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Abstract

What is the shape of a droplet? Its interfacial tension dictates that it is very

close to a perfect sphere. Herein, the interfacial tension is reduced to ultralow val-

ues (0.1 − 100 µNm−1) by careful formulation of surfactant additives, such as for

mixtures that form microemulsions. The droplet need not be spherical but can ac-

commodate external forces of a similar magnitude. The control and precision of

forces afforded simply by light - in the form of highly focused Nd:YAG laser beams

- are exploited in this work to deform hydrocarbon oil-in-water emulsion droplets of

1-10 µm diameter. To this end, a novel, integrated platform for microfluidic gener-

ation, optical deformation and 3D fluorescent imaging of droplets is presented.

Previous attempts to characterise optically-controlled microdroplet shapes have been

limited to 2D projections. Here, that ambiguity is resolved using 3D confocal laser

scanning- and structured illumination microscopy. 2D and 3D arrays of up to four

Gaussian point traps are generated by holograms and acousto-optics. A variety of

regular, prolate, oblate and asymmetric shapes are produced and correlated with

parameters such as optocapillary number, trap separation and capillary length. Ex-

otic shapes exhibiting zero or negative mean and Gaussian curvatures are presented

alongside their brightfield counterparts.

The complex phase behaviour of emulsion droplets and their parent phases is ob-

served to couple strongly to thermal absorption of the beams. The rich interfacial

chemistry, its relation to the forces determining droplet shape and the surprising

ability to create nanofluidic networks between droplets are investigated.
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Introduction

Rationale

Since Ashkin’s pioneering work [1], optical tools have been employed in the manipu-

lation of microscopic matter across the sciences. Optical tweezers are routinely used

to study soft matter, microbiological and related model systems [2–4]. This follows

wider recognition of their capability for highly sensitive, non-invasive and responsive

measurement and manipulation. Optical tweezers are highly focused lasers, typically

of moderately high power (10 mW - 1 W), which exert forces on the piconewton

scale. They rely on the momentum transfer that occurs on refraction through a

microscopic particle, in order to confine that particle’s position near the focus of the

beam. The laser focus is provided by a microscope objective of high numerical aper-

ture, which also facilitates imaging of the particle. As such, the micron scale of the

experiments is dictated by considering the largest object that can be trapped stably,

in comparison with the smallest that can be interrogated by optical microscopy.

As microparticles diversify, a wide range of technological solutions opens up.

Photonic and meta-materials require a large number of reproducible 3D features on

the near- or sub-wavelength scale. Properties of electronic microcomponents also

rely on precise morphology. Tissue templating and drug delivery responses emerge

from topographical and chemical stimuli for biological cells, for which anisotropic

microparticles could pose a feasible model. From a scientific perspective, these mi-

croparticles are relatively simple systems, with which the interactions between light

and matter can be probed.

2



Introduction 3

Whilst solid microparticles have been created for many purposes, complex liq-

uids represent a reservoir of unexplored science. Immediately, solution chemistry,

flow physics and deformable shapes become imaginable. The latter is the central

rationale for this thesis.

The chief impediment to this vision is that for liquid microdroplets, surface (or

interfacial) tension minimises surface area, thereby imposing a spherical interface.

However, authors within this collaboration have demonstrated previously [5] that

systems of conventional optical traps are able to deform oil-in-water emulsion drops

displaying ultralow interfacial tension (ULIFT). At ULIFT conditions, forces other

than the interfacial tension influence the statics and dynamics of the droplet shapes

significantly. Alongside the contrast in refractive index across the interface, ULIFT

is therefore an important requirement for optical deformation [6]. Following these

authors, the present work finds that these conditions are fulfilled by certain am-

phiphile/alkane/aqueous systems - those capable of forming efficient microemulsions.

Previous studies have been limited in scope; until now, the optical trap locations

have been confined to a 2D plane. Moreover, prior attempts to quantify optical

deformation relied only on conventional 2D imaging; for example, brightfield mi-

croscopy allows a straightforward - if ambiguous - assessment of the 3D surface

in situ. True 3D techniques are used to overcome this ambiguity. Modern emul-

sion chemistry admits a vast range of materials, organic and inorganic, that can

be optically manipulated on the submicron scale. A microfluidic approach pro-

vides a precise, flexible, high-throughput production method. In addition to the

optical forces, effects relevant to deformable droplets are explored herein, including

thermally-excited fluctuations, viscous flows, thermocapillarity and buoyancy.
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The summarised aims of the project collaboration are to optically deform emul-

sion droplets for the following purposes:

1. to explore possible shapes with ‘conventional’ Gaussian optical tweezers,

2. to relate the liquid morphology to the droplet characteristics and trapping

conditions;

3. to produce nanothread networks and explore their stability and dynamics.

The presented thesis covers a subset of these aims, namely:

• to pursue reproducible methods for generating droplets that can be deformed

with optical tweezers,

• to implement a suitable hierarchy of optical tweezing capabilities for multiple

independent trapping positions,

• to formulate emulsions that are optimised for the deformation experiment,

primarily those displaying an ultralow interfacial tension,

• to develop the experimental capability for and theory underlying nonlinear

deformations and nanothread networks in 3D, and

• to exploit 3D fluorescence imaging for the interrogation of droplet shapes at

equilibrium, focusing on polygonal prisms (2D arrays) and polyhedra (3D ar-

rays).
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Chapter guide

Chapter 1 reviews current understanding of ultralow interfacial tension phe-

nomena and the parent microemulsion systems. It describes the author’s prac-

tical formulation and assessment of microemulsions, in some cases novel, to

obtain reliable ULIFT with different oils and tunable dependence on temper-

ature,

Chapter 2 introduces the concepts of optical tweezers, and describes the au-

thor’s practical implementation of multiple optical tweezers in three different

set-ups: split-polarisation, acoustic-optical deflection and holography-based,

with a view to a novel, comprehensive optonanofluidic platform,

Chapter 3 describes the manual and microfluidic methods used herein for con-

trolled droplet production. The author presents the design, development

and performance of a novel platform for automated microfluidics of ultralow

interfacial formulations. The novel phase behaviour of oily microemulsion

droplets with changes in temperature and salinity are explored and categorised,

Chapter 4 presents a wide range of novel experimental results and a cohesive the-

ory regarding the dynamic phase behaviour of oily microemulsion droplets

when exposed to focused lasers, particularly the effect of laser heating; the

traps are generated using the split-polarisation technique,

Chapter 5 is a short aside that summarises the author’s contribution to the under-

standing of droplet bifurcation into nanothreads, under the action of optical

tweezers. Novel theoretical insights into the interfacial physics are used to

qualify experimental deformation results in 2D imaging, both original and

literary,

Chapter 6 presents the static 3D images of optically-deformed oil droplets and

networks, as obtained by position-calibrated confocal and structured illumi-

nation microscopy; the traps are generated using the acousto-optic deflection

and adaptive holographic methods;



Introduction 6

Conclusions build on the Chapter discussions to summarise the work and explore

its implications in the fields of microfluidics, optical tweezing and emulsion

technology.
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Chapter 1

Microemulsion Formulation and

Optimisation

1.1 The origin of ULIFT

Thermodynamically stable mixtures of oil, water and surfactant, known as mi-

croemulsions, are of great practical importance for their solubilisation capacity [7], in

enhanced oil recovery [8], and as media for enzymatic catalysis [9, 10]. Microemul-

sions exhibit ultralow interfacial tensions (ULIFT) between co-existing aqueous,

oleic and ’middle’ phases (the latter having a bicontinuous structure composed of

interconnected aqueous and oleic phases). ULIFT results in interesting effects in-

cluding complete wetting or non-wetting of surfaces, stability of jets and threads,

and extreme deformability under body or surface forces [11, 12].

1.1.1 The defining properties of an interface

In general, molecules at an interface will be subject to an imbalance in intermolecular

forces. If the bulk densities are to be adopted on either side, the surface molecules

would be subject to a net force, pointing normally into the respective bulk. Each set

of surface molecules are necessarily more tightly packed and have a higher potential

energy (Figure 1.1). One may imagine a dividing surface of tension, along which an

8
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interfacial tension, a cohesive force per unit length, acts.

Figure 1.1: The net forces on uniformly-distributed molecules are zero in bulk fluid

(left), but non-zero at the surface (right, against vacuum) causing them to compress

and have higher potential energy.

Equivalently, interfacial tension (IFT, or σ) can be defined as the minimum

differential work required to create new surface area, A. As such, it can also be

expressed as a differential energy per unit area:

σ ≡ ∂G

∂AN,p,T
(1.1.1a)

at constant molar number N , pressure p and temperature T . The change in Gibbs

free energy, G, describes the spontaneity of a process at constant pressure and tem-

perature. This is therefore the equilibrium interfacial tension, which for a stable

interface is always positive and finite.

The surface energy of solids is related, but not equivalent to the IFT, since some

solid surfaces may relax from a cleaved state whereas fluids cannot. Nevertheless,

fluid surfaces which include adsorbed components behave differently, as they have

an IFT which is necessarily reduced from the bare value. These fluids will immedi-

ately exhibit temporarily higher dynamic IFT (closer to the bare value) when the

surface is created. This effect is only perceptible when the surface is expanded much

faster than adsorption kinetics allow the components to react; however, most sur-

factants adsorb on a millisecond timescale or faster, except at trace concentrations



1.1 The origin of ULIFT 10

[13]. Where IFT varies across a surface (e.g. differential evaporation of a mixture),

spontaneous flow will occur from regions of low- to high-IFT. This phenomenon is

called the Marangoni effect [14].

Any fluid interface, whether dynamic or in equilibrium, has a characteristic

length l e.g. channel diameter, density contrast ∆ρ and viscosity η, flowing at

an average speed v whilst subject to gravitational acceleration g. Description of the

expected kind of fluid mechanics is greatly simplified by the use of dimensionless

numbers [15]. These are ratios (thus indicating the relative importance) of the forces

on fluids arising from different effects. The Bond number Bo compares buoyancy

and interfacial forces, whereas the capillary number Ca compares viscous and in-

terfacial forces. A third, the Reynolds number Re, compares inertial and viscous

forces; it does not directly relate to IFT, but is an important metric for distinguish-

ing laminar and turbulent flow regimes. All work in this thesis concerns systems

near equilibrium IFT in strictly laminar flow (Re� 103).

Bo =
∆ρgl2

σ
Ca =

ηv

σ
Re =

∆ρvl

η
(1.1.1b)

For a given volume of substance with no geometric constraints, the minimisation

of surface area yields a spherical interface; hence fluid bubbles and droplets adopt

this form. A general law in this regard is the Young-Laplace theorem [15], which

shows how the local (Laplace) pressure difference across an interface, pL, increases

with the local mean curvature, H:

pL = σ∇ · Â = 2σH (1.1.1c)

H =
c1 + c2

2
(1.1.1d)

where Â is the interfacial normal vector and H is defined as the mean of the

local principal (extremum) curvatures c1, c2.

As a result of the IFT acting across the surface, a smaller droplet (which is more

strongly curved) has a greater internal pressure than a larger one. Even in isolation,
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it is less thermodynamically stable. This pressure difference manifests itself widely:

in the nucleation of a new phase at a critical point, for example. The Laplace

pressure provides an instrument by which the IFT contributes to the stability, or

otherwise, of a particular droplet shape and size.

The reason ULIFT (σ < 10−4 Nm−1) is not typically encountered is that it

requires particular conditions, in which the net interactions of the two bulk phases

with the interface are almost identical. This is very different to the common situ-

ation where some, but not all, of the interactions are insignificant; for example, at

the free surface of a liquid.

The surface tension of simple molecular interfaces scales as σ ≈ U/a where a is a

molecular surface area and U is the depth of the interaction potential [16]. For larger

molecules, U increases. so IFT remains the same order, σ ∼ kBT/nm2 ∼ 10−2 Nm−1.

When near a critical thermodynamic point at which binary phases converge in den-

sity and become miscible, the interactions become similar on either side of the inter-

face and so the effective IFT disappears. However, all other distinguishing factors

also necessarily recede, including the refractive index contrast required for optical

trapping.

1.1.2 Surface-active agents

The largest category of colloids are lyophobic (solvent-hating) and are formed with

insoluble components. Very specific formulations in this class, such as demixed

polymer and nanosilica fluids, display the lowest stable ULIFT known, (of order

σLL′ ∼ 0.01 µN m−1) since the length scale is much larger for a similar thermal

energy well. This effect has been used to probe fluid mechanics at ULIFT [17]. Yet

the fact that these are not true solutions limits the generality of their application.

Again, the refractive index contrast is extremely low.

By contrast, lyophilic colloids are true solutions of amphiphilic substances. Emul-

sions (immiscible mixtures of molecular liquids) are a manifestation of the hydropho-
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bic effect. This process is partly enthalpic; polar-polar interactions are stronger than

similar polar-nonpolar interactions, which are consequently minimised by exclusion

to form an interface. However, the exclusion is mostly driven by an entropy dif-

ference; polar molecules become strongly-oriented around non-polar solutes in an

unfavourably small number of configurations. Many amphiphilic substances which

have both polar and non-polar moieties (such as alcohols) are surface-active, i.e.

show a tendency to adsorb to interfaces; in doing so they reduce the IFT (thus the

process is spontaneous). The most important subset of these molecules are ’surface-

active agents’ or surfactants.

A distinctive feature of surfactants is that they are able to form oriented ag-

gregates or monolayers, both at interfaces and in bulk solution. In most cases an

emulsion interface lies between aqueous and hydrocarbon phases, so the surfactants

must have a hydrophobic ’tail’ (hydrocarbon chain, though occasionally aromatic,

fluorocarbon or siloxane) and a hydrophilic ’head’ (polar or charged structure). The

simplest and most common categorisation is by head group type.

In stabilising large surfaces, surfactants merit an array of purposes. Anionic and

nonionic surfactants are principally used in emulsion as soaps/detergents, foaming or

wetting agents. Cationics are most often used in surface modification of solids giving

rise to anticorrosion or lubrication properties [18]. Surface activity is often compared

using various definitions of ’efficiency’ or ’effectiveness’ parameters, which denote

the extent of surface tension reduction as a function of concentration. Underlying

this is the general thermodynamic concept of a surface excess concentration, Γ, as

illustrated by the Gibbs adsorption isotherm [19],

Γ =
−1

nSRT

( ∂σ

∂ ln (γ)

)
γ≤cmc

(1.1.1e)

where nS is the dissociation number of the surfactant. The surface excess is so

named as it represents the concentration of a substance at the surface surplus to

that in the bulk, γ; since a real surface is gradual on the molecular scale, the dividing

Gibbs surface is chosen so that the excess of the solvent is zero.
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Type Examples

Nonionic

pentaethylene glycol dodecyl ether, C12E5

Triton X-100

Anionic

sodium dodecyl sulphate, SDS

sodium bis(2-ethylhexyl) sulfosuccinate, AOT

Cationic

n-cetyltrimethylammonium bromide, CTAB

n-didodecyldimethylammonium bromide, DDAB

Table 1.1: Commercial surfactants depicting the three major head group types.

Illustrated with ChemDraw R©. In the work covered by this thesis, the nonionics,

C12E4 and C12E5, and the anionics AOT and SDS are studied.

The exceptional ability of surfactants to self-aggregate is only observed above a

critical micellar concentration or cmc characteristic of the surfactant-solvent pair.

Typically, the cmc is below 0.01 M. As the cmc is approached, the surface excess

reaches a characteristic packing fraction. Most subsequently introduced surfactant
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tails then become cooperatively excluded (into groups of 50-200 molecules) via the

hydrophobic effect. This produces oily nanodomains or micelles in aqueous solution

and vice versa for solutions in oil [20]. However, above the cmc, the surfactant’s

chemical potential no longer changes and § 1.1.2 is no longer applicable. Past this

point the IFT does not decrease appreciably with higher surfactant concentration.

This is typically σ ∼ 10−3 N m−1, which suffices for familiar applications but does

not constitute ULIFT.

The Krafft point for ionic surfactants, TK , is the temperature at which the cmc

is equal to the molecular solubility of the surfactant in a particular solvent (al-

most always referring to aqueous solution). Below this temperature, no equilibrated

aggregates can form as they become less stable than the bulk surfactant phase.

Additional surfactant precipitates such that only monomeric surfactant remains in

solution (Figure 1.2).

Figure 1.2: Schematic of solubility and cmc dependence on temperature for a typical

ionic surfactant in a single solvent. The Krafft point occurs at their intersection.
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The Krafft point is therefore a lower limit to the range of their general use. For

a given molecular weight, TK is depressed for larger head groups and branched sur-

factants, since the steric repulsion frustrates any crystalline order. It follows that

TK can also be reduced by decreasing the cmc, e.g. by increasing ionic strength of

the solution.

For many non-ionic surfactants, there is a cloud point temperature, TC , above

which the aqueous solution phase separates. This yields surfactant-rich and surfactant-

poor regions; both dehydration of the surfactant and greater colloidal interactions

between the micelles cause them to flocculate above TC [21].

Of the immiscible media in an emulsion, the more hydrophilic is usually water-

based. Thus formulators speak of oil-in-water (o/w) or water-in-oil (w/o) emulsions

when specifying the internal and external phases of a droplet emulsion. Bancroft’s

rule states that the preferred continuous phase is that in which the amphiphiles (in

all forms) are most soluble. Although commonly verified, it has been superseded

by Binks et al., who state that the preferred continuous phase is the microemulsion

phase (see § 1.2), i.e. the phase in which stable aggregates are most soluble. Ban-

croft’s rule implies correctly that for a given surfactant, the predominant emulsion

type is strongly dependent on the surfactant structure. There are several semi-

quantitative descriptions based on this correlation of performance and structure.

The hydrophilic-lipophilic balance (HLB) is an empirical scale of increasing net

hydrophilicity (Figure 1.3), for which the references are oleic acid (HLB ≡ 1) and

potassium oleate (HLB ≡ 20). Griffin’s method [22] relates the fraction of ’hy-

drophilic’ chemical groups in a surfactant to the applications for which it is expected

to be suitable.

The preferred aggregate type is observed with decreasing HLB to follow the se-

quence: spherical, cylindrical, bilayer, laminar to inverse structures. Mitchell [23]

provides a physical explanation for this sequence by correlating it with the critical
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packing parameter, CPP = Vγ/aγlγ with aγ being the head area, lγ the hydropho-

bic tail length and Vγ the tail volume. This comparison of head and tail area is

quantitatively correct for a micellar or microemulsion aggregate. However, the in-

terfacial curvature of an emulsion droplet is typically orders of magnitude smaller

than any inverse molecular dimension. That the preferred emulsion type still follows

the preferred microemulsion type suggests that some equipartition of curvature en-

ergy occurs between thermally-equilibrated droplets and aggregates, even when the

droplet size is itself not yet equilibrated under surface tension.

Figure 1.3: The HLB spectrum of surfactant hydrophilicity, including ranges iden-

tified with particular uses [22]. Surfactants used without additives for ULIFT are

typically found in the central region HLB = 10− 12.

Alternatively, Winsor’s R-ratio directly addresses the balance of interaction en-

thalpies A (between heads H, tails T, water W and oil O). Where the R-ratio

is greater than unity, the monolayer is hydrophilic and vice versa. Although this

is an exact physical interpretation, the individual constants cannot be quantified

easily; some approximations use Hildebrand solubility parameters or enthalpies of

vaporisation.

R-ratio =
AHW − AWW − AHH
ATO − AOO − ATT

≈ AHW
ATO

(1.1.1f)

The Winsor theory [24] confirms that the balance is essentially a result of match-

ing the oil-tail and water-head interactions. Notwithstanding restrictions in tem-
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perature, TK , TC , most low-molecular weight oils can be emulsified with a given

aqueous surfactant solution above the cmc. However, unless the terminal IFT is

very low, the Laplace pressure will prohibitively destabilise smaller droplets, so that

emulsions will coarsen and separate over time, either through coalescence or Ost-

wald ripening. Although this can be slowed, it cannot be stopped, i.e. emulsions

can only be kinetically stabilised. However, highly dividing the bulk also gives rise

to an entropic gain from the new configurations of the numerous, small, resultant

structures. If the IFT is depressed below a threshold value, emulsification becomes

favourable; these compositions are called microemulsions.

1.2 Microemulsions

Given that optical deformation is proposed for oil droplets in water, it may not

seem obvious why understanding microemulsions is important. Yet the fact that

microemulsions exist at all is a result of ULIFT. For any lyophilic colloid, an abil-

ity to produce ULIFT is therefore intimately related to the type and behaviour of

the microemulsion formed at moderate surfactant concentrations.

The term ’microemulsion’ is actually a historical misnomer, since the feature

size is typically much smaller than a micron (for droplets, much less than 50 nm

diameter). Insight into why microemulsions form is gained by considering the re-

quired Gibbs free energy. The system in question is a surfactant film between the

immiscible phases, in equilibrium with a reservoir of surfactant in solution. The

larger the total film area, the more divisions or conformations it can adopt and so

the configurational entropy of the system increases. This favourable entropy change

is counterbalanced by the finite surface tension of the film. For isothermal division

of the bulk at constant IFT,

∆G = σ∆A− T∆S. (1.2.1g)

When the surface tension is sufficiently low such that ∆G ≤ 0, enlarging the area

of the film by ∆A = T∆S/σ (into a highly divided emulsion at fixed internal volume)
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becomes a spontaneous process. Although metastable emulsions (nanoemulsions)

with similar properties can be produced with similar materials, microemulsions are

fundamentally different; they are thermodynamically (rather than kinetically) sta-

ble. As such, they have an indefinite shelf life and will never phase-separate under

the conditions which formed them.

Historically, definitions of what constitutes a microemulsion invoke an arbitrary

length cutoff based on the scattering of light, or feature size, for the convenience of

practical identification [25]. It is important to define microemulsions solely by their

thermodynamically stable, mutual solubilisation of otherwise immiscible solvents.

This state is a direct result of the ULIFT provided by the amphiphilic monolayer.

Winsor described that if a particular mixture allows a microemulsion to form,

there are four types of phase equilibria which can occur, denoted WI-WIV. A mi-

croemulsion phase cannot in general be diluted; the external and internal phases

are intimately balanced and have both preferred (average) structure and volumetric

ratio. Thus excesses of oil or water may appear. According to the relative phase

densities, they form layers.

Figure 1.4: The phase variations of systems giving rise to a microemulsion: WIII

(bicontinuous phase) lies intermediate between the extremes WI (oil in water) and

WII (water in oil); WIV encompasses any of these which fills the entire volume.
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The WI (lower) and WII (upper) phase microemulsions are analogues of con-

ventional o/w or w/o emulsions respectively, with nanoscopic particle size (swollen

micelles). The WIII middle phase microemulsion represents an intermediate situa-

tion where the layers have very little mean curvature; surfactant interactions between

oil and water are similar. The WIV, found at high surfactant concentration is dis-

tinguished only by its lack of excess phases. In practice, it may be variously w/o,

o/w or a neutral structure depending on the proximity to the other three regions.

In accordance with Bancroft’s rule, the surfactant migrates to the continuous phase

(which holds the microemulsion) either side of the phase inversion point from WI–

WIII–WII.

The stability of the various microemulsions can be identified using the Gibbs

phase rule: F = C − P + 2 [26]. It shows the number of degrees of freedom F

remaining when a number of phases P coexist, for a given number of components

C. For a ternary (C = 3) phase diagram at constant temperature and pressure,

there are two independent degrees of freedom: the oil and water chemical potentials

(which constrain that of the surfactant). Thus a single phase (WIV) occupies at

most a bidimensional region, the two phase equilibrium (WI or WII) a binodal curve

and the three phase equilibrium (WIII) an isolated point.

The miscibility gap spanned by three phases implies the equivalence of three

chemical potentials near three free energy minima and thus a triangular WIII re-

gion on the ternary (Figure 1.5). The tie lines in the WIII area point toward the

vertices of the triangle, whilst the phase inversion zone in which ULIFT is observed

lies approximately along its vertical bisection. Microemulsions are formed above the

critical microemulsion concentrations (cµcs) in each solvent [27] (related to, but not

to be confused with the cmcs) which form the lower oil- and water-rich corners of the

WIII triangle. The specific formulation where the microemulsion phase becomes the

entire mixture is the X- or ’fish-tail’ point (Figure 1.6). The amount of surfactant

required at this point represents its efficiency in creating enough area to solubilise

the two bulk substances; as a result it can be used as a positively-correlated marker
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for ULIFT.

However, this ideal phase diagram only holds under a unique set of conditions

(temperature and pressure) which allow phase inversion. Either side of the balance,

the diagram becomes skewed towards either WI or WII and the WIII region dis-

appears. This is why WIII (and the corresponding ULIFT) are more difficult to

formulate than other microemulsions.

Figure 1.5: A simple ternary phase diagram of oil, water and surfactant near the

phase inversion point where the microemulsion is bicontinuous. It shows the liquid

crystal region (LC) and the ’X’ point, representing the smallest amount of surfactant

required for WIV miscibility of oil and water.

Where WIII middle phases do exist, proton NMR self-diffusion measurements,

cryo-electron microscopy, small-angle neutron or X-ray scattering (SANS/SAXS)

[28], conductivity and electrochemical [29] measurements all confirm a random,

monodisperse, self-similar and bicontinuous structure. As the WIII region is ap-

proached, oil or water droplets overlap and unbend into an interconnected geometry
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in which the locally immiscible environments of oil and water are interchangeable

and equivalent. Since confined w/o drops collapse to form water-connected chains,

this is related to the phenomenon of percolation in which electrical conductivity

sharply increases [30].

The WIV is unique from a interfacial tension perspective. Since there are no

excess phases, the internal volume is fixed. The only means of creating more sur-

face area (from reducing the surface tension) is by subdividing the existing volume.

This makes the feature size smaller and so less light is scattered. However, when an

excess phase is present, it can instead be depleted to swell the existing microemul-

sion structures, yielding a larger feature size as IFT is reduced. This explains the

common misconception that all microemulsions must become more transparent as

they become more efficient; this only applies to single-phase formulations. However,

it also poses the question as to why, given the freedom to do so, a larger feature size

(i.e. a lower preferred curvature), would be associated with a lower tension.

1.3 Interfacial curvature in the middle phase

Curvature is a necessary aspect of microemulsion behaviour. The simple entropic

argument given above fails to impose any significant preference for the geometry

of the new interfacial area. Models such as the critical packing parameter allude

to the role of changes in membrane interactions in favouring certain shapes over

others, as evidenced by the variety of known microemulsion structures. In effect,

this bias redefines the IFT as a curvature-dependent quantity, distinct from that

of a planar surface [23]. The uniform curvature of the spherical systems (WI/WII)

is both intuitive and accessible both experimentally and theoretically. A range of

methods are commonly used to measure droplet radii and estimate ULIFT. In the

last three decades, however, predictive methods for WIII phase transitions [31] have

been developed from models of curvature energy. The curvature elastic energy per
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unit area is commonly expressed using the Helfrich equation [32]:

(∂G
∂A

)
NPT

= σpl + 2κ(H −H0)2 + κ̄K +O(c4) (1.3.1h)

H =
c1 + c2

2
K = c1c2 (1.3.1i)

This represents a quadratic expansion of the surface free energy per unit area

in terms of the local principal curvatures c1, c2. The parameters which dictate the

energy penalty for local increases in either curvature are the bending moduli: for

mean curvature (H) this is splay constant or bending modulus (κ); for Gaussian

curvature (K) this is the saddle-splay constant (κ̄). Their values are typically re-

ported in units of thermal energy kBT .

The spontaneous curvature (H0) is the preferred curvature of the surfactant

monolayer. Chiefly, it is necessary to explain stability of non-minimal (〈H〉 6= 0)

surfaces such as spherical aggregates; for this reason it is important in understanding

the phase inversion behaviour. The surface tension σpl in this expression is that of

the planar reference state at absolute-zero, for which H = K = 0. However, when

the thermodynamically preferred surface has non-uniform curvature from point to

point, the surface of tension no longer corresponds to the interface itself. Even

though the surface is packed, the Laplace pressure is homogeneous, and there is no

Marangoni flow, the concept of a tension which acts mechanically loses its definition

[33]. For the WIII microemulsion, theory relies instead on the definition of a free

energy per unit area, which includes any bending energy effects in the reproduction

of the surface.

Local minima of measured oil-water IFT occur in parameter space where the

surface excess entropy of the aggregates is equal to that of a planar monolayer [34].

As such, the preferred mean curvature of the oil-water interface, H0, becomes zero

at these points.

For fixed amphiphile concentrations and a fixed ratio of solvents, the phase be-

haviour is also determined by H0. When H0 changes sign under influences such as
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temperature or ionic strength, emulsions tend to undergo phase inversion [35]. Thus

1/H0 is a useful length scale for predicting which kind of microemulsions are possi-

ble. As ULIFT is strongly correlated with phase inversion, this poses the question:

can the Helfrich free energy provide a theoretical basis for the measured ULIFT?

The system Helfrich considered is thermodynamically open such that the area

is extrinsic (i.e. constant area per adsorbed surfactant molecule). It is valid for

packed surfactant layers for which the curvatures are much smaller than the inverse

layer thickness. Minimising this expression gives the preferred average curvatures.

Certain stability constraints on any membrane are straightforward to derive, such

as 2κ + κ̄ > 0, below which aggregates become unstable with respect to a planar

surface and thus emulsification fails. The bending moduli are not easily interpreted

from experiment, so it is easier to first assume an idealised geometry.

In the de Gennes and Talmon-Prager (GTP-type) models, an infinite lattice of

oil or water domains, of width d, is permuted subject to thermal Helfrich fluctua-

tions [36, 37]. Correlations between the fluctuations occur on a scale denoted the

persistence length, ξ:

ξ = lγ exp
( 4πκ

3kBT

)
(1.3.1j)

where lγ is the layer thickness. According to this model the minimum IFT is:

σOW ≈ 0.44
kBT

ξ2
(1.3.1k)

The prefactor stems from the modelled cubic symmetry, i.e. lattice coordination

number nL = 6. In the model, ξ can be estimated geometrically:

ξ ≈ nLφOφW lγ
φγ

(1.3.1l)

Fixing all other parameters, the minimum tension is predicted to occur when the

solubilised oil and water volume fractions (φO, φW , respectively) are equal. This

prediction is loosely related to Winsor’s argument that the net molecular interac-

tions per area between the oil/water and the surfactant must be equal at the optimal

point, thus H0 = 0. Unlike spherical or cylindrical aggregates, a bicontinuous sur-
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face is minimal and so to exist at equilibrium, H0 ≈ 0 is a necessary condition.

The GTP-type, Gitzberg-Landau functional and Gaussian random-field models

[38] describe how the bending moduli, and thus the surface free energy are renor-

malised by thermal fluctations at ultralow surface tension. Since thermal modes

of longer wavelength have greater amplitude, a major outcome is that the moduli

become scale-dependent [39].

κ(x) = κ− 3kBT

4π
ln (x/lγ) (1.3.1m)

κ̄(x) = κ̄+
5kBT

6π
ln (x/lγ) (1.3.1n)

In other words, the constants κ, κ̄ in the Helfrich expression only represent bend-

ing at the molecular scale, lγ. This is in keeping with the definition of ξ, in that

folding a film of this size incurs no energy penalty. The scaling shows that a larger

membrane is both more flexible (material is easier to bend with larger aspect ratio)

and less topologically complex [40].

The relevant scale for the microemulsion curvature behaviour is the domain size

x = d. The Exxon model balances the curvature free energy per unit volume, based

on κ(d), against an entropic free energy per unit volume of a simple binary mixture.

This successfully reproduces the complex phase behaviours in the fish diagram as a

result of changing H0 and φγ. Highly negative κ̄(d), such that 2κ + κ̄ < 0, desta-

bilises spherical aggregates in favour of a bicontinuous microemulsion [41].

The Exxon model is consistent with the GTP-type models in the case where

φO = φW � φγ:

σ ≈ 0.41
kBT

ξ
+ 2κH2

0 +O(κ̄) (1.3.1o)

The neglect of configurational entropy is surprising, as the true number of per-

mutations must be counted at a molecular scale of mixing [42]. However, Strey and

other authors have indicated [43] that all reversible phase inversions around critical

points follow a principle of corresponding states. In this theory, microemulsions

belong to a specific universality class of the Ising model, which associates the in-
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teractions at various surfactant orientations with the geometry of the surface. This

simplification allowed them to characterise σ(T ) over a range of 19 nonionic WIII

formulations with only κ(d) and κ̄(d) as fitting parameters, together with mea-

surements of the WIII temperature range. The authors experimentally identified a

self-similar ratio of d/ξ ≈ 2 for their CIEJ surfactant systems (C and E denoting

methylene and ethyleneglycol moieties respectively), and additionally that:

〈σξ2〉 = 0.44± 0.10 kBT ≈ 〈−κ̄(d)〉 (1.3.1p)

For sufficiently short-tailed surfactants compared to the oil, the minimum IFT

becomes higher so that the microemulsion actually wets the interface [44]. Decreas-

ing the surface tension in practice would imply increasing κ, which is related to

the conformational entropy afforded by a long, flexible tail [45]. Indeed, κ increases

with at least the square of the tail length lγ. Theoretical work [31] also points to

the strategy κ̄→ −0 where asymmetrically curved configurations |c1| 6= |c2| become

accessible. In agreement with the Helfrich model, it is observed that the lowest IFT

minima have the narrowest WIII regions, the strongest dependence on spontaneous

curvature and the highest κ [46].

However, formation of a disordered, highly divided system precludes d/ξ ≥ 2 and

thus limits κ and lγ. Highly-ordered lamellar phases are observed with long chain

systems such as lipids which have more extreme bending moduli (κ � 0, κ̄ � 0)

[47]. This suggests using very large heads and tails is preferable for ULIFT, but

again, the solid or liquid crystal forms become favoured.

A moderate value of κ ≈ kBT , as observed for most ternary-component WIIIs

[48], is necessary in practice to prevent excessive surfactant self-association which

induces the formation of lamellar LCs or precipitation. Since liquid crystals are

found at high surfactant concentrations, it appears the changes in preferred geometry

are dependent on monolayer interactions in addition to composition. Any strategy

for formulating lower IFT must account for the fine line between long-scale disorder

and self-associated order.
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1.4 Theory of formulation

In general, making a desired microemulsion may present far too many degrees of

freedom to consider a systematic search of the large formulation space. In the sim-

plest case of microemulsifying a chosen oil in water at room temperature, there are

4: surfactant concentration and water-oil ratio from Gibbs’ phase rule (§ 1.2) at

C,P = 3, plus choices of surfactant head and tail sizes. To progress, it is crucial

that a subset space is considered which reflects roughly equivalent effects of the im-

portant parameters on ULIFT. This is a central tenet of the methodology known

as statistical design of experiments.

The foremost of these variable sets is the type of surfactant, for which the HLB

is relevant. The model is crude, in that it reduces the head and tail properties to a

single number assigned to each surfactant. It is a yardstick for matching surfactant

chemical structure to commonly desired properties such as detergency.

The hydrophilic-lipophilic difference (HLD) model has been developed primarily

by formulating scientists [49], in order to produce specific Winsor microemulsions

quickly. It introduces the other environmental and composition variables ignored

by HLB, prominently, the nature of the emulsified oil. Like HLB, it is almost

entirely empirical and does not give a direct account of the spontaneous curvature

H0. However, it is roughly proportional to H0 and succeeds in quantifying the effects

of the actual formulation and conditions on the thermodynamic balance. Much like

a simplified Winsor theory, it is defined here as the free energy difference associated

with moving surfactant aggregates from bulk water to bulk oil:

HLD ≡ µoO − µoW
RT

∝ H0 (1.4.1q)

For ionic surfactants:

HLD = cEACNEACN + cγ + cT (T − T ◦)− ln
( S
S◦

)
+ f(φA) (1.4.1r)

For nonionic polyethoxylated surfactants:

HLD = cEACNEACN + cγ + cT (T − T ◦)− cSS + f ′(φA) (1.4.1s)
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where the parameters are defined in Table 1.2. When the surfactant interactions

are equal, HLD, H0 = 0 and the IFT is minimised with respect to at least one

variable. For these variables, the values resulting in H0 = 0 are referred to as ’opti-

mal’, for example optimal salinity. An optimal temperature is commonly known as

a phase inversion temperature (PIT).

If HLD, H0 > 0, the surfactant has a hydrophilic preference, so any microemul-

sion is expected to lie on the WI side of the minimum IFT. Conversely, for HLD, H0 < 0,

the surfactant is hydrophobic and forms a WII equilibrium.

Variable Term Ionic HLD PEO nonionic HLD

Effective alkane carbon N◦ EACN ↑ ↑

Characteristic surfactant curvature cγ ↓ ↓

Ethylene oxide N◦, J cγ - ↑

Temperature T ↑ ↓

Aqueous salinity S ↓ ↓

Alcohol cosurfactant φA ↓ ↓

Table 1.2: A summary of influences on the spontaneous curvature as encountered

in the empirical HLD model.

The major assumption made by HLD theory is of linearity in the formulation-

ULIFT space; there are no coupling terms. In practice, a statistical design ap-

proach verifies that the variables are not confounded. The variables are only very

weakly dependent on one another, since the free energy contributions are additive.

This rule-of-thumb holds especially well for homologous series of surfactants such

as CIEJ , so that for each the coefficients are constant. Exceptions do exist, such as

the non-ideal partitioning of cosurfactant.

In principle, the one-dimensional optimum condition H0 = 0 can be obtained

by tuning any one variable. What is more, corresponding and opposing changes of
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two variables retains the condition H0 = 0. This method allows monotonic, step-

wise minimisation of IFT in formulation space. The model is not only employed

for comparing optimal and nonoptimal formulations (different H0) in the same mi-

croemulsion system, but also for comparing different systems at the same H0 even

if they have no common parameters.

One of the most surprising results of the work on HLD has been the association

of complex hydrocarbons with an equivalent alkane carbon number (EACN) [50].

This value represents the lipophilicity of a given oil compared to the normal alkanes

in the context of microemulsification. A linear mixing rule can be applied to predict

the EACN of a mixture that does not partition into the aqueous phase [51]. All else

constant, each surfactant has an EACN for which the water-oil IFT is minimum.

At 1M salinity and ambient temperature with no other additives, this coincides

with −cγ/cEACN, yielding the surfactant characteristic ‘curvature’ cγ [52]. Similarly

dimensionless, this is the contribution most readily correlated with the traditional

HLB. For CIEJ surfactants, this parameter decreases linearly with the headgroup

length J . The IFT-salinity curves of aqueous AOT solutions with alkanes increase

and broaden with carbon number from heptane [53].

Since the coefficients are quite small, cEACN ≈ 0.16, a single surfactant is useful

for microemulsifying oils in a modest range of EACN. With conventional surfac-

tants where this minimum falls at a low EACN, very hydrophobic oils such as

hexadecane do not readily produce ULIFT and are difficult to emulsify [54].

The temperature shift is measured relative to an ambient reference, T ◦ ≡ 25 ◦C.

For ionic surfactants, entropy favours the release of counterions, increasing the

charge density at higher temperature. However these ions are solvated by water and

so the shift with increasing temperature is hydrophilic and small (cT ≈ 0.01 K−1).

For polyethoxylated nonionics, increase in temperature causes a fairly strong hy-

drophobic shift due to entropic dehydration of the head group (cT ≈ 0.06 K−1,

weakly coupled to J) [43].
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The salinity provides precise and stable control of the behaviour of ionic sur-

factants towards a hydrophobic state. In general, the repulsive Coulombic forces

between alike surfactant head groups will cause aggregates to be smaller. However,

this is screened by added salt which decreases interaction with water [55]. For non-

ionics, there is also a screening of dipolar interactions, with a weaker linear effect,

cS ≈ 0.13 L g−1. However, the coefficient describing HLD dependence on salinity

differs with counter-ion type, even at the same ionic strength [56, 57]. As a result,

common salt (NaCl) is used almost exclusively. At very high surfactant concentra-

tion, the ionic surfactants interact, which causes the ’tail’ of the fish diagram to tilt

upwards. Monolayer charge density significantly increases the magnitude of both

bending moduli; consequently, lower ULIFT minima are usually observed when the

optimum corresponds to a low salt concentration.

Figure 1.6: ’Fish’ phase diagrams showing n-decane/brine/surfactant systems at

[NaCl] = 100 mM and equal brine and oil volumes: (a) AOT surfactant only (χ = 1);

(b) less temperature-sensitive AOT + C12E4 mixed system; AOT constitutes χ =

0.60 of total surfactant by weight. Figures reproduced from [10], c©Wiley.

Addition of medium-chain alkanols (C4E0-C10E0) as cosurfactants also causes a
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decrease in H0. The heavier/more linear the alcohol chain, the greater the molar

efficiency of reduction [58]. The alcohol for which f(φA) = 0 is usually sec-butanol;

shorter, more hydrophilic alcohols largely dilute the surfactant at the interface. The

alcohol additive becomes less effective when its length exceeds the surfactant tail

[41]. The tendency of medium-chain alcohols to inhibit lyotropic order between

surfactant chains, is well-documented [59]. This also reduces the Krafft tempera-

ture. In curvature terms, this disordering effect is due to a decrease in the ratio

−κ̄/κ such that saddle bending is favoured. It is experimentally observed that IFT

is minimised when cosurfactant length is the difference of the oil and surfactant

tail lengths. These longer chain alcohols are interpreted as being lipophilic ’linkers’

rather than simple cosurfactants [60]. Whilst being amphiphilic, they fail to adsorb

strongly enough to displace surfactant in the monolayer. They increase order in the

vicinity of the packed interface and increase its effective lγ, such that solubilisation

improves at the optimum point. This accounts for the common observation that

dodecanol impurities increase the apparent surface activity of SDS.

