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ABSTRACT

Carbon Capture and Storage (CCS) is considered as an important potential solution
for CO2 emission reduction. Yet, the CO2 capture process is highly costly. Thus,
combining Enhanced Gas Recovery (EGR) with CCS could potentially offset the
costs via additional production of natural gas. The objective of this P.hD. is to
build a numerical model to simulate CO2-EGR in partially-depleted gas reservoirs;
in particular Centrica Plc’s North Morecame gas field.

Our numerical model is based on the so-called Method of Lines (MOL) approach.
MOL requires selecting a set of persistent Primary Dependent Variables (PDVs) to
solve for. In this case, we chose to solve for pressure, temperature and component
mass fractions. Additionally, MOL requires recasting of the governing equations in
terms of the PDVs, which often requires the evaluation of partial derivative terms of
the flow properties with respect to the PDVs. In this work, a method of analytical
evaluation of these partial derivative terms is introduced. Furthermore, in a new
approach, the mutual solubility correlations for mixtures of CO2-H2O and CH4-
H2O, available in the literature, are joined together using straight lines as a ternary
diagram, to form a ternary CO2-CH4-H2O equilibrium model; the equilibrium-model’s
predictions matched well with the available experimental solubility data.

1D and 2D numerical simulations of CO2-EGR were carried out. Overall, the 1D
results were found to match very well with an existing analytical solution, predicting
accumulation of a CH4 bank ahead of the CO2 plume and accurately locating the
associated shock fronts while considering the partial miscibility of both CO2 and CH4

in H2O. Taking into account the simulated incremental gas recovery potential, global
wellhead CH4 prices, offshore drilling costs, CO2 supply cost and UK’s Carbon Price
Floor (CPF), it was concluded that, based on the current gas prices, recovery of 0.7%
of the Gas Initially In Place (GIIP), equivalent to 0.22 billion standard cubic meters
(BSCM), breaks even. Assuming an average CO2 supply cost of 50 US$/tonne, by
2020, CO2-EGR in the North Morecambe field can generate a revenue of over 13
million US$. However, if the future CO2/CH4 markets involve payments to operators
willing to store the CO2, an upwards shift in CH4 prices, and/or a reduction in
CO2 supply cost due to advancements in capture technologies, etc., the economics of
CO2-EGR will improve dramatically, leading to an economically viable incremental
EGR potential of 5% of the GIIP, equivalent to over 2 BSCM of CH4 volume in this
field.
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1
INTRODUCTION

1.1 problem statement

Atmospheric concentrations of greenhouse gases, such as carbon dioxide (CO2) and

methane (CH4), have increased to the point that significant adverse climate changes

have been attributed to anthropogenic activity (Bryant, 1997, Jepma & Munasinghe,

1998). Of all greenhouse gases, CO2 is said to be responsible for 64% of the global

warming, making it the main target for mitigation of adverse greenhouse effect

(Bryant, 1997). Atmospheric concentrations of CO2 have risen from pre-industrial

levels of 280 to 370 ppm (Bryant, 1997), primarily as a consequence of fossil fuel

combustion for energy production. Fossil fuels, which today provide about 85% of the

world’s energy (David & Herzog, 2000), are likely to remain a major component of

the global energy supply for a foreseeable future, due to their availability, competitive

cost, storage safety and ease of transport (Bajura, 2001, Jepma & Munasinghe, 1998).

Thus, the major challenge in mitigating anthropogenic effects on climate change is

reducing CO2 emissions within the framework of the Kyoto Protocol.

1.2 potential solution

Carbon Capture and Storage (CCS) is the injection and storage of CO2 in geological

formations and is considered as an important potential solution for CO2 emission

reduction. Although oceanic storage provides much higher storage capacity, there

remain uncertainties with regard to retention time and the associated environmental

impacts (Metz et al., 2005). Geological storage is therefore deemed more reliable
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and realistic. The, main targets for storage are coalbeds, abandoned mines, saline

aquifers and depleted oil/gas reservoirs.

Saline aquifers have the advantage of being ubiquitous across the world (Ben-

tham & Kirby, 2005). Hydrocarbon reservoirs on the other hand, have advantages

associated with better levels of characterization due to available production history

data. Additionally, reduced uncertainty related to cap rock integrity is demonstrated

through containment of hydrocarbon products originally deposited millions of years

ago (Loizzo et al., 2010). Depleted gas reservoirs have the added benefit of having a

much more compressible reservoir fluid (methane+water as opposed to oil+water)

along with significantly lower abandonment pressure (less than 1 MPa (Mathias et

al., 2014)). CO2 storage capacities of natural gas reservoirs around the world have

been estimated to be up to 13 times higher than that of saline aquifers of comparable

sizes (Barrufet et al., 2010).

Yet, CCS requires CO2 to be stripped off the flue gas right before it is released

into the atmosphere i.e. at the power plants. Separation of CO2 from the flue gas is

highly costly and is believed to consume more than 10% of the electricity generated

by the power plant (David & Herzog, 2000). Therefore, it can be understood that

capture and injection of CO2 into hydrocarbon reservoirs will be more attractive

if the process can provide economic incentives in the form of additional oil/gas

production (which would otherwise be deemed as unrecoverable hydrocarbons) to

offset the high costs associated with carbon capture.

The process of injecting a fluid into an oil reservoir to obtain an improved, more

efficient oil production is called Enhanced Oil Recovery (EOR). The implications of

using CO2 for EOR have been broadly investigated in both academia and industry

(Metz et al., 2005, Quintella et al., 2010, Sweatman et al., 2011). Injection of CO2 for

Enhanced Gas Recovery (EGR) however, despite being attractive to many countries

with gas reserves, has not been investigated as extensively. Indeed there are only a

few EGR demonstration projects in practice until now (Martens et al., 2012, Kuhn
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et al., 2012). This could be attributed to the high recovery factor of gas reservoirs

by natural pressure drive and concerns about degradation of natural gas due to

excessive mixing between the injected and in situ fluids (Oldenburg, 2003).

1.3 carbon storage-enhanced gas recovery

The idea behind Carbon Storage-Enhanced Gas Recovery (CS-EGR) is that as gas

is produced, reservoir pressure will decrease to the point that production rates by

natural depletion are no longer economic, even though there could still be significant

amounts of gas in place. CO2 can then be injected to enhance the gas recovery process

by providing the necessary pressure support to prevent subsidence and water intrusion

(in the case of volumetric reservoirs) also to sweep the CH4 from the injection well

towards the production well where it can be recovered. Furthurmore, the CO2-CH4

system has some interesting characteristics that makes it more favourable for CS-EGR

(Oldenburg et al., 2001):

• Gravity stabilised displacements can be achieved due to the fact that the CO2

density is up to 6 times higher than that of CH4 at reservoir conditions.

• The higher viscosity of CO2 results in a lower mobility ratio (of CO2 to CH4)

which in turn leads to a more stable displacement process e.g. no viscous

fingering.

• CO2 breakthrough is delayed due to the higher solubility limit of CO2 in

reservoir water compared to that of CH4.

Finally, it is believed that once underground, a variety of mechanism can keep

the CO2 securely stored (Metz et al., 2005):

1. Residual trapping: As CO2 is injected into the formation, it displaces water as

it moves through the porous medium. As it continues to move, it is replaced
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by formation water. During this process, some of the CO2 is left behind as

disconnected (residual) droplets in the pore space which are immobile.

2. Stratigraphic/structural trapping :

CO2 is more buoyant than most reservoir fluids, therefore it will percolate

up through the porous rock until it is trapped under the cap rock, which has

already demonstrated the capability of retaining buoyant fluids for millions of

years.

3. Solubility trapping:

CO2 is partially miscible in formation water and the resulting mixture is denser

than pure brine and therefore sinks to the bottom of the formation over time,

ensuring that it cannot then migrate upwards and to the surface through faults

and leaks.

4. Mineral trapping:

Over a long time, the weakly acidic mixture of water and CO2 reacts with the

minerals in the surrounding rock to form solid carbonate minerals securely and

permanently stored.

1.4 role of numerical modelling

To date, there have been only a handful of CS and no commercial scale EGR

projects worldwide, primarily due to concerns about degradation of the quality of the

produced gas due to mixing with the injection fluid. As a result, our fundamental

understanding of the technical and practical risks posed by CO2 injection and

uncertainties associated with CO2+CH4 mixture remains rudimentary (Damen et

al., 2006).
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Increasing reservoir pressure as a consequence of CO2 injection, prompts defor-

mation and mechanical stresses in the reservoir and cap rocks, which in turn cause

changes in hydraulic properties and further the multiphase flow and storage behavior

of the reservoir. Fault slip may occur when the reservoir pressure rises to a critical

level. This could lead to CO2 leakage to drinking water sources or even land surface

which could result in catastrophic environmental consequences.

Low pore-pressures (<1MPa) characteristic of depleted reservoirs, could lead to

significant Joule-Thomson cooling (JTC) when large pressure gradients are developed

around the injection well. JTC is the drop in temperature that occurs during

adiabatic expansion of a real gas, i.e., going from high pressure to low pressure at

constant enthalpy. Of particular concern is the severe loss of injectivity that may

develop due to freezing of pore fluids (e.g., brine). Furthermore, salt precipitation

may occur around the injection well, where all the resident water has been evaporated

by the injection gas, which could further reduce the injectivity.

In this context, it is crucial that all the relevant aspects of CS-EGR processes

are taken into consideration which requires development of suitable performance

assessment tools describing the behavior of the reservoir during these processes.

Consequently, significant efforts have been made in developing numerical models to

represent the geological reservoir.

Rutqvist & Tsang (2002) and Rutqvist et al. (2002) investigate, using TOUGH2

(a simulator for multiphase flow and transport in fractured porous media), the stress

changes and potential fault slip due to CO2 injection in saline aquifers. Khanet al.

(2002) integrated VISAGE (a visual analysis tool designed for all facets of production

operations) and ECLIPSE (commercial reservoir simulator) to investigate the caprock

integrity of a potential carbon storage site and Ouellet et al. (2011) used this coupled

code to simulate the CO2 injection in saline aquifer at Ketzin, Germany.

Li & Li (2011) linked FLAC (an explicit finite difference program for engineering

mechanics computation) to GEM (commercial reservoir simulator) to study the CO2
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enhanced coal bed methane (ECBM) recovery. Enhanced coal bed methane recovery

was also studied in Connell & Detournay (2011). However, thermal responses of

reservoir and caprock formations to CO2 injection into gas reservoirs have been

minimally explored (Taron et al. (2009), Rutqvist et al. (2008)).

A number of recent simulation studies have discussed the thermal effects that

develop as a consequence of CO2 injection into oil and gas reservoirs. These include

heating due to compression, cooling due to expansion, heating and cooling due to

dissolution and vaporization, respectively, differences in temperature associated with

injection and reservoir fluids, and heating due to viscous heat dissipation (Han et al.,

2010, Oldenburg, 2007, Andre et al., 2010).

Owing to the Joule-Thomson coefficient of CO2 being larger at lower pressures,

these processes are likely to be of more significance in low-pressure depleted gas

reservoirs (Mathias et al., 2010). Most previous simulation works have concentrated

on pressures greater than 10 MPa such as work done by Mathias et al. (2013) and

Andre et al. (2010). Exceptions to these include Han et al. (2012), who considered a

minimum initial pressure of 6.89 MPa, Ziabakhsh-Ganji & Kooi (2014), who assumed

an initial pressure of 6 MPa Afanasyev (2013), who assumed a minimum initial

pressure of 4.5 MPa, and Singh et al. (2011) and Singh et al. (2012), who considered

an initial pressure of 4 MPa.

However, depleted gas reservoirs are often abandoned at pressures lower than

1 MPa and therefore, for CSEGR, it is pertinent to consider the thermal effects

in the context of low pressure reservoirs. Mukhopadhyay et al. (2012) presented

numerical simulations concerning CO2 injection into a depleted gas reservoir at 0.5

MPa, however, they ignored thermal effects.

Mathias et al. (2014) developed a two-layer vertical-equilibrium model for the

injection of carbon dioxide into a low-pressure porous reservoir containing methane

and water. In contrast to previous two-layer vertical equilibrium models, the com-

pressibility of all material components was fully accounted for and non-Darcy effects
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were also considered using the Forchheimer equation. However, they ignored the

effects of compositional change and mixing between phases which could potentially

affect the temperature profile due to evaporation/dissolution cooling/heating. Thus,

the objective of this article is as follows.

1.5 objective

This study seeks to build a numerical model capable of modelling heat transport,

pressure build-up and compositional changes in a multi-component multi-phase

flow system in porous media, in the context of CO2 injection in very low-pressure

partially-depleted gas reservoirs. This Ph.D. is sponsored by Centrica Plc, and aims

to simulate CO2 injection in the North Morecambe gas field located in the Irish Sea

basin and to estimate the gas recovery potential associated with CS-EGR in this

field.

1.6 thesis outline

This thesis describes the numerical modelling undertaken to better understand the

processes associated with injection of CO2 into gas reservoirs for the purpose of

Enhanced Gas Recovery (EGR). EGR is a complex problem that requires knowledge

of porous media flow mechanisms, multiphase flow dynamics/thermodynamics and

compositional effects along with a good understanding of the Computational Fluid

Dynamics (CFD) theories. Within this thesis, a numerical model has been developed

based on the so-called Method of Lines (MOL) approach, in which all but one

dimension are discretised and the resulting set of ODEs are solved using an ode-

solver of choice. The outline of the thesis is as follows:

In Chapter 2, starting with mass, momentum and energy conservation state-

ments, we focus on deriving the governing equations of multi-component multi-phase
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(MCMP) flow systems. Due to the complexity of MCMP problems and multiple

variables involved, it is necessary to make a decision early-on as to which set of

the variables we will solve for in our MOL framework. Various choices can be

made, therefore, this chapter further discusses our choice of, what we refer to as,

Primary Dependent Variables (PDVs) to solve for. Finally, as a requirement for

MOL implementation, it is shown how the governing equations can be re-casted in

terms of the chosen set of PDVs.

The governing equations of the MCMP problem require evaluation of the compo-

nent equilibrium mass fractions in each of the phases present. Thus, Chapter 3 focuses

on developing a semi-analytical ternary equilibrium-model capable of calculating the

equilibrium mass fractions for the CO2-CH4-H2O system.

In the MOL framework, re-casting of the equations in terms of the PDVs often

involves a combination of product- chain-rule differentiation, leading to the appear-

ance of partial derivative terms of some of the flow properties with respect to the

PDVs. Consequently, Chapter 4 introduces a method of analytical differentiation for

evaluation of the aforementioned partial derivative terms.

Generally, when building numerical models, it is necessary to somehow verify

the numerical results e.g. by comparison to an analytical solutions if possible. To

this end, Chapter 5 briefly introduces the existing Method of Characteristics (MOC)

solution by Hosseini et al. (2012) for CO2 injection into brine aquifers who extended

the analytical solution of Mathias et al. (2011b), by incorporating dissolved and/or

residual CH4. This analytical solution is then used in Chapter 6 to verify our

numerical model.

Chapter 6 puts everything together into a radial 1D isothermal compositional

flow simulator and compares the results to the analytical solution. The model is

then extended to 2D and made non-isothermal to study the effects of gravity and

temperature respectively.

8



Chapter 7 applies the numerical model to the study CO2-EGR in the North

Morecambe gas field (located in the east Irish Sea) and provides an estimation for

the EGR potential in this field.

Finally, Chapter 8 summarises and concludes the thesis as a whole.
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2

GOVERNING EQUATIONS

This chapter describes the governing equations of multi-component multi-phase

(MCMP) flow in porous media and the appropriate choice of persistent primary-

variables to solve for. The novelty of this chapter is the choice of the persistent

primary variables and recasting of the governing equations in terms of the chosen set

of variables.

2.1 introduction

Typically, the governing equations of fluid dynamics, are expressed in the form of

a set of conservation statements of mass, momentum and energy. For an isolated

system, or a system in equilibrium with its surroundings, conservation requires

that these three fundamental quantities are neither created nor destroyed, but only

redistributed or, in the case of energy and momentum, converted from one form to

another (Laney, 1998).

Consider a gas mixture being injected into a porous medium containing say, water

or oil. As local chemical-equilibrium1 is established, components in the gas dissolve

in the liquid and components in the liquid transfer to the gas. Both phases move

under the imposed pressure gradient at flow velocities that depend (nonlinearly)

on the saturations (volume fractions) of the phases and their properties (density

and viscosity). As phases encounter fresh reservoir liquid or more injected gas, new

mixtures form and come to equilibrium. The result is a set of component separations
1Will be defined rigorously in Chapter 3.
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that occur during flow, with light components propagating more rapidly than heavy

ones (Orr, 2007, p. 1). This chapter describes the mathematical representation of

these processes and the resulting compositional changes in the form of conservation

statements.

Furthermore, in developing numerical models for complex flow systems, such as

Enhanced Gas Recovery (EGR), more often than not there are more than just one

set of variables that one can solve for, and still be able to obtain the entire flow

field; another focus of this chapter is therefore, the choice of this set of variables

and how to obtain the Partial Differential Equations (PDEs) describing them, from

the building blocks of the model, which are the conservation statements of mass,

momentum and energy.

2.2 conservation of mass

Consider an arbitrary control volume V of a porous medium, bounded by the surface

S. Continuity of mass requires that:

Rate of change

of amount of

component i in V

=

Net rate of

flow of

component i into V

−

Net rate of

flow of

component i out of V

Thus the amount of phase j present in a differential element of V can be defined as:

φρjSjdV (2.1)
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where φ [-] is the porosity which is the portion of the rock volume available to

fluids, ρj [ML−3] is the density, Np is the number of phases present and Sj [-] is the

saturation (volume fraction) of phase j such that:

Np∑
j=1

Sj = 1 (2.2)

The amount of the ith component in jth phase is therefore given by:

φρjXijSjdV (2.3)

where Xij [-] is the mass fraction of component i in phase j such that:

Nc∑
i=1

Xij = 1 (2.4)

where Nc is the number of components in the system. Phase densities can be

calculated using the following mixing rule (Orr, 2007, p. 13):

ρj =

Nc∑
i=1

Xij

ρij

−1

(2.5)

where ρij [ML−3] is the density of the ith component in the jth phase.

The total mass of component i is therefore the summation over phases present:

φ
Np∑
j=1

ρjXijSjdV (2.6)

Integrating Eq. (2.6) gives the total amount of component i in the control volume:

∫
V
φ
Np∑
j=1

ρjXijSjdV (2.7)
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Hence time rate of change of component i is :

d

dt

∫
V
φ
Np∑
j=1

ρjXijSjdV (2.8)

Neglecting molecular diffusion and hydrodynamic dispersion, change in component

i can only be due to transport of materials through the surface (S) of the control

volume (V). At any differential element of area (dS) the convective flux of component

i in phase j through the surface is given by:

ρjXijvj (2.9)

where vj [LT−1] is the phase velocity and will be described in more details in

the next section. The net rate of convective inflow of component i is obtained by

summing the contributions for flow of each phase and integrating over the full surface,

S, to obtain:

∫
S

Np∑
j=1

ρjXijvjdS (2.10)

Then, the conservation of mass statement for component i in integral form, takes

the form:
d

dt

∫
V
φ
Np∑
j=1

ρjXijSjdV +
∫
S

Np∑
j=1

ρjXijvjdS = 0 (2.11)

and in differential form:

∂Gi
∂t

+∇.Hi = 0 , i ∈ [1,2, ..,Nc] (2.12)

Gi = φ
Np∑
j=1

ρjXijSj (2.13)
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Hi =
Np∑
j=1

ρjXijvj (2.14)

It is useful to define a bulk flow mass per unit volume of rock, ρ
b
[ML−3], by

summing over all the components in the system:

ρ
b
=

Nc∑
i=1

Gi = φ
Np∑
j=1

ρjSj (2.15)

Further, a bulk flow velocity, v
b
[LT−1], can be defined such that:

v
b
=

1
ρ

b

Np∑
j=1

ρjvj (2.16)

By summing over the component mass conservation statements, Eq.(2.12), noting

that ∑Nc
i=1Xij = 1, mass conservation statement of the bulk flow can be written as:

∂ρ
b

∂t
+∇.(ρ

b
v

b
) = 0 (2.17)

The bulk flow mass conservation statement will later be used in derivation of the

energy conservation statement.

2.3 conservation of momentum

To complete the specification of the flow problem, a number of additional functions

and conditions are required. The phase velocity which is the most important part,

as it controls the convective part of the flow, is yet to be determined.

Commonly, a set of balance equations for the momentum of each phase, which

must also be conserved, is solved to calculate the phase velocity (Temam, 2001):

∂

∂t
(ρv)+∇.(ρv2) = −

Pressure losses︷ ︸︸ ︷
∇.P −

Body forces︷︸︸︷
ρg (2.18)
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In porous media flow problems however, the solution of the resulting momentum

conservation equations for the detailed velocity distributions within the porous

medium, would be unnecessarily complex (Orr, 2007, p. 11); instead, an averaged

version of the momentum equation is used. For single-phase flow, volume averaging

of the momentum equation yields a form equivalent to the Darcy’s law (Slattery,

1972, Hubbert, 1956), which states that the local flow velocity is proportional to the

pressure gradient. Flow of more than one phase is often assumed to be similarly

related to the pressure gradient (Marle, 1981), and hence, the flow velocity of a phase

j is assumed to be given by Darcy’s law:

vj = λj

(
∂Pj
∂x

+ρjg

)
(2.19)

and phase mobilities are given by:

λj = −k
krj

µj
(2.20)

where µj [MT−1L−1] is the phase viscosity, Pj [ML−1T−2] is the phase pressure, g

[LT−2] is gravitational constant, k [L2] is the absolute permeability, krj [-] is the

relative permeability (fraction of the absolute permeability available to phase j)

given by (Corey, 1954):

krj = krj0

 Sj−Sjc
1−∑Np

j=1Sjc

nj

(2.21)

where krj0
[-] is the end-point relative permeability, nj power exponent and Sjc [-] is

the critical saturation of phase j below which krj is zero.

