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Abstract

We studied the physical meaning of tidal force singularities in non-relativistic space-

times. Typical examples of such spacetimes include Lifshitz spacetimes, Schrödinger

spacetimes and hyperscaling violation spacetimes. First I will discuss the exten-

sion of singularity-free hyperscaling violation geometry. To understand the physical

meaning of singularity in the deep non-relativistic IR bulk, I will calculate string

scattering amplitudes to find a field theory interpretation of bulk singularity. Since

geometric quantities like singularities or horizons are not physical observables in

higher spin theory, we will discuss whether it is possible to resolve such singular-

ities in non-relativistic spacetimes from higher spin theory context. We will show

singularity resolution cannot be performed in 2 + 1 dimensional higher spin theory.

Finally, we will give an explicit construction of Schrödinger spacetime solutions in

3 + 1 dimensional higher spin theory.
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Chapter 1

Introduction

1.1 Singularity

The theme that this thesis is going to explore is singularity in physics. In clas-

sical field theory or mathematics, singularity is defined as a point where physical

quantities are infinite. For example, the Coulomb potential is singular at r = 0:

V (r) =
q

r

It has taken people years to understand the meaning of physical singularities [5–8]

in general relativity where the divergent quantity is spacetime itself. The notion of

“a point” is physically meaningful if metric gµν is defined everywhere else around

it. The singular point in spacetime is usually considered as being excluded from

spacetime.

A well-known example of a metric with singularities is the Schwarzschild black

hole:

ds2 = −(1− 2GNM

r
)dt2 + (1− 2GNM

r
)−1dr2 + r2(dθ2 + sin2 θdφ2) (1.1.1)

Apparently, this metric is singular at rS = 2GM and r = 0. The former one is called

the “Schwarzschild singularity” in pre-1960s books. From the modern perspective,

we understand this singularity to be no more physical than the north/south pole

singularities on earth in latitude and longitude frame. On the contrary, the r = 0 sin-

gularity is known as the black hole singularity, which is physical. Why do these two

1



1.2. Holography 2

singularities receive unequal treatments? This question concerns the notion of phys-

ical observables, which are invariant under transformations. In general relativity,

physical quantities are those which are invariant under diffeomorphism transforma-

tion, i.e. coordinate independent. A simple test to confirm that r = 0 is a physical

singularity of the Schwarzschild metric is to calculate curvature scalars [5]:

RµνρσR
µνρσ =

48G2
NM

2

r6
(1.1.2)

It is obvious that the scalar curvature above is singular at r = 0 but regular at

r = 2GNM . Here r = 0 is not a part of spacetime.

Regularity in scalar curvature is not a sufficient condition to guarantee a surface

being non-singular. There are other types of singularities which have finite scalar

curvature at singular points. For example, spacetimes with component of Rabcd

blowing up in parallelly propagating orthogonal frame are also considered to be

singular [9, 10]. Since we exclude singular points from spacetimes, the definition of

infinite scalar curvature at this point is not obvious. Therefore, we need a more

general definition of singularity. Time-like geodesics incompleteness turns out to be

of physical significance to construct such definition since it implies that free moving

observers probe an inextensible spacetime region in finite proper time. Inextensible

means that the history of these free moving observers is lost after a moment. So we

have [6] following definition:

• Time-like and null geodesic completeness are minimal conditions for space-

times to be singularity free.

If a spacetime is time-like geodesics incomplete, we will say it has a singularity. We

will see later the singularities in Lifshitz/Schrödinger spacetime are of this type.

1.2 Holography

The understanding of fundamental physics is usually improved by recognition of new

principles. The holographic principle [11] may be one of the most profound discov-

eries in the last few decades. Just as the equivalence principle to general relativity,

the correspondence principle to quantum mechanics, the holographic principle is

May 7, 2016



1.2. Holography 3

believed to be the basic characteristic for a quantum gravity theory. The idea of

holography was inspired by black hole entropy, which is proportional to area A of

black hole horizon [12].

S =
A

4GN

(1.2.3)

It was recognised later that black hole entropy has thermodynamical interpretation

after Hawking [13] discovered thermal radiation of black hole.

Black hole entropy is rather exotic when one consider the entropy derived from

a local quantum field theory, where the entropy of an ensemble is proportional to

volume of the space. When we take gravitational field into consideration, the black

hole entropy formula actually imposes an upper bound of entropy that a compact

space with area A can have. Any attempt to add more than
A

4GN

degrees of freedom

in space region with area A is going to create a black hole. Thus Black holes are

the most entropic object in nature.

The formal statement of holographic principle is [11]:

• A region with boundary of area A is fully described by no more than
A

4GN

degrees of freedom, or about 1 bit of information per Planck area.

The counter intuitive part of the statement above is that the degrees of freedom of

bulk gravitational system are encoded non-locally at the boundary of a region. The

mechanism for the non-locality is rather mysterious. As a principle for quantum

gravity, holography is a very abstract concept and hard to prove. Its rapid develop-

ment has been based on the appearance of AdS/CFT [14,15], a concrete model for

holography. It is recently proposed that AdS bulk information are encoded on the

boundary of spacetime by the spirit of quantum error correction [16–18].

1.2.1 AdS/CFT

The duality between gravity theory in d + 1 dimensions and gauge field theory in

d dimensions is a remarkable realization of holography. The well studied example

was proposed by Maldacena [14]: Type II B string theory in AdS5 × S5 is dual to

N = 4 SU(N) super Yang-Mills theory.

May 7, 2016



1.2. Holography 4

His motivation for this duality was to consider the low energy theory of D-branes

in string theory and use open/closed string duality. Maldacena considered a stack

of N D3-branes in the limit of α′ → 0. The dynamics in the bulk decouples from

dynamics on the brane. From the open string point of view, where string coupling gs

is small, N = 4 super Yang-Mills theory lives on the worldvolume of D3-brane. The

theory living in the bulk is type IIB supergravity theory in flat space. Therefore,

lim
α′→0

Sopen = SYM on D3-brane

From the closed string point of view, where gsN � 1 with α′ → 0, backreaction of

closed strings on D-brane will support black brane solutions. In the asymptotically

flat region, the theory again is again type IIB supergravity in flat space. In the

near horizon limit, any string excitations are allowed since the energy measured in

the infinity is redshifted to zero. Therefore, the string theory is still restricted to

low energy limit. The theory near the horizon is decoupled from the theory in the

asymptotic region. The near horizon geometry of black D3-brane turns out to be

AdS5 × S5. Then in the same limit

lim
α′→0

Sclosed = string theory in AdS5 × S5

The open string description and closed string description are considered equiv-

alent since they are used to described the same theory from different perspectives.

By the statement of Sopen = Sclosed, we are led to the fascinating conjecture

N = 4 SU(N) super Yang-Mills theory⇔ Type IIB string on AdS5 × S5

This duality conjecture has now passed hundreds of tests by matching calculation

results from both sides of theories. An intermediate check is the symmetry group of

both theories match. On the gravity side, AdS5 has isometry SO(2, 4), which is the

conformal group of 4-dimensional CFT. The compact direction S5 has symmetry

group SO(6) which turns out to be R-symmetry in N = 4 super Yang-Mills theory.

For the purpose of this thesis, I will review one of remarkable calculations [19]

in Chapter 3, where Maldacena and Alday showed gluon scattering amplitudes in

N = 4 super Yang-Mills theory could be reproduced by a gravity calculation in

AdS5.

May 7, 2016



1.2. Holography 5

The duality conjecture is also checked beyond semiclassical gravity calculations.

In the limit λ � 1 or (α′ → ∞), AdS radius is much shorter than string length.

The field theory living on the boundary is weakly coupled. A free scalar field can

generate infinite number of operators with integer spin

ψ̄∂µψ, ψ̄∂µ∂νψ, other higher derivative terms

On the gravity side, these operators are supposedly dual to many light higher spin

states. By doing so, one has to introduce infinite tower of higher spin fields, which

makes the theory very complicated. A duality between higher spin fields in AdS bulk

and vector like CFT on the boundary is proposed as an extension of the semiclassical

gravity version of AdS/CFT. In 4-dimensional bulk, it is conjectured Vasiliev higher

spin theory in AdS is dual to O(N) vector model [20–22]. Despite complexity in

calculating higher spin theory, this duality is actually simpler than semiclassical

gravity theory. The central charge of O(N) vector model is of order N at large N

limit whilst the central charge of CFT dual to classical gravity is of order N2.

It is said gravity in 3-dimensions is dynamically trivial. However, AdS3/CFT2

duality is never a trivial duality. The first gift from this duality is to understand

microscopic states corresponding to black hole entropy [23]. The integrable nature of

CFT2 offers the theory more fruitful structure than its higher dimensional cousins.

Although bulk excitations in AdS3 are pure diffeomorphisms, boundary gravitons

have non-trivial dynamics. Higher spin fields in AdS3 is conjectured to have a

specific type of dual CFT2: minimal model [24]. Locally the bulk theory can be

formulated in terms of Chern-Simons theory [25], whose action is

SCS =
k

4π

∫
M

Tr(A ∧ dA+
2

3
A ∧ A ∧ A), (1.2.4)

where k is the Chern-Simons level. AdS3 spacetime has isometry group so(2, 2) =

SL(2,R) × SL(2,R). This allows one to decompose the gravity theory in terms of

two copies of Chern-Simons gauge fields A, Ā, resulting in SEH = SCS[A] − SCS[Ā].

Each gauge field takes values in one copy of gauge group SL(2,R). The identification

between gravitational fields and gauge fields is

e =
1

2
(A− Ā); ω =

1

2
(A+ Ā)

May 7, 2016
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Asymptotically, the symmetry group SL(2,R) is enhanced to two copies of Virasoro

algebra [26]

[Ln, Lm] = (n−m)Ln+m +
1

12
m(m2 − 1)δn+m,0 (1.2.5)

If gauge fields take values in group hs[λ]× hs[λ], we will have a higher spin theory

which generically has infinite tower of massless higher spin fields. The dual CFT is

usually known as W∞[λ] CFT, where λ is related to Chern-Simons level k by

0 < λ =
N

N + k
≤ 1 (1.2.6)

In general, λ can take arbitrary real values. Theories with different λ may be

related [27] at quantum level. The simplification of the theory happens when λ = N

is integer: the infinite towers of higher spin fields are truncated and hs[λ] reduce to

SL(N,R). For example, if λ = N = 3, we are dealing with spin-3 gravity theory

formulated by SL(3,R)× SL(3,R) Chern-Simons gauge fields [28].

1.2.2 Non-relativistic holography

The holographic duality in AdS/CFT is a strong-weak duality. In the semiclassical

limit, gravity is weakly coupled while its dual theory is strongly coupled. We do

not have effective tools to do calculations in the strongly coupled theory. Therefore,

many endeavours have been made to use this duality to understand physics at strong

coupling [29].

In reality, many strongly coupled field theories in condensed matter cannot be

dual to AdS gravity. There are field theories respecting anisotropic scaling symmetry

near fixed points

t→ λzt; x→ λx (z > 1)

A famous example is z = 2 Lifshitz scalar model, whose action is

S =

∫
dds+1x

(
−(∂tφ)2 + (∇2φ)2

)
(1.2.7)

These are called non-relativistic field theories due to different weight of time and

space coordinates. Two theories considered as holographic duals are supposed to

have the same symmetry group. To construct holographic dual to these strongly

May 7, 2016
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coupled field theories, we need to search for spacetime taking these non-relativistic

symmetry group as its isometry. To our interest, we will discuss progress made for

3 simplest types of spacetimes:

• Lifshitz spacetime: The geometry is [30–32]

ds2 = L2(−r2zdt2 + r2d~x2 +
dr2

r2
), (1.2.8)

where there are ds spatial coordinates ~x. The spacetime has Lifshitz isometry

t→ λzt, xi → λxi, r → r

λ
(1.2.9)

where z is called the dynamical critical exponent, which realises the anisotropic

scaling symmetry geometrically. Lifshitz gravity is proposed to be dual to

anisotropic condensed matter theory at fixed point.

• Schrödinger spacetime whose geometry is [33,34]

ds2 = −r2zdt2 +
dr2

r2
+ 2r2dtdx− + r2dx2

i (1.2.10)

Note x− is an extra bulk direction, which means this holographic duality is

between gravitational theory in ds + 3 dimensional geometry bulk and ds + 1

dimensional field theory. This is because there are two conserved quantities in

non-relativistic field theory: energy M and particle number N . The isometry

group of (1.2.10) forms a symmetry group called the Schrödinger group.

For general z 6= 2, the isometry of the spacetime contains translation Pµ = ∂µ,

particle number N = i∂ξ, non-relativistic boosts Ki = xi∂ξ + t∂i and non-

relativistic scaling D = zt∂t − r∂r + xi∂i + (2 − z)∂ξ. At z = 2, symmetry

group can be enhanced. There is a special conformal generator [35]

C = t2∂t − tr∂r + txi∂i +
1

2
(

1

r2
+ x2

i )∂ξ

satisfying algebra

[H,C] = D, [D,C] = 2C, [D,H] = −2H

May 7, 2016



1.2. Holography 8

• Hyperscaling violation Lifshitz spacetime [36, 37]. The general hyper-

scaling violating geometry has the form [36–38]

ds2 =
1

r̄2θ/ds
(−r̄2zdt2 + r̄2d~x2 +

dr̄2

r̄2
). (1.2.11)

The θ = 0 case is the Lifshitz spacetime (1.2.8). For θ 6= 0, the isometry

under (1.2.9) is broken; the metric has an overall scaling under this trans-

formation ds2 → λ2θ/dsds2. Theories with such a hyperscaling violation have

a characteristic thermodynamic behaviour which is that of a theory living in

ds − θ dimensions. As a result, it has been suggested that these metrics with

θ = ds − 1 have a thermodynamic structure which may be a useful model

for a field theory with a Fermi surface [37] (as the effectively one-dimensional

behaviour reproduces the behaviour near a Fermi surface). After redefining

radial coordinate so that it is proper size of spatial direction, hyperscaling

violation spacetime above is equivalent to

ds2 = −r2mdt2 +
dr2

r2n
+ r2d~x2 (1.2.12)

The relation between the coordinates is r ∼ r̄2(ds−θ)/ds , and

m =
dsz − θ
ds − θ

, n =
ds

ds − θ
. (1.2.13)

As one can see, if n = 1, (1.2.12) is exactly Lifshitz spacetime with dynamical

exponent z = m.

Non-relativistic spacetimes are not vacuum solution of Einstein equation (with

negative cosmological constant). Instead, matter fields are required to support

these spacetimes. The minimal matter fields one can add to support Lifshitz and

Schrödinger spacetime are massive vector fields [32]. For simplicity, let’s consider

gravity in 4 dimensions described by following action:

S =
1

2κ2
4

∫
d4x(R− 2Λ− 1

4
F µνFµν −

m2

2
AµAµ) (1.2.14)

Lifshitz geometry (1.2.9) is supported by massive vector fields satisfying

Aµdx
µ =

√
2(z − 1)

z
rzdt; m2 = 2z; Λ = −z

2 + z + 4

2
(1.2.15)

May 7, 2016



1.2. Holography 9

Time-reversal symmetry is broken by gauge field. Similarly, in general dimensions,

massive vector fields can also support Schrödinger spacetimes [33,34]. For example,

for Λ = −3 and m2 = 6, gauge field

A = r2dt

together with metric (1.2.10) are a solution to action (1.2.14). In three dimensions,

a gravitational Chern-Simons term can be added to Einstein-Hilbert action [39]. We

then get an action:

S =
1

16πGN

∫
d3x
√
−g
(
R− 2Λ +

1

2µ
ελµν

(
Γρλσ∂µΓσρν +

2

3
ΓρλσΓσµτΓ

τ
νρ

))
(1.2.16)

Variation of this action results in Einstein equation with Cotton tensor Cµν

Rµν −
1

2
Rgµν + Λgµν +

1

µ
Cµν = 0 (1.2.17)

Schrödinger spacetime can be a solution to equation of motion above considering

Λ = −1 and µ = 2z − 1. This theory is called topological massive gravity. In this

thesis, we will show higher spin fields can also support Schrödinger spacetime [3, 4]

in general dimensions.

Another motivation to consider non-relativistic holography is to explore some

properties of a quantum gravity theory. As it is shown in Table 1.1, different physical

theories are characterised by nature constants ~, GN , c. Theories (1)-(6) in the table

are well-studied and people are trying to construct the ultimate theory (8) - a theory

quantising gravity. Semiclassical approximation of quantum gravity, by combining

quantum field theory and general relativity, reveals a corner of quantum gravity.

However, the corner c =∞ and ~, GN finite is much less-studied until recently [40].

An example of non-relativistic quantum gravity is Hořava Lifshitz gravity [41], where

Lifshitz solutions are allowed without matter fields to support. In holography, the

natural geometrical framework coupled to non-relativistic field theory was found

out to be Torsional Newton-Cartan Gravity (TNC). Interestingly, Hořava Lifshitz

gravity emerges when TNC gravity is made dynamical [42]. This is not a major

topic of this thesis, but it is interesting to explore.
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1/c ~ GN Theory

1 0 0 0 Classical Mechanics

2 Finite 0 0 Special relativity

3 0 Finite 0 Quantum mechenics

4 0 0 Finite Newtonian Gravity

5 Finite Finite 0 Quantum field theory

6 Finite 0 Finite General relativity

7 0 Finite Finite Galilean quantum gravity

8 Finite Finite Finite Relativistic quantum gravity

Table 1.1: Regime of physical theory under change of constants

1.3 Singularities in non-relativistic spacetimes

By following AdS/CFT calculations, one can calculate correlation functions in Lif-

shitz/Schrödinger spacetimes to probe their causal structures [39, 43]. However, as

one goes to limit r → 0, one might encounter a curvature singularity even though all

the curvature scalars are finite. This singularity exists in all Lifshitz spacetimes with

z 6= 1 [44]; Schrödinger spacetimes with 1 < z < 2 [35] and hyperscaling violation

spacetimes m < n. We will take general hyperscaling violation spacetimes (1.2.12)

as an example to illustrate its singular nature, since Lifshitz is a special case of the

former.

As a solution of Einstein equations with matter fields, hyperscaling violation

spacetimes are also supposed to satisfy the weak/null energy condition

Gαβk
αkβ = Tαβk

αkβ ≥ 0

for all null or timelike vector kα [45,46]. Violation of the weak energy condition intro-

duces negative energy density into the theory, generically making vacuum unstable

to particle pair creations. For the null vector kα,

Gαβk
αkβ = (Rαβ −

1

2
gαβR)kαkβ = Rαβk

αkβ − 1

2
Rkαk

α = Rαβk
αkβ

The Ricci tensor components of (1.2.12) in ds = 2 are

Rtt = m(1 +m+ n)r2(m+n−1)
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1.3. Singularities in non-relativistic spacetimes 11

Rrr = −m
2 +m(n− 1) + 2n

r2

Rij = −(1 +m+ n)r2nδij (1.3.18)

For an null vector kα,

(kt)2 = r−2m−2n(kr)2 + r2−2m~k2

Then the null energy condition is equivalent to condition

0 ≤ Rαβk
αkβ = (1 +m+ n)(m− 1)~k2r2n + (m− n)

(kr)2

r2
(1.3.19)

Then the null energy condition is satisfied if

m ≥ n (1.3.20)

(1 +m+ n)(m− 1) ≥ 0 (1.3.21)

We are interested in m ≥ n ≥ 1 cases. The r = 0 surface looks like a singularity

for generic m,n. If m = n = 1, the geometry is AdS in Poincare coordinate.

Since we know AdS has a global coordinate patch to cover the whole spacetime

manifold, the r = 0 horizon is just a coordinate singularity. A free falling observer

in hyperscaling violation spacetime with generic m,n can reach Poincare horizon

r = 0 in finite proper time, (i.e.) the spacetime is geodesically incomplete. To

check whether r = 0 is a real physical singularity for generic values of m,n, we

need to move on to parallely-propagated-orthonormal-frame (PPON) to examine

the Riemann tensor components. These components are tidal forces experienced by

a freely falling observer. Consider the geodesics

ε = −r2mṫ2 +
ṙ2

r2n
+ r2ẋi

2

Since the metric is independent of the time coordinate t and spatial coordinate xi,

the Killing energy and the Killing momentum are E = r2mṫ and pi = r2ẋi. We can

rewrite geodesics in terms of the Killing conserved energy as

ε = − E
2

r2m
+

ṙ2

r2n
+
p2

r2
(1.3.22)

With the geodesics above, we can construct the PPON frame as

(e0)µ = −E(∂t)
µ + r−(m+n)

√
E2 − r2m(1 +

p2

r2
)(∂r)

µ + p(∂x)
µ (1.3.23)
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1.3. Singularities in non-relativistic spacetimes 12

(e1)µ = β1(∂t)
µ + β2(∂r)

µ (1.3.24)

(e2)µ = γ1(∂t)
µ + γ2(∂r)

µ + γ3(∂x)
µ (1.3.25)

(ei)
µ = r(∂xi)

µ (1.3.26)

Constants (β1, β2, γ1, γ2, γ3) are chosen so that eµ are orthogonal. We then use

the constructed veilbein to transform from the static observer to the free falling

observer [45]:

Rabcd = Rµνρσ(ea)
µ(eb)

ν(ec)
ρ(ed)

σ

The Riemann components include following terms:

R0i0i = r2n−2m−2[(m− n)E2 + r2m−2[(n− 1)p2 + nr2]] (1.3.27)

R1i1i =
r2n−2m[(m− n)E2 −mr2m−2(p2 + r2)]

(p2 + r2)
(1.3.28)

R0i1i =
(m− n)Er2n−2m−1

p2 + r2

√
E2 − r2m(1 +

p2

r2
) (1.3.29)

As one can see, r = 0 would be regular if n ≥ m + 1 or n = m. Recall that

the null energy condition requires m ≥ n, which contradicts n ≥ m + 1 and n ≥ 2.

Therefore, the only possible non-singular hyperscaling violation spacetimes are those

with m = n ≥ 2.

One may conjecture that the singularity in m 6= n spacetimes can be resolved

by introducing string effects (at α′ order). This is not true. A test string moving

towards these naked singularities will be infinitely excited [44]. The physical meaning

of these singularities is unclear at this stage. In a specific model, Lifshitz singularity

is resolved by considering the brackreaction effect from matter fields [47]. We will

discuss the geometric extension of nonsingular hyperscaling violation spacetime in

chapter 2. In chapter 3, we will try to construct physical observables to probe the

nature of Lifshitz singularity. In chapter 4, we will discuss the problem to resolve

these tidal force singularities from higher spin theory point of view. Unfortunately

there is no example in which singularity is resolved. We will be interested in knowing

whether there are other resolutions.
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Chapter 2

Extending nonsingular

hyperscaling violation spacetimes

This chapter is based on paper [1], written in collaboration with Simon Ross.

2.1 Introduction

The application of holography to the study of field theories of relevance to condensed

matter systems has been a subject of intense activity in recent years (see e.g. [29,48]

for reviews). In particular, the application to non-relativistic theories represents

an interesting extension of the usual holographic dictionary. The simplest example

of this type is the Lifshitz spacetime (1.2.8) [30, 32]. The case z = 1 gives the

familiar AdS spacetime, while z → ∞ gives an AdS2 × Rds spacetime. These two

limiting cases have a smooth extension through the apparent singularity at r = 0

in the geometry (1.2.8). However, this is not the case in the Lifshitz spacetime,

as was already noted in [30], and was later stressed in [44, 49]. Scalar curvature

invariants constructed from (1.2.8) are necessarily finite — indeed, constant — as

a consequence of the Lifshitz symmetry, but there are divergent tidal forces as we

approach r = 0 along geodesic congruences. The consequences of this singularity

for observers in the spacetime were explored in [44], who argued that observers near

the singularity would experience large effects.

The significance of the singularity in the Lifshitz metrics from the point of view

13



2.1. Introduction 14

of the dual field theory is less clear. As in the usual AdS/CFT correspondence, the

natural observables to consider in the field theory are local correlation functions,

which correspond to bulk correlators with their endpoints on the boundary of the

spacetime at r =∞. By causality, the calculation of these correlators only involves

the region of spacetime r > 0, so they are not directly sensitive to the singularity.

Indeed, the correlators can be calculated by analytic continuation from the Euclidean

version of (1.2.8), which has no divergent tidal forces. In the Euclidean solution,

r = 0 is at infinite proper distance, so the Euclidean metric in these coordinates

is already geodesically complete, just as in Euclidean AdS. There is no question of

extension of the solution in the Euclidean solution.

We conjecture that this singularity is reflected in the field theory in the struc-

ture of the infrared divergences appearing in scattering amplitudes. Scattering am-

plitudes are an intrinsically Lorentzian observable, and it is well-known that in

massless theories they have infrared divergences associated with the emission of soft

collinear particles. In the AdS context, non-trivial initial and final states in the

Poincare patch of the geometry (corresponding to scattering amplitudes in the field

theory) are associated with particles/fields crossing the Poincare horizons [50]. Fur-

ther, in the work of Alday and Maldacena on gluon scattering amplitudes [19] the

infrared divergence was cut off by introducing an explicit brane source in the bulk

spacetime away from the Poincare horizon; the infrared divergence appears in the

limit as the cutoff brane approaches the horizon. So there indeed seems to be a close

connection between the r → 0 limit in spacetime and infrared structure of scattering

amplitudes.

To support this speculation, we need to understand what is special about cases

where these tidal divergences don’t arise. This is relatively easy to understand in

the relativistic case; scattering amplitudes are not really a good physical observable

in a relativistic conformal field theory, and one should work instead with the ex-

tension of the field theory to the Einstein static universe R × Sds . The extension

of the spacetime beyond the Poincare horizon seems necessarily connected to this

extension of the field theory. This is also connected to the existence of special con-

formal transformations, as it is the special conformal transformations that map the
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conformal boundary of Minkowski space to finite position (the inversion symmetry

exchanges null infinity with the light cone of the origin).

There are two non-relativistic examples where the tidal divergences also don’t

arise. The first is the Schrödinger spacetimes, which we discuss in section 2.2,

reviewing the extension constructed by [35]. Schrödinger with z = 2 follows the

same pattern as the relativistic case; there is a special conformal symmetry, and the

smooth extension of the spacetime is associated with an extension of the boundary

geometry. Indeed, the bulk coordinate transformation was obtained in [35] by using

the special conformal symmetry. However, there is a smooth extension for z ≥ 2,

and not just in the case z = 2 where the special conformal transformation exists.

This thus seems to provide an example of a solution with an extension both in the

field theory and in spacetime, but without a special conformal transformation. Our

new contribution to the consideration of this case is just to note that (except for the

case with three bulk dimensions) these extensions are not present once we consider

asymptotically Schrödinger spacetimes with non-zero particle number. Thus, the

unexpected extensions appearing in the z > 2 cases appear to be some special

property of the field theory in an “empty box”, when we consider a system with

Schrödinger symmetry, but with no actual field theory particles present.

The more interesting and surprising non-relativistic example is the case found in

[46], who showed that there is a particular class of hyperscaling violating spacetimes

which have no tidal singularity on the horizon. This case is the main focus of our

work. We will show in section 2.3 that these solutions have a smooth extension

through r = 0, by explicitly constructing a good coordinate system there. The dual

field theory has no special conformal symmetry; indeed it doesn’t even have a scaling

symmetry. Furthermore, we will argue that the boundary of the extended spacetime

has two disconnected components, as in AdS2. Thus, the extension of the spacetime

is not connected to an extension of the field theory to a larger background.

