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Abstract 
Migration is one of the most spectacular wonders of the natural world but is increasingly threatened 

by large-scale environmental change. Migrants are key components of biological systems at higher 

latitudes, where the magnitude and velocity of climate change is most pronounced. In this thesis, I 

consider how the distribution of migratory species may change in the future, across the globe, in 

response to environmental change.  

Using global data on avian species distributions, the environmental and biological factors that affect 

migratory species richness were investigated. The cost of migration distance between breeding and 

non-breeding areas, and resident species richness were two important determinants of migrant 

species richness in a given location. Species distribution models (SDMs) were used to relate 

migratory species occurrence in breeding and non-breeding seasons to contemporary climatic 

variables. The importance of climatic variables for predicting migrant species’ occupancy depended 

on season (breeding or non-breeding). Whilst most SDMs focus on individual species breeding 

ranges, and model within the occupied realm, this can be problematic for migratory species that 

frequently use multiple realms, especially if trying to project newly suitable areas in future. Here, I 

developed a novel method to assess climatic suitability for migratory species globally, within species 

migration flyways. Selecting absence data to condition SDMs for species occurring across multiple 

realms can be problematic, as regions distant from the range may be suitable but unoccupied. To 

minimise this issue, I developed a modelling approach that selected absences preferentially from 

closer to a species distribution, using a distance weighting function; compared to other methods, 

this improved model performance on withheld test data. Using this approach, I projected the 

potential future breeding and non-breeding ranges of all global terrestrial long-distance migrants 

under climate change. Migrant breeding ranges were projected to shift poleward, but non-breeding 

range shift projections are less consistent in direction. 

To date, predictions of migratory changes under future climate scenarios have usually estimated a 

single distance between breeding and non-breeding range centroids. However, this approach 

ignores the variation in migratory movements within species. I developed a method to estimate the 

range of potential migration distances for individual populations, both now and in the future, which 

agreed well with recovery data for a well-recorded European trans-Saharan migrant. This approach 

projected longer median migratory distances in the future for many species. This thesis highlights 

the importance of climate for migratory species, and suggests that the observed general decline in 

many long-distance migratory species may be exacerbated by ongoing climate change.  
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1.1 Introduction 

In this thesis, I focus on migratory bird distributions across the globe, on the breeding 

and non-breeding seasons, and how they are related to climate. This focus is warranted, 

because migrants, which are key components of biological systems at higher latitudes, 

where the magnitude and velocity of climate change is most pronounced, are in decline 

worldwide. In order to manage populations of these important species effectively, there is a 

need to quantify how the distribution of migratory species may change in the future and to 

understand the potential consequences of these changes for biodiversity. To elaborate this 

focus, it is necessary to provide some brief background on several key issues. Here, I begin 

by exploring climate change and its impact on biological systems across a range of species, in 

particular range shifts. I then explain the utility of species distribution models for assessing 

the impacts of climate change on species. In light of that, I go on to explore the likely effects 

of climate change on migratory species. 

1.2 Climate change 

Global mean surface temperature has increased by 0.78°C (0.72 to 0.85°C) since the 

late 19th Century, a change categorised as “certain” in the 5th assessment report by the 

International Panel on Climate change (IPCC 2013). Oceans are warming, and sea levels rose 

by 0.19m (0.17 to 0.21m) between 1901 and 2010; furthermore, polar ice sheets have 

decreased in mass in recent decades (average annual sea ice extent has decreased by 2.7 ± 

0.6% per decade, IPCC 2013). Change in precipitation patterns and an increase in the 

frequency of occurrence of extreme events are evident in recent decades (IPCC 2013). 

Moreover, climate change is spatially heterogeneous, with some locations, such as the 

Arctic, experiencing changes much larger than the global mean (IPCC 2007).  

Anthropogenic climate change and other ongoing human-induced threats, such as 

habitat loss, present major threats to global biodiversity (Walther et al. 2002; Thomas et al. 

2004; Brook, Sodhi & Bradshaw 2008; Pereira et al. 2010). Climate change is not occurring in 

isolation, and threats to biodiversity might intensify as climate change impacts interact with 

other factors, such as land-use change, in the future (Sala et al. 2000; Jetz, Wilcove & 

Dobson 2007; Mantyka-Pringle, Martin & Rhodes 2012; Mantyka-Pringle et al. 2015). 

Climate change is likely to impact at the genetic, species, community and ecosystem levels 

(Thomas, Franco & Hill 2006; Foden et al. 2013; Pacifici et al. 2015). Understanding species 
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responses to climate change is one of the most pressing challenges facing scientists today 

(Garcia et al. 2014).  

1.3 Species responses to climate change 

Evidence is accumulating of the impacts of changes in climate on ecological systems. An 

array of profound effects, across a broad range of organisms, have already been observed. 

Examples include changes in phenology (e.g. Menzel et al. 2006), range shifts (e.g. Root et al. 

2003) and biotic interactions (e.g. Ockendon et al. 2014). I will now elaborate on each of 

these in turn. 

1.3.2 Adaptation and phenotypic plasticity 

Rapid environmental changes are occurring, and organisms must endure, acclimatise to, 

or escape from, adverse conditions (such as rising global temperatures) (Valladares, Gianoli 

& Gomez 2007). Populations can track environmental change through microevolution, a 

change in genotypes across generations in response to selection on a trait (Reale et al. 2003; 

Nussey et al. 2005). Populations that are genetically adapted to local climatic conditions 

should be more vulnerable to climate change than those comprising phenologically plastic 

populations (Chevin, Lande & Mace 2010; Phillimore et al. 2010).  Phenology is the seasonal 

timing of life history events of plants and animals (Walther et al. 2002). Phenology, including 

the timing of migration, flowering, budburst, breeding and egg-laying of species has 

advanced in many species, distributed widely across taxonomic groups, and these shifts are 

recognised to be a response to climate change (Crick & Sparks 1999; Post et al. 2001; Visser 

& Both 2005; Menzel et al. 2006). Observed shifts in phenology can arise due to phenotypic 

plasticity (the ability of a genotype to exhibit a range of phenotypes (morphological, 

physiological and behavioural) in response to environmental variation (Fordyce 2006). The 

strategy chosen, 1) local adaptation, or 2) phenotypic plasticity, will determine the ability of 

a population to survive climate change (Jump & Penuelas 2005; Gimeno et al. 2009). The 

third strategy that a species can take is probably the most well studied one, which is to shift 

its distribution in response to climate change. 

1.3.3 Range shifts 

If species are able to track climatic conditions spatially, the implications of climatic 

change are a shift in species distributions (Barbet-Massin, Thuiller & Jiguet 2011). Studies 

across a wide range of taxa have detected a globally consistent trend in range shifts in the 

direction expected based on species physiological constraints, evidenced by poleward shifts 
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in species distributions (Thomas & Lennon 1999; Parmesan & Yohe 2003; Root et al. 2003; 

Hickling et al. 2006; Devictor et al. 2008). A meta-analysis by Chen et al (2011) reported that 

species distributions have shifted to higher latitudes at a rate of 16.9 km per decade, three 

times faster than previously documented (Parmesan & Yohe 2003). Spatial shifts in species 

ranges have been the focus of recent research, and this is likely as a result of the wide-

spread nature of these shifts, and their relevance to conservation and reserve selection 

(Araujo et al. 2004; Guisan et al. 2013).  

Despite widespread spatial shifts, evidence suggests that species responses to climate 

change are currently “lagging” behind the rapid change in climate (Devictor et al. 2008; La 

Sorte & Jetz 2012). For species that have shifting climate niches, several factors will affect 

their ability to keep pace with this shift. Species-specific dispersal ability is particularly 

important (Schloss, Nuñez & Lawler 2012b), as is the environmental landscape through 

which a species must disperse (Bateman et al. 2014). Plant species may be particularly 

vulnerable as their sessile life-style limits their ability to keep pace with the rate of 

anthropogenic climate change (Neilson et al. 2005). The distributions of amphibians and 

reptiles (which play critical roles in food webs, often linking terrestrial and aquatic 

ecosystems), closely reflect rainfall and temperature patterns (Bickford et al. 2010).  

Amphibians have the highest threat of extinction of all terrestrial vertebrates (IUCN 2008). 

Although studies have shown a trend towards increased availability of climate space for 

amphibians and reptiles across Europe, these taxa are generally poor dispersers, and are 

therefore projected to lose range by 2050 (Araújo, Thuiller & Pearson 2006). Many such 

species will not be able to track future climate change and, without human intervention, are 

likely to become extinct (Devictor et al. 2008; Warren et al. 2013; Howard & Bickford 2014). 

1.3.4 Biotic interactions 

Responses to recent climate change vary greatly among species and locations. 

Responses include a diversity of trends in abundances, geographic range sizes, and 

directions of range shifts (Parmesan & Yohe 2003; Pearson & Dawson 2003; Hickling et al. 

2006; Mair et al. 2012; Rapacciuolo et al. 2014). High interspecific variation in abundance 

trends in a group of 115 Lepidoptera species was explained by species-specific exposure and 

sensitivity to climate change in the past four decades (Palmer et al. 2015). If species are 

responding differently to climate change, then this could result in disrupted interactions 

between, and, indeed within, trophic levels in response to climate change (recently 

reviewed by  Walther 2010).  
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Biotic interactions can strongly influence species spatial patterns, for example through 

predation, competition, resource-consumer interactions, and host-parasite interactions, and 

these interactions can influence how climate change affects species (Forchhammer et al. 

2005; Suttle, Thomsen & Power 2007; Gilman et al. 2010; Wisz et al. 2012). Gilman et al. 

(2010) argue that failure to account for species interactions limits our ability to predict 

species responses to future climate change. It is essential to obtain a good understanding of 

species responses to climate, and develop the appropriate tools for understanding these 

responses, before we add the complexity of accounting for species interactions. 

1.4 The value of presence-absence data 

Species polygon data give geographic information about where a species is present or 

absent at a given location. These polygons are coarse generalisations of species distributions 

since they can include relatively large areas from which the species is absent, potentially 

overestimating the species’ true area of occupancy (Hoffmann et al. 2010; Somveille et al. 

2013). Additionally, species occupancy maps for species occurring in areas such as Europe 

and North America are likely to be more accurate than those in other locations because of 

differences in investment in science and large scale biodiversity monitoring (Amano & 

Sutherland 2013; Somveille et al. 2013; Barnes et al. 2014, Sutherland et al. 2015). 

Information deficiencies are therefore likely to be greater on the non-breeding grounds than 

the breeding grounds (Faaborg et al. 2010). However, such limitations are not expected to 

significantly affect patterns at large scales and at coarse spatial resolutions (Somveille et al. 

2013). Despite limitations, presence-absence data can make a considerable contribution 

towards ecology, such as the ability to estimate the biological effects of climate change, 

habitat loss and invasive species (Warren 2012). Although the aforementioned problems 

may limit the reliability of niche models, in many cases, they are still the best available niche 

estimates. The main virtue of species distribution modelling using presence-absence data is 

that they contain useful information, and are easily understood by policy makers and the 

general public (Guisan et al. 2013). 

1.5 The usefulness of large scale climate data 

Historic and future climate projections are freely available (e.g. WorldClim, Hijmans 

et al. 2005), which has enabled researchers to study ecological responses to climate change 

globally. Such studies include: predicting past distributions of species climatic niches using 

historic data to reconstruct past species distributions (hindcasting) to answer questions 
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about extinctions and locations of past refugia (Martinez-Meyer, Townsend Peterson & 

Hargrove 2004; Peterson, Martinez-Meyer & Gonzalez-Salazar 2004; Nogues-Bravo et al. 

2008; Pearman et al. 2008; Nogués-Bravo 2009); using climate to assess drivers of 

population change (Warren et al. 2013) and using future climate projections to determine 

the impacts of climate change on biodiversity (recently reviewed in Bellard et al. 2012).  

Climate data from historic climate observations comprise the baseline period used 

to infer current climate-species occupancy relationships, and are central to assessments of 

climate change (Elith & Leathwick 2009). Uncertainty in these baseline data can be large, 

particularly where climate dynamics are complex, such as in mountainous or coastal regions 

(Baker et al. 2016). Despite this, baseline data uncertainties are almost completely 

overlooked when assessing the potential responses of species to climate change, yet a 

recent study showed that species responses are sensitive to baseline uncertainty (Baker et 

al. 2016). 

Uncertainty in future climate change projections is well known, and attempts are 

often made to incorporate the component of this uncertainty into climate change 

assessments (Hole et al. 2009; Bagchi et al. 2013; Warren et al. 2013; Baker et al. 2015). 

Although assessments of general circulation models (GCMs) show high confidence in 

reproducing observed mean surface temperature patterns at large spatial scales (IPCC 

2013), there are large errors in mountainous and coastal regions (IPCC 2013). Furthermore, 

precipitation patterns can be strongly influenced by smaller scale topography and vegetation 

(Moore et al. 2015), which occur below the large spatial scale of GCMs, making regional 

simulations difficult (Leung & Qian 2003). Regional regimes such as monsoons are poorly 

captured in GCMs (Kang et al. 2002). Additionally, annual mean precipitaion has known 

biases in tropical areas (Brown et al. 2013). Finally, climate features that are highly 

influential such as cloud cover are poorly simulated within GCMs (Groisman, Bradley & Sun 

2000; Trenberth & Fasullo 2010; Webb, Lambert & Gregory 2013), resulting in poor 

estimates in biologically important metrics such as evapo-transpiration (Kingston et al. 

2009). The availability of climate data means ecologists can use these data in their research 

without understanding the weaknesses of these datasets. Attempts to account for 

uncertainty are incorporated by repeating analyses using projections from different GCMs 

(Bagchi et al. 2012; Garcia et al. 2012; Baker et al. 2015). 
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1.6 Species distribution models 

One way to ameliorate the effects of climate change is to determine where species are 

likely to be located in the future. Shifts in species distributions in relation to climate change 

could mean that areas that are currently of conservation importance for priority species may 

not retain such species in the future (Hole et al. 2009; Bagchi et al. 2013; Baker et al. 2015). 

Climate change scenarios, from general circulation model (GCM) projections, can be used in 

species distribution models (SDMs) to forecast the location of suitable climate space for 

species in the future. Correlative SDMs are the approach most commonly used to describe 

the relationship between patterns in biodiversity and species distributions, and the 

environment (Dormann et al. 2012b). SDMs are used to predict the potential distributions of 

species in space and time by relating species occurrences (or abundances) to environmental 

variables (Guisan & Thuiller 2005).  

SDMs have been used extensively to evaluate the potential impacts of climate and land-

use change on species distributions (Guisan et al. 2013) and abundances (Howard et al. 

2014), to inform protected areas selection and management (Araujo et al. 2011; Bagchi et 

al. 2013), to identify historical refugia for biodiversity (Carnaval et al. 2009; Graham et al. 

2010), and to evaluate the potential for the spread and establishment of invasive species 

(Broennimann & Guisan 2008; Roura-Pascual et al. 2009). Although SDMs are widely used in 

ecology, limitations on their accuracy, predictive power and transferability are widely 

recognised (Araújo & Peterson 2012; Dormann et al. 2012b; Heikkinen, Marmion & Luoto 

2012). These limitations often arise from unrealistic model assumptions (Guisan & Thuiller 

2005; Araújo & Peterson 2012). In addition, limitations can also arise as a result of the data 

used to build the models (Wiens et al. 2009; Jiguet et al. 2010; Rocchini et al. 2011). Among 

these limitations, a poorly recognised source of model uncertainty arises as a consequence 

of the spatial extent from which absence data are drawn for model building (Thuiller et al. 

2004; VanDerWal et al. 2009). However, delineating the extent of the study region is not 

straightforward, as it depends on knowledge of the natural history and the dispersal ability 

of a species, as well as information about the landscape of interest, including the 

configuration of suitable habitats and barriers to dispersal (Soberon & Peterson 2005; Barve 

et al. 2011). Defining this is particularly difficult for migrant species, that inhabit spatially 

and temporally distinct areas during their annual migratory cycle, and that have the ability 

to disperse large distances. 
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1.7 The study of birds 

Birds are widespread, and have long been studied by both amateur naturalists and 

professional scientists; they are therefore well understood. However, 13% of global bird 

species are globally threatened with extinction (BirdLife International 2015). Although 

declines in birds are also attributed to habitat loss and degradation, and the impacts of 

invasive species (Szabo et al. 2012; Bellard et al. 2013) climate change is regarded as one of 

the greatest threats to birds during this century (Thomas et al. 2004; Warren et al. 2013). 

Furthermore, climate change is likely to exacerbate the negative impacts of threats such as 

habitat loss and degradation (Mac Nally et al. 2009) 

Data on movements of birds exist from bird ringing studies, as well as from direct 

observation of arriving and departing individuals (Pearce-Higgins & Green 2014). 

Quantitative counting and mapping techniques have provided over 50 years of population 

and distribution data collection of birds (Moller & Fiedler 2010). Historic data exist from 

museum specimens, on birds’ historical distributions and on the timing and success of 

breeding from nest records that span many decades. Recent technological advances allow 

the real-time tracking of birds in time and space (Green et al. 2002; Visser et al. 2009; 

Egevang et al. 2010; Robinson et al. 2010). These data provide the opportunity to study the 

relationships between birds and their environment now, and to predict the effect that 

climate change will have on their distributions and populations. Broad-scale spatial patterns 

in biodiversity, from continental to global scales, have been investigated using bird data, 

such as: the drivers of species richness patterns (Storch et al. 2006; Rahbek et al. 2007a) and 

the global distributions of range (Orme et al. 2006) and body sizes (Olson et al. 2009). An 

aspect that is less well understood is that of avian migration, due to the difficulties in 

studying species which bi-annually occur in geographically disparate regions. I go on to 

discuss the importance of migratory species globally, and in light of climate change. 

