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Material	Abstract	

	
Thesis title: Population genetics of Risso’s dolphins (Grampus griseus), Fraser’s 
dolphins (Lagenodelphis hosei) and bottlenose dolphins (Tursiops spp.) in the North 
Pacific Ocean 
 
Author:   Ing Chen 
 
Abstract: Cetaceans are highly mobile mammals, but many species still exhibit 
degrees of population structure while inhabiting seemingly boundary-free open waters. 
Resource specialisation is hypothesized as one of the main drivers of population 
structure. Using multiple diploid and haploid genetic markers, this study reveals, for the 
first time, the population genetic structure of Risso’s dolphins, Fraser’s dolphins and 
common bottlenose dolphins in the tropical-temperate regions of the western North 
Pacific Ocean. For the Risso’s dolphins, the results showed that there are at least three 
populations in the North Pacific Ocean, by-and-large parallel to the existing 
biogeographic provinces; and the direction of gene flow corresponds with the direction 
of the mainstream currents. Mitochondrial DNA (mtDNA) data showed that the Pacific 
populations are genetically different from the three populations in the eastern North 
Atlantic Ocean and the Mediterranean Sea. For the Fraser’s dolphins, the genetic 
differentiation between Japanese and Philippine waters is consistent with the 
differentiation suggested in an earlier skull morphometric study. For the common 
bottlenose dolphins, the results suggested that there are at least four populations in the 
western and central North Pacific Ocean, and the differentiation appears to correspond 
to habitat types, resembling the scenario of inshore-offshore differentiation seen in other 
populations of the same species in other regions. The analysis also confirmed that there 
is no evident gene flow between the two “sister species”, the common bottlenose 
dolphin and the Indo-Pacific bottlenose dolphin (T. aduncus), occurring sympatrically 
in the region. The mtDNA data suggested that the Risso’s and Fraser’s dolphin 
populations in the western North Pacific experienced an episode of expansion in the last 
10,000 years. Genetic diversity is high in most of the population examined in this study; 
however, a relatively low effective population size is found in some populations and 
that may require further conservation attention.	 	
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Chapter	1.	Thesis	Introduction	

 

Population structure plays an important role in maintaining a species’ genetic diversity 

as it buffers selective pressures and prevents large-scale diversity reduction, and 

facilitates the development of de novo alleles through local adaptation (Ralph & Coop 

2010; Elmer & Meyer 2011). Identifying a species’ population structure is essential for 

studying the process of local adaptation and evolution (Kawecki & Ebert 2004), in 

addition for developing conservation strategies in natural resource management 

(Palsbøll et al. 2007). The strength of genetic interchange, or gene flow, is one of the 

key factors determining the significance of population structure (Hey & Pinho 2012). 

The presence of geographic barriers is perhaps the most common and obvious factor 

that prevents gene flow and allows genetic differences to accumulate, resulting in 

allopatric population structure. In the marine environment, however, such geographic 

barriers are usually absent, or at least not well defined. The population structure for 

marine species is therefore often attributed to other mechanisms, such as ‘invisible 

barriers’ (e.g., the structure of water masses), physical limits for active and/or passive 

dispersal, historical vicariant events, and adaptive selection pressure (Palumbi 1994).  

          Allopatric differentiation plays a role in developing population structure (and 

speciation) for cetaceans. Cetacean populations inhabiting different ocean basins, 

different hemispheres for species with ‘anti-tropical’ distribution, or different river 
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systems for fresh water species, are generally differentiated (Davies 1963, Rice 1998). 

However, in a given ocean basin, hemisphere, or river system, population structure can 

still be detected, even though cetacean species are considered highly mobile (e.g., 

Hoelzel et al. 1998a, b; Escorza-Treviño et al. 2005; Adams & Rosel 2006; Fontaine et 

al. 2007; Hollatz et al. 2011). Perrin (1984) suggests there are two major patterns for 

small cetacean population divergence: one is between enclosed seas and the open ocean, 

and the other is between inshore and offshore waters. Hoelzel (2009) suggests 

divergence can be attributed to a reunion of allopatric populations, or a process that 

results in assortative mating, such as resource specialisation, or utilising different 

breeding grounds. Recent studies further suggest cultural or behavioural differentiation 

could also promote population differentiation (Rosel et al. 2009; Rendell et al. 2012; 

Cantor & Whitehead 2013). 

          Determining the cause of population structure can be difficult, because the 

mechanisms are not always mutually exclusive. For instance, the evolution of the 

sympatric population structure for the transient and resident populations of killer whales 

(Orcinus Orca) in the eastern North Pacific Ocean is still under debate. Some studies 

suggest that it was the result of a reunion of two allopatrically differentiated populations 

(Foote et al. 2011; Morin et al. 2015), while some argue it was due to the high level of 

in situ resource specialisation, intense selection and gene drift pressure on the small 

populations (Hoelzel et al. 2007; Moura et al. 2014a; Moura et al. 2015). For other 
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species, multiple integrated factors including diet specialisation, behaviour 

differentiation, and habitat adaptation have been proposed as determining the genetic 

divergence of Indo-Pacific bottlenose dolphins (Tursiops aduncus) in southwestern 

Australian waters (Möller et al. 2007), spinner dolphins (Stenella longirostris) around 

Hawaiian archipelagos (Andrews et al. 2010), and Franciscana dolphins (Pontoporia 

blainvillei) in the Rio de la Plata estuary, South America (Costa-Urrutia et al. 2012). 

          Identifying population structure, as well as possible mechanisms that drive 

population differentiation, is important for conservation management. For instance, the 

impact of climate change, e.g., the rise of sea surface temperature, loss of arctic sea ice, 

alternation of ocean circulation, and intensification of El Niño/Southern Oscillation 

events can intensify or remove the barriers, and trigger further threats if the population 

is already endangered (Whitehead & Rendell 2004; Fontaine et al. 2007, Gambaiani et 

al. 2009; Scheinin et al. 2011). Population range shifts in recent decades have been 

reported for cetacean species off northwest Scotland (MacLeod et al. 2005), and for the 

Pacific white-sided dolphins (Lagenorhynchus obliquidens) in southwest Gulf of 

California (Salvadeo et al. 2010). Model simulation studies predict that the changes in 

water temperature may affect the distribution ranges of 88% of cetaceans, and marine 

mammal richness at lower latitudes will decrease in future decades due to climate 

change (MacLeod 2009; Kaschner et al. 2011). A better understanding of current 
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population structure will certainly boost the evaluation of climate change impacts on 

cetaceans.  

          Population structure used to be determined according to morphological 

differences or distribution gaps (e.g., Perrin 1984; Rice 1998). However, inference 

based on genotype and phenotype, or genotype and distribution, can be discordant. Such 

discrepancies have been reported, for example, between the morphological characters 

and mitochondrial DNA (mtDNA) variation in spinner dolphins in the Eastern Tropical 

Pacific (Dizon et al. 1991), between the colour patterns and genotypes in Dall’s 

porpoises (Phocoenoides dalli) in the western North Pacific Ocean (Hayano et al. 

2003), and between the genotypes and temporal aggregations in short-beaked common 

dolphins (Delphinus delphis) in the North Atlantic Ocean (Mirimin et al. 2009; Moura 

et al. 2013a). This may occur when phenotypic traits are plastic, leading to a weak 

correlation between genetic and phenotypic variation (Mousseau & Roff 1987; Reed & 

Frankham 2001; McKay & Latta 2002), or when the phenotypic traits are under strong 

selective pressure, resulting in little phenotypic variation among populations (Merila & 

Crnokrak 2001; Moritz 2002; Allendorf & Luikart 2006). The discordance between 

genotypes and geography can be attributed to seasonal or annual migration between 

habitats occupied by the same/different population (e.g., Carvalho et al. 2014), or a 

relatively recent segregation event resulting in the lack of sufficient time for lineage 

sorting (Avise 1992). Nevertheless, Merila & Crnokrak (2001) examined the data from 
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18 independent studies of plants and animals and found that FST (the degree of 

differentiation in neutral marker loci) and QST (the degree of differentiation in genes 

coding quantitative traits, the genetic basis of phenotypic traits) are highly correlated. 

Although using a set of multiple neutral genetic markers is now a favoured method in 

assessing population structure (see Moritz 2002; Manel et al. 2003; Palsbøll et al. 2007; 

Palstra et al. 2008; Allendorf et al. 2010), morphological characteristics and distribution 

breaks may assist the identification of population structure, even though they cannot 

fully account for the direction and intensity of gene flow, the key component in 

determining population structure. 

          There are 50 species of cetaceans that can be found in the North Pacific Ocean 

(Escorza-Treviño 2009), and population structure has been identified in many of those 

species (Table 1.1). However, some of the inferences are derived from limited genetic 

data (e.g., solely from the matrilineal inherited mtDNA markers), small sample size, 

and/or restricted sampling range and therefore warrants further examination. Moreover, 

most research efforts were spent on the cetaceans in the central and eastern North 

Pacific, particularly around the Hawaiian Islands and the western coasts of the North 

American Continent, or along the northern limit of the North Pacific. Knowledge about 

the population genetic structure for the species inhabiting pantropical western North 

Pacific Ocean is limited; such a sampling gap is seen in a number of studies attempting 
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to resolve the global phylogeography for some small cetacean species (e.g., Natoli et al. 

2006; Amaral et al. 2012; Moura et al. 2013b; Martien et al. 2014). 

          Population structure of the cetaceans in the coastal regions of the western North 

Pacific Ocean, however, deserves particular attention. Morphological studies suggest 

that some globally distributed species may have developed a degree of endemism with 

distinctive features. For example, the series of distinct morphological features for the 

“southern form” short-finned pilot whales (Globicephala macrorhynchus) in Japanese 

waters (Kasuya et al. 1988), the distinct colour patterns for the truei type of Dall’s 

porpoises found in the coastal waters of western North Pacific (Rice 1998), the 

“dwarfism” found in spinner dolphins in Thai waters (Perrin et al. 1999), and a shorter 

body length characterizing Risso’s dolphin (Grampus griseus) in the western North 

Pacific Ocean (Amano & Miyazaki 2004; Chen et al. 2011). Distribution gaps have also 

been observed in a number of small cetacean species (Miyashita 1993; Morisaka et al. 

2005; Shirakihara et al. 2007). However, except that the pattern of distribution clusters 

in harbour porpoises (Phocoena phocoena) and Dall’s porpoises is found in agreement 

with their population genetic structures (Escorza-Treviño et al. 2004), and the “southern 

form” of short-finned pilot whales has been suggested an evolutionary significant unit 

in a global mtDNA data analysis (Oremus et al. 2009), it is unclear whether such 

morphological or distribution significances for other species are also genetically 

significant. 
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Table 1.1.   Summary of current knowledge about the population structure of extant 
cetaceans inhabiting the North Pacific Ocean. The species list is constituted based on 
the table published in Escorza-Treviño (2009), excluding two ambiguous beaked whale 
species (Mesoplodon sp. A and sp. B) and further including the newly recognized 
baleen whale species, Omura’s whale. The asterisk (*) indicates the species is endemic 
to the North Pacific region. 
 
Category Species Genetic 

method used1 
Sampling 
coverage 

References 

No population 
structure 
recognized 

Sei whale  
Balaenoptera borealis 

nuDNA, MS Full Wada & Numachi 
1991 
Kanda et al. 2006 

Blue whale  
Balaenoptera musculus 

MS Partial Costa-Urrutia et al. 
2013 

Bryde's whale  
Balaenoptera brydei 

mtDNA, 
nuDNA, MS 

Partial Wada & Numachi 
1991 
Kanda et al. 2007 

Indo-Pacific humpback dolphin  
Sousa chinensis 

mtDNA, MS Partial Chen et al. 2010a 
Lin et al. 2012 

Northern right-whale dolphin*  
Lissodelphis borealis 

mtDNA Partial Dizon et al. 1994 

Vaquita* 
Phocoena sinus 

mtDNA Full Rosel & Rojas-
Bracho 1999 

Structure 
among 
geographic 
regions: 
among discrete 
breeding areas 

Bowhead whale 
Balaena mysticetus 

mtDNA, MS, 
SNPs 

Full LeDuc et al. 2008 
Givens et al. 2010 
Alter et al. 2012 
Morin et al. 2012a 

Gray whale*  
Eschrichtius robustus 

mtDNA, MS Full LeDuc et al. 2002 
Alter et al. 2009 
Frasier et al. 2011 
D'Intino et al. 2013 
Lang et al. 2014 

Humpback whale  
Megaptera novaeangliae 

mtDNA, 
nuDNA, MS 

Full Baker et al. 1998, 
2008 

Sperm whale  
Physeter macrocephalus 

mtDNA, MS, 
SNPs 

Partial Lyrholm & 
Gyllensten 1998 
Mensick et al. 2011 

Beluga  
Delphinapterus leucas 

mtDNA, MS Full Meschersky et al. 
2013 

Dall’s porpoise*  
Phocoenoides dalli 

mtDNA, 
nuDNA, MS 

Full Escorza-Treviño & 
Dizon 2000 
Hayano et al. 2003 

Structure 
among 
geographic 
regions: 
among discrete 
suitable 
habitats 

Indo-Pacific bottlenose dolphin  
Tursiops aduncus 

mtDNA Partial Kakuda et al. 2002 
Hayano 2013 

Common bottlenose dolphin 
(Hawaiian Islands)  
Tursiops truncatus 

mtDNA, MS Full Martien et al. 2012 

Pantropical spotted dolphin 
(Hawaiian Islands)  
Stenella attenuata 

mtDNA, MS Full Courbis et al. 2014 

Spinner dolphin (Hawaiian 
Islands) Stenella longirostris 

mtDNA, MS Full Andrews et al. 2010 

Killer whale (resident/transient 
ecotype)  
Orcinus orca 

mtDNA, MS, 
SNPs 

Full Hoelzel et al. 2007 
Parsons et al. 2013 
Moura et al. 2014b 
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Category Species Genetic 
method used1 

Sampling 
coverage 

References 

Harbour porpoise  
Phocoena phocoena 

mtDNA, MS Full Chivers et al. 2002 
Taguchi et al. 2010 
Crossman et al. 2014 

Yangtze finless porpoise*  
Neophocaena phocaenoides 
asiaeorientalis 

mtDNA Full Zheng et al. 2005 

Finless porpoise* (Yellow Sea 
populations) Neophocaena 
phocaenoides 

mtDNA, MS Full Li et al. 2011 

Structure 
among 
geographic 
regions: semi-
closed vs. 
open waters 

Minke whale  
Balaenoptera acutorostrata 

mtDNA, 
nuDNA 

Partial Wada & Numachi 
1991 
Pastene et al. 2007 

Fin whale  
Balaenoptera physalus 

mtDNA, 
nuDNA, MS 

Full-
range 

Wada & Numachi 
1991 
Bérubé et al. 2002 
Goto 2007 

Structure 
among 
geographic 
regions: 
nearshore vs. 
pelagic waters 

Common bottlenose dolphin  
Tursiops truncatus 

mtDNA, MS Partial Segura et al. 2006 
Martien et al. 2012 
Lowther-Thieleking 
et al. 2015 

Spinner dolphin 
Stenella longirostris 

mtDNA, MS Partial Dizon et al. 1991 
Andrews et al. 2010 

Pacific white-sided dolphin*  
Lagenorhynchus obliquidens 

mtDNA, MS Partial Hayano et al. 2004 

Pantropical spotted dolphin  
Stenella attenuata 

mtDNA, MS Partial Yao et al. 2004 
Escorza-Treviño et 
al. 2005  
Courbis et al. 2014 

False killer whale  
Pseudorca crassidens 

mtDNA, MS Partial Chivers et al. 2007 
Martien et al. 2014 

Structure 
among cultural 
clans 

Sperm whale  
Physeter macrocephalus 

mtDNA Partial Rendell et al. 2012 

Structure 
among 
sympatric or 
parapatric 
morphotypes 
or ecotypes 

Bryde’s whale & pygmy 
Bryde's whale  
Balaenoptera brydei & B. edeni 

mtDNA, 
nuDNA, MS 

Partial Wada & Numachi 
1991 
Kanda et al. 2007 
Kershaw et al. 2013 

North Pacific bottlenose whale* 
(black & slater-gray forms)  
Berardius bairdii 

mtDNA, 
nuDNA 

Partial Kitamura et al. 2013 

Ginkgo-toothed whale (tropical 
&temperate forms)  
Mesoplodon ginkgodens & M. 
hotaula 

mtDNA, 
nuDNA, Y-
cms 

Partial Dalebout et al. 2007 
Dalebout et al. 2014 

Short-finned pilot whale 
(northern & southern forms)  
Globicephala macrorhynchus 

mtDNA Partial Oremus et al. 2009 
Chen et al. 2014 
Van Cise et al. 2016 

Short-beaked common dolphin 
& long-beaked common 
dolphin*  
Delphinus delphis & D. 
capensis 

mtDNA, 
nuDNA 

Partial Rosel et al. 1994 
Amaral et al. 2012 

Finless porpoise*  
Neophocaena phocaenoides 

mtDNA, MS, 
SNPs 

Partial Yang et al. 2002, 
2008 
Wang et al. 2008 
Chen et al. 2010b 
Ju et al. 2012 
Li et al. 2013 
Jia et al. 2014 
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Category Species Genetic 
method used1 

Sampling 
coverage 

References 

Killer whale (resident, transient 
and offshore ecotypes)  
Orcinus orca 

mtDNA, MS, 
SNPs 

Full Hoelzel et al. 1998b, 
2007 
Morin et al. 2010 
Pilot et al. 2010 
Parsons et al. 2013 
Moura et al. 2014b 

Lack of 
sufficient data 
to conclude its 
population 
structure 

North Pacific right whale*  
Eubalaena japonica 

mtDNA, 
nuDNA 

Partial Rosenbaum et al. 
2000 
Gaines et al. 2005 

Omura's whale  
Balaenoptera omurai 

mtDNA Partial Sasaki et al. 2006 

Pygmy sperm whale  
Kogia breviceps 

mtDNA Partial Chivers et al. 2005 

Dwarf sperm whale 
Kogia sima 

mtDNA Partial Chivers et al. 2005 

Cuvier’s beaked whale  
Ziphius cavirostris 

mtDNA Partial Dalebout et al. 2005 

Longman’s beaked whale  
Indopacetus pacificus 

   

Perrin’s beaked whale*  
Mesoplodon perrini 

mtDNA Partial Dalebout et al. 2002 

Pygmy beaked whale*  
Mesoplodon peruvianus 

mtDNA Partial Dalebout et al. 2007 

Hubbs’ beaked whale*  
Mesoplodon carlhubbsi 

mtDNA Partial Dalebout et al. 2007 

Saber-toothed whale*  
Mesoplodon stejnegeri 

mtDNA Partial Dalebout et al. 2007 

Blainville’s beaked whale  
Mesoplodon densirostris 

mtDNA Partial Dalebout et al. 2007 
Morin et al. 2012b 

Rough-toothed dolphin  
Steno bredanensis 

   

Striped dolphin  
Stenella coeruleoalba 

   

Fraser’s dolphin  
Lagenodelphis hosei 

   

Risso’s dolphin  
Grampus griseus 

   

Melon-headed whale  
Peponocephala electra 

   

Pygmy killer whale  
Feresa attenuata 

   

Irrawaddy dolphin  
Orcaella brevirostris 

   

1: mtDNA, mitochondrial DNA; nuDNA, nuclear DNA intron; Y-cms, Y-chromosome; MS, 

microsatellites; SNPs, single nucleotide polymorphisms. 

 

          On the other hand, there is a growing concern for cetacean conservation in the 

western North Pacific. Due to the rapid economic development and intensified human 

demands on aquatic resources, multiple anthropogenic threats, such as small-scale 
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whaling, incidental catches from fisheries, habitat loss/degradation, contaminant 

accumulation, acoustic disturbances and recreation abuse, have been proposed as 

potential risks to local cetacean fauna in this region (see review in Perrin et al. 2005; 

Kasuya 2007, 2011; Robards & Reeves 2011). More than 10,000 individuals, 

comprising seven dolphin and one porpoise species, have perished in Japanese waters 

every year (Kasuya 2011). A rough estimate of annual cetacean incidental catching rate 

in Taiwanese waters is 2,770 dolphins, with about 70% comprised of Risso’s dolphins 

and Fraser’s dolphins (Lagenodelphis hosei) (Chou 2006). It is estimated that 2,000 

dolphins are bycaught in Philippine fisheries every year and the primary composition is 

spinner dolphin, pantropical spotted dolphin, Fraser’s dolphin, bottlenose dolphin, 

Risso’s dolphin, and Irrawaddy dolphin (Orcaella brevirostris) (Perrin et al. 2005; 

Young & Iudicello 2007). Estimates suggest that there are about 1,700 bottlenose 

dolphins and 1,000 spinner dolphins incidentally killed in human fisheries in the central 

western Pacific (Young & Iudicello 2007). Moreover, while the popularity of the whale 

watching industry grew rapidly in the past few decades, negative interaction with 

recreational or transportation vessels also started to emerge (Ng & Leung 2003; 

Matsuda et al. 2011; Parsons 2012). These human impacts cannot be properly evaluated 

and an effective conservation plan cannot be made without the knowledge of the 

cetacean’s population structure, stability and sustainability. However, such information 

is still lacking for most of the species in the region (Table 1.1).   
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          One of the aims of this study was to increase the knowledge of cetacean 

population structure and dynamics to enhance the efficiency of conservation 

management, and the other was to interpret the significance of biological and 

environmental factors in shaping cetacean population structure. This research 

investigated the population genetic structure of Risso’s dolphins, Fraser’s dolphins and 

bottlenose dolphins in the North Pacific Ocean, with a focus on their population 

structure in the western region. Where possible, comparisons were made with 

populations of the same species worldwide. These species were chosen because they are 

vulnerable to anthropogenic impact in this region (Perrin et al. 2005; Chou 2006; 

Kasuya 2011), but their population structure, as well as population size, genetic 

diversity, and social structure, were poorly known (Table 1.1; for details, see Chapters 

2—4). Moreover, these dolphin species are highly mobile, globally cosmopolitan, and 

live sympatrically (or at least parapatrically) in this region, and it was anticipated that 

studying these species would ultimately provide further inference about the 

evolutionary mechanisms for inter-/intra population structuring in delphinid species.  

          As earlier studies based on sighting records suggest that some regional 

distribution gaps are present for Risso’s and bottlenose dolphins in the North Pacific 

Ocean (Leatherwood et al. 1980; Miyashita 1993; Jefferson et al. 2014), and 

morphological differentiation is detected in Fraser’s and Risso’s dolphins in the western 

part of the Pacific ocean (Perrin et al. 2003; Chen et al. 2011), it would be expected to 
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find some degree of population structure for these species, and the differentiation to be 

due to oceanographic or resource barriers (i.e., scattered habitat distribution) and 

resource specialization (local adaptation). Furthermore, with the genetic data, estimates 

were made for the effective population size, migration rate, and the history of 

population expansion for each population in each species, to evaluate the dynamics of 

the populations and the potential of being affected by human disturbance.  

 

Objectives	

The objectives of this study were: 

          To assess population structure, genetic diversity, effective population size, and 

demographic trends of the Risso’s dolphins in the North Pacific Ocean and examine the 

contradictory hypotheses derived from earlier studies on the external morphology and 

from regional shipboard survey (“there is population structure in the North Pacific”; 

Leatherwood et al. 1980; Miyashita 1993; Chen et al. 2011) and long-term sighting 

records (“there is no population structure in the North Pacific”; Jefferson et al. 2014) 

(Chapter 2);  

          To reveal the population genetic structure for the Fraser’s dolphins in the western 

North Pacific, particularly to examine the population differentiation between Japan and 
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the Philippines that has been proposed in an earlier analysis of skull morphometrics 

(Perrin et al. 2003) (Chapter 3); 

          To study the population structure of bottlenose dolphins in the western North 

Pacific with a larger sample size, to confirm there is no gene flow between the two 

sympatric sister species (Wang et al. 1999; Yang et al. 2005) and to examine the 

hypothesis that there is no “near-shore” population established along the eastern Asian 

coasts due to the presence of Indo-Pacific bottlenose dolphins (Tenzano-Pinto et al. 

2009; Oremus et al. 2015) (Chapter 4); and 

          To review and compare the differences in the pattern of population structure, 

genetic diversity and effective population size between and within the species, and to 

draw inferences about possible ecological/evolutionary mechanisms, influence of 

climate change, and conservation management (Chapter 5). 
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Chapter	2.	The	population	structure	and	dynamics	of	Risso’s	

dolphins	(Grampus	griseus)	in	the	Northern	Hemisphere,	with	a	

focus	on	the	populations	in	the	North	Pacific	Ocean	

 

Abstract	

Cetaceans are highly mobile mammals, but even those species inhabiting seemingly 

boundary-free open waters still exhibit degrees of population structure. Habitat/resource 

specialisation and fragmented distribution of habitat/resource have been suggested to be 

the main processes shaping the population structure of species relying on land-

associated, coastal habitats. Here, it is demonstrated that these factors could also 

influence the population structure of species utilising oceanic habitats. By examining 

the genetic variation among 19 microsatellite loci in 236 Risso’s dolphin samples 

collected from a range of locations in the North Pacific, it was found that there are at 

least three Risso’s dolphin populations in the region (K=3 in Geneland analysis; 

FST=0.009—0.044), and the structure is by-and-large parallel to the biogeographic 

provinces, suggesting habitat/resource specialisation. The Migrate and Geneclass2 

analyses showed that the direction of gene flow appears to agree with the direction of 

the mainstream currents in the North Pacific. Analyses using mitochondrial DNA data 

showed that these three populations are genetically different from the populations in the 
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eastern North Atlantic Ocean and Mediterranean Sea (FST=0.024—0.317). The 

estimates from mismatch analysis showed, apart from the population occupying the 

waters around the Azores and Eastern Tropical Pacific, all populations in the Northern 

Hemisphere experienced a period of demographic and spatial population expansion in 

the last 10,000 years. An estimation of the effective population size for the three 

populations in the North Pacific is presented, although some of the estimates might be 

inaccurate.   

 

Keywords: Risso’s dolphin, Population structure, North Pacific, Oceanic biogeography, 

microsatellite DNA, mitochondrial DNA 

 

Introduction	

Cetaceans (whales, dolphins and porpoises) are highly mobile mammals that have fully 

adapted to live in an aquatic environment. For those species that utilise the open water 

environment, there appears to be no physical barrier that would prevent dispersal, and 

so panmixia may be expected. However, cryptic population structure has been reported 

in a number of species, even when distribution ranges are apparently connected. It has 

been suggested that such sympatric or parapatric population structure is a result of a 

reunion of allopatrically differentiated populations, and/or assortative mating driven by 
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resource specialisation (Hoelzel et al. 2002; Hoelzel 2009). Various examples that 

support these hypotheses can be found in earlier studies of the population genetics of 

killer whale (Orcinus orca) (Hoelzel et al. 1998a, 2007; Foote et al. 2011; Moura et al. 

2014, 2015; Morin et al. 2015) and common bottlenose dolphin (Tursiops truncatus) 

(Hoelzel et al. 1998b; Möller et al. 2007; Rosel et al. 2009; Louis et al. 2014).  

 Ballance et al. (2006) studied the distribution of several pelagic cetacean species 

in the Eastern Tropical Pacific and concluded that the distribution pattern can be greatly 

influenced by species-specific ‘distribution-habitat relationships’. These relationships 

are proposed to reflect the species’ preference for oceanographic features (such as types 

of surface currents or water masses), which is usually associated with the distribution of 

the species’ preferred prey, and that in turn is affected by various gradients of physical 

features and processes. Therefore, the seemingly boundary-free open water inhabited by 

pelagic cetaceans may be partitioned by the unevenness of resource distribution, as the 

populations of coastal species are segregated due to the discontinuity of preferred 

habitat. This idea is echoed by some pioneering seascape genetics studies for marine 

mammals; for instance, Fontaine et al. (2007) found that profound changes in 

oceanographic features create barriers that consequently prevent gene flow among the 

populations of harbour porpoise (Phocoena phocoena) in European waters; Andrews et 

al (2010) suggest that the segregation of the two communities of spinner dolphin 

(Stenella longirostris) around the Hawaiian Islands is due to limited resting areas; and 
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Amaral et al. (2012) propose that the population structure of short-beaked common 

dolphins (Delphinus delphis) is correlated with marine productivity and sea surface 

temperature.  

 The Risso’s dolphin (Grampus griseus) is a moderately small odontocete species 

widely distributed in the world’s oceans between 64°N and 46°S, with an apparent 

preference for temperate waters (water temperature >10°C) and steep continental shelf-

edge habitats where water depth is about 400—1000m (Baird 2009; Jefferson et al. 

2014; Fig. 2.1). This habitat preference reflects an exclusive dependence on cephalopod 

prey, which is typically found in the upwelling regions along continental slopes 

(Baumgartner 1997; Smith & Whitehead 1999; Olavarría et al. 2001; Frantzis & 

Herzing 2002; Azzellino et al. 2008).  Several regional populations or stocks have been 

proposed according to apparent geographic boundaries or morphological differences. 

For instance, Risso’s dolphins in the US waters are assigned to four geographic stocks 

for management purposes: the US Atlantic, the Gulf of Mexico, the 

California/Oregon/Washington and the Hawaii stocks (Carretta et al. 2014; Waring et 

al. 2014).  Risso’s dolphins in the waters around Taiwan and Japan have been suggested 

to represent an independent population characterised by having a shorter body length 

(Chen et al. 2011). However, such classification of populations/stocks may not always 

indicate a demographically independent population, which is an appropriate 

management unit for wildlife conservation (Palsbøll et al. 2007). To my knowledge, the 
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only genetically assessed population structure for Risso’s dolphins is the populations 

between the UK and Mediterranean Sea, and the UK population was found to be 

isolated with notably low genetic diversity (Gaspari et al. 2007). 

 In the North Pacific Ocean, Risso’s dolphins are commonly encountered on both 

sides of the ocean (Leatherwood et al. 1980; Miyashita 1993; Forney & Barlow 1998; 

Yang et al. 1999; Rosales-Nanduca et al. 2011; Jefferson et al. 2014). Sighting records, 

which showed a certain level of geographic clustering, suggest the presence of stock 

structure (Leatherwood et al. 1980; Miyashita 1993; Gerrodette et al. 2008; Carretta et 

al. 2014). However, Jefferson et al. (2014) argue that many regions in the Pacific Ocean 

have yet to be properly surveyed, and “the number of records from the central portion of 

the North Pacific Ocean makes it reasonably clear that the species is found continuously 

across the North Pacific Ocean basin; there is no evidence of separate western and 

eastern Pacific populations (p. 62).” Even so, it is unknown if any of these putative 

stocks are demographically independent. Nor is it known if the unified pan-North 

Pacific stock has population structure, given that sympatric or parapatric population 

structure has been observed in other cetacean species. Since this species is constantly 

harvested in a regional dolphin drive fishery (Kasuya 2007), suspected to be negatively 

impacted by these regional fisheries (Dolar 1994; Vidal et al. 1994; Perrin et al. 2005; 

Chou 2007), and possibly harassed by tourism (Visser et al. 2011), verifying the 
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species’ population structure in this region emerges as a critical objective for cetacean 

conservation management.  

 One of the objectives of this study was to test the correspondence between these 

apparent demographic stocks and patterns of population genetic structure.  The null 

hypothesis was there is no population structure for Risso’s dolphins in the North Pacific 

Ocean, as Jefferson et al. (2014) suggested.  The other objective was to assess the 

population dynamics of Risso’s dolphins both at present and in the past, and thus to 

provide further key information in support of the effective conservation of this poorly 

studied species.  

 

 
Figure 2.1. The global distribution range of the Risso’s dolphin species (inside black 
lines). The dots indicate the locations of sighting or capture records of the species in 
1950—2012. The figure is published as the Figure 1 in Jefferson et al. (2014), and a 
reuse permit for this thesis has been granted by the publisher John Wiley and Sons 
under the licence number 3851880562391. 
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Material	and	Methods	

Sample	collection	and	genomic	DNA	extraction	

Two hundred and ninety six Risso’s dolphin tissue samples collected from a range of 

locations around the North Pacific Ocean were acquired from multiple biological tissue 

archives in Taiwan (from National Taiwan University), Japan (from National Museum 

of Natural Science and es-Bank at Ehime University) and the United States (from 

Southwest Fishery Science Center). The samples were grouped into seven putative 

populations according to their sampling locations: Taiwan, East Japan, Sea of Japan, the 

Philippines, Central-Northeast Pacific, Oregon-California Coastal and Eastern Tropical 

Pacific (Fig. 2.2; Appendix 2.1). Samples from Central-Northeast Pacific, Oregon-

California Coastal and Eastern Tropical Pacific were either biopsied from free-ranging 

dolphins or collected from stranded dolphins and incidental catches in fisheries, 

whereas those from Taiwan, East Japan and Sea of Japan were chiefly from stranded 

dolphins, incidental catches in fisheries, or from a group of dolphins targeted in drive 

fishery (c.f. Kim et al. 1996; Amano & Miyazaki 2004). Note that the sample sizes from 

the Central-Northeast Pacific and the Philippines were too small for some analyses. 

 The identity of species and sex of each sample was derived from the archive 

records where identification was based on the specimen’s external morphological 

characters and made by knowledgeable researchers. However, when in doubt, species 
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identity was verified genetically by comparing the sample’s mitochondrial DNA 

(mtDNA) control region sequence against the DNA Surveillance reference database 

(http://dna-surveillance.fos.auckland.ac.nz; Ross et al. 2003). The samples acquired 

from National Museum of Natural Science and Southwest Fishery Science Center were 

supplied as titrated DNA reagent; the others were provided as a small portion of skin or 

muscle tissue preserved in either 99% ethanol or 20% DMSO solution. For all tissue 

samples, their genomic DNA was isolated and purified following a standard proteinase-

K digestion/phenol–chloroform extraction protocol (Sambrook et al. 1989). All 

specimens were transported to and examined at the laboratories in University of 

Durham (UK) and Kyushu University (Japan), with valid official permits issued by the 

authorities of Japan, Taiwan, United States and United Kingdom. 

 

 
Figure 2.2.   A map showing the sampling locations (solid circle) and the range of each 
defined putative populations (as coloured patches). The sample size (n) for each 
putative population is indicated in the label box as the n used in microsatellite data 
analysis/ the n used in mitochondrial data analysis.  
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Microsatellite	DNA	fragment	amplification	and	genotyping	

For microsatellite analyses, 22 microsatellite loci that have been studied and validated 

in the same or related species in earlier genetic studies (e.g., Natoli et al. 2004; Gaspari 

et al. 2007; Mirimin et al. 2011) were chosen (Table 2.1). The microsatellite fragments 

were amplified using a polymerase chain reaction (PCR) method either individually 

with GoTaq® Taq DNA polymerase (Promega), or multiplexed with a multiplex PCR 

preparation kit (Qiagen). The PCR reagents that contained GoTaq® Taq DNA 

polymerase were prepared in a 20µL scale. The temperature cycle included a 

denaturation step at 95°C for 120s, followed by 35 cycles of 40s at 94°C, 40s at the best 

annealing temperature of the locus (Table 2.1), and 70s at 72°C, and a post-extension at 

72°C for 10 min. The reagents using the multiplex PCR kit were prepared in a 10𝜇l 

scale, and the PCR cycle included a denaturation step at 95°C for 15 min, followed by 

30 cycles of 40 s at 94°C, 90 s at the annealing temperature for the group of loci, and 60 

s at 72°C, and a post-extension at 60°C for 30 min. The fragment analysis was 

undertaken on an Applied Biosystems 3730 DNA Analyser, and the allele size was 

determined by an internal standard marker (Genescan-500 ROX, Applied Biosystems) 

visualised in Peak Scanner v.1 (Applied Biosystems). Every locus in each sample was 

examined at least twice by the author Ing Chen, and the scores were verified by the 

author’s supervisor Rus Hoelzel.  
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 Table 2.1.   The list of used microsatellite markers with optimal annealing temperatures 
and fragment size range observed for each locus. 
 

Microsatellite 
locus 

Optimal annealing 
temperature (°C) 

Fragment 
size range 

Genbank 
accession 
number Reference 

AAT44 58 70-90 AF416501 Caldwell et al. 2002. 
EV14 60 132-184 G09079 Valsecchi & Amos 1996. 
EV37 53 180-206 G09081   
D14 48 106-144 

 
Shinohara et al. 1997. 

D22 52 114-138 
 

  
KWM1b 49 187 

 
Hoelzel et al. 1998a. 

KWM2b 44 167-181 
  KWM9b 58 166-198 
  KWM12a 55 158-204 
 

  
TexVet7 50 152 AF004907 Rooney et al. 1999. 
MK3 59 139-159 AF237889 Krützen et al. 2001. 
MK5 59 198-248 AF237890   
Dde59 52 306-386 AM087093 Coughlan et al. 2006. 
Dde65 53 184-204 AM087096 

 Dde66 52 341-381 AM087097 
 Dde69 56 184-220 AM087098 
 Dde70 59 105-155 AM087099 
 Dde72 58 207-299 AM087100 
 Dde84 48 144-164 AM087101   

Sco11 56 187-223 AM087102 Mirimin et al. 2006. 
Sco28 50 131-149 AM087103 

 Sco55 56 216-228 AM087105   

 

Mitochondrial	DNA	sequence	amplification	

The mtDNA sequences of selected Oregon-California Coastal and Eastern Tropical 

Pacific samples were amplified using GoTaq® protocol with a pair of primers designed 

to amplify the mtDNA control region sequence in cetaceans, MTCR-F (5’-TTC CCC 

GGT CTT GTA AAC C-3’) and MTCR-R (5’-ATT TTC AGT GTC TTG CTT T-3’) 

(Hoelzel et al. 1991). The PCR reactions were prepared according to GoTaq® protocol 

but converted to a 20µL scale. The PCR cycle included a denaturation step at 95°C for 

120s, followed by 35 cycles of 40s at 94°C, 40s at 50°C, and 70s at 72°C, and a post-

extension at 72°C for 10min. The amplified mtDNA fragments were purified using 
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QIAquick® PCR Purification Kit (Qiagen) and then sequenced on an Applied 

Biosystems 3730 DNA Analyser. The mtDNA sequences for Taiwan, East Japan, Sea 

of Japan and Philippine samples were amplified and sequenced in the molecular 

ecology laboratory at Kyushu University, using a set of primers tRpro-F.ceta (5’-ACC 

ACC AAC ACC CAA AGC TGG AAT-3’) and RCR(mod).ceta (5’-CCA TAG CTG 

AGT CGG TGC AAG CCC-3’) (modified by the author’s collaborator Shin Nishida 

from Hoelzel et al. 1998a). The PCR reagent was prepared in a 25µL scale, which 

comprised a dose of PCR buffer, 0.2mM of each dNTP, 0.2mg/mL BSA, 0.2mM of 

each primer, and 0.625 units TaKaRa®Ex Taq Hot Start Version DNA polymerase 

(TaKaRa Bio) and 1µL of DNA sample. The temperature cycle included a denaturation 

at 94°C for 60s, followed by 30 cycles of 10s at 98°C, 45s at 60°C, and 45s at 72°C, and 

post-extension at 72°C for 60s. The amplified mtDNA fragments were then purified 

using USB ExoSAP-IT® Kit (Affymetrix), and sequenced on a CEQ2000XL DNA 

Sequencer (Beckman Coulter Inc.). All sequencing results were visualised in FinchTV 

(PerkinElmer) and manually corrected using MEGA 5.05 (Tamura et al. 2011).  

 

Microsatellite	data	configuration	

Using samples collected from the same school of dolphins may result in non-random 

sampling of closely related individuals (see examples in Amos et al. 1993; Pilot et al. 
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2010; Costa-Urrutia et al. 2012; Kita et al. 2013). Sampling kin is likely an issue in this 

sample because some biopsy and drive fishery samples were likely collected from the 

same school of dolphins. The screening procedure applied in Martien et al. (2012) and 

Lowther-Thieleking et al. (2015) was used here to identify and remove closely related 

kin in the sample. Kingroup v2 (Konovalov et al. 2004; Konovalov & Heg 2008) was 

used to calculate the coefficient of kinship (r) for the sample pairs in the same putative 

population and conducted a likelihood ratio test to screen possible parent-offspring or 

full-sibling pairs. If the r value in a pair was over 0.4 (Kita et al. 2013) and the 

likelihood ratio test also indicated the pair was a parent-offspring or full-sibling pair, 

then one of the samples in the pair would be excluded from further analyses, unless the 

samples were collected in a different year or location.  

 The software Micro-Checker was used to screen for null alleles and scoring 

errors (Van Oosterhout et al. 2004). The jack-knife test implemented in the R package 

StrataG was used to screen for samples that are influential to Hardy-Weinberg 

equilibrium (Morin et al. 2009). Arlequin 3.5.1 (Excoffier et al. 2005) was used to 

calculate the observed heterozygosity (Ho) and expected heterozygosity (He) of each 

locus, and to assess any statistically significant deviation in Hardy-Weinberg 

equilibrium (HWE) and linkage disequilibrium (LD). Overall deviation, heterozygote 

deficiency and heterozygote excess were assessed through the Fisher exact test and 

Markov chain method implemented in the same program (Number of steps in Markov 
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chain, 1,000,000; number of dememorization steps, 100,000). The significant level for 

all tests was set as p<0.05 after Bonferroni correction.  FSTAT 2.9.3.2 (Goudet 1995, 

2002) was used to determine the allelic richness and inbreeding coefficient (FIS) for 

each putative population. Note that the indices associated with Wright’s F-Statistics, 

i.e., HO, HE, allelic richness and FIS, were only estimated for putative populations with a 

sample size larger than 10. 

 

Microsatellite	data	analysis:	population	structure	

The factorial correspondence analysis (FCA) implemented in Genetix 4.0 (Belkhir et al. 

2004) was used to demonstrate the similarity among individuals using the microsatellite 

data. Individuals that have similar series of allelic states (e.g., absence, homozygote or 

heterozygote) would be clustered in a similar multi-dimensional space. The analysis 

was conducted with or without using the population information option (‘sur 

population’) to generate different plots for comparison. When the ‘sur population’ 

option was used, the population information of each individual was referred to the 

centre for the individual’s putative population. The result was presented in a two-

dimensional plot using the package graphic available in R 3.1.2 (R Core Team 2014, 

http://www.R-project.org). 
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 STRUCTURE 2.3.4 (Pritchard et al. 2000) was used to estimate the most 

probable number of populations (K). The program uses a Bayesian model-based 

clustering algorithm to calculate a K that could achieve the minimum HWE and linkage 

equilibrium between loci within groups, with or without a priori knowledge of 

population information. To estimate the K for the samples, a series of posterior 

probability likelihood values, LnP(K), was estimated for each value of K (from 1 to 8), 

using an admixture model with correlated allele frequencies (Falush et al. 2003), and 

the process was repeated in 10 independent runs. All simulations were conducted under 

100,000 burn-in and 1,000,000 repeats. The estimation was undertaken with or without 

using sampling location information (the ‘LOCPRIOR’ option in the program). When 

the LOCPRIOR option was used, the identity of the putative population for each 

individual was taken into account. The best K can be identified as the run with the 

highest LnP(K); however, the LnP(K) usually continues to increase when K increases in 

natural populations (Pritchard et al. 2000). In this regard, ΔK, the second order rate of 

change of LnP(K) with respect to K, was suggested a better indicator in determining the 

highest hierarchical level of K for the samples (Evanno et al. 2005). The ΔK was 

calculated using a web-based software Structure Harvester 

(http://taylor0.biology.ucla.edu/structureHarvester/; Earl et al. 2012), and a graphic 

result was optimised using accessory software CLUMPP version 1.1.2 (Jakobsson & 

Rosenberg 2007) and Distruct 1.1 (Rosenberg 2004).  
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 The R package Geneland was also used to assess population structure in a 

spatial context (Guillot et al. 2005). This program integrates genotypic (in this case, 

microsatellite) and spatial coordinate data and simulates all parameters by Bayesian 

inference and Markov chain Monte Carlo (MCMC) simulation, assuming HWE and 

linkage equilibrium. The analysis was conducted in two steps (as suggested in Guillot et 

al. 2005): in the first step, the number of clusters (K) was set to vary from 1 to 10 

clusters, with 1,000,000 MCMC iterations, 100 thinning, maximum rate of Poisson 

process fixed to 236 (the number of samples), uncertainty attached to spatial coordinates 

fixed to 100 km, maximum number of nuclei in the Poisson-Voronoi tessellation fixed 

to 708. For allelic frequencies setting, the Dirichlet model was used as it has been 

demonstrated to perform better than the alternative model (Guillot et al. 2005). In the 

second step, the K was fixed to the modal value of K from the 10 runs in the first step, 

and then conducted the simulation again with 500,000 MCMC iterations, 100 thinning, 

100 repeats and the other parameters remaining the same. The top 10 runs with the 

highest mean logarithm of posterior probability (LPP) in the 100 runs were selected for 

post-processing. To calculate the posterior probabilities of population membership for 

each individual and each pixel of the spatial domain, a burn-in of 100 iterations and a 

spatial domain of 290 pixels along the X-axis and 64 along the Y-axis were used. The 

consistency of results across these 10 runs was individually checked. 
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 The level of population differentiation among the putative populations was 

evaluated using Analysis of Molecular Variance (AMOVA) and pairwise comparison of 

fixation indices, i.e., FST (Wright 1951) and RST (Slatkin 1995). The analysis measures 

the variation of allelic frequencies among putative populations and expects further 

deviation in more differentiated populations. Since the fixation indices could be less 

reliably estimated with small sample size (Balloux & Lugon-Moulin 2002), the 

Philippines and Central-Northeast Pacific populations were excluded from this analysis. 

In AMOVA, which allows examining the differences for different levels of population 

hierarchy, the putative populations were arranged into two groups, the Western North 

Pacific (Taiwan, East Japan and Sea of Japan) and the Eastern North Pacific (Oregon-

California Coastal and Eastern Tropical Pacific), to test whether the population 

differentiation between two sides of North Pacific Ocean was statistically significant. 

Both AMOVA and pairwise comparison of fixation indices were calculated using the 

algorithm implemented in Arlequin 3.5.1, with a non-parametric permutation approach 

with 10,000 permutations.  

 To examine whether the population differentiation is a result of isolation-by-

distance, a redundancy analysis (RDA) was conducted to test the significance of the 

correlation between genetic distance and geographic distance (Meirmans 2015), using 

the R package vegan (Oksanen et al. 2012). The microsatellite data were set as the 

matrix of dependent variables and the longitude and latitude of the samples were the 
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independent variables. The statistical significance level for the correlation coefficient 

was set at p<0.05. 

 

Microsatellite	data	analysis:	population	dynamics	

The effective population size (Ne) and the prevalence of gene flow, i.e., the number of 

migrants per generation (Nem), were estimated using maximum likelihood coalescent 

methods implemented in MIGRATE 3.6.6 (Beerli & Felsenstein 1999, 2001). The 

analysis was conducted using 10 short chains and three long chains, with 20 sampling 

increments. Recorded genealogies for short chains were 1,000 and for long chains were 

10,000. A 10,000 step burn-in and a heating scheme to allow chains to swap between 

four different temperatures (1, 1.5, 3, and 1,000,000) was set as default. For the first run 

the start parameters were estimated using an FST-based measure (Maynard Smith 1970; 

Nei & Feldman 1972), and in the following run the parameters were updated with the 

estimates generated from the previous run. The process was repeated five times. The 

result was shown as estimates for the Nem, the effective population size times the 

mutation rate (Neµ) for each population. An approximate Ne was calculated as the Neµ 

divided by a theoretical microsatellite mutation rate, µ=0.01—0.02% (Whittaker et al. 

2003; Hoelzel et al. 2007; Hollatz et al. 2011).  
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 To determine whether there was any recent immigration, GeneClass2 was used 

to search for potential first generation migrants (Piry et al. 2004). The program utilizes 

multilocus genotype data to compute the distribution of genotype likelihoods in a 

reference population sample with three types of genetic assignment criteria (distance 

criteria, frequency criteria and Bayesian criteria), and then compares the likelihood 

computed for the to-be-assigned individual to that distribution. To estimate the 

probability that an individual was a first generation immigrant, the likelihood was 

computed using the algorithm described in Paetkau et al. (2004), with a frequencies-

based method (Paetkau et al. 1995). The probability was estimated using MCMC 

resampling of 1,000 individuals and the type I error was set to 0.01. The sample from 

the Philippines was excluded from this analysis because it was the only sample for the 

population and was apparently not sufficient to reflect the genetic structure of the 

population. 

 Sex-biased dispersal was assessed using FSTAT 2.9.3.2 (Goudet et al. 2002). 

With the assumption that females are the more philopatric sex, the differences between 

the sexes were tested for various statistics, including mean and variance of assignment 

indices, FIS, FST, relatedness, Ho, and within-group gene diversity (HS) with two-tailed t 

tests, with 1,000 permutations.  Since this analysis is based on fixation indices (i.e., 

FST), the estimates were calculated for all putative populations except the Philippines 
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and Central-Northeast Pacific as was applied in the AMOVA and pairwise F-Statistics 

estimations. 

 

Mitochondrial	DNA	data	configuration	

To inspect a broader perspective of Risso’s dolphin population structure, the mtDNA 

control region sequences of the North Pacific samples were compared against the 

samples collected in the North Atlantic Ocean and Mediterranean Sea. The British and 

Mediterranean populations were reconstructed according to Gaspari et al. (2007), using 

the 16 mtDNA haplotypes available on GenBank 

(http://www.ncbi.nlm.nih.gov/genbank/; accession numbers DQ668035-DQ668050). 

The mtDNA data of 35 dolphins biopsied in the waters around the Azores were also 

included (Hartman et al. unpublished data). Together with the Risso’s dolphin 

sequences obtained in this study, all sequences were aligned using MEGA 5.05 or 

MEGA 6 to identify the consensus sequence for further analyses. 

 The software DnaSP version 5.10 (Librado & Rozas 2009) was used to 

determine the number of variable sites, mtDNA haplotypes, gene diversity (h) and 

nucleotide diversity (π) for putative populations with a sample size larger than five. To 

visualize the genealogical distance among the mtDNA haplotypes, a median-joining 
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network map (Bandelt et al. 1999) was constructed using PopART 

(http://popart.otago.ac.nz).  

 

Mitochondrial	DNA	data	analysis:	population	structure	

As applied in the microsatellite analysis, the level of population differentiation among 

the putative populations was also evaluated using AMOVA and pairwise comparison of 

frequency-based and distance-based fixation indices, FST and ΦST, using Arlequin 3.5.1. 

In AMOVA, which allows examining the differences in different level of population 

hierarchy, the putative populations were classified into two groups, the North Pacific 

(Taiwan, East Japan, Sea of Japan, Oregon-California Coastal and Eastern Tropical 

Pacific) and the North Atlantic (British, Mediterranean Sea and Azores), to test whether 

the population differentiation between the two major ocean basins in the Northern 

Hemisphere was statistically significant. For ΦST, the Tamura and Nei model (Tamura 

& Nei 1993) was used, with a gamma value of 0.326, as it was determined as the best 

model for the samples, using the Akaike Information Criterion (AIC) implemented in 

the model comparison program jModelTest 2.1.6 (Darriba et al. 2012). The level of 

differentiation between putative population pairs was estimated with 10,000 non-

parametric permutations. The statistical significance level was set at p<0.05; Bonferroni 

correction was applied in pairwise comparison.  
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Mitochondrial	DNA	data	analysis:	population	dynamics	

To test the neutrality of the mtDNA control region sequences, Arlequin 3.5.1 was used 

to estimate Tajima’s D (Tajima 1989) and Fu’s Fs (Fu 1997) for each putative 

population and to test their statistical significance (i.e., different from zero) by 

simulating 10,000 samples. The statistical significance was set as p<0.05 for Tajima’s D 

and p<0.02 for Fu’s Fs (Fu 1997). The analysis of mismatch distributions implemented 

in the same program was also conducted to examine if any putative Risso’s populations 

had ever experienced demographic or spatial expansions (Rogers & Harpending 1992; 

Schneider & Excoffier 1999; Excoffier 2004; Ray et al. 2003). The confidence intervals 

of the estimates were obtained using 10,000 bootstrap simulations of an instantaneous 

expansion under a coalescent framework. The sum of square deviations (SSD) between 

the observed and the expected mismatch and the raggedness index (r) of the observed 

distribution were calculated and tested to evaluate model fitness (Harpending 1994; 

Schneider & Excoffier 1999). 