The addition of small amounts of amphiphilic diblock copolymers to nonionic

microemulsions improves the solubilisation without strong viscosity increase [61].

These copolymers are ultra-long chain analogues of the CIEJ surfactants, thus in-

creasing effective lγ without inducing crystallisation through self-interaction. Con-

versely, addition of surface-inactive homopolymers is reported to decrease both the

efficiency of the surfactant and κ with increasing molecular weight and concentration

[62], whilst greatly increasing the viscosity of the phases to which they partition.

1.4.1 Surfactant concentration

The surfactant concentration does not formally change the IFT (although the ionic

strength may vary weakly for ionic surfactants). Its primary effect is to extend the

WIII microemulsion phase to a larger volume at fixed composition. If H0 = 0 is

maintained as the concentration increases, the X-point is reached (γ = γX) and a bi-

continuous WIV is created so that no macroscopic oil-water interface remains. This

unique volume fraction can be identified with the ULIFTs not only of the excess
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phases with the middle phase, σOM,WM , but also that between the excess phases

σOW .

Huh proposed an empirical relation governing the IFT between an excess phase

and microemulsion phase. It states that the IFT depends on the amount of excess

phase that is solubilised into the microemulsion per amount of surfactant. As such,

it can be expressed in terms of volume fractions in the microemulsion phase:

σOM,WM ∝
( φγ
φO,W

)2

(1.4.1t)

This volumetric ratio φO/φγ is known as the solubilisation parameter, in this case

for the oil phase. Huh found the proportionality constant to be 300 µN m−1 [63].

This is consistent with the form given in the Exxon model:

σOW ∝
φ2
γ

φOφW
(1.4.1u)

As the σOM or σWM is reduced for a given amount of surfactant, the microemul-

sion will swell to incorporate more oil and/or water respectively. Interactions be-

tween dissimilar excess phases are more repulsive than those with the microemulsion

and so σOW > σOM,WM in all cases. In order for the oil-water interface to exist, the

WIII microemulsion of intermediate density must fail to wet it fully. Lensing of

microemulsion droplets is indeed observed in the majority of cases, and Neumann’s

triangle proves that σOW ≤ σOM + σWM . Hence, knowledge of the tensions of the

excess phases with the microemulsion phase confines an estimate of the oil-water

IFT. Furthermore, σWM , σOM are proportional to the counterpart works of adhe-

sion AHW , ATO; thus, Winsor’s R-theory indicates a balanced monolayer when the

two microemulsion-excess phase IFTs are equal.

Commonly, nonionic microemulsions require 10-30% wt. surfactant to produce

a single phase (WIV), but in accordance with the Huh relation σ(φγ), these do not

produce good ULIFT. The value of γX reduces to less than 5% wt. for the most

efficient surfactant systems.
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The cutoff at low surfactant concentration is the cµc, where the middle phase

is depleted and only a single interface appears to remain at conventionally low

IFT. Other than the implied microemulsion formation, little is known about how

this transition occurs or whether a microemulsion is stabilised at the surface by

disjoining pressure, given its intermediate dielectric permittivity. Below this cµc

point (found to be roughly 5× cmc [64]), Winsor transitional phase inversion is not

observed. Certainly, any metastable emulsion formed below the cmc will not transi-

tionally invert even if H0 is changed; only a catastrophic inversion [65] can take place.

Notably for all cosurfactant additives, the phase diagram can become skewed due

to their unequal partitioning between oil and water. The development of linkers (and

the explosion in associated formulation variables) means that they are increasingly

being incorporated into the surfactant structure themselves. Namely, this is a new

class of extended surfactants. Groups of intermediate hydrophilicity/ hydrophobicity

such as propylene-oxide are placed along the centre of the chain allowing for a

more gradual change in polarity across the interface [66]. Even longer oils such as

triglycerides can be microemulsified [67]. This reduces the attainable ULIFT to

the order of 0.1 µN m−1 - certainly suitable for optical deformation, but bending

rigidity is high (κ ≈ 1.4 kBT ) so that the timescale for equilibration increases to

several weeks [68, 69].

1.5 Phase-volume methods for optimisation

A handful of recipes for WIII equilibria and high-solubilisation WI and WII equi-

libria are reported in the literature, but present a number of issues. Fundamentally,

very few have sufficiently low ULIFT minima accessible for optical deformation,

around 1 µN m−1 or lower. Nonetheless, techniques exist to adapt those formula-

tions for global ULIFT minima, with the following caveats. On the practical side,

they often consist of an excessive number of components, each associated with addi-

tional degrees of freedom. Thus the formulation space becomes untenably large

compared to the region in which desirable ULIFT occurs. Also, prediction of
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ULIFT is complicated by components that partition significantly between both

oil and water phases. This partitioning couples the ULIFT to the water-to-oil ratio

Ω ≡ φW/φO, which is weighted strongly towards the water phase in the intended

experiment, Ω > 200. The process of formulation is simplified significantly by using

equal volume fractions of oil and water Ω = 1, so partitioning should be avoided

where possible.

It is prudent to use a near-minimal formulation space within which ULIFT is

known to exist. The simplest possible system is a ternary composition of two pure

molecular solvents microemulsified with one surfactant. However, this becomes too

restrictive. With the exception of temperature, the remaining degrees of freedom

at ambient pressure are the discrete choices of the chemicals. Use of temperature

as a formulation variable is less practical than other continuous parameters such

as concentration, which do not depend on external influences. Moreover, ULIFT

is particularly narrow in its temperature range and widely varying in its central

temperature, so far more difficult to find. A superior alternative is to attempt to

fix the working temperature and to use the concentration of a single solute as the

formulating parameter. In this work at least a quaternary system is used, where the

principal formulating variable is the aqueous salinity, S.

Optimisation does not require measurement of H0 or even IFT directly in a

quantitative sense. Instead, observations of macroscopic phase behaviour at Ω = 1

can be relied upon to find Winsor III microemulsions, γ > cµc, of high and equal

solubilisation of oil and water, where they exist. The solubilised volumes are easily

measured in thin cylindrical vials. The excess volumes only contain a relatively

small amount of surfactant (compared to the microemulsion) and can be neglected

when the middle phase fraction is larger than the ratio cµc/γX ≈ 0.1.
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1.5.1 Materials and methods

The materials Brij-L4 and C12E4/5 (dodecyl tetra/pentaethyleneglycol ethers, 98%,

Aldrich), toluene,n-butanol, NaCl (all AR grade, Fisher) and deuterium oxide, D2O

(Cambridge Isotope Labs.) were all used as received. Ultra-pure H2O was obtained

from a MilliPore unit (MilliQ, 18.2 M Ω cm−1). The oils n-heptane, n-decane

and n-dodecane (>99%, Fisher) were purified through silica under N2. To remove

inhibitor, styrene, lauryl methacrylate and isobornyl acrylate monomers (Aldrich)

were either washed with two parts 2M potassium hydroxide, then three parts wa-

ter, or vacuum distilled and desiccated. No difference in formulation behaviour

was found between the two variants, which were kept foiled at 5 ◦C. Piranha solu-

tion, a strong oxidising agent used to clean glass coverslips and slides, was mixed

freshly from 1 part hydrogen peroxide (30% in H2O, Fisher) and 2 parts sulphuric

acid (98%, Fisher). Sodium dodecyl sulfate (SDS, Aldrich) was twice recrystallised

from ethanol before use. Aerosol OT (sodium bis(2-ethylhexyl) sulfosuccinate) was

analysed by NMR, Karl-Fischer titration and dynamic pendant-drop tensiometry

at 100 mM NaCl to check for hydrolytic impurity; the cmc was in agreement with

literature value of 0.5 mM at 20 ◦C [57]. The IFT of equilibrated water with air also

enabled estimation of the AOT partition coefficient between the water and heptane

in the presence of 100 mM NaCl, which at 1 : 1.8±0.2 was consistent with the ratio

of the respective cµcs. At 1 mM AOT concentration, the characteristic adsorption

time from Ward-Tordai pendant tensiometry [70] was around 10 ms. The chosen

supply of AOT (96%, Acros Organics) was invariant under Soxhlet extraction and

each batch was used as received within 3 weeks to avoid hydrolysis. AOT is known

to form vesicles on dissolution [71], particularly in conditions of moderate salinity

> 100 mM and AOT > 10 mM; this was avoided where possible. The Krafft point

of AOT is normally below 0 ◦C but increases sharply with sodium ion concentration.
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AOT C12E4 C12E5

H2O + NaCl 0.4, 0.5a (0.5b) 0.016 0.025, < 0.046b (0.060b)

Heptane (0.4a) (30c) (10b)

Decane (0.6d) (20c) -

cµc(Ω = 1) 6 2

γX 53 64

Table 1.3: Critical micellar concentrations (cmc) determined here by partition pen-

dant drop tensiometry are listed alongside critical microemulsion concentrations

(cµcI,N , in parentheses) for relevant combinations of surfactant and solvent at a

representative temperature and aqueous salinity (20 ◦C, 100 mM NaCl). For the

temperature insensitive AOT/nonionic mixtures at (χ∗, S∗∗, see Chapter 4), the

estimated total critical microemulsion concentration (cµc) and the middle-phase

surfactant concentration (γX) measured using the Huh theory are given for Ω = 1.

All quantities in mM. Literature values are marked as follows: a[53] b[72] c[73] d[10].

Each 15 mL composition was enriched in surfactant until bluish, typically γ = 1%

wt., agitated manually to mix, then allowed to resolve into layers. Separation took

place for 1 week at 18 ± 2 ◦C, after which no change in phase volumes was detected.

Incomplete creaming/sedimentation resulted in volumetric errors that were notably

independent of temperature cycles, and were mitigated by centrifugation at 2000 g.
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1.5.2 Temperature-sensitive formulations

Polymerisable formulations

A preliminary step towards the concept of fixing the deformed droplets1 was the for-

mulation for ULIFT emulsions with the monomer styrene, based on modification of

a literature toluene recipe. The styrene example puts the formulation theory above

into practice, as applied to all recipes used in this thesis.

A salinity scan across the phase inversion point [75] of the toluene WIII was

performed (Figure 1.7). With this information the local minima in ULIFT were

identified using the Huh theory as shown in Figure 1.8. The results provided a

starting point for substitution with the aromatic monomer, styrene; repeating the

procedure with the new oil gave ULIFT of the same magnitude (Figure 1.9).

The presence of excess phases means that a ternary microemulsion remains unaf-

fected by the change in the water-oil ratio Ω within the WIII region. The exception

is unequal bulk partitioning of the butanol between the oil and water. A smaller Ω

reduces the concentration of butanol in oil and thus its availability to reduce H0 of

the interface. The total mass of the surfactant added is known; its effective density

within the monolayer is given by ργ = M̄γ/NAaγLγ ≈ 1 kg L−1, where M̄γ is the

molecular weight. In any case, the Huh theory appears to neglect the volume frac-

1In the ONF project, the initial collaboration considered the possibility of manufacturing poly-

mer beads of bespoke shape, for which Ward et al. showed proof-of-concept [74] based on a

photointiated monomer oil. The latter collaboration proposed following the polymerisation by

ratiometric Raman spectroscopy - a capability built into the design presented in Setup C (see

§ 2.4.3), though realised separately by fellow doctoral student OWJB. It was postulated that ad-

dition of polymer chains to the oil could aid the shape retention of a polymerising droplet by two

mechanisms. First, the increased viscosity is expected to reduce any recoiling flow caused by the

sharp rise in surface tension. Second, the shrinkage due to bond condensation would be reduced

proportionately. A sensible starting choice of polymer is one formed from the same monomer as

the solvent, but even so, the chain length and concentration introduce additional formulation vari-

ables. Which are best for both the process and the quality of the end product? These avenues of

research remain to be explored.
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tion of cosurfactant (here this constitutes no more than 4%), but this is partially

accounted for by the reduction of aγ from a Langmuir-Blodgett monolayer value.

These WIII systems have surfactant concentrations of γ ≈ 150 mM SDS, far

exceeding the aqueous cmc. They equilibrate noticeably faster (a matter of a few

minutes) near the optimum point where emulsion coalescence is promoted by defor-

mation under ULIFT [76]. The phase volumes follow the expected trend from large

excess of oil at low salt (near WI) to excess of water at high salt (near WII). The

lowest bounds for the oil-water surface tension is found at the intersection of the

two middle-phase interfacial tensions, S = (1.11± 0.03) M, σOM,WM = 3.5 µN m−1.

SLS, SANS and SAXS on this same composition give almost identical IFT curves

based on Doppler tensiometric or Teubner-Strey/Huh models [77–79]. The value of

σOW ≈ 5 µN m−1 is therefore known within a factor of
√

2. The optimum microemul-

sion volume fractions, φO = 0.45 and φW = 0.49 are almost equal. This observation

reaffirms the concept of interchangeability between the bicontinuous water and oil

volumes [80].

The dipole moment of styrene is threefold weaker than that of toluene. When

changing oil to styrene a small increase in the lipophilicity of the oil is expected and

thus also a relative hydrophilic shift in H0 for the surfactant [81]. Roughly extrapo-

lated figures [82] suggest the replacement of toluene with styrene involves a change

of EACN = 1 → 3. The changes in HLD compensate such that H0 → 0. Adding

BuOH instead of NaCl prevents ’salting out’ of the surfactant [83, 84]. Styrene,

being larger and more polarisable, has a greater dispersion interaction with butanol

than the toluene it replaces. Thus the butanol has a lower relative affinity to SDS

in styrene solution. This reduces the solubility of the SDS, such that the salinity

scans form the expected sequence only when heated to 65 ◦C.

This styrene formulation clearly shows ULIFT comparable with the toluene

analogue, notably at a higher salinity. By cutting the salt content further and instead

replacing its hydrophobic contribution to H0 with dropwise additional butanol, the
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Figure 1.7: Salinity scan at 19 ◦C for the toluene/SDS/butanol/brine system show-

ing the opalescent middle phases in transition from WI through WIII to WII. Note

labels correspond to wt%. NaCl in brine: 5.2, 5.6, 6.0, 6.4, 6.8 from left to right.

Samples are shown one hour after agitation.

Krafft point drops below room temperature whilst maintaining H0 = 0. Phase

volume measurements were taken 20 min after each addition and agitation cycle.

Measuring the phase volumes gives a rough estimate of the solubility parameter at

the optimum point, such that the minimum σOW = 15 µN m−1. A phase-inverting

microemulsion with a useful level of ULIFT was formed at room temperature with

styrene monomer.



1.5 Phase-volume methods for optimisation 39

Figure 1.8: Phase volume tensiometry along a salinity scan in the

toluene/SDS/butanol/brine system at 19 ◦C: (left) solubilisation parameters for oleic

(red) and aqueous (blue) phases; (right) interfacial tensions with the microemulsion

(purple) are extracted using the Huh equation and added, to bound the IFT value

between oil and water.

Figure 1.9: Phase volume tensiometry along a salinity scan in the

styrene/SDS/butanol/brine system containing 4% wt. BuOH and heated to 65 ◦C.

Legend as for Figure 1.8.
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Figure 1.10: A Winsor phase diagram of the styrene/SDS/butanol/brine system

with cosurfactant and amphiphile content at fixed salinity S = 1.08 M, temperature

T = 19 ◦C and water-oil ratio Ω = 0.9 is presented; this is analogous to a fish

diagram with cosurfactant influencing H0 instead of temperature. Note the SDS

becomes more soluble in the presence of butanol. The slope of the ULIFT locus

equals the ratio of BuOH to SDS in the monolayer, which approaches unity.

Alkane-based quaternary systems

The AOT/alkane/brine quaternary systems [53] are notable among those bearing

ULIFT, for they do not require a cosurfactant. They invert in the sequence WII-

WIII-WI with increasing temperature, as typical for ionic monolayers. Previous

work gave ULIFT well suited to optical deformation [6, 85]. Heptane, decane and

dodecane were formulated for minimum IFT. Although refractive contrast with

water, ∆n, increases with EACN, σ0 increases more rapidly (Tables 1.4 and 4.1).

Thus, heptane was found to give an optimal deformability ratio k/σ.
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1.5.3 Temperature-insensitive quinary formulations

The nonionic quaternary systems formed using the CIEJ family of surfactants fol-

low the opposite sequence WI-WIII-WII in accordance with the hydrophobic cloud-

point effect [43, 86]. The surfactants express preferred curvatures of opposite tem-

perature dependence, so their respective quaternary systems show contrary se-

quences of phase inversion [87, 88]. By mixing the two, the temperature coefficient

cT is negated. This forms the efficient and markedly less temperature-dependent

quinary systems: AOT/C12E5/n-heptane/NaCl-brine and AOT/Brij-L4(C12E4)/n-

decane/NaCl-brine as used previously for optical tweezing [85]. The salinity and

amphiphilic ratio can then be fine-tuned to give the desired H0 and its temperature-

sensitivity, as shown in Chapter 4.

1.5.4 Deuterated solvent

In much of the collaboration’s later work, D2O was substituted into the heptane

quaternary - and heptane and decane quinary - systems, to lessen laser heating.

For heptane/AOT/D2O/NaCl (i.e. χ = 1), the optimal salinity at the ambient

temperature, 21 ◦C, was located around 30 mM. The corresponding PIT for the

H2O system is 42 mM; that’s a similar ratio of salinities to that associated with

changing the oil from heptane to octane. While the hydrophobic effect is largely

entropic, the contribution is almost identical in water and in D2O. A lower ionic

strength permits AOT aggregates to leave the aqueous phase, which suggests an

increase in the cohesive energy of that phase (which outweighs any increase in its

interaction with AOT). The hydrogen bonding in D2O is about 3% stronger than in

water and so the relative change on deuteration is enthalpic [89]. The sequence of

deformability summarised in Figure 1.11 is consistent with a PIT of 21.0 ± 0.3 ◦C

at 30.0 ± 0.2 mM NaCl. The slope of PIT with salinity is roughly the same as the

H2O system, with a coefficient of +0.6 ± 0.1 K mM−1.
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Figure 1.11: Deformability map revealing the PIT-salinity curve for droplets en-

countered in heptane/AOT/D2O/NaCl experiments in Chapter 6. Assignment is

based on a qualitative deformability scale, where #1-4 correspond to the extrema of

droplet categories A-C in Table 3.2. Solid lines are estimated contours of deforma-

bility and therefore of IFT also.
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1.6 Alternative macroscopic methods for

optimisation

1.6.1 Small angle X-ray scattering (SAXS)

The Huh equation gives an indirect estimate of the IFT from the correlation length

of the microemulsion ξ. In turn this can be measured by small-angle scattering

of matter waves (neutrons) or light (X-rays) with a comparable wavelength. The

latter technique is SAXS. The isolated, pre-equilibrated phases were interrogated

with a Bruker Nanostar instrument using Cu Kα radiation. For each, a capillary

of 1 mm diameter was run at 25 ◦C for 1 h with a sample-to-detector distance of

1.5 m. The exposures corresponding to excess water and excess oil were averaged

and normalised in order to provide a background subtraction for the exposure cor-

responding to the middle phase. As shown in Figure 1.12, the scattering intensity

was fitted with the structure-independent Teubner-Strey model [90, 91] to yield the

average membrane dimensions and thus the minimum oil-water interfacial tension.

C12E5/AOT/ C12E4/AOT/

heptane/120 mM NaCl decane/170 mM NaCl

Periodicity, d (nm) 66 ± 7 60 ± 4

Correlation length, ξ (nm) 44 ± 1 37.4 ± 0.7

Domain size, d/2 (nm) 33 ± 3 30 ± 2

Lifshitz ratio, d/ξ 1.5 ± 0.1 1.6 ± 0.1

Interfacial tension, 0.44 kBT/ξ
2 0.9 ± 0.1 1.3 ± 0.1

Surfactant fraction γX 0.028 ± 0.002 (53 mM) 0.033 ± 0.002 (64 mM)

Thread tension, 2π
√

2κσ (pN) 0.54 ± 0.04 0.58 ± 0.05

Bending modulus, κ/kBT 1.1 ± 0.1 1.0 ± 0.1

Table 1.4: Middle-phase domain and interfacial properties derived from SAXS at

25 ◦C, together with bending moduli derived from Stokes recoil of threads; see

§ 5.4.1. IFT quoted in µN m−1.
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Figure 1.12: Small-angle scattering curve for the middle microemulsion phase of

decane/AOT/C12E4/NaCl(aq), S = 170 mM, extracted and interrogated at 25 ◦C.

The data is fitted with the Teubner-Strey model (solid line) to extract the average

dimensions of the microemulsion domains. Inset: third and fourth moments of

scattering signal to show regions that scale with scattering vector to the (top) third

power, i.e. fractal monolayer structure, and (bottom) fourth power, i.e. Porod’s Law

for the specific interfacial area of the scattering domains.
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1.6.2 Gravitational and centrifugal gauges of ULIFT

For emulsions that have adequately resolved, there is a variety of accessible methods

for measuring the liquid-liquid IFT directly. However, these are less effective for

measuring ULIFT. Gauges such as the Wilhelmy plate or pendant-drop methods

become imprecise since the force or volume measured is proportional to the surface

tension. Compensating for this effect in pendant drop tensiometry by miniaturisa-

tion [92] proves difficult, as drop profiles are not easily resolved and other effects

such as evaporation and Brownian motion may become important.

Alternative methods exist whereby the measured phenomenon and/or the related

approximations become stronger as the surface tension weakens. Spinning drop ten-

siometry is perhaps the most direct tool to measure ULIFT between liquids [93]. It

relies on a centrifugal distortion of a droplet in a thin tube, surrounded by the denser

phase. The acceleration due to gravity is typically much smaller than that due to

rotation of a droplet less than a millimetre in size, and can be neglected. As the

angular frequency ω increases, the spherical droplet is deformed to have a smaller ra-

dius Rω < RD perpendicular to the axis of rotation. The sphere thins asymptotically

to a cylinder thinner than the capillary length [94] such that σ = ∆ρω2R3
ω/4. The

spinning drop method becomes difficult to interpret for three phase systems, since

the microemulsion may envelop the oil droplet. Another drawback of this method

is the high rotational speed (ω > 100 s−1) required to measure thinning as droplets

become smaller or as the IFT increases, but at this point, conventional methods

become reliable as complementary techniques. Aveyard et al. used this technique

to characterise the water-oil IFT of the heptane/AOT/brine system as a function

of salinity and temperature. Their range of temperature data includes the shoulders

either side of the PIT, but omits much of the present experimental window of ∼ 2 K.

In sessile drop methods, gravity assumes a role analogous to the centrifugal force.

In general, the measurement involves an additional interaction with a solid surface

and so depends on a three-phase contact angle [95]. However, near-perfect wetting

or dewetting is expected at ULIFT from Young’s equation. Contact angles can be
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Figure 1.13: Side view in brightfield of a 2 mm-diameter decane droplet in water,

sessile upon the upper internal surface of a prone quartz cuvette. The droplet

is flattened under its own buoyancy to a thickness characteristic of the oil-water

ULIFT. The oil and water correspond to the isolated excess phases of the WIII in

the decane/AOT/C12E5/H2O/NaCl system at γ = cµc, S = 120 mM, T = 20 ◦C.

Scale bar 0.25 mm.

assumed 180 ◦ for a sufficiently hydrophilic surface such as clean quartz. Moreover,

this method is distinctive in that larger droplets provide more precise measurements.

A sessile oil drop larger than the capillary length, RD > LC , flattens into an oblate

shape. In the limit RD � LC , its central thickness, h, depends only on the capillary

length such that σ = ∆ρgh2/2. Figure 1.13 shows such a decane droplet deforming

on a horizontal surface at an IFT of about 100 µN m−1.
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1.6.3 Strata resolution rates

When microemulsion formulations are agitated to facilitate mixing, turbid kinetic

emulsions are produced. Subsequently, the phase layers of the true equilibrium re-

solve under density gradients. Resolution is hindered, to the extent that metastable

states can occur, by frustrated packing of droplets and the reduced density contrast

associated with a microemulsion phase. Obtaining homogeneous, isolated phases

from the WIII equilibria with adequate reproducibility is tedious and difficult even

with centrifugation. A more convenient, if uncalibrated, method focuses on the ki-

netics of relaxation rather than the equilibrium state.

The rate of resolution is dependent on the IFT between phases. Lower ULIFT

reduces the driving force for coalescence, but increases attraction between droplets,

encouraging them to flocculate [69, 76]. Potential coalescence events become more

frequent. Low IFT also facilitates the rearrangement of concentrated droplets into

a denser packing accelerating exclusion of the continuous phase. Thus, the overall

resolution rate increases sharply at the PIT [96]. This remarkable behaviour con-

tradicts that of standard emulsions below the cµc, where conventionally low IFT is

associated with increased surfactant concentrations, stabilised foam films and frus-

trated resolution [73].

A useful outcome is that a formulation of minimum IFT in a microemulsion

series can be identified readily as that which requires the minimum time to resolve

into clarified layers. When the oil-water volume ratio is unity, Ω = 1, the resolution

rate reaches a maximum at the optimal salinity and temperature (Figure 1.14). As a

result, the resolution dynamics give a straightforward, empirical route to minimum

IFT. This technique is verified by comparison with the interpolated PIT-salinity

curve obtained by the spinning drop method [53].



1.6 Alternative macroscopic methods for optimisation 48

Figure 1.14: Photographs of heptane/AOT/H2O/NaCl formulations at a range of

salt concentrations, (top, left) immediately after shaking; (top,right) after 15 min.

(bottom) The temperature at which the layers resolve in the shortest time for each

sample (squares) corresponds to the PIT as a function of salinity (solid line inter-

polated from [53]).

1.6.4 Summary

The range of formulations obtained in this work is summarised in Table 1.5. Only

the IFT minima in the heptane/AOT and decane/AOT systems proved sufficiently
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low to pursue nonlinear optical deformation. The temperature-insensitive recipes

with added nonionic surfactant are used in Chapter 4, whilst all other chapters refer

exclusively to the temperature-sensitive (AOT only, χ = 1) recipes, with heptane as

oil unless otherwise stated.

Oil Amphiphile γ (mM aq.) [NaCl] (mM aq.)

Temperature-sensitive

Heptane AOT 2 - 20 35–65

Decane AOT 2 - 15 100–130

Dodecane AOT 15 165–175

Toluene SDS 10 95–120

BuOH 1

Styrene SDS 10 96–106

BuOH 1

Temperature-insensitive

Heptane AOT 8–20 100–120

C12E5 4–16

Decane AOT 8–20 100–120

C12E4 4–16

Table 1.5: Refined formulation recipes for WIII microemulsions with hydrocarbon

oils, at ULIFT suitable for deformation under optical tweezing near room temper-

atures 18-27 ◦C.
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Glossary

Symbol Definition Unit

A Interfacial area m2

AAB Enthalpy of adhesion between phases A and B J m−2

AOT Aerosol OT, ionic surfactant

a Molecular area m2

Bo Bond number -

BuOH n-butanol

Ca Capillary number -

C Number of chemical components -

CIEJ J-oxyethylene glycol I-ether nonionic surfactant -

cmc Critical micellar concentration M

cµc Critical microemulsion concentration M

c1, c2 Principal curvatures m−1

CPP Critical packing parameter -

d Microemulsion domain size m

EACN Equivalent alkane carbon number -

F Degrees of freedom -

G Gibbs free energy J

g Acceleration due to gravity m s−2

H Mean curvature m−1

H0 Spontaneous curvature m−1

HLB Hydrophilic-lipophilic balance -

HLD Hydrophilic-lipophilic difference -

IFT Interfacial tension N m−1

J Ethylene oxide number, nonionic surfactant -

K Gaussian curvature m−1

k Optical trap strength N m−1

kB Boltzmann’s constant J K−1

l Length (characteristic) m

lγ Surfactant tail length m

LC Capillary length m
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LC Liquid crystal

M̄γ Molar mass kg mol−1

N Molar number, amount of material mol

NA Avogadro’s constant mol−1

n,∆n Refractive index, contrast -

nL Lattice coordination number -

ns Dissociation number -

o/w Oil-in-water emulsion

P Number of phases -

p Pressure (ambient) N m−2

pL Pressure (Laplace) N m−2

PIT Phase inversion temperature ◦C

R Gas constant J K−1 mol−1

RD, ω Droplet radius (spherical, centrifuged) m

R-ratio Winsor ratio -

Re Reynolds number

S Salinity, aqueous NaCl concentration M

∆S Entropy change J K−1

SANS/SAXS Small angle neutron/X-ray scattering -

SDS Sodium dodecyl sulfate, ionic surfactant

T Temperature (ambient) K

TC Cloud-point temperature K

TK Krafft temperature K

U Interaction energy J

ULIFT Ultralow interfacial tension, < 0.1 mN m−1 N m−1

V Volume m3

v Velocity (characteristic) m s−1

WI/WII/WIII/WIV Winsor phase equilibria

w/o Water-in-oil emulsion

γ Surfactant bulk concentration M or % wt.

γX Surfactant concentration, Winsor X-point M or % wt.

Γ Surface excess concentration mol m−2

χ Fraction of ionic surfactant in total surfactant -
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ρ,∆ρ Density or specific gravity, difference in. kg m−3

σAB Interfacial tension between phases A and B

η Dynamic viscosity N s m−2

φA Volume fraction of phase A -

κ, κ̄ Bending modulus, saddle-splay modulus J

µ◦ Chemical potential J mol−1

ξ Persistence or correlation length m

Ω Volumetric water-to-oil ratio -

ω Angular velocity s−1
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Chapter 2

Optical Rigs for Tweezing and

Imaging Microdroplets

2.1 Premise and theory of optical tweezers

Optical tweezing is the ability to manipulate the position or orientation of micro-

scopic particles, simply with focused light. Developed from seminal experiments by

Ashkin [1] in the 1970s-80s, as a contactless procedure it has become a mainstay of

biological [2] and microforce measurements.

2.1.1 Radiation pressure

On refraction or reflection, conservation of momentum implies that each photon im-

parts momentum to the medium of higher refractive index n, in its initial direction

of propagation. This is called radiation pressure. There are two complementary

theoretical frameworks in which the effect of radiation pressure on a dielectric inter-

face may be considered [3]. The Abraham momentum associated with the kinetic

energy of a photon is |pA| = 2π~/nλ, where ~ is the reduced Planck’s constant

and λ is the photon’s wavelength in vacuum. The Minkowski momentum describes

the canonical wave momentum, |pM | = 2πn~/λ. The Minkowski momentum flux

carried by a beam of N photons is therefore:

|Fbeam| =
d

dt
(N |pM |) =

nP

c
, (2.1.1a)

60
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where c is the speed of light and P is the optical power. The interface is a closed

body of characteristic radial size RD. In the limit that the object is smaller than the

photon wavelength, the interaction resembles a point dipole induced by the local,

modulated electric field. This is the Rayleigh approximation RD � λ.

Alternatively, if the object is significantly larger than the photon wavelength, the

interaction is better described by an emergent, continuum model based on refraction.

This is the ray-tracing or geometric limit, RD � λ. Light becomes refracted upon

crossing a dielectric interface, according to the ratio of propagation speeds in the

media on either side. These speeds are given by the real parts of the refractive

indices, n1, n2; a higher index indicates that the electromagnetic wave travels more

slowly. Snell’s law shows that refraction involves a change of direction from θ1 → θ2

when the ratio m = n2/n1 6= 1:

sin(θ2) = sin(θ1)/m

2.1.2 Gradient and scattering components

For a non-zero angle of incidence, a component of this momentum will be transferred

in the opposite direction to that in which the wavefronts are refracted. For a plane

wave, there is only a net force away from the light source; this is the scattering force

Fscat. If a convergent beam with a unimodal intensity profile is used, however, there

is a focus of high, smoothly varying intensity; this is the case when a Gaussian laser

beam is focused through a high numerical-aperture (NA) objective lens.

A convex object of index n2 will refract convergent/divergent rays in such a way

as to produce a restoring force towards the focus regardless of its location; this is

the gradient force Fgrad. Tweezing studies are primarily concerned with this force

component, as it constrains the object to lie near the focus.

A general Maxwellian equation for force exists, based on conservation of electro-
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Figure 2.1: Convex particles of higher refractive index than the surrounding medium

are attracted along an intensity gradient. Optical forces appear due to refraction

and are (a) weakly scattering, particularly downstream of the trap at the low NA

shown for clarity, but restore the object’s position within the trap volume (or at

higher NA) at both (b) axial and (c) radial displacements.

magnetic and mechanical momentum as follows:

F =

∫
V

(
∇ ·
←→
T − n2

c2

dS

dt

)
dV = ∆

∫
A

←→
T · dA (2.1.1b)

where
←→
T is the Maxwell stress tensor [4], S is the Poynting vector and dA (dV )

are the surface area (volume) elements of the object. However, in applying this
←→
T -

matrix theory, the physics are obscured by arduous numerical integration on both

sides of the interface. The main obstacle for an exact analytical calculation of Fgrad

is that, in general, it must account for the pathlength-dependent phase shift in the
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scattered light [5]. Notably, Mie theory does so, but is applicable only to perfect

spheres. However, this phase shift vanishes approximately in the two limits RD 6= λ.

In the Rayleigh limit, the forces scale as [6]:

|Fscat| ∝
R6
D

λ4

(m2 − 1

m2 + 2

)2

× I (2.1.1c)

|Fgrad| ∝ R3
D

(m2 − 1

m2 + 2

)
× |∇I| (2.1.1d)

Here the intensity of the beam is I and its total power illuminating the object

is P . Note that both components of radiation pressure rely on the refractive index

contrast m 6= 1. In the geometric limit, the contribution of each ray to |Fscat| and

|Fgrad| also depends on the angle of incidence[7]. Oblique rays at the periphery of

the focused beam are more strongly refracted and contribute lateral momentum, so

a higher NA tends to increase |Fgrad|.

Trapping of any size RD can only occur if the gradient force holding the particle

near the focus dominates the forward scattering force; i.e. for microscopic, optically

dense particles in a strongly focused beam. If the refractive indices are reversed,

m < 1, then the particles seek low-field; only unconventional beams with intensity

minima at the focus can trap them. Such exotic modes as Bessel or Laguerre-

Gaussian beams are also known to exert axial stress and rotational torque on irra-

diated particles [8]. In this work, Gaussian beams are used exclusively.

The spatial intensity distribution of a Gaussian laser beam is well described by:

I(r, z) =
2P

πω(z)2
exp

(
− 2

r2

ω(z)2

)
(2.1.1e)

ω(z) = ω0

√
1 +

z2

z2
R

where zR =
πω2

0

λ
(2.1.1f)

This form is derived in the paraxial limit NA� n, which neglects terms of field

curvature along the axial direction in the Helmholtz equation [9]. This approxima-

tion breaks down in the region within λ/2 of the beam focus. Nonetheless, it remains

a good estimate of the profile if the beam waist is taken as ω0 ≈ λn/πNA (see § 4.7).
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Shorter wavelengths of light provide tighter foci, though use of ultraviolet radi-

ation is prevented by strong absorption; visible and near IR wavelengths are often

used for trapping. In this work, λ = 1064 nm is provided by Nd:YAG diode lasers.

2.2 Trap characterisation

2.2.1 Trap strength and escape force

In absence of all other forces, the equilibrium position of a trapped particle lies

along the axis of the beam where the scattering and gradient forces cancel. For a

Gaussian beam, the trap’s potential well is approximately harmonic (Hooke’s law)

for small displacements and so characterised by its stiffness or trap strength k at the

equilibrium point.

k ≡∇Fgrad (r = req) (2.2.1g)

On the other hand, Fesc is the maximum in the force-displacement curve - the

maximum force that the trap can exert on the surface of a spherical object of that

size and refractive index in that direction. In a truncated Hookean approximation,

the escape force is roughly proportional to the harmonic trap strength k. In general

these are anisotropic and require a tensor description, but since the beam intensity

changes more rapidly in the focal plane than along the axial direction, the escape

force and trap strength have approximate prolate-spheroidal symmetry around the

focal point. It is sufficient to describe the values in axial and equatorial directions:

Fesc,r ∼ kr and Fesc,z ∼ kz. The latter is the downstream value, as the scattering

force makes this the weakest point of the trap.

Although experimental measurements are typically performed with spheres, the

concepts of escape force and trap strength are extensible to nonspherical objects.

They represent derivatives of a trapping potential as a function of position of the

centre of mass. In the Rayleigh theory, the contribution of the optical gradient

interaction to this spatially-varying potential will resemble a convolution between

the polarisability field (i.e. the shape of the object) and the optical intensity (the
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shape of the beam). Thus the potential well has a width that is the sum of the

beam width and the particle diameter. Similarly, ray tracing predicts that the

particle remains in the trap up to r ≈ RD in the transverse direction [10]. The

additional angular degrees of freedom introduced by anisotropy are constrained by

the axisymmetry of the beam in a similar fashion; for example a trapped thin rod

will align along the beam.

2.2.2 Efficiency factor representation

The sum of optical gradient and scattering forces at each point in space may be

described as an empirical fraction of the beam’s total momentum flux n1P/c by a

dimensionless efficiency factor Q [11]. The motivation for this approach is that the

escape force and trap strength scale proportionally with optical power, whilst the

ratios Fgrad/|Fbeam| and Fscat/|Fbeam| are invariant with applied power. Normalis-

ing the trapping efficiency with respect to power allows it to be compared between

different cases with less ambiguity. If a beam cannot trap an object at moderate

powers (∼ 10 mW, where buoyancy is typically overcome), for example appearing

to push the object away, then simply increasing the laser power will not provide an

improvement, since Q does not change.

Where stable trapping exists, the escape force in a given direction, Fesc, is pro-

portional to the efficiency factor’s maximum value along a line from the equilibrium

trapping point in that direction, Qmax.

Q(RD,m,NA, λ) ≡ Fgrad + Fscat
|Fbeam|

(2.2.1h)

Fesc =
n1PQmax

c
(2.2.1i)

For diffraction-limited traps at high NA, the scattering force on low m particles is

small relative to the gradient component, such that the scaling of Qmax approx-

imately follows that of the gradient force. In the geometric limit, considering a

summation over internally refracted rays allows Qmax ≈ 2(m − 1) to be derived

from the Fresnel coefficients [12]. Unlike the Rayleigh prediction of Qmax ∝ R3
D, the
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geometric scaling is closer to Qmax ∝ 1/RD [13].

Comparing these trends, one might expect that a maximum efficiency factor lies

near RD ≈ λ, which is usually the case. At high m, the approximation breaks

down; interference occurs between waves scattered from the front and rear inter-

faces of the object, causing modulations in trapping efficiency with particle size

(see Figure 2.2). In water (n1 ≈ 1.33), trapping is most effective for particles in the

colloidal to microscopic scales (between RD ∼ 50 nm - 50 µm) of index n2 = 1.4−1.7.

Figure 2.2: A relief map of axial trapping efficiency Qmax,z as calculated by T-matrix

theory against particle radius RD and relative refractive index m, for the case of

spherical particles in water n1 = 1.33, with λ = 532 nm at NA = 1.2. At higher

m, resonances appear and scattering dominates. Note that practical trapping will

be impaired at high particle radius due to weight (∝ R3
D) increasing more quickly

than efficiency. Figure reproduced from [14], c©OSA.
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For the relevant example of a heptane droplet (n2 ≈ 1.38) in water, the approx-

imations given above yield an ideal trapping efficiency of Qmax,r = 8% or Fesc,r/P

= 0.3 pN/mW, which are comparable to experimentally obtained values; Woods et

al. quote an estimate of 0.69 pN/mW [15].

Numerical schemes allow exact calculation of optical forces and thus Q. These

are rigorous for arbitrary input fields and particle shapes across all three size regimes,

but require significant computational investment [16]. The quantities Fesc,r, Fesc,z

and kr are more readily obtained by experiment and then normalised by an esti-

mate of the power at the sample. Three approaches are detailed for calibrating the

strength of an effective trap.

Escape force

The most intuitive method of calibration is to balance the force exerted on the

trapped object against an external reference force. By moving the laser relative to

the surrounding fluid using the microscope stage, the object is subject to a drag force

which competes with the optical gradient force. For small displacements relative to

the particle diameter, the trap is approximately harmonic and the trap strength can

be estimated from the displacement:

kx =
βvx
∆x

(2.2.1j)

However, the displacements are difficult to measure precisely as a result of optical

resolution and Brownian motion. With increasing speed, the drag force dominates,

such that above a critical speed the particle can no longer be trapped. Equating the

drag and gradient forces at this critical escape speed vesc, yields:

Fesc = βvesc (2.2.1k)

where β is the drag coefficient. If the trapped object passes within about 20RD of a

solid wall, it will be subject to additional drag not accounted for by Stokes’ Law (see

Equation (3.2.1b)). If this cannot be avoided, but the distance is a known constant

(i.e. the surface normal is perpendicular to the direction of motion), then Faxen’s
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corrections can be used. The method can be used in the equatorial - and even the

axial - directions, if the stage speed can be controlled and the observation cell is

sufficiently large. Thus Fesc,r and Fesc,z can be found. The ratio Fesc,z/Fesc,r ≈ kz/kr

is a valuable measure of the anisotropy of the trap; ideally, it has the diffraction-

limited value NA/n, although typically it is much lower due to optical aberrations.

