM+. The SLODAR technique is used later in chapter 6,

where it is extended for use in solar observations. Finally I briefly mentioned some

other techniques and instruments which can be used to measure the turbulence

profile, including techniques which measure scintillation across the telescope pupil.
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Chapter 4

Optimised Center of Mass for

Correlation Wavefront Sensing

In solar WFSs cross-correlations with center of mass measurements, or polynomial

fitting is used to measure the sub-aperture shifts. The centroiding methods on the

correlation images are subject to noise in the correlation image, which can shift

the location of the correlation peak. Even a perfect measurement of the location

of the peak of the correlation image will be subject to this noise, so we refer to it

as extrinsic noise. The accuracy of the peak location using a centroiding method

also has a noise term associated with it, which we call intrinsic noise. There is

some optimal set of centroiding parameters which will minimise the effects of these

terms. In this chapter I describe a method for measuring the performance of a

given set of centroiding parameters using WFS images which can then be used to

choose the optimal parameters for centroiding.

4.1 Simulation

The high resolution image of solar granulation shown in Fig. 2.6 is down-sampled

by a factor of 10 to generate sub-aperture images that can have sub-pixel shifts

of 1/10 of a pixel. Regions of 240 × 240 pixels are selected for the sub-aperture
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signal

background

Figure 4.1: A slice through the solar granule image shown in Fig. 2.6, showing the
intensity fluctuations due so solar granules. Due to the high background level seen
in images of solar granulation the SNR is defined differently to Poisson noise. The
signal is taken to be the level above the background of the image, and the noise
is taken to be the Poisson noise on the image. This reduces the SNR significantly
compared to Poisson noise.

images, which generate sub-aperture images of 24× 24 pixels, with an image scale

of 0.4′′/pixel. This is similar to the pixel scales used in current solar AO systems

(Schmidt et al., 2014; Scharmer et al., 2002). All simulations were performed using

the Python programming language, using numpy and scipy routines (Van der Walt

et al., 2011) and astropy (Robitaille et al., 2013). Plotting and data visualisation

was created using the matplotlib plotting library (Hunter, 2007).

The high light levels in solar WFSs are dominated by shot noise. To mitigate this

sensors with large full well depths (∼ 40000 electrons) are used. However noise is

solar images manifests more seriously than Poisson noise for night-time astronomy.

A solar WFS images low contrast granules (∼ 10%) on a bright background. This

is illustrated in Fig. 4.1. For camera pixels with a typical full well depth of 40000

electrons; the signal would be 4000 electrons (corresponding to 10% contrast), with

54
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photon-noise from 40000 electrons, giving a SNR of;

signal√
Full well depth = 4000√

40000
= 20. (4.1)

Therefore shot noise is still significant in solar WFSs.

The shifts induced between the different sub-aperture images was taken from a

Gaussian distribution to give the same statistics as Kolmogorov turbulence (see

§ 3). The simulated data, along with the known shifts applied to each of the sub-

aperture images then allows for the accuracy of various centroiding techniques to

be investigated and compared.

4.2 Estimating Error on Centroid Measurements

There will be an optimal set of centroiding parameters for any given image and

SNR that leads to optimal image shift estimates. The variable nature of solar gran-

ulation prevents the derivation of an analytical route to determine these optimal

parameters. Instead, we propose measuring the error on the measured image shifts

and using this to identify the optimal centroiding parameters through parameter

space exploration.

With on-sky data, the absence of the exact shift data mandates a method of exper-

imentally estimating the error. Here we give a method for estimating the error on

centroid estimates using multiple reference images on a set of sub-aperture images.

In order to make the different estimates directly comparable, the effect of global

tip/tilt on the set is removed. This is because the reference images are taken from

the set of sub-aperture images, and so have different relative shifts. The global

tip/tilt term can be removed by setting the average x and y shifts to 0 for the set

of sub-aperture images;

Rr
t/t = Rr − 〈Rr〉r , (4.2)

where Rr
t/t is the matrix containing a series of x and y centroids using reference

image r. Rr are the raw centroids measured, and 〈Rr〉r is the vector containing
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Figure 4.2: A normalised histogram showing the distribution of centroid estimates
for a sub-aperture image with a shift of 0 pixels. The histogram is shown in the blue
boxes, with a Gaussian fit to the histogram shown in green. The standard deviation
of the distribution gives an indication of the error on the centroid estimates for the
centroid parameters used.

the average centroids in the x and y directions.

If we look at a single sub-aperture, with the multiple estimates of its centroid, we

expect to see a distribution like in Fig. 4.2. The width of the distribution gives an

estimate of the error of the centroid estimates. An example of the distribution of

a good set of centroid parameters is shown in Fig. 4.3. As the distributions follow

a Gaussian shape, a good estimate of the width is to use the standard deviation of

the different centroid estimates, described by;

Rerror =

√√√√ 1
N

n∑
i=1

(Ri
t/t −Rmean

t/t ), (4.3)

where Rerror is a matrix containing the error estimate for each sub-aperture in the

x and y directions, N is the total number of different reference images, and Rmean
t/t

is the matrix containing the average centroid from the different reference images,

for each of the sub-aperture images.

Depending on the number of different reference images used, the estimates of error
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Figure 4.3: A normalised histogram showing the distribution of centroid estimates
using optimal window and threshold parameters. The width is much narrower than
seen in Fig. 4.2, where a large window and no threshold was used. The narrower
width of the distribution shows the centroiding parameters are better than the ones
used in Fig. 4.2.

on the individual sub-apertures is likely to be very noisy. However they are all

derived from the same threshold and window parameters on the center of mass

used to measure the location of the cross-correlation peak. While each estimate

may be noisy, the ensemble of estimates should give a good estimate of how the

parameters chosen perform. So an estimate of the error on the set of sub-aperture

images, for a given set of centroiding parameters can be derived by averaging all

of the individual error estimates;

σw,α = R̄error, (4.4)

where σw,α is the error estimation for the set of sub-aperture images using a window

size w, and threshold value of α. Using this approach it is possible to explore the

parameter space defined by w and α, then assess which pair of values gives the

best estimates of the real centroid. For the simulations that follow 10 seperate

sub-aperture images are used as reference images, and the estimates of error on the

centroid estimate taken from their statistics.
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4.3. Optimised Windowed, Thresholded Center of Mass

4.3 Optimised Windowed, Thresholded Center of

Mass

There will be an optimal value for the thresholding level, α, and the size of the

window, w, that gives the best centroid estimate for a set of cross-correlation

images. The optimal values for these two parameters will depend on the size,

shape and SNR of the cross-correlation peak. We can explore the performance

of different α, and w values using the error estimation technique shown in § 4.2,

using only the sub-aperture images themselves, and then select the centroiding

parameters which yield the most accurate centroid estimates.

The size of the window is a relatively small parameter space to explore, going

from a single pixel of the cross-correlation image (corresponding to an integer shift

measurement), to including the full wings of the cross-correlation peak. If a larger

window is used a drop off in performance will be seen, as more noise is included in

the centroid estimate without any extra useful information about the location of

the peak. The optimum window size is chosen as a trade off between including as

much of the correlation peak as possible, but also minimizing the number of pixels

which contribute only noise to the measurement.

The threshold level behaves similarly to the window size, in that having a lower

threshold, which uses more pixels, increases the noise included in the centroid

measurement and reduces its accuracy. Using a high threshold, which reduces the

number of pixels included, gives rise to a bias towards integer shift measurements,

similar to that seen in the 2nd order polynomial fit (§ 2.2.2.3). The optimum

threshold value lies somewhere between these two regimes, and is liable to change

depending on the size of the window selected. This means the whole parameter

space needs to be explored, for all window sizes and threshold values, to identify

the best combination of parameters for centroiding the cross-correlation images.

The parameter space created by w and α for a given set of images can be explored
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relatively easily as the cross-correlation images only need to be generated once.

This means the increase in the computational effort required to find the optimal

centroiding parameters scales as O(N), rather than the computational cost of gen-

erating cross-correlation images, which scales as O(N2 log2(N)), making it feasible

for use in real time. It also allows the method to be used with on-sky data from a

WFS without any external input.

The optimum set of parameters will depend on a number of different obvious

factors, including the image shape, the shape of the resulting correlation func-

tion, and the SNR of the sub-aperture images. There is no obvious analytical

way to determine the best parameters for a given set of images, or circumstances,

hence we explore the whole parameter space to find the optimal solution. Once

the optimum set of centroiding parameters is found for a given object, at a set

SNR level, then it should remain constant until one of these factors changes. This

means after the optimal centroiding parameters have been found, they only need

updating if something in the AO system changes, such as the shape of the images

within the sub-aperture. In the case of solar AO the shape of the solar granulation

changes typically on the order of a few minutes (Bahng and Schwarzschild, 1961).

Given this timescale, a desktop class computer could augment a real time solar AO

system by recomputing the optimal centroiding parameters and updating the real

time control system on the order of once a minute.

4.4 Results

The full parameter space was explored in simulation for a range of α values and

w sizes for a center of mass measurement of the cross-correlation images. How

the error estimates compare with the actual errors measured on the centroids are

shown in Fig. 4.4. Figure 4.4a shows the magnitude of the real residual errors for

different parameters. Figure 4.4b shows the estimated error on the centroids using

the multiple reference image method. The optimal parameters from each of the
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methods is highlighted with a white spot and the estimated optimal parameters

are highlighted on the actual errors with a white cross. The estimation technique

can be seen to give a good estimation of the error on the centroids, as both parts

of Fig. 4.4 show similar shapes. As seen in Fig. 4.4, the optimal parameters chosen

by the error estimator differs somewhat from the actual optimum, however this

translates to a very small difference in error on the centroid. This is expected

given the plateau-like nature of the optimal region of the parameter space.

In the α axis (x) of Fig. 4.4 it is possible to see the effects of aliasing at large

α values (on the right of the plots). As too few pixels are used to estimate the

location of the cross-correlation peak the estimate is biased towards the integer

location of the brightest pixel. The extreme is reached at a α value of 1, where

only the brightest pixel is used for the estimate, making the estimate the integer

value of the brightest pixel.

In the w axis (y) of Fig. 4.4 the structure is more complicated. Initially the aliasing

is apparent for small window sizes, where the estimates are biased towards integer

pixel centroids. This problem decreases as the window size increases, until its

optimal region. However the performance begins to degrade again for large windows

with small α values. This happens where the region is so large that as well as

including all of the cross-correlation peak, it includes increasing amounts of noise,

which isn’t filtered out by the thresholding as the value of α is too low.

4.4.1 Optimal Parameters for Varying SNR Levels

The centroid optimisation was performed for a range of different noise levels (us-

ing photon-noise) to demonstrate how noise on the sub-aperture images affects

the optimal centroid parameters, and estimates. The parameter’s dependence on

SNR is shown in Fig. 4.5. Figure 4.5a shows how α affects the accuracy of the

centroid estimates, and Fig. 4.5b illustrates how changing the window size affects

the accuracy of the centroid estimates.
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Figure 4.4: The error in the centroid measurements for a set of correlation images,
visualised across the parameter space of the centroider. Subfigure a shows the real
error associated with the parameters used in the center of mass, and Subfig. b
shows the estimated error. The shape of the two plots is similar, indicating the
error estimation technique is valid. The white spots on the plot show where the
minimum lies in the parameter spaces. The estimated error position, shown as an
x on the real errors, does not directly overlap with the location of the real minima,
but it can be seen that the difference in error is minimal.
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Figure 4.5: Subfig. a shows how the optimum threshold value is affected by different
SNRs. The location of the optimal threshold values changes depending on the SNR,
converging on a value of ∼ 0.35 for high SNR sub-aperture images. Subfig. b shows
how the window size affects the error on the centroid estimate for different SNRs.
At low SNR the error is dominated by aliasing. For high SNR the window size
has a minimum value of 4 pixels, but using larger windows doesn’t degrade the
accuracy of the centroid estimate.
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4.4.1. Optimal Parameters for Varying SNR Levels

The α values have a large effect on the accuracy of the centroids, and is best seen on

the higher SNR (shown in red in Fig. 4.5). The location of the minima depends on

the SNR level, highlighting that the optimal parameters for one set of sub-aperture

images, taken at a certain time, is not likely to be the optimal set of parameters

for another set of sub-aperture images, taken at a different time.

The optimal values found for the w and α parameters with varying SNRs is shown

in Fig. 4.6. Figure 4.6a shows the optimal thresholding values for the various SNR

levels, both the optimal value and the estimated value. Figure 4.6b shows the value

of the optimal and estimated window sizes.

The α values are overestimated for low SNR. This can be explained to some extent

by the corresponding estimated window size. The window is large, so the threshold

value will also be large, to remove more pixels from the windowed region of the

cross-correlation image. This is mirrored in the true optimal parameters, between

SNRs of 1 and 10. Here the window size increases, from 2 pixels to 5, and the

thresholding value also jumps up to remove more of the pixels in the windowed

region. Finally both the true optimal values and the estimated optimal centroiding

parameters converge on a value for high SNR sub-aperture images.

When the window is small, or the threshold value is high, the center of mass

measurement suffers from the same problem as the 2nd order polynomial fit. These

values for the parameters restrict the number of pixels used by the center of mass

to estimate the location of the cross-correlation peak. This biases the centroid

estimates towards integer pixel centroid measurements. In low SNR conditions

these parameters may still be optimal, as the effect of including more noise in the

centroid estimate can cause a larger error than the bias from undersampling the

cross-correlation peak.
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Figure 4.6: Subfigure a shows the optimal α values, for both estimated and ac-
tual parameters, with different SNR sub-aperture images. Initially the estimated
threshold is high, to remove as much noise as possible from the correlation image,
then the threshold value drops to its optimum value for high SNR images. Sub-
figure b shows the window size for the different SNR levels. This shows a similar
trend, of increasing window size at high SNR, using more pixels when the noise
is reduced. At low SNR the estimated parameters disagree with the true optimal
parameters, but this disagreement is compensated for to some extent by an increase
in the threshold value.
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Figure 4.7: Performance of the optimal center of mass (com), estimated parameters
for the center of mass, and the 2nd order polynomial fit for a range of different
SNR. It can be seen above a SNR of 1 the windowed, thresholded center of mass
outperforms a 2nd order polynomial fit. The 2nd order polynomial fit tapers off in
performance at 0.05 pixel error, whereas both the windowed center of mass methods
taper off at much lower errors. The vertical line on the plot show the expected SNR
for solar granule sub-aperture images with a contrast of 10%, and a camera with
a full well depth of 40000 electrons. It can be seen that the performance from
estimating the errors on the center of mass is worse than the optimal case, but still
outperforms the 2nd order polynomial fit for high SNR levels, and achieves close
to optimal performance.