 The time of population expansion (T) was calculated for each putative 

population using the formula T=𝜏/2u, where 𝜏 is the simulated time of demographic or 

spatial expansion (derived from the mismatch analysis), and u is the mutation rate per 

generation for the sequence in use (Rogers 1995). The u can be calculated by u=(length 
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of the sequence)×(generation time)×(substitution rate; λ). I assumed the generation time 

of Risso’s dolphin to be 22 years, as an average of the age at sexual maturity (8—10 

years) and the known age of oldest reproductively-active female (34.5 year-old) 

(Amano & Miyazaki 2004; Chen et al. 2011). For the λ, I used an approximate average 

of the mtDNA control region λ estimated for multiple animal taxa using ancient DNA 

samples, which is 1×10−7 substitutions/per site/per year (Ho et al. 2011a).  

 

Results	

Data	overview	and	microsatellite	data	configuration	

Genomic DNA was successfully extracted in 280 of the 296 tissue samples acquired 

from various sources. For microsatellite analysis, 266 samples were fully genotyped at 

22 microsatellite loci, although some samples (n=15) showed a minor level of missing 

data (ranged from 1 to 4 loci per sample). The genetic assessment showed one sample 

(ID#4694) was a pilot whale. The Kingroup analysis showed there were 40 potential 

parent-offspring or full-sibling pairs (r>0.4, p<0.001). Among them, five pairs were 

from Oregon-California Coastal, one from Taiwan, one from Sea of Japan and the rest 

were from East Japan (Table 2.2). The individuals in pairs G1 and G2 were suspected to 

be replicated samples with mislabeled ID, because they had the same microsatellite 

profile and mtDNA haplotype. There were a large number of potential parent-offspring 

or full-sibling pairs from East Japan. Those were samples collected from a single school 
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of dolphins taken in a drive fishery, and the school was regarded as a nursery school, 

because it contained a considerable number of females and calves (Amano & Miyazaki 

2004). The data of one individual from those putative parent-offspring or full-sibling 

pairs was discarded to avoid potential sampling bias toward certain kin groups (as the 

measure applied in Martien et al. [2012] and Lowther-Thieleking et al. [2015]). For the 

five pairs from Oregon-California Coastal, except the pair G15, no individual was 

omitted because they were sampled in different years at different sites, under different 

occasions. In G15, one of the samples was discarded, because both samples were 

collected in the same biopsy trip at the same site. In short, 30 individuals were 

excluded, and there were 236 individuals remained for the following analyses.  

 In the jack-knife HWE test, 15 samples were identified having a rare allele 

homozygote (or heterozygote of two rare alleles) that was influential to the estimates of 

HWE. Most of the alleles were associated with the locus Dde69 or D22 (Table 2.3). 

Morin et al. (2009) suggested poor genomic DNA quality may result in poor 

microsatellite amplification and consequently promote the likelihood of finding a 

homozygous rare allele. However, the quality of the genomic DNA appears to be not an 

issue in these samples, as there was no major difficulty experienced in amplifying the 

loci or scoring the allele sizes with these samples. Since the presence of these rare allele 

homozygotes could be natural, these samples were retained for further analyses.  
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Table 2.2.   Potential parent-offspring pairs in the Risso’s dolphin samples identified by 
kinship analysis. The letter following the ID indicates the sex (F, female; M, male; U, 
unknown), and the ID in bold with asterisk indicates the sample is discarded in further 
analyses. 
 

Pair 
no. ID-1 ID-2 

Sample 
source1 Pop 

Sampling 
year r  

Parent-
offspring 
test, p 

Full-
sibling 
test, p 

G1 10Gg018(F)* 10Gg100(F) S SOJ 2004/2003 1 0 0 
G2 10Gg003(M) 10Gg087(U)* S EJN 1999/1991 1 0 0 
G3 EW01211(F) EW01229(F)* DF EJN 1991 0.658 0 0 
G4 EW01207(F) EW01227(F)* DF EJN 1991 0.622 0 0 
G5 SW26642(M) SW88952(M) S/ BI OCC 2002/2009 0.615 0 0 
G6 EW01223(F) EW01238(F)* DF EJN 1991 0.57 0 0 
G7 EW01215(M) EW01255(F)* DF EJN 1991 0.552 1 0 
G8 EW01196(F) EW01218(F)* DF EJN 1991 0.539 1 0 
G9 EW01233(M) EW01250(F)* DF EJN 1991 0.537 1 0 
G10 EW01196(F)* EW01210(M) DF EJN 1991 0.534 1 0 
G11 EW01214(M) EW01216(F)* DF EJN 1991 0.523 0 0 
G12 EW01219(F) EW04585(F)* DF EJN 1991 0.517 0 0 
G13 EW01205(M) EW01218(F)* DF EJN 1991 0.511 1 0 
G14 EW01221(M) EW01251(F)* DF EJN 1991 0.505 0 0 
G15 SW26306(M) SW26309(F)* BI OCC 2001 0.505 1 0 
G16 EW01198(F) EW01232(F)* DF EJN 1991 0.494 1 0 
G17 EW01235(F)* EW01256(F) DF EJN 1991 0.475 0 0 
G18 EW01197(F) EW01246(M)* DF EJN 1991 0.474 0 0 
G19 EW01257(F) EW01259(M)* DF EJN 1991 0.474 1 0 
G20 10Gg090(F)* EW01204(F) DF EJN 1991 0.47 1 0 
G21 EW01252(F) EW01253(F)* DF EJN 1991 0.467 1 0 
G22 EW01218(F)* EW01243(M) DF EJN 1991 0.465 1 0 
G23 10Gg090(F)* EW01217(F) DF EJN 1991 0.463 1 0 
G24 EW01196(F) EW01205(M)* DF EJN 1991 0.462 1 0 
G25 10Gg094(F)* EW01212(F) DF EJN 1991 0.458 1 0 
G26 EW01220(F) EW01237(M)* DF EJN 1991 0.455 1 0 
G27 EW01195(M) EW01208(F)* DF EJN 1991 0.453 0 0 
G28 EW01224(F) EW05120(M)* DF EJN 1991 0.447 1 0 
G29 724(M) 726(F)* FI TWN 2001 0.445 1 0 
G30 10Gg094(F)* EW01202(F) DF EJN 1991 0.442 1 0 
G31 EW01199(M) EW01242(F)* DF EJN 1991 0.436 0 0 
G32 EW01216(F)* EW01217(F) DF EJN 1991 0.434 1 0 
G33 EW01211(F) EW01245(M)* DF EJN 1991 0.42 1 0.001 
G34 10Gg091(F) EW01209(F)* DF EJN 1991 0.418 1 0 
G35 1291(F) 5001(F) FI OCC 1993/1995 0.413 1 0.004 
G36 EW01229(F) EW01245(M)* DF EJN 1991 0.404 1 0.002 
G37 EW01212(F) EW01235(F)* DF EJN 1991 0.401 1 0.012 
G38 EW01217(F) EW01225(M)* DF EJN 1991 0.401 1 0 
G39 1291(F) 41842(F) FI/BI OCC 1993/2004 0.401 1 0 
G40 26642(M) 32940(F) S OCC 2002/2003 0.4 1 0 

1 Samplie source: BI, biopsy; DF, drive fishery; FI, fishery interaction; S, stranding. 

 

 In the 22 loci microsatellite dataset, the observed heterozygosity ranged from 

0.666 to 0.722 for the putative populations (Table 2.4). Two loci, KWM1b and 
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TexVet7, were monomorphic. The locus EV14 showed both null alleles and deviation 

from HWE in almost all putative populations (Appendix 2.2). The data of these three 

loci were therefore discarded. The observed heterozygosity of D22 in the Taiwan 

population and Dde59 in the East Japan population also significantly deviated from 

HWE, but it appears to be population specific, therefore the data of these two loci were 

retained. No locus was eliminated due to significant LD because no pairwise LD was 

consistently detected in every population. Therefore the following analyses were then 

conducted using microsatellite data derived from 19 loci (AAT44, D14, D22, Dde59, 

Dde65, Dde66, Dde69, Dde70, Dde72, Dde84, EV37, KWM12a, KWM2b, KWM9b, 

MK3, MK5, Sco28, Sco11, Sco55) for a total of 236 individuals.  

 
Table 2.3.   The individuals and alleles that are influential to the HWE of the samples. 
 

Sample ID Pop Locus Allele ID 
(frequency) 

Observed/Jack-
knife P value 

Observed/Jack-
knife odds 

Odds 
ratio 

11694 ETP EV37 206 (0.004) 0.000/0.067 0.000/0.072 Inf 
1153 TWN Dde65 190 (0.004) 0.000/0.094 0.000/0.104 518.660 
294 TWN MK5 200 (0.006) 0.034/0.871 0.035/6.734 194.280 
738 TWN Dde66 349 (0.013) 0.013/0.163 0.013/0.194 14.628 
38253 ETP Dde69 196 (0.017) 0.032/0.201 0.033/0.252 7.595 
1030 TWN Dde69 208 (0.049) 0.032/0.075 0.033/0.082 2.459 
724 TWN Dde69 216 (0.094) 0.032/0.061 0.033/0.065 1.969 
10Gg023 EJN Dde69 188 (0.126) 0.032/0.055 0.033/0.058 1.748 
EW01240 EJN Dde69 200/208 

(0.239/0.049) 
0.032/0.053 0.033/0.056 1.694 

39083 OCC MK5 208 (0.530) 0.034/0.052 0.035/0.055 1.589 
EW05119 EJN D22 130 (0.194) 0.036/0.054 0.038/0.057 1.517 
908 TWN D22 132 (0.105) 0.036/0.052 0.038/0.055 1.458 
61944 OCC D22 132 (0.105) 0.036/0.052 0.038/0.055 1.446 
62 OCC D22 124 (0.188) 0.036/0.050 0.038/0.053 1.399 
EW01226 EJN D22 126 (0.160) 0.036/0.050 0.038/0.053 1.396 
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Table 2.4.   The averages (±SD) of the number of alleles, expected heterozygosity (HE), 
observed heterozygosity (HO), allelic richness and inbreeding coefficient (FIS) across the 
22 microsatellite loci within each putative population examined in this study. See 
Appendix 2.2 for the estimates by locus in each population.  
 
Population n No. of alleles HE HO Allelic richness FIS 
Taiwan 49 9.842±4.682 0.711±0.222 0.688±0.213 1.653±0.296 0.056 
East Japan 72 9.789±4.826 0.705±0.222 0.680±0.219 1.645±0.294 0.057 
Sea of Japan 12 6.105±2.208 0.698±0.203 0.697±0.243 1.634±0.278 0.015 
Central-Northeast Pacific 7 5.333±2.196 0.743±0.178 0.690±0.221 1.637±0.305 0.089 
Eastern Tropical Pacific 22 8.389±3.712 0.739±0.207 0.722±0.210 1.642±0.321 0.052 
Oregon-California coastal  73 9.368±4.573 0.691±0.245 0.666±0.238 1.637±0.310 0.062 

	

Microsatellite	data	analysis:	population	structure		

When sample coordinates were not referenced back to the population centre, the 

resolution of FCA for Risso’s dolphin in the North Pacific was poor: the sum of FC1 

and FC2 could only explain about 4% of variances, and no obvious population structure 

could be found (Fig. 2.3A). However, when using the population centre reference, the 

power of the analysis increased to 52%, and a pattern of three clusters emerged (Fig. 

2.3B). One cluster was composed of individuals from East Japan, Sea of Japan, Taiwan 

and the Philippines, another cluster consisted of individuals from Oregon-California 

Coastal and Central Northeast Pacific, and the other cluster consisted of individuals 

from the Eastern Tropical Pacific. The most informative factor (FC1), which 

represented 30.8% of the variance in the sample, indicated a difference between the 

Oregon-California Coastal/Central Northeast Pacific cluster and the other two clusters. 

The Eastern Tropical Pacific was isolated by the second most informative factor, FC2 
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(21.1%), and its level of overlapping with the other two major clusters was the most 

constrained.  

 A similar pattern of results was found in STRUCTURE analysis. When the 

LOCPRIOR option was not used, although the Evanno’s ΔK suggested the most likely 

number of populations (K) was 2, the best estimate is K=1 according to the estimate of 

mean LnP(K) and the graphic output (Table 2.5, Fig. 2.4A). When the LOCPRIOR 

option was used, on the other hand, the Evanno’s ΔK, LnP(K) value indicated K=2, 

while the graphic result showed meaningful structure for K=2 and K=3 (Fig 2.4B, C). In 

the K=2 scenario, the individuals from Oregon-California Coastal and Central Northeast 

Pacific were assigned to one cluster, and the individuals from Eastern Tropical Pacific, 

East Japan, Sea of Japan, Taiwan and the Philippines were assigned to the other. In the 

K=3 scenario, the pattern was identical but the individuals from Eastern Tropical 

Pacific were isolated from the western North Pacific cluster. The partitioning appears to 

agree with the segregation of FC1 in the FCA result (Fig. 2.4B), but the differentiation 

at FC2 was only revealed when K=3 (Fig. 2.4C). 
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Figure 2.3.   Results of the factor correspondence analysis (FCA) A) without using 
population information; B) using population information. The two most informative 
factors (FC1 and FC2) are assigned as the X and Y axes in the plots, and the numbers in 
parentheses in each axis indicate the percentage of the variance explained by the factor. 
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Table 2.5.   The Evanno table generated by Structure Harvester for the STRUCTURE 
analysis. The asterisk indicates the most likely K (i.e., the largest ΔK value). 
 
LOCPRIOR option K Mean LnP(K) SD of LnP(K) Ln'(K) |Ln''(K)| ΔK 
Used 1 -15215.44 0.7792 NA NA NA 
Used 2* -15286.11 63.9325 -70.67 1155.79 18.078284 
Used 3 -16512.57 193.5957 -1226.46 1611.76 8.325393 
Used 4 -16127.27 267.9372 385.3 938.54 3.502835 
Used 5 -16680.51 282.8168 -553.24 105.73 0.373846 
Used 6 -17339.48 466.5879 -658.97 335.92 0.71995 
Used 7 -17662.53 253.8915 -323.05 57.12 0.224978 
Used 8 -17928.46 367.4595 -265.93 NA NA 
Not used 1 -15215.45 0.5701 NA NA NA 
Not used 2* -15080.89 17.5687 134.56 211.34 12.029356 
Not used 3 -15157.67 40.4682 -76.78 45.92 1.134718 
Not used 4 -15280.37 141.2912 -122.7 1.93 0.01366 
Not used 5 -15401.14 147.3893 -120.77 2.82 0.019133 
Not used 6 -15524.73 266.5318 -123.59 100.48 0.376991 
Not used 7 -15547.84 429.8739 -23.11 35.38 0.082303 
Not used 8 -15606.33 227.1227 -58.49 NA NA 

 

 In the first step of the Geneland analysis testing the candidate K ranging from 1 

to 10, most of the results (nine out of the 10 runs) indicated K=3 was the most likely 

number of populations for the samples, and the only different result indicated was K=4. 

In the second step of the analysis, by fixing the K to K=3, there were seven different 

spatial distribution patterns among the results of the 10 runs with the highest LPP. Five 

runs revealed a true K=3 spatial pattern (Fig. 2.5A—D), two showed a distribution 

pattern of K=2 (Fig. 2.5E—F), and the remaining three runs failed to reveal any 

population structure (i.e., K=1). In the results of the five runs that show a true K=3 

pattern, two of them were essentially the same as the pattern seen in the FCA result, 

suggesting there is a population in the Western North Pacific, another in the Eastern 

North Pacific, and the other in the Eastern Tropical Pacific (Fig. 2.5A). The distribution 

pattern shown in Fig. 2.5B was substantially the same pattern as Fig. 2.5A; the only 
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difference was that the sample from Hawaiian waters was assigned to different 

populations (i.e., Western North Pacific versus Eastern Tropical Pacific). The 

population membership of Risso’s dolphins in the central Tropical Pacific appears to be 

ambiguous, as it often swung between the Western North Pacific and Eastern Tropical 

Pacific, and in some cases it was even identified as an independent population (Fig. 

2.5C—D).  

 

 
Figure 2.4.   Inferred population structure from the STRUCTURE analysis: A) K=2, 
using no LOCPRIOR option, B) K=2, using LOCPRIOR option, and C) K=3, using 
LOCPRIOR option. Each vertical column represents an individual and is divided into K 
coloured segments that indicate the individual's estimated membership probability in K 
clusters. Individuals are clustered based on their a priori population identity, which is 
labelled at the bottom of the figure. See Fig. 2.2 for population abbreviations. 
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 The result of the two runs that showed a K=2 pattern was shown in Fig. 2.5E 

and 2.5F. The result shown in Fig. 2.5E suggested an isolated population of Eastern 

Tropical Pacific, coincided with the differentiation pattern suggested by FC2 in the 

FCA result (Fig. 2.3B). The population membership shown in Fig. 2.5F, on the other 

hand, suggested those from Eastern Tropical Pacific and Western North Pacific were 

from the same population, in agreement with the K=2 result found in the STRUCTURE 

analysis (Fig. 2.4B). 

 

From this Geneland analysis it appears to be difficult to determine a definite 

population membership for Risso’s dolphins in the North Pacific. Nevertheless, some 

patterns are consistently seen in all cases, whether it was K=2 or 3. For instance, the 

samples for Oregon-California Coastal and Eastern Tropical Pacific were always 

assigned to different populations, and the sample collected in Hokkaido, Japan, was 

consistently grouped with those samples collected from the Northeast Pacific Ocean 

(i.e., Oregon-California Coastal), rather with those samples collected in adjacent waters 

(East Japan and Sea of Japan). 
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Figure 2.5.   Individual population membership assignment patterns shown in the 10 
runs with the highest LPP for K=3 in Geneland analysis. Four different patterns 
suggesting K=3 are shown in A—D; two patterns suggesting K=2 are shown in E and F. 
The one pattern suggesting K=1 is not shown here. The red dots represent the samples; 
the colours indicate the distribution of K clusters based on the mode of simulated 
posterior probability for each pixel. Solid triangle, the Hokkaido sample; solid square, 
the Hawaiian sample.  

 

 In the FST analysis, the AMOVA result indicated that the differences between 

western and eastern North Pacific population groups, and among the six testable 

putative populations, were both statistically significant (Table 2.6A). Pairwise FST 

comparison further showed that the putative population of Oregon-California Coastal 

was the most differentiated population (FST=0.011—0.016, p=0—0.002), and the 

populations in the western North Pacific population group were the least differentiated 

(FST=0.001—0.004, p=0.393—0.5; Table 2.7). Differentiation between Sea of Japan 

and Eastern Tropical Pacific was only marginally significant (FST=0.0097, p=0.045). 

 When the level of differentiation was evaluated using RST, the AMOVA no 

longer supported any sign of differentiation between western and eastern North Pacific 

population groups, but the differentiation among the six putative populations persisted, 

although the statistical power was only marginal (Table 2.6B). Pairwise comparison 

results showed that significant differentiation was only found for comparisons with the 

Oregon-California Coastal population (RST=0.019—0.044, p=0—0.022), which was 

consistent with the differentiation pattern shown in STRUCTURE analysis. 
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Differentiation between the Eastern Tropical Pacific and Oregon-California Coastal, 

and between East Japan and Sea of Japan were ambiguous, as the statistical significance 

was marginal (Table 2.7). 

 

Table 2.6.   Result of AMOVA using different distance method: A) number of different 
alleles (FST) and B) Sum of squared size difference (RST). The five putative populations 
are grouped into two groups, the western North Pacific group (TWN, SOJ, EJN) and the 
eastern North Pacific group (OCC, ETP).  
 

  
Sum of 
squares 

Variance 
components 

Percentage 
variation P 

Fixation 
index 

A: No. of different alleles (FST) 
Among groups 20.842 0.043 0.639 0.001** 0.006 
Among populations within groups 28.495 0.039 0.582 0.0001*** 0.006 
Within populations 2992.140 6.658 98.779 0.000*** 0.012 
Total 3041.478 6.741 

   
      B: Sum of squared size difference (RST) 
Among groups 942.170 2.034 0.974  0.105 0.010 
Among populations within groups 1145.583 2.458 1.177 0.009** 0.012 
Within populations 91830.620 204.292 97.848 0.000*** 0.022 
Total 93918.373 208.784       

*: p<0.05, **: p<0.01; ***: p<0.001 

 

Table 2.7.   Pairwise estimates of genetic divergence between the five putative 
populations. Above the diagonal shows the estimates using FST and below the diagonal 
shows the estimates using RST.   
 

     FST   
  n OCC ETP SOJ EJN TWN 

 OCC 73 -- 0.016*** 0.013** 0.011*** 0.016*** 

 ETP 22 0.019* -- 0.010* 0.012*** 0.009** 
RST SOJ 12 0.044** 0.009 -- 0.001 0.005 

 EJN 72 0.021*** 0.000 0.023* -- 0.001 

 TWN 49 0.035*** -0.008 0.023 0.001 -- 
*: p<0.05, **: p<0.01; ***: p<0.001 

 

 When all samples were involved, the RDA result showed that the geography 

(longitude and latitude) explains 2.39% of total genetic variance and the effect was 
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statistically significant (F=2.848, p<0.001). The partial RDA result showed that more 

genetic variance was explained by longitude (1.42%) than latitude (0.84%). However, if 

the RDA was conducted using samples from the eastern populations only, namely those 

from Oregon-California Coastal, Central-Northeast Pacific and Eastern Tropical Pacific, 

the effect became insignificant (F=1.435, p=0.061), even though the geography was 

found to explain 2.82% of the genetic variance. The partial RDA result suggests latitude 

could be a significant factor for the genetic structure of Risso’s dolphin on the eastern 

side of the North Pacific, although it explains only 1.88% of the genetic variance and 

the statistical significance was also marginal (F=1.911, p=0.029) (Table 2.8). Although 

the results seems to suggest that the population structure of Risso’s dolphins in the 

North Pacific Ocean is due to the effect of isolation by distance, the lack of sufficient 

samples collected uniformly across the study area raises the possibility that the 

correlation between genetic distance and geographic distance is simply reflecting the 

difference of two (or more) distant populations which have been segregated due to other 

effects.  

To sum up the results shown in FCA, Geneland, STRUCTURE and pair-wise F-

statistics comparisons, it can be concluded that the population structure of Risso’s 

dolphins in the North Pacific Ocean consists of three major populations: one in the 

Western North Pacific (East Japan, Sea of Japan, Taiwan and the Philippines), another 

in the Eastern Tropical Pacific, and the third in the Eastern North Pacific (Oregon-
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California Coastal and Central Northeast Pacific), with the population membership for 

the dolphins inhabiting the Central Tropical Pacific (e.g., Hawaiian waters) remaining 

unsettled.  

 

Table 2.8.   Results of the redundancy analysis (RDA). The eastern populations include 
the samples from OCC, ETP and CNP. 
 
Variable Variance explained Proportion of total variance F P value 
All samples, n=236         
Longitude+Latitude 5.187 0.024 2.848 >0.001*** 
Longitude only 3.097 0.014 3.400 >0.001*** 
Latitude only 1.824 0.008 2.003 0.016* 
Eastern populations, n=102 

    Longitude+Latitude 6.37 0.028 1.435 0.061 
Longitude only 1.766 0.008 0.796 0.662 
Latitude only 4.241 0.019 1.911 0.029* 

*: p<0.05, **: p<0.01; ***: p<0.001 

 

Microsatellite	data	analysis:	population	dynamics	

To estimate the effective population size and migration rate for the three main 

populations concluded in the population structure section (i.e., the Western North 

Pacific, Eastern North Pacific and Eastern Tropical Pacific populations), the 

microsatellite data of putative populations East Japan, Sea of Japan, Taiwan and the 

Philippines were combined as a Western North Pacific population, with the data of 

Oregon-California Coastal and Central Northeast Pacific populations as an Eastern 

North Pacific population, for Migrate analysis. The Hokkaido sample from East Japan 
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and the Hawaiian sample from Central Northeast Pacific were excluded from this 

Migrate analysis due to the uncertainty of their population identity.  

 The estimates of Neµ suggest the Ne was about the same but slightly larger for 

the Eastern North Pacific population (Neµ=0.457, 95%CI=0.439—0.476) than for the 

Western North Pacific population (Neµ=0.371, 95%CI=0.361—0.382). The Neµ 

estimate for the Eastern Tropical Pacific population was 3.399 (95%CI=3.197—3.619), 

which is about an order of magnitude larger than the estimates for the other two 

populations (Table 2.9). The estimates for the number of migrants per generation (Nem) 

ranged from 0.053 to 0.287 among the three putative populations. Interestingly, despite 

the geographic adjacency of the two eastern populations and the ‘remoteness’ of the 

western population, the estimates suggest that the Eastern North Pacific population 

received more immigrants from the Western North Pacific (Nem=0.227, 

95%CI=0.207—0.249) than from the Tropical Eastern Pacific population (Nem=0.096, 

95%CI=0.083—0.110), and dispatched more immigrants to the Western North Pacific 

(Nem=0.287, 95%CI=0.255—0.321) than to the Tropical Eastern Pacific population 

(Nem=0.053, 95%CI=0.038—0.072). The lowest rates of Nem were usually associated 

with the Eastern Tropical Pacific population, implying that emigration to the Eastern 

Tropical Pacific was the least likely route of long-term gene flow for the other two 

populations (Table 2.9).  
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Table 2.9.   Estimates of effective population size times mutation rate (Neµ) and number 
of migrants per generation (Nem) from the microsatellite data. The host populations are 
in columns and the source populations are in rows. The 2.5th and 97.5th profile 
likelihood estimates are given in parentheses. Abbreviations: ENP, Eastern North 
Pacific; ETP, Eastern Tropical Pacific; WNP, Western North Pacific. 
 

 Source 
population  Host population  

  ENP ETP WNP 

Neµ  
0.457 
(0.439—0.476) 

3.399 
(3.197—3.619) 

0.371 
(0.361—0.382) 

Ne 
(low)  

2285 
(2197—2378) 

16996 
(15983—18093) 

1855 
(1804—1908) 

Ne 
(high)  

4570 
(4394—4755) 

33991 
(31966—36186) 

3710 
(3608—3816) 

        
Nem ENP  

0.053 
(0.038—0.072) 

0.287 
(0.255—0.321) 

 ETP 0.096 
(0.083—0.110)   

0.159 
(0.136—0.184) 

 WNP 0.227 
(0.207—0.249) 

0.191 
(0.161—0.226)  

 

 Geneclass2 identified five individuals that were potentially first-generation 

migrants in their home population (Table 2.10). The result agrees with the long-term 

gene flow estimated by Migrate that the Western North Pacific population is likely 

playing the role of major immigrant source, while the Eastern North Pacific population 

is the main immigrant host. Although the fact that four of the five individuals are male 

may imply the existence of sex-biased dispersal, the two-tailed t tests for examining 

sex-biased dispersal revealed that the difference of dispersal pattern between the sexes 

was statistically insignificant (Table 2.11). 
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Table 2.10.   Potential first generation migrants identified in GeneClass2. The asterisk 
indicates the most likely origin for the sample. The letter following the ID indicates the 
sex (F, female; M, male). Abbreviations: ENP, Eastern North Pacific; ETP, Eastern 
Tropical Pacific; WNP, Western North Pacific. 
        Potential origin population 
ID Host population -LOG(L_home/L_max) p ENP ETP WNP 

    
-log(L) -log(L) -log(L) 

10Gg032(M) WNP 2.78 0.002 25.737 23.682* 26.462 
11694(M) ETP 3.761 0.001 29.108 27.939 24.179* 
1564(F) ENP 2.057 0.005 25.303 25.465 23.247* 
23799(M) ENP 1.592 0.007 24.952 25.48 23.359* 
39082(M) ENP 1.753 0.007 22.833 21.08* 22.388 

 

Table 2.11.   Sex-biased dispersal assessments by two-tailed t tests. None of the 
assessments are statistically significant. 
 

 n FIS FST Relativeness Ho Hs Mean 
assignment 

Var 
assignment 

Female 104 0.028 0.015 0.029 0.681 0.701 0.418 28.853 
Male 130 0.041 0.010 0.019 0.674 0.703 -0.334 24.182 
Overall 234 0.034 0.013 0.025 0.677 0.702   
P-value  0.413 0.192 0.185 0.525 0.699 0.271 0.553 

	

Mitochondrial	DNA	analysis:	data	overview	

The mtDNA control region sequences of 140 Risso’s dolphin samples from the Eastern 

Tropical Pacific, Oregon-California Coastal, Japanese, Taiwanese and Philippine waters 

were successfully amplified. A 473bp consensus sequence was identified after aligning 

the sequences with the published British and Mediterranean, and unpublished Azorean 

sequences. Among the total 213 sequences, fifty-six variable sites were found 

characterizing 85 unique haplotypes. There was no haplotype shared between the North 

Pacific Ocean and North Atlantic Ocean/Mediterranean Sea, and there was only one 

haplotype shared between the North Atlantic Ocean (from the Azores population) and 
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the Mediterranean Sea. Five haplotypes were shared between the eastern (Oregon-

California Coastal and Eastern Tropical Pacific) and the western North Pacific Ocean 

(East Japan, Sea of Japan, Taiwan) (Table 2.12). In the North Pacific Ocean, the 

Oregon-California Coastal and Eastern Tropical Pacific populations appeared to have 

higher frequencies of private haplotypes (0.73 and 0.82, respectively), suggesting some 

level of lineage sorting and consistent with a significant level of differentiation. The 

median-joining network tree showed a scattered tree with many missing haplotypes, and 

no clear concordance between geography and haplotype clustering (Fig. 2.6). The 

genetic and nucleotide diversity was high in all putative populations except for the 

British population (Table 2.13).  
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Table 2.12.   The frequency of 85 mtDNA haplotypes detected among the nine putative 
populations in the Northern Hemisphere. See Appendix 2.3 for the definitions of the 
haplotypes. Abbreviations: ETP, Eastern Tropical Pacific; OCC, Oregon-California 
Coastal; EJN, East Japan; SOJ, Sea of Japan; TWN, Taiwan; PHE, the Philippines; 
MED, Mediterranean Sea; UK, British waters; AZR, Azores. 
 
  Putative population 
Haplotype ID ETP OCC EJN SOJ TWN PHE MED UK AZR 
n 21 22 33 17 42 1 24 18 35 
Hap_1 7 3 

 
1 

     Hap_2 2 
        Hap_3 1 
 

3 1 
     Hap_4 1 

        Hap_5 2 
        Hap_6 2 
        Hap_7 2 
        Hap_8 1 
        Hap_9 1 
        Hap_10 1 
        Hap_11 1 
        Hap_12 

 
1 

       Hap_13 
 

1 
       Hap_14 

 
2 

       Hap_15 
 

1 1 2 
     Hap_16 

 
1 

       Hap_17 
 

2 
       Hap_18 

 
2 2 2 6 

    Hap_19 
 

1 
 

1 
     Hap_20 

 
3 

       Hap_21 
 

1 
       Hap_22 

 
1 

       Hap_23 
 

1 
       Hap_24 

 
1 

       Hap_25 
 

1 
       Hap_26 

  
2 

 
1 

    Hap_27 
  

1 
      Hap_28 

   
1 

     Hap_29 
  

1 
      Hap_30 

  
2 

 
2 

    Hap_31 
  

1 
      Hap_32 

  
1 

      Hap_33 
  

6 6 8 
    Hap_34 

   
2 

     Hap_35 
  

2 
      Hap_36 

  
1 

      Hap_37 
  

2 
      Hap_38 

  
1 

      Hap_39 
  

1 1 9 
    Hap_40 

  
1 

      Hap_41 
    

5 
    Hap_42 

    
1 

    Hap_43 
    

2 
    Hap_44 

    
3 

    Hap_45 
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    Hap_46 

    
1 

    Hap_47 
    

1 
    Hap_48 

    
1 

    Hap_49 
    

1 
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  Putative population 
Haplotype ID ETP OCC EJN SOJ TWN PHE MED UK AZR 
n 21 22 33 17 42 1 24 18 35 
Hap_50 

  
1 

      Hap_51 
  

1 
      Hap_52 

  
1 

      Hap_53 
     

1 
   Hap_54 

  
1 

      Hap_55 
  

1 
      Hap_56 

      
2 

  Hap_57 
      

3 
  Hap_58 

      
3 

 
1 

Hap_59 
      

1 
  Hap_60 

      
3 

  Hap_61 
      

4 
  Hap_62 

      
1 

  Hap_63 
      

2 
  Hap_64 

      
1 

  Hap_65 
      

1 
  Hap_66 

      
1 

  Hap_67 
      

1 
  Hap_68 

      
1 

  Hap_69 
       

1 
 Hap_70 

       
5 

 Hap_71 
       

12 
 Hap_72 

        
6 

Hap_73 
        

2 
Hap_74 

        
5 

Hap_75 
        

1 
Hap_76 

        
1 

Hap_77 
        

1 
Hap_78 

        
3 

Hap_79 
        

1 
Hap_80 

        
3 

Hap_81 
        

5 
Hap_82 

        
2 

Hap_83 
        

1 
Hap_84 

        
2 

Hap_85                 1 
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Figure 2.6.   The Median-joining network tree for the 85 mtDNA control region 
haplotypes. Each circle represents a unique haplotype. The size of circle indicates the 
number of individuals having the haplotype and the colour shade indicates the 
proportion of each population within the haplotype. The number of hatch marks at the 
lines indicates the number of mutational steps separating the haplotypes. Solid circles 
indicate missing intermediate haplotypes. 
 
Table 2.13.   The number of mtDNA haplotypes, genetic diversity, nucleotide diversity, 
and population dynamic indices for the putative populations and all samples. ENP 
includes OCC and ETP; WNP includes EJN, SOJ and TWN. 
 

 Pop n 
No. of 
variable 
sites 

No. of 
haplotypes 

Gene 
diversity, h 
(SD) 

Nucleotide 
diversity, π (SD) 

Tajima'
s D Fu's Fs 

All 213 56 85 0.975 (0.004) 1.72% (0.04%) -0.416 -24.419*** 
ENP 43 37 25 0.939 (0.027) 1.82% (0.13%) 0.008 -6.476 
WNP 93 40 35 0.924 (0.016) 1.42% (0.07%) -0.456 -11.580** 
EJN 33 31 21 0.956 (0.022) 1.51% (0.10%) -0.239 -6.601* 
SOJ 17 24 9 0.868 (0.068) 1.42% (0.21%) -0.206 0.292 
TWN 42 27 14 0.891 (0.024) 1.33% (0.11%) 0.013 -0.166 
OCC 22 31 15 0.96 (0.02) 1.89% (0.14%) 0.187 -2.475 
ETP 21 27 11 0.88 (0.06) 1.71% (0.22%) 0.303 0.164 
AZR 35 24 15 0.926 (0.021) 1.543% (0.09%) 0.870 -0.802 
MED 24 25 13 0.938 (0.025) 1.306% (0.15%) -0.287 -1.757 
UK 18 2 3 0.503 (0.103) 0.113% (0.03%) -0.191 -0.161 

*: p<0.05, **: p<0.01; ***: p<0.001 
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Mitochondrial	DNA	data	analysis:	population	structure	

The AMOVA results showed significant differentiation between the two major ocean 

basins (the North Pacific Ocean versus North Atlantic Ocean-Mediterranean Sea), and 

among the seven putative populations (Table 2.14). In pairwise FST and ΦST 

comparisons, the differences were all statistically significant except for the pairs of 

putative populations in the Western North Pacific, and those in the Eastern North 

Pacific (Table 2.15). As for the results of the pairwise FST and RST comparisons using 

microsatellite data, the pairwise FST and ΦST among East Japan, Sea of Japan and 

Taiwan were statistically insignificant, suggesting that the dolphins inhabiting these 

region are from the same population (i.e., the Western North Pacific population). 

However, the differentiation between Oregon-California Coastal and Eastern Tropical 

Pacific was statistically supported in the microsatellite data, but not supported in this 

mtDNA sequence data.  

 Nevertheless, the pairwise FST and RST results indicate there are at least five 

Risso’s dolphin populations in the Northern Hemisphere: a population in the Western 

North Pacific, a population in the Eastern North Pacific, a population occurring in 

Azorean waters, a population in British waters, and a Mediterranean Sea population, 

and these populations are all well differentiated. Among these populations, the British 

population is the most distinct population based on the FST and ΦST values (Table 2.15).  
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Table 2.14.   Result of AMOVA using different distance method: A) number of 
different alleles (FST) and B) Tamura and Nei model (φST). The eight putative 
populations are grouped into two groups, the Pacific group (TWN, SOJ, EJN, OCC, 
ETP) and the Atlantic-Mediterranean group (MED, UK, AZR).  
 

  
Sum of 
squares 

Variance 
components 

Percentage 
variation P 

Fixation 
index 

A: No. of different alleles (FST)      
Among groups 2.782 0.0103 2.06 0.048* 0.021 
Among populations within groups 9.867 0.047 9.36 0.000*** 0.096 
Within populations 90.219 0.442 88.58 0.000*** 0.114 
Total 102.868 0.499 

   B: Tamura and Nei model (φST)      
Among groups 99.154 0.813 16.21  0.018* 0.162 
Among populations within groups 107.097 0.552 11.01 0.000** 0.131 
Within populations 744.977 3.652 72.78 0.000*** 0.272 
Total 951.228 5.017       

*: p<0.05, **: p<0.01; ***: p<0.001 

 
 
Table 2.15.   Pairwise divergence between the eight putative populations in the Northern 
Hemisphere estimated using FST (above the diagonal) and φST (below the diagonal) 
based on the mtDNA data set.  
 

     FST     
  ETP OCC EJ SOJ TW MED UK AZR 

 ETP -- 0.035 
* 

0.076 
*** 

0.106 
*** 

0.114 
*** 

0.090 
*** 

0.302 
*** 

0.096 
*** 

 OCC 0.013 -- 0.035 
** 

0.060 
** 

0.063 
** 

0.050 
*** 

0.260 
*** 

0.057 
*** 

 EJ 0.083 
** 0.030 -- 0.005 0.024 

* 
0.052 
*** 

0.249 
*** 

0.059 
*** 

φST SOJ 0.063 
* 0.031 -0.009 -- 0.026 0.096 

*** 
0.317 
*** 

0.101 
*** 

 TW 0.112 
** 

0.078 
* 0.010 -0.018 -- 0.086 

*** 
0.276 
*** 

0.092 
*** 

 MED 0.265 
*** 

0.155 
*** 

0.149 
*** 

0.209 
*** 

0.238 
*** -- 0.268 

*** 
0.065 
*** 

 UK 0.504 
*** 

0.455 
*** 

0.536 
*** 

0.642 
*** 

0.604 
*** 

0.571 
*** -- 0.263 

*** 

 AZR 0.196 
*** 

0.124 
*** 

0.151 
*** 

0.203 
*** 

0.248 
*** 

0.115 
*** 

0.356 
*** -- 

*: p<0.05, **: p<0.01, ***: p<0.001 
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Mitochondrial	DNA	data	analysis:	population	dynamics	

A Tajima’s D or Fu’s Fs estimate of zero indicates the locus being examined is a neutral 

marker for the population, or there is no significant evidence of population size change 

in the past. A negative Tajima’s D was estimated for East Japan, Sea of Japan, 

Mediterranean Sea and British waters, as well as for the Western North Pacific and all 

samples, but none of the values was statistically significant to zero. A negative Fu’s Fs 

estimate was made for all putative populations expect for Sea of Japan and Eastern 

Tropical Pacific, but the value was only significant for the East Japan population, when 

the samples from western North Pacific Ocean were regarded as a single population 

(Western North Pacific), or when all samples were regarded as a global Risso’s 

population (Table 2.13). A negative value of Fu’s Fs means an excess number of alleles, 

a phenomenon when a population has experienced a recent population expansion or 

genetic hitchhiking (Fu 1997). Therefore, it suggests the overall Risso’s dolphin 

population in the Northern Hemisphere, or at least the population in the western North 

Pacific Ocean, has expanded.   

 In the mismatch distribution analysis, the individuals from East Japan, Sea of 

Japan, Taiwan and the Philippines were assigned to a Western North Pacific population, 

and the individuals from Oregon-California Coastal and Eastern Tropical Pacific were 

assigned to an Eastern North Pacific population, according to the population structure 

revealed in the FST tests in the previous session. However, as microsatellite evidence 
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suggests that Oregon-California Coastal and Eastern Tropical Pacific could be different 

populations, an additional set of analyses that treated these two as independent 

populations was also conducted.  

 The results show that for most populations the distribution of observed pairwise 

nucleotide site differences did not differ significantly from the unimodal demographic 

and/or spatial expansion models, suggesting most of the populations experienced a 

period of rapid demographic and spatial expansion (Table 2.16; Fig 2.7, 2.8). In the 

three populations, the fitting to the model was rejected: the demographic expansion 

model for the Azores population (SSD=0.0211, p=0.0233; r=0.04771, p=0.0118), the 

spatial model for the British population (SSD=0.02304, p=0.0293), and the 

demographic expansion model for all samples (SSD=0.00548, p=0.0494). However, the 

raggedness index in the later two cases was not statistically significant (p=0.237 and 

p=0.149, respectively).  For the Azores population, the distribution of observed pairwise 

nucleotide site differences appeared to be multimodal (Fig. 2.7, 2.8), and its fitness to 

the demographic model was statistically rejected by both indices, suggesting the 

demographic structure of the Azores population has remained stable through time. The 

mismatch distribution for the Eastern Tropical Pacific and Mediterranean Sea appeared 

to be multimodal as well. However, the statistics suggested it was not different from the 

unimodal model.  
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 The estimates showed that, except for the British population, all Risso’s dolphin 

populations experienced demographic expansions at about the same time, about 3,000–

6,000 years ago (Table 2.16). The expansion time estimated for the British population is 

remarkably recent, only dated back to the last 706 years ago. A similar pattern was 

found for the estimates of the timing of a spatial expansion: except for the British 

population, all Risso’s dolphin populations experienced spatial expansions at about the 

same time, about 2,000–4,000 years ago, which is somewhat later than the time of 

demographic expansion (Table 2.16). The expansion time for the British population is 

again later (73–924 years ago). 
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Table 2.16.   Estimated parameters for the putative Risso's dolphin populations in the 
Northern Hemisphere under demographic expansion (A) and spatial expansion (B) 
models. 𝜏 is the time since expansion measured in mutational time units, SSD is the sum 
of squared deviation in goodness-of-fit test, T is the time of expansion estimated based 
on a substitution rate λ=1x10-7. The 2.5th and 97.5th profile likelihood estimates are 
given in parentheses. 
 

  𝜏 (95% CI) SSD (p value) 
Raggedness index 
(p value) T (95% CI) 

A: Demographic expansion model 

ETP 
12.105 
(3.732—17.775) 0.033 (0.156) 0.055 (0.155) 5816 (1793—8541) 

OCC 
10.539 
(5.354—14.414) 0.013 (0.326) 0.025 (0.307) 5064 (2573—6926) 

ENP 
10.973 
(4.988—15.943) 0.010 (0.389) 0.019 (0.274) 5272 (2397—7660) 

WNP 
9.057 
(4.518—12.852) 0.019 (0.057) 0.024 (0.082) 4352 (2171—6175) 

MED 
8.615 
(2.814—13.350) 0.008 (0.732) 0.025 (0.585) 4139 (1352—6415) 

UK 0.688 (0—1.469) 0.023 (0.134) 0.194 (0.228) 331 (0—706) 

AZR 
8.436 
(4.686—11.104) 0.021 (0.023*) 0.048 (0.012*) 4053 (2252—5335) 

All samples 
9.195 
(6.166—11.023) 0.005 (0.049*) 0.009 (0.143) 4418 (2963—5296) 

B: Spatial expansion model 

ETP 
8.056 
(3.924—17.688) 0.026 (0.480) 0.055 (0.593) 3871 (1885—8499) 

OCC 
8.223 
(5.184—13.412) 0.014 (0.379) 0.025 (0.635) 3951 (2491—6444) 

ENP 
7.484 
(4.397—15.841) 0.011 (0.604) 0.019 (0.799) 3596 (2113—7611) 

WNP 
8.003 
(4.944—11.329) 0.021 (0.178) 0.024 (0.695) 3845 (2376—5443) 

MED 
4.554 
(1.816—13.232) 0.012 (0.542) 0.025 (0.771) 2188 (873—6358) 

UK 
0.687 
(0.152—1.923) 0.023 (0.029*) 0.194 (0.237) 330 (73—924) 

AZR 
8.017 
(4.636—10.826) 0.017 (0.292) 0.048 (0.320) 3852 (2228—5202) 

All samples 
9.029 
(6.328—10.292) 0.006 (0.078) 0.009 (0.460) 4338 (3041—4945) 

*: p<0.05 
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Figure 2.7.   Mismatch distribution under a demographic expansion model for all 
samples (Northern Hemisphere) and for the populations. The x-axis shows the number 
of pairwise base pair differences and the y axis shows the frequency of the pairwise 
comparisons. The vertical bars (in grey) indicate the model frequency for the pairwise 
base-pair differences.  
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Figure 2.8.   Mismatch distribution under a spatial expansion model for all samples 
(Northern Hemisphere) and for the populations. The x-axis shows the number of 
pairwise base pair differences and the y axis shows the frequency of the pairwise 
comparisons. The vertical bars (in grey) indicate the model frequency for the pairwise 
base-pair differences.  
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Discussion	

Risso’s	dolphin	Population	structure	in	the	North	Pacific	Ocean	

The findings reject the hypothesis that there is no population differentiation for Risso’s 

dolphins in the North Pacific Ocean. Jefferson et al. (2014) proposed that hypothesis 

because they found the sighting records of Risso’s dolphins across the eastern and 

western North Pacific were continuous. Indeed, the cluster pattern of sighting records 

usually reflects the pattern of population aggregation (Frère et al. 2011; Chapter 4), but 

for Risso’s dolphins, as their distribution may have changed through time (Leatherwood 

et al. 1980; Kruse et al. 1999), using data compiled from 62-year sighting records may 

falsely merge multiple populations, if different populations have occupied the same site 

at different times. In fact, several regional distribution gaps for Risso’s dolphins in the 

North Pacific Ocean have been proposed in their original papers (e.g., Leatherwood et 

al. 1980; Miyashita 1993), but they are neglected in the review. Here, the analysis based 

on genetic evidence shows that some of them might be genuine population boundaries. 

 In the eastern North Pacific Ocean, Risso’s dolphins are distributed from the 

equator to the southern Gulf of Alaska (around 56°N) (Jefferson et al. 2014). The 

sampling range for this study was from 5°N to 45°N, and two distinct populations are 

identified. The distribution of the samples of these two populations coincides with the 

two major aggregation zones of Risso’s dolphins found in the coastal waters of the 
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eastern North Pacific Ocean: one off mid-southern California (30—40°N, 105—125°W) 

and the other off southwest Mexico (0—15°N, 80—100°W) (Leatherwood et al. 1980). 

The results support an earlier notion suggesting that dolphins found off the US west 

coast and northern Baja California may be distinct from the dolphins found farther 

south in tropical waters of the Gulf of California and the eastern Tropical Pacific 

(Forney & Barlow 1998).  In addition, the long-term and on-going gene flow estimates 

further show that the exchange of migrants between these two populations is limited, 

confirming that the large distribution gap of Risso’s dolphin sightings between 22—

29°N is likely a genuine population boundary rather than a result of insufficient survey 

effort (Leatherwood et al. 1980).  The mechanism that segregated the two populations is 

unclear and warrants further investigation, but the lack of gene flows may be due to the 

disconnection and heterogeneity of the habitats. Risso’s dolphins appear to be highly 

dependent on habitat featuring upwelling regions along continental slopes (Baumgartner 

1997; Smith & Whitehead 1999; Olavarría et al. 2001; Frantzis & Herzing 2002; Tynan 

et al. 2005; Azzellino et al. 2008) and the distribution of such habitat appears to be 

fragmented between the two regions (Zaytsev et al. 2003; Fiedler & Talley 2006). 

Furthermore, the California Current System and Eastern Tropical Pacific represent two 

distinct water masses and the lack of direct exchange of surface waters (Sverdrup et al. 

1942) may passively disadvantage migrations. Even when dispersal does occur, as the 

two regions have contrasting environmental characteristics and have evolved into 
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different ecosystems (White 1994; Fiedler & Talley 2006; Spalding et al. 2012), the 

incompatibility resulting from niche specialisation may limit the settlement of 

immigrants from other populations (e.g., Palumbi 1994, Louis et al. 2014).  

 Leatherwood et al. (1980) also proposed an additional aggregation zone north 

43°N, off the waters of northwest Oregon and Washington States. However, the authors 

themselves suspect that this aggregation zone represents a temporary shift of the 

southern population (i.e., the population off southern Californian waters), or an artefact 

of insufficient survey effort at the time, because the aggregation was only observed over 

a limited period, mostly in summertime. It is apparent that Risso’s dolphins are less 

abundant in higher latitudes (Jefferson et al. 2014), and as a result, only a few were 

sampled from the region north of 43°N in this study. This consequently limits this study 

to explore the population structure of Risso’s dolphin in the higher latitudes of the 

eastern North Pacific. Nevertheless, the STRUCTURE, Geneland and FCA results did 

not conclude that samples collected from higher latitudes (off Oregon and Washington 

States) are distinguishable from those collected from lower latitudes (off southern 

California), which may be consistent with the notion that the existence of this 43°N 

boundary is equivocal.  

 In the western part of the North Pacific Ocean, the analysis results indicate that 

Risso’s dolphins occupying the waters around Japan and Taiwan are from the same 

population. The findings agree with earlier morphological studies, which suggest no 
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difference in skull morphometry between the dolphins found in the eastern and western 

coasts of Japan (Mizue & Yoshida 1962) and no difference in body length measurement 

and the age at sexual maturity between dolphins found off Taiwan and the eastern coast 

of Japan (Chen et al. 2011). By comparing the stable isotope ratios of carbon (∂13C) and 

nitrogen (∂15N), there seems to be no significant difference for diet preference between 

the dolphins around Taiwan and around Japan (Endo et al. 2010; Liu et al. 2015). This 

result is not unexpected because the waters around Taiwan and southern Japan are both 

embedded in the Kuroshio Current System, a unique hydrodynamic system dominant in 

the western coast of the North Pacific Ocean, characterised by a speedy Kuroshio 

Current that carries warm, high salinity water flowing from Luzon of the Philippines 

northeast to the eastern coast of Japan year-round (Sverdrup et al. 1942; Barkley 1970) 

(Fig. 2.9). The northern boundary of this population is likely to be at around 35—40°N, 

where the mainstream Kuroshio Current leaves the coast of Japan and turns eastwardly, 

and the dolphins are seldom observed in the waters north of 40°N (Miyashita 1993). In 

this regard, it seems reasonable that the Geneland analysis indicates that the dolphin 

beached at the coast of Hokkaido, north Japan (43°N) is unlikely to affiliate with the 

western North Pacific population. However, it is perplexing that the analysis suggests 

that this dolphin was from the eastern North Pacific population. Since over 90% of 

dolphin carcasses would be expected to submerge within 40 days (Peltier et al. 2012) 

and the stranding rate decreases when the distance to shore increases (Williams et al. 
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2011; Wells et al. 2015), it is unlikely that the carcass had drifted such an enormous 

distance from the eastern coasts of North Pacific Ocean to Hokkaido. While it may be a 

casual migrant from the eastern North Pacific population, or an indication that the range 

of the eastern North Pacific population may reach the northern part of western North 

Pacific Ocean, the possibility of mis-assignment by the Geneland analysis cannot be 

excluded.  