As the subscript j on the pressure in the Eq. (2.19) implies, pressure is different

in different phases. The relationship between the phase pressures is via capillary

pressure , Pc [ML−1T−2] :

Pnw−Pw = Pc (2.22)
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where Pnw [ML−1T−2] is pressure of the non-wetting phase and Pw [ML−1T−2] is

the pressure of the wetting phase. The capillary pressure is assumed to be a function

of the phase saturations only, and is taken to be a property of the porous medium

and the fluids that can be measured in experiments. In this project the the capillary

pressure function by Van Genuchten (1980) is used:

(
1+

∣∣∣∣∣ PcPc0

∣∣∣∣∣
nv
)−mv

=
Sl−Slc

1−Sgc−Slc
, nv =

1
1−mv

(2.23)

where subscripts g and l refer to gas and liquid phases respectively. Pc0 and mv are

empirical constants.

2.4 conservation of energy

Derivation of the energy conservation statement is more complicated as it requires

application of some thermodynamic concepts as well as the mass and momentum

conservation relations. In this section, the energy conservation statement for multi-

phase multicomponent flow in porous media will be derived using the thermodynamic

definition of energy, together with the mass and momentum conservation statements

which were discussed in previous sections. For the sake of simplicity, here, first the

energy conservation statement for fluid phase j will be derived and later the rock

component will be integrated into the equation.

Total energy of phase j per unit volume, Ej [ML−1T−2], of a compressible system

is given by Cengel & Boles (2002)[p. , 227]:

Ej =

Internal energy︷︸︸︷
Uj +

Kinetic energy︷ ︸︸ ︷
1
2ρjv

2
j +

Potential energy︷ ︸︸ ︷
ρjgz (2.24)

where Uj [ML−1T−2] is the internal energy of phase j per unit volume.
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However, in derivation of the Darcy’s law for flow in porous media, it is often

assumed that the velocity is small enough to neglect the squared velocity terms i.e.

the kinetic energy (see for instance Bear, 2013, p.160). Therefore, in this case, the

total energy can be reduced to:

Ej = Uj+ρjgz (2.25)

Furthermore, Cengel & Boles (2002)[p. , 227] distinguish between the total energy

of a flowing material (e.g. hydrocarbons in the system) and that of non-flowing ones

(e.g. porous rock); such that the fluids entering or leaving the control volume possess

an additional form of energy referred to as the flow energy, Pjvj .

Thus, the conservation of energy statement for the flow in porous media (assuming

heat conduction is the only external source of energy transfer) can be written as:

∂Ej
∂t

+∇.(Ejvj)+
Flow energy︷ ︸︸ ︷
∇. (Pjvj) =

Conduction︷ ︸︸ ︷
∇. (κj∇.Tj) (2.26)

In the following order, substituting Eq. (2.25) in Eq. (2.26), applying product rule

differentiation, substituting Eq. (2.17) in Eq. (2.26), and noting that that enthalpy,

Hj [ML−1T−2], is defined as Hj = Uj+Pj , then the conservation of total energy of

the bulk flow reduces to:

∂Uj
∂t

+∇.(Hjvj) =∇.(κj∇Tj) (2.27)

Internal energy and enthalpy have units of energy per volume; units that carry

much less physical information for most people than do pressure and temperature

for instance. As a result, it is useful to relate these quantities to more fundamental
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properties. This can be achieved through the use of the Maxwell relations (Cengel &

Boles, 2002, p. 662):

dhj = cpjdTj+
(1−βjTj)

ρj
dPj (2.28)

where hj [L2 T−2] is the enthalpy of phase j per unit mass, βj [K−1] is the thermal

expansion coefficient of phase jand cpj [M L2 T−2 K−1] is the specific heat capacity

of phase j.

Using product rule differentiation and noting that Hj = ρjhj , it can then be under-

stood that:

dHj = ρjcpjdTj+(1−βjTj)dPj+hjdρj (2.29)

d(Hjvj) = ρjcpjvjdTj+ vj(1−βjTj)dPj+hjd(ρjvj) (2.30)

and since Uj =Hj−Pj :

dUj = dHj−dPj (2.31)

Note that the dependency of enthalpy and internal energy on the composition

is tied-up in the total derivative of the density, dρj , since density is a function of

pressure, temperature and compositions. However, after substituting Eqs.(2.30) and

(2.31) into Eq. (2.27), due to conservation of mass statement, Eq.(2.17), the terms

that include the enthalpy hj and dρj , will disappear. Thus, the over all energy

conservation statement for multicomponent multiphase system reduces to:

ρjCpj

∂Tj
∂t
−βjTj

∂Pj
∂t

=∇.(κj∇.Tj)+ vj(βjTj−1)∇.Pj−ρjCpjvj∇.Tj (2.32)
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Summing Eq.(2.32) over the fluid phase and the solid rock phase, assuming that

the fluids and the rock are in thermal and pressure equilibrium, i.e., Tj = Tr = T

and Pj = Pr = P , and noting that the rock is static, i.e., vr = 0, leads to:

(ρCp)e
∂T

∂t
−βeT

∂P

∂t
= Re (2.33)

where:

Re =∇.(κe∇.T )+
Np∑
j=1

[
vj(βjT −1)∇.P −ρjCpjvj∇.T

]
(2.34)

βe = (1−φ)βr+φ
Np∑
j=1

βjSj (2.35)

(ρCp)e = (1−φ)ρrCpr +φ
Np∑
j=1

ρjSjcpj (2.36)

Recall that Np is the number of fluid phases and subscript r denotes the rock

properties.

2.5 choice of primary dependant variables (pdvs)

Often when dealing with partial differential equations, it is useful to distinguish

between dependent and independent variables (Stroud & Booth, 2007, p. 122). In

this case, time and space are independent variables. All other variables are dependent

variables.

Consider Nc [-] components residing in Np [-] phases. The problem will be defined

by Nc [-] mass conservation equations. However, considering the various values of

Sj [-] and Xij [-], it can be understood that there will be at least (Nc+ 1)×Np

dependent variables. It is therefore necessary to choose Nc [-] dependent variables to

solve for, for the mathematical problem to be well-posed.
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Special care should be taken to ensure that the selected dependent variables

are persistent (Amaziane et al., 2012, Bourgeat et al., 2013). This selected set of

dependent variables are hereafter referred to as the primary dependent variables

(PDVs).

An appropriate choice of PDVs to solve for, are temperature, T [K], and global

fluid pressure, P [ML−1T−2] , defined in this case by (Chen et al., 2006):

P =
Np∑
j=1

SjPj (2.37)

and the overall mass fraction of each component, zi [-] , defined by:

zi = Gi

/ Nc∑
i=1

Gi =
Gi
ρ

b

(2.38)

Such that:
Nc∑
i=1

zi = 1 (2.39)

In some previous studies, the mass of each component per volume of rock, Gi

[M L−3], have also proven effective as PDVs in this context (Amaziane et al., 2012,

Bourgeat et al., 2013). However, an advantage of using zi (for i = 1,2, . . .Nc− 1)

as PDVs (as opposed to say Gi) is that zi are independent of P and T ; because

for a given volume of fluid mixture, the mass fractions of each component, zi, will

not change with pressure and temperature, making the selected set of PDVs truly

independent of one another. However, the associated mass of each component per

volume of rock, Gi, may change with pressure and temperature, depending on how

the individual component mass densities, ρij [M L−3] (density of component i in

phase j), vary with P and T . Furthermore, zi are the variables used in the phase

diagram (discussed further in Chapter 3), which determine the equilibrium properties

of the multicomponent fluid mixture.
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2.6 recasting of the equations in terms of pdvs

Since PDVs are the variables of choice to solve for, we need to obtain the Partial

Differential Equations (PDEs) that give the time rate of change of these PDVs. This

section will describe how this can be achieved.

Using quotient rule, differentiating Eq. (2.38) with respect to time leads to:

∂zi
∂t

=
1
ρ

b

(
∂Gi
∂t
− zi

∂ρ
b

∂t

)
(2.40)

where ∂Gi
∂t and ∂ρb

∂t are given by Eqs.(2.12) and (2.17) respectively.

Because of the chosen set of PDVs, for Nc number of components, ρ
b
[M L−3] (or

any other variable that is not a PDV) is only a function of pressure, temperature,

and Nc−1 of the mass fractions (this is because ∑Nc
i=1 zi = 1). Therefore, it can be

said that:

ρ
b
= f(P , T , z1 , ...,zNc−1) (2.41)

Application of the chain-rule differentiation to Eq. (2.41) yields:

dρ
b

ρ
b

= α
b
dP −β

b
dT +

Nc−1∑
i=1

γ
bi
dzi (2.42)

where α
b
[LT2M−1] is the change of bulk density with pressure i.e. bulk compressibil-

ity:

α
b
=

1
ρ

b

∂ρ
b

∂P
(2.43)

β
b
[K−1] is the change of bulk density with temperature i.e. bulk thermal expansion

coefficient:

β
b
= − 1

ρ
b

∂ρ
b

∂T
(2.44)
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and γ
bi
[-] is the change of bulk density with mass of component i:

γ
bi
=

1
ρ

b

∂ρ
b

∂zi
(2.45)

Eqs. (2.32) and (2.42) provide the two equations sufficient to obtain the two remaining

unknowns ∂P
∂t and ∂T

∂t . It follows that:

∂P

∂t
=

1
α

b

 1
ρ

b

∂ρ
b

∂t
−
Nc−1∑
i=1

γ
bi

∂zi
∂t

+β
b

∂T

∂t

 (2.46)

∂T

∂t
=

1
ω

 1
ρ

b

∂ρ
b

∂t
−
Nc−1∑
i=1

γ
bi

∂zi
∂t

+
α

b
Re

βeT

 (2.47)

where:

ω =
α

b
(ρCp)e
βeT

−β
b

(2.48)

Thus, Eqs. (2.40), (2.46) and (2.47) are the system of PDE that describe the

dynamics and thermal behavior of the system casted in terms of PDVs.

The remaining challenge is the derivation and application of formulae for the

relationships defining α
b
, β

b
and γ

bi
, which will be described in Chapter 4. Before

that, the description of fluid phase equilibrium and how to evaluate the Xij terms is

required, which will be addressed first in Chapter 3.
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3

TERNARY PHASE EQUIL IBRIUM

This chapter describes a novel approach to developing a ternary phase equilibrium

model, by joining together the two existing binary mixture models of CO2-H2O and

CH4-H2O, proposed by Spycher et al. (2003) and Duan & Mao (2006) respectively,

to form a ternary CO2-CH4-H2O equilibrium model. For more information on the

thermodynamics of phase equilibrium and the derivation of the binary models of

Spycher et al. (2003) and Duan & Mao (2006), refer to Chapter 9 - Appendix(1).

3.1 introduction

In multicomponent fluid systems, such as those encountered in petroleum production

and carbon sequestration, for a given pressure and temperature, there exists an

equilibrium composition for each component, that defines the maximum concentration

of each component and controls the appearance/disappearance of a multiphase state.

Consequently, in the study of multicomponent systems, concentration threshold

values are often required, and typically obtained using thermodynamic principles.

Thermodynamically, the state of a mixture of Nc number of components is known,

for a given set of overall component mass fractions, zi [-] (such that ∑Nc
i=1 zi = 1),

pressure, P [ML−1T−2] and temperature, T [K] (Cengel & Boles, 2002, p. 794).

Difficulties may arise if at the given P and T the mixture partitions into Np number

of phases, as each phase will then have a separate set of mass fractions different

from the overall mixture mass fractions, which may need to be determined. This

gives rise to the so-called “flash calculation" problem (Orr, 2007, p. 31). Consider
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for instance, a two-phase mixture consisting of a gas-phase of volume fraction, Sg [-],

and gas-phase mass fractions, xig [-], and a liquid-phase of volume fraction, Sl [-],

and liquid-phase mass fractions, xil [-], such that ∑NP
j=1Sj = 1 and ∑Nc

i=1xij = 1. The

purpose of flash calculation is therefore, to obtain the mass fraction of component i

in phase j, xij , at the given P and T .

Although in the case of a binary mixture, xij values are independent of the

overall mixture mass fractions, zi, and only vary with P and T . However, in ternary

mixtures (or any mixture involving more than two components), the problem becomes

much more challenging, because equilibrium mass fractions, xij , will vary with zi

in addition to P and T . Consequently, xij values must be determined using an

iterative flash-calculation for each composition, P and T combination. The need

for iterative flash-calculators is explained as follows. Conventional flash-calculation

procedures typically employ the concept of Gibbs free energy. Gibbs free energy,

G [M L2 T−2 ], has units of Joules and is a thermodynamic potential. The molar

Gibbs free energy is often referred to as chemical potential and symbolised by µ

[ML2T−2N−1]. Equilibrium mass fractions are commonly obtained by setting the

chemical potential of the present phases to be equal to one another, which must be

true if the phases are to be in equilibrium (Cengel & Boles, 2002, p. 810). This often

results in a set of highly nonlinear equations (owing to nonlinearity of the Equation

of State (EOS) being used to couple the mixture composition to PVT data) to be

solved simultaneously and in an iterative fashion, while extra care must be taken to

avoid converging to non-physical roots. Such a procedure can impose a significant

computational burden when implemented into an already computationally intensive

fluid flow/transport model (Spycher et al., 2003), such as those used in reservoir

simulators.

In some special cases of multicomponent systems however, it is possible to

eliminate the need for iterations. To be able to describe those system, it is useful to
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introduce the concept of “equilibrium ratio”. For a two-phase gas(g)-liquid(l) system,

let Ri be the equilibrium ratio for component i, defined as:

Ri =
xig
xil

(3.1)

note that the Ri values are generally not constant and vary with composition (at a

given P and T ). However, in some multicomponent systems, such as hydrocarbon

systems, the Ri values are only weakly dependent on composition and therefore

it is often reasonable to assume that all the equilibrium ratios are constant with

composition (Orr, 2007, p. 38). Such an assumption is often referred to as the

“constant equilibrium" assumption. Indeed, many researchers have made use of

the constant equilibrium assumption for multicomponent systems, such as Juanes

(2008,b), Li et al. (2012), Yan & Stenby (2014a), Yan et al. (2014b) and references

therein. The advantage is that once the Ri values have been determined for a

given P and T , the associated xij values can be determined non-iteratively for any

composition using a set of simple quadratic equations (Juanes , 2008).

However, a problem with the constant equilibrium assumption is as follows.

Consider for instance, the schematic of ternary system CH4-CO2-H2O shown in

Fig. 1, which has applications in areas such as petroleum production, ground water

management and carbon sequestration. Writing out Eq. (3.1) on the bounding

tie-lines of the two-phase region (where the mixture is in binary form) to obtain the

equilibrium ratio for the H2O component. On the bounding tie-line connecting CO2

to H2O:

RH2O =
1− x̃

CO2(g)

1− x̃
CO2(l)

(3.2)

and on the bounding tie-line connecting CH4 to H2O:

RH2O =
1− x̃

CH4(g)

1− x̃
CH4(l)

(3.3)
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Figure 1: Schematic of the ternary CH4-CO2-H2O phase diagram, at a given pressure
and temperature, constructed from two binary mixture models, CH4-H2O and CO2-
H2O (red and blue lines respectively), by connecting the two models using straight
lines (orange lines) and linearly interpolate on these lines to obtain equilibrium mass
fractions for the ternary system. Straight-line characteristic of the two phase region
is a common assumption for hydrocarbon systems. Tie-Lines are shown as dashed
lines. The barycentric coordinates of points of the ternary diagram correspond to
the overall mass fractions, zi [-], of the fluid mixture.

It can be seen that, when moving between the bounding tie-lines, RH2O is not

constant and in fact it varies according to:

RH2O =
1−x

CH4(g)
−x

CO2(g)

1−x
CH4(l)

−x
CO2(l)

(3.4)

where the xij [-] term (without the tilda) denotes the mass fraction of component i in

phase j in the ternary system (as opposed to x̃ij which denotes the mass fraction of

component i in phase j of binary mixtures, forming the bounding tie-lines). Therefore,

only Nc−1 number of Ri values can be constant for a given system.

Realising the above, Goudarzi et al. (2016) built a non-iterative method, which

involves assuming that only RCO2
and RCH4

are held constant. The advantage of

such an approach is that the straight bounding lines of the two-phase region on the

Ternary diagram, still enables a non-iterative expression for xij to be developed, in a

similar way to as proposed by Juanes (2008). But at the same time, it is possible to
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honour EOSs for the CO2-H2O and CH4-H2O binary mixtures (as will be shown in

the next section of this article).

The objective of this chapter is therefore, to evaluate the aforementioned proposed

non-iterative method by comparing the model predictions to relevant experimental

data for a CH4-CO2-H2O system, previously published by Qin et al. (2008).

3.2 methodology

Consider once again Figure 1. Here we take the equilibrium ratios, RCO2
and RCH4

, to

be constant and the RH2O ratio to found from Eq. (3.4). In this case, the two-phase

region, for a given temperature and pressure, is defined by two straight lines on a

ternary diagram. Using the work of Juanes (2008), it can then be shown that values

of xij for the ternary system can be related back to values obtained from the binary

mixtures, x̃ij , by the set of linear equations:

x
CO2(j)

= Ax̃
CO2(j)

and x
CH4(j)

= (1−A)x̃
CH4(j)

(3.5)

where x̃
CO2(j)

= x
CO2(j)

when zCH4
= 0, x̃

CH4(j)
= x

CH4(j)
when zCO2

= 0. zi [-] are

the overall component mass fractions, and A [-] is a weighting parameter that linearly

interpolates between the bounding tie-lines that coincide with the zCH4
and zH2O

axes of the ternary diagram. Writing out Eq. (3.5) for components CO2 and CH4

and eliminating A leads to:

x̃igxil = x̃ilxig and x
CH4(j)

= (x̃
CO2(j)

−x
CO2(j)

)
x̃

CH4(j)

x̃
CO2(j)

(3.6)

Similarly, it can be said that, on a given tie-line in the two-phase region:

zi = Bxig+(1−B)xil (3.7)
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where B [-] is a weighting parameter that linearly interpolates on tie-lines in the

two-phase region of the ternary diagram. Writing out Eq. (3.7) for CO2 and CH4

and then eliminating B leads to:

(zCO2
−x

CO2(l)
)(x

CH4(g)
−x

CH4(l)
) = (zCH4

−x
CH4(l)

)(x
CO2(g)

−x
CO2(l)

) (3.8)

Using Eq. (3.6) to eliminate the xil and xCH4(j)
terms yields the quadratic equation:

T2x
2
CO2(g)

+T1xCO2(g)
+T0 = 0 (3.9)

where:

T0 = (x̃
CH4(g)

− x̃
CH4(l)

)x̃
CO2(g)

zCO2
(3.10)

T1 = (x̃
CO2(g)

− x̃
CO2(l)

)(x̃
CH4(l)

− zCH4
)− (x̃

CH4(g)
− x̃

CH4(l)
)(x̃

CO2(l)
+ zCO2

) (3.11)

T2 = (x̃
CO2(l)

x̃
CH4(g)

− x̃
CO2(g)

x̃
CH4(l)

)/x̃
CO2(g)

(3.12)

which has the solutions:

x
CO2(g)

=
−T1±

√
T 2

1 −4T0T2

2T2
(3.13)

Only the solution with the − sign is applicable as the other solution produces mass

fractions greater than one or smaller than zero, which are unphysical. Eq. (3.13)

provides an explicit expression for x
CO2(g)

with respect to zCO2
and zCH4

. From Eqs.

(3.5) the rest of the equilibrium mass fractions can be calculated.
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3.3 comparison to experimental measurements

Qin et al. (2008) reported some experimental measurements on vapour-liquid equi-

librium in the CO2-CH4-H2O ternary system at temperatures of 51 oC and 101 oC

and pressures from 10 MPa to 50 MPa. Figures 2 and 3 show the comparison of the

numerical phase equilibrium calculation, using the method described in the previous

section, to the experimental data.

There is generally a good agreement between the two sets of values, in particular,

for the mass fractions in the gas phase, xig. There is a some deviation in the results

of xil values, but considering the magnitude of the mass fractions (order of 10−2), this

should be acceptable for looking at the enhanced gas recovery problem of concern to

this thesis.
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Figure 2: Comparison of the equilibrium mass fractions between the experimental
measurements and numerical flash calculation for the specified pressure and T=51
(oC). Mixture compositions for each point, in the form of (zCO2(%) , zCH4(%) ),
are as follows: a(35%, 25%), b(62%, 7%), c(52%, 13%), d(61%, 7%), e(34%, 25%),
f(53%, 13%)
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Figure 3: Comparison of the equilibrium mass fractions between the experimental
measurements and numerical flash calculation for the specified pressure and T=101
(oC). Mixture compositions for each point, in the form of (zCO2(%) , zCH4(%) ),
are as follows: a(42%, 19%), b(60%, 8%), c(50%, 13%), d(41%, 20%), e(60%, 7%),
f(48%, 15%), g(41%, 20%), h(59%, 8%), i(49%, 15%), j(59%, 8%), k(40%, 21%),
l(48%, 15%), m(48%, 15%), n(59%, 8%), o(40%, 21%)
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4

ANALYTICAL DIFFERENTIATION

In a novel approach, this chapter introduces a method of analytical differentiation

for evaluation of the partial derivatives terms of the flow properties with respect to

the primary variables, in a three-component two-phase flow system.

4.1 introduction

In Chapter 2, we first derived the governing equations of multicomponent multiphase

(MCMP) flow in porous media. Then we discussed the choice of Primary Dependent

Variables (PDVs) to solve for and derived the Partial Differential Equations (PDEs)

describing the time rate of change of these PDVs.

When using an Ordinary Differential Equation (ODE) solver and the Method of

Lines (MOL) (will be discussed in detail in Chapter 6) to solve for the aforementioned

PDVs, the user must construct an ODE function. Within this function, a vector of

time values is provided as an input along with an associated vector of the PDVs.

The user must define the ODE function such that it calculates the derivatives of

the PDVs with respect to time, which generally involves using a combination of the

chain rule and the product rule for differentiation.

In our case, this results in the need to evaluate the partial derivatives of the

bulk fluid mass per unit volume of rock, ρ
b
, with respect to each of the PDVs, as

was shown in Section 2.6. For conventional first-order time-stepping, it is arguably

acceptable to evaluate these derivatives using first or second order finite differencing.