1.8 Migration 

Migrations are persistent, predictable, directional movements from one location to 

another (Dingle 1996). Billions of migratory animals move across the globe each year in 

pursuit of increased foraging opportunities, greater safety, and improved reproductive 

opportunities (Alerstam & Lindstrom 1990; Alerstam, Hedenstrom & Akesson 2003). The 

migration phenomenon has long fascinated researchers, due to the astonishing distances 

covered by species, as well as the vast numbers of individuals involved (Bauer & Hoye 2014). 
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For example, more than two billion passerines are estimated to migrate to sub-Saharan 

Africa each year (Hahn, Bauer & Liechti 2009).  

Highly predictable, seasonal movements, in combination with the large spatial scales 

and considerable numbers of individuals involved, render migration a unique biological 

phenomenon. Further, it is an under-appreciated aspect of biodiversity, which is intimately 

linked with that of resident communities (Bauer & Hoye 2014). Movements of migrants, 

such as salmon, to their natal breeding grounds transfer vast amount of nutrients and 

energy from the ocean to freshwater systems (Holtgrieve & Schindler 2011), as well as to 

surrounding terrestrial habitats (Chen et al. 2011a). Migratory seabirds also transport large 

quantities of nutrients to terrestrial breeding colonies (Michelutti et al. 2009). Furthermore, 

migratory movements represent a unique mechanism by which seeds, spores, as well as 

parasites, can cross biogeographic barriers (Nathan et al. 2008; Altizer, Bartel & Han 2011).  

Grazing by migrants can alter nutrient cycling, primary productivity, plant biomass, and 

consequently the composition and long term persistence of plant communities (Zacheis, 

Hupp & Ruess 2001; Holdo et al. 2007). Therefore, the foraging of migrants results in 

consumer-resource interactions across several locations. Further, migratory predators such 

as seabirds, raptors, marine mammals and fish potentially exert top-down regulation on 

prey populations and resident communities (Bauer & Hoye 2014). Migratory species are also 

preyed upon during their journey, for instance, wildebeest migration is a critical resources 

for lions in the Serengeti, who time their reproduction with the arrival of the migrant 

wildebeest (Holdo et al. 2011). Migrants therefore have the potential to alter community 

structure and ecosystem functions along their routes (Bauer & Hoye 2014). 

As all these examples show, migration is not simply the movement of animals, but the 

coupling of ecological communities globally, and the mediation of ecological community 

diversity and stability. Given the potential of migration to affect ecological networks across 

the world, the ramifications of the potential decline of migratory species are considerable. 

Migration is an increasingly threatened global phenomenon, as a result of climate change, 

habitat destruction, changes in land use practises, and overexploitation (Wilcove & Wikelski 

2008). The loss of migratory behaviour may result in a loss of ecosystem services, as outlined 

above.  
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1.9 The effects of climate change on avian migratory species 

Migratory species may be particularly vulnerable to climate change, with the potential 

for intricately timed and long-established relationships of migratory species with their 

environment to become disrupted. I will discuss two responses of migratory species to 

environmental change: changes in time, and changes in space.  

1.9.1 Timing of migration 

In response to seasonal changes, migrants often travel long distances during migration 

between a breeding site and an overwintering area (Aidley 1981). To achieve this, birds must 

gain sufficient energy (in the form of fuel) to cover the flight distance (Schaub & Jenni 2001). 

Migratory birds, particularly long distance migrants, are constrained by time and energy 

during migration (Wikelski et al. 2003). Arctic breeders have been shown to have reduced 

reproductive success or complete breeding failure if they arrive at their breeding grounds 

outside a very narrow time window, because of competition for high-quality breeding sites 

and time constraints to raise young (Alerstam & Lindstrom 1990; Bauer, Gienapp & Madsen 

2008). Both the timing of arrival and arrival body condition are dependent on migration 

speed, as well as the conditions at intermediate stop-over sites where fuel is accumulated 

for the next migratory leg (Hedenstrom 1997; Schaub & Jenni 2001; Holdo, Holt & Fryxell 

2009). 

Natural selection should favour migratory birds that can synchronise migration with 

peaks of resource availability, particularly as migrating birds use chains of stopover sites en 

route which often differ in seasonality (Bauer, Gienapp & Madsen 2008). Migratory animals 

tightly follow the seasonal development of resources along their migration routes (the 

“green wave” hypothesis), in order to match timing of stopovers with local peaks in food 

availability (van der Graaf et al. 2006; Tottrup et al. 2008; Schindler et al. 2013).  

The timing of the onset migration is under endogenous control (Berthold 2001) but 

triggered by photoperiod (Gwinner 1996). In light of climate change, if birds are limited by 

their circannual rhythms, they may face a mismatch between migration timing and resource 

availability in the wintering, breeding and stopover areas (Gordo et al. 2005; McNamara et 

al. 2011). For arctic breeding species such as Barnacle geese (Branta leucopsis), migrating 

along a seasonal gradient of plant profitability toward their breeding grounds allows them to 

follow highly profitable food in order to replenish resources and arrive in optimal conditions 

to breed (Kölzsch et al. 2015). The timing of arrival of Barnacle geese was uninfluenced by 
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ecological barriers, indicative of partly fixed migration schedules (Kölzsch et al. 2015). These 

migration schedules might become non-adaptive in light of future climate change 

predictions, where onset of spring is predicted to advance in northerly sites (IPCC 2007).  

Phenological mismatches among species and across trophic levels have been 

documented, for example in the oak-winter moth-tit food chain (Buse et al. 1999; Visser & 

Holleman 2001; Both et al. 2009). To determine the effects of global climate change on bird 

ecology, it is of vital importance to understand the causes of changes in bird migration 

timing, and whether these changes might result in phenological mismatches, with 

potentially severe consequences for migratory birds. 

Long-distance migrants are particularly vulnerable to mismatches because climate in 

their breeding and wintering areas may be changing at different speeds, hampering 

appropriate adaptation (Both & Visser 2001). Further, short distance migrants spend the 

winter closer to the breeding areas in comparison with long-distance migrants, which may 

allow such species to fine-tune the timing of spring migration in response to climate 

(Rubolini et al. 2007; Moller, Rubolini & Lehikoinen 2008). Indeed, the breeding populations 

of long-distance migrant birds are already in decline (Both et al. 2006; Sanderson et al. 2006; 

Heldbjerg & Fox 2008; Moller, Rubolini & Lehikoinen 2008).  

1.9.2 Range shifts and migration distance 

Global climate change has led to increased winter temperatures in North-West Europe, 

and studies have shown that migration distances have decreased for short distance migrants 

(Visser et al. 2009). These changes in migratory distance are in response to non-breeding 

ranges shifting northward because of improved wintering conditions in these areas (Visser et 

al. 2009; Pulido & Berthold 2010; Kullberg et al. 2015), therefore migrants are wintering 

closer to breeding areas. The resulting shortened migration distance is likely to modify the 

timing of spring arrival of migrants to the breeding grounds (Coppack & Pulido 2004; Pulido 

2007; Pulido & Berthold 2010), which means these species can better time their arrival to 

breeding areas to the timing of food availability (Coppack & Both 2002; Walther, Berger & 

Sykes 2005). Current climate change is favouring birds wintering closer to the breeding 

grounds as it reduces migration costs and facilitates the rapid adaptation to shifts in the 

timing of food emergence on the breeding grounds (Visser & Both 2005; Bradshaw & 

Holzapfel 2008). In contrast with these findings, longer migration distances are expected 

given climate change, as migratory species breeding ranges (often located at higher 
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latitudes) respond strongly to latitudinal climatic gradients, but non-breeding ranges (often 

located in tropical regions) do not. Therefore, breeding and non-breeding ranges may shift in 

opposing directions, thus increasing the likely migration distances of species in the future 

(Huntley et al. 2006; Doswald et al. 2009). 

The degree to which changes to the migratory landscape will affect animals depends on 

the ability of migratory animals to alter the timing, direction and destinations of their 

journeys (Bowlin et al. 2010). Under climate change, long-distance migrants are likely to 

become resident as warmer climates allow for species to overwinter on the breeding 

grounds (Berthold 2001). Blackcaps (Sylvia atricapilla) in central Europe, which used to 

migrate almost exclusively to Mediterranean and African wintering grounds have altered 

their migration route over the past few decades, and now winter in the British Isles, where a 

combination of warmer temperatures and bird feeders increases survival (Berthold 2001; 

Bearhop et al. 2005). Furthermore, an artificial selection experiment in a population of 

blackcaps showed that residency will rapidly evolve in migratory populations if selection for 

shorted migration persists (Pulido & Berthold 2010). 

There are a limited number of studies which have assessed the potential impacts of 

climate change on the non-breeding grounds of migrants (see Austin & Rehfisch 2005; 

Studds & Marra 2007; Barbet-Massin et al. 2009), and few have assessed the impact of 

climate change on migratory species on both their breeding and non-breeding ranges 

(Bohning-Gaese & Lemoine 2004; Doswald et al. 2009; Wilson et al. 2011). Doswald et al. 

(2009) showed that, although potential range extent varied among a group of trans-Saharan 

migrants, Sylvia warblers, in general, both breeding and non-breeding ranges were predicted 

to increase in extent given climate change projections for the end of the 21st Century. 

Migration distances were projected to increase, and in many cases novel potential future 

non-breeding areas were simulated, which suggested that new migration routes may need 

to develop in response to climate change. Certainly, as a result of such changes, birds may 

need to develop new migration strategies, for instance, by increasing the number or 

duration of stopovers used, in order to obtain sufficient energy for longer journeys (Schaub 

& Jenni 2001). 
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1.10 Current limitations in understanding migrant bird responses to 

climate change 
 

The velocity of climate change has triggered urgent calls for proactive conservation 

action to address the potential ecosystem-wide impacts of climate change (Strange et al. 

2011). The prioritisation of future conservation should explicitly account for dynamic (and 

uncertain) impacts of climate change on species, including shifts in species distributions 

(Colwell et al. 2008; Watson et al. 2009; Carroll, Dunk & Moilanen 2010). Therefore, 

conservation planning will depend in part on our ability to identify where species are likely 

to occur in the future, given climate change projections (Strange et al. 2011). 

The study of migration patterns and the impacts of climate change at all stages of the 

migratory cycle (breeding, non-breeding, and staging areas) is needed to understand the 

alarming declines of long-distant migrant birds (Sanderson et al. 2006 ;Tøttrup et al. 2012; 

Small-Lorenz et al. 2013). Our ability to predict climate change impacts on migratory species 

is limited by a lack of clear understanding of how climate determines migratory species 

distributions and richness at present. Furthermore, the majority of studies on migratory 

species are focussed on the breeding season and are largely North America or European 

focussed. Therefore, there is a need for a global assessment of the determinants of 

migratory species occurrence and richness on both the breeding and non-breeding areas. 

Even with this understanding, future predictions of migratory species distributions are 

limited by our ability to project ranges of highly mobile species. Reasons include the fact 

that delineating an appropriate region for model projections for migrants is not 

straightforward; as they inhabit spatially and temporally distinct areas during their annual 

migratory cycle, and have the ability to disperse large distances. Additionally, as previously 

mentioned, delineating the extent of a study region for modeling purposes is not 

straightforward.  

Therefore, in this thesis, I aim to understand the drivers of migratory species occupancy 

and richness at a global extent, under current climatic conditions. I aim to create and 

develop species distribution models that overcome the limitations that emerge when 

modeling highly mobile species. I aim to use these improved models to determine the 

locations of climatically suitable space for migratory species on the breeding and non-

breeding ranges given future, climate change projections. More detailed project aims are 

outlined in section 1.8. 



14 
 

1.11 Project aims 

1. The determinants of species richness across the globe 

Firstly, I will describe geographic variation in avian migratory species richness, and identify what 

environmental factors drive the global distribution of migratory birds. I will ask whether the drivers 

of migrant species richness are the same for both the breeding and the non-breeding areas. I will 

consider whether migrant species richness is related to environmental variates consistently across 

the globe, or whether they relate in different ways, or to differing degrees, between 

biogeographically distinct areas.  

2. How to select absence data for species distribution models 

Building SDMs requires data on species presence, as well as either true- or pseudo-absence 

data, but there are few guidelines regarding the spatial area from which absence data should be 

drawn. I will compare approaches to absence selection that differ in the spatial areas from which 

absences are drawn. Specifically, I will develop SDMs for virtual species, conditioned on absence 

data selected by different methods.  

3. What climatic factors are important for breeding/non-breeding migrants across the globe 

Next, I will create species distribution models that relate migrant distributions globally to 

climatic predictors, using the absence selection approach developed in Chapter 3. These analyses 

will reveal what climatic factors make a given location a desirable place for a migrating bird to breed 

or spend the non-breeding season. I will also assess whether the factors that predict migrant 

occurrence on the breeding areas are the same as those that predict migrant occupancy in the non-

breeding regions. 

4. How is migration likely to change given future climate change projections 

Finally, I will use current species projections of breeding and non-breeding ranges to develop a 

method to estimate current migration distances. I will then predict future migrant species 

distributions using global climate change projections. I will apply the previously developed distance 

estimation method to future species distributions to investigate species specific changes in 

migratory distance. These analyses will reveal the influence of future climate change on migratory 

species in terms of: changes in available climatically suitable space, changes in species richness and 

changes in species turnover.  
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2.1 Abstract 

Broad scale geographic patterns in species richness have been studied extensively, but these 

studies have largely overlooked migratory species, which biannually redistribute themselves across 

large ecological scales. I describe geographic variation in avian migratory species richness, and 

identify what environmental correlates drive the global distribution of migratory birds. Using 

comprehensive global distribution data for all extant birds, I calculated the number of breeding 

migrants, the number of non-breeding migrants, as well as the number of non-migratory species 

across the globe. I built statistical models with ecologically meaningful predictors related to 

hypothesised drivers of migratory species richness. Analyses were conducted at a global scale and 

also for individual biogeographic realms. Explanatory variables of species richness included: 

landscape productivity, habitat diversity, seasonality of productivity, consistency of seasonality, 

resident species richness, the distance of migration, and climatic predictors (Actual to potential 

evapotranspiration, and mean temperature of the warmest and coldest month). Geographic 

variation in avian migratory species richness was mapped and areas of high and low migrant richness 

were identified. Drivers of migratory species richness differed between the breeding and non-

breeding areas, with mean temperature of the coldest month being an important predictor of 

migrants on the breeding grounds, and mean temperature of the warmest month being more 

important for migrants on the non-breeding grounds. The results also suggest that migratory species 

richness is correlated with different environmental variables in different parts of the world, for 

example mean temperature of the coldest month was important for non-breeding migrants in the 

northern hemisphere (Nearctic and Palearctic biogeographic realms), but not in the southern 

hemisphere (Afrotropical, Australasian, IndoMalayan, and Neotropical realms). The strong predictive 

power of my models suggests that the main mechanisms that describe global patterns of migratory 

species richness have been captured. Furthermore, the putative driver of species richness show 

pronounced seasonal and regional variation.  
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2.2 Introduction 

Global biodiversity loss is a major driver of ecosystem change (Hooper et al. 2012). 

Understanding the processes that shape global species richness is fundamental for conservation 

priority setting under such biodiversity loss (Kier et al. 2009). Many explanatory hypotheses 

(outlined below) have been proposed to explain the unequal distribution of species globally, yet little 

consensus has been reached (Palmer 1994; Rahbek & Graves 2001; Jetz & Rahbek 2002; Orme et al. 

2005; Rahbek et al. 2007a; Gotelli et al. 2009). Curiously, unravelling the determinants of spatial 

patterns in global species richness has largely lacked consideration of the fact that many species are 

migratory, a major ecological phenomenon that leads to substantial seasonal shifts in the 

distribution of species richness (But see Somveille, Rodrigues & Manica 2015).  

 Avian migration leads to a biannual redistribution of billions of birds across the globe from 

their breeding to their non-breeding regions.  These, often cross-continental, movements can lead to 

seasonal increases of avian species richness in areas that would otherwise be relatively species poor 

(Wisz, Walther & Rahbek 2007b). Further scrutiny of this phenomenon is warranted by the 

ecological scale of migration. Additionally, an enhanced understanding of migrant assembly rules 

might cast light on macroecological studies that aim to understand global patterns of species 

richness. Indeed, migration gives the opportunity to further understand these patterns, by testing 

hypotheses of the drivers of richness for the same group of species on both their breeding and non-

breeding ranges. 

Evaluating migratory species richness patterns poses unique challenges to ecologists, as 

migrants spend part of their annual cycle in different habitats, at different latitudes, and often on 

different continents. Investigations that have examined the drivers of migrant richness have focused 

mostly on narrow geographical regions, primarily Europe or North America, and on one part of the 

migration cycle (usually the breeding season) (Hurlbert & Haskell 2003; Lemoine & Bohning-Gaese 

2003; Monkkonen & Forsman 2005; Wisz, Walther & Rahbek 2007b; Honkanen et al. 2010; Morrison 

et al. 2013; Blackburn & Cresswell 2015). To obtain a more complete understanding of the 

determinants of migrant species richness, spatial and temporal variation of biologically meaningful 

measures must be incorporated into analyses at a global scale.  

Seasonality in climate and resources has frequently been proposed as a key driver of migrant 

species richness (MacArthur 1959; Somveille, Rodrigues & Manica 2015). Migration allows birds to 

take advantage of spatial variation in the seasonal fluctuation of resources (Alerstam, Hedenstrom & 

Akesson 2003) and, consequently, migratory species are often better able to exploit seasonal 

resource availability than resident species (Evans et al. 2006). Resource availability can be measured 
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using the remote sensing measure of greenness, the normalised difference vegetation index (NDVI). 

