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Abstract

My thesis aims to explore the relationship between public policies and vehicle driving

from three aspects.

First, we examine two policy options for the government to address pollution

externality caused by vehicle driving: gasoline taxes and clean vehicle subsidies

towards clean technology. We introduce vintage vehicles into our model to measure

the impact of policies on households’ vehicle driving choices. We show that all

policies are effective in reducing pollution and improving the environmental quality.

However, they have distinctively different distributional impact on the production

side and social welfare.

Second, we derive the optimal environmental tax structure in the presence of

externalities caused by vehicle driving in the first-best scenario. Analytical results

show that the optimal gasoline taxes are composed of two opposing factors and

depend on the household’s preferences for environmental factors. Our calibration

based on the U.S. economy shows that the optimal gasoline taxes should be higher

for old cars while the optimal road taxes should be higher for new cars.

Third, we formulate the optimal environmental tax structure in the presence of
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other distortionary taxes. We find that the optimal environmental taxes constitute

both the efficiency part and the Pigovian part. Optimal taxes depend not only on

the household’s preferences for the environmental factors but also on the degree of

complementarities with normal consumption goods.
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Joyce Wang, Yuqian (Linda) Wang, Haoxuan Zhang, Jiayun Zhu and Leah Rie Zou;

and all my friends I met from Ustinov College who made my life at Durham so

memorable. I will always be indebted to them.

Last but not least, my deepest appreciation goes out to my parents, Mr. Youcai

Ma and Mrs. Min Zhao. Their love, care and support help me overcome every

obstacle in my life. Thanks for being the best dad and mum.



Contents

Abstract iii

Declaration v

Acknowledgements vi

1 Introduction 1

1.1 Fuel consumption and externalities from vehicle driving . . . . . . . . 4

1.2 The economy of vehicle . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Driving service . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Fuel efficiency and vintage . . . . . . . . . . . . . . . . . . . . 8

1.3 A road map for this thesis . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Fuel Tax, Clean Vehicle Subsidies and Earmarking Policy: A Gen-

eral Equilibrium Analysis in a Dynamic Two-Period Vintage Model 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Firms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Households . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

viii



Contents ix

2.2.3 Government . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Comparative statics of policies . . . . . . . . . . . . . . . . . . . . . . 28

2.5.1 The impact of policies on economy . . . . . . . . . . . . . . . 29

2.5.2 The impact of policies on the environment and welfare . . . . 32

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7.1 Optimality conditions derivation for household’s problem . . . 37

2.7.2 Proof for proposition 1 . . . . . . . . . . . . . . . . . . . . . . 37

2.7.3 Proof for proposition 2 . . . . . . . . . . . . . . . . . . . . . . 38

2.7.4 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Optimal Environmental Taxation in the Presence of Pollution and

Congestion: A General Equilibrium Analysis 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Basic features of the model . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Driving behavior . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2 Transport externalities . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Decentralized economy . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 Firms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.2 Households . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.3 Government . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Social planner’s problem . . . . . . . . . . . . . . . . . . . . . . . . . 54



Contents x

3.5 Optimal environmental taxes . . . . . . . . . . . . . . . . . . . . . . . 55

3.5.1 Optimal gasoline taxes . . . . . . . . . . . . . . . . . . . . . . 55

3.5.2 Optimal road taxes . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6 Uniform gasoline tax . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6.1 Optimal uniform gasoline tax . . . . . . . . . . . . . . . . . . 58

3.6.2 Optimal road taxes under the constraint . . . . . . . . . . . . 59

3.7 Numerical solutions to the optimal environmental taxes . . . . . . . . 61

3.7.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7.2 Optimal environmental taxes . . . . . . . . . . . . . . . . . . 64

3.7.3 Uniform gasoline tax . . . . . . . . . . . . . . . . . . . . . . . 69

3.7.4 Welfare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.9.1 Optimality conditions derivation to household’s problem . . . 76

3.9.2 Optimality conditions derivation to government’s problem . . 77

3.9.3 Constrained social planner’s problem . . . . . . . . . . . . . . 77

3.9.4 Steady state solution . . . . . . . . . . . . . . . . . . . . . . . 79

3.9.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Optimal Environmental Taxes in the Presence of Distortionary

Taxes 84

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 The economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.1 Assumptions about production . . . . . . . . . . . . . . . . . 87



Contents xi

4.2.2 Assumptions about the households . . . . . . . . . . . . . . . 88

4.2.3 Household’s problem . . . . . . . . . . . . . . . . . . . . . . . 91

4.3 The Ramsey problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Optimal environmental taxes . . . . . . . . . . . . . . . . . . . . . . . 95

4.5 Implications of basic optimal taxes . . . . . . . . . . . . . . . . . . . 97

4.5.1 Optimal labour tax . . . . . . . . . . . . . . . . . . . . . . . . 97

4.5.2 Optimal environmental taxes . . . . . . . . . . . . . . . . . . 99

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.7.1 First-order conditions to the household’s problem . . . . . . . 105

4.7.2 Derivation of the implementability constraint . . . . . . . . . 105

4.7.3 First-order conditions to the government’s problem . . . . . . 108

4.7.4 Derivation of the optimal vehicle purchase tax . . . . . . . . . 111

5 Conclusions and future works 112

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 Concluding marks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Reference 118



List of Figures

1.1 Oil final consumption by product, World 1996-2017 . . . . . . . . . . 4

2.1 Comparative-static effects of implementing fuel tax τ alone. . . . . . 30

2.2 Comparative-static effects of implementing subsidy s alone. . . . . . . 31

2.3 The effects of different policies on the environmental quality . . . . . 33

2.4 The effects of different policies on social welfare . . . . . . . . . . . . 34

3.1 Congestion and road capacity . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Optimal fuel taxes: the economy when preference for environment

varies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Optimal environmental taxation with different preference for environ-

mental quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Uniform fuel tax: the economy when preference for environment varies 70

3.5 Uniform fuel tax and the corresponding road taxes with different pref-

erence for enviromental quality . . . . . . . . . . . . . . . . . . . . . 71

3.6 Utility difference and consumption change under optimal fuel taxes

and uniform fuel tax . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xii



List of Tables

2.1 Benchmark Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Optimal environmental taxes and economy (benchmark calibration) . 65

3.3 Optimal environmental taxes and economy: pollution externality only 66

3.4 Consumption equivalence when environmental quality improves . . . 73

3.A.1Optimal environmental taxes and economy when both externalities

considered: preference for environment varies . . . . . . . . . . . . . . 82

3.A.2Uniform fuel tax, corresponding road taxes and the economy with

both types of externalities: preference for environment varies . . . . . 83

xiii



Chapter 1

Introduction

Among all consumer products, few are regulated and taxed more broadly than vehi-

cles. Vehicle driving is the main stated reason for urban air pollution and congestion.

Vehicles are the main culprits of urban air pollution, especially in developing coun-

tries(Jha and Whalley, 2015). Poor air quality is a major global problem, with

outdoor air pollution causing more than 3.3 million annual premature deaths and

many more associated cases of illness (Gately et al., 2017). Mobile sources are re-

sponsible for a large fraction of air pollutant emissions in the United States. In 2012,

more than 75% of carbon monoxide (CO), and 60% of nitrogen oxides (NOx) were

emitted from on- and off-road vehicles, while mobile sources in large urban areas

accounted for as much as 90% of local CO emissions (EPA, 2011). The average

emission level of new domestic vehicles is three to ten times higher in developing

countries than that in developed countries due to lagging automotive manufactur-

ing technology, poor fuel quality, poor vehicle exhaust control, and lenient laws

controlling vehicle emissions (He et al., 2002). Apart from environmental concerns,

transport sector, which has been growing rapidly in the past decades has made ur-

1
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ban traffic jams worse and poses a large challenge to public policy making in terms

of oil security. Global vehicle ownership level has increased year on year in the last

decade and accordingly the amount of crude oil consumption by the transport sector

(IEA 20181).

The 2019 Urban Mobility Report stated that congestion wastes a massive amount

of time and fuel and creates more uncertainty for travellers and fright. In 2017, 8.8

billion hours of extra time were spent on roads and 3.3 billion gallons of fuel were

wasted. An average auto commuter spent an extra 54 hours travelling and wasted

21 gallons of fuel in 2017.

With surging vehicles on roads, many countries find themselves more dependent

on imported oil than at any time in history. Transport sector plays a more and

more important role in the energy system, oil demand and CO2 emissions. The

United States is the largest economy nowadays and emitted 17.5% of the world’s

total CO2 in 2012. USA’s transport sector consumes 27.9% of the total final en-

ergy consumption (Zhang et al., 2016). In 1993, China became a net oil-importing

country and the amount of oil imported by China in 2000 reached 70 million tons,

which took up about 30% of that year’s total oil consumption. The major reason

of this increase can be attributed to the rapid growth of the transportation sector,

particularly motor vehicles (He et al., 2005).

Both the public and governments are concerned about the perceived economic,

1 The International Energy Agency’s first Global Energy and CO2 Status Report (IEA 2018)

provides a snapshot of recent global trends and developments across fuels, renewable sources,

energy efficiency and carbon emissions from 2006 to 2017.
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environmental and security vulnerabilities arising from vehicle driving and fuel con-

sumption. Over the past decades, remarkable advances have been made to address

externalities and curb fuel consumption. Vehicles are subject to regulations con-

cerning pollution, safety and fuel economy. Among all kinds of policies that have

been implemented, taxation has been widely applied in many countries. Levying tax

on transportation fuel has been advocated to reduce pollution and conserve crude

oil. It is also expected by many government officials that by levying tax on fuel,

consumers would switch to public transport which is helpful to improve traffic situ-

ation. However, Parry et al. (2007) argues that, instead of using fuel tax, which is

a very blunt instrument for alleviating traffic congestion, the ideal strategy should

be a road-specific congestion toll. Apart from taxation, many government either

tried to offer fiscal incentives to consumers to encourage them to purchase more

fuel-efficient vehicles or to provide vehicle producers with subsidies to improve the

fuel efficiency levels of the newly produced cars.

Although fiscal policies have been widely used in transport sector to address

externalities and conserve energy, the mechanisms and interrelations behind these

policies have never been thoroughly examined. The essential purpose of this thesis

is to find out how different environmental taxes affect the economy, environment

and social welfare. We have examined the variations and distributional effects when

policy changes. We also derived the optimal environmental taxation in the presence

of other taxes.

In this chapter, we illustrate the main literature that has been discussed in

this thesis. In section 1.1, we introduce the global fuel consumption status and the
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externalities caused by vehicle driving. In section 1.2, we present how vehicle-driving

related factors are modelled in the previous literature. Finally, section 1.3 provides

the road map for this thesis.

1.1 Fuel consumption and externalities from ve-

hicle driving

Gasoline has played an important role in accelerating the world’s economy. The

consumption of gasoline is closely related to the world’s economy development status.

Figure 1.12 shows the increasing trend of global oil consumption from 19906 to 2017.

It is clear that Gas/Diesel consumption has been increasing over the past two decades

at a steady growth rate.

Figure 1.1: Oil final consumption by product, World 1996-2017

A major cause of the increase in oil consumption can be attributed to the rapid

2 Data collected from the International Energy Agency (IEA) oil information 2018.
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growth of the transportation sector. Road transportation has become increasingly

important in the urbanization process. As a result, road transportation consumes

a large amount of oil and leads to a large amount of carbon dioxide (CO2) emis-

sion. It is estimated that the road transportation system accounted for 61% of oil

consumption and 70% of CO2 emissions of the whole transport sector (He et al.,

2005). Apart from carbon emissions, another significant externality caused by vehi-

cle driving is air pollution. Gasoline vehicles emit carbon monoxide (CO), nitrogen

oxides (NOx), and hydrocarbons (HC). CO leads to a reduction of oxygen in the

bloodstream and causes breathing difficulty and cardiovascular effects while HC

and NOx react to sunlight to form ozone (the main component of smog) that affects

pulmonary function of children and reduces visibility. More importantly, NOx and

HC also react to form particulate matter. Fine particles (PM2.5) are small enough

to reach lung tissue and a causal relation between particulate exposure and mortal-

ity was documented by several studies3. All these effluents have posed great threat

to human health.

Another arresting externality caused by gasoline vehicles is traffic congestion.

Between 1980 and 2003, urban VMT (Vehicle Miles of Travel) in the United States

has increased by 111%, against an increase in lane-mile capacity of only 51%4.

Annual urban congestion delays increased from 16 to 47 hours per driver, while the

national cost of wasted time from congestion increased from $12.5 to $63 billion

(Lomax and Schrank, 2005).

3 See Dockery et al. (1993) and Schwartz (1994).
4 Data from U.S. Department of Transportation, Bureau of Transportation Statistics 2005.
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1.2 The economy of vehicle

This section provides reviews on how previous literature modelled vehicle driving

service and vehicle attributes.

1.2.1 Driving service

Vehicle driving contributes to many externalities and lots of the externality-related

problems are solved through individual choice problems in economic literature. The

standard procedure is to put vehicle-related factors into economic agent’s utility

function separately from consumption and leisure. To produce vehicle miles of travel,

both vehicle and gasoline are needed.

Vehicle, as a type of capital, and gasoline could enter the household’s utility

function separately. Bento et al. (2009) assume households obtain utility from car

ownership and utility depends on characteristics of the automobile as well as vehicle

miles of travel. In their model, if the households have car endowment, they need to

choose whether to hold the car or to scrape it; if the households relinquish the car,

they also need to decide whether to purchase a new one or not. The representative

household’s utility is expressed by:

Uij = Uij(zj,Mi, xi), (1.2.1)

where zj is a vector of qualities of car j. Mi and xi, respectively, refer to household

i’s vehicle miles of travel and its consumption of normal good.

Putting vehicle characters and vehicle miles of travel separately in the utility

function, the qualities of vehicles are depicted more delicately. However, vehicle
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miles of travel is closely related to both the vehicle type and the amount of gaso-

line consumed. Thus, modelling vehicle driving in this way fails at capturing that

interrelation.

Parry and Small (2005) consider a static model in a closed economy to derive

optimal fuel tax formula, taking vehicle-related externalities into consideration. In

their model, vehicle type and gasoline consumption together determine vehicle miles

of travel. The representative household’s utility function takes the following form:

U = U(Ψ(C,M, T,G), N)− φ(P )− δ(A), (1.2.2)

where C denotes the quantity of a numeraire consumption good, M vehicle miles

of travel, T the time spent on driving, G government spending, N leisure, P the

quantity of pollution and A the severity-adjusted traffic accidents.

It is clear that the utility function has been refined to better present vehicle-

related factors. Especially, they define vehicle miles of travel M as:

M = M(F,H), (1.2.3)

where F denotes gasoline consumption and H represents a monetary measure of

other driving costs which depends on vehicle prices and attributes.

This function embeds the inner substitution effect between gasoline consumption

and vehicle attributes. When the price of gasoline increases, drivers either drive less

(lower H) or switch to more fuel-efficient ones which increase H. In this way, the

interrelation between gasoline consumption and vehicle attributes is successfully

captured. However, they do not specify an exact function form to illustrate this

relationship.
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1.2.2 Fuel efficiency and vintage

Given the fact that both vehicle and gasoline are needed in order to produce mileage

of travel, it is inevitable to model car attributes. Among all the attributes, fuel

efficiency is the main cause for different vehicle mileage of travel given the same

amount of gasoline. Therefore, how to model fuel efficiency is rudimentary for the

model setting. Previous research have tried different ways to model fuel efficiency.

In the foregoing discussion, Parry and Small (2005) put car attributes and gaso-

line consumption together to produce vehicle miles of travel (Eq. 1.2.3). Although

the interaction between F and H is not stated explicitly, this function allows for a

non-proportional relation between gasoline consumption and vehicle miles of travel.

However, what the exact relation is calls for further assumption and explanations.

Fuel efficiency standards have been applied worldwide as a regulatory mechanism

to address externalities and preserve oil. In the wake of 1973 oil crisis, the corporate

average fuel economy (CAFE) was put into practice in the United States. These

standards impose a limit on the average fuel economy of the vehicles sold by a

particular company each year, with separate limits for passenger cars and light duty

trucks (Jacobsen, 2013). Given that the CAFE standards state the fuel economy in

terms of miles-per-gallon, lots of research use miles-per-gallon to proxy fuel efficiency

when evaluating the policy empirically. However, this method has disadvantage in

analytical study: it ignores the interrelation between fuel efficiency and gasoline

consumption.

Wei (2013) comes up with a model where she uses production function to model

the relation between fuel efficiency, gasoline consumption and vehicle miles of travel.
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At time t− j, the representative household chooses fuel efficiency by choosing kt−j

which represents both the transportation capital configured in the vehicle and the

capital-gasoline ratio at full capacity. Once household made the decision, an id-

iosyncratic productivity term, ζi , is revealed for each vehicle i. Once settled, ζi and

kt−j will not change during the life span of the vehicle. Denoting the gasoline use

by Oi,t,j, vehicles miles of travel in period t by vehicle i produced at t− j is:

Mi,t,j = ζik
α
t−jOi,t,j. (1.2.4)

Wei (2013) uses putty-clay production technology to differentiate vehicles em-

bedding different fuel efficiency levels and that is vehicles with different vintages.

Putty-clay technology, originally introduced by Johansen (1959), provides an al-

ternative description of production and capital accumulation that breaks the tight

restrictions on short-run production possibilities imposed by Cobb-Douglas technol-

ogy. He builds up a natural framework for examining issues related to irreversible

investment. With putty-clay capital, the ex-ante production technology allows for

substitution between capital and labour, but once the capital good is installed, the

technology is Leontief with productivity determined by the embodied level of vintage

technology and the ex-post fixed choice of capital intensity (Gilchrist and Williams,

2000). In producing vehicle miles of travel, the producing inputs are transporta-

tion capital and gasoline. Before investing in transportation capital, the production

technology is considered to be in Cobb-Douglas form with constant return to scale.

However, once the configuration is set, transportation capital and gasoline could not

substitute each other as in the normal Cobb-Douglas production function. The only

production input is the transportation capital-gasoline ratio.
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Solow et al. (1960a), Cooley et al. (1997) and Jovanovic (1998) look into other

ways to interpret vintage capital. They argue that the latest technology is only

incorporated in the latest capital, while old capital still uses the technology from

the time it was produced. Therefore, an economy where old capital embedded with

old technology while new capital with latest technology is more realistic. In Solow

(1962), capital has a fixed lifetime and the amount of labour allocated to given unit

of capital is fixed at the time it is introduced.

Consider a representative plant owning capital of vintage i. This plant can

choose to produce either consumption goods or capital goods. Consumption goods

production function is:

ci = kαi l
β
i , (1.2.5)

where 0 ≤ α, β, α + β ≤ 1.

ci is the consumption goods output, and ki, li denote capital of vintage i and

unskilled labour. Instead of fixing production input ratio, they use capital hetero-

geneity to model capitals embedding different technologies. Putty clay is of great

value in modelling the relationship of vehicle miles of travel.

1.3 A road map for this thesis

In this thesis, we aim to explore the relationship between vehicle driving and pub-

lic policies from three different angles: how different policies affect vehicle driving

decision making, the optimal environmental tax structure in the first best, and the

optimal environmental taxes in the presence of other distortionary taxes.

In Chapter 2, we examined the impact of two policy options on vehicle driving,
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environmental quality, the economy and social welfare: 1) fuel tax, and 2) clean

vehicle subsidies. This model is characterised by two production sectors, namely, the

general production sector producing consumption goods and the vehicle production

sector producing vehicles of different vintages (new and old). In line with empirical

findings, our analytical results illustrate that households prefer new cars rather than

old ones so that more gasoline is consumed by new cars. Our simulation on the

U.S. economy shows that all three policy options are efficient in reducing pollution.

However, they have distinctly different distributional effects on the economy and

social welfare.

In Chapter 3, we explored the structure of optimal environmental taxes in the

presence of driving externalities (pollution and congestion) by extending the model

developed in Chapter 2. We find that the optimal gasoline taxes are determined

by two opposing forces caused by gasoline consumption: marginal cost of pollution

and marginal cost of congestion. Optimal road taxes formulas show that the tax

rates in the long run depend on the gasoline consumption ratio between the new

cars and the old cars. Our calibration on the U.S. economy shows that the optimal

levels of environmental taxes are affected by the households’ preferences on the

environmental factors. Moreover, to match with real life scenario, we derived the

optimal uniform gasoline tax and examine the impact on the optimal road taxes. We

find that the cost of long-run social welfare increases slightly when uniform gasoline

tax is charged. However, the difference is not substantial.