However, given the high accuracy associated with the use of MATLAB’s ODE solvers
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(our solver of choice), it is pertinent to obtain these derivatives as accurately as

possible.

There are some detailed works concerning applications of the MOL for immiscible

two-phase flow and two-component two-phase flow problems (e.g. Amaziane et al.,

2012, Vohralik, 2013, Bourgeat et al., 2013). Mallison et al. (2005) present a numerical

simulation of an MCMP problem using the MOL in conjunction with a 3rd and

4th order Runge-Kutta time integration method. However, Mallison et al. (2005)

provides no discussion concerning the casting of equations in terms of PDVs.

Indeed, little information is available as to how to obtain exact equations describ-

ing the necessary partial derivatives, ∂ρ
b
/∂zi, ∂ρb

/∂P and ∂ρ
b
/∂T (Eqs. (2.43),

(2.44) and (2.45) respectively), needed to solve MCMP problems for situations

concerning more than two components.

This chapter focuses on obtaining such expressions for three-component and

two-phase problem, making use of the semi-closed form expressions derived for the

equilibrium mass fractions, xij , discussed in Section 2.5.

A version of this chapter is presented in the following article:

Goudarzi S., Mathias S.A. & Gluyas J.G. (2016). Simulation of three-component

two-phase flow in porous media using method of lines. Transport in Porous Media,

112(1), 1-19.

4.2 derivative of bulk flow density

Considering the identity in Eq. (2.15), the total derivative of ρ
b
(mass of fluid per

unit volume of rock) can be written as:

dρ
b
= ρ

b

dφ

φ
+φ

Np∑
j=1

Sjρj

(
dρj
ρj

+
dSj
Sj

)
(4.1)
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For two phase flow, where gas (g) and liquid (l) are the only phases such that

Sl = 1−Sg. From Eqs. (2.13), (2.38) and (2.15), it can then be understood that:

Sg =

[
1− ρg(zi−Xig)

ρl(zi−Xil)

]−1
, Sl =

[
1− ρl(zi−Xil)

ρg(zi−Xig)

]−1
(4.2)

which on differentiation leads to:

dSj
SgSl

=
2∑
j=1

(−1)j
[
dρj
ρj

+

(
dzi−dXij

zi−Xij

)]
(4.3)

Invoking Eq. (2.5), it can also be shown that:

dρj
ρj

= ρj
Nc∑
i=1

Xij

ρij

(
dρij
ρij
− dXij

Xij

)
(4.4)

It is now assumed that component densities are unaffected by composition such that

∂ρij/∂zi = 0. Additionally noting that:

∂zi
∂zk

= 0, i 6= k (4.5)

This is because of the way the PDVs were chosen in Section 2.5 i.e. PDVs are

independent of each other and only vary with space and time.

The remaining challenge is to define the dXij terms. The terms Xij can be further

defined by:

Xij =


zi, Sg = 0,1

xij , 0< Sg < 1

(4.6)
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where xij [-] are the equilibrium mass fractions of the ith component in the jth phase

within the two-phase region and were discussed in previous chapter. Then dXij is

then given by:

∂Xij

∂P
=



0, Sg = 0,1

∂xij
∂P

, 0< Sg < 1

(4.7)

∂Xij

∂T
=



0, Sg = 0,1

∂xij
∂T

, 0< Sg < 1

(4.8)

∂Xij

∂zi
=



1, Sg = 0,1

∂xij
∂zi

, 0< Sg < 1

(4.9)

It is important to note that for two-component two-phase problems, xij only

varies with pressure and temperature. However, for three component two phase

systems, the problem is much more complicated because the equilibrium values, xij ,

are no longer constant with composition (i.e. zCO2
and zCH4

).

Furthermore, from Eq. (3.9) we have the total derivative of x
CO2(g)

:

dx
CO2(g)

= −
x2

CO2(g)
dT2 +x

CO2(g)
dT1 +dT0

2T2xCO2(g)
+T1

(4.10)

where:

dT0 = (dx̃
CH4(g)

−dx̃
CH4(l)

)x̃
CO2(g)

zCO2
+(x̃

CH4(g)
−x̃

CH4(l)
)(x̃

CO2(g)
dzCO2

+dx̃
CO2(g)

zCO2
)

(4.11)

dT1 = (dx̃
CO2(g)

−dx̃
CO2(l)

)(x̃
CH4(l)

− zCH4
)+ (x̃

CO2(g)
− x̃

CO2(l)
)(dx̃

CH4(l)
−dzCH4

)
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−(dx̃
CH4(g)

−dx̃
CH4(l)

)(x̃
CO2(l)

+zCO2
)−(x̃

CH4(g)
− x̃

CH4(l)
)(dx̃

CO2(l)
+dzCO2

) (4.12)

dT2 = dx̃
CO2(l)

x̃
CH4(g)

x̃
CO2(g)

+dx̃
CH4(g)

x̃
CO2(l)

x̃
CO2(g)

−dx̃
CO2(g)

x̃
CO2(l)

x̃
CH4(g)

x̃2
CO2(g)

−dx̃
CH4(l)

(4.13)

which, in conjunction with Eq. (3.6), provides expressions for all the other derivatives,

dxij . Now we only need expressions for dx̃ij terms.

x̃ij terms are the binary mixture mass fractions which were calculated in the

previous chapter. For binary mixtures, the equilibrium mass fractions are independent

of composition, therefore it can be said that:

x̃ij = f(P , T ) (4.14)

To obtain the total derivative dx̃ij , we calculate the x̃ij terms at a range of

pressures and temperatures and use the following finite-difference stencil (note that

the chosen range of pressures and temperatures are discretised on an finely-spaced

grid of values to ensure accuracy of the finite difference approximations):

dx̃ij |
k
=
∂x̃ij
∂P

∣∣∣∣∣
k

dP +
∂x̃ij
∂T

∣∣∣∣∣
k

dT (4.15)

where:

∂x̃ij
∂P

∣∣∣∣∣
k

=
x̃ij(k+1)− x̃ij(k−1)
Pk+1−Pk−1

(4.16)

∂x̃ij
∂T

∣∣∣∣∣
k

=
x̃ij(k+1)− x̃ij(k−1)
Tk+1−Tk−1

(4.17)
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This will then form a look-up table which will be used for interpolation based on

the numerical values of pressure and temperature during the simulation.

Thus, expressions for dXij can then be obtained from Eqs. (4.7) to (4.9).

4.3 non-zero capillary pressure

For non-negligible capillary pressure, the fluid properties xij and ρij should be

calculated from the phase pressure, Pj , as opposed to the global pressure, P . An

equation of state can provide derivatives of these variables with respect to Pj . But to

obtain derivatives with respect to P , the following transformations must be applied:

∂xij
∂P

=
∂Pj
∂P

∂xij
∂Pj

(4.18)

∂ρij
∂P

=
∂Pj
∂P

∂ρij
∂Pj

(4.19)

For two phase flow systems, Eq. (2.37) reduces to

Pj = P − (−1)j(1−Sj)Pc (4.20)

where Pc = Pg−Pl is the capillary pressure.

Noting that Pc is generally expressed uniquely as a function of Sg, e.g., (Van

Genuchten, 1980) and that dSg = −dSl, differentiating Eq. (4.20) with respect to P

leads to:

∂Pj
∂P

= 1−
(
Pc+(−1)j(1−Sj)

∂Pc
∂Sg

)
∂Sg
∂P

(4.21)

Recalling Eq. (4.3) and that zi are independent of P it can be said that

1
Sg

∂Sg
∂P

= Sl

2∑
j=1

Yj
∂Pj
∂P

(4.22)
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where:

Yj = (−1)j
[

1
ρj

∂ρj
∂Pj
− 1
(zi−Xij)

∂Xij

∂Pj

]
(4.23)

from which we obtain:

∂Sg
∂P

=

 1
SgSl

+
2∑
j=1

(
Pc+(−1)j(1−Sj)

∂Pc
∂Sg

)
Yj

−1 2∑
j=1

Yj (4.24)

4.4 change of bulk density with pressure

Compressibility is defined as the change in density with respect to pressure (at

constant temperature and composition):

α
b
=

1
ρ

b

(
∂ρ

b

∂P

)
T , zi

(4.25)

From Eq.(4.1) and assuming constant porosity (dφ=0):

∂ρ
b

∂P
= φ

Np∑
j=1

ρjSj

(
αj+

1
Sj

∂Sj
∂P

)
(4.26)

dSj is given by Eq.(4.3), where because P and zi are both PDVs and therefore

independent of each other, then ∂zi
∂P = 0:

∂Sj
∂P

= SgSl

2∑
j=1

(−1)j
[
αj+

1
Xij− zi

∂Xij

∂P

]
(4.27)

recall that αj [LT2M−1] is the phase compressibility and is given by Eq. (4.4):

αj =
1
ρj

∂ρj
∂P

= ρj
Nc∑
i=1

Xij

ρij

(
αij−

1
Xij

∂Xij

∂P

)
(4.28)

where αij [LT2M−1] is the component-wise compressibility and can be obtained from

the National Institute of Standard and Technology (NIST) Web book (Lemmon,

2011) in the form of look up tables for different values of pressures and temperatures.
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The only remaining quantity in calculating α
b
, is the ∂Xij

∂P term which is given by

Eq.(4.7).

4.5 change of bulk density with temperature

Thermal expansivity is defined as the change in density with respect to temperature

(at constant pressure and composition) :

β
b
= − 1

ρ
b

(
∂ρ

b

∂T

)
P , zi

(4.29)

From Eq.(4.1) and assuming constant porosity (dφ=0):

∂ρ
b

∂T
= φ

Np∑
j=1

ρjSj

(
βj+

1
Sj

∂Sj
∂T

)
(4.30)

dSj is given by Eq.(4.3), where because T and zi are both PDVs and therefore

independent of each other, then ∂zi
∂T = 0:

∂Sj
∂T

= SgSl

2∑
j=1

(−1)j
[
βj+

1
Xij− zi

∂Xij

∂T

]
(4.31)

βj [K−1] is the phase thermal expansion coefficient and is given by Eq. (4.4):

βj = −
1
ρj

∂ρj
∂T

= ρj
Nc∑
i=1

Xij

ρij

(
βij+

1
Xij

∂Xij

∂T

)
(4.32)

where βij [K−1] is the component-wise thermal expansioncoefficient and we obtain

them from the National Institute of Standard and Technology (NIST) Web book

(Lemmon, 2011) in the form of look up tables for different values of temperature and

pressure.

The only remaining quantity in calculating β
b
, is the ∂Xij

∂T term which is given by

Eq.(4.8).
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4.6 change of bulk density with composition

The Change in fluid density with respect to composition can be stated as (at constant

pressure and temperature):

γ
bi
=

1
ρ

b

(
∂ρ

b

∂zi

)
P , T

(4.33)

From Eq.(4.1) and assuming constant porosity (dφ=0):

∂ρ
b

∂zi
= φ

Np∑
j=1

ρjSj

(
γji+

1
Sj

∂Sj
∂zi

)
(4.34)

dSj is given by Eq.(4.3):

∂Sj
∂zi

= SgSl

2∑
j=1

(−1)j
[
γji−

1
zi−Xij

(
1− ∂Xij

∂zi

)]
(4.35)

γji [-] is given by Eq. (4.4), where ρij [ML−3] is pure component densities and

therefore independent of composition i.e. ∂ρij

∂zi
= 0:

γji =
1
ρj

∂ρj
∂zi

= −ρj
Nc∑
i=1

1
ρij

∂Xij

∂zi
(4.36)

The only remaining quantity in calculating γ
bi
, is the ∂Xij

∂zi
term which is given

by Eq.(4.9).
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5

ANALYTICAL SOLUTION

This chapter briefly introduces the analytical solution by Hosseini et al. (2012) for

the three-component two-phase flow problem in the context of CO2 injection into

brine aquifers, which will be used in the next chapter to verify our numerical model.

5.1 introduction

In Chapter 2, the governing equations of multi-component multi-phase (MCMP)

flow problems were introduced and in Chapter 3 the phase equilibrium model for

ternary system of interest was discussed. Later in Chapter 4, a method of analytical

differentiation for evaluation the derivative of the bulk flow density per volume of

rock, ρ
b
[ML−3], with respect to Primary Dependant Variables (PDV) was derived.

These three chapters provide all the necessary information for building a numerical

model to simulate the gas injection problem.

However, generally, any numerical model needs to be benchmarked by experimen-

tal data or verified by an existing analytical solution for the problem it is trying to

simulate, before its results can be deemed valid for practical applications.

This chapter introduces an existing Method of Characteristics (MOC) solution

by Hosseini et al. (2012) for CO2 injection into a brine aquifer, who extended the

analytical solution of Mathias et al. (2011b) by incorporating dissolved and/or

residual CH4. In this way, the solution additionally accounts for partial miscibility of

the CO2-CH4-H2O system. This analytical solution will be used in the next chapter

to verify our numerical model.
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5.2 method of characteristics

The Method of Characteristics (MOC) is a general technique for solving hyperbolic

partial differential equations. Therefore, in the absence of diffusion/dispersion and

under the assumption of constant fluid properties, another way to solve Eq. (2.12) is

to use MOC.

The idea is to evaluate trajectories along which the mass concentrations, Gi, are

constant, such that:

dGi
dη

=
∂Gi
∂τ

dτ

dη
+
∂Gi
∂ξ

dξ

dη
= 0 (5.1)

where η is a parameter defining the characteristic paths and ξ and τ are the space

and time variables respectively. Assuming constant fluid properties, the term Hi in

Eq. (2.12) is only a function of Gi. Therefore, Eq. (2.12) can be written as:

∂Gi
∂τ

+
dHi

dGi

∂Gi
∂ξ

= 0 (5.2)

Comparing Eqs. (5.1) and (5.2) term by term, it can be understood that:

dGi
dη

= 0 (5.3)

dτ

dη
= 1 (5.4)

dξ

dη
=
dHi

dGi
(5.5)

Eqs. (5.3), (5.4) and (5.5) are known as characteristic equations and integrating

them will give the expressions for Gi, ξ and τ . In other words, τ (η) and ξ(η) are

characteristic paths (curves) along which Gi are constant.
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Since Gi is constant along the characteristic curves (with respect to parameter

η), dHi
dGi

is also constant and therefore Eqs (5.4) and (5.5) can be easily integrated,

and η eliminated to obtain relationship between τ and ξ:

ξ =
dHi

dGi
τ + ξ0 (5.6)

where ξ0 is the initial position of Gi. Eq. (5.6) is a straight line and the velocity

with which the compositions propagate on these lines is:

dξ

dτ
=
dHi

dGi
(5.7)

The velocity at which a given composition propagates is often referred to as the

"wave-velocity" of that composition. In the case of MCMP flow, the wave velocity

of the overall composition of the multiphase mixture is different from the physical

flow velocity of any of the phases. The wave velocity indicates how fast that overall

composition moves, not how fast the individual phases move (Orr, 2007, p. 45).

Under an assumption of constant fluid properties, the wave velocity can be

evaluated analytically for a compositional flow problem as follows.

5.3 evaluation of the wave velocity

Consider a two-phase three-component system governed by Eq. (2.12), in radial flow

coordinates, r:

∂

∂t

Gi︷ ︸︸ ︷
[φ(ρ1Xi1S1 +ρ2Xi2S2)]+

1
r

∂

∂r
[r

Hi︷ ︸︸ ︷
(ρ1Xi1q1 +ρ2Xi2q2)] = 0 (5.8)

Defining the cross-sectional area, A [L2]:

A= 2πrH
f

(5.9)
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where H
f
[L] is the formation thickness. Applying the fractional-flow concept

(Buckley & Leverett, 1942):

fj = A
qj
qt

(5.10)

qt = A(q1 + q2) (5.11)

thus Eq.(5.8) takes the form:

∂

∂t
[(ρ1Xi1S1 +ρ2Xi2S2)]+

1
2φπrH

f

∂

∂r
[qt(ρ1Xi1f1 +ρ2Xi2f2)] = 0 (5.12)

further, defining a mass injection rate, Minj [MT−1]:

Minj =
qinj

ρinj

(5.13)

and defining the following dimensionless variables:

qD =
qt
qinj

=
ρinjqt

Minj

(5.14)

ρ1D =
ρ1
ρinj

(5.15)

ρ2D =
ρ2
ρinj

(5.16)

where subscripts inj and D denote injection fluid properties and dimensionless

variable respectively. Then the equations reduce to:

∂GiD
∂t

+
Minj

φπH
f
ρinj

∂HiD

∂r2 = 0 (5.17)
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where:

GiD = ρ1DXi1S1 +ρ2DXi2S2 (5.18)

HiD = aiDqD (5.19)

aiD = ρ1DXi1f1 +ρ2DXi2f2 (5.20)

qD =
2πrH

f
ρinj (q1 + q2)

Minj

(5.21)

The assumption of constant fluid properties leads to phase densities (ρj) and

component mass fractions (Xij) being fixed, which in turn leads to GiD being a

function of phase saturations (Sj) only; it follows that HiD is a function of fractional

flows (fj) only. Therefore, in the absence of gravity, fractional flow is a function

of phase saturation only, which in turn leads to HiD being a function of GiD only.

Using chain-rule differentiation, Eq.(5.17) can be re-written as:

∂GiD
∂t

+
Minj

φπH
f
ρinj

dHiD

dGiD

∂GiD
∂r2 = 0 (5.22)

which leads to:
dr2

dt
=

Minj

φπH
f
ρinj

dHiD

dGiD
(5.23)

after integration:

z =
dHiD

dGiD
=
φπr2H

f
ρinj

tMinj
(5.24)
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which gives an expression for the velocity of propagation that appears in Eq.

(5.2). Furthermore, due to self similarity, Eq.(5.24) allows Eq. (5.17) to reduce to

(Hosseini et al., 2012):

z
dGiD
dz

+
dHiD

dz
= 0 , i ∈ [1,2,3] (5.25)

where in this case i= 1 denotes CO2, i= 2 denotes CH4 and i= 3 denotes H2O

components of the flow. Phase j = 1 denotes the gas phase and j = 2 denotes the

liquid phase.

5.4 a three region system

Consider pure CO2 injected into a reservoir containing H2O and residually trapped

CH4. Numerical simulations of this phenomenon predict exsolution of CH4 and its

accumulation on the edges of the CO2 plume, leading to development of a three

region system (Taggart, 2010, Oldenburg & Doughty, 2011, Battistelli & Marcolini,

2009) as is shown in Figure 4. These regions, starting from the well bore and moving

outward are: (1) a single-phase, dry-out region around the well-bore filled with pure

CO2. (2) a two-phase, two-component system containing CO2 and brine. (3) a

two-phase, two-component system containing CH4 and brine. Note that accumulation

of the CH4 bank ahead of the CO2 plume is a result of the CH4 being the lightest

component, and therefore traveling faster than CO2 in the compositional space.

The formation of this three-region system can also be explained on a ternary

diagram. Fig. 5 is a schematic of the ternary system of interest. The geometric

nature of the two-phase region is controlled by vapour-liquid equilibrium ratios

(K-values) of the individual components. The linear geometric the two-phase region

for this system is indicative of a constant K-value system(Orr, 2007).
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Figure 4: Schematic of the development of a three-region system after CO2 injection
into a mixture CH4-H2O initially in chemical equilibrium.

K-value is a measure of volatility (see chapter 3). The three components, in order

of volatility, are CH4 > CO2 > H2O. As a consequence, in this case, CO2 is the

intermediate component in terms of volatility. Furthermore, the K-value for CO2

is > 1. Consequently, it can be deduced that this is a High Volatility Intermediate

(HVI) system.
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Figure 5: Schematic of composition path in ternary diagram for CO2-CH4-H2O
system.

The MOC solution construction requires the knowledge of the solution profile a

priori. In other words, in MOC solution, we accept that the gas saturation profile

is of the form depicted in Figure 4 and thus includes three shocks. The remaining

challenge is then obtaining the location of these shocks by imposing the Rankine-

Hugoniot (mass conservation) condition through these shocks. This will be discussed

in the next section.

5.5 location of the shocks

The first shock, located at z = zT , is a trailing shock, which marks the extent of the

dry-out region within the injected CO2 plume, where all water has been evaporated.

The second shock, located at z = zL, is a leading shock, marking the extent of the

injected CO2 plume. The region zT ≤ z ≤ zL is two-phase, where CO2 and water are

in equilibrium. The final shock, located at z = zG, marks the extent of the mobilized
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CH4, which is caused by the injection of CO2. The region between zL ≤ z ≤ zG is

also two-phase, but with CH4 and H2O in equilibrium.

The idea is to impose the mass conservation statement for any one of the

components as they go through each of the shocks to find a unique value for fluid

saturations and non-dimensional flow velocities.

Integrating Eqs.(5.25) from z = 0 tp z→∞ ,

H0
1D

= G0
1D
zT +

∫ zL

zT

G1Ddz (5.26)

−H∞2D
= GG2D

(zG− zL)−G∞2D
zG (5.27)

−H∞3D
=
∫ zL

zT

G3Ddz+GG3D
(zG− zL)−G∞3D

zG (5.28)

where superscripts denote the value at different locations, in the form z= [0, zT , zL, zG, z∞],

as depicted in Figure 4.