Studies have shown that seasonality in NDVI explained the distribution of migrant (and resident) 

species richness throughout the year (H-Acevedo & Currie 2003). In addition, seasonality in rainfall is 

thought to trigger movement of Palaearctic migrants within Africa (Moreau 1972), because rainfall 

increases plant productivity and consequently insect abundance (Jones 1995). Furthermore the 

consistency of seasonality in a given location is likely to be an important driver of migrant species 

richness as areas that are consistently seasonal across years are more predicable from year to year. 

Hence, non-breeding migratory species richness was shown to be negatively related to inter-annual 

variability in NDVI (Wisz, Walther & Rahbek 2007a).  

Productivity is considered to be a determinant of non-migrant avian species richness (Jetz & 

Rahbek 2002; Hawkins, Porter & Felizola Diniz-Filho 2003) but production at a given site that is not 

utilised by residents should be available to migrant species; therefore, I expect migrant species 

richness to be influenced by the magnitude of the seasonal pulse of productivity (Nieto, Flombaum 

& Garbulsky 2015). Another putative driver of non-migratory species richness, which may also apply 

to migrants, is habitat heterogeneity. Habitat heterogeneity provides niche diversity, therefore 

facilitating a greater number of species in an area (Jetz & Rahbek 2002; Hurlbert & Haskell 2003; 

Rahbek et al. 2007b; Honkanen et al. 2010; Allouche et al. 2012).  

A neglected area of research is the potential importance of interspecific competition 

between migrants and residents as a determinant of migrant species richness in a given location 

(Leisler 1992).  High resident richness could mean more competition for returning migrants for nest 

sites and resources, which could be detrimental to migrant species (Berthold et al. 1998; Lemoine & 

Bohning-Gaese 2003; Ahola et al. 2007). Alternatively, migrant birds may use residents as cues for 

profitable breeding sites and resource availability under limited time for site exploration 

(Monkkonen & Forsman 2002; Monkkonen & Forsman 2005).  

Temperature is also thought to influence species richness due to physiological constraints 

(Currie 1991), and is also likely indirectly to affect food and shelter resources (Wright 1983; Currie 

1991; Hurlbert & Haskell 2003; Coops et al. 2009). Areas with milder winters have been shown to 

receive more species during the non-breeding season (Wisz, Walther & Rahbek 2007a; Dalby et al. 

2014). Increased numbers of breeding migrants have been correlated with winter harshness, and 

this is likely to be due to reduced competition with resident species (Lemoine & Bohning-Gaese 

2003; Carnicer & Díaz-Delgado 2008; Schaefer, Jetz & Böhning-Gaese 2008). Energy alone, or in 

combination with precipitation, has been linked to large scale variation in species richness. Hawkins 

et al. (2003) found that annual actual evapotranspiration (AET) alone accounted for 70% of the 
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variation in global avian species richness. Changes in the timing of spring migration are amongst the 

most commonly reported phenological responses to climate change (Walther et al. 2002; Jonzen et 

al. 2006; Knudsen et al. 2011). It is therefore likely that climate influences migratory species 

richness. 

Successful migration often requires birds to travel considerable distances, sometimes 

thousands of kilometres, between breeding and non-breeding grounds, within a limited time span 

(Liechti 2006). Migrants that return to the breeding grounds early have been shown to benefit from: 

acquiring better territories; higher survival rates for chicks; and the opportunity for extra matings 

and clutches (Møller 1994; Bearhop et al. 2005; Moller, Rubolini & Lehikoinen 2008; Newton 2008). 

Moreover, long distance migrants are often considered to be under selective pressure to minimise 

time spent migrating (Lindstrom & Alerstam 1992; Weber & Houston 1997). It follows that, given 

two potential migratory end-points of equal suitability, migrants should utilise the area that is closer, 

in order to minimise migratory distances. For example, the number of Palaearctic migratory species 

progressively declines in a north-south gradient within sub-Saharan Africa (Hockey 2000), perhaps 

because European migratory species migrate no further south than is necessary to find suitable 

conditions (Wisz, Walther & Rahbek 2007a; Newton 2008). 

Here, I use species distribution data for migrant birds globally to address three issues related 

to migrant species richness. First, I aim to understand what determines migrant species richness 

across the globe, and whether these differ from those previously shown to predict avian richness 

(without differentiating between resident and migratory species). Second, I ask whether the drivers 

of migrant species richness are the same for both the breeding and the non-breeding areas. The 

spatial extent at which data are sampled can have a large impact on the results of studying the 

relative importance of environmental predictors (Davies et al. 2007; Rahbek et al. 2007a; Bradter et 

al. 2011). Therefore, thirdly, I consider whether migrant species richness is related to environmental 

variates consistently across the globe, or whether they relate in different ways, or to differing 

degrees, between biogeographically distinct realms.  
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2.3 Methods 

2.3.1 Species distribution data 

Global avian species distribution data of > 10,000 extant avian species were obtained from 

BirdLife International and NatureServe (Birdlife International & NatureServe 2014), with species 

defined according to BirdLife’s avian taxonomy (BirdLife International 2014). Primarily marine 

species were excluded from analyses, as the vast majority of their ranges are oceanic and therefore 

of different character to, and not comparable with, terrestrial species.  Coastal species were also 

removed as many such species also forage in the marine and inter-tidal zones, such that their 

dependency upon terrestrial ecosystems is variable. The remaining terrestrial species distributions 

were gridded at a 0.5° X 0.5° (~60 x 60 km at the equator) equal-area grid in a Behrman equal area 

projection. Species were considered to be present in a grid-cell if their ranges intersected at least 

50% of that cell.  

Migrants were defined (in accordance with BirdLife International) as those that make regular 

cyclical movements beyond the breeding range, with predictable timing and destinations. This 

definition includes species that are only migratory in part of their range or population, and short 

distance migrants, but does not include truly nomadic species or altitudinal migrants. Breeding 

migrant richness was calculated as the sum of all migratory species that were present in a terrestrial 

cell during the breeding season. Non-breeding migrant richness was the sum of migrants that were 

present in a cell in the non-breeding season. Similarly, resident avian richness was defined as the 

sum of non-migrant avian species that were present in a cell. Resident species richness was used in 

our models as a predictor of migratory species richness, as a proxy for potential competition with 

migrants. 

2.3.2 Bioclimatic variables 

Mean monthly temperature and precipitation data were obtained from Worldclim (Hijmans 

et al. 2005, http://www.worldclim.org/) on a 0.04° resolution across the globe, from the period 

1951-2000 (a period corresponding to the data used to produce the species’ range maps). These 

data were aggregated to a 0.5° resolution by ranking the 0.04° grid cells within each 0.5° cell by 

elevation and calculating the mean value for the cells that lay between the 25% and 75% quartiles of 

the elevation range for the 0.5° grid cell (Hole et al. 2009).  This limits distortion of the mean climate 

by atypical values found at extremely high or low elevations. Bioclimatic explanatory variables which 

have been shown to be useful for modelling avian species distributions in biomes ranging from the 

arctic to the tropics were included in our analyses (Huntley et al. 2006; Hole et al. 2009; Araújo et al. 
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2011). The variables were: mean temperature of the warmest month (MTWM); seasonality and 

productivity metrics (see below); mean temperature of the coldest month (MTCO); and an estimate 

of the ratio of actual to potential evapotranspiration (APET). APET was estimated for each grid 

square using the model described in Prentice et al. (1992). 

2.3.3 Productivity and seasonality  

To investigate the effect of vegetation productivity and seasonality on migrant richness, 

NDVI (normalised difference vegetation index) data were used, processed by the Global Inventory 

Modelling and Mapping Studies group (GIMMS; Pettorelli et al. 2005; Tucker et al. 2005). NDVI 

correlates directly with vegetation productivity and provides information about net primary 

productivity (NPP), and vegetation biomass and quality (Reed et al. 1994; Pettorelli et al. 2005). 

These data were global at a 0.07 degree resolution (8km by 8km) and were available at bimonthly 

intervals from 1982 to 2006. For the purpose of this investigation, data were obtained for a period 

that maximised the overlap between the NDVI data and the period corresponding to when the 

BirdLife species distribution data were collected (from the earliest possible NDVI record (1982) to 

when the BirdLife polygons were finalised (2000)). The data were aggregated to a 0.5° resolution by 

estimating the mean NDVI from all pixels that were contained within each 0.5° cell. 

Three NDVI metrics that I considered might influence migrant species richness were estimated as 

follows: 

(1) The mean total growing season NDVI (INDVI) was calculated as the sum of positive NDVI values 

over the growing season across years, for each 0.5 degree cell across the globe. This value is a proxy 

for the productivity in a given cell.   

(2) The seasonal amplitude of a cell’s productivity (NDVIseasonality) was estimated as the difference 

between the maximum and minimum non-negative annual NDVI values for a given cell in any one 

year. The mean of these annual amplitudes across the 19 year period (1982-2000) was obtained. 

This value is a proxy for the seasonality in a given cell. 

(3) The inter-annual variability in seasonality (of primary productivity) is a measure of how 

consistently seasonal a cell is (NDVIconsistency). A location that is consistently seasonal across years 

might be more attractive to migrants. To estimate NDVIconsistency, I calculated the mean coefficient of 

variation of bimonthly NDVI estimates over the 19 year period (1982-2000). Specifically, the variance 

of NDVI for each of the 24 annual bimonthly time periods across the 19 years was divided by the 
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mean NDVI estimate for that time same period across the 19 years. This value is a proxy for the 

consistency in seasonality for a given cell. 

2.3.4 Habitat diversity  

Global land cover data were downloaded from the USGS Global Land Cover Characteristics 

Database (version 2, http://edc2.usgs.gov/glcc/globe_int.php). This source classifies 22 habitat 

classes using 1-km Advanced Very High Resolution Radiometer (AVHRR) data spanning a twelve 

month period (April 1992-March 1993). The USGS database was chosen due to its global coverage 

and because the time period of data collection overlapped with the species and NDVI data. 

Percentage coverage of each habitat class at 0.5° resolution was used to estimate Shannon habitat 

diversity (Shannon 1948), H, for each cell.  

2.3.5 Distance  

Given the cost of migration, the number of non-breeding migrants in a cell is likely to be 

affected by proximity to the breeding grounds (and vice-versa). This “distance to the breeding 

grounds” metric was estimated, for each terrestrial cell globally, as the minimum great circle 

distance from that cell to the closest edge of each migrant species’ breeding distribution, calculated 

using the sp package in R (Pebesma & Bivand 2005). Each cell across the globe was then assigned a 

distance metric, which is the mean distance from that cell to nearest breeding cells for all migrant 

species. If a cell overlapped with a species’ breeding range the cell was assigned a distance of zero 

for that species. Similarly, the probability that a migrant bird will breed in a given cell is likely to be 

reflective, at least in part, of distance from the non-breeding grounds to that cell. “Distance to the 

non-breeding grounds” (to predict migrant richness on the breeding grounds) was calculated in a 

similar manner; but here the mean of minimum great circle distances between a given cell and the 

closest edge of all of the migrant non-breeding ranges was estimated. Spatial patterns of these 

distance predictors, as well as all other predictors, are displayed globally (Figure S 1). 

2.3.6 Modeling approach 

A multi-stage modelling approach was used to explore the potential determinants of migrant 

species richness that removed highly correlated predictor variables and minimised the potential 

confounding effects of spatial autocorrelation (as outlined in Voskamp et al. 2015). The initial pool of 

variables selected as potential determinants of migrant species richness on both the breeding and 

non-breeding grounds were: three bioclimatic variables (APET, MTWM, MTCO); seasonality 

(NDVIseasonality); seasonal consistency (NDVIconsistency); habitat diversity (H); annual vegetation 
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productivity (INDVI); resident avian species richness and distance to the breeding/non-breeding 

grounds. Linear and quadratic terms for these variables were used in modeling. 

Spatial autocorrelation, where observations of nearby locations are more similar than 

expected at random, is a frequent phenomenon when analysing spatial data (Legendre 1993). 

Species richness values were highly spatially correlated (Moran’s I = 0.99). The effect of spatial 

autocorrelation was minimised when modelling by using a blocking approach where the 

transferability of fitted models to spatially segregated test data, was assessed. The globe was divided 

into 36 blocks, and these blocks were separated into two groups based on a checkerboard pattern. 

Models were created using one half of the checkerboard, sampling 10% of the data at random from 

within one set of blocks, and testing the resultant model  on random samples of 10% of the cells 

from the left out set of blocks. This approach substantially reduced the spatial autocorrelation (mean 

Moran’s I across random subsets = 0.15,Table 2.1).  

Species richness was modelled at two spatial extents, firstly at a global extent and secondly 

at the scale of individual biogeographic realms. To test whether migrant species richness is related 

to environmental variates in different ways, or to differing degrees, in individual biological realms, I 

produced models similar to the global models described above, but fitted instead to individual 

realms. Biogeographic realms were delimited following Olson et al. (2001) which defines eight major 

realms: Afrotropical, Australasian, Indo-Malayan, Nearctic, Neotropical, Palearctic, Antarctic and 

Oceanic. From these, the latter two realms were excluded from our analyses as both host few 

terrestrial migrants. Separate models were produced for the remaining six realms. More recently, 

Holt et al. (2013) proposed a more comprehensive series of biogeographic realms. However, the 

realms delimited by Olson et al. (2001) were used as they were more comparable in terms of 

individual realm extents, which minimised potential issues when comparing realm models. 

Firstly highly correlated variables were removed (Pearsons’ r > 0.7, following Dormann et al. 

(2013)) from all models, i.e., for models of breeding and non-breeding areas, at both the global and 

realm level, as follows: All combinations of variables from our initial variable set (that included no 

variable pairs with correlations greater than r = 0.7), were selected i.e. a saturated model. For each 

season/realm combination, generalized linear models (GLMs; Poisson error distribution) of 

migratory species richness were fitted, that included all non-correlated combinations of covariates 

and their quadratic terms, to 1000 random subsets of the data using the blocking approach 

described above. Each time, the Akaike Information Criterion (AIC) was recorded, and the mean AIC 

from across the 1000 models was used to compare the among the candidate predictor 
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combinations. The combination of predictors with the lowest mean AIC was selected as the best 

model for that particular season/realm. 

Secondly, considering all variables included in the best saturated model for a season/realm, 

the subset of these variables that produced the most parsimonious model was evaluated. This was 

assessed using model selection with AIC, where models with a ΔAIC of ≤6 and lower than the ΔAIC of 

all simpler models were considered (Richards 2008). For model selection, the MuMIn package in R 

(Barton 2015) was used, fitting 1000 models for each variable combination, using the sampling 

procedure described previously. This subsampling process resulted in subtly different variable 

selection among the 1000 models. To ensure that only those parameters with robust and repeatable 

influences on migratory species richness were identified, the frequency with which individual 

environmental covariates were selected in the top models across the 1000 subsets was recorded. I 

report the parameter values for those covariates that were included in at least 90% of the top 

models (example Figure S 2). Parameters defined as robust by this method were used to predict 

species richness for all terrestrial cells globally. Models fitted separately for each geographic realm 

used a similar blocking approach, with each realm split, checkerboard-fashion, into 10 equal-sized 

blocks, which were sub-divided into five training blocks and five test blocks. Following the same 

approach described for the global level models, the best model for each realm was identified.  

Global and realm level models (each built on a subset of data as described above) were 

assessed in terms of how well they predicted migratory species richness using McFaddens R2 

(Beaujean 2012). Models that were calibrated at a global scale were also used to predict breeding 

and non-breeding migrant species richness at the individual realm level. As described above, models 

were built on subsets of the entire dataset in each case but were applied to the entire region of 

interest. A mean R2 was calculated from across the 1000 iterations of the best model for a 

season/realm.  

To test whether realm based models predict global species richness better than global 

models, predictions that were made from realm models fitted to individual realms were combined 

to predict migratory species richness on both the breeding and non-breeding ranges across the 

globe (excluding Antarctica and Oceania). AIC (based on the least squares case from Burnham and 

Anderson (2002)) was used to compare the global model to the amalgamated realm models, 

penalising the increased model complexity of the realm level models.  
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2.4 Results 

My results show that global models of non-breeding migrant richness performed less well 

than amalgamated realm models, which can be seen clearly in Figure 2.1 where non-breeding 

migrant richness was vastly under-predicted when using global models. This improvement in models 

created using amalgamated realm models rather than global models was evident, though not as 

pronounced, for breeding migrant richness (Figure 2.1). 

Realm level models, which are built using varying predictor combinations, are superior at 

predicting migratory species richness than global models (Table 2.1) in particular at extremes of high 

and low species richness (Figure 2.3). Furthermore, models are generally able to predict migratory 

species richness on the breeding grounds better than on the non-breeding grounds (Table 2.1). The 

majority of models perform well (R2 > 0.7) at predicting migratory species richness, but some, such 

as the Neotropical realm models, performed poorly (R2 < 0.6) in comparison with those from other 

realms (Table 2.1). 

When global models, created using variables that perform well at predicting migrant 

richness (on both the breeding and non-breeding grounds) across the globe, were projected to 

individual realms, models did not recover species richness well in the majority of realms (R2 = 0.11-

0.62, Table 2.1). Nevertheless, these global models did predict predicted non-breeding migrant 

richness in the Nearctic (non-breeding R2=0.83) and breeding migrant richness Palearctic realms 

(breeding R2 =0.78) well. 
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Table 2.1. Model accuracy (evaluated using mean McFadden’s R
2
) at predicting migrant species richness on the 

breeding and non-breeding grounds, using models fitted at global and biogeographic realm extents. Mean 

autocorrelation values of model residuals after subsampling (given as Moran’s I). R
2 

(globe to realm) is the R
2  

value of models created at the global scale, and applied to each individual realm. The number of grid cells 

underlying each model extent is also provided.  