Applying the usual holographic correspondence, we would expect such a space-

time to be dual to two copies of the field theory, with separate Hilbert spaces as-

sociated to the two boundaries. But the horizon separating the two asymptotic

regions has zero cross-sectional area, so unlike in AdS2, it seems problematic to
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2.2. Extension of Schrödinger spacetimes 16

interpret this geometry as corresponding to an entangled state in the two copies of

the field theory. Thus, this example poses a challenge not just to our understanding

of the significance of the singularities, but also to the picture advocated for example

in [51, 52] that connectedness of the spacetime is dual to entanglement in the field

theory.

In AdS2, some of these issues find their solution in the fact that finite-energy

excitations modify the asymptotics [53], so it is not actually possible to propagate an

influence from one boundary to the other without violating the asymptotic boundary

conditions.1 In section 2.4, we will argue that there will be a similar resolution in this

hyperscaling violating example. We consider the position-space Green’s function for

a source on one boundary, and while we are not able to fully calculate its form, we

will argue that it is divergent along the horizon.

While this provides a possible resolution of the puzzle, it still seems surprising

even at the level of vacuum states that we can have a connection in the spacetime

between the two asymptotic boundaries without any entanglement in the field theory

vacuum state. It would be interesting to understand the field theory interpretation

of these cases better.

2.2 Extension of Schrödinger spacetimes

In this section we review known results on extension of the Schrödinger spacetimes.

This will provide a useful warm-up for our later consideration of the hyperscaling

violating spacetime, and this is also an interesting example worth including in the

discussion in its own right.

These spacetimes were introduced in [33, 34] as duals to non-relativistic theo-

ries where the anisotropic scaling symmetry is supplemented by invariance under

Galilean boosts. In the special case z = 2, the symmetries also include a special

conformal transformation. It was shown in [35] that the Schrödinger solutions have

a smooth extension through r = 0 for z ≥ 2. The extension for z = 2 is consonant

with our expectations, and indeed the smooth coordinates of [35] were constructed

1See e.g. [54, 55] for a discussion of the conceptual issues in AdS2.
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2.2. Extension of Schrödinger spacetimes 17

by making use of the special conformal transformation. The fact that the extension

continues to exist for z > 2 is surprising, however. We will review the construction

of [35] and comment on what happens when we consider non-vacuum states in the

field theory.

Schrödinger geometry represents a holographic dual of the ground state for a

field theory in ds spatial dimensions with a Schrödinger symmetry, which includes

an anisotropic scaling symmetry and Galilean boosts. Realising this extended sym-

metry requires an extra dimension. In particular the addition of the ξ coordinate

enables us to realize the conserved particle number appearing in the Schrödinger

algebra as momentum in the ξ direction. As in the Lifshitz spacetime, this solution

has an apparent singularity at r = 0. An extension of the spacetime beyond r = 0

was found in [35] for z ≥ 2. For z = 2, their construction was based on the special

conformal symmetry C which appears for this choice of dynamical exponent. They

define a new timelike coordinate T such that ∂T = H + C = ∂t + C. This led them

to define the new coordinates (T,R, ~X, V ) given by

t = tanT, r =
cosT

R
, ~x =

~X

cosT
, (2.2.1)

ξ = V +
1

2
(R2 + ~X2) tanT. (2.2.2)

In these new coordinates, the metric for z = 2 is

ds2 = −dT
2

R4
+

1

R2
(−2dTdV − (R2 + ~X2)dT 2 + dR2 + d ~X2). (2.2.3)

The null surfaces at r = 0 in the original metric correspond to surfaces cosT = 0

which are evidently smooth in the new coordinates. There is still an apparent

singularity at R→∞ in the new coordinates, but because of the harmonic potential

in gTT , geodesics are prevented from reaching R → ∞, so this new spacetime is

actually geodesically complete. From the point of view of the boundary at r = ∞

(R = 0), the extension adds regions to the future and past of the existing boundary.

For z = 2, this extension of the boundary can be understood as a result of the special

conformal transformation. Thus, the case with z = 2 has the same qualitative

structure as for AdS.
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2.2. Extension of Schrödinger spacetimes 18

The surprise is that this coordinate transformation also provides a smooth ex-

tension of the spacetime for z > 2. Applying the same coordinate transformation in

the case of general z gives

ds2 = −(cosT )2z−4dT
2

R4
+

1

R2
(−2dTdV − (R2 + ~X2)dT 2 + dR2 + d ~X2). (2.2.4)

Thus, for z > 2, the extension is still smooth at cosT = 0. The geometry no longer

has a T -translation symmetry, which is a consequence of the absence of the special

conformal transformation, but there is no obstruction to the extension, and the

picture from the point of view of the causal boundary is the same as before. This

is an example where the field theory unexpectedly has a smooth extension; there

was no symmetry in the theory in the t, x, ξ coordinates which suggested that it

would be reasonable to treat t → ∞ as being at finite position, but the coordinate

transformation (2.2.1), which maps this to finite T , gives a smooth bulk geometry

with an extended boundary.

A natural suspicion is that this smooth extension is a special feature of the

vacuum solution. To say that an extension really exists in the field theory, we would

like to see that there are excitations of the geometry which remain smooth in global

coordinates, corresponding to non-trivial states of the field theory on the extended

spacetime. In the next two subsections we consider two kinds of excitations; changes

in the state in a sector with a given particle number, and changes in the conserved

particle number of the field theory.

2.2.1 Excitations: mode solutions

We want to consider excitations about the Schrödinger solution, and look for ex-

citations which remain smooth in global coordinates. In this section we consider

normalizable mode solutions, corresponding to excited states of the field theory, fol-

lowing [35,56]. In appendix 2.A, we give some new results on position space Green’s

functions in this spacetime.

The simplest thing to do is to consider mode solutions in the original coordi-

nates. However, unlike on a black hole spacetime, there are no mode solutions

which are regular at the horizon; that is, there is no analogue of ingoing modes
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2.2. Extension of Schrödinger spacetimes 19

on the Schrödinger background. This is trivial to see. The mode solutions in the

original coordinates are

φ = e−imξ+iωt+i
~k·~xf(r). (2.2.5)

As r → 0 along a generic ingoing geodesic, all of t, ξ, ~x diverge. For example, if

we take r → 0 keeping V finite, ξ will blow up. Whatever the dependence of f(r)

on r is, the assumption that the mode depends separately on t, ~x and r means

that the dependence on ξ cannot become a dependence on the finite coordinate V .2

Thus there are no mode solutions in the original coordinates that are regular at the

horizon. This is of course no obstruction to the existence of smooth solutions; it

just says that the modes (2.2.5) are not a good basis for constructing them.

For the Schrödinger solution with z = 2, the geometry has enough symmetry to

allow us to solve for mode solutions in the new coordinates. This analysis was carried

out in [35], for the solutions for a probe scalar field on the Schrödinger background

in the new coordinates. If we solve the massive Klein-Gordon equation with mass µ

in the new coordinate system, the solutions can be decomposed in modes as

φ = e−iET e−imV YL(θi)ϕL,n(ρ)φL,n(R), (2.2.6)

where ρ, θi are spherical polar coordinates on the spatial ~X coordinates, YL(θi) are

the appropriate spherical harmonics, and ϕL,n(ρ) is given in terms of a generalized

Laguerre polynomial. The radial function φL,n(R) satisfies

φ′′ − ds + 1

R
φ′ + (2Em− 4m(n+

L

2
+
ds
4

)−m2R2 − (m2 + µ2)

R2
)φ = 0. (2.2.7)

The solutions of this equation can be written in terms of confluent hypergeometric

functions. The two independent solutions near R→∞ are

φ ∼ e±
1
2
mR2

. (2.2.8)

2In a black hole spacetime, the mode solutions are φ = eiωtf(r), and the divergence of t on the

future horizon can be cancelled by choosing an ingoing solution for f(r), so that φ ≈ eiωu near

the horizon, where u is an ingoing Eddington-Finkelstein coordinate. The point of this comment

is that because more coordinates blow up on the Schrödinger horizon, no such cancellation can be

engineered just by choosing f(r).
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Following [35], the boundary condition is taken to be that we keep only the expo-

nentially damped falloff in the limit R→∞. The regular solution is then

φ = e−
1
2
mR2

R∆+U(a, b,mR2), (2.2.9)

where U(a, b,mR2) is Tricomi’s confluent hypergeometric function, and

a =
1

2
(1 + ν) + n+

L

2
+
ds
4
− E

2
, b = 1 + ν. (2.2.10)

This solution is clearly regular in the interior of the spacetime. However, it only

has an interpretation as a change in the state of the field theory if it only excites

the normalizable (fast fall-off) part of the field near the boundary.3 The Tricomi

function is

U(a, b, z) =
Γ(1− b)

Γ(a− b+ 1)
1F1(a, b, z) +

Γ(b− 1)

Γ(a)
z1−b

1F1(a− b+ 1, 2− b, z). (2.2.11)

The regular solution is purely normalizable at infinity if the first term is absent,

which can happen if we encounter a pole in the Γ function in the denominator, that

is if a− b+ 1 is a negative integer. This will select a discrete set of energies E,

E = 1 + ν + 2n+ L+
ds
2

+ r, r ∈ N. (2.2.12)

Thus the situation in z = 2 Schrödinger is very similar to that in AdS. There is a

discrete spectrum of smooth mode solutions with respect to the new coordinates,

and we can describe smooth excitations above the vacuum state, at least at linear

order in perturbations, by considering linear combinations of these modes.

It is difficult to extend this analysis to z > 2, as the geometry now has no

time-translation symmetry in T , so we cannot Fourier transform in the T direction.

Solving the wave equation in the new coordinates would therefore requiring solving

a PDE. It would be interesting if this problem could be shown not to have smooth

solutions, as this would indicate a difference between the z = 2 and z > 2 cases. We

will not pursue this further as we will see in the next section that both z = 2 and

z > 2 encounter a problem when we consider non-zero particle number.

3A point which was neglected in [35].
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2.2.2 Excitations: nonzero particle number

Since the Schrödinger algebra contains a conserved particle number, in addition to

asking if the extension through r = 0 applies to excitations above the ground state,

it is also natural to ask if it applies to the ground state in sectors of the theory with

non-zero values of the particle number. Here we will consider what happens for

uniform distributions of particle number, as one would expect in the ground state

in a sector of fixed particle number.

For z = 2, one might think that exciting non-zero particle number would allow us

to preserve the smoothness at r = 0, since the particle number operator N is central

in the algebra, so it commutes with both the dilatation and the special conformal

transformation. However, from the geometric point of view the relevant quantity

is not the total particle number but the local particle number density ρ; it is the

dimension of this local operator that will determine the effect of particle number on

the bulk spacetime. For z = 2, the particle number density ρ has dimension ds, so

we would expect that giving it an expectation value will produce a deformation of

the spacetime whose effect is more pronounced in the IR, modifying the structure

of (1.2.10) at r = 0.

This is indeed what we find if we consider the geometries obtained by taking the

zero-temperature limit of the black hole solutions for ds = 2 found in [57–59] while

holding the particle number fixed. The limiting geometry (in string frame) is

ds2 = k(r)−1(−r4dt2 +
γ2

r2
dξ2 − 2r2dtdξ) + (r2d~x2 +

dr2

r2
), (2.2.13)

where k(r) = 1 + γ2

r2
. The spacetime is asymptotically Schrödinger, with the 1/r2

falloff for the deviations expected for a non-zero particle number density. We can see

that the introduction of the non-zero density indeed deforms the spacetime in the IR;

this solution is now singular at r = 0. This is again a tidal divergence, with Riemann

tensor components like R0i0i diverging in a parallelly propagated orthonormal frame

along ingoing geodesics:

R0i0i =
2γ2E2

r6
+ (1 + P 2

ξ ). (2.2.14)

This component is finite if the density γ vanishes while becomes divergent in the

finite density spacetime. Thus, there is no smooth extension through r = 0 for
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these solutions with non-zero particle number. We should note that there is also a

divergent tidal force if we consider the metric in Einstein frame. Although we do

not have explicit solutions for z > 2, we would expect a similar logic to apply there

as well.

The exception to the preceding discussion is Schrödinger spacetimes with three

bulk dimensions, as then ds = 0, and non-zero particle number produces a marginal

deformation of the geometry. Indeed, in this case the Schrödinger solution has

been identified with the null warped AdS3 geometry, and the solution with non-zero

particle number is the spacelike warped AdS3 geometry [60], with metric

ds2 = −r4dt2 − 2r2dtdξ + γ2dξ2 +
dr2

r2
. (2.2.15)

This metric is a fibration over AdS2, as can be made manifest by defining ρ = r2

and t̄ =
2
√
γ2+1

γ
t, so

ds2 =
1

4
(−ρ2dt̄2 +

dρ2

ρ2
) + γ2(dξ − ρ

2(1 + γ2)
dt̄)2. (2.2.16)

Here, the singularity at r = 0 can be resolved by passing to global coordinates for the

AdS2 factor, both for vanishing and for non-vanishing particle number. Thus, the

extension of the spacetime exists for non-zero particle number. On the other hand,

the fact that the geometry involves AdS2 implies that the excitations in a sector

of given particle number considered in the previous section fail once we take into

account back-reaction (at zero or non-zero particle number), since AdS2 does not

have finite excitations which are asymptotically AdS2 on both asymptotic boundaries

in the global coordinates [53].

Another caveat to the argument is that it applies to solutions with finite particle

number density; it may be that there could be some solutions with finite total

particle number (in a spatially infinite field theory) which remain smooth at r = 0.

However, as such solutions would necessarily be time-dependent it is significantly

more difficult to analyze the question, and it is the case of finite particle number

density which is of real practical interest.
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2.3 Hyperscaling violating spacetimes

In this section, we turn to our main subject, the non-singular hyperscaling violating

spacetimes. We will first review the general class of spacetimes, and briefly discuss

the non-singular case, before explicitly constructing a smooth extension for this case

through the horizon at r = 0 and discussing the resulting global structure.

As mentioned in introduction, hyperscaling violation geometries generically have

a curvature singularity at r = 0, but there is an exception; as noted in [46], the case

m = n ≥ 2 has no diverging tidal forces as we approach r = 0. In general, the

parameters are restricted to m ≥ n by the null energy condition (generalizing the

familiar restriction to z ≥ 1 in the Lifshitz case). Given this, we can see that for the

components of the Riemann tensor (1.3.27) to (1.3.29) to remain regular as r → 0,

we must have m = n ≥ 2. It can be checked that given this condition, all the

components of the Riemann tensor remain finite in the limit [45,46].

The non-divergent case is special in the sense that it saturates the bound from

the null energy condition.4 For two spatial dimensions, the choice z = 3/2, θ = 1,

which gives m = n = 2, was also previously identified as special because it gives rise

to a logarithmic violation of the area law for entanglement entropy [37], so it may

be interesting for modelling Fermi liquids holographically.

For simplicity, we will focus mainly on the case m = n = 2, and comment briefly

on the extension to larger values at the end. The metric is

ds2 = −r4dt2 +
dr2

r4
+ r2dx2

i . (2.3.17)

The fact that the metric is non-singular precisely when grr = 1/gtt suggests that it

will be useful to introduce a tortoise coordinate r∗ such that dr∗ = grrdr, as in the

Schwarzschild spacetime. Indeed, if we define

u = t− 1

3r3
, (2.3.18)

4Although the null energy condition is satisfied, this spacetime does require negative energy

densities, and as noted in [45] it is not straightforward to construct reasonable matter Lagrangians

that give rise to it as a solution. Since our interest is mainly in using this example to test our

general understanding, rather than to advance it as a physically interesting model, we have not

attempted to address this issue.
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the metric becomes

ds2 = −r4du2 + 2dudr + r2dx2
i . (2.3.19)

The u, r part of the metric is regular, but this cannot be the end of the story, as the

metric in the xi directions is still degenerating as r → 0. We can get some insight

into the situation by considering the behaviour of the geodesics. The conserved

energy and momentum along the geodesics are E = r4ṫ and pi = r2ẋi. Thus

ṙ2 = E2 − p2r2 − εr4, (2.3.20)

where ε = 1 for timelike geodesics and ε = 0 for null geodesics, which implies

dt

dr
=
ṫ

ṙ
= − E

r4
√
E2 − p2r2 − εr4

, (2.3.21)

dxi
dr

=
ẋi
ṙ

= − pi

r2
√
E2 − p2r2 − εr4

, (2.3.22)

where we are considering ingoing geodesics. Near r = 0,

t ≈ 1

3r3
+

1

2

p2

E2r
+ . . . (2.3.23)

and

xi ≈
pi
Er

+ . . . , (2.3.24)

where the terms not written explicitly are bounded as r → 0. For null geodesics, we

can explicitly integrate (2.3.21) and (2.3.22) to obtain

t =
(E2 + 2p2r2)

√
E2 − p2r2

3E3r3
+ t0 (2.3.25)

and

xi = pi

√
E2 − p2r2

E2r
+ xi0. (2.3.26)

If we introduce p̄i = pi/E, this can be rewritten as

t =
(1 + 2p̄2r2)

√
1− p̄2r2

3r3
+ t0, xi = p̄i

√
1− p̄2r2

r
+ xi0. (2.3.27)

We see that the ingoing coordinate u is finite (in fact constant) along the radial

null geodesics with p̄ = 0, as in Eddington-Finkelstein coordinates on a black hole.

However, for the general geodesics with p 6= 0, the coordinate transformation has
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removed the leading divergence in t but both u and the spatial coordinates xi diverge

like r−1 near r = 0.

To remove these divergences, we define

Xi = rxi (2.3.28)

and

T = u− X2
i

2r
= t− 1

3r3
− 1

2
rx2

i . (2.3.29)

The metric can be written in a simple form by introducing polar coordinates (R, θa)

in the transverse Xi space:

ds2 = −r4dT 2 − 1

4
R4dr2 + (1−R2r2)dR2 +R2dΩ2

ds−1 (2.3.30)

+(2 +R2r2)dTdr +R3rdRdr − 2Rr3dRdT.

We can see that the components of the metric remain finite at r = 0 in these

coordinates; in addition, the determinant of the metric is

det gµν = −R2(ds−1), (2.3.31)

which is finite at r = 0, so the inverse metric is also smooth there. Thus, these

coordinates provide a smooth extension of the metric through r = 0. The surface

r = 0 is a null hypersurface, a smooth event horizon. We have constructed ingoing

coordinates, allowing us to smoothly cross the future horizon at t → ∞ as r → 0;

we could similarly construct outgoing coordinates by taking

T ′ = t+
1

3r3
+

1

2
rx2

i . (2.3.32)

Since the metric (2.3.30) is invariant under r → −r, T → −T , we see that the region

r < 0 is isometric to the region r > 0.

This method can also be generalized to other n ≥ 2 cases by taking

T = t− 1

2n− 1
r−(2n−1) − r

2
x2
i , Xi = rxi, (2.3.33)

which gives

ds2 = −r2ndT 2 + (1− r2(n−1)R2)dR2 − 1

4
r2(n−2)R4dr2 +R2dΩ2

ds−1(2.3.34)

+(2 + r2(n−1)R2)dTdr − 2r2n−1RdTdR + r2n−3R3dRdr.

Note that as expected, this provides a smooth extension only for n ≥ 2.
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2.3.1 Global structure

To understand the meaning of this extension of the geometry from the point of

view of the dual field theory, we would like to understand the relation between the

regions r > 0 and r < 0; in particular, we want to understand the relation between

their asymptotic boundaries at large r, where we conventionally think of the field

theories as living. (More precisely, as the hyperscaling violating spacetime is singular

as r →∞, we should introduce an explicit cutoff and work on a surface of constant

r = r0). In an AdSd spacetime for d > 2, when we extend the Poincare patch to

global coordinates, the boundary is connected, and there is a single Hilbert space

for the dual field theory5; by contrast, in a black hole spacetime or in AdS2, there

are two disconnected boundaries, which have separate field theory Hilbert spaces

associated with them. The field theory dual in those cases is some entangled state

in two copies of the field theory. We would like to know whether our hyperscaling

violating spacetime is of the former or of the latter type.

In our smooth coordinates (2.3.30), the spacetime certainly does not look con-

nected, but this may be just a defect of our coordinates. To consider this question

in a more coordinate-independent manner, we will consider the causal structure of

the spacetime. In the cases where the boundary is connected, an initial time slice in

the boundary is a Cauchy surface for the full extended boundary in the field theory,

and the whole of the boundary lies either to the future or to the past of this initial

time slice. So if we find that there are points on the boundary which are not in the

future or past of the initial data slice in one asymptotic region of the hyperscaling

violating spacetime, we can conclude that the extension of the spacetime does not

correspond simply to further evolution of the CFT state defined on that initial slice,

but must instead involve some extension of the CFT Hilbert space.

We are therefore interested in considering the future and past of an initial time

slice, which in the bulk spacetime corresponds to a constant t slice of the boundary.

Thus, we want to find I±(r = r0, t = t0). We can see from (2.3.21) that motion in the

xi directions restricts the motion in r, so the future or past of r = r0, t = t0 will be

5The extension for the Schrödinger spacetimes reviewed above is also of this form.
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bounded by the radial null geodesics. The ingoing/outgoing coordinates u, v = t∓ 1
3r3

are constant along the radial null geodesics, and the xi are constant, so T , although

not constant, remains bounded. Thus, the ingoing radial null geodesics from r = r0

will intersect the surface r = −r0 beyond the future horizon at some finite value

of t. Thus, there is indeed a part of this new asymptotic region which is spacelike

separated from the initial time surface. (No part of the region beyond the future

horizon is to the past of the initial surface.)

Figure 2.1: A qualitative depiction of the causal structure in the region covered by

the ingoing coordinates. Note that although we draw the T, r space, the geometry

does not have a translational symmetry in the transverse space in the coordinates

regular at the horizon, so this is not a true Penrose diagram.

This implies that the structure of the spacetime is qualitatively similar to that of

AdS2, as depicted in figure 2.1; there is a separate boundary at r < 0, disconnected

from the boundary at r > 0.6

If we follow the usual holographic dictionary, we would associate these two

asymptotic boundaries with two copies of the field theory Hilbert space. Now an

interesting problem is that the horizon at r = 0 has vanishing cross-sectional area, so

it is difficult to interpret the geometry as dual to an entangled state in two copies of

the field theory. If we assumed the usual Ryu-Takayanagi prescription applied, the

6It is not clear if successive boundary regions at r > 0 are connected, as they would be in AdS2;

our construction has not given us a single coordinate patch covering two such regions.
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entropy density in the reduced density matrix obtained by tracing over one of the

boundaries should be given by the area of the horizon, as this is clearly an extremal

surface [61, 62]. The field theory coordinates are t, xi, so the vanishing of gxixi at

r = 0 in (2.3.19) appears to say that the reduced density matrix has zero entropy

density.7 Thus, the state of the field theory asociated to this spacetime would seem

to have no entanglement, contrary to the general conjectures in [51,52].

2.4 Excitations of the smooth spacetime

The smooth extension of the spacetime indicates that the ground state of the field

theory can be thought of as naturally defined on the full asymptotic boundary of

the spacetime, rather than just on the boundary in the original r > 0 region. As in

the Schrödinger example, it is then interesting to ask if this extension has meaning

also for excited states. In this section we argue that finite-energy excitations will

indeed destroy the extension. We will first consider looking for mode solutions of

this equation in the different coordinates, and then consider a Green’s function for

an operator insertion on the boundary.

2.4.1 Scalar fields in the static coordinate

In the original static coordinates, we can consider the plane wave modes

φ(t, r, x, k, ω) = e−iωt+i
~k·~xR(r). (2.4.35)

The Klein-Gordon equation ∇2φ−m2φ = 0 then reduces to an ODE,

1

rds
∂r(r

4+ds∂rR) +
ω2

r4
R(r)− k2

r2
R(r)−m2R(r) = 0, (2.4.36)

7The horizon has a non-degenerate metric on the surfaces of constant T in (2.3.30),

ds2r=0,T=const = dR2 + R2dΩ2
ds−1, but since finite R at r = 0 corresponds to infinite values of

xi, it seems to us that this is not naturally related to the entropy density in the field theory. How-

ever, the rules for such cases with non-compact horizons are perhaps not entirely clear. We can’t

easily resolve the problem by compactifying the xi coordinates as this would spoil the smoothness

at the horizon, as in the Poincare patch in AdS.
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The near horizon region is at r → 0 and boundary is at r → ∞. We can’t solve

this equation in closed form in general, but we are interested in the behaviour in the

near horizon region. The method of solving near r = 0 limit of R(r) is asymptotic

expansion. A useful reference for introduction of this method is in [63].

To make our derivation reasonable, we need to introduce the notation of asymp-

totic. Two functions f(r), g(r) are considered asymptotically equivalent, written as

f ∼ g at point x = a, if and only if

lim
r→a

f(r)

g(r)
= 1 (2.4.37)

If two functions are asymptotic equivalent f ∼ g, then ef ∼ eg if and only if

limr→a(f(r) − g(r)) � 1. Now we can use the idea of dominant balance to derive

asymptotic behavior of function R(r). Assume R(r) = eS(r). The equation (2.4.36)

reduces to

r4(S ′′(r) + S ′(r)2) + (4 + ds)r
3S ′(r) +

ω2

r4
− k2

r2
−m2 = 0 (2.4.38)

Near r = 0, for equation to be held, we should expect dominant terms are cancelled.

Therefore, one can find

r4S ′(r)2 ≈ ω2

r4

There are two solutions to S(r), corresponding to ingoing and out going coordinates

we found in section 2.3. Let’s take

S(r) = i
ω

3r3
+ C(r)

where C(r) is subleading terms near r = 0, satisfying equation

r4(C ′′ + C ′2)− 2iωC ′ − ds
iω

r
+ C ′(4 + ds)r

3 − k2

r2
−m2 = 0

One can solve asymptotically,

C(r) ≈ −i k
2

2ωr

Note C(r) is not negligible near r = 0, we should proceed this procedure. C(r) =

−i k
2

2ωr
+D(r), one can solve

D(r) = −ds
2

ln r +O(r)
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Terms in O(r) are negligible near horizon. Therefore, the final solution of scalar

equation φ(t, r, ~x) has asymptotics

φ ∼ r−
ds
2 exp

(
−iωt+ ikx+ i

ω

3r3
− i k

2

2ωr

)
(2.4.39)

There are two possible ways to deal with this solution. One is to insert the

geodesics expansion (2.3.23) and (2.3.24) into asymptotics and identify Killing con-

served energy with ω, k here. One would find all the divergent terms in exponential

function would cancel. Therefore, scalar fields propagate through horizon r = 0

smoothly at a point. Alternatively, since all mode solutions are independent, we

can integrate over all momentum k evenly. This is equivalent to an inverse Fourier

transformation of our solution. We can get

φ(t, x, r, ω) =

∫
dkφ(t, r, x, k, ω) ∼ r−

ds
2 exp

(
−iω(t− 1

3r3
− rx2

i

2
)

)
= r−

ds
2 e−iωT

(2.4.40)

There is an overall r−ds/2 divergence, but leaving that aside, the eiω/3r
3

behaviour

here is reminiscent of a black hole; it indicates that we could define “ingoing” and

“outgoing” modes behaving as eiωT , eiωT̃ , where T, T̃ = t ∓ (
1

3r3
+
rx2

i

2
). However,

while T would remain finite as we approach the horizon along geodesics, it would

diverge as we approach the horizon along more generic directions. Thus, unlike in a

black hole spacetime, and like in the Schrödinger example, there are no individual

mode solutions which are well-behaved on the horizon. The assumption that the

dependence on t, r and ~x separates immediately implies that the modes cannot

become functions of T as we approach the horizon.

As in the Schrödinger case, this tells us nothing about the smoothness of the

extension, but just indicates that these modes do not provide a good basis near the

horizon.