Application of the chain rule followed by integration by parts leads to

∫ zL

zT

G1Ddz = GL1D
zL−GT1D

zT −
∫ zL

zT

zdG1D

= GL1D
zL−GT1D

zT −
∫ zL

zT

dH1D

= GL1D
zL−HL

1D
−GT1D

zT +HT
1D

(5.29)

Applying Eq(5.29) into Eq.(5.26) and similarly in Eq.(5.28) gives

H0
1D

= G0
1D
zT +GL1D

zL−HL
1D
−GT1D

zT +HT
1D

(5.30)
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−H∞3D
= GL3D

zL−HL
3D
−GT3D

zL+HT
3D

+GG3D
(zG− zL)−G∞3D

zG (5.31)

Considering the mass conservation statements for CO2 and H2O in the region

0≤ z ≤ zT , the location of the trailing front, zT , can be derived,

H0
1D
−HT

1D
= (G0

1D
−GT1D

)zT (5.32)

−HT
3D

= −GT3D
zT (5.33)

after rearrangement

zT =
H0

1D
−HT

1D

G0
1D
−GT1D

=
HT

3D

GT3D

(5.34)

To derive an expression for location of the leading front, zL, consider the mass

conservation statements for CO2, CH4, and H2O in region 0≤ z ≤ zL,

H0
1D

= G0
1D
zT +GL1D

zL−HL
1D
−GT1D

zT +HT
1D

(5.35)

−HG
2D

= GG2D
zL (5.36)

HG
3D

= GL3D
zL−HL

3D
−GT3D

zT +HT
3D
−GG3D

zG (5.37)

Rearrangement leads to,

zL =
HL

1D

GL1D

=
HG

2D

GG2D

=
HG

3D
−HL

3D

GG3D
−GL3D

(5.38)
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Finally, substituting Eqs.(5.34) and (5.38) in Eq.(5.28) and Eq.(5.31) yields the

location of the gas bank front,

zG =
HG

2D
−H∞2D

GG2D
−G∞2D

=
HG

3D
−H∞3D

GG3D
−G∞3D

(5.39)

In each region, fluids are in equilibrium. Under such conditions, qD is piecewise

constant and can be defined by,

qD =


qD1

, 0≤ z < zT

qD2
, zT ≤ z ≤ zL

qD3
, z > zL

(5.40)

From Eqs.(5.34) and (5.38), by replacing the H and G terms by their definition,

it can be shown that
qD1

a0
1D
− qD2

aT1D

G0
1D
−GT1D

=
qD1

aT3D

GT3D

(5.41)

qD2
aL1D

GL1D

=
qD3

aG2D

GG2D

=
qD3

aG2D
− qD2

aL3D

GG3D
−GL3D

(5.42)

which on solving for qD2
and qD3

, leads to

qD2
= qD1

[
a0

1D
GT2D

aT3D
(G0

1D
−GT1D

)+aT1D
GT3D

]
(5.43)

qD3
=
qD2

aL1D
GG2D

aG2D
GL1D

= qD2

[
aL1D

(GG3D
−GL3D

)+aL3D
GL1D

aG3D
GL1D

]
(5.44)

Note that in the single-phase, dry-out region (0 ≤ z ≤ zT ), since there is no

component transfer between phases, volumetric flow rate is unchanged from that at

the injection point. Therefore, qD1
= 1 (Hosseini et al., 2012).
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The region where the phase fractional flow, defined by Eq. (5.10), is a differentiable

function of phase saturation, Sj , is called the spreading wave (Orr, 2007). Within

the spreading wave, from Eq.(5.25), it can be shown that

z = qD

df1
dS1

(5.45)

from which it follows

zL = qD2

df1
dS1

∣∣∣∣S1=SL
1

(5.46)

zT = qD2

df1
dS1

∣∣∣∣S1=ST
1

(5.47)

Note that qD2
and qD3

need to be estimated iteratively, except for the special

case in which the injection composition is free of H2O and CH4 and the initial

brine aquifer composition is free of CO2 (Hosseini et al., 2012). In this study, it

is assumed that the injection fluid is free of water and CH4 and that the brine

aquifer is initially free of CO2. Also, the volumetric saturation of precipitated salt is

neglected(Zeidouni, 2009). As a result,

G0
1D

= a0
1D

= 1 (5.48)

G0
3D

= a0
3D

= G0
2D

= a0
2D

= G∞1D
= a∞1D

= 0 (5.49)

Therefore, ST1 can be calculated directly from Eq.(5.34) without the knowledge of

qD2
and then qD2

can be calculated from Eq.(5.43). Similarly, SL1 can be calculated

form Eq.(5.38)without the knowledge of qD3
and then qD3

can be calculated from

Eq.(5.44). SG1 should then have value to satisfy Eq.(5.43) and ,

aG3D
GG2D
−aG2D

GG3D

aG2D

=
aL3D

GL1D
−aL1D

GL3D

aL1D

(5.50)
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By iterating between Eqs.(5.44) and (5.50), SG1 can be found, from which, and

using Eq.(5.39), zG can be calculated.

5.6 fractional flow

Substituting Eq.(2.19) in Eq.(5.10) and assuming Corey type relative permeability

curves given by Eq.(2.21), it leads to (Hosseini et al., 2012),

f1 =

1+
µ1kr20

µ2kr10

(
S2−S2c

1−S1c−S2c

)n2( S1−S1c

1−S1c−S2c

)−n1
−1

(5.51)

and differentiating Eq.(5.51) yields(Hosseini et al., 2012)

df1
dS1

= f1f2

[
n1(S2−S2c)+n2(S1−S1c)

(S1−S1c)(1−S1c−S2c)

]
(5.52)

5.7 pressure distribution

To obtain an equation for pressure, we return to Darcy’s law for total fluid flow rate

qt = q1 + q2 = −k
(
kr1

µ1
+
kr2

µ2

)−1
dP

dr
(5.53)

Applying the similarity transform, z, along with the qD identity, and then

rearranging leads to

dP

dz
= − Minj

4πhkρinj

(
kr1

µ1
+
kr2

µ2

)−1
qD

z
(5.54)
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From our knowledge of the shock fronts, it can then be said that (Hosseini et al.,

2012)

dP

dz
= − Minj

4πhkρinj



µinjqD1
kr10

z , 0≤ z < zT(
kr1
µc

+
kr2
µw

)−1 qD2
z , zT ≤ z ≤ zL(

kr1
µm

+
kr2
µw

)−1 qD3
z , zL < z ≤ zG

µwqD3
kr20

z , z > zG

(5.55)

where µc, µm and µw are the dynamic viscosities of CO2, CH4 and H2O respec-

tively. Integrating with respect to z,

P−P0 =
Minj

4πhkρinj



µinj

kr10
ln
(
zT
z

)
+µcqD2

F3(zT )+µmqD3
F2(zL)+

µwqD3
kr20

F1(zG) , 0≤ z < zT

µcqD2
F3(z)+µmqD3

F2(zL)+
µwqD3
kr20

F1(zG) , zT ≤ z ≤ zL

µmqD3
F2(z)+

µwqD3
kr20

F1(zG) , zL < z ≤ zG
µwqD3
kr20

F1(zG) , z > zG

(5.56)

where P0 is the initial pressure of the reservoir. Following Mathias et al. (2009,

2011a,b), it can be shown that for a circular, closed reservoir of radial extent, rE ,

F1(z) =


E1(αz) , zE >

0.5615
α

1
αzE
− 3

2 ln
(
zE
z

)
+ z−zG

zE
, zE ≤ 0.5615

α

(5.57)

F2(z) =
1
µm

[
kr2

µw
+
kr1

µm

]−1

S1=SG
1

ln
(
zG
z

)
(5.58)

F3(z) = −
1
µc

∫ zL

z

(
kr2

µw
+
kr1

µc

)−1 1
z
dz (5.59)

where

α=
µwMinj(cr+S∞2 cw+S∞1 cm)

4πhkρinj
(5.60)
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E1 is the first-order exponential integral function; cr , cw, and cm are rock, water,

and methane compressibilities, respectively; and S∞1 is the initial gas saturation in

the brine aquifer. And S∞2 = 1−S∞1 .
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6

NUMERICAL SOLUTION USING METHOD OF LINES (MOL)

This chapter describes our numerical model that was developed to solve the two-

phase three-component flow problem, in the context of CO2 injection into a reservoir

initially only containing CH4+H2O. The numerical model is based on the so called

Method of Lines (MOL) approach in which all but one dimension are discretised and

the resulting system of ODEs are solved using an ODE-solver of choice; in this case

MATLAB’s ode-solver ode15s.

6.1 introduction

Simulation of multi-component multi-phase (MCMP) flow in porous media typically

involves solving a coupled set of conservation equations for each component as

were derived in Chapter 2. In the absence of diffusion and capillary pressure, this

problem is governed by a set of coupled hyperbolic and parabolic transport equations.

Hyperbolic equations frequently give rise to the formation of shocks, leading to

difficulties with regard to obtaining accurate solutions. Problems associated with one

dimensional transport of incompressible fluids, in the absence of capillary pressure and

under isothermal conditions, can be solved exactly using the method of characteristics

(see Chapter 5). However, even under these restricting conditions, great care must be

taken when considering non-zero initial conditions and non-unity boundary conditions

(for example, see Section 4.3 of Orr (2007)).

Alternative techniques involve the application of approximate methods. The

spatial dimension is typically treated using conservative methods such as finite
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volume (Chen et al., 2006). Alternatively, one can consider the use of finite elements

(Chen et al., 2006) or pseudo-spectral methods (Mathias et al., 2006). Such spatial

schemes give rise to either stability problems or numerical diffusion due to truncation

terms associated with the Taylor’s expansion, the latter of which can be reduced

using flux limiters or their variants (e.g. Mallison et al., 2005).

Handling of the temporal term, which is critical to resolving the non-linear nature

of the problem, generally revolves around the choice of explicit or implicit treatment.

Fully explicit treatment, although easier to implement, can run into severe time-step

limitations due to the well known CFL (Courant - Friedrichs - Lewy) condition.

Fully implicit treatment leads to an unconditionally stable solution (as far as time-

stepping is concerned), but leads to additional numerical diffusion. Furthermore,

implementation of the solution is significantly more challenging.

Popular approaches for solving MCMP problems in this context are the so-called

semi-implicit methods, the most common variant of which is referred to as ImPES

(Implicit Pressure Explicit Saturation) (Chen et al., 2006) or ImPEM (Implicit

Pressure Explicit Mass). In ImPES, the governing equations are rearranged to

identify a transport equation of hyperbolic nature (or nearly hyperbolic depending on

whether or not capillarity is included) and a pressure equation of parabolic or elliptic

character. The pressure equation is solved implicitly which allows for larger time-

steps. The transport equation is solved explicitly, allowing easier implementation

and reduced computational memory requirements; hence the semi-implicitness. Both

the implicit and explicit time-stepping typically employ simple first-order schemes.

Multi-step-multi-order time integration algorithms (Shampine et al., 1997) rep-

resent an alternative method, which treats the temporal term in a more accurate

fashion. These techniques maintain a specific time integration error while maximiz-

ing the time-step size. Moreover, due to the wide availability (e.g. MATLAB or

FORTRAN with NAG) of high quality solvers and simplicity of implementation,

there is no need to redevelop the sophisticated time-integration algorithms. Rather,
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the so-called method of lines (MOL) approach can be taken. In this case, the

partial differential equations (PDEs) are discretised in space to form a set of coupled

Ordinary Differential Equations (ODEs) (Wouwer et al., 2005). These can then be

solved simultaneously using any ODE solver of choice.

For two-phase immiscible flow, where one of the phases is treated as inviscid, the

MCMP problem reduces to a single PDE often referred to as Richards’ equation

(RE). This equation is commonly solved to better understand hydrological problems

associated with unsaturated soils. Indeed, there are many recent articles (Mathias et

al., 2006, 2008, Ireson, 2009) reporting MOL solutions of RE using the MATLAB ODE

solver, ODE15s, which is particularly suitable for stiff systems of ODEs (Shampine

et al., 1997). ODE15s has also been found to provide useful solutions to non-Darcian

flow problems (Mathias et al., 2008, Wen et al., 2009) and two-phase immiscible flow

problems (Mathias et al., 2009).

The focus of this thesis, however, has not been on comparing the performance

of ODE solvers against other time integration methods such as IMPES, rather to

provide a platform from which compositional flow problems can be solved with

accuracy and stability, taking advantage of the existing libraries of ODE solvers

available to public.

Thus, this chapter describes the details of numerical solution of two-phase three-

component problem using MATLAB’s ODE15s. In short, the system of PDEs

describing our PDVs (derived in Chapter 2) will be solved. In each time step an

equilibrium calculation will be perform using the model developed in Chapter 3.

Furthermore, analytical technique of evaluation of the partial derivatives (Chapter

4) is applied for robustness and improved efficiency and accuracy.

A version of this chapter is presented in the following article:

Goudarzi S., Mathias S.A. & Gluyas J.G. (2016). Simulation of three-component

two-phase flow in porous media using method of lines. Transport in Porous Media,

112(1), 1-19.
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6.2 matlab’s ode suite

MATLAB’s ODE suite consists of five user-friendly solvers that solve initial value

problems governed by first-order systems of Ordinary Differential Equations (ODEs).

Consider, for instance, the following system of N number of PDEs:

∂ψ

∂t
+∇·F = 0 (6.1)

where

ψ = [ψ1,ψ2, ...,ψN ]T (6.2)

F = [F1(ψ),F2(ψ), ...,FN (ψ)]T (6.3)

with initial condition:

ψ = ψ0 , t= 0 (6.4)

This system of PDEs can be converted to a system of ODEs such that:

∂ψ

∂t
= D (6.5)

where

D = J∇·ψ (6.6)

and is often approximated numerically using one of many possible discretisation

schemes. The jacobian matrix J is defined as:

J =
∂F
∂ψ

(6.7)

A variety of numerical methods can then be used to solve Eq.(6.5), but they all

fall into two general categories: Implicit and Explicit (or a combination of these).
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The simplest explicit method is the one-step forward Euler method:

ψn+1 = ψn+∆tDn (6.8)

where ∆t is the time step size and ψn is the numerical solution at current time step,

n. The simplest implicit method is the one-step backward Euler method:

ψn+1 = ψn+∆tDn+1 (6.9)

Eq. (6.9) is often solved using Newton’s method or its variants.

Although very simple, one-step forward and backward Euler’s methods are not

very accurate and may require very small time-steps to maintain stability throughout

the simulation. More accurate methods have been derived from Euler’s method in

two streams (Ashino, 2000):

• Linear multi-step methods: linearly combine values of ψn−1, ψn, ψn+1, ...,

and Dn−1, Dn, Dn+1, ..., to obtain higher accuracy. The downside is that

the method is no longer in one-step format, which makes it harder to change

the time step during simulation and in accordance with stability/accuracy

requirement of the system ODEs being solved.

• Runge-Kutta methods: nonlinearly combine values of ψn−1, ψn, ψn+1, ..., and

Dn−1, Dn, Dn+1, ..., to obtain higher accuracy. Although the one-step format

is maintained for ease of time-step change, but at the cost of sacrificing the

linearity of the equations.

6.2.1 Phenomenon of stiffness

As soon as one deals with more than one first-order differential equation, the possibility

of a stiff set of equations arises. Stiffness typically occurs in problems where there
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are more than one different scales of dependencies on the independent-variable,

e.g. space, time, etc. Consider the following set of equations where time (t) is the

independent variable and u and v are the PDVs (Press, 2007, p. 931):


∂u
∂t = 998 u(t)+ 1998 v(t)
∂v
∂t = −999 u(t)−1999 v(t)

(6.10)

with initial conditions:

u(0) = 1 , v(0) = 0 (6.11)

The set of ODEs can be solved using variable substitution and has the exact solution:


u= 2e−t− e−1000t

v = −e−t+ e−1000t
(6.12)

which has a slow decaying part and a fast decaying part. Von Neumann stability

analysis reveals that, in integrating Eq.(6.10) using conventional Euler’s methods,

the presence of the e−1000t term requires a step-size ∆t� 1
1000 for the method to be

stable, which will result in prolonged simulation times. This is despite the fact that

the e−1000t term becomes completely insignificant in determining the values of u and

v as soon as the solution moves away from t= 0.

In the case of MCMP problem, where we solve for pressure (P ), temperature (T )

and mass fractions (zCO2
and zCH4

), the stiffness primarily stems from co-existence

of fast moving pressure-waves and slow moving composition and temperature fronts.

Pressure-wave propagation-velocity is mainly controlled by the compressibility of the

rock and fluids e.g. sound waves propagate with infinite velocity in an incompressible

medium. This is often the reason why numerical simulation of complex incompressible

(or nearly incompressible) flows is much more challenging.

In MATLAB’s ODE suite, ode45, ode23 and ode113 are not suitable for solving

stiff problems. In contrast, ode23s and ode15s have been specifically designed to
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solve stiff problems. In this study we choose to use Ode15s, which is introduced in

some detail below.

6.2.2 Ode15s for stiff problems

Ode15s is a multi-step multi-order (from 1st to 5th order accurate in time) stiff

solver which uses the so-called Numerical Differentiation Formulas (NDFs). NDFs

are a modified version of Backward Differentiation Formulae (BDFs) associated with

Gear’s method (Shampine et al., 1997). When using ode15s, the user is given the

option of choosing between NDF or BDF methods. In our simulation we used the

default setting to use the NDF, as they are said to be more efficient than BDF in

the MATLAB’s user manual.

6.2.3 Time-step size properties

Ode15s uses a variable time-stepping scheme which changes the step-size according

to stability and accuracy requirement/specification of the problem being solved. It

is possible to specify the size of the first step the solver tries, to potentially help it

to better recognise the scale of the physical problem. Also, the user has the option

of specifying an upper bound on the size of the time step if necessary (recommended

by MATLAB for periodic solutions). In our simulation, we did not use any of these

options.

6.2.4 Error control properties

The user can specify Relative and Absolute tolerance values when using ode15s,

which are used by the solver as the convergence criteria in each time step.
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RelTol : is a measure of the error relative to the size of each solution component.

AbsTol : is a threshold below which the value of the solution component is essentially

insignificant to MATLAB.

In each time step the solver estimates the error e of each component k of the

solution vector and uses the following criteria to decide whether the solution has

converged or the time step needs to be reduced further:

en(k) ≤max
[
RelTol×|ψn

k
| , AbsTol

]
(6.13)

The default values of RelTol= 10−3 and AbsTol= 10−6 were used in our simulations.

6.2.5 Jaobian matrix properties

In problems dealing with constant coefficient PDEs, the Jacobian matrix, J, is also

constant and does not change as the solution evolves in time. It is possible to provide

the ode-solver with a pre-calculated J to significantly reduce computational time. If

no information is provided with regard to the Jacobian matrix, MATLAB will use

finite difference to numerically evaluate Eq. (6.7) at every time step. In the case of

MCMP problems, the coefficients of the PDEs are not constant, and therefore the

Jacobian matrix needs to be evaluated at each time step.

However, it is well-known that when applying finite volume to discretise systems of

PDEs, J will be sparse. Depending on the discretisation scheme used (e.g. one-sided,

central, two points, three points, ...), the sparsity pattern of J can be known.

In MATLAB the user is given the option of providing a sparsity pattern (JPat)

for the Jacobian matrix, which is essentially a matrix of zeros and ones. The solver

will numerically evaluate the components of J where JPat= 1 and skips the Jacobian

evaluations wherever JPat= 0. This can dramatically reduce computational time.

This option was exploited in our simulations. More details regarding the Jacobian
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pattern of our model will be provided later on in Section 6.5.1, after the finite volume

discretisation scheme is discussed.

6.3 the riemann problem

Consider again the PDE in Eq. (6.1) and assume that it is discretised onto a blocked

centered grid as illustrated in Figure 6. Note that the cells do not necessarily have

the same size.

Figure 6: Schematic of the block centered gird.

Let r
k
be the distance of the cell-k’s centre from a reference point and l

k
be the

length of the cell k:

l
k
= r

k+ 1
2
− r

k− 1
2

(6.14)

Integrating Eq. (6.1) over the interval [r
k− 1

2
,r

k+ 1
2
] and dividing by l

k
:

∂

∂t

 1
l
k

r
k+ 1

2∫
r

k− 1
2

ψdr

+
1
l
k


r

k+ 1
2∫

r
k− 1

2

∂

∂r
F (ψ)dr

= 0 (6.15)

which gives:

∂ψ̄
k

∂t
+

1
l
k

[
F

k+ 1
2
−F

k− 1
2

]
= 0 (6.16)
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where:

F
k± 1

2
= F (ψ(r

k± 1
2
)) (6.17)

and ψ̄
k
, the cell-k’s average value is given by:

ψ̄
k
=

1
l
k

r
k+ 1

2∫
r

k− 1
2

ψdr (6.18)

Note that Eq. (6.16) is still exact, i.e., no approximation has been introduced at this

stage.

At the interface between adjacent numerical cells, the cell-averaged quantity

ψ̄k manifests a jump and has two values, thus generating a sequence of a so-called

local Riemann problem (see Figure 7). For this reason, generally a Reimann-solver

is required to evaluate the flux at the midpoints rk± 1
2
. Godunov’s method is one

example of such a scheme which will be described further in the next sub-subsection.

Figure 7: Schematic representation of a piece-wise constant distribution of ψ, giving
rise to a sequence of local Riemann problems at the interface between adjacent cells.
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Figure 8: Propagation of a wave in the positive r direction. Sketch shows the flow
field at a given instant of time.

6.3.1 Godunov’s method

Assume that Eq. (6.1) represents a propagating wave as shown, for a fixed moment

in time, in Figure 8. The velocity upstream of the wave is vL and downstream of it

is vR . We are trying to evaluate the flux function, F , given by Eq. (6.21), at the cell

interface r
k+ 1

2
.

As was discussed in the previous section, due to the local Riemann problem, two

possible values for variable ψ can be chosen at each interface r
k+ 1

2
:

ψ
k+ 1

2
=


ψ̄

k

ψ̄
k+1

(6.19)

However, due to the direction of propagation of the wave, point r
k+1 has not yet

felt the perturbation caused by the moving front, and thus approximating the flux

using the values at this point will ignore the existence of the propagating wave all

together. For this reason the flux at the interface should be approximated using ψ̄
k
.

However, if the wave velocity, v, was towards the negative r direction (i.e. to the

66



left) then it would make sense to approximate the flux using ψ̄
k+1 . Therefore, it can

be concluded that:

F
k+ 1

2
=


F (ψ̄

k
) , v > 0

F (ψ̄
k+1) , v ≤ 0

(6.20)

Note that if v = 0, either of the approximations would be valid as there is no

specific direction of propagation. Thus, inclusion of the equal sign in either of the

approximations becomes arbitrary. The idea of calculating F
k± 1

2
using Eq. (6.20) is

often referred to as Godunov’s scheme (LeVeque, 1992, p.136).