In Chapter 4, we examined the optimal environmental tax structure when other

distortionary taxes are considered. We find that the additive property between the
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Pigovian element and the efficiency element proposed by Sandmo (1975) is retained

in our model. And the optimal tax formulations are determined by the degree of

complementarity with normal consumption goods.

Finally, Chapter 5 provides summaries of each chapters and future work plans.



Chapter 2

Fuel Tax, Clean Vehicle Subsidies

and Earmarking Policy: A

General Equilibrium Analysis in a

Dynamic Two-Period Vintage

Model

In this chapter, we develop a dynamic general equilibrium infinite-horizon model

with physical capital and vehicles, where vehicles are of two vintages (new and

old), and investigate the impact of fuel taxes and clean technology subsidies to fuel

efficiency production on driving behaviour, vehicle production, fuel consumption,

environmental quality and welfare. We first show that, because of new cars are

embedded with higher fuel efficiency, households proportionally drive new cars for

13
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longer distances (or more often) than old cars. This leads to new cars consuming

more fuel in equilibrium. Subsequently we explore the effects of the policy options

numerically. Computation results of the steady states show that all policies reduce

overall fuel consumption which leads to a lower level of pollution and thus enhance

environmental quality. However, clean technology subsidies distort resource allo-

cation in the vehicle production sector (causing production inefficiency) which in

turn leads to a decrease in the general consumption, fuel consumption (through a

decrease in fuel import) and leisure (through the income effect). Social welfare de-

pends on the subsidy level. Low subsidies increase welfare very rapidly while higher

levels decrease it. Because of the overall increase in consumption and environmental

quality, social welfare improves.

2.1 Introduction

Vehicles are the main culprit of urban air pollution, especially in developing countries

(Small and Kazimi, 1995). Global vehicle ownership levels has increased year on

year in the last decade and accordingly the amount of crude oil consumption by the

transport sector (IEA 2018 1). In addition to increased oil consumption, emissions

from transport sector can be attributed to missed opportunities for improving energy

efficiency and lenient pollution regulations, especially in developing countries. The

average emission levels of new domestic vehicles are 3-10 times higher in developing

1The International Energy Agency’s first Global Energy and CO2 Status Report (IEA 2018)

provides a snapshot of recent global trends and developments across fuels, renewable sources,

energy efficiency and carbon emissions from 2006 to 2017.
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countries than that in developed countries (He et al., 2002).

There has been heated discussions in policy circles on reducing fuel consumption,

improving fuel efficiency, providing incentives for clean technology and therefore ad-

dressing the pollution externality caused by vehicle driving. Many countries have

attempted to address these problems by implementing fuel efficiency standards2,

and market-based mechanisms of pollution controls such as fuel taxes and subsidies

(towards both consumers and manufacturers). Fuel taxes made its first appearance

in early 1900s as a way to raise government revenue and are widely used by many

countries nowadays (See OECD (2018)). Energy efficiency subsidies are a more re-

cent government policy having appeared in the early 2000s. For example, in the US,

the Energy Policy Act of 2005 provided for a maximum of $3400 tax credit towards

hybrid electric vehicle (HEV) purchase between 2006 and 2010 (Hao et al., 2014).

Firms were also given incentives to produce clean vehicle. The Partnership for a

New Generation of Vehicles, formed in 1993, was a project conducted between the

U.S. government and the three major domestic auto corporations, aimed at bringing

fuel-efficient vehicles to the market (McCosh, 1994). During Obama administration,

the U.S. government pledged $2.4 billion in federal grants to support the develop-

ment of next generation electric vehicles and batteries. The funds were allocated

to manufacturers towards three main streams: 1) the production of highly efficient

batteries and their components; 2) the production of other components needed for

2For example, Corporate average fuel economy (CAFE) standards are enacted by the United

States in 1975. European Union has entered into a series of voluntary agreements called the

European Union Automotive Fuel Economy Policy.
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electric vehicles; 3) the demonstration and evaluation of plug-in hybrids and other

electric infrastructure concepts3.Recently the attention has shifted from looking at

those instruments in isolation towards policies that combine them (Tanishita et al.,

2003). Earmarking the revenues from the gasoline taxes towards subsidies for im-

proving fuel efficiency is also gaining support in political circles.

This paper aims at providing a detailed theoretical framework to assess the im-

pact on fuel consumption, fuel efficiency, pollution, environmental quality and wel-

fare under two different policy options: 1) fuel tax on households’ fuel consumption

and 2) subsidy towards clean technology, which targets specifically at the engine of

the vehicles, in vehicle production sector.

While the empirical literature on estimating the economic and environmental

impact of policies is vast4, the theoretical literature analyzing fuel policies is quite

limited.

Parry and Small (2005) sets up a structural static model to determine the optimal

fuel tax in the presence of externalities caused by driving where revenue from fuel

tax is used towards reducing the households labour income tax. They show that

the current fuel tax rate is too low in the United States and too high in the United

Kingdom.

Wei (2013) constructs a dynamic vintage model to assess the economic and en-

vironmental impact of increasing fuel taxes (with revenues being recycled through

3 Like truck stop charging station, electric rail, and training for technicians to build and repair

electric vehicles (green jobs).
4 Parry et al. (2007) reviews the empirical literature on automobiles externalities and policies

to address them.
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lump-sum transfers) and tightening fuel efficiency standards. She shows that both

policy instruments are successful in the long run in reducing fuel consumption, but

they are different in their transmission channels and may have different economic

and environmental impact.

Our model is novel in several aspects. First, differently from Parry and Small

(2005), we develop a framework where dynamic relationships are present to capture

the long-run nature of pollution and capital accumulation. A dynamic model is

useful to interpret pollution issues as those generally accumulate over time and also

affect environmental quality over time. Any policies addressing pollution issues will

also have long-run effects both on the environment and social welfare. Furthermore,

we do not analyse optimal policies but focus on fuel policy reforms.

Differently from Wei (2013) who adopts a vintage model with putty-clay tech-

nology to model households’ driving decisions, we introduce vintage vehicles using

capital heterogeneity. Solow et al. (1960a) and Cooley et al. (1997) point out that

the latest technology is only incorporated into the latest capital, while old capital

still uses the technology from the time it was produced. Wei (2013) uses putty-clay

technology with Leontief production possibilities to model vehicle mileage of travel

where the ratio of vehicle capital to energy consumption is fixed ex post production.

Vehicle capital, however, is special in that it could generate mileage of travel given

any amount of fuel pumped in. Leontief possibilities thus do not match with vehicle

features. We therefore adopt capital heterogeneity to model mileage of travel.

Furthermore we offer a novel way of modelling vehicle capital and fuel efficiency.

Previous theoretical literature (e.g.Wei (2013) and Parry and Small (2005)) has
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assumed that all components of vehicle capital are indistinguishably linked to fuel

efficiency. We expand this framework to model two distinct attributes of vehicle

capital, one being the size of the vehicle and the other embedding fuel efficiency and

clean technology. An example of an attribute reflecting the latter dimension is a more

fuel-efficient engine which not only results in more miles per gallon (mpg) but also

mitigate the polluting emissions (e.g. a hybrid electric motor). This specification

allows us to capture the firm’s choice in the quality-quantity dimension (whether to

produce bigger-sized cars or more fuel-efficient and cleaner engines) and ultimately

the resulting overall fuel efficiency of the vehicle (the end product). In addition, it

enables us to investigate the role of government subsidies in influencing production

of more fuel-efficient and cleaner engines.

We summarize the results as follows. First, in terms of driving choices, house-

holds purchase more fuel for new cars than old cars. Households also prefer to

use new cars more often than old cars. Second, simulation results show that fuel

consumption and pollution levels decrease under all policies.

Levying fuel tax does not improve the overall fuel efficiency (mpg) of the vehicles

and also barely changes output. It alleviates pollution which in turns enhances

environmental quality and eventually improves social welfare.

Providing subsidies, instead, leads to more resources allocated to the production

of more fuel-efficient and cleaner engines, which results in higher capital accumula-

tion and labour supply in the production sector. The overall fuel efficiency does not

change significantly as producers substitute away from the size attribute towards

the fuel-efficient attribute. As subsidy rate increases, social welfare first improves
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and then plunges when production inefficiencies kick in.

The structure of the paper is as follows. Section 2.2 describes the model and

its dynamics. Section 2.3 presents the steady-state analytical results. Section 3.2

presents the benchmark calibration. Section 2.5 examines the economic impact of

the three policies. Section 4.6 concludes.

2.2 The model

This section describes a decentralized economy including firms, households and

the government. Section 2.2.1 presents the production technology and the profit-

maximizing problems for the firms. Households’ problem modelling consumption,

driving and other services is discussed in section 2.2.2 where we also explain how cap-

ital heterogeneity is applied to model driving services. Government’s policy options

are discussed in section 2.2.3.

2.2.1 Firms

There are two production sectors in the economy: the general production sector G

and the vehicle production sector F .

General production sector

At each period t, firms hire labour lgt and capital kgt at the rate of wgt and rgt from

the households to produce final output which can be used for consumption, capital

accumulation and fuel import. The generated profits πgt goes to the households.
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The final good, G, is produced with constant-return-to-scale technology:

G(kgt , l
g
t ) = A1(kgt )

α1(lgt )
1−α1 , (2.2.1)

with resource constraint:

G(kgt , l
g
t ) = ct + kt+1 − (1− εk)kt + pt(gt,1 + gt,2), (2.2.2)

where ct denotes consumption, εk measures capital depreciation and pt is fuel price

assumed to be fixed in the world market5. gt,1 represents fuel consumed by new cars

and gt,2 old cars. kt denotes the total capital at time t.

Firms maximize profits πgt at each time period with respect to the amount of

capital kgt and labour lgt they hire6.

max
kgt ,l

g
t

πgt = G(kgt , l
g
t )− w

g
t l
g
t − r

g
t k

g
t . (2.2.3)

The corresponding first order conditions are:

rgt = Gkgt
, (2.2.4)

wgt = Glgt
. (2.2.5)

Vehicle production sector

Vehicle, as a type of capital good, is made up of two attributes, the chassis of

the car a and the fuel efficiency component δ (the car engine power). Those two

5We assume that the gasoline consumption in this open economy depends on import and the

demand will not affect the world oil price.
6We model the decentralised economy as the households bear the depreciation costs. Another

equivalent way would be firms bear the depreciation which would change the factor price in the

equilibrium accordingly.
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components are produced separately but must be sold as a combined product. Fuel

efficiency, embedding clean technology, is the crucial part in mitigating air pollution

(see Eq.2.2.21).

Firms in the vehicle production sector hire labour lat and capital kat at the rate of

wat and rat to produce vehicle capital at and fuel efficiency δt
7. Firms sell the final

vehicle product atδt to households at the price qat . The resource constraint reads:

F (kat , l
a
t ) = at + µδt

8, (2.2.6)

where µ is the marginal rate of transformation between a and δ and µ > 0.

The problem facing the firms in this sector is:

max
kat ,l

a
t ,δt

πat = qat (atδt)− rat kat − wat lat + (stδt), (2.2.7)

where stδt appears when government adopts the policy of providing subsidy towards

clean technology (higher δ) and st denotes the subsidy rate.

We assume Cobb-Douglas technology in labour and capital:

F (kat , l
a
t ) = A2(kat )

α2(lat )
1
2
−α2 . (2.2.8)

Notice that vehicle production, aδ, is constant-return-to-scale in capital kat and

lat (i.e. doubling kat and lat , will double aδ)9.

7 Differently from Wei (2013), we have disentangled the vehicle into the vehicle capital and

engine fuel efficiency so that we could model specifically the effect of subsidies.
8 The resource available in vehicle production sector (Eq.2.2.8) can be allocated to either pro-

duce more vehicle capital (a) or more fuel efficiency (δ). It shows the trade-off between quality and

quantity. If firms decide to put more resource to produce vehicle capital a, then the fuel efficiency

δ embedded in the vehicle will be lower which means that vehicles are less efficient in producing

mileage of travel.
9 We specifically assume that the power adds up to 1

2 . If there is no externalities in the economy,
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The first-order conditions for the vehicle producer are:

rat = qat δtFkat , (2.2.9)

wat = qat δtFlat , (2.2.10)

qat [F (kat , l
a
t )− µδt]− µqat δt + (st) = 0. (2.2.11)

Equilibrium conditions in production

Market clearing implies:

kat + kgt = kt, (2.2.12)

lgt + lat = lt, (2.2.13)

where kt denotes the total capital and lt the total labour at time period t and

wat = wgt = wt, (2.2.14)

rat = rgt = rt. (2.2.15)

2.2.2 Households

Preference

Many identical infinitely-lived households face log preferences for consumption ct,

driving service Mt, leisure 1− lt and environmental quality Nt.

U(ct,Mt, 1− lt, Nt) = φ1 log ct + φ2 logMt + (1− φ1 − φ2) log (1− lt) + φ3 logNt.

(2.2.16)

Equation 2.2.11 become qat (F − µδt − µδt). In order for the final production to be constant return

to scale, we will have
qat
µ (F2 )2 − rat kat − wat lat = 0. Thus,to make (F2 )2 constant return to scale, F

has to be diminishing return to scale and the power has to sum up to 1
2 .
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Production of driving services

There are two types of vehicles in the market: new cars and old cars. We follow

Solow et al. (1960b) and Cooley et al. (1997) to model vintage capital with ”putty-

clay” technology. After production, the technology embedded in the vehicle will not

change, which implies that the mileage of travel over one unit of fuel consumed is

fixed for different vehicle vintages. Vehicles need one period of configuration and

will be used by households for two periods before getting scraped. New cars are

produced at time period t − 1. Old cars are produced at time period t − 2 and

are also subject to depreciation 1 − ρ from already being used for a time period.

Following Wei (2013), mileage of travel produced by new cars mt,1 and old cars mt,2

are:

mt,1 = (at−1δt−1)γgt,1, (2.2.17)

mt,2 = (ρat−2δt−2)γgt,2, (2.2.18)

where 0 < ρ < 1 and 0 < γ < 1. γ measures the production technology embedded in

the vehicle. If γ becomes higher, given the same amount of gasoline, more mileage

of travel will be produced.

The representative household owns both new cars and old cars. Driving service

Mt at each time period is composed of mileage of travel produced by new cars mt,1

and old cars mt,2:

Mt = (mσ
t,1 +mσ

t,2)
1
σ , (2.2.19)

where 0 < σ < 1 and it measures the price elasticity of demand.

We set the preference for Mt following Grossman and Helpman (1991) to guar-

antee that household exhibits preference for variety over quantity, which means that
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household always prefers to use both types of cars instead of just using new cars.

Environmental quality

Environmental quality is modelled as a type of renewable resource. The quality

of the environment, N , represents the stock of natural capital and accumulates

based on the regenerating ability of nature while depreciates due to pollution P .

N evolves over time according to the following function based on Bovenberg and

Smulders (1995):

Nt+1 −Nt = E(Nt)− Pt, (2.2.20)

where E(Nt) represents the nature’s assimilating ability or ecological services pro-

duced by nature, that is the amount of pollution that can be assimilated without

a change in the environmental quality. We could also interpret Eq.2.2.20 as that

changes to the environmental quality and pollution are two rival users of ecological

services. Nature’s assimilating ability E(Nt) takes the function form:

E(Nt) = φ− εNt,

where φ denotes the original state and ε represents the nature’s rate of assimilating

pollutants (0 < ε < 1).

Pollution

Our specification of pollution is based on Selden and Song (1995): pollution Pt is

caused by the consumption of fuel (gt,1, gt,2) but mitigated by vehicles’ fuel-efficiency

conditions (δt−1, δt−2), with ∂P/∂g > 0, ∂P/∂δ < 0, ∂2P/∂g2 = 0 and ∂2P/∂δ2 > 0.

Pt =
gt,1
δµ1t−1

+
gt,2
δµ2t−2

, (2.2.21)
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where parameters µ1 and µ2 measure the ability of mitigating pollution by different

vintages of cars and µ1 > µ2.

Household’s problem

Each period, the representative household supplies labour lt and capital kt to firms

and receives the profits generated in both sectors (πgt and πat ). Household purchases

consumption goods, fuel, new vehicles and invest.

Household maximizes its life-long utility:

max
ct,gt,1,gt,2,atδt,lt

∞∑
s=0

βt+sU(ct,Mt, 1− lt, Nt), (2.2.22)

subject to the restriction:

πat +πgt +wtlt+rtkt+Tt = (pt+τt)(gt,1+gt,2)+kt+1−(1−εk)kt+ct+qat (atδt). (2.2.23)

The household takes the environmental quality Nt as given. τt is the unit tax

levied by the government on the consumption of fuel if government were to adopt

fuel tax policy. Tt represents the lump-sum tax (negative) if government were to

implement production subsides towards clean technology . It becomes lump-sum

transfer (positive) if government were to levy tax on fuel consumption. Notice that

vehicle price qat clears the market for household and vehicle production sector.

The optimality conditions are derived in Appendix 2.7.1.

2.2.3 Government

Government has two policy options: 1) Levy tax τt on household’s purchase of fuel,

2) Subsidize firms’ production of more fuel efficient engines (st) and 3) earmarking

the revenues from the gasoline taxes towards subsidies for improving fuel efficiency.
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The first two policy options will always hold through lump-sum transfer by gov-

ernment. Under the earmarking policy, the government constraint reads:

stδt = τt(gt,1 + gt,2). (2.2.24)

2.3 Equilibrium

In this section, we characterize the steady-state solutions of the model and derive

long-run fuel consumption and households’ driving decisions10. A competitive equi-

librium needs to be defined first.Take all the prices as given, 1) households maximise

Eq.2.2.22 subject to Eq.2.2.23; 2)representative goods producer maximises profits

according to Eq.2.2.3; 3) representative vehicle producer maximises profits according

to Eq.2.2.7 and 4) markets clear according to Eq.2.2.2 and Eq.2.2.23.

Proposition 1. The long-run ratio of fuel consumption between the new cars and

the old cars is given by:

g1,ss

g2,ss

= ρ
γσ
σ−1 . (2.3.25)

Here the subscript ss represents the steady state.

Proposition 1 characterizes the fuel consumption ratio between new cars and old

cars. The steady-state fuel consumption ratio does not depend on the policy. It only

depends on the depreciation rate of vehicle 1− ρ, mileage production technology γ

and driving service preference σ. In the long run, new cars in total will consume

10Given the gasoline consumption ratio and miles-of-travel ratio, we can also conclude that there

is no rebound effect in this model.
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more fuel compared to old cars despite being more fuel-efficient11.

Proof. See Appendix 2.7.2

Proposition 2. Using the previous result, we can also obtain the mileage-of-travel

ratio between the new cars and the old cars:

m1,ss

m2,ss

= ρ
γ
σ−1 . (2.3.26)

Proof. See Appendix 2.7.3

Proposition 2 characterizes the equilibrium solution to the mileage ratio among

two types of vehicles. Overall, households prefer to use new cars more often than

old cars given that new cars are more efficient in providing driving services.

In the next two sections, we calibrate the model and use the analytical closed-

form solutions to characterize the paths of the key endogenous variables responding

to different policy options.

2.4 Calibration

This section describes the benchmark calibration of the parameters. The values of

parameter (shown in Table 2.1) are based on the comprehensive reviews of relevant

literature, like Wei (2013), Parry and Small (2005) and Chen et al. (2006). There

are four categories of parameters: the first relates to driving service and fuel usage.

111 − ρ measures the depreciation of vehicle having been used for a period (0 < ρ < 1). γ

measures the production level of fuel efficiency (0 < γ < 1) and σ measures the price elasticity of

demand in driving service (0 < σ < 1).
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The second is about production technology and the third specifies the preferences of

the household. The forth category is about the environmental quality and pollution.

The details of calibration can be found in Appendix 2.7.4.