 

 
Figure 2.9. A map of North Pacific Ocean showing the abyssal topography and the 
major surface ocean currents mentioned in this study. 

 

 There is no genetic differentiation found between the dolphins in the western 

and eastern coasts of Japan (i.e., Sea of Japan versus East Japan), even though the 

habitat may be somewhat different as the two regions are classified into different 

biogeographic provinces (i.e., the Sea of Japan province and the Kuroshio-Oyashio 

Current province, respectively; Spalding et al. 2012). It is suspected that the Tsushima 
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Warm Current, a branch of Kuroshio Current flowing northward through the 

Korean/Tsushima Strait in to the basin of Sea of Japan (Takikawa et al. 2005) (Fig. 2.9), 

that is playing a crucial role connecting these waters and promoting gene flow around 

the Japanese archipelago.  The Tsushima Warm Current transports a maximum volume 

of water to the Sea of Japan in the spring and autumn, but is at a minimum in winter 

(Takikawa et al. 2005), and this seems to correspond with the seasonal movement of 

Risso’s dolphins off Nagasaki, south to Korean/Tsushima Strait, where the dolphins 

perform a ‘feeding migration’ in winter and ‘parturient migration’ in summer (Mizue & 

Yoshida 1962). Even though there are clues suggesting Risso’s dolphins could freely 

move through the Korean/Tsushima Strait, given that the samples from the Sea of Japan 

were all stranded dolphins found on the Japanese coasts, it is possible that a certain 

portion of the samples was not resident in the Sea of Japan but instead drifted into the 

region. Therefore, the possibility cannot be excluded by now, that there could be one or 

more demographically independent Risso’s dolphin populations in the Sea of Japan, 

since the knowledge of their distribution, abundance and residency here has yet been 

explored.  

 Miyashita (1993) also suggested there are two major aggregation zones for 

Risso’s dolphins in the high sea western North Pacific Ocean: one in the waters offshore 

of Japan enclosed by 25–45°N, 148°–157°E, and the other in the high sea region of the 

same latitude, but east of 162°E. However, due to the lack of genetic samples from 
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those regions, the population structure for the dolphins in these two aggregation zones 

cannot be verified in this study. Such structure seems to be plausible though, as there 

have been a number of studies suggesting that other pelagic cetacean species establish 

genetically isolated populations in the central North Pacific Ocean (Andrews et al. 

2010; Courbis et al. 2014; Martien et al. 2012, 2014), and the Geneland analysis in this 

study suggests that there might be an isolated Risso’s dolphin population around the 

vicinity of the Hawaiian Islands. Nevertheless, the sample size is too limited to draw an 

inference, and the population structure in high sea Central Pacific warrants further 

investigation indeed.  

 The southern boundary for the Western North Pacific population remains 

uncertain, although the analyses showed that the Philippine sample is always grouped 

with samples collected from Taiwan and East Japan, possibly indicating that Philippine 

waters are in the range of the Western North Pacific population. The Philippines are 

located at the junction where the westward North Equatorial Current breaks into a 

northward Kuroshio Current and a southward Mindanao Current (Toole et al. 1990; 

Fine et al. 1994) and it is unknown whether the diverged currents could act as physical 

boundaries segregating dolphin populations within the northern and southern regions of 

Philippine waters. So far, the sightings of Risso’s dolphins have only been reported 

along the coasts of Sulu Sea, central Philippines (Dolar et al. 2006; Jefferson et al. 
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2014). A closer inspection is needed to elucidate the population structure for this 

species in the Philippine waters. 

 

Risso’s	dolphin	Population	structure	in	the	eastern	North	Atlantic	Ocean	and	

Mediterranean	Sea	

Gaspari et al. (2007) reported clear population differentiation between the Risso’s 

dolphins found in British waters and the Mediterranean Sea. In this study, further 

mtDNA data for the dolphins from the Azores, a sub-tropical region of the eastern 

North Atlantic Ocean, are added up to the analysis. The result shows that the Azores 

population is neither related to the British population, nor the Mediterranean population. 

As for the North Pacific Ocean, the population structure of Risso’s dolphins in the 

eastern North Atlantic Ocean seems to be compatible with the structure of regional 

ocean biogeography; that is, an Azores population for the North Central Atlantic 

province, a Mediterranean population for the Mediterranean Sea province, and a British 

population for the Northern European Seas (Spalding et al. 2007, 2012).  

 The Mediterranean Sea is a semi-enclosed water mass connected with the North 

Atlantic Ocean only via a narrow channel, the Strait of Gibraltar. Bearzi et al. (2011) 

suggest that Risso’s dolphins are rarely sighted in the Strait of Gibraltar and adjacent 

waters because the waters in the Strait are too shallow to be a preferred habitat for 
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Risso’s dolphins, and that the presence of abundant long-finned pilot whales 

(Globicephala melas) in the strait creates inter-species competitive exclusion. The 

presence of a physical geographic barrier is certainly a main factor that isolates the 

Mediterranean population from other populations. However, it remains untested 

whether this Mediterranean population is, like the population of other dolphin species, 

further differentiated within the Mediterranean Sea (e.g., Natoli et al. 2005, 2008). 

 On the other hand, between the Azores and British populations, oceanographic 

segregation and habitat specialisation are probably the two main triggers reinforcing 

population differentiation. The Azores are located in the northeast edge of the North 

Atlantic Gyre, which circulates high salinity waters clock-wise in the centre of the 

North Atlantic Ocean, whereas the British Isles are surrounded by a series of coastal 

seas in the northeast North Atlantic Ocean, influenced by the North Atlantic Drift, an 

eastern extension of the Gulf Stream that flows across the North Atlantic Ocean without 

passing the Azores and adjacent waters (Sverdrup et al. 1942) (Fig. 2.10). Furthermore, 

the habitat characteristics for Risso’s dolphins around the Azores and Britain are 

remarkably dissimilar: the dolphins off the Azores prefer the continental slope area 

where the water depth is between 500–1200m (Pereira 2008; Silva et al. 2014), while 

those found in British waters are usually encountered within the continental shelf area at 

50—100m depth (Evans 2013) (Fig. 2.10). In addition, Risso’s dolphins found in the 

Azores and British waters both exhibit some degree of site fidelity (de Boer et al. 2013; 
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Hartman et al. 2008, 2015; Silva et al. 2014), which may have also promoted the 

population’s endemicity (Schmidt 2004; Rosel et al. 2009). Even though population 

differentiation between the Azores and the British waters can be apparent, the 

population structure is assessed using data from one mtDNA locus only. Further 

investigations using multiple diploid markers (either microsatellite or single nucleotide 

polymorphisms, SNPs) will certainly provide more insights into the population structure, 

the measures of inbreeding depression, and the estimates for effective population size or 

gene flow. 

 

 
Figure 2.10. A map of North Atlantic Ocean showing the abyssal topography and the 
major surface ocean currents mentioned in this study.  
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Population	dynamics	and	climate	change	

The analysis shows, overall, the Risso’s dolphin species experienced both demographic 

and spatial expansion in the past, but the signal is not very strong or fully consistent 

among measures and populations. Exceptions are the population inhabiting the western 

North Pacific Ocean, which has a stronger expansion signal, and the populations 

inhabiting the Azores waters and the Eastern Tropical Pacific, which exhibit a sign of a 

stable population.  

 The rapid expansion detected for the western North Pacific population could be 

a result of successfully adapting to specialise on Enoploteuthis chunii, a species of squid 

presumably endemic and abundant in the western North Pacific Ocean (Jereb & Roper 

2011; Clarke & Young 1998; Isoda 2000; Wang et al. 2012).  This could be associated 

with gradually seizing the habitats formally occupied by their potential resource 

competitor, the long-finned pilot whale, which have gone extinct in the North Pacific 

Ocean during the last hundreds to thousands of years (Kasuya 2011). Perhaps more 

decisively, the dramatic shift of the mainstream Kuroshio Current at the East Taiwan 

Channel during the last glacial cycle (Gallagher et al. 2015) may have caused Risso’s 

dolphins to explore further potential habitats around the Japanese archipelago. The short 

body length of Risso’s dolphins in the western North Pacific Ocean (adult size about 

250–270cm, rarely exceeded 300cm; Amano & Miyazaki 2004; Chen et al. 2011) could 
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be a by-product of rapid life-history trait evolution driven by population expansion 

(Phillips et al. 2010).  

 In contrast, the mtDNA signal for the Azores population suggests a stable 

population, possibly indicating that the population has dominated those waters for an 

extended period of time. Similar interpretation may be applicable to the Eastern 

Tropical Pacific population, as the Tajima’s D and Fu’s Fs for the Eastern Tropical 

Pacific population are both positive, and the mismatch distribution appears to be 

multimodal, even though these indices are not statistically significant. Earlier analyses 

have revealed that the waters around the Azores were not strongly affected by the Last 

Glacial Maximum, and represent one of the glacial refugia for marine organisms in the 

North Atlantic Ocean (Rogerson et al. 2004; Maggs et al. 2008). The sea surface 

temperature in the Eastern Tropical Pacific is always above 22°C (Zhang et al. 2014) 

and the upwelling system is consistently present through times (Toth et al. 2015).  This 

suggests that a suitable habitat could have been maintained through the cold period for 

Risso’s dolphins. 

 The estimated timing of population expansion depends on an accurate estimate 

of the mtDNA control region substitution rate. The universal rate used in this study was 

calibrated using ancient DNA samples (𝜆=1×10-7) (Ho et al. 2011a), which is an order 

of magnitude or more faster than rates for dolphins calibrated with fossil records or the 

time of divergence for close-related species (𝜆=5×10-9—3×10-8; Hoelzel et al. 1991; 
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Baker et al. 1993; Harlin et al. 2003; Hayano et al. 2004). Such discrepancy is likely 

due to the fact that the mtDNA substitution rate is time-dependent, declining 

exponentially when the depth of time increases (Ho et al. 2011b). For population level 

inference, using a substitution rate estimated based on ancient DNA data, which reflects 

approximately the evolutionary history within the recent 50,000 (or less) years, is likely 

more appropriate than using a rate calibrated by fossil records or phylogenetic 

divergence scaled in millions of years (Ho et al. 2011b; Foote et al. 2012). However, 

the true rate likely varies among taxa (Ho et al. 2011a), and so estimates made here are 

approximate.  

 The onset of Risso’s dolphin population expansion is suggested taking place at 

3,000—6,000 years ago. Using the published phylogenetic rate of 7×10-8 (Harlin et al. 

2003), this range would be about 4,000—7,500 years ago. In either case the time of 

population expansion would be within the period of deglaciation following the last 

glacial maximum (19,000—20,000 years ago; Clark et al. 2009), and most likely during 

the beginning of the Holocene (about 11,500 years ago, Mayewski et al. 2004). The 

physical environment during the deglaciation featuring an increase of sea surface water 

temperature and sea level (Clark et al. 2009) appears to be favoured by Risso’s dolphin, 

and the shift of ocean current course (e.g., Pak et al. 2012; Gallagher et al. 2015) could 

have promoted the accessibility of higher latitude habitats after the glacial retreat. In the 

western North Pacific Ocean, the extinction of long-finned pilot whales, which might be 
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dated back hundreds of years ago (Kasuya 2011), might have created Risso’s dolphins a 

competitor-free niche to fit in even more rapidly.  

 Relatively low genetic diversity likely indicates that the British population is a 

founder population, and the estimates indicate that the time of population expansion for 

this population is later, within the last 1,000 years. Unlike the Azores and the 

Mediterranean populations of dolphins being sheltered in ice-free regions at all times, 

the waters around the British Isles were frozen during the Last Glacial Maximum (Clark 

et al. 2012). The significant delay of population expansion of this British population is 

possibly not only because of the late availability of accessible habitats in higher 

latitudes, but also time associated with adapting to the novel habitat. Risso’s dolphins in 

British waters inhabit shallow continental shelf waters and consume octopuses Eledone 

cirrhosa as are of their main prey items (Evans 2013; MacLeod et al. 2014). This is 

remarkably different from ‘typical’ Risso’s dolphin populations found in other regions, 

which occupy steep continental slope waters and mainly feed on squids (Kruse et al. 

1999; Baird 2009). The population expansion detected here may therefore be associated 

with a successful colonization by a founder population, further involving a rapid niche 

shift. 

 

Effective	population	size	for	the	North	Pacific	populations	
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The estimates suggest the Neµ for the western North Pacific population and for the 

eastern North Pacific population are similar (0.371 and 0.457) but smaller than the 

estimates for other oceanic small cetacean populations (See Chapter 5).  However, the 

Neµ reported in this study can be problematic, as the demographic feature of the 

populations appears to be violating the model assumption in Migrate analysis, which 

assumes the population size is consistent through times. The program tends to 

underestimate the Neµ if the population size was increasing (Beerli 2009). The mtDNA 

analysis results suggest, at least for the western North Pacific population, the population 

size of the Risso’s dolphin populations has increased greatly. The underestimation is 

evident when calculating the Ne/N ratio (Frankham 1995) using the Ne estimate for the 

western North Pacific population (Ne=1,804—3,816) and the census population size 

(N) estimated for the Risso’s dolphins in Japanese waters (N=83,289). The Ne/N ratio 

would be 0.022—0.046, which appears to be unrealistically small for mammals 

(Frankham 1995).  Considering the standard Ne/N ratio for Risso’s dolphin is likely to 

be around 0.1—0.4 (see below), the contemporary Ne for the western North Pacific 

population is likely to be about an order of magnitude larger than the long-term Ne 

estimated in the Migrate analysis.  

 On the other hand, the Ne/N ratio for the eastern North Pacific population 

appears to be more realistic. It could be calculated as 0.184—0.399 when using the N 

estimated for the Risso’s dolphins in the California Current System (N=11,910; Barlow 



	 117	

& Forney 2007). The calculation for the Ne/N ratio for the Eastern Tropical Pacific 

population is about the same magnitude, which is 0.145—0.328 (N=110,457, 

Gerrodette et al. 2008; Taylor et al. 2012). Since the ratio is above the estimate from a 

meta-analysis of Ne/N for wildlife populations (0.1—0.11) (Frankham 1995), the 

seemingly low Ne estimate for the eastern North Pacific population can be a reflection 

of low census population size (Hare et al. 2011), rather than other factors such as biased 

reproductive success, biased sex ratio, highly age-structured populations, and/or a recent 

population bottleneck (Nunney 1993; Hedrick 2005; Charlesworth 2009).  

 

Synthesis,	conservation	implication	and	future	study	possibilities	

The results show there are at least six populations of Risso’s dolphins in the Northern 

Hemisphere, and the structure seemingly agrees with the structure of ocean 

biogeography (viz. Sverdrup et al. 1942; White 1994; Spalding et al. 2012). Such 

correlation is reasonable regarding the facts that the distribution of Risso’s dolphins is 

restricted by habitat availability (Baumgartner 1997; Praca & Gannier 2008), and since 

the environmental/ecological characteristics of such habitats in different biogeographic 

regions is supposed to be dissimilar, a certain degree of local habitat/resource 

specialisation appears to be necessary to establish and maintain a stable population. 

Further studies integrating quantified environmental data and genetic data from more 
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advanced molecular techniques, e.g., next generation sequencing, would be able to 

verify this hypothesis, and possibly identify candidate genes associated with adaptation 

(Stapley et al. 2010; Ekblom & Galindo 2011). Other factors, such as isolation-by-

distance, inter-species competitive exclusion (Shane 1995; Bearzi et al. 2011), and 

cultural or habitat unfamiliarity (Rosel et al. 2009; Cantor & Whitehead 2013), might 

also play some roles in preventing gene flows, and consequently reinforce the 

population structure. To present a comprehensive view of Risso’s dolphin population 

structure in the world, it is needed to include further samples from the Central Pacific 

Ocean, as well as other regions where Risso’s dolphins are found, i.e., the South Pacific, 

North Atlantic, South Atlantic, Mediterranean Sea and Indian Oceans.  

 The estimates suggest that some Risso’s dolphin populations experienced a level 

of demographic and spatial expansion, possibly within the past 10,000 years. The 

timing cannot be accurately estimated due to the lack of accurate information for the 

species-specific parameters, i.e., the mtDNA control region substitution rate and the 

time length of a generation. Hence, it cannot be concluded that the expansion of the 

British population in the recent 1,000 years may be associated with anthropogenic 

global warming (Doney et al. 2012). Nevertheless, in general, the time frame for 

Risso’s dolphin population expansion is in agreement with the early Holocene 

population expansion, which has also been suggested for a number of cetacean species 

(Banguera-Hinestroza et al. 2014; Louis et al. 2014; Moura et al. 2014; Chapter 3).  
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 Year-round occurrence of Risso’s dolphins detected by earlier sighting, 

stranding and acoustic records suggests the dolphins may be resident in the waters 

around Taiwan, Santa Catalina Island (southern California), Eastern Tropical Pacific, 

the Azores, British Isles and the northwest Mediterranean Sea (Bompar 1997; Ballance 

et al. 2006; Hartman et al. 2008, 2015; Soldevilla et al. 2010; Chen et al. 2011; Silva et 

al. 2014). The genetic analyses using the samples collected from these regions further 

suggest these are different populations, and for conservation purposes these populations 

should be managed as independent units. This study highlights the necessity of genetic 

approaches in determining population units and population dynamics for the 

conservation of highly mobile marine species such as cetaceans. However, the Ne 

estimates reported in this study, at least for the western North Pacific population, reflect 

the long-term Ne, which is least useful in real-time conservation management. Instead, 

the contemporary Ne should be assessed if the purpose is to monitor any on-going 

impact of human activities on wildlife populations. To assess the contemporary Ne, the 

genetic samples need to be collected systematically from individuals of known ages and 

across multiple generations (Hare et al. 2011). This is particularly challenging for long-

lived animals such as cetaceans, but highlights the importance of establishing and 

maintaining long-term population monitoring and periodic sampling projects to achieve 

successful conservation management (e.g., Wells 2014). 
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Appendices	

Appendix 2.1. List of the samples acquired for this study. Note not all sample in this list 
were used in the study. The samples analysed are indicated as ‘Y’ in ‘Used in 
Analyses?’ column, as well as noted in ‘MS’ (microsatellite genotyping) and ‘mtDNA’ 
(mtDNA haplotype) columns. Abbreviations for the Contributors: Es-Bank, the Center 
for Enviornmental Studies at Ehime University (Japan); NMST, National Museum of 
Science, Tokyo; NTU, National Taiwan University; SWFSC, Southwest Fisheries 
Science Center (USA). 
 
Appendix 2.2.  Presence of null alleles, number of alleles, allelic richness, inbreeding 
coefficient (FIS), observed heterozyogsity (HO) and expected heterozygosity (HE) for the 
22 microsatellite loci examined in this study. The loci marked by asterisk are discarded 
from further analyses. 
 
Appendix 2.3.  Polymorphic sites in Risso’s dolphin mtDNA control region haplotypes. 
The dot indicates identical site to the top sequence and the dash indicates an insertion–
deletion event. The number in the top row indicates the position of the variable site in 
the 473bp sequence. 
	 	



  

Appendix 2.1. 
 

Longitude Latitude ID Location Population 
Sample 
source Contributor Year Sex MS mtDNA 

Used in 
analyses? 

-118.916666 34.033333 72 Leo Carillo Beach Oregon-California Coastal Stranding SWFSC 1981 M N/A N/A N 
-121.166666 35.183333 141 US west offshore Oregon-California Coastal Fishery SWFSC 1991 U N/A N/A N 
-121.066666 34.433333 776 US west offshore Oregon-California Coastal Fishery SWFSC 1992 M N/A N/A N 
-118.966666 32.716666 1293 US west offshore Oregon-California Coastal Fishery SWFSC 1993 F N/A N/A N 
-118.033333 32.4 2165 US west offshore Oregon-California Coastal Fishery SWFSC 1993 U N/A N/A N 
-122.116666 35.616666 4695 US west offshore Oregon-California Coastal Fishery SWFSC 1992 U N/A N/A N 

-117.5 32.85 8759 US west offshore Oregon-California Coastal Fishery SWFSC 1997 M N/A N/A N 
-122.216666 36.416666 9336 US west offshore Oregon-California Coastal Fishery SWFSC 1997 U N/A N/A N 
-117.316666 33.083333 23942 San Diego Oregon-California Coastal Stranding SWFSC 2001 U N/A N/A N 

-117.616666 33.416666 26643 
San Clemente City 

Beach Oregon-California Coastal Stranding SWFSC 2002 U N/A N/A N 
N/A N/A 74703 San Diego Oregon-California Coastal Stranding SWFSC 2008 U N/A N/A N 

-117.283333 32.833333 77617 San Diego Oregon-California Coastal Stranding SWFSC 2008 M N/A N/A N 
N/A N/A 94471 San Miguel Island Oregon-California Coastal Stranding SWFSC 2010 U N/A N/A N 

-120.133333 34.133333 101144 Channel Islands Oregon-California Coastal Biopsy SWFSC 2010 F N/A Hap_14 Y 

-118.483333 33.366666 124011 
Cottonwood Beach, 

Los Angeles Oregon-California Coastal Stranding SWFSC 2010 U N/A N/A N 

-117.25 32.916666 62 
Torrey Pines State 

Beach Oregon-California Coastal Stranding SWFSC 1990 F Y N/A Y 
-121.283333 34.7 144 US west offshore Oregon-California Coastal Fishery SWFSC 1991 F Y N/A Y 

-118.95 32.716666 1291 US west offshore Oregon-California Coastal Fishery SWFSC 1993 F Y N/A Y 
-118.966666 32.716666 1294 US west offshore Oregon-California Coastal Fishery SWFSC 1993 M Y N/A Y 
-121.666666 35.2 1301 US west offshore Oregon-California Coastal Fishery SWFSC 1992 F Y N/A Y 
-125.983333 38.133333 1564 US west offshore Oregon-California Coastal Fishery SWFSC 1992 F Y N/A Y 
-121.933333 34.116666 1875 US west offshore Oregon-California Coastal Fishery SWFSC 1993 M Y N/A Y 
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Longitude Latitude ID Location Population 
Sample 
source Contributor Year Sex MS mtDNA 

Used in 
analyses? 

-127 44.4 1877 US west offshore Oregon-California Coastal Fishery SWFSC 1993 F Y N/A Y 
-118.133333 32.416666 2167 US west offshore Oregon-California Coastal Fishery SWFSC 1993 M Y N/A Y 

-122.9 36.233333 4694 US west offshore Oregon-California Coastal Fishery SWFSC 1993 F Y Sequenced N 
-119 32.4 4771 US west offshore Oregon-California Coastal Fishery SWFSC 1995 F Y N/A Y 

-120.9 34.55 5001 US west offshore Oregon-California Coastal Fishery SWFSC 1995 F Y N/A Y 
-120.9 34.55 5004 US west offshore Oregon-California Coastal Fishery SWFSC 1995 M Y N/A Y 

-120.866666 34.533333 5007 US west offshore Oregon-California Coastal Fishery SWFSC 1995 F Y N/A Y 
-120.866666 34.533333 5008 US west offshore Oregon-California Coastal Fishery SWFSC 1995 M Y N/A Y 
-118.966389 33.348889 6157 N/A Oregon-California Coastal Biopsy SWFSC 1996 F Y N/A Y 
-122.083333 36.966666 6963 Santa Cruz Oregon-California Coastal Stranding SWFSC 1997 M Y N/A Y 
-122.216666 36.416666 9335 US west offshore Oregon-California Coastal Fishery SWFSC 1997 M Y N/A Y 
-119.666666 34.416666 11204 Santa Barbara Oregon-California Coastal Stranding SWFSC 1998 F Y N/A Y 
-118.933333 32.283333 23155 US west offshore Oregon-California Coastal Fishery SWFSC 2000 F Y N/A Y 
-122.233333 35.8 23187 US west offshore Oregon-California Coastal Fishery SWFSC 2000 F Y N/A Y 

-117.35 32.833333 23799 San Diego Oregon-California Coastal Biopsy SWFSC 2001 M Y N/A Y 
-117.35 32.9 23800 San Diego Oregon-California Coastal Biopsy SWFSC 2001 M Y N/A Y 

-124.583333 43.016666 25435 Coastal Oregon-California Coastal Biopsy SWFSC 2001 M Y Hap_16 Y 
-119.366666 34.016666 26306 US west coast Oregon-California Coastal Biopsy SWFSC 2001 M Y Hap_17 Y 
-119.366666 34.016666 26307 US west coast Oregon-California Coastal Biopsy SWFSC 2001 F Y Hap_17 Y 
-119.366666 34.016666 26308 US west coast Oregon-California Coastal Biopsy SWFSC 2001 M Y Hap_18 Y 
-119.366666 34.016666 26309 US west coast Oregon-California Coastal Biopsy SWFSC 2001 F Y Hap_18 N 

-117.566666 33.366666 26642 
San Onofre State 

Beach Oregon-California Coastal Stranding SWFSC 2002 M Y N/A Y 
-117.4 32.883333 28480 San Diego Oregon-California Coastal Biopsy SWFSC 2002 M Y N/A Y 
-121.9 36.45 32931 Monterey Oregon-California Coastal Stranding SWFSC 1997 M Y Hap_1 Y 
-121.8 36.816666 32940 Monterey Oregon-California Coastal Stranding SWFSC 2003 F Y Hap_18 Y 

-121.933333 35.966666 39080 US west offshore Oregon-California Coastal Fishery SWFSC 2003 M Y N/A Y 
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-121.933333 35.966666 39082 US west offshore Oregon-California Coastal Fishery SWFSC 2003 M Y N/A Y 
-121.933333 35.966666 39083 US west offshore Oregon-California Coastal Fishery SWFSC 2003 F Y N/A Y 
-121.933333 35.966666 39084 US west offshore Oregon-California Coastal Fishery SWFSC 2003 M Y N/A Y 

-119 34 39556 Ventura Oregon-California Coastal Stranding SWFSC 2003 F Y N/A Y 
-121.983333 36.783333 41842 Monterey Oregon-California Coastal Biopsy SWFSC 2004 F Y N/A Y 

-122 36.8 41843 Monterey Oregon-California Coastal Biopsy SWFSC 2004 F Y Hap_19 Y 
-122 36.8 41844 Monterey Oregon-California Coastal Biopsy SWFSC 2004 F Y Hap_20 Y 

-121.983333 36.8 41845 Monterey Oregon-California Coastal Biopsy SWFSC 2004 F Y Hap_21 Y 
-121.983333 36.8 41846 Monterey Oregon-California Coastal Biopsy SWFSC 2004 F Y Hap_22 Y 
-121.983333 36.8 41847 Monterey Oregon-California Coastal Biopsy SWFSC 2004 F Y Hap_23 Y 
-122.133333 36.766666 41850 Monterey Oregon-California Coastal Biopsy SWFSC 2004 M Y Hap_20 Y 
-117.383333 32.6 48586 San Diego Oregon-California Coastal Biopsy SWFSC 2005 F Y N/A Y 
-124.383333 44.983333 51127 Coastal Oregon-California Coastal Biopsy SWFSC 2005 M Y N/A Y 
-124.383333 44.983333 51128 Coastal Oregon-California Coastal Biopsy SWFSC 2005 F Y N/A Y 
-124.383333 44.983333 51129 Coastal Oregon-California Coastal Biopsy SWFSC 2005 M Y N/A Y 
-124.383333 44.983333 51130 Coastal Oregon-California Coastal Biopsy SWFSC 2005 M Y N/A Y 
-117.366666 32.95 52456 San Diego Oregon-California Coastal Biopsy SWFSC 2006 M Y N/A Y 

-120.6 34.683333 53165 Santa Barbara Oregon-California Coastal Stranding SWFSC 2004 F Y N/A Y 
-121.95 36.583333 57814 Monterey Oregon-California Coastal Stranding SWFSC 2005 M Y Hap_20 Y 
-124.75 47.3 61944 Coastal Oregon-California Coastal Biopsy SWFSC 2006 F Y Hap_1 Y 
-124.75 47.3 61945 Coastal Oregon-California Coastal Biopsy SWFSC 2006 M Y Hap_24 Y 

-117.633333 33.416666 66557 Orange Oregon-California Coastal Stranding SWFSC 2007 F Y N/A Y 
-121.969123 36.58246 73404 Monterey Oregon-California Coastal Stranding SWFSC 2006 M Y Hap_25 Y 

-119.1 34.1 76436 Ventura Oregon-California Coastal Stranding SWFSC 2008 F Y N/A Y 
-118.016666 32.966666 76971 US west coast Oregon-California Coastal Biopsy SWFSC 2008 M Y Hap_1 Y 

-117.866666 32.566666 79772 
Dana Point, Long 
Beach, Catalina Oregon-California Coastal Biopsy SWFSC 2009 M Y N/A Y 
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-118.933333 32.916666 79774 San Clemente Island Oregon-California Coastal Biopsy SWFSC 2009 M Y N/A Y 
-121.05 34.7 79937 US west offshore Oregon-California Coastal Fishery SWFSC 2008 M Y N/A Y 

-119.483333 33.483333 87478 
NW off Santa 
Catalina Island Oregon-California Coastal Biopsy SWFSC 2009 U Y N/A Y 

-118.716666 33.166666 87480 
NW off Santa 
Catalina Island Oregon-California Coastal Biopsy SWFSC 2009 M Y N/A Y 

-119.483333 33.483333 87483 
NW off Santa 
Catalina Island Oregon-California Coastal Biopsy SWFSC 2009 M Y N/A Y 

-118.566666 33.816666 88952 Marina del Rey Oregon-California Coastal Biopsy SWFSC 2009 M Y N/A Y 
-119.7 33.733333 88975 Oxnard Oregon-California Coastal Biopsy SWFSC 2009 M Y N/A Y 

-118.65 33.083333 94804 
Southern California 

offshore Oregon-California Coastal Biopsy SWFSC 2010 M Y N/A Y 
-120.133333 34.133333 101142 Channel Islands Oregon-California Coastal Biopsy SWFSC 2010 F Y Hap_12 Y 
-120.133333 34.133333 101143 Channel Islands Oregon-California Coastal Biopsy SWFSC 2010 M Y Hap_13 Y 
-118.333333 33.45 101159 Channel Islands Oregon-California Coastal Biopsy SWFSC 2010 F Y Hap_14 Y 
-118.333333 33.45 101160 Channel Islands Oregon-California Coastal Biopsy SWFSC 2010 F Y N/A Y 
-122.97714 38.207738 101851 Sonoma Oregon-California Coastal Stranding SWFSC 2010 M Y N/A Y 

-118.466666 33.383333 102563 Santa Catalina Island Oregon-California Coastal Stranding SWFSC 2010 M Y N/A Y 
-124.416666 40.583333 124025 Humboldt Oregon-California Coastal Stranding SWFSC 2005 M Y Hap_15 Y 
-117.516666 32.6 125882 San Diego South Oregon-California Coastal Biopsy SWFSC 2011 M Y N/A Y 

-160.716666 18.183333 73679 
Southwest of the 
Hawaiian Islands Central-Northeast Pacific Fishery SWFSC 2007 F Y N/A Y 

-157.366666 32.316666 53476 
North of the Hawaiian 

Islands Central-Northeast Pacific Fishery SWFSC 2006 F Y N/A Y 

-159.016666 30.983333 62830 
North of the Hawaiian 

Islands Central-Northeast Pacific Fishery SWFSC 2007 F Y N/A Y 

-146.366666 38.033333 78761 
North of the Hawaiian 

Islands Central-Northeast Pacific Fishery SWFSC 2008 M Y N/A Y 

-142.2 31.4 93900 
Northeastern Pacific 

Ocean Central-Northeast Pacific Fishery SWFSC 2010 F Y N/A Y 
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-142.683333 31.283333 125652 
Northeastern Pacific 

Ocean Central-Northeast Pacific Fishery SWFSC 2011 F Y N/A Y 

-137.866666 33.383333 125653 
Northeastern Pacific 

Ocean Central-Northeast Pacific Fishery SWFSC 2011 M Y N/A Y 
-109.366667 24.183333 37967 Mexico Eastern Tropical Pacific Biopsy SWFSC 2003 U N/A N/A N 
-100.566667 16.65 11692 Mexico Eastern Tropical Pacific Biopsy SWFSC 1998 M Y Hap_1 Y 
-100.566667 16.65 11693 Mexico Eastern Tropical Pacific Biopsy SWFSC 1998 F Y N/A Y 
-100.566667 16.65 11694 Mexico Eastern Tropical Pacific Biopsy SWFSC 1998 M Y Hap_2 Y 
-110.066667 25.583333 15899 Mexico Eastern Tropical Pacific Biopsy SWFSC 1999 M Y Hap_3 Y 
-110.216667 25.65 15900 Mexico Eastern Tropical Pacific Biopsy SWFSC 1999 M Y Hap_1 Y 
-110.216667 25.65 15901 Mexico Eastern Tropical Pacific Biopsy SWFSC 1999 M Y Hap_4 Y 
-99.933333 16.65 15997 Mexico Eastern Tropical Pacific Biopsy SWFSC 1999 F Y Hap_1 Y 

-119.816667 26.216667 37971 US west offshore Eastern Tropical Pacific Biopsy SWFSC 2003 M Y Hap_1 Y 
-100.8 17.1 38113 Mexico Eastern Tropical Pacific Biopsy SWFSC 2003 M Y Hap_1 Y 

-100.966667 17.1 38114 Mexico Eastern Tropical Pacific Biopsy SWFSC 2003 M Y Hap_5 Y 
-94.05 15.15 38251 Mexico Eastern Tropical Pacific Biopsy SWFSC 2003 F Y Hap_5 Y 
-94.05 15.15 38252 Mexico Eastern Tropical Pacific Biopsy SWFSC 2003 M Y Hap_6 Y 
-94.05 15.15 38253 Mexico Eastern Tropical Pacific Biopsy SWFSC 2003 M Y Hap_7 Y 
-94.05 15.15 38254 Mexico Eastern Tropical Pacific Biopsy SWFSC 2003 M Y Hap_1 Y 

-94.216667 15.183333 38255 Mexico Eastern Tropical Pacific Biopsy SWFSC 2003 M Y Hap_8 Y 
-94.216667 15.183333 38256 Mexico Eastern Tropical Pacific Biopsy SWFSC 2003 F Y Hap_6 Y 
-94.216667 15.183333 38257 Mexico Eastern Tropical Pacific Biopsy SWFSC 2003 M Y Hap_9 Y 
-94.216667 15.183333 38258 Mexico Eastern Tropical Pacific Biopsy SWFSC 2003 M Y Hap_1 Y 
-95.883333 15.583333 38266 Mexico Eastern Tropical Pacific Biopsy SWFSC 2003 M Y Hap_7 Y 

-100.8 15.266667 38275 Mexico Eastern Tropical Pacific Biopsy SWFSC 2003 M Y Hap_2 Y 
-100.8 15.266667 38276 Mexico Eastern Tropical Pacific Biopsy SWFSC 2003 M Y Hap_10 Y 
-100.8 15.266667 38277 Mexico Eastern Tropical Pacific Biopsy SWFSC 2003 M Y Hap_11 Y 
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121.53223 23.483738 579 Hualien Taiwan Fishery NTU 2000 F N/A Hap_18 Y 
121.53223 23.483738 623 Hualien Taiwan Fishery NTU 2000 F N/A Hap_43 Y 

121.87 24.9 629 Ilan Taiwan Fishery NTU 2000 F N/A Hap_26 Y 
139.1412727 35.16213712 10Gg005 Kanakawa East Japan Stranding NMST 2001 F N/A Hap_27 Y 
131.5933782 33.24748452 10Gg012 Oita East Japan Stranding NMST 2003 U N/A Hap_3 Y 
139.7762148 34.97545194 10Gg013 Chiba East Japan Stranding NMST 2003 F N/A Hap_31 Y 
141.4669212 38.26669879 10Gg101 Miyagi East Japan Stranding NMST M34066 U N/A Hap_33 Y 

135.94924 33.593924 EW01248 Taiji East Japan Whaling Es-Bank 1991 M N/A N/A Y 
121.53223 23.483738 284 Hualien Taiwan Fishery NTU 2000 M Y Hap_18 Y 
121.53223 23.483738 287 Hualien Taiwan Fishery NTU 2000 M Y Hap_41 Y 
121.53223 23.483738 290 Hualien Taiwan Fishery NTU 2004 M Y Hap_39 Y 
121.53223 23.483738 292 Hualien Taiwan Fishery NTU 2004 M Y Hap_44 Y 
121.53223 23.483738 294 Hualien Taiwan Fishery NTU 2004 M Y Hap_39 Y 
121.53223 23.483738 451 Hualien Taiwan Fishery NTU 2000 F Y Hap_39 Y 
121.53223 23.483738 500 Hualien Taiwan Fishery NTU 2004 F Y Hap_33 Y 
121.53223 23.483738 503 Hualien Taiwan Fishery NTU 2004 F Y Hap_39 Y 

120.511139 24.292417 573 Taichung Taiwan Stranding NTU 2000 M Y Hap_39 Y 
121.53223 23.483738 576 Hualien Taiwan Fishery NTU 2001 M Y Hap_46 Y 
121.53223 23.483738 582 Hualien Taiwan Fishery NTU 2000 F Y Hap_33 Y 
121.53223 23.483738 586 Hualien Taiwan Fishery NTU 2000 F Y Hap_33 Y 
121.53223 23.483738 590 Hualien Taiwan Fishery NTU 2001 M Y Hap_30 Y 
121.53223 23.483738 592 Hualien Taiwan Fishery NTU 2000 F Y Hap_42 Y 
121.53223 23.483738 594 Hualien Taiwan Fishery NTU 2000 F Y Hap_33 Y 
121.53223 23.483738 626 Hualien Taiwan Fishery NTU 2000 M Y Hap_41 Y 
121.53223 23.483738 724 Hualien Taiwan Fishery NTU 2001 M Y Hap_30 Y 
121.53223 23.483738 726 Hualien Taiwan Fishery NTU 2001 F Y Hap_30 N 
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121.53223 23.483738 733 Hualien Taiwan Fishery NTU 2001 M Y N/A Y 
121.53223 23.483738 738 Hualien Taiwan Fishery NTU 2005 M Y Hap_33 Y 
121.53223 23.483738 742 Hualien Taiwan Fishery NTU 2004 F Y Hap_41 Y 

121.396274 23.088597 871 Taitung Taiwan Fishery NTU 2005 F Y Hap_39 Y 
121.396274 23.088597 874 Taitung Taiwan Fishery NTU 2005 M Y Hap_39 Y 
121.396274 23.088597 877 Taitung Taiwan Fishery NTU 2005 M Y Hap_41 Y 
121.871178 24.905306 884 Ilan Taiwan Stranding NTU 2006 F Y Hap_39 Y 
121.53223 23.483738 893 Hualien Taiwan Fishery NTU 2004 M Y Hap_44 Y 
121.53223 23.483738 897 Hualien Taiwan Fishery NTU 2004 M Y Hap_18 Y 
121.53223 23.483738 901 Hualien Taiwan Fishery NTU 2005 M Y Hap_45 Y 
121.53223 23.483738 908 Hualien Taiwan Fishery NTU 2006 M Y N/A Y 

121.396274 23.088597 1030 Taitung Taiwan Fishery NTU 2006 F Y Hap_18 Y 
121.396274 23.088597 1035 Taitung Taiwan Fishery NTU 2006 F Y Hap_33 Y 
121.396274 23.088597 1040 Taitung Taiwan Fishery NTU 2006 F Y Hap_33 Y 
121.414471 23.115755 1045 Taitung Taiwan Stranding NTU 2006 F Y Hap_47 Y 
121.396274 23.088597 1053 Taitung Taiwan Fishery NTU 2006 M Y Hap_33 Y 
121.53223 23.483738 1061 Hualien Taiwan Fishery NTU 2005 M Y Hap_39 Y 

121.266597 25.120128 1074 Taoyuan Taiwan Stranding NTU 2007 M Y Hap_18 Y 
121.266597 25.120128 1075 Taoyuan Taiwan Stranding NTU 2007 M Y Hap_43 Y 
121.266597 25.120128 1078 Taoyuan Taiwan Stranding NTU 2007 M Y Hap_44 Y 
121.266597 25.120128 1081 Taoyuan Taiwan Stranding NTU 2007 M Y Hap_49 Y 
121.419472 23.227056 1120 Taitung Taiwan Stranding NTU 2004 F Y Hap_18 Y 
121.53223 23.483738 1153 Hualien Taiwan Fishery NTU 2005 F Y Hap_41 Y 

121.471711 25.254478 1254 Taipei Taiwan Stranding NTU 2008 M Y Hap_48 Y 
141.6307816 42.6337174 10Gg001 Hokkaido East Japan Stranding NMST 1999 F Y Hap_15 Y 
138.9196639 34.65338702 10Gg002 Shizuoka East Japan Stranding NMST 1999 F Y Hap_26 Y 
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140.5623418 36.29416226 10Gg003 Ibaraki East Japan Stranding NMST 1999 M Y Hap_3 Y 
131.4724559 31.80350844 10Gg008 Miyazaki East Japan Stranding NMST 2002 M Y Hap_18 Y 
139.8581756 35.00031174 10Gg009 Chiba East Japan Stranding NMST 2002 M Y Hap_26 Y 
138.9204402 34.65393181 10Gg010 Shizuoka East Japan Stranding NMST 2003 M Y Hap_29 Y 
132.5495873 32.9635973 10Gg011 Ehime East Japan Stranding NMST 2003 F Y Hap_30 Y 
140.5770456 35.63564914 10Gg014 Chiba East Japan Stranding NMST 2003 M Y Hap_32 Y 
132.5277516 32.96279867 10Gg021 Ehime East Japan Stranding NMST 2006 F Y Hap_33 Y 
131.4566001 31.84211287 10Gg022 Miyazaki East Japan Stranding NMST 2007 F Y Hap_35 Y 
138.2018081 34.6767493 10Gg023 Shizuoka East Japan Stranding NMST 2007 F Y Hap_33 Y 
131.5354732 32.1182585 10Gg026 Miyazaki East Japan Stranding NMST 2008 M Y Hap_36 Y 
131.5312528 32.11012651 10Gg028 Miyazaki East Japan Stranding NMST 2008 M Y Hap_18 Y 
140.4120953 35.45976398 10Gg029 Chiba East Japan Fishery NMST 2008 F Y Hap_35 Y 
131.3434538 31.41060628 10Gg030 Miyazaki East Japan Stranding NMST 2009 M Y Hap_37 Y 
131.9656307 32.8021531 10Gg032 Oita East Japan Stranding NMST 2009 M Y Hap_38 Y 
138.947033 34.662309 10Gg036 Shizuoka East Japan Stranding NMST 2010 F Y Hap_40 Y 
139.223175 35.036692 10Gg085 Shizuoka East Japan Stranding NMST 1994 F Y Hap_37 Y 
132.659167 33.914722 10Gg086 Ehime East Japan Stranding NMST 1986 F Y Hap_33 Y 
140.470556 36.316944 10Gg087 Ibaraki East Japan Stranding NMST 1991 U Y Hap_3 N 
140.637222 36.316944 10Gg088 Ibaraki East Japan Stranding NMST 2002 M Y Hap_50 Y 

135.94924 33.593924 10Gg090 Taiji East Japan Whaling NMST 1991 F Y Hap_3 
Y 

(mtDNA) 
135.94924 33.593924 10Gg091 Taiji East Japan Whaling NMST 1991 F Y Hap_30 Y 
135.94924 33.593924 10Gg092 Taiji East Japan Whaling NMST 1991 F Y Hap_33 Y 
135.94924 33.593924 10Gg093 Taiji East Japan Whaling NMST 1991 F Y Hap_51 Y 

135.94924 33.593924 10Gg094 Taiji East Japan Whaling NMST 1991 F Y Hap_39 
Y 

(mtDNA) 
132.470278 33.2425 10Gg095 Ehime East Japan Stranding NMST 2005 M Y Hap_52 Y 
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135.94924 33.593924 10Gg102 Taiji East Japan Whaling NMST NA F Y Hap_54 Y 
135.94924 33.593924 10Gg103 Taiji East Japan Whaling NMST NA F Y Hap_33 Y 

131.533 32.115 10Gg104 Miyazaki East Japan Stranding NMST 2010 
 

Y Hap_55 Y 
135.94924 33.593924 EW01194 Taiji East Japan Whaling Es-Bank 1991 M Y 

 
Y 

135.94924 33.593924 EW01195 Taiji East Japan Whaling Es-Bank 1991 M Y 
 

Y 
135.94924 33.593924 EW01196 Taiji East Japan Whaling Es-Bank 1991 F Y N/A N 
135.94924 33.593924 EW01197 Taiji East Japan Whaling Es-Bank 1991 F Y 

 
Y 

135.94924 33.593924 EW01198 Taiji East Japan Whaling Es-Bank 1991 F Y 
 

Y 
135.94924 33.593924 EW01199 Taiji East Japan Whaling Es-Bank 1991 M Y 

 
Y 

135.94924 33.593924 EW01200 Taiji East Japan Whaling Es-Bank 1991 F Y 
 

Y 
135.94924 33.593924 EW01201 Taiji East Japan Whaling Es-Bank 1991 F Y 

 
Y 

135.94924 33.593924 EW01202 Taiji East Japan Whaling Es-Bank 1991 F Y 
 

Y 
135.94924 33.593924 EW01204 Taiji East Japan Whaling Es-Bank 1991 F Y 

 
Y 

135.94924 33.593924 EW01205 Taiji East Japan Whaling Es-Bank 1991 M Y N/A N 
135.94924 33.593924 EW01206 Taiji East Japan Whaling Es-Bank 1991 M Y 

 
Y 

135.94924 33.593924 EW01207 Taiji East Japan Whaling Es-Bank 1991 F Y 
 

Y 
135.94924 33.593924 EW01208 Taiji East Japan Whaling Es-Bank 1991 F Y N/A N 
135.94924 33.593924 EW01209 Taiji East Japan Whaling Es-Bank 1991 F Y N/A N 
135.94924 33.593924 EW01210 Taiji East Japan Whaling Es-Bank 1991 M Y 

 
Y 

135.94924 33.593924 EW01211 Taiji East Japan Whaling Es-Bank 1991 F Y 
 

Y 
135.94924 33.593924 EW01212 Taiji East Japan Whaling Es-Bank 1991 F Y 

 
Y 

135.94924 33.593924 EW01213 Taiji East Japan Whaling Es-Bank 1991 F Y 
 

Y 
135.94924 33.593924 EW01214 Taiji East Japan Whaling Es-Bank 1991 M Y 

 
Y 

135.94924 33.593924 EW01215 Taiji East Japan Whaling Es-Bank 1991 M Y 
 

Y 
135.94924 33.593924 EW01216 Taiji East Japan Whaling Es-Bank 1991 F Y N/A N 
135.94924 33.593924 EW01217 Taiji East Japan Whaling Es-Bank 1991 F Y 

 
Y 
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135.94924 33.593924 EW01218 Taiji East Japan Whaling Es-Bank 1991 F Y N/A N 
135.94924 33.593924 EW01219 Taiji East Japan Whaling Es-Bank 1991 F Y 

 
Y 

135.94924 33.593924 EW01220 Taiji East Japan Whaling Es-Bank 1991 F Y 
 

Y 
135.94924 33.593924 EW01221 Taiji East Japan Whaling Es-Bank 1991 M Y 

 
Y 

135.94924 33.593924 EW01222 Taiji East Japan Whaling Es-Bank 1991 F Y 
 

Y 
135.94924 33.593924 EW01223 Taiji East Japan Whaling Es-Bank 1991 F Y 

 
Y 

135.94924 33.593924 EW01224 Taiji East Japan Whaling Es-Bank 1991 F Y 
 

Y 
135.94924 33.593924 EW01225 Taiji East Japan Whaling Es-Bank 1991 M Y N/A N 
135.94924 33.593924 EW01226 Taiji East Japan Whaling Es-Bank 1991 M Y 

 
Y 

135.94924 33.593924 EW01227 Taiji East Japan Whaling Es-Bank 1991 F Y N/A N 
135.94924 33.593924 EW01228 Taiji East Japan Whaling Es-Bank 1991 F Y 

 
Y 

135.94924 33.593924 EW01229 Taiji East Japan Whaling Es-Bank 1991 F Y N/A N 
135.94924 33.593924 EW01231 Taiji East Japan Whaling Es-Bank 1991 F Y 

 
Y 

135.94924 33.593924 EW01232 Taiji East Japan Whaling Es-Bank 1991 F Y N/A N 
135.94924 33.593924 EW01233 Taiji East Japan Whaling Es-Bank 1991 M Y 

 
Y 

135.94924 33.593924 EW01235 Taiji East Japan Whaling Es-Bank 1991 F Y N/A N 
135.94924 33.593924 EW01237 Taiji East Japan Whaling Es-Bank 1991 M Y N/A N 
135.94924 33.593924 EW01238 Taiji East Japan Whaling Es-Bank 1991 F Y N/A N 
135.94924 33.593924 EW01239 Taiji East Japan Whaling Es-Bank 1991 F Y 

 
Y 

135.94924 33.593924 EW01240 Taiji East Japan Whaling Es-Bank 1991 M Y 
 

Y 
135.94924 33.593924 EW01241 Taiji East Japan Whaling Es-Bank 1991 F Y 

 
Y 

135.94924 33.593924 EW01242 Taiji East Japan Whaling Es-Bank 1991 F Y N/A N 
135.94924 33.593924 EW01243 Taiji East Japan Whaling Es-Bank 1991 M Y 

 
Y 

135.94924 33.593924 EW01244 Taiji East Japan Whaling Es-Bank 1991 F Y 
 

Y 
135.94924 33.593924 EW01245 Taiji East Japan Whaling Es-Bank 1991 M Y N/A N 
135.94924 33.593924 EW01246 Taiji East Japan Whaling Es-Bank 1991 M Y N/A N 
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135.94924 33.593924 EW01247 Taiji East Japan Whaling Es-Bank 1991 M Y 
 

Y 
135.94924 33.593924 EW01249 Taiji East Japan Whaling Es-Bank 1991 M Y 

 
Y 

135.94924 33.593924 EW01250 Taiji East Japan Whaling Es-Bank 1991 F Y N/A N 
135.94924 33.593924 EW01251 Taiji East Japan Whaling Es-Bank 1991 F Y N/A N 
135.94924 33.593924 EW01252 Taiji East Japan Whaling Es-Bank 1991 F Y 

 
Y 

135.94924 33.593924 EW01253 Taiji East Japan Whaling Es-Bank 1991 F Y N/A N 
135.94924 33.593924 EW01254 Taiji East Japan Whaling Es-Bank 1991 M Y 

 
Y 

135.94924 33.593924 EW01255 Taiji East Japan Whaling Es-Bank 1991 F Y N/A N 
135.94924 33.593924 EW01256 Taiji East Japan Whaling Es-Bank 1991 F Y 

 
Y 

135.94924 33.593924 EW01257 Taiji East Japan Whaling Es-Bank 1991 F Y 
 

Y 
135.94924 33.593924 EW01258 Taiji East Japan Whaling Es-Bank 1991 M Y 

 
Y 

135.94924 33.593924 EW01259 Taiji East Japan Whaling Es-Bank 1991 M Y N/A N 
135.94924 33.593924 EW01260 Taiji East Japan Whaling Es-Bank 1991 F Y 

 
Y 

135.94924 33.593924 EW01261 Taiji East Japan Whaling Es-Bank 1991 M Y 
 

Y 
135.94924 33.593924 EW01262 Taiji East Japan Whaling Es-Bank 1991 M Y 

 
Y 

135.94924 33.593924 EW01264 Taiji East Japan Whaling Es-Bank 1991 F Y 
 

Y 
135.94924 33.593924 EW04585 Taiji East Japan Whaling Es-Bank 1991 F Y N/A N 
135.94924 33.593924 EW05119 Taiji East Japan Whaling Es-Bank 1991 F Y 

 
Y 

135.94924 33.593924 EW05120 Taiji East Japan Whaling Es-Bank 1991 M Y N/A N 
121.128044 22.719825 GGDU02 Taitung Taiwan Stranding NTU 2012 M Y N/A Y 
120.924892 22.350892 GGDU03 Pingdong Taiwan Stranding NTU 2012 M Y N/A Y 
121.53223 23.483738 GGDU04 Hualien Taiwan Fishery NTU 2000 M Y N/A Y 
121.53223 23.483738 GGDU05 Hualien Taiwan Fishery NTU 2000 M Y N/A Y 
121.53223 23.483738 GGDU06 Hualien Taiwan Fishery NTU 1998 M Y N/A Y 

121.550911 23.699333 GGDU07 Hualien Taiwan Stranding NTU 2013 F Y N/A Y 
121.53223 23.483738 GGDU08 Hualien Taiwan Fishery NTU 2012 F Y N/A Y 



	 157	

Longitude Latitude ID Location Population 
Sample 
source Contributor Year Sex MS mtDNA 

Used in 
analyses? 