Extent Season R2 R2  (globe to 

 realm) 

Moran’s I Number  

of cells 

Global Breeding 0.73 ------ 0.17 55, 974 

 Non-breeding 0.61 ------ 0.16  

Afrotropical Breeding 0.80 0.11 0.15 9,051 

 Non-breeding 0.70 0.45 0.14  

Australasian Breeding 0.74 0.34 0.13 3,926 

 Non-breeding 0.81 0.41 0.12  

Indo-Malayan Breeding 0.72 0.62 0.13 3,375 

 Non-breeding 0.71 0.27 0.15  

Neotropical Breeding 0.58 0.23 0.15 8,334 

 Non-breeding 0.41 0.27 0.15  

Nearctic Breeding 0.82 0.58 0.13 8,532 

 Non-breeding 0.95 0.83 0.17  

Palaearctic Breeding 0.88 0.78 0.16 22,765 

 Non-breeding 0.77 0.57 0.13  
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Figure 2.1 Observed versus predicted migrant species richness from models generated using global (a,b) and 

combined realm extent (c, d) models for both the breeding (a,c) and non-breeding (b, d) areas. R squared 

values for the breeding and non-breeding richness predictions from global models are 0.85 and 0.71 

respectively (a and b). R squared values for both the breeding and non-breeding richness predictions from 

combined realm models are 0.89 and 0.86 respectively (c and d). Red line corresponds to the 1:1 line. 

 

The realm level models, when amalgamated, described migrant species richness better than 

the global level model (Breeding: Realm model AIC: 13403, Global model AIC: 152002 and non-

breeding: Realm model AIC: 112952, Global model AIC: 130636). Amalgamated realm level models 

captured peaks in migrant species richness better than global models (Figure 2.2). In particular, 

global models strongly underestimated Palaearctic breeding diversity (Figure 2.2 (c)) and non-

breeding diversity in the Indo-Malayan region (Figure 2.2 (d)). 

Breeding Non-Breeding 
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Figure 2.2 Observed migrant breeding (a) and non-breeding (b) species richness. Breeding (c) and non-

breeding (d) migrant species richness predictions based on the global model (R
2
=0.73 and 0.61 respectively). 

Breeding (e) and non-breeding (f) migrant species richness predictions which are based on combined realm 

models (R
2
=0.85 and 0.71 respectively).  
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Distance to the corresponding breeding or non-breeding grounds, productivity, resident 

richness and habitat heterogeneity were important for predicting migrant richness on both the 

breeding and non-breeding grounds when using global models (Figure 2.3, Figure 2.4). Mean 

temperature of the coldest month was the most important predictor of global breeding migrant 

richness, with the majority of breeding migrant species richness occurring at intermediate 

temperatures. Increased mean temperature of the warmest month and intermediate levels of 

resident richness were important predictors of non-breeding migrant richness globally (Figure 2.4).  

Predictor importance varied among realms. Overall, resident richness was a consistently 

important predictor of both breeding and non-breeding migrant species richness. For areas of high 

breeding migrant occurrence (Nearctic and Palearctic realms) low levels of resident species richness 

determined migrant richness. The importance of predictors differs between these two realms, 

where Nearctic migrant richness is predicted by high levels of APET, habitat diversity (H), seasonality, 

productivity and MTWM, and Palearctic richness is predicted by low MTCO, consistency of 

seasonality and habitat diversity. Distance to the non-breeding grounds is an important predictor of 

breeding migrant richness in both realms.  
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Figure 2.3 Predictors of breeding migrant species richness (APET (actual to potential evapotranspiration); CS 

(consistency); Dist (Distance); INDVI (productivity); MTCO (mean temperature of the coldest month); MTWM 

(mean temperature of the warmest month); RR (Resident species richness); Seas (Seasonality) and H (habitat 

heterogeneity)) that were not consistently included in the top models are blocked out in grey. Locations are 

global (GL), and realm: Afrotropical (AF); Australasia (AUS); IndoMalayan (IM); Neotropical (NEO); Nearctic (NE) 

and Palearctic (PAL). X-axis is the total range of values for each variable across the globe; y-axis is the 

maximum species richness globally (GL) and the maximum species richness within each individual realm (AF-

PAL). These relationships are illustrative, and based on models produced on one half of the blocked data. 

Boxes highlight the principal regions of high migrant species richness on the breeding grounds. 

 

Predictor importance for non-breeding migrant richness also varied among realms (Figure 

2.4). For areas of high non-breeding migrant richness (Afrotropical, IndoMalayan and Neotropical 

realms) intermediate levels of resident species richness was an important determinant of migrant 

richness. Migratory richness decreased with increasing distance to the breeding grounds in these 

realms. Productivity and habitat diversity were important predictors of non-breeding migrant 

richness across these realms, however, relationships with richness varied among realms (Figure 2.4).  
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Figure 2.4 Predictors of non-breeding migrant species richness (APET (actual to potential evapotranspiration); 

CS (consistency); Dist (Distance); INDVI (productivity); MTCO (mean temperature of the coldest month); 

MTWM (mean temperature of the warmest month); RR (Resident species richness); Seas (Seasonality) and H 

(habitat heterogeneity)) that were not consistently included in the top models are blocked out in grey. 

Locations are global (GL), and realm: Afrotropical (AF); Australasia (AUS); IndoMalayan (IM); Neotropical 

(NEO); Nearctic (NE) and Palearctic (PAL). X-axis is the total range of values for each variable across the globe; 

y-axis is the maximum species richness globally (GL) and the maximum species richness within each individual 

realm (AF-PAL). These relationships are illustrative, and based on models produced on one half of the blocked 

data. Boxes highlight the principal regions of high migrant species richness on the non-breeding grounds. 
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2.5 Discussion 

2.5.1 Global patterns of migrant species richness 

The approach used in this study highlighted global patterns of migratory avian species 

richness, as well as the importance of underpinning predictors. Furthermore, it allowed the 

assessment of previously proposed drivers of species richness patterns, which has not been 

considered simultaneously for migratory species at this global spatial extent.  

I show that migrant richness, in both the breeding and non-breeding season can be 

predicted accurately using a limited number of explanatory variables. Explanatory models of migrant 

richness performed well both at the global and at the biogeographic realm extent (Table 2.1). 

Models predicted migrant richness more accurately when conditioned and applied at a realm extent 

(Figure 2.1, Figure 2.2) than at a global extent. Models are expected to perform better when 

analysed at the realm level, because migrants are likely to respond differently to diverse 

environmental or biological drivers in different areas. In fact, realm level models captured the 

extremes (areas of high and low) migrant richness more accurately (Figure 2.2). 

Models did not perform constantly well across realms, in particular, models of both breeding 

and non-breeding migrant richness in the Neotropical realm performed poorly (R2 =0.58, R2= 0.41 

respectively). Other ecological processes not included in our analyses may influence the species 

richness of migrants in this region. For instance, the altitudinal range of the Andes was not taken 

into account in our analyses, which could act as a centre of recent speciation in the Neotropical area 

(Rahbek & Graves 2001; Kattan & Franco 2004). Moreover, biogeographical realms, some of which 

are large, can span multiple ecosystems, and variables which explain migrant species richness may 

not operate in the same way across the entire area. A finer scale than the realm level for conducting 

analyses could highlight the importance of locally important predictors which are overlooked in the 

realm-level analyses. 

2.5.2 Potential drivers of migrant species richness 

Resident richness was consistently selected as an important predictor of breeding migrant 

species richness at both the global and realm level (Figure 2.3, Figure 2.4). Migrants may use 

residents as cues for profitable sites (Monkkonen & Forsman 2005), where direct assessment of 

available breeding/non-breeding patches may not be possible. Further, the correlation of resident 

species richness with migratory richness could be attributed to underlying processes that drive 

resident species richness to be high in certain areas, such as topographic variability (Davies et al. 

2007). The overall relationship between migrant and resident species richness at the realm level, is a 
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hump-shaped one, which is to be expected if migrants use residents as cues for profitable patches, 

but high resident richness results in competition for returning migrants for nest sites and resources, 

which could be detrimental to migrant species (Berthold et al. 1998; Lemoine & Bohning-Gaese 

2003; Ahola et al. 2007). 

Migration distance was a key predictor of non-breeding migrant richness in the areas of high 

non-breeding migrant richness (the Afrotropical, Neotropical, Australasian and Indo-Malayan realms, 

Figure 2.4). This supports the idea that migrant birds should not migrate further than is necessary to 

find suitable non-breeding habitat (Newton 2008). The southward gradient of declining species 

richness of Palaearctic migrants in the Afrotropical non-breeding grounds (similarly of Nearctic 

migrants in the Neotropical non-breeding grounds) is likely to be as a result of this concept. Further, 

non-breeding migrants are concentrated in the southern regions of the northern latitudes, rather 

than being distributed in areas of suitable climate in the southern hemisphere (Figure 2.2). Distance 

to the breeding grounds (Nearctic and Palearctic realms) was an important predictor of breeding 

migrant species richness, with intermediate migratory distances predicting breeding migrant species 

richness in the Nearctic realm. The relationship is not clear for the Palearctic realm, which is likely to 

be an artefact of the large size of the Palearctic realm. 

Temperature was also an important predictor of migrant richness, but there were clear 

differences between realms. Mean temperature of the coldest month was an important predictor of 

migrant diversity (both breeding and non-breeding) in the Palearctic realm, and for non-breeding 

migrants in the Nearctic realm, both of which are in the northern hemisphere where thermal 

limitations are likely to be associated with the cold (Hickling et al. 2006; Pearce-Higgins & Green 

2014). Mean temperature of the warmest month was more important for the southern hemisphere 

realms (Afrotropical, Neotropical, Indo-Malayan and Australasian), where drought and hot climates 

are likely to be more limiting to species richness (Newton 2004). 

INDVI, a surrogate for net primary productivity, was selected across the realm level models 

as important for non-breeding migrant richness, but was only important for breeding migrants in the 

Nearctic realm, as well as for breeding richness from global models (perhaps influenced by the 

importance of this variable for breeding migrants in this realm, which hosts a large proportion of 

migrant diversity in the breeding season). This supports the idea that environmental productivity is a 

major determinant of broad scale taxonomic richness (Jetz & Rahbek 2002; Hawkins, Porter & 

Felizola Diniz-Filho 2003). 
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In order for migration to be a winning strategy, seasonal fluctuations in primary production 

must be predictable (Hurlbert & Haskell 2003). Surprisingly, seasonality and inter-annual seasonal 

variability (consistency) were not important predictors of breeding migratory richness at the global 

scale. The importance of these variables differed between seasons and among realms, with 

consistency predicting migrant diversity in the Palearctic and Afrotropical realms. Seasonality was 

only found to predict non-breeding richness in the Indo-Malayan region (Figure 2.4). Seasonality was 

an important predictor of breeding migrant richness in the Nearctic realm which is consistent with 

previous studies (Figure 2.3) (Dalby et al. 2014). Surprisingly, seasonality was a poor predictor of 

breeding migrant richness in the Palearctic region, where previous studies have shown seasonality to 

be a major driver of richness where incoming migrants benefit from a surplus of resources in areas 

of high seasonality (Somveille, Rodrigues & Manica 2015). Our analyses are limited by the fact that 

annual seasonality might be uninformative about how seasonal an area is at the period when the 

migrants are present in an area. 

In agreement with previous studies of the determinants of avian diversity, habitat 

heterogeneity was an important predictor of migrant species richness at the global level (Jetz & 

Rahbek 2002; Davies et al. 2007). This is consistent with the habitat heterogeneity theory, where 

increased habitat diversity supports increased species numbers (Jetz & Rahbek 2002; Hurlbert & 

Haskell 2003; Rahbek et al. 2007b; Honkanen et al. 2010; Allouche et al. 2012). APET, a measure of 

moisture availability, is known to affect the timing of spring migration (Studds & Marra 2011), was 

an important predictor of migrant species richness in only the Nearctic, Australasian and Palearctic 

realms (Figure 2.3, Figure 2.4). This contrasts with Hawkins et al. (2003), who found that annual 

actual evapotranspiration (AET) accounted for 70% of the variation in global avian species richness. 

Therefore, the drivers of species richness of migrant birds may differ to those of non-migrants.   

Diversity and distribution patterns are not solely related to climate and habitat factors such 

as those considered here. Other factors that could affect the species richness patterns of migrants 

include historical biogeography and small scale niche driven assembly patterns (Rahbek et al. 

2007a). For example, the considerable species richness of Andean regions is likely to be driven by 

high levels of speciation as a result of  the highly heterogeneous topography (Rahbek & Graves 

2001). Further, migratory species may be displaced due urbanisation of landscapes, as well as 

human persecution (McCulloch, Tucker & Baillie 1992; Rodewald & Shustack 2008). These factors 

which have not been explicitly assessed may impact on migrant distributions. 

In summary, previous macroecological studies have highlighted the importance of plausible 

drivers that explain species diversity, but few have analysed the drivers of migratory species at a 
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global scale. Often ignored in macroecological studies, migratory birds comprise over 80% of 

biodiversity of temperate regions across the globe (Rappole 1995). Recent research has highlighted 

the necessity to include migratory species in conservation planning (Runge et al. 2014), as rapid 

declines in migrant birds have been observed (Kirby et al. 2008). Studies that have analysed migrant 

species richness, have often focused on the breeding ranges of the species, overlooking the patterns 

of diversity of non-breeding migrant richness and the underlying drivers of these patterns, and how 

the two seasons might be related. Given the rapid biodiversity loss experienced globally, 

understanding drivers of species richness at a global scale is essential (Sala et al. 2000). Here I show 

that migratory species richness on both the breeding and non-breeding ranges can be predicted 

accurately using a small number of ecologically meaningful variables. Our study highlights the 

variables that drive migratory avian richness patterns on a large scale in different ecoregions of the 

world. Finally, global models fail to capture all the detail and intricacies that the narrower 

biogeographic realm extent models captured. Therefore I recommend future studies to be 

conducted at the global scale in order to capture the full annual cycle of dynamic migratory species, 

but that models should be calibrated at finer geographical scales, such as the biogeographic realm, 

to capture regional differences in relationships with these species. 
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3.1 Abstract 

Species Distribution Models (SDMs) are used widely in ecology for identifying species’ habitat 

preferences, and for predicting how the suitability of habitats might change in space or time.  SDMs 

have found particular utility in predicting species’ potential responses to climate change. Building 

SDMs requires data on species’ presence, as well as either true- or pseudo-absence data, but there 

are few guidelines regarding the spatial extent from which absence data should be drawn. In fact, 

there is likely to be a trade-off in selecting the area from which absence data are drawn: too narrow 

an extent will likely truncate the full environmental response curve of a species, limiting the 

transferability of an SDM; too large an extent may incorporate suitable but unoccupied cells due to 

geographical constraints, potentially weakening underlying relationships. Selecting an extent over 

which to create an SDM is, thus, crucial.  In spite of its direct effect on model performance, this 

remains a surprisingly overlooked step in the SDM process. Here, I compare approaches to absence 

selection that differ in the spatial extents from which absences are drawn. Specifically, I developed 

SDMs for virtual species, conditioned on absence data selected by different methods. I assessed 

model ability to predict species’ occurrence but also, importantly, their ability to detect the 

underlying climatic relationships for a species. Five absence selection approaches were used, 

including random selection, selecting concentric cells around a species’ range, and several 

intermediate, distance-weighted, selection methods. Models conditioned on absences drawn from 

extremely wide and extremely narrow extents provided poor descriptions of species’ underlying 

climatic niches. Overall, I found that SDMs using distance-weighted approaches to selecting 

absences consistently performed best in recreating the underlying climatic niche. The results suggest 

that existing, often arbitrary methods for absence selection might simulate current species’ 

distributions well but fail to identify underlying climatic relationships accurately. Using a weighted 

absence selection, whereby absences are preferentially selected close to the boundary of a species’ 

distribution, but with some absences drawn from further afield, overcomes the necessity to delimit 

an extent based on arbitrary decisions and outperforms other methods across climatic parameter 

space. 
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3.2 Introduction 

Current rates of environmental change, including changes in climate, land-use and human 

exploitation of natural resources, are unprecedented in recent history (Sala et al. 2000; Pereira et al. 

2010; Mantyka-Pringle, Martin & Rhodes 2012). Species worldwide are responding to climatic 

changes with changes in phenology, range and abundance changes, and local evolutionary responses 

(Parmesan & Yohe 2003; Chen et al. 2011b). Predicting species’ potential responses to climate 

change is vital for conservation planning and mitigation (Guisan et al. 2013), and to ensure the 

continuity of ecosystem service provision (Naidoo et al. 2008). Species Distribution Models (SDMs) 

correlate species’ spatial distributions with environmental conditions (Guisan & Zimmermann 

2000b). SDMs have been used extensively to evaluate the potential impacts of climate and land-use 

change on species’ distributions (Guisan et al. 2013) and abundances (Howard et al. 2014), to inform 

protected areas selection and management (Araujo et al. 2011; Bagchi et al. 2013), to identify 

historical refugia for biodiversity (Carnaval et al. 2009; Graham et al. 2010) and to evaluate the 

potential for the spread and establishment of invasive species (Broennimann & Guisan 2008; Roura-

Pascual et al. 2009).  

Although SDMs are widely used in ecology, limitations on their accuracy, predictive power 

and transferability are widely recognised (Araújo & Peterson 2012; Dormann et al. 2012b; Heikkinen, 

Marmion & Luoto 2012).  These limitations often arise from unrealistic model assumptions (Guisan 

& Thuiller 2005; Araújo & Peterson 2012). In addition, however, limitations can also arise as a result 

of the data used to build the models (Wiens et al. 2009; Jiguet et al. 2010; Rocchini et al. 2011).  

Among these limitations, a poorly recognised source of model uncertainty arises as a consequence 

of the spatial extent from which absence data are drawn for model building (Thuiller et al. 2004; 

VanDerWal et al. 2009).  