Equipartition and displacement variance

With the harmonic Hookean approximation V = 1
2
krx

2 and the equipartition the-

orem E = 1
2
kBT the trap strength can be expressed in terms of the variance in

particle position along a chosen equatorial direction:

kr =
kBT

〈x2〉
(2.2.1l)

Thus the trap strength can be determined directly from traces of the particle

centroid. The sampling interval must be of the order (and the trace duration must

be far in excess) of the characteristic relaxation time τr = β/2kr ≈ 1 ms. This is

the shortest timespan over which the particle motion can be distinguished from that

under free diffusion. As the integration time increases, a histogram of displacements

tends to a normal distribution whose variance yields 〈x2〉, as shown in Figure 2.3.

A related method uses the normally-distributed blur of the particle image over a

known exposure time in excess of τr [17]. For weaker traps, the variance becomes

large; the accuracy scales as 1/kr.

Power spectral analysis

Alternatively, a similar treatment can be performed but in frequency space. The

Brownian noise spectrum of the particle is analysed, either from Köhler illumination

or backscattered laser light [18]. The trap establishes a corner frequency :

νr =
1

4πτr
=

kr
2πβ

≈ 1 kHz, (2.2.1m)

below which the thermal fluctuations are suppressed and the power spectral den-

sity is flat instead of the usual diffusive 1/ν2 dependence. Identifying this cutoff,

analogous to the characteristic time, yields the trap strength as shown in Figure 2.4.
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Figure 2.3: (middle, bottom) a pair of histograms recording orthogonal displacements

of a polystyrene bead, RD = 2 µm, in a single trap at 3 W source power in Setup C

(see § 2.4.3). Similarity of the two indicates cylindrical symmetry of the trap; (top) a

pixel brightness histogram for the video frames used to calculate the displacements,

indicating an optimal binary threshold of 118/255 separating object and background

pixels.
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Figure 2.4: The power spectrum for displacements of a polystyrene bead,

RD = 2 µm, in a single trap at 3 W source power in Setup C (see § 2.4.3). A

Lorentzian curve is fitted (black line), whose maximum slope yields the corner fre-

quency (red line).
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Figure 2.5: Trap strength measured as a function of laser power at source in Setup C

(see § 2.4.3). Above a trap strength of 30 µN m−1, power spectral method (squares)

are accurate to the proportional relationship expected at constant Qmax (solid line,

least-squares fit to all filled points, R2 = 0.997), whilst below this trap strength, the

equipartition method (circles) is preferred.

A detector of considerable frequency bandwidth is needed, such as a high-speed

camera or quadrant photodiode. As data of fixed-time intervals congregate in the

limit of high frequency, the accuracy of this method improves as kr. Thus for

stronger traps, the technique complements the variance method. In practice, each

estimate is limited by motion blur or point-spread function, depending on the trap

stiffness and the particular imaging technique. This complementarity is demon-

strated in Figure 2.5, where the gradient is proportional to Qmax for polystyrene

beads of RD = 2 µm. Accounting for the source-to-object transmission coefficient

of around 12%, the modified gradient of kr/P = 0.24 µNm−1mW−1 is of the ex-

pected order for this trap; for a Hookean trap approximation, this corresponds to
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Fesc,r/P = 0.5 pN mW−1 which compares well with literature (§ 2.2.2).

2.3 Application of optical tweezers to fluid

interfaces

The scenario in which a rigid, spherical particle is trapped in liquid continuum per-

mits calibration of the imaging quality, trap aberrations and the magnitude of these

trap forces [19]. However, this work is ultimately concerned with a ’soft’ liquid

droplet in place of a rigid particle, and thus a deformable liquid-liquid interface. For

deformable fluids, the localised response is governed by a more general principle.

The majority of the optical force acts along intensity gradients, such that material

of high refractive index (oil) tends to displace that of lower index (water) from the

regions of highest intensity.

During the last two decades, optical deformations of liquid-liquid interfaces have

been explored in bulk [20–22] and in emulsion microdroplets [15, 23].

2.3.1 Prior deformations of planar liquid surfaces

The most systematic studies of optical deformation at ULIFT have been pursued

with planar interfaces at low numerical aperture where the scattering forces are

significant fraction of the total. For the free liquid surface, a comprehensive, quan-

titatively validated solution is known, [24] while for the liquid-liquid interface, an

analytic solution is available for small deformations. The radiation pressure of a

focused Gaussian beam, normally incident from a low-to-high refractive index (up-

wards from water to oil), produces a bell-shaped depression into the low index

medium, whose width is similar to the beam waist [20].

If a downwards beam is used, the depression still occurs into the low-index

medium; this is proof that the relevant momentum flux of the beam is the Minkowski,
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rather than the Abraham, form [25]. At radiation pressures roughly four times the

Laplace pressure, the concavity acts to totally-internally reflect and concentrate the

beam. This bends the interface into a light-guiding jet of very high aspect ratio

> 100, stabilised against the Rayleigh-Plateau breakup, which supports optically

induced flow along the beam path.

In the bell-curve regime, the phenomenon can be used to measure the IFT be-

tween bulk phases. Trapped liquids benefit from fast thermal equilibration, but this

effect decreases with larger length scales. Since vibrations and thermal lensing are

problematic, efforts have been made to implement measurements of the surface gra-

dient from its action as a tilted mirror [26]. Even for pure liquid tensions where the

peak displacements are as small as 10 nm (gradient ≈ 1 mrad), this is a sensitive

technique, with a large dynamic range. The interrogated interfacial spot, over which

the signal is averaged, is of millimetre order in diameter.

2.3.2 Prior deformations of emulsion droplets

Woods et al. show how optical tweezing techniques can be used to deform individ-

ual emulsion droplets [15]. Optical tweezing is still an ideal tool in this case, since

objects of similar dimensions to the wavelength of the light used (0.2-20 µm) can be

subjected to trapping or distorting forces. For multiple point traps, the number of

configurations is only limited by the minimum trapping power at each site, typically

around 10 mW, and the spatial freedom of movement. This technique produces

polygonal shapes and networks connected by nanometric threads. These threads

are qualitatively different to the waveguided jets of Delville et al.; they do not re-

quire intrinsic support by optical forces, but result solely from interfacial properties.

These experiments largely form the motivation and context for the practical work

in this thesis, but will also be discussed alongside the theoretical results presented

in Chapter 5.
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2.4 Original constructions for trap generation

and imaging

To extend particle deformation to non-axisymmetric shapes, more than one trap is

required. Multiple traps with similar characteristics may be produced from split-

ting a single beam, but interference effects can cause adjacent traps to weaken one

another. There are three strategies for avoiding interference, each with its own

merits:

1. orthogonal polarisation of trap pairs,

2. timesharing so that the traps do not coincide, or

3. holographic modulation of the optical phase to allow the traps’ coexistence in

the object-plane intensity distribution.

Each option was implemented in turn. The former are simpler and more readily

constructed, while the latter enable more precise control over a greater number of

degrees of freedom.

2.4.1 Setup A: Dual polarisation tweezers

The orthogonal polarisation technique is limited to a maximum of two overlapping

beams, but can be achieved using relatively simple optics [27]. The lack of lossy

diffractive optic elements allows the sample to be exposed to very high trapping

powers > 100 mW and therefore significant laser heating; this section is relevant to

results in Chapter 4.

The optical set-up, shown in Figure 2.6, is based around a conventional upright

microscope (Leica DM-LM), in conjunction with a 1064 nm TEM00 CW Nd:YAG

laser, with 600 mW maximum power (Forté, LaserQuantum). The objective lens is

an oil immersion model with NA=1.25, 100× (Leica 506072).
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Figure 2.6: Schematic of the conjugated polarising beamsplitter array in Setup A,

for the separation and recombination of the fixed and scanning coplanar traps. The

latter is moved relative to the other trap by rotating the gimballed mirror.

All refractive trapping optics (except the objective and coverslips) are anti-

reflection-coated for λ = 1064 nm. Optimal trapping results from slightly ’overfill-

ing’ the exit pupil DEP at the back aperture of the objective; the beam is expanded

using a simple Keplerian telescope, magnification f2/f1, such that 2w ∼ 1.1DEP .

The planoconvex telescope lenses are placed with flat sides together to minimise

field curvature aberrations.

Oil immersion lenses are designed such that spherical aberration at high NA is
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compensated for. However, in aqueous media the indices do not match and this

holds only at a very short distance ∼ 20 µm from the coverslip, so traps become

weak with depth [28]. This spreading of the focus can be mitigated by adding a

controlled amount of spherical aberration of the opposite sense. The simplest way

to do this is by readjustment of the beam expander length to change the angle of

convergence (i.e. the effective tube length) at the objective back aperture. This

also provides a compromise for chromatic aberration in the objective such that the

imaging (visible) and trapping (NIR) focal planes coincide correctly.

An orthogonal polarisation split is achieved as follows (Figure 2.7). Firstly, the

slightly elliptical polarisation output of the cavity is corrected to a vertical linear po-

larisation using a waveplate of thickness λ/4. The dual beams are created by passing

the expanded beam through the first polarising beamsplitter and recombined with

an identical second beamsplitter. This configuration bears some resemblance to the

Mach-Zehnder interferometer [29]. However, one scanning beam is steered indepen-

dently of the other, fixed beam using a 2” gimbal-mounted mirror.

A waveplate of thickness λ/2, placed before the splitting array, is used to rotate

the linear polarisation direction to select the power ratio of the two resultant beams

without significant loss. The extinction ratio is estimated as 1:20, which suffices for

basic experiments where only one beam is desired; the remaining weak beam can be

removed by blocking its unique path.
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Figure 2.7: Profile diagram of the conjugated polarising beamsplitter array for the

separation and recombination of the fixed and scanning beams in Setup A.

Without additional optics, the inter-trap displacement would be quickly limited

by the scanning beam walking off the back of the objective. To ensure both beams

enter the objective (albeit at different angles), a 4f lens relay was assembled so that

the back of the objective and the centre of the gimbal were made conjugate. When

the traps were positioned centrally, the beam quality could be refined by placing

a spatial filter at the focus of the 4f relay. In order to reach the microscope, a

periscope was required; for safety reasons this was capped by a beam block and the

long sections of the beam path were enclosed by beam-tubes.

Brightfield illumination was used for all experiments, from a Xe white light source

focused by an oil-immersion condenser lens, NA = 1.1 (Leica). The dichroic mirror

(shortpass <900 nm) allowed the trapping laser to enter the sample but not the

camera CCD (Ximea, xiQ/MQ013MG-E2) at 60 fps which is also screened by an IR

filter.

Rudimentary temperature control was achieved by a objective collar coil (Warner

Instruments), as calibrated with the melting points of waxy alkanes.
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2.4.2 Setup B: AODs, z-refocusing tweezers and confocal

imaging

This setup is relevant to Chapters 5 and 6.

The timesharing technique involves deflection of the beam across several loca-

tions much faster than the trapped objects can escape. Each trap location is disabled

for a time no longer than the diffusion timescale. This timescale can be estimated

based on the Stokes-Einstein equation [30]:

τ <
3πηRD∆2

kBT
≈ 0.5 ms, (2.4.1n)

where ∆ ∼ 0.2 µm is the lateral microscope resolution. This technique also splits

the available power between the trapping locations, whilst preventing interference

between them.

The optical trapping on this kit was based on a 1064 nm laser (Laser Quantum,

Ventus), steered by acousto-optical deflectors into a Nikon EZ-C1 confocal micro-

scope. The acousto-optical deflector (AOD) control software (LabView) enabled

the timeshared production of triangular or rectangular groups of traps at 50 kHz,

or > 10 kHz per cycle. The traps were confined to the same focal xy plane, but

their separation was tuned in real-time. After focusing by the NA = 1.2, 63×

water-immersion objective (Leica 506279), the maximum total power delivered to

the sample was 40 mW. The brightfield CCD camera (Sony XC-ST51CE) gave a

field-of-view of roughly 75 µm.

Scanning a 532 nm laser in epi-illumination at a power of 2 mW (source power

6 mW), with focus insufficient to affect trapping, across a field of view of 10 - 25 µm,

fluorescence is excited in the oil-soluble dye, pyrromethene-597 (PM597), with peak

emission at 580 nm. This emission was filtered and detected by photomultiplier

tube with 120 - 160 dB gain.
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Figure 2.8: Schematic for optical generation of time-shared multiple traps with

AODs. The traps are always coplanar at a depth fixed by the positions of the

Zaber -translated telescope lens #7 and/or refocusing mirrors, but the x, y positions

are controlled interactively.

In order to measure the droplet’s 3D shape with the scan head of the inverted

confocal microscope, the z-stack was built up from independent x, y frames at a rate

of ∼ 1 Hz between axial steps. The average of a small number of frames (10 un-

less otherwise specified) was recorded at each position to reduce the effects of noise

and transient debris. The data, Cartesian volume arrays of fluorescent return, were

saved as 16-bit, green-channel .ids, .ics pairs and animated cross-section .avi

files. The post-processing of these involved volume-rendering and careful threshold-

ing to yield each object’s surface.

For a sample fixed relative to the stage (e.g. attached to a coverglass), each z-

stepping sequence was automated using the Nikon control software. The objective
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moved by a specified interval on the order of -0.2 µm/step (downwards from the top

of the object). For trapped samples, the objective and therefore the confocal scan

plane were kept fixed; instead the trapping plane was refocused to a different depth

by translating a telescope lens (#7 in Figure 2.8) or the retropropagation mirror

with a linear micrometer (Zaber). A typical object of 10 µm diameter required a

scan time of ≤10 min. For full details see § 6.6.

2.4.3 Setup C: Holographic tweezers and structured

illumination imaging

The third setup used holographic control to fully determine a 3D trapping array,

with independent control of position and strength of each trap.

A custom-built inverted microscope was built with standard bench optomechan-

ics (ThorLabs) with xy motorised stage (Prior Proscan III) and z-micrometer

(Zaber). A high-performance water-immersion objective (Zeiss, C-Apochromat x63

NA 1.2) was chosen for its high numerical aperture, good transmission and aberra-

tion corrections over a wide wavelength range. Microfluidic observation chambers

of 100 µm depth were used (§ 3.4.1), to which either the handshaken emulsions

or microfluidic output could be introduced. The setup accommodated UV illumi-

nation (405 nm LED) for fluorescence imaging with the oil-soluble polyaromatic

hydrocarbon dye, perylene (470 nm excitation maximum in heptane). Brightfield

illumination was provided by a pseudo-collimated 450 nm LED. A 532 nm, 5 W,

TEM00 CW laser (Laser Quantum Opus) is used, interchangeably with a 1070 nm,

10 W, Yb-fibre laser (IPG YLM-10-LP-SC). This laser was collimated and expanded

by telescope, linearly polarised and delivered to the reflective spatial light modu-

lator (SLM). The diffractive output was demagnified × 1/2.2 to overfill the 5 mm

rear aperture of the microscope objective via an edge dichroic beamsplitter (Razor-

Edge, Semrock). The 8-bit nematic liquid crystal SLM (model X10468 LCOS-SLM,

Hamamatsu; see below) had a resolution of 800 × 600 with a pixel size of 20 µm,

equivalent to (0.1 mrad) 0.3 µm (angular) resolution and maximum (angular) tilt

of (30 mrad) 90 µm.
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Figure 2.9: The platform referred to as Setup C, used for optical deformation of

emulsion droplets at infrared wavelengths and fluorescent shape analysis with struc-

tured illumination sectioning. ∗The longpass dichroic mirror is redrawn here as

shortpass for brevity.
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Spatial light modulators

The most flexible procedure of creating optical traps uses interference to its advan-

tage by generating a trap array holographically. This is done with an array of liquid

crystal pixels called an SLM. Depending on the applied voltage, each pixel is able

to induce a phase shift, ideally of at least 2π, in the locally reflected wave and/or

reduce its amplitude. As the light reaches the focal plane, it interferes with other

rays from the SLM in a well-defined way to create the desired intensity field. The

modifications are encoded in the 2D phase pattern or kinoform displayed on the

SLM. Only the intensity distribution in the focal plane is relevant to the trapping.

The redundancy of the phase distribution at the traps allows phase-only control at

the SLM, which is preferred here since the total power is conserved.

Fourier holograms

Since the SLM operates in a doubly-conjugate position to the focal plane, the ’far

field’ Fourier approximation applies. The intensity pattern is essentially a convolu-

tion of the input beam intensity profile on the SLM and the Fourier transform of the

hologram. The Fourier transform can be related to the classical aberrations added

to the beam phase distribution by the diffractive optic element.

• Piston: A constant phase shift across the array has no interference effect

within a particular beam, but different beams from the same kinoform can be

made to interfere constructively or destructively when overlaid in position.

• Tilt: A sawtooth wave kinoform gives a constant phase gradient, which causes

the affected beam to be displaced by an amount proportional to the wave’s

frequency. The SLM acts as a diffraction grating and as such generates a

series of diffraction orders. The 1st order beam is used for trapping, so a fixed

minimum tilt has to be added to displace this from the brighter 0th order beam

that is unaffected by the hologram.

• Defocus: A parabolic phase profile causes the beam focus to be displaced in

the same way as a thin Fresnel lens.
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Holographic phase terms corresponding to aberrations of higher order such as astig-

matism, coma and spherical aberration can also be imposed in an adaptive optics

sense, using the orthonormal basis of Zernike polynomials.

Diffraction efficiency

The advantage of using a ferroelectric liquid crystal (FLC) SLM is that switching

is exceptionally fast; frame rates of 25 kHz are achievable [31]. This speed enables

timesharing of traps by cycling the display between holograms dedicated to each

individual trap. This rotation occurs on a timescale far shorter than any detectable

diffusion of the object (as for the AODs in § 2.4.2). However, the FLC SLM is

restricted to switching between binary {0,π} states in each pixel. The 1-bit kino-

form is composed of discrete π phase steps, so the diffraction grating has an added

triangular wave component relative to the ideal slope. The triangular Fourier series

includes higher order odd harmonics, decaying as 1/n2. The grating is also sym-

metric and thus there is ambiguity between positive and negative diffractive orders.

The diffractive power efficiency of the 1st order beam is therefore severely reduced;

the theoretical maximum is (2/π)4 ≈ 16% of the incoming beam.

Timesharing was attempted using an FLC SLM (SXGA-R3, Forth Dimension).

The diffraction efficiency was less than 6% in practice, partly due to the unit’s op-

timisation for visible wavelengths rather than the NIR.

For a nematic liquid crystal (NLC), the switching is arbitrary, and so an 8-bit

SLM is able to produce smooth phase gradients in a blazed grating. As a result, the

theoretical diffraction efficiency approaches 1/2. In practice, this is around 30%.

The number of array pixels sets the maximum tilt that can be obtained; in this

limit the blazing reduces to a square wave and thus the diffraction efficiency falls

off steeply at the edges of travel. The main limitation of the NLC SLM is that

refreshing the display is slow, at only video rates of 60 Hz. Though tweezing for a

single, continuous trap locus is maintained, interrupting the trap is not feasible for

deformation as it is slower than the viscous relaxation time τ = ηRD/σ ≈ 1 ms.
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Algorithms

While the NLC SLM cannot support deformation under discontinuous positioning

for one trap, it is possible to display holograms that simultaneously generate mul-

tiple traps. The Fourier hologram enables the 3D position and phase of a given

trap to be specified. However, neither simple linear addition (phase retardation),

nor complex addition (superposition) of these phase holograms results in a direct

combination of the intensity distributions. Despite the linearity of the subsequent

Fourier convolution, linearity of the hologram itself is not preserved since the opti-

cal phase is a 2π-modular function. Instead, superposition is an underdetermined

problem where the total intensity is poorly controlled. In trap configurations of high

symmetry it can give rise to undesirable ’ghost’ traps.

An alternative method is to produce each trap independently with different areas

of the SLM. The random mixing algorithm displays an independent Fourier holo-

gram for each of the desired traps over a randomly distributed subset of SLM pixels.

This is a straightforward, fast calculation scaling only as the number of traps, M .

Ghost traps are avoided, since the optical amplitude is coupled independently from

each pixel to the corresponding trap location (Figure 2.10). Conversely, the optical

power in each trap is proportional to the square of the area fraction dedicated to

it, and is controlled as such. Unlike timesharing, the total power shared between

the traps is not conserved. The algorithm quickly becomes inefficient as the total

decreases as 1/M . The remainder of the optical power (1 − 1/M) is scattered uni-

formly into the volume of all possible traps by the random mask pattern. The device

pixellation acts as a soft low pass filter for the hologram, which exacerbates how

traps degrade towards the edges of view.

Furthermore, the traps are generated simultaneously and are subject to optical

interference when they overlap one another. If the traps cannot act independently,

positioning them to stretch the interface is no longer intuitive. Randomising the

relative phases of traps was not observed to improve the trapping stability of closely

spaced trap pairs. Fortunately, the droplets are much larger than the traps’ focal



2.4 Original constructions for trap generation and imaging 85

volumes and deformation is essentially unaffected.

Given its ease of implementation and well-defined intensity distribution, and

despite its poor scaling of trap power, the random-mixing algorithm is used herein

for a large majority of the SLM work. In practice, the scope of this project is largely

fulfilled with four simultaneous traps. A sophisticated graphical user interface (GUI)

was written in wxpython from which traps overlaid on the droplet images could be

controlled in real-time with click-and-drag commands.

Arbitrary kinoforms

Thus far, the 2D intensity pattern has been selected in a chosen z-plane whose nor-

mal lies in the direction of propagation. The degrees of freedom afforded by an SLM

allow an arbitrary 2D pattern limited only by array size, pixel size and microscope

resolution. However, finding such a hologram is an underdetermined problem and is

not necessarily a unique solution for the chosen slice. There may be a range of 3D

intensity distributions that satisfy the Maxwell-Helmholtz equations while including

the constrained plane.

The identity properties of the Gaussian beam under Fourier transformation make

it especially suitable for generating diffraction-limited point traps. In turn, these

behave well in 3D, as a diffraction limited spot can only be produced by rays focused

at high NA, giving a suitably steep axial intensity gradient.

For more diffuse 2D distributions, it is likely that a majority of 3D solutions will

not be conducive to axial trapping at the intended sites. Iterative algorithms includ-

ing the adaptive-additive and direct search schemes allow numerical convergence to a

specified 3D distribution. In the Gerchberg-Saxton algorithm, this distribution can

be specified a priori without measurement feedback, though requires substantial

computational investment and is susceptible to divergence. Deformation in real-

time requires moving the traps and therefore updating the hologram displayed at a

similar rate.
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Figure 2.10: Holograms corresponding to three traps displaced in 3D. (left) Three-

colour RGB image with each colour channel representing the Fourier hologram for

each trap separately (R, top left; G, centre; B, bottom right). The concentric rings

correspond to the Fresnel zones; (left, below) The intended position of the three

beams tilted and defocused to different depths; (centre) complex superposition of the

three component traps; (centre, below) the corresponding simulated focal intensity

pattern, in which off-diagonal ghost traps are visible; (right) random mixing, with

an equal SLM partition for each of the three component traps; (right, below) the

random mixing intensity pattern is 1/3 weaker, but the unwanted traps are absent.

Non-iterative, open-loop techniques exist to generate specific families of 3D in-

tensity distributions; of particular future interest are the wireframe traps of Rodrigo

et al. [32]. Thus, interactive HOTs in real-time remains an active area of research

[33–35] for which Padgett provides a useful review [36, 37]. In some cases, the

parallel architecture of graphic processing units (GPUs) has accelerated HOT cal-

culations [38]. The use of pre-calculated hologram videos was also considered for
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specific deformation functions. In this work (§ 6.1.2), Gerchberg-Saxton algorithm-

based holograms are used to produce regular tetrahedral arrays of point traps.

Adaptive optics and image processing for calibration

The SLM is ’flattened’ in diffractive terms by applying a calibrated phase image as

a background for the useful kinoform. A phase calibration was obtained by a Monte

Carlo direct-search algorithm as follows. A bead was trapped using a known single

Fourier hologram, and its rms displacement was minimised pixel-by-pixel starting

from the factory-tested SLM image. The Fourier hologram was then subtracted.

Fitting a Gaussian histogram to the same displacement data also calibrated the

trap strength by the equipartition theorem. Brightfield imaging with a small region

of interest (10 µm) was found to be adequate. The centroiding method was preferred

to the power spectral method, as the upper frequency was limited by the camera

frame rate of 400 Hz.

For speedy hologram calculation, the optimised calibration image was com-

pressed using a truncated rectangular Legendre basis to match the SLM dimen-

sions. Using Zernike polynomials modified for a rectangular aperture1 would reveal

the aberrations introduced by the laser delivery optics. However, this step is unnec-

essary as the calibration cancels them implicitly.

Structured illumination imaging

The output of a 405 nm, 1 W LED (ThorLabs) is collimated and immediately passes

through the structured illumination mask, joins the imaging train via a dichroic and

is relayed into the object plane via matched achromats (f = 35 mm) and the objec-

tive. The masking is implemented with a high-opacity Ronchi transmission grating

1This basis is used in unpublished work regarding how aberrations propagate through optical

systems with varying aperture.
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(chrome on glass, Applied Image) at 50 µm/lp. This corresponds to a spatial fre-

quency in the focal plane of f = 1.3 µm−1, chosen such that (for 3 frames per slice,

introduced at > 4f) artefacts fall above the modulation transfer function (MTF)

cutoff of 5.1 µm−1 and lose all contrast. In practice, the MTF of the system is

confirmed as diffraction-limited by Fourier transforming the spatial derivative of a

brightfield-imaged grating edge. This particular choice of grating allows the contrast

to remain relatively high, ∼ 0.6, whilst yielding a theoretical sectioning response

near the optimal FWHM of ∼ 0.4 µm. Using a second piezoactuator (Zaber) one

of the achromats is moved relative to the other to obtain images at axial step sizes

of > 0.2 µm and automate a SIM acquisition sequence over a 10 µm range. The

CCD camera (AVT Pike) is used with a typical frame rate of 120 Hz, leading to

sequence duration ∼2 s. Coding in Python allows RS232, IEEE1394, FireWire, USB

and video control of each function to be de-centralised across an arbitrary computer

network.

Trapping must allow objects to be held strongly enough so that they are effec-

tively static over the course of a structured imaging routine. If detectable motion

were periodic for some reason, such as vibrational or rotational motion, then strob-

ing the illumination would be an acceptable solution. However, weakly held or

untrapped objects will instead blur images under stochastic diffusive motion. This

leads to the appearance of random transverse discontinuities and significant uncer-

tainty in the sampled interval. By equipartition, the minimum trap strength to

preserve diffraction limited imaging at 4σ performance (i.e. discontinuity-free over

100 routines of 50 sections each) is:

k >
16kBT

(λ/2NA)2
∼ 10−6 Nm−1 (2.4.1o)

which is easily achieved. This can be an underestimate in practical microfluidics

(Chapter 3) where external influences such as hydrodynamic fluctuations increase

the probability of the maximum displacement becoming detectably large. Notably,

a shorter SIM duration tSIM truncates sampling of the displacement distribution. If

such a drift in continuous fluid velocity averaged over this time is represented as ν̇,



2.4 Original constructions for trap generation and imaging 89

a more realistic requirement is:

k >
βν̇tSIM
λ/2NA

∼ 10−5 Nm−1 (2.4.1p)

This is largely limited by the camera frame rate and the ability to avoid pressure

gradients, particularly from syringe motion and elasticity in walls and piping.

2.4.4 Setup C+: An integrated design for photo-

polymerisation of deformed droplets

In this section, an integrated, optimised platform for future apparatus is proposed,

as first presented in Figure 2.11, [39]. A trapping wavelength of 532 nm would al-

low timesharing with an FLC SLM, or optical landscaping with a nematic SLM.

The optical photothermal absorption of both H2O and D2O are negligible at this

wavelength (spectroscopists refer to the ’water window’), thus easing the problem of

incidental heating across the PIT as strongly determined the results in this project.

For non-fluorescent objects, the high power, high NA focal volume would be useful

for Raman spectroscopy at speeds of 1-100 Hz. For example, one might follow a

photopolymerisation reaction in a deformed droplet. The combination of Raman

tweezers at 532 nm is a proven technique for organic microparticles [40].

The high numerical aperture optics required for the former enhance the signal

from the latter, whilst Raman detection has little impact on the optics or method-

ology of tweezing. Using Raman tweezers removes the need for a separate laser and

its unwanted additional radiation pressure. Also, a single longitudinal mode laser is

unnecessary, since a suitable laser bandwidth is an order less than the typical spec-

tral linewidth, typically ∼ 100 GHz. In this scheme, the Raman signal and gradient

forces are coupled through the input intensity distribution, such that a minimum

trapping power is required for sufficient spectral output. Much like the stability

issue with SIM, as long as this minimum power falls below that required to trap the

object of interest, then Raman spectroscopy can be performed without hindrance.

By the same token, structuring the Raman probe is clearly not an option when

trapping, so instead a more subtle confocality is established with the spectrometer’s
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spatial filter.

Waveband (nm) Function Major components

375 Photoinitiation of monomer oil UV laser

405 Fl. excitation with SIM masking UV LED; grating; achromats

440-490 Fluorescent emission Perylene fluorophore

470 Brightfield illumination Blue LED

532 (or 1070) Trapping beam Green (NIR) laser; SLM

>532 Backscattered Raman signal Spectrograph; pinhole; CCD

Table 2.1: Spectral divisions for Setup C+, an integrated Raman tweezing apparatus

for polymerisable droplets.

In this framework (Table 2.1), it is possible to perform brightfield imaging and

Raman spectroscopy simultaneously on trapped, deformed and polymerised micro-

droplets. On the other hand, fluorescence is often described as anathema to Raman

microscopy due to the higher fluorescent scattering cross-sections. In samples doped

with fluorophore it is likely that it will overwhelm the Raman signal even at wave-

lengths distant from peak emission.
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Figure 2.11: A modified Setup C+ proposed for optical deformation of emulsion

droplets and for Raman photopolymerisation or fluorescent shape analysis.
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Glossary

Symbol Definition Unit

AOD Acousto-optical deflector

c Speed of light in vacuum m s−1

CCD Charge-coupled device, camera

CW Continuous wave (laser)

DEP Exit pupil diameter m

f1, f2 Lens focal length m

Fesc Escape force from trap N

Fgrad Optical gradient force N

Fscat Optical scattering force N

FLC/NLC Ferroelectric/nematic liquid crystal

FWHM Full-width-half-maximum of distribution

GPU Graphics processing unit

GUI Graphical user interface

~ Reduced Planck’s constant N s m−1

HOTs Holographic optical tweezers

I Optical intensity W m−2

k, kr,z Optical trapping strength N m−1

LED Light-emitting diode

MTF Modulation transfer function

N Number of photons -

NA Numerical aperture -

NIR Near-infrared

n,∆n Refractive index, contrast -

m Refractive index ratio, object/medium -

P Optical power W

pA,M Linear momentum (Abraham, Minkowski) N s

r Coordinate perpendicular to beam axis m

RD Droplet radius (spherical) m

RGB Red-green-blue image

SIM Structured illumination microscopy



References 93

SLM Spatial light modulator

Q Trapping efficiency factor -

UV Ultraviolet

vesc Escape velocity from trap m s−1

∆x Displacement m

z Coordinate along beam axis m

zR Rayleigh range of Gaussian beam m

t Time s

β Drag coefficient N s m−1

2D/3D Two/three-dimensional

λ Optical wavelength m

τ Viscous relaxation time s

θ Angle of propagation rad

ω0 Beam waist m
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Chapter 3

Generation and Phenomenology of

Emulsion Droplets

3.1 Premise

The thesis statement prompts many questions: which droplets? How small, how

many? What kind of vessel does one hold a microdroplet in to deform it? How long

do they ‘last’ for? What’s different in making a ULIFT droplet?

In this chapter, oil-in-water droplets between 2 and 12 µm diameter are made

so that they can be manipulated optically in isolation for periods of order 10 min,

within a thin, transparent chamber. The droplets need not be identical, but the

less polydisperse the emulsion, the more reproducible the initial conditions are for

subsequent trapping experiments. A particular strength of microfluidic methods is

that they generate emulsions of low polydispersity; yet the size distribution must be

preserved in spite of the mechanical fragility of ULIFT droplets.

Whilst a protocol was developed for microfluidic production, a much simpler

method was used to create droplets in different ULIFT systems.

97



3.2 Hand-shaken emulsions 98

3.2 Hand-shaken emulsions

3.2.1 Droplet size and stability

Under ULIFT conditions, the energy input required to mix oil and water is lowered

by many orders of magnitude. Simply adding a small amount of oil to the required

aqueous phase and agitating by hand causes the oil to atomise into a dilute, highly

polydisperse emulsion. These are ’hand-shaken’ emulsions.

Shearing an emulsion in a turbulent manner produces a droplet size distribution

that is approximately log-normal [1]. This rule-of-thumb arises since for a fixed

dispersed volume, larger droplets are far fewer in number and thus collide less fre-

quently, such that the rate ratio of coalescence to splitting events scales inversely

with droplet size. The deformation experiment benefits, since there are relatively

few droplets smaller than the most common size. Smaller droplets are undesirable

as they diffuse quickly and adhere to the trapped droplet, obscuring its shape and

perturbing its behaviour in the trap.

Considering the critical capillary number (§ 1.1.1) in turbulent Newtonian shear

flow, dimensional analysis gives a scaling expression for the modal droplet radius

〈RD〉 [2],

〈RD〉 ≈
σOW√

(ρW + ρO)ηWf 3L
≈ 1− 100 µm, (3.2.1a)

depending on the amplitude L and frequency f of agitation, the interfacial tension,

σOW , and the specific density ρW and viscosity ηW of the continuous water phase

[3]. The dependence on the bulk properties of the dispersed phase, ρO, ηO, is weak

since they are of the same order as the continuous phase, whose volume fraction is

significant.

After agitation ceases, the droplets experience a low Reynolds number (§ 1.1.1).

The oil droplets will cream at a rate dictated by their buoyancy and dispersion size.

This rate can be estimated under the assumptions that the droplets are spherical,
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separated widely relative to their size and have uniform surface tension under shear.

Equating Stokes expression for the drag with Basset’s slip correction [4] to the

buoyancy force yields an upper limit for the terminal velocity:

Fdrag = Fbuoy (3.2.1b)

βvcream =
4πR3

D

3
(ρW − ρO)g, where β =

(1 + 2ηO/ηW
1 + 3ηO/ηW

)
6πηWRD (3.2.1c)

vcream ≈
2(ρW − ρO)gR2

D

9ηW
≈ 1 µm s−1 (3.2.1d)

where g is the acceleration due to gravity. The drag coefficient β depends on the

viscosities ηO,M of object and medium due to tangential shear at the interface, so is

effectively the familiar β = 6πηWRD for a solid bead but reduces to around 70% of

this value for spherical droplets of heptane or decane in water. Such a micron-sized

drop in a typical Gaussian trap (with 10 mW optical power) is subject to piconewton

trapping forces (see Chapter 2). It therefore has an escape velocity of:

Fdrag = Ftrap (3.2.1e)

vescape =
Ftrap
β

>
50 µm s−1

RD(µm)
(3.2.1f)

Comparing the two, conventional optical tweezers are easily able to capture micron-

sized droplets, as found at the smaller end of the range produced by manual agita-

tion.

Next, the droplets have the potential to change in size whilst they are handled.

Ostwald ripening is a diffusive net motion of monomer oil to larger droplets driven by

IFT and facilitated by the aqueous solubility of the oil (molar fraction x∞ ∼ 10−8).

The rate of disproportionation in droplet size can be expressed as [5]:

d〈RD〉
dt

=
8σx∞V

2
ODO

27kBTVW 〈RD〉2
∼ 0.01− 1 µm h−1 × σ(mN m−1) (3.2.1g)

where DO is the diffusion rate of oil monomers in water, Vi are molecular volumes,
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and kBT is the Boltzmann thermal energy. This rate is negligibly low for any micro-

scopic oil droplet in a ULIFT scenario. It would take months for Ostwald ripening

to alter the size distribution noticeably.

However, coalescence of droplets is strongly favoured at the extremes of ULIFT

(§ 1.6.3). It can be mitigated by immobilising droplets onto a surface, or for droplets

intended for optical trapping, simply by dilution.1

3.2.2 Chamber geometry and wettability

A 2 mm-deep manipulation chamber allows an experimental window of up to an

hour before the emulsion decays through creaming. Freely dispersed droplets can

be captured using optical tweezers. In this case, coalescence is postponed by dilution.

On the other hand, in a thin coverslip-spaced cell of 200 µm depth, coalescence

is avoided by allowing droplets to settle on the coverslip within minutes. Provided

that a higher dilution is used to account for the depth of the cell, the droplets form

an incomplete monolayer. They are then pinned and unlikely to coalesce. However,

for deformation experiments, they must be pulled from the coverslip using optical

tweezers. This strategy is feasible only if the glass is sufficiently hydrophilic such

that it is not wet by the oil.

Glass coverslips and slides - used to construct passive observation chambers -

were cleaned and hydrophilised using piranha solution (§ 1.5.1). Even following this

treatment, the mean contact angle of sessile droplets of aqueous AOT solution in

air on glass remained at θAWG = 25 ± 5◦, though compared well with literature [6,

7]. Use of Young’s equation [8] allows these values to be related the contact angle

of a oil droplet on glass submerged in this solution, θWOG:

1Some unexpected effects of dilution on the compositional stability of the oil droplet are dis-

cussed in § 3.6.
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cos (θWOG) =
σAO(1 + SAOG)− σAW cos (θAWG)

σOW
(3.2.1h)

where SAOG ≈ +0.1 is the spreading coefficient of oil on glass in air. At ULIFT

(i.e. σOW � σAO, σAW ), the denominator is small and the contact angle diverges

such that the submerged oil droplet either wets or non-wets completely, depending

on the aqueous affinity for the glass. A sufficient condition for droplet non-wetting

is therefore:

θAWG < arccos
( σAO
σAW (1 + SAOG)

)
≈ 30◦, (3.2.1i)

which is marginally satisfied. In practice, dynamic wetting on the glass surface

is observed as a function of emulsion age and temperature. Whilst new samples

are almost exclusively non-wetting, older emulsion samples are more likely to wet

irreversibly. This effect is poorly reproducible and is most likely due to cumulative

adsorption of hydrophobic contaminants on the glass surface; the incidence reduces

after NaOH treatment. In isolation, neither temperature nor salinity appear to

affect the disposition of droplets to wet the coverslip, though passing through a

phase inversion temperature (PIT) can induce wetting.

3.3 Microfluidics

3.3.1 Concepts and design

Manual shaking cannot produce a monodisperse emulsion; neither the distribution -

nor the environment - of the droplets are well-controlled. Sufficiently monodisperse

droplets can be created directly, without thorough sorting, by membrane emulsifica-

tion [9], in which droplets are typically separated from the porous membrane using

a synchronised actuator. Although many droplets can be created simultaneously,

the major drawbacks of this approach are that the detachment threshold and pore

size cannot be continuously adjusted in situ.

By contrast, serial microfluidics presents an efficient and rapid method for pro-

ducing specific microdroplets. The fluids are confined to channels between 10-100 µm
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diameter and pumped by automated syringes. In a well-designed system, the appa-

ratus becomes portable, very small amounts of fluid are required and the products

are highly reproducible. The channels are fabricated through photolithography (typ-

ically in polydimethylsiloxane resin, PDMS [10]) or by etching (glass [11]). Although

the generation is serial, the supported bulk flow rates are several µL min−1, yielding

droplets at rates of 1 - 50 kHz. The droplet sizes are adjustable in situ with the

flow-rate ratios.

3.3.2 Flow focusing junction (FFJ)

A flow-focusing junction is a cross-shaped intersection of channels used to shear

droplets from a microfluidic flow [12].

In the design used here (Figure 3.1), two input channels for the continuous

phase lie at right angles to the main flow axis, whilst the input channel for the

discontinuous phase opposes the output channel. The combination of relative flow

rates, capillary number and rheological properties dictate the fluid dynamics and

the resulting emulsion. Finding the conditions associated with producing a desired

emulsion is therefore another multi-parameter optimisation procedure, for which

there is no general predictive theory. However, flow at these length scales is al-

most exclusively laminar [13] due to a low Reynolds number. The simplest metric

for mapping the parameters to the flow regime is the capillary number; a rule of

thumb is that formation of droplets occurs below a critical capillary number of unity.

For conventional IFT, the flow velocity, v, can be decreased to match this con-

dition; at ULIFT, the critical capillary number is normally exceeded:

Ca =
ηWv

σOW
≈ 1 (3.3.1j)

⇒ σCOW =
QηW
πR2

A

≈ 0.1 mN m−1 (3.3.1k)

where RA is the aperture size of the junction and Q = QO +QW are the volumetric

flow rates. Breakup into individual droplets is inhibited by Marangoni flow, which

becomes stronger at ULIFT since the differences between dynamic and equilibrium
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IFTs are greater. The presence of an IFT higher than σC is necessary for droplet

detachment instead of tipstreaming [14] into a long cylinder.

Two-step procedures are available to sidestep these difficulties by producing

droplets at high IFT and only then introducing the required conditions for ULIFT.

This would normally require the addition of a component or change in environmental

conditions. In these systems, the input surfactant concentration can be lowered and

the total flow rate increased such that a higher dynamic IFT persists over the de-

tachment timescale, as demonstrated in [15]. Under these conditions the surfactant

cannot complete its adsorption to the newly-created interface - lowering its IFT-

until after the surface has already pinched off under a combined effect of viscous

shear and the Rayleigh-Plateau instability. The resulting droplets eventually relax

to an equilibrium IFT that is ultralow.