2.4.2 The scalar fields in new coordinate

We can attempt to look for solutions of the Klein-Gordon equation in the new regular

coordinate. However, this is more difficult, as there are no additional symmetries

which are manifest in the new coordinates, so the wave equation does not separate

in these coordinates.
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The inverse metric is
1
4
R4 1− 1

2
r2R2 −1

2
rR3

1− 1
2
r2R2 r4 r3R

−1
2
rR3 r3R 1 + r2R2

 , (2.4.41)

so the equation of motion in the new coordinates is

1

4
R4∂2

Tφ+ (2− r2R2)∂T∂rφ− rR3∂T∂Rφ+ r4∂2
rφ+ 2r3R∂R∂rφ(2.4.42)

+ (1 + r2R2)∂2
Rφ−

ds + 4

2
rR2∂Tφ+ (ds + 4)r3∂rφ

+ (
ds − 1

R
+ (ds + 4)r2R)∂Rφ+

∂2
Ωφ

R2
−m2φ = 0.

The Ω stands for all the angular parts which have ds− 1 dimensions. The Ω depen-

dence is separable (as a consequence of the rotational symmetry in the Xi plane), and

we can take advantage of the time translation invariance in T to Fourier transform

in the T direction, so we can write

φ = eiαTYL(Ω)H(r, R). (2.4.43)

then we can arrange the equation into

r4∂
2H

∂r2
+ (1 + r2R2)

∂2H

∂R2
+ 2r3R

∂2H

∂r∂R
+ (−iαr2R2 + (ds + 4)r3 + 2iα)

∂H

∂r

+ (−iαrR3 +
ds − 1

R
+ (ds + 4)r2R)

∂H

∂R
(2.4.44)

+

(
−1

4
α2R4 − ds + 4

2
iαrR2 − L2

R2
−m2

)
H = 0, (2.4.45)

but the r and R dependence in this equation does not separate, so it is not possible to

make further progress analytically in general. It is possible to separate the equation

for α = 0, but this essentially reduces to the special case ω = 0 of the previous

analysis in the original coordinates.

It would be interesting to investigate this equation numerically. For each spher-

ical harmonic, one should look for values of α such that the solution is a regular

function of r, R which is purely normalizable as r → ±∞. This seems a challeng-

ing numerical problem however, so in the next section we turn to an alternative

approach, studying the Green’s functions for sources on the boundary.
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2.4.3 Green’s function

As an alternative to the mode solution analysis, which corresponds to considering

excitations of the incoming initial state at past infinity, we can consider an excitation

created by acting with some localized source on the boundary. That is, we can ask

if the boundary to bulk Green’s function is smooth at the horizon. We will consider

first a spatially uniform source, where we can explicitly find the Green’s function

analytically, and we can gain some understanding of their structure. We will then

argue that the Green’s function for a spatially localized source is well-behaved at the

horizon, although we can’t do the full calculation of the Green’s function explicitly

in this case. It may be useful to read this section in conjunction with appendix

2.A, where the same calculation is done for z = 2 Schrödinger, as in that case the

calculation can be carried out explicitly in full.

The hyperscaling violating spacetimes do not have a scaling symmetry; instead

scaling the coordinates produces an overall rescaling of the metric. However, if we

consider massless fields, this is sufficient to produce a simplification in the form

of the Green’s function. We will therefore restrict to the consideration of massless

fields. The spacetime has a real Euclidean section defined by analytically continuing

t→ −iτ , so we define the Green’s function in the Lorentzian spacetime by analytic

continuation from this Euclidean section. In the Euclidean spacetime, the massless

equation is
1

rds
∂r(r

4+ds∂rφ) +
1

r4
∂2
τφ+

1

r2
∂2
i φ = 0 (2.4.46)

This equation has a symmetry under the scaling transformation

r → λ−1r; τ → λ3τ ; xi → λ2xi; ds2 → λ2ds2, (2.4.47)

as the scaling of the metric comes out as an overall factor in this massless equation.

We consider a source which is smeared over the spatial directions. By translation

invariance in the original coordinates, we take the source to be at τ = 0, so that the

boundary condition is

lim
r→+∞

φ = Cδ(τ). (2.4.48)

The solution with this boundary condition will be independent of the xi. The delta-

function in the boundary conditions breaks the symmetry under the scaling (2.4.47),
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but it transforms covariantly, so the solution should behave as φ(λ3τ, λ−1r) =

λ−3φ(τ, r). Thus, the solution should have the form φ(r, t) = r3f(r3τ), and the

problem reduces to an ODE,

(9x2 + 1)f ′′(x) + (36 + 3ds)xf
′(x) + (18 + 3ds)f(x) = 0, (2.4.49)

where x = r3τ . The solution satisfying our boundary conditions is

f(x) =
C

(9x2 + 1)1+ ds
6

(2.4.50)

that is,

φ =
C ′r3

(9r6τ 2 + 1)1+ ds
6

. (2.4.51)

This solution satisfies the boundary conditions because it vanishes as r → ∞ for

t 6= 0, and the scaling form φ = r3f(r3τ) automatically implies that the integral∫
φdτ over a surface of constant r is independent of r. Explicitly, integrating against

an arbitrary test function,∫ ∞
−∞

lim
r→∞

r3

(9x2 + 1)
ds+6

6

g(τ)dτ = 2

∫ ∞
0

lim
r→∞

1

(9x2 + 1)
ds+6

6

g(
x

r3
)dx (2.4.52)

=
2
√
πΓ(3+ds

6
)

dsΓ(ds
6

)
g(0). (2.4.53)

We therefore get a remarkably simple result for the Lorentzian Green’s function

defined by analytic continuation,

φ =
φ0r

3

(9r6t2 − 1)1+ ds
6

. (2.4.54)

Note that this has a singularity along t = ± 1
3r3

, which corresponds to the radial null

geodesics emanating from the point t = 0 on the boundary; these are the light-cone

singularities that we expect to see in the Lorentzian Green’s function. To study the

behaviour as r → 0, we write

x = r3t = r3T +
1

3
+

1

2
R2r2 (2.4.55)

so we have

lim
r→0

φ ≈ r1− ds
3

(6Tr + 3R2)1+ ds
6

. (2.4.56)
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This implies the solution becomes singular at the horizon for large spatial dimension

ds.

Mathematically, the singularity at the horizon is related to the light-cone sin-

gularity: the function f(x) must have a singularity at x = ±1
3
, as this is the bulk

light cone, but by (2.4.55) we see that x = ±1
3

on the (future/past) horizon as well,

so the solution will also be singular there. There is an additional factor of r3 in φ

which vanishes on the horizon, but this is not sufficient to kill the singularity for

large enough ds. This mathematical relation makes it easy to see why we might

expect the Green’s function not to be regular on the horizon, but it’s important to

note that it’s a mathematical relation, not a physical one; not all of the horizon is

causally connected to the source, as discussed in the previous section.

The cases ds ≤ 3 seem special, as φ is then regular on the horizon for R 6= 0,

although there is still a divergence as we approach the horizon for R = 0. For ds = 2,

which is physically the most interesting case, the Green’s function on the horizon is

proportional to δ(R):

lim
r→0

φ ∝ T−1/3δ(R2). (2.4.57)

However, the finiteness of φ in these cases is somewhat misleading; if we consider

the stress-energy tensor, we find that we can still expect a strong back-reaction on

the metric. For a massless field,

Tµν = ∂µφ∂νφ−
1

2
gµν(∂φ)2, (2.4.58)

and we find that in the new coordinates Trr ∼ r−2ds/3 as r → 0 even for R 6= 0.

Thus, there is a real singularity associated with this Green’s function on the horizon.

However, considering a spatially uniform source can lead to divergences even in

cases where generic finite-energy excitations are regular on the horizon, as we see

in appendix 2.A for the Schrödinger case. We therefore need to consider a spatially

localized source. Unfortunately, this problem is more difficult, and we were not able

to explicitly determine the Green’s function.

We consider again the massless Klein-Gordon equation, but now with a boundary

condition

lim
r→+∞

φ = C1δ(t)δ
ds(~x) (2.4.59)
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for some constant C1. This boundary condition is covariant under the scaling sym-

metry satisfied by the equation (2.4.47), so the solution should satisfy φ(λt, λ~x, λ−1r) =

λ−(2ds+3)φ(t, ~x, r). Thus, the solution should be of the form φ = r2ds+3H(r3t, r2ρ),

where ρ2 = x2
i is a radial coordinate in the plane. Thus, finding the Green’s function

can be reduced to a problem in two variables,

(9x2 − 1)
∂2H

∂x2
+ 12xy

∂2H

∂x∂y
+ (4y2 + 1)

∂2H

∂y2
+ (15ds + 36)x

∂H

∂x
(2.4.60)

+[(10ds + 22)y +
ds − 1

y
]
∂H

∂y
+ 3(ds + 2)(2ds + 3)H = 0

where φ = r2ds+3H(x, y) and x = r3t, y = r2ρ, ρ2 = x2
i . The form of this equation

can be slightly simplified by a change of coordinates,

ξ =
x

(1 + 4y2)
3
4

, η = y, (2.4.61)

which allows us to rewrite the equation as

(9ξ2 − 1√
1 + 4y2

)
∂2H

∂ξ2
+ (4y2 + 1)2∂

2H

∂y2
+ (9ds + 36)ξ

∂H

∂ξ
(2.4.62)

+[(10ds + 22)y +
ds − 1

y
]
∂H

∂y
(4y2 + 1) + 3(ds + 2)(2ds + 3)(4y2 + 1)H = 0.(2.4.63)

This transformation has eliminated the mixed derivative term. However, unlike in

the Schrödinger case, this equation is still not separable, so we cannot solve for the

Green’s function exactly.

We do have some general expectations for the singularity structure. Because of

the non-relativistic causal structure of the boundary, the light-cone of a point on the

boundary at t = 0, ~x = 0 is the same as the light cone of the surface t = 0; thus we

would expect that the Green’s function will have singularities along the light cone

t = ± 1
3r3

, that is at x = ±1
3
. The future horizon corresponds to (x, y) → (1

3
, 0), so

this light cone singularity leads us to expect that H diverges on the horizon as well.

Let us assume that near the horizon, we have a leading singularity H ∼ (3x−1)α.

That is, assume a double Taylor expansion around (x, y)→ (1
3
, 0) of the form

H = a(3x− 1)α(1 + c1y + c2y
2 + c3(3x− 1) + c4y(3x− 1) + . . .). (2.4.64)

Noting that near the horizon y = rR ∼ O(r), while 3x−1 = 3
2
r2R2 +3r3T ∼ O(r2),

the leading divergent terms in (2.4.60) near the horizon are the ∂2H
∂x2

and ∂H
∂x

terms,
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which go like (3x− 1)α−1. This then fixes α:

18α(α− 1) + 3(5ds + 12)α = 0, (2.4.65)

so α = 0 or α = −1− 5ds
6

. Taking the divergent solution, we would have

lim
r→0

φ ∼ r2ds+3

(3x− 1)1+ 5ds
6

∼ r
ds
3

+1

(3R2 + 6rT )1+ 5ds
6

. (2.4.66)

So the solution would be regular at r = 0 and the stress tensor would be regular

at r = 0 for R 6= 0 for any ds, with increasing numbers of derivatives regular as

we consider larger dimensions, but the solution has a singularity at R = 0, where

φ ∼ r−ds/2. In fact, this singularity is a mild Dirac function:

lim
r→0

φ ∼ lim
r→0

r
ds
3

+1

(3R2 + 6rT )1+ 5ds
6

(2.4.67)

∼ lim
r→0

r
ds
3

+1

∫ +∞

0

e−s(R
2+2rT )s

5ds
6 ds (2.4.68)

∼ lim
r→0

r−
ds
2

∫ +∞

0

e−
wR2

r
−2wTw

5ds
6 dw (2.4.69)

∼ δ(R2)T−
ds
3
−1 (2.4.70)

The singularity here is milder than the spatially uniform case, particularly for

large dimensions. The big difference in the spatially localized case is that while H

is divergent at the horizon, this comes with a stronger suppression: the factor of

r2ds+3 in φ weakens the singularity at the horizon. This corresponds to the physically

expected effect that the energy of the disturbance can now spread out in the spatial

directions. However, the solution is still singular along the horizon at R = 0. Since

the light-cone only intersects r = 0, R = 0 at T = 0, this is not just the light cone

singularity; we take it to mean that this Green function is not well-behaved, and

that the smooth extension of this spacetime is a property just of the vacuum state.

The geometry is concentrating some of the energy in the boundary excitation along

this ray on the horizon, so it looks here more like the AdS2 case.

Clearly we have not established this divergence with any real rigour, and it would

be useful to explore the behaviour of excitations in more detail. However, for the

present Green’s function analysis it is not clear that numerical solution of (2.4.60)

will be particularly useful, as the Green’s function is really defined by satisfying the
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boundary condition in the Euclidean space and then analytically continuing to the

Lorentzian section to evaluate it at the horizon. The best route to further work may

be to look numerically for values of α such that the solution of the wave equation

(2.4.44) is regular in the interior and normalizable at infinity. We conjecture that

no such values exist.

2.A Schrödinger Green’s functions

In section 2.2, we studied the smoothness of extensions above the Schrödinger space-

times by studying mode solutions. Another approach to considering whether the

extension remains smooth for finite excitations is to consider instead of a purely

normalizable mode, an excitation created by acting with some localized source on

the boundary. That is, we can ask if the boundary to bulk Green’s function is

smooth at the horizon. It is interesting to do this analysis for Schrödinger because

in our analysis of the hyperscaling violating case we work with this Green’s func-

tion approach, so it is useful to have the corresponding results for Schrödinger for

comparison.

One can give a simple abstract argument to suggest that the Green’s function will

remain smooth at the horizon in the case z = 2; the geometry in the new coordinates

(2.2.3) has a translation invariance in the T direction, so the horizon at T = π/2

is not a special surface; if the Green’s function insertion is at some arbitrary time,

there is nothing to pick out this surface so the Green’s function can’t blow up there.

However, this argument misses a subtlety, so it is useful to carry out an explicit

analysis. We consider for simplicity the Green’s functions for a massless scalar,

∇2φ = 0. In the Schrödinger geometry with z = 2, this is

− 2

r2
∂t∂ξφ+ ∂2

ξφ+
1

r2
∂2
~xφ+

1

rds+1
∂r(r

ds+3∂rφ) = 0. (2.1.71)

We will always assume that the solutions are plane waves in the ξ direction, e−imξ,

corresponding to considering sources carrying particle number proportional to m.

Consider first a source which is only localized in the time direction, and smeared
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uniformly with respect to ~x. Then φ = e−imξφ(t, r), and

2im

r2
∂tφ−m2φ+

1

rds+1
∂r(r

ds+3∂rφ) = 0. (2.1.72)

We want to impose a boundary condition

lim
r→∞

φ = e−imξδ(t), (2.1.73)

but we cannot impose such a delta-function boundary condition literally in the

Lorentzian spacetime; the Lorentzian Green’s function is divergent on the boundary

not just at the point where the source is inserted but also at light like separation. The

Schrödinger spacetime does not have an analytic continuation to a real Euclidean

spacetime, but for the construction of the Green’s function, it is sufficient to continue

t→ −iτ , so the wave equation becomes

−2m

r2
∂τφ−m2φ+

1

rds+1
∂r(r

ds+3∂rφ) = 0, (2.1.74)

and require the field to satisfy

lim
r→∞

φ(r, τ) = e−imξδ(τ). (2.1.75)

The key simplification that makes it possible to solve this equation in closed form

is that the scaling symmetry under t → λ2t, r → λ−1r implies that the solution is

of the form

φ = e−imξr2f(r2τ). (2.1.76)

Thus, the problem reduces to an ODE. Writing x = r2τ , the equation for f(x) is

4x2∂2
xf + (2(ds + 8)x− 2m)∂xf + (2ds + 8−m2)f = 0. (2.1.77)

The general solution is

f(x) = c1x
− ds+6

4
− ν

2 1F1(
ds + 6

4
+
ν

2
, 1+ν,−m

2x
)+c2x

− ds+6
4

+ ν
2 1F1(

ds + 6

4
−ν

2
, 1−ν,−m

2x
),

(2.1.78)

where ν2 = (ds+2)2

4
+ m2. In the asymptotic region r → ∞, the first term is the

normalizable solution, and the second term is the non-normalizable solution.

Since we want to impose a delta-function boundary condition, we want φ → 0

as r → ∞ for t 6= 0, that is we want φ → 0 as x → ∞, so we set c2 = 0. We
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can formally argue that the result must be a delta-function, because the scaling

form (2.1.76) implies that the integral
∫∞
−∞ φdt over any surface of constant r is

independent of r. However, this integral is actually badly behaved because of the

divergence of (2.1.78) when x approaches zero from below. Ignoring for the moment

this issue, we adopt this as our definition of the ‘Euclidean’ Green’s function.

Analytically continuing back to the Lorentzian section, the proposed Green’s

function is

φ = ce−imξr2(r2t)−
ds+6

4
− ν

2 1F1(
ds + 6

4
+
ν

2
, 1 + ν,

im

2r2t
). (2.1.79)

This solution has a singularity at t = 0, which can be understood as the expected

light cone singularity in the Lorentzian spacetime, since surfaces of constant t are

null surfaces in the Schrödinger spacetime. It is easy to see that this Green’s function

is also singular at the horizon r → 0. The argument is the same as for the mode

function in section 2.2: the dependence on ξ cannot be converted into dependence

on the regular coordinate V .8 This is surprising in light of the previous abstract

argument. The resolution is that we chose to put the source at t = 0, which is a

special point with respect to the horizon at T = π/2, and while the form of the

source is invariant under the t-translation symmetry, it is not invariant under the

T -translation symmetry, as this will act non-trivially on the e−imξ factor.

Physically, this divergence in the response to a spatially uniform source may be

interpreted as the result of the harmonic potential in the ~X directions in the metric

(2.2.3). After half a period, this will cause particles starting at arbitrary values of

~X to become concentrated at a single point.

Remarkably, for Schrödinger with z = 2, we can go beyond this analysis for

a spatially uniform source and construct the Green’s function for a fully localized

source. For a fully localized source, the scaling symmetry implies that the solu-

tion will be of the form φ = e−imξr2+dsf(r2t, r~x). As before, we make an analytic

continuation to set t = −iτ , and write the solution as

φ = e−imξr2+dsf(x, y), (2.1.80)

8In addition, using the asymptotic form of the confluent hypergeometric function given below,

we would find that φ ∼ r−ds/2.
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where x = r2τ as before and y = |~x|2/τ . The equation of motion then becomes

4x2∂2
xf + (2(3ds + 8)x− 2m)∂xf + (2d2

s + 8ds + 8−m2)f

+
1

x

(
4y∂2

yf + (2ds + 2my)∂yf
)

= 0. (2.1.81)

This is separable; what is more, there is a separable solution which satisfies the

boundary condition

lim
r→∞

φ = e−imξδ(τ)δ(~x). (2.1.82)

This solution is

φ = ce−imξ−
my
2 r2+dsx−

3
4

(ds+2)− ν
2 1F1(

ds + 6

4
+
ν

2
, 1 + ν,−m

2x
), (2.1.83)

where ν is as before. To see that this satisfies the boundary conditions, note that

the x dependence makes it vanish as r → ∞ for τ 6= 0 as before, so φ is supported

only at τ = 0 in the limit, and then that as τ → 0, e−my/2 → 0 for ~x 6= ~0, so φ is

supported only at ~x = 0 in the limit. We can then argue formally as before that∫
φdtddsx over a surface of constant r is independent of r as a consequence of the

scaling form of the solution, and that hence it should converge to a delta function.

(Note however that as before this argument is only formal due to the problem with

defining the integration.)

Thus, analytically continuing back in t, the candidate Lorentzian Green’s func-

tion is

φ = ce−imξ+i
m~x2

2t r2+ds(r2t)−
3
4

(ds+2)− ν
2 1F1(

ds + 6

4
+
ν

2
, 1 + ν,

im

2r2t
). (2.1.84)

Again, this is singular at t = 0, which is the light-cone singularity in spacetime. This

is singular at t = 0 for all ~x even for a source which is localized at ~x = 0 because of

the non-relativistic causal structure: all points at t = 0 are lightlike separated from

this boundary point. To examine the behaviour near the horizon at r → 0, use the

asymptotic expansion of the confluent hypergeometric function [?]

1F1(a, b, z) ∼ Γ(b)

Γ(a)
ezza−b +

Γ(b)

Γ(b− a)
(−z)−a (2.1.85)

which gives

φ = e−imξ+i
m~x2

2t

(
c′(rt)−ds−2e

im
2r2t + c′′r

3
2
ds+2(rt)−

ds
2

)
. (2.1.86)
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Making the coordinate transformation (2.2.1), we see rt = sinT
R

is finite as T →

π/2, so the second term vanishes and the first term is finite. Using (2.2.2), the

combination appearing in the exponential is

ξ − ~x2

2t
− 1

2r2t
= V − 1

2
(R2 + ~X2) cotT (2.1.87)

so as T → π/2,

φ ≈ c′e−imVRds+2 (2.1.88)

is perfectly regular.

This Green’s function analysis does not extend simply to z > 2. The particle

number m has a non-zero scaling dimension, so the previous argument that φ will

only involve a function of rzt and r~x does not apply; the function can depend

separately on r, t, ~x with the scaling being soaked up by appropriate powers of m.

Thus even the spatially uniform source will involve solving a PDE, and we have not

explored the problem further.

2.B Scalar equation in HSV with curvature cou-

pling

The analysis of the Green’s function for the smooth hyperscaling violating spacetime

can be extended from the massless case to consider a scalar field with a curvature

coupling, as the resulting equation still satisfies the scaling symmetry (2.4.47). Con-

sider the equation

∇2φ− ξRφ = 0. (2.2.89)

The Ricci scalar is R = −30r2, so the Ricci scalar term scales the same way as the

Laplacian under (2.4.47). For the spatially uniform case, we can therefore conclude

that the solution will be of the form φ = r3f(x) with x = r3τ , and the Euclidean

problem reduces to the ODE

(9x2 + 1)f ′′(x) + 42xf ′(x) + (24 + 30ξ)f(x) = 0. (2.2.90)

The solution satisfying the boundary condition is

f(x) =
P (1

6
(−3 +

√
5
√

5− 24ξ), 4
3
, 3ix)

(9x2 + 1)
2
3

. (2.2.91)
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where P (a, b, x) is Legendre function. Analytically continuing back to the Lorentzian

spacetime, we have the Green’s function

φ =
φ0r

3P (1
6
(−3 +

√
5
√

5− 24ξ), 4
3
, 3r3t)

(9r6t2 − 1)
2
3

. (2.2.92)

The singularity structure of this solution at r → 0 is the same as in the previous

case.

2.C General HSV spacetime

For general HSV spacetime with m = n ≥ 2, the calculation would be quite similar.

For a time localized boundary condition, the equation is

[(2n− 1)2x2− 1]f ′′(x) + (2n− 1)(8n− 4 + ds)xf
′(x) + (2n− 1)(ds + 4n− 2)f(x) = 0

(2.3.93)

where x = r2n−1t determined by scaling constraint. According to regular coordinate

(2.3.33), as we are approaching the horizon,

x = r2n−1t = r2n−1T +
1

2n− 1
+
r2n−2R2

2
(2.3.94)

The solution of the equation again has a simple form:

f(x) = [(2n− 1)2x2 − 1]−1− ds
2(2n−1) (2.3.95)

This means

φ =
φ0r

2n−1

[(2n− 1)2x2 − 1]1+ ds
2(2n−1)

(2.3.96)

∼ r1− ds(n−1)
2n−1

(R2 + 2rT )1+ ds
2(2n−1)

(2.3.97)

which is always divergent at R = 0 no matter 1− ds(n−1)
2n−1

> 0 or not.

For a fully localized source, the solution should be φ = r2n−1+dsnH(x, y). we will

have the equation:

[(2n− 1)2x2 − 1]
∂2H

∂x2
+ 2n(2n− 1)xy

∂2H

∂x∂y
+ (n2y2 + 1)

∂2H

∂y2
(2.3.98)

+ (2n− 1)(8n− 4 + 2dsn+ ds)x
∂H

∂x
+ [(7n2 − 3n+ (2n2 + n)ds)y +

ds − 1

y
]
∂H

∂y
(2.3.99)
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+ (2n− 1 + dsn)(4n+ ds + nds − 2)f = 0 (2.3.100)

Apply similar approximation shows the solution diverge like

H ∼ r2n−1+dsn

[(2n− 1)x− 1]1+
(2n+1)ds
2(2n−1)

(2.3.101)

∼ r1+ ds
2n−1

(R2 + 2rT )1+
(2n+1)ds
2(2n−1)

(2.3.102)

Therefore, at the horizon r → 0,

lim
r→0

H ∼ lim
r→0

r1+ ds
2n−1

(R2 + 2rT )1+
(2n+1)ds
2(2n−1)

(2.3.103)

∼ lim
r→0

r1+ ds
2n−1

∫ +∞

0

e−s(R
2+2rT )s

(2n+1)ds
2(2n−1) ds (2.3.104)

∼ lim
r→0

r−
ds
2

∫ +∞

0

e−w(R
2

r
+2T )w

(2n+1)ds
2(2n−1) dw (2.3.105)

∼ δ(R2)T−1− ds
2n−1 (2.3.106)
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Chapter 3

Scattering amplitudes in Lifshitz

spacetimes

This chapter is based on my paper [2], written with Tomas Andrade and Simon

Ross. I will first give a review of calculating scattering amplitudes in AdS gravity.

Then we move on to the Lifshitz gravity case.

3.1 Introduction

In this chapter, I will use another form of Lifshitz metric (1.2.8), relating the original

one by coordinate transformation r → r−1. The new form of Lifshitz geometry is

ds2 = −dt
2

r2z
+
dr2 + d~x2

r2
(3.1.1)

where there are ds spatial dimensions ~x, and we have set the curvature scale to

one for convenience. Holographic dictionary for Lifshitz spacetime generally has a

similar structure to that of AdS [31, 32, 64, 65]. It is also proposed one can learn

Lifshitz holography from AdS holography by doing z = 1 + ε2 expansion [66]. How-

ever, while AdS is smooth at r = 0, Lifshitz singularity at this surface forbids any

geometric extension. It is not so clear how this singularity is reflected in observables

in the dual field theory. The correlation functions of local field theory operators

are not sensitive to the singularity, as they can be obtained from analytic contin-

uation of Euclidean correlators, and the Euclidean spacetime is not singular. In

44



3.1. Introduction 45

Chapter 2 it was argued that the singularity could be reflected in the structure

of the infrared divergences in scattering amplitudes. Scattering amplitudes are an

intrinsically Lorentzian observable, and it is well-known that in massless theories

they have infrared divergences associated with the emission of soft collinear parti-

cles. The singularity in the spacetime in the geometry (3.1.1) is related to the dual

field theory having more soft modes, as the anisotropic scaling symmetry implies a

dispersion relation ω ∼ kz. The IR divergences in scattering amplitudes therefore

seems a suitable place to look for observable effects of this physics.

The aim of the present chapter is to investigate this by calculating the scattering

amplitudes following the pioneering work of [19] in the AdS case. In that work, the

scattering amplitude was related to the calculation of a minimal surface (following

[67] or more recently [68] in the flat space case). The appropriate minimal surface

was obtained in [19] by working in a T-dual geometry where it is a minimal surface

ending on light-like segments on the asymptotic boundary of the T-dual spacetime,

whose geometry is again AdS. This gives the leading behaviour of the amplitude as

A ∼ eiS (3.1.2)

where S is the action of a string wrapping the minimal surface determined by the

boundary conditions; this represents a stationary point approximation to the am-

plitude. In the case of N = 4 SYM, the scattering amplitude can be related to a

Wilson loop [69,70], and (3.1.2) can then be understood in terms of the saddle-point

calculation of the dual Wilson loop; the leading IR singularity is then related to the

cusp anomalous dimension [71]. We are not claiming that such an amplitude-Wilson

loop duality extends to the Lifshitz field theories; we simply want to use (3.1.2) as

a convenient trick to evaluate the leading behaviour of the amplitude, working in a

T-dual frame because it’s easier to find the minimal surface there, in the spirit of

the discussion in [19]. This can perhaps be made more rigorous in the context of

the string embedding of z = 2 Lifshitz spacetime in [72–74], or in the construction

of [75], but we will leave this as a problem for the future.