4.4.2 Comparison to a 2nd Order Polynomial Fit

The application of a 2nd order polynomial fit to the core 3×3 pixels in a correlation

image is a typical centroiding method employed by Solar AO systems (Löfdahl,

2010). This method has no free parameters and samples a small region of the

correlation peak which suggests it will be optimal for only a sub-set of conditions.

Here I compare the 2nd order polynomial fit to the optimised center of mass for

both estimated and actual optimal parameters in Fig. 4.7 for a range of different

SNR levels.

For high SNR levels, both center of mass methods outperform the 2nd order poly-

nomial fit to the cross-correlation peak. This is due to the center of mass properly
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4.4.3. Sources of Error in the Parameter Estimation

sampling the peak, when the 2nd order polynomial fit under-samples it giving

a bias towards integer pixel centroids. There is a noticeable difference between

the performance of the optimal center of mass and the center of mass where the

threshold and window size are estimated. This error comes from choosing the

wrong parameters for the center of mass in Fig. 4.4.

In low SNR the 2nd order polynomial fit and the optimal center of mass give

similar errors on the centroids. However, the center of mass using the estimated

parameters gives a larger error. In this region both the center of mass and the

2nd order polynomial fit suffer from the effects of noise in the reference images

beginning to dominate the cross-correlation image. The center of mass using the

estimated parameters doesn’t perform as well as the optimal center of mass due to

these noise sources going unsensed with the error estimation technique.

4.4.3 Sources of Error in the Parameter Estimation

In order to understand the inaccuracy of our error estimation technique at low SNR

we need to consider the propagation of noise through the centroiding algorithm and

how this impacts our error estimation method. The simulations operate in a regime

where non-common image noise (see chapter 5) can be ignored, leaving the main

source of error as shot noise. As described in equation 2.22 this results in four

terms; CImsRefs , CImsRefσ , CImσRefs , and CImσRefσ .

If we assume that the contribution of CImσRefσ is negligible, then the two remaining

error terms which affect our estimate of the centroid are the cross terms. The

method for estimating the error on the centroid estimates uses multiple reference

images. When estimating the error on the centroid estimates for a given set of

parameters the effect of the different reference images is averaged out. This has

the effect of averaging out the CImsRefσ term. This term begins to have a noticeable

effect at low SNR, as can be seen in Fig. 2.11. As the technique of estimating the

error on centroids is insensitive to this noise term, the estimation of the center of
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4.5. Estimating Center of Mass Parameters on Laser Guide Star Wavefront Sensors

mass parameters is not reliable at low SNR, causing the error on the centroids to

be larger than the optimal values.

There are other methods for estimating the error of a centroid on an extended

object, such as Saunter (2010), which don’t have this problem of being insensitive

to the CImsRefσ term in the cross-correlation image. However this technique relies

on over-sampled images in order to de-interlace the cross-correlation images and

give two separate centroid estimates for each sub-aperture image. Over-sampled

images are readily available in biological imaging, where the technique is shown to

work, but are generally avoided in AO systems, as they increase data rates and

computation time in systems which have large temporal constraints.

4.5 Estimating Center of Mass Parameters on Laser

Guide Star Wavefront Sensors

Some LGSWFS use cross-correlation techniques to measure centroids. The method

of estimating the error on centroids suggested here should be equally valid on the

cross-correlation images from a LGS WFS as they are for solar WFS. Due to the

different elongation and orientation of the laser plume in each sub-aperture (as

described in §2.1.1), it is not possible to combine different sub-aperture images in

a single WFS frame. Instead each sub-aperture needs to be treated separately, and

the multiple images be taken from a time series of WFS frames.

This requires the sodium profile to be stable over the period of the data set, to

allow the optimal parameters to be estimated, and then applied to subsequent

centroid measurements. One advantage of doing the optimisation over a time series

of sub-aperture images is that each sub-aperture can be optimised independently.

It could be possible that the parameters which work best on a slightly elongated

cross-correlation image for sub-apertures close to the laser launch location will be

different to the ones which are on the opposite side of the pupil, with the largest

values of elongation.
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5”

Figure 4.8: An example WFS frame for the most elongated sub-apertures on an
E-ELT. The image hasn’t had any noise added or atmospheric turbulence applied.
The image has a pixel scale of 1′′/pixel and the visible tail of the sodium plume
spans more than 12′′.

As with our simulation on solar granulation, a set of WFS images that contain

sub-pixel shifts can be simulated by shifting and binning full resolution profiles,

taken in this case from Pfrommer and Hickson (2014). An example sub-aperture

image is shown in Fig. 4.8. It is 24× 24 pixels and has a pixel scale of 1′′/pixel, to

simulate one possible WFS configuration for the LGS WFS in CANARY (Gendron

et al., 2011).

The results of the error estimation, along with the real error on the centroids

from the known shifts, are shown in Fig. 4.9. Both the real error on the centroids

(Fig. 4.9a) and the estimated error on the centroids using multiple reference images

(Fig. 4.9b) have similar shapes. This shows the robustness of the error estimation,

as although the shape of the parameter space is very different to the one from

centroiding images of solar granules (Fig. 4.4), the technique gives accurate estim-

ates for the errors. This allows us to estimate the best parameters for centroiding
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Figure 4.9: Subfig. a shows the real error on centroid estimates with given threshold
and window parameters, with a cross showing the location of the estimated
centroiding parameters. Subfig. b shows the error which is estimated using multiple
reference images. The white spots show the minima for each plot. The locations
of the white cross and spot on Subfig. a are close and in the plateau region of the
best centroid parameters.
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5”

Figure 4.10: This image has the same characteristics as the WFS simulated in
Fig. 4.8, but is a different sub-aperture much closer to the laser launch, only 2.8m
away. This gives a much smaller value for the elongation, which can be seen as the
image of the LGS is spread over fewer pixels than the LGS image in Fig. 4.8.

by exploring the parameter space.

4.5.1 Comparison of Different Elongations

The optimal centroiding parameters depend on the noise of the images used. This

is especially relevant to LGSs as the noise characteristics of each sub-aperture will

be different, due to the different elongations of the laser in them. An example of a

LGS WFS image for a sub-aperture with much less elongation is shown in Fig. 4.10.

The same optimisation routine was performed on frames from this less elongated

sub-aperture. Due to the large difference in the shape of the images in the sub-

aperture, the size, shape, and noise characteristics of the cross-correlation is very

different. This changes the optimal centroiding parameters for this sub-aperture.

70



4.6. Future Work

The parameter space for Fig. 4.10 is shown in Fig. 4.11.

The location of the optimal centroid parameters is estimated well, as can be seen

by the agreement of the location of the minima in Fig. 4.11. The shape of the

parameter space for this much less elongated LGS has similarities with the more

elongated ones (Fig. 4.9), but also is different in that the error on shift estimate is

low for very low threshold parameters, whereas it gets large for the more elongated

LGS images. This shows how the optimal centroiding parameters found are heavily

dependent on the shape of the sub-aperture images being cross-correlated, and

aren’t universal.

This optimisation was performed for a range of different SNRs, on both of the

LGS shapes shown previously (Fig. 4.8 and Fig. 4.10). The results are shown in

Fig. 4.12. It should be noted that the SNR values for the LGS sub-aperture images

are calculated differently to the way it was for the images of solar granulation. As

the background of the sub-aperture images is 0, there is no need to calculate the

SNR with respect to a high background. The SNR is then calculated using Poisson

statistics, giving a SNR of
√
signal.

4.6 Future Work

This method has only been used to explore a windowed, thresholded center of

mass, with the cross-correlation images generated using the covariance function. It

would be interesting to explore the other methods of generating cross-correlation

images in order to see if the method still is able to select optimal parameters. The

results of this could be used to compare the performance of different centroiding

techniques, for instance the “brightest pixel selection” centroider (Basden et al.,

2012).

There are also a lot of unexplored avenues with using this technique on LGS WFSs.

While a selection of different LGS elongations are presented here, a full analysis of

a WFS observing a LGS, with each sub-aperture analysed independently would be
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Figure 4.11: Subfigure a shows the real error on centroid estimates for given
threshold and window parameters, and Subfig. b shows the error which is estimated
using multiple reference images. The white spots show the minima for both plots
and the white cross shows the location of the estimated centroiding parameters on
Subfig. 4.11a. The shape and estimate of the optimum parameters for centroiding
agree well, however the shape of the parameter space is quite different to the one
for a much more elongated LGS (Fig. 4.9).
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Figure 4.12: Performance of optimal center of mass, and the estimated parameters
for the center of mass for elongated LGS sub-aperture images. Both curves have
similar performances, and the estimated parameters perform as well as the actual
optimal values. Above a SNR of 2 both elongations give centroid estimates that
have better than a 1 pixel error.

useful. As the elongation seen in every sub-aperture is different, this optimisation

should be done for every sub-aperture independently.

4.7 Summary

In this chapter I have presented a way of estimating the error on centroid measure-

ments which can be applied to real WFS images. This allows the performance of

a windowed, thresholded, center of mass measurement to be assessed for different

sets of parameters, and the full parameter space to be explored. From this the

optimal centroiding parameters can be selected for any given input sub-aperture

images.

This method has also been shown to work on simulated LGS images, with the

optimal parameters changing for different LGS elongations. This demonstrates

the technique to be useful outside of solar WFS, and demonstrates the need to
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explore the parameter space for the particular structure of the sub-aperture, as the

parameter spaces change dramatically depending on the content of the sub-aperture

images. It also shows the versatility of the method, as it works on a variety of input

sub-aperture images, which have different optimal centroiding parameters.
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Chapter 5

Supersized Reference Images for

Correlating Wavefront Sensors

When the shifts in FOV induced by atmospheric turbulence between sub-apertures

in a WFS are large, the different structure entering and exiting the sub-apertures

adds non-common image noise to the cross-correlation images, adding noise to

the centroid estimates. One way of reducing this is to increase the size of the

reference image. This increases the overlap between the sub-aperture image with

the reference image, reducing the non-common elements in the sub-aperture image.

In this chapter I describe a technique for generating a supersized reference image

from WFS data, and assess its performance compared to reference images of a

similar FOV to sub-aperture images. In § 5.1 I introduce how a supersized reference

image can reduce noise in centroid estimates for pairs of images with large relative

shifts. I present a method for estimating the shifts of a set of images with large

shifts in § 5.2 and how these estimates can be used to construct a supersized

reference image in § 5.3. In § 5.4 I show the results of simulating a solar WFS and

using a supersized reference image to estimate centroids and in § 5.5 I show how

this method can be used on images of elongated LGS. Finally in § 5.6 I describe

avenues of further investigation of the technique and summarise the method and

my results in § 5.7.
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5.1. Concept

Figure 5.1: Concept of how a supersized reference image can reduce noise in estim-
ating image shifts. The upper section is the same as the lower part of Fig. 2.12 and
shows two images with shifted FOVs with a demonstration of how a correlation
method estimates their shift. The lower part shows the situation if the whole re-
gion is taken as the reference image, as would be the case for a supersized reference
image. The left section shows the full FOV with the yellow boxes highlighting the
FOV of a sub-aperture and the red line indicating the shift between them. The
middle section shows the sub-aperture images in isolation and the right section
shows the cross-correlation image generated, with the red line showing the true
shift of the images and the yellow line showing the centroid estimate.

5.1 Concept

The concept of using a supersized reference image to reduce non-common image

noise is illustrated in Fig. 5.1. By modifying the lower section of Fig. 2.12, and using

the whole field as the reference image, we can in effect remove the non-common

image noise.

The upper section of Fig. 5.1 shows the case where a normal correlating WFS

will give a bad centroid estimate. The sub-aperture image (lower middle) has a

feature which is not present in the reference image (upper middle). This adds an

extra signal to the cross-correlation image which affects the centroid, moving it

away from the actual peak of the cross-correlation image. By increasing the size

of the reference image, the reference image contains all the features present in the

sub-aperture image. This removes the erroneous signal present in the upper cross-
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correlation image, allowing for a more accurate centroid measurement, as shown

by the yellow and red lines appearing closer in the the lower section of Fig. 5.1.

It is possible to utilise the shift between individual sub-aperture images to generate

a supersized reference image. As the observed FOV from different sub-apertures is

different, due to the effect of atmospheric turbulence, a larger FOV is sampled for

the series of images than is present in any of the individual sub-aperture images.

These images can be combined, keeping all parts of all of the sub-aperture images,

generating an image with a larger FOV than the individual sub-apertures observe.

This process will reduce the noise in the generated reference image, as well as

increase its effective FOV. Looking at the combination of noise in the cross-

correlation image, described in equation 2.22;

C = CImsRef s + CImsRef σ + CImσRef s + CImσRef σ , (5.1)

we can see which of the terms will be reduced. CImσ ,Ref s arises from noise in the

sub-aperture images, making it random and unpredictable. CIms,Ref σ arises from

noise in the reference image, so is the same for all centroid estimates and CImσ ,Ref σ

is a second order noise term, from the two noise terms combining.

The noise on the reference image is present in both the CIms,Ref σ and CImσ ,Ref σ

terms. By reducing these sources of noise, the resulting centroid estimates will

be more accurate, even for small shifts between sub-apertures, where the effect of

non-common image noise is not present. In the ideal case this would move the

red line, corresponding to noise on both the sub-aperture and reference images, in

Fig. 2.11 down to the blue line, corresponding to only having noise on the sub-

aperture images. This effect is reduced in the higher SNR regimes, especially if

global tip/tilt is removed, as the solid blue and red lines start to overlap when the

SNR reaches a value of 11, so there is little advantage to this technique in high

SNR regimes where the relative shifts are small.
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5.2 Least Squares Centroider for Correlating

Wavefront Sensors

The initial problem with creating a supersized reference image, using images from

a WFS, is that a set of sub-aperture images with large differential shifts need to

be aligned. The structure of atmospheric turbulence is continuous and so is the

gradient of the turbulence. In a large set of sub-aperture images (taken from the

same sub-aperture) there will be some sub-apertures with similar shifts to any given

sub-aperture. This means they observe similar FOVs, which minimises the effect

of non-common image noise for those pairs. This is true for every sub-aperture

image and so makes a set of sub-aperture images a good candidate for using a least

squares minimizer to estimate the centroids of each of the sub-apertures.