6.3.2 Godunov-type scheme

The flux function in the PDE, Eq. (6.1), can be assumed to take the form:

F (ψ) = χ(ψ)
∂

∂r
ξ(ψ) (6.21)

such that variable ξ is smooth for all values of ψ and χ is a discontinuous (and often

nonlinear) function of ψ, in a such a way that it has different values on the left and

right hand side of the discontinuity :

χ(ψ) =


χL , ψ > ψ∗

χR , ψ < ψ∗
(6.22)

The reason for assuming this type of flux is that it directly relates to the MCMP

problem of interest. In porous media flow systems, fluxes of this kind occur due to

combinations of the mass conservation principle and Darcy’s Law, where the relative

permeability curves (e.g. Eq. (2.21)) are discontinuous and nonlinear functions of

fluid saturations. This type flux functions can be observed in our governing equations

Eqs. (2.17) (2.12) and (2.32).
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It is worth mentioning that, the PDE in Eq.(6.1) is in the so called "conservative"

form. Its non-conservative equivalent is:

∂ψ

∂t
+
∂χ

∂r

∂ξ

∂r
+χ

∂2ξ

∂r2 = 0 (6.23)

The use of the conservative form of the equations (LeVeque, 1992, p. 124) is partic-

ularly important when dealing with problems involving shocks or other discontinuities

in the solution. A well known example is provided by Burgers’ equation with discon-

tinuous initial data, where the non-conservative representation fails dramatically in

providing the correct solution (LeVeque, 1992, p. 34).

Therefore, flux function in kept at its conservative form. Note that for the

approximation of the ∂
∂rξ(ψ)

∣∣∣
k+ 1

2

term, ξ is a smooth for all values of ψ, therefore

its derivatives are defined everywhere in the domain, meaning that its Taylor series

expansion is valid at all locations. Hence, evaluation of this derivative can be carried

out regardless of the upwind direction and purely from its Taylor series expansion.

This is as opposed to the χ term, which bears a discontinuity and its Taylor series is

valid on either side but not at the discontinuity; hence its requirement for upwinding.

Thus the summary of our upwind scheme is as follows.

6.3.3 Summary of the upwind scheme

To summarise, the Godunov-type upwind scheme for evaluating the flux of the form

F (ψ) = χ(ψ) ∂∂rξ(ψ), is:

F
k+ 1

2
=

[
vuχu

k+ 1
2
+ vdχd

k+ 1
2

]
∂ξ

∂r

∣∣∣∣∣
k+ 1

2

(6.24)
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where ∂ξ
∂r

∣∣∣
k+ 1

2
is given by Eq. (??). χu

k+ 1
2
and χd

k+ 1
2
are given by Eqs. (??) and

(??) respectively. vu and vd are given by:

vu =

(
v+ |v|
2v+ ε

)
, vd =

(
v−|v|+ ε

2v+ ε

)
(6.25)

v is the flow velocity and ε= 10−16 is the machine precision.

This scheme is of, at least, O(l2
k
) accuracy, subject to conditions Eqs. (??) (??) and

(??).

6.4 conceptual model

Our conceptual model consists of a fully penetrating well of radius rW [L] situated

at the center of a 2D, radially-symmetric reservoir of radial extent rE [L], and

formation thickness Hf [L]. The reservoir is surrounded by low permeability layers

representing the cap rock. The system is initially filled with H2O saturated with CH4,

at complete dynamic/thermodynamic equilibrium (Figure 9). CO2 is then injected

at a constant rate M0 [LT−1] for a period of time t [T]. The aim is to investigate,

using numerical simulation, the thermal, pressure and compositional effects that

develop as a consequence of injection of CO2.
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Figure 9: Schematic of our conceptual model.

6.5 numerical grid

Since the system contains an injection well, in the horizontal direction,one would

intuitively choose a numerical grid that is clustered more closely around the well,

to capture the sharper flow gradients in this area, without having to refine the grid

in the entire domain. We chose to use a logarithmically-spaced grid, which is also

consistent with the fact that the flow being modelled is radial. The 1D numerical

grid in the horizontal direction, from well-radius rW to radial-extent rE , is given by:

r
k− 1

2
= rW e

(k−1)θ , k = 1,2, ...,Nr+ 1 (6.26)

where r
k− 1

2
define the locations of the cell boundaries (see Figure 6), Nr is the number

of cells and θ is given by:

θ =
1
Nr

ln
(
rE

rW

)
(6.27)

70



The locations of the cell centers are then given by:

r
k
=

1
2

(
r

k+ 1
2
+ r

k− 1
2

)
(6.28)

6.5.1 Jacobian pattern based on discretisation scheme

Recall the definition of the Jacobian matrix from Eq. (6.7). Here, N (number of

PDEs) could represent the number of discretised system of equations (i.e. number

grid cells). In this context, by virtue of discretised equations, ψ
k
(and therefore

F
k
) values could be mutually dependent on one another; for instance, conventional

second-order finite volume approximation to the flux function F at cell k, will depend

on three values, namely on cells k−1, k and k+ 1. Meaning that at any given time,

the values of F will be unaffected by the perturbations outside of the range [k−1, k,

k+ 1] and therefore:

J =
∂F

k

∂ψj

= 0 , k−1> j > k+ 1

In this case, J will have dimensions N ×N and is zero everywhere except at

the three main diagonals of the matrix, giving rise to the well-known tridiagonal

structure. In the case of three-component two-phase problem however, on the one

hand, four PDVs (pressure, temperature and two out of three of the mass fractions)

are solved simultaneously on N number of cells such that:

PDV =



P

T

z1

z2


(6.29)
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where:

P = [P1,P2, ...,PN ]T (6.30)

T = [T1,T2, ...,TN ]T (6.31)

z1 = [z1(1),z1(2), ...,z1(N)]
T (6.32)

z2 = [z2(1),z2(2), ...,z2(N)]
T (6.33)

On the other hand, due to the discretisation scheme used (see Eq. (6.24)) to

evaluate the flux F
k± 1

2
, the range of dependency is [k− 1, k, k+ 1] and thus, the

Jacobian matrix will take the from of block-tri-diagonal with dimensions 4N ×4N

(see Figure 10).

This Jacobian pattern was given as an input to the ode-solver at the start of the

simulation for reduced simulation time, as was mentioned Section 6.2.5.
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nz = 448

P

T

z1

z2

P T z1 z2

Figure 10: Block-tri-diagonal Jacobian pattern for the sparse system for N=10 cells
and 4 PDVs (nz:number of nonzero elements represented by dots).
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6.6 initial and boundary conditions

For three-component (Nc = 3) two-phase (Np = 2) gas injection problem, the initial

and boundary conditions are as follows:

zCO2
= 0, rW ≤ r ≤ rE , t= 0

S1 = S10 , rW ≤ r ≤ rE , t= 0

P = P0, rW ≤ r ≤ rE , t= 0

T = T0, rW ≤ r ≤ rE , t= 0

T = T0, r = rW , t > 0

T = T0, r = rE , t > 0

HCO2
=M0/(2πrWHf

), r = rW , t > 0

HCH4
= 0, r = rW , t > 0

HH2O = 0, r = rW , t > 0

HCO2
= 0, r = rE , t > 0

HCH4
= 0, r = rE , t > 0

HH2O = 0, r = rE , t > 0

(6.34)

6.7 model verification

6.7.1 Comparison to an analytical solution

To be able to compare the numerical results with the analytical solution (described

in Chapter 5), which is valid for constant temperature, here numerical simulation

results will be first presented in the context of injection into the water-leg of a

reservoir at constant temperature, and for two different cases of deep and shallow

reservoirs. The effects of temperature will be shown in a separate section later on.

The parameters used in this simulation are listed in Table 1.
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Parameter (unit) Deep Shallow
P0, initial pressure (MPa) 32 10
T , temperature (oC) 85 45
M0, injection rate (kg/s) 10 10
rW , well radius (m) 0.25 0.25
rE , radial extent (m) 20×103 20× 103

φ, porosity (-) 0.2 0.2
k, permeability (m2) 10−13 10−13

H
f
, formation thickness (m) 100 100

kr10 , gas end-point relative permeability (-) 0.3 0.3
kr20 , liquid end-point relative permeability (-) 1 1
n1, gas relative permeability exponent (-) 2 2
n2, liquid relative permeability exponent (-) 2 2
S1c , critical gas saturation (-) 0.1 0.1
S2c , critical liquid saturation (-) 0.3 0.3

Table 1: Model parameters used for verification of the numerical simulation.

Figure 11 shows gas saturation profiles for CO2 injection into shallow (Figures

11a and 11b) and deep (Figures 11c and 11d) reservoirs with 10% residual CH4,

during a simulation period of 1000 days with a constant mass injection rate of 10

(kg/s) which is equivalent to 0.315 Mt/year. The solid and the dashed lines represent

results from the analytical and numerical solutions, respectively.

The high gas saturation around the injection well, often referred to as the dry-

out zone (Mathias et al., 2011a), is due to the vaporization of the residual water

saturation by the injected CO2. A CH4 bank with about 23% gas saturation in front

of the CO2 plume develops. The length of the CH4 bank increases with time (note

the logarithmic scale of the plots). Correspondence between the analytical solution

and the numerical solution is very good for both gas phase saturation and pressure

build-up. The numerical solution is seen to accurately locate the associated shock

fronts while considering the partial miscibility of both CO2 and CH4 in H2O.

Similar simulations but with different initial gas saturations are compared in

Figure 12. It is found that the extent of the dry-out region is insensitive to the initial

gas saturation. The extent of the dry-out region is smaller for the shallow reservoir

and the volume of the gas plume is larger. The reduced dry-out region, in this case,
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Figure 11: a) Com-
parison of gas
saturation profiles
between the analyt-
ical and numerical
simulation of CO2
injection into a deep
reservoir with ini-
tial gas saturation,
S10 = 0.1, after 10,
100 and 1,000 days.
b) Corresponding
pressure profiles
for deep reservoir.
c) Gas saturation
profiles for a shal-
low reservoir. d)
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A total of 600
cells were used
for the numerical
simulation.
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is due to the reduced evaporation that occurs at cooler temperatures. The increased

gas volume is due to the reduced gas density that occurs at lower pressures. Again it

can be seen that the numerical solution is able to accurately predict the analytical

results of Hosseini et al. (2012).

As is shown in Figures 11 and 12, numerical simulations of CO2 injection into

a reservoir containing CH4 predict the accumulation of a CH4 bank at the head of

the CO2 plume (Oldenburg & Doughty, 2011, Battistelli & Marcolini, 2009, Taggart,

2010). The system in discussion can be differentiated into three regions (Hosseini et

al., 2012). These regions, starting from the injection point and moving outward, are:

1. a single-phase, dry-out region around the well-bore filled with pure CO2.

2. a two-phase, two-component system containing CO2 and H2O.

3. a two-phase, two-component system containing CH4 and H2O.

Within the two-phase mixture, each phase propagates at a rate according to

its mobility. The mobility of each phase varies from one region to another due to

associated compositional changes. As a consequence, a trailing shock forms at the

contact between regions (1) and (2) and a leading shock forms at the contact between

regions (2) and (3).

The development of the CH4 bank ahead of the CO2 has been explained as

follows (Taggart, 2010, Oldenburg & Doughty, 2011, Hosseini et al., 2012): as CO2

is injected, it partitions into the gas phase and the aqueous phase. The initially

dissolved CH4 exsolves immediately, and is then pushed ahead of the growing CO2

plume leading to the development of a CH4 bank (Oldenburg & Doughty, 2011).

Mathematically, the system is constrained to constantly enter and leave the two

phase region along the tie-lines representing the injection and initial compositions,

therefore the leading CH4 bank is free from injected gas, CO2 (Taggart, 2010).

Intuitively, it is expected that the amount of CH4 initially present should affect

the methane bank saturation i.e. the more the initial CH4 saturation, the higher the
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T:Trailing Shock, L:Leading Shock, G:Gas Bank, I:Initial.

bank saturation. However, numerical simulation of CO2 injection for different initial

gas saturations (everything else being the same), show that the bank saturation is

independent of the initial CH4 saturation (see Figures 12 and 14). In fact, Hosseini

et al. (2012) showed mathematically that the CH4 bank saturation is independent of

the initial gas saturation.

This can be further explained using the principles of fractional flow theory (Pope ,

1980, Orr, 2007); because of the differences in phase viscosities in the two phase region

(i.e. between mixtures of CO2-H2O and CH4-H2O), flow occurs on different fractional

flow curves in the two phase region. Figures 14a, c and e show the fractional flow

curves (plots of Hi/ρi1 against Gi/ρi1) for CO2 and CH4 along with the locations

of the shock fronts for different initial gas saturations.

The partial derivative ∂Hi/∂Gi represents the wave-velocity 1 of the system. The

wave-velocities of the shock fronts are found from the gradients of straight lines that

link the two conditions on either side of the shock. Fractional flow theory dictates

that valid solutions should satisfy both the velocity constraint and the so-called

entropy constraint (Orr, 2007, p. 51). The velocity constraint implies that wave

velocity should always decrease with increasing distance from the injection boundary.
1 Introduced in Sections 5.2 and 5.3.
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The entropy constraint implies that the wave-velocity should be equal to the gradient

of the fractional flow curve immediately upstream of the shock.

Therefore, on the one hand, due to the zero initial condition for G1, the only

valid path on the CO2 fractional flow curve is a tangent (i.e., (0,0) to L). On the

other hand, velocities must be equal at the contact between a pair of different fluids

(Pope , 1980) (i.e. points G and L in Figure 13). This means that the gas bank

saturation (point G) is dictated by the intersection of the tangent to the CO2 curve

with the CH4 curve.

Figures 14b, d and f show the corresponding saturation profiles for different

initial gas saturations. The level of saturation at point G is always determined by

the tangent from (0,0) to point L. Physically, this implies that the bank saturation

is only dependent on how fast the injected gas propagates. The solid and dashed

lines in Figures 14b, d and f are from the analytical solution and numerical solution,

respectively. There is an excellent correspondence between the two. The analytical

solution was developed on the basis of the fractional theory described above. The

numerical solution therefore further confirms the finding of Hosseini et al. (2012),

that the CH4 bank saturation is independent of the initial gas saturation.

6.7.2 Grid convergence test

The exact mass of injected CO2 over the period of injection can be calculated using:

m=M0t (6.35)

The mass in the domain can be calculated numerically using the following integral

at a fixed time:

m̄= 2πH
f

rE∫
rW

rGCO2
dr (6.36)
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Figure 14: Illustration of CH4 bank saturation independence of initial CH4 mass
fraction for the deep reservoir scenario after 1000 days of injection (with parameters
as set in Table 1): a) and b) S1I < S1G , c) and d) S1I = S1G , e) and f) S1I > S1G .
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It follows that the domain mass imbalance can be expressed using the following,

to give an indication of mass conservativeness of the model:

Error =
m̄−m
m

×100 (6.37)

Mass error was monitored for each time. The mass error increases with time as

is shown in Figure 15, however, as the grid is refined this error seems to converge to

an acceptable value for all times. This is the reason why Nr = 600 cells was used in

the numerical simulations in this chapter.
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Figure 15: Percentage mass imbalance of CO2 in the domain against the number of
cells, Nr, at different times t=[10, 100,1000] days.

6.8 effects of temperature

Non-isothermal numerical simulations for injection into the water-leg of a shallow and

deep reservoir were carried out using the parameters in Table 1 with constant injection

temperature equal to initial reservoir temperature. Figure 16 shows temperature

distributions at different times for both cases of shallow and deep reservoirs. The

saturation and pressure profiles were identical to the isothermal cases (Figure 11)

and therefore are not shown here.
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Note that the thermal front is generally behind the CO2 plume as a result of

heat retardation associated with the high specific heat capacity of the host rock and

resident water. In both cases, near the injection point, temperature declines with

increasing distance and some distance away it recovers back to its initial value. The

temperature decline occurs due to the expansion of the CO2 as it migrates away

from the injection well and experiences continuously decreasing pressures.

Given the magnitude of the temperature change (<1 oC) in both cases, it can

be understood why the isothermal and non-isothermal pressure and gas saturation

profiles were identical. It can therefore be concluded that for this pressure range (>

10 MPa) the temperature effects are negligible.

6.9 effects of gravity

All the numerical simulations so far have been in 1D radial coordinate. However, to

investigate the significance of gravity in this context, a 2D radial model was developed.

Figure 17 is a schematic of the 2D numerical grid where the dots represent the cell

centers and the solid lines are the cell boundaries. In the horizontal direction, the

cells are clustered logarithmically around injection point. In the vertical direction,

uniform spacing was used.
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Figure 17: Schematic of 2D numerical grid. Dots represent the location of the cell
centers and solid lines define the boundary of each cell.
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Figure 16: Temperature profiles for the shallow and deep reservoirs at different times
t=[0, 10, 100,1000] days.
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As in the previous section, numerical simulations were conducted for both cases of

shallow and deep reservoirs using the parameters in Table 1. Nz = 20 cells in vertical

direction and Nr = 600 cells in the horizontal direction were used. The results of

simulation of CO2 injection into the shallow and deep water-leg of a reservoir are

presented in Figures 18 and 19 respectively. For both scenarios, gas saturation and

pressure profiles are shown at different times.

From the pressure plots, it can be seen how the injection process is pressuring up

the reservoir in time. After 1000 days, the plume seems to have spread considerably

more in the shallow case than the deep case. This can be attributed to the higher

pressure in deep-reservoir case which tend to compress the plume and limit its

spreading. Contrary to plume spreading, the extent of the dry-out zone is larger in

the deep case than in the shallow case. This is due to solubility-limit of water in

the CO2 phase being higher at higher pressures, meaning that the injected gas can

evaporate more of the resident brine around the well.

The CO2 plume is still almost vertical after 10 days, but it starts rising to the top

of the formation as the buoyancy forces begin to dominate. The mobilised methane

bank can be observed ahead of the plume, accumulated in the lowest-pressure part

of the domain, and is shrinking in size with time as the pressure increases (since

brine is almost incompressible).
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Figure 18: Results of 2D radial numerical simulation of CO2 injection into the water
leg of a shallow reservoir with initial gas saturation S10 = 0.1, for different times.
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Figure 19: Results of 2D radial numerical simulation of CO2 injection into the water
leg of a deep reservoir with initial gas saturation S10 = 0.1, for different times.
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There are no analytical solutions in the literature for the 2D case. However,

if we were to vertically average the 2D results, we could then compare them to

that of the analytical solution described in Chapter 5. Thus, the 2D results were

vertically-averaged and plotted against the 1D analytical solution (see Figure 20),

which is essentially a vertically-averaged model with the assumption of zero-gravity.

The vertically-averaged pressure plots generally match closely with the analytical

solution. The gas saturation plots on the other hand, only match the analytical

solution for early times, i.e., before the onset of significant buoyancy flow.

For further investigation, numerically integrating the area under both vertically-

averaged and analytical saturation curves, revealed that the amount of gas in the

domain is exactly the same, as is expected due to conservation of mass principle on

which both models are based. However, Figure 20 suggests that the gravity tends to

smear-out the sharp fronts in a diffusion-like manner. In fact Nordbotten & Celia

(2006) showed that vertical-averaging in presence of gravitational forces, introduces

an additional diffusive term to the Darcy’s flux of each of the phases, which is the

cause of the deviation from the analytical solution (as it assumes zero gravity).

Furthermore, to investigate the effect of gravity on CH4 recovery, 2D plots of

CH4 mass fraction in the mobile gas phase (where S1 > S1c), X21, are shown for

shallow and deep cases in Figures 21 and 22 respectively. The red arrows represent

velocity vectors of the gas phase and the white arrows are velocity vectors of the

liquid phase. The regions of high CH4 concentration are colored in dark red where

the gas phase is almost pure methane. In both cases, the methane bank is almost

vertical at early times, then it starts rising due to buoyancy effects. It seems that

the methane bank ahead of the CO2 plume is fading over time.

The evolution of the CH4 bank can be explained as follows: as CO2 is injected, it

evaporates all the water around the well, thus mobilising the initially dissolved and

residually-trapped methane. Owing to it being the lightest component, CH4 then

travels faster and accumulates ahead of the CO2. However, due to significant density
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differences, CH4 quickly rises to the top of the formation. During this process, it is

replaced by the fresh reservoir water from below, which will residually trap some

of the mobilised gas. In other words, CH4 is being mobilised due to injection of

CO2, and at the same time being trapped due to upward/downward motion of the

gas/liquid phases.

Furthermore, mass of mobilised methane can be numerically calculated using:

mCH4
= 2πφ

Hf∫
0

rE∫
rW

rρ1X21S
∗
1 drdz (6.38)

S
∗
1 ≈ S1 where S1 > S1c (6.39)

Figures 21(d) and 22(d) show the amount of mobile methane in the domain in

mega tonnes (Mt). It confirms that the mass of mobile methane initially increases,

and then it starts decreasing, as a result of residual entrapment of the gas, driven by

buoyancy induced flow.
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Figure 21: a) b) and c) are the mass fraction of CH4 in the mobile gas phase
(S1 > S1c). d) is the mass of mobile methane in the domain in mega tonnes. Red
arrows are the velocity vectors of the gas phase and the white arrows are the velocity
vectors of the liquid phase. These results are for the case of shallow reservoir.
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Figure 22: a) b) and c) are the mass fraction of CH4 in the mobile gas phase
(S1 > S1c). d) is the mass of mobile methane in the domain in mega tonnes. Red
arrows are the velocity vectors of the gas phase and the white arrows are the velocity
vectors of the liquid phase. These results are for the case of deep reservoir.
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In short, buoyancy seems to have a significant adverse effect on the gas recovery

potential for injection into the water-leg of a gas reservoir and should not be neglected

in this case.

It is worth mentioning that, for injection into the gas-leg of a reservoir, where

water is present only as a residual phase, the buoyancy effects could potentially

be much less significant, as the contact between water and CH4 is minimal (or

zero in the case of a dry-gas reservoir), thus avoiding excessive buoyancy-induced

residual-entrapment of the mobile methane. This will be tested in the next chapter.

6.10 summary of the findings

In this chapter, we have developed a numerical model based on the so called Method

of Lines (MOL) technique, to model the two-phase three-component flow problem in

the context of CO2 injection into deep (P=32 MPa, T=85 oC) and shallow (P=10

MPa, T=45 oC) water-leg of a reservoir initially only containing CH4+H2O.