121.53223 23.483738 GGDU09 Hualien Taiwan Fishery NTU 1998 M Y N/A Y 
137.0543661 37.20941127 10Gg016 Ishikawa Sea of Japan Stranding NMST 2004 M N/A Hap_33 Y 
137.4180917 36.91797894 10Gg017 Toyama Sea of Japan Stranding NMST 2004 M N/A Hap_34 Y 
137.1943032 37.29797056 10Gg033 Ishikawa Sea of Japan Stranding NMST 2009 M N/A Hap_39 Y 
137.115853 37.241361 10Gg084 Ishikawa Sea of Japan Stranding NMST 2003 U N/A Hap_33 Y 
131.061389 34.356389 10Gg089 Yamaguchi Sea of Japan Stranding NMST 2003 U N/A Hap_33 Y 

136.9166853 37.22689669 10Gg004 Ishikawa Sea of Japan Stranding NMST 2001 F Y Hap_1 Y 
130.692624 33.93715414 10Gg006 Fukuoka Sea of Japan Stranding NMST 2001 F Y Hap_28 Y 
137.357679 37.4645313 10Gg007 Ishikawa Sea of Japan Stranding NMST 2004 F Y Hap_18 Y 

130.9067934 34.06370436 10Gg018 Yamaguchi Sea of Japan Stranding NMST 2004 F Y Hap_33 N 
139.8541862 39.03329647 10Gg019 Yamagata Sea of Japan Stranding NMST 2004 M Y Hap_34 Y 
140.060244 39.70010499 10Gg020 Akita Sea of Japan Stranding NMST 2006 M Y Hap_15 Y 

136.9966007 36.84738986 10Gg024 Toyama Sea of Japan Stranding NMST 2007 M Y Hap_33 Y 
138.1962892 37.17030215 10Gg025 Niigata Sea of Japan Stranding NMST 2008 F Y Hap_33 Y 
137.2972602 37.44207359 10Gg027 Ishikawa Sea of Japan Stranding NMST 2008 M Y Hap_18 Y 
136.1622669 36.25055217 10Gg031 Fukui Sea of Japan Stranding NMST 2009 U Y Hap_3 Y 
136.7609877 36.92165495 10Gg034 Ishikawa Sea of Japan Stranding NMST 2009 M Y Hap_15 Y 
134.0215109 35.52069508 10Gg035 Tottori Sea of Japan Stranding NMST 2010 M Y Hap_19 Y 
130.7599564 33.92361871 10Gg100 Fukuoka Sea of Japan Stranding NMST 2003 F Y Hap_33 Y 

123 15 10Gg096 Philippines Philippines Unknown Es-Bank 1996 F N/A Hap_53 Y 
123 15 PH2668 Philippines Philippines Fishery SWFSC 1992 M Y N/A Y 
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Appendix 2.2. 
 

Locus Null 
alleles 

No. 
alleles 

Allele 
richness FIS HO HE P-value s.d. Null 

alleles 
No. 
alleles 

Allele 
richness FIS HO HE P-value s.d. 

Pop Taiwan East Japan 
n 49 72 
AAT44  4 1.242 -0.096 0.265 0.242 1 0  4 1.242 -0.093 0.264 0.242 1 0 
D14  13 1.839 0.076 0.776 0.839 0.078 0  12 1.862 -0.064 0.917 0.862 0.82 0 
D22  10 1.854 0.117 0.755 0.854 0.006 0  12 1.865 0.086 0.792 0.865 0.137 0 
Dde59  14 1.911 -0.008 0.918 0.911 0.296 0 Y 13 1.873 0.174 0.722 0.873 0.002 0 
Dde65  7 1.726 0.045 0.694 0.726 0.292 0  6 1.738 0.041 0.708 0.738 0.224 0 
Dde66  12 1.716 0.088 0.653 0.716 0.196 0  11 1.745 -0.025 0.764 0.745 0.293 0 
Dde69  15 1.882 0.006 0.878 0.882 0.016 0  9 1.834 0.017 0.819 0.834 0.331 0 
Dde70  12 1.815 0.024 0.796 0.815 0.643 0  13 1.753 0.078 0.694 0.753 0.324 0 
Dde72  20 1.934 0.017 0.918 0.934 0.2 0  23 1.905 -0.012 0.917 0.906 0.136 0 
Dde84  8 1.7 -0.012 0.708 0.7 0.892 0  9 1.684 0.087 0.625 0.684 0.491 0 
EV14* Y 16 1.858 0.42 0.5 0.858 0 0 Y 12 1.802 0.43 0.458 0.802 0 0 
EV37  10 1.801 0.007 0.796 0.801 0.378 0  9 1.745 0.055 0.704 0.745 0.685 0 
KWM12a  17 1.885 -0.036 0.917 0.885 0.178 0  17 1.9 0.044 0.861 0.9 0.273 0 
KWM1b*  1 1 NA NA NA NA NA  1 1 NA NA NA NA NA 
KWM2b  6 1.702 0.099 0.633 0.702 0.351 0.001  6 1.687 0.132 0.597 0.687 0.567 0 
KWM9b  7 1.703 0.101 0.633 0.703 0.642 0  11 1.788 0.048 0.75 0.788 0.021 0 
MK3  6 1.804 0.01 0.796 0.804 0.436 0.001  7 1.799 -0.008 0.806 0.799 0.718 0 
MK5  12 1.647 0.118 0.571 0.647 0.074 0  10 1.653 -0.064 0.694 0.653 0.442 0.001 
Sco28  3 1.117 -0.045 0.122 0.117 1 0  3 1.094 0.263 0.069 0.094 0.143 0 
TexVet7*  1 1 NA NA NA NA NA  1 1 NA NA NA NA NA 
Sco11  7 1.812 0.046 0.776 0.812 0.586 0.001  7 1.812 -0.009 0.819 0.812 0.925 0 
Sco55  4 1.423 -0.11 0.469 0.423 0.963 0  4 1.408 0.013 0.403 0.408 0.24 0 
Mean  9.842  0.056 0.688 0.711     9.789 0.057 0.68 0.705   S.D.  4.682   0.213 0.222     4.826  0.219 0.222   

(Continues) 
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Locus Null 
alleles 

No. 
alleles 

Allele 
richness FIS HO HE P-value s.d. Null 

alleles 
No. 
alleles 

Allele 
richness FIS HO HE P-value s.d. 

Pop Sea of Japan Central North Pacific 
n 12 7 
AAT44  4 1.308 -0.086 0.333 0.308 1 0  2 1.264 -0.091 0.286 0.264 1 0 
D14  7 1.841 -0.2 1 0.841 0.568 0  8 1.868 0.014 0.857 0.868 0.856 0 
D22  7 1.822 -0.12 0.917 0.822 0.521 0  4 1.747 0.25 0.571 0.747 0.228 0 
Dde59  10 1.88 -0.043 0.917 0.88 0.337 0  7 1.846 -0.014 0.857 0.846 0.552 0 
Dde65  5 1.659 0.379 0.417 0.659 0.14 0  3 1.714 0.213 0.571 0.714 1 0 
Dde66  8 1.862 -0.168 1 0.862 0.97 0  5 1.802 0.304 0.571 0.802 0.204 0 
Dde69  7 1.844 -0.09 0.917 0.844 0.78 0  5 1.769 0.077 0.714 0.769 0.712 0 
Dde70  6 1.703 0.054 0.667 0.703 0.525 0.001  5 1.659 -0.091 0.714 0.659 0.851 0 
Dde72  9 1.899 -0.021 0.917 0.899 0.779 0  9 1.934 0.089 0.857 0.934 0.505 0 
Dde84  4 1.533 -0.1 0.583 0.533 1 0  6 1.747 0.048 0.714 0.747 0.294 0 
EV14*  6 1.699 0.294 0.5 0.699 0.078 0  4 1.648 0.357 0.429 0.648 0.067 0 
EV37  7 1.761 0.015 0.75 0.761 0.855 0  3 1.67 0.158 0.571 0.67 0.778 0 
KWM12a  11 1.899 0.076 0.833 0.899 0.153 0  9 1.912 -0.105 1 0.912 1 0 
KWM1b*  1 1 NA NA NA NA NA  1 1 NA NA NA NA NA 
KWM2b  4 1.63 0.349 0.417 0.63 0.225 0  3 1.67 -0.071 0.714 0.67 0.776 0 
KWM9b  5 1.757 0.01 0.75 0.757 0.818 0  6 1.857 0 0.857 0.857 0.935 0 
MK3  5 1.754 -0.111 0.833 0.754 0.97 0  7 1.89 -0.135 1 0.89 1 0 
MK5  5 1.54 0.077 0.5 0.54 0.137 0  6 1.802 0.118 0.714 0.802 0.424 0 
Sco28  3 1.163 -0.023 0.167 0.163 1 0  1 1 NA NA NA NA NA 
TexVet7*  1 1 NA NA NA NA NA  1 1 NA NA NA NA NA 
Sco11  5 1.83 0.1 0.75 0.83 0.7 0  6 1.857 0.178 0.714 0.857 0.201 0 
Sco55  4 1.572 -0.02 0.583 0.572 0.84 0  2 1.363 0.625 0.143 0.363 0.23 0 
Mean   6.105 0.015 0.697 0.698    5.333  0.089 0.69 0.743   S.D.   2.208  0.243 0.203    2.196   0.221 0.178   

(Continues) 
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Locus Null 
alleles 

No. 
alleles 

Allele 
richness FIS HO HE P-value s.d. Null 

alleles 
No. 
alleles 

Allele 
richness FIS HO HE P-value s.d. 

Pop Eastern Tropical Pacific Oregon-California Coastal 
n 22 73 
AAT44  3 1.21 -0.082 0.227 0.21 1 0  3 1.344 -0.076 0.37 0.344 0.122 0 
D14  9 1.851 -0.07 0.909 0.851 0.85 0  12 1.824 0.022 0.806 0.824 0.285 0 
D22  7 1.837 0.134 0.727 0.837 0.602 0  10 1.833 0.104 0.746 0.833 0.035 0 
Dde59  11 1.873 0.17 0.727 0.873 0.032 0  16 1.842 0.09 0.767 0.842 0.22 0 
Dde65  5 1.667 0.186 0.545 0.667 0.018 0  6 1.755 0.039 0.726 0.755 0.498 0.001 
Dde66  10 1.834 0.075 0.773 0.834 0.146 0  9 1.785 0.111 0.699 0.785 0.586 0 
Dde69  9 1.841 0.083 0.773 0.841 0.374 0  9 1.809 0.007 0.803 0.809 0.806 0 
Dde70  11 1.823 0.063 0.773 0.823 0.292 0  13 1.742 0.04 0.712 0.742 0.214 0 
Dde72  18 1.933 -0.023 0.955 0.933 0.981 0  20 1.9 -0.035 0.932 0.9 0.835 0 
Dde84  6 1.742 -0.232 0.909 0.742 0.651 0  8 1.721 0.108 0.644 0.721 0.057 0 
EV14* Y 9 1.815 0.516 0.4 0.815 0 0 Y 14 1.896 0.452 0.493 0.896 0 0 
EV37  10 1.813 0.164 0.682 0.813 0.229 0  8 1.755 -0.049 0.792 0.755 0.065 0 
KWM12a  14 1.904 -0.006 0.909 0.904 0.664 0  15 1.895 0.059 0.843 0.895 0.284 0 
KWM1b*  1 1 NA NA NA NA NA  1 1 NA NA NA NA NA 
KWM2b  5 1.7 0.093 0.636 0.7 0.812 0  5 1.587 0.184 0.479 0.587 0.019 0 
KWM9b  8 1.83 0.014 0.818 0.83 0.665 0  12 1.823 0.001 0.822 0.823 0.605 0 
MK3  8 1.82 -0.054 0.864 0.82 0.785 0  9 1.828 -0.006 0.833 0.828 0.54 0.001 
MK5  8 1.633 -0.079 0.682 0.633 0.912 0  9 1.693 -0.028 0.712 0.693 0.869 0 
Sco28  1 1 NA NA NA NA NA  2 1.014 0 0.014 0.014 1 0 
TexVet7*  1 1 NA NA NA NA NA  1 1 NA NA NA NA NA 
Sco11  5 1.78 -0.11 0.864 0.78 0.568 0  8 1.795 0.035 0.767 0.795 0.053 0 
Sco55  4 1.215 -0.061 0.227 0.215 1 0  4 1.18 -0.067 0.192 0.18 1 0 
Mean  8.389  0.052 0.722 0.739    9.368  0.062 0.666 0.691   S.D.  3.712   0.21 0.207    4.573   0.238 0.245   
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Appendix 2.3. 
 
	 Variation	site	
Haplotype 
ID 1 21 25 32 34 37 52 58 69 70 95 107 117 136 147 150 151 153 166 167 171 176 185 190 192 195 196 197 

Hap_1 G A T T C T G G T T A C T T C G C C C A T C T T G T C C 

Hap_2 . . . . T C . A . . . T . . . . . . T . . . . . . C T . 

Hap_3 . . . . . . . . . . . . . . . . . . . . . . . . . . T . 

Hap_4 . . . . . . . . . . . . . . . . . . T . . . C . A . . . 

Hap_5 . . . . . . . . . . . . . . . . . . T . . . . . A . . . 

Hap_6 . . . . . . . . . . G T C . . . . . T . C T . . A . . . 

Hap_7 . . . . . . . . . . . T C . T . . . T . C . . . A . T . 

Hap_8 . . . . . . . . . . . . . . . . . T T . . . . . A . T . 

Hap_9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_11 . . . . . . . . . . G T C . . . . . T . C . . . A . . . 

Hap_12 . . . . . . . . C . . T . . . . . . T . . . . . A . . . 

Hap_13 . . . C . . . . . . G T C . . . . . T . C T . . A . T . 

Hap_14 . . . . . . . . . . . . . . . . . . T . . . . . . . . . 

Hap_15 . . . . . . . . . . . . . C . . . . T . . . . . A . T . 

Hap_16 . . . . . . . . . . . . . . T . . . T . C . . . A . T . 

Hap_17 . . . . . . . . . . . . . C . . . . T . . . . . A . T . 

Hap_18 . . . . . . . . . . . . . . . . . . T . . . . . A . T . 

Hap_19 . . . C . . . . . . G T C . . . . . T . . T . . A . T . 

Hap_20 . . . . . . . . . . . . . . . . . . . . C . . . . . . . 

Hap_21 . . . . . . . . . . G T C . . . . . T . C T . . A . T . 

Hap_22 . . . C . . . . . . G T C . . . . . T . C T . . A . T . 

Hap_23 . . . . . . A . . . . . . . . . . . T G C . C . A . T . 
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	 Variation	site	
Haplotype 
ID 1 21 25 32 34 37 52 58 69 70 95 107 117 136 147 150 151 153 166 167 171 176 185 190 192 195 196 197 

Hap_24 . . . . . . . . . . . . . . . . . . T . . . . . A . . . 

Hap_25 . . . . . . . . . . . . . . . . . . T G C . . . A . . . 

Hap_26 . . . . . . . . . . . T . . . . . . T . . . . . A . T . 

Hap_27 . . . . . . . . . . . . . . . . . . T . . . . . A . T . 

Hap_28 . . . . . . . A . . . . . C . . . . T G C . . . A . T . 

Hap_29 . . . . . . . . . . . . . C T . . . T G C . . . A . T . 

Hap_30 . . . . . . . . . . . . . C . . . . T G C . . . A . T . 

Hap_31 . . . . . . . . . . . . . . . . . . . . C . . . . . . . 

Hap_32 . . . . . . . . . . . . . C . . . . T . . . . . A . T . 

Hap_33 . . . . . . . . . . . . . . . . . . . . . . . . . . T . 

Hap_34 . . . . . . . . . . . . . . . . . . T G C . . . A . T . 

Hap_35 . . . . . . . . . . . T . . . . . . T . . . . . A . . . 

Hap_36 . . . . . . A . . . . . . . . . . . T G C . . . A . T . 

Hap_37 . . . . . . . . . . . . . . . . . . T . . . . . A . T . 

Hap_38 . . . . . . . . . . . T . . . . . . . G C T . . . . T . 

Hap_39 . . . . . . . . . . . . . . . . . . . . . . . C . . T . 

Hap_40 . . . . . . . . . . . . . . . . . T T . C . . . A . T . 

Hap_41 . . . . . . . . . C . . . . . . . . T . . . . . A . T . 

Hap_42 . . . . . . . . . . . . . C . . . . T G C . . . A . T . 

Hap_43 . . . . . . . . . . . . . . . . . . . . C . . . . . T . 

Hap_44 . . . . . . . . . . . . . . . . . . . . . . . C . . T . 

Hap_45 . . . . . . . . . . . . . C . . . . T G C . . . A . T . 

Hap_46 . . . . . . . . . . G . C . . . . . T . . . . . A . . . 

Hap_47 . . . . . . . . . . . . . C . . . . T G C . . . A . T . 

Hap_48 . . . . . . . . . . . T . . . . . . T . . . . . A . T . 
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	 Variation	site	
Haplotype 
ID 1 21 25 32 34 37 52 58 69 70 95 107 117 136 147 150 151 153 166 167 171 176 185 190 192 195 196 197 

Hap_49 . . . . . . . . . . . . . C T . T . T G C . . . A . . . 

Hap_50 . . . . T . . . . . . . . C . . . . . . C . . . . C T . 

Hap_51 . . . . . . . . . . . . . . . . . . T . . . . . A . T . 

Hap_52 . . . . . . . . . . . . . . . . . . T G C . . . A . T . 

Hap_53 . . . . . . . . . . . . . . T . . . T . C . . . A . T . 

Hap_54 . . . . . . . . . . . . . . . . . . T . . . . . A . T . 

Hap_55 . . . . . . . . . . . . . . . . . . T . . . . . A . T . 

Hap_56 . . . . . . . . . . . . . . . A . . T G C . . . A . T . 

Hap_57 . . . . . . . . . . . . . . . . . . T . . . . . . . T . 

Hap_58 . . . . . . . . . . . . . C . . . . T G C . . . A C T . 

Hap_59 . . . . . . . . . . . T . . . A . . T G C . . . A . . . 

Hap_60 . . C . . . . . . . . . . C . A . . T G C . . . A . T . 

Hap_61 . . . . . . . . . . . . . . . . . . T G C . . . A C T . 

Hap_62 . . . . . . . . . . . . . . . . . . T . . . . . A . T . 

Hap_63 . . . . . . . . . . . . . C . A . . T G C . . . A . T . 

Hap_64 . . . . . . . . . . . . . . . . . . T . . . . . A . T . 

Hap_65 . . . . . . . . . . . T . . T . . . T . . . . . A . T . 

Hap_66 . . . . . . . . . . . . . . . . . . T G C . . . A C T . 

Hap_67 . . . . . . . . . . . . . . . . . . T . . . . . A . T . 

Hap_68 . . . . . . . . . . . T . . . . . . T G C . . . A C T . 

Hap_69 . . . . . . A . . . . T . . . . . . T G . . . . A . . . 

Hap_70 . . . . . . A . . . . T . . . . . . T G C . . . A . . . 

Hap_71 . . . . . . A . . . . T . . . . . . T G . . . . A . . . 

Hap_72 . G . . . . . . . . . . . . T . T . T G C . . . A . T . 

Hap_73 . . . . . . . . . . . . . C . . . . T . C . . . A . T . 
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	 Variation	site	
Haplotype 
ID 1 21 25 32 34 37 52 58 69 70 95 107 117 136 147 150 151 153 166 167 171 176 185 190 192 195 196 197 

Hap_74 . . . . . . . . . . . . . C . . . . T . . . . . A . T . 

Hap_75 . . . . . . . . . . . . . C . . . . . G C . . . A C T . 

Hap_76 . . . . . . . . . . . T . . . . . . T . . . . . . . . . 

Hap_77 . . . . . . . . . . . . . C . . . . T . . . . . A . . T 

Hap_78 . . . . . . A . . . . T . . . . . . T G . . . . A . T . 

Hap_79 . . . . . . A . . . . . . . . . . . T G C . . . A . . . 

Hap_80 . . . . . . A . . . . . . . . . . . T G . . . . A . T . 

Hap_81 . . . . . . . . . . . T . . T . . . T . . . . . A . T . 

Hap_82 A . . . . . . . . . . T . . . . . . T . . . . . . . . . 

Hap_83 . . . . . . A . . . . T . C . . . . T G . . . . A . T . 

Hap_84 . . . . . . . . . . . T . C . . . . T G C . . . A C . . 

Hap_85 . . . . . . . . . . . . . C . . . . T . . . . . A . . T 

(Continues)	
	
	 	



	 165	

	 Variable	site	
Haplotype 
ID 202 209 212 214 218 220 228 229 261 294 295 296 297 313 314 315 356 357 359 360 361 397 399 406 408 420 429 442 

Hap_1 G A A C T A A G C A C C C T A G C T G T C C C C C G C G 

Hap_2 . . . T . . . A . . T . T . . . . C . . . . . . . . T . 

Hap_3 . . . . . . . . . . . . . . . . . . . . . . . . . . T . 

Hap_4 . . . T . . . . T . T . . . . . . . . . . . . . . . T . 

Hap_5 . . . T . . . . T . T . . . . . . C . . . . . . . . T . 

Hap_6 . . . T . . . . T . . . T . . . T . A . T . . . . . T . 

Hap_7 . . . T . . . . T . . . . . . . . . . . . . . . . . T . 

Hap_8 . . . T . . . . T . . T . . . . . . . . . . . . T . T . 

Hap_9 . . . . . . . . . . . . . . . . . C . . . . . . . . . . 

Hap_10 . . . . . . . . . . . . . . . . . . . . . . . . . . T . 

Hap_11 . . . T . . . . T . T . T . . . T . A . T . . . . . T . 

Hap_12 . . . T . . G A T . . T . . . . . . . . . . . . . . T . 

Hap_13 . . . T . . . . T . . . T . . . T . A C T . . . . . T . 

Hap_14 . . . T . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_15 . . . T . . . . T . . . T . . . . C . . . . . . . . T . 

Hap_16 . . . T . . . . T . . T . . . A . . . . . . . . . . T . 

Hap_17 . . . T . . . . T . T . T . . . . C . . . . . . . . T . 

Hap_18 . . . T . . . . T . . T . C . . T . A . . . . . . . T . 

Hap_19 . . . T . . . . T . . . T . . . T . A . T . . . . . T . 

Hap_20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_21 . . G T . . . . T . . . T . . . T . A . T . . . . . T . 

Hap_22 . . . T . . . . T . . . T . . . T . A . T . . . . . T . 

Hap_23 . . . T . . . . T . . . . . . . . . . . . . . . . . T . 

Hap_24 . . . T . . G A T . . . . . . . . . . . . . . . . . T . 

Hap_25 . . . T . . G A T . . . . . . . . . . . . . . . . . T . 

Hap_26 . G . T . . . . T . . . . . . . T . . . . . . . T . T . 
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	 Variable	site	
Haplotype 
ID 202 209 212 214 218 220 228 229 261 294 295 296 297 313 314 315 356 357 359 360 361 397 399 406 408 420 429 442 

Hap_27 . . . T . . . . T . . . . . . . T . A . . . . . . . T . 

Hap_28 . . . T . . . A T . . . . C . . . . . . . . . . . . T . 

Hap_29 . . . T . . . A T . . . T . . . . . . . . . . T . . T . 

Hap_30 . . . T . . . A T . . . . C . . . . . . . . . . . . T . 

Hap_31 . . . . . . . . . . . . . . . . . . . . . . . . . . T . 

Hap_32 . . . T . . . . T . T . T . . . T C . . . . . . . . T . 

Hap_33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_34 . . . T . . . A T . . . . C . . . . . . . . . . . . T . 

Hap_35 . G . T . . . . T . . . . . . . T . . . . . . . . . T . 

Hap_36 . . . T . . . . T . T . . . . . . . . . . . . . . . T . 

Hap_37 . . . T . . . . T . . . . . . . . C . . . . . . T . T . 

Hap_38 . . . . . . . . . . T . . C . . T . . . . . . . . . . . 

Hap_39 . . . . . . . . . . . . . . . . . . . . . . . . . . T . 

Hap_40 . . . T . . . . T . . T T . . . . . . . . . . . T . T . 

Hap_41 . . . T . . . . T . . . . . . . T . . . . . . . . . T . 

Hap_42 . . . T . . . A T . . . . . . . . . . . . . . . . . T . 

Hap_43 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap_45 . . . T . . . A T . . . T C . . . . . . . . . . . . T . 

Hap_46 . . . T . . . . T . T . T . . . T . A . T . . . . . T . 

Hap_47 . . . T . . . A T . . . . C . . . . . . . . . . . C T . 

Hap_48 . G . T . . . . T . . . . . . . T . . . . . . . . . T . 

Hap_49 . . . T . . . A T . . . . . . . . . . . . . . . . . T . 

Hap_50 . . . T C . . . . . . . . C . . . . . . . . . . . . T . 

Hap_51 . . . T . . . . T . . . . . . . T . . . . . . . . . T . 

Hap_52 . . . T . . . A T . . . . . . . . . . . . . . . . . T . 
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	 Variable	site	
Haplotype 
ID 202 209 212 214 218 220 228 229 261 294 295 296 297 313 314 315 356 357 359 360 361 397 399 406 408 420 429 442 

Hap_53 . . . T . . . . T G . . . . . . . . . . . . . . T . T . 

Hap_54 . . . T . . . . T . . T . C . . T . A . . . . . . . T A 

Hap_55 . . . T . . . . T . . T . C G . T . A . . . . . . . T . 

Hap_56 . . . T . G . . T . . . . . . . . . . . . . . . . . T . 

Hap_57 . . . T . . . . . . . . T C G . . . . . . . . . . . . . 

Hap_58 . . . T . . . . T . . . . . . . . . . . . . . . . . T . 

Hap_59 . . . T . . . A T . . . T . . . . . . . . . . . . . T . 

Hap_60 . . . T . G . . T . . . . . . . . . . . . . . . . . T . 

Hap_61 . . . T . . . . T . . . . . . . . . . . . . . . . . T . 

Hap_62 . . . T . . . . T . . . . C . . T . A . . . T . . . T . 

Hap_63 . . . T . G . . T . . . . C . . . . . . . . . . . . T . 

Hap_64 . . . T . . . . T . . . . C . . T . A . . . . . . . T . 

Hap_65 A . . T . . . . T . T . T . . . . . . . . . . . T . . . 

Hap_66 . . . T . . . . T . . T . . . . . . . . . . . . . . T . 

Hap_67 . . . T . . . . T . . . T . . . . C . . . . . . T . T . 

Hap_68 . . . T . . . . T . . . . . . . . . . . . . . . T . T . 

Hap_69 . . . T . . . . T . . . T . . . . C . . . T . . . . T . 

Hap_70 . . . T . . . . T . . . T . . . . C . . . . . . . . T . 

Hap_71 . . . T . . . . T . . . T . . . . C . . . . . . . . T . 

Hap_72 . . . T . . . A T . . . . . . . . . . . . . . . . . T . 

Hap_73 . . . T . . . . T . . . T . . . . . . . . . . . . . T . 

Hap_74 C . . T . . . . T . T . T . . . . C . . . . . . . . T . 

Hap_75 . . . T . . . . T . . . . . . . . . . . . . . . . . T . 

Hap_76 . . . T . . . . . . . T . . . . . C . . . . . . . . T . 

Hap_77 . . . T . . . . T . T . T . . . . C . . . . . . . . T . 

Hap_78 . . . T . . . . T . . . T . . . . . . . . . . . . . T . 
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	 Variable	site	
Haplotype 
ID 202 209 212 214 218 220 228 229 261 294 295 296 297 313 314 315 356 357 359 360 361 397 399 406 408 420 429 442 

Hap_79 . . . T . . . . T . . . . . . . . . . . . . . . . . T . 

Hap_80 . . . T . . . . T . . . T . . . . . . . . . . . . . T . 

Hap_81 . . . T . . . . T . T . T . . . . . . . . . . . T . . . 

Hap_82 . . . T . . . . . . . T . C . . . C . . . . . . . . T . 

Hap_83 . . . T . . . . T . . . T . . . . . . . . . . . T . T . 

Hap_84 . . . T . . . . T . . . . . . . . . . . . . . . . . T . 

Hap_85 . . . T . . . . T . T . . . . . . C . . . . . . . . T . 

	



  

Chapter	3.		 The	population	structure	of	Fraser’s	dolphins	

(Lagenodelphis	hosei)	in	the	North	Pacific	Ocean,	Gulf	of	

Mexico	and	Caribbean	Sea	

 

Abstract	

The existence of any living Fraser’s dolphin (Lagenodelphis hosei) was uncertain until 

the early 1970s. Its late discovery means that this tropical species is one of the least 

well-studied delphinids in the world. The increasing acquaintance of this tropical 

species in the waters of higher latitude in recent years suggests the species can 

potentially be regarded as a marine bio-indicator of climate change. Little is known 

about the population structure of Fraser’s dolphin in the world, although earlier 

morphological studies have identified geographic variation in this species. Here the 

study presents the first population genetic study for the Fraser’s dolphin species. In this 

study, the genetic data of 18 diploid microsatellite loci and one haploid mitochondrial 

DNA (mtDNA) locus from 112 Fraser’s dolphin samples were examined. The results of 

the factorial correspondence analysis (FCA), pairwise comparison of fixation indices 

(F-Statistics) and Geneland analysis suggested that there is subtle population structure 

in the western North Pacific Ocean. Small sample sizes from other regions provided 

preliminary data suggesting a need for further studies. For example, samples from the 
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Caribbean Sea formed a distinct cluster compared to all other samples in the dataset. 

The results of neutrality tests of Tajima’s D and Fu’s Fs and mismatch analysis based 

on mtDNA data indicated that the populations, in terms of the one found in Japanese 

waters, may have expanded have expanded spatially and demographically in the past, 

possibly during the last global deglaciation when the sea level and global temperature 

started to rise. The effective population size for the demographically stable population, 

the Philippine population, is at the same magnitude to the estimates of other coastal or 

riverine dolphin populations, suggesting that Fraser’s dolphin populations can be fragile 

under unregulated human disturbances. The unexpectedly high numbers of null alleles 

and inbreeding coefficient in the Taiwan population could be indicating a mixing 

population but warrants further research efforts. 

 

Keywords: Fraser’s dolphin, Lagenodelphis hosei, population genetics, microsatellite 

analysis, mtDNA control region analysis, North Pacific, conservation 

 

Introduction	

Investigating population structure is fundamental to understanding the ecology and 

evolution of a species. It is equally vital for stakeholders to evaluate the species’ 

sustainability and vulnerability under anthropogenic disturbances in a given area. 
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Assessing the population structure of cetaceans (whales, dolphins and porpoises) can be 

particularly challenging, because cetaceans are in general less accessible than most 

terrestrial animals. As a result, of the 87 cetacean species on the IUCN Red List, the 

species status of 45 (51.7%) is still classified as ‘Data Deficient’, and the population 

trends of 72 species (82.8%) remains unknown (IUCN 2014).  

 The Fraser’s dolphin (Lagenodelphis hosei) is one of the least studied dolphin 

species in the world. The species was not recognized until it was described by Fraser 

(1956) based on a skull specimen collected from Sarawak, Borneo in 1895. But it was 

not until the early 1970s that further reports of new specimens from the Eastern 

Tropical Pacific, South Africa, Australia, Taiwan and Japan, as well as sighting records 

of living individuals in the Eastern Tropical Pacific and Central Pacific, started to 

emerge (Perrin et al. 1973; Tobayama et al. 1973). In the succeeding decades further 

sighting, stranding and bycatch records from the regions of North and South Atlantic 

Ocean were reported (Caldwell et al. 1976; Hersh & Odell 1986; Leatherwood et al. 

1993; Bones et al. 1998; Moreno et al. 2003; Weir et al. 2008; Gomes-Pereira et al. 

2013), and today this small cetacean species is known to be widespread in pan-tropical 

regions of the Pacific, Atlantic and Indian Oceans (Jefferson et al. 2011; Hammond et 

al. 2012) (Fig. 3.1). 
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Figure 3.1. A map showing the distribution range of the Fraser’s dolphin in the 
world (in blue). By Alessio Marrucci en:User:Pcb21 (en:) [GFDL or CC-BY-SA-3.0], 
accessed via Wikimedia Commons.  

 

 The occurrence of Fraser’s dolphin is usually associated with tropical or 

subtropical climate and deeper waters (Jefferson et al. 2011). In the Tropical-North 

Pacific Ocean, the abundance of Fraser’s dolphin was estimated as 289,300 in the 

Eastern Tropical Pacific (Wade & Gerrodette 1993), about 13,500 in the eastern Sulu 

Sea, the Philippines (Dolar et al. 2006), and about 10,200 in Hawaiian waters (Barlow 

2006). This species is commonly encountered in Taiwanese waters (Yang et al. 1999; 

Chou 2006; Chen et al. 2011) where no reliable abundance estimate is available. 

Fraser’s dolphin is uncommon in Japanese waters; only a few had stranded along the 

southern or southeastern coasts of Japan, and a school of over 100 Fraser’s dolphins had 

been caught from Taiji in 1991 (Tobayama et al. 1973; Amano et al. 1996; Perrin et al. 

2003). In the North Atlantic Ocean, on the other hand, the records of Fraser’s dolphin 

(either from stranding or sighting) are rare and scattered. Sighting and stranding records 
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are mostly reported from the Gulf of Mexico and Caribbean Sea, but constant, yearly 

observation of this species has only been reported in the waters around the Lesser 

Antilles in the eastern edge of the Caribbean Sea (Gomes-Pereira et al. 2013). Würsig et 

al. (2000) suggest that Fraser’s dolphins are more common in the Gulf of Mexico than 

any other region in the North Atlantic Ocean, although the abundance might be as few 

as only 1,000 individuals. Mullin & Fulling (2004) used line-transect abundance survey 

data collected in 1996—1997 and 1999—2001 and estimated there were 726 Fraser’s 

dolphins in the northern Gulf of Mexico. 

 The awareness of geographic variation in Fraser’s dolphin emerges as further 

specimens from different regions are revealed and compared. Pigmentation is found to 

be different between the specimens collected from South Africa and the Eastern 

Tropical Pacific Ocean (Perrin et al. 1973). The dolphins inhabiting the Atlantic Ocean 

are suspected of having a larger body size than those living in the Pacific Ocean (Van 

Bree et al. 1986), although Amano et al. (1996) argued that the body size was 

comparable in the dolphins found in French and Japanese waters. Significant 

differences in skull morphometric measurements are found between specimens 

collected from the Philippines and Japan, and between specimens collected in the 

Pacific and Atlantic Oceans (Perrin et al. 2003). Furthermore, an analysis of social 

behaviour suggests that the pod size of Fraser’s dolphin in the Atlantic Ocean is in 

general smaller than those sighted in the Pacific Ocean (Gomes-Pereira et al. 2013). 
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However, poor sample availability limits those studies to conclude the dolphin’s 

population structure, and pigmentation, morphological differences and social 

behaviours can be plastic and may not always reflect patterns of gene flow (West-

Eberhard 1989; Crispo 2008; Prada et al. 2008). 

 Fraser’s dolphins are suffering impacts from anthropogenic activities, namely 

incidental catches from fisheries and small-scale whaling. Dolar (1994) reported that 

Fraser’s dolphin is frequently involved in the purse seine and driftnet fisheries in 

Palawan, central Visayas and northern Mindanao in the Philippines. Chou (2006) 

proposed Fraser’s dolphin to be one of the most incidentally caught cetacean species in 

Taiwanese fisheries. Jefferson & Leatherwood (1994) reported that there were 773 

dolphins killed in the tuna purse seines in the Eastern Tropical Pacific between 1971 

and 1977, and 125 between 1986 and 1989. Legal and illegal direct catches used to be 

carried out in the Philippines, Taiwan, Japan, Sri Lanka, the Lesser Antilles, Indonesia 

and South Africa occasionally (Jefferson & Leatherwood 1994; Perrin et al. 2005). 

Unfortunately, the severity of such human impacts remains undetermined, because the 

knowledge of the species’ population structure, population size, genetic connectivity, 

and ecological status is still insufficient.  

 The objective of this study was to use genetic techniques to investigate the 

population structure of Fraser’s dolphins in the North Pacific Ocean, Gulf of Mexico 

and Caribbean Sea with a focus on the regions around the Philippines, Taiwan and 
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Japan, where the conflict between the dolphins and human fisheries is perhaps the most 

intense in the world. Based on the finding of an earlier morphological study (Perrin et al. 

2003), the hypothesis to test in this study was that Fraser’s dolphin populations are 

genetically differentiated between the Pacific and Atlantic Oceans, with the potential for 

further regional differentiation between Japanese and Philippine waters.  

 

Material	and	Methods	

Sample	collection	

The samples used in this study were subsamples from the tissue archives in the 

Cetacean Laboratory at National Taiwan University (Taiwan), es-Bank at Ehime 

University (Japan), National Museum of Natural Science (Japan), and Southwest 

Fishery Science Center, National Oceanic and Atmospheric Administration (USA).  A 

total of 143 samples were acquired, representing dolphins inhabiting a range of 

localities in the North Pacific Ocean, Gulf of Mexico and Caribbean Sea.  These were 

categorized into seven geographic groups, namely, Japan, Taiwan, the Philippines, 

Central North Pacific, Eastern Tropical Pacific, Gulf of Mexico and Caribbean Sea (Fig. 

3.2, Appendix 3.1). All samples were collected from dead dolphins, either stranded or 

perished in fishery interactions. Except the samples from the Central North Pacific, 

those were biopsied from free-ranging dolphins. The species and sex identity was 
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acquired from the archive records where identification was based on the external 

morphological characters of the specimens and made by presumably knowledgeable 

researchers. When in doubt this was verified by the genetic assessments. Samples 

supplied by the Southwest Fishery Science Center were titrated DNA solutions; the 

others were provided as a small portion of skin or muscle tissue samples preserved in 

either 99% ethanol or 20% DMSO solution saturated with sodium chloride.   

 All specimens, except a set of 15 Philippine specimens archived in es-Bank, 

were transported to and examined in the Molecular Ecology Group laboratory in 

University of Durham, with valid official permits issued by the authorities of Japan, 

Taiwan, United States and United Kingdom. The 15 Philippine specimens archived in 

es-Bank were examined in the laboratory at Kyushu University, and due to the difficulty 

of calibrating microsatellite data generated from different laboratories (Delmotte et al. 

2001), these 15 samples were not included in the microsatellite analyses. 

 

 
Figure 3.2. Map of the sampling locations. The numbers in the parentheses indicate 
the sample number of microsatellite/mitochondrial DNA analysis.   



	 177	

DNA	extraction,	fragment	amplification	and	genotyping	

Genomic DNA of each sample (except those acquired from Southwest Fishery Science 

Center and the set of Philippine samples examined in Kyushu University) was isolated 

and purified by a standard proteinase-K digestion/phenol–chloroform extraction 

protocol (Sambrook et al. 1989). Samples acquired from Southwest Fishery Science 

Center, as well as those es-Bank Philippine samples examined in Kyushu University, 

were prepared using conventional commercialized DNA extraction kit (QIAGEN). 

 Twenty-four microsatellite and one mitochondrial DNA (mtDNA) markers were 

chosen for examination, as those loci have been used in earlier genetic studies for other 

delphinid species (e.g., Natoli et al. 2004; Gaspari et al. 2007; Mirimin et al. 2011). The 

procedure of amplifying and genotyping the microsatellite and mtDNA fragments 

through polymerase chain reaction (PCR) and Sanger sequencing method was as 

described in Chapter 2, and the details for the microsatellite DNA loci, including their 

optimal annealing temperatures and allele size ranges for this sample set, are provided 

in Table 3.1.  

 

	  



	 178	

Table 3.1.  List of used microsatellite markers with optimal annealing temperatures and 
fragment size range observed for each locus in Fraser’s dolphin samples. 
 
Microsatellite 
locus 

Optimal annealing 
temperature (°C) 

Fragment size 
range 

Genbank 
accession number Reference 

AAT44 58 70-106 AF416501 Caldwell et al. 2002. 
EV14 60 134-166 G09079 Valsecchi and Amos. 

1996. EV37 54 179-265 G09081 
D14 48 113-137  Shinohara et al. 1997. D22 52 109-117   
KWM1b 46 179-195  

Hoelzel et al. 1998. 
KWM2a 50 136-164  
KWM2b 44 157-179  
KWM9b 58 157-193  
KWM12a 54 146-194   
TexVet5 58 182-224 AF004905 Rooney et al. 1999. TexVet7 57 153-181 AF004907 
MK3 56 136-172 AF237889 Krützen et al. 2001. MK5 53 201-247 AF237890 
Dde59 56 232-440 AM087093 

Coughlan et al. 2006. 

Dde65 56 172-208 AM087096 
Dde66 50 338-378 AM087097 
Dde69 54 196-220 AM087098 
Dde70 56 117-135 AM087099 
Dde72 58 241-271 AM087100 
Dde84 49 136-158 AM087101 
Sco11 56 175-203 AM087102 

Mirimin et al. 2006. Sco28 58 135-139 AM087103 
Sco55 56 216-220 AM087105 

 

Microsatellite	data	analysis:	data	configuration	

The microsatellite data checking software Micro-Checker 2.2.3 was used to screen for 

null alleles and potential scoring errors, where expected homozygote and heterozygote 

allele size difference frequencies were generated using a Markov Chain Monte Carlo 

(MCMC) simulation method (Van Oosterhout et al. 2004). Low levels of microsatellite 

genotyping errors, which usually result from using poor quality genome extractions, 

may yield a false homozygote signal for rare alleles and consequent deviation from 

Hardy-Weinberg equilibrium (HWE) (Morin et al. 2009). To test for this effect, the 



	 179	

jackknife analysis described in Morin et al. (2009) was used to screen for individuals 

influential to the HWE estimates. The test was undertaken using an R package strataG 

with R 3.1.2 (http://www.r-project.org/). 

 The observed heterozygosity (HO), expected heterozygosity (HE) and the 

significance of any deviation from HWE were estimated for each locus using Arlequin 

3.5.1 (Excoffier & Lischer 2010). The overall deviation, heterozygote deficiency and 

heterozygote excess were assessed through the Fisher exact test and MCMC method 

implemented in the same program (Number of steps in Markov chain, 1,000,000; 

number of dememorization steps, 100,000). FSTAT 2.9.3.2 was used to determine the 

allelic richness and inbreeding coefficient (FIS) in each geographic group (Goudet 1995, 

2002). 

 

Microsatellite	data	analysis:	population	structure		

The factorial correspondence analysis (FCA) implemented in Genetix 4.0 was used to 

assess the genetic similarity among individuals (Belkhir et al. 2004). The program 

projects individuals on a multi-dimensional space according to their allelic states 

(absence, homozygote or heterozygote), and individuals with similar series of allelic 

states would be clustered together. Both with and without using population information 
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(‘sur population’) options were used to generate different plots for comparison, and the 

figures were reconstructed using the R package graphics. 

 The software STRUCTURE 2.3.4 was used to assess the most likely number of 

populations (K) by estimating the population membership of each individual using a 

Bayesian inference assignment method (Pritchard et al. 2000). The parameter setting for 

the analysis was as described in Chapter 2, with the testing K ranged from 1 to 8. When 

the LOCPRIOR option was used, each individual was assigned to a predefined 

population according to its geographical group identity. The highest hierarchical K was 

then determined by calculating the delta K (Evanno et al. 2005) using the web-based 

software Structure Harvester (http://taylor0.biology.ucla.edu/structureHarvester/; Earl et 

al. 2012) and the graphic result was optimised using accessory software CLUMPP 

version 1.1.2 (Jakobsson & Rosenberg 2007) and Distruct 1.1 (Rosenberg 2004).  

 The R package Geneland was also used to assess population structure in a 

spatial context (Guillot et al. 2005). The procedure of conducting this analysis was as 

described in Chapter 2, with setting the maximum rate of Poisson process fixed to 106 

(the number of samples), and maximum number of nuclei in the Poisson-Voronoi 

tessellation fixed to 318, and the clusters (K) to vary from 1 to 8 in the first step. To 

calculate the posterior probabilities of population membership for each individual and 

each pixel of the spatial domain, a burn-in of 100 iterations and a spatial domain of 174 
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pixels along the X-axis and 27 along the Y-axis were used. The consistency of results 

across these 10 runs was individually checked. 

 The degree of population differentiation among the geographic groups was 

evaluated by the fixation indices, FST (Wright 1951) and RST (Slakin 1995), using the 

algorithm implemented in Arlequin. A non-parametric permutation approach with 

10,000 permutations was used to assess the statistical significance of the fixation 

statistics between each pair of geographic groups, with a significance level set at 

p<0.05 (for all tests). As the F-Statistics is less reliable with small sample size (Balloux 

& Lugon-Moulin 2002), the estimates were only calculated for geographic groups with 

larger sample size (i.e., sample size >10). 

 

Microsatellite	data	analysis:	effective	population	size,	gene	flow,	potential	migrants	

and	sex-biased	dispersal	

The indicators of long-term effective population size, the effective population size times 

mutation rate (Neµ), and long-term gene flows, the number of migrants per generation 

(Nem), were estimated using maximum likelihood coalescent methods implemented in 

MIGRATE version 3.6.6 (Beerli & Felsenstein 1999, 2001). To determine whether 

there was any recent immigration, GeneClass2 was used to search for potential first 

generation migrants (Piry et al. 2004). To assess the presence of sex-biased dispersal in 
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the samples, the program for assessing sex-biased dispersal implemented in FSTAT 

2.9.3.2 (Goudet et al. 2002). The setting of these three analyses was as described in 

Chapter 2. Note the estimates were only calculated for the geographic groups with 

sufficient sample size (i.e., n>10), that is, for the Japan, Taiwan and the Philippines 

groups. 

 

Mitochondrial	DNA	analysis	

The software PopART (http://popart.otago.ac.nz) was used to construct a median-

joining network map (Bandelt et al. 1999) to visualize the genealogical distance among 

the mtDNA haplotypes. DnaSP version 5.10 was used to estimate gene diversity (h) and 

nucleotide diversity (𝜋), and to conduct Tajima’s D (Tajima 1989) and Fu’s Fs (Fu 

1997) neutrality tests.  The analysis of mismatch distributions implemented in Arlequin 

was conducted in order to examine whether these populations ever experienced a 

demographic or a spatial expansion (Rogers & Harpending 1992; Schneider & Excoffier 

1999; Excoffier 2004; Ray et al. 2003). The confidence interval of the estimates was 

obtained under 10,000 bootstrap simulations of an instantaneous expansion under a 

coalescent framework. The sum of square deviations (SSD) between the observed and 

the expected mismatch and the raggedness index (r) of the observed distribution were 

calculated and tested to evaluate model fitness (Harpending 1994; Schneider & 
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Excoffier 1999). An approximate time of expansion for each geographic group (T) was 

calculated by the formula T=𝜏/2u, where 𝜏 is the simulated time of demographic or 

spatial expansion, and u is the mutation rate for the sequence in use (Rogers 1995). The 

u can be calculated by u=(length of the sequence)×(generation time)×(substitution rate; 

𝜆).  

 The generation time was calculated as 12.5 years, by averaging the age reaching 

sexual maturity (5—10 years old) and the oldest age of the Fraser’s dolphins that have 

been aged (17.5 year-old; Amano et al. 1996). For the λ, two rates were used: one is an 

approximate average rate estimated using multiple ancient DNA samples of a number of 

animal taxa (1×10−7 substitutions/per site/per year; Ho et al. 2011), and the other is a 

rate estimated using fossil-phylogenetic distance calibration (7×10−8 substitutions/per 

site/per year; Harlin et al. 2003).  

 The mtDNA dataset was also used to assess the level of population 

differentiation among the geographic groups. The frequency-based and distance-based 

F-statistics, FST and ΦST, were estimated using Arlequin. For ΦST, the Tamura and Nei 

model was used (Tamura & Nei 1993), because it was the closest model available to the 

TVM+I model, which was determined as the best model for the samples using the 

Akaike Information Criterion (AIC) implemented in the model comparison program 

jModelTest 2.1.6 (Darriba et al. 2012). The level of differentiation between sample 
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group pairs was estimated with 10,000 permutations. The estimates were only 

calculated for the Japan, Taiwan and the Philippines groups. 

 

Results	

Sample	screening	

Useful genetic information was successfully amplified in 120 samples: 96 samples for 

mtDNA and 115 samples for microsatellite loci analyses (Appendix 3.1). Seven 

samples that were probably not Fraser’s dolphin according to their genotypes: six were 

from the Philippines, and one was from Taiwan. By comparing their mtDNA control 

region sequence data against the DNA Surveillance reference database (http://dna-

surveillance.fos.auckland.ac.nz; Ross et al. 2003), two samples (#2660 and #EW590) 

were identified as spinner dolphin (Stenella longirostris), two (#5560 and #718) as 

common bottlenose dolphin (Tursiops truncatus), and one (#EW581) as Indo-Pacific 

bottlenose dolphin (T. aduncus). The FCA of 24 microsatellite loci data also confirmed 

that #2660 and #5560 from the Philippines were apparently different from other 

Fraser’s dolphin samples, but the Taiwan specimen (#718), was not as distinct although 

it possessed a common bottlenose dolphin mtDNA haplotype (Fig. 3.3). Two more 

Philippine samples (#2646 and #5558) showed a microsatellite genetic profile 

apparently different from other ‘typical’ Fraser’s dolphins (Fig. 3.3), although their 



	 185	

mtDNA sequence could not be amplified for further confirmation. Since the species 

identity of these samples might be problematic and in need of further investigation, 

these seven samples were excluded from further analyses. 

 In addition, a putative male Philippine sample (#2602) was evidently 

mislabeled, because 1) the DNA sexing test indicated it was a female, and 2) it shared 

exactly the same microsatellite profile as another female sample (#2601) also collected 

in the Philippines in 1994. There were two samples (one female and the other male) 

collected in Taiwan at the same time (#887 and #892, respectively) sharing the same 

mtDNA haplotype and one allele at every microsatellite locus, indicating that they were 

highly likely a mother-calf pair. The Philippine sample (#2602) and the male Taiwanese 

sample (#892) were therefore excluded from further analyses. 