In the AdS case, the external states in the scattering amplitude have a dispersion

relation ω = ±k determined by the conformal invariance, and the amplitude is re-

lated to a closed polygonal Wilson loop made up of light-like segments whose lengths
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are related to the momenta of the external particle states. In [19], the expectation

value of the Wilson loop related to the four-point amplitude was shown to be related

by conformal invariance to a simple case with two light like segments meeting in a

cusp, originally analysed in [76]. In AdS3, the minimal surface corresponding to this

cusp is simply

r2 = 2(t2 − x2), (3.1.3)

which satisfies the boundary conditions r = 0 at t = ±x.

We will consider the analogue of this cusp in the Lifshitz case. Since we have

less symmetry than in AdS, this is no longer related to the Wilson loop with four

segments, and finding the appropriate minimal surface in the bulk for a full scattering

amplitude is much more difficult. But considering this cusp will suffice to enable us

to control the leading IR singularity in the amplitude.

In section 3.3, we will set up the calculation in Lifshitz. In the Lifshitz case, the

anisotropic scaling symmetry determines the dispersion relation to be ω = ±αkz,

where α is an undetermined parameter which would be fixed by the microscopic

details of the field theory. Since we can’t control these details of the field theory,

We will look for minimal surfaces satisfying r = 0 at t = ±αxz, treating α as a free

parameter. The lines t = ±αxz are timelike in the boundary at r → 0 for any α

because of the non-relativistic causal structure in the boundary of (3.1.1). Therefore

in section 3.4 we will give a brief discussion of null and timelike cusps in the AdS

case, to fix expectations for the behaviour of our results as z → 1.

Then in section 3.5 we find the minimal surfaces satisfying these boundary con-

ditions, and determine the leading IR divergences in the amplitudes. We will find

that these minimal surfaces have a peculiar “mushroom” shape, where the surface

initially bends away to larger x before turning around. The leading divergence is

controlled by the near-boundary behaviour of the surface. We find this divergence

is stronger than in the corresponding timelike cusps for z = 1, with a universal

(z-indepenent) dependence on the cutoff with a coefficient which vanishes as we

take the limit. This result is reminiscent of the behaviour of the bulk singularity,

where curvature diverges as 1/τ 2 along the worldline of geodesics which approach

the singularity (where τ is the proper time), with a coefficient which vanishes as
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z → 1 [49]. It should be understood in the field theory as due to the presence of the

higher density of soft modes implied by the modified dispersion relation ω ∼ kz.

3.2 Review of scattering amplitudes in AdS

Scattering amplitudes in N = 4 super Yang Mills should correspond to scattering

processes in string theory in AdS5. The leading order in strong coupling is deter-

mined by classcial string configurations. The ends of open string are quarks whilst

the open string can be thought to be a gluon tube. We then will consider open string

scattering process which is dual to gluon scattering in field theory. It is helpful to

review how this calculation is formulated. Useful reviews of this calculation can be

found in [77,78]

3.2.1 Simplification of boundary conditions

Scattering amplitudes in string theory are calculated by the insertion of vertex

operators at the boundary

An ∼<
n∏
i=1

Vi(ki,x(σi)) >∼
∫
DXeiSei

∑n
i=1 ki·x(σi) (3.2.4)

where S is string world sheet action in AdS spacetime and k2 = 0.

SAdS =

√
λ

4π

∫
dσdτ [

1

r2
(∂αx

µ)(∂αxµ) +
(∂αr)(∂

αr)

r2
] (3.2.5)

where λl4s = R4
AdS. The value of integral above can be approximated by the value

of action at stationary point [67]. However, unless the string is propagating in flat

spacetime, the equation of motions are rather difficult to solve.

In AdS spacetime, Alday and Maldacena found a beautiful method to simplify

the calculation [19], which is known as T-duality transformation. Recalling that

in a scattering process, momentum is considered conserved. Then we can pick a

momentum in nth vertex operator so that

kn = −
n−1∑
j=1

kj (3.2.6)
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The boundary conditions can be written as

n∑
j=1

kj · x(σj) =
n∑
j=1

kj ·
∫
dσx(σ)δ(σ − σj)

=
n−1∑
j=1

kj ·
∫
dσx(σ) (δ(σ − σj)− δ(σ − σn))

=
n−1∑
j=1

kj ·
∫
dσx(σ)∂σθ(σ;σj, σn)

where the distribution function is defined as

θ(σ;σi, σj) =

 1, σi < σ < σj

0, otherwise
(3.2.7)

After integration by parts, we find

n∑
j=1

kj · x(σj)

=
n−1∑
j=1

kj ·
(
−
∫
dσ∂σx(σ)θ(σ;σj, σn) +

∫
dσ∂σ(x(σ)θ(σ;σj, σn))

)

= −
n−1∑
j=1

∫ σj+1

σj

∂σx(σ) · (
∑
i<j

ki + c) (3.2.8)

where c is a constant vector. Next, a T-duality transformation is performed by

changing the variables in the path integral. We can do the transformation by gauging

each fields xµ in action (3.2.5). The action preserving local shift symmetry with

boundary condition is

S =

√
λ

4π

∫
dσdτ

(
(∂αx−Aα)2

r2
− iy · F

)
−i

n−1∑
j=1

∫ σj+1

σj

(∂σx(σ)−Aα)·(
∑
i<j

ki+c)dσ

(3.2.9)

Here y is a Lagrange multiplier used for imposing constraints so that new action

(3.2.9) is equivalent to (3.2.5). We have F = ∂τAσ − ∂σAτ . By gauge transforming

Aα → Aα + ∂αx, we can absorb ∂αx into gauge field Aα . After integrating the F

term by parts, we are left with

S =

√
λ

4π

∫
dσdτ

[
AαA

α

r2
+ i(Aσ · ∂τy −Aτ · ∂σy)

]
−i

n−1∑
j=1

∫ σj+1

σj

Aσ · (
∑
i<j

ki + c +

√
λ

4π
y)dσ (3.2.10)

May 7, 2016



3.2. Review of scattering amplitudes in AdS 49

This action will generate two equations of motion for gauge field A. The ”bulk”

equation solves

Aα = ir2εαβ∂βy (3.2.11)

The boundary equation is∑
i<j

ki + c +

√
λ

4π
y(σj ≤ σ ≤ σj+1) = 0 (3.2.12)

By plugging (3.2.11) into action (3.2.10), the action reduces to
√
λ

4π

∫
dσdτr2∂αy∂

αy (3.2.13)

This means the transformed geometry is again AdS in Poincare coordinate. We can

do transformation r → r−1 so that string world sheet action is exactly given by

string propagating in AdS spacetime

ds2 =
dxµdx

µ + dr2

r2
(3.2.14)

The boundary equation enforces a boundary condition on Aσ.

y(σi)− y(σi+1) =
4π√
λ

ki (3.2.15)

The prefactor on the right hand side is not important. The key point is that y

should form a closed polygon since momentum is conserved in scattering processes.

Let’s summarize what’s happening in above calculation. We reduce the problem

of finding stationary point of action (3.2.5) to a problem of finding stationary point of

action (3.2.13) under boundary conditions (3.2.15). Geometrically, this is a problem

of finding minimal surface anchored on given boundary polygon segments in AdS

spacetime. Massless gluons in field theory k2 = 0 correspond to light-like segments

in the T-dual problem.

3.2.2 AdS scattering amplitudes

AdS3

The simplest case is two light-like segments which meet at a cusp in AdS3 geometry

[19]:

ds2 =
−dt2 + dx2 + dr2

r2
(3.2.16)
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The to light-like segments are given by t = ±x with t ≥ 0. To simplify the

string worldsheet action, the best strategy is to make full use of AdS isometries

to parametrize the coordinate as:

t = eτ coshσ; x = eτ sinhσ; r = eτw

Boost symmetry and scaling symmetry are manifest in these coordinate: boost is

a shift in σ while scaling is a shift in τ . What’s more, the boundary condition is

automatically satisfied by this parametrization. As one can see, as r → 0,

t2 − x2 = e2τ → 0 as τ → −∞

The action then is a functional of w(τ).

S =

√
λ

2π

∫
dσdτ

√
1− (w(τ) + w′(τ))2

w(τ)2

The solution to the equation of motion is w(τ) =
√

2. In terms of (t, x, r) coordi-

nates, the solution is

r2 = 2(t2 − x2) (3.2.17)

This solution was first found in [76]. Using this solution to evaluate action will tell

us that the action is imaginary at stationary point. Therefore, scattering amplitudes

A ∼ eiS are exponentially suppressed.

AdS5

The most fascinating part of the theory is the above result can be generalized to four

light-like segments case. Consider (r, y0, y1, y2) with y3 = 0. The string worldsheet

embedded in bulk spacetime can be parametrized by any two coordinates. Let’s

take y1, y2 as coordinate on world sheet and r(y1, y2), y0(y1, y2) as functions of y1, y2.

Using scaling symmetry we can restrict the discussion to a square with segments

ranging y1, y2 ∈ (−1, 1). The segments are living at the boundary, so we have the

boundary conditions

r(±1, y2) = r(y1,±1) = 0 (3.2.18)

Besides, since the boundary segments are light-like, we also have

y0(±1, y2) = ±y2; y0(y1,±1) = ±y1 (3.2.19)
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String world sheet action is then

S =

√
λ

2π

∫
dτdσ

√
− det(gµν∂αyµ∂βyν)

=

√
λ

2π

∫
dy1dy2

√
1 + (∂ir)2 − (∂iy0)2 − (∂1r∂2y0 − ∂2r∂1y0)2

r2
(3.2.20)

The equations of motion are extremely complicated non-linear partial differential

equations. Miraculously, there exists a unique simple solution satisfying boundary

conditions [19]

r2 = (1− y2
1)(1− y2

2); y0 = y1y2 (3.2.21)

After inserting the stationary point solutions into action, one can find the scat-

tering amplitudes calculated from gravity side exactly match BDS ansatz in N = 4

SYM. For details, see [19,78].

3.3 Lifshitz amplitudes

We are interested in considering a scattering amplitude in the Lifshitz background

(3.1.1). This involves insertion of on-shell particles in the boundary field theory at

t = ±∞. In the bulk, it is determined by a string world sheet located near the

singularity r = ∞ in (3.1.1); it is thus infrared divergent. This divergence can be

cut off as in [19], by considering a brane at some fixed r = r0 (taking r0 →∞ at the

end of the calculation). Lifshitz amplitudes are calculated by string propagating in

Lifshitz spacetimes, which are exactly of the form (3.2.4), with

S =

∫
dτdσ

√√√√√− det

 gµν∂τX
µ∂τX

ν gµν∂τX
µ∂σX

ν

gµν∂σX
µ∂τX

ν gµν∂σX
µ∂σX

ν


=

∫
dτdσ

(
[(∂τ t)(∂σr)− (∂τr)(∂σt)]

2 + [(∂τ t)(∂σx)− (∂τx)(∂σt)]
2

r2z+2

− [(∂τr)(∂σx)− (∂τx)(∂σr)]
2

r4

) 1
2

(3.3.22)
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being the Nambu-Goto action of the string worldsheet,1 and the string world sheet

has a boundary on the regulating brane at r = r0, with Dirichlet boundary condi-

tions on r and Neumann boundary conditions on the field theory directions. We

approximate the scattering amplitude by a saddle point which extremizes (3.3.22)

subject to these boundary conditions.

As in [19], the minimal surface is more easily obtained by working in the T-dual

coordinates, T-dualizing along the boundary directions t, ~x. We view this as a trick

to obtain the minimal surface we are interested in living in the original spacetime, so

we will not carefully investigate this T-duality transformation. This has been studied

extensively in the AdS case [79], and some of those results may admit extensions

to the Lifshitz context, at least in the context of the supersymmetric realizations of

z = 2 Lifshitz in [72,73], but we will not investigate this further.

T-dualizing (3.1.1) along t, ~x to T-dual coordinates t′, ~x′ gives us back a Lifshitz

spacetime in the coordinates t′, ~x′, r′ = 1/r, but with a different dilaton field2 φ =

(z+ds) ln r. The minimal surface we wanted to find thus becomes an extremum of the

Nambu-Goto action (3.3.22) in terms of the T-dual coordinates, with a boundary at

r′ = 1/r0 with Dirichlet boundary conditions in the t′, ~x′ directions. The momentum

of the external states becomes separation in the t′, ~x′ directions, so the boundary

of the string worldsheet is fixed to lie on a closed polygon at r′ = 1/r0 made up of

segments with ∆t′ = α|∆~x′|z for some α. In the limit r0 →∞, this is a polygon in

the boundary r′ = 0 of the T-dual spacetime.

Our main aim is to find the minimal surface satisfying these boundary conditions.

Actually, this is rather difficult for a non-trivial polygon, so we will consider just

the corner between two such segments; that is, we take the boundary conditions for

our minimal surface to be r′ = 0 at t′ = ±α|~x′|z, for t′ > 0. Since two segments

define a plane, we can orient our coordinates such that the separation is just along

1If we were to do a proper top-down construction this should be replaced by an appropriate

superstring action, but we will neglect such details; at least in the simplest AdS context the problem

reduces to finding the minimal surface which extremizes (3.3.22) as we will do here.
2This expression will formally have an imaginary part due to T-dualizing the time direction.

However, this dilaton does not affect the evaluation of the saddle-point minimal surface.
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one of the spatial directions in the Lifshitz metric (3.1.1), and the minimal surface

will lie in a three-dimensional subspace of (3.1.1). One may wonder whether it is

possible to find four-cusp like solutions as the one found in AdS case (3.2.21). We

prefer to believe such solution does not exist. AdS space has global coordinate to

cover the whole manifold. Single cusp solution in Poincare coordinate corresponds

to four-cusp like solution in global coordinate. However, due to existence of Lifshitz

singularity, global extension of Lifshitz Poincare coordinate is impossible. Then it

is unlikely to have four-cusp like solution in Lifshitz spacetimes.

We will henceforth drop the primes on the dual coordinates. Our interest is then

in finding a minimal surface in the three-dimensional subspace

ds2 = −dt
2

r2z
+
dr2 + dx2

r2
(3.3.23)

satisfying the cusp boundary conditions r = 0 at t = ±αxz for t > 0.

One might be tempted to parametrize the surface by t, x, but we will find that it

is actually not a single-valued function of x: the surface moves initially to larger x

as r increases, before returning to smaller x. Using the fact that the action (3.3.22)

is invariant under x → −x, the surface satisfying our boundary conditions will be

symmetric under x→ −x, so we can restrict attention to the surface for x > 0. We

can then parametrize the surface for x > 0 by t, r. Using the scaling symmetry, a

more convenient choice of parametrization of this surface is in terms of σ, f where

t = σz; x = σu(f); r = σf (t ≥ 0) (3.3.24)

Our task is to determine the form of u(f) which extremizes the Nambu-Goto action,

subject to the boundary condition u(0) = u0 for some arbitrary parameter u0 > 0,

where uz0 = α, and u(f0) = 0 at some f0 > 0. The Nambu-Goto action is

S =
1

2πα′

∫
dXadXb

√
det(Gµν∂aXµ∂bXν) (3.3.25)

=
1

2πα′

∫
dσ

σ

∫
df

f z+1

√
(z2 − f 2z)u′2 + 2uf 2z−1u′ + (z2 − u2f 2z−2).

The stationary point equation is

f [f 2(f 2z − z2) + f 2zu2]u′′ + f 2(z + 1)(z2 − f 2z)u′3
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+f 2z+1(3z + 1)uu′2 + [f 2(f 2z(z − 1) + z2(z + 1))− 2zf 2zu2]u′ (3.3.26)

−(z − 1)f 2z+1u = 0.

Note that the points at which

∆(f) = f [f 2(f 2z − z2) + f 2zu2] = 0 (3.3.27)

are singular points of (3.3.26). The choice of parametrization (3.3.24) thus reduces

the problem to an ODE. This is a complicated non-linear ODE, but it is straight-

forward to solve numerically when ∆ does not change sign.

3.4 Timelike and null cusps in AdS spacetime

Before discussing the solutions of (3.3.26) in the Lifshitz case, it is useful to briefly

return to AdS by setting z = 1. This equation then simplifies, and analytic solutions

can be found for u0 = 1, corresponding to a null cusp in the boundary. There are

in fact two analytic solutions satisfying the boundary conditions, u =
√

1− f 2/2,

which corresponds to the solution (3.1.3), which is spacelike in the bulk, and u =√
1− f 2, which corresponds to a null surface in the bulk spacetime. For u =√
1− f 2, the action (3.3.25) vanishes identically. For u =

√
1− f 2/2,

S =
1

2πα′

∫
dσ

σ

∫
df

f 2

√
− f 2

2(2− f 2)
≈ i

4πα′

∫
dσ

σ

∫
df

f
, (3.4.28)

where in the second step we have kept the part that gives the leading divergence

near f = 0. We want to introduce a cutoff ∆t = ∆x = ε to regulate this divergence.

This corresponds to cutting off the σ integral at σmin = ε, and cutting off the range

of u at umax = 1− ε
σ
, corresponding to f 2

min = 4 ε
σ
. Thus the leading divergence is

S ∼ i

8πα′
(ln ε)2 (3.4.29)

In the Lifshitz case, the boundary conditions correspond to a timelike cusp in

the boundary, so it will be useful to understand the minimal surfaces for timelike

cusps in AdS to facilitate the comparison for the z → 1 limit of our results. This

corresponds to taking u0 < 1. Here we cannot find analytic solutions; we will first

May 7, 2016



3.4. Timelike and null cusps in AdS spacetime 55

consider a series expansion and then find full solutions numerically. There is a series

expansion near f = 0 which is valid for u0 6= 1,

u(f) = u0 + u3f
3 +

∑
i=5

uif
i, (3.4.30)

where u0 and u3 are free data and the first few subleading terms are

u5 = − 3u3

5(u2
0 − 1)

, u6 = − 2u2
3u0

(u2
0 − 1)

. (3.4.31)

Note that the general series expansion has no O(f 2) term, so it cannot match

smoothly on to the u = (1− f 2/2)1/2 solution at u0 = 1.

We construct solutions numerically by picking some value f0 at which to take

u = 0, and integrating inwards towards f = 0. Near f0 we take an ansatz

u(f) = (f0 − f)1/2
∑
i=0

bi(f0 − f)i, (3.4.32)

where f0 is left undetermined by the equation of motion and the first coefficients

are given by

b0 =
√
f0, b1 =

5− 4f 2
0

12
√
f0(f 2

0 − 1)
. (3.4.33)

For f0 =
√

2, these coefficients agree with u = (1−f 2/2)1/2. We find numerically that

in the ranges f0 < 1, f0 >
√

2, ∆ has a definite sign, so we can construct the surfaces

integrating inwards from u = 0. We plot these surfaces in figure 3.1. For f0 < 1

they are time-like; they approach a null surface near the turning point as f0 → 1,

see fig. 3.2(a). For f0 >
√

2 the minimal surfaces are space-like, see fig. 3.2(b), and

as f0 →
√

2 they seem to approach the analytic solution. We were unable to find

solutions for 1 < f0 <
√

2 using either this simple radial integration or relaxation. It

was remarked in [76] that there are no minimal surfaces in AdS for u0 approaching

1 from below. We note that there is a range of u0 values ∼ 0.463 < u0 < 1 where

we find no minimal surfaces, in agreement with the claim of [76]. We do not have

a physical understanding of the non-existence of surfaces with 1 < f0 <
√

2. In

principle, one could attempt to construct them by patching radial integrations from

u = 0 to the vicinity of the singular point ∆ = 0 and from the singular point towards

the boundary. If they exist, we believe that they would change signature in the bulk,

see figure 3.2(a). Extremal surfaces with non-definite signature have been found [80],
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so we do not expect this feature to be an obstruction for their existence. A possible

tool to attack this problem is to use Padé approximation of Taylor series [63]. We

leave this investigation for future work.

Figure 3.1: The timelike (u0 < 1) and spacelike (u0 > 1) minimal surfaces in AdS.

The black lines are extremal surfaces for f0 = 0.8, 0.99,
√

2+0.05
√

2+0.1,
√

2+0.2,

the blue line corresponds to f0 ≈ 0.889 (which has maximum u0 among our timelike

surfaces) and the red line is the exact solution u = (1 − f 2/2)1/2. Note that u0 is

not a monotonic function of f0 in the timelike case, its maximum being u0 ≈ 0.463.

The leading divergence in the action comes from the behaviour near the boundary

f = 0. For u0 6= 1 the action simplifies to

S ≈ 1

2πα′

∫
dσ

σ

∫
df

f 2

√
1− u2

0 (3.4.34)

If we cut off u at u = u0 − ε
σ

as before, this now corresponds by (3.4.30) to cutting

off f at fmin = ( ε
|u3|σ )1/3, and3

S ∼
√

1− u2
0

ε1/3
. (3.4.35)

Note that the divergence for these timelike Wilson loops is stronger than in the null

case. Note also that because of the σ dependence in the cutoff for f , the integral

3Note that we assume u3 < 0 to obtain a consistent form for fmin. This is consistent with our

numerical solutions.
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(a) (b)

Figure 3.2: (a): square of the on-shell Lagrangian for extremal surfaces in AdS

with f0 = 0.8 (blue), f0 = 0.9 (green), f0 = 0.995 (red). All surfaces are time-like

(L2 > 0) and they become almost null near the turning point as we approach f0 = 1.

(b): square of the on-shell Lagrangian for extremal surfaces in AdS with f0 = 1.42

(blue), f0 = 1.6 (green), f0 = 1.7 (red). All surfaces are space-like (L2 < 0).

over σ is now finite; the leading divergence in the action for the timelike case is not

concentrated in the vertex of the cusp, but comes from the limit of the range of x

at every t.

Thus, the leading divergence for the AdS surfaces with u0 6= 1 is stronger than

in the case u0 = 1 considered previously. For the surfaces with u0 > 1, the action

is imaginary, corresponding to an exponential suppression of the amplitude (3.2.4),

and the coefficient of this stronger divergence will vanish as we approach the null

case. For u0 < 1, the action is real because the surface is timelike.

Since our Lifshitz surfaces will always have timelike cusps on the boundary, we

expect them to approach these timelike cusps in the limit as z → 1.

3.5 Minimal surfaces in Lifshitz

We now turn to our main results, solving (3.3.26) to find the minimal surfaces in

Lifshitz giving a saddle-point approximation to the amplitudes. We will consider

generic values of z, focusing on the range 1 < z < 2. As usual, there will be some
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(a) (b)

Figure 3.3: Extremal surface for (a) f0 =
√

2 + 0.1 and (b) f0 =
√

2 + 0.01 in

the region close to f = 0 and fit with the asymptotic expansion (3.4.30). Since

the integration from f = f0 produces surfaces connected to u = (1 − f 2/2)1/2, the

asymptotics (3.4.30) do not fit well the data for f0 close to
√

2.

additional logarithmic terms arising for specific values such as z = 2; we display the

asymptotic expansion in Appendix 3.B.

As in AdS, we can first consider an asymptotic expansion near the boundary

f = 0. In this case we find

u(f) = u0 +
(z − 1)u0

2z3(2− z)
f 2z + bf z+2 + ... (3.5.36)

As z → 1, the coefficient of the leading non-trivial term in the series vanishes, and

we recover the expansion (3.4.30) in the AdS case. Actually, the limit as z → 1

of the asymptotic series expansion is somewhat subtle, as there are terms in the

expansion with powers which coincide in the limit. We discuss this limit for the full

series expansion in more detail in appendix 3.A.

From (3.5.36) we see a remarkable feature of the Lifshitz minimal surfaces; the

value of u (and hence x at fixed t) is initially increasing for any choice of the free

parameter b. Thus, any solution consistent with this asymptotic series solution will

initially move to increasing u as we move into the interior of the spacetime, even

though our boundary conditions imply the surface must reach u = 0 at some finite f .

Minimal surfaces satisfying these boundary conditions will thus have a “mushroom”

shape. This is indeed what we find in our numerical analysis.
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As in the AdS case, numerical solutions are found by starting from the point

f0 at which u = 0 and integrating in. We find that the equation can be satisfied

perturbatively near this point with an expansion of the form

u(f) = (f0 − f)1/2
∑
i=0

bi(f0 − f)i, (3.5.37)

which reproduces the expected behaviour that f ′(u) = 0 at u = 0. At the first

non-trivial order in (f0 − f), the equation of motion implies

b0[2f0 − (z + 1)b2
0](f 2z

0 − z2) = 0. (3.5.38)

This leads to three different branches of solutions characterized by

1. 2f0 − (z + 1)b2
0 = 0,

2. f 2z
0 − z2 = 0,

3. or b0 = 0.

We were able to find numerical solutions satisfying our boundary conditions

only for the first case, in the range f0 < z1/z. The equation of motion can then be

easily integrated towards f = 0. Zooming in near the f = 0 region, we note that

u′(f) changes sign, giving rise to surfaces with a “mushroom” shape, see figures

3.4(a), 3.4(b), as expected from the asymptotics. The behaviour near the boundary

is consistent with the asymptotic expansion (3.5.36). In the limit z → 1, these

solutions approach the timelike surfaces of section 3.4 with f0 < 1.

On the other hand, for f0 > z1/z the integration encounters a critical point

∆(f) = 0 before reaching u = 0, see figure 3.5. We also attempted to find solutions in

this regime by a relaxation method, but this also fails to converge. As mentioned in

section 3.4, one could attempt to construct these solutions by patching two shooting

procedures.

The divergence of the action is determined by the near boundary expansion

(3.5.36). We are primarily considering the case z < 2, where the second 2z term

dominates. If we considered instead z > 2, the third z + 2 term would dominate

the near-boundary expansion. In either case, u′ ≈ 0 near f = 0, so the leading
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(a)

(b)

Figure 3.4: (a): Extremal surfaces for f0 = 0.9. The values of z are (from top to

bottom) z = 9/8, 5/4, 3/2. (b): Extremal surface for f0 = 0.9 and z = 9/8 in the

region close to f = 0. The points are data obtained by numerical integration from

f = 0.9, while the solid line is the fit with the asymptotic expansion (3.5.36).
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Figure 3.5: For f0 = 2.5 and z = 3/2, we plot part of the extremal surface (solid line)

and ∆(f) in (3.3.27) (dashed line). The vanishing of ∆ prevents us from continuing

with the shooting from f = f0.

near-boundary contribution to the action is simply

S ≈ z

2πα′

∫
dσ

σ

∫
df

f z+1
. (3.5.39)

We want to impose a cutoff ε, such that ∆x = ε, ∆t = εz. The σ integral will thus

have a lower bound ε, while u− u0 is bounded by ε
σ
, implying

fmin =

[
2z3(2− z)

(z − 1)u0

ε

σ

]1/2z

(3.5.40)

for z < 2, and

fmin =

[
1

b

ε

σ

]1/(z+2)

(3.5.41)

for z > 2. Thus, for z < 2,

S ∼
√
z − 1√
ε

, (3.5.42)

while for z > 2,

S ∼ 1

ε
z
z+2

. (3.5.43)

As in the timelike AdS case, this divergence is coming from the integral over x at

all t, and there is no additional divergence from the corner contribution at small σ.

We note that the divergence here is stronger than for the timelike surfaces in

AdS, but with a coefficient which goes to zero in the limit as z → 1, which is
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consistent with these minimal surfaces reducing to the ones in AdS in this limit.