Absence points provide a contrast to conditions where a species occurs. However, the study 

extent or “arena” (i.e., area from which absence data are drawn) is often defined arbitrarily, based 

on the region of data collection, a biogeographical realm, or a political or other convenient boundary 

around an area of interest.  Even when only presence data are available, SDMs rely on artificial 

absence (often termed pseudo-absence) data drawn from the dataset provided (excluding 

presences). This, itself, is often arbitrarily defined (VanDerWal et al. 2009). In both presence-only 

and presence-absence modelling, arbitrarily defined arenas can be particularly problematic if a 

species occurs beyond or abutting the defined extent, potentially leading to the truncation of 

climatic niches (Thuiller et al. 2004; Barbet-Massin, Thuiller & Jiguet 2010).  
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Even when a species’ occupied range occurs entirely within the modelled extent, decisions 

about the source of absence data remain critical. This is because a fundamental trade-off exists in 

choosing the extent of the modelling arena. Specifically, for SDMs designed to link patterns of 

occurrence to climatic conditions, drawing absence data from a narrow extent: (1) minimises the risk 

of including cells that are climatically suitable but unoccupied due to historical processes or limits on 

dispersal (which would dilute the true climatic signal; Chefaoui & Lobo 2008; Anderson & Raza 

2010); (2) avoids swamping the model with geographically distant data that are low on useful 

information (and which provide the appearance of high discrimination without improving model 

performance in areas of borderline suitability;  Anderson & Raza 2010; Acevedo et al. 2012); but (3) 

limits the climatic space sampled (potentially constraining the predictive capacity of models; Thuiller 

et al. 2004; Barbet-Massin, Thuiller & Jiguet 2010).  By contrast, drawing absence data from a very 

wide extent ensures that climate space is sampled more fully but risks dilution of the climatic signal, 

resulting in poor performance in areas of borderline suitability.  

Several sampling strategies for selecting absence and pseudo-absence points have been 

suggested. Strategies include: selecting absences randomly from a predefined background area 

(Wisz & Guisan 2009); selecting absences within (or outside) a certain geographic distance from 

presences (Barbet-Massin et al. 2012; Vale, Tarroso & Brito 2014); and selecting absence points from 

outside a predefined region based on a preliminary model (Ward & Morgan 2014). Performance is 

usually judged based on one or more of a range of metrics, including the area under the curve (AUC) 

of the receiver operating characteristic, True Skill Statistic (TSS), Kappa, sensitivity and specificity.  A 

major drawback of these metrics is that they are all calculated with reference to the model’s ability 

to recreate presence-absence distributions; models that score well by these metrics might, 

nevertheless, be poorly suited to predicting to novel situations.  This is because presence/absence is 

a coarse metric that does not necessarily represent the underlying climatic suitability but is 

dependent on confounding processes that cause a species to occur in unsuitable areas (e.g. buffer 

effects; source-sink dynamics) or to be absent from suitable areas (e.g. spatial or dispersal 

constraints; historical biogeography). These processes could mean that presences and absences are 

weakly associated with relative suitability, especially at intermediate suitabilities (Beale, Lennon & 

Gimona 2008). Where one seeks to identify the impact of climate on suitability, a good SDM should 

be able to take coarse presence-absence data and still return a good representation of the 

underlying relationship between climate and probability of occupancy. An alternative to metrics 

based on presence-absence data, therefore, which holds more promise for predicting to novel 

conditions, would be to identify models that perform well in identifying the true relationship 

between climate and probability of occupancy. 
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Understanding how climate dictates the probability of occurrence of a species is challenging, 

as the real relationship between climate and the probability of occurrence is unknown. Virtual 

species distributions can overcome some of these limitations and can be useful in understanding and 

improving modelling approaches (Hirzel, Helfer & Metral 2001; Meynard & Quinn 2007; Meynard & 

Kaplan 2013). A virtual species’ distribution can be created using pre-determined relationships 

between environmental gradients and the probability of occurrence of the species. Crucially, virtual 

distributions are characterised by a known relationship between climate and probability of 

occupancy and, thus, allow SDMs to be assessed in relation to their ability to recover that true 

relationship.  

Here, I use five approaches to selecting absence data for use in SDMs for virtual species 

distributions (including random selection, selecting concentric cells around a species’ range, and 

several intermediate, distance-weighted, selection methods), and compare their abilities to produce 

models that can identify the underlying relationship between climate and probability of occupancy 

(which I refer to as “suitability”). The approaches vary in the average spatial extent from which 

absences are drawn. I determine the effect of this variation on SDM accuracy and predictive 

performance. To quantify the importance of absence selection approaches, I focus on answering 

three questions: (1) how does absence sampling using differing methods affect the predictive ability 

of models; (2) what is the best absence sampling strategy in terms of recreating the underlying 

climatic suitability for a species; and (3) once the best absence sampling method is chosen, does 

changing the number of absences affect the predictive ability of SDMs? 
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3.3 Methods 

3.3.1 Creating virtual species distributions 

I generated global distribution patterns at a half degree (approx. 50km2 at the equator) 

resolution for 50 virtual species that differed in their response to three bioclimatic variables: mean 

temperature of the coldest month (MTCO), mean temperature of the warmest month (MTWM) and 

seasonality of precipitation (SOP). The variables chosen reflect the type of variables used in SDMs of 

taxa from different global biomes and represent gradients and extremes that limit species in the real 

world. Global climate data were obtained from Worldclim (Hijmans et al. (2005), http://www. 

worldclim.org/) at a 2.5’ resolution and were aggregated to a 0.5° resolution. 

For each individual climate variable, climatic suitability for a pseudo species was defined by a 

Gaussian relationship with a randomly selected mean and standard deviation, taken from within the 

plausible global ranges (MTCO (-50.1 - 28.3), MTWM (-7.4 - 39.1) and SOP (0 - 236)). The climatic 

suitability (Cj) of cell j was calculated by multiplying the probabilities linked to each variable: 

        𝐶𝑗 = 𝑓(𝑀𝑇𝐶𝑂) × 𝑓(𝑀𝑇𝑊𝑀) × 𝑓(𝑆𝑂𝑃) +  𝜀                                              [1] 

where f represents a Gaussian probability function that determines the probability of occurrence of 

a species for each environmental variable and Ɛ is a normally distributed random error. To ensure 

that each climatic factor had the same weight of influence on species’ occurrence, each variable was 

normalised to fall between 0 and 1. 

Species seldom occupy all suitable climate space (owing to constraints on the colonisation 

probability for suitable but distant climate space). Consequently, virtual species distributions did not 

necessarily occupy all areas of suitable climate. Instead, a virtual distribution comprised a core range 

of proximate cells where the likelihood of occupancy declined with distance from the range core. 

The probability of occurrence (Pj) of a virtual species in cell j was the product of two processes: 

climatic suitability and spatial constraints: 𝑃𝑗 = 𝐶𝑗 × 𝑆𝑗 . Pj was normalised to fall between 0 and 1. A 

focal cell from among all high suitability cells (with Cj > 0.7) was selected at random, where only cells 

that were neighboured on all sides by high suitability cells were eligible to be chosen. This cell was 

denoted the range centre cell. A spatial occupancy function, Sj, was then calculated as: 

     𝑆𝑗 =
1

1+ 𝑒
𝑧 (𝐷𝑗−𝐷ℎ𝑎𝑙𝑓)                                                                          [2] 

where Dj is the distance from cell j to the range centre cell and Dhalf is the distance from the centre 

at which Sj = 0.5. z determines the steepness of the decline in occupancy. Varying Dhalf and z alters 

http://www/
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the number of cells defined as presences for a species. The combination of stochasticity in climate 

suitability relationships and stochasticity in selecting the range core lead to wide variation in range 

sizes, without the need to vary z and Dhalf. Consequently, parameter values (z = 0.001, Dhalf = 1000) 

that lead to a plausible and varied selection of range sizes were used, yielding a median range size 

that fell well within the distribution of known avian range sizes obtained from BirdLife International 

(2011, http://www.birdlife.org/datazone/info/spcdownload, see Figure S 3). 

Finally, to generate species’ presences from the probability of occurrence, whilst also 

allowing for some noise in occupancy (to mimic real distributions), each cell was allocated a random 

number Qj drawn from a uniform distribution. Occupancy was assigned to cells for which Pj ˃ Qj. This 

approach simulated absences that might occur due to factors not considered in the model such as 

biotic interactions or local extinctions. This process was repeated until 50 virtual species 

distributions were generated. 

3.3.2 Absence selection 

To investigate the effect of the absence selection method on model accuracy, pseudo-

absences were drawn using five different methods (Figure 3.1). These methods differed in the 

rapidity with which the probability of choosing a random unoccupied cell as an absence decayed 

with increasing distance (De) from the nearest edge of a given virtual species’ distribution. Method 

(1), with a highly restricted spatial extent, involved selecting the closest absences from concentric 

shells (CS) around the species’ occupied range. In Methods (2) to (4) absences were selected 

randomly but with a probability that declined with distance from the range edge.  Specifically, 

probability of selection was proportional to:  
1

𝐷𝑒
3 (Method 2); 

1

𝐷𝑒
2 (Method 3); and 

1

𝐷𝑒
 (Method 4). In 

each case, proximate unoccupied cells were preferentially selected as absences.  However, distance 

from the species’ range edge from which absences were selected increased from Method (2) 

through to Method (4), increasing the number of more distant absences selected. In Method (5) 

(AR), absences were selected randomly (without weighting) from across the world. To account for 

the variability arising from the random selection of absences in the last four cases, models were 

fitted with ten different sets of randomly selected absences for each virtual species. Initially, models 

were conditioned on an equal number of absences and presences.  



43 
 

 

Figure 3.1 Illustration of methods used to select absences for modeling. a) Absences were selected randomly. (b-d) 

Absences were selected randomly but with a decreasing number of distant absences selected.  Specifically, probability of 

selection was proportional to b) 
𝟏

𝑫𝒆
 ; c) 

𝟏

𝑫𝒆
𝟐 ; and d)  

𝟏

𝑫𝒆
𝟑  across the globe; and e) where the closest absences were selected 

in concentric shells around the species’ occupied range. 

 

3.3.3 Species Distribution Models 

The relationship between each virtual species’ distribution and the three climate variables 

was modelled using two machine-learning techniques (random forests, RFs, and gradient boosted 

models, GBMs) and two regression methods (generalised linear models, GLMs, and generalised 

additive models, GAMs). Further details of the modelling and cross-validation approach are provided 

below. Models were conditioned on data including absences drawn from each of the five absence 

selection approaches.  
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The effect of spatial autocorrelation in the SDMs was minimised using a blocking approach, 

in which the transferability of fitted models to spatially segregated test data was assessed. These 

methods follow those of Bagchi et al. (2013). Global climate data were split into five spatially 

disaggregated blocks, so that each block sampled the full range of covariate parameter space, but 

the mean of the climatic predictors differed little between blocks. Sampling units consisted of global 

ecoregions (http://www.worldwildlife.org/science/data), or parts of ecoregions if the ecoregions 

were very large. Large ecoregions (greater than 250,000 km2) were split into smaller sampling units 

by intersecting them with a 2.5° by 2.5° grid to create smaller subunits of a comparable size to 

smaller ecoregions. Areas separated geographically can comprise the same ecoregion, and 

ecoregions that were not neighbouring were considered separate sampling units. The five blocks 

were created using the “blockTools” package in R (Moore 2014). For SDMs, a jack-knife approach 

was employed where each block was left out in turn (test data) and models were fitted to the 

remaining four blocks (training data) (Pearson et al. 2007). In this way, predictor variables and block 

(or geographic location) were independent (minimising the effect of spatial autocorrelation) but the 

range of predictor variables were similar in the training and testing data. The resultant model fit to 

the test data was evaluated by calculating the threshold independent area under a receiver 

operating characteristic (ROC) curve (AUC) (Fielding & Bell 1997) by taking suitabilities from all left 

out blocks and comparing those to the presence absence data.  

SDM methods also followed the approach of Bagchi et al. (2013). In brief, GLMs with a 

binomial distribution and a logit-link were used to fit polynomial relationships between each species’ 

occurrence and three climatic variables: mean temperature of the coldest month (MTCO), mean 

temperature of the warmest month (MTWM) and seasonality of precipitation (SOP). These data 

were obtained from WorldClim (Hijmans et al. (2005), http://www.worldclim.org/). All combinations 

of first to fourth order polynomials were fitted (total of 81 combinations) leaving one block out at a 

time, and testing model accuracy on the withheld block using AUC. The combination of polynomials 

that resulted in the highest mean AUC across the five blocks was used to fit the final five models. 

GAMs with a Bernoulli response and a logit link were fitted using thin-plate regression spines 

(“mgcv” package R, Wood 2006) to species’ occurrence data excluding one block at a time, and 

smoothness was established by generalised cross-validation (Wood 2006). GBM model performance 

was optimised by fitting an initial model with 5000 trees, with tree complexities between 1 and 4, 

and a learning rate of 0.001 (“gbm” package R, Ridgeway 2013). Model fit was tested on withheld 

blocks for all tree sizes (tree size ranged between 999 and 5000). The combination tree complexity 

and tree number with the lowest summed error on average from across the five blocks was used to 

fit the final five models. For RF models, cross-validation was used to select both the number of 

http://www.worldwildlife.org/science/data
http://www.worldclim.org/
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variables used to build each tree (mtry) and the optimal number of trees (ntree) (package 

“randomForest” in R, Liaw & Wiener 2002). An initial forest was built with 1000 trees for each value 

of mtry between 1 and 3 and the AUC was calculated using the withheld block. Another forest was 

then grown with additional 500 trees and the model accuracy assessed. This process was continued 

until the AUC did not improve by more than 1% when an extra 500 trees were added. The mtry value 

and the number of trees that maximised the AUC across the five blocks were used to assess model 

fit and to fit the final models.  

3.3.4 Absence selection method comparison 

a) Predicting occurrences of virtual species 

Models based on the five absence selection methods were compared to determine which 

approach best predicted virtual species distributions (presence-absence) using a jack-knife approach. 

The resultant model fit to the test data was evaluated by calculating the threshold independent area 

under a receiver operating characteristic (ROC) curve (AUC) (Fielding & Bell 1997) by taking 

suitabilities from all left out blocks and comparing those to the presence absence data. AUC is 

known to be affected by prevalence (Lobo, Jiménez-Valverde & Real 2008) but that concern does not 

apply for scenarios where the prevalence was held constant, with number of absences equal to 

number of presences (but see “prevalence” section below). For the four absence-selection 

approaches that randomly select multiple absence datasets (i.e. all except the CS approach), 

variation in AUC across replicates was minimal (see Table 3.1), so the mean AUC value across the ten 

replicates was used in subsequent analyses. Linear mixed effects models (R package “lme4”, Bates et 

al. 2014) were used to describe AUC as a function of the absence selection method (fixed effect), 

with species included as a random effect. The impact of absence selection method on AUC was 

tested using likelihood ratio tests to assess the fit of models from which the fixed effect was omitted 

relative to those which included the fixed effect. 

b) Predicting the underlying climatic suitability for virtual species 

SDMs using absence data from each of the five absence selection approaches were 

projected to the globe to assess which approach best predicted the original climatic suitability for 

each species. Root Mean Squared Error (RMSE) was used to describe the extent of departures from 

the underlying suitability (Cj).  

I was principally interested in how well a model reproduces suitable or marginally suitable 

areas that could become suitable in future, and wished to minimise any bias in model fit due to the 

predominance of very low suitability cells for most species globally. For this reason, I divided cells 
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into two categories to minimise zero-inflation, which could otherwise inflate apparent model 

performance. The categories were: (1) high suitability cells, classified as the 2n most suitable cells, 

where n is the number of cells occupied by the virtual species, and (2) all other cells (hereafter, 

“lower suitability” cells), the majority of which had suitability close to, or actually, zero. I do not 

completely disregard low suitability cells as I am also interested in how models perform at low 

suitability sites, because poor fitting models could under- or over-predict species distributions in 

these areas. For the two suitability categories, linear mixed effects models were used to determine 

the effect of method for selecting absences on the RMSE, including species as a random effect. 

3.3.5 Prevalence 

An unbalanced design (where numbers of absence points and presence points differ) can 

introduce bias and affect model performance (McPherson, Jetz & Rogers 2004). Analyses described 

above conform to the recommendation of equal numbers of absences and presences (Senay, 

Worner & Ikeda 2013). In addition, I also tested whether increasing the number of absences 

improved the ability of models to predict climate suitability, as has been suggested by others 

(Barbet-Massin et al. 2012). Specifically, I used the best performing absence selection method (
1

𝐷𝑒
2) 

to evaluate the performance of models where the number of absences was one, two, five and ten 

times the number of presences. In each case, the RMSE between each species’ underlying climatic 

suitability and predicted suitability was estimated for all model permutations. The importance of the 

ratio of absences:presences in affecting RMSE was evaluated using linear mixed effects models, with 

species included as a random effect. 
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3.4 Results  

3.4.1 Comparison of absence selection methods 

Fitted SDMs showed discriminative power ranging from excellent to poor predictions (Table 

3.1). Absence selection method had a significant effect on AUC (χ2
4 = 636.2, p<0.0001), with the AR 

approach for selecting absences performing best in terms of AUC in comparison with the other 

absence selection methods (Figure 3.2). 

Table 3.1 Model performance at predicting the distribution of virtual species within each left out test block 

was evaluated using the area under the curve (AUC) of the receiver operating curve. Absences were those 

used to condition the model in each of the absence selection methods. Mean AUCs across 50 species x 10 

repeats (once for concentric shells) varied by absence selection method and by SDM approach (GAM, GBM, 

GLM, RF). 