Category Parameters Description Notation Value

Driving Service Vehicle leftover rate ρ 0.9

Vehicle preference σ 0.5

Mileage production technology γ 0.42

Production Technology Capital depreciation rate εk 0.1

Capital share in production α1,α2 0.33/0.42

Productivity level A1, A2 1

Marginal transformation rate µ 1

Fuel price pt 1.0872

Household Preference Subjective discount rate β 0.97

Weight on consumption φ1 0.34

Weight on driving φ2 0.05

Weight on environmental quality φ3 1

Environmental Factor The capacity of fuel efficiency µ1,µ2 1

Original state of environment φ 0.25

Natural purifying capacity ε 0.1

Table 2.1: Benchmark Calibration

2.5 Comparative statics of policies

In this section, we use the calibrated model to examine the efficacy of the three

policy options in addressing pollution and curbing fuel consumption: 1) fuel taxes on
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households’ fuel consumption (τt); 2) subsidies towards clean technology (st) and 3)

earmarking gasoline taxes revenue to subsidize the production of more fuel-efficient

vehicles. We first examine the long-run paths of endogenous variables responding

to increasing tax rates and subsidy rate. We then assess their long-run impact on

environmental quality. Finally we examine whether the policies make the society

better off or not.

2.5.1 The impact of policies on economy

In this section, we plot the equilibrium paths of key endogenous variables responding

to increasing fuel prices and increasing subsidies.

Figure 2.1 shows the impact of increasing fuel tax on the economy. In the long

run, capital accumulation, labour supply decreases slightly. Fuel efficiency and ve-

hicle price rarely change. The direct impact of fuel tax is on fuel consumption.

Increasing tax rate makes it more expensive to purchase fuel and households thus

reduce their demand for fuel. Eq.2.3.25 characterizes the constant fuel consumption

ratio between new cars and old cars. This is also observed in Fig.2.1 where fuel

consumed by both new cars and old cars keep decreasing but the ratio stays un-

changed. Moreover, households switch their demand from driving towards general

consumption facing increasing fuel price. Pollution gets alleviated only due to the

decreasing fuel consumption.

Figure 2.2 depicts the economy under subsidy policy option. As illustrated in our

model, vehicles are produced by capital ka and labour la. Increasing clean technol-

ogy subsidies provides incentive for firms to allocate more resources to produce more



2.5. Comparative statics of policies 30

Figure 2.1: Comparative-static effects of implementing fuel tax τ alone.

fuel-efficient and cleaner engines (δ). Thus proportionally, δ takes heavier weight in

the vehicle production sector. That explains the increment of δ and contraction of

a. Overall, miles per gallon of a vehicle, measured by (aδ)γ does not change signifi-

cantly. Households, at the beginning, benefit from driving more as mpg of vehicles

improve. After certain point, however, the product gap between a and δ is so big

that the production inefficiency starts to kick in, which leads to households decrease
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Figure 2.2: Comparative-static effects of implementing subsidy s alone.

their demand for driving. Production inefficiency also results in consumption and

leisure monotonically decreasing in level of subsidy. Pollution level keeps dropping

due to both the improvement of fuel efficiency (δ) and the decreasing consumption

of fuel.
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2.5.2 The impact of policies on the environment and welfare

The major goals of levying tax and subsidizing the environmentally-friendly engine

production are to curb fuel consumption and to address the pollution issues caused

by vehicle driving so as to improve social welfare. In this section, we use the cal-

ibrated model to examine the impact of policies on the environmental quality and

welfare and also check the robustness of our model by conducting sensitivity analysis

with different parameter values.

Environment

We investigate the long-run effect of the policies on the environmental quality. En-

vironmental quality N is a stock value and its change depends on two opposing

factors: nature’s assimilating capacity and the pollution.

We measure different levels of long-run environmental quality when the envi-

ronment assimilating ability differs (ε). Fig.2.3 depicts the effects of policies on

the environmental quality under two policy options in turn: 1) fuel tax only and

2) subsidy towards clean technology. Environmental quality improves due to the

decreasing pollution under all policies. A lower level of pollution (higher nature’s

assimilating capacity) means that fewer ecological services are needed to compensate

for the adverse effect pollution has had on the environmental quality. Lower pollu-

tion in turn results in a higher level of environmental quality. When environment has

a higher assimilating ability (ε is higher), the corresponding long-run environmental

quality is higher as well. The concavity also reveals that the environmental quality

will not explode as the ecological services provided in nature is limited (Smulders,
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Figure 2.3: The effects of different policies on the environmental quality

2000).

Welfare

Household obtains utility from driving but also suffers from the pollution caused

by vehicle driving. How much households value the environmental quality depends

on several factors. We investigate whether the policies improve social welfare given

different willingness to pay for the environmental quality. According to Jackson

(1983), place of residence affects household’s preference for the environmental qual-

ity: centre city has the benchmark preference value 1, suburb suffers more from
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pollution thus household living there puts more weight on the environmental qual-

ity, φ3 = 1.4. Rural areas have the least willingness to pay for better environmental

quality, with φ3 = 0.56.
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Figure 2.4: The effects of different policies on social welfare

Fig.2.4 shows the effects of fuel tax and subsidy rate on welfare. Three cases

where people have different preferences for the environmental quality are measured in

the figure. Overall, under fuel tax only policy and earmarking policy, the decreasing

pollution level improves the environmental quality. Although higher fuel price makes

consumers drive less, they switch their demand towards normal consumption good.

Therefore, we observe the improvement of social welfare in the long run.
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Long-run social welfare is more complex under the subsidy policy. Subsidies to

fuel efficiency, on the one hand makes vehicles consume less fuel and consequently

improves environmental quality, thereby mitigating the externality. On the other

hand, subsidies cause a miss-allocation of resources on the production side (produc-

tion inefficiency), which has a negative income effect (the economy produces inside

its production possibilities frontier). In terms of welfare, the subsidies will improve

welfare if the externality-mitigating effect dominates the production-inefficiency ef-

fect. Our numerical analysis suggests that for low levels of the subsidy the exter-

nality effect dominates, while for high levels of the subsidy production inefficiency

becomes dominant. Consequently welfare is increasing in the subsidy for low levels

and declining for high levels (inverted U shape).

2.6 Conclusion

This paper develops a new dynamic general equilibrium infinite-horizon model with

vehicles which are of two vintages. Our aim is to analyse the endogenous determina-

tion of fuel consumption, fuel efficiency, households driving choices, environmental

quality and social welfare under two policy options: 1) government levies tax on

fuel and 2) government provides subsidy to firms to produce more fuel-efficient and

cleaner engines. Our analyses demonstrate that at the steady state, households

prefer to use new cars more often than old cars and fuel consumed by new cars is

proportionally higher than fuel consumed by old cars.

Our numerical analysis show that providing subsidies to firms leads to more

resources being allocated to the production of more fuel-efficient engines and less



2.6. Conclusion 36

towards households’ consumption and leisure which eventually decreases social wel-

fare.

Instead, levying tax on fuel would not distort the production side of the economy.

By increasing fuel tax rate, government can be assured to achieve fuel consumption

reduction and pollution control. Environmental quality and social welfare in the

long run improve.
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2.7 Appendix

2.7.1 Optimality conditions derivation for household’s prob-

lem

Household maximizes its discounted life time utility, as shown in Eq.2.2.22 subject

to its budget constraint Eq.2.2.23.

Thus, the Lagrangian reads:

L =
∞∑
s=0

βt+s[U(ct,Mt, 1− lt, Nt) + λt+s(π
a
t + πgt + wtlt + rtkt − (pt + τt)(gt,1 + gt,2)

−kt+1 + (1− εk)kt − ct − qat (atδt))].

(2.A.1)

We then obtain the first-order conditions:

Uct
Uct+1

= β(1− εk + rt+1), (2.A.2)

∂Ut
∂Mt

∂Mt

∂mt,i

∂mt,i

∂gt,i
= Uct(pt + τt), i = 1, 2 (2.A.3)

β

(
∂Ut+1

∂Mt+1

∂Mt+1

∂mt+1,1

∂mt+1,1

∂atδt

)
+ β2

(
∂Ut+2

∂Mt+2

∂Mt+2

∂mt+2,2

∂mt+2,2

∂atδt

)
= qatUct , (2.A.4)

U1−lt = wtUct . (2.A.5)

2.7.2 Proof for proposition 1

In the steady state, Eq.2.A.3 becomes:

∂U

∂M
M1−σ

ss

mσ
2,ss

g2,ss

=
∂U

∂M
M1−σ

ss

mσ
1,ss

g1,ss

. (2.7.6)

Eq.2.7.6 states that in the steady state, the marginal utility of fuel consumption for

both types of vehicles are the same. Simplify Eq. 2.7.6 we can obtain Eq.2.3.25.
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2.7.3 Proof for proposition 2

In the steady state, Eq.2.2.17 and 2.2.18 become:

m1,ss = (assδss)
γg1,ss, (2.7.7)

m2,ss = (ρassδss)
γg2,ss. (2.7.8)

Thus, using Eq.2.3.25 we could get the mileage ratio between two types of vehicles

in the equilibrium.

2.7.4 Calibration

Parameters related to driving service

The driving service is provided by two types of cars: old cars and new cars. ρ

measures vehicle wear-out status which affects the fuel efficiency condition in the

next period. We set ρ to be 0.9. σ measures the preferences over different types of

cars and we set it to 0.5. According to Chen et al. (2006), consumption output ratio

is around 0.65 and Ferdous et al. (2010) states that personal cars spending over

household expenditure ratio is 6%. According to the steady state equilibrium of

the economy, Eq.2.3.25 states the fuel consumption ratio between new cars and old

cars. According to U.S. Energy Information Administration (2010) data, the newly

produced light-duty vehicles fuel consumption is 921 gallon per vehicle in 2010 and

882 gallon per vehicle in 2009. Thus, we use the ratio of two years to proxy the fuel

consumption ratio between two different types of cars. Using the ratio, we get:

ρ
γσ
σ−1 = 1.0452.
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In the steady state, Eq.2.A.4 becomes:

φ1(1 + ρ
γσ
σ−1 )aδqa = βφ2γ(ρ

γσ
σ−1 + β)g2c.

Using the consumption output ratio (0.65), personal cars spending over expendi-

ture ratio (0.06) and substituting ρ
γσ
σ−1 = 1.0452 in, we obtain the value of γ = 0.42.

Parameters related to production technology

The second category of parameters relates to production sector. Parameter εk de-

notes the depreciation rate of physical capital and we set it to be 0.1. The mean value

of the annual real fuel price pt is 1.0872 dollar. The aggregate productivity level of

both sector, A1 and A2 are normalized to 1. The parameter α is considered as the

share of total income paid to owners of capital and we set α1 and α2 to 0.33 and 0.42

based on the calibration results from Wei (2013). µ is the marginal transformation

of vehicle capital and fuel efficiency and we set that to 1 for simplicity.

Parameters related to the preference of households

The third category of parameter describes the preferences of household. The subjec-

tive discount rate β is 0.97. In the model, we assume log-preference for consumption,

driving service, leisure and environmental quality shown in Eq.2.2.16, which implies

that consumption and driving service are not perfect substitutes. We calibrate the

parameters φ1 and φ2 to 0.34 and 0.05 respectively to match the fact that households

allocate two thirds of their time in leisure.

Based on Ghez et al. (1975), households normally spend one third of their time

to market activities(time not spent on sleeping or personal maintenance). The fuel
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consumption output ratio (Eq.2.A.3) in steady state becomes:

φ2c = φ1(pt + τt)(g1 + g2).

Dividing each side by output and using the consumption output ratio and fuel

expenditure over income ratio, we calibrate the parameter φ1 and φ2 to 0.34 and

0.05.

Households benefit from good environmental quality. Jackson (1983) shows that

although the household’s willingness to pay for better environmental quality is sen-

sitive to the model specification and other assumptions, the income elasticity is in

the vicinity of 1. We thus set the benchmark value for φ3 to 1.

Parameters related to environmental quality and pollution

The concept of environmental quality is depicted in Eq.2.2.20. Environmental qual-

ity is a stock which is improved every period by natural purification capacity and

damaged by the pollution. ε measures nature’s purifying capacity and we set it to

0.1. Pollution, as expressed in Eq.2.2.21, is positively related to fuel consumption

but mitigated by the fuel efficiency condition δ. Parameter µ1 and µ2 measures to

which extent the fuel efficiency help in addressing pollution caused by fuel consump-

tion. For simplicity, we assume µ1 and µ2 to unity.



Chapter 3

Optimal Environmental Taxation

in the Presence of Pollution and

Congestion: A General

Equilibrium Analysis

This chapter derives the optimal steady-state first-best environmental tax structure

in the presence of (i) different vintage vehicles (new vehicles and old vehicles), (ii)

pollution and congestion externalities caused by vehicle driving. Analytical results

show that the optimal fuel tax is determined by two opposing forces caused by

gasoline consumption: marginal cost of pollution and marginal cost of congestion.

We also find that the optimal road taxes depend on the gasoline consumption ratio

between the new cars and the old cars. We further derive the solution of a uniform

fuel tax and examine how that affects the optimal road taxes accordingly. Our

41
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calibration on the U.S. economy shows that the optimal levels of transport taxes

are affected by the households’ preferences on the environmental factors. In the

presence of congestion externality, optimal fuel tax for old vehicles is higher, which

shows that the marginal cost of pollution outweighs the marginal cost of congestion

when households start to value the environmental quality. When we implement

uniform fuel tax, fuel tax rate lies between the optimal fuel taxes for new vehicles

and old vehicles. We also find that long-run utility is higher under optimal fuel tax

than uniform fuel tax but not to a substantial extent.

3.1 Introduction

Fuel consumed during driving creates externalities through air pollution, congestion,

accidents and import dependence (Haughton and Sarkar, 1996). The guaranteeing

of the efficiency of a competitive process and ways to address the externalities have

been important issues for economic policy construction. Environmental taxes, inter-

nalizing the external costs which vehicle driving imposes on the rest of the society,

have been a popular policy tool to address externalities (Bovenberg and De Mooij,

1994). However, what we observe is that fuels are taxed at widely different rates

in different countries (Newbery, 2005), with the U.K. in particular standing out as

having high oil taxes in contrast to the U.S. being specifically low in its oil taxes

among all the OECD countries (OECD, 2018). This raises a curious question as to

the appropriateness of the environmental taxes set by different countries.

This paper focuses on two important externalities generated by fuel via driving.

The first external impact is pollution which is viewed as a byproduct of gasoline
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combustion during driving. The emissions of carbon dioxide, nitrogen oxides and

monoxide pose great threats to residents especially in urban areas. The latter two

are the main cause for smog while carbon dioxide accumulates and contributes to

greenhouse effect which might contributes to global warming (Haughton and Sarkar,

1996). Poor air quality causes 40,000 to 50,000 early deaths in the U.K. and the cost

of these health impacts is estimated at £20 billion every year. The World Health

Organization (WHO) calculates that people in the U.K. are 64 times as likely to

die of air pollution as those in Sweden and twice as likely as those in the U.S. 1.

The second externality caused by driving is congestion. Gasoline is mainly used in

motor vehicles (Haughton and Sarkar, 1996) and the more often households drive

their vehicles, the heavier the traffic. In the U.K., traffic congestion in largest cities

is 14% worse than it was five years ago2. Many studies have shown that there

is a strong link between air pollution and congestion caused by vehicle driving.

Traffic congestion drastically worsens the air quality. In nose-to-tail traffic, tailpipe

emissions are four times greater than they are in free flow traffic (Bell, 2006). During

periods of heavy traffic, the falling speed of the traffic worsens air pollution. Morning

peak traffic average speeds in central London have fallen from 16 kmph in 2006 to

12 kmph in 2016, causing a 10% increase in NOx from diesel cars and vans, and a

25% and 27% increase for buses and trucks3.

Governments have recognized the need to tackle traffic congestion and different

policies have been put in practice4. Among all the tools, it is widely believed that

1 World Health Statistics, Monitoring Health for the SDGs, World Health Organisation, 2017.
2 Travel in London Report 9, Transport for London 2016.
3 Travel in London Report 9, Transport for London 2016.
4 Since 2008 Summer Olympics, Beijing started a license plate rationing scheme whereby each
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economic incentives bring about a more efficient allocation of road space and natural

resources (Walters, 1961).

A number of previous empirical studies have attempted different ways to quantify

the external costs generated5 and most of their estimation being mileage based.

Parry and Small (2005) build up a static analytical framework and solve for tje

second-best optimal fuel tax and decompose it into components that reflect different

external costs. They then calibrate their model based on the U.K. and the U.S.

economies to explain why different countries have different fuel tax rates. However,

there are still limitations within the previous research. Firstly, congestion itself

cannot be fully addressed by only taxing fuel. Congestion is normally measured by

the time spent on the road. Driving time is determined as the inverse of average

travel speed times mileage of travel (Parry and Small, 2005). As agents normally

take average driving speed as a given, the higher the mileage of travel, the longer

time agents have to spend on the road, hence heavier traffic. Mileage of travel is

produced by different fuel-efficiency-level of cars and gasoline. Therefore, simply

by charging higher price on fuel would not fully solve the congestion externality.

Secondly, it is crucial to take into consideration of the endogeniety of fuel efficiency.

As fuel becomes more expensive, households respond to this by either driving more

fuel-efficient vehicles or driving less, which means that fuel economy of the vehicle

car is banned from urban core area one workday per week, depending on the last digit of its licence

plate. In 2003, a congestion fee for driving in London was introduced and that year it was reported

that the scheme resulted in a 10% reduction in traffic volumes and an overall reduction of 11% in

vehicle kilometres in London.
5 See Peirson et al. (1995), Mayeres et al. (1996), and Rothengatter and Mauch (2000).
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fleet matter. Thirdly, fuel efficiency progresses over time and more fuel-efficient

vehicles contributes less emissions thus lower pollution level. To capture the long-

run impact of policy on environment, the contribution of a static model is very much

diminished.

This paper contributes to the theoretical literature in several ways. First, to

fully tackle the external cost generated by vehicle driving, we examine the first-best

environmental taxes to address pollution and congestion externalities separately.

We then examine the interrelation between optimal environmental taxes and how

they affect optimal tax structure. Second, we introduce capital heterogeneity using

”putty clay” technology (see Cooley et al. (1997) and Solow et al. (1960a)) to model

vehicles of different vintage so as to better capture the impact of fuel efficiency

endogeneity on optimal environmental taxes. Third, a dynamic view is useful in

interpreting pollution externalities as emissions accumulate over time and impact

agents in the long-run. This paper examines the first-best optimal environmental

taxes (fuel taxes and road taxes) employing a two-period vintage dynamic general

equilibrium model with pollution and congestion externalities presented.

We summarize the results as follows. First, analytical results show that the first-

best optimal fuel taxes consist of two parts: marginal cost of pollution and marginal

cost of congestion. New cars generate less pollution but contribute more to the

mileage of travel which leads to more congestion. Thus, the optimal fuel taxes of

different types of vehicles depend on these two contradicting factors. Optimal road

taxes target at the congestion externality which is related to vehicle fuel efficiency

level. In the steady states, households prefer to drive new cars more often which
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implies higher mileage of travel, thus road tax is higher for new cars than old cars.

We further solve for uniform fuel tax and it takes the form of weighted average

of fuel taxes of new cars and old cars. Second, we calibrate our model based on

the U.S. economy and show that the optimal environmental taxes depend on the

households’ preferences on environmental factors. In the presence of congestion

externality, optimal fuel tax for old vehicles is higher when households start to value

environment which shows that the marginal cost of pollution outweighs the marginal

cost of congestion. Households are better off under optimal fuel tax than uniform

fuel tax but not to a substantial extent.

The paper is organized as follows. Section 3.2 describes the model. Section

3.4 solves the social planner’s problem and describes its dynamics while section 3.3

looks at the decentralized economy case. Section 3.5 and 3.6 present the environ-

mental taxes solutions (fuel taxes and road taxes). Section 3.7 describes calibration

and numerically present the environmental taxes under different sets of preference

parameters. Section 3.8 concludes.

3.2 Basic features of the model

In this section, we introduce how vehicle-related features are modelled before we

present the social planner’s problem and household’s problem to solve for the optimal

environmental taxes.
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3.2.1 Driving behavior

Driving service is composed of mileage of travel produced by both new and old cars:

Mt = (mσ
t,1 +mσ

t,2)
1
σ , (3.2.1)

where 0 < σ < 1 and it measures the price elasticity of demand.

mt,1 measures the mileage of travel of new cars and mt,2 old cars at each time

period. This setting follows Grossman and Helpman (1991) to guarantee that house-

holds prefer to drive both types of cars rather than just the new ones.