Numerical simulation results predict accumulation of a CH4 bank ahead of the

CO2 plume which confirms the findings of Oldenburg & Doughty (2011), Battistelli

& Marcolini (2009) and Taggart (2010). The numerical solution is seen to accurately

locate the associated shock fronts while considering the partial miscibility of both

CO2 and CH4 in H2O.

As CO2 is injected, it partitions into the gas phase and the aqueous phase. The

initially dissolved CH4 exsolves immediately, and is then pushed ahead of the growing

CO2 plume leading to the development of a CH4 bank. Mathematically, the system

is constrained to constantly enter and leave the two phase region along the tie-lines

representing the injection and initial compositions, therefore the leading CH4 bank

is free from the injected gas, CO2.

Counter-intuitively, numerical simulation of CO2 injection for different initial gas

saturations (everything else being the same), show that the level of bank-saturation
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is independent of the initial CH4 saturation, which also confirms the findings of

Hosseini et al. (2012).

Non-isothermal simulations show that the thermal front is generally behind the

CO2 plume as a result of heat retardation associated with the high specific heat

capacity of the host rock and resident water. In both cases of deep and shallow

reservoirs, near the injection point, temperature declines with increasing distance

and some distance away it recovers back to its initial value. The temperature decline

occurs due to expansion of the CO2 as it migrates away from the injection well and

experiences continuously decreasing pressures. However, the very small magnitude

of the temperature change suggests that, at least for the pressure ranges considered

here, temperature can safely be assumed constant in future simulations.

Moreover, to investigate the significance of gravity in this context, a 2D radial

model was developed. The 2D results show that as CO2 is injected, it evaporates

all the water around the well, thus mobilising the initially dissolved and residually-

trapped methane. Owing to it being the lightest component, CH4 then travels faster

and accumulates ahead of the CO2. However, due to significant density differences,

CH4 quickly rises to the top of the formation. During this process, it is replaced by

the fresh reservoir water from below, which will residually trap some of the mobilised

gas. In other words, CH4 is being mobilised due to injection of CO2, and at the

same time being trapped due to upward/downward motion of the gas/liquid phases.

Furthermore, comparison of the vertically-averaged 2D results to the 1D analytical

solution suggests that gravity tends to smear out the sharp fronts in a diffusion-like

manner, confirming the findings of Nordbotten & Celia (2006) who show that vertical

averaging in presence of gravitational forces, introduces an additional diffusive term

to the Darcy’s flux of each of the phases.
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7

EGR IN THE NORTH MORECAMBE FIELD

In this chapter, the numerical model described in Chapter 6, will be used to simulate

CO2 injection into the very low-pressure (0.82 MPa) North Morecambe gas field,

in east Irish Sea, to provide an estimation of the Enhanced Gas Recovery (EGR)

potential in this field.

7.1 introduction

Carbon Capture and Storage (CCS) is considered as an important potential solution

for CO2 emission reduction within the framework of the Kyoto Protocol (Haszeldine,

2009). Yet, CCS requires CO2 to be stripped off the flue gas at the power plant.

Separation of CO2 from the flue gas is highly costly, consuming at least 10% of

the electricity generated by a power plant (David & Herzog, 2000). Furthermore,

additional costs are associated with injection of a highly corrosive gas such as CO2

(Bergman et al., 1997). Capture and injection of CO2 into geological formations will

therefore be more attractive if the process could provide economic incentives, such

as additional hydrocarbon production, to offset the high costs associated with CCS,

which leads to the idea of injecting the CO2 into depleted hydrocarbon reservoirs.

Hydrocarbon reservoirs, compared with other geological formations suitable for

CO2 storage, have advantages associated with better levels of characterization, due to

available static geological and dynamic production history data. Additionally, reduced

uncertainty related to cap rock integrity is demonstrated through containment of

hydrocarbon products over geological time scales (Loizzo et al., 2010). Depleted gas
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reservoirs have the added benefit of having a much more compressible reservoir fluid

(methane+water as opposed to oil+water) along with significantly lower abandonment

pressures (less than 1 MPa) (Mathias et al., 2014), such that, CO2 storage capacities

of natural gas reservoirs around the world have been estimated to be up to 13 times

higher than that of saline aquifers of comparable sizes (Barrufet et al., 2010). Thus,

in order to offset the high cost of CCS, enhanced oil/gas recovery (EOR/EGR) can

be considered in various fields around the world.

The implications of injecting CO2 into oil reservoirs for Enhanced Oil Recovery

(EOR), have been broadly investigated in both academia and industry (Metz et al.,

2005, Quintella et al., 2010, Sweatman et al., 2011). Injection of CO2 for Enhanced

Gas Recovery (EGR) however, despite being attractive to many countries with

gas reserves, has not been investigated in any depth (Blok et al., 1997, Oldenburg

et al., 2001). This is attributed to the high recovery factor of gas reservoirs by

natural pressure drive and concerns regarding degradation of the natural gas due

excessive mixing with the injection fluid (Stevens et al., 2001). Indeed, there are no

commercial scale projects and only a few demonstration EGR projects in practice

until now, the most well-known of which are the K12-B project in the Netherlands

(Van der Meer et al., 2005), the CLEAN project in Germany (Kuhn et al., 2012) and

the Alberta project for coal-bed methane recovery in Canada (Mavor et al., 2004).

As a result, numerical simulation remains one of the main tools for studying the

EGR processes. Accordingly, in this chapter, the compositional reservoir simulator

discussed in Chapter 6 is used to simulate CO2-EGR in the Centrica Plc’s North

Morecambe gas field (located in the Irish Sea Basin), and to provide an estimation

of the incremental gas recovery potential in this field as a consequence of CO2-EGR.

Incremental gas recovery here is referred to as the amount of additional gas recovered,

which would not have been, had it not been for CO2 injection.

Structure of this chapter is as follows. The case study reservoir is introduced. A

literature review of the previous numerical simulation work concerning the application
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of CO2-EGR to various gas fields is presented. Our previously published reservoir

simulator that was used to simulate the case study reservoir is introduced. The model

calibration procedure that was undertaken to better fit the simulator to the available

production history data is discussed. Numerical simulations are then performed and

the results discussed, in the context of CO2 injection into the North Morecambe

field. Finally, an economic feasibility study is performed based on the simulated gas

recovery potential, global CH4 prices, offshore drilling costs, CO2 supply cost and

UK’s Carbon Price Floor (CPF), followed by summary and conclusions.

7.2 the north morecambe gas field

The North Morecambe gas field is located in the East Irish Sea basin (see Figure

23). It initially contained 36.5 BSCM (billion standard cubic meters) of natural

gas. The structure is fault closed on three sides and dip closed to the north, as is

shown schematically in Figure 24. Development was by ten conventionally drilled

wells (see Fig. 25). Thin Sherwood Sandstone dominates flow into the well bore.

Platy illite reduces the permeability by two to three orders of magnitude in the

lower illite-affected zone of the reservoir. The maximum gas column is about 975

feet (298 m). Around 56% of the Gas Initially In Place (GIIP) was estimated to be

contained in the high permeability illite-free zone. Table 2 is a summary of the North

Morecambe field properties (obtained from Cowan & Brown (2003)) and Figure 26

shows the production history over the course of 21 years, starting from October 1995.

Based on the mean monthly production rate, i.e., 114.3 (MSCM/month), spanning

over 21 years, the volume of gas produced from this reservoir can be estimated as:

V
P rod. ≈ 114.3×12×21≈ 28.8 (BSCM) (7.1)
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Figure 23: Location of north Morecambe gas field and its structural elements (taken
from Cowan & Brown (2003)).

Given the estimated Gas Initially in Place (GIIP) of 36.5 BSCM, upon cessation

of production the remaining gas in the reservoir would be as follows:

VRes. ≈ 36.5−28.8≈ 7.7 (BSCM) (7.2)

Despite very low permeability of the illite-affected layer, over time some of the gas

in this layer will have migrated upwards to the permeable layer due to the pressure

difference between them. Whether or not the amount of leaked gas is significant,

would be interesting to further investigate. However, in this study, only the worst

case scenario is considered, where the amount of leaked gas from the impermeable
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layer is assumed insignificant. In this way our estimations provide a lower bound for

the EGR potential in this field.

Nevertheless, most of the remaining gas is expected to reside in the illite-affected

layer, and therefore not recoverable due to very low absolute permeability. However,

even a modest portion of the remaining gas residing in the illite-free layer (i.e.

recoverable), could still be a significant contribution to the field’s reserves. Yet, due

to reservoir the pressure being as low as 0.82 MPa, it has not been possible to produce

the recoverable portion of the remaining gas by means of primary recovery techniques

and at an economic rate. Therefore, secondary recovery techniques such as EGR are

worth considering for this field, in order to obtain incremental gas recovery, while

extending the field’s life and deferring the high costs associated with abandonment.

Figure 24: Schematic of the North Morecambe gas field (taken from Cowan & Brown
(2003)), to be looked at in conjunction with Figure 25).

The aim of this chapter is therefore, to use numerical simulation to estimate

the incremental gas recovery potential due to CO2 injection and to investigate the

economic feasibility of CO2-EGR in this field.
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Figure 25: Plan view of the North Morecambe gas field (taken from Cowan & Brown
(2003)), showing the existing well positioning relative to the faults locations.

7.3 previous numerical simulation work

The first published numerical simulation results regarding the application of CO2-

EGR was by Van der Burgt et al. (1992), where they considered injection into a

five-layer dipping reservoir. Their results suggested only a limited gas recovery due to

early breakthrough of CO2. Later, Blok et al. (1997) simulated EGR in the context

of hydrogen production, where the CH4 is primarily used to produce hydrogen for

fuel-cell applications, with CO2 being a by-product of this process which can be

re-injected into the reservoir. According to Blok et al. (1997), the incremental cost

of produced hydrogen (i.e., for CO2 compression, transport, injection and storage)

would be about 7% compared with the case where CO2 is vented to the atmosphere.

However, their numerical results suggest that CO2 injection leads to enhanced CH4
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Figure 26: Production history of the North Morecambe gas field, taken from the
website of the Department of Energy and Climate Change (DECC, 2016). MSCM:
million standard cubic meters. A dramatic decline in the production rate can be
observed which is due to significant pressure drop in this field. Field pressure has
dropped to 0.82 MPa from the initial 12.41 MPa.

recovery, as a consequence of reservoir repressurisation, which in turn reduces the

incremental cost to only 2%. Oldenburg et al. (2001) presented numerical simulation

of CO2-EGR in the Rio Vista gas field in California. They assumed a 2D reservoir

and simple gas mixing relations. They forecasted that injection of CO2 would

produce approximately five times the projected amount of the primary-production

over the next twenty years. Focusing on injection scenarios, Clemens & Witt (2002)

numerically simulated five different injection strategies to investigate the effect on

methane recovery in an example reservoir. Their injection scenarios included a

Zero Emission Power Plant (ZEPP) at the surface, supplying the reservoir with a

constant CO2 rate over 25 years. CO2 breakthrough occurred between 3-15 years

from the start (depending on injection rate). The highest incremental gas recovery

was obtained for the case of injection after conventional depletion of the reservoir.

The maximum gas recovery was bout 10% of the Gas Initially In Place (GIIP). In
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Parameter (unit) Value
Age (-) Triassic- Scythian (270 Ma)
Illite-free porosity range (%) 8-12
Illite-affected porosity range (%) 9-15
Illite-free permeability range (mD) 25-180
Illite-affected permeability range (mD) 0.02-0.1
Area (km2) 24
H

f
, gas column (m) 298

GRV, Gross Rock Volume (km3) 3.5
Gas saturation (%) 65
Formation volume factor (-) 0.0070
P0, initial pressure (MPa) 12.41
P , current pressure (MPa) 0.82
T , temperature (oC) 33
GIIP, gas initially in place (BSCM) 36.5
Recovery factor (%) 80
Drive mechanism (-) volumetric depletion
Number/type of well (-) 10 production
Number/type of well (-) 4 appraisal

Table 2: Summary of the North Morecambe field properties (taken from Cowan &
Brown (2003)).

a similar approach, Jikich et al. (2003) studied, using numerical simulation, the

effects of injection strategy and operational parameters in a thin sandstone reservoir

in Northern West Virgina. Their results suggested that highest methane recovery

would be obtained when the reservoir is produced under primary recovery until

depletion, followed by CO2 injection. The maximum amount of incremental CH4

recovery was around 10% of the Gas Initially In Place (GIIP). In a more generic

study, Al-Hasami et al. (2005) used a compositional reservoir simulator to study EGR

processes, such as gas mixing and CO2 solubility in formation water, and performed

a sensitivity analysis of various design and operating parameters. They concluded

that an incremental gas recovery of 8-11% of GIIP (close to the findings of Clemens

& Witt (2002) and Jikich et al. (2003)) can be expected for reservoirs with primary

recovery factor of around 85%.

Following the same trend, Seo & Mamora (2005) performed a 3D simulation

for a five-spot pattern of wells to evaluate the injection of supercritical CO2 under
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typical reservoir condition. Their results suggested CO2 sequestration potential of

1.2 million tonnes (Mt) in 29 years and 4.8 Mt in 56 years, corresponding to gas

recoveries of 68% and 74% of the Gas Initially In Place (GIIP), respectively. They

also provide a produced gas revenue estimation of $9.8 million based on a gas price

of $2.0/MSCF (million standard cubic feet). In a different approach, Liu et al. (2013)

used a dual-porosity dual-permeability model to investigate the possibility of CO2

sequestration with EGR in the New Albany shale gas reservoir in the Illinois Basin,

USA. They suggested that 40,000 tonnes of CO2 can be injected in this reservoir

within a five-year period, 95% of which will be effectively sequestrated. Also they

forecasted an incremental CH4 recovery of around 1% of the GIIP. Most recently,

Zangeneh et al. (2013) performed numerical simulation of CO2-EGR in the Gavarzin

field in the Qesh Island, south of Iran. They found that early CO2 injection, i.e.,

from the beginning of production, is likely to result in decreased Net Present Value

(NPV) of the produced gas, due to excessive mixing with the injection gas, as also

suggested by Clemens & Witt (2002), Jikich et al. (2003) and Hussen et al. (2012).

Additionally, they propose that in a 5-spot well setting, the injection rate should be

lower than the production rate to reduce undesired gas mixing.

Oldenburg et al. (2004) used numerical simulation to perform an economic

feasibility study of the CO2-EGR in the Rio Vista gas field in California. They found

that the largest expenses are likely to be due to CO2 capture, purification, compression

and transport to the field. Moreover, they suggest that economic feasibility is most

sensitive to the global CH4 price, CO2 supply cost and ultimately, to the ratio of

CO2 injected to incremental CH4 produced. Assuming a gas price bracket of 3-5

US$/MCF (million cubic feet), they further recommend a CO2 supply cost bracket

of 4-12 US$/tonne, within which CO2-EGR will be economically feasible. More

recently, Hussen et al. (2012), using numerical simulation, performed an economic

feasibility study of EGR in a high pressure reservoir case, which further emphasised

the necessity of delaying CO2 injection until the later stages of the gas field life.
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The bulk of the numerical work discussed above suggests that EGR due to CO2

injection is likely to lead to an incremental recovery of around 10% of the Gas Initially

In Place (GIIP). Furthermore, injection close to depletion stage seems to be the

optimum injection strategy (as opposed to injection during the primary production

period), which is favourable in our particular case study reservoir, which is currently

close to depletion stage and at reservoir pressure of 0.82 MPa.

7.4 numerical model and assumptions

To simulate the EGR processes, a modified version of the reservoir simulator of

Chapter 6 was used, which it is made two-dimensional for better spatial representation

in this context. The simplifying assumptions are as follows. The gas composition in

the North Morecambe field is as listed in Table 3. Our numerical model however, is

only capable of simulating three components, namely CO2, CH4 and H2O. Therefore,

Methane and Ethane are lumped together and modelled as CH4 and the rest of

the impurities were modelled as CO2. Consequently, the simulated in-situ gas

composition is 87.13% CH4+12.87% CO2.

Specie mol (%)
CH4 81.02
C2H4 6.11
N2 6.88
CO2 5.89
H2 0.08
He 0.02

Table 3: Dry gas composition in the north Morecambe field (Cowan & Brown, 2003).

The effect of gravity was investigated using numerical simulation in an injection-

only scenario in a low-pressure reservoir case. For the length- and time-scales generally

considered for EGR, gravity does not have enough time to make any considerable

impact on the flow distribution in the reservoir, at least for the cases where pressure

is low. This is expected since the reservoir under consideration is initially filled with
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gas (water is present as immobile, residual droplets in the pore space), also, at the

pressures and temperatures being modelled (i.e., 0.82 MPa and 33oC), CH4 and CO2

are both in gaseous state, as opposed to super-critical state, and therefore the density

contrast between the two species is not that significant. Therefore, vertical flow and

gravity effects were neglected for the subsequent injection/production simulations.

As for incorporating gas production wells within the model, an idealised uniformly-

spaced well-pattern is assumed, as shown schematically in Figure 27. This pattern

is often referred to as five-spot pattern, where each production/injection well is

surrounded by four injection/production wells. One advantage of the five-spot

pattern is that, due to symmetry of the flow field, only a quarter of the five-spot

group of wells needs to be simulated (the boxed region in Figure 28). Additionally,

this pattern correlates relatively well with the existing well-positioning within the

North Morecambe field, i.e., N1, N4, N6, N8 and N9 (see Figure 25), where N4 can

be used as the production well and the other four as injection wells (the same applies

to N1, N2, N5, N6 and N10). Interestingly these wells are already CO2 (corrosion)

resistant, due to high CO2 content of the in-situ gas in this reservoir (see Table 3).

Figure 27: Schematic of five-spot equidistant well pattern.
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Figure 28: Zero-flux boundary due to five-spot well pattern.

Thus, the numerical model to simulate injection and production scenarios includes

one injection well and one production well. A schematic diagram of the numerical

grid is shown in Figure 29. The grid is clustered more finely close to the vertices

(well locations) to capture the higher flow gradient in those regions.

Figure 29: A schematic diagram of the 2D numerical grid for 30 grid cells in each
direction, showing a finer grid clustering around the injection and production wells
to capture the higher flow gradients in those regions. Note that this diagram is not
to scale and the actual grid used comprised of 100 cells in each direction.

106



7.5 numerical model calibration

With reference to Table 2, there is a range of values provided for permeability

and porosity for the North Morecambe field and yet there is no heterogeneity or

permeability anisotropy data available. Furthermore, there is no information available

in the literature regarding the relative permeability characteristics of the Sherwood

Sandstone Group associated with the North Morecambe field. There is additional

uncertainty concerning the formation thickness of the illite-free layer (note that the

illite affected zone is not included within the model zone due to its exceptionally

low permeability). Therefore, the parameters requiring calibration include, absolute

permeability (k), porosity (φ), thickness of the illite-free layer (H) and relative

permeability parameters.

The calibration procedure adopted can be described as follows. With reference to

parameters in Table 2, an idealised cylindrical reservoir is assumed with an equivalent

pore-volume of the North Morecambe field (Figure 30). The GRV (Gross Rock

Volume) of this reservoir is estimated as 3.5 km3. The radius of an equivalent

cylindrical reservoir can be calculated from:

r =

√√√√ V

πH
f

≈ 1921 m (7.3)

Furthermore, according to the production data obtained from the website of the

Department of Energy and Climate Change (DECC, 2016) (see Figure 26), in a

21-year production period, 28.8 billion standard cubic meters (BSCM) of gas has

been produced from the permeable illite-free layer of the North Morecambe field,

with an average rate of 114.3 MSCM/month, after which the reservoir pressure

declined from the initial 12.41 MPa to the current value of 0.82 MPa. However, it

should be noted that, φ and H dictate the volume that the illite-free layer should

have in order for pressure to decline to 0.82 MPa after extraction of 28.8 BSCM of
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Figure 30: Morecambe field equivalent cylindrical reservoir. H
f
(m) is formation

thickness. H(m) is the thickness of the illite-free layer.

gas, and absolute+relative permeabilities control how fast/slow fluids move in the

reservoir, dictating the time after which the reservoir reaches the current pressure of

0.82 MPa. Therefore, calibration is divided into two parts: (1) fitting the reservoir

volume parameters, i.e., φ and H, to the gas production-pressure curve, (2) fitting

the permeability and relative permeability parameters to the time-pressure curve.

The range of values selected for model calibration are listed in Table 4. The

relative permeability parameters relate to Eqs. (5) and (6) in Goudarzi et al. (2016).

Note that for relative permeability parameters, the simulations were found to be

insensitive to the power law exponent of the gas and liquid phases and also the

liquid phase end-point relative permeability. This is expected, as the water is only

present as residual droplets and is immobile from the start. Thus, simulations were

performed for all the combinations of φ and H, results of which are shown in Figure

31, and for all combinations of k and krg0 , the results of which are presented in

Figure 32. Therefore, according to Figures 31 and 32, it can be concluded that our

equivalent reservoir should have an average porosity of φ= 0.10, an illite-free layer

thickness of H = 225 m, an absolute-permeability of k = 60 mD and an end-point

relative-permeability of krg0 = 0.6, in order for this equivalent reservoir to best

represent the North Morecambe field.
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Parameter (unit) Values
H, illite-free layer thickness (m) 50, 75, 100, 125, 150, 175, 200, 225, 250
φ, porosity (%) 8, 9, 10, 11, 12
k, absolute-permeability (mD) 25, 60, 100, 140, 180
krg0 , gas end-point relative permeability (-) 0.2, 0.4, 0.6, 0.8, 1.0
krl0 , liquid end-point relative permeability (-) Insensitive
ng, gas relative permeability exponent (-) Insensitive
nl, liquid relative permeability exponent (-) Insensitive

Table 4: Values tested for model calibration.
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Figure 31: Model calibration: plot of reservoir pressure against gas production
for different values of gas-layer thickness, H(m), and porosity, φ. It shows that a
reservoir with φ = 0.10 and H = 225 m will roughly contain the right volume of
Gas Initially In Place (GIIP) at the initial pressure of 12.41 MPa, such that after
production of 28.8 BSCM of gas the reservoir pressure declines to the current value
of 0.82 MPa„ which is the "target" point here.
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Figure 32: Model calibration: plot of reservoir pressure against time for different
values of absolute-permeability, k (mD) and gas-phase end-point relative-permeability
parameter, krg0 . It shows that a reservoir with k = 60 mD, and krg0 = 0.6 will
roughly have the right level of permeability to allow production of 28.8 BSCM of gas
in 21 years of production (with an average production rate of 114.3 MSCM/month),
which is the "target" point here.