 With the jackknife HWE test, three Japanese samples and one Taiwanese sample 

were found that each had a rare allele homozygote that was influential to the estimates 

of HWE (Table 3.2). Morin et al. (2009) suggested poor genomic DNA quality might 

result in poor microsatellite amplification and consequently promote the likelihood of 

finding a homozygous rare allele. The difficulty of amplifying the mtDNA sequence of 

#EW546 might be indicative of poor DNA extraction quality. However, the other three 

samples were not of poor quality. A trail analysis excluding these four samples showed 

their influence on the results to be negligible. Therefore, these samples were retained in 

the dataset for further analysis.  
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Figure 3.3. Factor correspondence analysis (FCA) result for the 24 microsatellite 
loci data for all acquired Fraser’s and bottlenose dolphin samples (see Chapter 4). 
Numbers in parentheses indicates the percentage of the variance explained by the 
factor/axis. The solid squares are the questionable Fraser’s dolphin samples, which 
either has a non-Fraser’s dolphin mtDNA haplotype or a microsatellite profile unlikely 
to be a Fraser’s dolphin.      

 

Table 3.2.  The result from the jackknife test showing the individuals and alleles that are 
influential to HWE in the samples. 
 

ID Group Locus 
Allele 
(frequency) 

Observed/Jack-
knife P value 

Observed/Jack-
knife odds Odds ratio 

EW00562 Japan TexVet7 181 (0.01) 0.0018/0.2795 0.0018/0.388 215.126 
821 Taiwan AAT44 106 (0.014) 0.0045/0.0688 0.0045/0.074 16.345 
EW00546 Japan TexVet5 190 (0.029) 0.0144/0.0968 0.0146/0.107 7.336 
EW00545 Japan KWM9b 185 (0.038) 0.0117/0.0563 0.0118/0.06 5.039 
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Microsatellite	data	analysis:	data	configuration	

Microsatellite data from 106 samples were used, and less than 5% of the samples had 

any missing data in one to four loci. All 24 microsatellite loci showed different degrees 

of polymorphism (Table 3.3). Null alleles and significant deviation from HWE were 

detected for a number of loci and geographic groups, and they were most common in 

the Taiwan group. Even after excluding the five ‘outlier’ Taiwan samples identified in 

FCA, it was not possible to alleviate the issue of having high null alleles and HWE 

deviation rates in the Taiwan group (Fig. 3.4; see below).  The Taiwan group also had 

the highest average inbreeding coefficient (FIS=0.176, see Table 3.3). Significant LD 

was rarely detected in the three major sample groups. To avoid the unpredictable 

influence of the presence of null alleles and HWE deviated loci (Carlsson 2008), 

subsequent analyses were conducted excluding the six loci that showed signs of null 

allele presence or significant deviation of HWE in at least two geographic groups. This 

resulted in retaining 18 loci for the following analyses (i.e., AAT44, D14, D22, Dde65, 

Dde69, Dde70, Dde72, Dde84, KWM1b, KWM2b, KWM9b, MK3, MK5, Sco11, 

Sco28, Sco55, TexVet5 and TexVet7).  
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Table 3.3.  Averages (±SD) of number of alleles, observed heterozygosity (HO), 
expected heterozygosity (HE), inbreeding coefficient (FIS), and allelic richness of the 24 
microsatellite loci in the Fraser’s dolphin samples, grouped by geographic groups. The 
results for geographic groups of Central North Pacific, Eastern Tropical Pacific, Gulf of 
Mexico and Caribbean Sea were not shown as their sample size was small and provided 
little insights into HWE deviation and allelic heterozygosity. See Appendix 3.2 for the 
estimates by locus in each population. 
 
Geographic group n No. of alleles HE HO Allelic richness FIS 
Japan 37 7.25±3.404 0.637±0.229 0.596±0.230 1.634±0.231 0.049 
Taiwan 43 9±4.16 0.702±0.192 0.573±0.182 1.675±0.235 0.176 
The Philippines 17 5.375±2.318 0.653±0.240 0.609±0.271 1.626±0.270 0.068 

	

Microsatellite	data	analysis:	population	structure	

The FCA analysis grouped most individuals into the same cluster when the ‘sur 

population’ option was not used (Fig. 3.4A).  This option identifies the centre of a 

cluster for an identified population, and recalculates individual positions relative to their 

cluster centre (Belkhir et al. 2004). There were five individuals from the Taiwan group 

scattered peripherally around the main cluster of samples (the ‘outliers’ in Fig. 3.4A). 

These samples do not share the same mtDNA haplotype or a common mtDNA lineage. 

 When the population information was used, the percentage of variance explained 

by the factors was notably increased (Fig. 3.4B). The most informative factor (FC1) 

explained 27.1% of variance and segregated the Taiwanese samples from the remaining 

samples; the second most informative factor (FC2) explained 20.79% of variance and 

separated the samples from the Central North Pacific from the remaining samples; and 

the third factor (FC3) which explained 16.22% of variance separated the Philippine 

samples and the Caribbean samples from the Japanese samples. The pattern of 
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clustering was not always consistent with the geographic groups; for instance, some 

Taiwanese samples remained in the ‘main’ cluster while many were segregated as a 

distinguishable cluster by FC1.  

 Whether the LOCPRIOR option was used in STRUCTURE or not, the most 

likely number of populations was K=1 in all cases based on LnP(K) values (Table 3.4). 

When the result was evaluated based on delta K, the most likely number of populations 

identified by STRUCTURE was K=2 (Table 3.4). A result giving high support for K=2 

and K=5 (LOCPRIOR applied; Table 3.4) is consistent with K=1 since delta K can 

never identify K=1, and instead suggests support for multiple values of K (Evanno et al. 

2005). In other words, the STRUCTURE analysis failed to reveal population structure 

detected by other analyses (i.e., FCA, Geneland and pairwise F-Statistics comparison), 

probably due to low power (Latch et al. 2006). However, among the uneven 

assignments to Taiwan when K=2, all five of the FCA outliers (see above) show high 

assignments to the second cluster (p=0.77—0.82; Fig. 3.5).  

 In the Geneland analysis, the five runs with the highest LPP values in the initial 

10 runs suggested K=4 as the most likely number of populations, whereas the other five 

runs supported K=2. By fixing the K to K=4 in the second step of the analysis, it 

revealed six different population structure patterns in the 10 runs with the highest LPP 

values (Fig. 3.6). The patterns shown in five of the 10 runs were in fact suggesting three 

slightly different patterns of K=3, as the fourth population identified in the map contains 
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no sample (the ‘ghost population’; Guillot et al. 2005). The only consistency found 

across all six patterns of Fraser’s dolphin population distribution was that there was 

always a population that consisted of Caribbean Sea samples only. 

 By comparing the six population distribution patterns, it was shown that the 

samples from Japan and Taiwan were always assigned to the same population (Fig. 

3.6A—E), while there was one run suggesting some of the samples from Taiwan could 

be from a different population (Fig. 3.6F). The samples from the Philippines and 

Central North Pacific were always assigned to the same population (Fig. 3.6A, C—F), 

except two of the 10 runs that suggested the Central North Pacific samples were from a 

unique population (Fig. 3.6B). The population identity for the samples from the Eastern 

Tropical Pacific and Gulf of Mexico was less certain, although it seems the sample from 

the Eastern Tropical Pacific was more often grouped with the samples from Japan and 

Taiwan (six of the 10 runs; Fig. 3.6B—D, F) and the samples from the Gulf of Mexico 

were more often grouped with the samples from the Philippines (six of the 10 runs; Fig. 

3.6B, C, E, F).  

 In the pairwise F-Statistic comparisons among samples from three geographic 

groups (Japan, Taiwan and the Philippines), the FST for all pairs was significantly 

different from zero and ranged from 0.009 to 0.012, but none of the pairwise RST values 

were significant (Table 3.5A). 
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Figure 3.4. Factor correspondence analysis (FCA) results: A) without using 
population information; (B) using population information. The two most informative 
factors (FC1 and FC2) were assigned as the X and Y axes in the figure, and the numbers 
in parentheses in each axis indicates the percentage of the variance explained by the 
factor. The specimen ID of the five outliers was attached to the data point. 
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Table 3.4.  The Evanno tables generated by Structure Harvester based on the results 
from STRUCTURE analysis. 
 
LOCPRIOR option K Mean LnP(K) SD LnP(K) Ln'(K) |Ln''(K)| Delta K 
Used 1 -5216.05 0.4552 NA NA NA 
Used 2 -5294.59 61.9034 -78.54 101.24 1.635452 
Used 3 -5474.37 114.5322 -179.78 17.01 0.148517 
Used 4 -5671.16 192.3951 -196.79 71.56 0.371943 
Used 5 -5939.51 221.3678 -268.35 481.82 2.176558 
Used 6 -5726.04 247.4806 213.47 128.49 0.519192 
Used 7 -5641.06 256.9341 84.98 55.92 0.217643 
Used 8 -5612 232.0099 29.06 NA NA 
Not used 1 -5216.27 0.4762 NA NA NA 
Not used 2 -5296.25 37.4779 -79.98 170.97 4.561883 
Not used 3 -5547.2 79.9775 -250.95 68.57 0.857366 
Not used 4 -5866.72 83.8923 -319.52 247.43 2.949376 
Not used 5 -5938.81 180.2097 -72.09 133.87 0.742857 
Not used 6 -6144.77 152.1594 -205.96 330.82 2.174167 
Not used 7 -6681.55 262.6884 -536.78 408 1.553171 
Not used 8 -6810.33 375.4795 -128.78 NA NA 

 

 

Figure 3.5. Individual’s population membership under the best K scenario predicated 
by STRUCTURE analysis using 18 microsatellite loci data, (A) not using or (B) using 
the LOCPRIOR option. Each column represents one individual, and the light grey/ dark 
grey portion in each column indicates the probability of the individual being assigned to 
a population. In (B) the specimen ID of the five outliers denoted in the FCA was 
attached to data column. Abbreviations: CNP, Central North Pacific; ETP, Eastern 
Tropical Pacific; GM, Gulf of Mexico; CS, Caribbean Sea. 
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Figure 3.6.  The six variations of the individual population membership assignment 
patterns shown in the 10 run with the highest LPP for K=4 in Geneland analysis. The 
dots represent the samples and the colours indicate the distribution of K clusters based 
on the mode of simulated posterior probability for each pixel.  
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Table 3.5.  Pairwise divergence between the three main geographic groups for A) 
microsatellite data and B) for mtDNA data. The divergence was estimated using FST 
(above the diagonal), RST for microsatellite data (below the diagonal in panel A) and 
ΦST for mtDNA data (below the diagonal in panel B).  
 

    FST  
  n Japan Taiwan Philippines 
A Microsatellite     

 Japan 37  0.009** 0.012** 
RST Taiwan 43 0  0.011* 

 Philippines 17 0.017 0.015  B mtDNA     
 Japan 35  0.01 0.029* 
ΦST Taiwan 42 0.009  0.034* 

 Philippines 10 0.031 -0.017  
*: P<0.05; **: P<0.01 

 

Microsatellite	data	analysis:	effective	population	size,	gene	flow	and	sex-biased	

dispersal	

Samples from Japan, Taiwan and the Philippines were treated as distinct populations 

due to the interest of conservation management when estimating the indicators of 

effective population size (Neµ) and migration rate (Nem), even though the population 

boundaries among these regions appear to be ambiguous. The estimates revealed the 

Philippine group had the largest effective population size (Neµ=0.992) while Japan had 

the smallest (Neµ=0.337; Table 3.6). Assuming a mutation rate for microsatellite loci of 

0.01—0.02% (Whittaker et al., 2003; Hoelzel et al. 2007; Hollatz et al. 2011), the range 

of effective population size for each group was between 1,500 to 10,000 individuals 

(Table 3.6). The gene flow estimates showed there was less than one migrant per 

generation among the three putative populations (Table 3.6). The most prevailing 
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migration routes were from the south (Taiwan and the Philippines) to the north (Japan), 

concurring with the flow of the Kuroshio Current, the main ocean current in the region 

through times (See Fig. 2.9). Interestingly, there was almost no southbound gene flow 

detected (i.e., from Japan to Taiwan or the Philippines).  

 Two potential first generation migrants were identified among the three major 

sampling groups (Japan, Taiwan and the Philippines); both of them were female (Table 

3.7). There was no strong indication of sex-biased dispersal, although the difference in 

genetic diversity with group (Hs) was statistically significant between the sexes (Table 

3.8). 

 

Table 3.6.  The estimates of effective population size times mutation rate (Neµ) and 
number of migrants per generation (Nem) for the three Fraser’s dolphin geographic 
groups. The Ne is calculated assuming the average microsatellite mutation rate (µ) is 
0.01% for Ne (high) and 0.02% for Ne (low) (Whittaker et al. 2003; Hoelzel et al. 2007; 
Hollatz et al. 2011). The 2.5th and 97.5th profile likelihood estimates are given in 
parentheses.  
 
  Source group Host group  

  
Japan Taiwan Philippines  

Neµ 0.337 (0.313—0.364) 0.542 (0.516—0.571) 0.992 (0.926—1.065) 
Ne (low) 1686 (1564—1821) 2711 (2578—2854) 4962 (4631—5324) 
Ne (high) 3372 (3128—3641) 5423 (5155—5708) 9924 (9261—10647) 

Nem Japan 
  
  0.001 (0—0.002) 0 (0—0.001) 

 
Taiwan 0.607 (0.536—0.685) 

 
0.003 (0.002—0.005) 

  Philippines 0.541 (0.473—0.616) 0.008 (0.006—0.01)     

 

Table 3.7.  Potential first generation migrants identified in GeneClass2. 
 
ID Sex Geographic group Potential source group -LOG(L_home / L_max) p 
LHDU09 F Taiwan Japan 3.307 0.003 
EW566 F Japan Taiwan 3.061 0.001 
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Table 3.8.  Sex-biased dispersal assessments for the dolphins in western North Pacific 
by two-tailed t tests. 
 
  n FIS FST Relativeness Ho Hs Mean assignment Var assignment 
Female 40 0.056 0.010 0.019 0.561 0.595 0.539 20.916 
Male 57 0.056 0.009 0.018 0.593 0.628 -0.378 17.523 
Overall 97 0.056 0.010 0.018 0.580 0.614 

  P-value   1.000 0.950 0.955 0.261 0.016* 0.306 0.573 
*: P<0.05 

	

Mitochondrial	data	analysis	

A 779 bp mtDNA control region sequence was amplified in 96 samples. The 64 variable 

sites characterized 48 unique haplotypes (Appendix 3.3). The median-joining network 

tree showed a scattered tree with many missing haplotypes (Fig. 3.7). Little geographic 

concordance could be recognized in the clustering of the geographic groups. However, 

it showed that there were more haplotypes shared between Taiwan and Japan than 

between Taiwan and the Philippines, or between the Philippines and Japan (Fig. 3.7, 

Table 3.9). The genetic and nucleotide diversity was high in most geographic groups, 

although this could not be usefully assessed for the Caribbean Sea or Gulf of Mexico 

due to small sample size (Table 3.10). 
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Figure 3.7.  The Median-joining network tree for Fraser’s dolphin mtDNA control 
region haplotypes. Each circle represents a unique haplotype. The size of circle 
indicates the number of individuals having the haplotype and the colour shade indicates 
the proportion of each population within the haplotype. The number of hatch marks at 
the lines indicates the number of mutational steps separating the haplotypes. Solid 
circles indicate missing intermediate haplotypes. Abbreviations: CNP, Central North 
Pacific; ETP, Eastern Tropical Pacific. 
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Table 3.9.  Frequency of 48 mtDNA haplotypes detected among the seven geographic 
groups. See Appendix 3.3 for the definitions of the haplotypes. 
 
  Geographic group 

Haplotype 
ID Japan Taiwan Philippines 

Central 
North 
Pacific 

Eastern 
Tropical 
Pacific 

Gulf of 
Mexico 

Caribbean 
Sea 

Hap 1 1 
      Hap 2 3 4 

     Hap 3 2 
      Hap 4 1 4 

 
1 

   Hap 5 1 
      Hap 6 1 2 

     Hap 7 1 
      Hap 8 1 
      Hap 9 2 
      Hap 10 3 
      Hap 11 4 1 

     Hap 12 1 
      Hap 13 1 
      Hap 14 2 2 

     Hap 15 1 
      Hap 16 1 3 

     Hap 17 1 4 
     Hap 18 2 

      Hap 19 1 
 

1 
    Hap 20 1 

      Hap 21 1 
      Hap 22 1 
 

1 
   

2 
Hap 23 1 

      Hap 24 1 
      Hap 25 

 
1 1 

    Hap 26 
  

2 
    Hap 27 

  
1 

    Hap 28 
  

2 
    Hap 29 

  
1 

    Hap 30 
 

2 1 
   

1 
Hap 31 

 
4 

     Hap 32 
 

1 
     Hap 33 

 
1 

     Hap 34 
 

2 
     Hap 35 

 
2 

     Hap 36 
 

1 
     Hap 37 

 
1 

     Hap 38 
 

1 
     Hap 39 

 
1 

     Hap 40 
 

1 
     Hap 41 

 
1 

     Hap 42 
 

1 
     Hap 43 

 
1 

     Hap 44 
 

1 
     Hap 45 

    
1 

  Hap 46 
   

1 
   Hap 47 

   
1 

   Hap 48 
     

2 
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Table 3.10.  Number of haplotypes, genetic diversity, nucleotide diversity, and 
population dynamic indices derived from the 779bp mtDNA control region sequence for 
the three geographic groups in Western North Pacific, the Western North Pacific, and 
All sequences including samples from central North Pacific, Eastern Tropical Pacific, 
Gulf of Mexico and Caribbean Sea. 
 
Geographic 
group n 

No. 
variable 
sites 

No. 
haplotypes 

Haplotype 
diversity, h 
(SD) 

Nucleotide 
diversity, π, 
(SD) 

Tajima's 
D Fu's Fs 

Japan 35 44 24 0.973 
(0.014) 

0.012 
(0.10%) -0.41 -6.834** 

Taiwan 42 40 22 0.958 
0.013) 

0.012 
(0.07%) -0.041 -3.197* 

Philippines 10 26 7 0.911 
(0.077) 

0.012 
(0.21%) -0.076 0.64 

Western North 
Pacific 87 61 42 0.973 

(0.006) 
0.012 
(0.06%) -0.777 -14.233*** 

All sequences 96 64 46 0.974 
(0.005) 

0.012 
(0.05%) -0.824 -17.243*** 

*** p<0.001, ** p<0.01,  * p<0.05 

 

 

 A negative Tajima’s D was estimated for all three testable sample groups (Japan, 

Taiwan, and the Philippines), although none of the values were significantly different 

from zero. All Fu’s Fs estimates were also negative, and the value was significant for 

Japan and Taiwan (Table 3.10), indicating an excess of low-frequency haplotypes in 

these two populations, indicative of an expansion or selective sweep. The statistical 

significance of Fu’s Fs for all samples suggests that Fraser’s dolphins in the western 

North Pacific may have experienced a period of rapid population growth. The mismatch 

distribution for all three geographic groups did not appear to be unimodal (Fig. 3.8); 

however, the SSD value and the raggedness index (r) were small and statistically 
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insignificant in all groups (Table 3.11), suggesting the distribution did not differ 

significantly from the population expansion and/or spatial expansion models.  

 
Figure 3.8.  Observed and expected mismatch distributions under (A) demographic and 
(B) spatial expansion models. The vertical bars (in grey) indicate the model frequency 
in each scenario. Note the scale of frequency for Western North Pacific (WNP) is 
different from the other panels. 
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 The 𝜏 of demographic and spatial expansion estimated for the Fraser’s dolphin 

populations in the western North Pacific Ocean, as well as the estimated time of 

expansion, is shown in Table 3.11. The expansion time for each geographic group 

(Japan, Taiwan and the Philippines) was similar. The estimate shows the time of spatial 

expansion was likely later than the time of demographic expansion, although the 

estimates of both models shared a similar range of 95% CI. Based on a mutation rate u 

calculated as 9.7375×10−4 (using 𝜆=1x10-7) or 6.8162×10−4 (using 𝜆=7x10-8), the 

chronological time for the expansion to take place was estimated to be around 2,000—

11,000 years ago (Table 3.11).  

 The pairwise F-statistics comparison showed the difference in any paired FST 

with the Philippines was statistically significant (with Japan and Taiwan, FST=0.033 and 

0.029, p=0.022 and 0.026, respectively; Table 3.5B). In the ΦST comparison, however, 

none of the estimates was statistically significant. On the other hand, the exact tests 

based on both haplotype frequencies and the Tamura and Nei model suggest the three 

geographic groups were well differentiated (the exact p value for the global test of 

differentiation based on haplotype frequencies, p=0±0; based on Tamura and Nei’s 

distance model, p=0.001±0.001; Table 3.12).  
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Table 3.11.  The estimates of parameters under the A) demographic expansion and B) 
spatial expansion models for the three major geographic groups and the Western North 
Pacific as one group. 𝜏 is the time since expansion measured in mutational time units, 
SSD is the sum of squared deviation in goodness-of-fit test. T1 and T2 are the time of 
demographic/spatial changes for each geographic group calculated using substitution 
rates (𝜆) of 1x10-7 (Ho et al. 2010) and 7x10-8 (Harlin et al. 2003), respectively. The 
95% profile likelihood for the estimates is given in parentheses. 
 

Geographic group 𝜏 (95% CI) SSD Raggedness 
index T1 (95% CI) T2 (95% CI)  

A) Demographic expansion model 
Japan 13.4 

(7.254—17.988) 
0.012 0.014 6881 

(3725—9236) 
7021 
(3801—9425) 

 Philippines 12.6 
(4.996—17.707) 

0.023 0.044 6470 
(2565—9092) 

6602 
(2618—9278) 

 Taiwan 11.5 
(5.68—19.568) 

0.005 0.011 5905 
(2917—10048) 

6026 
(2976—10253) 

 Western North Pacific 13.1 
(6.051—18.041) 

0.003 0.004 6727 
(3107—9264) 

6864 
(3170—9453) 

 B) Spatial expansion model 
Japan 8.396 

(4.8—20.161) 
0.021 0.014 4311 

(2465—10352) 
4399 
(2515—10564) 

 

Philippines 9.042 
(5.105—18.239) 

0.026 0.044 4643 
(2621—9365) 

4738 
(2675—9556) 

 

Taiwan 7.551 
(4.547—19.242) 

0.01 0.011 3877 
(2335—9880) 

3956 
(2382—10082) 

 

Western North Pacific 7.091 
(4.265—20.619) 

0.009 0.004 3641 
(2190—10587) 

3715 
(2235—10803) 

 

 

Table 3.12.  Pairwise non-differentiation exact P values estimated based on mtDNA 
haplotype frequencies (above the diagonal) or stepwise mutation model (Tamura and 
Nei’s distance model; below the diagonal).  
 
  Japan (n =35) Taiwan (n=42) Philippines (n=10) 
Japan  0.022±0.005* 0.022±0.002* 
Taiwan 0.019±0.004*  0.004±0.001** 
Philippines 0.024±0.003* 0.003±0.001**   

** p<0.01,  * p<0.05 

 

Discussion	

The results support the earlier suggestion based on skull morphometrics that Fraser’s 

dolphin populations are differentiated within the North Pacific and between the Pacific 
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and the Atlantic Oceans (Perrin et al. 2003). The results also show that Fraser’s dolphin 

in the western North Pacific Ocean experienced a period of population expansion in the 

past. Further details are discussed below, as well as other issues regarding potential 

technical limitations and conservation implications. 

 

Population	structure	of	Fraser’s	dolphin	

Perrin et al. (2003) propose that Fraser’s dolphins found in Japanese and Philippine 

waters are morphologically different: the skulls of Japanese samples were broader and 

the rostrums were wider, with a larger orbit and internal nares, and a longer braincase. 

The genetic data presented in this study, which were derived from the same stock of 

samples examined by Perrin et al. (2003), provide further support for differentiation 

among these populations, although the magnitude of the difference was small and not 

fully supported by all analyses. For example, the population differentiation identified by 

FCA and FST is not always supported by STRUCTURE and RST. However, the 

inference of STRUCTRE and RST may be ignorable because 1) the population structure 

revealed in STRUCTURE analysis can be less reliable (<97% assignment accuracy) 

when the FST is less than 0.05 (Latch et al. 2006) and when the sample size is uneven 

(Kalinowski 2011), and 2) false RST estimations are likely to be generated when the 

step-wise mutation model assumed for calculating RST is not applicable in one or more 
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of the microsatellite loci examined in this study, on top of the homoplastic nature of 

microsatellite loci (Selkoe & Toonen 2006). Nevertheless, it is acknowledged that the 

FST estimates, particularly for those paired with the Taiwan group, could have been 

overestimated due to the presence of null alleles in the Taiwan group (Chapuis & 

Estoup 2007). Inconsistent results and low FST estimates indicate the population 

structure is indeed ambiguous, and it might be due to the presence of ongoing gene flow 

among the populations, or the lack of sufficient time for the genetic markers to reveal 

the recent population divergence (Neigel 2002).  

 It is difficult to interpret the pattern of population structure for Fraser’s dolphins 

in the western coasts of the North Pacific Ocean when the knowledge for their exact 

distribution range, fidelity of natal habitat, and migration behaviour is virtually lacking.  

However, the disconnection of oceanographic processes between Japan and the 

Philippines may cause the differentiation. The Philippine samples were collected from 

the eastern coasts of the Sulu Sea, which is a semi-enclosed deep-sea body of water. 

The waters at the edge of the basin used to be shallow, less than 420 m during glaciation 

epochs (Wang 1999; Voris 2000), and this may be an environmental barrier isolating 

the Fraser’s dolphins in the Sulu Sea from other offshore populations considering 

Fraser’s dolphins’ preference for deep waters (Jefferson et al. 2011). Moreover, the 

Sulu Sea accepts surface currents from the Celebes Sea in the south in summertime and 

forms an anti-clockwise gyre in its own basin in wintertime (Global Ocean Associates 
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2004), and the circulation in the Celebes Sea is mostly driven by the input flow from the 

Mindanao Current, a strong, southward branch of the North Equatorial Current (Hogan 

2013). But the Japanese coasts are mostly influenced by the Kuroshio Current, the 

northward branch of the North Equatorial Current, flowing in an opposite direction to 

the Mindanao Current (Toole et al. 1990; Fine et al. 1994) (Fig. 2.9). Therefore even in 

the shallow-water barrier has no longer existed to-date, the prevailing sea currents 

appear to obstruct direct migrations between the Sulu Sea and the Japanese coasts. The 

analyses, which show that neither southward gene flow nor recent gene exchange is 

present between the Philippine and Japanese populations, appear to support this 

scenario.  

 Even so, the Japanese samples studied here were probably from a group of 

vagrants that travelled from another region, potentially more southern and tropical, 

considering the facts that Fraser’s dolphins prefer pantropical, deep offshore waters 

(Jefferson et al. 2011) and are indeed seldom found in the temperate waters around 

Japan (Amano et al. 1996). Similar events may be represented by a group of Fraser’s 

dolphins that stranded in France (van Bree et al. 1986), and unusual sightings off the 

Azores and Madeira archipelagos (Gomes-Pereira et al. 2013). As reports of Fraser’s 

dolphin in the high sea region of the western North Pacific Ocean are scarce, the range 

of this ‘Japanese’ population of Fraser’s dolphins is still uncertain. The Geneland 

analysis suggests that the Taiwanese and Japanese samples are mostly assigned to the 
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same population, and in the FCA a number of Taiwanese samples are clustered with the 

Japanese samples, possibly indicating some level of connectivity. Connectivity between 

Japanese and Taiwanese waters may be expected given that the waters off Taiwan and 

southeastern Japan are well connected by the Kuroshio Current and share identical 

ocean biogeography (Barkley 1970; Spalding et al. 2012), and is evident by the 

GeneClass analysis that detected two potential first-generation migrants between the 

two regions.  

 On the other hand, the data show greater deviation from HWE and a high FIS in 

the Taiwanese sample, suggesting the possibility of an unaccounted factor affecting the 

interpretations. Waples (2015) suggests positive assortative mating, self-fertilization, 

the Wahlund effect (Wahlund 1928), presence of null alleles, nonrandom sampling and 

selection favouring homozygotes (underdominance) are all possible causes that would 

result in a departure from HWE with a positive FIS. In the case, the presence of null 

alleles is likely to be a factor influencing HWE estimates for the Taiwanese sample, 

although it not clear why only this population should have been affected across multiple 

loci. The Wahlund effect—a mixing of two genetically distinct populations of 

individuals in one population— could also be the cause of HWE deviation in the 

Taiwan group, as possible mixing is suggested in the FCA and perhaps in the 

STRUCTURE analysis. Even so, Zhivotovsky (2015) suggests that null alleles or allelic 

dropout are more likely the main causes for HWE deviation than the Wahlund effect in 
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most cases. An exception would be if one of the populations was depauperate of 

variation compared to the other (Zhivotovsky 2015), but that was not evidently the case 

for the samples.  Confounding the analysis, however, is the fact that the Taiwan sample 

could be representing both the potential mixing population, and the reference source 

population. 

 The speculation of multiple Fraser’s dolphin populations off Taiwan is based 

solely on genetic data. Further examinations from morphological, ecological or 

physiological perspectives are inevitably needed to validate this hypothesis. Parapatric 

distributions of “inshore” and “offshore” populations have been reported for a number 

of small delphinids phylogenetically close to the Fraser’s dolphin  (e.g., Hoelzel et al. 

1998; Escorza-Treviño et al. 2005; Amaral et al. 2007; Courbis et al. 2014; Lowther-

Thieleking et al. 2015; see Table 1.1), which makes it a credible hypothesis for this 

species worth testing in future.  This is further supported by what seems to be a 

divergence of diet preference in the Fraser’s dolphins found in Taiwanese waters. A 

systematic examination of the stomach content data obtained from 27 adult dolphins 

incidentally caught in Taiwanese fisheries (Wang 2003) showed that 20 dolphins 

consumed diversified prey items (i.e., both fish and cephalopods) while seven 

consumed cephalopods only. Interestingly, a similar divergence of prey preferences in 

Fraser’s dolphin has been reported elsewhere in the world: fish and cephalopods are 

almost equally predominant components in the diet of Fraser’s dolphins in the eastern 
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Tropical Pacific and in the Sulu Sea (Robison & Craddock 1983; Dolar et al. 2003), 

while cephalopods are predominant and fish only account for 4% of the diet of Fraser’s 

dolphins in South African waters (Sekiguchi et al. 1992).  

 Very small sample sizes mean that only limited inference can be drawn for 

population comparisons outside the western North Pacific coasts.  In some cases the 

inference was contradictory, for instance the Geneland result suggests connectivity 

between the Central North Pacific and the Philippines, but the FCA result suggests 

possible differentiation.  In this case the FCA analysis may be more informative since it 

is based on individual genotypes, but still may not reflect a representative sample from 

the Central North Pacific. Moreover, it seems potentially problematic to find that the 

dolphins in the Gulf of Mexico are genetically more similar to those in the North Pacific 

Ocean than those in the Caribbean Sea, though there may be a similar pattern in the 

Bryde’s whale (Balaenoptera edeni). The Bryde’s whale population in the Gulf of 

Mexico, which belongs to a unique phylogenetic lineage of the species, was more 

related to those in the North Pacific (B. edeni edeni) than those in the western North 

Atlantic (B. edeni brydei) (Rosel & Wilcox 2014).  To confirm the status of the Fraser’s 

dolphin population in these regions, further examination with appropriate sample sizes 

is crucially needed.  
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Fraser’s	dolphin	population	expansion	in	the	past	

The data suggest that Fraser’s dolphin populations in the western North Pacific Ocean 

have been expanding in both population size and distribution range; the expansion is 

most pronounced for the Japanese population and least for the Philippine population.  

Amano et al. (1996) suggest that the Fraser’s dolphins found in Japanese waters have an 

earlier age at sexual maturity, shorter calving interval and shorter longevity than the 

striped dolphins (Stenella coeruleoalba) found in the same region. Even though it is 

unknown whether these are common life history traits for all Fraser’s dolphin 

populations, they are life history traits featuring fast reproductive cycles and useful for a 

species’ to colonize new habitat rapidly, indicating this could be a population at the 

front of an expansion (Philips et al. 2010). On the other hand, the Philippine population 

has a larger effective population size, a positive Fu’s Fs estimate (although 

insignificant), and a mismatch distribution profile revealing a relatively stable 

population history through time.  This may suggest a core population, or at least a 

population being less impacted during the glacial period.  As a species’ demographic 

profile may reflect its latitudinal distribution shift in response to climate change 

(Walther et al. 2002; Perry et al. 2005), further studies are needed to better assess the 

distribution and population structure of Fraser’s dolphins in tropical regions, the “rear 

edge” of the species’ range (Hampe & Petit 2005). 
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 The estimated timing of these events depends on an accurate estimate of the 

mtDNA control region substitution rate, and this issue has been discussed in detail in 

Chapter 2. The two substitution rates used here to calculate the time of expansion both 

suggest Fraser’s dolphin populations in the western North Pacific expanded 2,000—

11,000 years ago. This estimate of population expansion time is within the period of 

deglaciation following the last glacial maximum (19,000—20,000 years ago; Clark et 

al. 2009), and most likely during the beginning of the Holocene (about 11,500 years 

ago; Mayewski et al. 2004). At this time sea surface temperatures and sea level were 

significantly higher than during the earlier glacial period (Clark et al. 2009) and that 

could have expanded the tropical-subtropical climate and deep-water environment 

favoured by Fraser’s dolphins (Jefferson & Leatherwood 1994; Jefferson et al. 2011). 

The Migrate analysis suggests prevalence of northbound long-term gene flow for 

Fraser’s dolphins in the western North Pacific Ocean, and could be indicating the 

tendency of the southern populations to explore further suitable habitat in the north 

during the warm period.  Early Holocene population expansion has also been proposed 

for other cetacean species (Banguera-Hinestroza et al. 2014; Louis et al. 2014; Moura et 

al. 2014; Chapter 2); see Chapter 5 for further discussion.   

 The demographic or spatial expansion of Fraser’s dolphin populations might 

have been witnessed even in the modern age. Increasingly frequent encounters of 

Fraser’s dolphins around the Lesser Antilles, Caribbean Sea (Watkins et al. 1994; 
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Rinaldi & Rinaldi 2011) may be a result of demographic expansion of a regional 

endemic population, or a spatial invasion by other Atlantic population. A recent field 

study reported an association between the presence of Fraser’s dolphins and extreme 

sea-surface parameters in the temperate waters around the Azores, suggesting the 

species could be a potential bio-indicator of global climate change (Gomes-Pereira et al. 

2013).  

 

Effective	population	size,	conservation	implication	and	future	perspectives	

In general the effective population sizes for presumably abundant oceanic delphinids are 

large. For instance, the Neµ values range between 1.435 and 5.894 for short-beaked 

common dolphin (Delphinus delphis) populations along the southeastern coasts of 

Australia (Möller et al. 2011) and between 1.52 and 3.45 for the common bottlenose 

dolphin populations near the Hawaiian Archipelago (Martien et al. 2012).  Although 

Fraser’s dolphins are usually regarded as one of those abundant oceanic delphinids 

(Jefferson & Leatherwood 1994; Jefferson et al. 2011), the Neµ estimates for this 

species in the western North Pacific are seemingly more comparable to coastal or 

riverine dolphin populations, such as the common bottlenose dolphin in the western 

North Atlantic, including the Gulf of Mexico (Neµ =0.44—0.98; Rosel et al. 2009), and 

the Amazon river dolphin (Inia geoffrensis) in the Brazilian Amazon (Neµ = 0.2375 and 
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0.3050; Hollatz et al. 2011). One possibility is that the Neµ in the populations was 

underestimated, since the program Migrate would suggest an underestimated Neµ if the 

population size was not consistent but instead increasing though times (Beerli 2009), 

and it is likely the case for the Japan and Taiwan populations, as the mtDNA analyses 

suggest these populations expanded in the past. However, there is no sufficient evidence 

showing strong population fluctuation for the Philippine population, and the Neµ for this 

population (0.926—1.065) is still less than the estimates for those oceanic populations.  

In addition, given the census population size for the dolphins in the eastern Sulu Sea has 

been estimated to be N=13,500 (Dolar et al. 2006), the ratio of effective population size 

to the census population size (Ne/N) (Frankham 1995) for the Philippine population can 

be calculated as ranging from 0.34 to 0.79, which is not particularly low in mammals 

(Frankham 1995). Therefore, the relatively low estimates of Neµ for Fraser’s dolphin 

populations, as least for the Philippine population, may simply reflect a smaller census 

population size (Hare et al. 2011). This would imply that the Fraser’s dolphin 

populations, even a stable one, could be as much at risk as vulnerable coastal or riverine 

populations of dolphins. Therefore the conservation management of Fraser’s dolphin 

populations may require reconsideration, as this species is currently considered as an 

offshore, oceanic delphinid with least conservation concern (Jefferson et al. 2011, 

Hammond et al. 2012). In particular, the impact of frequent Fraser’s dolphin bycatches 

in the fisheries around the Philippines, Taiwan and eastern Tropical Pacific (Dolar 1994, 
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Jefferson & Leatherwood 1994, Perrin et al. 2005, Chou 2006) now warrants a 

reassessment as new information about their population structure, effective population 

size and the intensity of gene flow has emerged.  

 Finally, further samples from the extensive distribution range of Fraser’s 

dolphins, namely in the eastern Tropical Pacific, South Pacific, high-seas Atlantic 

Ocean and Indian Ocean, should be included in future studies to reveal the species’ 

global population structure and expansion history. Perrin et al. (2003) conducted a 

discriminant analysis using morphometric measurements from Fraser’s dolphin skulls 

collected in the western North Pacific (n=71), North Atlantic (n=22), southwestern 

Indian Ocean (n=12) and western South Pacific (n=7). They found that the first 

canonical axis distinguished the North Atlantic samples from the other samples, and the 

second axis separated northern hemisphere samples (western North Pacific and North 

Atlantic) from southern hemisphere samples (southwestern Indian Ocean and western 

South Pacific). If the differentiation in skull morphometric measurement does reflect 

population genetic structure, then future studies may find the North Atlantic population 

the most distinctive among the other populations, and possibly identify further 

differentiated populations in the Southern Hemisphere. It is anticipated that, by 

examining more Fraser’s dolphin samples from a broader range, further light would be 

shed on the effect of global climate change on the dynamics of the world’s tropical 

dolphin populations. 
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Appendices	

Appendix 3.1. List of the samples acquired for this study. Note not all sample in this list 
were used in the study. The samples analysed are indicated as ‘Y’ in ‘Used in 
Analyses?’ column, as well as noted in ‘MS’ (microsatellite genotyping) and ‘mtDNA’ 
(mtDNA haplotype) columns. Abbreviations for the Contributors: Es-Bank, the Center 
for Enviornmental Studies at Ehime University (Japan); NTU, National Taiwan 
University; SWFSC, Southwest Fisheries Science Center (USA).  
 
Appendix 3.2.  Presence of null alleles, number of alleles, allelic richness, inbreeding 
coefficient (FIS), observed heterozyogsity (HO) and expected heterozygosity (HE) for the 
24 microsatellite loci examined in this study. The loci marked by asterisk are discarded 
from further analyses. 
 
Appendix 3.3. Polymorphic sites in the 48 Fraser's dolphin mtDNA control region 
haplotypes. The dot indicates identical site to the top sequence and the dash indicates an 
insertion–deletion event. The number in the top row indicates the position of the 
variable site in the 779bp sequence. 

 



  

Appendix 3.1. 

Longitude Latitude ID Location Population Sample Source Contributor Year Sex MS mtDNA 
Used in 

analyses? 

-69.416666 18.416666 48119 
San Pedro 
Macoris Caribbean Sea Stranding SWFSC 2001 M Y Hap_22 Y 

135.950142 33.593888 EW00542 Taiji Japan Drive fishery Es-Bank 1991 M Y Hap_5 Y 

135.950142 33.593888 EW00543 Taiji Japan Drive fishery Es-Bank 1991 F Y Hap_6 Y 

135.950142 33.593888 EW00544 Taiji Japan Drive fishery Es-Bank 1991 M Y Hap_7 Y 

135.950142 33.593888 EW00545 Taiji Japan Drive fishery Es-Bank 1991 M Y Hap_8 Y 

135.950142 33.593888 EW00546 Taiji Japan Drive fishery Es-Bank 1991 M Y (unamplified) Y 

135.950142 33.593888 EW00547 Taiji Japan Drive fishery Es-Bank 1991 M Y Hap_9 Y 

135.950142 33.593888 EW00548 Taiji Japan Drive fishery Es-Bank 1991 M Y Hap_10 Y 

135.950142 33.593888 EW00549 Taiji Japan Drive fishery Es-Bank 1991 F Y Hap_11 Y 

135.950142 33.593888 EW00550 Taiji Japan Drive fishery Es-Bank 1991 M Y Hap_12 Y 

135.950142 33.593888 EW00551 Taiji Japan Drive fishery Es-Bank 1991 M Y Hap_1 Y 

135.950142 33.593888 EW00552 Taiji Japan Drive fishery Es-Bank 1991 M Y Hap_13 Y 

135.950142 33.593888 EW00554 Taiji Japan Drive fishery Es-Bank 1991 F Y Hap_14 Y 

135.950142 33.593888 EW00555 Taiji Japan Drive fishery Es-Bank 1991 F Y Hap_15 Y 

135.950142 33.593888 EW00556 Taiji Japan Drive fishery Es-Bank 1991 M Y (poor seq quality) Y 

135.950142 33.593888 EW00557 Taiji Japan Drive fishery Es-Bank 1991 F Y Hap_16 Y 

135.950142 33.593888 EW00558 Taiji Japan Drive fishery Es-Bank 1991 F Y Hap_11 Y 

135.950142 33.593888 EW00559 Taiji Japan Drive fishery Es-Bank 1991 F Y Hap_17 Y 

135.950142 33.593888 EW00560 Taiji Japan Drive fishery Es-Bank 1991 F Y Hap_18 Y 

135.950142 33.593888 EW00561 Taiji Japan Drive fishery Es-Bank 1991 F Y Hap_19 Y 

135.950142 33.593888 EW00562 Taiji Japan Drive fishery Es-Bank 1991 F Y Hap_11 Y 

135.950142 33.593888 EW00563 Taiji Japan Drive fishery Es-Bank 1991 M Y Hap_20 Y 

135.950142 33.593888 EW00564 Taiji Japan Drive fishery Es-Bank 1991 F Y Hap_21 Y 

135.950142 33.593888 EW00565 Taiji Japan Drive fishery Es-Bank 1991 M Y Hap_22 Y 

135.950142 33.593888 EW00566 Taiji Japan Drive fishery Es-Bank 1991 F Y Hap_10 Y 
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Longitude Latitude ID Location Population Sample Source Contributor Year Sex MS mtDNA 
Used in 

analyses? 

135.950142 33.593888 EW00567 Taiji Japan Drive fishery Es-Bank 1991 F Y Hap_3 Y 

135.950142 33.593888 EW00568 Taiji Japan Drive fishery Es-Bank 1991 M Y Hap_2 Y 

135.950142 33.593888 EW00569 Taiji Japan Drive fishery Es-Bank 1991 M Y Hap_10 Y 

135.950142 33.593888 EW00570 Taiji Japan Drive fishery Es-Bank 1991 F Y Hap_11 Y 

135.950142 33.593888 EW00571 Taiji Japan Drive fishery Es-Bank 1991 F Y Hap_2 Y 

135.950142 33.593888 EW00572 Taiji Japan Drive fishery Es-Bank 1991 M (poor quality) Hap_3 Y 

135.950142 33.593888 EW00573 Taiji Japan Drive fishery Es-Bank 1991 M Y (poor seq quality) Y 

135.950142 33.593888 EW00574 Taiji Japan Drive fishery Es-Bank 1991 F Y Hap_9 Y 

135.950142 33.593888 EW00575 Taiji Japan Drive fishery Es-Bank 1991 M Y Hap_2 Y 

135.950142 33.593888 EW00576 Taiji Japan Drive fishery Es-Bank 1991 F Y Hap_23 Y 

135.950142 33.593888 EW00577 Taiji Japan Drive fishery Es-Bank 1991 F Y Hap_18 Y 

135.950142 33.593888 EW00578 Taiji Japan Drive fishery Es-Bank 1991 F Y Hap_14 Y 

135.950142 33.593888 EW00579 Taiji Japan Drive fishery Es-Bank 1991 F Y Hap_24 Y 

124.219722 24.454444 EW04872 Okinawa Taiwan Stranding Es-Bank 2007 M Y Hap_17 Y 

135.950142 33.593888 EW1265 Taiji Japan Drive fishery Es-Bank 1991 M Y Hap_4 Y 

123.549135 9.568629 2597 Siaton? Philippines Bycatch SWFSC 1994 F (poor quality) (unamplified) N 

N/A N/A 2602 Philippines Philippines Bycatch SWFSC 1994 M Y N/A N 

N/A N/A 2648 Philippines Philippines Bycatch SWFSC 1993 M (poor quality) (unamplified) N 

N/A N/A 2651 Philippines Philippines Bycatch? SWFSC 1993 F (poor quality) (unamplified) N 

N/A N/A 2654 Philippines Philippines Bycatch SWFSC 1993 F (poor quality) (unamplified) N 

N/A N/A 2660 Philippines Philippines N/A SWFSC 1993 F Y S. longirostris N 

123.549135 9.568629 5554 Siaton Philippines N/A SWFSC 1994 M (poor quality) (unamplified) N 

123.549135 9.568629 5555 Siaton Philippines N/A SWFSC 1994 U (poor quality) (unamplified) N 

123.549135 9.568629 5557 Siaton Philippines N/A SWFSC 1994 F (poor quality) (unamplified) N 

123.549135 9.568629 5560 Siaton Philippines N/A SWFSC 1994 F Y T. truncatus N 

123.549135 9.568629 5561 Siaton Philippines N/A SWFSC 1994 F (poor quality) (unamplified) N 
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Longitude Latitude ID Location Population Sample Source Contributor Year Sex MS mtDNA 
Used in 

analyses? 

N/A N/A KUL1 Philippines Philippines N/A Es-Bank 1996 M N/A (poor seq quality) N 

N/A N/A KUL10 Philippines Philippines N/A Es-Bank 1996 M N/A (poor seq quality) N 

N/A N/A KUL12 Philippines Philippines N/A Es-Bank 1996 M N/A (poor seq quality) N 

N/A N/A KUL14 Philippines Philippines N/A Es-Bank 1996 M N/A (poor seq quality) N 

N/A N/A KUL15 Philippines Philippines N/A Es-Bank 1996 M N/A (poor seq quality) N 

N/A N/A KUL2 Philippines Philippines N/A Es-Bank 1996 U N/A (poor seq quality) N 

N/A N/A KUL3 Philippines Philippines N/A Es-Bank 1996 F N/A S. longirostris N 

N/A N/A KUL4 Philippines Philippines N/A Es-Bank 1996 F N/A (poor seq quality) N 

N/A N/A KUL5 Philippines Philippines N/A Es-Bank 1996 F N/A (poor seq quality) N 

N/A N/A KUL6 Philippines Philippines N/A Es-Bank 1996 M N/A T. aduncus N 

N/A N/A KUL7 Philippines Philippines N/A Es-Bank 1996 F N/A (poor seq quality) N 

N/A N/A KUL8 Philippines Philippines N/A Es-Bank 1996 M N/A (poor seq quality) N 

123.116666 8.85 394 Siaton Philippines Bycatch SWFSC 1991 M Y Hap_25 Y 

123.116666 8.85 395 Siaton Philippines Bycatch SWFSC 1991 F Y (unamplified) Y 

123.116666 8.85 399 Siaton Philippines Bycatch SWFSC 1991 F Y Hap_26 Y 

123.549135 9.568629 2594 Siaton? Philippines Bycatch SWFSC 1994 M Y (poor seq quality) Y 

N/A N/A 2595 Philippines Philippines Bycatch SWFSC 1994 F Y (unamplified) Y 

123.549135 9.568629 2596 Siaton? Philippines Bycatch SWFSC 1994 F Y (poor seq quality) Y 

123.549135 9.568629 2598 Siaton? Philippines Bycatch SWFSC 1994 M Y (poor seq quality) Y 

123.549135 9.568629 2599 Siaton? Philippines Bycatch SWFSC 1994 M Y Hap_27 Y 

123.549135 9.568629 2600 Siaton? Philippines Bycatch SWFSC 1994 M Y (unamplified) Y 

N/A N/A 2601 Philippines Philippines Bycatch SWFSC 1994 F Y (poor seq quality) Y 

123.549135 9.568629 2604 Siaton? Philippines Bycatch SWFSC 1994 F Y (unamplified) Y 

123.549135 9.568629 2606 Siaton? Philippines Bycatch SWFSC 1994 M Y Hap_29 Y 

N/A N/A 2607 Philippines Philippines Bycatch SWFSC 1994? M Y (unamplified) Y 

N/A N/A 2646 Philippines Philippines Bycatch SWFSC 1993 F Y (unamplified) Y 
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Longitude Latitude ID Location Population Sample Source Contributor Year Sex MS mtDNA 
Used in 

analyses? 

N/A N/A 2653 Philippines Philippines Bycatch SWFSC 1993 F Y Hap_28 Y 

N/A N/A 2671 Philippines Philippines Bycatch SWFSC 1992 F Y Hap_19 Y 

123.549135 9.568629 5553 Siaton Philippines Bycatch SWFSC 1994 M Y (unamplified) Y 

123.549135 9.568629 5556 Siaton Philippines Bycatch SWFSC 1994 M Y (unamplified) Y 

123.549135 9.568629 5558 Siaton Philippines 
 

SWFSC 1994 F Y (unamplified) Y 

123.549135 9.568629 5559 Siaton Philippines Bycatch SWFSC 1994 F Y (poor seq quality) Y 

N/A N/A 7452 Philippines Philippines Bycatch SWFSC 1997 M Y Hap_28 Y 

N/A N/A KUL11 Philippines Philippines N/A Es-Bank 1996 F N/A Hap_30 Y 

N/A N/A KUL13 Philippines Philippines N/A Es-Bank 1996 M N/A Hap_22 Y 

N/A N/A KUL9 Philippines Philippines N/A Es-Bank 1996 F N/A Hap_26 Y 

N/A N/A 48083 Ponce Caribbean Sea Stranding SWFSC 1997 F (poor quality) (unamplified) N 

-67.166666 18.45 48101 Aguadilla Caribbean Sea Stranding SWFSC 1999 M Y Hap_22 Y 

-65.733333 18.166666 48133 Humacao Caribbean Sea Stranding SWFSC 2002 M Y Hap_30 Y 

121.507673 23.494786 718 Hualien Taiwan Bycatch NTU 2001 M Y T. truncatus N 

121.507673 23.494786 892 Hualien Taiwan Bycatch NTU 2005 M Y Hap_39 N 

120.312417 22.561889 8 Kaohsiung Taiwan Stranding NTU 2000 F Y Hap_4 Y 

121.507673 23.494786 35 Hualien Taiwan Bycatch? NTU 1998 M Y Hap_6 Y 

120.919194 22.417944 51 Taitung Taiwan Stranding? NTU 2000 M Y Hap_33 Y 

121.507673 23.494786 59 Hualien Taiwan Bycatch NTU 2000 M Y Hap_11 Y 

121.507673 23.494786 60 Hualien Taiwan Bycatch NTU 2000 M Y Hap_30 Y 

121.507673 23.494786 66 Hualien Taiwan Bycatch NTU 2000 M Y Hap_4 Y 

120.168281 23.485762 191 Chiayi Taiwan Seizure NTU 2001 M Y Hap_2 Y 

121.507673 23.494786 299 Hualien Taiwan Bycatch NTU 2000 M Y Hap_34 Y 

121.507673 23.494786 303 Hualien Taiwan Bycatch NTU 2004 M Y Hap_30 Y 

121.507673 23.494786 304 Hualien Taiwan Bycatch NTU 2004 M Y Hap_4 Y 

121.507673 23.494786 309 Hualien Taiwan Bycatch NTU 2004 M Y Hap_35 Y 



	 235	

Longitude Latitude ID Location Population Sample Source Contributor Year Sex MS mtDNA 
Used in 

analyses? 