At each time period, the mileage of travel by the new cars (at−1δt−1) and the old

cars(ρat−2δt−2) 6 are:

mt,1 = (at−1δt−1)γgt,1, (3.2.2)

mt,2 = (ρat−2δt−2)γgt,2, (3.2.3)

where 0 < ρ < 1 and 0 < γ < 1.

Mileage of travel has a linear relation to gasoline and depends on the efficiency

condition of the engines which are measured by γ 7. 1−ρ measures the depreciation

rate for the vehicle after having been used for a period.

3.2.2 Transport externalities

In this chapter, we include environmental factors and specifically we focus on pol-

lution and congestion caused by vehicle driving.

6 The description of vehicles is further explained in later section.
7 This formulation follows Wei (2013).
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Congestion: Parry and Small (2005) use driving time as a measurement for con-

gestion which is the product of the inverse of the average travel speed and miles of

travel. They also assume that agents take the average travel speed fixed as they

do not take account of their own impact on congestion. Following Parry and Small

(2005), we use the sum of mileages8 as a proxy for congestion externality.

Nt = mt,1 +mt,2. (3.2.4)

It captures the two sources of congestion: 1) the ownership of vehicles and 2) the

driving service when provided with gasoline. Congestion enters into utility function

for household as a negative externality (See Eq.3.3.21). In the utility function, N̄

measures the road capacity which bears the negative impact from congestion. The

figure below depicts the relation between road capacity and utility.

Figure 3.1: Congestion and road capacity

As seen from the figure, the x-axis measures road capacity(N̄ −N) while y-axis

measures the utility household gets from more spacious roads. When the roads

8Congestion is proportional to mileage and we abstract from peak hours. Congestion and

pollution are not directly affecting each other but are related through the consumption of gasoline.
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are less congested (lower N), households gains higher utility. Blue line depicts the

scenario where a higher road capacity is realised (higher N̄).

Pollution: Households gain utility from good environmental quality. However,

gasoline combustion caused by vehicle driving leads to pollution which degener-

ates environmental quality. Meanwhile, at each period, nature assimilates a certain

amount of pollutants and thus improves environment quality.

We base our formulation of pollution on Selden and Song (1995). The pollutant

we focus here is local air pollutant which is caused by the usage of gasoline but

mitigated by vehicle’s embedded fuel-efficiency levels:

Pt =
gt,1
δt−1

+
gt,2
ρδt−2

, (3.2.5)

where 1− ρ denotes the depreciation after vehicle being used for a period.

Eq.3.2.5 means that pollution is linear to gasoline consumed by both new cars

and old cars, and new cars are more efficient in mitigating pollution as the marginal

pollution caused by gasoline consumption is higher for old cars than new cars.

Environmental quality: Environmental quality is modelled as a type of asset.

The quality of the environment, Q, represents the stock of natural capital and

accumulates based on the regenerating ability of nature while depreciates due to

pollution P . Q evolves over time according to the following function based on

Bovenberg and Smulders (1995):

Qt+1 −Qt = Φ− εQt − Pt, (3.2.6)

where Qmax = Q̄ which implies that there is an upper limit for environmental quality.

Φ represents the original level of environmental quality while ε denotes the nature’s
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pollutant’s assimilating rate. The law of motion shows that environmental quality

is improved each period by nature’s pollutants-assimilating ability.

3.3 Decentralized economy

Now we start to look at the scenario where we have many firms and many identical

households. Households own all factors of production and all shares in firms. Gov-

ernment in the economy collects taxes from gasoline consumption and transfers the

revenue back to households in a lump-sum payment.

3.3.1 Firms

There are two production sectors: one is the general production sector G which is

used for general consumption goods ct, accumulation of capital and the purchase of

gasoline at an exogenous price pt. The second is vehicle production sector F which

produces vehicle capital at and fuel efficiency δt.

General production

In this sector, firms hire labours lgt and rent capital kgt from the households to produce

consumption goods, accumulate capital and import gasoline at a fixed price with

constant-return-to-scale technology. The profits generated go back to households.

The resource constraint reads:

G(kgt , l
g
t ) = ct + kt+1 − (1− εk)kt + pt(gt,1 + gt,2). (3.3.7)

The problem facing the firms in this sector is to maximize its profit (πgt ) with
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respect to capital kgt and labour lgt :

max
kgt ,l

g
t

πgt = G(kgt , l
g
t )− r

g
t k

g
t − w

g
t l
g
t . (3.3.8)

We normalize the price from the general production to unity. Given its constant-

return-to-scale technology, the profit from the general production sector πgt will be

zero.

The corresponding first-order conditions are:

rgt = Gkgt
, (3.3.9)

wgt = Glgt
. (3.3.10)

Vehicle production

Vehicle is a capital good made up of two attributes, the chassis of the car a and

the fuel efficiency component δ (the car engine power). Those two components are

produced separately but must be sold as a combined product. Fuel efficiency δ,

embedding clean technology, is crucial in mitigating air pollution (see Eq.3.2.5).

In this sector, firms hire labour lat and rent capital kat to produce vehicle capital

at and fuel efficiency δt. The firms sell the combination of vehicle capital and fuel

efficiency to households at price qat . The resource constraint reads:

F (kat , l
a
t ) = at + µδt, (3.3.11)

where µ measures the marginal transformation rate between vehicle capital at and

fuel efficiency δt.

Firm’s goal is to maximize its profit (πat ) with respect to capital kat , labour lat
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and how much fuel efficiency to produce δt:

max
kat ,l

a
t ,δt

πat = qat atδt − rat kat − wat lat . (3.3.12)

The first-order conditions for the vehicle producer are:

rat = qat δtFkat , (3.3.13)

wat = qat δtFlat , (3.3.14)

qat [F (kat , l
a
t )− µδt]− µqat δt = 0. (3.3.15)

Equilibrium conditions in the production sector

To clear the production sector:

kat + kgt = kt, (3.3.16)

lgt + lat = lt, (3.3.17)

where kt represents the total capital and lt the total labour at time period t.

wat = wgt = wt, (3.3.18)

rat = rgt = rt. (3.3.19)

3.3.2 Households

Representative household gains utility from general consumption ct, driving service

Mt, leisure 1 − lt and environmental quality Qt. They get disutility from conges-

tion Nt. We assume that the utility function is concave and is twice continuously

differentiable:

U(ct,Mt, 1− lt, Nt, Qt). (3.3.20)
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We assume log-preferences for the utility function:

U(ct,Mt, 1− lt, Nt, Qt) =

φ1 log ct + φ2 logMt + (1− φ1 − φ2) log (1− lt) + φ3 log (N̄ −Nt) + φ4 logQt,

(3.3.21)

where φ1, φ2, φ3 and φ4 are all positive.

Each time period, the household supplies labour lt and capital kt to firms and

receives all the profits generated by both types of firms (πat and πgt ). A lump-sum

payment Tt is paid to the household from the government. The household spends

on consumption goods, gasoline, new vehicles and investment. Household is also

subject to environmental taxes: gasoline tax for new cars and old cars (τ 1
t and τ 2

t )

respectively and road taxes for new cars and old cars (Tt,1 and Tt,2).

Thus, the budget constraint facing households is:

πat + πgt + wtlt + rtkt = (pt + τ 1
t )gt,1 + (pt + τ 2

t )gt,2 + kt+1 − (1− εk)kt + ct

+qat (atδt) + Tt,1(at−1δt−1) + Tt,2(at−2δt−2) + Tt.

(3.3.22)

The problem the household is facing is to maximize its discounted life-time util-

ity:

max
ct,gt,1,gt,2,atδt,lt

∞∑
s=0

βt+sU(ct,Mt, 1− lt, Nt, Qt), (3.3.23)

subject to the budget constraint shown in Eq. 3.3.22.

Note that when making decisions, household does not internalize the detrimen-

tal effects caused by vehicle driving. Put differently, household does not consider

externalities.
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We solve the maximization problem by transforming it into the equivalent Bell-

man equation format:

V t(kt, at−1δt−1, ρat−2δt−2;
{
It, Qt

}
) =

max
ct,gt,1,gt,2,atδt,lt

[
U(ct,Mt, 1− lt, Nt, Qt) + βV t+1(kt+1, atδt, ρat−1δt−1;

{
It+1, Qt+1

}
)
]
.

(3.3.24)

The derivation of the first-order conditions and the envelope conditions are shown

in Appendix 3.9.1.

3.3.3 Government

Government levies tax on household’s purchase of gasoline and transfer the tax

revenue back to households in a lump-sum payment.

Tt = τ 1
t gt,1 + τ 2

t gt,2 + Tt,1(at−1δt−1) + Tt,2(at−2δt−2). (3.3.25)

3.4 Social planner’s problem

We now move on to solve the social planner’s problem where government allocates

the resources. The Bellman equation to government’s problem is:

V t(kt, Qt; at−1δt−1, ρat−2δt−2;
{
It
}

) =

max
ct,gt,1,gt,2,at,l

g
t ,lt,k

g
t ,kt

[
U(ct,Mt, 1−lt, Nt, Qt)+βV

t+1(kt+1, Qt+1; atδt, ρat−1δt−1;
{
It+1

}
)
]
,

(3.4.26)

subject to the resource constraints:

G(kgt , l
g
t ) = ct + kt+1 − (1− εk)kt + pt(gt,1 + gt,2),
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F (kat , l
a
t ) = at + µδt,

and environmental quality’s law of motion:

Qt+1 −Qt = Φ− εQt − Pt.

The resource constraint (Eq.3.3.11) and the equilibrium condition (Eq.3.3.16) imply

that:

δt = H(kt − kgt , lt − l
g
t , at).

The optimality conditions are derived in Appendix 3.9.2.

3.5 Optimal environmental taxes

3.5.1 Optimal gasoline taxes

Taxes are used to correctly price social activities causing externalities, i.e. pollution

and congestion. Gasoline taxes help prices closely approximate marginal social cost,

that is, the gasoline tax household has to pay should equate exactly to the marginal

social cost caused by gasoline consumption so as to achieve first best. Given that

we have different types of vehicles, different and specific gasoline taxes need to be

applied. Thus, using optimality conditions we obtained in both household’s problem

and social planner’s problem, we are able to equalize the marginal social cost and

the tax.

Eq.3.A.2 and Eq.3.A.11 render the optimal gasoline tax rate for new cars:

τ 1
t =

V t+1
Qt+1

V t+1
kt+1

∂Pt
∂gt,1

−
UNt

∂Nt
∂mt,1

∂mt,1
∂gt,1

βV t+1
kt+1

. (3.5.27)
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Similarly, Eq.3.A.3 and Eq. 3.A.12 give us the optimal gasoline tax rate for old

cars:

τ 2
t =

V t+1
Qt+1

V t+1
kt+1

∂Pt
∂gt,2

−
UNt

∂Nt
∂mt,2

∂mt,2
∂gt,2

βV t+1
kt+1

. (3.5.28)

The formulation of optimal gasoline taxes reveal that gasoline consumption con-

tributes to both pollution and congestion. To see which rate is higher, in the steady

state, τ 2 − τ 1 become:

τ 2 − τ 1 =

+

VQ
Vk

+

(
1

ρδ
− 1

δ
) +

−
UN
βVk

+

[(aδ)γ − (ρaδ)γ]. (3.5.29)

Thus, in the steady state, the magnitude of the gasoline tax is undetermined

analytically. It depends on the opposing factors between marginal cost of pollution

and marginal cost of congestion caused by gasoline consumption. New cars cause

less pollution given the same amount of gasoline consumed but they do provide more

mileage of travel which contribute more to congestion. It is clear thus when only

environmental quality is considered, gasoline tax for old cars is higher than new

ones. Similarly, when only congestion externality is considered, gasoline tax for new

cars is higher than old cars. When both types of externalities are considered, the

tax rate depends on the dominating factor.

3.5.2 Optimal road taxes

Road taxes are used to correct congestion externalities. Compare the value functions

from social planner’s problem and decentralized economy, we obtain:

UNt
∂Nt

∂mt,1

∂mt,1

∂(at−1δt−1)
= −βV t+1

kt+1
T1, (3.5.30)
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and

UNt
∂Nt

∂mt,2

∂mt,2

∂(ρat−2δt−2)
= −βV t+1

kt+1
T2. (3.5.31)

The equations above then render the solutions to the optimal road taxes:

T1 = −
UNt

∂Nt
∂mt,1

∂mt,1
∂(at−1δt−1)

βV t+1
kt+1

, (3.5.32)

and

T2 = −
UNt

∂Nt
∂mt,2

∂mt,2
∂(ρat−2δt−2)

βV t+1
kt+1

. (3.5.33)

It is straightforward in the formulation that vehicles as a type of capital only

contribute to congestion externality and the tax rate is exactly determined by the

amount of marginal social damage. Similarly, in the steady state, we want to see

the comparison between marginal congestion cost of new cars and old cars:

T1 − T2 =
UN
βVk

γ(aδ)γ−1(ργ−1g2 − g1). (3.5.34)

We can see that the result is undetermined and depends on the gasoline consumption

ratio between new cars and old cars. When the gasoline consumption ratio between

two types of vehicles g1
g2
> ργ−1, then the road tax for new cars should be higher

than the road tax for old cars and vice versa.

3.6 Uniform gasoline tax

Levying different gasoline tax rates based on the type of vehicles is a difficult policy

to implement9. Thus, we are interested in finding how environmental taxes change

when gasoline tax is taxed uniformly across different types of vehicles.

9 This reflects the practice of fuel taxes in many countries.
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3.6.1 Optimal uniform gasoline tax

To have uniform gasoline tax, the left hand side of Eq.3.A.2 and Eq.3.A.3 must be

forced to be the same. Thus, we have:

UMt

∂Mt

∂mt,1

∂mt,1

∂gt,1
= UMt

∂Mt

∂mt,2

mt,2

∂gt,2
,

which gives us the condition on gasoline consumption ratio:

gt,1 = (
at−1δt−1

ρat−2δt−2

)
γσ
1−σ gt,2 = (

ρat−2δt−2

at−1δt−1

)
γσ
σ−1 gt,2. (3.6.35)

We can express it in a general form:

gt,1 = Φ(at−1δt−1, ρat−2δt−2)gt,2. (3.6.36)

We now solve the social planner’s problem by putting this ratio in as a new

constraint which means that gt,1 is not going to be a choice variable.

Notice that under the new constraint, both the change in at−1δt−1 and ρat−2δt−2

affect the change in g1.Thus, the envelope conditions Eq.3.A.19 and Eq.3.A.20

change as well.

V t
(at−1δt−1) = UMt

∂Mt

∂mt,1

∂mt,1

∂(at−1δt−1)
+ UNt

∂Nt

∂mt,1

∂mt,1

∂(at−1δt−1)
+ ρβV t+1

(ρat−1δt−1)[
UMt

∂Mt

∂mt,1

∂mt,1

∂gt,1
+ UNt

∂Nt

∂mt,1

∂mt,1

∂gt,1
− β(ptV

t+1
kt+1

+ V t+1
Qt+1

∂Pt
∂gt,1

)

]
∂gt,1

∂(at−1δt−1)
,

(3.6.37)

V t
(ρat−2δt−2) = UMt

∂Mt

∂mt,2

∂mt,2

∂(ρat−2δt−2)
+ UNt

∂Nt

∂mt,2

∂mt,2

∂(ρat−2δt−2)[
UMt

∂Mt

∂mt,1

∂mt,1

∂gt,1
+ UNt

∂Nt

∂mt,1

∂mt,1

∂gt,1
− β(ptV

t+1
kt+1

+ V t+1
Qt+1

∂Pt
∂gt,1

)

]
∂gt,1

∂(ρat−2δt−2)
,

(3.6.38)
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while all the other first-order conditions remain the same (See Appendix 3.9.3 for

derivation of constrained social planner’s problem.).

Now we can solve the uniform gasoline tax. For household in the decentralized

economy, they still make decisions separately on the consumption of gasoline (g1 and

g2). However, they are now facing a uniform tax τt on gasoline in stead of separate

ones.

Thus, Eq.3.A.2 and Eq.3.A.3 change into:

UMt

∂Mt

∂mt,1

∂mt,1

∂gt,1
= βV t+1

kt+1
(pt + τt), (3.6.39)

UMt

∂Mt

∂mt,2

∂mt,2

∂gt,2
= βV t+1

kt+1
(pt + τt). (3.6.40)

Substitute these into Eq. 3.A.27, we get:

βV t+1
kt+1

(pt + τt)gt,2 + UNt
∂Nt

∂mt,2

∂mt,2

∂gt,2
gt,2 − β

(
ptV

t+1
kt+1

+ V t+1
Qt+1

∂Pt
∂gt,2

)
gt,2

+ βV t+1
kt+1

(pt + τt)gt,1 + UNt
∂Nt

∂mt,1

∂mt,1

∂gt,1
gt,1 − β

(
ptV

t+1
kt+1

+ V t+1
Qt+1

∂Pt
∂gt,1

)
gt,1 = 0,

which renders the solution for uniform tax rate:

τt =
gt,2

gt,1 + gt,2
τ 2
t +

gt,1
gt,1 + gt,2

τ 1
t . (3.6.41)

The uniform gasoline tax rate takes the form of a weighted average of the gasoline

tax rates for new cars and old cars.

3.6.2 Optimal road taxes under the constraint

Given that the new gasoline consumption ratio is in place, road taxes for new cars

and old cars change accordingly as well. We match Eq.3.A.8 with Eq.3.6.37, and



3.6. Uniform gasoline tax 60

Eq.3.A.9 with Eq.3.6.38 to get the adjusted road use taxes:

UNt
∂Nt

∂mt,1

∂mt,1

∂(at−1δt−1)
+

[
βV t+1

kt+1
τt + UNt

∂Nt

∂mt,1

∂mt,1

∂gt,1
− βV t+1

Qt+1

∂Pt
∂gt,1

]
∂gt,1

∂(at−1δt−1)

= −βV t+1
kt+1

T c1 . (3.6.42)

Similarly, match Eq.3.A.20 and Eq.3.A.9, we get:

UNt
∂Nt

∂mt,2

∂mt,2

∂(ρat−2δt−2)
+

[
βV t+1

kt+1
τt + UNt

∂Nt

∂mt,1

∂mt,1

∂gt,1
− βV t+1

Qt+1

∂Pt
∂gt,1

]
∂gt,1

∂(ρat−2δt−2)

= −βV t+1
kt+1

T c2 . (3.6.43)

T c1 and T c2 denote road use taxes under constrained condition for new cars and

old cars.

Eq.3.5.27 implies that:

βV t+1
kt+1

τt = βV t+1
Qt+1

∂Pt
∂gt,1

− UNt
∂Nt

∂mt,1

∂mt,1

∂gt,1
.

Substitute the above equation into the two expressions above, we get:

UNt
∂Nt

∂mt,1

∂mt,1

∂(at−1δt−1)
+ βV t+1

kt+1
(τt − τ 1

t )
∂gt,1

∂(at−1δt−1)
= −βV t+1

kt+1
T1,

UNt
∂Nt

∂mt,2

∂mt,2

∂(ρat−2δt−2)
+ βV t+1

kt+1
(τt − τ 1

t )
∂gt,1

∂(ρat−2δt−2)
= −βV t+1

kt+1
T2.

Dividing −βV t+1
kt+1

on both sides of the above equations, we get the formulas for

the road taxes under the gasoline consumption ratio constraint:

T c1 = −
UNt

∂Nt
∂mt,1

∂mt,1
∂(at−1δt−1)

βV t+1
kt+1

− (τt − τ 1
t )

∂gt,1
∂(at−1δt−1)

, (3.6.44)

T c2 = −
UNt

∂Nt
∂mt,2

∂mt,2
∂(ρat−2δt−2)

βV t+1
kt+1

− (τt − τ 1
t )

∂gt,1
∂(ρat−2δt−2)

. (3.6.45)

With Eq. 3.5.32 and Eq.3.5.33, we can rearrange the expressions for the optimal

road taxes into:

T c1 = T1 − (τt − τ 1
t )

∂gt,1
∂(at−1δt−1)

, (3.6.46)
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T c2 = T2 − (τt − τ 1
t )

∂gt,1
∂(ρat−2δt−2)

. (3.6.47)

Therefore, the road taxes under uniform gasoline tax contain two parts: the

original expression of road tax and the extra term which measures the marginal

change made to gasoline consumption when vehicle types change. We are interested

to know whether the new road taxes level are above or below the original level.