A least squares fit for centroids requires all sub-aperture images to be cross-

correlated with all other sub-aperture images. This takes computationally longer

than using a single reference image, but should allow for accurate centroid estim-

ates of a set of sub-aperture images with large relative shifts. Here I describe how

a linear least squares minimisation can be applied to a set of sub-aperture images.

The differential shift of sub-aperture i with respect to sub-aperture j is denoted as

Ri,j . For a set of 3 sub-aperture images, the least squares problem would take the

form; 
+1 −1

+1 −1

+1 −1




R0

R1

R2

 =


R0,1

R0,2

R1,2

 , (5.2)

where Ri represents the absolute shift of sub-aperture i, and the matrix is a matrix

of permutation factors, describing the combination of sub-aperture shifts in each

centroid measurement. The measured centroids, Ri,j contain both the relative shift

of i with respect to j and the associated error, σi,j ;

Ri,j = Ri,j
signal + σi,j . (5.3)
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The least squares minimisation can be performed separately for the x and the

y centroids. This should generate a set of centroids for the sub-aperture images

which are more accurate than the technique of using one sub-aperture image as the

reference image.

5.2.1 Weighted Least Squares Centroider

The least squares fit can be optimised further by adding a weight to the measured

centroids to reduce the influence of centroid estimates with larger errors. The

obvious choice for weight is the inverse of the magnitude of the measured centroid

of a pair of sub-apertures, as this will work to minimise the effect of non-common

image noise by suppressing the larger centroid estimates;

wi,j = 1
Ri,j

, (5.4)

where wi,j is the weight applied to the centroid measurement Ri,j . As the estim-

ated centroid between two sub-apertures grows, the error from non-common image

noise also grows, as a larger shift corresponds to the region of overlap of the two

sub-aperture images growing smaller. The inclusion of a weight in the measured

centroids modifies equation 5.2 to;
w0,1 −w0,1

w0,2 −w0,2

w1,2 −w1,2




R0

R1

R2

 =


w0,1

w0,2

w1,2




R0,1

R0,2

R1,2

 . (5.5)

Adding a weight, like the inverse of the centroid estimate, adds very little extra

computation to the least squares method, and offers an improvement to the overall

centroid estimates. A comparison of the performance of both a weighted, and an

unweighted least squares method, with using a single sub-aperture as the reference

image is shown in Fig. 5.2. Whilst using a least squares method offers better

performance than using a single sub-aperture image as a reference image, the error

on the centroid estimate is still greater than 1 pixel when the induced shifts between
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Figure 5.2: Performance of weighted, and unweighted least squares centroids with
using a single sub-aperture image as the reference image for a range of different
magnitude of image shifts. The grey line shows y = x for reference. Both the
weighted and unweighted least squares methods outperform using a single sub-
aperture as a reference image for larger shifts. The weighted least squares also
outperforms the least squares method until the shifts between sub-aperture images
gets very large and neither is able to measure the centroids accurately.

sub-apertures is larger than 3 pixels. However, they remain under the grey 1:1 line,

unlike using a single reference image.

5.3 Reference Image Generation

The results from Fig. 5.2 suggest that simply using the centroids from a weighted

least squares method will not align the sub-aperture images sufficiently well to

generate a usable supersized reference image when the shifts are larger than 3 pixels.

This offers a very limited region where there is an advantage over simply using a

single sub-aperture image as the reference, as this performs to a similar level for

shifts of up to 2 pixels. However, unlike using a single sub-aperture image as the

reference, the least squares methods both fall under the y = x grey line, suggesting
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they offer a better estimate of the shifts than assuming no shift between the sub-

aperture images.

The supersized reference images themselves are simply created using a “shift and

add” technique, described in Basden et al. (2014). Only instead of windowing the

aligned and stacked sub-aperture images down to the size of the individual sub-

apertures, the entirety of all of the sub-aperture images are kept. This means that

as well as keeping track of the alignment of the individual sub-apertures each pixel

in the supersized reference image needs to keep track of how many sub-aperture

images are included in it. This is done with a second array, which simply keeps

track of the number of sub-aperture images used in each pixel of the supersized

reference image. The supersized reference image can then simply be divided by this

array, effectively re-normalising the intensity values to the levels seen in a single

sub-aperture.

5.3.1 Iteratively Generating Supersized Reference Images

The weighted least squares method generates more accurate centroids than using

a single sub-aperture image, however, the error on these centroids is still too large

to generate a usable supersized reference image when the shifts are large. The

estimates are better than assuming there is no shift between the images, so the

supersized reference image generated from this method should allow for more ac-

curate centroids to be measured than the centroids used to generate it. With this

process of measuring the same sub-aperture images with new iterations of super-

sized reference images, the centroid estimates should converge on the true centroid

values. This should allow an iterative technique, which generates a superized refer-

ence image with centroid estimates from a previous supersized reference image, to

converge on accurate centroid estimates. These accurate centroid estimates can be

used to generate a supersized reference image which can be used as the reference

image in a correlation WFS.
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Figure 5.3: The left most image is the supersized reference image from the initial
weighted least squares fit. The middle is the second iteration, using the first super-
sized reference image, and the right most image is the third version of the second
supersized reference image. The supersized reference images progressively improve
with each iteration, with more structure becoming apparent, showing that it is
possible to iteratively generate a supersized reference image even when the first
iteration does not show enough structure to work as a supersized reference image.

Iteratively generating a supersized reference image is computationally expensive,

as is the first step of using a least squares method to create the initial centroid

estimates. However after a supersized reference image has been created, centroid

estimates using one should be accurate. This means that subsequent supersized

reference images can be created by simply using the centroid measurements of the

sub-apertures with the previous supersized reference image. An example of how

iteration changes the generated reference images is shown in Fig. 5.3. The difference

between the individual images appears to be small, however it is more apparent

around the edges of the images. The least squares fit has aligned sub-aperture

images on the top of the image which are not there on the subsequent iterations.

The third iteration is also noticeably different to the second supersized reference

image, with structure in the lower right portion of the supersized reference image

becoming clearer.

The differential noise properties around the supersized reference images are visible

in all iterations of Fig. 5.3. The center of the images show clear granular structure,

at high SNR. However, the edges of the images show more noise, and it is possible

to see the edge of a single noisy sub-aperture image in the upper region of the
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Figure 5.4: The residual error from iterating to generate a supersized reference
image. The error is initially over 1 pixel from the weighted least squares fit (first
iteration), and drops with each iteration of using the supersized reference image.
The errors shown here are exaggerated by the fact that low SNR images were used,
and that only 3 iterations were performed on the set of sub-aperture images.

first supersized reference images. This is a trend across all the supersized reference

images, the center having a high SNR, which decreases towards the edge of the

supersized reference images. The errors on the centroid estimates from using the

different iterations of the supersized reference images in Fig. 5.3 is shown in Fig. 5.4.

As can be seen in the outer parts of the supersized reference images in Fig. 5.3,

the sub-aperture images used had low SNRs. This was done to illustrate the effect

iteration can have on aligning sub-aperture images. This, along with the large

shifts between the sub-aperture images, means the error on the centroid estimates

from the weighted least squares method is larger than a pixel. Despite this the

supersized reference image produced (left part of Fig. 5.3) still shows the granular

structure in the central regions. Each iteration brings the error on the centroids

down, until it reaches a sub-pixel accuracy. This would decrease further with
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1" 1" 1"

Figure 5.5: The left image shows a single noisy sub-aperture image, which is nor-
mally used in a correlating WFS. The middle and right images show artificially
generated reference images, after iterating to reduce error on centroid estimates.
The middle image is the supersized reference image windowed to the same FOV
as the original sub-aperture images and the right image shows the full supersized
reference image.

subsequent iterations, until the errors arise solely from noise on the sub-aperture

images. This is reflected in the generated supersized reference images as the last

iteration shows much more structure than the initial one, generated from the least

squares fit.

5.3.2 Comparison of Reference Images

An example of a single sub-aperture image, a windowed reference image and a

supersized reference image that has been generated using the iterative method

is shown in Fig. 5.5. The left most image shows one of the noisy sub-aperture

images, the type that would typically be used in a solar correlating WFS. The

other two images show the generated reference images. The middle image shows

the generated reference image windowed down to the same FOV as the sub-aperture

images and the right most image shows the full supersized reference image. The

granular structure on the generated reference images is much more apparent than

in the single, noisy sub-aperture image. The increase in FOV is obvious when

comparing the middle windowed frame to the full supersized reference image.

Observing the edges of the most right image in Fig. 5.5, it is apparent that the

supersized reference image is not square. This is due to the random nature of
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the shifts combined to generate the supersized reference image. The statistics of

atmospheric turbulence generate a gaussian distributions of shifts, centered about

zero (Kolmogorov, 1941). This means there will be many sub-aperture images

with small shifts, and few with the largest shifts. When combined, creating a

supersized reference image with sub-aperture images which follow these statistics,

the central part of the supersized reference image is the average of many individual

sub-aperture images. However the outer edges of the supersized reference images

are much more sparsely populated, as there are few sub-apertures which sample

that FOV and in some areas there are none. This is visible in the right image in

Fig. 5.5, as some parts of the outer edges have no solar granulation visible, and are

just uniform in intensity.

The values for regions which have no information from the individual sub-aperture

images cannot remain 0 for images of solar granulation. This would cause a large

disparity in the image, where the normal contrast is (∼ 10%). The large disparity

would add signifiant noise to the cross-correlation image, reducing the accuracy of

the centroids measured using the supersized reference image. In order to minimise

this the value for pixels which are not filled by at least one sub-aperture image

are set to the average intensity of the set of sub-aperture images. This reduces

the disparity between the parts of the supersized reference image which utilise

information in the sub-aperture images and those that don’t.

A similar approach needs to be taken with the individual sub-aperture images when

they are cross-correlated with a supersized reference image. The sub-aperture

images need to be the same size as the reference image in order to use the fast

fourier transform (FFT) cross-correlation method (§ 2.2.1.2). This means the sub-

aperture images need to be padded to the size of the supersized reference image.

A similar problem of extra noise from a large discontinuity between the image and

the padding would occur if the padding were set to an intensity value of 0. To

avoid this the padding is set to the average intensity of the sub-aperture image,

reducing the disparity between the sub-aperture image and the padding.
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Figure 5.6: Results of using a variety of different reference images and centroiding
techniques for sets of sub-apertures with different magnitudes of shift. The lines
for using a single sub-aperture image and the least squares method are the same
as in Fig. 5.2 and the blue and red curves are the results from using generated
reference images. The red line is the full supersized reference image and the blue
is the same reference image windowed down to the FOV of a single sub-aperture.
The grey line shows y = x for reference. It is apparent the supersized reference
image outperforms all other methods for large shifts, and begins to fail with shifts
of 8 pixels.

5.4 Results on Solar Granules

A comparison of how a supersized reference image performs compared with a win-

dowed region of the supersized reference image with the same FOV as a single

sub-aperture, and the weighted least squares method of centroiding is given in

Fig. 5.6. Using a single sub-aperture as the reference image performs the worst

out of all of the methods, though still offers good accuracy for small shifts between

sub-aperture images. The weighted least squares offers a better estimation of the

centroids for larger shifts, but still does not perform adequately when the mag-

nitude of shifts reaches 4 pixels. The weighted least squares does still offer a better

estimate of centroids than assuming none of the sub-apertures had any shifts (grey
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line). This allows for the supersized reference image to be created using the iter-

ative method. The supersized reference image performs well for all shifts, until it

fails when the shifts reach 8 pixels.

The blue and red lines are derived from the same supersized reference image, after

the iterative reference image generation has taken place. The supersized reference

image is windowed to the same FOV as the individual sub-apertures before it is

used as the reference image in the blue line. The full supersized reference image

is used to generate the red line. The blue line has a similar performance to the

weighted least squares method, and still does not perform adequately in the regime

where shifts are large. This shows how effective the weighted least squares method

is, as it gives the same performance as a reference image with much less noise. The

supersized reference image is able to provide accurate centroid estimates up to very

large shifts, where its performance rapidly declines.

The reason for the failure of the supersized reference to give good centroid estimates

for very large shifts can be seen in Fig. 5.6. At these very large shifts the weighted

least squares method is at the limit of being able to provide any estimate on the

centroids, as it begins to overlap with the y = x line. This is the first step of

attempting to iteratively generate supersized reference images, when this starts

to fail iteratively generating supersized reference images will not converge. We

see that shifts of 8 pixels is at the limit of the iterative method, as the error

bars are extremely large, indicating that the supersized reference image generated

sometimes performs well, but at other times performs as badly as the rest of the

methods. We also see that the weighted least squares method is nearly overlapping

with the grey y = x line for this value of image shifts.

5.4.1 Implementation into an Adaptive Optics System

The methods described in this chapter should be readily implementable in an AO

system. The method for generating a supersized reference image, and updating it
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as required, would not interfere with the operation of an AO loop. Updating a

reference image in a correlating WFS, in a continuously working AO system, has

been demonstrated by Basden et al. (2014). The only modification to this technique

would be that the sub-aperture images would need to be padded to the size of the

supersized reference image before they are correlated with the supersized reference

image.

The method could then be implemented into an AO system in the following way;

1. Perform a weighted least squares fit with a set of sub-aperture images, and

generate a supersized reference image.

2. Iteratively generate supersized reference images, updating the supersized ref-

erence image and centroid estimates with each iteration, until a reference

image with the desired characteristics is created.

3. Use the supersized reference image in an AO system for estimating centroids

in the WFS.

4. Use shifts generated using the supersized reference image, along with the

sub-aperture images to generate subsequent supersized reference images.