121.507673 23.494786 311 Hualien Taiwan Bycatch NTU 2004 F Y Hap_35 Y 

121.507673 23.494786 441 Hualien Taiwan Bycatch NTU 2000 M Y Hap_16 Y 

N/A N/A 479 Hualien Taiwan Bycatch? NTU 2000 F (poor quality) Hap_25 Y 

121.507673 23.494786 599 Hualien Taiwan Bycatch NTU 2000 M Y Hap_31 Y 

121.507673 23.494786 602 Hualien Taiwan Bycatch NTU 2000 M Y Hap_36 Y 

121.507673 23.494786 606 Hualien Taiwan Bycatch NTU 2001 M Y Hap_37 Y 

N/A N/A 665 Pingdong Taiwan Stranding? NTU 2001 F (poor quality) Hap_31 Y 

121.507673 23.494786 715 Hualien Taiwan Bycatch NTU 2001 F Y Hap_38 Y 

N/A N/A 721 Hualien Taiwan Bycatch NTU 2001 
 

Y Hap_2 Y 

121.750357 25.199706 770 Unknown Taiwan N/A NTU 2005 M Y Hap_17 Y 

121.822972 24.821972 821 Ilan Taiwan Stranding NTU 2004 M Y Hap_14 Y 

121.507673 23.494786 887 Hualien Taiwan Bycatch NTU 2005 F Y Hap_39 Y 

121.507673 23.494786 911 Hualien Taiwan Bycatch NTU 2005 M Y Hap_16 Y 

121.825406 24.832894 1090 Ilan Taiwan Stranding NTU 2007 F Y Hap_40 Y 

121.507673 23.494786 1126 Hualien Taiwan Bycatch NTU 2005 F Y Hap_34 Y 

121.507673 23.494786 1150 Hualien Taiwan Bycatch NTU 2005 M Y Hap_2 Y 

121.185977 22.7744 1155 Taitung Taiwan Bycatch? NTU 2006 M Y Hap_41 Y 

121.587056 23.829978 1201 Hualien Taiwan Stranding NTU 2008 M Y Hap_16 Y 

121.194842 22.790447 1323 Taitung Taiwan Stranding NTU 2009 M Y Hap_42 Y 

121.570108 23.780314 1349 Hualien Taiwan Stranding NTU 2009 M Y Hap_17 Y 

121.380286 23.094267 9553 Taitung Taiwan Bycatch NTU 1997 F Y (unamplified) Y 

121.380286 23.094267 9554 Taitung Taiwan Bycatch NTU 1997 M Y Hap_17 Y 

121.873346 24.59563 9555 Ilan Taiwan Bycatch NTU 1994 M Y Hap_32 Y 

121.608394 23.946056 LHDU01 Hualien Taiwan Stranding NTU 2010 M Y Hap_14 Y 

121.468631 25.251217 LHDU02 Taipei Taiwan Stranding NTU 2011 M Y (poor seq quality) Y 

121.429139 23.283908 LHDU03 Taitung Taiwan Stranding NTU 2010 F Y Hap_2 Y 
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Longitude Latitude ID Location Population Sample Source Contributor Year Sex MS mtDNA 
Used in 

analyses? 

121.849505 24.708223 LHDU04 Ilan Taiwan Seizure? NTU 2004 M Y Hap_6 Y 

121.507673 23.494786 LHDU06 Hualien Taiwan Bycatch? NTU 1998 M Y Hap_31 Y 

121.614897 23.972028 LHDU07 Hualien Taiwan Stranding NTU 2013 F Y Hap_31 Y 

121.412617 23.123489 LHDU08 Taitung Taiwan Stranding NTU 2012 M Y Hap_43 Y 

121.630533 24.030253 LHDU09 Hualien Taiwan Stranding NTU 2012 F Y (poor seq quality) Y 

121.427019 23.270394 LHDU10 Taitung Taiwan Stranding NTU 2013 M Y Hap_4 Y 

120.359556 22.507319 LHDU11 Kaoshiung Taiwan Stranding NTU 2012 F Y Hap_44 Y 

-76.166666 34.916666 2809 
North Cove 
Banks, NC West Atlantic Stranding SWFSC 1993 F (poor quality) (unamplified) N 

-81.883333 26.4 2507 
Fort Myers 
Beach, FL Gulf of Mexico Stranding SWFSC 1994 M Y Hap_48 Y 

-81.883333 26.4 2509 
Fort Myers 
Beach, FL Gulf of Mexico Stranding SWFSC 1994 F Y Hap_48 Y 

-96.13333 6.63333 15529 

Eastern 
Tropical 
Pacific Eastern Tropical Pacific Bycatch SWFSC 1975 F Y Hap_45 Y 

-175.316666 24.2 30468 Hawaii Central North Pacific Biopsy SWFSC 2002 M Y Hap_46 Y 

-175.316666 24.2 30469 Hawaii Central North Pacific Biopsy SWFSC 2002 F Y Hap_4 Y 

-175.316666 24.2 30470 Hawaii Central North Pacific Biopsy SWFSC 2002 M Y Hap_47 Y 
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Appendix 3.2. 

Locus Null alleles No. of alleles Allelic 
richness FIS HO HE p SD 

Pop Japan 
n 37 
AAT44  8 1.719 0.152 0.622 0.719 0.008 0.01% 
D14  10 1.777 -0.008 0.789 0.787 0.73 0.03% 
D22  3 1.385 0.089 0.368 0.395 0.35 0.05% 
Dde59* Y 8 1.662 0.555 0.316 0.661 0 0.00% 
Dde65  7 1.715 -0.02 0.737 0.714 0.69 0.04% 
Dde66*  10 1.748 0.024 0.737 0.746 0.655 0.03% 
Dde69  5 1.639 0.07 0.605 0.645 0.033 0.02% 
Dde70  4 1.443 -0.224 0.526 0.434 0.707 0.04% 
Dde72  11 1.879 0.047 0.816 0.877 0.021 0.01% 
Dde84  6 1.775 -0.012 0.789 0.775 0.868 0.03% 
EV14*  12 1.886 0.116 0.763 0.884 0.047 0.02% 
EV37* Y 7 1.398 0.392 0.237 0.424 0 0.00% 
KWM12a* Y 13 1.827 0.152 0.711 0.831 0.125 0.02% 
KWM1b  4 1.637 -0.234 0.763 0.633 0.311 0.05% 
KWM2a* Y 9 1.799 0.224 0.605 0.79 0 0.00% 
KWM2b  4 1.439 0.077 0.395 0.456 0.422 0.04% 
KWM9b  10 1.781 -0.003 0.789 0.789 0.124 0.03% 
MK3  10 1.801 -0.047 0.842 0.808 0.711 0.04% 
MK5  12 1.845 0.04 0.816 0.843 0.513 0.05% 
Sco11  2 1.053 -0.014 0.053 0.052 1 0.00% 
Sco28  2 1.387 -0.333 0.526 0.393 0.04 0.02% 
Sco55  2 1.128 -0.059 0.132 0.125 1 0.00% 
TexVet5  8 1.742 0.091 0.684 0.745 0.672 0.05% 
TexVet7  7 1.751 0.102 0.684 0.753 0.088 0.03% 
Mean   1.634 0.049 0.596 0.637   SD   0.231 0.184 0.23 0.229   
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Locus Null alleles No. of alleles Allelic 
richness FIS HO HE p SD 

Pop Taiwan 
n 43 
AAT44  8 1.769 0.154 0.643 0.769 0.032 0.02% 
D14  8 1.751 0.041 0.714 0.741 0.427 0.03% 
D22  3 1.482 0.134 0.405 0.476 0.289 0.05% 
Dde59* Y 11 1.843 0.313 0.571 0.843 0 0.00% 
Dde65  10 1.775 0.101 0.69 0.777 0.036 0.01% 
Dde66* Y 15 1.888 0.251 0.659 0.888 0 0.00% 
Dde69 Y 8 1.752 0.198 0.595 0.752 0.002 0.01% 
Dde70 Y 7 1.586 0.271 0.439 0.596 0.128 0.03% 
Dde72  10 1.788 -0.004 0.81 0.785 0.88 0.03% 
Dde84 Y 9 1.798 0.166 0.659 0.799 0.003 0.01% 
EV14* Y 13 1.847 0.316 0.595 0.852 0 0.00% 
EV37* Y 14 1.587 0.409 0.357 0.573 0 0.00% 
KWM12a* Y 14 1.827 0.215 0.643 0.827 0.008 0.01% 
KWM1b  8 1.633 0.119 0.571 0.628 0.058 0.02% 
KWM2a* Y 12 1.857 0.262 0.65 0.865 0.003 0.01% 
KWM2b Y 7 1.661 0.581 0.286 0.653 0 0.00% 
KWM9b Y 8 1.79 0.267 0.571 0.788 0.013 0.01% 
MK3  16 1.877 0.073 0.81 0.874 0.02 0.01% 
MK5  13 1.836 0.026 0.81 0.837 0.183 0.04% 
Sco11  1 1 NA NA NA NA NA 
Sco28  2 1.373 0.067 0.333 0.367 0.67 0.05% 
Sco55  2 1.068 -0.024 0.071 0.07 1 0.00% 
TexVet5  10 1.756 0.108 0.667 0.755 0.603 0.05% 
TexVet7  7 1.645 0.004 0.634 0.643 0.508 0.05% 
Mean   1.675 0.176 0.573 0.702 0.211  SD   0.235 0.146 0.182 0.192 0.312  
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Locus Null alleles No. of alleles Allelic 
richness FIS HO HE p SD 

Pop     Philippines    n     17    AAT44  7 1.823 0.013 0.813 0.823 0.727 0.04% 
D14  6 1.758 -0.01 0.765 0.758 0.532 0.05% 
D22  3 1.169 -0.043 0.176 0.169 1 0.00% 
Dde59*  5 1.775 0.092 0.706 0.775 0.856 0.03% 
Dde65  7 1.813 -0.088 0.882 0.813 0.496 0.05% 
Dde66* Y 6 1.818 0.356 0.533 0.818 0.115 0.03% 
Dde69  4 1.62 0.15 0.529 0.62 0.254 0.05% 
Dde70  4 1.597 -0.189 0.706 0.597 0.536 0.05% 
Dde72  8 1.799 -0.262 1 0.799 0.34 0.04% 
Dde84  6 1.856 0.109 0.765 0.856 0.652 0.05% 
EV14* Y 8 1.863 0.325 0.588 0.863 0.033 0.02% 
EV37* Y 3 1.399 0.712 0.118 0.399 0.001 0.00% 
KWM12a*  6 1.72 0.313 0.5 0.72 0.007 0.01% 
KWM1b  4 1.579 -0.309 0.75 0.579 0.106 0.03% 
KWM2a* Y 9 1.829 0.48 0.438 0.829 0 0.00% 
KWM2b  3 1.221 0.207 0.176 0.221 0.179 0.04% 
KWM9b  8 1.792 0.055 0.75 0.792 0.545 0.04% 
MK3  8 1.841 -0.05 0.882 0.841 0.639 0.05% 
MK5  8 1.863 -0.165 1 0.863 0.547 0.04% 
Sco11  1 1 NA NA NA NA NA 
Sco28  2 1.428 -0.103 0.471 0.428 1 0.00% 
Sco55  2 1.059 0 0.059 0.059 1 0.00% 
TexVet5  7 1.772 0.113 0.688 0.772 0.871 0.03% 
TexVet7  4 1.626 -0.133 0.706 0.626 0.519 0.04% 
Mean  5.375 1.626 0.068 0.609 0.653   SD  2.318 0.27 0.246 0.271 0.24   
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Appendix 3.3. 
 Variable site 

Haplotype 
ID 6 6

5 

1
1
4 

1
4
0 

1
4
2 

1
4
3 

1
6
4 

1
6
7 

1
6
8 

1
7
3 

1
7
4 

1
9
5 

2
0
6 

2
0
7 

2
1
6 

2
5
7 

2
6
2 

2
6
3 

2
6
5 

3
0
3 

3
0
6 

3
0
8 

3
0
9 

3
3
0 

3
3
1 

3
3
2 

3
3
7 

3
3
8 

3
3
9 

3
4
0 

3
4
1 

3
4
2 

3
5
1 

Hap 1 A A A T T A A T A T T T A C T T C T G T A T T A T C T T A T A T C 

Hap 2 . - G . . . . . G C . . . . . . T C . . . . C . . T C C . . . . . 

Hap 3 . - G . . . . . G C . . . . . . T C . . . . C . . T . C . . . . . 

Hap 4 . . . . . G . . . C . . . . . . . . . C . . . . . . . C . . G . . 

Hap 5 C . . G G . . . . . G . . . . A . . . . . . . . . . . . . . . . . 

Hap 6 . . . . . G . . . C . . . . . . . . . C . . . G . . . C . . G . . 

Hap 7 . - G . . . . . G C . . . . . . T C . . . . C . . T C C . . . . . 

Hap 8 . - G . . . . . G C . . . . . . . C . . . . C . . T C . . . . . . 

Hap 9 . - G . . . . . G C . . . . . . . C . . . . C . . T C C . . . . . 

Hap 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap 11 . . . . . G . . . C . . . . . . . . . C . . C . . . . C . . G . . 

Hap 12 . - G . . . . . G C . . . . . . . C . . . . C . . T C C . . . . . 

Hap 13 . . . . . . . . . . . . . T . . . . . . . . . . . . . . . . . . . 

Hap 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap 15 . - G . . . . . G C . . . . . . T C A . . . C . . T C C . . . . . 

Hap 16 . . . . . . . . . . . . . . . . . . . C . . . . . . . . . . . . . 

Hap 17 . - G . . . . . G C . . . . . . . . . . . . C . . . C C . . . . . 

Hap 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap 19 . - G . . . . C G C . . . . . . . C . C . . C . . T . C . . . C . 

Hap 20 . . . . . G G . . C . . . . . . . . . C . . . . . . . C . . . . . 

Hap 21 . . . . . G . . . C . . . . . . . . . C . . C . . . . C . . G . . 

Hap 22 . . . . . G G . . C . . . . . . . . . C . . . . . . . C . . . . . 

Hap 23 . - G . . . . . G C . . . . . . . . . . . . C . . T C C . . . . T 

Hap 24 . - G . . . . . G C . . . . . . T C . . . . C . . . C C . . . . . 
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 Variable site 

Haplotype 
ID 6 6

5 

1
1
4 

1
4
0 

1
4
2 

1
4
3 

1
6
4 

1
6
7 

1
6
8 

1
7
3 

1
7
4 

1
9
5 

2
0
6 

2
0
7 

2
1
6 

2
5
7 

2
6
2 

2
6
3 

2
6
5 

3
0
3 

3
0
6 

3
0
8 

3
0
9 

3
3
0 

3
3
1 

3
3
2 

3
3
7 

3
3
8 

3
3
9 

3
4
0 

3
4
1 

3
4
2 

3
5
1 

Hap 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap 26 . - G . . . . . G C . . . . . . . . . . . . C . . T C C . . . . . 

Hap 27 . - G . . . . C G C . . . . . . . C . . . . C . . T . C . . . C . 

Hap 28 . . G . . . . . G C . . . . . . . . . . . . C . . T C C . . . . . 

Hap 29 . . . . . G . . . C . . . . . . . . . C . . . . . . . C . . G . . 

Hap 30 . - G . . . . . G C . . . . . . . . . . . . C . . T C C . . . . . 

Hap 31 . - G . . . . C G C . . . . . . . C . . . . C . . T . C . . G C . 

Hap 32 . . . . . G G . . C . . . . . . . . . C . . . . . . . C . . . . . 

Hap 33 . - G . . . . . G C . . . . . . T C . . . . C . . . C C . . . . . 

Hap 34 . - G . . . . . G C . . . . . . . C . . . . C . . T C C . . . . . 

Hap 35 . - G . . . . C G C . . . . . . . C . . . . C . . T . C . . . C . 

Hap 36 . - G . . . . . G C . . . . . . . . . . G . C . . T C C . . . . . 

Hap 37 . . . . . G G . . C . . . . . . . . . C . . . . C . . C . . . . . 

Hap 38 . - G . . . . C G C . . . . . . . . . . . . C . . T C C . . . . . 

Hap 39 . . . . . G . . . C . . . . . . . . . C . C . . . . . C . . G . . 

Hap 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Hap 41 . - G . . . . . G C . . G . . . . . . . . . C . . T C C . . . . T 

Hap 42 . . G . . . . . G C . . . . . . T C . . . . C . . T C C . . . . . 

Hap 43 . - G . . . . . G C . . . . G . . C . . . . C . G T C C G . . . . 

Hap 44 . - G . . . . C G C . . . . G . T C . . . . C . . T C C . . . . T 

Hap 45 . - G . . . . C G C . . . . . . . C . . . . C . . T . C . . . C T 

Hap 46 . - G . . . . . G C . G . . . . . . . . . . C . . . C C . . . . . 

Hap 47 . - G . . . . . G C . . . . . . T C . . . . C . . T C C . C . . . 

Hap 48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T 

(Table continues) 
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 Variable site 

Haplotype 
ID 

3
5
2 

3
5
3 

3
6
1 

3
6
8 

3
8
5 

3
8
7 

4
0
0 

4
0
5 

4
0
7 

4
2
8 

4
4
9 

4
6
7 

4
8
3 

5
0
3 

5
1
2 

5
1
5 

5
1
9 

5
3
7 

5
4
7 

5
8
4 

5
9
7 

6
0
0 

6
2
0 

6
5
1 

6
5
5 

6
6
4 

6
7
6 

7
0
5 

7
2
5 

7
3
5 

7
6
1 

7
6
8 

7
7
9 

Hap 1 C C G T C C A G A T C A G G T C A C G T G T T G T G A G G C G G T 

Hap 2 . . . . . . . . . . . . . . . . . . . C . . - . . A . . . . . . . 

Hap 3 . . . . . . . . . . . . . . . . . . . C . . - . . A . . . . . . . 

Hap 4 . . . . . . . . . . T . . . . . . . . . . . - . . A . . . . . . . 

Hap 5 . . . . . . G . G . . . A A . . T . T C . . - T . . . . C . C . . 

Hap 6 . . . . . . . . . . T . . . . . . . . . . . - . . A . . . . . . . 

Hap 7 . . . . . . . . . . . . T . . . . . . C . . - . . A . . . . . . . 

Hap 8 . . A . . . . . . . T . . . . . . . . C . . - . . A . A . . . . . 

Hap 9 . . . C . . . . . . T . . . . T . . . C . . - . . A . A . . . . . 

Hap 10 . . . . . . . . . . . . . . . T . . . . . . - . . . . . . . . . . 

Hap 11 . . . . T . . . . . T . . . . . . . . . . . - . . A . . . . . . . 

Hap 12 . . . . . . . . . . T . . . . T . . . C . . - . . A . A . . . . . 

Hap 13 . . A . . . . . . . T . . . . . . . . . . . - . . . . . . . . . . 

Hap 14 . . . . . . . . . . T . . . . . . . . . . . - . . . . . . . . . . 

Hap 15 . . . . . . . . . . . . . . . . . . . C . . - . . A . . . . . . . 

Hap 16 . . . . . . . . . . . . . . . T . . . . . . - . . . . . . . . . . 

Hap 17 . . . . . . . . . . T . . . . . . . . C . . - . . A . . . . . . . 

Hap 18 . . A . . . . . . . T . . . . . . . . . . . - . . . . . . . . . . 

Hap 19 . T A . . . . . . . . . . . . T . . . C . . - . . A . . . . . . . 

Hap 20 T . . . . . . . . . T . . . . T . . . . . . - . . . . A . . . . . 

Hap 21 . . . . . . . . . . T . . . . . . . . . . . - . . A . . . . . . . 

Hap 22 T . . . . . . . . . T . . . . T . . . . . . - . . . . . . . . . . 

Hap 23 . . A . . . . . . . T . . . . . . . . C . . - . . A . . . . . . . 

Hap 24 . . . . . . . . . . . . . . C . . . . C . . - . . A . . . . . . . 

Hap 25 . T . . . . . . . . T . . . . . . T . . . . - . . . . . . . . . . 
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 Variable site 

Haplotype 
ID 

3
5
2 

3
5
3 

3
6
1 

3
6
8 

3
8
5 

3
8
7 

4
0
0 

4
0
5 

4
0
7 

4
2
8 

4
4
9 

4
6
7 

4
8
3 

5
0
3 

5
1
2 

5
1
5 

5
1
9 

5
3
7 

5
4
7 

5
8
4 

5
9
7 

6
0
0 

6
2
0 

6
5
1 

6
5
5 

6
6
4 

6
7
6 

7
0
5 

7
2
5 

7
3
5 

7
6
1 

7
6
8 

7
7
9 

Hap 26 . . A . . . . . . . T . . . . . . . . C . . - . C A . . . . . . . 

Hap 27 . T . . . . . . . . . . . . . T . . . C A . - . . A . . . . . . . 

Hap 28 . . . . . . . . . . T . . . . . . . . C . . - . . A . . . . . . . 

Hap 29 . . . . . . . A . . T . . . . . . . . . . . - . . A . . . . . . A 

Hap 30 . . . . . . . . . . T . . . . . . . . C . . - . . A . . . . . . . 

Hap 31 . T . . . . . . . . . . . . . T . . . C A C - . . A . . . . . . . 

Hap 32 T . . . . . . . . . . . . . . T . . . . . . - . . . . . . . . . . 

Hap 33 . . . . . . . . . . . . . . . . . . . C . . - . . A . . . . . . . 

Hap 34 . . . . . . . . . . T . . . . . . . . C . . - . . A . A . . . . . 

Hap 35 . T . . . . . . . . . G . . . T . . . C A . - . . A . . . . . . . 

Hap 36 . . . . . . . . . . T . . . . . . . . C . . - . . A . . . . . . . 

Hap 37 T . . . . . . . . C T . . . . T . . . . . . - . . . . . . . . . . 

Hap 38 . . A . . . . . . . T . . . . . . . . C . . - . . A . . . . . . . 

Hap 39 . . . . . . . . . . T . . . . . . . . . . . - . . A . . . . . . . 

Hap 40 . . . . . T . . . . T . . . . . . . . . . . - . . . . . . . . . . 

Hap 41 . . A . . . . . . . T . . . . . . . . C . . - . . A . . . . . . . 

Hap 42 . . . . . . . . . . . . . . . . . . . C . . - . . A . . . . . . . 

Hap 43 . . . . . . . . . . T . . . . . . . . C . . - . . A . A . . . . . 

Hap 44 . . . . . . . . . . . . . . . . . . . C . . - . . A T . . . . C . 

Hap 45 . T . . . . . . . . . . . . . T . . . C . . - . . A . A . . . . . 

Hap 46 . . . . . . . . . . T . . . . . . . . C . . - . . A . . . . . . . 

Hap 47 . . . . . . . . . . . . . . . . . . . C . . - . . A . A . . . . . 

Hap 48 . . . . . . . . . . T . . . . . . . . . . . - . . . . . . T . . . 

	



  

Chapter	4.		 The	population	structure	of	bottlenose	

dolphins	(Tursiops	spp.)	in	the	western	North	Pacific	Ocean	

 

Abstract	

Bottlenose dolphins (Tursiops spp.) are widely distributed in the world’s tropical to 

temperate waters, exhibiting remarkable geographical variation in morphology, life 

history and genetic diversity, and such variation has made the taxonomy of the genus 

controversial. Significant population structure has been reported for the most widely 

distributed species, the common bottlenose dolphin (T. truncatus), in almost all ocean 

basins except the study region, the western North Pacific Ocean. This is the first study 

documenting an extensive range of genetic variation for the common bottlenose 

dolphins in the western North Pacific Ocean, based on genetic data derived from 20 

microsatellite and one mitochondrial DNA (mtDNA) markers in 75 bottlenose dolphin 

samples collected from Taiwanese, Japanese and Philippine waters. Together with 344 

published mtDNA control region sequences of the same species from the same or 

adjacent regions, the study reveals the presence of at least four populations of common 

bottlenose dolphins in the western and central North Pacific Ocean (FST=0.041—0.135). 

The results from Factorial correspondence analysis (FCA), Structure analysis and 

Geneland analysis showed a differentiation pattern that corresponds to habitat types, 
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resembling the scenario of inshore-offshore differentiation seen in other populations of 

the same species in other regions. The analysis also confirmed that there is no evident 

gene flow between the two ‘sister species’ common bottlenose dolphins and Indo-

Pacific bottlenose dolphins (T. aduncus) occurring sympatrically in the study region. 

The data suggested there may be population structure for the Indo-Pacific bottlenose 

dolphins as well, although more samples and analyses are needed for strong inference. 

 

Key words: Tursiops truncatus, Tursiops aduncus, Japan, Taiwan, population structure, 

genetic diversity, Northwest Pacific Ocean, microsatellite, mitochondrial DNA 

 

Introduction	

A wildlife management unit is usually defined by the significance of morphologic, 

genetic or demographic distinctiveness of a population, which is often, but not 

necessarily, associated with the presence of geographical barriers (Allendorf and 

Luikart 2006). Identifying such management units is imperative in wildlife conservation, 

as it assists the preservation of intra-species diversity and the species’ future adaptive 

potential. Oceanic dolphin species usually show an unexpected level of division into 

differentiated populations, given their capacity for extensive dispersal and the lack of 

obvious geographic barriers (Hoelzel 2009). The species studied in this study, the 
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bottlenose dolphin (Tursiops spp.), has provided a number of classic examples 

regarding the parapatric or sympatric distribution of differentiated populations or 

species (see below). 

 Bottlenose dolphins are widely distributed in the world’s tropical to temperate 

marine environment, including along the coasts of all major continents and many 

oceanic islands, over shallow offshore banks or sandbars, and in pelagic open waters 

(Rice 1998) (Fig. 4.1). There is a remarkable degree of geographical variation in 

bottlenose dolphin skeletal morphology, life history and genetic diversity, and such 

variation makes the taxonomy of the genus controversial (Rice 1998, Wells and Scott 

2009). In the study region in the western North Pacific Ocean, two species of dolphins 

in the genus Tursiops have been recognised: the Indo-Pacific bottlenose dolphin (T. 

aduncus; hereinafter IPBD) and the common bottlenose dolphin (T. truncatus; 

hereinafter CBD). These two species are distributed parapatrically, or even 

sympatrically in particular areas.  The distribution of IPBD is chiefly in the coastal 

waters of warm-temperate to tropical Indo-Pacific regions from southern Japan to 

western South Africa and southeast Australia, where the water depth is always less than 

200 m (Wang and Yang 2009) (Fig. 4.1A).  The distribution of CBD, on the other hand, 

ranges from the southern Okhotsk Sea to the South China Sea and the Hawaiian waters 

in the western North Pacific region, in both coastal and pelagic habitats (Miyashita 

1993, Rice 1998, Wells and Scott 2009) (Fig. 4.1B). The distribution range of these two 
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species overlaps from the East China Sea and Taiwan Strait to the South China Sea 

(Zhou and Qian 1985; Wang et al. 1999, 2000; Yang et al. 2005). 

 

A 

 

B 

 

Figure 4.1. Reviewed global distribution maps for A) Indo-Pacific bottlenose 
dolphin (Tursiops aduncus) and B) common bottlenose dolphin (Tursiops truncatus). 
The colour indicates the relative probabilities of occurrence, from high (100%, in red) to 
low (1%, in yellow). The maps were extracted from AquaMaps (www.aquamaps.org), 
version of Aug. 2013. Web. Accessed 20 Apr. 2016. 
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  Earlier studies have provided morphologic and genetic evidence showing that 

IPBD and CBD are two distinct species (LeDuc et al. 1999; Wang et al. 1999, 2000; 

Hale et al. 2000; Kemper 2004; Natoli et al. 2004; Yang et al. 2005; Kurihara and Oda 

2007; Moura et al. 2013). Although it is claimed that there was no genetic or 

morphologic intermediates found between the two species in eastern Asian waters 

(Wang et al. 1999, 2000; Yang et al. 2005), the use of a single mitochondrial DNA 

(mtDNA) marker and limited sampling means this remains an open question. In fact, the 

two species can interbreed freely and produce reproductively viable female hybrids in a 

captive environment (Hale et al. 2000). Potential descendants of hybrids between the 

two species are found in the CBD populations in Hawaiian and Japanese waters 

(Martien et al. 2012, Hayano 2013).  Natural hybrids among other dolphin species can 

be common (Sylvestre and Tasaka 1985, Herzing and Johnson 1997, Yazdi 2002, 

Amaral et al. 2014).  It is therefore worthwhile to re-examine the hybridization issue 

between these two species.  

 Even within the CBD species, significant differentiation between coastal and 

offshore populations has been reported from various locations, including the western 

North Atlantic Ocean (Hoelzel et al. 1998, Kingston and Rosel 2004), the eastern North 

Atlantic Ocean (Louis et al. 2014a), and the eastern North Pacific Ocean (Lowther-

Thieleking et al. 2015). The population structure of CBD can be defined at an even finer 

regional scale, such as within the Gulf of Mexico (Sellas et al. 2005), northern Bahamas 
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(Parsons et al. 2006), the waters around New Zealand (Tezanos-Pinto et al. 2009), 

Ireland (Mirimin et al. 2011), Hawaiian archipelagos (Martien et al. 2012) and the 

Adriatic Sea (Gaspari et al. 2015a). In contrast, this species’ population structure in the 

western North Pacific Ocean is little known. Two recent papers analysed mtDNA 

control region sequence data for CBD and IPBD with samples from the western South 

Pacific Ocean and hypothesised that 1) the coastal ecotype of CBD is lacking in the 

Indo-western Pacific Ocean and 2) this is because the coastal habitat has been occupied 

by IPBD (Tezanos-Pinto et al. 2009, Oremus et al. 2015a). However, using only 

mtDNA data to determine the distribution of CBD ecotypes can be problematic, given 

that the coastal and pelagic CBD lineages in the world are not reciprocally 

monophyletic (Moura et al. 2013), and a lack of lineage sorting appears to be a common 

phenomenon for the coastal and offshore CBD populations in the North Pacific Ocean 

(Segura et al. 2006, Lowther-Thieleking et al. 2015).  

 Miyashita (1993) proposed a pattern of three-stock structure for CBD in the 

western North Pacific Ocean (for the waters off eastern Japan) based on eight-year 

transect line survey data: a Japanese coastal population (from the east coasts of Japan to 

the west of 142°E), a Japanese offshore population (between 30°N and 42°N and from 

the east of 145°E to the antimeridian), and a southern offshore population (between 

23°N and 30°N, and between 127°E and the antimeridian). However, the three-stock 

hypothesis has yet been validated using molecular markers. Kita et al. (2013) sequenced 
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a group of 165 CBD culled in a drive fishery hunt in Japan for a 402bp mtDNA control 

region sequence and compared against published sequences worldwide (using 290bp). 

They report that those dolphins were “related more closely to oceanic types from 

Chinese waters than other geographic regions” (p. 476). The study was unfortunately 

unable to provide further insights into the population structure of CBD in the western 

North Pacific Ocean, because there were too few CBD mtDNA sequences from Asian 

and adjacent waters available for comparison at the time, and the sample set was 

spatially and temporally invariable.  

 Both CBD and IPBD are affected by multiple anthropogenic threats, such as 

small-scale whaling and negative fishery interactions in this western North Pacific study 

region (Perrin et al. 2005; Kasuya 2007; Young and Iudicello 2007; Robards and 

Reeves 2011). There were more than 26,000 bottlenose dolphins caught in Japanese 

waters during 1972–2008 (Kasuya 2011), and ~1,700 bottlenose dolphins are 

incidentally killed in human fisheries in the western-central Pacific Ocean every year 

(Young and Iudicello 2007). The aim of this study is to investigate the population 

structure of the bottlenose dolphin in the western North Pacific Ocean to help assess the 

impact of human disturbance, with an emphasis on the CBD since this species is a 

common target in the dolphin drive fishery (Kasuya 2007, Oremus et al. 2015b). This 

study is based on genetic data derived from 20 microsatellite DNA and one mtDNA 

markers in 75 bottlenose dolphins collected from Japanese, Taiwanese and Philippine 
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waters over three decades, together with 344 published mtDNA control region 

sequences from the same or adjacent waters.  This work reveals population structure of 

at least two coastal populations for CBD in the western North Pacific Ocean, and 

confirms that the gene flow is restricted between CBD and IPBD.  

 

Material	and	Methods	

Tissue	sample	collection	and	genomic	DNA	preparation	

Sixty-eight CBD and seven IPBD from the archives in the Cetacean Laboratory at 

National Taiwan University (Taiwan), the es-Bank at Ehime University (Japan), and the 

Southwest Fishery Science Center (SWFSC), National Oceanic and Atmospheric 

Administration (United States) were included in this study (Fig. 4.2; Appendix 4.1). The 

two samples supplied by SWFSC (collected from the Philippine waters) were initially 

identified as Fraser’s dolphin (Lagenodelphis hosei), but since both of them were 

assigned to CBD based on microsatellite genotypes, those two samples were included in 

this study (See Fig. 3.3 in Chapter 3).  

 Specimens were collected from various locations in Japan, Taiwan and the 

Philippines (Fig. 4.2; Appendix 4.1). It is assumed that the Taiwanese and Philippine 

samples collected from fishery interactions, including incidental catches or illegal trade 

in fish markets, were from dolphins inhabiting local waters (as assumed by Wang et al. 
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1999). Captive dolphins in Japanese aquaria were understood to either have been 

captured in Japanese coastal waters during 1988—2004, or born in captivity with both 

parents originating from Japanese coastal waters. Species identity was acquired from 

the archives, and verified by the genetic assessments. For CBD samples, each was 

assigned to one of the four putative populations based on its sampling location (i.e., 

West Japan, East Japan, Taiwan and the Philippines; Fig. 4.2A). All captive dolphin 

samples were assigned to the East Japan population, because their genotypes were more 

similar to those from East than West Japan (see Results).   

 For the samples acquired from the archives in Taiwan and Japan, a small portion 

of skin or muscle tissue was subsampled and preserved in either 99% ethanol or 20% 

DMSO solution saturated with Sodium Chloride, stored frozen until use. Genomic DNA 

was isolated and purified by a standard proteinase-K digestion/phenol–chloroform 

extraction protocol (Sambrook et al. 1989), and preserved in TE buffer (10mM Tris-

HCl, 0,1mM EDTA, pH7.4). The Philippine samples were provided as extracted 

genomic DNA by the SWFSC. All specimens were transported to and examined at the 

Molecular Ecology Group laboratory in University of Durham, with valid official 

permits issued by the authorities of Japan, Taiwan, United States and United Kingdom. 

 



	 253	

 
Figure 4.2.   The sampling locations for the Indo-Pacific bottlenose dolphins (IPBD, 
Tursiops aduncus; open circle) and common bottlenose dolphins (CBD, T. truncatus; 
grey triangle) examined in this study, and the sampling locations of extra IPBD (solid 
circle) and CBD (solid triangle) mitochondrial DNA sequences acquired from the 
Genbank. Note the sampling location(s) of two IPBD from Indonesia were not 
indicated, because such information is deficient (Wang et al. 1999). 
 

 

DNA	fragment	amplification	and	genotyping	

Twenty-four microsatellite loci and a 388 bp mtDNA control region sequence were 

chosen as they have been conventionally used and validated in earlier dolphin genetic 

studies, including bottlenose dolphin studies (Shinohara et al. 1997, Krützen et al. 2001, 

Natoli et al. 2004, Mirimin et al. 2011). The procedure of amplifying microsatellite and 

mtDNA fragments through polymerase chain reaction (PCR) method was as described 
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in Chapter 2, and the details for the microsatellite loci, including their optimal annealing 

temperatures and allele size ranges for this sample set, are provided in Table 4.1. 

 

Table 4.1.   Information for the 24 microsatellite loci examined in this study. 
 

Microsatellite 
locus 

Optimal 
annealing 
temperature 

Fragment size range  
Genbank 
accession 
number 

Reference 

   (°C) CBD IPBD     
AAT44 60 82-100 85-88 AF416501 Caldwell et al. 2002. 
EV14 60 130-166 130-160 G09079 Valsecchi and Amos. 

1996.  EV37 57 182-228 202-208 G09081 
D14 48 114-136 126-132  Shinohara et al. 1997. D22 52 110-130 114-118   
KWM1b 45 187-191 185-187  

Hoelzel et al. 1998. 
KWM2a 43 136-156 136-152  
KWM2b 44 171-179 175  
KWM9b 55 168-180 182-186  
KWM12a 46 164-180 170-182   
TexVet7 60 153-167 157-161 AF004907 Rooney et al. 1999.  
MK3 60 135-165 161-175 AF237889 Krützen et al. 2001.  MK5 58 209-237 211-219 AF237890 
Dde59 52 233-397 251-401 AM087093 

Coughlan et al. 2006.  

Dde65 48 180-200 184-200 AM087096 
Dde66 48 341-361 351-359 AM087097 
Dde69 55 200-216 204-212 AM087098 
Dde70 55 117-157 133-139 AM087099 
Dde72 52 235-275 249-259 AM087100 
Dde84 48 135-159 141-151 AM087101 
Sco11 55 203-231 203-227 AM087102 

Mirimin et al. 2006.  Sco28 55 127-147 127-139 AM087103 
Sco55 55 216-220 216-220 AM087105 

 

Microsatellite	data	configuration	

Using samples collected from individuals from the same school of dolphins that 

perished together in a drive fishery, or biopsied/stranded at the same time/same site may 

result in non-random sampling of closely related pedigrees.  It is known that in some 

cases bottlenose dolphins tend to travel together with their relatives, i.e., as parent-
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offspring pairs (Kita et al. 2013, Wells 2014). In the sample set, the 17 CBD samples 

collected from the drive fishery may be subject to such concern, even though the 

collection should have been a result of random sampling from the 98 dolphins killed at 

the time (Kasuya 2011).  As a precautionary measure, the kinship within the sample was 

assessed using Kingroup v2 (Konovalov et al. 2004, Konovalov and Heg 2008) when 

the sampling context may artificially bias towards sampling close kin. In those cases 

one of the samples in a pair that had a coefficient of kinship r >0.5 would be excluded, 

unless the samples were collected in a different year or location. The same measure was 

applied in earlier CBD studies using biopsy samples (Martien et al. 2012, Lowther-

Thieleking et al. 2015).  

 Arlequin 3.5.1 (Excoffier et al. 2010) was used to examine linkage 

disequilibrium (LD) among loci within putative populations, to estimate the observed 

heterozygosity (HO) and expected heterozygosity (HE) of each locus in each population, 

and to assess the significance of any deviation from Hardy-Weinberg equilibrium 

(HWE) in each population. Overall deviation, heterozygote deficiency and heterozygote 

excess were assessed through the Fisher exact test and Markov chain method 

implemented in the program (Number of steps in Markov chain, 1,000,000; number of 

dememorization steps, 100,000). The level of statistic at significance for the test was set 

at p<0.05 after Bonferroni correction (i.e., for 24 loci, p<0.002). A locus that showed 1) 

a presence of null alleles in any population, 2) significant LD to any locus in every 
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population, or 3) a significant deviation from HWE in more than two populations, was 

discarded in subsequent analyses. The allelic richness and inbreeding coefficient (FIS) 

for each locus in each putative population were estimated using FSTAT 2.9.3.2 (Goudet 

1995, 2002). 

 

Tests	for	genetic	differentiation	and	possible	hybridization	between	IPBD	and	CBD	

The genetic differentiation between IPBD and CBD was investigated by factorial 

correspondence analysis (FCA) implemented in Genetix 4.0 (Belkhir et al. 2004), which 

generates a graphic result, plotting the two or three most informative factors based on 

individual genotypes in a two or three-dimension space. Differentiation was also 

assessed using STRUCTURE (Pritchard et al. 2000), which is based on individual 

genotypes using Bayesian inference assignment methods. The likelihood values 

associated with putative numbers of populations (in this case, species) (K) were 

estimated by six independent runs for each value of K (from 1 to 3) assuming admixture 

applying a burn-in length of 100,000 and a length of simulation of 1,000,000 repeats. 

The delta K (ΔK) that reflects the highest hierarchical level was determined by the 

Evanno method implemented in Structure Harvester (Earl et al. 2012). The graphic 

result was optimized using CLUMPP (Jakobsson and Rosenberg 2007) and DISTRUCT 

(Rosenberg 2004). Runs were undertaken without using the ‘LOCPRIOR’ option, 
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which means assuming there was no species structure in the sample set. Once the K was 

determined, another set of analysis using the USEPOPINFO option was conducted to 

search for potential hybrids or descendants of hybrids (up to two generations) between 

the two species, following the method described in Martien et al. (2012). 

 

Population	structure	analyses	for	CBD	in	the	western	North	Pacific	Ocean	

The FCA function in Genetix was also used here in searching for clusters of individual 

genotypes associated with the putative populations. Both with and without using 

population centre information (‘sur population’) options were used to generate different 

plots for comparison, and the figures were reconstructed using an R package graphics. 

The population structure was assessed using STRUCTURE with the same settings as 

described above, while here the K was set from 1 to 6 and 10 independent runs were 

conducted. The analysis was undertaken with and without using the ‘LOCPRIOR’ 

function as two independent assessments.  

The R package Geneland (Guillot et al. 2005) was used to assess the population 

structure in a spatial context. Because the program requires information of precise 

spatial coordinates for each genotyped individual, those CBD samples with ambiguous 

sampling locations were excluded for this analysis. In particular, the Japanese samples 

collected from the aquaria and Taiwanese samples confiscated in the fish markets were 
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excluded. The setting for the analysis was as described in Chapter 2, with the number of 

clusters (K) set to vary from 1 to 6 in the first step, a maximum rate of Poisson process 

fixed to 41 (the number of samples), and maximum number of nuclei in the Poisson-

Voronoi tessellation fixed to 123. To calculate the posterior probabilities of population 

membership for each individual and each pixel of the spatial domain, a burn-in of 100 

iterations and a spatial domain of 151 pixels along the X-axis and 250 along the Y-axis 

were used. 

 The degree of population differentiation among the geographic groups was 

evaluated by the fixation indices, FST (Wright 1951) and RST (Slatkin 1995), using the 

algorithm implemented in Arlequin 3.5.1. Because the F-Statistics is less reliable with 

small sample size (Balloux and Lugon-Moulin 2002), the FST and RST were only 

estimated for the putative populations with sufficient samples, i.e., the East Japan 

(n=32) and Taiwan (n=28) populations. A non-parametric permutation approach with 

10,000 permutations was used to assess the statistical significance of the fixation 

statistics, with a significance level set at p<0.05.  

 

Population	dynamics	of	CBD	in	the	western	North	Pacific	Ocean	

The effective population size (Ne) and long-term gene flow, i.e., the number of migrants 

per generation (Nem), were estimated using maximum likelihood coalescent methods 
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implemented in MIGRATE version 3.6.6 (Beerli and Felsenstein 1999, 2001). To infer 

the presence of recent gene interchange, GeneClass2 was used to search for potential 

first generation migrants (Piry et al. 2004). To assess if sex-biased dispersal occurs in 

the CBD samples, the sex-biased dispersal tests implemented in FSTAT (Goudet et al. 

2002) were used. The program settings for these analyses were as described in Chapter 

2.  

 

Mitochondrial	DNA	data	analyses	

Published mtDNA control region sequences for both species from the same or adjacent 

regions, i.e., Taiwan and southeast China (Wang et al. 1999, Yang et al. 2005), Japan 

(Kita et al. 2013), northeast China (Yang et al. 2005), and Hawaii and Palmyra 

Atoll/Kingman Reef (Martien et al. 2012), were acquired from the GenBank database 

(http://www.ncbi.nlm.nih.gov/genbank). Associated information such as sampling year, 

haplotype frequency and pedigree relationship, if applicable, were referenced to their 

original publications (Appendix 4.2). The sequences were then aligned together with the 

sequences generated for this study in MEGA5 (Tamura et al. 2011) for further analyses.  

 To minimise the effect of parent-offspring pairs (from sampling events that 

could be biased towards close kin) to the overall population genetic structure, one of the 

individuals from all recognized parent-offspring pairs was discarded (See description in 
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previous section Microsatellite data configuration). In the published sequences, the 

pedigree relationship among individuals for Japanese, Hawaiian and Palmyra samples 

was well documented (Martien et al. 2012, Kita et al. 2013), but the kinship information 

for Chinese samples was not available (Wang et al. 1999, Yang et al. 2005). It is 

assumed that there was no parent-offspring pair sampled in Wang et al. (1999) and 

Yang et al. (2005), because 1) their samples were collected in independent stranding or 

occasional fishery interaction events, 2) only a few individuals shared the same 

haplotype, and more importantly, 3) those samples sharing the same haplotype were not 

collected at the same time or location. The published and newly sequenced mtDNA 

sequences were assigned to one of six putative populations based on their sampling 

geography; that is, Japan, Northeast China (including Zhoushan, Qingdao, and 

Lianyunggang), Southeast China (including Dongshan, Taiwan, Hong Kong, the 

Philippines), South China (Beihai), and Indonesia, Hawaii and Palmyra (Fig. 4.2; 

Appendix 4.2).  

 DnaSP v5 (Librado and Rozas 2009) was used to identify unique haplotype(s) 

and estimate the nucleotide diversity (π) and gene diversity (h) for each putative 

population, as well as for the overall species.  Indices for evaluating selective neutrality, 

i.e., Tajima’s D (Tajima 1989) and Fu’s FS (Fu 1997), were also estimated using 

DnaSP. Mismatch distributions implemented in Arlequin were also conducted to test for 

population expansion signals (Rogers and Harpending 1992, Schneider and Excoffier 
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1999, Excoffier 2004, Ray et al. 2003). The confidence intervals of the estimates were 

obtained under 10,000 bootstrap simulations of an instantaneous expansion under a 

coalescent framework. The sum of square deviations (SSD) between the observed and 

the expected mismatch and the raggedness index (r) of the observed distribution were 

calculated and tested to evaluate the fitness of the models (Harpending 1994, Schneider 

and Excoffier 1999).  

 Global tests of genetic differentiation among samples, as well as a 

differentiation test between all pairs of putative populations, were assessed using a 

Fisher’s exact test (Raymond and Rousset 1995) implemented in Arlequin, with a 

10,000-permutation setting. Pairwise FST and ΦST between all pairs of putative 

populations were calculated and tested for significance using Arelquin. The significance 

level was set as p<0.05.  

 To study whether the population structure can be inferred by the presence of any 

evolutionary significant unit in the sample set, MrBayes 3.2 (Ronquist et al. 2012) was 

used to reconstruct the phylogeny of all haplotypes using a Bayesian Markov Chain 

Monte Carlo (MCMC) analysis. The evolutionary model for the test was determined by 

jModelTest 2.1.5 (Darriba et al. 2012); the sampling increment was set at 100 and 

diagnostics at every 1,000 generations; at least 900,000 generations were simulated to 

generate the consensus tree. The final consensus tree was visualized and edited for 

optimal display in FigTree v.1.4 (http://tree.bio.ed.ac.uk/software/figtree/).   
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Results	

Microsatellite	data	editing	

All samples (n=75) were successfully genotyped using at least 23 microsatellite loci, 

and the missing data rate for all loci (n=24) was less than 5%, except for locus TexVet5, 

which had 8.8% missing data. The HO across the 24 loci ranged from 0.553 to 0.721, 

and the average coefficient of kinship (r) ranged from -0.422 to 0.089 among the 

populations (Table 4.2). A close pedigree relationship (r>0.5) was observed in three 

CBD pairs, all from the East Japan population (Table 4.3).  The Pair T2 was sampled 

from the same drive fishery stock, and therefore it was reasonable to suspect it was a 

parent-offspring pair. The other two pairs (T1 and T3) were samples collected from the 

same aquarium; although they were sampled in different years (which means the 

dolphins died in different years), these dolphins may have been caught from the same 

drive fishery stock, or be close kin through breeding in captivity. The data of the two 

individuals (EW1299 and EW1344) were therefore excluded from subsequent analyses 

to avoid potential sampling bias.  

 Null alleles were detected in three loci (Dde72, EV37 and KWM12a) in the 

CBD East Japan population. Significant deviation from HWE was also detected in the 

same loci in the East Japan and Taiwan populations (Appendix 4.3). A significant sign 

of LD was only found between EV37 and KWM2a in IPBD samples. The loci that had 
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a >5% missing data rate (TexVet5) and showed null alleles and/or deviated from HWE 

(Dde72, EV37 and KWM12a) were discarded, and thus it resulted a set of microsatellite 

genotypic data from 20 loci (AAT44, D14, D22, Dde59, Dde65, Dde66, Dde69, Dde70, 

Dde84, EV14, KWM1b, KWM2a, KWM2b, KWM9b, MK3, MK5, Sco11, Sco28, 

Sco55 and TexVet7) in 73 dolphins being used in following analyses.   

 

Table 4.2.   The averages (SD) of the number of alleles, expected heterozygosity (HE), 
observed heterozygosity (HO), allelic richness, inbreeding coefficient (FIS) and 
coefficient of kinship (r) across the 24 microsatellite loci within each putative 
population examined in this study. Number in parentheses is the SD of the estimate. See 
Appendix 4.3 for the estimates by locus in each population. 
 

Species Population n No. of 
alleles HE HO Allelic 

richness FIS r 

CBD Taiwan 28 7.833 
(3.384) 

0.738 
(0.184) 

0.721 
(0.184) 1.738 (0.184) 0.024 -0.036 

 East Japan 32 8.125 
(3.971) 

0.739 
(0.167) 

0.692 
(0.184) 1.739 (0.167) 0.064 0.006 

 West Japan 4 3.875 
(1.314) 

0.719 
(0.212) 

0.685 
(0.241) 1.689 (0.254) 0.055 0.089 

 Philippines 2      -0.422 

IPBD All samples 7 3.609 
(0.988) 

0.650 
(0.126) 

0.553 
(0.179) 3.5 (1.103) 0.055 0.16 

 

Table 4.3.   The information for the three potential parent-offspring pairs in the CBD 
samples. The letter following the ID indicates the sex (F, female; M, male) and the ID 
marked by asterisk is the sample being discarded from further analyses. 
 
Pair 
no. ID-1 ID-2 Sample 

source Sampling location Sampling year r 

T1 EW1342(M) EW1344(F)* Captivity Shimoda Aquarium 
(ECJ) 1995/1998 0.64 

T2 EW1294(M) EW1299(F)* Drive 
fishery Taiji (ECJ) 1986 0.58 

T3 EW1344(F)* EW1351(F) Captivity Shimoda Aquarium 
(ECJ) 1998/2000 0.51 
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Genetic	distances	between	CBD	and	IPBD	

Both FCA and STRUCTURE analysis results showed a clear genetic difference 

between CBD and IPBD (Fig. 4.3, 4.4). Both ΔK and LnP(K) values supported K=2 as 

the best estimation from the STRUCTURE analysis, suggesting these two species are 

genetically well differentiated. No individual possessed an intermediate genotype, or 

any inter-species pair exhibiting a close pedigree relationship (i.e., r >0.5). The ancestry 

assignment test showed three CBD individuals, from Japan, Taiwan, and the Philippines 

respectively (Fig. 4.4), that may have had an IPBD grandparent, although the 

probability was only between 13-37% (Table 4.4).  The Philippine sample with the 

highest hybrid probability was initially identified as a Fraser’s dolphin. If this was not a 

result of mislabeling in the sample archive, it may suggest that this individual has a 

confusing external appearance that resulted in misidentification. The Japanese sample 

was from a captive dolphin; however it is unknown whether the dolphin was a 

descendant of hybrids in the wild, or born in the aquarium with a hybrid pedigree. The 

Taiwanese sample was from a dolphin incidentally caught in the fisheries in the east 

coast of Taiwan, where the reports of IPBD sightings are still absent despite intense 

survey effort (Yang et al. 1999, Chou 2007). The FCA result also showed that there was 

a considerable genetic distance among the IPBD samples. The variation constituted by 

the seven IPBD in the most important factor (Factor 1; the X-axis) was apparently 

greater than the variation in 66 CBD (0.91 vs. 0.55).  
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Figure 4.3.   The result of a factor correspondence analysis (FCA) of 20 microsatellite 
loci data for all acquired bottlenose dolphin samples, without using the ‘sur population’ 
option. Numbers in parentheses indicates the percentage of the variance explained by 
the factor/axis. 