Given Eq.3.6.41, Eq.3.5.27 and Eq.3.5.28, we obtain τ 2 − τ 1 in the steady state:

τ 2 − τ 1 =

+

VQ
Vk

+

(
1

ρδ
− 1

δ
) +

−
UN
βVk

+

[(aδ)γ − (ρaδ)γ]. (3.6.48)

The sign of τ − τ 1 can not be determined. Thus, it still remains unknown

analytically whether the road taxes under new constraint are above or below the ones

without. To have a better picture of the tax rates and their interactions among each

other under the gasoline consumption constraint, numerical simulation is needed.

3.7 Numerical solutions to the optimal environ-

mental taxes

In this section, we employ a numerical model based on the U.S. economy to examine

the first-best optimal environmental taxes. Calibrated model helps to relax the

restrictions of the analytical model and assesses the economy in a more realistic

setting. The calibration mostly follows the benchmark calibration we did in the first

chapter with only a few changes.
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3.7.1 Calibration

The table below summarizes the values of parameter in the calibration. The main

change happens in household preference and environmental factor.

Category Parameters Description Notation Value

Driving Service Vehicle leftover rate ρ 0.9

Vehicle preference σ 0.5

Mileage production technology γ 0.5

Production Technology Capital depreciation rate εk 0.1

Capital share in production α1,α2 0.33/0.42

Productivity level A1, A2 1

Marginal transformation rate µ 1

Gasoline price pt 1.0872

Household Preference Subjective discount rate β 0.97

Weight on consumption φ1 0.34

Weight on driving φ2 0.05

Weight on environmental quality φ4 1

Marginal cost of congestion φ3 0.0127

Environmental Factor Natural purifying capacity ε 0.01

Initial stock of environmental quality Φ 10

Congestion Extreme N̄ 1

Table 3.1: Calibration
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Household Preference

We assumed log-preference for the household as shown in Eq. 3.3.21:

U(ct,Mt, 1− lt, Nt, Qt) =

φ1 log ct + φ2 logMt + (1− φ1 − φ2) log (1− lt) + φ3 log (N̄ −Nt) + φ4 logQt.

At each time period, household gains utility from consumption ct, driving Mt and

leisure 1 − lt. Household also benefits from environmental quality Qt and suffers

from congestion Nt. Parameter φ1 and φ2 are calibrated to 0.34 and 0.05 following

Wei (2013) to match the fraction of time spent on market activities. How house-

holds value environmental quality is mostly geographically determined. We set the

benchmark value to 1 to match with the city center scenario (Jackson, 1983).

Congestion arises because additional vehicles reduce the speed of other vehicles,

and hence increase households’ driving time. The average driving speed is a constant

given that the road condition is fairly good. Therefore, an increase in aggregate

vehicle miles of travel implies more congestion. The marginal cost of congestion to

household is measured by φ3. Based on Newbery (1990), we calibrate the congestion

cost to be 0.0127 10.

Environmental factor

Environmental quality, as shown in Eq.3.2.6, is a stock variable which changes over

time based on the pollution caused by vehicle driving. ε measures the natural

10 The formula for estimating marginal congestion cost comes from Department of Trans-

port(US).
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pollutant-absorbing ability and we set it to 0.01. Φ denotes the beginning level of

environmental quality and we set it to 10.

3.7.2 Optimal environmental taxes

As shown in Eq.3.5.27 and Eq.3.5.28, gasoline is involved in generating both type of

externalities. Old cars should be taxed more for generating more pollution while new

cars should be taxed more for causing more traffic. We start from the benchmark

calibration where household do not get affected by externalities (φ3 = 0, φ4 = 0).

We then change the preference value of congestion (φ3) and environmental quality

(φ4) to see its impact on optimal tax rates.

Table 3.2 shows the benchmark scenario where households do not take external-

ities into consideration (thus the preferences for congestion φ3 and environmental

quality φ4 are zero). The optimal gasoline taxes (τ 1 and τ 2) and optimal road taxes

(T1 and T2) are all zero. Households use new cars more often and therefore new

cars provide higher mileage of travel (m1 > m2). New cars consume more gasoline

than old ones (g1 > g2). Households do not pay for road use taxes and only pay for

gasoline at its original price pt. Next, we are going to include pollution externality

into household’s preference to see how the economy is going to change from the

benchmark scenario.

Table 3.3 shows the economy when household cares only about pollution and

thus congestion is excluded (φ3 = 0, φ4 = 0.34). Road taxes for both types of

vehicles are still zero as congestion does not concern household. As only pollution

externality is considered and new cars have a higher pollution mitigating ability
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Benchmark: no externality

Economy in the Steady State

Variable Description Value Variable Description Value

c consumption 0.3676 a vehicle capital 0.1508

g1 gasoline (new cars) 0.0255 δ vehicle efficiency 0.1508

g2 gasoline (old cars) 0.0242 la labour (vehicle production) 0.0039

kg capital (general production) 1.4770 lg labour(general production) 0.3716

ka capital (vehicle production) 0.1657 l total labour 0.3755

k total capital 1.6427 P pollution 0.3474

Optimal Environmental Taxation

τ 1 optimal fuel tax (new cars) 0 τ 2 optimal fuel tax (old cars) 0

T1 optimal road tax (new cars) 0 T2 optimal road tax (old cars) 0

Mileage of Travel

m1 mileage travel by new cars 0.0039

m2 mileage travel by old cars 0.0035

Travel Cost

(pt + τ 1)g1 gasoline cost for new cars 0.0277

(pt + τ 2)g2 gasoline cost for old cars 0.0263

T1(aδ) road tax cost for new cars 0

T2(aδ) road tax cost for old cars 0

qa vehicle price 1.1353

qaaδ vehicle purchase cost 0.0258

Table 3.2: Optimal environmental taxes and economy (benchmark calibration)

than old cars, Eq.3.5.27 and Eq.3.5.28 indicate that the optimal gasoline tax rate

should be higher for old cars. This is further demonstrated by numerical results

as the gasoline tax for new cars is $0.1205/gallon and $0.1339/gallon for old cars.

Compared to the benchmark scenario where households ignore both externalities
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Pollution externality only

Economy in the steady state

Variable Description Value Variable Description Value

c consumption 0.3694 a vehicle capital 0.1512

g1 gasoline (new cars) 0.0232 δ vehicle efficiency 0.1512

g2 gasoline (old cars) 0.0215 la labour (vehicle production) 0.0039

kg capital (general production) 1.4649 lg labour (general production) 0.3686

ka capital (vehicle production) 0.1665 l total labour 0.3725

k total capital 1.6315 P pollution 0.3117

Optimal Environmental Taxation

τ 1 optimal fuel tax (new cars) 0.1205 τ 2 optimal fuel tax (old cars) 0.1339

T1 optimal road tax (new cars) 0 T2 optimal road tax (old cars) 0

Mileage of Travel

m1 mileage travel by new cars 0.0035

m2 mileage travel by old cars 0.0031

Travel Cost

(pt + τ 1)g1 gasoline cost for new cars 0.0280

(pt + τ 2)g2 gasoline cost for old cars 0.0263

T1(aδ) road tax cost for new cars 0

T2(aδ) road tax cost for old cars 0

qa vehicle price 1.1353

qaaδ vehicle purchase cost 0.0260

Table 3.3: Optimal environmental taxes and economy: pollution externality only

(see Table 3.2), gasoline consumption decreases for both types of vehicles but to a

different extent. New cars’ gasoline consumption decreases by 9% while old cars’

gasoline consumption decreases by 11%. However, new cars still consume more

gasoline and new cars provide more mileage of travel than old ones. Fuel efficiency
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and vehicle capital increases and pollution decreases. Households still prefer to use

new cars than old ones.
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Figure 3.2: Optimal fuel taxes: the economy when preference for environment

varies

We then examine the scenario where both externalities are concerned but house-

hold’s preference for environmental quality (φ4) varies. Figure 3.2 shows how eco-
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nomic variables are endogenously affected in the long run given different preferences

on the environmental quality, ranging from zero to one. As the weight given to

the environment increases, the marginal benefit gained from improving environment

increases which induces consumers to switch their demand from driving towards

consumption and leisure, which explains the positive increment in consumption and

decline in labour supply. Gasoline consumption thus decreases for both type of

vehicle and the drop for old cars is slightly bigger than for the new ones. Pollu-

tion decreases as a result of the decreasing gasoline consumption and vehicle service

usage.
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Figure 3.3: Optimal environmental taxation with different preference for environ-

mental quality

Figure 3.3 shows the corresponding optimal fuel taxes and road taxes when φ4

varies. Fuel taxes, as we discussed before in the analytical solution (Eq.3.5.27 and
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Eq.3.5.28), depend on two contradicting factors: marginal cost of pollution and

marginal cost of congestion caused by fuel consumption. New cars are more envi-

ronmentally friendly but also contribute more to the traffic for being more efficient

in providing mileage of travel. Numerical simulation suggests that, when both ex-

ternalities are considered, the pollution mitigation ability dominates the congestion

cost as household starts to care more and more about the environment. Old cars,

therefore, are facing higher fuel tax than new cars. Optimal road taxes, as discussed

before (Eq.3.5.32 and Eq.3.5.33), depend on the gasoline consumption ratio. As

household cares more about environment, gasoline consumed by old cars decreases

faster which makes gasoline consumption ratio increase. New cars provide more

mileage of travel to household which implies more congestion. Therefore, road tax

is higher for new cars than old cars.

3.7.3 Uniform gasoline tax

Levying different gasoline taxes based on vehicle type is difficult to implement in

practice. We therefore solve for uniform gasoline tax under the fuel consumption

ratio between new cars and old cars (Eq.3.6.41). We obtain the solution to social

planner’s problem under the constraint of gasoline consumption ratio (Eq.3.6.35).

in the steady state, the constraint reduces to:

g1 = ρ
γσ
σ−1 g2. (3.7.49)

Under bench mark calibration, the gasoline ratio g1
g2

= ρ
γσ
σ−1 > 1, which means

that new cars consume more gasoline than old cars. We then focus on the scenario

where household takes both externalities into consideration, solve for the uniform
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Figure 3.4: Uniform fuel tax: the economy when preference for environment varies

fuel tax and compare it to the optimal fuel taxes in the previous case. Table 3.A.2

describes the economy in the steady state in the presence of both externalities with

varying preferences for environment quality. The gasoline consumption ratio con-

straint is very close to the optimal tax scenario, thus when the preference for the

environment varies, the change of the economic variables in the steady state follows

the same pattern (See Figure 3.4). As people care more about the environment, the
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increasing marginal damage from pollution makes household switch their demand

towards consumption and leisure. We do observe that instead of gasoline consumed

by old cars decreasing more, the gasoline consumption ratio keeps constant as shown

in Eq.3.7.49.
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Figure 3.5: Uniform fuel tax and the corresponding road taxes with different

preference for enviromental quality

The uniform fuel tax and corresponding road use taxes are shown in Figure 3.5.

As shown in Eq.3.6.41, uniform fuel tax takes the form of a weighted average of

fuel tax for new cars and old cars and thus uniform tax lies in between the two

first-best fuel taxes. Figure 3.5 shows that as preference for environment grows,



3.7. Numerical solutions to the optimal environmental taxes 72

uniform gasoline tax increases and lies between fuel tax for new cars and old cars.

Road taxes, based on calibration, are the same for both new cars and old cars and

keep decreasing when households value the environment more.

3.7.4 Welfare

In this section, we compare the welfare status under optimal gasoline taxes and

uniform gasoline tax. The difference between the optimal gasoline taxes for different

types of vehicles and uniform gasoline tax is that we impose the gasoline consumption

ratio. Given that the gasoline ratio constraint is quite close to what we have in the

optimal fuel tax scenario, we do not observe huge differences in economy in the

long-run, which means that the welfare does not vary too much.
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Figure 3.6: Utility difference and consumption change under optimal fuel taxes

and uniform fuel tax

As shown in Figure 3.6, households are better off under optimal gasoline taxes

but not to a large extent. As preference for environmental quality increases, the

utility difference gap between the two policy options widens. We also solve for the
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consumption equivalence for one percentage improvement in environmental qual-

ity. Households gain utility from consumption c, driving service M , leisure 1 − l

and environmental quality Q while they suffer from congestion externality N . The

percentage change of consumption dc
c

is expressed as:

dc

c
= −φ4

φ1

dQ

Q
. (3.7.50)

The expression depends on the preference ratio between consumption and en-

vironmental quality. We look at the equivalent percentage change of consumption

when environmental quality changes:

Consumption percentage change

φ4 = 0.1 φ4 = 0.34 φ4 = 1

dQ/Q 6.2085e-06 1.7547e-05 3.08e-05

dc/c -1.8260e-06 -1.7547e-05 -9.0591e-05

Table 3.4: Consumption equivalence when environmental quality improves

Table 3.4 describes how much consumption household is willing to sacrifice in

order to have environmental quality improved. As households value environment

more, they are willing to sacrifice more consumption.

3.8 Conclusion

This paper employs analytical and numerical models to examine the general equi-

librium interactions between gasoline taxes and road taxes to account for the exter-

nalities caused by vehicle driving: pollution and congestion.
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The analytical model extends earlier work in many aspects. First, earlier work

mainly focuses on gasoline tax and tries to only use gasoline tax to address all

the externalities caused by gasoline consumption while neglecting the interaction

among different environmental taxes. The model we built focuses on the externali-

ties (pollution and congestion) caused by vehicle driving and we introduce different

environmental taxes targeting at specific externalities. Second, we look into how

tax rates differ when it comes to vehicles of different vintages.

This model indicates that in the presence of pollution and congestion, optimal

fuel taxes depend on two contradicting powers: the marginal cost of pollution and

marginal cost of congestion. New cars are more efficient in mitigating pollution but

contribute more to traffic given its efficiency in providing mileage of travel. Old cars

emit more pollutants but people are less willing to use them. Optimal road taxes

depend on gasoline consumption ratio. We also solve for the environmental taxes

when uniform fuel tax is implemented. Our model suggests that the uniform fuel

tax is a weighted average of the first-best fuel taxes. Road taxes are undetermined

due to the gasoline consumption ratio imposed.

The numerical simulations based on the U.S. economy support the analytical

result. When households are concerned with both pollution and congestion, the

marginal cost of pollution outweighs the marginal cost of congestion as households

value environment more and more which leads to the optimal fuel tax for old cars

being higher than for new ones. Under central values for parameters, gasoline con-

sumption ratio between new cars and old cars is larger than one which indicates that

road tax for new cars is higher. When implementing uniform fuel tax, we find that
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the gasoline consumption ratio is very close to the first-best case which indicates

that the change of economic status is quite small. Numerical analysis shows that

the uniform fuel tax is the weighted average of first-best fuel taxes and road taxes

are the same for both new cars and old cars under the benchmark calibration.

In addition, we also analyse the welfare level under both optimal fuel taxes and

uniform fuel tax. Given that the gasoline consumption restraint is very close to first-

best scenario, household is only slightly better off in optimal fuel taxes case and the

consumption equivalence change is also quite small. These considerations suggest

that estimates of optimal fuel tax should also take other environmental taxes into

consideration as they are intrinsically interdependent.



3.9. Appendix 76

3.9 Appendix

3.9.1 Optimality conditions derivation to household’s prob-

lem

The first-order conditions are:

ct : Uc = βV t+1
kt+1

, (3.A.1)

gt,1 : UMt

∂Mt

∂mt,1

∂mt,1

∂gt,1
= βV t+1

kt+1
(pt + τ 1

t ), (3.A.2)

gt,2 : UMt

∂Mt

∂mt,2

∂mt,2

∂gt,2
= βV t+1

kt+1
(pt + τ 2

t ), (3.A.3)

atδt : qat V
t+1
kt+1

= V t+1
atδt

, (3.A.4)

lt : U1−lt = −wtβV t+1
kt+1

. (3.A.5)

Similarly, we could get the envelope conditions:

V t
kt = β(1− εk + rt)V

t+1
kt+1

, (3.A.6)

VQt = UQt + β(1 + ε)V t+1
Qt+1

, (3.A.7)

V t
(at−1δt−1) = UMt

∂Mt

∂mt,1

∂mt,1

∂(at−1δt−1)
+ ρβV t+1

(ρat−1δt−1) − βV
t+1
kt+1

T1, (3.A.8)

V t
(ρat−2δt−2) = UMt

∂Mt

∂mt,2

∂mt,2

∂(ρat−2δt−2)
− βV t+1

kt+1
T2. (3.A.9)
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3.9.2 Optimality conditions derivation to government’s prob-

lem

The first-order conditions read:

ct : Uc = βV t+1
kt+1

, (3.A.10)

gt,1 : UMt

∂Mt

∂mt,1

∂mt,1

∂gt,1
+ UNt

∂Nt

∂mt,1

∂mt,1

∂gt,1
= β

(
ptV

t+1
kt+1

+ V t+1
Qt+1

∂Pt
∂gt,1

)
, (3.A.11)

gt,2 : UMt

∂Mt

∂mt,2

∂mt,2

∂gt,2
+ UNt

∂Nt

∂mt,2

∂mt,2

∂gt,2
= β

(
ptV

t+1
kt+1

+ V t+1
Qt+1

∂Pt
∂gt,2

)
, (3.A.12)

at : βV t+1
atδt

(
δt + at

∂H

∂at

)
= 0, (3.A.13)

lgt : β

[
V t+1
kt+1

∂G

∂lgt
− V t+1

atδt
at

∂H

∂(lt − lgt )

]
= 0, (3.A.14)

lt : U1−lt = βV t+1
atδt

at
∂H

∂(lt − lgt )
, (3.A.15)

kgt : V t+1
kt+1

(
∂G

∂kgt

)
− V t+1

atδt

[
at

∂H

∂(kt − kgt )

]
= 0. (3.A.16)

Envelope conditions:

V t
kt = βV t+1

kt+1
(1− εk) + βV t+1

atδt
at

∂H

∂(kt − kgt )
, (3.A.17)

V t
Qt = UQ + βV t+1

Qt+1
(1 + ε), (3.A.18)

V t
(at−1δt−1) = UMt

∂Mt

∂mt,1

∂mt,1

∂(at−1δt−1)
+ UNt

∂Nt

∂mt,1

∂mt,1

∂(at−1δt−1)
+ ρβV t+1

(ρat−1δt−1),

(3.A.19)

V t
(ρat−2δt−2) = UMt

∂Mt

∂mt,2

∂mt,2

∂(ρat−2δt−2)
+ UNt

∂Nt

∂mt,2

∂mt,2

∂(ρat−2δt−2)
. (3.A.20)

3.9.3 Constrained social planner’s problem

We need to guarantee that the first order conditions and envelope conditions measure

the same marginal changes for social planner under the gasoline constraint. We set
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up a constrained social planner problem to see whether the marginal changes match

with what we come up with above.