In the high-shear end of the ’dripping’ regime,[16] the droplets are marginally

smaller than the aperture size RA. For trappable droplets, an aperture size in the

range 5-15 µm is required. The droplet size scales as [15, 17]:

RD

RA

∝
(

1 +
QO

QW

)( R2
Aσ

QWηW

)1/3

, (3.3.1l)

so decreases weakly with higher flow rate of the continuous phase.
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Figure 3.1: Schematic of the Dolomite chip (top) and the channels comprising the

FFJ within (top, inset; below), of order 10 µm in diameter. The flow of the water-

rich continuous phase is split evenly between the side channels. These act to shear

droplets from the slower, oil-rich phase into a flowing emulsion.
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3.4 Materials and methods

The glass FFJs used herein (Dolomite Microfluidics) are composed of four channels,

each 135 µm in length. Each chip is supplied by 500 µm width inlet and outlet

channels coupled to tubing. This fluorinated ethylene-propylene (FEP) tubing was

used across all limbs of the microfluidic network, of 250 µm internal diameter unless

otherwise stated.

In the standard chip size (3200146), the cross-junction is R2
A = 14 µm × 17 µm;

in the smaller size (3200152) it is R2
A = 5 µm × 8 µm. Hereafter these are referred

to as 14 µm and 5 µm FFJs respectively.

A resistance thermometer (PT100A) and a 10 W Peltier cell (Ferrotec, 9508/023/

030 B) were attached to the bottom and top external walls of the chip, respectively.

The Peltier cell was driven by a proportional-integral-derivative (PID) control unit

(Omega, CN32PT-220). The Peltier cell includes a through aperture of 5 mm di-

ameter to enable optical access. The heated FFJ setup was mounted in a cus-

tom miniaturised microscope setup to follow the generation performance in situ

in brightfield. This mini-microscope was constructed from: standard 1” ThorLabs

components including pseudo-collimated LED (M660L3) illumination at 660 nm and

a 150 mm Galilean telescope supported by 30 mm cage framework; a 20×, NA 0.4

dry objective lens (Leica, 506076); and a scientific CCD camera (Imaging Source,

DMK 23F618, 640 × 480 px, 120 fps).
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Figure 3.2: A simplified schematic of the four-syringe automated system is shown

including the switch groups (coloured circles).

3.4.1 Observation Chamber (ObC)

An exploded view of the microfluidic ObC is shown in Figure 3.3. As these chips are

thin, they are easily coupled to the brightfield illumination and imaging/trapping

objective in an optical sense. Access to the upper side renders them responsive

to Peltier heating with the same precision PID control as the FFJ, in spite of the

thermal load of the objective on the underside. The PID response parameters are

optimised using an in-built simplex algorithm to give stable working ObC and FFJ

temperatures to ± 0.2 K within 10 min after selection.
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Figure 3.3: A layer-by-layer schematic view of the typical observation chamber used

in the microfluidic platform. The design allows the droplets to be heated, and

facilitates their optical manipulation and imaging.

The alkane oils used in this work, particularly heptane, cause significant swelling

of PDMS and polyisoprene syringe plungers. Therefore, use of glass in syringes and

chips is preferable. However, the ObC is rendered less fragile and more amenable to

in-house manufacture by the use of PDMS for the channel template. The internal

surfaces, particularly the nonpolar PDMS, must be hydrophilised to prevent oil wet-

ting and disrupting the intended flow profile. Plasma exposure is used to bond the

chip, but the hydrophilic surface is short-lived. Piranha solution (§ 1.5.1) is too risky

to handle under pressure, given its highly corrosive nature and evolution of oxygen

gas. Instead, the surface hydroxyl moities must be replenished by regular treatment

with hydroxide bases. The concentration and duration is limited to 0.1 M NaOH

for 30 min since glass is susceptible to caustic etching. This protocol ensures correct

channel wetting for tens of hours of operation.
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3.4.2 Pumps, syringes and flow rates

The aqueous side channels of the focusing junction must be supplied with an iden-

tical composition and flow rate to ensure the correct symmetric operation of the

FFJ. For this purpose, the aqueous flows are combined and split using passive Y-

junctions, with sufficient intervals of tubing to ensure diffusive mixing of salt. The

minimum mandatory mixing length is L = Q/4πD ≈ 0.1 m for a maximal flow rate

Q ≈ 60 µL min−1 and electrolyte diffusion coefficient D ≈ 10−9 m2s−1 [3].

All solutions were passed through 2-µm-pore PTFE filters before loading into

the syringes. Any adventitious dust particles carried by the solution risk blocking

the FFJ chip, particularly the smaller size. Stainless steel frits (1 µm pore size) were

introduced in the Y-junctions to prevent dust accumulating within the FFJ.

Four-syringe configuration

Use of four syringes affords full control of the aqueous composition and allows the

AOT and saline solutions, S1, S2, to be stored in isolation. The location in concen-

tration space is described in units of mM by:

C =
[
S1, S2, [AOT ]

]
,

whereas the flow rate parameter space is described in units of µL min−1 by:

Q =
[
QS1, QS2, QAOT , QOil

]
.

Four stepper-motor pumps (World Precision Instruments, Aladdin 2-220) were

loaded with glass syringes (Hamilton, Gastight). Volumes included 100 µL, 250 µL

and 1 mL. The syringes were connected to the platform with Luer-Lock and 1/4”

28-UNF threads.

To avoid low (and therefore imprecise) individual pump flow rates, the total flow

rate for continuous phase was divided as evenly as possible across the three relevant

pumps. Thus, the concentrations of the loaded solutions were higher by a factor of

roughly 3 corresponding to the subsequent dilution under mixing.
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Two syringes were loaded with saline whose output concentrations bounded the

optimal salinity (as defined in § 1.4) for ULIFT with a range of at least ±10%.

As for the handshaken method, the salinity values were chosen to suit the working

temperature in the ObC for best ULIFT at the point of deformation.

For heptane/H2O/AOT/NaCl experiments at a working temperature of 30 ◦C,

the optimal salinity would be S∗(30 ◦C) ∼ 60 mM NaCl and so the input concentra-

tions would be required to average to S∗/(2/3) = 90 mM. The saline syringes could

therefore be filled with 80 mM and 100 mM respectively. For the same conditions

using D2O, the salinity range would be 50 mM and 70 mM for tuning around 40 mM

output. The desired output AOT concentration is almost invariably 2 mM, so the

input syringe concentration is [AOT ]/(1/3) = 6 mM.

3.4.3 Valves and automation

In the final iteration of the microfluidic platform, the manual switches were replaced

with solenoid isolation valves (Kinesis) of the kind commonly used in commercial

chromatographs. The supporting electronics were designed to deliver the 5.5 V re-

quired for solenoid switching, yet hold at 2.6 V. Ohmic losses in the solenoid archi-

tecture cause a local increase in temperature of ∆T = 0.4 K V−2 × (2.6 V)2 ≈ 3 K

above ambient. The heating of the emulsion in transit necessitates a further increase

in the salinity to ensure the working PIT is not reached until the ObC.

The valves were activated from a power supply via a mbed microprocessor that

controls a set of 8 relay switches. The mbed firmware was reconfigurable in a C++

based proprietary development language. The eight relays required the switches to

be arranged into groups (see logic table, Table 3.1). Within each, the switches were

connected in parallel to supply a uniform control voltage. The microprocessor was

sent RS232-type commands via USB serial port, whilst the graphical user interface

(GUI) was written in wxpython module of the Python programming language (see

Figure 3.7).

This interface permitted remote setting of flow rates and infusion/aspiration

for the individual pumps, as well as the opening/closing of each group of valves.
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The 26 switch valves in the system are connected logically in terms of which are

active/inactive simultaneously, as shown in Table 3.1. The length of illumination

and exposure of the FFJ were also synchronised using this script, allowing both

internally-triggered and stroboscopic video images of the droplets to be acquired.

The typical illumination time was 1-10 µs within a shutter speed of 50 ms.

The channel velocity vflow is even lower through valves with excess internal

volume. For intersections between upward- and horizonally-oriented paths, the resi-

dence time is sufficiently long to allow buoyant separation of the droplets according

to their size, scaling as vflow ∼ 1/R3
T , where RT is the tube or channel radius.

Larger droplets are retarded and build up at these locations, being released only

periodically. The platform design avoids vertical features where possible.

3.5 Emulsion results

The flow rates were set to a standard of
[
7.0, 7.0, 7.0, 0.0

]
and allowed to stabilise

for a minimum of 10 min before measurements.

Tipstreaming occurred on applying a significant oil flow, QO = 5.0 µL min−1.

Reducing the oil flow rate caused the breakup point of the oil jet to retract closer

to the focusing junction, approaching the dripping state at 3.5 µL min−1. At this

point the flow rate ratio was QW/QO = 6. At constant drop and channel sizes, the

minimum flow rate ratio for breakup varies as QW/QO ≈ (ηW/ηO)2 ≈ 5 [18].

Under brightfield, the droplets appeared qualitatively monodisperse around 15 µm

in diameter. The downstream region was cluttered with droplets decelerating as

the channel expanded. As the oil flow was further reduced, discrete transitions

were observed between dynamic packing states of the droplets (see Figure 3.4). At

QO = 0.4 µL min−1, or a flow rate ratio of QW/QO ≈ 50, droplets were generated

in single-file. As expected from Equation (3.3.1l), the typical droplet size reduced

slightly with greater flow rate ratio.
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Figure 3.4: Stability of droplet generation in the 14 µm FFJ with standard

[7.0, 7.0, 7.0, QO] µL min−1 aqueous flow rates and varying oil flow rates

QO = 0.4, 0.5, 0.6, 0.7, 0.8 (upper set) and 1.0, 1.5, 2.0, 2.5, 3.5 µL min−1 (lower set).

First row : single raw frame of FFJ output channel showing motion-blurred droplet

stream, second row : the pixel-wise median of frames over 5 s, and third row : the

pixel-wise standard deviation of frames over 5 s, representing the temporal fluctua-

tions. As the flow rate decreases, mean droplet size decreases. Discrete transitions

occur from crowded droplets towards single file, strongly influenced by flow rate

fluctuations. Upper set, scale bar 50 µm; lower set, scale bar 100 µm.
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3.5.1 Flow rate fluctuations vs. hydraulic elasticity

The flow rate stability at these low values is limited by pump vibrations. The tem-

poral Fourier spectrum of the density of generated droplets correlates well with the

binary harmonics of the stepper motor frequency. As a result, there is a minimum

acceptable bore speed. The bore speed depends strongly on the syringe volume; at

first syringes of 5 mL volume were employed for the water channels and 1 mL for

the oil. The glass syringes are each of 60 mm internal length. The bore speed at a

given flow rate is therefore inversely proportional to the total syringe volume. Thus,

smaller syringes of 100 µL volume were installed to avoid flow fluctuations.

However, the bore speed is related to the syringe refill frequency. By increas-

ing the bore speed to combat jitter, a compromise was made on the length of time

before the flow had to be interrupted to refill the syringes. The smaller 100 µL bar-

rels require refilling at 15 min intervals at typical flow-rates of operation totalling

QW/3 = 7 µL min−1. Refilling from attached reservoirs is done at maximum bore

speed, ∼ ×10 operation rates, such that an automated cycle takes around 2 min.

Overall, this equates to 2 minutes’ refilling for every 15 min of operation. Each

valve encompasses 50 µL of dead volume, a considerable fraction of the syringe and

chip capacities. Consequently, the flow is not simply arrested on switching, but

impulsed (and even reversed) by the displacement of liquid. These events disturb

the wetting of the FFJ channels and project emulsion droplets backwards into the

input channels. The channels must then be cleared through (for 20 s at maximal

flow rates, ∼ 60 µL min−1) to recover a controlled tipstreaming regime, from which

the rate is again reduced incrementally to generate droplets.

Around QO = 0.3 µL min−1, the interface retreated from the junction under

fluctuations and water began to backflow into the oil channel. Yet, the oil path

is closed; the backflow must be accommodated by elasticity of the tubing, which

provides a hydrodynamic compliance, C, that depends on the Young’s modulus Y

and radius RT of the tubing. The profile-averaged flow dynamics are governed by
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the equations [19]:

Q(t) =
∆p

r
+ C

d∆p

dt
(3.5.1m)

r =

∫
8η

πR4
T

dL (3.5.1n)

C =

∫
2πR2

T

Y
dL (3.5.1o)

If backflow occurs, the oil path (rO, CO) does not necessarily have lower hy-

drodynamic resistance than the output emulsion path (rE, CE), but the maximum

flow-rate ratio that is entirely stable against oscillatory backflow is dictated by the

ratio of resistances:

(QW

QO

)
max

=
rO
rE
− 1 ≈

∫
O
R−4
T dL∫

E
R−4
T dL

(3.5.1p)

Though the stiffer glass syringes are preferred to plastic ones due to faster relaxation,

the syringe, being of much larger radius than the tubing, makes only a small contri-

bution to the stability expression. It is dominated by the stiffest, smallest apertures

in the channel. By adding 1 µm-pore steel frits to the oil path, the resistance rO of

the channel to unwanted backflows was increased by two orders of magnitude. The

generation was then stable beyond QO = 0.03 µL min−1 or QW/QO ≈ 700. In the

ObC, there was no evidence of sub-micron satellite droplets 2. The invisibility re-

sults from a small population of poorly resolvable particles, with significant buoyant

filtering in the tubing network. The monodisperse primary droplets thus produced

were no smaller than RD = 5.7± 0.3µm.

2GB reported that these were typically generated around 2 µm diameter alongside the primary

droplets.
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Figure 3.5: Examples of brightfield image and droplet size distribution of emulsions

produced by a) manual agitation (imaged in ObC), or using the b) 14 µm FFJ chip

(imaged in ObC) or c) 5 µm FFJ chip (imaged in FFJ). All scale bars 20 µm.

For the input channels carrying continuous phase, using tubing of wider inter-

nal radius RT = 600 µm until the first mixing junction reduces the resistance that

the pumps must cope with (or equivalently the pressure applied) for a given flow

rate. The elasticity significantly increases as the tubing walls are thinner, so the

characteristic settling time τrC = rC remains on the order of 5 min. The droplet
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generation is not noticeably affected.

Although these emulsion droplets can be manipulated in the bulk using opti-

cal tweezers (see Chapter 2), they are unwieldy and prone to escape; at the size

RD ∼ 7 µm, the buoyancy and viscous drag (at small speeds ∼ µm s−1) approach

the typical escape force, ∼ 10 pN, of the traps available to us.

As the minimum droplet size is dictated by the geometry, the FFJ channel size

was reduced to 5 × 8 µm. The collaboration successfully generated RD ∼ 4 µm

droplets in H2O at a ratio QW/QO ≈ 100 in a non-automated system, Figure 3.5.

However, this was difficult to reproduce since the 5 µm chip was blocked by debris

frequently, and irretrievably so. Frits combined with degassing membranes under

vacuum (§ 3.5.3) could improve the performance, though at further expense of the

responsiveness of the system.

3.5.2 PIT-induced polydispersity of generated emulsions

Hashimoto et al. showed that spatial confinement incites shear-driven instabilities

on ULIFT droplets, jeopardising the dispersity of the emulsion [20]. Once droplets

relax to an equilibrium ULIFT, they become similarly vulnerable to scission as

they travel towards and within the ObC. The contents of the tubing become milky

in appearance as the emulsion becomes increasingly polydisperse.

The net flow velocity vflow = Q/πR2
T is sufficiently low as to be laminar at all

points in the network, so the velocity profile across each channel will resemble the

parabolic ideal. The maximum shear rate across a droplet is therefore dv/dR =

2Q/πR3
T . This value can be compared to the critical shear rate (dv/dR)∗ = σ/ηO,

corresponding to a capillary number of ηW/ηO, at which viscous shear overcomes

the interfacial forces maintaining the integrity of the droplet. Therefore a IFT limit

exists, of order:

σshearOW =
2QηO
πR3

T

≈ 10 µN m−1, (3.5.1q)

below which droplets break up and recombine spontaneously in the tubing. The
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IFT can fall below this threshold near the phase inversion temperature (PIT), which

must therefore be set significantly higher than the temperature of the droplets in

transit, i.e. the ambient temperature of 18 − 23 ◦ C. The high specific area of the

tubing renders heating in transit impractical. Instead, a high salinity was used and

the Peltier voltage across the ObC was adjusted to obtain the desired deformability

of droplets in view.

It was tempting to use the more capacious tubing after the FFJ to reduce the

shear stresses on droplets (scaling as ∼ 1/R3
T ), but droplets take an untenably long

time to traverse between the FFJ and ObC; the responsiveness of the system is

reduced.

3.5.3 Full platform design and switch logic

To describe a working design in sufficient detail that it can be reproduced, three sets

of information are required. First, the flow network patterns or modes are defined

corresponding to specific purposes, such as generating droplets and passing them

into the ObC. Second, a picture is given of the fully integrated network of compo-

nents and switches. Last, control logic that realises these different flow modes in

the automated network is tabulated.

Let the flow modes be defined as follows:

1. Shutdown: for sealing all switches to secure the network against evaporation

and contamination when not in use,

2. Operate: for supplying solvents to the FFJ such that monodisperse droplets

are generated and passed into the ObC,

3. Bypass : as for Operate except that the ObC is isolated, such that droplets may

be imaged and manipulated without external flow, yet leaving the generation

undisturbed,

4. Manual : for the purposes of automation, this presents an override mode for
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arbitrary control of individual switch groups,

5. Vacuum: for depressurising the fluoropolymer membranes, where used, so that

inline degassing of solvents may resume,

6. Refill : for replenishing the syringes from reservoirs so that operation may

resume,

7. Purge: for emptying the syringe and the network of stored liquid in case of

spoilage or replacement,

8. Rinse: for cleaning and hydrophilising the network including the FFJ and/or

ObC with dilute NaOH.

The integration of a vacuum system (untested) and purging pathways are de-

tailed in the full circuit diagram, Figure 3.6.

Mode

Valve Group Shutdown Operate Bypass Vacuum Refill Purge Rinse

L1/H1/S1/O1 ∧ L2/H2/S2/O2 0 0 0 - 1 0 0

L3/H3/S3/O3 0 1 1 - 0 1 1

L4/H4/S4/O4 ∧ R1/R2/R3 0 0 0 - 0 1 1

L5/H5/S5/O5 ∧ L6/H6/S6/O6 0 1 1 - 1 0 0

C1/C2 ¬ B1/B2 0 1 0 - 0 0 1

V1 0 1 1 0 1 1 1

V2 0 0 0 1 0 0 0

W 0 1 1 - 0 1 1

Table 3.1: A logic table for the full platform design, describing which groups of

valves must be open (1), closed (0) or unconstrained (-) to obtain the desired mode,

or set of network functions. Where the platform is automated, in Manual mode all

the valves are unconstrained. Each valve group corresponds to one of the 8 relay

switches controlled by the mbed microprocessor. The valves related by AND (/,∧)

logic are connected in series to the NORMALLY OPEN terminal, whilst those related by

NOT (¬) are connected in series to the NORMALLY CLOSED terminal.



3.5 Emulsion results 118

Figure 3.6: The unabridged microfluidic platform, capable of all defined flow modes.

Each switching valve e.g. R3 is encircled with the colour of its logic group. Other

components A-Z are indexed in the Legend. The colours of each line reflect the

fluid carried: aqueous (blue), oil (red), emulsion (dashed purple), waste aq. (green),

waste oil (orange), waste emulsion (pink), alkaline rinse (lilac) and an evacuated

atmosphere (grey).
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Legend

A. Glass syringe for delivery of microfluidic solvent,

B. Three-way junction formed from two valves with a common input (in this case,

valves L2 and L3 and the syringe port respectively),

C. Inline filter, PTFE 5 µm,

D. Saline reservoir, lower bound concentration; 50 mL airtight flask, to Refill syringe,

E. Two-way junction - a single valve to prevent evaporation/contamination of reservoir,

F. Air intake to equalise pressure in reservoir,

G. Purge line direct to waste,

H. Saline reservoir, upper bound concentration,

I. Aqueous surfactant solution reservoir,

J. Oil reservoir,

K. Inline de-gassing unit,

L. Vacuum syringe, 10 mL,

M. Gas purge outlet for Vacuum cycle,

N. Passive Y-junction for mixing of salines at a ratio equal to that of flow rates,

O. Passive Y-junction for mixing of surfactant solution and combined saline,

P. Length of tubing to ensure the continuous phase is completely mixed under diffusion,

Q. Passive Y-junction to split continuous phase equally into FFJ side channels,

R. Input channel for alkaline rinse,

S. Flow focusing junction (FFJ),

T. Observation chamber (ObC),

U. Channel to Bypass the ObC directly to waste,

V. NaOH syringe for Rinse cycle through operating lines,

W. Cleaning output for Rinse cycle, with flow reversed through oil channel in FFJ,

X. Waste emulsion line,

Y. Waste reservoir,

Z. Air pipe to equalise waste pressure to ambient.
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Figure 3.7: A user interface coded via serial microcontroller for activating logic

groups of microfluidic switches, syringe pumps (flow rates in µL min−1) and the

FFJ mini-microscope (exposure in µs), see § 3.4.

3.6 Phenomenology without laser intervention

The initial work of Woods et al. was undertaken in the framework of oil and water

being mutually exclusive, self-contained phases whose composition is time-invariant

[21]. The assumption of oil droplet/water continuum mutual exclusivity is weak, as

the phases are those of Winsor microemulsions. Invariance of composition is also

violated significantly in the vicinity of the PIT. The results presented in this thesis,

both below and in Chapter 4 attempt to tackle the transient phenomena of droplet

shrinkage, bursting and degradation that do not occur in conventional emulsions.

Moreover, these unusual behaviours appear not only on the initial mixing of the oil

and aqueous solutions, but also on changes in temperature several hours afterwards.

Below the cµc, the oil and water behave as regular micellar solutions, with cmc

levels of unimer surfactant. The portion of surfactant that exceeds the requirement

for a concentration of cµc in each phase will eventually draw oil and water into a

surfactant-rich microemulsion phase. Which phase this is depends on the preferred

Winsor equilibrium; that is to say, on the value of H0. As a result, the equilibrium
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compositions follow changes in H0. The emergence of non-equilibrium processes

associated with mass transport depends on the rate of these changes.

The emulsion behaviour is hysteretic and asymmetric with respect to the PIT,

since water is in excess. On rapid heating across the PIT, droplets of heptane may

burst. As the transition occurs, the droplet is destabilised in two ways. First, the

affinity of AOT aggregates for water increases dramatically. This causes a spike in

outwards osmotic pressure for reverse micelles present in the relatively surfactant-

rich oil droplet, which is relieved by diffusion of the aggregated surfactant across the

droplet interface. If the transition occurs faster than the diffusion can respond, the

osmotic pressure can overcome the inwards Laplace pressure. The water-solubilising

regions in the droplet will coalesce rapidly [22] and the droplet will fragment in a

violent manner. This condition can be written explicitly:

2σOW
RD

<
NAkBT

Dγ

R2
D∆γW

∆TWIII

dT

dt
. (3.6.1r)

where Dγ is the diffusion coefficient of the aggregates, ∆γW is the difference in

equilibrium aggregate concentrations in the aqueous phase either side of the transi-

tion, and ∆TWIII is the temperature range in which the middle phase exists. Larger

droplets burst preferentially, as expected from their lower Laplace pressure.

Second, the solubilisation capacity of water in oil decreases. Where water has

been solubilised into the oil droplet as w/o, it will nucleate rapidly, precipitating a

catastrophic phase inversion to o/w. The total droplet volume is difficult to esti-

mate from brightfield images, but appears to decrease as a result of bursting. This

indicates the loss of solubilised water and some oil to the continuous phase.

Bursting occurs more readily at low Ω < 20 where droplets congregate. At this

water-oil ratio, the initial uptake of AOT into oil reduces its concentration in wa-

ter noticeably, thus exacerbating the change on heating. For a 5 µm droplet at

0.1 µN m−1, a deficit of only 1% of the AOT content is predicted to cause bursting.

A similar catastrophic bursting effect is caused by exposure to air, where the oil
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evaporates rapidly until the w/o volume fraction exceeds a critical value for phase

inversion. The global compositions favouring bursting of droplets far from equi-

librium are also those which tend towards three-phases at equilibrium, where the

surfactant-oil ratio is highest. (Figure 3.8).

In the opposite sequence of cooling towards the PIT, the droplets shrink by

losing oil to o/w solubilisation in the continuous phase. The rate of this effect was

measured with control for a similar, more spatially-dependent effect from absorption

of alkanes into PDMS walls of the ObC. The rate of solubilisation-related shrinking,

typically 0.1-1 µm min−1, increases with proximity to the upper side of the PIT. In

contrast to bursting, shrinking accelerates with increasing Ω > 100, as the newly-

introduced continuous phase can solubilise additional oil.

The microscopic results can be mapped onto the global formulation space with

Ω and γ as working variables. This representation transforms the quasi-ternary ba-

sis (oil, brine, surfactant) of the compositional phase diagram to an experimentally

meaningful format (Figure 3.8).

The margins of compositional change necessary for a observable difference in

ULIFT behaviour are exceptionally small. Droplets in the same 100 µm field of

view can exhibit PITs as widely spaced as 2 K, such that one population is rigid

and the other severely deformed under thermal fluctuations. In the three-phase re-

gion, bimodal behaviour is expected, as ideally some droplets will be formed from

middle phase and the remainder from excess oil. Much like droplet size, the lo-

cal droplet composition is more broadly distributed with manual production than

the microfluidic alternative. Although the droplet composition is coupled to the

refractive contrast, it is also coupled to the interfacial tension. Thus, there are no

high-contrast soft droplets and no low-contrast stiff droplets; the droplets reside on

a single spectrum of deformability (Table 3.2).



3.6 Phenomenology without laser intervention 123

Cat. A B C D

A
p

p
earan

ce

Smooth,

spherical

Smooth,

spherical, slight

shimmering

Amorphous,

sphere-like.

Visible capillary

waves.

Other, often spherical

or myeloid. Cloudy

inclusions, poor

fluorescence.

C
on

trast

High Fair Minimal Fair/High

T
rap

p
in

g

Good (behaves

like bead)

Good Poor Fair, often

immobilised

D
eform

ab
ility

Inert, none

detected:

σ > 50 µN m−1

Fair, prolate

shapes evident:

σ = 1− 10 µN m−1

Malleable, but

local to trap site:

σ < 1 µN m−1

Flexible, trappable

appendages (constant

surface area)

T
h

read
s

None Rare Occasional None. Thin myeloids

mimic threads without

tension, see Chapter 4

Table 3.2: Oily droplets in microemulsion-forming mixtures fall into four

composition-related categories A-D by behaviour and appearance. Images are of

droplets roughly 5 µm in diameter.
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Figure 3.8: Phase diagram for χ = 1 (in the proximity of the optimal salin-

ity/temperature combination HLD ∼ 0) mapped onto the experimental space; here

the important parameters are the initial aqueous AOT concentration (scaling as

∼ γ/Ω) and the aqueous solution-oil volume ratio Ω. Logarithmic scales are used

to highlight the low concentration used.
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Oily droplets can be categorised qualitatively into four groups (Table 3.2), since

properties such as deformability and reduced contrast are strongly correlated. The

preferred candidate for the deformation experiment lies between categories B and C,

where a droplet is highly deformable but still appears self-contained and homoge-

nous. Droplets of different categories may coexist or interconvert both over time

(non-equilibrium) and as a function of temperature and salinity (equilibrium). The

conversion of a droplet between deformability categories is reversible except for the

transition from C to D, in which bilayers are produced.

3.7 Droplet behaviour under IFT gradients

Since salinity is independent of environmental conditions, it makes an attractive

choice for tuning interfacial tension in-situ. In the optical deformation experiments,

the entire sample is replaced by serial inline generation (Chapter 3) of new droplets

at the variable source salinity. Alternatively, adjustments in salinity can be made

quickly by simple flushing of an open-channel observation chamber with the intended

concentration, but this has the unwanted effect of diluting the oil droplets. Nonethe-

less, a closed channel is stagnant and droplets within will not be diluted, even in

contact with a flow that introduces additional salt by diffusion. In this section a

modified ObC is used with a closed channel (Figure 3.9) and the behaviour of static

droplets is tracked in a time-dependent salinity gradient.

3.7.1 Materials and methods

NaCl and AOT concentrations of [39.0, 49.0, 8.0] (see § 3.4.2 for definition) are used

together with the 14 µm Dolomite FFJ. Droplets are first generated at 11.3 µm

diameter at the lowest salinity [10, 0, 6, 0.1] and allow to stabilise for 3 min. The

channel is then closed and fluid is introduced at a higher salinity S∞ with no further

droplets. This salt concentration exceeds that required for deformable droplets, S∗

(§ 1.4). Droplets are flushed away everywhere but a small area near the inlet from

the FFJ. A salinity gradient develops, such that optimal conditions for ULIFT form

in a narrow front (travelling from left to right in Figure 3.10).
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Figure 3.9: A schematic of the modified ObC used to expose droplets to a salinity

gradient. Droplets are generated by FFJ in a low-salinity medium and the ObC is

filled. The valve is then switched, with some droplets remaining in the stagnant long

channel. The experiment begins at the moment a high-salinity medium is introduced

as a continuous flow, such that the local salinity increases via diffusion from the salt

junction.

As droplets in a salinity gradient are not equilibrated, there is no steady-state

reference for their deformability. However, the IFT of the surfactant system (AOT

in H2O/NaCl) can be inferred from the ambient temperature of 21.6 ◦C, whose op-

timal salinity is S∗ = 43.7 mM NaCl. At flow parameters [0.74, 1.26, 0.6, 0] the

infused saline is S∞ = 45.3 mM and the corresponding PIT is about 21.9 ◦C.

When the otherwise-invisible front passes through the first droplets at the junc-

tion, each droplet varies between rigid and deformable states (Table 3.2) on the order

of tenths of Hz, subsiding over a few minutes. Neither salinity nor temperature can

fluctuate locally under diffusion from a constant source of salt and heat. Instead, the

oscillation could come from fluctuations in advective flow following the initial pres-

sure spike (§ 3.5.1). After this time, the front settles into monotonic one-dimensional

diffusion and decelerates accordingly as shown in Figure 3.10. When droplets first
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meet the front and become deformable they also begin to microemulsify, losing oily

material to the continuous phase. Spontaneous emulsification continues even behind

the front where salinity is high and droplets become less deformable. This reflects

the tendency for oil to be solubilised in normal micelles at salinity higher than op-

timal.

It is important to gauge whether there is a delay between the expected arrival

time of diffusing salt and the onset of deformability. The frontier of salt concentra-

tion S∗ is expected to reach the droplets at a displacement x from the junction after

a time τ ∗:

τ ∗ =
x2

2DNaCl

(
1 + erf−1

(
1− S∗ − S0

S∞ − S0

))−2

≈ 3 ms × (x/µm)2 (3.7.1s)

where the diffusion coefficient of NaCl in water is D ≈ 2 × 10−9 m2s−1. For

widely-spaced droplets, the wave of deformation took 150 s to traverse the 150 µm

field of view, centred roughly 300 µm from the junction. The expected time is

230 ± 60 s which is of the correct order. However, the delay increases to tens of

minutes when droplets are tightly packed in clusters of 10 deep even adjacent to the

junction. Droplets leaving such a cluster become deformable within seconds.

Given the small length scales within the droplets and clusters, very low diffusion

coefficients would be required to explain this slow response. It may be that here

the kinetics are limited not by transfer of individual molecules, but of much larger

oil or water domains associated with a microemulsion, which have the appropriate

D ∼ 10−13 m2s−1.
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Figure 3.10: Emulsion droplets displaying transient ULIFT in a diffusive salinity

gradient, with higher salinity introduced from left of field-of-view. Salinity and

deformability are shown schematically as a function of position along the channel.

Each descending row corresponds to a timestep circa 20 s. Scale bar is 20 µm.
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Glossary

Symbol Definition Unit

β Drag coefficient N s m−1

C Hydrodynamic compliance to flow N s2 m−3

Ca Capillary number -

cmc Critical micellar concentration M

cµc Critical microemulsion concentration M

DO,γ Diffusion coefficient, e.g. oil or surfactant m2 s−1

FEP Fluoro ethylene-propylene (tubing)

FFJ Flow-focusing junction

f Dispersion frequency s−1

H0 Spontaneous curvature m−1

L Dispersion amplitude m

NA Avogadro’s constant mol−1

NaOH aqueous sodium hydroxide

ObC Observation chamber

∆p Pressure drop along channel N m−2

PDMS poly-dimethylsiloxane resin

PID Proportional-integral-derivative controller

PIT Phase inversion temperature ◦C

QO,W Volumetric flow rate, of oil or water m3 s−1

r Hydrodynamic resistance to flow N s m−4

RA Effective aperture radius m

RD Droplet radius m

RT Tubing radius m

Re Reynolds number

S, S∗, St Aqueous salinity, optimal, at time t M

SAOG Spreading coefficient, of oil on glass in air -

T,∆T Temperature, variability ◦C, K

∆TWIII Temperature range of Winsor III equilibrium K

VO,W Molecular volume of oil, water m3

v Velocity (flow, creaming) m s−1
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x Displacement in channel m

x∞ Mole fraction solubility of water in oil -

η Viscosity N s m−2

γ Surfactant bulk concentration M or % wt.

ρ Density or specific gravity kg m−3

χ Fraction of ionic surfactant in total surfactant -

σOW Interfacial tension, between oil and water N m−1

σC Critical interfacial tension for breakup N m−1

θAWG Contact angle, of water on glass under air deg◦

τrC Hydrodynamic settling time s

Ω Volumetric water-to-oil ratio -
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Chapter 4

Microemulsion transitions in

optical tweezers

4.1 Introduction

During the deformation experiments on the microemulsion-forming mixture of brine,

heptane and the anionic surfactant, AOT, it was observed that irradiated droplets

exhibited unexpected dynamics; these included the nucleation of new phases, catas-

trophic phase inversion and spontaneous formation of vesicles. A more detailed

study was carried out to determine the effect of focused lasers both on single mi-

croemulsion phases and on droplets of microemulsions in an excess phase, the results

of which are reported here.

The quaternary system of water, salt, alkane and anionic surfactant has a phase

diagram and interfacial tensions that are highly temperature-sensitive. Since optical

tweezers heat water (owing to the weak absorption by water of the near-IR wave-

lengths typically used for trapping), this study was carried out with the so-called

temperature-insensitive’ microemulsion containing a mixture of an anionic and a

non-ionic surfactant with oil and brine. It is the specific mixture of surfactants

which suppresses the temperature dependence of the monolayer curvature [1] that

governs observable microemulsion properties. Consequently, these quinary systems

form a three-phase (Winsor III) microemulsion over a wide temperature range.

132
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Despite the temperature insensitivity of the macroscopic phase diagram, such mi-

croemulsions still show rich dynamics when locally perturbed by focused IR lasers.

The macroscopic phase behaviour of the temperature-insensitive emulsions is de-

scribed, before discussing the effects of a focused laser beam on a continuous sample

of the middle phase. Use of D2O to mitigate laser heating allows the partial decou-

pling of thermal and optical effects. Finally, focused IR lasers are used to irradiate

droplets of oleic or middle phase suspended in the excess aqueous phase.

4.1.1 Temperature-insensitive microemulsions

If the interface’s spontaneous curvature H0 is insensitive to changes in temperature,

both the phase behaviour and IFT are also expected to be temperature-insensitive.

In practice, this condition is achieved using a mixture of a nonionic and an ionic

surfactant as the amphiphilic component. An electrolyte, NaCl, is added to control

the ionic contribution to the preferred curvature.

The quinary composition is specified by four parameters - χ, γ, S,Ω - in terms

of each component’s weight fraction m, density ρ and molar mass M :

1. the volumetric water-oil ratio, Ω = mAq/mOil · ρOil/ρAq;

2. the total amphiphile concentration, γ = (mI+mNI)/(Σm), expressed either as

weight fraction in total (dimensionless percentage), or as a molar concentration

in water prior to mixing (units of mM);

3. the amphiphilic ratio, or the weight fraction of ionic surfactant in the am-

phiphilic mixture, χ = mI/(mI +mNI);

4. the molar concentration of NaCl in water prior to mixing, assuming a saline

density of 1 kg m−3, or salinity, S = (mNaCl/mAq) · (ρAq/MNaCl).

At a unique value, denoted χ∗, the curvature of the mixed monolayer exhibits

the desired low sensitivity to temperature, i.e. ∂H0/∂T = 0. As ionic surfac-

tant is present, the ionic strength alters (decreases) H0 almost independently of

temperature. The particular salinity at which H0 = 0 for a given χ is denoted

S∗(χ). The ideal formulation for temperature-insensitive ULIFT is therefore an



4.2 Experimental 134

amphiphilic ratio of χ∗ and a salinity of S∗(χ∗), abbreviated S∗∗. The quinary sys-

tems AOT/C12E5/n-heptane/NaCl-brine, AOT/Brij-L4/n-decane/NaCl-brine and

AOT/C12E4/n-decane/NaCl-brine are used in this work.

4.2 Experimental

4.2.1 Optical setup and laser heating

All tweezing experiments were performed on Setup A (§ 2.4.1) at 22 ± 2 ◦C am-

bient. At very high source powers > 0.5 W, air bubbles nucleated in the immersion

fluid and were thermally trapped in the field of view. Bubbles form since the solu-

bility of air in liquids decreases with increasing T . Bubble formation was eliminated

by replacing the fluorocarbon coupling fluid with water, for which the thermal vari-

ation of gas solubility is less.

The tightly focused laser also causes localised heating of the sample. The in-

crease in temperature, ∆T , is proportional to the optical power P . At fixed power,

the temperature increase and distribution are determined by the optical intensity

distribution, together with the optical absorption and thermal characteristics of the

fluid sample and its enclosing substrates (§ 4.7). For a high numerical aperture

at λ = 1064 nm, laser heating of the order 20 K W−1 is typical in water, while

in D2O there is an order of magnitude less heating. The maximum temperature

rise predicted in the experiments reported here is 5 K in water. For middle-phase

microemulsions, the water and oil solubilisations are roughly equal; the heating is

expected to be close to the average of the bulk phases (see § 4.7).

4.2.2 Formulations

The AOT (sodium bis(2-ethylhexyl)sulfosuccinate, 96%, Acros Organics), Brij-L4

and C12E4/5 (dodecyl tetra/pentaethyleneglycol ethers, 98%, Sigma-Aldrich), NaCl

(AR grade, Fisher) and D2O (Cambridge Isotope Labs.) were all used as received.
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UHP H2O was obtained from a MilliPore unit (MilliQ). The oils n-decane and

n-heptane (99% and 99.5%, Fisher) were purified through silica under N2.

Figure 4.1: Sequences to prepare trappable emulsion droplets of either: non-

equilibrated oil (as used in [2]), equilibrated oil or middle phase.

Non-equilibrated samples:

Aqueous stocks of NaCl, AOT and nonionic surfactant were mixed and heated to

60 ◦C for 30 min, to inhibit the production of vesicles. Acid/base ester hydrolysis was

avoided by maintaining 5.5 < pH < 7.5. AOT is known to form (oil-free) vesicles on

dissolution [3], particularly in mutual conditions of moderate salinity > 100 mM and

AOT > 10 mM. A minority of alkane or middle-phase was added to 5 mL aqueous

solution of γW = 2 mM or <0.1 % in a volume ratio Ω = 400. This mixture was

agitated manually to form a polydisperse emulsion of oil/water. A gentle inversion of
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the phial suffices to shear droplets to the 1–10 µm size needed for optical tweezing.

The emulsion sample was introduced immediately to the microscope chamber to

capture transient behaviour within 100 s of mixing (see Figure 4.1, upper).

Equilibrated samples:

Each composition forming three-phase equilibrium (S ≈ S∗), γ � cµc, typically

γ = 1%) was allowed to resolve into layers after mixing. Separation took place in

15 mL centrifuge tubes (for formulation scans) or a 100 mL separation funnel (for

microscopy samples) for 1 week at 18 ± 2 ◦C, after which no change in phase volumes

was detected. Isolation of each of the three phases in the funnel was confirmed by

the persistence of optical clarity on agitation. Where desired, a minority of excess

oil or middle-phase was then reintroduced to 5 mL of the excess water phase in a

volume ratio Ω′ = 400. This mixture was agitated manually to form a polydisperse

emulsion. A gentle inversion of the phial suffices to shear droplets to the 1 - 10 µm

size needed for optical tweezing (see Figure 4.1, lower).

For temperature insensitivity studies, decane compositions at χ = 0.66 across

120 mm < S < 220 mM, varying from WI - WIII - WII were included. For samples at

temperatures of 20 - 60 ◦C, incomplete creaming/sedimentation altered the measured

phase volumes. These volumetric errors were independent of temperature, and were

mitigated by centrifugation at 2 kG.

4.3 Macroscopic phase behaviour

For the heptane/C12E5 system, χ∗H = 0.62±0.02 [4] and for the decane/C12E4 system

χ∗D = 0.66±0.02 [5] are reported. The substitution of Brij-L4 for C12E4 does not al-

ter χ∗D = 0.66 (see below). The value of S∗∗ was determined with simple observations

associated with minimum IFT: either (i) a maximum in coalescence rate [6] (resolu-

tion of layers after agitation), or more quantitatively, (ii) equal solubilisation volumes

independent of γ [7]. It was found that S∗∗H = 120± 7 mm and S∗∗D = 190± 10 mm

respectively; the latter resembles the value of S∗∗D = 170± 10 mm determined simi-

larly for pure C12E4. Even though the optimal salinity of the temperature-sensitive
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AOT system, χ = 1, T = 25 ◦C, decreases from 45 mm to 30 mm on water deutera-

tion, the optimal conditions S∗∗, χ∗ of the H2O and D2O T -insensitive systems are

indistinguishable.