Using this method the computationally expensive method of using the weighted

least squares method, and iteratively generating a supersized reference image would

only need to be used when starting to use supersized reference images. After

this, the subsequent sub-aperture images, and centroid estimates using an existing

supersized reference image, can be used to update the supersized reference image

to cope with the evolution of the structure of the guide source. This occurs in solar

granulation on the order of a few minutes (Bahng and Schwarzschild, 1961).

This could be implemented into an existing AO system in the WFS as shown in

Fig. 5.7. Periodically a set of sub-aperture images and their centroid estimates

can be used to update the supersized reference image. This can be done entirely
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Figure 5.7: How a supersized reference image could be created, and used in an
existing AO system, with minimal changes to its operation. The changes all occur
within the calculations with the WFS and the calculation of the new supersized
reference image could be offloaded onto a separate machine, so there should be
no degradation in performance of the AO system. The only update required in
the AO system would be the centroiding technique used, with one that could use
a supersized reference image. This should offer a performance increase, from the
more accurate centroid estimates in the WFS.

separately to the AO system, with the only interface being the new, supersized

reference image, along with the change in reference slopes required (Basden et al.,

2014).

5.5 Application to Laser Guide Stars

The methods shown here could also be of use to LGS WFSs. The main difference

between the LGS and solar WFS is in how the signal is distributed in the sub-

aperture images. The solar granulation extends out of the sub-aperture FOV in all

directions, however, in a LGS it only extends out in one direction. This will reduce

the performance benefit from using a supersized reference image, as there is a very

limited regime where there will be extra signal added to the supersized reference

image, and most parts will receive no extra image information.

5.5.1 Laser Guide Star Truncation

The effect of cutting off the wings of the sodium plume in WFS images is known as

truncation. This effect can be seen in Fig. 5.8 where a sub-aperture FOV is plotted

over the full laser plume, simulated from Pfrommer and Hickson (2014) sodium
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Figure 5.8: A full laser plume, with a yellow box around the FOV of a typical LGS
WFS. The LGS intensity is shown in a log scale to emphasise the edges of the
plume. The size of the laser plume is much larger than the size of the sub-aperture
FOV, which truncates the plume.

laser profiles. This is a problem for WFS design for AO systems which use LGS, as

there is often little structure in the laser plume. This makes the laser appear to be

mainly continuous, with few features. This, combined with the truncation, makes

centroiding a LGS image in a WFS complex. Centroiding methods for truncated

LGS spots is an active area of research (Conan et al., 2009; Thomas et al., 2008b;

Lardière et al., 2009).

5.5.2 Results on Laser Guide Stars

Due to the different design of LGS WFS to solar WFS, the shifts expected for LGS

WFS are much smaller in pixels. Instead of pixel scales of tenths of an arc-second

per pixel, much coarser resolutions are used to fit as much of the laser plume into

a sub-aperture with the minimmum number of pixels, typically with pixel scales of
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Figure 5.9: Results of using a variety of different reference images and centroiding
techniques for sets of LGS sub-aperture images with different magnitudes of shift.
The weighted least squares method (shown in green) gives a good starting point for
all shifts shown, allowing the iterative generation of supsersized reference images
to work. The windowed down generated reference image (shown in blue) performs
noticeably better than the least squares method, however, the supersized reference
image (shown in red) does not offer as much of an improvement as it did in the
solar case and fails at a smaller magnitude of shifts than for the solar case.

∼ 1 ′′/pixel (Gendron et al., 2011; Cuby et al., 2008).

Figure 5.9 shows the performance of the various centroiding techniques applied to

images of LGS, based on the windowed region shown in Fig. 5.8. The performance

of the supersized reference image is better than any of the other methods, until the

shifts reach a magnitude of 6 pixels. Here the technique fails in the same way that

it does for the solar case. This is expected with the structure being restricted to

one direction, rather than all directions like it is in the solar case. The windowed

reference image that is generated performs much better than the least squares fit

to the images and at a similar level to the full supersized reference image for some

of the smaller shifts.

Measuring image motion for large shifts is not as much of a problem for LGS WFS
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due to the coarser pixel scales. If this method was refined for use in LGS WFS it is

possible that it would be beneficial to further truncate the LGS images (decreasing

the FOV) in order to have finer pixel scales in the WFS.

5.6 Future Work

There are a number of avenues which need further investigation in the use of su-

persized reference images with LGS WFSs. These include looking at the benefit of

using a supersized reference image for different amounts of elongation, and different

levels of truncation in a WFS. The technique could also be investigated with the

use of polar WFS as proposed by Thomas et al. (2008b). Another problem facing

LGS is the stability of the sodium layer. Pfrommer and Hickson (2014) show that

the sodium layer is continuously evolving which would affect the validity of any

reference image over time, which may constrain how often the supersized reference

image is required to be updated.

This technique could also be used outside of the AO community. For instance in

biological imaging, where individual frames on a camera can be noisy, a number of

frames can be co-aligned to reduce noise (Yang et al., 2014). This technique could

not only give better shift estimates for aligning the images, but also give a larger

FOV than any of the individual frames.

5.7 Summary

In this chapter a method of generating supersized reference images is described and

demonstrated for both solar and LGS WFSs. This starts with using a least squares

method to estimate the shifts for a set of sub-aperture images with large relative

shifts, which makes using a single sub-aperture image as a reference unsuitable. A

supersized reference image can then be created by co-aligning these shifted sub-

aperture images and the supersized reference image iterated upon to generate a
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supersized reference image which has better noise characteristics, and larger FOV

than any of the individual sup-aperture images.

The performance of these methods is then compared for both solar and LGS WFS

images, with varying degrees of relative shift added. In most cases the supersized

reference image offers the best centroid estimates for the sub-aperture images,

however at very large shifts it collapses and can no longer give accurate centroid

estimates. In these regimes the other methods also fail leaving no way to estimate

the centroids in these regimes.
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Chapter 6

Solar SLODAR

The turbulence profile is important for the development and operation of MCAO

systems. With both the DKIST and EST due to operate with MCAO the tur-

bulence profile during the day is required. While there are many instruments for

measuring high resolution turbulence profiles at night, there are few instruments

developed for turbulence profiling during the day.

In this chapter I describe So-SLODAR, a slope based turbulence profiling instru-

ment for day-time observations, and present turbulence profiles measured on the

SST. I describe the design of a WF-WFS used on the SST for So-SLODAR in § 6.1.

I describe how SLODAR was modified for So-SLODAR in § 6.2 and show example

response functions for So-SLODAR in § 6.3. I show how the altitude resolution

of So-SLODAR was determined in § 6.4. I give the turbulence profiles measured

by So-SLODAR on the SST in § 6.6. Finally I give examples of how So-SLODAR

could be developed in the future in § 6.7 and summarise the results in § 6.8

6.1 Design of the Wide-Field Wavefront Sensor

The predominant feature observed on The Sun in the visible is the granulation on

the solar surface. These features are typically of order a few arcseconds across,

which allows them to be centroided using cross-correlation techniques on regions
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6.1. Design of the Wide-Field Wavefront Sensor

∼ 5′′ across. Observing solar granulation is convenient as granules cover the whole

of the solar surface, ensuring a good coverage of guide sources on the solar surface.

However, their low contrast levels make centroiding images of granulation more

complicated than for point sources or other simple objects.

To measure turbulence profiles during the day a WFS with a large FOV is re-

quired to sample large field separations. The design of the WF-WFS was similar

to that used previously on the S-DIMM+ (Scharmer and van Werkhoven, 2010).

The WF-WFS was placed on a spare port of the SST, such that it could operate

alongside science observations without interfering with them. A schematic of the

instrument alongside a photo of it on the SST is shown in Fig. 6.1. The design is

simple, consisting only of a collimating lens from the telescope output, a lenslet

array conjugated to the pupil of the telescope and a camera at the focus of the

lenslet array. The part of the SST shown in Fig. 6.1b is the lower part of the

vacuum tube, where the WF-WFS is mounted (shown in the green box).

The pupil and image planes are shown in Fig. 6.2. The lenslet array geometry

is such that 10 full sub-apertures fit across the pupil (970mm), giving a sub-

aperture size of 97mm. The lenslet array is hexagonal in shape, creating hexagonal

sub-apertures. For simplicity the sub-apertures are assumed to be square when

calculating the theoretical covariances for So-SLODAR. The port used for the

So-SLODAR is picked off from the main optical path by a prism placed in the focal

plane just outside the vacuum tube. This prism then acts as the field stop for the

So-SLODAR, of 45′′.

The optical apparatus is based on the WF-WFS used for the S-DIMM+ and is

summarised in Tab. 6.1. The lenslet array used was a custom lenslet array manu-

factured by SMOS∗ and its specification is given in Tab. 6.2. Finally, the camera

used for the So-SLODAR is a Teledyne Dalsa Falcon2 CMOS, its specification is

given in Tab. 6.3.
∗http://www.smos-microoptics.de/

95
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Figure 6.1: The So-SLODAR design is shown in Subfig. a with a photo of it installed
on the SST in the green box in Subfig. b. The design simply uses a lens to collimate
the output of the SST, a lenslet array conjugated to the pupil of the SST to split
the pupil into sub-apertures and a camera at the focus of the lenslet array.
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Pupil	PlaneFocal	Plane

Science	FOV

So-SLODAR	
FOV

45” 970mm

Figure 6.2: The geometry of the WF-WFS in the pupil and image planes of the
SST. The left image shows the focal plane of the So-SLODAR, which is situated
next to the main science FOV on the SST. The right image illustrates the geometry
of the sub-apertures across the pupil plane. There are 10 sub-apertures across the
SST pupil, each of 97mm which fill the full 970mm aperture.

Optic Description Thickness (mm)
Telescope focus (f/42)
Focus to collimator 296.2

Melles Griot LAO 639 Collimating lens 9.4
Collimator to lenslet array 179.9

SMOS lenslet array Lenslet array 1.5
Lenslet array to camera 63.3

Table 6.1: Description of the spacing of optical components for the WF-WFS. The
description starts from the focal plane output of the telescope, after the Schupman
corrector, where the pick-off for the field is located.

Manufacturer Smart Micro-optical Solutions
Pitch (mm) 1.43
Focal length (mm) 63.3
Diameter (mm) 29.5

Table 6.2: Specification of the SMOS lenslet array used in the So-SLODAR.
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6.2. Modifying SLODAR for use in Solar Observations

Manufacturer Teledyne Dalsa
Model Falcon2 4M
Detector Size (pixels) 2432× 1728
Max. frame rate (Hz) 168
Pixel size (µm) 6
Pixel scale (′′/pixel) 0.234

Table 6.3: Parameters of the camera used for the So-SLODAR.

23”

Figure 6.3: Frame taken from the WF-WFS used for the So-SLODAR. There are
ten fully illuminated sub-apertures running across the pupil, each with a 45′′ FOV.
This gives each sub-aperture a usable size of ∼ 200× 200 pixels on the detector.

Due to the large volumes of data the So-SLODAR generates the camera is windowed

down to only read out a single row of sub-apertures, as shown on the right of

Fig. 6.2. This greatly reduces the size of data packets and allows for longer data

sets to be obtained which helps ensure the measured slopes are properly temporally

averaged. An example WF-WFS frame is shown in Fig. 6.3.

6.2 Modifying SLODAR for use in Solar Observations

There are two major differences between applying SLODAR to day-time obser-

vations and applying it to night-time observations. The first is estimating the

wavefront slopes with an extended source. This causes the size of the effective pu-

pil to change with altitude. The second is the different availability of “guide stars”

across the FOV, as The Sun is extended over 0.5◦ there are many available sources

over the stellar disk, as opposed to the more limited regime SLODAR works in at

night.
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6.2.1. Expanding Pupil

6.2.1 Expanding Pupil

As previously discussed in § 3.5.1 there is a problem in solar observations associated

with measuring wavefront slopes over extended FOVs. If this effect is not taken

into account then the influence of high altitude layers will be underestimated.

In a similar way to the S-DIMM+ the diameter of a sub-aperture is replaced with

the effective diameter which is a function of altitude, as given in equation 3.46.

This changes the definition of the pupil function, defined in equation 3.31, to now

also be a function of altitude;

Weff(h, r) = 1 for |x|, |y| < 1/2

= 0 otherwise,
(6.1)

where h is the altitude at which the pupil size is calculated, and the size of the

window is calculated using equation 3.46. The linear slope function then also

depends on the altitude of the turbulent layer;
∫
F 2
x,eff(h, r)Weff(h, r)dr = 1. (6.2)

The modified pupil function from equation 6.1 and the modifield slope function

from equation 6.2 are substituted into equation 3.35, the covariance of the slopes;

Cxi,j,i′,j′(h) =
∫ ∫
〈φ[1]
i,j(wr[1]

i,j)φ
[2]
i′,j′(wr[2]

i′,j′)〉Fx,eff(r[1]
i,j)Fx,eff(r[2]

i′,j′)

×Weff(h, r[1]
i,j)Weff(h, r[2]

i′,j′)dr[1]
i,jdr[2]

i′,j′ , (6.3)

which in turn modifies equation 3.36, the covariance of the slopes with piston

removed to be altitude dependant;

〈Φ[1]
i,j(wr[1]

i,j)Φ
[2]
i′,j′(wr[2]

i′,j′)〉 = −1
2Dφ(wx)

+1
2
∫
Weff(h, r[1]

i,j)Dφ(wx)dr[1]
i,j

+1
2
∫
Weff(h, r[2]

i′,j′)Dφ(wx)dr[2]
i′,j′

−1
2
∫ ∫

Weff(h, r[1]
i,j)Weff(h, r[2]

i′,j′)Dφ(wx)dr[1]
i,jdr[2]

i′,j′ .

(6.4)
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6.2.2. Multiple Guide Sources

For a given altitude the effective diameter of the sub-aperture is calculated and

the sub-aperture separations recalculated to be in terms of the effective pupil dia-

meter. This then allows for the normal SLODAR covariance calculations to be

used, modifying only the size of the pupil and separations. However, there is still

an altitude dependence, so the pupil size, separation and covariances need to be

generated separately for every altitude.