The objective function for social planner is the same with Eq.3.4.26:

V t(kt, Qt; at−1δt−1, ρat−2δt−2;
{
It
}

) =

max
ct,gt,1,gt,2,at,l

g
t ,lt,k

g
t ,kt

[
U(ct,Mt, 1−lt, Nt, Qt)+βV

t+1(kt+1, Qt+1; atδt, ρat−1δt−1;
{
It+1

}
)
]
,

(3.A.21)

subject to:

G(kgt , l
g
t ) = ct + kt+1 − (1− εk)kt + pt(gt,1 + gt,2), (3.A.22)

F (kat , l
a
t ) = at + µδt, (3.A.23)

Qt+1 −Qt = Φ− εQt − Pt, (3.A.24)

gt,1 = Ψ(at−1δt−1, ρat−1δt−2)gt,2. (3.A.25)

Thus, the corresponding first-order conditions are:

ct : Uct = βV t+1
kt+1

, (3.A.26)

gt,2 : UMt

∂Mt

∂mt,1

∂mt,1

∂gt,1

∂gt,1
∂gt,2

+ UMt

∂Mt

∂mt,2

∂mt,2

∂gt,2
+ UNt

∂Nt

∂mt,1

∂mt,1

∂gt,1

∂gt,1
∂gt,2

+ UNt
∂Nt

∂mt,2

∂mt,2

∂gt,2
= β

[
V t+1
kt+1

pt(Ψ + 1) + V t+1
Qt+1

(
∂Pt
∂gt,2

+
∂Pt
∂gt,1

∂gt,1
∂gt,2

)

]
,

(3.A.27)

at : βV t+1
atδt

(δt + at
∂H

∂at
) = 0, (3.A.28)

lgt : β

[
V t+1
kt+1

∂G

∂lgt
− V t+1

atδt
at

∂H

∂(lt − lgt )

]
= 0, (3.A.29)

lt : U1−lt = βV t+1
atδt

at
∂H

∂(lt − lgt )
, (3.A.30)

kgt : βV t+1
kt+1

∂G

∂kgt
− βV t+1

atδt
at

∂H

∂(kt − kgt )
= 0. (3.A.31)
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And the envelope conditions:

V t
kt = βV t+1

kt+1
(1− εk) + βVatδtat

∂H

∂(kt − kgt )
, (3.A.32)

V t
Qt = UQt + βV t+1

Qt+1
(1 + ε), (3.A.33)

V t
(at−1δt−1) = UMt

∂Mt

∂mt,1

∂mt,1

∂(at−1δt−1)
+ UMt

∂Mt

∂mt,1

∂mt,1

∂gt,1

∂gt,1
∂(at−1δt−1)

+ UNt
∂Nt

∂mt,1

∂mt,1

∂(at−1δt−1)
+ UNt

∂Nt

∂mt,1

∂mt,1

∂gt,1

∂gt,1
∂(at−1δt−1)

+ ρβV t+1
ρat−1δt−1

− βV t+1
kt+1

pt
∂gt,1

∂(at−1δt−1)
− βV t+1

Qt+1

∂Pt
∂gt,1

∂gt,1
∂(at−1δt−1)

,

(3.A.34)

V t
(ρat−2δt−2) = UMt

∂Mt

∂mt,1

∂mt,1

∂gt,1

∂gt,1
∂(ρat−2δt−2)

+ UMt

∂Mt

∂mt,2

∂mt,2

∂(ρat−2δt−2)

+ UNt
∂Nt

∂mt,1

∂mt,1

∂(ρat−2δt−2)
+ UNt

∂Nt

∂mt,2

∂mt,2

∂(ρat−2δt−2)

− βV t+1
kt+1

pt
∂gt,1

∂(ρat−2δt−2)
− βV t+1

Qt+1

∂Pt
∂gt,1

∂gt,1
∂(ρat−2δt−2)

.

(3.A.35)

The envelope conditions with respect to at−1δt−1, ρat−2δt−2 match with Eq. 3.6.37

and Eq.3.6.38.

3.9.4 Steady state solution

Equations describing the economy in the steady states are:

A1(kg)α1(lg)1−α1 = c+ εkk + pt(g1 + g2), (3.A.36)

ka + kg = k, (3.A.37)

la + lg = l, (3.A.38)

µδ = A2(ka)α2la
1
2
−α2 − a, (3.A.39)

εQ = Φ− P, (3.A.40)
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and

Vk =
Uc
β
, (3.A.41)

UM
∂M

∂m1

∂m1

∂g1

+ UN
∂N

∂m1

∂m1

∂g1

= β(ptVk + VQ
∂P

∂g1

), (3.A.42)

UM
∂M

∂m2

∂m2

∂g2

+ UN
∂N

∂m2

∂m2

∂g2

= β(ptVk + VQ
∂P

∂g2

), (3.A.43)

a = µδ, (3.A.44)

Vk
∂G

∂lg
= Vaδa

∂H

∂la
, (3.A.45)

U1−l = βVaδa
∂H

∂la
, (3.A.46)

Vk
∂G

∂kg
= Vaδa

∂H

∂ka
, (3.A.47)

Vk = βVk(1− εk) + βVaδa
∂H

∂ka
, (3.A.48)

VQ = UQ + βVQ(1 + ε), (3.A.49)

Vaδ = UM
∂M

∂m1

∂m1

∂(aδ)
+ UN

∂N

∂m1

∂m1

∂(aδ)
+ ρβVρaδ, (3.A.50)

Vρaδ = UM
∂M

∂m2

∂m2

∂(ρaδ)
+ UN

∂N

∂m2

∂m2

∂(ρaδ)
. (3.A.51)

Using the marginal substitution between consumption and capital, we can get

rid of Vk. We then have the marginal substitution between consumption and labour:

Uc
∂G

∂kg
= U1−l. (3.A.52)

The capital labour ratio between the two production sectors is:

∂G
∂lg

∂G
∂kg

=
∂H
∂la

∂H
∂la

. (3.A.53)

The marginal productivity of labour in general production function is expressed

as:

∂G

∂kg
=

1− β(1− εk)
β

. (3.A.54)
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We get the steady state conditions:

A1(
kg

lg
)α1lg = c+ εkk + pt(g1 + g2)

ka + kg = k

la + lg = l

µδ = A2(
ka

la
)α2(la)

1
2 − a

εQ = Φ− P

P =
g1

δ
+
g2

ρδ

Φ2g
σ−1
1

gσ1 + ργσgσ2
+

Φ3

g1 + ργg2

=
ptΦ1

c
+

β

1− β(1 + ε)

1

δ

Φ4

Q

Φ2ρ
γσgσ−1

2

gσ1 + ργσgσ2
+

Φ3ρ
γ

g1 + ργg2

=
ptΦ1

c
+

β

1− β(1 + ε)

1

ρδ

Φ4

Q

a = µδ

(
kg

lg
)α1 =

1− Φ1 − Φ2

Φ1A1(1− α1)

c

1− l
ka

la
=

1− α1

α1

α2

1
2
− α2

kg

lg

kg

lg
=

[
1− β(1− εk)

βA1α1

] 1
α1−1

[1− β(1− εk)]µ

βA2α2(1−α1

α1
)α2− 1

2 ( α2
1
2
−α2

)α2− 1
2 (1−β(1−εk)

βA1α1
)
α2−

1
2

α1−1 (ka)−
1
2

Φ1

βc
=

ptΦ1(g1 + βg2)

c
+

βΦ4(g1 + βg2)

(1− β(1 + ε))δQ

3.9.5 Numerical results

Table 3.A.1 describes the economy when both externalities from driving are consid-

ered and the preference for environment varies.

Table 3.A.2 describes the uniform fuel tax case when both congestion and pol-

lution are considered and the preference for environment varies.
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Scenario 3: pollution and congestion (φ4 varies)

Economy in the steady state

Variable Description Value

φ4 = 0 φ4 = 0.1 φ4 = 0.34 φ4 = 1

c consumption 0.3677 0.3682 0.3694 0.3720

g1 gasoline (new cars) 0.0254 0.0247 0.0231 0.0197

g2 gasoline (old cars) 0.0241 0.0233 0.0215 0.0177

kg capital (general production) 1.4767 1.4729 1.4647 1.4472

ka capital (vehicle production) 0.1654 0.1657 0.1663 0.1675

k total capital 1.6422 1.6387 1.6310 1.6148

a vehicle capital 0.1507 0.1508 0.1511 0.1516

δ vehicle efficiency 0.1507 0.1508 0.1511 0.1516

la labour (vehicle production) 0.003906 0.003913 0.003926 0.003955

lg labour (general production) 0.3716 0.3706 0.3685 0.3641

l total labour 0.3755 0.3745 0.3725 0.3681

P pollution 0.3471 0.3358 0.3114 0.2597

Optimal Environmental Taxation

τ 1 optimal fuel tax (new cars) 0.0021 0.0376 0.1227 0.3561

τ 2 optimal fuel tax (old cars) 0.0020 0.0414 0.1360 0.3953

T1 optimal road tax (new cars) 0.0011691 0.001136 0.001064 9.0788e-04

T2 optimal road tax (old cars) 0.0011692 0.001128 0.001041 8.6048e-04

Mileage of Travel

m1 mileage travel (new cars) 0.0038 0.0037 0.0035 0.0030

m2 mileage travel (old cars) 0.0035 0.0033 0.0031 0.0025

Travel Cost

(pt + τ 1)g1 gasoline cost for new cars 0.0277 0.0278 0.0280 0.0284

(pt + τ 2)g2 gasoline cost for old cars 0.0263 0.0263 0.0263 0.0263

T1(aδ) road tax cost for new cars 2.6562e-05 2.5861e-05 2.4318e-05 2.0884e-05

T2(aδ) road tax cost for old cars 2.6566e-05 2.5685e-05 2.3792e-05 1.9793e-05

qa vehicle price 1.135329 1.135328 1.135334 1.135340

qaaδ vehicle purchase cost 0.025794 0.025835 0.025925 0.02611

Table 3.A.1: Optimal environmental taxes and economy when both externalities

considered: preference for environment varies
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Uniform Tax: pollution and congestion (φ4 varies)

Economy in the steady state

Variable Description Value

φ4 = 0 φ4 = 0.1 φ4 = 0.34 φ4 = 1

c consumption 0.3677 0.3682 0.3694 0.3720

g1 gasoline (new cars) 0.0254 0.0246 0.0229 0.0191

g2 gasoline (old cars) 0.0241 0.0234 0.0217 0.0182

kg capital (general production) 1.4767 1.4729 1.4647 1.4472

ka capital (vehicle production) 0.1654 0.1657 0.1663 0.1675

k total capital 1.6422 1.6386 1.6310 1.6147

a vehicle capital 0.1507 0.1508 0.1511 0.1516

δ vehicle efficiency 0.1507 0.1508 0.1511 0.1516

la labour (vehicle production) 0.003906 0.003913 0.003926 0.003954

lg labour (general production) 0.3716 0.3706 0.3685 0.3641

l total labour 0.3755 0.3745 0.3725 0.3681

P pollution 0.3471 0.3358 0.3116 0.2600

Optimal Environmental Taxation

τ optimal fuel tax (new cars) 0.0020 0.0395 0.1292 0.3752

T1 optimal road tax (new cars) 0.0012 0.00113 0.00105 8.8456e-04

T2 optimal road tax (old cars) 0.0012 0.00113 0.00105 8.8456e-04

Mileage of Travel

m1 mileage travel(new cars) 0.0038 0.0037 0.0035 0.0029

m2 mileage travel (old cars) 0.0035 0.0033 0.0031 0.0026

Travel Cost

(pt + τ 1)g1 gasoline cost (new cars) 0.0277 0.0278 0.0279 0.0281

(pt + τ 2)g2 gasoline cost (old cars) 0.0263 0.0264 0.0265 0.0266

T1(aδ) road tax cost (new cars) 2.6564e-05 2.5774e-05 2.4059e-05 2.0343e-05

T2(aδ) road tax cost (old cars) 2.6564e-05 2.5774e-05 2.4059e-05 2.0343e-05

qa vehicle price 1.13533 1.135329 1.135337 1.135342

qaaδ vehicle purchase cost 0.025794 0.025835 0.025923 0.02611

Table 3.A.2: Uniform fuel tax, corresponding road taxes and the economy with

both types of externalities: preference for environment varies



Chapter 4

Optimal Environmental Taxes in

the Presence of Distortionary

Taxes

In this chapter, we derive the optimal environmental tax (gasoline taxes and road

use taxes) structure for vehicles of different vintages in the presence of distortionary

taxes and externalities caused by vehicle driving (pollution and congestion). The

analytical results from our model show the additive property between the Pigovian

element and the efficiency element in the formulation of optimal gasoline taxes and

optimal road taxes. We also show that the optimal environmental taxes depend

on the households’ preferences for environmental quality and congestion externality.

The optimal tax structure is also determined by the degree of complementarity with

common consumption good.
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4.1 Introduction

In this chapter, we derive the optimal environmental tax (gasoline taxes and road

use taxes) structure for vehicles of different vintages (new cars and old cars) in

the presence of distortionary taxes (labour tax, capital income tax and vehicle pur-

chase tax) and externalities caused by vehicle driving (pollution and congestion).

Households own both new cars and old cars, which provide them with driving ser-

vices. However, vehicle driving leads to pollution and congestion externalities which

impose a negative impact on households’ overall happiness level.

Previous literature on optimal environmental taxes focuses on how to apply one

type of environmental tax to address many environmental externalities. Parry and

Small (2005) derive the optimal gasoline tax formula in the second best considering

externalities caused by vehicle driving (pollution, congestion and accidents). Based

on the optimal gasoline tax formulation, their simulation results show that the gaso-

line tax for the U.S. is too low while too high for the U.K. Bovenberg and Goulder

(1996) examines how optimal environmental tax rates deviate from rates implied

by the Pigovian principle in a second-best setting with the presence of other distor-

tionary taxes where environmental tax is applied to ”dirty” intermediate production

inputs. They find that in the presence of distortionary taxes, optimal environmental

tax rates are generally below the rates suggested by the Pigovian principle. In this

chapter, we broaden the analysis to include different environmental taxes (gasoline

taxes and road taxes) to see their interrelation when other distortionary taxes are

present. By doing so, we can examine how the presence of distortionary taxes affect

the structure of optimal environmental taxes.
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We approach the problem by taking the perspectives from both the individual

and the government. Disintegrating the optimal environmental taxes, we find the

additive property between the Pigovian element and efficient element proposed by

Sandmo (1975). The presence of distortionary taxes cause optimal environmental

taxes deviating from the Pigovian standards and the deviation depends on house-

hold’s preference for environmental quality and congestion externality.

To further examine the results of our optimal environmental taxes, we apply

the approach proposed by Atkinson and Stiglitz (1972) and look into how opti-

mal tax structure can be explained by complementarity with normal consumption

goods when utility function is not direct additive. The formulation of optimal gaso-

line taxes depends on two opposing factors: the marginal cost of pollution and

the marginal cost of congestion. Whether one factor outweighs the other depends

on both their degree of complementarity with the normal consumption goods and

households’ preference on environmental factors.

This chapter is organized as follows. Section 4.2 first introduces the decentralized

economy where individual household does not internalize the detrimental effects

caused by vehicle driving to the environment. We then present household’s problem.

Section 4.3 formulates the problem from the government’s perspective (the Ramsey

problem). Section 4.4 presents the optimal tax structure and the implications of the

tax structure are discussed in section 4.5. Section 4.6 concludes.
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4.2 The economy

4.2.1 Assumptions about production

The economy is constituted by two sectors: the general production sector G and

the vehicle production sector F . Both sectors require capital k and labour l as

production inputs.

General production: In this sector, firms hire labour lgt and rent capital kgt from

households at the price of rgt and wgt to produce consumption goods c, accumulate

capital k, and import gasoline (g1 and g2) at a constant price pt with constant-

return-to-scale technology:

G(kgt , l
g
t ) = ct + kt+1 − (1− εk)kt + pt(gt,1 + gt,2). (4.2.1)

The problem facing firms in the general production sector is to choose capital and

labour to maximize profits πgt :

max
kgt ,l

g
t

πgt = G(kgt , l
g
t )− r

g
t k

g
t − w

g
t l
g
t . (4.2.2)

The first-order conditions then read:

Gkgt
= rgt , (4.2.3)

Glgt
= wgt . (4.2.4)

Vehicle production: In this sector, firms hire labour lat and rent capital kat to

produce vehicle capital at and fuel efficiency δt:

F (kat , l
a
t ) = at + µδt (4.2.5)
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Vehicle is a type of capital good which is made up of two attributes (a and δ).

a is vehicle capital and δ measures the fuel efficiency level embedded within the

vehicles. Those two components are produced separately but must be sold as a

combined product at the price of qat . Firms in this sector choose labour lat , capital

kat and the optimal combination of atδt to maximize the profits πat :

max
kat ,l

a
t ,atδt

πat = qat (atδt)− rat kat − wat lat . (4.2.6)

The first-order conditions are:

rat = qat δtFkat , (4.2.7)

wat = qat δtFlat , (4.2.8)

qat [F (kat , l
a
t )− µδt]− µqat δt = 0. (4.2.9)

Equilibrium in production: Market clearing implies:

kat + kgt = kt, (4.2.10)

lgt + lat = lt, (4.2.11)

where lt denotes the total labour and kt total capital at time period t.

wat = wgt = wt, (4.2.12)

rat = rgt = rt. (4.2.13)

4.2.2 Assumptions about the households

Representative household gains utility from general consumption ct, driving ser-

vice Mt, leisure 1 − lt and environment quality Qt. Household gets disutility from
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congestion Nt:

U(ct,Mt, 1− lt, Nt, Qt). (4.2.14)

Driving behavior: There are two types of vehicles in the market: new cars and

old cars. We follow Solow et al. (1960b) and Cooley et al. (1997) to model vintage

vehicles using capital heterogeneity as in previous chapters. After production, the

technology embedded in the vehicle will not change, which implies that the mileage

of travel over one unit of gasoline consumed is fixed for the specific vintage type.

Vehicles need one period of configuration and are then used by the households for

two periods before getting scraped. New cars produced at time period t are used by

the households at time period t+ 1. At time period t+ 2, new cars become old cars

and they are also subject to depreciation (1− ρ) from already being used for a time

period.

The mileage of travel produced by both new (mt,1) and old (mt,2) cars constitute

driving service in the following way1:

Mt = (mσ
t,1 +mσ

t,2)
1
σ , (4.2.15)

where 0 < σ < 1 and it measures price elasticity of demand.

We further specify the mileage of travel provided by the new cars and the old

1The preferences for mt,1 and mt,2 follow Grossman and Helpman (1991) to guarantee that

household exhibits preference for variety over quantity, which means that household always prefers

to use both types of cars instead of just using new cars.



4.2. The economy 90

cars following Wei (2013):

mt,1 = (at−1δt−1)γgt,1, (4.2.16)

mt,2 = (ρat−2δt−2)γgt,2, (4.2.17)

where 0 < ρ < 1 and 0 < γ < 1.

Eq.4.2.16 and Eq.4.2.17 show that mileage of travel is linearly related to gasoline

consumed by different vehicles. γ measures the technology embedded in the vehicle

after production.

Congestion: One important byproduct of vehicle driving is congestion. Conges-

tion is normally modelled as the time spent on driving 2. We assume that the average

speed of people spend on driving is an exogenous constant3 (Parry and Small, 2005).

Thus, we could use the sum of mileage as a proxy for congestion Nt.

Nt = mt,1 +mt,2. (4.2.18)

Pollution and environmental quality: Household gains utility from good en-

vironment quality. Gasoline combustion caused by vehicle driving causes pollution

which is mitigated by more fuel-efficient vehicles. Pollution at each period (Pt)

is positively related to gasoline consumption while mitigated by the fuel efficiency

conditions embedded in different vintage vehicles (Selden and Song, 1995):

Pt =
gt,1
δt−1

+
gt,2
ρδt−2

, (4.2.19)

2 See Arnott and Small (1994) and Rouwendal and Verhoef (2006).
3Households do not take account of their own impact on congestion.
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where 0 < ρ < 1 and 1−ρ measures the depreciation to the old cars for having been

used for a period.

Environmental quality is modelled as a type of capital asset. The quality of the

environment, Q represents the stock of natural capital and accumulates based on the

regenerating ability of nature while depreciating due to pollution P . Environmental

quality evolves over time according to the following function based on Bovenberg

and Smulders (1995):

Qt+1 −Qt = R− εQt − Pt, (4.2.20)

where Qmax = Q̄. R represents the original status of the environmental quality and

ε measures the nature’s pollutant-assimilating ability. Environmental quality Q can

not explode thus we assume an upper limit Qmax for it.

4.2.3 Household’s problem

Infinitely-lived representative household supplies labour lt and capital kt to firms at

wage rate wt and capital rental price rt, and their income are subject to labour tax

τ lt and capital income tax τ kt . It also receives the profits generated from both pro-

duction sectors (πgt and πat ). Household purchases consumption goods (ct), gasoline

(gt,1, gt,2), new vehicles (atδt) and make investments. Household is also subject to

gasoline taxes (τ 1
t for new cars and τ 2

t for old cars), road taxes (T 1
t for new cars and

T 2
t for old cars) and vehicle purchase tax (τat ).

Household maximizes its life-time utility:

max
ct,gt,1,gt,2,atδt,lt

∞∑
s=0

βt+sU(ct,Mt, 1− lt, Nt, Qt), (4.2.21)
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subject to the budget constraint:

πat + πgt + (1− τ lt )wtlt +
[
1− ε+ (1− τ kt )rt

]
At =

(pt+τ
1
t )gt,1+(pt+τ

2
t )gt,2+At+1+ct+(1+τat )qat (atδt)+Tt,1(at−1δt−1)+Tt,2(at−2δt−2),

(4.2.22)

where At denotes the total assets owned by the household and it consists of capital

kt and government bonds Bt (At = kt +Bt).