The apparent phase volume fractions of Winsor equilibria at χ = χ∗, S =

S∗∗,Ω = 1 remained constant within error (<5% variation) over the temperature

range 20 ◦C – 90 ◦C after thermal equilibration within ± 1 ◦C for 1 h in a water

bath. This volumetric temperature sensitivity (∂V/∂T ) is an order of magnitude

lower than for the Winsor III range of 10 ◦C – 75 ◦C reported [8] for the decane/C12E4

system at χ = 0.60± 0.01. χ was reproducible to a precision of ±0.02.

4.4 Microscopic behaviour of isolated phases

under optical tweezing

4.4.1 Microdroplets of oleic in aqueous phase

In this section, phases that are separated manually from the three-phase equilib-

ria (according to § 4.2.2) are referred to as ’isolated’ phases. At all compositions

χ, γ in both heptane and decane systems, isolated oil in isolated water appeared

homogeneous and unresponsive to the focused laser. Excluding the middle phase

has removed the reservoir of surfactant. The absence of ULIFT suggests that the

surface is vulnerable to surfactant starvation at the cµc levels in oil and water. Also,

the cµc of the nonionic surfactant in oil, cµcON , is far greater than that of the ionic

surfactant in either phase (Table 1.3), so if oil and water phases isolated at some

intermediate χ ≈ χ∗ are recombined at Ω = 1, the solution consists overwhelm-

ingly of nonionic surfactant (χcµc < 0.05). However, the amphiphilic ratio in the

microemulsion monolayer within the recombined emulsion, χM , is increased relative

to the fraction χ of all ionic surfactant in the initial three-phase equilibrium. For
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efficient formulations in which the volume of the monolayer φS is negligible,

cµcI,N =
Ω cµcIW,NW + cµcIO,NO

Ω + 1
(4.4.1a)

cµc = χcµcI + (1− χ)cµcN (4.4.1b)

χcµc = χ
cµcI
cµc

(4.4.1c)

χM =
χγ − cµcIχcµc

γ − cµc
(4.4.1d)

The rigidity of the oil in water emulsions produced from a three-phase mixture of

low γ ≈ cµc implies that the temperature sensitivity is restored, which agrees with

χM � χ. It is surprising that the IFT of an oil/water interface depends on the am-

phiphilic ratio of the microemulsion interface and not that of any of the constituent

phases, even when the microemulsion is not explicitly present. It is known from

the Chun-Huh relation that the properties of the microemulsion are determined by

the IFT of the monolayer. The observation above provides evidence for the more

profound reverse conjecture - that the monolayer and microemulsion are mutually

determined.

The strong dependence of cµcNO on temperature [9] causes the nonionic sur-

factant to preferentially partition into the oil phase and the monolayer to become

depleted in a way that increases χM at high T . However, the change in situ of

cµcNO due to laser heating here is less than a factor of 1.3. The effect on χM is only

significant at very low χ < 0.2, very high T and low γ/cµc and ΩM ≈ 1, which are

not conditions encountered here (χ > 0.6, T < 35 ◦C, γ/cµc > 3, Ω > 100).

The reported χ in the initial equilibrium becomes a more accurate estimate of

χM as γM → γX ; a three-phase equilibrium amount γ = 1% ≈ 23 mM is used

hereafter. In all experiments, χM reflects the bulk temperature sensitivity of the

microemulsion droplets at the chosen χ.

4.4.2 Isolated microemulsion phase

In contrast, the isolated middle phase undergoes reproducible microscopic phase

transitions under the action of a focused laser. The most immediate of these is a
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binary phase separation above a threshold laser power (Figure 4.2, 0− 40 s). Sub-

sequently, a third phase nucleates (Figure 4.2, 40− 42 s).

Figure 4.2: Nucleation and aggregation of a water-rich phase A′ expelled from bulk

middle-phase (decane/Brij-L4, χD = 0.66, S = 190 mM) under laser heating at a

coverslip, followed by true nucleation of the water-depleted region M′ (at 40-42s;

note the new interface expanding rapidly from laser focus). The central region M′

merges with the bulk when the laser heating is removed (at 150 s), but droplets of the

expelled phase persist and coalesce. Laser power at sample is 250 mW (∆T ≈ 5 K).

Times given denote laser on duration + laser off duration. Scale bar 10 µm.

To understand the events in Figure 4.2, consider an idealised, pseudoternary
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Ω − γ phase diagram at fixed χ and S = S∗ (Figure 4.3a). Note the point X near

Ω = 1, originating from a tricritical point and corresponding to the middle phase

at the phase inversion condition. Initially the local composition of the isolated mi-

croemulsion phase matches the global composition X at all points. If the quinary

mixture matches the ideal scenario χ = χ∗, then Figure 4.3a would be unchanged

at other temperatures; thus laser heating would have no observable effects.

If instead the temperature insensitivity is thought to be imperfect, with χ < χ∗,

then dH0/dT < 0 and the stable microemulsion becomes hydrophobic under laser

heating (Figure 4.3b). When the laser is turned on, the local temperature increases,

and so the material near the focus disproportionates along the tie line A′-X-M′ to

form a small fraction of aqueous phase A′ and a majority of M′ (Figure 4.3c). For

small changes in the X point, the compositions towards M′ are usually indistin-

guishable from the parent phase X, since they have negligible interfacial tension and

refractive contrast, whilst those approaching A′ quickly become water-rich. Thus at

first, only one type of droplet appears to nucleate (Figure 4.2, 0− 40 s). Since these

droplets are water-rich, they have a lower refractive index than the parent middle

phase and are expelled from the laser beam. The beam occupies an hourglass-shaped

volume above and below the focal plane. The droplets therefore congregate in a ring

about the focus in the focal plane. Nucleation of micron-sized aqueous droplets pro-

gresses until the focal region becomes adequately water-deficient and oil-rich, nearing

the limit M′, to create a visible interface with the parent X (Figure 4.2, 40− 42 s).

The first indication of this new interface is the partial wetting of the expelled

droplets, which cease to be spherical and instead adopt lens-like shapes that satisfy

Neumann’s Triangle for the interfacial tensions between X, M′ and A′ (Figure 4.2,

42− 150 s).

If the laser is then turned off, the interface between the water-deficient phase M′

and the parent X becomes diffuse and the large thermal fluctuations of the interface

indicate vanishing interfacial tension. The region rapidly shrinks in volume, merg-

ing with the surrounding parent phase in a matter of seconds (Figure 4.2, ≥ 150 s).
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The water-rich droplets do not appear to change in size, but become spherical when

the M′-X boundary disappears. Over the space of several hours, the droplet volume

fraction decays very slowly, until the uniform composition X is finally reattained.

The persistence of droplets is unexpected. If the phase behaviour is reverted

to that at ambient temperature, both compositions M′ and A′ should be similarly

unstable. Moreover, it is possible to identify these as metastable droplets with

compositions A-EA, in which they enrich even further in water (Figure 4.3d). To

understand the compositional pathways taken between equilibrium points on the

diagram, refer to the familiar expression for bulk Gibbs free energy, gj = Σniµi as

applied to each phase j.

It is written in terms of the quinary components’ chemical potentials µi, weighted

by the molar amounts ni in each. The (molar) lever rule enables comparison of the

effective contributions of each phase to the total chemical free energy of a system,

G = Σgj. This idealised energy surface can be mapped onto the (mass fraction)

phase diagram, which admits non-equilibrium compositions.

Intermediate compositions are necessarily unstable along a tie line; thus a free

energy maximum must occur along its length. Whilst the free energy gradient is

steeply negative along all the paths A-EA and M′/MB-X, the difference in primary

phase separation dynamics must be associated with the free energy barrier along

the Winsor tie lines W-EA-X. This barrier means that the droplets prefer not to

change in composition, but instead to dissolve back into the parent phase. A steady

refractive contrast is observed. The rate of dissolution is limited by the component

that diffuses most slowly. The X and MB/M′ phases are bicontinuous, encouraging

mass transport between them, whilst the droplet is continuous only in the aqueous

phase.
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Figure 4.3: A schematic pseudoternary phase diagram describing the predicted se-

quence of microemulsion compositions during and after laser heating: (a) an ide-

alised, optimal (H0 = 0) system at ambient temperature, with symmetric Winsor

III triangle (blue). Approximate tie lines are shown for the biphasic regions. (b) In

the region of laser heating, the triangle (red) tilts towards the solvent preferred by

the surfactant at high T , here oil (i.e. χ < χ∗). (c) At this higher T , stable phase

separation occurs in which the microemulsion expels the dispreferred phase, here

water-rich A′. (d) Returning to ambient T as the laser is turned off, further phase

separation occurs, here of M′ and A′, whose products are unstable (or metastable)

with respect to the initial composition. (e) and (f): As for (c,d), but in the case

where oil is expelled from the microemulsion (i.e. χ > χ∗) such that the roles of oil

and water are interchanged. Note that the vertical scale (surfactant concentration)

is greatly exaggerated; typically γX ≈ 2%wt.
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A ’secondary’ phase separation (M′ → MB + B) is predicted to occur from pri-

mary separation products if the temperature returns to the initial value, for example

when the laser is turned off. It is difficult to make direct observations and assign-

ments of all phases (see Figure 4.9e), since no more than three phases may form

a mutual boundary. Even if the minor products of secondary phase separation are

created spontaneously, they may be present in small amounts, and exist on a spec-

trum of non-equilibrium compositions which resemble one another closely.

If the stage is translated while the laser is on, the rate of A′/M′ primary phase

separation in the new location tends to exceed the rate of merging in the original lo-

cation. The laser heating decays toward ambient T only over a distance of hundreds

of microns, or several fields-of-view from the focus. As the separated phases build

up, a three phase junction forms (Figure 4.4). The interaction of the laser with this

junction is interesting, since the refractive indices follow the order M′ > X > A′. As

for the unrestricted A′/M′ boundary (Figure 4.4e), the oily M′ is deformed to occupy

the focal volume and displaces both water and to a lesser extent, parent phase X.

The parent phase is unable to displace water as a result. Further nucleation of A′

occurs along the M′/X interface (Figure 4.4a-c), since the thermal conductivity of M′

is poorest. The contact angles are initially about 120 ±10◦ suggesting very similar

IFTs between the three phases. When the laser is turned off and M′ starts to merge

with X, the X/A′/M′ angle immediately collapses to 180◦, which corresponds to a

vanishing σM ′X tension as the σA′M ′ and σA′X tensions become similar (Figure 4.4d).

The phase separation could in principle be driven by either optical or thermal

effects. To distinguish the two, D2O was substituted in place of H2O, which has an

absorption coefficient at 1064 nm that is far lower, whilst having an almost identical

refractive index. In the D2O-substituted microemulsion, the laser causes no phase

transition at powers < 190 mW, unless the focus travels within about 20 µm of the

coverslip. The soda lime glass heats more efficiently than the fluid, showing that

the phase dynamics are thermally-driven.
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Figure 4.4: (a-c) Laser on: a three-phase boundary produced by primary phase

separation of the bulk microemulsion (decane, χD = 0.66), also deformed by the

optical forces. Nucleation of water-rich material continues along the oil-rich surface

between X and M′; (d) Laser off: at ambient temperature, the oil-rich daughter

phase equilibrates with the microemulsion. The refractive contrast, wetting angles

and IFT of the lower interface decrease. The water-rich phase is largely unaffected;

(e) Comparison with the deformation between daughter phases A′ and M′. Laser

power is 250 mW (∆T ≈ 5 K). Scale bar 10 µm.

In the centre of the channel, homogeneous nucleation can occur only above the

threshold >190 mW or an estimated ∆T = 2.4± 0.4 K. For comparison, the thresh-

old power for H2O-based microemulsion is 100 mW in the centre of the cell, where

a similar ∆T = 2.0 ± 0.3 K is estimated. The optical stresses are not significantly

different in H2O and D2O media, being of like refractive index, but D2O heats

far less. The higher power requirement for phase separation in D2O, commensu-

rate with an equivalent increase in temperature, indicates that thermal mechanisms

are dominant. No nucleation of a separate D2O-depleted phase (in the manner of



4.4 Microscopic behaviour of isolated phases under optical tweezing 145

Figure 4.2) was observed, which reflects a slower rate of phase separation relative to

mass transport.

In the central location, the absorptive flux is most efficiently concentrated near

the droplet, which should experience a maximal temperature increase if the medium

is uniform. The region depleted of heavy water does not form an interface with

the parent. It seems that, despite the optical gradient, the low depletion rate is

compensated for by inward diffusion of D2O and outward diffusion of decane.

Figure 4.5: Nucleation of a heavy-water-rich phase expelled from bulk middle-phase

(D2O-decane χ = 0.66 system) under laser heating. The arrows mark the location

of the laser focus. Neither the laser or stage are moving; nuclei grow and drift out

of the field of view under a convection current. Laser power at sample is 250 mW

(∆T ≈ 5 K). Scale bar 10 µm.
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Figure 4.6: Nucleation and coalescence of a water-rich phase from a middle-phase

droplet (heptane, χH = 0.66) immersed in aqueous medium. Laser power is 200 mW

(∆T ≈ 4 K). Scale bar 3 µm.

4.4.3 Microdroplets of microemulsion in aqueous phase

A droplet of microemulsion was studied in the excess aqueous phase. Under ULIFT

conditions, the droplet can be optically trapped and deformed. As before, the fo-

cused laser was able to nucleate aqueous droplets within the parent (Figure 4.6).

However, laser powers >100 mW were sufficient to induce nucleation as the sur-

rounding water contributed about the same amount to the laser heating as the mi-

croemulsion. At high powers >200 mW, thermal convection of the daughter droplets

within the parent was observed. At low powers, these daughters coalesced with the

aqueous continuum.

For χ < χ∗ (e.g. heptane/H2O, χ = 0.62), at higher powers, the internal aqueous

drops did not merge with the external aqueous phase. Unlike similar observations

of laser-induced material exchange in microemulsions[10], the total volume of the

droplet did not appear to reduce from observations of the cross section. It appears

that the monolayer around each nucleus forms the inner leaflet of a bilayer, and is

matched with a section of the droplet interface that forms the outer leaflet. The wa-

ter droplets remain within the parent droplet, separated from the external aqueous

phase by an oil-swollen bilayer. This mechanism drives two irreversible phenomena:

1. Myelins. Following nucleation (Figure 4.7a-b), the water droplets inside the

parent droplet become increasingly apparent. Through phase transfer, the

parent droplet develops gradually into a cluster of <1 - 3 µm wide, tubular,



4.4 Microscopic behaviour of isolated phases under optical tweezing 147

radially extending vesicles surrounding a rigid oily core of increased refractive

contrast (Figure 4.7c). Superficially, this resembles the sequences of lyotropic

phases formed at high surfactant concentration [11], or when pure surfactant

dissolves in water. However, no birefringence was detected with crossed po-

larisers.

2. Giant vesicles (GUVs). The droplet interface fluctuates and buckles violently

over < 1 s, thereafter becoming plastic, with little interfacial recoil when de-

formed and released by the laser. The phase separation occurs rapidly enough

for only one giant vesicle to be produced instead of many separate nuclei, re-

placing the droplet in its entirety. The myelinic structure resulting from (i)

may also become a giant vesicle, albeit more slowly, when irradiated again af-

ter several minutes (Figure 4.7d-f). Although multilamellae are clearly visible

to begin with, the endpoint appears to be a giant unilamellar vesicle (GUV).

The refractive contrast drops drastically, suggesting that the oil has solubilised

in the continuous phase, or resides only within the bilayer.
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Figure 4.7: Myelinic transition followed by secondary GUV transition (heptane,

χH = 0.62): (a) water nucleation from a spherical microemulsion droplet; (b) phase

transfer of water nuclei producing compact, surface-bound vesicles; (c) laser off: the

vesicles unfurl and oil spreads into the bilayers; (d-e) laser on: the myelins col-

lapse into a single giant vesicle, which remains trappable but (f) eventually becomes

impervious to water nucleation. Scale bar 5 µm.

The low preferred curvature causes the myelins and GUVs to become more cylin-

drical over time, such that the average surface curvature also decreases. Under op-

tical manipulation, tubular branches can be pulled out (see Figure 4.7, (d)), tens

of µm long, which, until a yield strain is exceeded, retract slowly if released. If en-

capsulated within the bilayer, oil does not fully wet the bilayer’s interior but tends

to form a shallow lens on one side of the vesicle which allows strong trapping. The

dewetting is consistent with a positive Hamaker constant for an alkane film in wa-

ter. Rarely, the oil even forms a separate, trappable droplet enclosed by the vesicle.

Solubilisation of oil inside vesicles to this extent is unusual even at low preferred cur-

vature [3]. Unlike the systems studied in [12], the vesicles never undergo ‘pearling’
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when perturbed with the laser. There is no bilayer asymmetry which might give rise

to vesicular distortions such as pearling. Both sides of the bilayer are equilibrated

with oil, and have equally low spontaneous curvature. Vesicle formation was more

common in the heptane system. The minimum IFT is lower in the heptane system

than in the decane systems (σ . 1 µN m−1) and the bending moduli are similar

(κ ≈ 1.1 kBT , see § 1.6.1).

Notably, a mixture of surfactants of opposite preferred curvature is used. The

local ratio of surfactants χ provides a degree of freedom by which the inner and outer

monolayers may disproportionate in composition; in principle this could act to sta-

bilise the opposite real curvatures present in a bilayer. However, the spontaneous

curvature of the monolayer varies only on the order of µm−1K−1. The laser heating

generates a small change in free energy of bending ∼ κ∆H2
0 relative to the excess

free energy of demixing, which is far denser, of order kBT per adsorbed surfactant

molecule. Simple bending will occur without resort to surfactant disproportionation

into an asymmetric bilayer.

If χ > χ∗ (e.g. decane/H2O, χ = 0.76), the nucleation of droplets occurs as before

(with an analogous sequence of phase diagrams, see Figure 4.3), except that the

microemulsion expels excess oil (X→ B’ + M′ phase separation) under laser heating

rather than aqueous phase. The nucleated oil droplets have a higher refractive index

than the parent droplet, so are trapped at the laser focus. They are also optically

deformable (Figure 4.8). Vesicles were never observed in this system. If the laser

is removed, the oil merges with the oil-deficient phase over minutes rather than

hours. As the continuous phase is aqueous, rather than microemulsion in this case,

it cannot supply oil to the oil-depleted region. Without this competition, the oil

droplets nucleated by the laser redissolve more quickly.
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Figure 4.8: (a-b) Nucleation, (c) partial wetting and (d) trapping of oil B’ expelled

from a microemulsion droplet in aqueous medium (decane χD = 0.76 system); (e)

nucleation near the oil surface and convection of nuclei within the droplet. Laser

power is 250 mW (∆T ≈ 4 K); (f) laser off: vanishing tension and shrinking/merging

of B’ with the parent phase. Scale bar 4 µm.

Microemulsion-based nanothreads

For sufficiently low IFT two traps can be used to bifurcate the microemulsion droplet

(Figure 4.9). Around the bifurcation point at high powers, the neck of the droplet

and the trapped nodes differ noticeably in stiffness. If the IFT decreases with

laser heating, the thread experiences compressive Marangoni forces which stabilise

it. The thread can be seen to flex under viscous drag if the nodes are translated.

Alternatively, if the IFT increases with T , the thread experiences tensile Marangoni

forces which make it more likely to break when stressed.
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Figure 4.9: (a-b) Nucleation of oil B’ from a middle-phase X droplet (decane system,

χD = 0.76) in excess water EA under laser heating with two coincident traps; (c)

traps are displaced by 6 µm: nucleation is arrested and the droplet deformed; (d)

oil B’ nuclei accumulate at the trap nodes, displacing the water-rich microemulsion;

(e-f) further trap separation to 9 µm: the droplet undergoes asymmetric bifurcation

with a thread (not resolved). Primary phase separation is still visible; (g-h) traps

merged to 0 µm and split again to 9 µm: the left trap contains the primary separation

products (Figure 4.3e) and the cooler right trap contains the secondary products

(Figure 4.3f). The phases’ proximity to the traps corresponds to the hierarchy of

increasing refractive index; (i) the phases do not change further on bifurcation or at

rest over the timescale of a few minutes, but the water-rich bridge does not support

a thread connecting the two droplets. Laser power at sample is 150 mW (left) and

100 mW (right) (∆T ≈ 3 K, 2 K). Scale bar 4 µm.

This explanation is consistent with the observations of beads of oil suspended

along the thread being pulled away from the centre. Not only does the thread pro-
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vide a gauge of the local interfacial tension, but also gives insight into the thermal

distribution due to laser heating, and the thermal response of the interface. Rotat-

ing the half-waveplate halfway between the respective Malus maxima equalises the

trap strengths for each node. For an equilibrium shape to be attained, the opti-

cal pressure across the thread must compensate the Laplace pressure by supporting

flow. It does so until the nodes become equal in size and shape, reflecting that the

optical trap strength greatly exceeds the IFT.

In separating the traps, the laser heating is also divided. Violent nucleation of

the kind leading to vesicles is replaced by gradual phase separation, like the bulk

case. At small separations and low powers, the oil-rich expelled phase is trapped at

the foci, while the water-rich microemulsion is displaced from the traps to form a

bridge between the two oil phases. In Figure 4.9e, the neck is formed by expelled

oil B attached to microemulsion M′, while in Figure 4.9g-h the neck is an aqueous

phase A. If the division of laser power is altered so that one trap is cooler and weaker

than the other, a different kind of phase separation occurs (Figure 4.9g-i). The ap-

pearance of seven rather than three unique phases is surprising; the temperature

variation across the length of the droplet enables both primary (X → B’ + M′) and

secondary (B’→ B + MB, M′ → A + MA) phase separation to be observed simulta-

neously (Figure 4.3). Although the brightfield response partly depends on the local

curvature and thickness of the droplet, a distinction between phases can be made

by comparing the refractive quality of the interfaces. The seven-phase arrangement

is independent of further trap displacement, but does not support a thread. It is

possible, however, to connect two vesicles with a thread of middle phase (not shown).

It appears that the composition of a stable thread in aqueous continuum must

be oily or middle phase, i.e. oil-continuous. Since the bending and thermal energy

are comparable, the width of the thread (Chapter 5) is roughly the same size as the

domains of the corresponding microemulsion phase! It is therefore intriguing that

microemulsion phase and oily threads are able to coexist, and moreover that oil-rich

microemulsion phases are able to support threads themselves. Is it possible that
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the Gibbs surface no longer corresponds to the surface over which the interfacial

tension acts? How a bicontinuous thread can support tension along its length is a

open problem, one which is intimately related to the interfacial fluctuations between

microemulsion and excess phases.

For D2O-substituted microemulsion droplets dispersed in excess D2O (lower

phase of WIII), no transitions were observed. The droplets were still deformable

at ULIFT. The lower absorbance of the deuterated medium provides ∆T lower

than the threshold for phase separation at the powers investigated (<250 mW).

4.5 Microscopic behaviour of nonequilibrated

phases under optical tweezing

4.5.1 Microdroplets of oil in aqueous solution

For practical applications the situation where a pure oil is dispersed in an aque-

ous surfactant solution without equilibration, is of interest. As ULIFT is de-

sired, an input aqueous concentration of surfactant γW = 2 mM is chosen, roughly

5×cmc as recommended by Binks [13]. The resulting concentration is barely diluted,

γ ≈ γW/(1 + Ω−1). The cµc itself is very difficult to measure volumetrically as, by

definition, it presents an infinitesimal amount of middle phase. Any remaining sur-

factant above the cµc will tend to create additional monolayer, thereby solubilising

the oil into middle phase. Thus the behaviour of the emulsion droplets is predicted

to fall on a spectrum between that of (i) excess oil droplets in excess water and

(ii) middle phase droplets in excess water. One might expect equilibration to fol-

low emulsification fairly rapidly, limited by diffusion, to arrive at a stable mixture

of oily EB and microemulsified X droplets. The reality is more dynamic; sporadic

cases were observed at χ = 1 where oil droplets spontaneously appeared

1. to change in composition towards microemulsion erratically,

2. to solubilise into the continuous phase (either shrinking or shedding small

droplets), or
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3. to form vesicles over the order of tens of minutes.

The variety of composition and latency of equilibration are likely related to the free

energy barriers between pure oil O (or excess oil EB) and middle phase X. This is

analogous to the water expelled from the χ < χ∗ microemulsion (§ 4.4.2) which is

metastable even at ambient temperature.

For pure AOT, χ = 1, these processes accelerate markedly in the vicinity of the

phase inversion condition, just as observed by [14] and [15], although observed here

at much longer times after mixing. It is this heating towards the phase inversion

which appears to drive the transitions when droplets interact with the laser beam. If

the temperature is changed very quickly to just through the phase inversion temper-

ature, the oil droplets may burst and disperse in ms (see Figure 3.8), in the vein of

catastrophic phase inversion [16]. This implies that a high internal volume fraction

of aqueous phase is nucleated quickly, much like a spinodal decomposition.

4.6 Thermal or optical effects?

How can the thermally-driven effects at microscopic level be reconciled with the

temperature insensitivity on the macroscopic level? In the first case, a 60 µm field

of view is studied at video rates of 60 Hz, and in the latter, 10 cm phase tubes are

studied at 20 min intervals. Both situations represent thermal equilibrium, since

the length and time scales of observation fulfil the diffusive relation L2/t < ψ/ρcP ,

where ρ and cP are the density and heat capacity of the sample. Thus, the disparity

remains unless the volume fraction of any nucleated phases at complete separation

(e.g. in Figure 4.3c and Figure 4.4, if all possible A′ is extracted from X) is unde-

tectably small, φ(A′) < 5%. This is very difficult to verify using only 2D imaging,

but appears unsatisfactory (see § 6.3.5). This question can be resolved by looking at

the nature of the microscopic driving forces and the convective motion they promote.

A similar discrepancy between macroscopic and microscopic behaviour has been

made, and water nucleated under laser heating, for a different bicontinuous mi-

croemulsion [10] of higher optical absorbance, albeit with a more diffuse laser, which
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emphasised the effect of thermodiffusion over optical gradient forces. As in the

present work, fluctuations of ±2 K in the ambient temperature never give rise to

phase separation even on the microscale. Therefore χ ≈ χ∗ must hold here such

that the equivalent laser power (200 mW in water medium) would be insufficient to

cause phase separation simply by uniform photothermal heating. This work pro-

vides counterexamples of oil and water nucleation at the focus at much lower powers

(∼ 190 mW water, 150 mW oil from M drop in water), which implies that there

must be an additional mechanism.

In cases of very high power absorbance ∆T > 3 K, advection occurs visibly over

the longest scales of L ∼ 10 - 100 µm. This is most prominent in large oil reser-

voirs at the coverslip, whose water nuclei recirculate in the thermal flow. Advection

does not appear to alter the shape of the parent oil droplet (§ 4.7) Including any

minor influence of advection constitutes an involved hydrodynamic problem that

lies outside the scope of this thesis. However, the diffusive timescale for thermal

equilibration of the chamber is on the order of t = 10 ms, which allows changes in

laser heating to be considered instantaneous with laser power. The emergence of

subdroplets is thought to be limited instead by homogeneous nucleation and growth

processes, as determined by the quasi-steady state optical and thermal distributions.

The behaviour of these nuclei at the laser focus will depend strongly on their size,

RN . The competition between optical stabilisation (for subwavelength, high-index

objects the potential scales as −R4
N) and the surface energy penalty (that scales as

R2
N) determines a critical nuclear size. For ULIFT of 1 µN m−1, the critical radius

of an oil droplet is about RN = 0.1 µm and the nucleation barrier is of a feasible

order, 15 kBT .

Phase transfer and recirculation of nuclei are stimulated by a combination of

advective forces: either optical (electrostrictive) or thermophoretic gradients. The

latter consists of Marangoni and thermodiffusive components. Buoyancy or density

effects are thought to be negligible for such small nuclei (F = 4π∆ρgR3
N/3 ∼ 1 fN).
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For oil-rich phases, optical forces are ’attractive’, i.e. directed towards the focus

(high refractive index), whilst thermodiffusive (due to low thermal conductivity) and

Marangoni (assuming ambient temperature corresponds to minimum IFT) forces are

repulsive. For water-rich nuclei, optical and Marangoni forces are repulsive, whilst

thermodiffusive forces are attractive. The optical forces (F ≈ ∆nP/c ∼ 1 pN)

dominate on the scale of the focal spot size i.e. with a micron of the trap focus,

whilst Marangoni forces (F = 4πR2
N∇T · ∂σ/∂T ∼ 0.1 pN) extend further, over the

thermal decay length of L = 1/4πα ∼ 1 mm. The Marangoni effect is strong for

phase-inverting systems, but again relies on some pre-existing temperature sensitiv-

ity, or χ − χ∗ 6= 0. This is exaggerated in cases of strong optothermal absorption

such as the phase separation and advection at the coverslip.

Oil nucleation is predicted to occur only at ULIFT∼ 1 µN m−1, a condition that

is largely guaranteed by the existence of the bicontinuous microemulsion. However,

classical nucleation theory fails to account for the production of water (low-index

phase) under thermal steady state, since in its description, water nuclei are never

stabilised by introduction of the optical field. The observed water nucleation is likely

to be driven in part by proximity to the thermal phase boundaries as described in

Figure 4.3, though detailed knowledge of the temperature dependence of the phase

diagram is lacking. Given that small, free oil droplets within about 10 µm are cleared

quickly by thermophoresis, the water must be relatively thermophilic. Nucleation

of water could be incited instead by the thermal gradient around the laser axis.

Thermodiffusion is one mechanism known to cause phase separation very near the

critical temperature of binary liquid systems that are related to microemulsions [17].

However, the Soret effect is highly formulation-dependent in a manner that is not

easily predicted. These forces are also typically weak compared to others considered

here (F ≈ kBT · ST∇T ∼ fN) given the typically low values of the Soret coefficient

ST ∼ 0.01 K−1 [18].

If only the dominant photothermal mechanism is considered as χ increases through

the balanced amphiphile ratio, χ∗, water nucleation on laser heating (a nonionic-like,
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more hydrophobic microemulsion with higher T ) is expected to cease in favour of

oil nucleation (an ionic-like, more hydrophilic microemulsion with higher T ). Laser-

induced nucleation of water occurs at the macroscopically balanced value χ∗D = 0.66.

Also, while oil nucleates at χD = 0.76 as expected, it does so at a similar rate to the

water in the χD = 0.66 case. The similar rates could indicate that χ∗ lies roughly

equidistant from the two values. In effect, χ∗ appears to shift upwards (away from

χ∗D = 0.66) in the presence of the laser, even though it is unaffected by bulk heat-

ing. It is tempting to attribute this shift to a purely optical effect. However, the

optical gradient attracts the high-index phase, oil; therefore, the laser would again

be expected to promote the nucleation of oil rather than water droplets at the focus

(instead reducing the effective χ∗). A possible scenario is that χ∗ in the absence of

the laser is slightly underestimated and the dependence of the nucleation rates on

χ − χ∗ is weak except anomalously at the balance point. A more consistent con-

clusion is that Soret-type thermophoresis of water towards the focus occurs at an

unprecedented magnitude in this system, such that it overcomes both Marangoni

and optical forces. These hypotheses could be tested by scanning χ more thor-

oughly, at different laser powers, to find the point at which neither oil nor water are

nucleated at the focus.

4.7 Appendix: Laser heating

4.7.1 Premise

The optical absorption of a focused laser produces inhomogeneous heating even

within a uniform volume. Given the thermal sensitivity of properties such as inter-

facial tension and density that are significant to the shape and dynamic stability

of the examined droplets, the 3D thermal distribution is of interest. It is possible

to refer to a qualitative extent of the heated region, or otherwise resort to semi-

analytical treatment (or a fully discrete numerical model, see § 4.7.2).

Description of a localised heat source on the local temperature change ∆T re-

quires the thermal conductivity, ψ and Beer absorption coefficient at 1064 nm wave-
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length, α1064 (Table 4.1). By dimensional arguments, the peak temperature rise in

a homogeneous medium necessarily has order ∆T/P ∝ α/ψ = 24 KW−1. These

ratios act as ’photothermal resistances’ for each medium.

H2O D2O n-heptane n-decane soda-lime glass

n1064 1.324a 1.323a 1.387b 1.404b 1.513c

ψ (W m−1K−1) 0.598d 0.589d 0.123d 0.132d 0.94d

α1064 (m−1) 14.6 ± 0.5 1.3 ± 0.1 4.0 ± 0.3 5.0 ± 0.1 58c

α1064/ψ (K W−1) 24 ± 1 2.2 ± 0.1 33 ± 3 38 ± 2 62

Table 4.1: Refractive indices and photothermal properties of the emulsions’ con-

stituent liquids and substrates at 25 ◦C. Absorption coefficients α are natural (cor-

responding to 1/e optical intensity) rather than decimal. a[19]; b[20]; c[21]; d[22].

4.7.2 Detailed analysis for bulk heating

The coupled optics-heat problem in the bulk is asserted compatible with an axisym-

metric cylindrical coordinate system (Figure 4.10).

Neglect of advection

Most physical effects which break axisymmetry, such as optical polarisation, are

insignificant to energy flow. However, convection cells cannot be described within

this model symmetry. They are expected to appear when the characteristic length

scale l or advective flow velocity v exceed some critical threshold. The Péclet number

[23] estimates the ratio between advective and diffusive heat transfer Jadv, Jdiff, and

so describes a critical relation v∗(l) dependent on the thermal diffusivity of the

medium ζ:

PeL =
Jadv

Jdiff

=
vl

ζ
(4.7.1e)

For water at room temperature, ζ = 1.43 × 10−7 m2s−1. To demonstrate that

diffusion dominates at all relevant scales l < 100 µm in the problem, consider the
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Figure 4.10: A schematic view of the coordinate system and relevant parameters

used to determine the 3D temperature profile under laser heating.

desired condition PeL < 1%:

v∗ > 0.01× ζ

l

>
0.01× 10−7 m2s−1

10−4 m

> 10−4 m s−1

(4.7.1f)

The argument arrives at a contradiction since the convection velocity must be dis-

ruptively high > 10 µm s−1 in order for advection to influence the temperature

gradients by even 1%. Even without the generality of including advection, it is im-

portant to establish a baseline behaviour of a microscopic, isotropic medium subject

to the familiar diffusive heat equation.

The heat equation and Green’s function

Assuming diffusive heat flow only, the governing equation is Fick’s first law of dif-

fusion (also known as Fourier’s law of conduction [23]):

J(r) = −ψ∇T (r) (4.7.1g)
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This describes a relationship between the temperature T and heat flux J as a func-

tion of position r and defines the thermal conductivity ψ. Next, consider a set of

parallel surfaces enclosing a point heat source. In the steady state, the heat dis-

sipated is the same as the heat generated. As the flux J through each surface is

necessarily conserved, the flux divergence is constant and equal to Q, the power

generated per unit volume at the source. This yields the heat equation:

∇ · J(r) = Q (4.7.1h)

∇2T (r) = −Q
ψ

(4.7.1i)

This is an ordinary differential equation whose solutions are additive; as such,

the point sources within an arbitrary distribution can be treated individually. For

a single point source located at the origin, the temperature response follows the

Green’s function, G(r), for the 3D Laplacian operator, ∇2:

G(r) ≡ 1

4π|r|ψ
which satisfies ∇2G(r) = δ3(r) (4.7.1j)

where δ(x) is the Dirac δ-distribution.

The general distributed solution

The convolution properties of a Green’s function allow expression of the solution for

a real, finite distribution of heat sources using calculus:

∆T (r) = Q(r)⊗G(r) (4.7.1k)

Options exist for i) integrating over real space or ii) Fourier frequency space,

where it is possible to make use of the convolution theorem. Here a real-space

approach is used, as it is more intuitive at each step, whereupon subtlety in more

approximations might be necessary.

∆T (r) =

∫∫∫
V ′
Q(r′)×G(r− r′) dr′ (4.7.1l)
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∆T (r) =

∫∫∫
V ′
Q(r′)× 1

4πψ|r− r′|
dr′ (4.7.1m)

The thermal flux J(r) is assumed equal to the rate at which optical energy is

absorbed. For this, the optical intensity distribution I(r) and the linearised Beer’s

law definition of the absorption coefficient (per unit length) are given as follows:

Q(r) ≈ αI(r) where α ≡ d ln I(r)

dz
(4.7.1n)

Attenuation of the beam intensity across the sample depth L is neglected; this

is equivalent to taking the limit L � α−1, such that the beam focused at zF is

unaffected by the medium.

∆T (r) =
α

4πψ

∫∫∫
I(r′)

|r− r′|
r′dθ′ dr′ dz′ (4.7.1o)

A partial solution for the Gaussian beam

The range of integration covers a volume between the parallel plates of the chamber

and radially outwards to a cutoff distance R. A realistic choice is determined by the

working distance of the objective as R ≈ πw0WD/λ.

∆T (r) =
α

4πψ

∫ L−zF

−zF

∫ R

0

∫ +π

−π

I(r′)

|r− r′|
r′dθ′ dr′ dz′ (4.7.1p)

The intensity I(r′) of a TEM00 laser beam is described, at least in the scalar

paraxial approximation, by the Gaussian beam profile given in Equation (2.1.1e).

The relevant integral for the thermal distribution becomes:

∆T (r) =
P0α

2π2ψw2
0

∫ L−zF

−zF

∫ R

0

∫ +π

−π

r′

|r− r′|
1

1 + (z′/zR)2
exp

{
−2r′2

w2
0(1 + (z′/zR)2)

}
dθ′ dr′ dz′

(4.7.1q)

Axisymmetric reduction

Only the position vector introduces any angular dependence:

|r− r′| =
√
r2 − 2rr′ cos{θ − θ′}+ r′2 + (z − z′)2 (4.7.1r)
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Thus, the integral is factorised to solve part of it analytically (with the use of

elliptic integral functions):

Iθ =

∫ +π

−π

dθ′

|r− r′|
(4.7.1s)

Iθ =
4√

(r − r′)2 + (z − z′)2
K

{
4rr′

(r − r′)2 + (z − z′)2

}
where K (x) is the complete elliptical integral of the 1st kind.

(4.7.1t)

The diffusive thermal distribution is reduced to a 2D numerical integral, which

is the general result of this analysis. A full Runge-Kutta numerical integration of

Equation (4.7.1t) was performed to yield the 3D temperature distribution, whose

axial cut is shown in Figure 4.11.

∆T (r) =
2P0α

π2ψw2
0

∫ L−zF

−zF

1

1 + (z′/zR)2

∫ R

0

r′√
(r − r′)2 + (z − z′)2

K

{
4rr′

(r − r′)2 + (z − z′)2

}
exp

{
−2r′2

w2
0(1 + (z′/zR)2)

}
dr′ dz′ (4.7.1u)

Special case at the focal point

The highest temperature gain is at the focus r, z = 0. Here the elliptical function

reduces to the special value π/2 and expressing the radial part becomes analytically

possible in terms of error functions. The subsequent axial integration is over a Voigt-

like function which remains intractable. This is also true for the Fourier transform

approach suggested above.

∆T (0) ≈ P0α√
8πψw0

∫ L−zF

−zF

1√
1 + (z′/zR)2

exp

{
2z′2

w2
0(1 + (z′/zR)2)

}

×

(
erf

{√
2(R2 + z′2)

w2
0(1 + (z′/zR)2)

}
− erf

{√
2z′2

w2
0(1 + (z′/zR)2)

})
dz′ (4.7.1v)

For an ideal Gaussian beam shape with diffraction-limited focus, the relations

2w0 ≥ nλ/πNA and zR = πw2
0/λ hold. Thus for an numerical aperture NA = 1.2
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in an aqueous medium of refractive index n = 1.33, the dimensions are w0 = 188

nm and zR = 80 nm.

The chosen chamber thickness is L = 200 µm, the typical focus at a depth

zF = 40 µm, and R = 150 µm is taken from the objective working distance of WD

≤ 280 µm. Performing the partial axial integration step on Equation 4.7.1u over

256 intervals with the above parameters for water:

∆T (0) ≈ P0α√
8πψw0

× 0.77 µm (4.7.1w)

∆T (0)/P0 = 16± 2 KW−1 (4.7.1x)

which is of the correct order.

4.7.3 Discussion

The thermal distribution derived here matches that of a finite element model in

COMSOL written by GB with the same parameters (Figure 4.11). In each, the

peak temperature change drops by half within a typical 2 µm in the radial direc-

tion and 8 µm in the axial direction. However, there is a small discrepancy at

the peak value within the beam waist; the FEM gave 17.2 K W−1, and the full

integration 14.7 K W−1, both of which agree roughly with the semi-analytic result

of 16±2 K W−1. The dimensions of the laser focus used in each are slightly different.

The Gaussian beam description I(r) is of limited physical accuracy at the focus,

since the paraxial approximation (by which it is derived as a solution to the wave

Helmholtz equation) breaks down within r < ω0, z < zR for NA > 0.5. The true

profile is somewhat broader. In the semi-analytic and full integration methods this

is compensated for by the use of a modified form for the beam waist, but not in

the FEM. The beam waist in the FEM is 160 nm, while the modified waist is 188

nm; correcting the FEM peak result down by this factor gives a peak heating of

14.6 K W−1 which agrees well. The redistribution of power between the paraxial

and true beams lies within a wavelength of the focus. As such, the uncorrected FEM
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Figure 4.11: Validation of Equation 4.7.1t for the derived laser-heating distribution

along the beam axis (blue line) against a finite-element COMSOL model (green

circles, written by GB), using the same parameters as described in the section prose

(except the beam waist, whose difference accounts for the deviation in the FEM

model at the focus).

curve as shown in Figure 4.11 still validates the semi-analytic method for calculating

the temperature distribution.