The subsequent calculations are then all similar to SLODAR. The removal of the

effect of global tip/tilt is simple for So-SLODAR, as the WF-WFS is constrained

to a single row of sub-apertures, which is only in one dimension.

For the So-SLODAR the chosen FOV to use in centroid estimation was 24 pixels,

which corresponds to 5.6′′. This was chosen as the correlating region to give a FOV

which is consistent with the S-DIMM+, containing enough structure to measure

accurate centroids. A comparison of how this changes the response functions of

SLODAR is shown in Fig. 6.4.

The two effects of the expanding pupil are obvious. Firstly the averaging of the tur-

bulence at higher altitudes can be seen as the peak is much lower in the So-SLODAR

response functions (dotted lines) than for the SLODAR response functions (solid

lines) at higher altitudes. Secondly the peaks for the So-SLODAR response func-

tions are shifted left with respect to the peaks of the SLODAR response functions.

This is due to the separations of the projected sub-apertures changing as a func-

tion of altitude. The separation in meters is consistent between SLODAR and

So-SLODAR, but as the effective pupils increase in size, the separations in units of

sub-aperture widths decreases, shifting the peaks to smaller apparent separations

in So-SLODAR.

6.2.2 Multiple Guide Sources

Unlike SLODAR at night, during the day any region of the solar surface can be

used as a “guide star”. This means that over the stellar disk, there many possible
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Figure 6.4: Comparison of SLODAR and So-SLODAR response functions for the
same altitudes. The SLODAR response functions in solid lines, with the response
functions modified for the So-SLODAR at the same altitudes shown in dotted lines.
The SLODAR response functions are the same as the ones shown in Fig. 3.5 and
the response for the ground layer (∆ = 0) for the two techniques is identical.

choices for available guide stars. In reality we are limited by the sampling of the

detector. The sub-apertures are 200 pixels across, using regions of width 24 pixels

for correlating. This leaves 176 possible different field directions in each dimension,

shifting the correlating region by 1 pixel for each source.

The response functions using so many guide sources would be extremely large and

would take a substantial amount of time to compute. The measured covariances

would also take an extremely long time to calculate, as a cross-correlation would

have to be performed for every field direction. Such large response functions would

also take a substantially long time to fit to the measured covariances and generate

profiles. This makes it unreasonable to use the full size for the response functions,

as it would take substantially longer to reduce the frames to profile estimates than it

would to record them, which prohibits the possibility of using a profiling instrument

running in tandem with science observations at the SST. As seen later in § 6.3 the
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6.3. Theoretical Response Functions

resolved altitudes are limited by the expanding pupil and largest field separation,

so there is no gain in resolution to be attained from increasing the number of guide

sources at intermediate separations.

In order to attain the highest resolution profiles at low altitude the largest field

separations should be included. However to measure the turbulence to the greatest

altitude the smallest field separations should be used. This leads us to choose a

set of response functions which use a regular grid of guide sources across the FOV.

This gives many estimations of the covariances for small separations, which can

be averaged over to reduce the effects of noise for high altitudes and includes the

largest field separations to give good altitude resolution at the ground.

The choice of field separations for the So-SLODAR is a regularly sized grid of 7×8

field directions across the image plane. This is a compromise between the compu-

tational cost of calculating slopes, covariances and fitting the measured covariances

to the response functions. The chosen set of field separations are shown plotted

over a sub-aperture image in Fig. 6.5. This gives the largest field separation of

39.3′′, and a smallest field separation of 5.3′′.

6.3 Theoretical Response Functions

Response functions show the expected response of an instrument, in this case

So-SLODAR, to a single layer of turbulence at a given altitude. A set of response

functions are used to fit the measured covariances of the So-SLODAR in order to

estimate the turbulence profile. Here I show some So-SLODAR response functions

and describe how the altitude resolution of the So-SLODAR was determined.

As has previously been shown in Fig. 6.4 the response functions for So-SLODAR

differ from those used in SLODAR. However the availability of more guide sources

allows for multiple different field directions to be used in response functions and

fitting for the turbulence. This results in two dimensional response functions,
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6.4. Orthogonality of Response Functions

11”

Figure 6.5: A single sub-aperture image with the grid of 7× 8 FOVs used as guide
sources overlaid. The size of the boxes show the size of the regions correlated over
to estimate the centroids for a given field direction. The chosen spacing of the
sources spans the whole FOV of the sub-aperture with no FOVs overlapping.

where each row corresponds to a different field separation, such as the ones shown

in Fig. 6.4.

The response functions are generated in the same way as the response functions

shown in Fig. 6.4 for each individual field seperation. A selection of response

functions are shown in Fig. 6.6. The response functions shows how the expanding

pupil restricts the ability of the instrument to detect turbulence at high altitudes,

as the response is much weaker than for low altitude turbulence. At the highest

altitudes the strength of the peak of the covariance function is diminished almost

to the background level.

6.4 Orthogonality of Response Functions

As there are multiple different field separations in the measured covariances and

response functions the approach used for choosing the altitude of the response
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Figure 6.6: Example response functions for So-SLODAR shown on the same colour
scale. The y axis (α) shows increasing field seperation and the x axis (∆) shows
sub-aperture seperation, centered around zero offest. The effect of the expanding
pupil can be clearly seen as the strength of the response falls for high altitude
turbulence. These response functions differ in shape from the response functions
for S-DIMM+ shown in Fig. 3.7.

functions for SLODAR cannot be used. Instead we look at the orthogonality of the

response functions at different altitudes. If two response functions are orthogonal

then when fitting for a single layer of turbulence that matches one of the response

functions altitudes, the fit should calculate that the turbulence all fits into the

response function. If however the response functions are not orthogonal then the

fit may indicate strength at multiple altitudes. A more orthogonal set of response

functions should reduce the likelihood of fitting turbulence into a response function

at the incorrect altitude. The response functions shown next all use the geometry of

the So-SLODAR so they can be compared directly, a single row of 10 sub-apertures

across a 1m pupil, with a grid of field separations, from 5.6′′ to 39.3′′, seperated by

5.6′′.
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Figure 6.7: Correlation of response functions for S-DIMM+. The response func-
tions are not very orthogonal, with the correlation never falling below 0.9, even
when comparing the ground layer to the highest altitude response function.

6.4.1 S-DIMM+ Response Functions

S-DIMM+ response functions were generated for altitudes up to 20km in order to

compare their orthogonality to that of So-SLODAR response functions (§ 6.4.3).

The correlations of the response functions for S-DIMM+ are shown in Fig. 6.7.

All of the response functions share a lot of common structure, making them well

correlated and limiting the resolution of the S-DIMM+. This is seen in Fig. 6.7 as

the correlation between all of the response functions is large and never falls below

0.9.

6.4.2 SLODAR Response Functions

The correlation of the response functions for SLODAR are shown in Fig. 6.8. These

were generated for the same geometry as is used in the S-DIMM+ and So-SLODAR,

where multiple guide sources are available and only a single row of sub-apertures

are measured. The response functions appear to be practically orthogonal for low

altitude turbulence. This means the resolution of a SLODAR system using this
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Figure 6.8: Correlation of the SLODAR response functions. Here we see that the
response functions are much more orthogonal than the ones used in S-DIMM+
(Fig. 6.7). The response functions appear less orthogonal at higher altitudes due
to the loss of signal contribution from the guide sources with the larges field sep-
arations.

geometry will give high resolution at low altitudes. As the altitude increases, the

orthogonality of the response functions falls, this is due to to the peak of the

covariances moving out of the sampled region for the largest field separations.

For a typical night-time SLODAR system the orthogonality of the response func-

tions appears much more like the orthogonality shown in Fig. 6.8 for low altitudes,

and continues in that way to the high altitudes. This is not the case for the re-

sponse functions here due to the multiple guide sources used. The guide sources

with the largest field separations offer the smallest difference in altitude between

resolved bins. However, the full telescope pupil separates at low altitudes, leaving

them unable to measure the turbulence profile above this separation height. For

narrow separations the distance between resolved altitude bins is low, however, the

full telescope pupil separate at a much higher altitude. This is reflected in the

correlation of the response functions, the correlation is low for low altitudes, but

as the altitude increases only the narrow field separations contribute useful signal,

where the altitude separation between adjacent bins is large (or the correlation
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Figure 6.9: Correlation of the So-SLODAR response functions. There is a large
difference between the response function and the ground and higher altitude re-
sponse functions, apparent as the correlation is small. However at higher altitudes
the orthogonality is greatly reduced, to the extent of the highest altitudes almost
appearing to be degenerate.

between altitudes with small separations is large).

6.4.3 So-SLODAR Response Functions

Figure 6.9 shows the orthogonality of So-SLODAR for various altitudes. The or-

thogonality of the response functions at low altitudes is much greater than the

orthogonality for high altitudes. This suggests that the optimal choice of the alti-

tudes will have a higher resolution at low altitudes, with decreasing resolution as

the altitude increases. This is similar to the choice of altitudes for S-DIMM+.

Comparing the orthogonality of S-DIMM+ (Fig. 6.7) with So-SLODAR (Fig. 6.9)

response functions, the So-SLODAR response functions are much more orthogonal

than the response functions for S-DIMM+. This should result in the So-SLODAR

being more robust than the S-DIMM+. Comparing Fig. 6.8 with Fig. 6.9 we see

that SLODAR has much more orthogonal response functions than So-SLODAR.

This is expected, as the modifications made to SLODAR reduce both the height
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6.4.4. Altitude Resolution of So-SLODAR

of the correlation peak and shift them towards smaller pupil operations, both of

which will reduce the orthogonality of the response functions.

6.4.4 Altitude Resolution of So-SLODAR

The altitude resolution of So-SLODAR was calculated from the orthogonality of the

response functions shown previously. The resolved altitudes are chosen such that

the response functions of adjacent altitude have the same orthogonality. The value

for the orthogonality are chosen from SLODAR analysis. SLODAR uses altitude

bins taken from the peak of the correlation moving by an integer number of sub-

apertures. For a standard SLODAR observing two stars, using the sub-aperture

geometry of the So-SLODAR, the orthogonality of adjacent response functions is

∼ 0.95.

The limiting correlation value of 0.95 was used in conjunction with Fig. 6.9 to

generate the altitude bins for So-SLODAR. The initial height was taken to be

the ground layer. The next layer is chosen to be the altitude where the cor-

relation between the response function for that altitude and the response func-

tion for the ground is less than 0.95. This is continued until a maximum alti-

tude is reached. For the So-SLODAR used here the generated altitude bins are

h = 0, 0.5, 1.2, 2.2, 3.8, 6.8, 14, 30 km. A trace of this over the orthogonality plot for

So-SLODAR is shown in Fig. 6.10. The response functions generated correspond

to the case in SLODAR where the largest field separation covariance peak moves

by a single sub-aperture for each of the resolved altitudes.

6.5 So-SLODAR Data Reduction

The raw camera images from the So-SLODAR need to be reduced to covariances,

which the response functions can be fitted to. However, before this can be done the

frames are first flat-fielded and de-biased to remove vignetting and any artifacts on
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Figure 6.10: The altitude resolution plotted over the correlation of the response
functions for So-SLODAR. The red line shows the trace used to calculate the
altitude bins for the So-SLODAR. This highlights that the resolution is altitude
dependent, with a greater density of altitude bins at low altitudes and fewer at
high altitudes.

the optics. Once a day the So-SLODAR captured dark frames for each exposure

setting and took flat field measurements using long exposures when the SST was

continuously slewing (in flat-fielding mode). This smears out the images of the

granular structure, and when averaging over many frames generates flat-field images

(Löfdahl and Scharmer, 2012). An example of a processed frames is shown in

Fig. 6.3.

The frame is then separated into individual sub-apertures, which in turn are separ-

ated into the different field directions shown in Fig. 6.5. These individual regions

are centroided using the images from a single frame as the reference image for the

whole set of images and the global tip/tilt term subtracted from each of the field

directions as previously discussed in § 3.4.

The covariances of the centroid measurements are then calculated and formatted to

the shape of the response functions calculated in § 6.4.4. An example of a processed

set of data is shown in Fig. 6.11. The measured and fitted covariances have similar

shapes, as can be seen from the residual plot, however, the auto-correlation (0 field
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Figure 6.11: An example covariance measured with So-SLODAR shown with the
fitted profiles covariance and the residual between the two. The residuals and meas-
ured covariances both show the noise from the peak of the autocorrelation, which
can be seen at 0 field separation and 0 sub-aperture separation as the brightest
point.
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6.6. Measured Turbulence Profiles

separation) measurements differ. This is due to the noise in the centroids appearing

in the peak of the auto-correlation as described in Butterley et al. (2006). The scale

factor in the fitting process for each of the individual response functions gives the

strength of the turbulence at that layer. These strengths are then used as the

turbulence profile.

6.6 Measured Turbulence Profiles

The WF-WFS was used on the SST for two campaigns, one in September 2013 and

another in April/May 2014, to measure the turbulence profile in La Palma during

the day. Series of raw frames from the WF-WFS were captured and brought back

to Durham for analysis.

The centroiding was then performed on the frames to generate centroids using the

Fourier transform based cross-correlation algorithm and peak fitted using the 2nd

order polynomial fitting technique, both described in § 2. The cross-correlations

between the different sub-apertures and field directions were then calculated using

the technique described in Wilson (2002), using 1 minute of centroid measurements

for each measurement. The correlations were then averaged by field separation and

sub-aperture separation in order to reshape them to the same size and shape as

the response functions described in § 6.3. The response functions were fitted to

the measured cross-correlations using a non-negative least squares fit in order to

calculate the turbulence profile.

6.6.1 Example Profiles

The turbulence profiles measured on 19 September 2013 are shown in Fig 6.12,

along with the median profile for that day in Fig. 6.13. Fig. 6.12 is split into

three regions, the two lower sections show the turbulence profile and the upper

section shows the r0 measurements. The turbulence profile is split at 500m due
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Figure 6.12: Turbulence profiles measured on 19 September 2013. The profile is
split between two plots, with different scales so both the high altitude, and low
altitude turbulence can be clearly seen. The upper part of the plot shows the r0
values measured for each of the profiles from the WFS data. The grey region shows
where cloud was present during data capture.
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Figure 6.13: The median profile from the 19 September 2013 shown on a box plot.
The bins used are sympathetic to the results from Fig. 6.12, where the altitude
resolution decreases with altitude. The red line shows the median strength of the
turbulence, the blue shaded regions show the first and third quartile strengths
and the bounding lines shown the 5% and 95% quartiles. There was no observed
turbulence above the 7km bin, so the altitude is cut off here.

to the significant change in estimated turbulence strength around this altitude.