 Mean AUC (±SD) by species distribution model 

Method for selecting absences GAM GBM GLM RF 

Absences random 0.98 (0.02) 0.98 (0.02) 0.99(0.01) 0.99 (0.002) 

One over distance 0.83 (0.10) 0.83 (0.10) 0.83 (0.10) 0.98 (0.01) 

One over distance squared 0.74 (0.09) 0.73 (0.08) 0.74 (0.09) 0.97 (0.01) 

One over distance cubed 0.71 (0.08) 0.70 (0.08) 0.71 (0.08) 0.97 (0.02) 

Concentric shells 0.67 (0.07) 0.66 (0.07) 0.67 (0.07) 0.97 (0.02) 

 

3.4.2 Identifying the underlying climatic suitability 

Absence selection methods had a significant effect on model ability to recreate the 

underlying climatic suitability; RMSE differed according to absence selection method for both the 

lower suitability (χ2
4= 78.7, p < 0.0001) and high suitability (χ2

4= 118.6, p < 0.0001) cells. CS was 

relatively poor at identifying suitability within the areas of lower suitability, whilst AR was relatively 

poor at identifying suitability within areas of high suitability (Figure 3.3; see, also, Figure 3.4 for an 

individual species example). The CS approach often overestimated the suitability of unsuitable areas 

(Figure 3.4g) and the AR approach overestimated the suitability of marginally suitable areas (Figure 

3.4c). Intermediate absence selection methods had lower RMSE values in both high and low 

suitability cells, with the (
1

𝐷𝑒
2) having the lowest RMSE in both categories (Figure 3.3). 
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Figure 3.2 Predictive performance (median area under the receiver operating characteristic curve (AUC)) of the 

50 virtual species occupied ranges for each method for selecting absences (AR, 
𝟏

𝑫𝒆
 , 

𝟏

𝑫𝒆
𝟐, 

𝟏

𝑫𝒆
𝟑, and CS) across all 

four SDM methods (GAM, GBM, GLM and RF). 
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Figure 3.3 The root mean squared error (RMSE) between the original climatic suitability and the predicted 

suitability for (a) high suitability cells and (b) lower suitability cells. Median RMSE is shown across all virtual 

species for each of the five absence selection approaches: absence random (AR); one over distance (
𝟏

𝑫𝒆
); one 

over distance squared (
𝟏

𝑫𝒆
𝟐); one over distance cubed (

𝟏

𝑫𝒆
𝟑) and concentric shells (CS). 
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Figure 3.4 Example of a virtual species’ a) climatic suitability and b) resultant derived species distribution. 

Ensemble climatic suitability for the species from models created using five absence selection methods: c) AR, 

d) 
1

𝐷𝑒
, e) 

1

𝐷𝑒
2, f) 

1

𝐷𝑒
3  and g) CS.   
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3.4.3 Prevalence 

Increasing the number of absence points by two-, five- and ten-times the number of 

presences decreased the ability of models to identify the actual climatic suitability (Figure 3.5). This 

reduced ability was significant for both the high (χ2
3 =88, p < 0.0001) and lower suitability 

(χ2
3 =110.4, p < 0.0001) categories.  

 

 

Figure 3.5 The root mean squared error (RMSE) between the observed and predicted climatic suitability when 

models were conditioned with absence records equalling the number of presences (P=A), and when absences 

are twice (x2), five (x5) and ten times (x10) the number of presences. Presented results are median RMSE for 

50 virtual species when data are split into two categories (a) high suitability and (b) lower suitability. 
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3.5 Discussion 

The ability of models to identify species’ climatic suitabilities is strongly affected by the 

method used to select absences. This also impacts on their ability to discriminate between species’ 

presences and absences. These findings have important implications for species distribution 

modelling. In particular, they suggest that current approaches to selecting absences, using arbitrary 

boundaries such as biological realms or country boundaries, will often fail to provide a good 

description of a species’ climatic niche. I discuss these findings in the context of three issues: (1) the 

benefits of not delimiting a study extent; (2) the choice of absence selection method; and (3) the 

utility of the virtual species approach and its implications for assessing model performance. 

3.5.1 Is it necessary to define a study extent? 

Ideally, the area of a study should encompass the complete geographic distribution of a 

species, as well as, crucially, areas that are accessible to the species over a relevant time period 

(Soberon & Peterson 2005; Barve et al. 2011; Guisan et al. 2014). Further, ensuring that the available 

niche space is sampled adequately is important for model transferability, particularly if models are 

projected in space or time (Randin et al. 2006). However, delineating the study region is not 

straightforward, as it depends on knowledge of the natural history and the dispersal ability of a 

species, as well as information about the landscape of interest, including the configuration of 

suitable habitats and barriers to dispersal (Soberon & Peterson 2005; Barve et al. 2011). Defining this 

is particularly difficult for migrant species (that inhabit spatially and temporally distinct areas during 

their annual migratory cycle, and that have the ability to disperse large distances) and for invasive 

species, whose potential area for expansion is unknown.  

My results show that distance weighting can provide a robust means of selecting absences. 

This approach renders an a priori definition of a geographic extent of study area unnecessary, and 

minimizes the loss of information imposed by predefined boundaries. Using distance weighted 

absence selection, absences are preferentially selected close to the species’ occupied distribution (as 

recommended by Jiménez-Valverde, Lobo and Hortal (2008) and Lobo, Jiménez-Valverde and Hortal 

(2010)), but are also sampled from further afield, to minimise problems of environmental truncation 

(Raes 2012). In multi-species modelling, distance weighting also reduces any bias towards better 

quality models for species occurring towards the centre of a study region (Jiguet et al. 2006; Jiguet et 

al. 2007). 
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3.5.2 Choosing an absence selection method 

When models were assessed on their ability to define areas of lower suitability for species, 

those trained using CS performed worst. This is because using a restricted area for absence selection 

reduces the available environmental parameter space under which models are calibrated, in turn 

reducing their predictive power (Thuiller et al. 2004). This is particularly problematic in situations in 

which the aim is to project potential occupancy into novel areas.  For example, where the aim is to 

predict the establishment of invasive species (Guisan et al. 2014) or to predict shifts in migratory 

destinations (Doswald et al. 2009), models trained on restricted environmental data are unlikely to 

be informative. Truncating the climatic limits of a species can also lead to the incorrect assumption 

that species’ ranges are not constrained by climate (Beale, Lennon & Gimona 2008), a conclusion 

that is greatly dependent on study extent (Jiménez-Valverde et al. 2011). 

When models were assessed on their ability to define areas of high suitability for species, 

those trained using AR performed worst. Moreover, AR over-predicts the underlying climatic 

suitability in regions of intermediate suitability (Figure 3.4c). When absences are selected at random, 

they include a greater proportion of very distant cells. Such absences can include extremely 

environmentally distinct absence localities. Models trained on data covering very broad 

environmental ranges can successfully distinguish high and low suitability areas but fail to capture 

the nuances of suitability in important areas proximate to the occupied range (Lobo, Jiménez-

Valverde & Hortal 2010). 

In contrast to the extremes of AR and CS, distance weighted absence selection approaches 

provided a better balance of performance across the full range of suitabilities (Figure 2.2). Overall, I 

recommend the 
1

𝐷𝑒
2 weighting metric, which performed best at identifying climatic suitability in both 

high and lower suitability areas (see Figure 3.3). 

3.5.3 Virtual species and the assessment of model performance 

Species occupancy does not necessarily equate to climatic suitability.  The advantage of 

using virtual species is that it is possible to assess model performance by comparing the known and 

modelled climatic suitabilities for each species, regardless of occupancy. This is important because 

models with apparently high discrimination between presences and absences (assessed using AUC) 

failed to capture the underlying climatic relationships for species (see also, Anderson & Raza 2010; 

Acevedo et al. 2012). This limits the utility of models to predict potentially suitable areas beyond the 

current range, for example to facilitate assisted colonisation (Hoegh-Guldberg et al. 2008). Using 
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virtual species in this way further underlines the inadequacy of AUC to identify models suitable for 

all applications (Lobo, Jiménez-Valverde & Real 2008; Jiménez-Valverde 2012). 

The ability of models to determine the original climatic suitability of each virtual species was 

not improved when the number of absences used for modelling increased. Previous studies have 

shown that an unbalanced design, where there are more pseudo-absences than presences affects 

SDMs differently; for example, increasing the number of pseudo-absences improved regression 

models, but not for models based on classification techniques (Barbet-Massin et al. 2012). To avoid 

inducing bias, and because increasing the number of absences did not significantly improve model 

prediction ability, I advocate using a balanced number of presences and absences. 

Of course, species are not only limited by climate. Species’ niches are also constrained by 

biotic interactions, for example, and the relationships between these can be complex (Soberón 

2007). More realistic SDMs will require a better understanding of these complex interactions. 

Nonetheless, correlative SDMs should be viewed as a first approximation of the direction and 

impacts of future climate change and, thus, methodological issues must be addressed.  

3.5.4 Conclusion 

Species distribution models are widely used to predict spatial patterns of biodiversity, and 

many studies have focused on methodological techniques to enhance performance (Elith et al. 2006; 

Pearson et al. 2006; Barbet-Massin & Jetz 2014). Despite this, the selection of an appropriate study 

area over which to select absences can be problematic and is a frequently overlooked aspect of 

methodology. Here, I propose the use of a distance weighted absence selection approach that 

avoids the need to use a predefined study extent. In particular, I recommend the 
1

𝐷𝑒
2 weighting 

metric that balanced the reproduction of climatic suitability across a range of suitabilities, and 

performed well at reproducing the distributions of virtual species.  
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4.1 Abstract 

Climate change is a major driver of species distribution shifts, and understanding the relative 

importance of climatic variables on species distributions is necessary to understand how future 

climate change might impact species. Yet, to date, few studies have assessed the role of climate in 

determining migratory bird distributions on both their breeding and non-breeding ranges.  

Here, I quantify the relative importance of four climatic variables in explaining the occurrence of 

migratory birds on their breeding and non-breeding ranges. I modelled the distribution (presence-

absence) of 430 migratory species on their seasonal breeding and non-breeding grounds, and 

compared the climatic variables that are important determinants of occupancy in different parts of 

the world, and for breeding versus non-breeding ranges. The importance of climatic predictors for 

predicting migrant occupancy differed depending on season, and between migration flyways. 

Temperature generally tended to be a better predictor of occupancy than precipitation, although the 

importance of precipitation increased at lower latitudes. The importance of climatic variables for 

migrant distributions varied around the world, and by season, which implies that relationships of 

migrants with climate at a given location and time cannot be extrapolated globally. 

 

  



57 
 

4.2 Introduction 

Recent climate change has altered the geographical ranges of many species (Parmesan & 

Yohe 2003; Root et al. 2003), and has caused biodiversity loss globally (Sala et al. 2000). Species 

distribution models (SDMs) are often used to project the impacts of climate change on species 

distributions, and consequently to inform conservation planning (Elith & Leathwick 2009; Wiens et 

al. 2009; Underwood, D'Agrosa & Gerber 2010; Carvalho et al. 2011; Araújo & Peterson 2012). 

Climate change has not affected all regions equally to date, with the greatest changes in 

temperature occurring towards the poles (IPCC 2013). Poleward shifts have been documented in a 

variety of species (Thomas & Lennon 1999; Root et al. 2003; Hickling et al. 2006), and the velocity of 

these shifts is rapid (Chen et al. 2011b). With regional differences in climate change expected in the 

future, understanding the distribution of species relative to current climatic conditions will help 

better understand how species distributions will likely respond to future climate change. 

Avian migration spans the globe, with billions of individuals making predictable movements 

across large spatial scales in pursuit of improved foraging conditions and reproductive opportunities 

(Alerstam, Hedenstrom & Akesson 2003). This redistribution of species radically changes the 

communities and ecosystems they encounter (Somveille et al. 2013; Bauer & Hoye 2014). Many 

migratory species have declined in recent decades (Kirby et al. 2008), potentially in part because 

such species are difficult to conserve (Runge et al. 2014). Migratory species have responded to 

recent climatic change with both range and phenological shifts, the latter including temporal 

advances in their arrival at breeding grounds (Jonzén et al. 2006; Balbontin et al. 2009; Lehikoinen & 

Sparks 2010). Few studies have explicitly assessed the effect of climate change on migratory species 

on both the breeding and non-breeding ranges (but see Doswald et al. 2009). In order to understand 

how climate change could affect migratory species in the future, it is important to understand the 

current determinants of the occurrence of migrants. 

Migrant birds track seasonal fluctuations in resources, and seasonality is an important 

determinant of migrant species richness (Hurlbert & Haskell 2003; Wisz, Walther & Rahbek 2007b). 

Seasonality in rainfall is thought to trigger the movement of Palaearctic migrants within Africa 

(Moreau 1972), as rainfall increases plant productivity and consequently insect abundance. Ambient 

energy, usually in the form of temperature, influences metabolic rates and the thermoregulatory 

needs of species (Currie 1991; Currie et al. 2004; Lemoine, Schaefer & Böhning-Gaese 2007; Field et 

al. 2009). On the European breeding grounds the percentage and number of migrants increases in 

areas of high winter harshness (Newton & Dale 1996; Lemoine & Bohning-Gaese 2003), with 

declines in the proportion of European migrants, in response to increasing winter temperatures 
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(Schaefer, Jetz & Böhning-Gaese 2008). It is therefore likely that migratory species respond to 

changes in both precipitation and temperature. 

A question which has received little attention is whether migratory species climatic 

preferences differ depending on whether they are breeding or not.  Seasonal differences in habitat 

use are known, with migrants having broader habitat preferences in the non-breeding grounds 

(Rappole 2013; Blackburn & Cresswell 2015), yet the preference of consistent climatic regimes is less 

well studied. The Swainson’s Flycatcher (Myiarchus swainsoni), an austral migrant, has been shown 

to track a consistent temperature regime in its seasonal movements throughout the year (Joseph 

and Stockwell (2000)). This suggests seasonal movements of some species could be predictable 

based on their tracking a climatic niche. Similarly, a number of Nearctic-Neotropical migrants have 

been shown to track the same climate on their breeding and non-breeding ground, though others 

switched their climatic preferences between seasons (Nakazawa et al. (2004)).  

The majority of studies that have assessed the relationship between climatic variables and 

migrant distributions have focused on the breeding ranges of species, mainly North America and 

Europe (Hurlbert & Haskell 2003; Lemoine & Bohning-Gaese 2003; Monkkonen & Forsman 2005; 

Wisz, Walther & Rahbek 2007b; Honkanen et al. 2010; Morrison et al. 2013; Blackburn & Cresswell 

2015). Rapid declines in migrant birds have been observed (Kirby et al. 2008), therefore 

understanding current drivers of migratory species occupancy at a global scale is essential if we are 

to understand these declines, and to assess the potential for effective climate change adaptation 

(Pearce-Higgins & Gill 2010). Here, I assess if, and how, climatic variables vary in their importance for 

migrants across the world. I test whether species differ in their climatic requirements across 

geographical ranges and seasons, and also explore whether the important determinants of 

migratory species distributions vary amongst migration flyways.  
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4.3 Methods 

4.3.1 Species distribution data 

A global dataset of the distribution of terrestrial avian species (excluding coastal and marine 

species) was derived from BirdLife International (Birdlife International & NatureServe 2011). I 

extracted data for all fully migratory species (those with completely distinct breeding and non-

breeding ranges) globally. The breeding and non-breeding ranges were overlaid to a grid of 0.5 

degree cells (approx. 50km x 50km at the equator).  A species was considered to be present in a cell 

if the species polygon intersected 10% of a cell. Species whose range occupied fewer than 30 cells on 

their breeding or non-breeding grounds were excluded from further analyses, which resulted in 430 

species used in subsequent analyses. The globe was divided into three major flyways (based on 

BirdLife international (http://www.birdlife.org/flyways/)) as follows: The Americas flyway (120° to 

30° W), the African-Eurasian flyway (30° W to 60°E) and the Asian-Australasian Flyway (60°E to 

120°E) (see Figure S 4). 

4.3.2 Bioclimatic data 

Bioclimatic variables at a resolution of 2.5 min were obtained from WORLDCLIM v1.4 for the 

50 year interval 1950-2000 (Hijmans et al. 2005, http://www.worldclim.org/). These data were 

aggregated to a 30’ (0.5° ≈ 50km x 50km) resolution to match the species data. I extracted data for 

four uncorrelated bioclimatic variables, which have previously been shown to successfully describe 

the range extents of birds: mean temperature of the warmest quarter (MTWQ); annual precipitation 

(AP); seasonality of precipitation (SP) and seasonality of temperature (ST) (Bagchi et al. 2013; Dalby 

et al. 2014; Somveille, Rodrigues & Manica 2015).  

4.3.3 Species distribution models (SDMs) 

The relationship between each species’ distribution and the four climate variables was 

modelled using random forests (RFs) (Breiman 2001; Prasad, Iverson & Liaw 2006a; Cutler et al. 

2007). RFs are a machine learning approach that builds many regression trees from bootstrapped 

data subsets and random subsets of predictors. These regressions are then aggregated to provide an 

average prediction (Breiman 2001; Liaw & Wiener 2002). Models were conditioned on data including 

absences drawn using a distance weighted selection approach, as outlined in Chapter 2. Briefly, the 

probability of choosing a random unoccupied cell as in absence cell decayed with distance where the 

weighting was = 1/distance2, so that absences closer to the range were preferentially chosen. 

http://www.birdlife.org/flyways/
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The effect of spatial autocorrelation in the SDMs was minimised using a blocking approach 

(following Bagchi et al. 2013), in which the transferability of fitted models to spatially segregated 

test data was assessed. Global climate data were split into five spatially disaggregated blocks, so that 

each block sampled the full range of covariate parameter space, but the mean of the climatic 

predictors differed little between blocks (Bagchi et al. 2013). Blocks comprised multiple sampling 

units, where each unit was a global ecoregion (http://www.worldwildlife.org/science/data), or part 

of an ecoregion if an ecoregion was very large. Large ecoregions (greater than 250,000 km2) were 

split into smaller sampling units by intersecting them with a 2.5° x 2.5° grid to create smaller 

subunits of a comparable size to smaller ecoregions. Areas separated geographically can comprise 

the same ecoregion, but areas of the same ecoregion that were not neighbouring were considered 

separate sampling units for blocking. The five blocks were created using the “blockTools” package in 

R (Moore 2014). For SDM modelling, each block was left out in turn (test data) and models were 

fitted to the remaining four blocks (training data). In this way, predictor variables and block (or 

geographic location) were independent (therefore minimising the effect of spatial autocorrelation) 

but the range of predictor variables were similar in the training and testing data.  