The mushroom feature in the shape of the surface also goes away in this limit, as

can be seen from the expansion (3.5.36). As remarked in the introduction, this

stronger divergence in the Lifshitz case can be attributed to the presence of the

higher density of soft modes implied by the modified dispersion relation ω ∼ kz. It

is interesting that this produces a divergence with a power that is independent of z

for z < 2; this is consistent with the behaviour of the curvature singularity in the

bulk for geodesic probes.

3.A Asymptotic expansion for Lifshitz minimal

surfaces

In section 3.5 we presented the leading terms in the asymptotic series around f = 0.

Here we discuss the full series and its behaviour as z → 1. The general form of

solution expansion is conjectured to be

u(f) = u0 +
∞∑

i,j=1

Aijf
aij +

∞∑
m,n=1

Bmnf
bmn , (3.1.44)

where the possible powers appearing in the expansion are

aij = (2z − 2)i+ 2 + 2z(j − 1) (3.1.45)

and

bmn = (2z − 2)m+ 4− z + 2z(n− 1), (3.1.46)

and the first few coefficients are

A11 =
(z − 1)u0

2z3(2− z)
; B11 = b (3.1.47)

A21 =
(z − 1)u3

0

2z4(2z − 1)(3z − 4)(z − 2)
; B21 = −bu

2
0(2 + z)

6z3
(3.1.48)

A31 =
(z − 1)(2z − 3)u5

0

2z6(z − 2)(5z − 6)(3z − 4)(3z − 2)
(3.1.49)

Ak1 =
u2k−1

0 (z − 1)
∏k

α=3[(2α− 4)z − (2α− 3)]

2z2k[kz − (k − 1)]
∏k

β=1[(2β − 1)z − 2β]
(k ≥ 3) (3.1.50)
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A12 =
(z − 1)(2z − 1)(3z − 1)u0

8z6(3z − 2)(2− z)
(3.1.51)

We note that this series expansion is valid for general values of z; there are

special rational values where some of the denominators in these expressions for the

coefficients vanish. At these values, two of the powers in (3.1.44), which are in

general distinct, are coinciding. There will thus be log terms in the series expansion

for these values. We do not consider them further here.

Now consider the limit as z → 1. This limit is clearly very special for the above

series expansion, as all the terms in the summations over i and m will have the

same power of f in the limit. We are particularly interested in the leading term at

j = 1, which would give a leading f 2 behaviour for the asymptotic series expansion

as z → 1. From (3.1.50), we see that each of these terms vanishes individually as

we take the limit, but there are infinitely many of them, so it is not clear what the

behaviour of the sum is in this limit.

Comparison to the asymptotic series (3.4.30) in the AdS case would lead us to

expect that the coefficient of the f 2 term will vanish as we take the limit for our

minimal surface solutions with u0 < 1, and that is consistent with our numerical

results, but here we want to consider if there is some other way to take the limit

that could converge to the solution u =
√

1− f 2/2 at z = 1, which does have a

non-trivial f 2 part in its asymptotic expansion.

We therefore consider the limit of (3.1.44) assuming u0 → 1 as z → 1. Let us

write

u0 = 1 + qε+O(ε2), (3.1.52)

and z = 1 + ε. We want to calculate

A1 =
∞∑
k=1

Ak1 =
(z − 1)u0

2z3(2− z)
+

(z − 1)u3
0

2z4(2z − 1)(3z − 4)(z − 2)
(3.1.53)

+
∞∑
k=3

u2k−1
0 (z − 1)

∏k
α=3[(2α− 4)z − (2α− 3)]

2z2k[kz − (k − 1)]
∏k

β=1[(2β − 1)z − 2β]
(3.1.54)

=
εu0

2(1 + ε)3(1− ε)
+

εu3
0

2(1 + ε)4(1 + 2ε)(1− 3ε)(1− ε)
(3.1.55)

+
∞∑
k=3

εu2k−1
0

∏k
α=3[1− (2α− 4)ε]

2(1 + ε)2k(1 + kε)
∏k

β=1[1− (2β − 1)ε]
(3.1.56)
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One can find that

A1 =
∞∑
k=1

ε

2
(1− 2ε)u2k−1

0 (3.1.57)

=
ε

2
(1− 2ε)

u0

1− u2
0

= − 1

4q
+O(ε), (3.1.58)

where we used (3.1.52) in the last step. Thus, for u0 → 1, the sum of the series

can give a non-zero answer. Note that for u0 6= 1 the sum is zero, consistent with

the expansion (3.4.30) in the AdS case for u0 6= 1. To obtain the u =
√

1− f 2/2

solution in the limit, we would need q = 1.

Thus, if there were solutions with u0 → 1 from above in the limit, they could

be smoothly connected to the usual AdS minimal surface for the lightlike Wilson

loop. However, numerically we have only found solutions for minimal surfaces in

Lifshitz with u0 < 1. In the z → 1 limit these converge to the timelike AdS surfaces

discussed in section 3.4.

3.B Asymptotic expansion at z = 2

If z = 2, two branches of solution in (3.5.36) coincide, resulting in a log term. We

are not surprised by this since similar phenomenon happened in z = 2 holographic

Lifshitz renormalization theory [81].

The series solution to equation of motion is

u(f) = u0 −
u0

16
f 4 ln f +

u3
0

192
f 6 ln f + ...+ bf 4 − 17u3

0 + 192u2
0b

2304
f 6 + ... (3.2.59)
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Chapter 4

Connection/ metric description of

higher spin non-AdS solutions

This chapter is based on paper [3], written with Simon Ross.

4.1 Introduction

There has recently been considerable interest in higher spin gravity, particularly in

the context of holography [21, 24, 82]. As in Einstein gravity, the three-dimensional

case is particularly simple, and provides a useful laboratory for exploring the issues.

The higher spin theory in three dimensions is simply a Chern-Simons theory: in

general it is based on the infinite-dimensional hs(λ) × hs(λ) gauge group, but for

integer values of λ it reduces to the finite-dimensional SL(N,R)×SL(N,R) [28,83–

86]. From the Chern-Simons perspective it is evident that this theory has no local

degrees of freedom. This includes the case of pure gravity for N = 2. In this case it

is well-known that the Chern-Simons theory corresponds to a first-order description

of pure gravity with a negative cosmological constant, with the spacetime vielbein

being obtained as eµ =
1

2
(Aµ− Āµ), where A, Ā are the two SL(2,R) Chern-Simons

fields [25,87]. Similarly the theory for integer N corresponds to a theory of Einstein

gravity coupled to massless fields of spin up to N , which are all constructed from

the “zuvielbein” eµ = 1
2
(Aµ − Āµ), which is now an SL(N,R) valued one-form.

For any N , the solutions of the Chern-Simons theory include all the solutions of
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the SL(2,R) × SL(2,R) theory, so pure gravity solutions are also solutions of the

higher spin theories. This includes asymptotically AdS3 solutions, and the higher

spin theory with asymptotically AdS3 boundary conditions is conjectured to be dual

to a 1+1 CFT with WN symmetry [86]. But the higher-spin theory is richer, and

can include solutions which are not solutions of vacuum gravity. Our discussion will

focus on the realisation of spacetimes with non-relativistic symmetries, the Lifshitz

spacetime [30] and the Schrödinger spacetime [33,34].

These are of interest as potential holographic duals of field theories with non-

relativistic symmetries. It would be particularly interesting to realise these as solu-

tions of the higher-spin theories, as the large symmetry algebra may make it easier

to explicitly identify the dual field theory. In addition, the IR tidal force singulari-

ties discussed in the previous two chapters (for z 6= 1 in the Lifshitz case [30,44,49]

and for 1 < z < 2 in the Schrödinger case [35]) make their interpretations doubtful

in a conventional metric theory. But in a higher-spin theory, the diffeomorphism

symmetry is enhanced, and these singularities could possibly be just gauge artifacts,

as in [88–91].

Solutions of the higher-spin theory which give metrics of this form were obtained

in [92], as we will review in section 4.2. As a simple example, a z = 2 Lifshitz

solution can be obtained in SL(3,R)×SL(3,R) Chern-Simons theory by taking the

gauge connections to be

A = L0dρ+W2e
2ρdt+ L1e

ρdx, Ā = −L0dρ+W−2e
2ρdt+ L−1e

ρdx, (4.1.1)

which solves the Chern-Simons equations of motion F = F̄ = 0. Defining the

spacetime metric as

gµν =
1

2
tr(eµeν) (4.1.2)

reproduces the metric (1.2.8), with r = eρ. In the metric language, one would expect

this solution to be supported by the spin-3 field

φµνλ =
1

6
tr(eµeνeλ). (4.1.3)

In [93], it was found that the spin-3 field has a non-zero φtxx component. It is

interesting to note that this breaks time reversal symmetry, so the Lifshitz solution
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would have to be holographically dual to some field theory with a vacuum which is

not invariant under time reversal.

But as we will discuss in section 4.2, we can choose flat connections such that the

metric takes the Lifshitz form (1.2.8) but the spin-3 field identically vanishes. This

is in conflict with the equations of motion in the metric formulation, as the Lifshitz

metric is not a solution of the vacuum theory, and the stress tensor is constructed

from terms quadratic and higher order in the spin-3 field φµνρ. It also suggests that

the breaking of time-reversal symmetry is not essential to the Lifshitz solutions.

In section 4.3, we will argue that the solution of this puzzle is that the relation

between the Chern-Simons and metric formulations fails for the solution (4.1.1).

In the pure gravity case N = 2, it is well-known that there are solutions of the

Chern-Simons theory which do not correspond to regular solutions in the metric

description: the vielbein e = 1
2
(A − Ā) may fail to be invertible, implying that the

metric is degenerate. These are singular configurations in Chern-Simons theory [94].

The relation between the Chern-Simons and metric formulations for the SL(3,R)×

SL(3,R) Chern-Simons theory was studied in [95–97]. In particular, [96, 97] give a

generalization of the non-degeneracy condition for the vielbein. We will see that this

condition is not satisfied for the Chern-Simons fields (4.1.1). Thus, we do not have

access to a metric-like formulation for this case. The cases which give a Schrödinger

metric involve N > 3, so we need to analyse the equivalence between Chern-Simons

and metric formulations from first principles; we will find that the z = 2 Schrödinger

solutions are non-degenerate but the 1 < z < 2 solutions are degenerate. We will also

comment in passing that the realisations of AdS via non-principal embeddings [98]

also have a degenerate frame.

One might hope that this is basically a technical issue and that one could still use

these solutions to explore non-relativistic holography in a Chern-Simons language:

the connections (4.1.1) are solutions of the flatness conditions, and they manifestly

exhibit a non-relativistic scaling. However, as we will discuss in section 4.4, the set

of gauge transformations that leaves (4.1.1) invariant is a global SL(3,R)×SL(3,R)

subgroup of the SL(3,R) × SL(3,R) gauge group, just as in the AdS case. This

is because the solutions have no holonomies, so they can be related to A = Ā = 0
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globally by a single-valued gauge transformation. As a result, the symmetry group

is the same as that of A = Ā = 0. This provides a general understanding of a fact

which was uncovered as something of a surprise in the analysis of asymptotically

Lifshitz solutions in [93].

If we could legitimately pass to a metric formulation, this could be separated into

the Lifshitz isometries of the metric (1.2.8) and some higher-spin gauge transforma-

tions, but in the Chern-Simons language there is nothing to pick out the Lifshitz

subgroup of SL(3,R)× SL(3,R) as special. Thus, purely in the Chern-Simons for-

mulation, it is not clear how we identify these backgrounds as non-relativistic, in

the sense that their field theory duals would have a non-relativistic symmetry. This

is consistent with the results of [93], which concluded that the dual of the Lifshitz

cases is a field theory with WN symmetry, just as in the AdS case.

For the Lifshitz case, asymptotically Lifshitz boundary conditions based on the

solution (4.1.1) have been described in [93, 99–102]. In section 4.5, we comment on

the extension of our analysis to asymptotically Lifshitz solutions, and argue that the

boundary conditions of [93] could be re-interpreted as a novel kind of asymptotically

AdS boundary conditions. Finally, we conclude in section 6 with a discussion of the

significance of the degeneracy we find and prospects for further work.

4.2 Non-relativistic solutions in the higher spin

theory

The SL(N,R)× SL(N,R) Chern-Simons theory has action

S = SCS[A]− SCS[Ā], (4.2.4)

where the Chern-Simons action is (1.2.4). The equations of motion are the flatness

conditions

F = dA+ A ∧ A = 0; F̄ = dĀ+ Ā ∧ Ā = 0. (4.2.5)

The theory is invariant under SL(N,R) gauge transformations

A→ A′ = g−1Ag + g−1dg, (4.2.6)
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and similarly for the barred sector. Since the connection is flat on-shell, it is locally

gauge-equivalent to A = 0, that is in open regions we can write A = g−1dg for some

g. If the gauge field has holonomies they form an obstruction to writing A as pure

gauge globally.

We will write solutions in the “radial gauge” , where we choose a radial coordinate

ρ and write

A = b−1ab+ b−1db, Ā = bāb−1 + bdb−1 (4.2.7)

where b = eρL0 , and a is a one-form with no dρ component, which is furthermore

independent of ρ, and a similar form is taken for the barred sector.

This theory can be related to a higher spin gravitational theory by introducing

the “zuvielbein” and spin connection

eµ =
l

2
(Aµ − Āµ), ωµ =

1

2
(Aµ + Āµ), (4.2.8)

where we introduce an arbitrary length scale l in defining the zuvielbein. The

equations of motion then become in terms of these variables

de+ e ∧ ω + ω ∧ e = 0, (4.2.9)

dω + ω ∧ ω +
1

l2
e ∧ e = 0. (4.2.10)

In the N = 2 case, writing eµ = eaµta, e
a
µ is a 3 × 3 matrix which we can interpret

as the gravitational vielbein, and these are the equations of motion of pure gravity

in a frame field formalism [25, 87], with Newton constant GN = l/16k. For N > 2,

eµ is an SL(N,R) valued one-form, with 3(N2 − 1) independent components, and

it can be traded for a metric and higher-spin fields up to spin N . For example, for

N = 3 [28], we have a metric defined by

gµν =
1

2
tr(eµeν) (4.2.11)

and the spin-3 field

φµνλ =
1

6
tr(eµeνeλ). (4.2.12)

Henceforth we will take units with l = 1. Above map between frame fields and

metric-like fields is supposed to be invertible. In N = 3 case, there are 3 × 8 = 24
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independent components in veilbein. gµν has 6 independent components while spin-3

field φµνρ has 10 independent components. The 8 extra independent components in

frames are fixed by requiring metric-like fields invariant under local Lorentz trans-

formation.

A simple class of solutions of this theory is constructed by taking the princi-

pal embedding SL(2,R) ⊂ SL(N,R) and considering flat SL(2,R) connections,

corresponding to vacuum gravity solutions. The global AdS3 solution in Poincare

coordinates is obtained by taking

a = L1dx
+, ā = L−1dx

−, (4.2.13)

where L0, L±1 are the usual SL(2,R) generators. Our conventions are set out in

appendix 4.A. In the metric description x± become null coordinates on the surfaces

of constant ρ.

We are interested in the non-AdS solutions constructed in [92], in particular the

Lifshitz and Schrödinger solutions. There it was found that one can construct a

Lifshitz solution with integer z by taking

a = a1W+dt+ L1dx, ā = W−dt+ a2L−1dx (4.2.14)

where W± are required to satisfy

[W±, L0] = ±zW±, [W±, L±1] = 0, tr(W+W−) 6= 0, (4.2.15)

and a1, a2 are normalization factors. For example, by taking W± = W±2 in SL(3,R)

we can realise Lifshitz with z = 2; this produces the solution in (4.1.1).

A Schrödinger solution with integer z is obtained by taking

a = (a1L1 + a2W+)dt, ā = W−dt+ L−1dx
−. (4.2.16)

With the same condition on W±, and appropriate choices of a1, a2, this gives the

metric (1.2.10), with r = eρ. We will focus on the realisation of z = 2 Schrödinger

in SL(3,R) as an example of this class of solutions. Schrödinger solutions with

fractional weights are obtained by taking

a = (a1W
[1]
+ + a2W

[2]
+ )dt, ā = W

[2]
− dt+W

[1]
− dx

−, (4.2.17)
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where

[W
[i]
± , L0] = ±h[i]W

[i]
± , [W

[1]
− ,W

[2]
− ] = 0, tr(W

[i]
+ W

[j]
− ) = tiδij, ti 6= 0. (4.2.18)

We will take the case with z = 3/2 in SL(4,R) as an example of this class of

solutions, where

a = (U3 +W2)dt; ā = − 5

72
U−3dt+

5

24
W−2dx

− (4.2.19)

The corresponding metric is

ds2 =
5

8

(
−r3dt2 − 2r2dtdx− +

dr2

r2

)
(4.2.20)

after replacing r = e2ρ.

In addition to these non-relativistic cases, we will also comment on the non-

principal embeddings of AdS: for example, in SL(3,R) we can realize AdS by taking

[98]

a = W2dx
+, ā = W−2dx

−. (4.2.21)

4.2.1 A puzzle

In the above solutions, we introduced some normalization constants to cancel trace

factors to make the metric take the usual form with no additional numerical factors.

These can be thought of as a suitable scaling of the boundary coordinates (t, x or

t, ξ respectively). But we could go further: for example, in the z = 2 Lifshitz case

we could take

a = a1W2dt+ b2L1dx, ā = b1W−2dt+ a2L−1dx. (4.2.22)

This is still a flat connection for any values of the constants. The metric is

ds2 = −a1b1e
4ρdt2 + dρ2 + a2b2e

2ρdx2. (4.2.23)

We can re-absorb the constants here in redefinitions of the coordinates. But the

change in the spin-3 field is more significant: the only non-vanishing component is

φtxx = −1

4
(b1b

2
2 − a1a

2
2)e4ρ. (4.2.24)
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(Note that our conventions for the generators are different from [93], as set out

in appendix 4.A.) In [93], this term was interpreted as supporting the Lifshitz

spacetime. It was also noted that it breaks time reversal symmetry. However, if we

choose b1b
2
2 = a1a

2
2, we set the three-form field to zero. How can we have a Lifshitz

metric with no matter field to support it? Note that we can keep the metric fixed

and change the value of the three-form field by varying the constants appropriately,

so we expect that the metric equations of motion fail to be satisfied for generic values

of the parameters; there might at best be some special choice of a1, a2, b1, b2 such

that the resulting φ correctly sources the metric.

4.3 Degeneracy of the non-relativistic solutions

The puzzle noted above suggests that there is a problem in the relation between the

Chern-Simons and metric descriptions in the Lifshitz solution. In this section we will

see that there is indeed a problem for Lifshitz, some of the Schrödinger solutions,

and AdS with non-principal embeddings.

The issue is one that was already noted in the pure gravity case in [25]: the Chern-

Simons description includes solutions, such as for example A = Ā, for which the

vielbein eaµ is degenerate, and hence not invertible. For pure gravity, such solutions

are not acceptable solutions in the metric formulation. In addition, it is not possible

to determine the spin connection in terms of the vielbein, because the vielbein is

not invertible. It is this latter issue which will generalize to our case. Clearly the

problem for the Lifshitz solutions is not that the metric is not invertible. But in the

higher spin context, even when the metric is invertible the zuvielbein eaµ can fail to

determine the connection ωaµ.

In general, the issue is that to convert from a frame formulation of the equations

to a second-order metric formulation, we want to solve the torsion-free condition

(4.2.9) to determine the spin connection ω in terms of the zuvielbein e. The spin

connection is an SL(N,R) valued one-form, so it has 3(N2 − 1) independent com-

ponents. The equation is an SL(N,R) valued two-form, so it also has 3(N2 − 1)

independent components. This is a linear algebraic system for the components of
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ω, so generically it has a unique solution, and knowing e is sufficient to determine

ω. In passing to the metric formulation, we exchange the information in e for the

metric and higher-spin fields, as in (4.2.11, 4.2.12), and this data is then equivalent

to the connections A, Ā.

But there can be special values of e such that the solution of (4.2.9) is not unique.

(If we obtain e = A − Ā as the difference of two flat connections, then ω = A + Ā

is always a solution of (4.2.9), so it can’t happen that there’s no solution.) The

metric formulation, where we retain only the data in e, is then not equivalent to the

Chern-Simons formulation. The two pictures are equivalent only when we can solve

(4.2.9) for ω uniquely.

In the N = 2 case, we can solve (4.2.9) explicitly by multiplying it by the inverse

frame field, so the uniqueness of solutions is equivalent to the invertibility of eaµ. For

N > 2, eaµ is not a square matrix, so we cannot express the problem in terms of

its invertibility. In [96, 97], this was addressed for N = 3 by introducing additional

auxiliary quantities eaµν constructed out of eaµ such that the collection eaµ, e
a
µν forms

a square matrix, and (4.2.9) was again explicitly solved using the matrix inverse.

These additional quantities are constructed by first defining the symmetric tensor

êµν =
1

2
{eµ, eν} −

2

3
gµνI3 (4.3.25)

where I3 is the identity matrix, which is added to ensure traceless of ê as a group

element. Then we define the traceless tensor

e(µν) = êµν −
1

3
gµν ρ̂; ρ̂ = gλβ êλβ (4.3.26)

There are five independent components of e(µν). Thus the combination (eaµ, e
a
(µν))

can be treated as a square matrix. In [96], it is shown that invertibility of this

matrix is necessary and sufficient for ω to be uniquely determined by e. For the

AdS realisation in (4.2.13), [96] show that this matrix is indeed invertible.

Thus, for the SL(3,R) cases, checking degeneracy reduces to checking the in-

vertibility of this matrix. For the Lifshitz z = 2 case, the matrix is not invertible,

as

etρ = êtρ =
1

2
{et, eρ} =

1

2
e2ρ{a1W2 − b1W−2, L0} = 0, (4.3.27)
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so the matrix has a row of zeros. This explains why the metric-like fields we obtained

in (4.2.23,4.2.24) don’t solve the equations of motion in the metric formulation: from

the Chern-Simons point of view there’s a higher-spin component in ω which is not

determined by g, φ which plays a role in satisfying the flatness conditions. The

general solution of the torsion-free condition (4.2.9) in this case is

ω =
1

2
(A+ Ā) + λ1[−eρL0dt+ (W1 +W−1)dx+

1

2
e−ρ(−W2 +W−2)dρ] + λ2W0dx

(4.3.28)

where the λi are arbitrary constants parametrising the non-uniqueness of the solu-

tion.

For the z = 2 Schrödinger solution (4.2.16), by contrast, the matrix is invertible,

so the Chern-Simons and metric formulations are equivalent. The explicit calculation

is given in appendix 4.B.1; the determinant is

det(eaµ, e
a
(µν)) = − 1

32
e10ρ (4.3.29)

which is non-zero for finite ρ. We can also check that the equations of motion in the

metric formulation are satisfied by the z = 2 Schrödinger fields g, φ; this is discussed

in appendix 4.B.2.

For the AdS solution in the non-principal embedding (4.2.21), the matrix is again

not invertible. It is not hard to show e++ = e−− = 0. Therefore, we again have zero

rows leading to vanishing determinant. The general solution for the connection ω

in this case is

ω =
1

2
(A+ Ā) +W0Θ (4.3.30)

where Θ is an undetermined one-form.

Finally, we would like to consider the non-integer Schrödinger solutions. To do

so we need to go to N > 3, so we cannot use the description from [96]. But for a

given e, it is a simple linear algebra problem to check if (4.2.9) has a unique solution

for ω or not. In the case of the z = 3
2

Schrödinger solution in (4.2.19), we find that

it does not have a unique solution. The general solution for the connection ω in this

case is

ω =
1

2
(A+ Ā) + ω̂, (4.3.31)
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where the extra term ω̂ written in components is

ω̂t = − 25

768
λ1e

4ρW−2 + λ2L0 −
5

8
λ1U3 +

10

3
λ2U0 −

25

144
λ3U−2 −

25

432
λ1U−3

ω̂x =
5

32
λ1e

3ρ − 25

64
λ1e

3ρU−1

ω̂ρ = −5

8
λ1e

ρW1 + λ3L1 + λ1L0 +
5

3
λ3U1 +

10

3
λ1U0 (4.3.32)

The constants λi again parametrise the non-uniqueness of the solution.

4.4 Symmetries of the Chern-Simons solutions

In the previous section, we found that the Lifshitz solution (4.2.14) and the fractional

z Schrodinger solution (4.2.19) do not have a metric formulation, as the connection

ω is not determined uniquely by e. Can we formulate a duality relating them to

non-relativistic theories directly in the Chern-Simons formulation? In this section

we will argue that this is challenging because the Chern-Simons formulation does not

associate a distinguished set of non-relativistic symmetries with these backgrounds.

Originally, the Lifshitz and Schrödinger metrics (1.2.8) and (1.2.10) were con-

structed to have the corresponding symmetries as isometry groups. In the higher-

spin context, these diffeomorphism isometries are supplemented by some higher-spin

gauge transformations that also leave the background invariant, but one could argue

that in the metric formulation we can draw a distinction between diffeomorphisms

and the higher-spin gauge transformations and still regard the backgrounds as hav-

ing a non-relativistic symmetry. But in the Chern-Simons formulation, it is not clear

how to make such a distinction. All of the symmetries are simply gauge transfor-

mations that leave the given flat connection unchanged.

In the discussion of asymptotically Lifshitz solutions in [93], it was found that the

higher-spin gauge transformations extend the Lifshitz symmetry of (1.2.8) to a global

SL(3,R)×SL(3,R) symmetry group. In fact, there is a simple argument to see that

the same happens in all cases. The symmetries are the gauge transformations ε such

that

δεA = dε+ [A, ε] = 0, (4.4.33)
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and similarly in the barred sector. The Lifshitz and Schrödinger metrics (1.2.8) and

(1.2.10) are analogous to AdS in Poincare coordinates, so the boundary coordinates

are non-compact, and cannot be compactified without eliminating the anisotropic

scaling symmetry (with the exception of the Schrödinger z = 2 case, where we can

compactify ξ). Thus, in the Chern-Simons formulation there can be no non-trivial

holonomies, as there are no non-trivial topological cycles in the spacetime to measure

holonomies around. As a result, the connection is globally gauge-equivalent to zero,

that is each of our solutions is of the form A = g−1dg, Ā = ḡ−1dḡ for some globally

defined group elements g, ḡ. Now if we use A = g−1dg, and set ε = g−1ε′g, (4.4.33)

reduces to

dε′ = 0 (4.4.34)

which is satisfied by arbitrary constant ε′, forming a global SL(N,R) subgroup

of the gauge group. Thus the ε that leave A invariant will always form a global

SL(N,R) group (although for a given A, the gauge transformations ε = g−1ε′g are

not themselves constants). Thus, the symmetry of any Chern-Simons solution with

no holonomies is always SL(N,R)× SL(N,R).

Explicitly, for the z = 2 Lifshitz solution, dε′ = 0 can be solved by writing

ε′ =
1∑

i=−1

εLiLi +
2∑

i=−2

εWiWi (4.4.35)

where εLi and εWi are constants. The relevant group element g such that A = g−1dg

gives the Chern-Simons field in (4.1.1) is g = eW2t+L1xeρL0 . Thus the symmetries

ε = g−1ε′g are

ε = eρ(−xεL0 + εL1 + x2εL−1 + tεW−1 − 4txεW−2)L1 (4.4.36)

+ (εL0 − 2xεL−1 + 4tεW−2)L0 + e−ρεL−1L−1

− e2ρ(2tεL0 − 4txεL−1 − x2εW0 + xεW1 − εW2 + x3εW−1 + 4t2εW−2 − x4εW−2)W2

+ eρ(−4tεL−1 − 2xεW0 + εW1 + 3x2εW−1 − 4x3εW−2)W1

+ (εW0 − 3xεW−1 + 6x2εW−2)W0 + e−ρ(εW−1 − 4xεW−2)W−1 + e−2ρεW−2W−2

reproducing the result of [93]. If we interpreted these symmetries in terms of dif-

feomorphisms using ε = −ξµAµ, as suggested in [93], εW2 , εL1 , εL0 parametrize
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time-translation, spatial translation and Lifshitz scaling respectively, although it is

not clear if this is valid given that the frame is degenerate [25].