In Section 7.2, the remaining gas in the North Morecambe field (gas in illite-free

+ illite-affected) was estimated as 7.7 BSCM (21% of the GIIP). Based on the new

estimation of porosity and formation thickness, the volume of the recoverable gas

(i.e., the gas residing in the permeable illite-free layer only) would be around 2.04

BSCM (5.6% of the GIIP). In the next section, it will be shown using numerical

simulation, how much of the 5.6% of the GIIP can be recovered using CO2 injection.
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7.6 simulation results and discussion

Numerical simulation of CO2-EGR in the North Morecambe field was performed

using the parameters in Table 5. Figs. 33 and 34 show contour plots of pressure

and CH4 mass fraction, respectively, with the injection well located at the bottom

left corner and the production well is located at the top right corner, as shown in

figure 29. Fig. 33 shows that, for 1 kg/s injection rate scenario, pressure is increasing

around the injection well until the pressure wave reaches the production well and

the gas production rate reaches its target rate of 1 kg/s. Following on from this, the

reservoir pressure decreases. For higher injection rate scenarios, it is observed that

the reservoir pressure increases monotonically with time. Nevertheless, although

overall the reservoir pressure is declining, it can be seen in figure 34, that the CO2 is

sweeping the CH4 towards the production well where it is being recovered.

Figure 35 shows plots of pressure, temperature and CH4 mass fraction in the

gas phase at different times, and on the diagonal connecting the injection to the

production well, for the 1kg/s injection and production rates scenario. Slight pressure

build-up can be observed around injection well and pressure decline around the

production well, resulting in overall decrease in reservoir pressure for the chosen

injection and production rates. There is a slight temperature decrease around both

injection and production wells, due to Joule-Thomson cooling (JTC) effects (Mathias

et al., 2014, ?, Oldenburg, 2007). Note that the thermal front is generally behind

the CO2 plume (see temperature profiles in conjunction with the CH4 mass fraction

profiles) as a result of heat retardation associated with the high specific heat capacity

of the host rock and the residual water (Mathias et al., 2014, ?). Nevertheless, for

the chosen injection/production rate, changes in temperature are negligible. Also,

for higher injection rates (up to 4 kg/s), the maximum observed temperature drop is

less than 3 oC.
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Finally, the effect of injection rate on CO2 break-through time is presented in

figure 36. For very low injection rates CO2 break-through does not occur in a

20-year injection and production period. However, as the injection rate is increased,

break-through occurs and break-through times decrease with increasing rates. Break-

through time is of particular importance for reservoirs at near-depletion stage, as it

determines how much the field’s life can be expected to be extended, by deferring

field abandonment and the high costs associated with it (Pittard , 1997).

Figure 36 also shows that around 0.11 BSCM (0.3% of the GIIP) of incremental

gas per five-spot unit is expected to be produced as a consequence CO2 injection,

also extending the fields life for up to around 5 years. Note that, given the efficiency

of CO2 in displacing CH4, it can be said that, hypothetically, and assuming enough

additional wells are drilled, almost all of the 2.04 BSCM of gas can be recovered,

which sets the ultimate incremental EGR potential to around 5% of GIIP in the

North Morecambe field. Of course, whether additional drilling is an economically

sound idea, depends on many factors such as global wellhead CH4 prices, drilling

costs, CO2 acquisition costs, etc., which will be discussed in the next section.

Parameter (unit) Value
Initial Gas Molar Composition 87.13% CH4+12.87% CO2
L, Width of the quarter of the 5-spot well group (m) 550
H, Formation Thickness (m) 225
Porosity (%) 10
Absolute Permeability (mD) 60
Initial Petroleum Saturation (%) 65
P0, Initial Pressure (MPa) 0.82
T0, Initial Temperature (oC) 33
GIIP, gas initially in place (BSCM) 2.04
CO2 Injection Rate (kg/s) 1.0
Maximum Production Rate (kg/s) 1.0
krg0 , Gas end-point relative permeability (-) 0.6
krl0 , Liquid end-point relative permeability (-) 1.0
ng, Gas relative permeability exponent (-) 3.0
nl, Liquid relative permeability exponent (-) 3.0

Table 5: Modelling parameters used in simulation of the CO2-EGR in the permeable
illite-free layer of the North Morecambe gas field.
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Figure 33: Contour plot of pressure at different times for a quarter-space of the
five-spot group of wells. The injection well is located at the bottom left corner and
the production well is located at the top right corner. For the chosen injection and
production rates, i.e., 1 kg/s each, the reservoir pressure is decreasing with time. For
higher injection rates (not shown here), the reservoir pressure increase with time.
Pressures are in MPa.
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Figure 34: Contour plots of CH4 mass-fraction in the gas-phase at different times
for a quarter-space of the five-spot group of wells. The injection well is located at
the bottom left corner and the production well is located at the top right corner.
CO2 sweeps the CH4 from the injection point towards the production well where
it is being recovered. The scale on the colorbar below the subplots is in terms of
dimensionless CH4 mass-fraction in the gas-phase.
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Figure 35: From a) to c) are plots of pressure, temperature and CH4 mass-fraction
in the gas-phase, respectively, at different times and on the diagonal connecting the
injection to the production well in a five-spot well setting. In all cases, injection well
is located at the left hand side of the plots and the production well is located at the
right hand side.
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Figure 36: Plot of cumulative incremental volume of each gas specie produced over
time and for different injection rates. Not that injection rates are per five-spot group
of wells (injection rate per injection well is one-fourth of this value).

7.7 economic feasibility of co2 -egr in north morecambe gas

field

An economic feasibility study of CO2-EGR in the North Morecambe field was

conducted, based on the simulated incremental CH4 recovery potential per five-spot

group of wells, global well-head CH4 prices, offshore drilling cost, CO2 supply cost and

UK’s Carbon Price Floor (CPF). In this context, CO2 supply cost refers to the cost

of acquiring, transporting and injecting the CO2. Oldenburg et al. (2004) estimates

the CO2 supply cost to be 10 US$/tonne from a relatively pure fertiliser or cement

plant source, up to 50 US$/tonne from a power plant capture unit. Gresham et al.

(2010) estimate CO2 supply cost to vary from 20 US$/tonne using an Integrated

Gasification Combined Cycle (IGCC) up to 75 US$/tonne using a Natural Gas

Combined Cycle (NGCC), and Gozalpour et al. (2005) estimates the supply cost to

vary from 14 US$/tonne from a naturally occuring CO2 source up to 54 US$/tonne
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from a pulverised coal-fired plant capture unit. Therefore, a CO2 supply cost bracket

of 10-75 US$/tonne is used in the cost estimations. On the other hand, Carbon Price

Floor (CPF), refers to the amount tax penalty to be paid by a CO2 emitter per

tonne of emission. According to UK government’s website (GOV.UK , 2016), UK’s

CPF is currently at 23 US$/tonne of CO2 emitted (18 £/tonne) and is expected to

rise to 37 US$/tonne (30 £/tonne) by 2020.

Different scenarios were considered which are shown in figure 37. In the first

scenario, only the existing wells are utilised, to avoid additional drilling costs, which

corresponds to two five-spot units. In the second scenario, four additional CO2-

resistant wells are drilled, corresponding to two more five-spot units (i.e., four in

total). Using the inputs provided from our industry partners, the upper-bound cost

of offshore drilling in the East Irish Sea Basin was estimated as 10 million US$ per

CO2 resistant well.

Figure 38 shows a plot of generated revenue (from the sales of the incremental

CH4 production + savings on CO2 tax due to CPF) for different global CH4 prices,

versus, the costs (CO2 supply + drilling) for different CO2 supply-cost values, all in

millions of US$. Note that in this figure, the UK’s current Carbon Price Floor (CPF)

of 23 US$/tonne is used for the estimations. Subplot a) is the scenario requiring

no additional drilling (corresponding to 2 five-spot units) and its operational net

worth. b) is the scenario requiring two additional wells to be drilled (corresponding

to 3 five-spot units) and it operational net worth. c) is the scenario requiring four

additional wells to be drilled (corresponding to 4 five-spot units) and its operational

net worth. Also note that, based on the numerical simulation results, each five-spot

unit is assumed to have a incremental gas recovery potential of 0.11 BSCM. In the

"net worth" plots, any value below the zero contour line is considered uneconomic.

Therefore, from figure 38, it can be concluded that, the no-drilling scenario is the

most economically viable option in this case. This is mainly due to high offshore

drilling costs and low current gas prices. In this case, with the current global CH4
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Figure 37: Simulation scenarios for the economic feasibility studies of CO2-EGR in
the North Morecambe gas field. In scenario (1), only the existing wells are utilised
(to avoid high offshore drilling costs), corresponding to 2 five-spot units. In scenario
(2), four additional CO2-resistant wells are drilled, corresponding to 4 five-spot units
in total. Each color set represents one five-spot group of wells.

price being 3.1 US$/MMBtu, the CO2 supply cost needs to be less than 50 US$/tonne

for such a scheme to break even (see figure 38).

Figure 39 is the same as figure38, except that here the projected value of the

UK’s CPF for 2020, i.e., 37 US$/tonne of emission, is used for revenue estimations.

Therefore, from figure 39, it can be said that still the most economically viable

option for the North Morecambe field is the "no drilling" scenario. From a) to c), and

assuming the CH4 sales price stays around the current value of of 3.1 US$/MMBtu,

supply cost needs to be less than 63 US$/tonne, 52 US$/tonne and 47 US$/tonne,

respectively, for such a scheme to break even.
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7.8 summary and conclusions

The aim of this chapter has been to explore, using numerical simulation, the potential

for Enhanced Gas Recovery (EGR) by CO2 injection in the North Morecambe gas

field. North Morecambe is located in the East Irish Sea basin and currently contains

recoverable resources of around 2.04 BSCM. However, due to a currently excessively

low field pressure of 0.82 MPa, it is not possible to recover the remaining gas at an

economic rate, using a volumetric depletion method, therefore an Enhanced Gas

Recovery application would be desirable for this.

Due to uncertainties regarding the field data, the numerical simulator was cali-

brated to obtain the uncertain parameters using previous gas production history data.

Numerical simulation was then performed using the fitted parameters to explore a

range of EGR by CO2 injection scenarios in the context of the North Morecambe

field. The results suggest an ultimate recovery potential of around 5% of the GIIP,

assuming it will be economic to drill sufficient number of additional wells to fill the

entire reservoir’s volume with CO2 and thus produce all of the recoverable CH4. For

more realistic scenarios, an economic feasibility study was performed, taking into

account the simulated incremental recovery potential, global wellhead CH4 prices,

offshore drilling costs, CO2 supply cost and UK’s Carbon Price Floor (CPF). It

was assumed that CO2 supply cost ranges from 10 US$/tonne to 75 US$/tonne and

offshore drilling cost in the east Irish Sea Basin area is around 10 million US$ per

well. Both current value of 23 US$/tonne of emission, and the 2020 projected value

of 37 US$/tonne of emission, for UK’s CPF were used in the revenue estimations.

Under these circumstances, the no-drilling scenario was found to be the most

economically viable option. For such an option, incremental EGR potential is around

0.7% of GIIP, translating to 0.22 BSCM of gas volume can be expected. In this case,

the revenue generated from the CH4 sales plus the savings on CO2 emission tax (due

to CPF) breaks even with the operating costs when the CO2 supply cost is less than
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50 US$/tonne, using the current CPF value, and less than 63 US$/tonne, assuming

the projected value of 2020 CPF in the UK. Nonetheless, assuming an average CO2

supply cost of 50 US$/tonne, by 2020, CO2-EGR in the North Morecambe field

can generate a revenue of around 13 million US$ at no extra cost. However, if

the future CO2/CH4 markets involve payments to operators willing to store the

CO2, an upwards shift in CH4 prices, and/or a reduction in CO2 supply cost due to

advancements in capture technologies, etc., the economics of CO2-EGR will improve

dramatically, leading to an economically viable incremental EGR potential of 5% of

the GIIP, equivalent to over 2 BSCM of CH4 volume.
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Figure 38: Economic feasibility of CO2-EGR in the North Morecambe gas field based
on UK’s current Carbon Price Floor (CPF) of 23 US$/tonne. a) is the no-drilling
scenario (corresponding to 2 five-spot units) and its operational net worth. b) is the
scenario requiring two additional wells to be drilled (corresponding to 3 five-spot
units) and its operational net worth. c) is the scenario requiring four additional wells
to be drilled (corresponding to 4 five-spot units) and its operational net worth. The
study assumes incremental gas recovery of 0.11 BSCM per five spot unit, which is
based on our numerical simulations.
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Figure 39: Economic feasibility of CO2-EGR in the North Morecambe gas field,
based on the projected value of the UK’s Carbon Price Floor (CPF) for 2020, i.e., 37
US$/tonne. a) is the no-drilling scenario (corresponding to 2 five-spot units) and
its operational net worth. b) is the scenario requiring two additional wells to be
drilled (corresponding to 3 five-spot units) and its operational net worth. c) is the
scenario requiring four additional wells to be drilled (corresponding to 4 five-spot
units) and its operational net worth. The study assumes incremental gas recovery of
0.11 BSCM per five spot unit, which is based on our numerical simulations.
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8

SUMMARY, F INDINGS AND FUTURE WORK

The objective of this project has been to develop a numerical model capable of

modelling heat transport, pressure build-up and compositional changes in a multi-

component multi-phase (MCMP) porous-media flow system, in the context of CO2

injection into very low-pressure partially-depleted gas reservoirs; and ultimately, to

simulate CO2 injection in Centrica Plc’s North Morecambe gas field (located in east

Irish Sea) and estimate the gas recovery potential associated with CO2-EGR in this

field.

8.1 summary

In Chapter 2, we started by deriving the governing equations for flow of Nc number

of components in Np number of phases. It was shown that there will be at least

(Nc+ 1)×Np number of variables in the system, giving rise to the need for selecting

Nc number of persistent Primary Dependent Variables (PDVs) to solve for. It was

decided that solving for pressure, P , temperature, T , and component mass-fractions,

zi (as opposed to component mass-densities Gi), would be a reasonable choice. This

was attributed to the fact that, for a given volume of fluid mixture, the zi values

will not change with P and T , making the selected set of PDVs truly independent of

one another; whereas, the associated mass of each component per volume of rock,

Gi, may change with P and T . Additionally, zi were the variables used in the phase

diagram, which determine the equilibrium properties of the multicomponent fluid

mixture.
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Solution of the governing equations of MCMP flow problem requires calculation

of component mass fractions in each of the present phases, at the pressures and

temperatures being modelled. In Chapter 3, in a new approach, the mutual solubility

correlations for mixtures of CO2-H2O and CH4-H2O, available in the literature,

were joined together to form a ternary CO2-CH4-H2O equilibrium model. The

predictions of the resulting ternary equilibrium model matched well with the available

experimental solubility data from the literature. Hence, this model was used to

evaluate the component mass fractions, Xij [-], that appear in the mass conservation

statement of each of the components.

Method of Lines (MOL) is a numerical solution technique for solving PDEs, in

which all but one dimension are discretised and the resulting system of ODEs are

solved using an ODE-solver of choice; in our case MATLAB’s ode-solver ode15s.

When using ODE-solvers to solve for the aforementioned PDVs, the user must

construct an ODE function. Within this function, a scalar value of time is provided

as an input along with an associated vector of the PDVs. The user must define the

ODE function such that it calculates the derivatives of the PDVs with respect to

time, meaning that the the governing equations of the MCMP problem must be

re-casted in terms of the selected set of PDVs; this generally involves a combination

of chain- product-rule differentiation, resulting in appearance of partial derivative

terms of some of the flow properties with respect to the PDVs. For conventional first-

order time-stepping methods, it is arguably acceptable to evaluate these derivatives

using first- or second-order finite differencing. However, given the high accuracy

associated with the use of MATLAB’s ODE solvers, it was pertinent to obtain these

derivatives as accurately as possible. Hence, a method of analytical evaluation of

the partial derivative terms was developed in Chapter 4, for improved accuracy and

computational efficiency.

Thus, a numerical model was developed to solve the two-phase three-component

flow problem, in the context of CO2 injection into deep (P=32 MPa, T=85 oC) and
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shallow (P=10 MPa, T=45 oC) water-leg of a reservoir, initially only containing

CH4+H2O; the reason for choosing this P-T range was to be able to compare the

results to the analytical solution, which is no valid for low pressures.

After verifying the model using the analytical solution, we used this numerical

model to simulate the EGR potential in the North Morecambe gas field; where,

due to uncertainties associated with the available data, in particular permeability

anisotropy, heterogeneity and relative permeability characteristic of the reservoir

rock, a sensitivity analysis was carried out to try and fit these parameters using a

kind of history matching method. The results suggested that, k = 60 (mD), φ= 10%

(-) and krg0 = 0.6 (-) provided the best fit. Later on, ignoring gravity enabled us to

use a so-called five-spot well-pattern; having the advantage of being symmetrical, this

pattern allowed for simulation of only a quarter of the physical domain for reduced

computational time.

8.2 findings

The results of simulating CO2 injection into the water-leg of a deep (P=32 MPa,

T=85 oC) and a shallow (P=10 MPa, T=45 oC) reservoir, were in excellent agreement

with the analytical solution, predicting accumulation of a CH4 bank ahead of the

CO2 plume and accurately locating the associated shock fronts while considering the

partial miscibility of both CO2 and CH4 in H2O. We explained the formation of a

methane bank as follows: as CO2 is injected, it partitions into the gas phase and

the aqueous phase. The initially dissolved CH4 exsolves immediately, which is then

pushed ahead of the growing CO2 plume, leading to development of a CH4 bank.

Mathematically, the system is constrained to constantly enter and leave the two-phase

region along the tie-lines representing the injection and initial compositions; therefore,

the leading CH4 bank is free from the injected gas, CO2. Moreover, in a series of

numerical simulations for different initial gas saturations (everything else being the

125



same), it was found that the level of CH4 bank saturation is independent of the

initial CH4 saturation.

Non-isothermal simulations showed that the thermal front is generally behind

the CO2 plume, as a result of heat retardation associated with the high specific

heat capacity of the host rock and residually trapped water. In both cases of

deep and shallow reservoirs, near the injection point, temperature declined with

increasing distance and some distance away it recovered back to its initial value. The

temperature decline was attributed to the expansion of the CO2 as it migrates away

from the injection well and experiences continuously decreasing pressures. However,

the very small magnitude of the temperature change suggested that, at least for the

pressures considered here ( >10 MPa), temperature can safely be assumed constant

for future simulations.

Moreover, to investigate the significance of gravity in this context, a 2D radial

model was developed. The 2D results suggested that as CO2 is injected, it evaporates

all the water around the well, thus mobilising the initially dissolved and residually-

trapped methane. Owing to it being the lightest component, CH4 then travels faster

and accumulates ahead of the CO2. However, due to significant density differences,

CH4 quickly rises to the top of the formation. During this process, it is replaced by

the fresh reservoir water from below, which residually traps some of the mobilised

gas. In other words, CH4 is being mobilised due to injection of CO2, and at the same

time being trapped due to upward/downward motion of the gas/liquid phases, which

could have significant adverse effects on the gas recovery in the case of injection

into the water-leg. Furthermore, comparison of the vertically-averaged 2D results

to the 1D analytical solution suggested that, gravity tends to smear-out the sharp

fronts in a diffusion-like manner, which is expected as vertical-averaging in presence

of gravitational forces introduces an additional diffusive term into the Darcy’s flux

of each of the phases.
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Next was to simulate EGR in the low-pressure gas-leg of a partially-depleted

reservoir, in particular the North Morecambe gas field. Effects of gravity on the

gas recovery were investigated by monitoring the volume of the mobile methane

throughout the simulations. It was found that the volume of mobile methane is

almost constant at all times; the slight decrease in the mobile methane was attributed

to the mobilised water which traps a small amount of gas on its way to the bottom of

the reservoir (due to buoyancy). However, given the magnitude of this decrease in the

volume of mobile CH4, it was concluded that in the case of injection into the gas-leg

of a reservoir, the gravity effects can be ignored. Neglecting gravity enabled us to

use the so-called five-spot well-pattern for the rest of the simulations; accordingly,

simulations were carried out using the five-spot pattern for a period of 20 years of

injection+production. Unlike injection into the high-pressure water-leg, in the case

of injection into the low-pressure gas-leg, temperature was found to decrease a few

degrees around the injection and production wells (up to 3 oC).

The results suggest an ultimate recovery potential of around 5% of the GIIP,

assuming it will be economic to drill sufficient number of additional wells to fill the

entire reservoir’s volume with CO2 and thus produce all of the recoverable CH4. For

more realistic scenarios, an economic feasibility study was performed, taking into

account the simulated incremental recovery potential, global wellhead CH4 prices,

offshore drilling costs, CO2 supply cost and UK’s Carbon Price Floor (CPF). It

was assumed that CO2 supply cost ranges from 10 US$/tonne to 75 US$/tonne and

offshore drilling cost in the east Irish Sea Basin area is around 10 million US$ per well.

Both current value of 23 US$/tonne of emission, and the 2020 projected value of 37

US$/tonne of emission, for UK’s CPF were used in the revenue estimations. Under

these circumstances, the no-drilling scenario was found to be the most economically

viable option. For such an option, incremental EGR potential is around 0.7% of

GIIP, translating to 0.22 BSCM of gas volume can be expected. In this case, the

revenue generated from the CH4 sales plus the savings on CO2 emission tax (due to
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CPF) breaks even with the operating costs when the CO2 supply cost is less than

50 US$/tonne, using the current CPF value, and less than 63 US$/tonne, assuming

the projected value of 2020 CPF in the UK. Nonetheless, assuming an average CO2

supply cost of 50 US$/tonne, by 2020, CO2-EGR in the North Morecambe field

can generate a revenue of around 13 million US$ at no extra cost. However, if

the future CO2/CH4 markets involve payments to operators willing to store the

CO2, an upwards shift in CH4 prices, and/or a reduction in CO2 supply cost due to

advancements in capture technologies, etc., the economics of CO2-EGR will improve

dramatically, leading to an economically viable incremental EGR potential of 5% of

the GIIP, equivalent to over 2 BSCM of CH4 volume.