The red lines to the right of the plots show the height of a region with the given

turbulence strength. The upper region shows the estimated r0 values estimated

with the DIMM technique applied to individual pairs of sub-apertures and field

directions. The error bars are then calculated by taking the standard deviation of

the individual estimates of r0.

We see from the top section of Fig. 6.12 that the seeing conditions were variable,

with large disparities between 09:00 and 09:40 due to intermittent cloud. Look-

ing at the turbulence profiles the turbulence is mostly situated at the ground, with

some structure intermittently appearing at higher altitudes. There was no observed

turbulence above ∼ 6km, hence these altitudes are not shown. We see the struc-

ture of the turbulence for that day more clearly in Fig. 6.13, where the median

conditions are shown. Here we see strong turbulence at the ground, with some
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structure reading up to ∼ 7km appearing intermittently. The r0 values calculated

are consistent with the expected values, with the SST typically reporting r0 values

of ∼ 10− 20cm in the morning (Scharmer et al., 2002), with worsening conditions

towards mid-day. The values for both the strength of individual layers in the meas-

ured turbulence profile and the r0 measurements are also plausible when compared

to night-time profiles, where the strength of the turbulent layers in C2
ncan be up

to 10−12m1/3 and r0 values are typically of the order of 10cm.

The next campaign took place at the end of April 2014. The profiles from this

campaign are shown in Figs. 6.14-6.16. These show a similar structure to the

profiles taken on 19 September 2013, with a predominant ground layer and some

higher altitude structure visible. Again there is no observed turbulence above

6km, so the plots don’t show any altitude higher than this. The median profiles

for these day are shown in Figs. 6.17-6.19. The median profiles show a measure

of the turbulence from each of the days. They tend to show similar structure, a

strong ground layer is usually present and turbulence distributed up to 2km. The

feature which seems to exist at ∼ 2km has been seen at night by Stereo-SCIDAR

on occasion (Osborn et al., 2013).

A strong ground layer has been observed during the day, of a similar strength by

S-DIMM+ (Scharmer and van Werkhoven, 2010). The strength of the low altitude

turbulence is also consistent with the turbulence profile measured by S-DIMM+.

There is a discrepancy between the turbulence profiles shown here and the ones

measured by S-DIMM+, which is the high altitude turbulence. This is likely to

be due to the response of the So-SLODAR to the high altitude turbulence and it

being extremely attenuated due to the expanding pupil effect, meaning it cannot

be measured reliably with the So-SLODAR in its current state.

It should be noted that the profiles shown here are not statistically representative

of the daytime turbulence in La Palma, as the sample size is extremely small (only

4 partial days). Also the time resolution of the profiles is limited by the camera

computer. Due to the large data rates from the camera the computer buffers fill
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Figure 6.14: Turbulence profiles measured on the 23 April 2014. The profiles
follow the expected pattern of a strong ground layer with intermittent turbulence
at the higher altitudes. There is no observed turbulence above ∼ 5km, so the high
altitudes are not plotted. There was a spell of intermittent cloud from ∼ 9:00 until
∼ 10:00, highlighted in grey, making measurements between these times unreliable.
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Figure 6.15: Turbulence profiles measured on the 24 April 2014 showing the turbu-
lence profile up to 6km. The profiles show a ground layer, with some structure at
low altitudes. The overall seeing conditions were good, so the ground layer is not
as pronounced as some of the previous profiles. There was a region of cloud, shown
in grey where there was not enough flux in the camera to measure centroids, after
which the conditions only briefly improved.
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Figure 6.16: Measured turbulence profiles from 3 May 2014. The profiles are
measured in the afternoon, showing a general decrease in total turbulence towards
sunset. The last measurements are biased by the sun passing behind cloud. Despite
the profiles being measured in the afternoon, they follow a similar structure to the
morning of being dominated by the ground layer.
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Figure 6.17: Median turbulence profile from the 23 April 2014. The red lines
indicate the median strengths, while the blue boxes show the first and third quartile
of the data. The bounding regions indicate the 5% and 95% of the data. Most of
the turbulence is located at the ground, with some turbulence up to 1km occurring
relatively frequently.

after only a minute before the system needs to pause to empty them. This means

that the data is not continuous and so cannot be analysed as such to measure the

evolution of the profile. Instead only individual snapshots of the turbulence profile

are measured.

6.7 Future Work

The turbulence profiles shown so far are the first to be calculated using the So-SLODAR

technique. In order to measure the statistics of the turbulence above La Palma

during the day much more data is required. Therefore it would be of interest

to automate the data acquisition and reduction such that the instrument could

autonomously measure the turbulence profile whenever the SST is in operation.

The method of choosing the altitude resolution of the So-SLODAR shown here
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Figure 6.18: Median turbulence profile from the 24 April 2014. The red lines
indicate the median strengths, while the blue boxes show the first and third quartile
of the data. The bounding regions indicate the 5% and 95% of the data. Most of
the turbulence is located at the ground, with the strength decaying until there is
a low probability of there being any turbulence above 1km.

is based on creating response functions which have a similar orthogonality to

SLODAR response functions. Another method which could be used is the S-DIMM+

method, where the response functions are chosen from minimising the noise influ-

ence on the minimisation matrix used in the least squares fitting. This could gen-

erate a set of response functions with higher altitude resolution than is currently

employed by the So-SLODAR.

So far the turbulence profiles have been calculated only comparing WFS frames

taken at the same time. Temporal statistics, such as τ0 can be calculated by

comparing the correlations of WFS centroids taken at different times. This could

be implemented on a So-SLODAR in the same way that it is done for SLODAR

(Butterley et al., 2006).

Another modification that could be made is the implementation of the methods

presented in Chapters 4 and 5 into the centroiders used for So-SLODAR, as so far
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Figure 6.19: Median turbulence profile from the 3 May 2014. The red lines indicate
the median strengths, while the blue boxes show the first and third quartile of the
data. The bounding regions indicate the 5% and 95% of the data. Here we see a
strong ground layer, with a relatively strong layer at ∼ 1km. This differs slightly
from the previous profiles, but is expected as the profiles were taken during the
afternoon before sunset rather than in the morning.

only the 2nd order polynomial fitting technique has been used for estimating the

centroids from the WF-WFS.

6.8 Summary

In this chapter I have described how the SLODAR method (Wilson, 2002; Butter-

ley et al., 2006) can be modified for use with a WF-WFS observing The Sun. The

modifications made to the data analysis is similar to those made for the S-DIMM+

(Scharmer and van Werkhoven, 2010), with the inclusion of an expanding pupil to

account for the effect of using an extended FOV. The choice of altitude resolu-

tion was calculated by choosing correlations between the response functions which

match the correlation of the response functions in a normal SLODAR system.

AWF-WFS used on the SST in La Palma is described and the results from using the
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So-SLODAR technique on the WF-WFS data are shown. The turbulence profiles

shown are the first measured using this technique and show similar structure to

previous turbulence observed at the SST using the S-DIMM+.

So-SLODAR is still in early development and still has a number of features which

could be implemented with it. I mention some of the work that could be done

in the future in order to upgrade the system, from upgrading the methods used

to estimate the centroids to implementing methods for measuring the temporal

statistics of the atmosphere.
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Chapter 7

Conclusions

The aim of this work was to measure the turbulence profile of day-time conditions

on La Palma and develop centroiding techniques for correlation WFSs. Day-time

turbulence profiles are required for measuring the turbulence for solar MCAO sys-

tems and potentially estimation of conditions for night-time astronomy. I developed

a method for estimating the turbulence profile using a WF-WFS, So-SLODAR,

which can be used to measure the turbulence profile during the day and utilise

the advantages of guide source availability on the solar surface. In order to meas-

ure turbulence profiles accurate centroids are required for multiple field directions

in a WFS. This motivated the development of centroiding techniques for exten-

ded objects, both optimising centroiding parameters for estimating the location

of a cross-correlation peak and developing a technique to increase the accuracy of

centroids for images with large relative shifts.

7.1 Optimal Center of Mass on Cross-Correlation

Images

When estimating the centroid from a cross-correlation image the optimal choice

of centroiding parameters is not known. There are centroiding methods which

have no free parameters, such as the 2nd order polynomial fit, and so don’t suffer
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7.2. Supersized Reference Images for Correlating Wavefront Sensors

from an optimisation problem. However, these methods don’t measure the centroid

accurately in all conditions.

By using multiple reference images to compare centroid estimates for a sub-aperture

and using the spread of those estimates as a measure of the error on the centroid

it is possible to estimate the performance of a given set of centroiding parameters.

Using this estimator of the performance of a set of centroiding parameters it is then

possible to explore a centroiders parameter space and to choose the optimal set of

parameters. The computational effort required to perform this task is kept to a

minimum through the use of the same cross-correlation images for testing each set

of centroid parameters. This allows us to use one set of cross-correlation images for

each different reference image, rather than generate new cross-correlation images

for each set of centroiding parameters.

This method was demonstrated for a center of mass algorithm which utilised a

window and threshold to minimise the influence of noise in the centroid calcula-

tion. However, this is not the only centroiding technique to which this method of

error estimation can be applied. It would be of interest to apply this method to

other centroiding techniques and estimate their optimal centroiding parameters for

given scenarios. Also, in the era of E-ELTs many LGS WFSs observe extremely

elongated laser spots. This technique can be applied to each sub-aperture in a

WFS individually, allowing for different centroid parameters for each sub-aperture,

each of which is optimised for the particular elongation seen in that sub-aperture.

7.2 Supersized Reference Images for Correlating

Wavefront Sensors

For WFSs operating in open-loop systems non-common image noise can become

the dominant source of error in high SNR regimes. This can be negated through

the use of a larger reference image which contains the structure surrounding the

mean FOV position of a sub-aperture window.
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7.3. Solar SLODAR

Creating a supersized reference image which contains structure around the mean

position of the sub-aperture can be done using a time series of WFS images. The

motion of the field within the sub-aperture in each frame can be measured us-

ing centroiding techniques for extended objects and the set of images can then be

aligned and averaged. The size of the image created will be larger than the indi-

vidual sub-aperture images, as the movement of the sub-aperture FOV allows the

sub-aperture to sample a larger field over time than it observes in any given frame.

Averaging multiple sub-aperture images also has the effect of reducing noise on the

generated image.

This method may need to be applied multiple times in order to generate accurate

centroid estimates for sub-apertures with large relative shifts. If this is the case a

least squares centroiding method can be applied to a set of sub-aperture images to

estimate the initial image shifts for a set of sub-aperture images. This is a compu-

tationally heavy centroiding technique, however it is only required to generate an

initial set of centroids, for creating the initial supersized reference image.

The generated supersized reference image can then be used for centroiding where

the shifts of the sub-apertures is relatively large. This increases the regime in

which a correlating WFS can accurately measure centroids, which increases their

viability for use in open-loop systems where the expected magnitude of centroids is

large. The technique relies on a least squares centroid estimate providing accurate

centroids in order to estimate initial shifts. For very large shifts between sub-

aperture images if the least squares method cannot estimate centroids the technique

will be unable to estimate shifts and fail to generate a supersized reference image.

7.3 Solar SLODAR

The turbulence profile at night can be well characterised by a number of different

instruments, including SLODAR and Stereo-SCIDAR. However, turbulence profile

during the day-time is less known, with fewer instruments available (SHABAR and
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S-DIMM+). I have described a method for estimating the turbulence profile during

the day, named So-SLODAR, which uses a WF-WFS observing solar granulation

to estimate the day-time turbulence profile. This differs from the existing centroid

based day-time turbulence profiling method, S-DIMM+, by using a modified ver-

sion of the SLODAR analysis. The modifications are required as the solar disk is

a continuous extended source.

Using an extended source for centroiding means the pupil size is not fixed with

respect to altitude. Instead the pupil appears to expand as altitude increases, as

the different field directions diverge. This effect is taken into account by modifying

the pupil function in the SLODAR analysis to also be a function of altitude.

The availability of guide sources is much greater for solar observations than night-

time observations. This lead to further development of the SLODAR technique to

allow for multiple field separations to be used to measure the turbulence profile.

This adds an extra dimension to the response functions and measured covariances

from the So-SLODAR, which changes the choice of altitude resolution. A new

method of estimating the altitude resolution for So-SLODAR is shown, which util-

ises the correlation between response functions to choose a set of altitude bins

which are sufficiently orthogonal.

The day-time profiles measured are important for a number of different applica-

tions. The most obvious is for the EST, which will employ a MCAO system (Col-

lados et al., 2013). The day-time turbulence profiles are also of potential interest

to night-time astronomy for estimating the expected distribution of turbulence,

however, this comparison is yet to be conducted.

125



Bibliography

D. S. Acton and R. C. Smithson. Solar imaging with a segmented adaptive mirror.

Applied Optics, 31(16):3161–3169, jun 1992.

A. Agabi, J. Borgnino, F. Martin, A. Tokovinin, and A. Ziad. G.S.M: A Grating

Scale Monitor for atmospheric turbulence measurements. II. First measurements

of the wavefront outer scale at the O.C.A. Astronomy and Astrophysics Suppli-

ment Series, 109:557–562, 1995.

R. Avila, J. Vernin, and E. Masciadri. Whole atmospheric-turbulence profiling with

generalized scidar. Applied Optics, 36:7898–7905, 1997.

H. W. Babcock. The Possibility of Compensating Astronomical Seeing. Publications

of the Astronomical Society of the Pacific, 65(386):229–236, 1953.

J. Bahng and M. Schwarzschild. Lifetime of Solar Granules. Astrophysical Journal,

134:312 – 322, 1961.

A. G. Basden, R. M. Myers, and E. Gendron. Wavefront sensing with a brightest

pixel selection algorithm. Monthly Notices of the Royal Astronomical Society,

419(2):1628–1636, 2012.