For the AdS solutions (4.2.13), (4.2.21), the appearance of an SL(N,R)×SL(N,R)

symmetry is expected. But for the Lifshitz and Schrödinger solutions it implies that

we cannot identify a non-relativistic isometry group from the Chern-Simons perspec-

tive. For z = 2 Schrödinger, we can pass to a metric formulation, and identify the

Schrödinger algebra as the subgroup of this SL(N,R)× SL(N,R) which is realised

as diffeomorphisms. But for the other cases with no metric formulation there is no

clear sense in which they are non-relativistic, despite the manifest scaling properties

of (4.1.1); this scaling is only one of a set of SL(N,R)× SL(N,R) symmetries.

A possible subtlety in this argument is that when we take a background and

define asymptotic boundary conditions where the fields approach the background

asymptotically, the isometries of the background may not form a subgroup of the

asymptotic symmetry algebra (see [26] for an example of this). So the non-relativistic

symmetry could potentially be picked out by a notion of asymptotically Lifshitz/Schrödinger

boundary conditions. But a choice of boundary conditions such that the asymptotic

symmetry algebra does not include the symmetries of the background is usually

considered undesirable. In particular, this does not happen for the asymptotically

Lifshitz solutions of [93], where the full SL(3,R) × SL(3,R) symmetry is included

in the asymptotic symmetry algebra.

4.4.1 Map to AdS

One way of thinking about this result is that since all the topologically trivial solu-

tions are gauge-equivalent to A = Ā = 0, the Lifshitz and Schrödinger solutions can

be related to the usual AdS solution by a suitable gauge transformation; so the fact

that they have the same symmetries can be seen as a reflection of their just being

AdS in a different gauge. Let us give this transformation explicitly in the Lifshitz

case. For the AdS solution (4.2.13), AAdS = g−1dg with g = eL1x+eL0ρ, while for the

Lifshitz solution (4.2.14), ALif = h−1dh with h = eW2t+L1xeρL0 . Identifying the AdS

coordinate x+ with t+ x in the Lifshitz solution, the transformation is then

ALif = f−1df + f−1AAdSf, (4.4.37)
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with

f = g−1h =


1 0 0

−
√

2eρt 1 0

t(t+ 2)e2ρ −
√

2eρt 1

 . (4.4.38)

A similar argument in the barred sector produces

f̄ =


1 −

√
2eρt t(t+ 2)e2ρ

0 1 −
√

2eρt

0 0 1

 . (4.4.39)

We have assumed that we work with non-compact x, as compactifying it breaks

the scaling symmetry, but it is interesting to note that compactifying x does not

obstruct this relation.

4.5 Asymptotically Lifshitz solutions

So far, we have focused on the non-relativistic backgrounds, and seen that some

interesting examples fail to have a corresponding metric description. Holographi-

cally, such solutions are dual to the vacuum state in the dual field theory, and it

is essential to consider solutions which asymptotically approach these backgrounds

to define the holographic dictionary. Since the failure of the metric description is

non-generic, one would expect that considering these more generic solutions could

also offer a resolution of it. In addition, imposing a given asymptotic boundary con-

ditions partially fixes the gauge in the asymptotic region, eliminating those gauge

transformations that take us out of this choice of boundary conditions. Since the

bulk theory has no local degrees of freedom, it is these gauge transformations that

are broken by the choice of boundary conditions that provide the physical content

of the bulk theory - the higher spin analogue of the boundary gravitons.

In this section, we will consider spacetimes which asymptotically approach the

Lifshitz background (4.2.14). We will first consider the asymptotically Lifshitz

boundary conditions of [93], which are the most well developed, and then consider

alternatives. In [93], asymptotically Lifshitz solutions were defined in the radial
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gauge as Chern-Simons solutions with

A = b−1db+ b−1(â(0) + a(0) + a(1))b, Ā = b−1db+ b−1(ˆ̄a(0) + ā(0) + ā(1))b, (4.5.40)

where b = eρL0 , and â(0), ˆ̄a(0) is the background solution (4.2.14). The first fluctu-

ations a(0), ā(0) have only an x component. Let’s take unbarred sector as example,

and expand it in terms of generators

a(0)
x = aL0L0 + aL1L1 + aL−1L−1 + aW2W2 + aW1W1 + aW0W0 + aW−1W−1 + aW−2W−2

Imposing equation of motion, a
(0)
x satisfies equations

ȧL0 − 4aW−2 = 0

aW−1 = ȧL−1 = ȧW0 = ȧW−2 = 0

ȧW2 + 2aL0 = 0

ȧW1 + 4aL−1 = 0 (4.5.41)

Similar equations can be written for barred sector. Solution is determined in terms

of four functions L(x), L̄(x),W(x), W̄(x),

a(0)
x = 4tWL0 − LL−1 − 4t2WW2 + 4tLW1 +WW−2, (4.5.42)

ā(0)
x = −4tW̄L0 − L̄L1 − 4t2W̄W−2 − 4tL̄W−1 + W̄W2 (4.5.43)

(the constant coefficients here are different from in [93] because we use a different

convention for the SL(3,R) generators, as set out in appendix 4.A). The second

subleading terms a(1), ā(1) are general, having arbitrary t and x components, but are

required to fall off at large ρ, a(1), ā(1) ∼ o(1).

In [93], this definition of the asymptotic boundary condition was shown to

lead to finite, conserved canonical charges (constructed from the boundary func-

tions L, L̄,W , W̄ and the gauge transformations preserving the boundary condi-

tions) which generate a W3 ⊕ W3 asymptotic symmetry algebra, containing the

SL(3,R)× SL(3,R) symmetries of the background (4.2.14).

δL = L′εL + 2Lε′L + 3Wε′W + 2W ′εW −
1

2
ε′′′L (4.5.44)

δW = 3Wε′L +W ′εL −
1

6
L′′′εW −

3

4
L′′ε′W −

5

4
L′ε′′W −

5

6
Lε′′′W
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+
8

3
L2ε′W +

8

3
LL′εW +

1

24
ε

(5)
W (4.5.45)

with similar expressions for the barred sector. We put the detailed derivation in

Appendix 4.C.

Because the first subleading terms do not affect the at component, the extended

vielbein at this order is still degenerate:

etρ =
1

2
{et, eρ} ≈ 0, (4.5.46)

up to terms coming from a(1), ā(1). Thus, it would seem that there are solutions with

non-zero values of the charges here where the metric formulation is still not possible.

For solutions with sufficiently general a(1), ā(1), the extended vielbein may be non-

degenerate in the bulk, but as these terms vanish as we approach the boundary,

we would expect that the inverse vielbeins of [96] will blow up there. Thus, the

degeneracy is a real obstacle to the construction of a good metric description for

this class of asymptotically Lifshitz boundary conditions.

It was argued in [93] that these boundary conditions are distinct from the usual

asymptotically AdS boundary conditions [28]. Two main arguments were given: one

relied on the breaking of time-reversal invariance in the Lifshitz solution, but as we

have seen it is possible to take the generalised backgrounds in (4.2.22) such that the

spin-three field vanishes, eliminating the breaking of time-reversal symmetry. The

other was that the asymptotically Lifshitz boundary conditions involve functions

of x, while asymptotically AdS boundary conditions involve functions of x±. This

indeed shows that asymptotically Lifshitz solutions are distinct from the asymptoti-

cally AdS solutions, if we relate the two backgrounds using the gauge transformation

(4.4.38).

However, given the failure of the metric description in the gauge (4.2.14), we

think it may be more straightforward to understand the physical significance of

these boundary conditions if we apply this gauge transformation to re-express them

in terms of the AdS solution (4.2.13). That is, let us take the solutions (4.5.42,4.5.43)

and apply the gauge transformation (4.4.38). We then obtain a family of solutions

of the form (4.5.40), but where now â(0), ˆ̄a(0) are the AdS background (4.2.13), and

a(0)
x = −Lt2L1 − 2LtL0 − LL−1 +Wt4W2 + 4Wt3W1 (4.5.47)
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+6Wt2W0 + 4WtW−1 +WW−2,

ā(0)
x = −L̄t2L−1 − 2L̄tL0 − L̄L1 + W̄t4W−2 + 4W̄t3W−1

+6W̄t2W0 + 4W̄tW1 + W̄W2. (4.5.48)

Thus, the asymptotic boundary conditions of [93] can be rewritten in a different

gauge as a new kind of asymptotically AdS boundary conditions. Since in this

gauge the relation to the metric formulation is possible, the physics of the boundary

conditions may be clearer in this gauge. Note the asymptotic symmetry algebra

(4.5.44), (4.5.45) is unaffected when we shift from Lifshitz gauge solution to AdS

gauge solution.

An alternative asymptotically Lifshitz boundary condition was given in [100].

The connection is taken to have the form

at = W2 − 2LW0 +
2

3
L′W−1 − 2WL−1 + (L2 − 1

6
L′′)W−2, (4.5.49)

ax = L1 − LL−1 +WW−2, (4.5.50)

where L and W are now functions of both t and x, subject to the consistency

conditions

L̇ = 2W ′, (4.5.51)

Ẇ =
4

3
(L2)′ − 1

6
L′′′. (4.5.52)

Similarly, for the barred fields

āt = W−2 − 2L̄W0 −
2

3
L̄′W1 + 2W̄L1 + (L̄2 − 1

6
L̄′′)W2, (4.5.53)

āx = L−1 − L̄L1 − W̄W2, (4.5.54)

with consistency constraints

˙̄L = −2W̄ ′, (4.5.55)

˙̄W = −4

3
(L̄2)′ +

1

6
L̄′′′. (4.5.56)

In these asymptotic boundary conditions, the degeneracy of the generalised frame

is resolved for generic L, W . The determinant is

−W
3

8r14
(r2 + L)4[(r2 + L)3 − 2W2][(r2 + L)(r2 − L)2 − 2W2]. (4.5.57)
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There are some specific points r where the determinant vanishes. These singularities

would not spoil the non-degeneracy property and can be avoided by method of fibre

bundle [96]. Since the determinant is not vanishing even at large r, one would expect

a metric formulation is possible even in the asymptotic region. It may be interesting

to explore these boundary conditions further; it was noted in [93] that the canonical

charges in this case are finite but not conserved.

In [100], there was also a further generalization to turn on some source terms,

taking

at = µ2W2 + µ1L1 − 2Lµ2W0 − (2Wµ2 + Lµ1)L−1 + (L2µ2 +Wµ1)W−2,

ax = L1 − LL−1 +WW−2, (4.5.58)

and barred sector

āt = µ2W−2 − µ1L−1 − 2L̄µ2W0 + (2W̄µ2 + L̄µ1)L1 + (L̄2µ2 + W̄µ1)W2,

āx = L−1 − L̄L1 − W̄W2. (4.5.59)

The presence of the sources µ1, µ2 makes the determinant of the generalized vielbein

non-zero even for vanishing L,W , so this deformation away from Lifshitz resolves the

degeneracy of the generalized vielbein even in the vacuum. The metric formulation

is well-defined in this case since metric-like fields solve Einstein equations by the

method in appendix 4.B.2. We leave further study of these deformations to future

work.

4.A Conventions

4.A.1 sl(3, R) Algebra

The conventions in two cases are different. The sl(3, R) generators satisfy algebra

[Ln, Lm] = (n−m)Ln+m (4.1.60)

[Ln,Wm] = (2n−m)Wn+m (4.1.61)

[Wn,Wm] = σ(n−m)(2n2 + 2m2 −mn− 8)Lm+n (4.1.62)
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In our calculation σ = − 1

12
. Our generators are

L−1 =


0
√

2 0

0 0
√

2

0 0 0

 , L1 =


0 0 0

−
√

2 0 0

0 −
√

2 0

 , L0 =


1 0 0

0 0 0

0 0 −1



W−2 =


0 0 2

0 0 0

0 0 0

 , W2 =


0 0 0

0 0 0

2 0 0

 , W0 =
1

3


1 0 0

0 −2 0

0 0 1



W−1 =
1√
2


0 1 0

0 0 −1

0 0 0

 , W1 =
1√
2


0 0 0

−1 0 0

0 1 0


4.A.2 sl(4, R) algebra

Our representation of sl(4, R) algebra is slightly different from [92].

L−1 =


0
√

3 0 0

0 0 2 0

0 0 0
√

3

0 0 0 0

 , L0 =
1

2


3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3

 , L1 =


0 0 0 0

−
√

3 0 0 0

0 −2 0 0

0 0 −
√

3 0


Quintet:

W2 =


0 0 0 0

0 0 0 0

2
√

3 0 0 0

0 2
√

3 0 0

 , W−2 =


0 0 2

√
3 0

0 0 0 2
√

3

0 0 0 0

0 0 0 0



W0 =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 , W−1 =


0
√

3 0 0

0 0 0 0

0 0 0 −
√

3

0 0 0 0

 , W1 =


0 0 0 0

−
√

3 0 0 0

0 0 0 0

0 0
√

3 0


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Septet:

U3 =


0 0 0 0

0 0 0 0

0 0 0 0

−6 0 0 0

 , U2 =


0 0 0 0

0 0 0 0
√

3 0 0 0

0 −
√

3 0 0

 , U1 =
2

5


0 0 0 0

−
√

3 0 0 0

0 3 0 0

0 0 −
√

3 0



U0 =
1

10


3 0 0 0

0 −9 0 0

0 0 9 0

0 0 0 −3

 , U−1 =
2

5


0
√

3 0 0

0 0 −3 0

0 0 0
√

3

0 0 0 0



U−2 =


0 0

√
3 0

0 0 0 −
√

3

0 0 0 0

0 0 0 0

 , U−3 =


0 0 0 6

0 0 0 0

0 0 0 0

0 0 0 0


4.B Schrödinger higher spin calculations

4.B.1 Determinant

We consider the most general form of Schrödinger solution after normalization:

at = kW2 + cL1; ax− = 0 (4.2.63)

āt =
1

k
W−2; āx− =

2

c
L−1 (4.2.64)

Dreibein e can be found to be

e = L0dρ+
1

2
(ke2ρW2 + ceρL1 −

1

k
e2ρW−2)dt− 1

c
eρL−1dx

− (4.2.65)

The extra introduced 5 tetrads are

e(x−x−) =
1

c2
e2ρW−2 (4.2.66)

e(ρρ) = W0 −
1

3c2
e2ρW−2 −

k

3c
eρL1 (4.2.67)

e(tx−) = −1

2
e2ρW0 +

k

6c
e3ρL1 −

1

3c2
e4ρW−2 (4.2.68)
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e(tt) =
c2

4
e2ρW2 − e4ρW0 +

1

3c2
e6ρW−2 +

k

3c
e5ρL1 +

c

2k
e3ρL−1 (4.2.69)

e(tρ) =
1

2
ceρW1 (4.2.70)

e(ρx−) = −1

c
eρW−1 (4.2.71)

We only need 5 of these tetrad since they are linearly dependent due to the traceless

condition gµνe(µν) = 0. In this specific case,

e(x−x−) + e(ρρ) + 2e−2ρe(tx−) = 0

Therefore, we calculate the determinant of 8 × 8 matrix with spacetime indices

excluding (ρρ).

det(eaµ, e
a
(µν)) = − 1

32
e10ρ (4.2.72)

We find this nonvanishing value is independent of the choice of k and c. Then we

should be able to map frame-like Schrödinger solution (4.2.63) (4.2.64) to metric-like

fields.

4.B.2 Einstein equation in D=3 higher spin theory

We showed that the zuvielbein of z = 2 Schrödinger solution in SL(3, R) has non-

vanishing determinant. One would then expect the fields constructed from it to

solve the equations of motion in the metric formulation. In terms of metric-like

fields g, φ, Lagrangian of (4.2.4) can be written as [95]

L = LE-H + LF , (4.2.73)

where LE-H = R+
2

l2
and LF contains terms depending on φ (note that we set l = 1).

LF was worked out to quadratic order in φ terms in [95], with general expression:

LF (φ2) = φµνρ(Fµνρ −
3

2
g(µνFρ)) +m1φµνρφ

µνρ +m2φµφ
µ (4.2.74)

+ 3Rρσ(k1φ
ρ
µνφ

σµν + k2φ
ρσ
µ φ

µ + k3φ
ρφσ) + 3R(k4φµνρφ

µνρ + k5φµφ
µ)

where φρ = φ µ
ρµ , Fρ = F µ

ρµ and Fµνρ is the Fronsdal tensor defined by

Fµνρ = ∇σ∇σφµνρ −
3

2
(∇σ∇(µφνρ)σ +∇(µ∇λφνρ)λ) + 3∇(µ∇νφρ) (4.2.75)
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The mass coefficients mi are determined by requiring invariance under gauge trans-

formations, which gives

m1 = 6(k1 + 3k4 − 1); m2 = 6(k2 + k3 + 3k5 +
9

4
) (4.2.76)

Different kis may parametrize the same theory if one performs a redefinition of

metric and spin-3 fields. For convenience, let’s take those values of ki in [95],

k1 =
3

2
; k2 = 0; k3 = −3

4
; k4 = −1

2
; k5 = 0 (4.2.77)

The unique choice of ki were determined by requiring asymptotically AdS solution

solving Einstein equation.

Rµν −
1

2
gµνR− gµν = − 1√

−g
δ(
√
−gLF )

δgµν
(4.2.78)

Exact expression of Tµν is accessible in [103]. We perform the calculation by the

help of xAct package [104,105], and the result is

Tµν = 3m1φa
cdφbcd + 9k4Rφa

cdφbcd + 3
2
k2R

cdφaφbcd + 6k1R
cdφac

eφbde +m2φaφb

+3
2
k2R

cdφacdφb + 3k2R
cdφab

eφcde + 3
2
Rb

cφa
deφcde + 3k1Rb

cφa
deφcde + 6Rbcdfφa

cdφf

+3
2
Ra

cφb
deφcde + 3k1Ra

cφb
deφcde + 2m2φab

cφc + 6k5Rφab
cφc + 3

4
Rb

cφaφc + 3k3Rb
cφaφc

+3
4
Ra

cφbφc + 3k3Ra
cφbφc − 3Rbedfφa

cdφc
ef − 3Raedfφb

cdφc
ef − 1

2
m1gabφcdeφ

cde

−3
2
k4gabRφcdeφ

cde + 3gabRdfegφc
fgφcde + 3k1gabRdfegφc

fgφcde − 1
2
m2gabφ

dφd

−3
2
gabR

cdφc
efφdef + 9

2
Rcdφabcφd + 6k3R

cdφabcφd + 3k2Rb
cφac

dφd + 3k2Ra
cφbc

dφd

+3k5Rabφ
dφd − 3

2
k5gabRφ

dφd − 3
4
gabR

cdφcφd − 3k3gabR
cdφcφd − 3

2
k2gabR

cdφcd
eφe

+6Racdfφb
cdφf − Oaφ

cdeObφcde − 6k4Oaφ
cdeObφcde + 3Oaφ

dObφd − 6k5Oaφ
dObφd

−6k4φ
cdeObOaφcde − 6k5φ

dObOaφd − 3ObφdOcφa
cd − 3

2
k2ObφdOcφa

cd − 3OaφdOcφb
cd

−3
2
k2OaφdOcφb

cd − 3
2
k2Oaφb

cdOdφc − 3
2
k2Obφa

cdOdφc + 15
8
φdOdOaφb − 3

2
k3φ

dOdOaφb

+3φb
cdOdOaφc − 3k1gabR

cdφc
efφdef − 3

2
k2φb

cdOdOaφc + 15
8
φdOdObφa − 3

2
k3φ

dOdObφa

+3φa
cdOdObφc − 3

2
k2φa

cdOdObφc − 9
8
ObφdO

dφa + 3OcφdO
dφab

c + 3OdφcO
dφab

c

+3k2OdφcO
dφab

c + 3k3OdφbO
dφa + 3Ocφa

cdOeφbd
e − 3Ocφab

cOeφ
e − 3

2
k3ObφdO

dφa

−3
4
OdφbO

dφa − 9
8
OaφdO

dφb − 3
2
k3OaφdO

dφb − 3
4
Oaφb

cdOeφcd
e − 3

2
k1Oaφb

cdOeφcd
e

−3
4
Obφa

cdOeφcd
e − 3

2
k1Obφa

cdOeφcd
e + 15

8
OaφbOeφ

e − 3
2
k3OaφbOeφ

e + 15
8
ObφaOeφ

e

May 7, 2016



4.B. Schrödinger higher spin calculations 87

−3
2
k3ObφaOeφ

e − 3
4
φcdeOeOaφbcd − 3

2
k1φ

cdeOeOaφbcd − 3
2
k2φ

dOeOaφbd
e − 3

4
φb
cdOeOaφcd

e

−3
2
k1φb

cdOeOaφcd
e − 21

8
φbOeOaφ

e − 3
2
k3φbOeOaφ

e + 3k4Rabφcdeφ
cde − 3

4
φcdeOeObφacd

−3
2
k1φ

cdeOeObφacd − 3
2
k1φa

cdOeObφcd
e − 21

8
φaOeObφ

e − 3
2
k3φaOeObφ

e + 3φcdeOeOdφabc

−3φdOeOdφab
e − 3φb

cdOeOdφac
e + 3φbOeOdφa

de − 3φa
cdOeOdφbc

e + 3φaOeOdφb
de

+3φab
cOeOdφc

de − 3gabφ
cdeOeOdφc + 3

2
k2gabφ

cdeOeOdφc + 3
2
k2φ

dOeO
eφabd

+3
4
φb
cdOeO

eφacd + 3
2
k1φb

cdOeO
eφacd − 15

8
φbOeO

eφa + 3
2
k3φbOeO

eφa + 3
4
φa

cdOeO
eφbcd

+3
2
k1φa

cdOeO
eφbcd − 15

8
φaOeO

eφb + 3
2
k3φaOeO

eφb − 3φab
cOeO

eφc + 3
2
k2φab

cOeO
eφc

+9
4
ObφcdeO

eφa
cd − 3

2
k1ObφcdeO

eφa
cd − 3OdφbceO

eφa
cd − 3

2
OeφbcdO

eφa
cd + 3k1OeφbcdO

eφa
cd

+9
4
OaφcdeO

eφb
cd − 3

2
k1OaφcdeO

eφb
cd − 3

8
gabOdφeO

eφd + 3
2
k3gabOdφeO

eφd − 3
2
gabOeφdO

eφd

+6k5gabOeφdO
eφd + 3

4
gabOcφ

cdeOfφde
f + 3

2
k1gabOcφ

cdeOfφde
f + 3k2gabO

eφdOfφde
f

+3
2
k3gabOdφ

dOfφ
f + 3

4
gabφ

dOfOdφ
f + 3k3gabφ

dOfOdφ
f + 3

2
gabφ

cdeOfOeφcd
f

+3
2
k2gabφ

dOfOeφd
ef + 6k4gabφ

cdeOfO
fφcde + 6k5gabφ

dOfO
fφd − 3

4
gabOeφcdfO

fφcde

+3
2
k1gabOeφcdfO

fφcde + 6k4gabOfφcdeO
fφcde + 3k5Rφaφb + 1

2
gabOfφcdeO

fφcde

−3
4
φa

cdOeObφcd
e − 3

2
k2φ

dOeObφad
e + 3

8
gabOdφ

dOfφ
f + 3k1gabφ

cdeOfOeφcd
f (4.2.79)

Schrödinger spacetime is not asymptotically AdS. However, one can consider it

as perturbative deformation of AdS [39]. The zuveilbein to our interest would be

at = L1 + σW2; ax− = 0 (4.2.80)

āt = σW−2; āx− = 2L−1 (4.2.81)

which corresponds to metric

ds2 = −σ2r4dt2 +
dr2

r2
+ 2r2dtdx− (4.2.82)

and spin-3 field

φt−− =
σ

3
r4; φttt = −σ

4
r4 (4.2.83)

σ measures deformation from pure AdS in lightcone frame. Apparently metric fields

would solve Einstein equation if σ = 0.

After substituting (4.2.82) and (4.2.83) into (4.2.78), one can find the equation

holds at the lowest order of σ. Similarly, one can also check the equation of motion

about φµνρ [95] can be solved at the same order of σ.
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4.C W3 algebra from asymptotically Lifshitz bound-

ary condition

Let’s consider gauge transformations ε preserving boundary conditions (4.5.42) and

take the case of unbarred sector. The barred sector can be derived in exactly the

same procedure. Denote ε = b−1ε0b. Gauge transformation on field a is described

by equation

δa(0) = dε0 + [a, ε0] (4.3.84)

Expand gauge parameter ε0 in terms of

ε0 = εL0L0 + εL1L1 + εL−1L−1 + εW2W2 + εW1W1 + εW0W0 + εW−1W−1 + εW−2W−2

and note δa(0) = (4tδWL0− δLL−1− 4t2δWW2 + 4tδLW1 + δWW−2)dx, we will be

left with following equations:

• t component equations

ε̇L1 − εW−1 = 0; ε̇L0 − 4εW−2 = 0

ε̇W2 + 2εL0 = 0; ε̇W1 + 4εL−1 = 0

ε̇L−1 = ε̇W0 = ε̇W−1 = ε̇W−2 = 0 (4.3.85)

• x component equations

L1 : ∂xε
L1 + εL0 − 4WtεL1 + 2LtεW0 + 4Wt2εW−1 = 0

L0 : ∂xε
L0 + 2LεL1 + 2εL−1 + 4WεW2 + 2LtεW−1 + 16Wt2εW−2 = 4tδW

L−1 : ∂xε
L−1 + LεL0 + 4WtεL−1 +WεW1 − 4LtεW−2 = −δL

W2 : ∂xε
W2 − 8Wt2εL0 − 4LtεL1 + εW1 − 8WtεW2 = −4t2δW

W1 : ∂xε
W1 + 4LtεL0 − 16Wt2εL−1 + 2εW0 − 4WtεW1 + 4LεW2 = 4tδL

W0 : ∂xε
W0 + 3(4LtεL−1 + LεW1 + εW−1) = 0

W−1 : ∂xε
W−1 − 4WεL1 + 2LεW0 + 4WtεW−1 + 4εW−2 = 0

W−2 : ∂xε
W−2 − 2WεL0 + LεW−1 + 8WtεW−2 = δW (4.3.86)

Solutions are parametrized by two free x dependent functions εL(x), εW (x)

εL−1 =
1

2
ε′′L − 2WεW − LεL (4.3.87)
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εW0 =
1

2
ε′′W − 2LεW (4.3.88)

εW−1 =
5

3
Lε′W −

1

6
ε′′′W +

2

3
L′εW (4.3.89)

εW−2 = WεL + L2εW −
1

6
L′′εW −

7

12
L′ε′W −

2

3
Lε′′W +

1

24
ε′′′′W (4.3.90)

εL0 = 4εW−2t− ε′L (4.3.91)

εL1 = εW−1t+ εL (4.3.92)

εW1 = −4t(
1

2
ε′′L − 2WεW − LεL)− ε′W (4.3.93)

εW2 = −4t2εW−2 + 2ε′Lt+ εW (4.3.94)

Insert the solution into equation (4.3.86) we will get transformations laws (4.5.47)

for conserved charges L and W .
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Chapter 5

4D Schrödinger higher spin

solution

This chapter is based on paper [4]. To understand whether degeneracy problem

in 3D non-relativistic solution is a result of special property of 3D gravity, it is

necessary to construct non-relativistic higher spin solutions in higher dimensional

spacetimes. Field theory with non-relativistic higher spin symmetry was studied

in [106–108] to model unitary Fermi gas. The lesson we learnt from 3D construction

is Schrödinger spacetime with dynamical exponent z is supported by higher spin

fields with spin s = z + 1 [92]. Every spin-s field will back react on lightcone AdS

geometry and deform it by a factor r−2(s−1)dt2 (Here we use r → r−1 to define radial

coordinate in Schrödinger metric (1.2.10)). To have a Schrödinger spacetime with

dynamical exponent z, we need to truncate the infinite tower of higher spin fields.