A previous calculation in water yielded an upper estimate of 19 K W−1 [24]. The

experimental range of peak heating reported in literature is vast for water; 8 K W−1,

[25], 14.5 K W−1 [26], 16 K W−1 [27] and 22 K W−1 [28]. The experimental au-

thors report very similar photoabsorption and thermal conductivity measurements

for the fluids, as well as using similar laser foci at 1064 nm and NA > 1. A variety

of systems were used, from polymer beads trapped in water, to aqueous solutions

of temperature-sensitive fluorophore with no trapped particles; thus some studies
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failed to measure the temperature directly at the focus.

Otherwise, the position and type of chamber walls appear to be the main reasons

for the data scatter. The temperature distribution can be described adequately by

the maximum heating at the focus (∆T ) and a characteristic decay length; how-

ever, the latter is difficult to define since the Green’s function for the heat equation

is a power-law decay. Moreover, the corresponding solution in free space is diver-

gent in 2D, so the actual value for a quasi-steady state temperature must depend

strongly on the boundary conditions of the chamber. The analysis here shows, in

agreement with other authors [25] that the peak temperature is sensitive to L and

zF , but insensitive to R. The presence of the laser at extreme z has a large impact

on the steady state temperature even in the centre of the channel. The total heat

flux is expected to be roughly proportional to L, since (within the assumption that

L� 1/α ≈ cm) the total laser power is almost constant along this axis.

In literature cases reported towards the lower end of the heating range, the

focus lay much closer to the coverslip (smaller L within 10 µm [25]). The thermal

conductivity and absorption of the coverglass materials (e.g. Table 4.1) differed

widely from those of the liquids, thereby suppressing or exacerbating the rise in

temperature. The presented model could be refined to reflect the ability of the

chamber walls to conduct heat away faster than the infinite aqueous volume assumed

here.

When compared with the dimensional analysis result, α/ψ, the analysis implies

a proportionality constant of 0.7 ± 0.1, in agreement with results in non-aqueous

fluids [28]. In that study, the heating in deuterated water was reduced by a factor

9 relative to water. Similarly, the photothermal resistance of D2O measured here is

lower by a factor of 11. When using D2O in this thesis the peak heating is therefore

considered to be 1.4 K W−1.

For a given power, the presence of an oil droplet at the focus increases the peak

temperature in a way which rises logarithmically with droplet size, due to the greater
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ratio α/ψ in oil. However, the steady-state surface temperature, which determines

interfacial tension, is necessarily independent of the thermal conductivity of the in-

terior, ψO. Since the absorption coefficient of oil is lower than that of water, and

the surface recedes from the focus, the surface temperature is expected to decrease

weakly with droplet size. The first effect is very small since the most of the beam

path is outside the droplet (L � RD). The second implies thermal inhomogeneity

for large or deformed droplets in H2O, which contributes to the surface dynamics

observed at very high power in Chapter 4. At the low optical powers used in Chap-

ter 5 onwards, the resulting interfacial tension gradients are at most a few percent

of the Laplace pressure and cannot alter the equilibrium droplet shapes significantly.

The average interfacial tension of the deformed droplets can therefore be es-

timated adequately as a function of trap power; this is done by calculating the

temperature distribution (Equation 4.7.1t) for bulk H2O or D2O, reading the tem-

perature increase at the undeformed drop radius, adding to the measured ambient

temperature and converting with the PIT-tension curve.
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Glossary

Symbol Definition Unit

A Majority aqueous phase, secondary nucleation of A′

B Majority aqueous phase, secondary nucleation of B′

A′ Minority aqueous phase, primary χ < χ∗ nucleation

B′ Minority oil phase, primary χ > χ∗ nucleation

EA,B cµc-like compositions, possible decay products of A,B

MA Minority m.e. phase, secondary nucleation of A′

MB Minority m.e. phase, secondary nucleation of B′

M′ Majority m.e. phase, primary nucleations

X Initial middle phase composition

AOT Aerosol OT, ionic surfactant

Brij-L4 Commercial line of C12E4, nonionic surfactant

C12E4,5 polyoxyethylene glycol ethers, nonionic surfactants -

cmc Critical micellar concentration M

cµc Critical microemulsion concentration M

G Gibbs free energy J

GUV Giant unilamellar vesicle

H0 Spontaneous curvature m−1

RN Nuclear radius m

S, S∗ Initial aqueous salinity, optimal M

S∗∗ Initial aqueous salinity that is optimal at χ∗ M

ST Soret coefficient K −1

V Volume m3

χ Fraction of ionic surfactant in total surfactant -

χH,D Values for heptane, decane system -

χ∗ Value of χ, minimum monolayer T -sensitivity -

χcµc Fraction of ionic surfactant in cµ c -

γ Total surfactant weight fraction in total mixture -

γW Total initial surfactant concentration in water -

κ Bending modulus J

φA Volume fraction of phase A -
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Ω Volumetric water-to-oil ratio -

G Green’s function K W−1m−1

I Optical intensity W m−2

J Heat flux W m−2

L Chamber depth m

NA Numerical aperture -

NIR Near-infrared

n,∆n Refractive index, contrast -

P Optical power W

r Coordinate perpendicular to beam axis m

R Integration radius m

RD Droplet radius (spherical) m

z Coordinate along beam axis m

zR Rayleigh range of Gaussian beam m

T,∆T Temperature, Laser heating K

t Time s

α Natural absorption cross section, λ = 1064 nm m−1

ψ Thermal conductivity W m−1 K−1

ζ Thermal diffusivity m2s−1

λ Optical wavelength m

ω0 Beam waist m
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Chapter 5

Linearity, Bifurcation and

Nanothreads

The previous sections have addressed the introduction of surfactant-stabilised oil

droplets to an aqueous continuum and the complexity of their phase behaviour

when exposed to focused lasers. Any assumption that the composition of a given

droplet is invariant holds only within fairly limited conditions of low laser heating

and a sufficient margin away from phase-inversion.

Whilst compositional stability is not guaranteed within the range of ultralow

interfacial tensions of interest to deformation, the internal composition does not

necessarily affect the presence or response of the interface itself. As long as the

volume, refractive index and deformability of a given droplet do not change exces-

sively during measurement, the equilibrium shapes of droplets and networks may be

defined under optical deformation. The remainder of this thesis is largely dedicated

to investigating what these shapes are, and which forces determine them.

171
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5.1 A parametrisation for deforming droplets

Table 5.1 gives a review of the parameters that govern the existence and evolution

of stable droplet shapes.

Independent parameters

Variables

IFT σ

Drop size RD

Optical power P

Number of traps M

Trap separation LA

Constants

Laser geometry NA, λ

Refractive contrast ∆n

Bending modulus κ

Buoyancy ∆ρg

Dimensionless parameters

Independent

Optocapillary ratio ε

Number of traps M

Trap separation† L′A ≡ LA/RD

Capillary length† L′C ≡
√
σ/∆ρgR2

D

Dependent/Constant

Laser dimensions† w0/RD, zR/RD

Refractive contrast ∆n

Helfrich length† L′κ ≡
√
κ/σR2

D

Table 5.1: The factors thought to influence steady-state droplet deformation (left)

can be represented in a non-dimensional basis using composite length scales (right).

The optocapillary number is defined by Equation (5.1.1a) below.

Buckingham dimensional analysis allows definition of the optocapillary number

ε, as

ε =
Pf(NA,∆n)

RDσc
, (5.1.1a)

which quantifies the relative strength of the optical and capillary forces. It is ap-

proximately equivalent to the ratio:

|Fgrad|
|Fsurf |

=
∆nPQ/c

2πRDσ
. (5.1.1b)

where Q is the efficiency factor defined in § 2.2.2. The cofactor f(NA, n) is fixed

by defining a critical value ε = 1 at a transition to nonlinear deformation, such
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as a minimum in the projected droplet radius from numerical simulations [1]. It

depends on the refractive geometry in the similar way to the efficiency factor Q,

though accounting for the deformation of the droplet. 1

Given a number of traps of equal power and set of governing length scales

(Table 5.1, right), an approximate one-to-one correspondence is expected between

ε and droplet shape. However, neither the true shape nor the optocapillary number

can be measured by 2D imaging without first assuming some symmetry of the shape.

5.2 Linear deformations

For a single trap (or equivalently, multiple overlaid traps in phase), the extension is

largely axial along the beam [2]. Elongation will induce thinning in order to conserve

volume. Therefore, the projected radius along the beam axis decreases with beam

power. For a droplet contained within the focal volume, this will be the same as the

imaged radius [3]. Droplets vary reversibly in apparent diameter across the dynamic

range of the laser power, without hysteresis (Figure 5.1) in a way that is consistent

with prolate-spheroidal symmetry.

1The approximate relation is f ∼ ∆nQ/2π. For a droplet in a single trap, Tapp estimates

f(NA,∆n) ≈ ∆n exp (−NA)/π, a decreasing function of NA at fixed power. This result is counter-

intuitive and does not relate to the true trap-stiffness Q factor that increases with NA in all cases.

In the unique case of an isolated trap, the equilibrated droplet surface is located far from the focus

and so the momentum flux is spread more evenly over the surface, decreasing f at higher NA.

This is not the case for multiple traps separated on the order of the droplet radius; the intensity

gradient near a focal point increases as NA4. Results presented in this thesis largely use constant

NA = 1.2 and ∆n ≈ 0.05, such that knowledge of the precise form of f(NA,∆n) is unnecessary

for comparison of droplet shapes on arrays of similar geometry.
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Figure 5.1: Under brightfield microscopy, the apparent radius of a heptane droplet

(χ = 1) in a single trap changes monotonically with increasing (�) and decreasing

(�) trap power. The dashed line is a fit (R2 = 0.94) to the theoretical spheroid

given by Equation (5.3.1c) at the estimated σ = 2.5 µN m−1.

5.3 Nonlinear deformations

5.3.1 Nonlinear deformations in a single trap

As the surface tension weakens, a droplet in a single trap can be considered to

approach a limit in which its shape is determined only by the trap. In the absence

of all forces other than the gradient force, a fluid particle should conform to the

shape of the iso-intensity contour that matches its volume. Noting that a Gaussian

focus has a hyperbolic profile along the beam axis, the intensity contours are only

ellipsoidal up to half the beam waist (I = I0/e) and become catenoidal further

away from the focus [4]. These figure-of-eight shaped intensity contours imply that
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the optical pressure encourages the equilibrium drop shape to pinch at the equator

for all but the smallest visible drops (RD > w) as calculated by Tapp et al.[1] For

axial elongation in a single trap, the radiation pressure at the equatorial surface

of the drop is significant at it lies near the focus. The negative axial curvature is

stabilised so that the droplet does not split when filling the illuminated volume.

However, 2D imaging techniques cannot provide experimental verification of the

shape distribution in the axial direction. The topic of 3D imaging is covered in

Chapter 6, with specific reference to the axial deformation in § 6.2.1.

5.3.2 Oscillations across two closely-separated traps

When dual beams (§ 2.4.1) are overlaid, a given stiff oil drop can be trapped as if it

were spherical bead. As the beams are separated slowly by about a drop radius, the

drop jumps into the stronger trap. Repeating with careful adjustment to equalise

the trap powers, the drop’s behaviour changes drastically with decreasing (but not

ultralow) interfacial tension. The drop is no longer confined to one trap, but bounces

between the trap locations indefinitely (Figure 5.2, left). The frequency increases

with optical power until, on the slightest of stage movements, the drop is tangen-

tially ejected at great speed. Viscous damping dominates over inertial effects such

that an escaping droplet decelerates exponentially, its motion becoming isotropic at

a distance xrest = mDv0/β, where mD, v0 and β are the mass, ejection velocity and

friction coefficient of the droplet respectively. While the ejection can appear violent

at several 100 µms−1, the particle’s momentum corresponds to that transferred by

only mDv0λ/2π~Q ∼ 108 photons, which the beams deliver in less than a microsec-

ond.

The drop’s oscillation in position cannot be simple diffusion between trap sites

in a fixed potential, since the drop would be increasingly localised at higher powers.

Instead the movement implies some feedback mechanism for the position. For a

larger refractive contrast this could be accounted for by variations in the way the

droplet scatters the optical field. The dependence on interfacial tension implicates

deformation, which could cause asymmetric scattering and a restoring lateral force.
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As such, the oscillation of solid spheres has not been observed. On decreasing IFT

further, to ultralow values, the oscillation frequency decreases, reflecting the periodic

storage of energy in the transient surface deformations. In this limit, the deforma-

tion approaches the trap separation and the droplet relaxes into a static equilibrium

(Figure 5.2,right).

Figure 5.2: A droplet is trapped in two traps of equal power with increasing sep-

arations (0 (2.8 top right), 3.0, 4.8, 6.8, 22.8) µm; (left) at low IFT, the droplet

still appears as a rigid sphere, but oscillates in position; (right) at ULIFT, the

same droplet conforms to both traps simultaneously at small separations and does

not oscillate. Some microemulsification is visible (top right). Separating the traps

further forms a nanothread. Scale bar 10 µm.



5.3 Nonlinear deformations 177

5.3.3 Nonlinear deformations in multiple traps

For a droplet in two coplanar traps, the linear deformation again manifests as a

prolate elongation, albeit along the intertrap axis. In combination with the weaker

axial deformation, this generates an approximately ellipsoidal shape. As Tapp’s ε

predicts only the axial deformation, a practical deformability metric is needed for

the lateral elongation. The maximum achievable aspect ratio, Λ, was measured in

the focal plane, at a fixed refractive index and laser power. Since the optical and

surface forces are equal at equilibrium, it is interesting that a second form of the

optocapillary number ε̄ can be defined, based on the increase in Laplace pressure pL

integrated over the surface A. As the mean curvature of a spheroid is known [5], ε̄

can be expressed in terms of Λ in a spheroidal approximation,∫
pLdA =

∫
pLdAsphere(1 + βε̄2 + . . .) (5.3.1c)

ε̄ =
1√
β

[ ∫
pLdA∫

pLdAsphere
− 1
]1/2

(5.3.1d)

=
1√
β

[∫ H(Λ)dAspheroid(Λ)

4πRD

− 1
]1/2

(5.3.1e)

=
1√
β

[ 1

2Λ1/3

(
Λ +

cosh−1(Λ)√
Λ2 − 1

)
− 1
]1/2

(5.3.1f)

which is necessarily parabolic (the first order term is zero since the integrand is

even). As it properly accounts for volume conservation, the integrated curvature

model is more accurate at moderate deformations than linear models [3, 6] based

on the droplet semiaxes,

Rminor = RD

(
1− ε̄

2
+ . . .

)
(5.3.1g)

ε̄ = 2
(

1− Rminor

RD

)
=

2

3
(Λ− 1) (5.3.1h)

to which it reduces at small deformations with the factor β = 2/5. It indicates that

a spheroid has lower apex curvature than estimated in the linear model and so a

droplet can initially be stretched further at the same power and surface tension.

A practical outcome of these models is that small changes in shape with varying

power can be used to estimate the interfacial tension, if ε̄(Λ) = ε(σ, P ) is assumed.

The linear and spheroidal models do not distinguish between two-trap lateral and
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single-trap axial elongations; for the small single-trap deformation in Figure 5.1 they

give respective estimates of 2.0± 0.2 µN m−1 and 2.5± 0.3 µN m−1, which resemble

the spinning-drop tensiometry due to Aveyard [7].

Experimentally, when stretching a droplet with two parallel, coplanar traps, a

splitting instability (Figure 5.4) occurs when Λ increases to a threshold value Λ∞.

If this instability cannot be reached, maximum Λ with respect to trap separation

corresponds to a minimum in ULIFT. For droplets of 3-10 µm diameter, the tran-

sition is observed in brightfield at Λ∞ = 2.2 ± 0.2. At this point the deformation

must become nonlinear, such that by definition ε̄(Λ∞) ≡ 1. However, the spheroidal

approximation also breaks down, predicting ε̄(Λ∞) = 0.6 and a more distant transi-

tion. The model does not account for the distribution of the optical pressure higher

than a quadrupolar term. At the transition, the droplet shape is clearly no longer

spheroidal.

Figure 5.3: Laterally-stretched droplets of excess oil in excess water (heptane,

χ = 0.62, γ = cµc) with increasing displacement of two traps from (a-d). Al-

though decane droplets show higher refractive contrast (Table 4.1), heptane droplets

have lower minimum IFT and deform further. The largest aspect ratio shown is

Λ = 2.23± 0.09. Scale bar 4 µm.

5.4 Necking and nanothreads

What shape can be expected as nonlinearities appear? As the traps are separated

more widely, their influence on the central part of the droplet decreases. The local

shape will approach a minimal surface subtending the trapped regions. As fluid
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flows towards the nodes and the neck thins, this minimal surface is first a spheroidal

section, then a catenoid and finally two separate spheres. An instability is expected

at some Λ > 2, since splitting the droplet into two no longer results in a larger

surface area than the catenoid. Thus, at Λ∞, two daughter droplets develop. How-

ever, the monolayer fails to split under the influence of surface tension (Figure 5.4).

Instead a cylindrical thread remains between the two nodes. This is a nanothread,

so called as the typical diameter is less than can be resolved by optical microscopy,

i.e. RN � λ/2.

The conjoined daughters - or nodes of the network - rejoin at a trap separation

of the sum of the radii of the spheres, indicating that no minimum thread length

applies. Unlike separate droplets, they always coalesce with no kinetic barrier. On

extension of the thread, no maximum length is encountered; if limited only by a

volume constraint, a thread formed from a micron-sized droplet could be as long as

several millimetres - an aspect ratio of up to 105.

Figure 5.4: Systematic necking of droplet (heptane, χ = 0.62, 4.6 µm dia.) in

brightfield over small symmetric separation increments (0.02 µm/s at 0.75 fps).

Scale bar 4 µm.

How such an enormous volume-to-area ratio is maintained with finite IFT is not

immediately obvious. Reduction in the interfacial area implies either shortening or

thinning the thread; shortening is prevented by optical pressure when both ends

are trapped reservoirs. On the other hand, thinning the tube increases the local
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curvature and the bending contribution to the free energy. This small bending

energy of the interface is thought to stabilise the tube against the ultralow surface

energy [8]. The characteristic scale is the Helfrich length Lκ =
√
κ/σ. However, the

dependence of the surface free energy on the spontaneous curvature H0 is remarkably

strong, such that the nanothread behaviour differs qualitatively as the temperature

changes.

5.4.1 Thread force and recoil

The optical force required to produce a nanothread in this configuration is simply

the tension along the droplet’s circumference,

Fsurf ≈ 2πRDσ. (5.4.1i)

However, the thread tension, FN , is far smaller. If H0 = 0, FN scales according to

its radius RN ,

FN = 4πRNσ, (5.4.1j)

so the drops will always remain trapped on extending the thread. The equilibrium

thread radius calculated from the free energy functional (see § 5.6 for derivation) is

comparable to the Helfrich length,

RN =
√
κ/2σ = Lκ/

√
2 (5.4.1k)

and the corresponding tensile force is, more precisely (see § 5.6),

FN = 2π
√

2κσ − 4πκH0 · sgn (H), (5.4.1l)

which is of order 0.1-10 pN at ULIFT. Nanothreads cannot exist without such a

tensile force, here provided by a pair of optical tweezers. The experiments of Woods

et al. [9] show that when one end is released, the free droplet recoils towards the

trapped droplet. At a sufficient distance from the coverslip (∼ 20 RD), they do

so at a terminal velocity consistent with the prediction from Stokes’ Law balanced

against this thread tension.
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Simultaneous measurement of the drop’s size and recoil velocity provides an ex-

perimental estimate of the product κσ for the thread. The combination of SAXS

and droplet recoil yields the bending moduli in the Winsor III regime (Table 1.4),

assuming the two interfacial tensions are equivalent. These moduli are in very good

agreement with the literature [10, 11] at the WII-WIII boundary in the quater-

nary systems (χ = 0, 1) in both heptane (1.0, 1.1 kBT respectively) and decane

(1.25, 0.9 kBT ).

At first glance, one might assume the nanothread properties follow the symmetry

of the IFT with respect to the PIT. However, this was not the case for the emulsion,

whose inversion behaviour was influenced by the water-biased volumetric ratio Ω.

For a nanothread, behavioural asymmetry stems from its mean curvature remaining

positive (towards oil) as the spontaneous curvature changes sign. Consistent with the

newly-derived second term in § 5.4.1, the tensile force depends strongly on the sign of

the spontaneous curvature (Figure 5.10), unlike the radius and radial stiffness. The

tensile force vanishes and the thread thins as the spontaneous and real curvatures

become similar. For the anionic formulations considered in this study, this occurs

as the temperature increases far above the PIT. This insight helps to explain why

no minimum in tensile force with temperature has been observed (Figure 5.5, [9]).
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Figure 5.5: Nanothread tension as a function of temperature, obtained by Woods

using the recoil method (black data redrawn from [9]). The data are fitted using

Woods’ first order model with a temperature shift of +4.8 K (dashed blue line)

and the current model accounting for spontaneous curvature, with a shift of +2.2 K

(solid black line). Laser heating is estimated as +0.9 K.

At extreme ULIFT, threads become soft and diaphanous, with sufficiently low

tension that the diameter of the thread and its transverse thermal excitations can

be resolved. One implication of Figure 5.10 (see Appendix) is that nanothreads be-

come unstable under thermal fluctuations above the PIT and break into small o/w

droplets. However, most such observations have been associated with the simultane-

ous bursting or shrinking of the supporting nodal droplets (§ 3.6). Where this can be

avoided, some evidence exists for low-tension nanothreads connecting well-behaved
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rigid droplets above the PIT (§ 4.7). It is unclear as to whether this arises from the

spontaneous curvature effect proposed above, or merely from laser-induced temper-

ature differences between the warmer, trapped droplets and the cooler nanothread.

This ambiguity could be resolved in future by using D2O to reduce temperature

gradients in nanothread experiments.

5.4.2 Handles

As the interfacial tension decreases yet further, the interface loses its ability to trans-

mit optically-induced stresses across the droplet. The response time to a perturbing

deformation increases as ηRD/σ, whilst each trap acts more locally. This renders

the droplet’s centre-of-mass less sensitive to attempts at manipulation, even with

multiple traps around its periphery. Instead the traps fill with oil up to a character-

istic radius of 3Fesc/8πσ ∼ 1 µm, at which the surface and gradient forces balance.

These handles may be detached from the body with ease to form nanothreads.

5.4.3 Dumbbell symmetry

In the crossover regime ε ≈ 1, the optical forces can prevent the two nodes from

escaping under the thread tension, Fesc > 4πσRD, but cannot otherwise overcome

Laplace pressure in each individual node. Apart from the tether points, the nodes

are always circular in 2D profile, but in this regime their radii agree with those

of prolate spheroids under volume conservation. At this ε, the volumetric split

between the nodes is never precisely equal. The symmetric shape represents an

unstable equilibrium; it has up to ∼ 20% greater surface area than an asymmetric

dumbbell. Thus, when splitting the droplet at lower speeds, the initial equilibrium

is unperturbed and the incidence of symmetric shapes is increased.

For a constant separation speed, dumbbells are increasingly symmetric when the

interfacial tension is lower, corresponding to the limit ε � 1 (Figure 5.6). Near

the critical IFT (top row), the collapse is swift, highly asymmetric and occurs at

relatively small separations. As the ULIFT decreases further, the necking is slowed

such that liquid is entrapped as a freely-diffusing bolus on the thread. At the lowest
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ULIFT, the bifurcation becomes symmetric according to the ratio of (equal) trap

strengths.

Figure 5.6: Four examples of nanothread formation at decreasing ULIFT, captured

at ∼ 0.5 s intervals with increasing dual trap separation (left to right). Scale bar

10 µm.

The scenarios above describe the preferred dumbbell geometry in equilibrium for

different ε > 1. However, following a change in conditions and thus ε, flow between

reservoirs is necessary for the geometry to equilibrate. Woods showed that nanoth-
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reads do support flow over timescales of minutes to hours.

There are parallels between the surfactant-based nanothreads investigated here

and of surface-immobilised lipid vesicles [12, 13]. Similarly-thin tubes can be drawn

mechanically from one vesicle and capped with another vesicle. The stable tubes

allow the flow of liquid between the vesicles by three mechanisms [14]: constrained

diffusion, Marangoni transport and electrophoresis (analogous to the optical gradient

force here). The main differences are that the surfactant nanothreads are formed

from two-solvent microemulsions, with much lower ULIFT and bending rigidity

κ ≈ kBT . Thus, their properties are determined largely by the phase-inversion

phenomenon that does not occur in lipid-in-water systems.

5.5 Thread networks in brightfield

When more than two traps are manipulated (§ 2.4.2), multiple threads can be drawn

from the same droplet to create a nanofluidic network. The capability for interactive

tweezers opens up a rich experimental space for probing the stability and dynamics

of networks in different trap arrangements.

Woods measured the acute angle at which a V -network of three nodes collapses

to a Y -junction as 17 ◦. Our results for the same surfactant system verified this at

20 ± 3 ◦. Assuming a catenoidal neck for surfactant nanothreads, the theoretical

minimum angle of stability is:

θV→Y = 2 tan−1(
√
RN/RD) ≈ 20◦ (5.5.1m)

which does not depend on the spontaneous curvature and is therefore identical to

the result derived for lipid tubules [15]. Our prediction (RD = 2 µm, RN = 50 nm)

corresponds very well with the experimentally measured values. Nonetheless, col-

lapse can occur at node-to-node angles up to at least 90◦ if the threads’ tension is

low enough that they fluctuate and collide with one another (Figure 5.9).
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The connectivity of the network becomes a richer problem when four equal traps

are used to extend the droplet. A softer and larger droplet has a slower viscous

response in its untrapped regions. As a result, its stability is increasingly influenced

by dynamic considerations, such as the energy of thermal fluctuations and the vis-

cosities of the fluids. The characteristic relaxation speed is σ/ηW ∼ 100 µm s−1 at

ULIFT.

At relatively low separation rates, the centre of the droplet thins as the array ex-

pands. This sheet collapses to the edge of the array that initally supports the

largest volume of oil. This fluid then drains into the vertices to form a linear U -

shaped network of four nodes, thereby conserving the topology of the initial body.

The network shown in Figure 5.7 is equilibrated since the interval between steps is

> 1 s - many times slower than the viscous response time. Until the neck drains

fully, the minimum angle of stability is much larger than the equilibrium angle. If

thermal fluctuations are significant, the network can instead decay to a double-Y

junction.

Figure 5.7: A 6.4 µm droplet is suspended by a rectangular 4-trap array at increasing

separations up to 12 µm. Conditions are 4.5 mW/trap, 20.6 ◦C, 43.0 mM NaCl in

H2O, χ = 1. Scale bar 10 µm.
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If the rate of trap separation is comparable to the speed of the viscous relaxation,

no sheet appears. Instead four nodes are pulled out independently with a thread

connecting each to the remainder of the droplet. This untrapped central mass drains

until an unstable X-junction is formed [9]; at this point either the threads snap or

the junction disproportionates into a double Y -junction.

Figure 5.8: Interconversion of double Y -network orientation by collapsing the rect-

angular 4-array through a line. Chronological order is left-right descending with

intervals of ∼0.1 s. Conditions as for Figure 5.7. Scale bar 10 µm.

The most stable fully-connected network on a rectangular array is one of two

equilateral junctions (a double-Y -network). However, for arrays with aspect ratio

less than
√

3, the network is doubly-degenerate in perpendicular directions. One

orientation may be converted to the other in two ways. The array can be stretched
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perpendicularly to the central thread, shortening it until the junctions meet and the

thread reappears in the other orientation. Alternatively, by collapsing the rectan-

gular array through a line of two traps, as shown in Figure 5.8, the resulting central

thread becomes parallel to that line.

Figure 5.9: Recovery of a double-Y junction from a rectangular closed-loop network

created by coalescence of node pairs. Chronological order is left-right descending

with intervals of ∼10 s. Conditions as for Figure 5.7. Scale bar 10 µm.

The topological constant of a network can be increased by holding the ends

against each other until they coalesce. However, this process is stochastic and un-

reliable even at ULIFT where coalescence is most likely. Where closed loops are

formed, they decay to double-Y networks either through thread breakage, detach-

ment and recoil (Figure 5.8) or by gradual V -to-Y collapse at the nodes (Figure 5.9).
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5.6 Appendix: Theory of nanothread stability

under phase inversion

The effect of nonzero spontaneous curvature around the inversion point is considered

for a steady state nanothread. If entropic and fluctuation effects can be assumed

negligible, the Helfrich equation determines the curvature and IFT contributions to

free energy,

G =

∫ [
σ0 + 2κ(H −H0)2 + κ̄K + ...

]
dA (5.6.1n)

where terms are as defined in Chapter 1. Cylindrical constraints apply for a steady-

state thread, such that local curvatures are identical everywhere; curvature is zero

in the longitudinal axis and finite in the other:

|c1| = 0 |c2| = 1/R (5.6.1o)

K = 0 H =
sgn (H)

2R
A = 2πRL (5.6.1p)

G = 2πRL
(
σ0 + 2κ(H −H0)2

)
(5.6.1q)

G = 2πL
[(
σ0 + 2κH2

0

)
R +

κ

2R
− 2κH0 · sgn (H)

]
(5.6.1r)

where thread subscripts e.g. RN , LN → R,L are dropped for clarity. The quantity

sgn (H) refers to the geometry with a specified monolayer orientation, as defined

with the same convention as the spontaneous curvature, i.e. positive for (convex)

w/o and negative for (convex) o/w. As the thread is in equilibrium with larger

droplet reservoirs, its volume is not constrained. Minimising the free energy to find

the equilibrium radius,

dG

dR
= 0 → R =

√
κ

2σ
where σ = σ0 + 2κH2

0 . (5.6.1s)

The free energy per unit length is identified with a tensile force, and the equi-

librium radius is substituted. Then H and R are eliminated in terms of H0,

G

L
= FN = 2π

√
2κσ − 4πκH0 · sgn (H) (5.6.1t)

As the spontaneous curvature increases from zero, the ideal IFT - identified

with that of a planar geometry - increases and so the thread thins; thus the mean
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curvature also increases. The radial stability of the thread at equilibrium is dictated

by the curvature of free energy with respect to changes in radius,

d2G

dR2
= +

κ

R3
(5.6.1u)

The equilibrium radius is stable regardless of the signs of H or H0, with thinner

threads becoming exceptionally rigid against changes in thickness. The spontaneous

curvature is proportional to the change in temperature from the phase inversion

point by a factor dH0/dT = 8.5 × 106 m−1K−1 for heptane/AOT/NaCl/H2O [16],

so a similar force-temperature curve can be calculated.

Figure 5.10: Idealised properties of an oil-in-water thread varying with spontaneous

curvature (non-dimensionalised), following from the Helfrich expansion without ther-

mal fluctuations. Each function is normalised by its value at the inversion point,

where H0 = 0, σ = σ0.

An extra term appears in the expression for the thread tension, which sensibly

states that the threads free energy is lower under conditions favouring a microemul-
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sion of the same sense. For a o/w thread, sgnH > 0 and the tension decreases with

T . For a thread in equilibrium, the condition |H| > |H0| is always fulfilled, so there

is always some curvature term stabilising the thread radius against thinning due

to IFT. However, this weakens as H0 increases with the same sign as H, and the

thread’s tensile force vanishes even faster than the IFT rises. Although the thread

is radially more stable in a free energy sense, a lower tension would make the thread

more vulnerable to other influences along its length, such as thermal fluctuations.
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Glossary

A Interfacial area m2

AOT Aerosol OT, ionic surfactant

Brij-L4 Commercial line of C12E4, nonionic surfactant

C12E4,5 polyoxyethylene glycol ethers, nonionic surfactants -

cmc Critical micellar concentration M

cµc Critical microemulsion concentration M

FN Tension force along thread -

G Gibbs free energy J

H Mean curvature m−1

H0 Spontaneous curvature m−1

K Gaussian curvature m−1

L Thread length m

LA Trap separation, normalised to drop radius m, -

Lκ Helfrich length m

LC Capillary length m

M Number of traps -

NA Numerical aperture -

n,∆n Refractive index, contrast -

P Optical power W

pL Laplace pressure N m−2

Q Trapping efficiency factor -

R,RN Thread radius m

RD Droplet radius, undeformed m

Rminor Droplet semiminor axis, spheroid m

T,∆T Temperature, Laser heating K

t Time s

V Volume m3

z Coordinate along beam axis m

zR Rayleigh range of Gaussian beam m

∆ρ Buoyant density difference kg m−3

ε Optocapillary number, first order perturbation parameter -
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ε̄ Quasi-second order parameter ≈ ε -

γ Total surfactant weight fraction in total mixture -

γW Total initial surfactant concentration in water -

κ Bending modulus J

φA Volume fraction of phase A -

Ω Volumetric water-to-oil ratio -

θ Angle between threads deg

Λ Aspect ratio for small to moderate deformations ε < 1 -

Λ∞ Value at which lateral splitting occurs in two traps

β Spheroidal model, constant to be determined -

λ Optical wavelength m

ω0 Beam waist m
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Chapter 6

3D imaging of deformed droplets

6.1 Fundamentals of 3D imaging techniques

A droplet is commonly described as a single, extended object of constant volume.

If it is optically homogeneous, only the boundary location needs to be identified to

determine the distribution of volume and vice versa. Equilibrated shapes are not ex-

pected to be hollow, as vacancies of a detectable size are unlikely to be stable. Many

3D imaging techniques are capable of reconstructing the shape of such a system sat-

isfactorily. However, fluorescent confocal and structured illumination microscopy

(SIM) do not require these assumptions a priori. Each can resolve arbitrary volu-

metric distributions, as each z-section is independent. Their 3D reconstruction is

superior to stereoscopic imaging, particularly with feature-poor or occluded shapes.

The bulk of the 3D imaging results were obtained using confocal fluorescence

microscopy, with examples of droplets1 in 2-, 3- and 4-trap arrays from structured

illumination sectioning.

1As for Chapter 5, the surfactant was AOT only (χ = 1) and did not include the nonion-

ics required for reduced temperature sensitivity. For the AOT/heptane/NaCl/H2O and -D2O

quaternary systems, the surface tension varies strongly with salinity and temperature in a well-

characterised manner (Chapter 1).

195



6.1 Fundamentals of 3D imaging techniques 196

6.1.1 Confocal laser scanning microscopy

In confocal laser scanning microscopy, the field of view is illuminated by a focused

laser such that a region of fluorescent oil is excited, but only light emitted from a

volume matching the point-spread function (PSF) is passed through a pinhole to the

camera at any instant [1]. The PSF z-dimension represents the axial resolution of

the confocal microscope, which is many times smaller than the equivalent widefield

fluorescence microscope. The laser focus and pinhole are rastered in xy to produce

each z-section exposure. Increased resolution comes at the expense of signal; the

low light levels require a low-noise scientific camera and long rastered exposures

of 100 ms or more despite high-intensity excitation [2]. Typically, a stage-fixed

sample is scanned in z by stepping the objective-to-stage distance, but for trapped

objects, the trapping focus or detection plane must be moved instead. Here, this

trap refocusing is achieved by displacing a telescope lens, although this introduces

spherical aberration.2 Experimental details including a rigorous calibration are given

in § 6.6.

6.1.2 Structured illumination microscopy

Loss of image contrast with distance from the focus is a familiar effect which SIM

exploits as a sectioning tool. It does so by imposing a known spatial modulation on

the excitation light, for example with a periodic transmittance mask [4]. By shifting

the periodic mask in xy and taking further frames, a set of three or more images

per z slice is obtained, whose sum recovers the full widefield image. However, the

variance between these images contains only information from the focal region car-

ried by the input modulation. As higher frequency signals are transferred with less

contrast at a given amount of defocus, finer modulation leads to a thinner z-section

until the diffraction limit is reached.

The primary advantages of SIM over confocal microscopy are that photobleaching

2Aberration-free refocusing is a developing area of non-adaptive optics, though constrained to

unity magnification by Abbe’s sine condition [3].
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and exposure times are reduced. No emitted light needs to be rejected, since all of

its structure corresponds to useful signal from the focal region. To build a z-stack

of a trapped object, again either the trap or the SIM illumination plane must be

refocused. For an optimal number of images per slice, SIM is expected to yield

better signal-to-noise performance and sectioning response than confocal scanning

microscopy [5]. For experimental details refer to § 2.4.3.

6.2 Single trap deformations

6.2.1 Elongation

3D imaging shows that droplets in a single trap are elongated along the z-axis as was

inferred from the brightfield contraction in the lateral directions (§ 5.2). Although

the droplets shown in Figure 6.1 are relatively stiff (of several µN m−1), the axial

aspect ratio is Λ ≤ 1.12, significantly less than the value of 1.25 predicted from the

spheroidal approximation described in § 5.2.

For single-trap deformations in the weak, spheroidal regime, the 3D aspect ra-

tio scales linearly with the applied trap power for samples in D2O. As the surface

tension decreases, the droplet becomes more elongated and the trapping potential it

experiences becomes less sensitive to its axial position. However, the buoyant force

on the droplet’s centre of mass is constant. As a result, the droplet’s centre-of-mass

is displaced further above the laser focus with increasing optocapillary number, ε

(Figure 6.3) and decreasing capillary length L′C .

As ε approaches unity, an hourglass shape develops in which the surface aligns

with the iso-intensity contours of the beam § 5.3.1, with saddle curvature at the

beam waist. The aspect ratio of the contours approaches Λ ≤
√

2e/NA ≈ 1.9 a few

zR away from the focus. As for the two-trap dumbbells, the shapes are first asym-

metric at the transition and become more symmetric as ε increases further. The

illuminated face becomes increasingly flattened and its edge becomes more sharply

curved.
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Figure 6.1: A single drop in a trap (left to right) deforming linearly along its

axis with increasing optocapillary number below the PIT; (top) brightfield; (bot-

tom) 3D volumes of each, rotated to emphasise variations. The arrow indicates the

laser’s direction of propagation (vertically upward in the laboratory). All to scale

bar 2 µm. Conditions are RD = 3.2 µm, TA = 20.9 ◦C, S = 44.0 mM in H2O,

σ = (9, 7, 6) µN m−1, P = (12, 19, 24) mW, ε = (0.1, 0.3, 0.4).

Unlike the two-trap case, the transition from barrel to hourglass shape is abrupt,

occurring over a small range of ε close to 1 (Figure 6.2). The sequence of deforma-

tions is similar to that predicted in collaborative simulations [6]. The power required

to induce saddle curvature in a RD = 2.4 µm drop at σ = 1.8 µN m−1 is 24 mW,

about half the 55 mW predicted from simulation for an smaller, softer RD = 2 µm

drop at σ = 1 µN m−1. It is possible to avoid the constant empirical prefactors

involved in the choice of ε = 1 by instead comparing the ratio P/σRD directly;

the discrepancy is almost a factor of 5. While the uncertainty in the experimental

ratio is large because of the sensitive surface tension, it is no greater than a factor

of 2. That is to say, the experimental conditions for the transition give a Tapp-

Lubansky-Taylor optocapillary number of just 0.2− 0.4. A force not accounted for
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by the simulation is encouraging the droplet to recurve at a lower ratio of optical

to surface forces; buoyancy is such a candidate. At the linear side of the transition,

the upward, shadowed side of the droplet is more pointed and the illuminated side

is flattened relative to the sphere. Although the optical forces on the two sides are

not precisely equal due to the centre-of-mass displacement under scattering force,

it is known that scattering-related asymmetry is small in the simulations, in which

buoyancy is not included. The presence of significant asymmetry in experiment in-

dicates that buoyancy can influence the shape subtly even when the capillary length

is still large, L′C > 8. It appears that buoyancy on the scale of the ‘handle’ could be

facilitating the curvature transition associated with ε = 1, by stretching the droplet

vertically and flattening its longitudinal curvature.

Figure 6.4 3 captures the transition point for a droplet of similar size, 2RD ∼ 5 µm.

Although the brightfield views are ambiguous in themselves, they give useful infor-

mation as they are especially sensitive to the curvature of slightly defocused trans-

parent objects [7]. Comparing the brightfield with the 3D volumes, the development

of the waist is recognisable as the dark central spot.

For a smaller droplet of 2RD ∼ 3 µm, at extreme ε > 10, (see Figure 6.5), the

shape no longer changes significantly, reflecting its adherence to the optical contours.

The shapes are more symmetric across the waist than the larger droplets above, as

a result of lesser buoyancy. However, the upper and lower faces show ridges and

cusps which would not be expected from a diffraction-limited focus.

3Experiments in Figure 6.4 and a few others are performed above the PIT; laser heating increases

the interfacial tension faster than the optical trap strength. Counter-intuitively, ε increases as the

trap power decreases.
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Figure 6.2: 3D confocal volumes of a single drop in a trap; (top to bottom) de-

velopment of the shape with increasing optocapillary number below the PIT; (left

to right) identical volumes shown in three orientations. The arrow indicates the

laser’s direction of propagation (vertically upward in the laboratory). All to scale

bar 2 µm. Conditions are RD = 2.4 µm, TA = 20.2 ◦C, S = 43.0 mM in H2O,

σ = (2.8, 1.8, 1.8, 0.9) µN m−1, P = (12, 19, 24, 29) mW, ε = (0.3, 0.8, 1.2, 1.3).
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Figure 6.3: The widest part of the droplet moves upwards relative to the focus as the

droplet becomes more deformed by a single trap. For small deformations (ε < 1) this

displacement is linear (solid line). For nonlinear deformations (ε > 1), the widest

cross section corresponds to the approximate midplane of either the upper or lower

halves of the hourglass shaped droplet, which continue to separate (dashed lines).