A. G. Basden, F. Chemla, N. Dipper, E. Gendron, D. Henry, T. Morris, G. Rousset,

and F. Vidal. Real-time correlation reference update for astronomical adaptive

optics. Monthly Notices of the Royal Astronomical Society, 439(1):968–976, 2014.

126



Bibliography

J. M. Beckers. Increasing the Size of the Isoplanatic Patch with Multiconjugate

Adaptive Optics. In M.-H. Ulrich, editor, European Southern Observatory Con-

ference and Workshop Proceedings, volume 30, page 693, 1988.

J. M. Beckers. A seeing monitor for solar and other extended object observations.

Experimental Astronomy, pages 1–20, 2001.

J. M. Beckers, E. Leon, J. Mason, and L. Wilkins. Solar Scintillometry: Calibration

of Signals and its Use for Seeing Measurements. Solar Physics, 176(1):23–36,

1997.

R. Benedict, J. B. Breckinridge, and D. L. Fried. Introduction. Journal of the

Optical Society of America A, 11(1):257, jan 1994.

T. Butterley, R. W. Wilson, and M. Sarazin. Determination of the profile of atmo-

spheric optical turbulence strength from SLODAR data. Monthly Notics of the

Royal Astronomical Society, 369(2):835–845, jun 2006.

M. Carlsson, V. Hansteen, L. R. van der Voort, A. Fossum, E. Marthinussen, and

M. Löfdahl. Swedish Solar Telescope Online Gallery. http://www.isf.astro.

su.se/gallery/, 2003. Online; accessed 12-February-2015.

M. Collados, F. Bettonvil, L. Cavaller, I. Ermolli, B. Gelly, A. Pérez, H. Socas-

Navarro, D. Soltau, R. Volkmer, and the EST team. European Solar Telescope:

Progress status. Astronomische Nachrichten, 331(6):615–619, jun 2010.

M. Collados, F. Bettonvil, L. Cavaller, I. Ermolli, B. Gelly, A. Pérez, H. Socas-

Navarro, D. Soltau, and R. Volkmer. The European Solar Telescope. Journal of

the Italian Astronomical Society, 84:379–390, 2013.

R. Conan, O. Lardière, G. Herriot, C. Bradley, and K. Jackson. Experimental

assessment of the matched filter for laser guide star wavefront sensing. Applied

Optics, 48:1198, feb 2009.

127

http://www.isf.astro.su.se/gallery/
http://www.isf.astro.su.se/gallery/


Bibliography

C. E. Coulman, J. Vernin, Y. Coqueugniot, and J. L. Caccia. Outer scale of

turbulence appropriate to modeling refractive-index structure profiles. Applied

Optics, 27(1):155–160, 1988.

J.-G. Cuby, S. Morris, I. Bryson, M. Lehnert, C. Evans, T. Fusco, P. Jagourel,

R. Myers, G. Rousset, H. Schnetler, J.-P. Amans, J. Allington-Smith, F. As-

semat, S. Beard, F. Chemla, R. Content, N. Dipper, M. Ferrari, E. Gendron, J.-

L. Gimenez, P. Hastings, Z. Hubert, E. Hugot, P. Laporte, B. Leroux, F. Madec,

B. Neichel, T. Morris, E. Prieto, M. Swinbank, G. Talbot, W. Taylor, F. Vidal,

S. Vivès, P. Vola, and M. Wells. Eagle: an moao fed multi-ifu in the nir on the

e-elt. In Proceedings of SPIE, volume 7014, pages 70141K–70141K–11, 2008.

J.-G. Cuby, S. Morris, T. Fusco, M. Lehnert, P. Parr-Burman, G. Rousset, J.-

P. Amans, S. Beard, I. Bryson, M. Cohen, N. Dipper, C. Evans, M. Ferrari,

E. Gendron, J.-L. Gimenez, D. Gratadour, P. Hastings, Z. Hubert, E. Hugot,

P. Jagourel, P. Laporte, V. Lebrun, D. Le Mignant, F. Madec, R. Myers,

B. Neichel, T. Morris, C. Robert, H. Schnetler, M. Swinbank, G. Talbot,

W. Taylor, F. Vidal, S. Vives, P. Vola, N. Welikala, and M. Wells. EAGLE:

a MOAO fed multi-IFU NIR workhorse for E-ELT. Proceedings of SPIE, 7735

(Ground-based and Airborne Instrumentation for Astronomy III):77352D–1 –

77352D–15, 2010.

W. Dali Ali, A. Ziad, A. Berdja, J. Maire, J. Borgnino, M. Sarazin, G. Lom-

bardi, J. Navarrete, H. Vazquez Ramio, M. Reyes, J. M. Delgado, J. J. Fuensal-

ida, A. Tokovinin, and E. Bustos. Multi-instrument measurement campaign at

Paranal in 2007. Characterization of the outer scale and the seeing of the surface

layer. Astronomy and Astrophysics, 524:A73, Dec. 2010.

E. Diolaiti. MAORY : A Multi-conjugate Adaptive Optics RelaY for the E-ELT.

The Messenger, (June):28–29, 2010.

D. F. Elmore, T. Rimmele, R. Casini, S. Hegwer, J. Kuhn, H. Lin, J. P. McMullin,

K. Reardon, W. Schmidt, A. Tritschler, and F. Wöger. The Daniel K. Inouye

128



Bibliography

Solar Telescope first light instruments and critical science plan. In S. K. Ramsay,

I. S. McLean, and H. Takami, editors, Proceedings of SPIE, volume 9147, page

914707, jul 2014.

D. E. R. En, G. Zhao, X. Zhang, J. Dou, R. Chen, and Y. Zhu. Multiple-Aperture-

Based Solar Seeing Profiler. IAU General Assembly, 127(955):870–879, 2015.

D. L. Fried. Optical Resolution Through a Randomly Inhomogeneous Medium for

Very Long and Very Short Exposures. Journal of the Optical Society of Amerrica,

56(10):1372, 1966.

D. L. Fried and G. E. Mevers. Evaluation of r0 for Propagation Down Through

the Atmosphere. Applied Optics, 13(11):2620, 1974.

M. Frigo. A fast Fourier transform compiler. ACM SIGPLAN Notices, 34:169–180,

1999.

M. Frigo and S. G. Johnson. the Design and Implementation of FFTW3. Southeast

Conference IEEE, 2(May 2001):234–241, 2001.

T. Fusco and A. Costille. Impact of Cn2 profile structure on wide-field AO per-

formance. Proceedings of SPIE, 7736:77360J–77360J–10, 2010.

T. Fusco, G. Rousset, J.-F. Sauvage, C. Petit, J.-L. Beuzit, K. Dohlen, D. Mouillet,

J. Charton, M. Nicolle, M. Kasper, P. Baudoz, and P. Puget. High-order adaptive

optics requirements for direct detection of extrasolar planets: Application to the

SPHERE instrument. Optics Express, 14(17):7515–34, 2006.

G. Galilei. Dialogo sopra i due massimi sistemi del mondo. 1632.

E. Gendron, F. Vidal, M. Brangier, T. Morris, Z. Hubert, a. Basden, G. Rousset,

R. Myers, F. Chemla, a. Longmore, T. Butterley, N. Dipper, C. Dunlop, D. Geng,

D. Gratadour, D. Henry, P. Laporte, N. Looker, D. Perret, a. Sevin, G. Talbot,

and E. Younger. MOAO first on-sky demonstration with CANARY. Astronomy

and Astrophysics, 529:L2, 2011.

129



Bibliography

L. Gilles and B. Ellerbroek. Shack-Hartmann wavefront sensing with elongated

sodium laser beacons: centroiding versus matched filtering. Applied Optics, 45:

6568–6576, sep 2006.

J. Hardy, J. Lefebvre, and C. Koliopoulos. Real-time atmospheric compensation.

Journal of the Optical Society of America, 67(3):360, 1977.

J. W. Hardy. Solar imaging experiment. Final Report, Feb. 1979 - Jun. 1980 Itek

Corp., Lexington, MA. Opt. Syst. Div., 1980.

J. W. Hardy. Adaptive optics for astronomical telescopes. Oxford University Press,

1998.

S. B. Howell. Handbook of CCD astronomy, volume 5. Cambridge University Press,

2006.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science &

Engineering, 9(3):90–95, 2007.

H. Karttunen, P. Kröger, H. Oja, M. Poutanen, and K. J. Donner. Fundamental

astronomy. Springer Science & Business Media, 2007.

M. E. Kasper, J.-L. Beuzit, C. Verinaud, N. Yaitskova, P. Baudoz, A. Boccaletti,

R. G. Gratton, N. Hubin, F. Kerber, R. Roelfsema, H. M. Schmid, N. A. Thatte,

K. Dohlen, M. Feldt, L. Venema, and S. Wolf. Epics: the exoplanet imager for

the e-elt. In Proceedings of SPIE, volume 7015, pages 70151S–70151S–12, 2008.

C. U. Keller, C. Plymate, S. M. Ammons, N. S. Observatory, and N. C. Ave. Low-

cost solar adaptive optics in the infrared. In Proceedings of SPIE, volume 4853,

pages 351–359, 2003.

V. Klyatskin and V. I. Tatarskii. Statistical Therory of light propagation in a

turbulent medium. Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, 15(10):

1433–1455, 1972.

130



Bibliography

A. N. Kolmogorov. The local structure of turbulence in incompressible viscous

fluid for very large Reynolds numberst. Doklady Akademii Nauk Sssr, 30(1890):

301–305, 1941.

V. Kornilov, A. A. Tokovinin, O. Vozyakova, A. Zaitsev, N. Shatsky, S. F. Potanin,

and M. S. Sarazin. MASS: a monitor of the vertical turbulence distribution. In

P. L. Wizinowich and D. Bonaccini, editors, Proceedings of SPIE, volume 4839,

pages 837–845, feb 2003.

M. Langlois, G. Moretto, and K. Richards. Solar multiconjugate adaptive optics

at the Dunn Solar Telescope: preliminary results. In Proceeding of SPIE, pages

59–66, 2004.

O. Lardière, R. Conan, C. Bradley, K. Jackson, and P. Hampton. Radial threshold-

ing to mitigate laser guide star aberrations on centre-of-gravity-based Shack-

Hartmann wavefront sensors. Monthly Notices of the Royal Astronomical Society,

398(3):1461–1467, 2009.

M. G. Löfdahl. Evaluation of image-shift measurement algorithms for solar Shack-

Hartmann wavefront sensors. Astronomy and Astrophysics, 524:A90, Nov. 2010.

M. G. Löfdahl and G. B. Scharmer. Sources of straylight in the post-focus imaging

instrumentation of the Swedish 1-m Solar Telescope. Astronony and Astrophysics,

537:A80, 2012.

M. L. Louarn, N. Hubin, M. Sarazin, and A. Tokovinin. New challenges for Adaptive

Optics: Extremely Large Telescopes. Monthly Notices of the Royal Astronomical

Society, 11(February):11, 2000.

O. V. D. Lühe. A study of a correlation tracking method to improve imaging

quality of ground-based solar telescopes. Astronomy and Astrophysics, 1983.

V. P. Lukin, E. V. Nosov, and B. V. Fortes. The Efficient Outer Scale of Atmo-

spheric Turbulence. In European Southern Observatory Conference and Work-

shop Proceedings, volume 56, page 619, 1999.

131



Bibliography

E. Masciadri, J. Stoesz, S. Hagelin, and F. Lascaux. Optical turbulence vertical

distribution with standard and high resolution at Mt Graham. Monthly Notices

of the Royal Astronomical Society, 404(1):144–158, jan 2010.

A. McPherson, J. Spyromilio, M. Kissler-Patig, S. Ramsay, E. Brunetto, P. Di-

erickx, and M. Cassali. E-ELT update of project and effect of change to 39m

design. In Proceedings of SPIE, volume 8444, page 84441F, 2012.

V. Michau, G. Rousset, and J. Fontanella. Wavefront Sensing of Extended sources.

In Real Time Post Facto Solar Image Correction, Proceedings of the 13th Na-

tional Solar Observatory/Sacramento Peak Summer Workshop, pages 124—-8,

1993.

V. Michau, J.-M. Conan, T. Fusco, M. Nicolle, C. Robert, M.-T. Velluet, and

E. Piganeau. Shack-Hartmann wavefront sensing with extended sources. In

Proceedings of SPIE, volume 6303, pages 63030B–63030B–11, 2006.

N. Miura, a. Oh-ishi, S. Shionoya, K. Watanabe, S. Kuwamura, N. Baba, S. Ueno,

and K. Ichimoto. Solar scintillation detection and ranging (SCIDAR) technique

for measuring turbulent-layer heights. Monthly Notices of the Royal Astronomical

Society, 434(2):1205–1219, 2013.

B. Neichel, F. Rigaut, F. Vidal, M. A. van Dam, V. Garrel, E. R. Carrasco,

P. Pessev, C. Winge, M. Boccas, C. D’Orgeville, G. Arriagada, A. Serio, V. Fes-

quet, W. N. Rambold, J. Lührs, C. Moreno, G. Gausachs, R. L. Galvez,

V. Montes, T. B. Vucina, E. Marin, C. Urrutia, A. Lopez, S. J. Diggs,

C. Marchant, A. W. Ebbers, C. Trujillo, M. Bec, G. Trancho, P. McGregor, P. J.

Young, F. Colazo, and M. L. Edwards. Gemini multiconjugate adaptive optics

system review-II. Commissioning, operation and overall performance. Monthly

Notices of the Royal Astronomical Society, 440(2):1002–1019, 2014.

I. Newton. Opticks: Or a Treatise of the Reflections, Refractions & Colours of

Light. Dover Publications, 1730.

132



Bibliography

L. J. November and G. W. Simon. Precise Proper Motion Measurement of Solar

Granulation. Astrophysical Journal, 333(1):427–442, oct 1988.

J. Osborn, R. W. Wilson, T. Butterley, R. Avila, V. S. Dhillon, T. J. Morris, and

H. W. Shepherd. Stereo Scidar : Profiling Atmospheric Optical Turbulence With

Improved Altitude Resolution. In Third AO4ELT Conference - Adaptive Optics

for Extremely Large Telescopes, May 2013.

B. Pan, G.-q. Yang, and Y. Liu. Study on optimization threshold of centroid

algorithm. Optics and Precision Engineering, 16, 2008.