Cross-validation was used in the RF models, to select both the number of variables used to 

build each tree (mtry) and the optimal number of trees (ntree) (package “randomForest” in R; Liaw 

and Wiener (2002)). An initial forest was built with 1000 trees for each value of mtry between 1 and 

3 and the AUC was calculated using the withheld block. Another forest was then grown with 

additional 500 trees and the model accuracy was assessed. This process was continued until the AUC 

did not improve by more than 1% when an extra 500 trees were added. The mtry value and the 

number of trees that maximised the AUC across the five blocks were used to assess model fit and to 

fit the final models. The median AUC from across the five blocks was used to assess model accuracy, 

and cross-validation was used to optimise model predictive performance before fitting a final 

(optimal) set of models for each species.  

4.3.4 Variable importance 

Random forest models randomly selected 1-3 (mtry) variables at each node within a tree to 

determine the best binary split to explain variation in migrant presence within a cell (Prasad, Iverson 

& Liaw 2006b). The importance of each predictor in determining a species’ distribution on both the 

breeding and non-breeding grounds was assessed by estimating the decrease in performance of the 

model when each predictor was randomly permuted (Liaw & Wiener 2002). Each block was left out 

in turn and random forest models were fit to the remaining blocks, and mean variable importance 

across all five blocks was calculated. Mean relative variable importance for each of the four 

http://www.worldwildlife.org/science/data


61 
 

bioclimatic predictors was extracted for each species and mapped. Cells with fewer than five species 

were excluded from maps. Relative importance for each species was aggregated for the two 

temperature (MTWQ and seasonality of temperature) and two precipitation (annual and seasonal 

precipitation) variables. To enable comparisons among species, relative variable importance was 

calculated by dividing the importance of each individual variable by the summed importance across 

all variables for each species (Howard et al. 2015). 

4.3.5 Statistical analyses 

Paired-sample t-tests were conducted to compare the relative importance of amalgamated 

precipitation and temperature variables for migrants on the breeding grounds, with migrants on the 

non-breeding grounds. Within subject (to control for species) one way ANOVAs were conducted to 

compare the relative importance for predicting species occupancy of all four climate variables 

among the breeding and the non-breeding ranges, respectively. Paired-sample t-tests were 

conducted to determine whether each of the four climatic variables differed in relative importance 

for determining migrant occupancy on the breeding versus the non-breeding ranges. Four separate 

two-way ANOVA were conducted for each climate variable. These were used to determine whether 

the importance for predicting migrant occurrence for each climate variable differed among season 

(breeding and non-breeding), migration flyway, and whether there was an interaction effect of 

season and migration flyway on importance. 

Differences in relative variable importance of climatic variables on species occupancy across 

latitudes were tested using the interaction between latitude and climatic variable-type. Latitude was 

the median latitude of each migratory species range (in degrees north or south of the equator). This 

analysis was repeated separately for each climatic variable, but including the additional effect of the 

interaction between season (breeding or non-breeding) and latitude.  
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4.4 Results 

Aggregated temperature variables were significantly more important for predicting migrant 

occurrence than aggregated precipitation values on both the breeding (Figure 4.1; paired t-test, 

t863=219, P <0.001) and non-breeding (Figure 4.1; paired t-test, t863=254, P <0.001) areas. 

 

Figure 4.1 Mean relative importance (±SE) of precipitation and temperature variables in determining species 

occurrence for 430 species for aggregated variables on the breeding (a) and non-breeding (b) grounds. 

Notches are the 95% confidence intervals of the median. Non-overlapping notches indicate a significant 

difference at the 5% level. 

a) b) 
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Figure 4.2 Mean relative importance (±SE) of individual variables for predicting occurrence (mean 

temperature of the warmest quarter (MTWQ); annual precipitation (AP); seasonality of precipitation 

(SP) and seasonality of temperature (ST)) for 430 migrant species on the breeding (a) and non-

breeding (b) grounds.  

 

The relative importance of each of the four climatic predictors (MTWQ, AP, SP, ST) for 

predicting migrant occurrence for 430 species differed significantly on both the breeding (ANOVA: 

F(3,1724) =61.21, P<0.0001, Figure 4.2) and non-breeding grounds (ANOVA: F(3,1293) =90.51, P<0.0001, 

Figure 4.2). Both temperature variables (MTWQ and ST) had a greater impact on breeding migrant 

occurrence than did precipitation variables (AP and SP) (Tukey’s post-hoc analyses, P < 0.001 for 

both). For the non-breeding grounds, seasonality of temperature was the most important predictor 

of migrant occurrence, while annual precipitation was more important than MTWQ at predicting 

migrant occurrence (Tukey’s post hoc test, P < 0.001, for both).  

The relative importance of climatic variables for predicting migrant occupancy differed 

significantly depending on whether migratory species are on the breeding or non-breeding grounds 

a) b) 
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(ANOVA: F(3,1257)=49.8, P <0.001, Figure 4.3). MTWQ was more important for predicting the 

occupancy of breeding migrants than non-breeding migrants, whereas seasonality of temperature 

was significantly more important for predicting the occupancy of non-breeding migrants. Annual 

precipitation was significantly more important for non-breeding migrants than breeding migrants, 

and there was no significant difference in terms of the importance of precipitation seasonality for 

breeding and non-breeding migrants (Tukey’s post hoc test, P < 0.001, for all, Figure 4.3). 

 

 

Figure 4.3 Comparison of the relative importance for (a) mean temperature of the warmest quarter, b) annual 

precipitation c) seasonality of temperature, and d) seasonality of precipitation for predicting migrant species 

occupancy on the breeding and non-breeding areas.   



65 
 

4.4.1 Spatial patterns in the importance of climate variables 

There are distinct spatial patterns of the relative importance of the four climatic variables 

across the globe for predicting breeding (Figure 4.4) and non-breeding (Figure 4.5) migrant 

occurrence. The relative importance of MTWQ in predicting migrant occurrence differed significantly 

among season (breeding and non-breeding) and flyway (Figure 4.6, Table 4.1). The relative 

importance of AP in predicting migrant occurrence differed significantly among seasons but not 

across flyways (Figure 4.6, Table 4.1). There was a significant interaction effect between season and 

flyway in terms of the relative importance of SP for predicting migrant occurrence (Figure 4.6, Table 

4.1), specifically SP is important for breeding migrants in the Asian-Australasian flyway (Figure 4.4) 

and for non-breeding migrants in the Americas flyway (Figure 4.5 Figure 4.6). Finally, the importance 

of ST differed significantly among seasons, but was not significantly different among flyways (Figure 

4.6, Table 4.1). 
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Figure 4.4 Relative importance of each ecological predictor on migrant species occurrence on the breeding grounds as measured by a drop in regression accuracy after 

predictor removal from random forest models: a) mean temperature of the warmest quarter (MTWQ), b) annual precipitation (AP), c) seasonality of temperature (ST), d) 

seasonality of precipitation (SP). 
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Figure 4.5 Relative importance of each ecological predictor on migrant species occurrence on the non-breeding grounds as measured by a drop in regression accuracy after 

predictor removal from random forest models a) mean temperature of the warmest quarter (MTWQ), b) annual precipitation (AP), c) seasonality of temperature (ST), d) 

seasonality of precipitation (SP).
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Table 4.1 Summaries of the results of four two-way analyses of variance (ANOVAs). Four individual two-way 

ANOVAs were used to assess the drivers of spatial patterns in the importance of MTWQ, AP, SP and ST in 

determining the occurrence of migratory species within each grid cell.  P-Values significant at the 5% level are 

shown in bold. Season is a two level factor (Breeding or non-breeding) and flyway is a three level factor 

(African-Eurasian, Americas, Asian-Australasian). 

 

Response 

Variable 

Explanatory 

Variables 

Degrees of 

freedom Sum Sq Mean Sq F-value P-value 

MTWQ Season 1 371.9 371.9 47.4 <0.01 

 

Flyway 2 1.8 0.9 0.112 0.89 

 Season x Flyway 2 73.5 36.8 1.706 <0.01 

  Residuals 239 1875 7.8 NA NA 

AP Season 1 46.0 46.5 9.41 <0.01 

 

Flyway 2 2.8 1.40 0.29 0.75 

 

Season x Flyway 2 25.8 12.90 2.64 0.07 

 

Residuals 239 1169.4 4.89 NA NA 

SP Season 1 9.4 9.39 1.964 0.16 

 

Flyway 2 5.9 2.97 0.62 0.53 

 

Season x Flyway 2 88.7 44.33 9.27 <0.01 

 

Residuals 239 1142.9 4.78 NA NA 

ST Season 1 89.0 88.98 17.74 <0.01 

 Flyway 2 0.0 0.02 0.004 0.99 

 Season x Flyway 2 29.5 14.75 2.94 0.05 

 Residuals 239 1198.5 5.01 NA NA 
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Figure 4.6 Comparison of the relative importance for mean temperature of the warmest quarter (MTWQ), 

annual precipitation (AP), seasonality of precipitation (SP) and seasonality of temperature (ST) for predicting 

migrant species occupancy on the breeding and non-breeding areas, compared across three flyways (a) 

Americas, (b) African-Eurasian and (c) Asian-Australasian. 
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The relative importance of MTWQ across latitude differed significantly between breeding 

and non-breeding migrants (F(1,851)=94.8, P <0.001), with the importance of MTWQ increasing with 

latitude for predicting breeding migrants. MTWQ was important for predicting occupancy of non-

breeding migrants in the temperate regions, but not in the tropical and boreal regions (Figure 4.7 a). 

The importance of AP for predicting migrant occurrence differs marginally between the breeding 

and non-breeding seasons, with the relative importance of AP being high for predicting breeding 

migrant occupancy in the tropics (F(1,851)=5.39, P =0.02, Figure 4.7 b), but this importance diminishes 

in the temperate and boreal regions. AP was not an important predictor for non-breeding migrants 

and this did not vary with latitude (Figure 4.7 b). The relative importance of ST for predicting migrant 

occupancy differed significantly across latitude for both breeding and non-breeding migrants 

(F(1,851)=63.86, P <0.01) where importance of ST was more important for breeding migrants at high 

latitudes, but was most important for non-breeding migrants in the tropics and temperate areas 

(Figure 4.7 c). Finally, there was no difference in the relative importance of SP for predicting 

occupancy of breeding and non-breeding migrants across latitude, with importance for migrants 

declining with latitude for both seasons in temperate and tropical areas (F(1,851)=0.32, p=0.5, Figure 

4.7 d). 
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Figure 4.7 Latitudinal gradients (both hemispheres combined) of the relative importance of a) mean temperature of the warmest quarter (MTWQ), b) annual precipitation 

(AP), c) seasonality of temperature (ST) and d) seasonality of precipitation (SP) on migrant breeding (red) and non-breeding (blue) occurrence for 430 species. Symbols are 

mean importance values for species when binned into 10° categories (± standard error). The latitudes are categorised by the overall biome that they encompass: tropical, 

temperate and boreal. 
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4.5 Discussion 

I have identified that the distributions of migratory species across the globe are highly 

variable in space in response to climatic variables. In general, temperature was more important than 

precipitation for predicting both breeding and non-breeding migrant distributions globally. Species 

responses to climate change are often characterised solely on temperature change (e.g. Parmesan & 

Yohe 2003; Thomas 2010), perhaps because biological responses to temperature are more easily 

understood than they are for precipitation, and therefore precipitation is often excluded from 

analyses that investigate the poleward shift in species distributions in response to temperature 

increases (Root et al. 2003). However, when considered simultaneously, evidence points to a range-

limiting role for both moisture and temperature (Smith 2013; VanDerWal et al. 2013) which may 

result in multi-directional distribution shifts globally (VanDerWal et al. 2013). 

The relative importance of climatic variables on migrant species occupancy varied with 

latitude, with precipitation being more influential at low latitudes, where both the timing and the 

absolute amount of rainfall in tropical wintering areas can have major impacts on non-breeding 

season performance of migratory birds (Studds & Marra 2007). The inter-annual variability of rainfall 

in the non-breeding regions often has cascading effects on plant productivity, arthropod abundance 

and therefore the condition and survival of birds (Szep et al. 2006; Studds & Marra 2007). 

Conversely, temperature was a more important driver of migrant occupancy at higher latitudes. This 

agrees with previous studies that have shown that migratory species are more likely to be 

temperature limited than water limited (Hawkins et al. 2003; Hickling et al. 2006; Huntley et al. 

2007; Pearce-Higgins & Green 2014).  

The high relative importance of temperature at higher latitudes and of precipitation at lower 

latitudes is consistent with the water-energy hypothesis, where the key drivers for species richness 

across the globe switch from moisture availability toward the equator to energy-related towards the 

poles (Hawkins et al. 2003; Whittaker, Nogués-Bravo & Araújo 2007). Assuming that the combination 

of individual species occupancy predictions allows for the prediction of species richness in an area 

(stacked SDMs Dubuis et al. 2011), climatic drivers of species occupancy are likely to be similar to 

those of species richness. This water-energy latitudinal pattern has been shown in a European-wide 

study of the relative importance of climate and land-use for birds (Howard et al. 2015), and matches 

latitudinal gradients in bird population responses to both temperature and precipitation (Pearce-

Higgins & Green 2014; Pearce-Higgins et al. 2015).  

The majority of studies of climate change impacts on biodiversity focus on temperature, and 

are generally conducted at higher latitudes (Both et al. 2006; Hickling et al. 2006; Sherry et al. 2007; 
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Devictor et al. 2008). Given that temperature is a more important predictor of migrant species 

occurrence than precipitation at higher latitudes (in particular for the breeding areas), the findings 

from these studies may not necessarily be applicable at lower latitudes, where precipitation is a 

more important driver of migratory species occurrence (Pearce-Higgins et al. 2015). By failing to 

account for the effects of precipitation at lower latitudes, a focus on temperature for finding a 

fingerprint of climate change, may underestimate the sensitivity of such species to climate change 

(VanDerWal et al. 2013). Crucially, that temperature is a more important predictor of migratory 

species distributions than precipitation (Tayleur et al. 2015) is important for future climate change 

predictions, given that the highest uncertainty for future climates is in forecasting precipitation 

(McSweeney et al. 2015).  

The importance of seasonality of temperature and annual precipitation for migratory species 

occurrence did not differ among the three migration flyways. Mean temperature of the warmest 

quarter was more important for Nearctic-Neotropical migrants than Afro-European or Asian-

Australasian migrants. Since temperature change is resulting in shifts in species distributions (Root et 

al. 2003) these migrants may be more affected by climate change than their Asian-Australasian or 

African-Eurasian counterparts. Seasonality of precipitation was more important for predicting 

occupancy of Asian-Australasian migrants than Americas or African-Eurasian migrants. Seasonality of 

precipitation has been shown to have a greater influence than temperature on the timing of 

migration for Australian migrants (Chambers 2008). My results show that species differ 

geographically in their climatic preferences, and that the relationships between climate and 

occupancy of migrants in one region cannot necessarily be extrapolated to other geographic regions.  

Some species show overlaps between breeding and non-breeding climatic preferences 

(Martínez-Meyer, Peterson & Navarro-Sigüenza 2004; Nakazawa et al. 2004) but not others 

(Nakazawa et al. 2004; Laube, Graham & Böhning-Gaese 2015). Our results suggest that migratory 

species are (in general) not closely tracking their preferred climatic niche, as the relative importance 

of variables differed for migrants between the breeding and non-breeding areas. Migrants may 

move between environments that are optimal at different stages in their life cycle. The advantage of 

migrating may not be to follow optimal climatic conditions, but instead due to higher reproductive 

success and lower nest predation at higher latitudes during the breeding season, and lower winter 

mortality at lower latitudes during the non-breeding season (Bohning-Gaese et al. 2000; McKinnon 

et al. 2010).  

A limitation of this study is that quantifying niche space at the species level fails to capture the 

finer scale relationships that individuals or populations may have with the environment (Bolnick et 
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al. 2007; Bolnick et al. 2011; Laube, Graham & Böhning-Gaese 2015). Non-uniform distributions of 

individuals within a species’ range means that species may not respond to climate in the same way 

across its range. Narrower geographic extents than the broad flyway extent employed here might 

explain importance of climatic factors for migratory species at a finer scale, as it is obvious that the 

importance of variables for migrant occupancy varied geographically within some flyways, e.g. 

MTWQ within the Americas flyway. Moreover, there are other factors than climate that limit 

migrant distributions such as land-use, biotic interactions, genetic constraints on migration routes, 

geographic barriers, habitat, productivity, all which may have smaller scale impacts on migrant 

distributions which have not been explicitly assessed here (Alerstam, Hedenstrom & Akesson 2003; 

Jetz, Wilcove & Dobson 2007; McKinnon et al. 2010; Ockendon et al. 2014; Chudzińska et al. 2015).  