The exceptionally high deformability of this droplet even allows the identification

of aberrations in the beam used to trap it. In this case, the bowtie-like elliptical

faces imply the presence of astigmatism and the concentric ridges and points on the

faces imply spherical aberration.4

4As the instantaneous effect of spherical aberration on the optical intensity distribution cannot

be symmetric around the focus, its equal presence on both sides shows that the aberration inverts

in sign in the middle of the axial scan. The measured droplet shape is affected only at the extremes

of z. See § 6.6.10.
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Figure 6.4: A single drop in a trap; (top to bottom) development of the shape with

increasing optocapillary number above the PIT; (left to right) brightfield views;

identical 3D volumes shown in three orientations. The arrow indicates the laser’s

direction of propagation (vertically upward in the laboratory). All to scale bar

2 µm. Conditions are RD = 2.1 µm, TA = 20.9 ◦C, S = 43.0 mM in H2O,

σ = (3.1, 1.8, 1.4, 0.7) µN m−1, P = (29, 24, 19, 12) mW, ε = (1.0, 1.6, 1.8, 1.8).
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Figure 6.5: A single drop in a trap; (top to bottom) development of the shape

with increasing optocapillary number and decreasing power above the PIT; (left to

right) identical 3D volumes shown in three orientations. The arrow indicates the

laser’s direction of propagation (vertically upward in the laboratory). All to scale

bar 2 µm. Conditions are RD = 1.5 µm, TA = 21.0 ◦C, S = 43.0 mM in H2O,

σ = (1.1, 0.4, 0.3, 0.3) µN m−1, P = (29, 24, 19, 12) mW, ε = (1.5, 8.3, 14, 17).
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Figure 6.6: A single large drop in a trap; 3D volumetric reconstruction. The arrow

indicates the laser’s direction of propagation (vertically upward in the laboratory).

Scale bar 2 µm. Conditions are RD = 3.2 µm, TA = 20.9 ◦C, S = 29.5 mM in D2O,

σ = 1.2 µN m−1, P = 17 mW, ε = 1.2.

For larger drops such as that shown in Figure 6.6, the hourglass transition does

not occur since the buoyancy force is great enough to pull the majority of the fluid

into the upper region far from the trap. The lower region is a handle (see § 5.4.2)

with which the droplet is retained in the trap. Drops can only remain intact under

buoyancy when the capillary length is greater than L =
√
R2
D/3RH , where RH is

the radius of the drop waist. For the droplet shown in Figure 6.6 this condition

corresponds to an IFT of 0.4 µN m−1, not very far below the experimental IFT.
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6.3 Multiple trap deformations

6.3.1 Linear arrays

The separation of two or more overlaid traps breaks the rotational symmetry of the

droplet in a novel way, generating many interesting shapes. However, ε, as used to

catalogue and interpret them, must be redefined for a droplet subtending several

traps. The values quoted here are divided by the number of traps, ε/M .

A representative example of the two-trap confocal stack is given in Figure 6.7.

Rather than the prolate cigar-shape expected from the 2D view, the droplet is

extended in z about the same distance as between the traps, giving a oblate pebble-

shape. The illuminated face shows nothing of the protrusions seen in other samples,

but is markedly flattened, and the oval points sharpened, relative to the rear face.

At an IFT of 6 µN m−1 only convex structures are accessible, but elongation and

flattening are easily identified. The increasing x, y curvature towards the laser axis-

droplet intersections is a feature consistent with a local balance between Laplace

and optical pressures.

The morphology changes with trap separation very differently in cases of tran-

sitional and very high ε/M . For moderately deformable droplets (Figure 6.9), the

trapped reservoirs retain an elongated, convex, acorn-like shape as the droplet is

stretched apart. A neck begins to appear at a separation of LA ∼ RD, in that the

surface becomes saddle-curved simultaneously in all directions perpendicular to the

separation axis.
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Figure 6.7: Two traps; (top left) brightfield view; (top right) confocal cross-sections

in xy, xz and yz planes through the approximate centre-of-mass; (bottom left) 3D

volumetric reconstruction. The arrow indicates the laser’s direction of propagation

(vertically upward in the laboratory); (bottom right) confocal xy frames as a function

of z from top (shadowed) to bottom (illuminated), at half scale. All to scale bar

5 µm, except inset scale bar 2 µm. Conditions are RD = 3.3 µm, TA = 20.5 ◦C,

S = 45.0 mM in H2O, σ = 7 µN m−1, P = 39 mW, ε/M = 0.7, LA = 4.3 µm.

At larger separations LA/RD > 1 but less than that required for collapse to a

thread, the neck develops an interesting asymmetry. A perfect circular-catenoidal

neck would require perfect circles as bounding contours. However, the end reser-

voirs show an axial elongation similar to that of droplets in single traps. The vertical

cross-sections are shown in Figure 6.8. At the extrema of the droplet along the axis

of separation, this ratio is as great as Λxz = 1.7, approaching that of the iso-intensity
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contours. The cross sections at the trap locations are extended along the axis by

Λxz = 1.2 on both sides. Moreover, the central cross section is also elliptical, but

instead with an axial contraction of Λxz = 0.85. Elliptical catenoids are minimal

surfaces with the property that where the bounding contours broaden in the z direc-

tion, the neck narrows in z more steeply along its length. The overall result is that

the volume of the neck region is conserved; the axial deformation of the trapped

reservoirs does not require material to be removed from regions of higher optical

intensity to be added to the neck. The capillary ratio is very high, L′C > 20, so

asymmetry in z due to buoyancy is very weak. The neck does not appear to bend

upwards, nor does it attach to the upper part of the reservoirs.

Figure 6.8: A droplet extended across two traps as shown in Figure 6.9, lowest figure;

(left to right) vertical yz cross sections at 0.64 µm intervals along the separation

axis x. The arrows indicates the two lasers’ x positions and direction of propagation

(vertically upward in the laboratory along +z). All to scale bar 3 µm.

For droplets of exceptionally high deformability, as in Figure 6.10 above the

PIT, the shapes obtained resemble overlapping single-trap shapes of high ε. Around

LA/RD ∼ 1, the droplets first become concave in the lateral direction between the

foci. Where the flattened illuminated faces meet, there is a slight downward bulge.

There is no counterpart on the shadowed side.



6.3 Multiple trap deformations 208

Figure 6.9: Two traps at moderate optocapillary number; (top to bottom) develop-

ment of the shape with increasing trap separation; (left to right) brightfield views;

identical 3D volumes shown in three orientations. The arrow indicates the laser’s

direction of propagation (vertically upward in the laboratory). All to scale bar 2 µm.

Conditions are RD = 2.0 µm, TA = (20.5, 20.6, 20.7, 20.8, 20.8) ◦C, S = 29.5 mM in

D2O, σ = (4, 8, 7, 6, 5, 5) µN m−1, P/M = 15 mW, ε/M = (1.0, 0.8, 0.9, 1.1, 1.4, 1.4),

LA = (0, 0.7, 1.4, 2.2, 2.9, 3.4) µm.
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This difference probably stems from the mild astigmatism evident in the traps,

whereby the elliptical beams extend along the separation axis - and therefore overlap

- on one side of the focus but not the other. At larger separations, the neck rises

well above the z-plane of the foci to conjoin the shadowed halves of the reservoirs.

Relative to Figure 6.9, ε/M is made larger at constant power by decreasing IFT

by an order of magnitude. Consequently, the effect of buoyancy on the shapes in

Figure 6.10, as quantified by the capillary length L′C > 4, is far greater.

Thread measurements

Separating the traps further results in an asymmetric bifurcation consistent with the

brightfield dimensions ( Figure 6.10, lowest). Although the nanothread itself cannot

be resolved in a confocal reconstruction whose threshold is set by the droplet vol-

ume, its presence can be inferred from the 120◦-angled cusps where it attaches to

the reservoirs. The thread itself is discernible in the cross-sections of the upper half

of the split droplet, albeit only at high contrast (Figure 6.11). The peak emission

intensity is about 50× less for the thread than the larger reservoir. The reservoir

extends over the confocal depth of field, DoF = 3nWλ/2NA
2 = 0.8 µm, where nW is

the refractive index of water, whilst the thread appears over a width of W = 0.4 µm

due to its fluctuation during exposure.

The true thread dimensions obey πR2
T = DoF ·W/50 assuming uniform oil lu-

minosity, such that RT = 50 ± 6 nm. The corresponding estimate of the IFT is

σ = κ/2R2
T = 0.8±0.1 µN m−1, which matches that calculated from the laser-heated

temperature and salinity within error. A similar thread calculation is used in § 6.3.3.

A summary of the morphologies observed when varying the optocapillary number

and trap separation for a smaller droplet in two traps is given in Figure 6.12.
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Figure 6.10: Two traps at very high optocapillary number; (top to bottom)

development of the shape with increasing trap separation; (left to right) bright-

field views; identical 3D volumes shown in three orientations. The unfilled

arrows indicates the laser’s direction of propagation (vertically upward in the

laboratory); in the final row, the smaller double arrows indicate the position

of the nanothread as shown in Figure 6.11. All to scale bar 2 µm. Conditions

are RD = 2.4 µm, TA = (20.2, 20.5, 20.3, 20.6, 20.4) ◦C, S = 43.0 mM in H2O,

σ = (0.3, 0.4, 0.3, 0.9, 0.6) µN m−1, P/M = 15 mW, ε/M = (12, 14, 17, 7, 10),

LA = (0, 0.7, 1.4, 2.2, 2.9, 3.4) µm.
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Figure 6.11: An xy cross-section of the bifurcated droplet shown in Figure 6.10, in

the midplane of the upper part; (left) with contrast normalised to the droplet centre

as used for reconstruction, with thread not visible; (right) the same frame at 20×

digital saturation, revealing the nanothread averaged over the 1s confocal exposure.

Scale bar 3 µm.

The lateral asymmetry between the trap positions probably arises from a slight

mismatch in trap powers 5 The weaker and less-developed side follows a similar

trend to the stronger trap, albeit delayed to lower IFT, in that the underside of the

droplet moves upwards across the focus and curves around it. The droplet’s upper

surface also moves upwards uniformly, eventually extending beyond the endpoint of

the scan. At high ε/M , the stronger trap pinches the respective half of the droplet

into an hourglass at its focal point. At the lowest IFTs, the droplet appears rougher

as its fluctuations increase and it begins to shed oily, microemulsifying debris, pri-

marily at the illuminated side of the hourglass.

5In timesharing (Setup B) and the random mixing algorithm (Setup C), the trap powers are

not equalised manually but are equal by definition and are indistinguishable in practice. Most

likely, the difference in power stems from the decrease in the holographic diffraction efficiency with

different displacements from the zeroth-order beam (§ 2.4.3). The quoted power P/M is half the

known calibrated transmission for a single trap at the centre of the field of view.
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Figure 6.12: Shapes produced above the PIT at different optical pow-

ers (i.e. optocapillary numbers) and separation of two traps; (top to

bottom) decreasing optical powers P/M = (29, 24, 19, 14, 9) mW; (left

to right) increasing trap separations, LA = (0.7, 1.4, 2.2) µm. The ar-

row indicates the laser’s direction of propagation. All to scale bar 2 µm.

Conditions are (reading L→R then T→B) RD = 1.5 µm, S = 43.0 mM

in H2O, TA = (21.1; 21.0, 20.9; 21.0, 20.9, 20.9; 20.9, 20.9, 20.8; 20.9, 21.0) ◦C,

σ = (3.8; 3.0, 1.8; 2.4, 1.8; 1.4, 1.8, 1.4; 0.7, 1.1, 1.3) µN m−1,

ε/M = (1.2; 1.5, 2.0, 2.0; 1.6, 1.9, 3.6; 2.7, 2.5; 2.6, 4.8).
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Figure 6.13: Large droplet in two traps at moderate optocapillary number, stacks

obtained by SIM; (top to bottom) shape with increasing trap power; (left to right)

identical volumes, median-intensity projections in four orientations: oblique, xy,

yz, xz. All to scale bar 4 µm. Conditions are RD = 3.8 µm, LA = 6.0 µm,

S = 30.0 mM in D2O, TA = 20.6 ◦C, σ = (20, 16, 13, 10, 7, 5, 3, 2, 0.8) µN m−1,

P/M = (69, 75, 81, 87, 93, 99, 105, 111, 117) mW, ε/M = (0.8, 1.1, 1.5, 2, 3, 5, 8, 14, 30),
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As ε/M decreases, the IFT becomes significant, but it can only act on the centre

of mass if it varies strongly across the surface. In most of the results in this chapter,

the traps are close to the surface and laser-heating in H2O is strong. However as dis-

cussed in § 4.6, the typical thermal gradients are insufficient to generate appreciable

thermocapillary stresses in any direction. The thermal forces on the interface are

attractive towards the regions of high intensity below the PIT and repulsive above

the PIT. Since thermal forces vary with optical power, their effect on the shape

cannot be easily distinguished from the effect of trapping forces.

For Figure 6.13, the highest power (117 mW) is around the minimum used in

§ 4.6, but the IFT is far more temperature-sensitive in these experiments. It is

feasible that the difference in attractive thermocapillary forces could contribute

to the asymmetry across the two trap positions, particularly since the hourglass

surface lies within 1.4 µm of the stronger trap’s focus. This set of conditions cor-

responds to upper limits of ∆T = 1.8 K and ∇T = 0.08 K µm−1 from § 4.7,

whilst T − T ∗ = 0.3 K, such that δσ/δT = 3 µN m−1K−1 and so ∇σ ≤ 0.24 N m−2.

This capillary stress is significant compared to the Laplace pressure at this necking

point, pL ≤ σ/1.4 µm = 0.6 N m−2. By this calculation the thermocapillary stress

has forced the neck diameter to decrease by as much as 40%, compared to the case of

uniform interfacial tension at the same average value. The difference in trap powers

across the droplet would appear larger than the true value. The estimated difference

from a rough correlation of the droplet shapes is ±8% of the mean P/M , which is

greater than the calibrated upper limit of ±3% due to variations in holographic

diffraction efficiency over the separation distance of 10 µm.

By comparison across the PIT, where Marangoni forces should reverse direction,

the significance of thermal forces in the rest of the results - whose power and there-

fore thermal variation across the surface is less by almost an order of magnitude -

can be neglected (see § 6.3.3).



6.3 Multiple trap deformations 215

For large droplets (Figure 6.14), a significant departure from a sphere can be

achieved without pulling out handles from the lower surface. By keeping the separa-

tion around one drop radius, LA/RD ∼ 1, and maintaining a moderate optocapillary

number, ε/M ∼ 1, the droplet extends in both x and z almost equally. Here, the

oblate shape is oriented edge-on to the beam axis, whereas for larger separations

LA/RD � 1, as in Figure 6.13, it is oriented facing the beams.

Figure 6.14: Two traps; (left to right) identical 3D volumes shown in three orienta-

tions. The arrow indicates the laser’s direction of propagation (vertically upward in

the laboratory). All to scale bar 4 µm. Conditions are RD = 3.4 µm, TA = 21.2 ◦C,

S = 29.5 mM in D2O, σ = 6 µN m−1, P/M = 20 mW, ε/M = 0.9, LA = 3.2 µm.

Adding a third trap in the centre (Figure 6.15) roughly doubles the end-to-

end separation required to split the droplet. Notwithstanding the tendency for a

droplet to split asymmetrically by volume, the bifurcation behaviour of each side

can be treated as approximately independent of the other. The invisible nanothread

created by the first split does not affect the shape of the larger reservoir, which is

the same as that produced by two traps in the absence of a third (compare with

Figure 6.12, centre).
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Figure 6.15: A droplet suspended in three colinear traps; (top to bot-

tom) increasing end-to-end separation LA = (0, 0.4, 0.7, 1.4, 2.2, 2.9, 3.6);

(left to right) brightfield views; identical 3D volumes shown in three

orientations. The nanothread implicit in the bifurcation not resolved.

All to scale bar 2 µm. Conditions are RD = 1.6 µm, S = 43.0 mM

in H2O, P/M = 6.4 mW, TA = (20.6, 20.4, 20.3, 20.7, 20.7, 20.7, 20.7) ◦C,

σ = (0.9, 0.9, 1.9, 2.6, 2.5, 2.5, 2.5) µN m−1, ε/M = (3.7, 3.7, 2.0, 1.3, 1.4, 1.4, 1.7).
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6.3.2 Triangular arrays

For regular, coplanar arrays of three traps, a pleasingly regular threefold symmetry

is preserved in the droplet surfaces.6 In Figures 6.16 and 6.17, the separations are

larger than the examples obtained with two traps. The dimensions of the illuminated

base, marked by slight shoulders or cusps, match the known trapping positions.

Figure 6.16: Three traps; (top left) brightfield view; (top right) confocal cross-

sections in xy, xz and yz planes through the approximate centre-of-mass; (bottom

left) 3D volumetric reconstruction. The arrow indicates the laser’s direction of

propagation (vertically upward in the laboratory); (bottom right) Confocal xy frames

as a function of z from top (shadowed) to bottom (illuminated), at half scale. Both

scale bars 5 µm. Conditions are RD = 4.4 µm, TA = 20.5 ◦C, S = 45.0 mM in H2O,

σ = 4 µN m−1, P/M = 13 mW, ε/M = 0.6, LA = 9.0× 7.2 µm.

6Equal separations in x, y do not relate precisely to an equilateral triangle, but an isoceles

subtending a square.
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Figure 6.17: Three traps. Stacks obtained by structured illumination microscopy;

identical volumes shown as median-intensity projections in four orientations: oblique,

xy, yz, xz. Arrows indicate lateral position and direction of trapping beams. Scale

bar 3 µm. Conditions are RD = 3.8 µm, S = 30.0 mM in D2O, TA = 20.7 ◦C,

σ = 8 µN m−1, P/M = 74 mW, ε/M = 0.7, LA = 5.7× 5.0 µm.

In the first case the markedly triangular lower face is also flattened due to its

larger trap separation, while the upper side remains rounded. In the latter, the xy

cross-section of Figure 6.17 very closely resembles a Reuleaux triangle - a curve of

constant width in every orientation. As for the ovals of greatest separation relative

to the initial radius (Figures 6.7, 6.9 and 6.13), neither shows notable elongation

along the vertical axis.

Interpretation of the sequence in Figure 6.18 is particularly clear since the ε/M

is almost constant over the dynamic range of the laser power. Decreased laser

powers makes the droplet soften since the temperature is above the PIT. As the

separation of the traps is also constant, the principal variable is the capillary length,

which decreases from L′C ≈ 12 to ≈ 6. This property indicates strongly that the

differences in shape result solely from the buoyant stress across the droplet. While

the droplet is distorted only mildly from a sphere in terms of aspect ratio, this has

much to do with the particular separation of the traps at LA/RD = 0.7 so that

lateral stretching compensates for axial elongation. The main development is the

inversion in curvature of the illuminated surface; it changes from a convex, rounded

triangle to an acute, concave one, whose points begin to protrude. The equatorial
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surfaces (or the oblong faces of the triangular prism), at first coplanar with the beam

axis, become more rounded as the optical forces decrease.

Figure 6.18: A droplet is stretched in three traps. One stack is shown per row;

(left to right) identical 3D volumes shown in three orientations; (top to bottom)

decreasing interfacial tension and optical power above the PIT. The arrow indicates

the laser’s direction of propagation (vertically upward in the laboratory). All to

scale bar 2 µm. Conditions are RD = 2.4 µm, S = 43.0 mM in H2O, TA = 20.5 ◦C,

σ = µN m−1, P/M = (10, 8, 6, 3) mW, ε/M = (1.5, 1.7, 1.7, 1.7), LA = 3.6× 3.6 µm.

The same trends are visible in Figure 6.19, in which the capillary length also

decreases, from L′C ≈ 8 to ≈ 3. The larger, more buoyant shapes are flattened to

a greater extent on the upward, shadowed side and are thinned along z. However,

the temperatures lie below the PIT and ε/M increases with higher P due to laser

heating. The strongest effect of higher ε/M is that the handles dominate the lower

half of the object, with a distinctive trefoil xy cross-section and saddle curvature

along the lines between trap positions. For the highest ε/M , a very weak concavity
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(negative mean curvature) is observed in the centre of the trap array.

The trends in droplet elongation and edge definition of the illuminated half con-

tinue with triangular prism-like droplets (Figure 6.20). The illuminated faces are

flattened with a smooth but well-defined edge. The trap intersections protrude

with increased ε/M in a way that resembles the handles in Figures 6.6 and 6.13.

Yet for a small coplanar array of three or more distinct traps, each pair of traps can

also support flattened vertical faces extending upwards to the equator of the droplet.

Figure 6.20: A droplet is stretched in three traps. One stack is shown per row;

(left to right) identical 3D volumes shown in three orientations. The arrow indicates

the laser’s direction of propagation (vertically upward in the laboratory). All to

scale bar 3 µm. Conditions are RD = (4.1, 4.0) µm, S = (29.5, 31.5) mM in D2O,

TA = (21.2, 21.5) ◦C, σ = (1.9, 1.2) µN m−1, P/M = 13 mW, ε/M = (1.5, 2.4),

LA = 5.0× 5.0 µm.
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Figure 6.19: A droplet is stretched in three traps. One stack is shown per row;

(left to right) identical 3D volumes shown in three orientations; (top to bottom)

increasing optocapillary number and power below the PIT. The arrow indicates the

laser’s direction of propagation (vertically upward in the laboratory). All to scale

bar 2 µm. Conditions are RD = 2.9 µm, S = 46.0 mM in H2O, TA = 21.9 ◦C,

σ = (1.8, 0.7, 0.4, 0.3) µN m−1, P/M = (3, 6, 8, 10) mW, ε/M = (0.5, 2.9, 7.9, 8.8),

LA = 5.4× 5.4 µm.
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Each shape becomes increasingly triangular, though remaining convex, in cross-

section toward the illuminated underside, whose surface lies within half a micron

from the focal plane. For large drops at small separations LA/RD = 0.7 or less, the

extension in z is roughly maximal, around 0.2-0.3 RD (Figure 6.21); while the upper

surface is almost spherical, on the lower face there are three protrusions of relatively

high curvature, each marking the intersection with a trap axis.

Figure 6.21: A large droplet is stretched in three closely spaced traps. The arrow

indicates the laser’s direction of propagation (vertically upward in the laboratory).

Scale bar 3 µm. Conditions are RD =4.6 µm, S = 30.0 mM in D2O, TA = 20.8 ◦C,

σ = 0.4 µN m−1, P/M = 13 mW, ε/M = 5.8, LA = 3.6× 3.6 µm.

These handles strongly resemble the feature in the single trap scan (Figure 6.6).

The shape instils confidence as the simultaneous capture of three equally sized for-

eign bodies is unlikely and the handles cannot be thresholded out. The face between

the protrusions includes concave regions (H < 0); it is therefore not a minimal sur-

face as would be imposed by interfacial tension in isolation. For droplets with inter-

mediate trap spacing of LA/RD = 1.6 Figure 6.22 and high deformability ε/M > 1,

the surface furthest from the traps is still influenced by overlapping handle struc-

tures.
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Figure 6.22: Two different droplets in three traps at constant LA/RD = 1.6

with only the larger droplet (lower) showing the dimpled faces of negative mean

curvature near its horizontal midplane. The arrow indicates the laser’s direction.

Both scale bars 2 µm. Conditions are RD =(1.5,3.4) µm, S = (43.0, 44.0) mM

in H2O, TA = (20.3, 20.5) ◦C, σ = (0.6, 0.3) µN m−1, P/M = (9, 12) mW,

ε/M = (1.8, 3.2),LA = (2.5× 2.5, 5.4× 5.4) µm.

Within a small range of array sizes relative to the handle size, the lack of overlap

between the hourglass necks leaves a vacancy on each of the lateral faces (Figure 6.22,

lower). These faces have negative mean curvature in accordance with Tapp et. al.

([6], Figure 7c.), though again accessible at lower powers and optocapillary numbers

in experiment (P/M = 12 mW, ε/M ≈ 3.2) compared to those in the simulation

(P/M = 40 mW, ε/M ≈ 7.0, LA/RD = 1.7). The predicted sharpening of the

vertices in optical Taylor cones ([6], Figure 9b.) is not observed here, even at similar

powers to the simulation (P/M = 8 mW, ε/M ≈ 1.1, LA/RD = 2.1). Comparing

these parameters, the Taylor cone effect may exist only for oblate polygonal droplets,

typical of larger relative array sizes LA/RD > 1.8 and lower optocapillary numbers

where the surface does not recurve near the traps. The more general classification

of droplet shapes by these parameters into oblate, prolate and recurving aligns well

with their simulations in cases where buoyancy is less dominant.
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6.3.3 Rectangular arrays

Four-trap arrays make a step towards more subtle sculpturing of the droplet includ-

ing the creation of right angles in the surface, as in Figure 6.23. This square is very

similar to the triangle in Figure 6.16, in that the separation and elongation match

to approximate a regular prism or cube. 7 As for binary and triangular arrays,

separations of LA ≈ RD generate oblate shapes (Figure 6.24) with polygonal lateral

cross-section.8 Even so, a greater area is spanned by the traps at typical separa-

tions, leading to departures from spheroidal shapes at LA > RD. In Figure 6.25,

the sequence shown in Figure 6.19 continues in that the handles emerge from the

body at the trap locations and the remaining material billows upwards under its

own buoyancy. The shape resembles a table. At greater optocapillary number, each

handle increasingly acts as an independently trapped droplet, with flattened illumi-

nated sides and hourglass pinching at the focal plane (Figure 6.26).

At yet greater separations or at lower IFT, the volume of material is insuffi-

cient to cover the trap array in a way that is stable against collapse to a network

Figure 6.27. The particular network is in a U -shape (as explained in § 5.5) and

can be resolved in the confocal frames as shown in Figure 6.28. The average radius

calculated using the same method in § 6.3.1 is RT = 80± 11 µm, corresponding to

an interfacial tension of σ = 0.3 µN m−1, again in agreement with the temperature-

based IFT calculation. Surprisingly, the two threads connecting the smaller nodes

attach below the focus whilst the other sits at the very top of the larger nodes.

It would be unfavourable for the highly-curved pinch points to pass through the

oppositely-curved centre of the hourglass part of each node, so the statistics of

whether the thread was created above or below the focus should be preserved.

7The asymmetry in the last three frames indicates that the shape is collapsing to just one or

two anchoring points (see § 6.6.10).
8The shapes presented at ε/M ≈ 1 in Figures 6.24 and 6.25 strongly resemble each other above

and below the PIT. This observation provides further evidence that Marangoni forces are not

considerable for the experiments in this chapter.
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Figure 6.23: Four traps in a square coplanar arrangement; (top left) brightfield view;

(top right) confocal cross-sections in xy, xz and yz planes through the approximate

centre-of-mass; (bottom left) 3D volumetric reconstruction. The arrow indicates the

laser’s direction of propagation (vertically upward in the laboratory); (bottom right)

confocal xy frames as a function of z from top (shadowed) to bottom (illuminated),

at half scale. Both scale bars 5 µm. Conditions are RD = 4.6 µm, TA = 20.9

◦C, —mboxS = 45.0 mM in H2O, σ = 5 µN m−1, P/M = 9.3 mW, ε/M = 0.4,

LA = 4.0× 4.0 µm.
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Figure 6.24: Four traps above the PIT. One stack is shown per row; (top to bottom)

increasing moderate optocapillary number with decreasing power. (left to right)

identical 3D volumes shown in three orientations. The arrow indicates the laser’s

direction of propagation (vertically upward in the laboratory). All to scale bar 4 µm.

Conditions are RD = 3.1 µm, S = 44.0 mM in H2O, TA = (21.1, 20.9, 20.6) ◦C,

σ = (3.1, 1.7, 1.1) µN m−1, P/M = (7.3, 6.1, 4.7) mW, ε/M = (0.7, 1.0, 1.2),

LA = 3.2× 3.2 µm.
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Figure 6.25: A droplet in four traps below the PIT. One stack per

row; (top to bottom) increasing optical power and optocapillary num-

ber. (left to right) identical 3D volumes shown in three orientations.

The arrow indicates the laser direction (vertically upward in the labora-

tory). All to scale bar 4 µm. Conditions are RD = 2.3 µm, S = 43.0 mM

in H2O, TA = (20.5, 20.6, 20.6, 20.6) ◦C, σ = (1.3, 0.9, 0.6, 0.3) µN m−1,

P/M = (4.7, 5.0, 6.1, 7.3) mW, ε/M = (1.0, 1.4, 3.8, 6.6), LA = 2.2× 2.2 µm.
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Figure 6.26: A droplet in four traps at extreme deformability; (left to right) identical

3D volumes shown in three orientations. The arrow indicates the laser’s direction of

propagation (vertically upward in the laboratory), filled if pointing out of the page.

Scale bar 2 µm. Conditions are RD = 1.7 µm, S = 45.0 mM in H2O, TA = 21.4 ◦C,

σ = 0.4 µN m−1, P/M = 7.3 mW, ε/M = 9, LA = 3.2× 3.2 µm.

Figure 6.27: A droplet split into a U -network in four traps; (left to right) identical

3D volumes shown in three orientations. The arrow indicates the laser’s direction of

propagation (vertically upward in the laboratory), filled if pointing out of the page.

The smaller arrows indicate the positions of the three nanothreads. Scale bar 3 µm.

Conditions are RD = 1.7 µm, S = 43.0 mM in H2O, TA = 20.6 ◦C, σ = 0.5 µN m−1,

P/M = 7.3 mW, ε/M = 6, LA = 3.4× 3.4 µm.
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Figure 6.28: The average of the two xy cross-sections of the bifurcated droplet

shown in Figure 6.27 containing the three threads; (left) with contrast normalised

to the droplet centre as used for reconstruction, with thread not visible; (right) the

same frame at 20× digital saturation, revealing the nanothreads averaged over a 1 s

confocal exposure. Scale bar 3 µm.

6.3.4 Networks and emulsification

Deformable droplets around RD = 3 µm appear stable in a single trap at full power.

However, on occasion the trap failed to hold the object for the duration of the scan.

Confocal stacks are truncated with no indication of movement or change in defor-

mation, implying that escape occurred within an interval step in z.

Vulnerability to loss increases for larger, more deformable droplets at greater

trap separation. The central mass between the traps becomes so soft that it de-

taches and is lost (see Figure 6.29). However there is still material of the same

deformability left in each of the traps, resembling the handles in other samples.

Amazingly, very soft threads are visible between the trapped droplets forming a

network, even in the volumetric reconstruction. The Y -junction itself is not trapped

and requires radial tension to persist, so these must be nanothreads rather than

microemulsifying debris. In individual exposures (not shown due to low SNR) the

threads are jagged and branching with prominent Brownian fluctuations. The traps

are identical, so if there is a means of mass transport, the nodes should become
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equal in volume. Instead, one of the nodes is many times larger than the others - a

condition which persists throughout the scan. Poiseuille flow would scale as the 4th

power of the thread width (square of the IFT); the IFT must be exceptionally low

to allow threads of detectable width. Such a flow would be driven by the Laplace

pressure difference across the thread (which scales linearly with IFT). If there is flow

along the threads, it could be offset by spontaneous emulsification, which should be

proportionally greater for the smaller reservoirs.

Figure 6.29 shows the impressive elongation of the reservoirs along the trap axes.

The migration of the thread pinch point during the scan causes multiple peaks to

appear on the inner side of the large droplet. After a stable period of about 10 min,

the threads disintegrate as the temperature passed through the PIT under a change

in ambient temperature.

The process of tearing and loss itself can be followed with short exposures (not

shown). The drop becomes spherical as it escapes and rises to the cell surface under

buoyancy within a single frame, consistent with the expected terminal velocity. It is

still attached by threads via a Y-junction to the remaining trapped reservoirs. The

threads appear especially thick, partly because of their diffusive blur. The majority

of features are dynamic (change with t and z) rather than just static (change with

z). For this reason 3D representation is no longer meaningful. The reservoirs taper

towards the end of the scan, which likely reflects their shrinkage over time caused by

spontaneous emulsification. At higher trap strength and smaller trap separations,

bodily escape does not occur even at very low IFT. Most of the attempted dumbbell

shapes with two traps are initially successful but ’unzip’ into two bodies connected

by a thread.
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Figure 6.29: A network formed in three traps by loss of the central mass; (left) 3D

volumetric reconstruction. The arrow indicates the laser’s direction of propagation

(vertically upward in the laboratory); (right) confocal xy frames as a function of

z from top (shadowed side) to bottom (illuminated side) at half scale; both scale

bars 4 µm. Conditions are RD = 1.7 µm, TA = 20.6 ◦C, S = 43.0 mM in H2O,

σ = 0.9 µN m−1, P = 9.3 mW, ε/M = 5.5, LA = 3.5× 3.5 µm.

Within 0.1 K of the PIT, the interfacial tension becomes so low that the droplets

are deformed easily, even at laser powers P < 3 mW barely considered viable for

trapping at all. Unfortunately, the oil emulsifies rapidly, often before a 3D shape

can be identified. Islands of material remain around the traps, but eventually shrink

away. Figure 6.30 shows a triangular array in the early stages of emulsification while

the nodes are still connected. Although the scan starts from the midplane of the

object, each reservoir elongates with a bullet-like shape.
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Figure 6.30: A droplet formed in three traps at the lowest ULIFT; (left) confocal

xy frames at the same equatorial z at time intervals of 20 s, at half scale; (right)

an incomplete 3D volumetric reconstruction prior to shrinkage. The arrow indicates

the laser’s direction of propagation (vertically upward in the laboratory); both scale

bars 3 µm. Conditions are RD = 2.6 µm, TA = 20.9 ◦C, S = 30.0 mM in D2O,

σ = 0.3 µN m−1, P = 9.3 mW, ε/M = 3.5, LA = 2.5× 2.1 µm.

6.3.5 Phase transition

The formulation χ = 1 used here is capable of phase inversion as described in Chap-

ter 4. Figure 6.31 shows a droplet that has been held in to a single trap at high power

(40 mW) initially above the PIT (in the shrinking regime). When the power was set

to a low value (10 mW) the droplet passed downwards through the PIT, but back

again as a result of the rising ambient temperature, causing the preferred emulsion

type to invert to w/o briefly. The nucleation of a phase with low fluorophore con-

centration (water-rich) shows that the droplet was able to solubilise water quickly

while below the PIT and release it as the temperature rebounded, without bursting.

The necessary rate of solubilisation and oily character suggests the droplet consists

of middle phase or similar microemulsion, which is rare in the temperature-sensitive

system.
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The water-rich vacancies congregate at the interface, whose surface energy they

can lower by partial wetting, and where the trap intensity is minimal. The be-

haviour closely resembles the stronger laser heating of a microemulsion drop in the

temperature insensitive system (Figure 4.6).

Figure 6.31: A drop in a single trap undergoing nucleation and phase inversion fol-

lowing a sharp decrease and rebound in temperature across the PIT; (top left) bright-

field view; (top right) confocal cross-sections in xy, xz and yz planes through the

approximate centre-of-mass; (bottom left) 3D volumetric reconstruction. The arrow

indicates the laser’s direction of propagation (vertically upward in the laboratory);

(bottom right) confocal xy frames as a function of z from top (shadowed) to bottom

(illuminated), at half scale. Both scale bars 4 µm. Conditions are RD = 2.6 µm,

TA = 21.7 ◦C, S = 46.0 mM in H2O, σ = 27 µN m−1, P/M = 10 mW, ε/M = 0.1.
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6.3.6 Tetrahedral arrays

To take advantage of the rich potential for different optically-supported shapes, the

trap arrays were extended into 3D arbitrary positions using holography (§ 2.4.3). A

tetrahedron is the simplest regular shape that is not a trivial rotation of the arrays

already considered.

The first example (Figure 6.32, top) is an irregular tetrahedron, in which two

pairs of coplanar traps at the diagonals of a xy square are displaced from one an-

other along z, (a 2:2 arrangement). The axial separation is half of that in the lateral

directions. The droplet is by far the largest studied, which is possible from Setup

C’s greater trapping strength. The surface is pinned out by the four traps and

subtle vertices are visible, though perhaps the deformability is too low for handles

to emerge. The overall shape appears somewhere between an oblate oval and an

oblate square, which are the shapes known to be generated in the respective limits

of infinite axial separation (i.e. a binary array) and zero axial separation (i.e. a

square array).

The second example (Figure 6.32, bottom) is a regular tetrahedron with three

coplanar traps and one displaced along the axis (a 3:1 arrangement); the traps

are 4.3 µm apart. The trapped droplet also has a higher deformability than for

the 2:2 results. The preliminary results suggest that at moderate ε/M , handles

can be displaced along the z axis in a continuous manner without affecting the

surface pinned to the others. The remaining material is suspended between points as

boundary conditions for the four faces of the tetrahedron. To a first approximation,

the faces are minimal surfaces as shown by their saddle-ruling. Yet, the striking

negative curvature of the lower face and rounded shoulders of the upper faces indicate

an upward bulging under buoyancy. Although the capillary length is the lowest of all

presented results, L′C = 3.5, the presence of the displaced trap prevents this upper

region from becoming a spheroidal section.
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Figure 6.32: Four traps in tetrahedral arrays. Stacks obtained by structured il-

lumination microscopy; (left to right) identical volumes shown as median-intensity

projections in four orientations: oblique, xy, yz, xz. (top) A droplet in an irregular

2:2 tetrahedral trap array. Scale bar 5 µm. (bottom) A droplet in a regular 3:1 tetra-

hedral trap array. Scale bar 2 µm. Conditions are RD = (5.9, 3.8) µm, S = 32.0 mM

in D2O, TA = (22.1, 22.0) ◦C, σ = (4.7, 0.6) µN m−1, P/M = (56, 44) mW,

ε/M = (1.1, 13.6), LA(x, y, z) = (15× 13× 7, 4.3× 3.7× 3.5) µm.
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6.4 Influences on steady-state deformations

The effects of buoyancy, flow, thermal changes and optical aberration are not only

relevant to the successful recording of confocal stacks, but also our ability to inter-

pret the shapes that they present. If any forces are large enough to risk pushing the

object bodily from the trap or shift its centre of mass if it remains trapped, then it

must be considered if they affect the steady-state deformations as well. Force gradi-

ents (or curvatures in potential) can be defined when a deformable object is trapped.

For an external flow rate of vF = 10 µm s−1, the shear stress integrated across

the circumference of the droplet is of order 5πηvF ≈ 0.1 µN m−1, which elongates

the droplet in the direction of flow.

The spherical aberration affects the local trap stiffness for the confocal apparatus

in Setup B (§ 2.4.2. By contrast, the droplets characterised using structured illumi-

nation microscopy in Setup C (§ 6.1.2) do not suffer variable spherical aberration as

the imaging arm is scanned instead of the trap. Yet, the results are comparable as

shown in Figures 6.16 and 6.17.

It is straightforward to imagine droplets extending along the trap as they do,

but why especially along the shadowed side? One may consider the limit of over-

whelming trap strength ε/M � 1 and high NA where the droplet conforms to the

iso-intensity contours; ideally these are symmetric around each focus. The buoyancy

and scattering forces break the axial symmetry in z, such that asymmetric arrays in

xy (such as a scalene triangle) support chiral droplet shapes. Given the orientation

of the microscope, they both act to push the material upwards in a way that de-

pends on the lateral cross-sectional area. However, the scattering force relates to the

overlap of the interface with the intensity distribution, whereas buoyant force relates

to the hydrostatic pressure, which is independent of lateral position. The effect of

buoyancy is isolated at regions far from the traps where there is no scattering force,

but the converse is not generally true since buoyant force is position-invariant. The

buoyancy effect is dFbuoy/dz = ∆ρgA ≈ 0.1 µN m−1, where A is the xy droplet
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cross-section, representing the tendency for the droplet to widen at the top. If the

power is increased arbitrarily9, a larger proportion of the droplet around the trap foci

will be exposed to intensities where scattering forces overwhelm those of buoyancy.

However, the global effect of scattering on shape asymmetry can only be observed

by reversing the direction of the trapping beam, e.g. comparing identical droplets

in upright and inverted microscopes.

In the regions spanning widely-spaced traps, where optical forces are negligible,

a balance occurs between buoyancy and surface tension. Buoyancy generates a

pressure difference on the upper and lower sections of the drop surface, which differ

in shape so that the Laplace pressure may compensate. Thus, the local curvature

asymmetry is related to the local vertical thickness, hz, with the strongest curvature

difference at the apex. In the limit of high buoyancy (larger/denser drop), the lower

face flattens and the upper face stretches into a hyperboloidal, nose-cone shape.

2σ∆H = ∆ρghz (6.4.1a)

∆H =
hz

2L2
C

(6.4.1b)

where ∆H is the difference in mean curvature between vertically opposite points on

the upper and lower surfaces.

Quantitative prediction of the shape is given by Tapp’s numerical model [6] and

lies outside the scope of this thesis. In this experimental geometry however, the

vertical thickness is almost constant at the apex. Thus, the surface at the top and

bottom midpoints should resemble spherical caps of near-uniform mean curvature.

As these curvatures can be measured from the 3D stacks, the capillary length ex-

tracted by Equation (6.4.1a) gives an estimate of the interfacial tension. Although

this analysis specifies only the difference in upper/lower mean curvatures ∆H, the

average of the upper/lower mean curvatures 〈H〉 and the vertical thickness h are

9Formulation- and generation-based alternatives would be to decrease the droplet size, increase

the droplet’s refractive index or change its density to match that of the continuous phase more

closely.
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also determined by the extent to which the optical traps have stretched the object

laterally. For regions outside the trap, such as for multiple trap arrays, these values

cannot be greater than that of the undeformed droplet.