8.3 future work

Our numerical model is only capable of modelling three components. However,

real hydrocarbon displacement by gas injection, involves many more than the three

components. For instance, any crude oil contains at least hundreds of components,

and injection gases often contain more than four. Consequently, for a comprehensive

compositional model, one that captures all the effects that influence gas injection

processes, one must deal with multicomponent systems. It is unlikely however,

that numerical calculations of the displacement processes will be performed with

hundreds of components, nor is there a need to do so, since, currently there seems

to be a considerable computational experience suggesting that phase behavior can

be calculated for most gas/oil systems with acceptable accuracy with somewhere

between five and fifteen components (Orr, 2007, p. 161).

Therefore, the natural extension to this work would be to construct numerical

solutions for systems with a modest but arbitrary number of components. To do this,

the equilibrium model of Chapter 3 needs to be extended to multi-components. The

author believes that no matter how many components are present, the elements that
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are combined to construct the equilibrium models are all generalisations of the key

results of the two- and three-component ones, i.e., a series of binary-mixture models

+ linear interpolations between the key tie-lines (this is assuming constant-K values,

which is often the case in hydrocarbon systems). Other than that, the framework of

our numerical MOL code is already such that it easily allows for multicomponent

set-up, i.e., only one more equation needs to be solved per extra component added.
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9

APPENDIX(1 ) - THERMODYNAMICS OF PHASE

EQUIL IBRIUM

9.1 introduction

In multicomponent flow systems, for a given pressure and temperature, there exists an

equilibrium composition for each component, that defines the maximum concentration

of each component and controls appearance/disappearance of a multiphase state.

For instance, consider a single phase mixture of water containing dissolved CO2.

Continuous addition of CO2 to this mixture will result in increased concentration of

the dissolved CO2, to the point where the partial pressure of the dissolved gas exceeds

the liquid pressure. This concentration threshold is the equilibrium concentration.

At this concentration, a gas bubble forms which in turn leads to appearance of a

separate gas phase. As equilibrium is re-established and the gas phase is saturated

with evaporated water, the initially single phase mixture has turned into two phases

in equilibrium with one another. Equilibrium phase calculations are often carried

out using the concept of "thermodynamic potential".

A thermodynamic potential is a state-variable which is minimised at equilib-

rium, subject to certain constraints. This means that if we want to compare two

thermodynamic-states, SI and SII , of the same system to see which is the more

stable one, i.e. in which direction the spontaneous change will go, the two state-

variables must be the same in both SI and SII , and these two variables are called

the constraints on the system (Anderson, 2009, p. 66).
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For example, in a multiphase multicomponent mixture, one may want to know

the equilibrium compositions of all the phases at temperature T and pressure P . In

this case, there is a range of values for the thermodynamic potential (precisely one for

every possible composition of the phases involved), and we need to find the minimum

value of the potential. For any other value greater than this minimum, some change

in composition (phases will dissolve, precipitate, etc.) will take place until the

minimum value is achieved. Therefore, on the path to reaching the equilibrium state,

one would speak of minimising the thermodynamic potential at constraints T and P .

9.1.1 Gibbs energy and chemical potential

The Gibbs free energy, G [M L2 T−2 ], has units of Joules and is a thermodynamic

potential. Just as in mechanics, where potential energy is defined as the capacity to

do work, G is the maximum amount of non-expansion (non-mechanical) work that

can be extracted from a thermodynamic system, e.g., the amount of energy available

for things like chemical reactions or phase transitions.

For a multi-component mixture:

G=
Nc∑
i=1

Nigi (9.1)

whereNc [-] is the number of components, Ni [N] is the number of moles for component

i present and gi is the Gibbs energy per mole (molar Gibbs energy) of component i.

The total derivative of Eq. (9.1) with P and T held constant (as these are the

constraints on the system), takes the form:

dG]T ,P =
Nc∑
i=1

gidNi (9.2)

Note that the gi terms are independent of composition.
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The molar Gibbs energy term, gi is often referred to as the chemical potential of

component i and symbolised by µi (Cengel & Boles, 2002, p. 698) (i.e., µi ≡ gi; not

to be confused with viscosity). Therefore:

dG]T ,P =
Nc∑
i=1

µidNi (9.3)

The chemical potential is of particular importance when it comes to equilibrium

calculations. Because the requirements for chemical equilibrium can be stated

concisely in terms of the chemical potential.

9.1.2 Criterion for chemical equilibrium

Consider a simple compressible system of fixed mass at fixed temperature T and

pressure P . Combining the 1st and the 2nd law of thermodynamics for this system

gives (Cengel & Boles, 2002, p. 794):

dQ−PdV = dU

dS ≥ dQ
T

 ⇒ dU +PdV −TdS ≤ 0 (9.4)

where Q [ML2T−2] is the heat added to the system, U [ML2T−2] is internal energy,

S [L2T−2] is the entropy and V [L3] is the volume.

The Gibbs free energy for this system is then given by:

G= U −TS+PV (9.5)

On differentiation at constant pressure and temperature thus yields:

dG]T ,P = dU +PdV −TdS (9.6)
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From Eqs. (9.4) and (9.6) it can be understood that:

dG]T ,P ≤ 0 (9.7)

and for multi-component systems according to Eq. (9.3):

dG]T ,P =
Nc∑
i=1

µidNi ≤ 0 (9.8)

Eq. (9.8) states that a chemical reaction at a specified temperature and pressure

proceeds in the direction of a decreasing Gibbs energy. Therefore, chemical equilib-

rium is established when the Gibbs function reaches the absolute minimum value i.e.

zero. Thus, for multicomponent mixtures, the criterion for chemical equilibrium is

expressed as (Cengel & Boles, 2002, p. 795):

dG]T ,P =
Nc∑
i=1

µidNi = 0 (9.9)

9.1.3 Criterion for phase equilibrium

A special case of chemical equilibrium is in non-reacting multiphase systems which

is of particular interest to this work. Consider a single component mixture of a

saturated liquid in equilibrium with its vapour. The total Gibbs energy of this

mixture is given by:

G= ḡvNv+ ḡlNl (9.10)
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where subscripts v and l denote the vapour and liquid phases respectively. Nj [N] is

the number of moles of phase j and ḡj is the molar Gibbs energy which is analogous

to the as chemical potential (µj). It follows:

G= µvNv+µlNl (9.11)

Note that ḡj and µj are independent of changes in mass (or number of moles).

Now consider a disturbance during which dNl amount of liquid evaporates into

the vapour phase at constant pressure and temperature. Then the change in the

total Gibbs energy is given by:

dG]T ,P = µvdNv+µldNl (9.12)

At equilibrium dG = 0 and also from conservation of mass, dNv = −dNl. It then

follows:

dG]T ,P = (µl−µv)dNl = 0 (9.13)

which yields:

µl = µv (9.14)

Therefore, the two phases of a pure substance are in equilibrium when the chemical

potential of the phases are the same. For a mixture of Nc number of components in

Np number of phases, using the same logic, it can be shown that the requirement for

phase equilibrium can be stated as (Cengel & Boles, 2002, p. 810):

µij = µik i∈ [1, ...,Nc] , j ∈ [1, ...,Np], , k ∈ [1, ...,Np] , j 6= k (9.15)
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9.1.4 Chemical potential in terms of molar volume

To derive useful expressions for calculating the chemical potentials, µi, it is useful

to derive a relationship between µi and the corresponding molar enthalpies and

entropies, hi and si, respectively. The Gibbs energy can also be defined in terms of

enthalpy per unit volume, H [ML−1T−2], and entropy per unit volume, S [L−1T−2]:

G=H−TS (9.16)

where for a multi-component system:

H =
Nc∑
i=1

Nihi (9.17)

S =
Nc∑
i=1

Nisi (9.18)

Inspection of Eq. (9.1) reveals that:

µi ≡ gi = hi−Tsi (9.19)

The total derivative of Eq. (9.19) takes the form:

dµi = dhi−Tdsi− sidT (9.20)

and it happens that:

dhi = Tdsi+ vidPi (9.21)

which on substitution into Eq. (9.20) leads to:

dµi = vidPi− sidT (9.22)
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from which it can be seen that:

(
∂µi
∂Pi

)
T

= vi (9.23)

The above equation is important because it enables the possibility of acquiring

chemical potential values directly from PVT data.

9.1.5 Chemical potential for ideal gas mixtures

Here we will derive expressions for µi in term of corresponding partial pressure, Pi,

under the assumption that the components of a mixture conform to that associated

with an ideal gas. The molar volume of an ideal gas for component i, vi [L3N−1],

can be found from:

vi =
RT

Pi
(9.24)

where Pi is the partial pressure of component i and R [L2T−2K−1N−1] is the ideal

gas constant in molar form.

Substituting Eq. (9.24) into Eq. (9.23) and integrating with respect to Pi leads to:

µi = µ0
i +RT ln

(
Pi
Pref

)
(9.25)

where Pref is a reference pressure at which µi = µ0
i .
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9.1.6 Chemical potentials for non-ideal gas mixtures

The definition for µi in Eq. (9.25) only applies to ideal gases. However, let us define

the term "fugacity" for component i, fi, such that for a non-ideal gas:

µi = µ0
i +RT ln

(
fi
Pref

)
(9.26)

where fi [M L−1 T−2] is the fugacity of component i and has the same units as

pressure. fi is essentially the partial pressure of component i in a non-ideal gas

mixture. Fugacity can be related to the partial pressure of an ideal mixture. For

an ideal gas mixture, partial pressure of each gas species, Pi [M L−1 T−2], can be

calculated using Dalton’s law:

Pi = niP (9.27)

where ni [-] is the mole fraction of the ith component.

To account for non-ideality, a term fugacity coefficient, φi [-], is often defined such

that:

fi = φiPi (9.28)

The fugacity coefficient, φi [-], is a measure of deviation from ideality, in such a

way that:

φi =
fi
Pi
→ 1 as Pi→ 0 (9.29)

Substituting Eq. (9.27)in Eq. (9.28):

fi = φiniP (9.30)
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9.1.7 Chemical potential for solutions

The expression for the chemical potential for an ideal gas mixture, Eq. (9.25), can

also be used to derive an expression for chemical potential in an ideal solution.

An ideal solution is a solution where the total vapour pressure, P , is given by

Raoult’s Law:

P =
Nc∑
i=1

niP
∗
i (9.31)

where ni is the mole fractions of component i and P ∗i is the vapour pressure of the

pure component i. The partial pressure, Pi, is found from:

Pi = niP
∗
i (9.32)

If the vapour behaves as an ideal gas, the chemical potential of component i in

the vapour phase will accord to Eq. (9.25). At equilibrium, the chemical potential of

component i in the vapour phase will be equal to that in the liquid phase. Therefore

Eq. (9.25) can be said to apply to the liquid phase as well.

Substituting Eq. (9.32) into Eq. (9.25) leads to:

µi = µ0
i +RT ln

(
P ∗i
Pref

)
+RT lnni (9.33)

from which it can be said that:

µi = µ∗i +RT lnni (9.34)

where µi = µ∗i when ni = 1.
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9.1.8 Chemical potential for non-ideal solutions

The definition for µi in Eq. (9.34) above only applies to ideal solutions. However, let

us define the term "activity" for component i, ai, such that for a non-ideal solution:

µi = µ∗i +RT lnai (9.35)

where

ai = γini (9.36)

ai [-] is activity of component i and is a measure of effective concentration of

species i in the non-ideal mixture such that:

γi =
ai
ni
→ 1 as ni→ 0 or 1 (9.37)

In other words, the behaviour of component i in a real solution approaches ideal,

either when ni→ 1 for pure component i, or when ni→ 0 for infinite dilution of

component i.

9.1.9 Equilibrium constants

An equilibrium constant, Ki (also known as K-value), is a measure of reactivity. Note

that reaction does not necessarily have to be a chemical one, e.g., phase-transition is

considered as a non-chemical reaction. If Ki is very large, it indicates that a reaction

will tend to go to completion, and if Ki is small, it indicates that the reaction hardly

occurs (Anderson, 2005, p. 240). The equilibrium constants are important because

they can be used to calculate the mole fraction of each chemical species at equilibrium.

This section provides an expression relating K-values to pressure and temperature.
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Consider a multi-component mixture of non-ideal gas and non-ideal solution. Let

fi denote the fugacities of each component in the gas phase and ai the activities of

each component in the liquid phase. Ki is defined by:

Ki =
fi

Prefai
(9.38)

The chemical potentials of each component in the gas and liquid phases can be

calculated from Eqs. (9.26) and (9.35), respectively. According to Eq. (9.15), when

the phases are in equilibrium, their chemical potentials should be equal. Therefore it

can be said that:

µ0
i +RT ln

(
fi
Pref

)
= µ∗i +RT lnai (9.39)

from which it follows:

lnKi =
µ∗i −µ0

i

RT
(9.40)

Recall that µ∗i is the chemical potential of pure component i when Pi = P ∗i , where

P ∗i is the vapour pressure of the pure component i.

Considering Eq. (9.23), differentiating Eq. (9.40) with respect to pressure and

noting that µ0
i is the chemical potential at P = Pref and therefore does not vary

with pressure:

[
∂

∂P
(lnKi)

]
T

=
v∗i
RT

(9.41)

from which it follows that:

Ki =K0
i exp

(∫ P ∗
i

Pref

v∗i
RT

dP

)
(9.42)
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which is often written in the form:

Ki =K0
i exp

[
(P ∗i −Pref)Vi

RT

]
(9.43)

where:

Vi =
1

P ∗i −Pref

∫ P ∗
i

Pref
v∗i dP

∗
i (9.44)

Next is to calculate equilibrium mole fractions using Eq. (9.43) for binary mixtures

of CO2-H2O and CH4-H2O.

9.2 binary co2 -h2 o equilibrium

This section describes the binary equilibrium model for CO2-H2O mixture, proposed

by Spycher et al. (2003). Using the information provided in previous sections, the

aim is to obtain expressions for calculation of the nij terms, which are the mole

fractions of component i in phase j at equilibrium, such that:

Nc∑
i=1

nij = 1 (9.45)

We start by substituting the expressions for Fugacity and Activity, Eqs. (9.30)

and (9.36), into Eq. (9.43). After some rearrangement:

n
H2O(g) =

K0
H2O

aH2O

φH2OP
exp

V H2O(l)

RT
[P ∗

H2O
−Pref ]

 (9.46)

Spycher et al. (2003) argue that CO2 solubility in water is sufficiently small

(infinite dilution assumption) that Raoult’s law can be used to set the water activity,

aH2O , equal to its mole fraction in the water phase, n
H2O(l). Applying this assumption

and using Eq. (9.45), then Eq. (9.46) becomes:

n
H2O(g) =

K0
H2O

(1−n
CO2 (l)

)

φH2OP
exp

V H2O(g)

RT
[P ∗

H2O
−Pref ]

 (9.47)
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Spycher et al. (2003) calculate the activity coefficient of CO2 on a molality scale

as opposed to mole-fraction scale, with the convention that:

aCO2
= γCO2

mCO2
(9.48)

where mCO2
[NM−1] is the molality of CO2, which is moles of CO2 per kg of water

and is given by:

mCO2
=
n

CO2 (l)

MH2O
(9.49)

where MH2O = 0.018015 [MN−1] is the molar mass of water. Substituting Eq.

(9.49) in Eq. (9.48), gives the activity of CO2 on a mole-fraction scale:

aCO2
= 55.508n

CO2 (l)
(9.50)

To obtain mole fraction of CO2 in the liquid phase, n
CO2(l)

, we substitute fugacity

and activity expressions, Eqs.(9.30) and (9.50) in Eq. (9.43). After rearrangement:

n
CO2 (l)

=
φCO2

(1−n
H2O(g))P

55.508K0
CO2

exp
−V CO2 (l)

RT
[P ∗

CO2
−Pref ]

 (9.51)

Eqs. (9.47) and (9.51) provide the two equations to obtain the two unknowns,

n
H2O(g) and nCO2 (l)

:

n
H2O(g) =

1−W
1/Q−W

& n
CO2 (l)

=W (1−n
H2O(g)) (9.52)

where Q and W are:

Q=
K0

H2O

φH2OP
exp

V H2O(g)

RT
[P ∗

H2O
−Pref ]

 (9.53)
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W =
φCO2

P

55.508K0
CO2

exp
−V CO2 (l)

RT
[P ∗

CO2
−Pref ]

 (9.54)

n
H2O(l) and nCO2 (g)

can then be calculated using Eq. (9.45).

The fugacity coefficients, φi [-], are calculated using the empirical correlation below:

ln(φi) = ln
(

Vi
Vi−Bmix

)
+
(

Bi
Vi−Bmix

)
−2ln

(
Vi+Bmix

Vi

) Nc∑
k=1

niAi

/
(RT 1.5Bmix)

+
AmixBi

RT 1.5B2
mix

[
ln
(
Vi+Bi
Vi

)
−
(

Bmix
Vi+Bmix

)]
− ln

(
PVi
RT

)
(9.55)

where Ai and Bi are the intermolecular attraction and repulsion parameters for

component i and are given in Table 6. For the gas mixture, they are calculated using:

Amix = n2
H2O(g)AH2O + 2n

H2O(g)nCO2 (g)
AH2O−CO2

+n2
CO2 (g)

ACO2
(9.56)

Bmix = n
H2O(g)BH2O +n

CO2 (g)
BCO2

(9.57)

It is apparent from Eq. (9.55) that φi depends on the mixture composition,

nij . Therefore, Eq. (9.55) needs to be solved simultaneously with Eqs. (9.47)

and (9.51) to compute the mutual solubilities of CO2 and H2O. This requires an

iterative scheme that can add significant burden for implementation into an already

computationally intensive fluid flow/transport model. However, Spycher et al. (2003)

suggests to assume that n
H2O(g)

= 0 and n
CO2(g)

= 1 (i.e., assumption of infinite H2O

dilution in the CO2-rich phase), for fugacity coefficients to be computed directly, in

a non-iterative manner.
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Parameter Value
aCO2 6.21×10e7
bCO2 27.80
bH2O 18.18

aH2O−CO2 7.89×10e7

Table 6: Attraction and repulsion parameters for CO2-H2O mixture.

Component D1 D2 D3 D4
H2O -2.209 3.097 ×10e-2 -1.098 ×10e-4 2.048 ×10e-7
CO2(g) 1.189 1.304 ×10e-2 -5.446 ×10e-4 0.0
CO2(l) 1.169 1.368 ×10e-2 -5.380 ×10e-4 0.0

Table 7: Parameters of the empirical equation for evaluation of the equilibrium
constant, K0, for CO2-H2O mixture.

Finally, the K0
i values are calculated using the empirical correlation below:

log(K0
i ) =D1 +D2T +D3T

2 +D4T
3 (9.58)

Values for D1 to D4 are listed in Table 7 for CO2 and H2O.

9.3 binary ch4 -h2 o equilibrium

This section describes the binary equilibrium model for CH4-H2O mixture, proposed

by Duan & Mao (2006). Their approach is almost identical to that of Spycher et

al. (2003) which was described in previous section. Here again capillary forces are

assumed negligible:

Pg = Pl = P (9.59)

Subscripts g and l denote the gas and liquid phases respectively.
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The aim is to obtain expressions for calculation of the nij terms, which are the

mole fractions of component i in phase j at equilibrium, such that:

Nc∑
i=1

nij = 1 (9.60)

We start by substituting the expressions for Fugacity and Activity, Eqs. (9.30)

and (9.36), for H2O into Eq. (9.43). After some rearrangement:

n
H2O(g) =

K0
H2O

aH2O

φH2OP
exp

V H2O(l)

RT
[P ∗

H2O
−Pref ]

 (9.61)

Where again the CH4 solubility in water is so small that Raoult’s law can be

used to set the water activity, aH2O , equal to its mole fraction in the water phase,

n
H2O(l). Applying this assumption and using Eq. (9.60), then Eq. (9.61) becomes:

n
H2O(g) =

K0
H2O

(1−n
CH4 (l)

)

φH2OP
exp

V H2O(l)

RT
[P ∗

H2O
−Pref ]

 (9.62)

For evaluation of K0
H2O

=
fH2O

aH2O
, due to infinite dilution of CH4 in H2O phase,

aH2O = 1 and therefore K0
H2O

is equal to the fugacity (partial pressure) of water in

the gas phase. Furthermore, the partial pressure of water in vapour is approximated

as the saturated pressure of pure water, such that:

K0
H2O

= fH2O = P ∗
H2O

(9.63)

Substituting Eq. (9.63) in Eq. (9.62) leads to:

n
H2O(g) =

P ∗
H2O

(1−n
CH4 (l)

)

φH2OP
exp

V H2O(l)

RT
[P ∗

H2O
−Pref ]

 (9.64)
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Parameter Value
C1 -1.42006707 ×10−2

C2 1.08369910 × 10−2

C3 -1.59213160 × 10−6

C4 -1.10804676 × 10−5

C5 -3.14287155 × 100

C6 1.06338095× 10−3

Table 8: Parameters of empirical equation for water fugacity.

On the other hand, since there is little water in the vapour phase, the fugacity

coefficient of CH4 in gas phase differs little from that of pure CH4 at the pressure

and temperature ranges of interest. Therefore:

n
CH4 (g)

= 1−n
H2O(g) =

P −P ∗
H2O

P
(9.65)

The only remaining parameter to be evaluated is the fugacity coefficient of water,

which can be calculated from the following equation:

φH2O = exp
(
C1 +C2P +C2

3 +C4PT +C5
P

T
+C6

P 2

T

)
(9.66)

Where C1 to C6 are listed in Table 8.

Eqs. (9.64), (9.65) and (9.60) provide the necessary information to calculate all

of the nij terms for the CH4-H2O mixture.
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