In 3D higher spin theory, truncation of higher spin tower can be realized by

tuning λ to be integer [24]. This trick is not allowed in D ≥ 4 manifold. On the

other hand, that Schrödinger gauge fields (4.2.80) and (4.2.81) can solve flatness

equation is independent of SL(3, R) representation of W,L generators. Instead, it

depends on commutativity of W2n and Ln. This immediately leads to a conclusion:

for generic value of λ, even higher spin fields are not truncated, (4.2.80) and (4.2.81)

still solve flatness equation. This sounds more like an analogy to higher dimensional

case.

There should exist another scheme to truncate infinite tower of higher spin fields
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5.1. 3D Schrödinger higher spin solution 91

even in the theory with all s > 2 spin fields. We will review this truncation scheme

in section 5.1 by analysing 3D Schrödinger solution in hs[λ] theory. Based on this

idea, we will give an explicit construction of 4D higher spin Schrödinger solutions

in 5.2.

5.1 3D Schrödinger higher spin solution

5.1.1 Vasiliev formulation

We would like to reformulate our 3D higher spin Schrödinger solution (4.2.80)-

(4.2.83) in Vasiliev theory.

Our normalization in this section is slightly different from [109] but is self-

consistent. Let us introduce oscillators ŷα (α = 1, 2) fulfilling

[ŷα, ŷβ] =
1

2
εαβ(1 + νk) , kŷα = −ŷαk , k2 = 1 , (5.1.1)

where ν is a free parameter and k is the Klein operator. Define bilinear oscillators

Tαβ

Tαβ = {ŷα, ŷβ} , (5.1.2)

that generate a sl(2) algebra

[Tαβ, Tγσ] = εβγTασ + Tβσεαγ + Tαγεβσ + εασTβγ . (5.1.3)

Higher (symmetric) powers of these oscillators give the higher spin generators. The

connection with the Chern-Simons formulation is explained in section 5.A.

In the current case, the gravitational connection

W = ω +
1

l
ψe , ψ2 = 1 , [ψ, ŷα] = 0 , (5.1.4)

where ψ is the central involutive element and l is the AdS radius, satisfies the

equation of motion [109]

dW +W ∧W = 0 .

The z = 2 Schrödinger gauge fields (4.2.16) translate to the oscillator form

e = l(
1

4
rT11 +

σ

8
r2T11T11 −

σ

8
r2T22T22)dt− l

2
rT22dξ +

l

2r
T12dr , (5.1.5)
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ω = (
1

4
rT11 +

σ

8
r2T11T11 +

σ

8
r2T22T22)dt+

1

2
rT22dξ . (5.1.6)

via (5.1.60). It is then trivial to check that they solve the above equation of motion

(setting l = 1), which in component form reads

Torsion free equations

ψ Tαβ : deαβ + eακ ∧ ωγβεκγ + eκβ ∧ ωγαεκγ = 0 , (5.1.7)

ψ σTαβTγκ : deαβγκ + 2ωαnγκ ∧ emβεnm + 2ωαβγn ∧ emκεnm

+2eαnγκ ∧ ωmβεnm + 2eαβγn ∧ ωmκεnm = 0 , (5.1.8)

ψ TαβTγκTmn : ωαβγκ ∧ emncd = 0 , (5.1.9)

Curvature equations:

Tαβ : dωαβ + ωακ ∧ ωγβεκγ +
1

l2
eακ ∧ ωγβεκγ = 0 , (5.1.10)

σTαβTγκ : dωαβγκ + 2ωαnγκ ∧ ωmβεnm + 2ωαβγn ∧ ωmκεnm

+
1

l2
(2eαnγκ ∧ emβεnm + 2eαβγn ∧ emκεnm) = 0 , (5.1.11)

TαβTγκTmn : ω(4) ∧ ω(4) + e(4) ∧ e(4) = 0 . (5.1.12)

This solution has no non-trivial holonomy, so one can do a large gauge transforma-

tion to relate this solution to empty AdS [3].

5.1.2 Scalar equations

In this section, we consider the motion of a scalar in the above 3D Schrödinger

background, characterized by

dC + A ∗ C − C ∗ Ā = 0 . (5.1.13)

We briefly review the analysis of [110] in terms of the lone-star product in this

subsection. The notation and its relation with the previously mentioned oscillator

formalism is explained in Appendix 5.A.

All the fields take value in the higher spin algebra

C =
∞∑
s=1

∑
|m|<s

Cs
mV

s
m , A =

∞∑
s=2

∑
|m|<s

AsmV
s
m , Ā =

∞∑
s=2

∑
|m|<s

ĀsmV
s
m , (5.1.14)
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with C1
0 being the physical scalar. We now extract the equation of motion of C1

0 . If A

and Ā span pure AdS3 gravity, equation (5.1.13) reduces to Klein-Gordon equation.

Now consider z = 2 Schrödinger spacetime [92,99]

A = (σe2ρV 3
2 + eρV 2

1 )dt+ V 2
0 dρ , Ā = σe2ρV 3

−2dt+ 2eρV 2
−1dξ − V 2

0 dρ , (5.1.15)

where the constant source σ parametrizes the higher spin deformation. Plugging

these expansions into the scalar equation (5.1.13) we get an infinite set of equations,

one from each term proportional to V s
mdx

µ ≡ V s
m,µ. Remarkably, as shown in [110],

we can choose a set of equations, being the coefficients of {V 1
0,ρ, V

1
0,t̄, V

2
1,x, V

2
0,ρ, V

1
0,x,

V 3
−2,x, V

2
−1,x, V

2
−1,ρ, V

3
−1,ρ},1 that reduce to the explicit equation of motion for C1

0

(σe4ρ∂4
ρ + 8σe4ρ∂3

ρ + 2σ(11− λ2)e4ρ∂2
ρ − 8σe4ρ(λ2 − 3)∂ρ + σe4ρ(λ2 − 1)(λ2 − 9)

+2e2ρ(1− λ2)∂x + 4e2ρ∂ρ∂x + 2e2ρ∂x∂
2
ρ − σ∂4

x + 4∂t∂
2
x)C

1
0 = 0 . (5.1.16)

Furthermore, as σ → 0, one gets the x-derivative of the Klein-Gordon equation

in AdS background [110]; thus, we can solve the full equation perturbatively with

respect to σ.

5.2 4D Schrödinger solution

5.2.1 Star product in 4D

Most of the notation in this section will follow [21], where xµ (µ = 0, 1, 2, 3) denote

spacetime Poincaré coordinates with x2 = r. In this coordinate, the AdS spacetime

metric is

ds2 =
−dx2

0 + dx2
1 + dr2 + dx2

3

r2
. (5.2.17)

The internal twistor space is parametrized by spinors (Y, Z) = (yα, ȳα̇, zα, z̄α̇), α, α̇ =

1, 2. Here zα, z̄α̇ are auxiliary coordinates; physical fields are those with constraints

zα = z̄α̇ = 0.

The star product of two spinor-valued functions can be defined as [21]

f(Y, Z) ∗ g(Y, Z) = f(Y, Z) exp
[
εαβ(
←−
∂ yα +

←−
∂ zα)(

−→
∂ yβ −

−→
∂ zβ)

1Our choice is slightly different from that in [110].
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+εα̇β̇(
←−
∂ ȳα̇ +

←−
∂ z̄α̇)(

−→
∂ ȳβ̇ −

−→
∂ z̄β̇)

]
g(Y, Z) . (5.2.18)

There are in addition Klein operators K(t) = etz
αyα and K̄(t) = etz̄

α̇ȳα̇ .

Vasiliev master fields include a gravitational connection W = Wµ(x|y, ȳ, z, z̄)dxµ,

an auxiliary fields S = dzαSα(x|y, ȳ, z, z̄) + dz̄α̇Sα̇(x|y, ȳ, z, z̄) 2 and a scalar field

B(x|y, ȳ, z, z̄). The equations of motion that determine the dynamics of the system

are

dxW +W ∗ ∧W = 0 , (5.2.19a)

dZW + dxS + {W,S}∗ = 0 , (5.2.19b)

dZS + S ∗ S = B ∗Kdz2 +B ∗ K̄dz̄2 , (5.2.19c)

dxB +W ∗B −B ∗ π(W ) = 0 , (5.2.19d)

dZB + S ∗B −B ∗ π(S) = 0 , (5.2.19e)

where π(H) flips the signs of unbarred spinors (y, z, dz) in H while it preserves the

signs of barred coordinates (ȳ, z̄, dz̄). These master fields also satisfy

[R,W ]∗ = {R, S}∗ = [R,B]∗ = 0 , (5.2.20)

where R = KK̄. This implies W,B are even functions of (Y, Z) while S is an odd

function of (Y, Z).

In this section, we will discuss the vacuum solutions of master equation (5.2.19),

i.e. B = 0 , S = dzα zα + dz̄α̇ z̄α̇ and W (Y, Z) = W (Y ) from (5.2.19b).

5.2.2 AdS solution in lightcone coordinate

Vacuum AdS4 spacetime

B = 0 , S = dzα zα + dz̄α̇ z̄α̇ , W = eαβ̇y
αȳβ̇ + ωαβy

αyβ + ωα̇β̇ ȳ
α̇ȳβ̇ , (5.2.21)

2The spinor indices are raised and lowered by the antisymmetric tensor εαβ ,

Aα = εαβAβ ; Aα = Aβεβα, ε12 = ε12 = 1 .
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is a solution to the Vasiliev equations (5.2.19), which reduces to the component form

yαȳα̇ : deαα̇ + 4eγα̇ ∧ ωαβεγβ − 4eαβ̇ ∧ ωα̇γ̇ε
γ̇β̇ = 0 , (5.2.22)

yαyβ : dωαβ + eαγ̇ ∧ eβκ̇εγ̇κ̇ + 4ωβκ ∧ ωαγεκγ = 0 , (5.2.23)

ȳα̇ȳβ̇ : dωα̇β̇ − eκα̇ ∧ eγβ̇ε
γκ + 4ωβ̇κ̇ ∧ ωα̇γ̇ε

κ̇γ̇ = 0 . (5.2.24)

Explicitly, we have

eαβ̇ = 1
4
ea(σa)αβ̇ , ωαβ = −ωa(σa2ε)αβ , ω̄α̇β̇ = −ωa(εσ̄a2)α̇β̇ , (5.2.25)

where ea =
δaµ
r
dxµ , ωa =

δaµ
8r
dxµ are the veilbein and the spin connection of AdS

spacetime (5.2.17) in the lightcone Poincaré coordinate

ds2 =
2dtdξ + dr2 + dx2

r2
, ξ =

x1 − x0√
2

, t =
x1 + x0√

2
, x = x3 . (5.2.26)

We have further employed Pauli matrices in the lightcone coordinate in (5.2.25)

σt =
σ0 + σ1√

2
, σξ =

−σ0 + σ1√
2

, σr = σ2, σx = σ3 ,

σtµ =
σ0µ + σ1µ√

2
, σξµ =

−σ0µ + σ1µ√
2

, σ̄tµ =
σ̄0µ + σ̄1µ√

2
, σ̄ξµ =

−σ̄0µ + σ̄1µ√
2

.

Further notice that we work in the Minkowski signature, so the Pauli matrices are

the familiar ones that are hermitian. As a consequence, the parity action is our

convention is then yα ↔ ȳα̇ , zα ↔ z̄α̇ , and further accompanied with hermitian

conjugation of the coefficients of the oscillators.

5.2.3 Schrödinger solution with z = 2

We are now ready to construct 4D Schrödinger geometry (1.2.10) in Vasiliev higher

spin theory. The simplest non-trivial example is the z = 2 Schrödinger geometry

which turns out to be supported by extra s = 3 higher spin fields. We consider a

variant form of the Schrödinger metric

ds2 = −σ
2dt2

r2z
+

2dtdξ + dr2 + dx2

r2
, z = 2 , σ ∈ R , σ 6= 0 , (5.2.27)

which can be converted from (1.2.10) by field redefinition t→ σt, ξ → ξσ−1.
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General solution

We try to find a ground state solution to (5.2.19) of the form

B = 0 , S = dzα zα + dz̄α̇ z̄α̇ , W (Y, Z|x) = W (Y |x) , (5.2.28)

with some spin-3 fields turned on in W . We simply take W = W2 + W3, where W2

is the spin-2 piece (5.2.21), (5.2.25), and W3 encodes spin-3 fields that are quartic

in the y, ȳ oscillators

W3 = ωαβγκy
αyβyγyκ + ωαβγκ̇y

αyβyγ ȳκ̇ + ωαβγ̇κ̇y
αyβ ȳγ̇ ȳκ̇ + ωαβ̇γ̇κ̇y

αȳβ̇ ȳγ̇ ȳκ̇ + ωα̇β̇γ̇κ̇ȳ
α̇ȳβ̇ ȳγ̇ ȳκ̇ .

(5.2.29)

The only nontrivial equation (5.2.19a) decomposes schematically to

y2 : dxW2 +W2 ∗ ∧W2 = 0 , (5.2.30a)

y4 : dxW3 +W2 ∗ ∧W3 +W3 ∗ ∧W2 = 0 , (5.2.30b)

y6 : W3 ∗ ∧W3 = 0 . (5.2.30c)

The equation (5.2.30a) simply means we can take W2 as the AdS connection (5.2.21)

and (5.2.25). The equation (5.2.30c) is very restrictive and can only be solved due

to the wedge product: we take W3 to be proportional to dt in the light of our aimed

solution (1.2.10). The only remaining equation to be solved, namely (5.2.30b),

decomposes to

y4 : dωαβγκ + 2eαξ̇ ∧ ωβγκδ̇ε
ξ̇δ̇ + 16ωαξ ∧ ωβγκδεξδ = 0 ,

y3ȳ : dωαβγκ̇ + 8eξκ̇ ∧ ωαβγδεξδ + 4eαξ̇ ∧ ωβγδ̇κ̇ε
ξ̇δ̇ + 12ωαξ ∧ ωβγδκ̇εξδ

+4ωκ̇ξ̇ ∧ ωαβγδ̇ε
ξ̇δ̇ = 0 ,

y2ȳ2 : dωαβγ̇κ̇ + 6eξγ̇ ∧ ωαβδκ̇εξδ + 6eαξ̇ ∧ ωβγ̇κ̇δ̇ε
ξ̇δ̇ + 8ωαξ ∧ ωβδγ̇κ̇εξδ

+8ωγ̇ξ̇ ∧ ωαβκ̇δ̇ε
ξ̇δ̇ = 0 ,

yȳ3 : dωαβ̇γ̇κ̇ + 4eξβ̇ ∧ ωαδγ̇κ̇ε
ξδ + 8eαξ̇ ∧ ωβ̇γ̇κ̇δ̇ε

ξ̇δ̇ + 4ωαξ ∧ ωδβ̇γ̇κ̇ε
ξδ

+12ωβ̇ξ̇ ∧ ωαγ̇κ̇δ̇ε
ξ̇δ̇ = 0 ,

ȳ4 : dωα̇β̇γ̇κ̇ + 2eξα̇ ∧ ωδβ̇γ̇κ̇ε
ξδ + 16ωα̇ξ̇ ∧ ωβ̇γ̇κ̇δ̇ε

ξ̇δ̇ = 0 . (5.2.31)

Considering only time independent, spherical symmetric solution, this set of equa-

tions is solved to get

ω2222 =
C1

4r2
, ω2222̇ =

−iC1

r2
, ω222̇2̇ =

−3C1

2r2
, ω22̇2̇2̇ =

iC1

r2
, ω2̇2̇2̇2̇ =

C1

4r2
,
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ω2221 =
−C2

6r2
, ω2221̇ =

2iC2

3r2
, ω222̇1 =

2iC2

3r2
, ω222̇1̇ =

C2

r2
,

ω22̇2̇1 =
C2

r2
, ω22̇2̇1̇ =

−2iC2

3r2
, ω2̇2̇2̇1 =

−2iC2

3r2
, ω2̇2̇2̇1̇ =

−C2

6r2
,

ω1111 =
C3

4r2
, ω1111̇ =

−iC3

r2
, ω111̇1̇ =

−3C3

2r2
, ω11̇1̇1̇ =

iC3

r2
, ω1̇1̇1̇1̇ =

C3

4r2
,

ω1122 =
−C4

6r2
, ω1122̇ =

2iC4

3r2
, ω112̇2̇ =

C4

r2
, ω11̇22 =

2iC4

3r2
, ω11̇22̇ =

C4

r2
,

ω1̇1̇22 =
C4

r2
, ω11̇2̇2̇ =

−2iC4

3r2
, ω1̇1̇2̇2 =

−2iC4

3r2
, ω1̇1̇2̇2̇ =

−C4

6r2
,

ω1112 =
−C5

6r2
, ω1112̇ =

2iC5

3r2
, ω111̇2 =

2iC5

3r2
, ω111̇2̇ =

C5

r2
,

ω11̇1̇2 =
C5

r2
, ω11̇1̇2̇ =

−2iC5

3r2
, ω1̇1̇1̇2 =

−2iC5

3r2
, ω1̇1̇1̇2̇ =

−C5

6r2
, (5.2.32)

where Ci (i = 1, ..., 5) are arbitrary real constants. Furthermore, this solution is

manifestly parity invariant.

We would like to remark that, in general, once spin-3 generators in D > 3

dimensional higher spin theory are included, one is forced to include the infinite

tower of higher spin fields to solve the equation. This problem is avoided in our

construction since the spin-3 fields are only turned on in the t direction and dt∧dt =

0. For this reason we are able to isolate a single spin-s field, which back-reacts and

supports the z = s − 1 Schrödinger spacetime. The spinorial index structure of

ω(4) fields implies that the above solution can be expanded in a basis consisting of

tensors of two Pauli matrices. Making use of the identity [111]

σµαγ̇σ
ν
βκ̇ + σναγ̇σ

µ
βκ̇ = ηµνσrαβσ

r
γ̇κ̇ + 4(σlµε)αβ(εσ̄lν)α̇β̇, (5.2.33)

the W3 field can be recast into

W3 =
(
eabσaσb+H

ab
ew σa(σb2ε)+Hab

ew σa(εσ̄b2)+Hab
ww (σa2ε)(σb2ε)+Hab

ww (εσ̄a2)(εσ̄b2)
)
dt .

(5.2.34)

We have checked that the eab, Hab fields can be determined for the Schrödinger

spacetime (5.2.32). However, the result is not much simpler than (5.2.32) and is not

very illuminating so we do not show them explicitly.

Another comment is that given a generalised vielbein

E = eαβ̇y
αȳβ̇ + ωαβγ̇κ̇y

αyβ ȳγ̇ ȳκ̇ , (5.2.35)

May 7, 2016



5.2. 4D Schrödinger solution 98

which means fixing the Ci, i = 1, . . . , 5 parameters, the W field is fully determined.

This is equivalent to the statement that (generalised) spin-connection can be fully

determined by the (generalised) veilbein from “torsion free” equations. Therefore,

our z = 2 Schrödinger solution is free from degeneracy problem [3].

The metric

As we have briefly explained in the previous section, we do not treat the spin-3 fields

as probe but take their backreaction on the geometry into account. We thus propose

the following formula to compute the metric from the (generalised) vielbein

g = Tr(E ∗ E) , (5.2.36)

where the trace is defined in (5.1.59). Notice that this definition reduces to the more

familiar definition g = Tr(e ∗ e) in general relativity when the higher spin fields are

turned off.

This formula is determined by requiring the invariance of the metric under gen-

eralised local Lorentz transformations that rotate the local Lorentz indices and thus

the local basis. This idea was first proposed in 3-dimensional [28] and we simply

generalise it to higher dimension. To justify our proposal, we start with the general

gauge transformation of any solution of the set of Vasiliev equations (5.2.19)

δW = dε+ [W , ε]∗ , δB = B ∗ π(ε)− ε ∗B , δS = [S, ε]∗ . (5.2.37)

Since we have B = 0 and ε = ε(Y |x), we only consider the first transformation. From

which we can read off the general transformation δE of our definition E (5.2.36).

Then we want to decompose the gauge transformation as

ε = ξ + Λ + Λextra , (5.2.38)

where ξ parametrizes the generalised diffeomorphisms, Λ parametrizing the gener-

alized local Lorentz transformations and Λextra parametrizes the extra gauge trans-

formation associated to the extra auxiliary fields and other terms from higher spin

generators 3. The difference between the latter two is that the Λ only rotates the

3Although the equation of motion is truncated by wedge product, the symmetry group is not
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index in the first row in the two-row Young tableaux notation while Λextra rotates

indices in both the two rows. We thus require the metric to be invariant under all

transformations parametrized by Λ.4 It can be explicitly checked that our proposal

(5.2.36) fulfils this requirement: the extra variation of the vielbeins under the local

higher spin transformation is cancelled by the variation of the generalised vielbeins

ωαβγ̇κ̇. In fact, there is a much easier way to demonstrate this invariance. The

variation takes a nice form δE = [E,Λ]∗, then it is trivial to verify the invariance of

the metric by cyclicity of the trace 5

δΛg = Tr([E,Λ]∗ ∗ E + E ∗ [E,Λ]∗) = 0 . (5.2.39)

With this definition, the solution we have found gives the following metric

ds2 = −(72C2
4 − 64C2C5 + 144C1C3)

dt2

r4
+

2dtdξ + dr2 + dx2

r2
. (5.2.40)

Higher spin fields

The spin-3 metric like field can be determined similarly

Φ = Tr(E ∗ E ∗ E) , (5.2.41)

which is again invariant under the higher spin generalisation of the local Lorentz

transformation. Linearising the above spin-3 field leads to traceless symmetric tensor

Φµν1ν2 ∼ Tr(eα1β̇1
yα1 ȳβ̇1 ∗ eγ1κ̇1yγ1 ȳκ̇1 ∗ωα2β2γ̇2κ̇2y

α2yβ2 ȳγ̇2 ȳκ̇”) ∼ σα1γ̇2
ν1

σβ2κ̇2ν2
ωµ|α2β2γ̇2κ̇2 ,

(5.2.42)

which agrees with the expression given in [21] up to normalization. The authors are

acknowledged there are some nontriviality with this definition. However, (5.2.41) is

shown to be invariant under local Lorentz transformation. Considering it matches

the known result at linearised level, the definition is a potential candidate for spin-3

field at least in this Schrödinger vacuum case.

truncated. Commutator between spin-3 generator in master field W and gauge transformation Λ

can result in terms with spin s > 3
4The metric does transform under Λextra, which is the higher dimensional analogue of phenom-

ena discussed in, e.g. [88, 98].
5We thank Stefen Theisen to point this out to us.
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We can further evaluate the fully nonlinear spin-3 fields (5.2.41) explicitly

φttt =
3((3C1+8C2+3C3−12C4−8C5)r2+512(4C3

4−9C1C3C4−8C2C5C4−6C1C2
5−6C2

2C3))
2r6

,

φttξ = −4C4−3(C1+C3)
r4

, φtξξ = −−3C1+8C2−3C3+12C4+8C5

2r4
, φtxx = (3C1+3C3+4C4)

r4
,

φttx =
√

2(3C1+4C2−3C3−4C5)
r4

, φtxξ = −3C1−4C2−3C3+4C5√
2r4

, (5.2.43)

with all other components vanish. Notice that in most of the terms the power at

the boundary is exactly the dimension ∆ = 4 of a conserved spin-3 currents in

the dual field theory. The only exception is the r−6 term in Φttt which has cubic

coefficients CiCjCk; both its scaling behaviour and its coefficient structure indicate

the non-linear nature of this term.

As we have shown explicitly, the metric and the spin-3 metric like fields can be

uniquely determined. To determine metric like higher spin fields with s > 3, more

information is needed, which is similar to what happens in 3D [112], in addition to

the requirement of local Lorentz invariance and the correct linearisation limit. This

is because there are more than one combinations of veilbeins satisfying the above

constraints. For example, for s = 4, (tr(E ∗ E))2 and tr(E ∗ E ∗ E ∗ E) are both

local Lorentz invariant. Only a linear combination of these two terms gives the right

Fronsdal field

Φ(4) = tr
(
(E ∗ E ∗ E ∗ E)s

)
+ c tr(E ∗ E) tr(E ∗ E) ,

where (a ∗ b)s = a ∗ b+ b ∗ a is the totally symmetric star product. The coefficient c

can be fixed by imposing the double-traceless condition or by imposing a Fefferman-

Graham-like gauge condition Φrrrr = 0 [113]. Remarkably, the two conditions lead

to the same value c = −1
2
.6 This result agrees with our expectation and also agrees

with what happens in 3D.

We comment here that even though we only turn on spin-2 and spin-3 compo-

nents of the frame like field W (5.2.29), there can be a nonzero spin-4 metric like

field as constructed above. This property can only be seen at the fully nonlinear

6The exact value of c depends on our definition of the trace, but the conclusion that the two

conditions lead to the same value is independent of our definition of the trace; the latter can be

checked explicitly.
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level; the linearised spin-4 field, defined similarly as (5.2.42), vanishes. Moreover,

we believe the whole tower of the metric like fields of arbitrary spin are nonzero

unless protected by some hidden symmetries.

Symmetries of the solution

Relation with the AdS spacetime One immediate question is if the solution

we have got is gauge equivalent to the AdS vacuum. This is a reasonable question

since both of them are solutions of equation (5.2.19a). However, we can show that

the two solutions are physically distinct.

• Indeed, the following transformation

δW = dε+ [W, ε]∗ , (5.2.44)

maps a solution W of (5.2.19a) into another solution W + δW of (5.2.19a). For

the case we are interested in, the AdS solution can be mapped to our Schrödinger

solution with the parameter ε = εabcdy
aybycyd ,

ε2222 =
i

4
ε2222̇ =

−1

6
ε22̇2̇2̇ =

−i
4
ε22̇2̇2̇ = ε2̇2̇2̇2̇ =

tC1 + d1

4r2

ε1222 =
i

4
ε2221̇ =

i

4
ε1222̇ =

−1

6
ε122̇2̇ =

−1

6
ε221̇2̇ =

−i
4
ε12̇2̇2̇ =

−i
4
ε21̇2̇2̇ = ε1̇2̇2̇2̇ = −tC2 + d2

6r2

ε1111 =
i

4
ε1111̇ =

−1

6
ε11̇1̇1̇ =

−i
4
ε11̇1̇1̇ = ε1̇1̇1̇1̇ =

tC3 + d3

4r2

ε1122 =
i

4
ε1221̇ =

i

4
ε1122̇ =

−1

6
ε112̇2̇ =

−1

6
ε121̇2̇ =

−1

6
ε221̇1̇ =

−i
4
ε11̇2̇2̇ =

−i
4
ε21̇1̇2̇

= ε1̇1̇2̇2̇ = −tC4 + d4

6r2

ε1112 =
i

4
ε1112̇ =

i

4
ε1121̇ =

−1

6
ε111̇2̇ =

−1

6
ε121̇1̇ =

−i
4
ε21̇1̇1̇ =

−i
4
ε11̇1̇2̇ (5.2.45)

= ε1̇1̇1̇2̇ = −tC5 + d5

6r2
.

However, as discussed in [21,114], any transformation relating two solutions with dif-

ferent boundary falloff behavior is not a true gauge transformation. The Schrödinger

solution we found has t component being

W = W2 +W3 →
1

r2
∼ W3 as r → 0
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which is different from AdS boundary condition. This fact can also be seen from

the parameters characterizing the transformation (5.2.46); the parameters diverge

at the boundary r = 0, which means they are non-trivial on the boundary. Such

transformation relates two different physical solutions, which means our Schrödinger

solution is not equivalent to the AdS solution.