The Lagrangian reads:

L =
∞∑
t=0

βt
[
U(ct,Mt, 1− lt, Nt, Qt) + λt

(
πat + πgt + (1− τ lt )wtlt + [1− εk + (1− τ kt )rt]At

− (pt + τ 1
t )gt,1 − (pt + τ 2

t )gt,2 − At+1 − ct − (1 + τat )qat (atδt)

− Tt,1(at−1δt−1)− Tt,2(at−2δt−2)
)]
.

(4.2.23)

Solving the Lagrangian problem (see Appendix 4.7.1), we get the following first-

order conditions:

U1−lt
Uct

= (1− τ lt )wt, (4.2.24)

Uct−1

βUct
=
[
1− ε+ (1− τ kt )rt

]
, (4.2.25)

∂Ut
∂Mt

∂Mt

∂mt,i

∂mt,i
∂gt,i

Uct
= (pt + τ it ), (4.2.26)

where i = 1, 2.

Eq.4.2.24 and Eq.4.2.26 describe the marginal rate of substitution between leisure,

gasoline consumption and general consumption goods. Eq.4.2.25 determines that

capital rental price.
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4.3 The Ramsey problem

We employ the primal approach which enables us to maximize the social welfare

directly through choices of allocations 4.

The implementability constraint reads can be obtained by rearranging budget

constraint Eq.4.2.225,:

0 = λ−1A0 +
∞∑
t=0

βt
(
U1−ltlt − UMtMt − Uctct − γβUMt+1Mt+1

)
. (4.3.27)

With the implementability constraint, we present the government’s problem: govern-

ment maximizes the social welfare with respect to the resource constraint (Eq.4.2.1).

The Lagrangian reads:

Lg =
∞∑
t=0

βt

[
U(ct,Mt, 1− lt, Nt, Qt) + Ω̃

(
Ultlt + UMtMt + Uctct + γβUMt+1Mt+1

)
+ Ψt

(
G(kgt , l

g
t )− ct + (1− εk)kt − kt+1 − pt(gt,1 + gt,2)

)
+ Φt

(
(1− ε)Qt +R− Pt −Qt+1

)]
,

(4.3.28)

where Ω̃ and Ψt are Lagrange multipliers. Ω̃ measures the effect of an increase in

tax rate on social utility while Ψt measures the effect of income change on social

utility.

We derive the first-order conditions with respect to consumption ct, labour (lat ,

lt), gasoline consumption (gt,1, gt,2), capital (kat , kt) and environmental quality(Qt)

for the next period6.

4 See Atkinson and Stiglitz (2015).
5The detailed derivation can be found in Appendix 4.7.2.
6The detailed derivation can be found in Appendix 4.7.3.
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Simplifying the first-order conditions with respect to consumption (See Eq.4.A.17)

and labour (See Eq.4.A.18) obtained in the government’s problem, we get:

1 + Ω̃∆ct =
Ψt

Uct
, (4.3.29)

1 + Ω̃∆lt = −
ΨtGlgt

Ult
, (4.3.30)

where

∆ct = 1 +
Uccct
Uct

+
Ulclt
Uct

+ (1 + γ)
UMcMt

Uct
,

∆lt = 1 +
Ulllt
Ult

+
Uclct
Ult

+ (1 + γ)
UMlMt

Ult
.

Then, we divide Eq. 4.3.29 by Eq.4.3.30 to obtain the following:

1 + Ω̃∆ct

1 + Ω̃∆lt

= −Ult
Uct

1

Glgt

.

Using Eq.4.2.24, we get the optimal labour tax rate τ lt :

τ lt = 1− 1 + Ω̃∆ct

1 + Ω̃∆lt

=
Ω̃∆lt − Ω̃∆ct

1 + Ω̃∆lt

. (4.3.31)

In the steady state, consumption c, labour l and driving service M are constant

which means that the Lagrangian multiplier Ψ is constant in the long run. There-

fore, in equilibrium, the first-order condition with respect to capital (See Eq.4.A.19)

becomes:

1 = β(Gkgt
+ 1− εk). (4.3.32)

Combining this result with Eq.4.2.25, the optimal capital tax in the steady state is

zero which is consistent with the results by Ramsey (1928):

τ k = 0. (4.3.33)
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4.4 Optimal environmental taxes

Vehicle driving causes pollution and congestion externalities. Given that vehicle

driving service is generated by two components (transportation capital and gasoline

consumption), the optimal gasoline taxes and the optimal road taxes should reflect

this feature.

Optimal gasoline taxes

Gasoline is used by two types of vehicles which provide driving services to the

household at each time period. Given that the optimal amount of gasoline chosen

by the government depends on the Lagrangian multiplier Φt, we look at the scenario

at the steady state. In the steady state, the first order conditions with respect to

gasoline consumption in the government’s problem become7:

UM(1 + Ω̃∆M)M1−σm
σ
1

g1

+ UN(1 + Ω̃∆N)
m1

g1

− Φ
1

δ
= Ψpt,

UM(1 + Ω̃∆M)M1−σm
σ
2

g2

+ UN(1 + Ω̃∆N)
m2

g2

− Φ
1

ρδ
= Ψpt.

Given the steady state value of Φ (See Eq.4.A.25), we obtain:

UMM
1−σ

Uc

mσ
1

g1

− pt = −UN
Uc

(1 + Ω̃∆N)

(1 + Ω̃∆M)

m1

g1

+
1

δ

UQ
Uc

(1 + Ω̃∆Q)

1 + Ω̃∆M

β

1− β(1− ε)
,

UMM
1−σ

Uc

mσ
2

g2

− pt = −UN
Uc

(1 + Ω̃∆N)

(1 + Ω̃∆M)

m2

g2

+
1

ρδ

UQ
Uc

(1 + Ω̃∆Q)

1 + Ω̃∆M

β

1− β(1− ε)
.

7 Firms’ profit maximizing decisions imply that:

Gk
Gl

=
Fka

Fla
.
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Using Eq. 4.2.26, the optimal gasoline taxes in the steady state are expressed

by:

τ 1 = −UN
Uc

(1 + Ω̃∆N)

(1 + Ω̃∆M)

m1

g1

+
1

δ

UQ
Uc

(1 + Ω̃∆Q)

(1 + Ω̃∆M)

β

1− β(1− ε)
, (4.4.34)

τ 2 = −UN
Uc

(1 + Ω̃∆N)

(1 + Ω̃∆M)

m2

g2

+
1

ρδ

UQ
Uc

(1 + Ω̃∆Q)

(1 + Ω̃∆M)

β

1− β(1− ε)
. (4.4.35)

Optimal road taxes

Total mileage of travel (mt,1 + mt,2) is used as a proxy for the congestion. The

mileages of travel by both new cars and old cars depend on the vintages of vehicles

and the amount of gasoline they consumed. atδt is determined in the government’s

resource allocation problem which is described by Eq.4.A.26. Combining this with

Eq.4.A.3 which describes the household’s choice for atδt, we obtain the formulation

for optimal road taxes:

Tt,1 = −UMt

Uct

∂Mt

∂mt,1

∂mt,1

∂(at−1δt−1)
Ω̃∆Mt −

UNt
Uct

∂mt,1

∂(at−1δt−1)
(1 + Ω̃∆Nt) +

Φt

Uct

∂Pt
∂xt−1

∂(at−1δt−1)
∂xt−1

,

(4.4.36)

Tt,2 = −UMt

Uct

∂Mt

∂mt,2

∂mt,2

∂(at−2δt−2)
Ω̃∆Mt −

UNt
Uct

∂mt,2

∂(at−2δt−2)
(1 + Ω̃∆Nt) +

Φt

Uct

∂Pt
∂xt−2

∂(at−2δt−2)
∂xt−2

,

(4.4.37)

where xt = {kat , lat }.

Optimal vehicle purchase tax

Household is subject to vehicle purchase tax when they buy new vehicles. Following

the derivation of optimal road tax, we use the first order conditions describing

both household’s choice and the government’s choice for atδt (See Eq.4.A.3 and
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Eq.4.A.26), to get 8:

Ψt
Gxt
∂(atδt)
∂xt

= λt(1 + τat )qat .

To derive the formulation for the optimal vehicle purchase tax τat , we turn to the

household’s problem for firms in the vehicle production sector (see Appendix 4.7.4).

With Eq.4.3.29, we get the expression for the optimal vehicle purchase tax:

τat = Ω̃∆ct . (4.4.38)

We have obtained the the formulas for the optimal taxes (optimal labour tax, optimal

capital income tax, optimal gasoline taxes, optimal road taxes and optimal vehicle

purchase tax). While the expressions do not in general provide an explicit formula

for the optimal tax rate, it does allow us to draw some conclusions about the tax

structure.

4.5 Implications of basic optimal taxes

4.5.1 Optimal labour tax

The formulation of the optimal labour tax is:

τ lt =
Ω̃(∆lt −∆ct)

1 + Ω̃∆lt

,

8where we know that 
∂(aδ)
∂ka =

∂
(
F (ka,la)2/4µ

)
∂ka = 1

µ
F (ka,la)

2 Fka ,

∂(aδ)
∂la =

∂
(
F (ka,la)2/4µ

)
∂la = 1

µ
F (ka,la)

2 Fla .
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where Ω̃ is the Lagrangian multiplier and is positive in the second-best. The optimal

labour tax rate depends on the relation between ∆lt and ∆ct (expressed in Eq.4.3.29

and Eq.4.3.30).

∆ct is the sum of the elasticities of the marginal utility of consumption with

respect to itself, labour and driving service. Similarly, ∆lt is the sum of elasticities

of the marginal utility of labour with respect to itself, consumption and driving

service. From the first-order condition (Eq.4.3.30) we know that the denominator

part of the optimal labour tax is positive. The unknown part is ∆lt − ∆ct . With

Eq.4.3.29 and Eq.4.3.30), we have:

∆lt −∆ct = (
Ulllt
Ult
− Ulclt

Uct
) + (

Uclct
Ult
− Uccct

Uct
) + (1 + γ)(

UMlMt

Ult
− UMcMt

Uct
). (4.5.39)

This formulation suggests a special case which allows us to obtain results which are

easier to be interpreted: direct additive utility function. This implies that Uij = 0

for i 6= j: i.e. ∆lt −∆ct can be written as:

∆lt −∆ct =
Ulllt
Ult
− Uccct

Uct
.

The above equation means that the result depends on the elasticity of marginal

utility of labour and consumption. Moreover, under the assumption that Uii < 0 for

labour and consumption, we know that the expression above always stays positive

which leads to the result that when the utility function is directly additive, the

optimal labour tax rate is always positive.

While the strict additive property for utility function is widely applied, it is ap-

pealing to consider a general case where marginal utility is dependent of each other.

We denote Hki = −Ukii
Uk

and it can be interpreted as the elasticity of marginal utility
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of good k with respect to an increase in good i. We grouped Eq.4.5.39 into three

parts with each one describing the complementarity with respect to different utility

input. For example, in Eq.4.5.39, the first component measures the labour and con-

sumption’s degree of complementarity with labour change. The second component

measures consumption and labour’s degree of complementarity with consumption

and the third measures the driving service and consumption’s degree of complemen-

tarity with driving service. If one is higher than the other, the good can be said to

be more complementary with labour, consumption and driving service respectively.

The first two components are negative while the third on is positive. Therefore, the

optimal labour tax depends on the interaction of the three components.

4.5.2 Optimal environmental taxes

Our interpretation of the optimal environmental tax formulations base largely on

the work done by Sandmo (1975) and Atkinson and Stiglitz (1972). Sandmo (1975)

proposes that in the presence of distortionary taxes, the optimal environmental

tax is composed of the Pigovian element and the efficiency element. Atkinson and

Stiglitz (1972) look into explaining the optimal tax structure using the degree of

complementarity to the untaxed goods in the economy which, in our case, is general

consumption good.
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Optimal gasoline taxes

As shown in Eq.4.4.34 and Eq.4.4.35, the optimal gasoline taxes for new cars and

old cars in the steady state are expressed as:

τ 1 = −UN
Uc

(1 + Ω̃∆N)

(1 + Ω̃∆M)

m1

g1

+
1

δ

UQ
Uc

(1 + Ω̃∆Q)

(1 + Ω̃∆M)

β

1− β(1− ε)
,

τ 2 = −UN
Uc

(1 + Ω̃∆N)

(1 + Ω̃∆M)

m2

g2

+
1

ρδ

UQ
Uc

(1 + Ω̃∆Q)

(1 + Ω̃∆M)

β

1− β(1− ε)
.

The expression of optimal gasoline taxes have two components. The first part

represents the correction towards congestion caused by gasoline usage and it is also

proportional to the marginal mileage of travel of gasoline consumption. The second

part depicts the damage towards the environment and it depends on the fuel effi-

ciency condition of the vehicles as new cars are more efficient in mitigating pollution

(see Eq.4.2.19). In the long run, gasoline taxes are decided by the two opposing com-

ponents. New cars provide more mileage which leads to heavier congestion but are

more efficient in mitigating pollution. On the contrary, old cars cause less congestion

but generate more pollutants. In particular:

If we do not consider the congestion externality: the environmental damage

caused by gasoline consumption dominates the optimal gasoline tax rates. As new

cars are more efficient in mitigating pollution than old cars (1
δ
> 1

ρδ
), the optimal

gasoline tax rate is higher for old cars when only pollution externality is considered.

If we do not consider pollution externality: the congestion externality dom-

inates. As new cars provide more mileage of travel provided that the same amount

of gasoline is consumed (m1

g1
> m2

g2
), the optimal gasoline tax rate is higher for new
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cars when only congestion externality is considered.

Given that m1

g1
= (aδ)γ and m2

g2
= (ρaδ)γ, subtracting the optimal gasoline tax

for old cars from the one for new cars gives us:

τ 1 − τ 2 =
UN
Uc

(1 + Ω̃∆N)

(1 + Ω̃∆M)
[(ρaδ)γ − (aδ)γ] +

1

δ

UQ
Uc

(1 + Ω̃∆Q)

(1 + Ω̃∆M)
(
ρ− 1

ρ
).

In the condition where ρ = 1, we will have uniform gasoline tax (τ 1 = τ 2). From the

first-order conditions obtained in solving the government’s problem (see Eq.4.A.20

and 4.A.21), we know that 1+Ω̃∆N and 1+Ω̃∆M are positive. Under the assumption

that 0 < ρ < 1, whether τ 1 is higher than τ 2 depends on two contradicting powers:

whether the environmental benefit from using new cars outweighs the negativities

from driving too much.

One of the advantages of the model we developed here is that it readily allow us

to decompose the tax formula into what might be called an additivity property (as

proposed by Sandmo (1975)). Rewriting the optimal gasoline taxes (Eq.4.4.34 and

Eq.4.4.35), we can conclude that the optimal tax structure has the following form:

τ 1 = − UN
Uc

m1

g1

+
1

δ

UQ
Uc

β

1− β(1− ε)

− UN
Uc

m1

g1

Ω̃(∆N −∆M)

(1 + Ω̃∆M)
+

1

δ

UQ
Uc

β

1− β(1− ε)
Ω̃(∆Q −∆M)

(1 + Ω̃∆M)
,

(4.5.40)

τ 2 = − UN
Uc

m2

g2

+
1

ρδ

UQ
Uc

β

1− β(1− ε)

− UN
Uc

m2

g2

Ω̃(∆N −∆M)

(1 + Ω̃∆M)
+

1

ρδ

UQ
Uc

β

1− β(1− ε)
Ω̃(∆Q −∆M)

(1 + Ω̃∆M)
.

(4.5.41)

Equations 4.5.40 and 4.5.41 indicate how the presence of the distortionary taxes

affects the optimal gasoline tax rates. The first part of the expressions states the

special case of a first-best world without the distortionary taxes, where the taxes

compensate the marginal environmental damage (pollution and congestion) caused
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by gasoline consumption. This is the Pigovian tax rate. The second part of the

expressions reveal how the presence of distortionary taxes requires a modification

to the Pigovian principle.

Optimal road taxes

From Eq.4.4.36 and Eq.4.4.37, we look at the optimal road taxes in the steady state:

T1 = −UM
Uc

M1−σ γm
σ
1

aδ
Ω̃∆M −

UN
Uc

γm1

aδ
(1 + Ω̃∆N) +

Φ

Uc

∂P
∂x
∂(aδ)
∂x

, (4.5.42)

T2 = −UM
Uc

M1−σ γm
σ
2

aδ
Ω̃∆M −

UN
Uc

γm2

aδ
(1 + Ω̃∆N) +

Φ

Uc

∂P
∂x
∂(aδ)
∂x

. (4.5.43)

We can see that the road taxes depend on two different parts. The first part rep-

resents the driving service provided by owning the vehicles. The second and third

parts denote the negative externalities generated by the vehicles.

Following the previous approach, we rewrite the expressions of the optimal road

taxes as:

T1 = − UN
Uc

γm1

aδ
+

Ψ

Uc

∂P
∂x
∂(aδ)
∂x

+ Ω̃

[
−UM
Uc

M1−σ γm
σ
1

aδ
∆M −

UN
Uc

∆N

]
,

(4.5.44)

T2 = − UN
Uc

γm2

aδ
+

Ψ

Uc

∂P
∂x
∂(aδ)
∂x

+ Ω̃

[
−UM
Uc

M1−σ γm
σ
2

aδ
∆M −

UN
Uc

∆N

]
.

(4.5.45)

Similarly, the first part measures the first-best scenario when no distortionary taxes

are present. The second part depicts the impact from distortionary taxes. Looking

at the difference between T1 and T2:

T1 − T2 =
UM
Uc

M1−σΩ̃∆M

[
γ(mσ

2 −mσ
1 )

aδ

]
+
UN
Uc

(1 + Ω̃∆N)

[
γ(m2 −m1)

aδ

]
.
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We will have uniform road taxes (T1 = T2) when new cars and old cars provide the

same mileage of travel (m1 = m2).

Based on the formulation of the optimal gasoline taxes, another conclusion could

be drawn: if congestion is less important to the household than environmental qual-

ity, gasoline tax for old cars will be higher than for new ones (τ 2 > τ 1), which implies

that mileage of travel for new cars will be higher than old cars (m1 > m2). We thus

know that the optimal road tax is higher for old cars than new ones (T2 > T1).

4.6 Conclusion

This chapter examines the optimal environmental tax structure (gasoline taxes and

road taxes) in the presence of distortionary taxes and vehicles of different vintages

in a dynamic general equilibrium model. Our findings contribute to the literature

in several folds. First, we introduce more than one environmental tax to address

different externalities caused by vehicle driving. We show that the optimal envi-

ronmental taxes are related to each other in equilibrium. Second, we find that the

additive property between the Pigovian element and the efficiency element proposed

by Sandmo (1975) is presented in our model. To which direction the presence of

distortionary taxes affect the optimal environmental taxes needs to be investigated

further by numerical analysis. Third, we find that the optimal environmental are

composed of two opposing factors caused by gasoline consumption and the tax rates

are determined by the household’s preferences towards the environmental factors.

We also applied the approach developed by Atkinson and Stiglitz (1972) to illus-

trate the optimal tax formulation using the degree of complementartity to general
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consumption goods.
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4.7 Appendix

4.7.1 First-order conditions to the household’s problem

Solving the maximization problem, we obtain that:

Uct
Uct+1

= β
[
1− ε+ (1− τ kt+1)rt+1

]
, (4.A.1)

∂Ut
∂Mt

∂Mt

∂mt,i

∂mt,i

∂gt,i
= Uct(pt + τ it ), i = 1, 2 (4.A.2)

β

[
∂Ut+1

∂Mt+1

∂Mt+1

∂mt+1,1

∂mt+1,1

∂(atδt)
− λt+1Tt+1,1

]
+ β2

[
∂Ut+2

∂Mt+2

∂Mt+2

∂mt+2,2

∂mt+2,2

∂(atδt)
− λt+2Tt+2,2

]
= λt(1 + τat )qat ,

(4.A.3)

U1−lt = Uct(1− τ lt )wt. (4.A.4)

4.7.2 Derivation of the implementability constraint

The budget constraint could be rearranged to:

λtkt+1 = λt
[
1− ε+ (1− τ kt )rt

]
kt + λt

[
πat + πgt + (1− τ lt )wtlt

− (pt+ τ 1
t )gt,1− (pt+ τ 2

t )gt,2− ct− (1+ τat )qat (atδt)−Tt,1(at−1δt−1)−Tt,2(at−2δt−2)
]
.