In general the traps must lower the local pressure, which in a steady state must

also be equal to the internal pressure throughout the droplet. Since the Laplace

pressure must balance this at all points outside the traps, the mean curvature in

these regions and thus 〈H〉 must also decrease. In turn, the mean curvature in the

trapped region must increase, since the integrated mean curvature over the entire

drop cannot be less than the undeformed sphere. Unless the traps are separated

vertically by more than 2RD, the fixed volume of the droplet also constrains the

vertical thickness h to decrease. As such, conditions exist, LC ≤
√
hz/〈H〉/2 for the

lower surface to become flat or inverted. For trap arrays no taller than 2RD as used

here, a sufficient condition is that the capillary length approaches the undeformed

droplet radius, L′C ≤ 1/
√

2. It is therefore possible to gain some control over this

region of the shape - even without direct optical manipulation - by varying the

interfacial tension.

6.5 Summary

The findings in this chapter can be summarised as follows:

• when the IFT is ultralow, characteristic hourglass ’handles’ develop at the

trap locations,

• when the IFT is ultralow, the broader surface spanning the traps becomes a

near-minimal surface stretched by buoyancy,

• for drops much larger than the handle volumes, successively larger separations

result in oblate shapes and networks respectively,

• polygonal vertices of >1 µm−1 curvature are achievable with specific combi-

nations of trap separation and drop volume, at an optocapillary ratio around

unity.
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6.6 Appendix: Calibration of confocal imaging

6.6.1 Spatial calibrations

Under confocal imaging, rigid droplets yielded an aspect ratio of y/x = 1.05 ± 0.02,

in agreement with estimates obtained with a graticule across three different fields of

view. Brightfield imaging of the graticule returned a pixellation of 7.47± 0.03 px/µm,

square to within a factor 1.01 ± 0.04. Measuring the thickness of a coverslip by laser

reflection gave a z-stage correction factor of 1.12± 0.02.

The effect of the lens position along the Zaber translation stage, zL on the true

motion of the trap, zT , was determined by correlating it with the translation of

the microscope objective. A mirror was fixed to the stage under water immersion

and the trapping laser was focused onto it at low power, such that the reflected

high-NA interference pattern was detected on the CCD. For each displacement step

of the trap, the objective was required to move half a step in the opposite direc-

tion to compensate (the objective moves both trap and reflected imaging plane).

Thus in the focal condition, ∆zT = −2∆zO, where zO refers to the displacement

of the objective. The stepper interval was reduced to zL = 250 µm for greater

detail in smaller objects. The step size was calibrated graphically (Figure 6.33) as

∆zT = 0.159 ± 0.006 µm, in very close agreement with this prediction.

6.6.2 Intensity-based stack registration

Whilst the beam direction remained normal to the imaging plane along the Zaber

travel, the focus moved unintentionally in the lateral plane, as seen in a similar

graphical calibration (Figure 6.34). The lateral shift was relatively large compared

to the precise axial shift, giving the illusion of a highly oblique propagation direction

on reconstructing the stacks. Because the pointing of the beam is good at all times,

and the slice thickness is small relative to the spacing, the slices are truly decoupled

and can be translated independently to coincide with a common centre-of-mass.
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Figure 6.33: Calibration of trap motion in z under lens translation; the stepper

interval is ∆zL = 250 µm (lens), equivalent to ∆zT = 0.159 µm (trap). The solid

line is a linear fit (R2 = 0.993).
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Figure 6.34: Calibration of trap motion in xy under lens translation as for Fig-

ure 6.33. The labels refer to zL; a line is drawn to indicate the trap path (see

§ 6.6.2).

6.6.3 zT : Absolute reference of trap focus in 3D

It is difficult to interpret the 3D stacks if the location of the trapping focal plane

is unknown. It was estimated by measuring the absolute lens positions where the

confocal imaging plane coincides with the equilibrium trapping points (or equators

of trapped spheres). In the limit that the trapped object was small, the equilibrium

z displacement past the laser focus lay within a Rayleigh range, around 80-100 nm.

Therefore, the condition zT = 0 was defined at the brightfield imaging focus for

small objects, zL = 8500 µm.
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Figure 6.35: Absolute z coordinate of centre of mass of trapped spheres as a function

of their size: rigid heptane droplets (solid); PS bead (open). The solid line is

a linear fit (R2 = 0.85) to the heptane data, whose intercept indicates the focus

of the trapping laser beam. The dotted lines show the approximate amplitude of

oscillations in the equilibrium z-position as a function of object size, as predicted

by Mie scattering calculations [8]. Uncertainties in radii and position vary widely

due to uncontrolled photobleaching history.

Where buoyancy may be neglected, the equilibrium position is dependent only

on (increases with) the ratio of the surface-averaged scattering and gradient forces.

In the Mie and geometric optics regimes, this ratio is expected to increase weakly

with object size, as observed in Figure 6.35. A polystyrene bead’s position - further

behind the focus compared to a similar heptane droplet - is a consequence of its

greater refractive index contrast in water and thus its greater scattering force.
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Figure 6.36: Rotations of a 3D confocal stack portraying a deformable heptane

droplet stretched across two traps in a triangular array. A small amount of oil is

trapped in the third location, revealing the location of the focal plane far below the

droplet’s centre of mass. Scale bar 3 µm. Conditions areRD = 2.4 µm, S = 29.5 mM

in D2O, TA = 21.0 ◦C, σ = 2.8 µN m−1, P/M = 13 mW, ε/M = 1.0, LA =

6.8× 6.5 µm.

In Figure 6.36, a droplet spans a triangular array, but has collapsed from one

of the traps during the Zaber stepping prior to the scan. In effect an ’empty’ third

trap has been added. Although the droplet is significantly larger than the others,

the shape is similar, albeit with a slight distorting influence towards the extra trap.

The equilibrium position of the material in the ’empty’ trap also marks the

approximate z-plane of focus for all three traps; it is clear that the droplet’s centre

of mass is far behind the trap foci. The difference is about 2.3 ± 0.4 µm in z, which is

enormous compared to the sub-micron Rayleigh range (the maximum shift possible

for a sphere under the classical scattering force). This has important implications for

the other results here and how the deformable droplets respond to high-NA optical

trapping in general.

6.6.4 Processing

Due to the Gb-scale volumes of data in [.ids, .ics] form, a macro in ImageJ (Fiji)

was constructed to register, filter, binarise, crop and analyse the stacks consistently.

The output was the set of montage figures shown in Chapter 6, namely bandpass-
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filtered slices, orthogonal cross-sections and 3D rotated representations.

6.6.5 Ambiguity in thresholding

Unfortunately, the thresholding process gives a range of shapes that cannot be ra-

tionalised without precise knowledge of the object volume.

For a single trap at very low ε, deformable droplets range from small, slightly

oblate spheroids to large lemon-shaped objects of greater aspect ratio around 1.4

(Figure 6.6). If even more aggressive thresholding is used, internal voids appear

and the reconstruction is no longer physical. This ambiguity is resolved by estimat-

ing the droplet size, either from volumetric imaging of the undeformed (spherical)

droplet, or from its apparent diameter in brightfield images.

6.6.6 Photobleaching

Initially, the oil returned fluorescent signal at a satisfactory 9/12 significant bits.

However, the signal dropped with exposure to the excitation laser; this was at-

tributed to photobleaching. From the maximum decrease in contrast between frames,

7.5 ×10−2 step−1, an upper limit of the natural decay time constant was estimated

as 360 ± 20 s. Thus, each droplet became indistinguishable from background within

about 10 minutes’ exposure. This duration was about the longest acquisition possi-

ble at 10 averages over a full 20 µm depth. Yet, the darkening affected thresholding

for the 3D representation. The fluorophore concentration could not be increased

further as this would risk self-quenching and loss of ULIFT.

The sampling was instead reduced to 160 px across the field-of-view, and the

number of averaged frames per slice to 4, the minimum indistinguishable from further

averaging. At 6 mW excitation power (estimated 2 mW at sample), the PM597

bleaching time constant was 81 ± 19 s, or of the order of 50 slices over 7 µm.

Decaying signal was more noticeable in a minority of stacks, leading to inconsistent,

truncated shapes under thresholding. The time constant appeared to be scattered
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widely, even at a specific excitation intensity. This variation between droplets could

have been due to differences in surfactant aggregates with H0 and therefore the

environment in which fluorophore was solubilised. Nonetheless, correction for the

exponential decay by simple multiplication is possible on a case-by-case basis.

6.6.7 Registration of fixed objects

Before the addition of optical traps was tackled, the performance of the confocal laser

scanning microscope was tested for fixed objects using 4.2 µm-diameter, uniformly-

fluorescent beads (Bangs Labs, FS05F/10536) dispersed in water.

Beads with strong adhesion to the underlying glass were identified by their lack

of Brownian motion. A stationary, fixed sample appeared to move relative to the

focal plane of the objective during the automated scan. The cross-sections showed

unrealistic ’flare’ - diffuse signal outside the volume -mostly above, and partly be-

low, the object in z, giving the impression of an ovoid volume for a spherical body

(Figure 6.37). While some layer structure was still visible despite linear interpo-

lation between adjacent slices, there is no artificial flattening of the poles, which

would otherwise have indicated undersampling. The slice spacing did not exceed

the smallest feature size.

As the flare’s biconic shape (particularly at weak threshold) mimicked that of the

focused laser beam, it appeared to originate directly from fluorescence in the water

phase; however this could not have been the case, as there was very little background

signal in the absence of the bead. The point-spread function (PSF) of the imaging

system resembled an apple core and contributed to strong axial blurring from im-

perfect confocal selectivity. The central spot resembled the diffraction-limited PSF

for 580 nm at a numerical aperture of 1.2, which is roughly 0.3 µm × 1.1 µm. Yet,

diffraction and imperfect confocality cannot account for the asymmetry across z

which was probably a result of the high-index Mie scattering. This effect was less

problematic in the lower-index oil droplets.
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Figure 6.37: A solid bead fixed to the coverglass; interpolated orthogonal cross

sections in the zx, zy, xy planes. Scale bar 1 µm.

An ideal confocal stack of an axially-symmetric object has perfect registration of

all the layers. However, Figure 6.38 showed notable displacements of the xy centre-

of-mass (weighted by pixel brightness). There are several possible explanations for

a linear correlation of displacement ∆x,∆y with layer index m, only some of which

reflect the true shape of the object:

i) ellipticity of the bead, particularly if directed along the semiaxes in the slices

(true deviation with z)

ii) misalignment of a narrow excitation beam, if constant between samples (false

deviation with z)

iii) stage drift (false deviation over time).

On the other hand, a random or oscillatory correlation would be

associated with:

iv) vibrations (false deviation over time).

v) flow shocks (false deviation over time)

In the case in point, the ∆x(m) correlation was roughly linear, equivalent to a

feasible d∆x/dt = −0.05 µm min−1 stage drift; the ∆y(m) correlation was parabolic
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Figure 6.38: Apparent frame-by-frame variation of the x (open), y (filled) coordi-

nates of the centre of mass of a solid, fixed bead with translation of the objective

(m∆zO). Here zO = 0 is defined at the true centre of the bead as determined by its

largest cross-section.

with a deviation of d2∆y/dz2 = −0.08µm−1.

In each case, the turning point coincided neatly with the mid-plane of the bead.

This optical artifact derived from flare asymmetry, dependent on subtleties of bead

curvature. Otherwise, there are good reasons to attribute the motion to stage drift:

The excitation appeared uniform across the field of view. All oscillations of the

fixed objects must be associated with the support, and vibrations > 0.1 Hz will

have contributed only to symmetric blurring over each exposure.
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Figure 6.39: Three trapped beads in a triangular array of point traps, recon-

structed from 3D confocal imaging. Scale bar 4 µm. Array properties are as follows:

P/M = 10 mW, LA = 10.0× 8.6 µm.

6.6.8 Registration of trapped objects

Trapped beads

The automated z-stepping procedure alone is ineffective for objects trapped in bulk

fluid. Since both the fluorescence imaging and the trapping laser share an optical

path through the objective, no motion of this objective is able to produce the re-

quired relative motion between the trapping position and the interrogated imaging

plane. The trapped object merely follows the lens so that the same slice is imaged.

To counteract this, the trap’s position was restored on each step by displacing a

telescope lens in the optical train of the trapping laser (following Fällman & Axner,

[9]), using a motorised Zaber micrometer. Each Zaber increment of 0.4 mm re-

sulted in the trap moving ∆zT = 0.257 ± 0.009 µm/step along the optic axis. The
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travel constituted a range of roughly ± 10 µm around coincidence with the bright-

field imaging plane in the objective’s rest position. With a trap strength of order

10 µN m−1, the time constant for the object to recoil into position was of order

10 ms, much less than the 1 s frame period. Thus, the object recovered a stable po-

sition before each exposure. The restoring force was sufficiently strong that blurring

was minimal (as shown in Figure 6.39 even over 60 s of averaged 1 Hz exposures,

suggesting that the distortion came from a scattering effect.

The essence of the procedure was

1. to shift the empty trap to the zero position (imaging focal plane),

2. to find, trap and manipulate an object using brightfield mode,

3. to assess the size of the object and shift it almost out entirely out of focus,

4. to change to confocal fluorescence mode and open the excitation laser shutter,

5. to check the measured cross-section matches the end of the object and adjust

acquisition parameters,

6. to shift the object away fully (thus the minimum z-range is used),

7. to perform the automated stack interjected with manual z-steps,

8. to arrest the procedure once the object is traversed,

9. to shutter the excitation laser, and

10. to return to brightfield mode to re-assess the object.

Trapped rigid droplets

The sufficiency of the fluorescence signal from an effectively perfect sphere was

tested by using stiff heptane droplets with salinity/temperature conditions far from

the transition line. The droplet reconstruction (Figure 6.40) was more spherical

than that of the beads; the scattering effect associated with the beads was absent.
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This was attributed to the much lower refractive contrast and the smoothness of the

interface. As suspected, thresholding to reflect this was quite difficult with photo-

bleaching varying from one side to the other, and with noise. Nonetheless, the 3D

volumes were almost spherical, yielding an aspect ratio y/x of 1.055 ± 0.007 that was

consistent across 5 rigid heptane droplets varying from RD = 2.1 to 4.8 ± 0.1 µm.

This lateral correction factor matched the asymmetry in the CCD. Furthermore, for-

eign bodies could be picked out that were trapped alongside the droplets at higher

resolution than the bead array.

Figure 6.40: A single poorly-deformable drop in a trap; 3D volumetric reconstruc-

tion. Scale bar 4 µm. Conditions are RD = 3.8 µm, TA = 19.9 ◦C, S = 38.3 mM in

H2O, σ = 32 µN m−1, P = 11 mW, ε = 0.08.

The registration of slices may have been affected differently for a trapped particle

(with a common-path objective) than for a fixed one:

i) non-axisymmetric deformation of the droplet (true deviation with z)

ii) misalignment of a narrow excitation beam, if constant between samples (false

deviation with z)
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iii) misalignment of the trapping beam, if constant between samples (false devia-

tion with z)

iv) long ramps in external flow (false deviation over time).

A random or oscillatory correlation would be associated with:

v) vibrations of bench optics or laser pointing (false deviation over time).

vi) flow shocks (false deviation over time)

vii) confined Brownian motion in the trap (false deviation over time)

The particle tracks (Figure 6.41) were combinations of drift with time-invariant

noise. Unlike the fixed objects, the drift was largely linear along the +x,−y di-

rections, equivalent to gradients of about dy/dz ≈ 1/10 and dx/dz ≈ 1/30. This

indicated possible iii) angular trap misalignment. However, these gradients were

inconsistent between samples; the gradients in y were unrealistically large to settle

on trap misalignment as the sole cause. Given that the channel was aligned along

y, the additional shift along y with m was due to steady changes in the flow rate

between over the acquisition time, ∆v ≈ ±10 µm s−1 at v̇ = 0.1 µm s−2. As before,

the long integration time discounts vibration and flow shocks. Instead, the noise

probably originated from the localised Brownian motion in the trap. The rms dis-

placement from this linear motion was around 20 ± 3 nm.

Representative rms displacements of beads and droplets from their drift paths,

21± 5 nm, and 22± 8 nm, respectively, were in excellent agreement. The coincidence

for a variety of sizes and refractive index contrasts, (RD,∆n) = (2 µm, 0.05) and

(4 µm, 0.25), is somewhat surprising.
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Figure 6.41: Apparent motion of the centre of mass of a trapped rigid droplet with

axial displacement of the trap (m∆zT ) using the telescope lens; (top) coordinates

in x (open, linear R2 = 0.960) and y (filled, linear R2 = 0.962) as a function of

calibrated axial trap position; (bottom) their projection onto the xy plane (linear

R2 = 0.905).

By assuming that these samples are representative of the trapping potential,
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the equipartition theorem can be used Equation (2.2.1l), to show that the corre-

sponding estimates of the trap strengths are of the expected order, 9 ± 4 µN m−1

at P = 40 mW. This gives an estimated 17 pN of escape force to distribute be-

tween the traps. The corresponding efficiency of the traps is F/P = 0.4 pN/mW or

Q ≈ 0.1, which is in agreement with the Fresnel prediction.

6.6.9 Tuning of laser-heating and salinity

The surface tensions quoted in this chapter are average values for each droplet.

They are interpolated from Aveyard’s data [10] using measurements of the ambient

temperature, the bulk laser heating calculated from the laser power § 4.7, and the

calibrated PIT corresponding to the sample salinity §§ 1.5.4 and 1.6.3. The accu-

racy in estimates of σ and therefore ε are limited to a factor of about 30% by the

temperature sensitivity of the surface tensions.

Given the extreme IFT sensitivity to temperature for the pure AOT systems,

the limiting factor for determining each shape quantitatively was just as likely to be

drift in IFT as any systematic change in trap strength. In order for nonlinear shap-

ing, typically it was necessary to lower the IFT of the droplets to 0.5 µN m−1. For

the heptane systems, this required an experimental temperature very close to the

PIT, within ± 0.4 K. The stage temperature was measured with a digital thermome-

ter, whose accuracy was ± 0.2 K. The droplet temperature fluctuated less than the

probe reading, since the sample was largely coupled to the thermal load of the micro-

scope rather than the surrounding air. The variation in trapping behaviour between

droplets increases with lower IFT. At constant power, the behaviour of a given

droplet is determined by long-term variations of the ambient temperature ± 0.5 K.

Without any temperature control, the typical IFT was slightly too high for steady-

state deformation - the difference in behaviour was only visible in realtime video

whilst manipulating the elastic surfaces dynamically.

Adjustment of the salinity to follow the ambient temperature allows production

of sustainably deformable droplets without spontaneous emulsification. The IFT
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was usually too high to produce nanothreads or dumbbells, but IFT was not so

high that droplet oscillation was observed between two closely spaced traps. A sig-

nificant polygon-type deformation was still achieved if the maximum laser power

was used.

The controlled laser-heating in H2O is usually necessary to achieve the most ex-

treme stable deformations. However, this strategy couples the trap strengths with

the IFT, such that above the PIT, heating away from the transition inhibits defor-

mation. Thus, it is preferable to work very close to the upper side of the PIT, where

heating stabilises overly soft droplets, or on the low temperature side of the PIT,

where maximum available trap strength coincides with minimum available IFT. For

example, the (H2O, 45.0 mM, 21.1 ◦C) samples are laser-softening so must be below

the PIT, but are reasonably stiff and stable in the absence of the laser. Measuring

the heating effect (§ 4.7) allows the estimation of an upper limit for the temperature

increase as 0.6 K in Setup B. For a trapped object, the dynamic range of powers

was constrained such that only the top ±0.2 K of this could be varied. In the struc-

tured illumination Setup C, the temperature of the droplet environment was finely

controlled to ±0.2 K with a Peltier chip and thermocouple as designed in § 3.5.2,

driven by closed-loop PID electronics.

Evaporative cooling

A pipette drop (50 µL) of water or ethanol was allowed to evaporate on the upper

surface of the observation chip. The droplet deformability changed following the

decrease in temperature. Droplets turned from rigid, or slightly elastic, to highly

deformable over about 10 s, whereupon the sample temperature dropped to a plateau

several tenths of a K lower than ambient. The limiting temperature change depended

only on the thermal characteristics of the cell and the surrounding relative humidity.

A detectable effect lasted for about 1 min for ethanol and 2 min for water, corre-

sponding to the residence time of the finite solvent pool. As the temperature was

restored to its original value, the original droplet deformability was recovered.
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6.6.10 Escaping objects and competing forces

There is a far higher incidence of object loss from the trap towards the end of the

scan. Particularly, larger droplets are less stable with respect to the Zaber stepping

at the end of travel. In some cases, the droplet leaves material behind in the traps,

whereas in most cases the entire body is ejected. Several contributing factors can

be suggested.

Photothermal changes to IFT

First, a change in the IFT itself is explored. If IFT drops significantly such that the

capillary length approaches the droplet dimensions, buoyancy is likely to tear away

part of a large droplet suspended between traps, leaving small amounts of material

as observed. By the same token, if IFT rises rapidly such that the optocapillary

number becomes less than unity, a stretched drop snaps out of one or more traps

cleanly. If ULIFT is lost rapidly and the trap separation exceeds the droplet diam-

eter, simultaneous escape from all traps is possible.

As IFT is highly sensitive to temperature changes, heating from laser absorption

or photobleaching could be at fault. The thermal diffusivity is kaq/cPρ > (300 µm)2s−1,

so any heat is dissipated across the field of view in a few ms. This inability to sup-

port strong temperature gradients means that IFT is reasonably constant across the

droplet surface. The dissipation is about five orders faster than the photobleaching

timescale, so any heat generated directly from the photobleaching reaction can be

disregarded.

However, steady-state laser heating will remain. Under brightfield inspection of

droplets just below the PIT in H2O, accelerated emulsification (even bursting, see

§ 3.6) occured when the excitation shutter was opened. For the large part, experi-

ments took place above the PIT - no radical change on initial exposure is apparent
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for the majority of droplets. Still this proves that the excitation laser initially heated

the droplets on the order of 0.1 K. This is about the same amount expected from the

aqueous absorption cross section at 514 nm. The 1064 nm laser will have contributed

significantly more heat, as its power and absorption cross sections were greater, with

peak temperature increases of 0.6 K (i.e. 15 K W−1) in water but only 0.05 K (i.e.

1.4 K W−1) in D2O. As expected from these numbers, the trapping laser heating has

no apparent effect on droplet deformability for the D2O solution. Unlike in H2O, no

cases were encountered where droplet deformability in D2O decreased with trapping

laser power.

Of course, being steady-state heating, none of the above offers an explanation as

to why the events should occur primarily towards the end of the scan, during which

laser power is constant. If laser heating is affecting stability or trap loss, it must

have an underlying dependence on either time (t) or z-step (z,m), and account for

the similarity between trap loss events in D2O and H2O.

It is interesting to ask if photobleaching can account for the loss events. Much

like the changes in surface tension, changes in the properties of the cumulatively

photobleached PM597 are independent of the aqueous phase; the underlying depen-

dence is on exposure time, t. Namely, these are the quantum yield φ ≈ 0.94 and

excitation cross-section, Σ ≈ 5× 104 cm−1M−1. If the droplet fails to re-radiate the

excitation light, its steady-state temperature will increase in a manner that can be

estimated using Beer’s and Fourier’s Laws along the lines of ∆T ∝ (1 − φ)Σ. In

theory, ∆T could have changed by an order of magnitude in either direction due to

photobleaching. Most likely, a fall in the excitation peak would have nullified Σ (i.e.

the intensity absorbed drops faster than the intensity radiated). The contribution to

the initial heating would disappear over the bleaching period. However, its expected

value of 0.03 K min−1 is only of the same order as the ambient fluctuations. The

slow onset cannot motivate any catastrophic, clean loss events for firmer droplets.

On the occasions that the droplet was shifted successfully back to the starting po-

sition after the scan, the shape did not appear to change obviously from the first
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pass. The loss events are not contingent on photobleaching.

Aberrations to trapping strength

Second, that the optical forces are themselves weakened, leading to droplet loss

under surface and buoyancy forces. Neither objective nor Zaber stepping motions

actually interrupt the presence of the traps, which dominate the object’s motion as

long as the z steps are well within the trapping range, i.e. the radius of the object.

Throughout this work a constant trapping strength across the Zaber stepping range

has been assumed. However, the variation of aberrations in the beamshape affects

the trapping efficiency factor and therefore the optical forces for a given power. To

collect information about the beam profile and aberrations, the reflected light cali-

bration as used in § 6.6.2 was extended to out-of-focus locations. Figure 6.42 shows

the spherical aberration introduced by the shift of the Zaber telescope lens. Though

water-coupled to the mirror, the objective is designed for use with an n = 1.518 #1

coverslip. Position zero (corresponding roughly to optimal trapping) still showed

some spherical aberration due to the omission of this coverslip.
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Figure 6.42: Reflected cross-sections of the trapping beam intensity, showing lin-

ear defocus with displacement of the lens and characteristic patterns of spherical

aberration at the extremes of travel; (right) intensity profiles along the beam axis

indicating negative spherical aberration.

By translating the telescope lens, the tube length of the trapping beam at the

back aperture of the∞-corrected objective was varied. Alongside the intended focal

shift in z, this introduced spherical aberration which distributes the focus along z

according to the angle of incidence. The marginal rays that give rise to the trap

are displaced further than the paraxial rays. This effect degrades the axial intensity
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gradients and thus weakens the traps along the optic axis. The lateral stiffness does

not deteriorate as severely [11]. Aberration was estimated [12] as ≤ 0.6λ between

the centre and end of travel, for which the axial gradient dropped as much as -30%

towards the focal shift and -10% away from it. That said, the traps used in the

experiment will have been weakened much less as all the interrogated volumes were

no greater than 10 µm across, and spherical aberration scales quadratically with the

focal shift. A parabolic variation of ≤ 10 % of the nominal trapping strength across

the largest droplets is expected.

Figure 6.43: Escape force of polymer beads in water (solid boxes, solid parabolic

fit to 5 pts, R2 = 0.991) and deformable droplets (open boxes, dashed linear fit to

3 pts, R2 = 0.994) at 23 mW in Setup B. The dotted curve is the solid curve scaled

down to the maximum escape force for the deformable droplets.

What is more, negative spherical aberration occurs at the end of each run, when
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the trap is at the top of the travel, furthest from the objective lens and the illu-

minated underside of the object is imaged. Here, the aberration weakens the trap

mostly in the upward direction, in which the scattering force and buoyancy act al-

ready. However, buoyancy seems an unlikely candidate since the bulk forces amount

to only 4π∆ρgR3/3 ≤ 0.2 pN, whilst the trap escape forces were thought to be

∆nP/c ≥ 2 pN, even at the minimum power used and distributed over 4 timeshared

point traps. Notably, the occurrences of escape from the trap do not correlate

well even with the z-calibrated trapping strength, (Figure 6.43). Escape should be

stochastic only for much smaller droplets and weaker trap strengths, kR2 ∼ kBT .

There exists another fluctuating force, drag due to external flow, which underlies

these anomalous loss events.

Flow disturbances and force gradients

Third, the open channel allowed evaporation of heptane droplets, which generated

shock waves as droplets burst. These pressure waves were responsible for an oscil-

lating flow along the channel axis, initially of perhaps vF ≈ 50 µm s−1, which led

to droplet escape. For this to happen during a scan, the required flow rate was

vF ≥ 20 µm s−1 for even the weakest traps and largest droplets. At first, flow does

not seem to explain selective expulsion from the trap at one end of the scan. How-

ever, the majority of the scans traversed the range 30-50 µm away from the bottom

wall. The viscous drag increased by up to 20% during the scan as the droplet moved

towards the faster-flowing centre of the channel.
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Glossary

DoF Depth of field, confocal detection m

FN Tension force along thread -

H Mean curvature m−1

H0 Spontaneous curvature m−1

K Gaussian curvature m−1

LA, L
′
A Trap separation, normalised to drop radius m, -

Lκ Helfrich length m

LC , L
′
C Capillary length, normalised to drop radius m, -

M Number of traps -

NA Numerical aperture -

n,∆n Refractive index, contrast -

P Optical power W

PSF Point spread function -

pL Laplace pressure N m−2

RN Thread radius m

RD Droplet radius, undeformed m

SIM Structured illumination microscopy

S Aqueous salinity M

TA,∆T Ambient temperature, Laser heating K

T ∗ PIT, phase inversion temperature, optimal T ◦C

x, y Lateral image coordinates m

z Coordinate along beam axis m

zR Rayleigh range of Gaussian beam m

∆ρ Buoyant density difference kg m−3

ε Optocapillary number -

κ Bending modulus J

φA Volume fraction of phase A -

Λ Aspect ratio for small to moderate deformations ε < 1 -

Λ∞ Value at which lateral splitting occurs in two traps

λ Optical wavelength m

ω0 Beam waist m
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dimensional microscopy using a confocal laser scanning microscope”, Opt. Lett. Vol. 10, no.

2, pp. 53–55, Feb. 1985.

[3] E. Botcherby, R. Juskaitis, M. Booth, and T. Wilson, “An optical technique for remote

focusing in microscopy”, Opt. Comm. Vol. 281, no. 4, pp. 880–887, 2008, issn: 0030-4018.
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Conclusions

Summary

This thesis is the culmination of several interdisciplinary streams of work. As such

the line between experimental and results chapters was indistinct, so that prepara-

tory work for the optical deformation of droplets spanned novel developments in

microfluidics, optics and holography, and microemulsion formulation.

In Chapter 1, the theory and practice of emulsion chemistry was presented for for-

mulating at ultralow interfacial tension. Recipes for Winsor equilibria were adapted

to produce emulsions of hydrocarbon oils in aqueous or deuterated continuum, which

displayed ULIFT suitable for optical deformation when introduced to the platforms

described above. A variety of techniques such as small-angle X-ray scattering, ten-

siometry and emulsion stability studies were employed to determine the interfacial

properties under phase inversion and thus optimise them for optical deformability.

In Chapter 2, the techniques and calibrations were described which were re-

quired first, to generate and control arrays of optical point traps in a microscope,

and second, to capture 3D images of fluorescent droplets. These techniques included

realtime interactive holographic optical tweezing, brightfield microscopy and struc-

tured illumination microscopy. Whilst constructing a mechanical optical tweezing

microscope in Setup A, a novel concept was put forward in the physical integration

of these capabilities together with the microfluidic setup into a single platform in

Setup C, with accommodations for photopolymerisation and Raman spectroscopy in

Setup C+. Setup C was constructed and its performance validated with 2D bright-
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field and 3D structured illumination microscopy results in the last two chapters.

In Chapter 3, methods for generating oil-in-water emulsion droplets for the pur-

pose of optical deformation at ultralow interfacial tension (ULIFT) were described

and compared. By considering constraints including wettability, shear, hydraulic

impedance and temperature control for ultralow interfacial tension, a novel auto-

mated microfluidic platform was demonstrated, including four syringes to control the

total flow rate, inline salinity, surfactant concentration and oil-water ratio. While

the physical system needs refinements in filtering and flow stability to be used re-

liably, the smallest droplets thus produced showed properties suitable for optical

deformation experiments. The non-equilibrium phase behaviour of these fomula-

tions on the microscale was shown to be more complicated than first imagined,

even in the absence of laser intervention. For the AOT quaternary systems, where

the amphiphile is hydrophilic at high temperatures, the droplets shrink above the

PIT. Below the PIT, the droplets absorb continuous phase, which when released on

heating through the PIT causes them to burst (rapid heating) and to form vesicles

(gradual heating). The deformability of the droplets was categorised and observed

to vary between droplets and change rapidly even in the controlled environment of

a microfluidic salinity gradient.

In Chapter 4, the investigation was extended with novel observations of rich

phase behaviour induced by focused lasers in bulk microemulsion and microemul-

sion droplets in water. These behaviours were exacerbated at high optical power

in the range of 100-250 mW and near the phase inversion condition, where interfa-

cial tension is lowest and varies strongly with temperature. By choosing a system

with tunable temperature sensitivity, the processes of phase separation and transfer,

which underlie many of the non-equilibrium phenomena observed, could be deceler-

ated. A broad array of vesicles, multiple emulsions and metastable phases emerged

at graduated forms and rates, depending on the extent of laser heating, which was

calculated as 14.7 KW−1 for λ = 1064 nm in bulk water. At different amphiphilic

ratios, oil- and water-rich phases were each nucleated from microemulsion by the
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laser. The vast majority of these changes were consistent with thermal variation

of the phase diagram, which is dependent on the precise amphiphilic ratio. The

behaviour of compositions with different laser heating responses after deuteration

or emulsification, imply that laser absorption is the major, but not the sole driv-

ing force for phase separation. Given the localisation of the nucleation to the laser

focus, the main candidate for the motivation of a non-thermal mechanism is the

optical gradient force. However, low-index particles nucleate at certain monolayer

compositions; therefore cases exist where thermophoresis also determines the phase

behaviour. The findings in Chapters 1 and 4 clearly demonstrate that the droplets

used for the deformation experiments are in fact oil-rich phases related to those of

three-phase microemulsions. These investigations informed the procedures used in

Chapters 5 and 6 so that phase transitions were avoided and the majority of droplets

were made stable for deformation purposes.

In Chapter 5, an experimental framework for parametrising the deformation of

ULIFT droplets with point traps was discussed. Deformations in each trap could

then be identifed as linear or nonlinear through the use of a single parameter, the

reduced optocapillary number ε/M . Brightfield imaging was used to document the

response of the static shape to arrays of optical point traps, including the bifurcation

from a spheroidal shape to two spheres connected by a nanothread. A theoretical

model was developed for the stability, tension and dimensions of nanothreads near

the phase inversion condition, and was validated against prior measurements of the

thread recoil velocity. I also showed that nanothread networks have a hierarchy of

stability and decay pathways including topological change.

In Chapter 6, I generated a diverse family of optically supported fluid shapes

and measured the 3D morphology using both structured illumination microscopy

(SIM) amd confocal laser scanning microscopy with 3D calibration of the trap and

droplet positions. Despite a modest variation of spherical aberration in the trapping

beams with displacement from the confocal plane, the shapes were consistent with

those in SIM and brightfield, and across different droplet sizes. The shapes were
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discriminated according to the input parameters, primarily the number of traps M ,

deformability ε/M and ratio of trap separation to droplet radius L′A.

At moderate deformability ε/M ≈ 1, droplets evolved from prolate- to prism-

like, to oblate shapes as L′A increased from below unity to values above. At values

greater than L′A = 1 for two traps, stable dumbbells were found. For high deforma-

bility, ε/M ≈ 10, hourglass-like shapes - with grooved saddle curvature in the focal

plane - were produced at small trap separations. At large trap separations, table-like

shapes were observed, with buoyant membranes stretched across the optical handles.

Lateral asymmetry was rare and observed only at high powers (> 100 mW). It

was ascribed to the enhancement of mismatched trap powers (and therefore gradient

forces) by thermocapillary forces pushing the interface towards the focus at temper-

atures below phase inversion. This effect was significant only at high-power foci

and when the IFT was highly temperature-dependent. Much akin to the gradient

forces acting towards an isointensity surface, the thermocapillary forces act towards

an isothermal contour matching the droplet volume. The feature size of shapes sup-

ported by point traps are restricted to the dimensions of the characteristic handle

rather than those of the beam itself. I associated this phenomenon with the filling of

the handle outwards to a surface where the interfacial and optical pressures become

equal. It is noticeable that handles become larger with higher deformability ratio

P/σ.

By contrast, axial asymmetry was widespread among ULIFT droplets. The buoy-

ancy and scattering forces caused the lower face of the droplets to flatten against the

focal plane, and the upper side to bulge. As these forces acted in the same direction,

the effect of scattering force could not be distinguished except for smaller droplets at

higher power. Under these conditions, the droplet asymmetry disappeared, proving

the scattering force is dominated by the gradient force at the high NA used. Thus

buoyancy was responsible for the observed asymmetry; in all droplet regions dis-

tant from the traps, hydrostatic and Laplace pressures balanced to produce greater

positive mean curvatures on the upper side of the droplet than the lower side. Sev-
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eral examples were presented of negative mean curvature on the underside of the

droplet. There are also rare examples where the coupled effects of axial asymmetry,

hourglass pinching and separation of the traps produced zero or even negative local

mean curvatures at the equator of the droplet.

Implications for future work

The main difficulty in this project was that the control demonstrated over the droplet

size and interfacial tension sufficed to give only a scattered set of shape data. The

morphologies on the parameter space defined at the beginning of Chapter 5 have yet

to be fully characterised. Further efforts are needed to sustain microfluidic control

over the droplet size and temperature as envisioned in Chapter 3. Measurement

of the IFT of individual microdroplets in situ would help to alleviate this issue.

One such method is the nanothread recoil (§ 5.4.1), but this requires trapping and

is limited to very soft droplets from which threads can be drawn. This method is

also dependent on the laser power and associated local heating effects. An imaging

technique would be preferable; at very low ULIFT, the overdamped capillary waves

are visible under brightfield microscopy. The average amplitude of each excitation

mode depends only on the properties of the interface, so the ULIFT of an untrapped

droplet [13] can be extracted directly from the power spectrum of the fluctuations.

Local estimates of bending modulus and dynamic IFT can also be obtained [14].

As a novel publication of 3D images of optically deformed droplets, this thesis

has laid groundwork for the comparison of real and predicted shapes. For polygonal

shapes, this comparison included the axial or lateral extension, sharpness of vertices

and edges, and the flatness of faces. Predictions made by Tapp et al., such as the

existence of negative mean and Gaussian curvatures have been verified experimen-

tally, albeit in a qualitative manner. Alongside the development of these theoretical

models, it would be valuable to define and measure quantitative experimental met-

rics, such as these local curvatures, or a basis representation in spherical harmonic
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functions. This information could then be used for feedback in shape optimisation

routines with control of parameters such as ambient temperature, trap power and

position.

The next step in shape optimisation would be to move beyond 3D arrays of

Gaussian point traps to a 3D ‘optical landscaping’ approach, as offered by holo-

graphic algorithms. Although in its infancy, in principle this capability would allow

arbitrary shapes to be produced with feature sizes as small as the optical diffraction

limit. The question can be posed: what hologram and droplet conditions are re-

quired to make a given complex shape? This is a difficult inverse problem in theory,

but one that could be solved empirically using the platform presented here.

A major unexpected result of this work has been to highlight the extent to which

buoyancy determines optically-deformed droplet shapes. The asymmetry it imposes

on the droplet diversifies the range of shapes that can be generated with point traps.

As buoyancy acts in one fixed direction and cannot be tuned easily in situ, it presents

the droplet sculptor with difficulties when producing a regular shape. For simple

point arrays, neutrally buoyant oils could be used to facilitate the production of

symmetric shapes that resemble handles conjoined by minimal surfaces, where ∆H

between upper and lower surfaces is zero. However, practical issues would have to be

overcome, such as ensuring resolution of emulsion layers and measuring interfacial

tensions by means other than centrifugation or spinning/sessile drop tensiometry.

The microfluidic and deformation experiments described here have, in part, inspired

novel techniques to measure IFT non-gravimetrically for individual microdroplets,

based on thread recoil and capillary fluctuations.

A chief vision of the collaboration is to apply droplets connected by threads as

nanofluidic networks, in which flow is driven with differential laser powers. Although

this work contributes to our understanding of the stability and topology of these

networks, their dynamics and flow properties have yet to be investigated in detail.

While analogies exist for lipid vesicles, the attolitre scale of the nanothread junctions
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is sufficiently small that reactions between individual molecules could be localised

and probed in liquid media on an accessible timescale. As biological molecules are

largely water-soluble, reverse emulsions with water droplets and networks would be

of immense interest to applied fields such as molecular biology. The familiar for-

mulations derived in this work could be used if supported by more sophisticated

optical traps, or with the same techniques, new formulations could be developed for

oils with lower refractive index than water, such as fluoroalkanes.

This work on formulation suggests that ULIFT with an aqueous phase is pos-

sible for a large class of oils, even with a limited range of common surfactants and

additives. In chemists’ terms, the ‘rate-determining step’ is to negotiate the con-

siderable number of iterative experiments to find the optimal points, besides the

variation of the minima themselves. As for many optimisation problems, the most

productive strategy for entirely new oils was to start from the most similar opti-

mal system and constrain the search to one or two degrees of freedom. In such

a scenario, the formulator may consider either ternary systems, where the surfac-

tant HLB itself can be varied, or quaternary systems with a mid-HLB surfactant,

where the concentration of a single additive such as an electrolyte can be varied.

Where IFT minima are not low enough for nanothread formation, as found here for

toluene and styrene formulations, then substitution with extended surfactants and

amphiphilic polymers might offer a way to diminish the IFT. The complications of

phase behaviour addressed in this work may yet prove a barrier to how far the IFT

can be lowered, or how closely the PIT can be approached, before the droplet or

network is no longer useful for deformation. However, I imagine that this leaves a

great range of accessible shapes and polymerisable materials to fulfil future scientific

applications.
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To summarise this thesis: the work confirms that microdroplets are amenable

to optical deformation at ultralow interfacial tension, and that the chosen strategy

poses a number of problems of fundamental interest to fluid mechanics, holography,

industrial emulsion chemistry, and even thermodynamics. Yet it is not only micro-

droplets that can be manipulated, but nanothread networks; I believe this path of

research is the most promising to arise from this collaboration and yet it remains

untrodden. It is my hope that my work on sculpting droplets helps optonanofluidic

networks to become a standard technique in molecular biology and chemistry, much

like optical tweezing has in biophysics. Along the way, I have learned to design,

construct and refine microfluidic and optical platforms which have opened a new

window to the microscopic world.
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