• It is intuitive to have an interpretation of the fields in terms of Einstein classical

gravity theory. It is confirmed [3,95] by perturbation calculations that 3D Einstein

equation can be solved by z = 2 Schrödinger metric and its spin-3 matter fields.

In the current 4D example, we again expect the spin-3 fields to be responsible for

supporting the non-AdS metric solutions

Rµν −
1

2
Rgµν + Λgµν = Tµν . (5.2.46)

The solution in Vasiliev frame equation is a strong evidence indicating that the

higher spin fields give the correct stress-energy tensor Tµν , although it is not simple

to compute it explicitly due to the lack of an action. This nonvanishing Tµν tensor

also indicates that this solution is physically different from AdS vacuum solution.

We expect this solution can be a simple model to study the interaction between

spin-2 metric and higher spin fields. 7

Spacetime symmetry We can find the spacetime symmetry of the full solution

by finding all the Killing vectors of both the metric and the higher spin metric like

fields. By definition, the Lie derivative of the fields along the direction of any killing

vector χµ vanishes

Lχgµν = 0 , Lχφµνρ = 0 , Lχφµνρσ = 0 . . . . (5.2.47)

Solving the first equations, we find the follow killing vectors generating the Schrödinger

isometry of the spacetime in our z = 2 example

χH = ∂t , χM = ∂ξ , χP = ∂x , χK = x∂ξ − t∂x , (5.2.48)

7In another known example, Schrödinger spacetime in D ≥ 4 can be obtained by coupling a

gauge field Aµ to the Einstein gravity and then turning on finite background Aµ field [34]. (Notice

this gauge field also only has non-vanishing component in t direction.)
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Table 5.1: Symmetry enhancement and metric like fields

Killing vectors −gttr4 spin-3 fields

(a) χK 162C2
3 φttt = 72C3

r4

(b) χD 162C2
3 φttt = −3072C3

3

r6
, φttξ = −8C3

r4
, φtxx = 8C3

r4

(c) χD −
√

2χK
9
2
C2

3

φttt =
6(3C3r2−8C3

3)
r6

, φttξ = −2C3

r4

φttx = 6
√

2C3

r4
, φtxx = 2C3

r4

(d) χD +
2(C1∓

√
C1

√
C3)χK√

2C1+
√
2
√
C3

√
C1

9
2
(C2

1 + 34C3C1 + C2
3 )

φttt =
6
(

3(±
√
C1−
√
C3)

2
r2−8(±

√
C1+
√
C3)

6
)

r6

φttξ =
−2(±

√
C1+
√
C3)

2

r4
, φttx = 6

√
2(C1−C3)
r4

φtxx =
2(±
√
C1+
√
C3)

2

r4
.

χD = 2t∂t + x∂x + r∂r , χC = t2∂t − 1
2
(x2 + r2)∂ξ + tx∂x + tr∂r . (5.2.49)

Applying the Lie derivatives associated with these vectors to the spin-3 fields, we

find in general only H,M,P remain symmetry of the spin-3 fields. However, for

special choice of the parameters Ci, i = 1, . . . , 5, the symmetry of the system could

get enhanced. These extra enhanced symmetries can be summarized in Table 5.1

where the coefficients take the following values in different cases:

(a) : C2 → 3
2C3, C1 → C3, C4 → −3

2C3, C5 → 3
2C3 , (5.2.50)

(b) : C2 → 0, C1 → C3, C4 → 1
2C3, C5 → 0 ,

(c) : C1 → 0, C2 → 0, C4 → −1
4C3, C5 → 3

4C3 ,

(d) : C2 → 3
4

(
C1 ∓

√
C1C3

)
, C4 → 1

4

(
−C1 ± 4

√
C1C3 − C3

)
, C5 → 3

4

(
∓
√
C1C3 + C3

)
.

Thus we see that in case (a) the boost K generator restores and the symmetry

is enhanced to a Galilean group.8 For another choice of the parameters (b), the

8In our convention, the Galilean group is generated by translations, rotations and boosts. One

could also add in a dilatation generator, but the particle number will not be conserved under this

scaling transformation for z 6= 2. Therefore in this paper we do not include this dilatation generator

to be part of the Galilean group and consider it as part of the extension to the Schrödinger group

at z = 2.
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scaling symmetry is respected. Furthermore, it is possible for some other choices

of parameters (c), (d) that a linear combination of boost and scaling becomes a

symmetry. But it is impossible that both of them become symmetry simultaneously;

there are at most 4 generators in the symmetry of the solution.

The solutions (a), (b) and (c) have different boundary behaviour and hence are

different physical solutions. While in case (d) the parameter C1 is a gauge parameter

that relates the solutions (d) to (c).

We then consider the symmetries of the spin-4 metric like fields. Astoundingly,

the previously determined symmetries of the metric and spin-3 metric like fields are

all symmetries of the spin-4 metric like field as well. This is very likely to be a

consequence of the fact that in the frame like field W , only spin-3 components of

the higher spin fields are turned on; even though the spin s > 3 metric like fields are

non-vanishing, they do not carry new physical information.9 Therefore we believe

the symmetries we have found previously are symmetries of the full solution that

we have constructed.

Global internal symmetry Global symmetry of a vacuum solution to the Vasiliev

equation can be extracted from the equation

dε(y|x) + [W, ε(y|x)]∗ = 0 , (5.2.51)

which determines how does a given symmetry parameter ε0(y) at any fixed spacetime

point extend to a small neighborhood around this point. Since W is a solution to

the flatness equation, it is always possible to rewrite the vacuum solution in the

form of a pure gauge in this neighborhood [115–117].

W = g−1(y|x) ∗ dg(y|x) . (5.2.52)

The solution to the equation (5.2.51) in this gauge can be trivially solved as

ε(y|x) = g−1(y|x) ∗ ε0(y) ∗ g(y|x) , (5.2.53)

where ε0(y) does not depend on spacetime coordinates and fully determines the

global (internal) symmetry. It is concluded in [3] that the symmetry of Schrödinger

9We thank Wei Li for a discussion on similar situations in 3D.
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higher spin solution in 3D Chern-Simons theory is just SL(N,R) × SL(N,R) by

applying the gauge function method above. In the current higher dimensional case,

one could also conclude that ε0(y) exhausts the whole Vasiliev higher spin symmetry

group.

5.2.4 Solutions with other scaling factors

As we have mentioned in the introduction, z = 2 Schrödinger spacetime has a larger

isometry group than Schrödinger spacetime with z 6= 2. To demonstrate that our

construction is universal for all integer z rather than merely a result of the larger

symmetry group at z = 2, we have also constructed the z = 3 Schrödinger spacetime

in a similar way. The z = 3 Schrödinger spacetime turns out to be supported by

spin-4 fields in the t direction. I put the solution in appendix.

From the construction, we find explicitly that the back-reaction of spin-s fields

“deforms” AdS4 to Schrödinger spacetime in 4D with z = s− 1.

A general spin-s field W(2s−2) =
{
ωα1...α2s−2 , ..., ωα̇1...α̇2s−2

}
has Ns =

s

3
(4s2− 1)

independent components, which is the same as the number of independent equations

in (5.2.32). In other words, if one specifies a group of parameters as “boundary

conditions” of the differential equations, all the components of master field W can

be uniquely determined. Furthermore, if this group of parameters can be fixed from

a given set of generalised vielbein, as in our spin-3 example, there is no degeneracy

problem. This property can only be checked case by case.

We have considered solution to the Vasiliev equation that corresponds to space-

time with Schrödinger isometry. These solutions are derived by turning on higher

spin fields with one given spin. One immediate question is what if we turn on fields

with different spins in a similar manner. 10

From the above construction, we notice that the higher spin fields only enter

equation (5.2.30b) and hence fields with different spins are in general independent

to each other. Therefore, the general solution with different higher spin fields turned

on is simply a linear combination of the previous solutions where only one single

10We thank Matthias Gaberdiel for pointing this direction to us.
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higher spin field is turned on. Thus the general solution gives the following metric

ds2 = (
imax∑
i=imin

fi
r2i−2

)dt2 +
2dtdξ + dr2 + dx2

r2
, (5.2.54)

where the index imin and imax are the minimal and maximal spins we have turned

on in the t-direction. The number of independent parameter fi agrees with the

number of different higher spin fields. Higher spin Fronsdal fields can be similarly

determined.

Geometrically, these solutions interpolate between Schrödinger-like geometries

with different dynamic exponents. This can be easily verified not only for the metric

but also the higher spin Fronsdal fields. The existence of this type solution is due

to the presence of higher spin fields, as well studied in the pure AdS case [98].

5.A Higher spin algebra in D = 3

We will follow the notation in [24,118]. The higher spin algebra hs[λ] generator V s
m

are defined to be

V s
m = (−1)s−1−m (s+m− 1)!

(2s− 2)!

V 2
−1, ...[V

2
−1, [V

2
−1︸ ︷︷ ︸

s−m−1 terms

, (V 2
1 )s−1]]

 , (5.1.55)

where

V 2
1 = L1 , V 2

0 = L0 , V 2
−1 = L−1 .

If λ = N , the algebra is truncated to sl(N) and all the s > N generators can be

removed. The lone star product between generators has a closed form

V s
m ∗ V t

n =
1

2

s+t−|s−t|−1∑
u=1

gstu (m,n;λ)V s+t−u
m+n , (5.1.56)

with

gstu (m,n;λ) = (
1

4
)u−2 1

2(u− 1)!
φstu (λ)N st

u (m,n) ,

where

N st
u (m,n) =

u−1∑
k=0

(−1)k
(
u− 1

k

)
[s−1+m]u−1−k[s−1−m]k[t−1+n]k[t−1−n]u−1−k ,
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φstu (λ) = 4F3

 1
2

+ λ, 1
2
− λ, 2−u

2
, 1−u

2

3
2
− s, 3

2
− t, 1

2
+ s+ t− u

| 1

 .

Here [a]n = a(a − 1)...(a − n + 1) are the descending Pochhammer symbol. The

commutator of two generators are defined as

[X, Y ] = X ∗ Y − Y ∗X . (5.1.57)

V s
m transforms in the (2s− 1) dimensional representation of sl(2) Lie algebra

[V 2
m, V

s
m] = (−n+m(s− 1))V s

m+n , (5.1.58)

which is also one of the useful formulas used in verifying Schrödinger solution. The

trace of lone star product is defined to be

tr(X ∗ Y ) = X ∗ Y |V sm=0,s>0 . (5.1.59)

The relation with the oscillator realization is via the identification

V 2
1 =

1

2
T11 , V 2

0 =
1

2
T12 , V 2

−1 =
1

2
T22 . (5.1.60)

Other higher spin generators V s
m are related to Tαβ via equation (5.1.55).

5.B Prove local Lorentz invariance of metric-like

fields in 4D

We are going to show in the section that metric-like fields defined in section 3 are

invariant under generalized local Lorentz transformation. Take the following ansatz:

E = e2 + e3 = eαβ̇y
αȳβ̇ + ωαβγ̇κ̇y

αyβ ȳγ̇ ȳκ̇

We will take spin-2 metric-like fields gµν as example. Invariance of higher spin fields

can be proved in similar way, but requires more texts to explain.

It is very straightforward to check g = Tr(e2 ∗e2) is invariant under local Lorentz

transformation Λ2 if only spin-2 fields are involved. In this case, we can confirm

e2 = eαβ̇y
αȳβ̇; ω = ωαβy

αyβ + ωα̇β̇ ȳ
α̇ȳβ̇ (5.2.61)
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ξ = ε̄αβ̇y
αȳβ̇; Λ2 = ε̄αβy

αyβ + ε̄α̇β̇ ȳ
α̇ȳβ̇ (5.2.62)

Then

δe2 = dξ + [e2,Λ2] + [ω, ξ]

δg = Tr([e2,Λ2]∗ ∗ e2 + e2 ∗ [e2,Λ2]∗) = 0

Spin-3 case is more complicated. For clarity, we will try to prove its invariance

under the basis of oscillator yα. Denote the generalized local Lorentz transformation

as Λ = Λ2 + Λ3. Λ3 are those terms whose commutator with E would vary it by δE.

δΛE ∗ E = [E,Λ]∗ ∗ E

= [e2,Λ2]∗ ∗ e3 + [e3,Λ3]∗ ∗ e3 + [e2,Λ3]∗ ∗ e2 + [e3,Λ2]∗ ∗ e2 (5.2.63)

+[e2,Λ2]∗ ∗ e2 + [e3,Λ3]∗ ∗ e2 + [e2,Λ3]∗ ∗ e3 + [e3,Λ2]∗ ∗ e3 (5.2.64)

Note finally, we need to prove δΛg = 0. The trace structure helps us simplify the

calculation. Note all the 4 terms in (5.2.63) would not have contribution to δΛg.

Take first term as an example. The commutator results in terms with odd numbers

of εab tensor, so [e2,Λ2]∗ only has terms with two ys. The trace contraction of y2

and y4 by star product is always zero.

We are interested in those spin-3 gauge transformation terms whose commutator

with E change the value of E. These terms are

Λ3 ∼ ε̄αβγκ̇y
αyβyγ ȳκ̇ + ε̄αβ̇γ̇κ̇y

αȳβ̇ ȳγ̇ ȳκ̇

We take the calculation of first term as example. By calculation, [e2,Λ3]∗ ∗ e3 + e3 ∗

[e2,Λ3]∗ has a term

[eαβ̇y
αȳβ̇, ε̄γκστ̇y

γyκyσȳτ̇ ]∗∗e3 = 2eαβ̇ ε̄γκστ̇ (3ε
αγyκyσȳβ̇ ȳτ̇+εβ̇τ̇yαyγyκyσ)∗e3 (5.2.65)

The second term above is not important since it vanishes after taking trace. The

first term results in

Tr(6eαβ̇ ε̄γκστ̇ ε
αγyκyσȳβ̇ ȳτ̇ ∗ eabċḋy

aybȳċȳḋ)

= 96eαβ̇ ε̄γκστ̇ε
αγεκaεσbεβ̇ċετ̇ ḋ (5.2.66)
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This term is exactly cancelled by its counter partners in [e3,Λ3]∗ ∗ e2 + e2 ∗ [e3,Λ3]∗.

Since

[e3, ε̄αβγκ̇y
αyβyγ ȳκ̇]∗ = O(y6) + 48eabċḋε̄γκστ̇ε

aκεbσεḋτ̇yγ ȳċ

The first term has no influence on the result. The second term contracts with e2

and gives 96eαβ̇ ε̄γκστ̇eabċḋε
aκεbσεḋτ̇εγαεċβ̇, which exactly cancels the term (5.2.66). The

cancellation of other term related to ε̄αβ̇γ̇κ̇ can be shown in similar way. The other

two terms in (5.2.64) can be trivially cancelled by counter partners in E ∗ [E,Λ]∗.

Putting all these results together, we prove the metric defined by star-product trace

has local Lorentz transformation invariance.

5.C z = 3 Schrödinger solution

We will show explicitly a solution to spin-4 t component Vasiliev equation. Consider

W4 t component perturbation near AdS vacuum (5.2.30), then equation (5.2.30a) is

modified as

dxW4 +W2 ∗ ∧W4 +W4 ∗ ∧W2 = 0 (5.3.67)

Expand in terms of components, W4 is

W4,t = ωαβγκδτy
αyβyγyκyδyτ + ωαβγκδτ̇y

αyβyγyκyδȳτ̇ + ωαβγκδ̇τ̇y
αyβyγyκȳδ̇ȳτ̇

+ωαβγκ̇δ̇τ̇y
αyβyγ ȳκ̇ȳδ̇ȳτ̇ + ωαβγ̇κ̇δ̇τ̇y

αyβ ȳγ̇ ȳκ̇ȳδ̇ȳτ̇ + ωαβ̇γ̇κ̇δ̇τ̇y
αȳβ̇ ȳγ̇ ȳκ̇ȳδ̇ȳτ̇

+ωα̇β̇γ̇κ̇δ̇τ̇ ȳ
α̇ȳβ̇ ȳγ̇ ȳκ̇ȳδ̇ȳτ̇ (5.3.68)

The solution to (5.3.67) turns out to be

ω2̇2̇2̇2̇2̇2̇ = −iC1

6r3
, ω1̇2̇2̇2̇2̇2̇ = −iC2

6r3
, ω1̇1̇2̇2̇2̇2̇ = − C5

15r3
, ω1̇1̇1̇2̇2̇2̇ =

iC7

20r3
,

ω1̇1̇1̇1̇2̇2̇ = − C6

15r3
, ω1̇1̇1̇1̇1̇2̇ = −iC3

6r3
, ω1̇1̇1̇1̇1̇1̇ = −iC4

6r3
, ω22̇2̇2̇2̇2̇ =

C1

r3
,

ω21̇2̇2̇2̇2̇ =
C2

r3
, ω21̇1̇2̇2̇2̇ = −2iC5

5r3
, ω21̇1̇1̇2̇2̇ = − 3C7

10r3
, ω21̇1̇1̇1̇2̇ = −2iC6

5r3
,

ω21̇1̇1̇1̇1̇ =
C3

r3
, ω222̇2̇2̇2̇ =

5iC1

2r3
, ω221̇2̇2̇2̇ =

5iC2

2r3
, ω221̇1̇2̇2̇ =

C5

r3
,

ω221̇1̇1̇2̇ = −3iC7

4r3
, ω221̇1̇1̇1̇ =

C6

r3
, ω2222̇2̇2̇ = −10C1

3r3
, ω2221̇2̇2̇ = −10C2

3r3
,

ω2221̇1̇2̇ =
4iC5

3r3
, ω2221̇1̇1̇ =

C7

r3
, ω22222̇2̇ = −5iC1

2r3
, ω22221̇2̇ = −5iC2

2r3
,
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ω22221̇1̇ = −C5

r3
, ω222222̇ =

C1

r3
, ω222221̇ =

C2

r3
, ω222222 =

iC1

6r3
,

ω12̇2̇2̇2̇2̇ =
C2

r3
, ω11̇2̇2̇2̇2̇ = −2iC5

5r3
, ω11̇1̇2̇2̇2̇ = − 3C7

10r3
, ω11̇1̇1̇2̇2̇ = −2iC6

5r3
,

ω11̇1̇1̇1̇2̇ =
C3

r3
, ω11̇1̇1̇1̇1̇ =

C4

r3
, ω122̇2̇2̇2̇ =

5iC2

2r3
, ω121̇2̇2̇2̇ =

C5

r3
,

ω121̇1̇2̇2̇ = −3iC7

4r3
, ω121̇1̇1̇2̇ =

C6

r3
, ω121̇1̇1̇1̇ =

5iC3

2r3
, ω1222̇2̇2̇ = −10C2

3r3
,

ω1221̇2̇2̇ =
4iC5

3r3
, ω1221̇1̇2̇ =

C7

r3
, ω1221̇1̇1̇ =

4iC6

3r3
, ω12222̇2̇ = −5iC2

2r3
,

ω12221̇2̇ = −C5

r3
, ω12221̇1̇ =

3iC7

4r3
, ω122222̇ =

C2

r3
, ω122221̇ = −2iC5

5r3
,

ω122222 =
iC2

6r3
, ω112̇2̇2̇2̇ =

C5

r3
, ω111̇2̇2̇2̇ = −3iC7

4r3
, ω111̇1̇2̇2̇ =

C6

r3
,

ω111̇1̇1̇2̇ =
5iC3

2r3
, ω111̇1̇1̇1̇ =

5iC4

2r3
, ω1122̇2̇2̇ =

4iC5

3r3
, ω1121̇2̇2̇ =

C7

r3
,

ω1121̇1̇2̇ =
4iC6

3r3
, ω1121̇1̇1̇ = −10C3

3r3
, ω11222̇2̇ = −C5

r3
, ω11221̇2̇ =

3iC7

4r3
,

ω11221̇1̇ = −C6

r3
, ω112222̇ = −2iC5

5r3
, ω112221̇ = − 3C7

10r3
, ω112222 =

C5

15r3
,

ω1112̇2̇2̇ =
C7

r3
, ω1111̇2̇2̇ =

4iC6

3r3
, ω1111̇1̇2̇ = −10C3

3r3
, ω1111̇1̇1̇ = −10C4

3r3
,

ω11122̇2̇ =
3iC7

4r3
, ω11121̇2̇ = −C6

r3
, ω11121̇1̇ = −5iC3

2r3
, ω111222̇ = − 3C7

10r3
,

ω111221̇ = −2iC6

5r3
, ω111222 = − iC7

20r3
, ω11112̇2̇ = −C6

r3
, ω11111̇2̇ = −5iC3

2r3
,

ω11111̇1̇ = −5iC4

2r3
, ω111122̇ = −2iC6

5r3
, ω111121̇ =

C3

r3
, ω111122 =

C6

15r3
,

ω111112̇ =
C3

r3
, ω111111̇ =

C4

r3
, ω111112 =

iC3

6r3
, ω111111 =

iC4

6r3
(5.3.69)

This field will backreact on AdS geometry to give a z = 3 Schrödinger spacetime

metric.
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Chapter 6

Discussions and outlook

We explored nonsingular hyperscaling violation spacetimes in chapter 2 and found

that these geometries have smooth extensions beyond Poincare horizon in vacuum

case. We conjectured singularity in singular non-relativistic spacetimes is reflected

as IR divergences of field theory scattering amplitudes. By applying Maldacena and

Alday’s trick [19] in chapter 3, we found scattering amplitudes in Lifshitz space-

times have universal stronger IR divergences than those in AdS spacetime, which is

considered as a result of higher density of soft modes ω ∼ kz.

In chapter 4, we want to discuss whether it’s possible to resolve tidal force

singularity in higher spin theory. We have seen that the Lifshitz and non-integer

Schrödinger solutions of [92] have degenerate generalized vielbeins, so they are not

equivalent to some solution in the metric formulation of the higher spin theory. We

also found that in all cases the symmetries of the backgrounds in the Chern-Simons

formulation are SL(N,R)× SL(N,R), generalizing and simplifying an observation

of [93]. These seem significant obstacles to interpreting these backgrounds as non-

relativistic solutions. The Schrödinger solutions with integer z have non-degenerate

generalized vielbeins, so they remain as non-trivial examples of non-relativistic back-

grounds in the higher spin context. But our results prevent us from studying several

interesting questions about these backgrounds, such as identifying examples of Lif-

shitz field theories or addressing the physical meaning of the IR singularities in the

metrics (1.2.8, 1.2.10).

These problems could be moderated by considering classes of solutions which
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asymptotically approach these backgrounds, although one would be concerned that

the problem with the vacuum solution would reappear in the asymptotic region. For

the most well-developed example of asymptotically Lifshitz boundary conditions in

the higher spin context [93], we find that the generalized vielbein is still degenerate

at first subleading order. We have proposed that these boundary conditions may be

more usefully viewed instead as a novel asymptotically AdS boundary condition. In

that gauge a metric formulation is available, and it would be interesting to under-

stand the differences from the usual asymptotically AdS boundary condition. For

the boundary conditions of [100], the degeneracy of the generalized vielbeins was

lifted, and it appeared that an inverse could exist even in the asymptotic region. It

would be interesting to understand this case further.

The problems we have found are likely to be special to the case of three bulk

dimensions, as the Chern-Simons formulation is particular to this case, and the

absence of bulk degrees of freedom also obstructs obtaining richer families of solu-

tions. Therefore, we showed explicitly how to construct Schödinger solution in 4D.

These solutions of the Vasiliev higher spin theory have Galilean symmetry in D = 4

dimensions. Generalization to other dimensional spacetimes is straightforward by

using vectorial construction. We show that the spacetime symmetry group can be

the Galilean group or a non-relativistic scaling symmetry group. The field theory

interpretation of this solution can be considered as an analogue of massive vector

case [39]. Turning on spin-3 fields in the bulk corresponds to spin-3 current. Since

bulk AdS higher spin theory corresponds to free 3D boundary CFT, the Schrödinger

solution is expected to dual to a deformed CFT with spin-3 current. Therefore the

immediate next step is to consider correlation functions of the bulk higher spin

system on the Schrödinger background and in the dual field theories. This would

provide another piece of strong evidence of whether our proposal is sensible or not.

This is currently under investigation.

It is possible to construct z = 2 3D Lifshitz spacetime by dimensional reduction.

One can show that if one adds a constant one-form η = ηtdt to the AdS gravitational

connection

e = eαβ̇y
αȳβ̇ + η; ω = ωαβy

αyβ + ωα̇β̇ ȳ
α̇ȳβ̇ , (6.0.1)
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the master field W still solves Vasiliev equation. It turns out that the corresponding

metric represents the z = 0 Schrödinger spacetime

ds2 = −η2
t dt

2 +
2dtdξ + dr2 + dx2

r2
. (6.0.2)

To proceed, we use the fact that D−1 dimensional z = 2 Lifshitz spacetime emerges

from z = 0 Schrödinger spacetime in D ≥ 4 dimension by dimensional reduction

in the t direction [73, 74, 81, 119]. Those 3D Lifshitz spacetimes are solutions of

Einstein equation with supporting matter fields and therefore safe from degeneracy

problem in higher spin theory [3]. One may be able to study how higher spin trans-

formation operates on the Lifshitz geometry, and understand the physical meaning

of IR singularity.

Even though we offer many calculations and discussions about the nature of

Lifshitz/Schrödinger singularity in this thesis, we are still unable to draw any con-

clusion to tell how to resolve it. This singularity does not affect many holographic

computations, thus many constructions of non-relativistic holography are then valid

without exploring this issue. Apart for this topic, there are many unanswered ques-

tions in non-relativistic holography. A few interesting topics are mentioned in [32].

Let me list several important ones.

It would be interesting to know whether Schrödinger black hole solution exists

in 4D Vasiliev theory. The known higher spin solution in 3 dimension [120,121], the

charged black hole solution with asymptotic Schrödinger geometry [57–59] together

with the reformulation of AdS4 Kerr black hole solution into the unfolding formalism

[122] hint on possibility of finding black hole solutions with asymptotic Schrödinger

geometry in higher spin theory. We will leave this for future work.

One important question is whether Lifshitz solution exists in higher spin theory?

Although we prefer to give a negative answer to current construction [3], Newton-

Carton gravity is potentially able to contain such a theory. The advantages of

Newton-Carton gravity contain two perspectives. One statement is Horava Lifshitz

gravity emerge from Newton-Carton gravity if the latter is made dynamical [42]. Ho-

rava Lifshitz gravity allows Lifshitz solution without matter to support. Therefore,

(4.2.22) may be able to solve the modified Einstein equation. On the other hand,
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Newton-Carton gravity allows degenerate metrics gµν = −τµτν + hµν . Then Lifshitz

higher spin frame solution may have well-defined metric-like interpretation [123].

Newton-Cartan gravity as a non-relativistic limit of AdS/CFT, may be more

suitable to model non-relativistic holography. In this formulation, the symmetry

of holographic Lifshitz theories can be enhanced [124–126]. One may wonder what

kind of holographic Lifshitz may allow such constructions or further the enhanced

symmetry. This is still an open question.

Calculations of non-relativistic holography is technically more challenging. Per-

turbation methods are introduced to study non-relativistic holographic theories

which are small deformation of AdS holography: Lifshitz geometry near z = 1

and boosted Schrödinger geometry (4.2.82) [39, 66]. However, z →∞ limit Lifshitz

is less explored. This is due to back reaction [53,127] and other subtleties of the limit

geometry AdS2. Backreaction effect can deform the AdS2 geometry to be a Lifshitz

like spacetime [128] in some models. An interesting question is to what extent do

Lifshitz spacetimes inherit backreaction effect from AdS2 geometry? Besides this,

one can see that the asymptotic boundary geometry of Schrödinger spacetime also

contains an AdS2 factor [129]. Understanding AdS2 gravity can promote the study

of non-relativistic holography.
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