 

 
Figure 4.4.   The best population model (K=2) predicated by STRUCTURE analysis for 
CBD and IPBD without using LOCPRIOR option. Each column represented one 
individual, and the colour portion in each column indicated the probability of the 
individual being assigned to a population. The arrows indicate the three potential 
descendants of hybrids between the two species. 
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Table 4.4.   The ancestry assignment result for the three CBD individuals having the 
least probability being a 'pure' CBD. 
 

Species ID (Sex) Sampling location 

Probability 
of being a 
exclusive 
CBD 
descendant 

Probability 
of being a 
exclusive 
IPBD 
descendant 

Probability 
of having a 
IPBD 
parent 

Probability 
of having a 
IPBD 
grandparent 

CBD EW04604 (M) Japanese aquarium 0.777 0 0.005 0.218 
CBD 496 (M) Taiwan 0.863 0 0.001 0.136 
CBD SW2646 (F) Philippines 0.596 0 0.035 0.369 

 

Population	structure	for	CBD	inferred	from	microsatellite	analyses	

The FCA result showed that when the ‘sur population’ option was not used, the 

Philippine samples had the most distinct genotypes, and the samples from Japan and 

Taiwan grouped together in a central cluster (Fig. 4.5A). FC1 and FC2 together 

explained 8.73% of the variance. On the other hand, when the ‘sur population’ option 

referencing individuals to a population centre was used, population-specific clusters 

could be identified and the power of FC1 and FC2 rose to 82.95%.  The genotypes of 

the Philippine samples remained highly distinct from the other samples, but East Japan 

and Taiwan-West Japan formed two overlapping clusters defined by FC2 (Fig. 4.5B). 

The 14 captive dolphin samples provided by Japanese aquaria grouped with samples 

from East Japan rather than West Japan. It is noteworthy that an East Japan sample, 

EW4842, was clustered among the Taiwan-West Japan samples, and the same 

clustering pattern can also be found in the Geneland analysis (see below). This young 
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male dolphin was stranded at the coast of Miyazaki, which was the most southerly 

sampling site for the putative East Japan population.  This ‘mis-grouping’ could reflect 

limitations to the resolution of the analysis, evidence of direct migration between 

populations, or the result of a carcass drifting between regions (Bilgmann et al. 2011). 

The West Japan samples were segregated from the Taiwanese samples and became an 

independent cluster by the third factor, FC3. This factor explained the remaining 

17.05% of the variance.   

 In the first step of Geneland analysis, the 10 simulations all indicated that the 

most likely number of populations for the sample set was K=3. With the K fixed to K=3 

in the second step, the analysis suggested eight variations of population distribution 

patterns for CBD among the 10 runs with the highest LPP in 100 simulations. These 

eight variations all showed approximately the same clustering pattern, with a few 

samples in each panel being grouped to different clusters (Fig. 4.6). The basic pattern 

was a cluster grouping samples from the west coast of Japan, western and northern 

coasts of Taiwan, and the sample collected in Miyazaki, Japan (“the West Coast 

Cluster”); a cluster for the samples from the eastern coast of Taiwan and from Taiji, 

Japan (“the East Coast Cluster”); and a cluster for the samples from the Philippines 

(“the South Tropical Cluster”). The samples collected from Tainan (southwest Taiwan) 

and Shizuoka (east Japan) swung among the three clusters, but usually grouped with the 

South Tropical Cluster (Fig. 4.6A, B, F, H). The sample collected from Aichi, eastern 
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Japan oscillated between the East Coast Cluster (Fig. 4.6A—E, G) and the West Coast 

Cluster (Fig. 4.6F, H). In short, the analysis suggests that the population membership of 

CBD in the western North Pacific Ocean corresponds with regional oceanographic 

features.  This is reflected in a cluster of samples from the vicinity of the offshore North 

Pacific Ocean (the East Coast Cluster), a cluster from the coastal waters of the northeast 

Asian continent (the West Coast Cluster), and a cluster of samples from Philippine 

waters (the South Tropical Cluster). 

 The STRUCTURE analysis, on the other hand, suggested different numbers of 

K when different criteria were applied. According to the Evanno’s ΔK estimates, the 

most likely K would be K=2 (when the LOCPIROR option was not used) or K=5 (when 

the LOCPIROR option was used) for the sample; while if the result was evaluated by 

the conventional LnP(K) values, the most likely K should be K=1 for both cases (Table 

4.5). However, the graphic output for K=2 with LOCPIROR option revealed subtle 

differentiation among the putative populations, while K=3 and K=5 provided no further 

resolution (Fig. 4.7). When K=2, STRUCTURE clustered the East Japan and Philippine 

populations in one group, the Taiwan and West Japan populations in the other.  The FST 

estimated between East Japan and Taiwan was as little as 0.013, but it was statistically 

significant from zero (p=0); while the RST was 0.055, which was not statistically 

significant from zero (p=0.068±0.002). This implies that genetic differentiation between 

the two regions could exist, but may be difficult to detect. 
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Figure 4.5.   The results of the FCA for the CBD without using LOCPRIOR option (A) 
or using LOCPRIOR option (B). The two most informative factors (FC1 and FC2) were 
assigned as X and Y axes in the plot, and the numbers in parentheses in each axis 
indicates the percentage of the variance explained by the factor. 
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Figure 4.6.   The six variations of the individual population membership assignment 
patterns shown in the 10 runs with the highest LPP for K=3 in Geneland analysis. The 
colours indicate the distribution of K clusters based on the mode of simulated posterior 
probability for each pixel. Some landmarks mentioned in the text are labelled. 

 

 

Table 4.5.   The Evanno table generated by the Structure Harvester based on the results 
of STRUCTURE analysis using the CBD data of 20 microsatellite loci. 
 
LOCPRIOR option K Mean LnP(K) SD of LnP(K) Ln'(K) |Ln''(K)| Delta K 
Not used 1 -4311.47 0.4398 NA NA NA 
Not used 2 -4361.22 22.0843 -49.75 376.91 17.066896 
Not used 3 -4787.88 186.7699 -426.66 271.74 1.454945 
Not used 4 -4942.8 357.0556 -154.92 7.18 0.020109 
Not used 5 -5104.9 413.923 -162.1 80.02 0.193321 
Not used 6 -5186.98 416.6069 -82.08 NA NA 
Used 1 -4311.39 0.2846 NA NA NA 
Used 2 -4477.45 140.7378 -166.06 19.24 0.136708 
Used 3 -4662.75 251.0307 -185.3 200.32 0.79799 
Used 4 -4647.73 156.1957 15.02 98.26 0.629083 
Used 5 -4534.45 42.2544 113.28 96.22 2.27716 
Used 6 -4517.39 124.921 17.06 NA NA 
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Figure 4.7.   Individual’s population membership under a series of K predicated by 
STRUCTURE analysis using 20 microsatellite loci data and the LOCPRIOR option: 
(A) K=2, (B) K=3, and (C) K=5. Each column represents one individual, and the colour 
portion in each column indicated the probability of the individual being assigned to a 
population.  

 

Population	dynamics	for	CBD	inferred	from	microsatellite	analyses	

To evaluate the population dynamics for CBD populations, the samples were 

reorganised into three clusters based on the result of Geneland analysis: a West Coast 

Cluster (the samples from western coasts of Taiwan and Japan, and from Miyazaki), an 

East Coast Cluster (the samples from eastern coast of Taiwan and Taiji), and a South 

Tropical cluster (the samples from the Philippines). However, the South Tropical 
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Cluster was discarded because the sample size of this cluster was apparently insufficient 

to provide useful insights. The samples from Tainan, Aichi, and Shizuoka were 

excluded from the analyses of this section due to the uncertainty of their population 

identity.  

 The Migrate analysis estimated that the Neµ values for the East Coast Cluster 

were slightly larger than the West Coast Cluster (Table 4.6). With the Ne estimates, the 

ratio of effective to census population size (Ne/N) can be calculated to evaluate the level 

of biased reproductive success in each population (Frankham 1995). The census 

population size (N) estimated for the ‘Japanese Coastal’ population (N=37,000; 

Miyashita 1993) was used to calculate the Ne/N for East Coast Cluster, and the N 

estimated for the CBD in southwest Japanese waters (N=35,000, Kasuya 2011) was 

used to calculate the Ne/N for West Coast Cluster. The calculation showed the Ne/N for 

both populations to be similar in magnitude, ranging from 0.042 to 0.059, or from 0.084 

to 0.118, depending on what microsatellite mutation rate was used (Table 4.6). 

 The estimate of the number of migrants per generation (Nem) from the West 

Coast Cluster to East Coast Cluster was about double to the Nem vice versa (Table 4.6). 

Both estimates were small, suggesting there was less than one immigrant per generation 

between the two regions in roughly the last 4Ne generations (Kingman 1982, Wilson 

and Rannala 2003). The GeneClass analysis, on the other hand, suggested there were 
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three potential first-generation immigrants (Table 4.7), suggesting a recent presence of 

gene flow. There was no sign of sex-biased dispersal (Table 4.8). 

 

Table 4.6.   The estimates of effective population size times mutation rate (Neµ) and 
number of migrants per generation (Nem) from the two CBD populations recognized in 
Geneland analysis. The Ne is calculated assuming the average microsatellite mutation 
rate (µ) is 0.01% for Ne (high) and 0.02% for Ne (low) (Whittaker et al., 2003, Hoelzel 
et al. 2007, Hollatz et al. 2011). The ratio of effective to census population size (Ne/N, 
Frankham 1995) is calculated using the census population size (N) estimated for the 
‘Japanese Coastal’ population (N=37,000; Miyashita 1993) for East Coast Cluster, and 
the N for the CBD in the southwest Japanese waters (N=35,000; Kasuya 2011) for West 
Coast Cluster. The 2.5th and 97.5th profile likelihood estimates are given in parentheses. 
  Source population Host population 

  
East Coast West Coast 

Neµ 
 

0.400 (0.367—0.437) 0.321 (0.293—0.353) 
Ne (low) 

 
2000 (1836—2186) 1605 (1465—1766) 

Ne (high) 
 

4001 (3671—4371) 3211 (2930—3532) 
Ne (low)/N  0.054 (0.05—0.059) 0.046 (0.042—0.05) 
Ne (high)/N  0.108 (0.099—0.118) 0.092 (0.084—0.101) 
Nem East Coast 

  
0.057 (0.046—0.070) 

  West Coast 0.106 (0.089—0.125)     

 

Table 4.7.   The potential first-generation immigrants in the East and West Coast 
Clusters of CBD. 
 

ID Sex Current 
population 

Potential source 
population -LOG(L_home / L_max) p 

870 Male West Coast East Coast 1.766 0.009 
1014 Male West Coast East Coast 3.827 0.002 
EW1340 Female East Coast West Coast 1.492 0.006 

 

Table 4.8.   The sex-biased dispersal test results for the CBD samples from the East and 
West Coast Clusters. 
 

  n 
Mean of 
assignment 
indices 

Variation of 
assignment 
indices 

FIS FST Ho Hs Relativeness 

Female 18 0.280 12.605 0.038 0.033 0.661 0.6873 0.0608 
Male 16 -0.315 12.716 0.009 0.034 0.684 0.6903 0.065 
Overall 34 

  
0.036 0.018 0.672 0.6969 0.0342 

p  0.602 0.986 0.503 0.94 0.5 0.863 0.908 
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MtDNA	genetic	diversity	of	CBD	and	IPBD	in	the	western	and	central	North	Pacific	

Ocean	

This study revealed 42 novel CBD mtDNA control region sequences for dolphins from 

Taiwan, East Japan and the Philippines, and seven for IPBD from Taiwan and Japan. 

Together with the published sequences acquired from GenBank (n=311), a 388bp 

consensus mtDNA sequence from a total of 393 sequences was gathered and 

reconstructed as five putative CBD populations (East Japan, Northeast China, Southeast 

China, Hawaii and Palmyra) and four IPBD populations (Japan, Southeast China, South 

China and Indonesia) (Fig. 4.2, Appendix 4.2). According to the AIC and BIC indices 

calculated by jModelTest, the best model for reconstructing a phylogenetic tree for the 

genus using the mtDNA sequence samples was HKY+I+G.  

 For the CBD data set, 64 haplotypes were identified among the 353 sequences, 

defined by 82 variable sites, including two deletion gaps (Appendix 4.4). The overall 

genetic diversity (h) was 0.935 and nucleotide diversity (π) was 0.0197. The h and π for 

each population was similarly high, ranging from 0.824 to 0.909 and 1.368% to 

2.193%, respectively (Table 4.9). Hap_2 was the most widespread haplotype; it was 

found in all populations except Palmyra (Fig. 4.8, 4.9). The Hap_2 was also the most 

dominant haplotype in the western North Pacific Ocean (28.3% of all samples). Within 

that region, it was most common in Northeast China (42.9%, accession number 

AF459509-15), and in the school of dolphins culled in the drive fishery in 2005 (30.4%, 
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previously published as Haplotype Ttr06, GenBank accession number AB303159). 

Hap_16 was the only haplotype shared between the western North Pacific (in Southeast 

China) and tropical Central Pacific (in Palmyra Atoll). It is noteworthy that in the 

phylogenetic tree, Hap_17, 25 and 33 were isolated from the major CBD-IPBD lineage, 

potentially indicating a lineage sorting process is still ongoing in CBD in the western 

North Pacific populations (Fig 4.7). 

 

Table 4.9.   Summary of the DNA haplotype diversity, nucleotide diversity, and indices 
for testing locus neutrality for the CBD and IPBD populations sampled in this study. 
Number in parentheses is the SD of the estimate. 
 

  Sample 
size 

No. of 
haplotypes 

Haplotype 
diversity 

Nucleotide 
diversity Tajima's D Fu's Fs 

CBD 
      East Japan 160 23 0.870 (0.019) 1.368% (0.103%) -0.81835 -1.788 

SE China 49 20 0.908 (0.025) 2.193% (0.314%) -0.74485 -1.607 
NE China 14 8 0.824 (0.098) 1.638% (0.427%) -1.09647 0.216 
Hawaii 119 20 0.868 (0.016) 2.124% (0.088%) -0.09236 1.449 
Palmyra 11 7 0.909 (0.066) 1.851% (0.423%) -0.42215 0.526 
Overall 353 63 0.935 (0.008) 1.966% (0.079%) -1.25991 -22.17** 
IPBD 

      Japan 3 2 0.667 (0.314) 0.346% (0.163%) NA 1.061 
SE China 29 14 0.899 (0.036) 1.365% (0.110%) 0.99207 -2.389 
S China 6 3 0.733 (0.155) 1.195% (0.351%) 0.99488 2.76 
Indonesia 2 2 1 (0.5) 1.039% (0.519%) NA 1.386 
Overall 40 18 0.924 (0.022) 1.395% (0.084%) 0.66414 -4.005* 

*: P<0.05; **: P<0.01 

 

 For IPBD, 19 variable sites were found defining18 haplotypes in a total of 40 

sequences from the coastal waters around Japan, Southeast China and South China. The 

overall h was 0.924 and π was 1.395%; the h and π for IPBD populations were lower 

than CBD populations in general (Table 4.9). The high genetic diversity for the 
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Indonesian population was likely an artefact due to sample size insufficiency. The seven 

IPBD samples were assigned to five haplotypes (Hap_66, 71, 72, 74 and 78) and none 

of those was a novel haplotype (Fig. 4.8, 4.9). The two Japanese samples from the same 

region (Amakusa) shared the same haplotype.  Hap_59 was an IPBD haplotype from a 

putative CBD specimen collected from Hawaiian waters (M34066), and the introduction 

of this alien haplotype to the CBD population was regarded as a result of introgression 

in the distant past (Martien et al. 2012). 

 

Figure 4.8.   The Median-joining network tree for CBD and IPBD mtDNA control 
region haplotypes. Each circle represents a unique haplotype. The size of circle 
indicates the number of individuals having the haplotype and the colour shade indicates 
the proportion of each population within the haplotype. The number of hatch marks at 
the lines indicates the number of mutational steps separating the haplotypes. Solid 
circles indicate missing intermediate haplotypes. 
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Figure 4.9.   Phylogenetic relationship of the mtDNA haplotypes for the CBD and IPBD 
from the western and central North Pacific Ocean. The number at the branch indicates 
the bootstrap probability. 
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Population	structure	and	expansion	history	for	CBD	inferred	from	mtDNA	data	

Most pairwise FST and ΦST comparisons were statistically significant (Table 4.10). 

Fisher’s exact tests based on haplotype frequencies suggested the five putative 

populations were well differentiated, except for the comparison between Northeast and 

Southeast China (Table 4.11). The clear differentiation between the Hawaiian and 

Palmyra populations has been reported in the original paper (Martien et al. 2012); here 

the analysis further reveals that the Hawaiian and Palmyra populations were also 

differentiated from the western North Pacific populations. Within the western North 

Pacific region, the Northeast China population was the least differentiated, although the 

statistical insignificance could be largely due to deficient sample size, which was an 

issue for the Northeast China population sample. 

 A negative Tajima’s D was estimated for all putative populations, although none 

of the values were significantly different from zero (Table 4.9). A negative Fu’s Fs was 

estimated for the East Japan and Southeast China populations, but again none of the 

estimates was statistically significant. The only exception was when all samples were 

pooled together, the Fu’s Fs estimate was negative and significantly different from zero 

(Table 4.9). The mismatch distributions for each putative population appeared to be 

multimodal (Fig. 4.10), even though fit to the expansion model could only be rejected 

for the Hawaiian and Northeast China populations with the demographic expansion 

model (Table 4.12). 
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Table 4.10.   Pairwise FST/φST comparisons among the five putative CBD populations in 
western-central North Pacific Ocean. The pairwise FST value is above the diagonal and 
the pairwise φST value is below the diagonal.  
 
        FST       

 
  n East Japan SE China NE China Hawaii Palmyra 

 
East Japan 160  0.04114** 0.02039 0.11421** 0.10727** 

 
SE China 49 0.07986**  0.01819 0.10365** 0.076** 

φST NE China 14 0.01974 0.00526  0.13426** 0.13486** 

 
Hawaii 119 0.15981** 0.05938** 0.09145**  0.10945** 

  Palmyra 11 0.53322** 0.30374** 0.43446** 0.2427**   
*: P<0.05; **: P<0.01 

 
Table 4.11.   Pairwise non-differentiation exact P values estimated based on mtDNA 
haplotype frequencies (above the diagonal) or Tamura and Nei’s distance model (below 
the diagonal). 
 
    p   
  East Japan SE China NE China Hawaii Palmyra 

East Japan  
0.000±0.000 
*** 

0.000±0.000 
*** 

0.000±0.000 
*** 

0.000±0.000 
*** 

SE China 0.000±0.000 
***  0.242±0.015 0.000±0.000 

*** 
0.000±0.000 
*** 

NE China 0.001±0.000 
** 0.253±0.021  

0.000±0.000 
*** 

0.001±0.000 
** 

Hawaii 0.000±0.000 
*** 

0.000±0.000 
*** 

0.000±0.000 
***  0.000±0.000 

*** 

Palmyra 0.000±0.000 
*** 

0.000±0.000 
*** 

0.002±0.001 
** 

0.000±0.000 
***  

*: P<0.05, **: P<0.01, ***:p<0.001 

 
Table 4.12.   The parameters of the demographic and spatial expansion models for each 
putative population, estimated by the mismatch distribution analysis. 
 

  Tau 95%CI SSD 
Mode SSD 
p value 

Raggedness 
index (r) p 

Demographic expansion model 
    Japan 6 (2.240—9.256) 0.02029 0.0925 0.04178 0.0861 

Southeast 
China 4.4 (0.137—20.461) 0.02883 0.1543 0.04305 0.0696 
Northeast 
China 0 (0—0.586) 0.80256 0 0.13211 0.9994 
Hawaii 10.7 (5.609—14.5) 0.03509 0.0029 0.05379 0.0003 
Palmyra 1.6 (0—16.305) 0.07867 0.1582 0.10876 0.269 
Spatial expansion model 

     Japan 4.64032 (2.185—7.97) 0.01657 0.4126 0.04178 0.5882 
Southeast 
China 3.93602 (1.534—18.241) 0.02594 0.2514 0.04305 0.2757 
Northeast 
China 4.61573 (1.003—9.904) 0.0718 0.2174 0.13211 0.4642 
Hawaii 9.71783 (6.142—13.588) 0.02406 0.358 0.05379 0.516 
Palmyra 10.046 (0.149—161.891) 0.07782 0.0617 0.10876 0.464 
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Figure 4.10.   Observed and expected mismatch distributions for the CBD populations 
in the western and central North Pacific Ocean under the demographic (A) and spatial 
expansion models (B). The vertical bars (in grey) in the panels indicate the model 
frequency in each scenario. 
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Discussion	

Together with the earlier publication which suggests significant population 

differentiation between the CBD found in the waters around the Hawaiian Islands and 

Palmyra Atoll (Martien et al. 2012), the data, for the first time, show genetic 

differentiation between shallow and deep regions of the coastal waters in the western 

North Pacific region, and significant differentiation between the western and central 

North Pacific populations. The data rejected the hypothesis that coastal CBD is absent 

in the western North Pacific Ocean due to the presence of their potential habitat 

competitor, the IPBD. The following paragraphs are devoted to discuss the 

compatibility between the genetic structure of CBD and the stock structure based on 

shipboard survey data, possible mechanisms that may result in such population 

structure, insights into the population dynamics of the CBD populations, potential 

interaction between CBD and IPBD, and conservation implications for the two species.  

 

CBD	populations	in	the	western	North	Pacific	Ocean	

Miyashita (1993) studied the sighting records of several small cetaceans in the western 

North Pacific Ocean (approximate survey area: 25—50°N, 130°E—180°; excluded Sea 

of Japan) and concluded that CBD is mainly distributed in 30—42°N and west of 

160°E, with a density gap at 142—145°E. The density gap is suggested as a boundary 
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separating the ‘Japanese coastal’ population (west of 142°E) and ‘Japanese offshore’ 

population (east of 145°E). The existence of a boundary is tentatively supported by a 

telemetry study that showed that the CBD population targeted by the Japanese coastal 

drive fishery, which is usually operated within 15—20 nautical mile from land (Kishiro 

and Kasuya 1993), is unlikely to utilise the waters further than 200 nautical miles from 

land (Tanaka 1987). If the Japanese coastal population truly exists, the East Japan 

samples should be from this population, since most of the samples were collected from 

dolphins caught in the coastal drive fishery.  

 The Geneland analysis further suggests the southern range of this ‘Japanese 

coastal’ population could be extended further south to the eastern coast of Taiwan (22—

25°N, east of 121°E), and to avoid confusion it is then called the “East Coast Cluster”. 

The eastern coasts of Taiwan and Japan (between 22—42°N) are together embedded in 

a unique oceanic biogeographic province, of which the main characteristic is sharing the 

speedy, warm, relatively high saline Kuroshio Current flowing northeastwardly from 

Luzon in the Philippines to the eastern coast of Japan year-round (Barkley 1970, Wyrtki 

1975, Spalding et al. 2012) (Fig. 4.11). Although it is still uncertain what type of habitat 

this East Coast Cluster CBD population utilises and where that habitat is, it is very 

likely that the strong, constant Kuroshio Current plays a crucial role in defining this 

habitat (Tanaka 1987). Similar population structure where there is connectivity along 

the eastern coasts of Taiwan and Japan has been suggested for short-finned pilot whales 
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(Globicephala macrorhynchus) (Chen et al. 2014), Risso’s dolphins (Grampus griseus) 

(Chapter 2) and Fraser’s dolphins (Chapter 3). However, it is possible that there is 

further fine-scale population sub-division within the cluster, as seems to be the common 

pattern for CBD elsewhere in the world (e.g., Mirimin et al. 2011, Martien et al. 2012, 

Richards et al. 2013, Gaspari et al. 2015a). In this study, the sample size for eastern 

Taiwan is too small (n=4) to reveal such pattern, even if it does exist.  

 On the other hand, Kasuya et al. (1997) found a subtle difference in several life 

history traits (e.g., the body length at sexual maturity, the age of sexual maturity and the 

interval of breeding) between CBD caught in Taiji (eastern Japan) and Iki (southwestern 

Japan), suggesting CBD populations between the eastern and western coasts of Japan 

are differentiated (cited in Kasuya 2011). This hypothesis is tentatively supported by 

Hayano (2013), who studied 520bp mtDNA control region sequences in 42 CBD from 

the eastern and western coasts of Japan and found that seven of the 10 samples collected 

from the western coast were grouped in a unique phylogenetic cluster with a bootstrap 

support value of 71%. The FCA and Geneland results also support the differentiation of 

CBD populations between the western and eastern coasts of Japan (i.e., between the Sea 

of Japan and the Pacific coast of Japan), although the sample size from the population 

west of Japan is too small for robust inference. However, it seems likely that the CBD 

either side of Japan are differentiated populations, as such differentiation pattern has 
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been reported for other cetaceans, e.g., in minke whales (Balaenoptera acutorostrata) 

(Abe et al. 2000) and Dall’s porpoises (Phocoenoides dalli) (Hayano et al. 2003). 

 

 
Figure 4.11. A map of eastern Asian waters showing the abyssal topography and the 
major surface ocean currents mentioned in this study. 
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 The results further reveal that there may be another coastal CBD population in 

the vicinity of the Taiwan Strait (west Taiwan). Although its relationship with the CBD 

population from west Japan (in the Sea of Japan) is ambiguous, the differentiation 

pattern appears to be correlated with the distribution of shallow continental shelves (the 

western coast of Taiwan and Japan; the West Coast Cluster) and steep continental 

slopes (the eastern coasts of Taiwan and Japan; the East Coast Cluster) along the 

western coasts of the North Pacific Ocean (Fig. 4.11). The differentiation between 

‘inshore (shallow-water)’ and ‘offshore (deep-water)’ populations is a typical scenario 

for CBD, and it has been attributed to habitat specialization, and perhaps is a result of 

independent colonization of the coastal populations (Hoelzel et al. 1998, Tezanos-Pinto 

et al. 2009, Moura et al. 2013, Louis et al. 2014b, Gaspari et al. 2015b, Lowther-

Thieleking et al. 2015). However, for this West Coast Cluster, the samples were 

collected exclusively from the eastern side of the Taiwan Strait, but it is reasonable to 

expect this population is also distributed along the other side of the strait, and possibly 

further north in the East Sea or south to the South China Sea.  This would be consistent 

with the geographic adjacency, the similarity of physical and biological environment, 

and the brisk activity of coastal currents in the region (Spalding et al. 2007, Cho et al. 

2009), although further subdivision of this West Coast Cluster can be expected as 

discussed in the earlier paragraph.  Earlier studies for bottlenose dolphins in the coastal 

region of the western North Pacific Ocean mainly focused on the ecologic, morphologic 
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and genetic differences between CBD and IPBD (Gao et al. 1995; Wang et al. 1999, 

2000; Yang et al. 2005; Kurihara and Oda 2007), providing limited insight into the 

population differentiation within the CBD species.  The study highlights the need for 

further careful investigations into CBD in this region, whether it is the distribution, 

habitat preferences, or behaviours of the dolphins to shed more light on the evolutionary 

mechanisms driving the CBD populations in Asian coastal waters to differentiate. 

 Conversely, there is insufficient evidence to determine the presence and the 

precise range of the ‘Japanese offshore’ (30—42°N, 145°E—180°) and the ‘Southern 

offshore’ (23—30°N, 127°E—180°) populations, the two offshore CBD populations 

proposed by Miyashita (1993). Since both of these ‘offshore’ populations are suggested 

as having an extensive range into the vicinity of the central North Pacific Ocean, one 

might suspect they are connected with, or even the same as, the populations in the 

central Pacific Ocean, given their geographic proximity.  Martien et al. (2012) claim 

that the CBD inhabiting Hawaiian waters are isolated from other Pacific populations, 

and this seems to support this idea.  However, the possibility cannot be excluded, that 

the CBD found around the Hawaiian Islands are in fact another coastal population, 

given that there have been a number of studies that suggest oceanic cetacean species 

established isolated coastal population(s) around the Hawaiian Islands (Andrews et al. 

2010, Courbis et al. 2014, Martien et al. 2014). In addition, the FCA and Geneland 

results suggest a fairly distinct population of CBD inhabiting Philippine waters, though 
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the sample size is too small for strong inference, and one of the samples could possibly 

be a hybrid. Dolar et al. (2006) reported that the CBD population in central Philippine 

waters (Sulu Sea and the Tañon Strait) was found exclusively in shallow and 

intermediate waters inside of the shelf break. Although various lines of evidence 

indicate the possibility, more data are needed to resolve this question.  

 

The	dynamics	of	the	CBD	populations	in	the	western	North	Pacific	

The Neµ estimated for the West Coast Cluster and the East Coast Cluster are only about 

1/4—1/10 of the Neµ estimated for the more pelagic central Pacific populations 

(Neµ=1.52—3.45; Martien et al. 2012). This agrees with an earlier report that suggests 

the Ne for coastal CBD populations tends to be smaller than the Ne for pelagic 

populations (Louis et al. 2014a). The calculation showed the Ne/N estimates for both the 

West Coast and East Coast Cluster are similar in magnitude, ranging between 0.042 and 

0.118, and the range seems to agree with the estimate proposed by a meta-analysis of 

Ne/N for wildlife populations (Ne/N=0.1—0.11) (Frankham 1995). However, the actual 

Ne/N for both populations can be even smaller than what have been calculated, since the 

N used for this calculation did not include the CBD from Taiwanese waters and the Sea 

of Japan, while the Ne from genetic data did. 
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 Low Ne/N implies a presence of biased reproductive success, biased sex ratio, a 

recent population bottleneck, or that the population is highly age-structured (Nunney 

1993, Hedrick 2005, Charlesworth 2009). Biased reproductive success and biased sex 

ratio may be the causes of low Ne/N, as such bias appears to be common in cetacean 

species, including bottlenose dolphin (Krützen et al. 2004, Cerchio et al. 2005, Frasier 

et al. 2007, Green et al. 2011, Wiszniewski et al. 2012, Nichols et al. 2014).  However, 

the low Ne/N can be a result of artifacts since 1) the program Migrate may end up 

suggesting an underestimated Neµ if the population size is not consistent, namely when 

the size was increasing or fluctuating through times (Beerli 2009), and 2) the N estimate 

reported in earlier studies was estimated based on a rather basic transect line survey 

method, which is now known to be insufficient for estimating marine mammal 

abundance (Alpizar-Jara and Pollock 1996, Okamura et al. 2012). The negative 

Tajima’s D and Fu’s Fs estimates and the decent fitting to the unimodal population 

expansion models for the East Japan (the East Coast Cluster) and the Southeast China 

(the West Coast Cluster) populations can be regarded as a sign of population expansion 

in the past, and therefore suggesting the population size is inconsistent through time. 

Conversely, the Tajima’s D and Fu’s Fs estimates are statistically insignificant and the 

mismatch distribution appears to be multimodal in either the demographic or spatial 

model, that suggests the population expansion, if it ever happened, was mild and 

progressive, and therefore the influence of an inconsistent population size to the Neµ 
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may be limited. Nevertheless, further analyses using other coalescent computer 

programs assuming no constant population size, such as LARMAC (Kuhner 2006), 

IMa2 or IMa2p (Hey 2010, Sethuraman and Hey 2015), and BEAST (Drummond and 

Rambaut 2007), would be useful to confirm the accuracy of Neµ estimates and the 

impact of population size change in the past (Beerli 2009). 

 

Possible	mechanisms	that	shape	CBD	population	structure	in	the	western	North	

Pacific	

The Migrate analysis suggests that long-term gene flow between the East and West 

Coast Clusters is limited to less than one migrant per generation. On the other hand, the 

GeneClass analysis identified three contemporary first-generation migrants in both West 

and East Coast Clusters, suggesting the presence of on-going gene flow between the 

two populations.  The Kuroshio Current could play an important role in promoting gene 

flow, given that the current itself and its branch currents constantly drive the surface 

waters in and out the shallow coastal region (Cho et al. 2009, Matsuno et al. 2009, Jan 

et al. 2010), and it has been suggested that the movement of CBD can be driven by the 

flow of the Kuroshio Current (Tanaka 1987). If this is correct, the interchange of CBD 

between the two populations may be a contemporary phenomenon, because during the 

glacial period the influence of the Kuroshio Current on the coasts of the eastern Asian 
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Continent was weakened as the flows to the East China Sea and South China Sea were 

limited (Ijiri et al. 2005, Jiang et al. 2006). The Tsushima Warm Current, a branch of 

Kuroshio Current carrying warm water into the Sea of Japan through the Tsushima 

Strait, was even suspended during the Last Glacial Maximum (Itaki et al. 2004). 

Therefore the oceanography of the region may not have promoted connectivity during 

the glacial period as much as today, and the lack of warmer water introduced by the 

Kuroshio current from the south could have generated contrasting physical conditions 

between the shallower western coastal and the deep eastern continental slope habitats. 

This habitat distinction may have further reduced connectivity during that period. Low 

levels of gene flow have been reported between the coastal and pelagic populations in 

the eastern North Atlantic Ocean (Louis et al. 2014a), and among the regional 

populations around the Hawaiian Islands (Martien et al. 2012), and it is hypothesised as 

a result of assortative mating, due to the constrained preference of natal habitat, 

specialised diet, and possibly, cultural familiarity (Hoelzel et al. 1998; Möller et al. 

2007; Cantor and Whitehead 2013; Louis et al. 2014a, b). In the case of this study, 

although the strong correspondence between population structure and contrasting 

oceanographic features (i.e., shallow continental shelves versus sharp continental 

slopes) implies population-specific resource preference, it seems more likely to be a 

result of historic isolation (possibly during the glacial period) than a result of deliberate 

assortative mating.  
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Sympatric	relationship	between	IPBD	and	CBD		

The mtDNA data agree with previous studies (Wang et al. 1999, Kakuda et al. 2002, 

Natoli et al. 2004, Yang et al. 2005, Kita et al. 2013, Moura et al. 2013) showing clear 

phylogenetic differentiation between IPBD and CBD.  The microsatellite data also 

exhibit a distinct difference between IPBD and CBD. On the other hand, the 

microsatellite data also provide some indication of limited gene flow between these two 

species, indicating three individuals that might have hybrid ancestry. However, the 

possibility cannot be eliminated, that the interbreeding was between CBD and other 

delphinid species that are closely related to IPBD but live sympatrically with the CBD, 

such as pantropical spotted dolphins (Stenella attenuata), striped dolphins (S. 

coeruleoalba), spinner dolphins (S. longirostris), common dolphins (Delphinus spp.), 

and Fraser’s dolphins (LeDuc et al. 1999, Kingston et al. 2009, Möller et al. 2008, 

McGowen 2011, Amaral et al. 2012). This has the potential to produce misleading 

results when the signal for hybridisation is weak, as in the case of the study. In fact, 

among four potential hybridisations between the Tursiops congeneric species (three 

from this study and one from Martien et al. 2012), one of the putative hybrid animals 

was similar in appearance to Fraser’s dolphin, and two (one from eastern Taiwan and 

the other from Hawaii) were sampled from a region where the occurrence of IPBD has 

never been documented (Yang et al. 1999, Chou 2007, Baird et al. 2013). Since there is 

evidence of polyphyly among the Tursiops-Stenella-Delphinius complex of species 
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(LeDuc et al. 1999, Kingston et al. 2009, McGowen 2011, Amaral et al. 2012), the 

evidence for hybridisation therefore needs to be interpreted carefully. 

 It has been proposed that there are at least six IPBD populations in Japanese 

waters (Amano 2007, Brownell and Funahashi 2013). Kakuda et al. (2002) studied the 

genetic structure of IPBD from Mikura Island (about 200km south of Tokyo) using 

mtDNA control region sequences and concluded that the dolphins were genetically 

similar to the IPBD in Taiwanese waters. Hayano (2013) used the same genetic marker 

and reported a clear population differentiation among Mikura Island, Amakusa, Amami 

and Ogasawa Islands. The residency of Amakusa, Mikura Island, and Kagoshima Bay 

populations has been proposed based on photo-identification analysis (Shirakihara et al. 

2002, Kogi et al. 2004, Nanbu et al. 2006). Morisaka et al. (2005) found significant 

geographic variation in the whistles among dolphin populations around Amakusa, 

Mikura Island and Ogasawa Islands. In Taiwanese waters, the distribution of IPBD is 

seemly discontinuous: current field observations and records of fishery interactions 

showed that this species aggregates around the Penghu archipelago (in the Taiwan 

Strait, west of Taiwan), and the coastal waters off Nan-Wan, southeast of Taiwan 

(Wang et al. 1999, Wang 2000).  

 The genetic data for IPBD were obtained from three putative aggregation sites in 

Taiwanese and Japanese waters: Amakusa (western Japan), Mikura Island (eastern 

Japan) and western Taiwan; and the FCA result showed distinct clustering for those 
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samples. The data may be consistent with the population structure for IPBD in coastal 

Japanese and Taiwanese waters proposed by Hayano (2013), but to verify the 

hypothesis, further examination using more samples from the same and further sites is 

necessary. 

 

Conservation	implications	

The results indicate that there are at least two populations of CBD distributed 

parapatrically in the coastal waters around Taiwan and Japan, corresponding to the 

distribution of shallow continental shelf or deep continental slope habitats. Although the 

analyses detected some recent immigration activities, the long-term estimates show 

limited gene flow between the two populations.  This potentially agrees with earlier 

analyses that show habitat specialisation plays an important role in differentiating 

inshore and offshore populations (Hoelzel et al. 1998, Möller et al. 2007, Louis et al. 

2014b). In addition, the two populations are perhaps confronted by different forms of 

anthropogenic threats.  It is therefore justifiable to manage them as separate CBD 

populations.  

 One of the most acknowledged threats to the CBD in the coastal waters of the 

western North Pacific Ocean is the small-scale whaling fishery, which regularly 

operated in Japanese waters on a yearly basis (Perrin et al. 2005, Kasuya 2007, Kasuya 
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2011). The small-scale whaling appears to target the East Coast Cluster, since the catch 

of CBD today is limited to three prefectures along the Pacific coasts of Japan, namely 

Wakayama, Shizuoka and Okinawa (Kasuya 2011). The intensified whale watching 

activities along the east coast of Taiwan, if unregulated, could also create unnecessary 

harassment to this population (Hoyt 2001, Perrin et al. 2005, Parsons 2012). For the 

West Coast Cluster CBD, as well as for the IPBD, it is foreseeable that habitat 

loss/degradation, pollutant accumulation, acoustic disturbances and entanglement in 

fisheries would be the main threats, as such impacts have been identified for other 

coastal cetacean species, i.e., the Indo-Pacific humpback dolphin (Sousa chinensis) and 

finless porpoise (Neophocaena phocaenoides), in the same region (Perrin et al. 2005, 

Jefferson et al. 2009, Choi et al. 2013, Slooten et al. 2013). An earlier study suggests 

that regional genetic diversity for IPBD in Japanese waters is low (Hayano 2013) which 

means the IPBD populations can be more vulnerable, regarding some IPBD populations 

are known to be disturbed by whale watching activities (Matsuda et al. 2011). In 

addition, the interaction between IPBD and the West Coast Cluster CBD may also be a 

factor influencing the population trend of both IPBD and CBD, since the analysis shows 

that IPBD and the West Coast Cluster CBD likely co-exist in the coastal regions along 

the eastern Asian Continent and can be competing for the same (or similar) habitat 

resource. It is therefore proposed that further investigations on the CBD and IPBD in 
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this region are certainly needed, in order to strengthen the basis of scientific knowledge 

and consequently to provide more useful information for conservation management.  
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Appendices	

Appendix 4.1. List of the samples acquired for this study. Note not all sample in this list 
were used in the study. The samples analysed are indicated as ‘Y’ in ‘MS’ 
(microsatellite genotyping) and ‘mtDNA’ (mtDNA haplotype) columns. Abbreviations 
for the Contributors: Es-Bank, the Center for Enviornmental Studies at Ehime 
University (Japan); NTU, National Taiwan University; SWFSC, Southwest Fisheries 
Science Center (USA).  
 
Appendix 4.2.   Sample information for the common bottlenose dolphin (CBD) and 
Indo-Pacific bottlenose dolphin (IPBD) samples used in the mtDNA analyses in this 
study.  
 
Appendix 4.3.  Presence of null alleles, number of alleles, allelic richness, inbreeding 
coefficient (FIS), observed heterozyogsity (HO) and expected heterozygosity (HE) for the 
24 microsatellite loci in the bottlenose dolphins examined in this study. The loci marked 
by asterisk are discarded from further analyses. 
 
Appendix 4.4. Polymorphic sites in the bottlenose dolphin mtDNA control region 
haplotypes. The dot indicates identical site to the top sequence and the dash indicates an 
insertion–deletion event. The number in the top row indicates the position of the 
variable site in the 388bp sequence. 



  

Appendix 4.1. 
Longitute Latitiute ID Species Location Population Sample Source Contributor Year Sex MS mtDNA 

135.950142 33.593888 EW01297 Tursiops truncatus Taiji, Wakayama East Japan Whaling Es-Bank 1986 M Y TtHap_1 

139.558056 33.844444 EW01354 Tursiops aduncus Mikurajima, Tokyo East Japan Stranding Es-Bank 2001 M Y TaHap_66 

130.391667 32.612222 EW04792 Tursiops aduncus 
Off Habojima Is., Kami-

amakusa, Kumamoto Sea of Japan Stranding Es-Bank 2004 M Y TaHap_78 

130.114722 32.558889 EW04898 Tursiops aduncus 
Off Tsuhji-shima Is., 
Amakusa, Kumamoto Sea of Japan Stranding Es-Bank 2007 M Y TaHap_78 

119.596992 23.571382 487 Tursiops aduncus Penghu Taiwan Bycatch NTU 2000 F Y TaHap_72 

121.674164 25.202864 790 Tursiops aduncus Taipei Taiwan Stranding NTU 2005 M Y TaHap_71 

120.902556 24.808667 1112 Tursiops aduncus Hsinchu Taiwan Stranding NTU 2004 M Y TaHap_72 

120.858794 24.702706 TSDU04 Tursiops aduncus Miaoli Taiwan Stranding NTU 2011 M Y TaHap_74 

127.788611 26.482778 EW01286 Tursiops truncatus Onna, Okinawa East	Japan Captive Es-Bank 2003 F Y N/A 

138.786389 38.06 EW01338 Tursiops truncatus Niigata  East	Japan Captive Es-Bank 1993 F Y N/A 

138.903889 34.600833 EW01342 Tursiops truncatus Shimoda, Shizuoka East	Japan Captive Es-Bank 1995 M Y N/A 

138.903889 34.600833 EW01344 Tursiops truncatus Shimoda, Shizuoka East	Japan Captive Es-Bank 1998 F Y N/A 

139.472889 35.297064 EW01345 Tursiops truncatus 
Eno-shima Island, 

Kanagawa East	Japan Captive Es-Bank 1999 F Y N/A 

138.903889 34.600833 EW01347 Tursiops truncatus Shimoda, Shizuoka East	Japan Captive Es-Bank 1999 F Y N/A 

138.903889 34.600833 EW01348 Tursiops truncatus Shimoda, Shizuoka East	Japan Captive Es-Bank 1999 F Y N/A 

138.903889 34.600833 EW01349 Tursiops truncatus Shimoda, Shizuoka East	Japan Captive Es-Bank 1999 F Y N/A 

138.903889 34.600833 EW01350 Tursiops truncatus Shimoda, Shizuoka East	Japan Captive Es-Bank 2000 F Y N/A 

138.903889 34.600833 EW01351 Tursiops truncatus Shimoda, Shizuoka  East	Japan Captive Es-Bank 2000 F Y N/A 

139.472889 35.297064 EW01356 Tursiops truncatus 
Eno-shima Island, 

Kanagawa  East	Japan Captive Es-Bank 2002 F Y N/A 

138.903889 34.600833 EW04601 Tursiops truncatus Shimoda, Shizuoka  East	Japan Captive Es-Bank 2004 F Y N/A 

138.903889 34.600833 EW04602 Tursiops truncatus Shimoda, Shizuoka  East	Japan Captive Es-Bank 2004 F Y N/A 

138.903889 34.600833 EW04603 Tursiops truncatus Shimoda, Shizuoka  East	Japan Captive Es-Bank 2004 F Y N/A 

138.730833 34.551667 EW04604 Tursiops truncatus nakaki, minamizu, sizuoka East	Japan Captive Es-Bank 2004 M Y N/A 

135.950142 33.593888 EW01288 Tursiops truncatus Taiji, Wakayama East Japan Whaling Es-Bank 1986 M Y TtHap_2 
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Longitute Latitiute ID Species Location Population Sample Source Contributor Year Sex MS mtDNA 

135.950142 33.593888 EW01289 Tursiops truncatus Taiji, Wakayama East Japan Whaling Es-Bank 1986 F Y N/A 

135.950142 33.593888 EW01290 Tursiops truncatus Taiji, Wakayama East Japan Whaling Es-Bank 1986 M Y TtHap_2 

135.950142 33.593888 EW01291 Tursiops truncatus Taiji, Wakayama East Japan Whaling Es-Bank 1986 M Y TtHap_3 

135.950142 33.593888 EW01292 Tursiops truncatus Taiji, Wakayama East Japan Whaling Es-Bank 1986 F Y N/A 

135.950142 33.593888 EW01294 Tursiops truncatus Taiji, Wakayama East Japan Whaling Es-Bank 1986 M Y TtHap_2 

135.950142 33.593888 EW01295 Tursiops truncatus Taiji, Wakayama East Japan Whaling Es-Bank 1986 F Y TtHap_5 

135.950142 33.593888 EW01296 Tursiops truncatus Taiji, Wakayama East Japan Whaling Es-Bank 1986 F Y TtHap_6 

135.950142 33.593888 EW01299 Tursiops truncatus Taiji, Wakayama East Japan Whaling Es-Bank 1986 M Y TtHap_7 

135.950142 33.593888 EW01300 Tursiops truncatus Taiji, Wakayama East Japan Whaling Es-Bank 1986 F Y TtHap_2 

135.950142 33.593888 EW01302 Tursiops truncatus Taiji, Wakayama East Japan Whaling Es-Bank 1986 M Y TtHap_4 

135.950142 33.593888 EW01339 Tursiops truncatus Taiji, Wakayama East Japan Whaling Es-Bank 1994 F Y N/A 

135.950142 33.593888 EW01340 Tursiops truncatus Taiji, Wakayama East Japan Whaling Es-Bank 1994 F Y N/A 

137.502694 35.032933 EW04600 Tursiops truncatus Aichi East Japan Stranding Es-Bank 2004 M Y N/A 

138.824583 34.613889 EW04825 Tursiops truncatus 
Nakagi, Minami-izu, 

Sizuoka East Japan Stranding Es-Bank 2005 F Y N/A 

131.462222 31.806944 EW04842 Tursiops truncatus Aoshima, Miyazaki East Japan Stranding Es-Bank 2006 M Y N/A 

135.950142 33.593888 EW05121 Tursiops truncatus Taiji, Wakayama East Japan Whaling Es-Bank 1986 F Y TtHap_4 

135.950142 33.593888 EW05122 Tursiops truncatus Taiji, Wakayama East Japan Whaling Es-Bank 1986 F Y TtHap_5 

136.998069 36.795811 EW01352 Tursiops truncatus Himi, Toyama Sea of Japan Stranding Es-Bank 2001 F Y N/A 

137.519167 37.700556 EW01353 Tursiops truncatus Suzu, Ishikawa Sea of Japan Stranding Es-Bank 2001 M Y N/A 

139.337778 38.524167 EW01355 Tursiops truncatus Tsuruoka, Yamagata Sea of Japan Stranding Es-Bank 2001 F Y N/A 

138.057558 37.022864 EW01357 Tursiops truncatus Joetsu, Niigata Sea of Japan Stranding Es-Bank 2002 F Y N/A 

120.168281 23.485762 186 Tursiops truncatus Chiayi Taiwan Seized NTU 2001 M Y TtHap_2 

120.168281 23.485762 187 Tursiops truncatus Chiayi Taiwan Seized NTU 2001 F Y TtHap_2 

120.028194 23.105722 204 Tursiops truncatus Tainan Taiwan Stranding NTU 2003 M Y TtHap_2 

120.20124 23.719825 270 Tursiops truncatus Yunling Taiwan Seized NTU 2002 M Y TtHap_2 

120.20124 23.719825 271 Tursiops truncatus Yunling Taiwan Seized NTU 2002 F Y TtHap_8 
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Longitute Latitiute ID Species Location Population Sample Source Contributor Year Sex MS mtDNA 

120.20124 23.719825 274 Tursiops truncatus Yunling Taiwan Seized NTU 2002 F Y TtHap_9 

120.20124 23.719825 280 Tursiops truncatus Yunling Taiwan Seized NTU 2002 F Y TtHap_16 

121.909278 25.097167 282 Tursiops truncatus Taipei Taiwan Stranding NTU 2002 M Y TtHap_10 

120.20124 23.719825 283 Tursiops truncatus Yunling Taiwan Seized NTU 2002 M Y TtHap_11 

120.20124 23.719825 286 Tursiops truncatus Yunling Taiwan Seized NTU 2002 M Y TtHap_12 

120.20124 23.719825 295 Tursiops truncatus Yunling Taiwan Seized NTU 2002 F Y TtHap_13 

119.596992 23.571382 459 Tursiops truncatus Penghu Taiwan Bycatch NTU 2000 M Y TtHap_2 

119.596992 23.571382 461 Tursiops truncatus Penghu Taiwan Bycatch NTU 2000 F Y TtHap_2 

120.20124 23.719825 467 Tursiops truncatus Yunling Taiwan Seized NTU 2002 F Y TtHap_14 

120.20124 23.719825 481 Tursiops truncatus Yunling Taiwan Seized NTU 2002 F Y TtHap_2 

121.507673 23.494786 496 Tursiops truncatus Hualien Taiwan Bycatch NTU 2004 M Y TtHap_15 

121.507673 23.494786 499 Tursiops truncatus Hualien Taiwan Bycatch NTU 2004 M Y TtHap_17 

121.507673 23.494786 611 Tursiops truncatus Hualien Taiwan Bycatch NTU 2001 F Y TtHap_17 

121.507673 23.494786 660 Tursiops truncatus Hualien Taiwan Bycatch NTU 2000 F Y TtHap_17 

121.693361 25.204417 824 Tursiops truncatus Taipei Taiwan Stranding NTU 2004 F Y TtHap_2 

121.361847 25.145481 840 Tursiops truncatus Taipei Taiwan Stranding NTU 2005 M Y TtHap_16 

120.579583 24.393361 870 Tursiops truncatus Taichung Taiwan Stranding NTU 2004 M Y TtHap_14 

120.772661 24.652847 1014 Tursiops truncatus Miaoli Taiwan Stranding NTU 2005 M Y TtHap_9 

121.707272 25.165094 1070 Tursiops truncatus Keelung Taiwan Stranding NTU 2007 F Y TtHap_14 

120.707917 24.573194 1107 Tursiops truncatus Miaoli Taiwan Stranding NTU 2004 M Y TtHap_8 

122.005556 25.014217 TSDU01 Tursiops truncatus Taipei Taiwan Stranding NTU 2010 M Y TtHap_14 

121.633833 25.240872 TSDU02 Tursiops truncatus Taipei Taiwan Stranding NTU 2010 M Y TtHap_10 

120.08606 23.268242 TSDU09 Tursiops truncatus Tainan Taiwan Stranding NTU 2012 F Y N/A 

123.5 9.5 2646 Tursiops truncatus Philippines Philippines Bycatch SWFSC 1993 F Y N/A 

123.549135 9.568629 5560 Tursiops truncatus Siaton Philippines Fishery? SWFSC 1994 F Y TtHap_1 

N/A N/A 730 Tursiops truncatus Taipei Taiwan Stranding NTU 2002 U N TtHap_2 

N/A N/A 853 Tursiops truncatus Miaoli Taiwan Stranding NTU 2005 U N TtHap_18 
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Appendix 4.2. 