It can be expressed as:

λtkt+1 = λtRtkt + λt
{
...
}
t
, (4.A.5)

where Rt = [1− ε+ (1− τ kt )rt]. The above expression equals:

βλtkt+1 = λt−1kt + βλt
{
...
}
t
. (4.A.6)

When time goes to infinity, the value of capital should be zero, which gives us:

0 = λ−1k0 +
∞∑
t=0

βtλt
{
...
}
t
. (4.A.7)
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Given that the Lagrangian multiplier equals the marginal utility of consumption and

that profits are zero when the technology for both production sectors are constant-

return-to-scale:

0 = λ−1k0 +
∞∑
t=0

βt
[
Uct(1− τ lt )wtlt − Uct(pt + τ 1

t )gt,1 − Uct(pt + τ 2
t )gt,2 − Uctct

−Uct(1 + τat )qat (atδt)− UctTt,1(at−1δt−1)− UctTt,2(at−2δt−2)
]
.

(4.A.8)

Using the first-order conditions, we substitute the taxes with its corresponding real

terms:

0 = λ−1k0 +
∞∑
t=0

βt
[
U1−ltlt −

∂Ut
∂Mt

∂Mt

∂mt,1

∂mt,1

∂gt,1
gt,1 −

∂Ut
∂Mt

∂Mt

∂mt,2

∂mt,2

∂gt,2
gt,2 − Uctct

−Uct(1 + τat )qat (atδt)− UctTt,1(at−1δt−1)− UctTt,2(at−2δt−2)
]
.

(4.A.9)

Given that:

Uct(1 + τat )qat (atδt) = βatδt
∂Ut+1

∂Mt+1

∂Mt+1

∂mt+1,1

∂mt+1,1

∂(atδt)
+ β2atδt

∂Ut+2

∂Mt+2

∂Mt+2

∂mt+2,2

∂mt+2,2

∂(atδt)

−βatδtUct+1Tt+1,1 − β2atδtUct+2Tt+2,2,

(4.A.10)

the three remaining parts in the implementability constraint become:

−
[
Uct(1 + τat )qat (atδt) + UctTt,1(at−1δt−1) + UctTt,2(at−2δt−2)

]
=

−
(
βatδt

∂Ut+1

∂Mt+1

∂Mt+1

∂mt+1,1

∂mt+1,1

∂(atδt)
+ β2atδt

∂Ut+2

∂Mt+2

∂Mt+2

∂mt+2,2

∂mt+2,2

∂(atδt)

)
+
[
βatδtUct+1Tt+1,1 + β2atδtUct+2Tt+2,2 − UctTt,1(at−1δt−1)− UctTt,2(at−2δt−2)

]
.

(4.A.11)
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We then expand the equation above into different time periods:

...

t =0 βa0δ0Uc1T1,1 + β2a0δ0Uc2T2,2 − Uc0T0,1(a−1δ−1)− Uc0T0,2(a−2δ−2),

t =1 β2a1δ1Uc2T2,1 + β3a1δ1Uc3T3,2 − βUc1T1,1(a0δ0)− βUc1T1,2(a−1δ−1),

t =2 β3a2δ2Uc3T3,1 + β4a2δ2Uc4T4,2 − β2Uc2T2,1(a1δ1)− β2Uc2T2,2(a0δ0),

t =3 β4a3δ3Uc4T4,1 + β5a3δ3Uc5T5,2 − β3Uc3T3,1(a2δ2)− β3Uc3T3,2(a1δ1),

...

which all cancel out when added up over time and thus the implementability con-

straint reads:

0 = λ−1k0 +
∞∑
t=0

βt
[
U1−ltlt −

∂Ut
∂Mt

∂Mt

∂mt,1

∂mt,1

∂gt,1
gt,1 −

∂Ut
∂Mt

∂Mt

∂mt,2

∂mt,2

∂gt,2
gt,2 − Uctct

−βatδt
∂Ut+1

∂Mt+1

∂Mt+1

∂mt+1,1

∂mt+1,1

∂(atδt)
− β2atδt

∂Ut+2

∂Mt+2

∂Mt+2

∂mt+2,2

∂mt+2,2

∂(atδt)

]
.

(4.A.12)

We can simplify the expression through Eq.4.2.15, Eq.4.2.16 and Eq.4.2.17:

∂Ut
∂Mt

∂Mt

∂mt,1

∂mt,1

∂gt,1
gt,1 +

∂Ut
∂Mt

∂Mt

∂mt,2

∂mt,2

∂gt,2
gt,2 = UMtMt, (4.A.13)

βatδtUMt+1

∂Mt+1

∂mt+1,1

∂mt+1,1

∂(atδt)
= βγUMt+1M

1−σ
t+1 m

σ
t+1,1, (4.A.14)

β2atδtUMt+2

∂Mt+2

∂mt+2,2

∂mt+2,2

∂(atδt)
= β2γUMt+2M

1−σ
t+2 m

σ
t+2,2. (4.A.15)
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We expand the final two expressions (Eq.4.A.14 and 4.A.15) in time:

...

t =0 : βγUM1M
1−σ
1 mσ

1,1 + β2γUM2M
1−σ
2 mσ

2,2,

t =1 : β2γUM2M
1−σ
2 mσ

2,1 + β3γUM3M
1−σ
3 mσ

3,2,

t =2 : β3γUM3M
1−σ
3 mσ

3,1 + β4γUM4M
1−σ
4 mσ

4,2,

...

After summation, we obtain:

∞∑
t=0

βt
[
βatδtUMt+1

∂Mt+1

∂mt+1,1

∂mt+1,1

∂(atδt)
+β2atδtUMt+2

∂Mt+2

∂mt+2,2

∂mt+2,2

∂(atδt)

]
=
∞∑
t=0

γβt+1UMt+1Mt+1.

(4.A.16)

4.7.3 First-order conditions to the government’s problem

Solving the Lagrangian problem, we get:

ct : βtγΩ̃UMt,ctMt + βt
[
Uct + Ω̃(Ult,ctlt + UMt,ctMt + Uct,ctct + Uct

)
−Ψt

]
= 0,

(4.A.17)

lt : βtγΩ̃UMt,ltMt + βt
[
Ult + Ω̃(Ult + Ult,ltlt + UMt,ltMt + Uct,ltct) + ΨtGlgt

]
= 0,

(4.A.18)

kt : Ψt−1 = βΨt(Gkgt
+ 1− εk). (4.A.19)

Gasoline consumption gt,i are involved in the formulation of mt,i, Nt and Pt, we

express the decision making process in time scale:

t− 1 : βtΩ̃γUMtMt,

t : βt
[
U(ct,Mt, 1− lt, Nt, Qt) + Ω̃(Ultlt + UMtMt + Uctct + γβUMt+1Mt+1)− ΦtPt

]
.
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Therefore, we obtain the first order conditions:

∂Lg

∂Mt

=UMt

{
1 + Ω̃

∆Mt︷ ︸︸ ︷[
(1 + γ) +

(1 + γ)UMMMt

UMt

+
UlM lt
UMt

+
UcMct
UMt

] }
, (4.A.20)

∂Lg

∂Nt

=UNt
{

1 + Ω̃

∆Nt︷ ︸︸ ︷[(1 + γ)UMNMt

UNt
+
UlN lt
UNt

+
UcNct
UNt

] }
, (4.A.21)

∂Lg

∂Pt
=− Φt. (4.A.22)

Thus for i = 1, 2, the first-order conditions with respect to gt,i are:

∂Lg

∂gt,i
= UMt(1 + Ω̃∆Mt)M

1−σ
t mσ−1

t,i

mt,i

gt,i
+ UNt(1 + Ω̃∆Nt)

mt,i

gt,i
− Φt

∂Pt
∂gt,i

= Ψtpt,

(4.A.23)

where ∂Pt
∂gt,1

= 1
δt−1

and ∂Pt
∂gt,2

= 1
ρδt−2

.

Given that at and δt are functions of kat and δt
9, kat , l

a
t and at affect mt+1,1,

mt+2,2, Pt+1 and Pt+2. To begin with, the first order condition with respect to the

environmental quality Qt is:

∂Lg

∂Qt

= βUQt

[
1 + Ω̃

∆Qt︷ ︸︸ ︷((1 + γ)UMQMt

UQt
+
UlQlt
UQt

+
UcQct
UQt

)]
+βΦt(1− ε)− Φt−1 = 0.

(4.A.24)

The above expression therefore gives us the steady state value of the Lagrangian

multiplier Φt:

Φ =
βUQ(1 + Ω̃∆Q)

1− β(1− ε)
. (4.A.25)

9 To produce the optimal amount of atδt, firms solve the maximization problem max δ[F (kat , l
a
t )−

µδ] with respect to δ which gives δ =
F (kat ,l

a
t )

2µ and a =
F (kat ,l

a
t )

2 . Thus we can treat both δt and at

as functions of kat and lat .
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For xt = {kat , lat }:

∂Lg

∂xt
= −ΨtGxt + βUMt+1

{
1 + Ω̃

∆Mt+1︷ ︸︸ ︷[
(1 + γ)(1 +

UMMMt+1

UMt+1

) +
UlM lt+1

UMt+1

+
UcMct+1

UMt+1

]} ∂Mt+1

∂xt

+ β2UMt+2

{
1 + Ω̃

∆Mt+2︷ ︸︸ ︷[
(1 + γ)(1 +

UMMMt+2

UMt+2

) +
UlM lt+2

UMt+2

+
UcMct+2

UMt+2

]} ∂Mt+2

∂xt

+ βUNt+1

{
1 + Ω̃

∆Nt+1︷ ︸︸ ︷[
(1 + γ)

UMNMt+1

UNt+1

+
UlN lt+1

UNt+1

+
UcNct+1

UNt+1

]} ∂Nt+1

∂xt

+ β2UNt+2

{
1 + Ω̃

∆Nt+2︷ ︸︸ ︷[
(1 + γ)

UMNMt+2

UNt+2

+
UlN lt+2

UNt+2

+
UcNct+2

UNt+2

]} ∂Nt+2

∂xt

− βΦt+1
∂Pt+1

∂xt
− β2Φt+2

∂Pt+2

∂xt
= 0.

And we know that:

∂Mt+1

∂xt
=
∂Mt+1

∂mt+1,1

∂mt+1,1

∂xt
= M1−σ

t+1 m
σ
t+1,1γ

Fxt
at
,

∂Mt+2

∂xt
=
∂Mt+2

∂mt+2,2

∂mt+2,2

∂xt
= M1−σ

t+2 m
σ
t+2,2γ

Fxt
at
,

∂Nt+1

∂xt
=γmt+1,1

Fxt
a
,

∂Nt+2

∂xt
=
∂mt+2,2

∂xt
= γmt+2,2

Fxt
a
,

∂Pt+1

∂xt
=− gt+1,1

δ2
t

Fxt
2µ

,

∂Pt+2

∂xt
=− gt+2,2

ρδ2
t

Fxt
2µ

.

We can then simply the expression for the first order condition with respect to

xt to:

∂Lg

∂xt
= −ΨtGxt + βUMt+1(1 + Ω̃∆Mt+1)

∂Mt+1

∂xt
+ β2UMt+2(1 + Ω̃∆Mt+2)

∂Mt+2

∂xt
+

βUNt+1(1+Ω̃∆Nt+1)
∂Nt+1

∂xt
+β2UNt+2(1+Ω̃∆Nt+2)

∂Nt+2

∂xt
−βΦt+1

∂Pt+1

∂xt
−β2Φt+2

∂Pt+2

∂xt
= 0.
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We rearrange the above expression using the results we just obtained, we get the

first order condition with respect to xt:

∂Lg

∂xt
= −ΨtGxt

+ β
[
UMt+1(1 + Ω̃∆Mt+1)M

1−σ
t+1 m

σ
t+1,1 + βUMt+2(1 + Ω̃∆Mt+2)M

1−σ
t+2 m

σ
t+2,2

]
γ
Fxt
at

+ β
[
UNt+1(1 + Ω̃∆Nt+1)mt+1,1 + βUNt+2(1 + Ω̃∆Nt+2)mt+2,2

]
γ
Fxt
at

+ βΦt+1
gt+1,1

δt

Fxt
F

+ β2Φt+2
gt+2,2

ρδt

Fxt
F

= 0.

(4.A.26)

4.7.4 Derivation of the optimal vehicle purchase tax

We have showed that the optimal resource allocation for a and δ are: δ =
F (kat ,l

a
t )

2µ

and a =
F (kat ,l

a
t )

2
, thus in the steady state, the profit maximizing problem for firms

can be written as:

max
kat ,l

a
t

qa

µ
(
F (ka, la)

2
)2 − rka − wla. (4.A.27)

The first-order conditions read:

qa

µ

F (ka, la)

2
Fka − r = 0,

qa

µ

F (ka, la)

2
Fla − w = 0.

Therefore, we get the expression for the optimal vehicle purchase tax:

Ψt
Gxt
∂(atδt)
∂xt

= Ψt
Gxt

1
µ
F (ka,la)

2
Fxt

= Ψtq
a Gxt

qa

µ
F (ka,la)

2
Fxt

= Ψtq
a. (4.A.28)



Chapter 5

Conclusions and future works

This thesis explores the relationship between public policies and vehicle driving from

three different aspects: the mechanisms of how public policies affect vehicle driving

and the economy; the optimal environmental tax structure in a first-best scenario;

and how the presence of distortionary taxes affect the optimal environmental tax

structure.

5.1 Conclusions

In Chapter 2, we develop a dynamic general equilibrium infinite-horizon model with

physical capital and vehicles, where vehicles are of two vintages (new and old), and

investigate the impact of two policy options (gasoline taxes and clean technology

subsidies) on driving behavior, vehicle production, fuel consumption, environmen-

tal quality and social welfare. We contribute to the literature in several folds. To

begin with, differently from Parry and Small (2005), we develop a framework where

dynamic relationships are present to capture the long-run nature of pollution and

112
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capital accumulation. A dynamic model is useful to interpret pollution issues as

those generally accumulate over time and pollution also affects the environmental

quality over time. Secondly, we extend Wei (2013)’s model where she uses vehicle

capital gasoline consumption ratio as the only production input (Leontief production

possibility). Instead, we adopt capital heterogeneity to model vintage vehicles in

that it generates mileages of travel given any amount of gasoline pumped in. Leon-

tief production possibilities thus do not match with this feature. Furthermore, we

offer a novel way of modelling vehicle capital and fuel efficiency. Previous literature

has assumed that all components of vehicle capital are indistinguishably linked to

fuel efficiency. We expand this framework to model two distinct attributes of the

vehicle capital to capture the impact from policies targeting at different aspect of

the production process. We first find that, in terms of driving choices, the house-

holds purchase more fuel for new cars than old cars and households prefer to use

new cars more often than old cars. Our simulation based on the U.S. economy show

that fuel consumption and pollution levels decrease under all the policy options.

However, they have distinctively different distributional impact. Levying gasoline

taxes do not improve the overall fuel efficiency (miles per gallon) of the vehicles

and also change the production side only slightly. It alleviates pollution which in

turn enhances the environmental quality and eventually improves the social welfare.

Providing subsidies to clean technology, instead, leads to more resources being allo-

cated to the production of fuel-efficient and cleaner engines, which results in higher

capital accumulation and labour supply in the vehicle production sector. As sub-

sidy rate increases, social welfare first improves and then plunges when production
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inefficiencies kick in.

In Chapter 3, we derive the optimal steady-state first best environmental tax

structure in the presence of (i) different vintage vehicles (new and old); (ii) pollu-

tion and congestion externalities caused by vehicle driving. We contribute to the

theoretical literature in several ways. First of all, to fully tackle the external cost

generated by vehicle driving, we examine the first best environmental taxes to ad-

dress pollution and congestion externalities separately. Previous literature focused

mainly on using one instrument to address all the externalities caused by vehicle

driving. Our model allows us to capture the interrelation between different envi-

ronmental taxes and see how it affects the optimal tax structure. Analytical results

show that the first best optimal gasoline taxes consist of two opposing parts caused

by gasoline consumption: marginal cost of pollution and marginal cost of conges-

tion. New cars generate less pollution but contribute more to the mileage of travel,

which leads to heavier congestion. Thus, the optimal gasoline taxes for different

types of vehicles depend on the two opposing factors. Optimal road taxes target

at congestion externality which is related to the vehicle fuel efficiency level. In the

steady states, households prefer to drive new cars more often which implies higher

mileage of travel, and therefore the road tax is higher for new cars than old cars. We

further derive the uniform gasoline tax and the formula takes the form of weighted

average of gasoline taxes for new cars and old cars. Second, we calibrate our model

based on the U.S. economy and show that the optimal environmental taxes depend

on the households’ preference for environmental factors. In the presence of conges-

tion externality, optimal gasoline tax for old vehicles is higher than for new vehicles
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when households start to value environment. And that shows the case when the

marginal cost of pollution outweighs the marginal cost of congestion. Households

are better off under optimal fuel tax than uniform fuel tax but not to a substantial

extent.

In Chapter 4, we look into the optimal environmental tax (gasoline taxes and

road taxes) structure for vehicles of different vintages (new cars and old cars) in

the presence of other distortionary taxes and externalities caused by vehicle driv-

ing (pollution and congestion). We extend the literature by looking at different

environmental taxes and how they relate to each other in a second best scenario.

The optimal environmental tax formulas present the additive property between the

Pigovian element and the efficient element proposed by Sandmo (1975). The pres-

ence of distortionary taxes causes the optimal environmental taxes to deviate from

the Pigovian standards and the deviation depends on household’s preference for the

environmental factors. To further examine the results of our optimal environmental

taxes, we apply the approach proposed by Atkinson and Stiglitz (1972) and look

into how optimal tax structure can be explained by the degree of complementarity

to normal consumption goods. We also find that the formulation of the optimal en-

vironmental taxes depend on two opposing factors. Optimal gasoline taxes depend

on the marginal cost of pollution and marginal cost of congestion while optimal road

taxes depend on the marginal benefit from owning vehicle and the marginal cost of

externalities from using the vehicles. And whether one factor outweighs the other

depends on utility inputs’ degree of complementarity to the normal consumption

goods.
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5.2 Future works

There are still various aspects relating to the roles of public policies in the regime

of vehicle driving that haven’t been the focuses of this thesis.

First of all, we do not specifically examine the dynamic properties of the policy

impact because we focus more on the long-run changes. The difficulty of examining

the dynamic properties is that vehicles are modelled as a special type of capital

which are different across vintages and last for only two periods of time. Moreover

the focus of our model is to illustrate the long-run impact of the policies rather than

the inter-temporal changes. However, dynamic properties will enable us to see the

short-run impact of policies and how policy shocks would change the economy and

to what extent.

Secondly, we do not allow the households to have the freedom when it comes

to vehicle purchase decision making. At each time of period, we assume that the

households invest in new vehicles of the latest technology and scrape the old ones

after two periods of usage. It would be interesting to develop a heterogeneous

agent model and allow different households to choose from purchasing new vehicles,

keeping using their old ones or scraping old vehicles.

Thirdly, we treat mileage of travel as a type of service and do not model the

time effect into the decision making process for households. Given the fact that

roads have become more congested, time spent on roads is a growing concern for

households. How to model the time effect into the model would be an interesting

extension.



5.3. Concluding marks 117

5.3 Concluding marks

To conclude, the main contribution of this thesis are: (1) providing a thorough

picture on the fundamental mechanisms to explain how different public policies af-

fect vehicle driving, the economy, environment and social welfare; (2) deriving the

optimal environmental tax structure in the first-best scenario and examining the in-

terrelation between optimal environmental taxes; and (3) constructing a theoretical

framework to understand the optimal environmental tax structure in the presence

of other distortionary taxes. The model developed in this thesis could be applied

for most countries where tax and subsidy schemes are possible. In numerical exper-

iments, our calibration is based on the U.S. economy but could be done for other

countries as well. The additional consideration to enrich this thesis include adding

in dynamic properties and allowing households more freedom to vehicle-related de-

cision making. This thesis focuses on the theoretical aspects of public policies and

vehicle driving, we thus leave empirical analysis to future works.
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