T. Pfrommer and P. Hickson. High resolution mesospheric sodium properties for

adaptive optics applications. Astronomy and Astrophysics, 565:A102, 2014.

R. Ragazzoni. Pupil plane wavefront sensing with an oscillating prism. Journal of

Modern Optics, 43(2):289–293, feb 1996.

L. Rayleigh. Xii. on the manufacture and theory of diffraction-gratings. Philosoph-

ical Magazine Series 4, 47(310):81–93, 1874.

O. Reynolds. On the dynamical theory of incompressible viscous fluids and the

determination of the criterion. In Proceedings of the Royal Society London,

volume 56, pages 40–45, 1894.

F. J. Rigaut, B. L. Ellerbroek, and R. Flicker. Principles, Limitations and Per-

formance of Multi-Conjugate Adaptive Optics. In P. L. Wizinowich, editor,

Proceedings of SPIE, volume 4007, pages 1022–1031, jul 2000.

T. R. Rimmele. Recent Advances in Solar Adaptive Optics. Proceedings of SPIE,

5490:34–46, oct 2004.

T. R. Rimmele and J. Marino. Solar adaptive optics. Living Reviews of Solar

Physics, 8, 2011.

T. R. Rimmele and R. R. Radick. Solar adaptive optics at the National Solar

Observatory. Proceedings of SPIE, 3353:72–81, 1998a.

133



Bibliography

T. R. Rimmele and R. R. Radick. Solar Adaptive Optics at the National Solar

Observatory. In Proceedings of SPIE, volume 3353, pages 72–81, 1998b.

T. R. Rimmele, F. Woeger, J. Marino, K. Richards, S. Hegwer, T. Berkefeld,

D. Soltau, D. Schmidt, and T. Waldmann. Solar multi-conjugate adaptive optics

at the Dunn Solar Telescope. Proceedings of SPIE, 7736:773631–773631–7, jul

2010.

T. P. Robitaille, E. J. Tollerud, P. Greenfield, M. Droettboom, E. Bray, T. Aldcroft,

M. Davis, A. Ginsburg, A. M. Price-Whelan, W. E. Kerzendorf, A. Conley,

N. Crighton, K. Barbary, D. Muna, H. Ferguson, F. Grollier, M. M. Parikh,

P. H. Nair, H. M. Günther, C. Deil, J. Woillez, S. Conseil, R. Kramer, J. E. H.

Turner, L. Singer, R. Fox, B. A. Weaver, V. Zabalza, Z. I. Edwards, K. Azalee

Bostroem, D. J. Burke, A. R. Casey, S. M. Crawford, N. Dencheva, J. Ely,

T. Jenness, K. Labrie, P. L. Lim, F. Pierfederici, A. Pontzen, A. Ptak, B. Refsdal,

M. Servillat, and O. Streicher. Astropy: A community Python package for

astronomy. Astronomy and Astrophysics, 558:A33, 2013.

A. Rocca, F. Roddier, and J. Vernin. Detection of atmospheric turbulent layers

by spatiotemporal and spatioangular correlation measurements of stellar-light

scintillation. Journal of the Optical Society of America, 64(7):1000, 1974.

F. Roddier. The Effects of Atmospheric Turbulence in Optical Astronomy. Progress

in Optics, 19:281–376, 1981.

F. Roddier. Adaptive optics in astronomy. Cambridge university press, 1999.

F. Roddier and C. Roddier. Curvature Sensing and Compensation: A New Concept

in Adaptive Optics. In Very Large Telescopes their Instrumentation, ESO Con-

ference Workshop Proceedings, volume 1, pages 667–973, 1988.

G. Rousset, D. Gratadour, E. Gendron, T. Buey, R. Myers, T. Morris, A. Basden,

G. Talbot, D. Bonaccini Calia, E. Marchetti, and T. Pfrommer. Proposal for a

134



Bibliography

field experiment of elongated Na LGS wave-front sensing in the perspective of

the E-ELT. Proceedings of SPIE, 9148(0):91483M, 2014.

D. Saint-Jacques. Astronomical Seeing in Space and Time. PhD thesis, University

of Cambridge, 1998.

M. Sarazin and F. Roddier. The ESO differential image motion monitor. Astronomy

and Astrophysics, 227:294–300, 1990.

C. D. Saunter. Quantifying subpixel accuracy: an experimental method for meas-

uring accuracy in image-correlation-based, single-particle tracking. Biophysical

Journal, 98(8):1566–70, Apr. 2010.

G. B. Scharmer and T. I. M. van Werkhoven. S-DIMM+ height characterization of

day-time seeing using solar granulation. Astronomy and Astrophysics, 513:A25,

apr 2010.

G. B. Scharmer, M. Shand, M. G. Löfdahl, P. M. Dettori, and W. Wei. A Work-

station Based Solar / Stellar Adaptive Optics System. In Proceedings of SPIE,

volume 4007, pages 239–250, 2000.

G. B. Scharmer, P. Dettori, M. G. Löfdahl, and M. Shand. Adaptive optics system

for the new Swedish solar telescope. In Proceedings of SPIE, volume 4853, pages

370–380, 2002.

G. B. Scharmer, K. Bjelksjö, T. Korhonen, B. Lindberg, and B. Petterson. The

1-meter Swedish solar telescope. In Proceedings of SPIE, volume 4853, pages

341–350, 2003.

G. B. Scharmer, D. Kiselman, M. G. Löfdahl, and L. H. M. Rouppe van der Voort.

First Results from the Swedish 1-m Solar Telescope. In J. Trujillo-Bueno and

J. Sanchez Almeida, editors, Solar Polarization, volume 307 of Astronomical

Society of the Pacific Conference Series, page 3, 2003.

135



Bibliography

D. Schmidt, N. Gorceix, X. Zhang, J. Marino, R. Coulter, S. Shumko, P. Goode,

T. Rimmele, and T. Berkefeld. The multi-conjugate adaptive optics system of

the New Solar Telescope at Big Bear Solar Observatory. In Proceedings of SPIE,

volume 9148, page 91482U, 2014.

J. D. Schmidt. Numerical simulation of optical wave propagation with examples

in matlab. SPIE Bellingham, WA, 2010.

R. V. Shack and B. Platt. Production and use of a lenticular Hartmann screen.

Journal of the Optical Society of America, 61:656, 1971.

H. W. Shepherd, J. Osborn, R. W.Wilson, T. Butterley, R. Avila, V. S. Dhillon, and

T. J. Morris. Stereo-SCIDAR: optical turbulence profiling with high sensitivity

using a modified SCIDAR instrument. Monthly Notices of the Royal Astronomical

Society, 437(4):3568–3577, nov 2014.

D. Soltau, T. Berkefeld, D. Schmidt, and O. von der Lühe. Solar adaptive optics at

the Observatorio del Teide, Tenerife. In A. Comeron, E. I. Kassianov, K. Schäfer,

K. Stein, and J. D. Gonglewski, editors, Proceedings of SPIE, volume 8890, pages

88901D–88901D–10, oct 2013.

R. Stone. A comparison of digital centering algorithms. Astronomical Journal,

1989.

G. I. Taylor. The Spectrum of Turbulence. In Proceedings of the Royal Society of

London A: Mathematical, Physical and Engineering Sciences, volume 164, pages

476–490, 1938.

S. Thomas, O. Lardiere, D. Gavel, and R. Conan. Study of centroiding algorithms

to optimize Shack-Hartmann WFS in the context of ELTs. 1st AO4ELT Con-

ference - Adaptive Optics for Extremely Large Telescopes, 05004:05004, 2010.

S. J. Thomas, S. Adkins, D. Gavel, T. Fusco, and V. Michau. Study of optimal

wavefront sensing with elongated laser guide stars. Monthly Notices of the Royal

Astronomical Society, 387:173–187, 2008a.

136



Bibliography

S. J. Thomas, S. Adkins, D. Gavel, T. Fusco, and V. Michau. Study of optimal

wavefront sensing with elongated laser guide stars. Monthly Notices of the Royal

Astronomical Society, 387(1):173–187, 2008b.

A. Tokovinin. From differential image motion to seeing. Publications of the Astro-

nomical Society of the Pacific, 114(800):1156–1166, 2002.

A. Tokovinin and V. Kornilov. Accurate seeing measurements with MASS and

DIMM. Monthly Notices of the Royal Astronomical Society, 381(3):1179–1189,

2007.

J. T. Trauger, G. E. Ballester, C. J. Burrows, S. Casertano, J. T. Clarke, D. Crisp,

R. W. Evans, I. Gallagher, John S., R. E. Griffiths, J. J. Hester, J. G. Hoessel,

J. A. Holtzman, J. E. Krist, J. R. Mould, P. A. Scowen, K. R. Stapelfeldt, A. M.

Watson, and J. A. Westphal. The on-orbit performance of WFPC2. Astrophysical

Journal, 435(9):L3, nov 1994.

S. Van der Walt, S. C. Colbert, and V. Gaël. The NumPy array: a structure

for efficient numerical computation. Computing in Science and Engineering, 13:

22–30, 2011.

F. Vidal, E. Gendron, M. Brangier, A. Sevin, G. Rousset, and Z. Hubert. Tomo-

graphy reconstruction using the Learn and Apply algorithm. In 1st AO4ELT

Conference - Adaptive Optics for Extremely Large Telescopes, volume 07001,

page 07001, Les Ulis, France, feb 2010. EDP Sciences.

N. Vinnichenko. Turbulence in the free atmosphere. Springer Science & Business

Media, 2013.

T. A. Waldmann, T. Berkefeld, and O. von der Lühe. Measuring turbulence height

profiles using extended sources and a wide-field hartmann-shack wavefront-

sensor. In Adaptive Optics: Analysis and Methods/Computational Optical Sens-

ing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical

Meetings on CD-ROM, page PMA3. Optical Society of America, 2007.

137



Bibliography

T. a. Waldmann, T. Berkefeld, and O. von der Lühe II. Turbulence profiling using

wide field of view Hartmann-Shack wavefront sensors. In Proceedings of SPIE,

volume 7015, pages 70155O–70155O–12, 2008.

R. W. Wilson. SLODAR: measuring optical turbulence altitude with a Shack-

Hartmann wavefront sensor. Monthly Notices of the Royal Astronomical Society,

337(1):103–108, nov 2002.

R. W. Wilson and C. R. Jenkins. Adaptive optics for astronomy: theoretical

performance and limitations. Monthly Notices of the Royal Astronomical Society,

278(1):39–61, jan 1996.

Q. Yang, J. Zhang, K. Nozato, K. Saito, D. R. Williams, A. Roorda, and E. a. Rossi.

Closed-loop optical stabilization and digital image registration in adaptive optics

scanning light ophthalmoscopy. Biomedical Optical Express, 5(9):3174–91, 2014.

A. T. Young. Seeing: Its cause and cure. Astrophysical Journal, 189:587–604, 1974.

A. Ziad, R. Conan, A. Tokovinin, F. Martin, and J. Borgnino. From the grating

scale monitor to the generalized seeing monitor. Applied Optics, 39(30):5415–

5425, Oct 2000.

138



Colophon

This thesis was typeset with LATEX2ε. It was created using the memoir package,

maintained by Lars Madsen, with the madsen chapter style. The font used is Latin

Modern, derived from fonts designed by Donald E. Kunith.


	Declaration
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Adaptive Optics Overview
	Brief History of Astronomy
	Adaptive Optics
	Solar Adaptive Optics

	Profiling Atmospheric Turbulence
	Thesis Motivation and Synopsis

	Shack-Hartmann Wavefront Sensing Theory
	Shack-Hartmann Wavefront Sensor
	Laser Guide Star Elongation
	Solar Granulation

	Centroiding Extended Objects
	Cross Correlation Image Generation
	Square Difference Function
	Covariance Function
	Absolute Difference Function

	Centroiding Cross-Correlation Images
	Center of Mass
	Windowed, Thresholded Center of Mass
	Two-Dimensional Quadratic Interpolation


	Noise in Cross-Correlation Images
	Noise from correlation images
	Non-Common Image Noise

	Summary

	Atmospheric Turbulence and Turbulence Profiling Theory
	Atmospheric Turbulence
	Kolmogorov Turbulence
	Von-Kàrmàn Turbulence

	Imaging Through the Atmosphere
	Fried's Parameter

	Seeing Measurements
	Differential Image Motion Monitor

	Slope Detection and Ranging
	Response Functions

	Solar-Differential Image Motion Monitor +
	Expanding Pupil Problem

	Other Atmospheric Profiling Methods
	Summary

	Optimised Center of Mass for Correlation Wavefront Sensing
	Simulation
	Estimating Error on Centroid Measurements
	Optimised Windowed, Thresholded Center of Mass
	Results
	Optimal Parameters for Varying SNR Levels
	Comparison to a 2nd Order Polynomial Fit
	Sources of Error in the Parameter Estimation

	Estimating Center of Mass Parameters on Laser Guide Star Wavefront Sensors
	Comparison of Different Elongations

	Future Work
	Summary

	Supersized Reference Images for Correlating Wavefront Sensors
	Concept
	Least Squares Centroider for Correlating Wavefront Sensors
	Weighted Least Squares Centroider

	Reference Image Generation
	Iteratively Generating Supersized Reference Images
	Comparison of Reference Images

	Results on Solar Granules
	Implementation into an Adaptive Optics System

	Application to Laser Guide Stars
	Laser Guide Star Truncation
	Results on Laser Guide Stars

	Future Work
	Summary

	Solar SLODAR
	Design of the Wide-Field Wavefront Sensor
	Modifying SLODAR for use in Solar Observations
	Expanding Pupil
	Multiple Guide Sources

	Theoretical Response Functions
	Orthogonality of Response Functions
	S-DIMM+ Response Functions
	SLODAR Response Functions
	So-SLODAR Response Functions
	Altitude Resolution of So-SLODAR

	So-SLODAR Data Reduction
	Measured Turbulence Profiles
	Example Profiles

	Future Work
	Summary

	Conclusions
	Optimal Center of Mass on Cross-Correlation Images
	Supersized Reference Images for Correlating Wavefront Sensors
	Solar SLODAR

	Bibliography
	Colophon