Population Location Year n (sampled/ 
used) 

Sampling 
source 

Presence of parent-
offspring pairs GenBank Assession No. References 

Common bottlenose dolphin (CBD), Tursiops truncatus 
East Japan Taiji, Japan 1986 12/12 DF Yes TBD This study 
  Taiji, Japan 2005 165/148 DF Yes AB303154-74 Kita et al. 2013 
Northeast 
China Zhoushan, China NA 8/8 FI N/A AF355585-86, AF459509, 

AF459513-14, AF459522 Yang et al. 2005 

 
Lianyungang, 
China NA 5/5 FI N/A AF459510, AF459512, 

AF459515 Yang et al. 2005 

 Qingdiao, China NA 1/1 FI N/A AF355587 Yang et al. 2005 
Southeast 
China Hong Kong 1994 3/3 S N/A AF056220-21 Wang et al. 1999 

 Philippines 1994 1/1 FI No TBD This study 

 Taiwan 1994-96, 
2000-12 43/43 FI, S N/A AF056223-32, TBD Wang et al. 1999, this study 

  Dong Shan, China NA 2/2 FI N/A AF459511, AF459523 Yang et al. 2005 
Hawaii Hawaii, HI 2000-06 22/22 BI Yes (adjusted) EF672700-23, EF672725 Martien et al. 2012 

 Four-Islands, HI 2000-06 26/26 BI Yes (adjusted) EF672700-23, EF672726 Martien et al. 2012 

 Oahu, HI 2000-06 30/30 BI Yes (adjusted) EF672700-23, EF672727 Martien et al. 2012 

 Kauai, HI 2000-06 41/41 BI Yes (adjusted) EF672700-23, EF672728 Martien et al. 2012 
Palmyra Palmyra, HI 2000-06 11/11 BI Yes (adjusted) EF672700-23, EF672729 Martien et al. 2012 
Total    370/353      
Indo-Pacific bottlenose dolphin (IPBD), Tursiops aduncus 
Japan Mikura Island 2001 1/1 S No TBD This study 
  Amakusa 2004, 2007 2/2 S No TBD This study 
South China Beihai, China 1995 6/6 FI N/A AF056233-34, AF459520 Wang et al. 1999, Yang et al. 2005 
Southeast 
China Taiwan 1994-2011 18/18 FI, S, C N/A AF056233-36, AF056239-

43, TBD Wang et al. 1999; this study 

 Xiamen, China TBD 5/5 FI N/A AF056233, AF056239-40 Wang et al. 1999, Yang et al. 2005 
  Dong Shan, China TBD 6/6 FI N/A TBD Yang et al. 2005 

Indonesia Unknown 
location NA 2/2 C N/A AF056237-38 Wang et al. 1999 

Total    40/40      
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Appendix 4.3. 
Species Common bottlenose dolphin      Common bottlenose dolphin      
Population West Japan East Japan 
n 4 32 

Locus Null 
alleles 

No. of 
alleles 

Allelic 
richness FIS HO HE P SD Null 

alleles 
No. of 
alleles 

Allelic 
richness FIS HO HE P SD 

D14 no 5 1.857 0.455 0.5 0.857 0.09 0.03% no 7 1.738 -0.017 0.75 0.738 0.58 0.05% 
D22 no 5 1.857 -0.2 1 0.857 0.66 0.04% no 10 1.862 0.205 0.688 0.860 0.12 0.06% 
Dde59 no 2 1.429 -0.2 0.5 0.429 1 0.00% no 6 1.771 0.233 0.594 0.771 0.22 0.05% 
Dde65 no 4 1.786 -0.333 1 0.786 1 0.00% no 6 1.801 -0.015 0.813 0.801 0.8 0.03% 
Dde66 no 2 1.429 -0.2 0.5 0.429 1 0.00% no 8 1.684 0.087 0.625 0.684 0.51 0.05% 
Dde69 no 3 1.607 -0.286 0.75 0.607 1 0.00% no 5 1.752 0.046 0.719 0.752 0.56 0.05% 
Dde70 no 4 1.821 0.429 0.5 0.821 0.32 0.04% no 16 1.921 -0.018 0.938 0.921 0.96 0.02% 
Dde72* no 4 1.75 0.368 0.5 0.75 0.31 0.05% yes 15 1.899 0.448 0.5 0.899 0 0.00% 
Dde84 no 5 1.857 0.455 0.5 0.857 0.09 0.03% no 7 1.791 0.012 0.781 0.791 0.55 0.04% 
EV14 no 5 1.893 0.182 0.75 0.893 0.47 0.05% no 14 1.922 -0.052 0.969 0.922 0.41 0.04% 
EV37* no 5 1.857 0.455 0.5 0.857 0.08 0.03% yes 16 1.909 0.212 0.719 0.909 0.02 0.01% 
KWM12a* no 4 1.786 0.053 0.75 0.786 1 0.00% yes 9 1.782 0.344 0.516 0.782 0 0.00% 
KWM1b no 2 1.429 -0.2 0.5 0.429 1 0.00% no 3 1.542 -0.097 0.594 0.542 0.61 0.05% 
KWM2a no 5 1.857 0.143 0.75 0.857 0.65 0.05% no 7 1.758 0.011 0.75 0.758 0.77 0.04% 
KWM2b no 2 1.25 0 0.25 0.25 1 0.00% no 5 1.46 0.187 0.375 0.460 0.17 0.03% 
KWM9b no 4 1.75 0 0.75 0.75 1 0.00% no 5 1.714 0.082 0.656 0.714 0.36 0.05% 
MK3 no 7 1.964 -0.043 1 0.964 1 0.00% no 10 1.86 0.019 0.844 0.860 0.33 0.04% 
MK5 no 5 1.857 -0.2 1 0.857 0.66 0.05% no 12 1.843 -0.039 0.875 0.843 0.94 0.02% 
Sco11 no 4 1.821 0.1 0.75 0.821 0.77 0.04% no 8 1.82 -0.068 0.875 0.820 0.56 0.04% 
Sco28 no 2 1.25 0 0.25 0.25 1 0.00% no 4 1.282 0.338 0.188 0.282 0.02 0.01% 
Sco55 no 1 1 NA NA NA NA NA no 2 1.411 -0.222 0.5 0.411 0.38 0.05% 
TexVet7 no 4 1.75 0 0.75 0.75 1 0.00% no 5 1.614 -0.175 0.719 0.614 0.55 0.05% 
AAT44 no 4 1.75 -0.412 1 0.75 1 0.00% no 7 1.757 -0.033 0.781 0.757 0.91 0.03% 
TexVet5* no 5 1.933 -0.091 1 0.933 1 0.00% no 8 1.853 0.002 0.852 0.853 0.39 0.04% 
Mean  4 1.689 0.055 0.685 0.719    8.125 1.739 0.064 0.692 0.739   SD  1.314 0.254  0.241 0.212    3.971 0.167  0.184 0.167   
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Species Common bottlenose dolphin      Indo-Pacific bottlenose dolphin      
Population Taiwan All samples 
n 28 7 

Locus Null 
alleles 

No. of 
alleles 

Allelic 
richness FIS HO HE P SD Null 

alleles 
No. of 
alleles Allelic richness FIS HO HE P SD 

D14 no 7 1.788 0.049 0.750 0.788 0.325 0.04% no 4 4 0.4 0.429 0.692 0.136 0.12% 
D22 no 9 1.849 0.076 0.786 0.849 0.479 0.04% yes 3 3 0.714 0.143 0.473 0.020 0.04% 
Dde59 no 7 1.745 0.091 0.679 0.745 0.078 0.03% no 4 4 0.25 0.571 0.747 0.226 0.14% 
Dde65 no 7 1.832 0.057 0.786 0.832 0.612 0.05% no 5 5 0.226 0.571 0.725 0.567 0.15% 
Dde66 no 5 1.686 0.169 0.571 0.686 0.376 0.05% no 3 3 -0.021 0.571 0.560 1.000 0.00% 
Dde69 no 5 1.714 0.203 0.571 0.714 0.014 0.01% no 4 4 -0.111 0.714 0.648 1.000 0.00% 
Dde70 no 13 1.906 0.015 0.893 0.906 0.806 0.04% no 4 4 0.094 0.571 0.626 1.000 0.00% 
Dde72* no 14 1.914 0.063 0.857 0.914 0.003 0.01% no 5 5 0.314 0.571 0.813 0.472 0.17% 
Dde84 no 6 1.768 0.023 0.750 0.768 0.328 0.04% no 3 3 0.094 0.571 0.626 0.515 0.15% 
EV14 no 12 1.856 0.083 0.786 0.856 0.394 0.05% no 4 4 0.442 0.286 0.495 0.165 0.13% 
EV37* no 15 1.871 0.1 0.786 0.871 0.002 0.00% yes 4 4 0.593 0.286 0.670 0.026 0.04% 
KWM12a* no 7 1.764 -0.029 0.786 0.764 0.043 0.03% no 4 4 0.048 0.714 0.747 1.000 0.00% 
KWM1b no 3 1.6 -0.073 0.643 0.600 0.682 0.04% no 2 2 0.143 0.429 0.495 1.000 0.00% 
KWM2a no 9 1.858 0.043 0.821 0.858 0.073 0.02% no 5 5 0.324 0.571 0.824 0.415 0.14% 
KWM2b no 5 1.61 -0.114 0.679 0.610 0.363 0.05% no 1 1 NA NA NA NA NA 
KWM9b no 7 1.715 -0.152 0.821 0.715 0.111 0.03% no 3 3 0.143 0.571 0.659 0.675 0.15% 
MK3 no 11 1.87 -0.068 0.929 0.870 0.869 0.04% no 5 5 0.324 0.571 0.824 0.414 0.16% 
MK5 no 10 1.877 -0.019 0.893 0.877 0.724 0.05% no 4 4 0.262 0.571 0.758 0.063 0.08% 
Sco11 no 6 1.692 0.229 0.536 0.692 0.034 0.02% no 4 4 -0.355 1.000 0.758 0.513 0.16% 
Sco28 no 4 1.355 -0.151 0.407 0.355 1 0.00% no 2 2 0.143 0.429 0.495 1.000 0.00% 
Sco55 no 2 1.103 -0.038 0.107 0.103 1 0.00% no 2 2 -0.2 0.429 0.363 1.000 0.00% 
TexVet7 no 7 1.681 -0.051 0.714 0.681 0.318 0.04% no 3 3 0 0.714 0.714 0.362 0.17% 
AAT44 no 7 1.794 -0.035 0.821 0.794 0.326 0.04% no 2 2 -0.364 0.714 0.538 0.506 0.15% 
TexVet5* no 10 1.869 -0.069 0.929 0.869 0.721 0.05% no 4 4 -0.034 0.714 0.692 0.850 0.10% 
Mean  7.833 1.738 0.024 0.721 0.738    3.5 3.5 0.16 0.553 0.650   SD  3.384 0.184  0.184 0.184    1.103 1.103  0.179 0.126   
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Appendix	4.4	
 

 Variable site 
Haplotype ID 6 9 18 26 29 43 48 49 57 69 71 75 76 77 80 83 85 87 89 90 92 93 94 95 96 100 102 
TtHap 1 G A C C C G T T A G A A T T A T C T C A A T G C G G T 
TtHap 2 . . . . T . . . . . . . . . . . . . . . . . . . . . . 
TtHap 3 . . T . . . . . . . . . . . . . . . . G . . . T . . . 
TtHap 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 5 . . . . . . . . . . . . . . . C . . . . . . . . . . . 
TtHap 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 7 . . . . T . . . . . . . . . . . . . . . . . . . . . . 
TtHap 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 10 . . T . . . . . . . . . . . . . . . . . . . . T . . . 
TtHap 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 16 . . T . . . . . . . . . . . . . . . . . . . . T . A . 
TtHap 17 A . T . T A . . . . G . . . . . . . T . . . . T A . . 
TtHap 18 . . T . . A . . . . . G C C . C . G . . . C A T . . . 
TtHap 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 22 . . . . . . . . . . . . . . G . . . . . . . . . . . . 
TtHap 23 . . T . . . . . . . . . . . . C . . . . . . . T . . . 
TtHap 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 25 A . T . . . . . . . . . . . . C . . . . G . . T A . C 
TtHap 26 . . T . . . . . . . . . . . . C . . . . . . . T . . . 
TtHap 27 . . . . T . . . . . . . . . . . . . . . . . . . . . . 
TtHap 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 30 . . . . T . . . . . . . . . . . . . . . . . . . . . . 
TtHap 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 33 A . T . . . . . . . . . . . . C . . . . G . . T A . C 
TtHap 34 . . . G . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 35 . . T G . . . . . . . . . . . . . . . . . . . T . A . 
TtHap 36 . . . G . . . . . . . . . . . . . . . . . . . . . . . 
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 Variable site 
Haplotype ID 6 9 18 26 29 43 48 49 57 69 71 75 76 77 80 83 85 87 89 90 92 93 94 95 96 100 102 
TtHap 37 . . . G T . C . . . . . . . . . . . . . . . . . . . . 
TtHap 38 . . . . T . . . . . . . . . . . . . . . . . . . . . . 
TtHap 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 40 . . T . . . . . . . . . . . . . . . . . . . . T . . . 
TtHap 41 . G T . . . . . T . . . . . . . . . . . . . . T . A . 
TtHap 42 . . . . T . . . . . . . . . . . . . . . . . . . . . . 
TtHap 43 . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 44 . . T . . . . . . . . . . . . . . . . . . . . T . . . 
TtHap 45 . . T . . . . . . A . . . . . . . . . . . C . T . . . 
TtHap 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 48 . . T . . . . . . . . . . . . . . . . . . . . T . A . 
TtHap 49 . . T . . . . . . . . . . . . . . . . . . . . T . . . 
TtHap 50 . . T . . . . . . . . . . . . . . . . . . . . T . A . 
TtHap 51 . . T . . . . . . . . . . . . . . . . . . . . T . . . 
TtHap 52 . . . . . . . C . . . . . . . . . . . . . . . . . . . 
TtHap 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 54 . . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 55 . . T . . . . . . . . . . . . . . . . . G . . T . . . 
TtHap 56 . . T . . . . . . . . . . . . . T . . . . . . T . . . 
TtHap 57 . . T . . . . . . . . . . . . . T . . . . . . T . . . 
TtHap 58 . . T . . . . . . . . . . . . . . . . . . . . T . . . 
TtHap 59 A . T . T . . . . . . . . C . C . . . . . . . T A A . 
TtHap 60 . . T . . . . . . . . . . . . . . . . . . . . T . A . 
TtHap 61 . . T . . . . . . . . . . . . C . . . . . . . T . . . 
TtHap 62 . . T . . . . . . . . . . . . . . . . . . . . T . A . 
TtHap 63 . . T . . . . . . . . . . . . . . . . . . . . T . . . 
TtHap 64 . . T . . . . . . . . . . . . . . . . . . . . T . A . 

(Continues)  
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 Variable site 
Haplotype ID 115 130 135 136 140 144 154 157 179 180 191 199 201 202 204 208 231 234 237 250 251 252 255 258 260 261 263 
TtHap 1 - T T A A T T G A T T A T A C A T G C T C T C A C A T 
TtHap 2 - . . . . . . . . . C . . . . . C . . . . . . . . . . 
TtHap 3 - . . . . . . . . C C . . . T . . . . . . C . . A . . 
TtHap 4 - . . G . . . . . . C . . . . . . . . . . . . . . . . 
TtHap 5 - . . . . . . . . . . . . . . . . . . . . . T . . . . 
TtHap 6 - . . G . . . . . . C . . . . . . . . . . . . . . . . 
TtHap 7 - G . . G G . . . . C . . . . . C . . . . . . . . . . 
TtHap 9 - . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 10 - . . . . . . . . . . . . . . . C . . . T . . . . . . 
TtHap 11 - . . . . . . . . . C . . . . . . . . . . . . . . . . 
TtHap 12 - . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 13 - . . G . . . . . . C . . . . . . . . . . . . . . . . 
TtHap 14 - . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 15 - . . . . . . . . . C . . . . . . . . . . . . . . . . 
TtHap 16 - . . . . . . . . . C . . . . . . . . C . . . . . . C 
TtHap 17 T . C . . . . . . . . . . . . . C A T . A . . . . . . 
TtHap 18 - . C . . . . . G . C . . . . . C . T . A . . G . . . 
TtHap 19 - . . G . . . . G . C . . . . . . . . . . . . . . . . 
TtHap 20 - . . G . . . . . . C . . . . . . . . . . . . . . . . 
TtHap 21 - . . . . . . . . . C . . . . . . . . . . . . . . . . 
TtHap 22 - . . . . . . . . . C . . . . . . . . . . . . . . . . 
TtHap 23 - . . . . . . . . . . . . . . . C . . . . . T . . G . 
TtHap 24 - . . . . . . . . . . . . . . . C . . . . . . . . . . 
TtHap 25 - . C . . . . . . . . . . . . . C A . . A . . . . . . 
TtHap 26 - . . . . . . . . . . . . . . . C . . . . . . . . G . 
TtHap 27 - . . . . . . . . . C . . . . . C . . . . . . . . . . 
TtHap 28 - . . G . . . . . . C . . . . . C . . . . . . . . . . 
TtHap 29 - . . . . . . . . . C . . . . . . . . . . . . . . . . 
TtHap 30 - . . . . . . . . . C . . . . . C . . . . . . . . . . 
TtHap 31 - . . G . . . . . . C . . . . . . . . . . . . . . . . 
TtHap 32 - . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 33 - . C . . . . . . . . . . . . . C A . . A . . . . . . 
TtHap 34 - . . . . . . . . . . . . . . . . . . . . . . . . . . 
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 Variable site 
Haplotype ID 115 130 135 136 140 144 154 157 179 180 191 199 201 202 204 208 231 234 237 250 251 252 255 258 260 261 263 
TtHap 35 - . . . . . . . . . C . . . . . . . . C . . . . . . C 
TtHap 36 - . . . . . . . . . C . . . . . . A . . . . . . . . . 
TtHap 37 - . . . . . . . . . C . . . . . C . . . . . . . . . . 
TtHap 38 - . . . . . . . . . . . . . . . C . . . . . . . . . . 
TtHap 39 - . . G . . . . . . C . . . . . . A . . . . . . . . . 
TtHap 40 - . . . . . . . . . . . . . . . C . . . T . . . . . . 
TtHap 41 - . . . . . . . T . C . . . . T . . . C . . . . . . C 
TtHap 42 - . . . . . . . . . C . . . . . C . . . . . . . . . . 
TtHap 43 - . . . . . . . . . C . . . . . . . . . . . . . . . . 
TtHap 44 - . C . . . . . . . C . . . . . C . . . T . . . . . . 
TtHap 45 - . . . . . . . . . C . . . . . . . . C . . . . . . . 
TtHap 46 - . . . . . . . . . . . . . . . C . . . . . . . . . . 
TtHap 47 - . . . . . . . . . C . . . . . . . . . . . . . . . . 
TtHap 48 - . . . . . . . . . . . . . . . . . . C . . . . . . . 
TtHap 49 - . C . . . . . . . C . . . . . C . . . T . T . . . . 
TtHap 50 - . . . . . . . . . C . . . . . . . . C . . . . . . . 
TtHap 51 - . C . . . . A . . C . . . . . C . . . T . . . . . . 
TtHap 52 - . . . . . . . . . C . . . . . . . . C . . . . . . A 
TtHap 53 - . . . . . . . . . . . . . . . C . . . . . . . . . . 
TtHap 54 - . . . . . . . . . . . . . . . . . . . . . . . . . . 
TtHap 55 - . . . . . . . . . C . . . . . C . . . . . . G . . . 
TtHap 56 - . C . . . . . . . C . . . . . C . . . . . . . . . . 
TtHap 57 - . C . . . . . . . C . C . . . C . . . . . . . . . . 
TtHap 58 - . C . . . . . . . . . . . . . C . . . T . . . . . . 
TtHap 59 - . . . . . C . . . C T . . T . C . . . G . . - T . . 
TtHap 60 - . . . . . . . . . C . . . . . . . . C . . . . . . . 
TtHap 61 - . . . . . . . . . . . . . . . C . . . . . . . . G . 
TtHap 62 - . . . . . . . . . C . . G . . . . . C . . . . . . . 
TtHap 63 - . C . . . . . . . C . . . . . C . . . T . . . . . . 
TtHap 64 - . . . . . . . . . C . . . . . . . . C . . . . . . . 
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 Variable site 
Haplotype 
ID 264 265 266 268 269 270 279 280 281 288 289 291 294 296 300 311 315 339 343 356 359 376 377 378 379 380 381 
TtHap 1 C C T C C T T T C C A T A T T A C C C T T A C C - T C 
TtHap 2 . . . . T . . C . . . . . . . . . . . . . . T . - . . 
TtHap 3 T . . T . . . C . . G . . . . . . . . C . G T . - . T 
TtHap 4 . T . . . . . C . . . . . C . . . . . . . . T . - . . 
TtHap 5 . T . T . . . C . . . . . . . . . . T . . . T . - . . 
TtHap 6 . T . . T . . C . . . . . C . . . . . . . . T . - . . 
TtHap 7 . . . . T . . C . . . . . . . . . . . . . . T . - . . 
TtHap 9 T . . . . . . C . . . . . . . . . . . . . . . . - . . 
TtHap 10 T T C T T . . C . . . . . . . G . . . . . . . . - C . 
TtHap 11 . . . T . . . . . . . . . . . . . . . . . . T . - . . 
TtHap 12 . T . . . . . . . . . . . . . . . . . . . . . . - . . 
TtHap 13 . T . . . . . C . . . . . . . . . . . . . . T . - . . 
TtHap 14 . . . . . . . C . . . . . . . . . . . . . . . . - . . 
TtHap 15 . . . . . . . C . . . . . . . . . . . . . . T . - . . 
TtHap 16 . T . T . . . C . . . . . . . . . . . . . . . T - . . 
TtHap 17 T T C T G . C C . . G . . . . . . . . . . . T . - . . 
TtHap 18 T T . T T . C C . . G C . . . . . . . C . . . T - C . 
TtHap 19 . T . . . . . C . . . . . . . . . . . . . . T . - . . 
TtHap 20 . . . . . . . C . . . . . C . . . . . . . . T . - . . 
TtHap 21 . . . . . . . C . . . . . . . . . . . . . . . . - . . 
TtHap 22 . . . T . . . C . . . . . . . . . . . . . . T . - . . 
TtHap 23 . . . . . . . C . . G . . . . . . . . C . . T . - . . 
TtHap 24 . . . . . . . . . T . . . . . . . . . . . . . . - . . 
TtHap 25 T . . T . . C C . . G . . . . . . . . . . . . . - . . 
TtHap 26 . . . . . . . C . . G . . . . . . . . C . . T . - . . 
TtHap 27 . . . . T . . C . . . . . . . . . . . . . . T . C . . 
TtHap 28 . . . . . . . C . . . . . C . . . . . . . . T . - . . 
TtHap 29 . . . . T . . C . . . . . . . . . . . . . . T . - . . 
TtHap 30 . . . . T . . C . . . . . . . . . . . . . . . . - . . 
TtHap 31 . . . . . . . C . . . . . C C . . . . . . . T . - . . 
TtHap 32 . . . . . . . . . . . . . . . . . . . . . . T . - . . 
TtHap 33 T . . T T . C C . . G . . . . . . . . . . . . . - . . 
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 Variable site 
Haplotype 
ID 264 265 266 268 269 270 279 280 281 288 289 291 294 296 300 311 315 339 343 356 359 376 377 378 379 380 381 
TtHap 34 . . . . . . . C . . . . . . . . . . . . . . . . - . . 
TtHap 35 . T . T . . . C . . . . . . . . . . . . . . . T - . . 
TtHap 36 . . . T . . . C . . . . . . . . . . . . . . T . - . . 
TtHap 37 . . . . T . . C . . . . . . . . . . . . . . T . - . . 
TtHap 38 . . . . T . . C . . . . . . . . . . . . . . T . - . . 
TtHap 39 . . . . . . . C . . . . . C . . . . . . . . T . - . . 
TtHap 40 T T C T . . . C . . . . . . . G . . . . . . . . - C . 
TtHap 41 . T . T . . . C . . . . . . . . . . . . . . . T - . . 
TtHap 42 . . . . T . . C . . . . . . . . . T . . . . T . - . . 
TtHap 43 . . . T . . . C . . . . . . . . . . . C . . T . - . . 
TtHap 44 T T . . . . C C . . . C . . . . . . . . . . T . - . . 
TtHap 45 T T . T . . . C . . . . . . . . . . T . . . . T - C . 
TtHap 46 . . . . . . . . . . . . . . . . . . . . . . . . - . . 
TtHap 47 . . . . . . . C . . . . . . . . . . . C . . T . - . . 
TtHap 48 . T . T . . . C . . . . . . . . . . . . . . . T - . . 
TtHap 49 T T . . . . C C . . . . . . . . . . . C . . T . - . . 
TtHap 50 T T . T . . . C . . G . . . . . . . . . . . . T - . . 
TtHap 51 T T . . . . C C . . . C . . . . . . . . . . T . - . . 
TtHap 52 T T . . . . . C . . . . . . . . . . . . . . T . - . . 
TtHap 53 . . . . . . . . . . . . . . . . . . . . . . T . - . . 
TtHap 54 . . . T . . . C . . . . . . . . . . . . . . T . - . . 
TtHap 55 T . . T T . . C . . . . . . . . . . . C . . . T - . . 
TtHap 56 T T . . . . . . . . . . . . . . T . . C . . T . - . . 
TtHap 57 T T . . . . . . . . . . . . . . T . . C . . T . - . . 
TtHap 58 T T . . . . C C . . . C . . . . . . . . . . T . - . . 
TtHap 59 T T C T . . . C . . . . . . . . . . T . . . . . - . . 
TtHap 60 . T . . . . . C T . G . . . . . . . . . . . . T - . . 
TtHap 61 . . . . . . . C . . G . . . . . . . . C . . . . - . . 
TtHap 62 . T . T . . . C . . G . . . . . . . . . . . . T - . . 
TtHap 63 T T . T . . C . . . G . G . . . . . . C C . T . - . . 
TtHap 64 T T . T . C . C . . G . . . . . . . . . . . . T - . . 
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Chapter	5.		 Thesis	Synthesis	

 

The aims of this study were to increase the understanding of cetacean population 

genetic structure, diversity and dynamics in the North Pacific Ocean, to identify the 

potential biological and environmental factors that the findings may result from, and to 

highlight the needs of conservation management. In Chapters 2—4, I studied three 

species of dolphins of which population genetic data were regionally or globally 

deficient, and presented analyses for several species-specific issues in each chapter. For 

instance, in Chapter 2, the conflicting hypotheses proposed in earlier ecological studies 

regarding Risso’s dolphin (Grampus griseus) population structure in the North Pacific 

were examined; in Chapter 3, the concordance of morphological and genetic differences 

between the Fraser’s dolphins (Lagenodelphis hosei) found in Japanese and Philippine 

waters was confirmed; and in Chapter 4, the hypothesis that a coastal type of common 

bottlenose dolphin (Tursiops truncatus) is absent in the western North Pacific was 

rejected. Here I compare the findings with published cetacean genetic studies to seek 

further insights into the spatial and temporal factors that may influence population 

genetic structure, diversity and dynamics, and attempt to highlight the conservation 

implications accordingly. I also discuss the limitations of this study, provide some 
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possible alternatives to overcome these limitations, and indicate research objectives for 

the future. 

 

Population	structure	

This study, for the first time, revealed the population structure for the Fraser’s dolphins 

and common bottlenose dolphins across the western North Pacific Ocean, and for 

Risso’s dolphins in the Northern Hemisphere. As different species have different 

ecological or biological characteristics, it is reasonable to expect the three species to 

show different patterns of population structure even though they inhabit the same 

waters. This would be consistent with the different patterns of population structure 

found among the common bottlenose dolphin, short-beaked common dolphin 

(Delphinus delphis) and Atlantic white-sided dolphin (Lagenorhynchus acutus) with 

sympatric distributions along both sides of North Atlantic Ocean (Quérouil et al. 2007; 

Mirimin et al. 2009; Moura et al. 2013a; Banguera-Hinestroza et al. 2014; Louis et al. 

2014a). In the case, although only common bottlenose dolphin populations showed a 

“nearshore-offshore” differentiation pattern, sampling for the other species did not 

permit a test for this potential pattern.   

 In other respects, there seems to be some common features across the population 

structure of the three studied species in western North Pacific waters. For instance, the 

dolphins that encountered at the eastern coasts of Taiwan and Japan are always 
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identified as from the same population in all three species. This may suggest common 

environmental drivers generating population structure for each of these species in this 

region. I suspect that the Kuroshio Current, a dominant ocean current in the western 

North Pacific that shapes the region’s ecosystem and promotes mixing, is playing an 

important role in this circumstance. Ocean circulations are known to play an important 

role in shaping the population structure of many marine species explicitly relying on 

external forces to disperse their larvae or reproductive adults. For example, Knutsen et 

al. (2007) suggest that ocean currents that drift the eggs and larvae of Greenland halibut 

(Reinhardtius hippoglossoides) and promote gene flows in the North Atlantic Ocean.  

Coleman et al. (2011) found that the strength of continental boundary currents correlates 

positively with the coastal genetic connectivity in kelp (Ecklonia radiata). Schunter et 

al. (2011) studied the correlationship between the genetic data of comber (Serranus 

cabrilla) and the oceanographic data in the Mediterranean Sea, and found that 

oceanographic front does play an important role in the determination of the observed 

genetic flow. Similar conclusion is reported in Godhe et al. (2013), who studied the 

population genetic structure of common marine diatom (Skeletonema marinoi) in 

Scandinavian waters. The lack of significant genetic differentiation between the bluefin 

tuna (Thunnus thynnus thynnus) schools sampled in Tyrrhenian Sea and the Balearic 

Sea is suggested to be due to the presence of a connecting ocean circulation (Carlsson et 

al. 2004). Dolphins may not rely on ocean circulation to disperse, but their dispersal 
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could be restricted within the distribution range of their preferred prey species, which in 

turn are influenced by oceanographic processes (Ballance et al. 2006). Such a cascading 

effect has been suggested to result in the population structure of dusky dolphins 

(Lagenorhynchus obscurus) and common dolphins (Harlin-Cognato et al. 2007; Möller 

et al. 2011; Amaral et al. 2012a), and appears to be a potential mechanism for Risso’s 

dolphin population differentiation between the Californian coasts and the Eastern 

Tropical Pacific (Chapter 2).  

A recent study reports the genetic structuring of juvenile Atlantic cods (Gadus 

morhua) in the eastern North Sea-Skagerrak-Kattegat region may reflect the drift of egg 

and larvae with regional ocean currents, but the genetic structure for the adults appears 

to be governed by the natal homing behaviour (André et al. 2016). Natal homing 

behaviour, in a broader sense, site fidelity, is regarded as a behaviour assisting locally 

adapted individuals to return to a suitable habitat. Such behaviour has been reported in a 

number of marine fish species, including herring (Clupea harengus) (Corten 2002), 

salmonids (Hendry et al. 2004), and Atlantic cod (André et al. 2016), as well as in many 

cetaceans (e.g., Bräger et al. 2002; Baird et al. 2008; Gonzalvo et al. 2014; Mahaffy et 

al. 2015; also see discussion in Chapter 2). In an experiment testing the level of site 

fidelity and homing ability of five intertidal rock pool fish species (White & Brown 

2013), it is found that the three specialist species exhibit high fidelity and strong homing 
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ability, while the non-specialist species showed low fidelity and poor homing abilities, 

suggesting an evolutionary link between site fidelity and resource specialisation.  

With limited ecological and behavioural inferences available for the dolphin 

species studied in this thesis, it seems that the population structure is a result of resource 

specialisation, which is affected by the oceanographic structure in the North Pacific 

Ocean. Further studies on the distribution of the prey species, as well as on the 

population structure of other dolphin species inhabiting the region, should provide 

further insight. It would also be useful to investigate the physiological, behavioural and 

cultural perspectives of prey specialisation in marine mammals. However, it is essential 

to address a more fundamental question, how resource specialisation would result in 

assortative mating and ultimately create population structure in cetaceans.	

 

Genetic	diversity	and	effective	population	size	

Table 5.1 compares genetic diversity among the common bottlenose dolphin, Risso’s 

dolphin and Fraser’s populations with published studies of these and other dolphin 

species inhabiting the North Pacific Ocean.  Genetic diversity in the studied 

populations, either evaluated by the bi-parental microsatellite or by the matrilineal 

mitochondrial DNA markers, is in most cases comparable to that seen in ‘offshore’ 

dolphin populations, such as the white-sided dolphins inhabiting the high-seas regions 

of the North Pacific Ocean (HE=0.78, h=0.99; Hayano et al. 2004), the bottlenose 
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dolphins found in California offshore waters (HE=0.83, h=0.97; Lowther-Thieleking et 

al. 2015), or those stranded along the Irish coasts believed to be from the offshore North 

Atlantic Ocean (HE=0.8, h=0.94; Mirimin et al. 2011).  It is also interesting to note that, 

at least in common bottlenose dolphins, the genetic diversity for the coastal populations 

along the Pacific coasts seems to be higher than those along the Atlantic coasts. This 

may suggest that coastal populations along the Pacific coasts have been stable over a 

longer period of time than those in the Atlantic, concurring with earlier notions 

suggesting the North Pacific as a reserve of marine biodiversity and one of the centres 

of origin for marine species (Briggs 2003) and that the bottlenose dolphins (Tursiops 

spp.) may have originated in Australasian waters (Moura et al. 2013b). If, as previously 

suggested, the North Atlantic coastal dolphin populations represent independent 

colonisations from their neighbouring pelagic populations (Natoli et al. 2006; Amaral et 

al. 2012b; Louis et al. 2014b; Gaspari et al. 2015), their low genetic diversity (and 

possibly that of the spinner and spotted dolphin populations around the Hawaiian 

Islands), could reflect diversity lost during founder events (see Hoelzel et al. 1998; 

Natoli et al. 2004; Sellas et al. 2005).  

 While some of the estimates of effective population size are consistent with 

these putative founder events, others, with the exception of the estimate for the Risso’s 

dolphin population in the Eastern Tropical Pacific, are lower than expected (Table 5.2). 

In earlier chapters I have argued that some estimates may be explained by rapid post-
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founder expansions, particularly for the Risso’s dolphin population in the western North 

Pacific and the Fraser’s dolphin populations encountered in Japanese and Taiwanese 

waters. This would not be fully reflected in the Migrate analyses used to estimate Ne, 

since this method assumes equilibrium between migration and drift (Beerli 2009). Even 

so, the Neµ estimates for those populations with no significant signs of population 

expansion are, in general, less than 1. As discussed in Chapters 2 and 4, the low Neµ for 

the Risso’s dolphin population found in Californian waters and for the common 

bottlenose dolphin populations along the western coasts of North Pacific Ocean, may 

reflect isolated populations in coastal habitat (Louis et al. 2014a).  

 
Table 5.1. Genetic diversity estimated using microsatellite (MS) or mitochondrial 
DNA (mtDNA) data for selected dolphin populations to compare with the results.  
 

Region Population or 
location n Indices of Genetic 

diversity  

  MS mtDNA HE HO h π Reference 
Grampus griseus 
North Pacific Taiwan 49 42 0.711 0.688 0.891 1.33% Chapter 2 

 East Japan 72 33 0.705 0.68 0.956 1.51% 

 Sea of Japan 12 17 0.698 0.697 0.868 1.42% 

 

Central-
Northeast 
Pacific 

7 0 0.743 0.69   

 

Eastern 
Tropical 
Pacific 

22 21 0.739 0.722 0.88 1.71% 

 

Oregon-
California 
coastal 

73 22 0.691 0.666 0.96 1.89% 

North Atlantic The Azores 0 35   0.926 1.54% Chapter2 

 British waters 18 18 0.592 0.548 0.503 0.11% Gaspari et 
al. 2007 

Mediterranean 
Sea 

Mediterranean 
Sea 33 24 0.638 0.467 0.938 1.31% Gaspari et 

al. 2007 
Lagenodelphis hosei 
North Pacific Japan 37 35 0.637 0.596 0.973 1.20% Chapter 3 

 Taiwan 43 42 0.702 0.573 0.958 1.20%  

 Philippines 17 10 0.653 0.609 0.911 1.20%  
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Tursiops truncatus 

North Pacific Taiwan/SE 
China 28 49 0.738 0.721 0.908 2.19% Chapter 4 

 East Japan 32 160 0.739 0.692 0.87 1.37% 

 West Japan 4 0 0.719 0.685   
 NE China 0 14   0.824 1.64% 

 Palmyra 11 11 0.695 0.656 0.909 1.80% Martien et 
al. 2012 

 Hawai'i 21 22 0.736 0.692 0.87 2.20% 

 4-Islands 25 26 0.741 0.744 0.779 1.90% 

 O'ahu 30 30 0.746 0.695 0.83 1.80% 

 Kaua'i/Ni'ihau 40 41 0.744 0.75 0.892 2.20% 

 
California-
offshore 69 69 0.83 0.81 0.968 2.30% Lowther-

Thieleking 
et al. 2015 

 

Offshore 
Southern 
California 
Bight 

0 51   0.97 2.30% 

 
Offshore San 
Diego 0 18   0.967 1.90% 

 
California-
coastal 64 64 0.55 0.55 0.744 0.50% 

 

Gulf of 
California 
coastal 

0 52   0.943 1.60% 

 

Gulf of 
California 
offshore 

0 32   0.863 1.30% 

North Atlantic Virginia and 
North 87 100 0.677 0.661 0.761 1.28% Rosel et al. 

2009 

 

Southern 
North 
Carolina 

50 51 0.645 0.624 0.756 0.33% 

 

Charleston, 
SC and 
surrounding 
area 

100 110 0.652 0.633 0.498 0.16% 

 Georgia 40 40 0.682 0.675 0.573 0.19% 

 Jacksonville 77 78 0.69 0.672 0.558 0.18% 

 

Florida 
panhandle, 
Gulf of 
Mexico 

77 72 0.652 0.627 0.754 0.93% 

 South Galicia 22 25 0.604 0.658 0.367 0.50% Fernández 
et al. 2011 

 Sado estuary 0 4   0.667 0.60% 

 North Galicia 14 18 0.786 0.762 0.856 0.13% 

 
Mainland 
Portugal 7 16 0.832 0.804 0.908 1.20% 

 
Basque 
Country 4 2 0.807 0.733 1 1.20% 

 Canary Islands 3 6 0.85 0.717 1 1.80% 

 The Azores 0 10   0.978 1.50% 

 
Northeast 
Atlantic 
Coastal South 

119 115 0.60 0.58 0.5 0.1% 
Louis et al. 
2014a 

 
Northeast 
Atlantic 
Coastal North 

77 76 0.54 0.49 0.67 0.6% 

 Pelagic 52 101 0.77 0.73 0.93 1.4% 
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 Shannon 46 44 0.559 0.602 0.274 0.50% Mirimin et 
al. 2011 

 
Connemara-
Mayo 12 12 0.477 0.458 0.53 0.80% 

 Cork 0 2   0.5 1% 

 ‘Stranded' 23 22 0.798 0.779 0.943 1.40% 

 East Abaco 31 31 0.612 0.638 0.613 0.58% Parsons et 
al. 2006 

 
White Sand 
Ridge 3 3 0.745 0.611 1 1.52% 

 South Abaco 22 22 0.609 0.563 0.7 0.54% 
South Atlantic Floriano´polis 8 8 0.19 0.23 0.75 0.45% Fruet et al. 

2014 
 Laguna 10 10 0.21 0.15 0 0% 

 
north of Patos 
Lagoon 19 19 0.2 0.19 0.543 0.67% 

 
Patos Lagoon 
estuary 63 63 0.26 0.26 0.481 0.72% 

 

South of Patos 
Lagoon and 
Uruguay 

12 12 0.2 0.23 0.648 0.67% 

 
Bahı´a San 
Antonio 12 12 0.19 0.18 0 0% 

Mediterranean 
Sea North Adriatic 39 29 0.77 0.71 0.82 1.07% Gaspari et 

al. 2015 

 
Central-South 
Adriatic 24 16 0.78 0.77 0.87 0.95% 

 Ionian 6 6 0.76 0.68 0.93 1.26% 

 Aegean 6 5 0.76 0.63 1 1.28% 

 Tyrrhenian 14 14 0.75 0.67 0.67 0.73% 

 Pelagic 52 51 0.73 0.70 0.90 1.3% Louis et al. 
2014a 

Stenella longirostris 
North Pacific Kure Atoll 3 3 0.718 0.71 0.395 0.24% Andrews et 

al. 2010 
 Midway Atoll 4 4 0.713 0.716 0.405 0.18% 

 
Pearl & 
Hermes Reef 3 3 0.707 0.71 0.2 0.14% 

 
French Frigate 
Shoals 5 5 0.762 0.75 0.491 0.40% 

 Ni’ihau 9 9 0.801 0.733 0.656 0.64% 

 Kaua’i 5 5 0.718 0.734 0.429 0.55% 

 O’ahu 6 6 0.737 0.726 0.582 0.48% 

 Maui Nui 5 5 0.732 0.727 0.461 0.43% 

 Kona Coast 12 12 0.747 0.742 0.721 0.88% 

 Samoa 13 13 0.814 0.856 0.975 1.98% 
Stenella attenuata 
North Pacific Hawai'i 37 38 0.835 N/A 0.376 0.40% Courbis et 

al. 2014 
 4-Islands 26 27 0.826 N/A 0.527 0.60% 

 Oahu 26 27 0.794 N/A 0.145 0.10% 

 Kauai/Niihau 8 8 0.841 N/A 0.75 0.80% 
Lagenorhynchus obliquidens 

North Pacific Japanese 
coastal waters 35 35 0.66 0.64 0.894 1.02% Hayano et 

al. 2004 

 
Offshore 
North Pacific 24 24 0.78 0.8 0.993 2.04% 
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Table 5.2. The indices of effective population size (Neµ) for selected small cetacean 
populations estimated using the program Migrate. Asterisks indicate potentially 
problematic estimates. 
 
Species Region Population Neµ Reference 
Grampus 
griseus North Pacific Eastern North Pacific 0.44—0.48 Chapter 2 

  
Eastern Tropical Pacific 3.2—3.62 

     Western North Pacific 0.36—0.38*   
Lagenodelphis 
hosei North Pacific Japan 0.31—0.36* Chapter 3 

  
Taiwan 0.52—0.57* 

 
  

Philippines 0.93—1.07 
 Tursiops 

truncatus North Pacific 
East Coasts of Taiwan 
and Japan 0.37—0.44 Chapter 4 

  
West Coast of Taiwan 0.29—0.35   

  
Palmyra 3.11—3.86 

Martien et al. 
2012 

  
Hawai'i 2.04—2.52 

 
  

4-Islands 1.39—1.66 
 

  
O'ahu 3.08—3.51 

 
  

Kaua'i/Ni'ihau 3.01—3.69   

 
North Atlantic Virginia and North 0.92 Rosel et al. 2009 

  
Southern North Carolina 0.76 

 

  

Charleston, SC and 
surrounding area 0.55 

 
  

Georgia 0.98 
 

  
Jacksonville 0.94 

 
    

Florida panhandle, Gulf 
of Mexico 0.44   

Delphinus 
delphis 

Mediterranean 
Sea Black Sea 2.27 Natoli et al. 2008 

  
Ionian Sea 4.54 

 
  

Alboran Sea inf 
 

  
Portugal inf 

 

 
South Pacific Northern NSW 1.33–1.54 

Möller et al. 
2011 

  
Central NSW 1.41–1.78 

     Southern NSW 5.14–6.74   

Inia geoffrensis Amazon River Mamirauá 0.22–0.27 
Hollatz et al. 
2011 

    Tefé 0.27–0.35   
Delphinapterus 
leucas Arctic Beaufort Sea 0.50–1.96 

O’Corry-Crowe 
et al. 2010 

    Svalbard 0.33–1.69   
Hyperoodon 
ampullatus North Atlantic Gully 0.14–0.16 

Dalebout et al. 
2006 

  
Labrador 0.30–0.33 

     Iceland 0.25–0.29   
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Population	dynamics	and	conservation	

A sign of population expansion is detected in the Risso’s and Fraser’s dolphin 

populations, and the Migrate analysis results suggest a prevalence of northbound long-

term gene flow for Fraser’s dolphins in the western North Pacific Ocean, which may 

reflect a tendency for southern populations to explore further suitable habitat in the 

north with warm climate. The intensification of Kuroshio Current during the latest 

deglaciation is likely to be an important factor promoting the range expansion in Risso’s 

and Fraser’s dolphins in the western North Pacific Ocean (see Discussion in Chapters 2 

and 3). The rapid expansion detected for Risso’s dolphins around the British Isles may 

be attributable to a similar pattern of dispersal into warming northern regions, while it 

could also be the result of post-bottleneck expansion.  Expansion time estimates suggest 

that the study populations started to expand around the early Holocene (~11,000 years 

ago), consistent with the estimations suggested for several other cetacean species (e.g., 

Banguera-Hinestroza et al. 2014; Louis et al. 2014b; Moura et al. 2014).  

 In contrast, all populations inhabiting tropical waters, or the ‘refugia’ sheltering 

marine species from extreme conditions during the glacial periods (e.g., the Azores and 

the Mediterranean Sea; Maggs et al. 2008), exhibit a stable population trend: high 

genetic diversity and no obvious sign of population expansion. The estimates further 

indicate that the Fraser’s dolphin population in Philippine waters and the Risso’s 

dolphin population in Eastern Tropical Pacific have a considerable effective population 
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size, suggesting that climate change through time has had less impact on these dolphin 

populations.   

 The findings in this study appear to support an earlier prediction which suggests 

that Risso’s dolphins, Fraser’s dolphins and common bottlenose dolphins might respond 

to water temperature increase during climate change with range expansion (MacLeod 

2009). However, the distribution of cetaceans is mainly defined by their prey abundance 

and distribution, rather than oceanographic conditions (such as water temperature; 

Ballance et al. 2006, Amaral et al. 2012a), and climate change might not affect the 

distribution of their prey species in the same way. For instance, the increase of seawater 

temperature over recent decades has been shown to reduce the abundance of marine 

phytoplankton (Behrenfeld et al. 2006; Boyce et al. 2010), and the decrease of primary 

productivity can trigger a crisis to marine fishery sustainability (Perry et al. 2005; 

Brander 2010). The influence of climate change upon marine ecosystems is 

complicated, and ocean systems are being driven towards extreme conditions that the 

dolphin species may not have encountered before (Walther et al. 2002, Hoegh-Guldberg 

& Bruno 2010).  It is therefore probably too early to conclude whether or not the 

dolphin populations studied here are threatened by global climate change. 
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Limitations	of	this	study	and	possible	alternatives	

The lack of a sufficient number of samples from the regions of interest is perhaps the 

greatest limitation for most cetacean genetic studies, including the present study.  As 

systematic collections of biopsy samples from wild population are not always available, 

the consensus is to use cetacean tissue samples that are collected opportunistically 

through stranding or bycatch events, although they are usually associated with 

inevitable problems, such as scattered sample size and ranges, and the uncertainty of 

sample origins (Bilgmann et al. 2011; Peltier et al. 2012). As a result, I was unable to 

evaluate the level of isolation for the Risso’s and bottlenose dolphins living in the Sea 

of Japan, nor the level of differentiation for the two species inhabiting Philippine 

waters. Neither was I able to test whether inshore-offshore population structure also 

exists in the western North Pacific cetacean populations, due to the lack of samples 

collected from high sea regions. One possible way to overcome the problem of small 

sample sizes is to examine the population genetics using next generation sequencing 

(NGS) techniques, where small sample size can be compensated by genotyping an 

enormous number of single nucleotide polymorphism (SNP) loci with a high 

sequencing depth (Willing et al. 2012). However, there are limits to the potential for 

compensation by this method, and ultimately a larger sample size should be pursued 

wherever possible. 
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 The availability of biological and ecological information for the dolphin 

populations studied here would facilitate the interpretation of the genetic findings. For 

instance, skull morphometric variation in bottlenose dolphins in Chinese/Taiwanese and 

Japanese waters (Wang et al. 2000; Kurihara et al. 2006) and the diet analysis for 

Fraser’s dolphins in Taiwanese waters (Wang 2003; Wang et al. 2012) provide the 

potential for corroborative inference, though in this case neither correlated with the 

genetic structure found in this study. The absence of fine-scale ecological analysis for 

the bottlenose dolphins in the Taiwan Strait leaves open questions about how the two 

potential resource competitors could coexist. Moreover, a recent model analysis 

suggests sociality can be an important component for mammal population structure 

(Parreira & Chikhi 2015), but the lack of social structure data for the populations 

studied here prevents further analysis. Since genetic data alone provide only limited 

inference, projects providing greater supporting biological and environmental data have 

great potential, such as the ongoing humpback whale studies in the North Pacific (the 

SPLASH project, http://www.splashcatalog.org/; Calambokidis et al. 2008).   

The concern of using a hypothetical molecular substitution rate to calculate the 

time of population expansion has been discussed in Chapter 2. Using an average 

mutation rate to calculate the effective population size (Ne) from the Neµ estimates may 

also be problematic since the mutation rates appear to vary among microsatellite loci 

(Chakraborty et al. 1997). Therefore, the inferences derived from estimates involving 
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these assumptions, such as the time of expansion, Ne, and Ne/N ratio should be 

interpreted with caution.  Calibration using species-specific ancient DNA (aDNA) 

samples provides fairly consistent estimations across mammal species (Ho et al. 2011). 

However, these estimates reflect “accelerated” rates that are relevant to recent 

timeframes (e.g. within the Holocene) and can be species-specific. 

 

What’s	next?	

In the last decade, the rapid development of NGS techniques has permitted biologists to 

obtain high quality, genome-wide sequencing data from non-model organisms at an 

affordable price and to explore further population genetic questions that are difficult to 

assess with traditional Sanger sequencing or microsatellite genotyping. There have been 

a number of reviews published regarding the application of NGS to molecular ecology 

(e.g., Tautz et al. 2010; Ekblom & Galindo 2011; Glenn 2011; Shokralla et al. 2012). In 

the case, as resource specialisation appears to be an important factor driving population 

differentiation in the species, NGS techniques could be used to identify candidate genes 

that associate with this type of differentiation (e.g., Hohenlohe et al. 2010; Moura et al. 

2015), and possibly confirm the physiological significance of identified loci by studying 

gene expression patterns among populations (e.g., Goetz et al. 2010). It is also possible 

to learn more about individual diet using NGS techniques (see Pompanon et al. 2012).  
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 There is an interesting ecological perspective on the formation of population 

structure pending further investigation. With the insights into the relationship between 

Risso’s dolphins and pilot whales, and common bottlenose dolphins and Indo-Pacific 

bottlenose dolphins as potential resource competitors (Tezanos-Pinto et al. 2009; Bearzi 

et al. 2011), it seems the effect of resource competition has never been regarded as a 

possible ecological factor in the way that prey distribution or intrinsic population 

affinity (philopatry) to drive population structure in cetaceans. Genetic or genomic 

approaches might not be useful in this respect, but long-term field observations and 

temporal/spatial model simulations might be useful. 
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