Our results suggest that migrants may not favour the same climatic conditions on the 

breeding areas as the non-breeding areas, as has been shown by other studies (Doswald et al. 2009; 

Laube, Graham & Böhning-Gaese 2015). Migratory species may be responding to differing climatic 

conditions depending on season (whether they are breeding or not), therefore a new suite of SDMs 

that reflect temporal changes in niche requirements, instead of annual means are needed to 

improve our understanding of the importance of climatic variables for migratory species occurrence 

(Heikkinen, Luoto & Virkkala 2006). Additionally, if species’ niche availabilities are altered through 

climate change, then existing migratory strategies may no longer be available (Laube, Graham & 

Böhning-Gaese 2015). Exploring how migratory species will respond to the emergence of novel 

climates, or suitable climate space in novel locations, will be crucial for predicting how migratory 

species will respond to future climate change (Williams & Jackson 2007; Reside, VanDerWal & Kutt 

2012). Our results highlight that migratory species respond to differing variables on their breeding 

and non-breeding ranges, and therefore assuming simple niche tracking when predicting future 

climate change shifts may be over simplistic.  
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5.1 Abstract 

Migratory species may be particularly vulnerable to climate change, with the potential for 

intricately timed and long-established relationships of migratory species’ with their environment to 

become disrupted. Breeding and non-breeding ranges of migratory species may shift in response to 

climate change, and in some cases may move apart, potentially leading to future declines. 

Conversely, some migrants might benefit from shorter migrations, and such shifts are already being 

observed. Migration distance is also likely to affect the arrival time of migrant birds on the breeding 

grounds, which has been linked to survival and reproductive success. Estimating migratory distances 

is therefore important to determine any costs or benefits to migration in the future.  

To date, predictions of migratory changes under future climate scenarios have usually 

estimated the distance between breeding and non-breeding range centroids. However, this 

approach ignores the variation in migratory movements within species. Here, I develop a method to 

estimate the range of potential migration distances for species. Using correlative species distribution 

models (SDMs), I predict current landscape suitability using contemporary climate and species 

distribution data on their breeding and non-breeding ranges. I predict the range of migratory 

distances a species might undertake by combining the locality of high quality migratory end-points 

with travel-distance data, and I compare the predictions to recorded distances between migratory 

start and end points for an example species.  I find that the method I developed estimated shorter 

migration distances than the centroid approach, and that these distances fitted observed distance 

estimations well for the example species. 
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5.2 Introduction 

The persistence of species in the face of climate change depends on the ability of populations to 

keep pace with shifting climates, or adapt to changes in situ (Burrows et al. 2011). Shifts in latitude 

or elevation of the distributions of species in response to climate change have been widely reported 

in recent decades (Thomas & Lennon 1999; Parmesan & Yohe 2003; Root et al. 2003; Thomas 2010). 

Concurrently, breeding bird populations have been declining across Europe, with long distance 

migrants being particularly affected (Sanderson et al. 2006). Given that approximately 20% of the 

9856 extant avian species migrate seasonally (BirdLife International 2008a; Kirby et al. 2008), 

surprisingly few studies have investigated the impact of changing climate on migratory species 

across their migration routes and at stopovers (Tottrup et al. 2008). The majority of climate change 

studies have focused on the breeding distributions of migratory birds, finding that some migrants 

have advanced their arrival dates to the breeding grounds in a pattern consistent with climate 

change (Jonzén et al. 2006; Balbontin et al. 2009; Lehikoinen & Sparks 2010). Few studies have 

assessed the potential impacts of climate change on the non-breeding grounds of migrants (but see 

Austin & Rehfisch 2005; Studds & Marra 2007; Barbet-Massin et al. 2009), and fewer still have 

assessed the impact of climate change on migratory species on both their breeding and non-

breeding ranges (Bohning-Gaese & Lemoine 2004; Doswald et al. 2009; Wilson et al. 2011).  

Doswald et al. (2009) demonstrated that, although potential range extent varied among a group 

of trans-Saharan migrants, Sylvia warblers, in general, both breeding and non-breeding ranges were 

predicted to increase in extent given climate change projections for the end of the 21st Century. 

Migration distances were projected to increase, and in many cases novel potential future non-

breeding areas were simulated. Indeed, as a result of such changes, birds may need to develop new 

migration strategies, for instance, by increasing the number or duration of stopovers used, in order 

to obtain sufficient energy for longer journeys (Schaub & Jenni 2001).  

The flight route chosen by migrants determines the total distance travelled, as well as the 

potential for encountering favourable stopover sites all which influences the overall energy and time 

needed for migration (Liechti 2006). Global climate change has led to warmer winters in North-West 

Europe, and studies have shown that migration distances have decreased for short distance migrants 

(Visser et al. 2009). These changes in migratory distance are consistent with predictions from climate 

change, whereby non-breeding ranges are shifting northward (Visser et al. 2009; Pulido & Berthold 

2010; Kullberg et al. 2015), therefore migrants winter closer to breeding ranges. The resulting 

shortened migration distance is likely to modify the timing of spring arrival of migrants to the 

breeding grounds (Coppack & Pulido 2004; Pulido 2007; Pulido & Berthold 2010), which means these 
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species can better time their arrival to breeding areas to the timing of food availability (Coppack & 

Both 2002; Walther, Berger & Sykes 2005). Current climate change is favouring birds wintering closer 

to the breeding grounds as it reduces migration costs and facilitates the rapid adaptation to shifts in 

the timing of food emergence on the breeding grounds (Visser & Both 2005; Bradshaw & Holzapfel 

2008). Furthermore, an artificial selection experiment in a population of blackcaps (Sylvia atricapilla) 

showed that residency will rapidly evolve in migratory populations if selection for shorter migration 

persists (Pulido & Berthold 2010). 

In order to understand bird movements it is necessary to acquire data of where they are 

traveling. Migration distances can be calculated using remote sensing techniques (such as by fitting 

satellite tags or geolocators to birds) and ring recovery data (Green et al. 2002; Visser et al. 2009; 

Egevang et al. 2010; Robinson et al. 2010). Bird ringing means birds can be marked individually and 

reported later, providing evidence of their movements. Ringing data present a challenge for 

analysing migration because the probability of finding and recording a ringed bird varies 

geographically, resulting in non-random sampling (Korner-Nievergelt, Liechti & Thorup 2014) and 

therefore these data will be spatially biased. Existing tracking techniques are subject to a trade-off 

between weight and precision, where heavier but more precise geolocators can only be applied to 

birds of larger body masses, and lighter geolocators which can be applied to smaller birds but can 

have large measurement errors (Lisovski et al. 2012). New technology offers solutions to the spatial 

bias from bird ringing, but has limited application (with regards to species) and is currently non 

extensive in terms of tracking birds from the entirety of their range (and therefore still has the issue 

of spatial biases). Both satellite tagging and recovery data are essential for the study of migration, 

yet acquiring these data can be difficult, and these data can be spatially biased. 

Species distribution models (SDMs) are widely used in ecology for identifying species’ habitat 

preferences, and for predicting how the suitability of habitats might change in space or time.  SDMs 

have found particular utility in predicting species’ potential responses to climate change (Huntley et 

al. 2008; Doswald et al. 2009; Barbet-Massin, Thuiller & Jiguet 2012). Migration distances have been 

estimated from the distance between centroids of predicted breeding and non-breeding ranges 

(Doswald et al. 2009). These distance estimations often necessitate that the probabilities of 

occurrence estimates from SDMs are transformed to a binary presence/absence form, which means 

losing detailed information of climatic suitability for a species. Additionally, the choice of 

thresholding method is a source of uncertainty in the SDM process, which has been shown to 

drastically alter estimates of range shifts (Liu et al. 2005a; Nenzén & Araújo 2011). Finally, and 

perhaps most importantly, centroid-centroid distance estimates convey little nuanced detail of 
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migration at present, or how migrations might change in the future. While the usefulness of 

centroids for analysing shifts in distances of species range shifts is evident (e.g. Lyons, Wagner & 

Dzikiewicz 2010), centroids do not account for the fact that species ranges are variable in shape, and 

may therefore not detect shifts that occur at range margins. Moreover, migrant species distributions 

are not necessarily continuous, with the same species breeding on disparate continents or countries, 

often making centroid estimates nonsensical.  

The centroid-centroid approach for estimating migratory distance could be improved in several 

ways: First, an approach that does not threshold modelled suitabilities avoids the uncertainty in 

threshold selection and, importantly can account for the fact that climatic suitability varies across 

the landscape. Second, a method that considers populations of individuals from across a species 

breeding/non-breeding range. Third, a method that is biologically meaningful, whereby the 

estimation of migration distances occurred between cells that are climatically suitable for a species, 

and which takes into account the cost of migration distance (Somveille, Rodrigues & Manica 2015) 

would be more appropriate than the centroid-centroid approach, which gives little information of 

the underlying processes which might alter migration distance. 

Several other factors affect the distribution of species, such as species-specific dispersal 

ability, competition, resource availability and learned behaviour (Guisan & Thuiller 2005; Soberón 

2007; Schloss, Nuñez & Lawler 2012a; Early & Sax 2014). Failing to account for such effects can result 

in the overestimation of species range extents. When these factors are not explicitly considered, 

projected species distributions have been constrained using biogeographic realms (Pigot, Owens & 

Orme 2010), country boundaries (Acevedo et al. 2012) and distance buffers (Young et al. 2009). A 

migrant bird that breeds in North America may have suitable climate space available in other parts 

of the world (such as Europe), but given that a lot of migratory behaviour is under genetic control, it 

is unlikely that migrants will shift their breeding/non-breeding areas to such an extent that they 

switch continents altogether. As climate change will mean long distance migrants (that mostly 

originate in Nearctic, Palaearctic) will be shifting their breeding ranges poleward (Hickling et al. 

2006), they are unlikely to begin breeding in a new realm. Conversely, they could quite easily 

become more prone to residency or migrate shorter distances if climatic conditions improve closer 

to the breeding ranges, and switch realm with respect to the non-breeding range (as have Blackcaps 

recently, Pulido and Berthold (2010)). Delineating an appropriate region for model projections for 

migrants is not straightforward; as they inhabit spatially and temporally distinct areas during their 

annual migratory cycle, and have the ability to disperse large distances.  
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Here I first develop SDMs that relate migratory breeding and non-breeding ranges to current 

climatic conditions. I then evaluate two methods for estimating the migration distance a typical 

individual of a species might undertake. The first is a commonly applied approach using SDMs to 

describe the distribution on both the breeding and non-breeding range, and calculating the centroid 

to centroid distance. The second is a distance weighted estimation approach whereby distance is 

calculated between climatically suitable cells on the breeding and non-breeding areas for a given 

species, favouring distances that are shorter.  

5.3 Methods 

5.3.1 Species distribution data 

Breeding and non-breeding range polygons for 440 fully migratory bird species (those with 

fully non-overlapping breeding and non-breeding ranges), were obtained from BirdLife International 

(Birdlife International & NatureServe 2011). These polygons were overlaid to a 0.5 degree (approx. 

56km x 56km at the equator) grid. A species was considered to be present in a grid-cell if the species’ 

polygon intersected the cell by 10% or more. From the initial 440 species, I excluded species that 

spent a significant portion of their time at sea because their occurrence is unlikely to be linked to 

terrestrial climate. Due to model building limitations, particularly when using data splitting for model 

validation, species that occupied fewer than 30 cells on their breeding or non-breeding grounds 

were excluded from further analyses. After this process, 340 species of long-distance migrant 

remained and were used for subsequent analyses.  

5.3.2 Climate data 

Bioclimatic variables for a 50-year interval (1950-2000) were obtained from WORLDCLIM 

v1.4 (Hijmans et al. 2005, http://www.worldclim.org/) at a 0.04° resolution. These data were 

aggregated to a 0.5° resolution to match the species data by calculating the mean value of all the 

0.04° cells that fall within each 0.5 degree cell. Four uncorrelated bioclimatic variables were chosen 

a priori for analyses: mean temperature of the warmest quarter (MTWQ); annual precipitation; 

seasonality of precipitation and seasonality of temperature. These variables can limit the distribution 

of species through both direct and indirect effects on vegetation, predation, and competition, and 

have been used successfully to describe the species distribution patterns of birds globally (Hurlbert 

& Haskell 2003; Huntley et al. 2006; Abolafya et al. 2013; Howard et al. 2015; Somveille, Rodrigues & 

Manica 2015).  
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5.3.3 Species distribution models 

The relationship between each species’ distribution and the four bioclimatic variables was 

modelled separately for the breeding and non-breeding ranges, using two modelling approaches: a 

machine-learning technique (random forests, RFs) and a regression method (generalised additive 

models, GAMs). Models were conditioned on presence-absence data, with presences coming from 

the gridded Birdlife polygons and absences drawn using the distance weighted absence selection 

approach, outlined in Chapter 2. The effect of spatial autocorrelation in SDMs was minimised using a 

blocking approach (following Bagchi et al. 2013), in which the transferability of fitted models to 

spatially segregated test data was assessed. Global climate data were split into five spatially 

disaggregated blocks, such that each block sampled the full range of covariate parameter space, but 

the mean of the climatic predictors differed little between blocks (Bagchi et al. 2013). Sampling units 

consisted of global ecoregions (http://www.worldwildlife.org/science/data), or parts of ecoregions if 

the ecoregions were very large. Large ecoregions (greater than 250,000 km2) were split into smaller 

sampling units by intersecting them with a 2.5° by 2.5° grid to create smaller subunits of a 

comparable size to smaller ecoregions. Areas separated geographically can comprise the same 

ecoregion, and ecoregions that were not neighbouring were considered separate sampling units. The 

five blocks were created using the “blockTools” package in R (Moore 2014). For SDMs, each block 

was left out in turn (test data) and models were fitted to the remaining four blocks (training data). In 

this way, predictor variables and block (or geographic location) were independent (therefore 

minimising the effect of spatial autocorrelation) but the range of predictor variables were similar in 

the training and testing data.  

GAMs with a Bernoulli response and a logit link were fitted using thin-plate regression spines 

(“mgcv” package R, Wood (2006)) to species occurrence data excluding one block at a time, and 

smoothness was established by generalised cross-validation (Wood (2006)). For RF models, cross-

validation was used to select both the number of variables used to build each tree (mtry) and the 

optimal number of trees (ntree) (package “randomForest” in R, Liaw and Wiener (2002)). An initial 

forest was built with 1000 trees for each value of mtry between 1 and 3 and the AUC was calculated 

using the withheld block. Another forest was then grown with additional 500 trees and the model 

accuracy assessed. This process was continued until the AUC did not improve by more than 1% when 

an extra 500 trees were added. The mtry value and the number of trees that maximised the AUC 

across the five blocks were used to assess model fit and to fit the final models. For both modelling 

approaches, the median AUC from across the five blocks was used to assess model accuracy, and 

cross-validation was used to optimise model predictive performance before fitting a final (optimal) 

set of models for each species.  

http://www.worldwildlife.org/science/data
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5.3.4 Model projection 

Areas suitable for occupancy during both the breeding and non-breeding season were 

determined by applying the SDMs for the breeding/non-breeding season across a species’ entire 

current migratory flyway. This allows areas that become newly suitable for spending the non-

breeding season, but which occur between the breeding and non-breeding range, to be used in 

future, i.e. to allow for the development of new migratory strategies. The world was divided into 

three major migratory flyways (based on BirdLife international (http://www.birdlife.org/flyways/)) as 

follows: The Americas flyway (120°W to 30°W), the African-Eurasian flyway (30°W to 60°E) and the 

Asian-Australasian Flyway (60°E to 120°E), which encompass the migratory routes of the majority of 

terrestrial migrants. For wide ranging species that utilise several flyways, species distributions were 

modelled and projected separately to each of the flyways in which they occurred. For a small 

number of species (76 species) whose migration did not follow these general flyways, individual 

flyways (and hence combinations of regions to which models were applied) were established. For 

example, the Amur falcon (Falco amurensis) breeds in eastern Asia but spends the winter-in sub-

Saharan Africa. For this species, the potential future breeding and non-breeding range was 

evaluated across Africa and eastern Asia. 

5.3.5 Estimating migratory distances 

Centroid-to-centroid migration distance 

Continuous suitability data (from both the breeding and non-breeding range models) were 

converted to presence-absence using a thresholding approach that maximised the Kappa statistic. 

The Kappa statistic measures model accuracy while correcting for accuracy expected to occur by 

chance (Cohen 1960). Vincenty’s ellipsoid great circle distances (Vincenty 1975) were used to 

estimate the distance between the centroids of the breeding and non-breeding range for each 

species. Centroids were derived by taking the mean latitude and longitude of each migratory 

species’ breeding and non-breeding distribution.  

Distance-weighted migratory distances  

 As an alternative to the centroid-centroid approach, I used an approach that estimated 

migration distances from localities drawn from across the breeding range. First, a cell was randomly 

selected from the modelled breeding range of a species (i.e. the range after applying a threshold, as 

described above), and 100 cells were also randomly selected from within the non-breeding areas. I 

then used a ‘least-cost’ approach to find the most suitable non-breeding cell to the focal breeding 

cell, from among the 100 candidate non-breeding locations. The non-breeding cell was selected 

http://www.birdlife.org/flyways/
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based on POCC (modelled suitability from the SDMS) weighted by the great circle distance between 

the two cells (Dmin, where shorter distances are favoured), as follows: 
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 where C is the cell chosen. The distance between the chosen cell and the breeding range cell 

recorded. This process was repeated 1000 times for each migratory species. The median of these 

1000 distance estimations was recorded, to account for rare long distances that could skew the 

mean. Subsampling a series of non-breeding cells (100 cells per iteration) was necessary, as to 

estimate distances between each breeding cell and all non-breeding cells for all iterations and 

species, would be computationally prohibitive. For widespread migrants that use multiple flyways, a 

median migratory distance was recorded for each flyway. This process was conducted for all 

migrants. Using this approach, a range of migration distances were selected for each species, as well 

as the median distance.  

This method for estimating migration distance was evaluated using an example species, the 

barn swallow (Hirundo rustica). This wide ranging species was selected as ringing recovery data were 

available, in particular for sub-Saharan Africa, in comparison to other trans-Saharan migrants. 

Ringing recovery data were obtained from three ringing and migration atlases (Britain and Ireland, 

Norway and Finnish (Wernham et al. 2002; Bakken, Runde & Tjorve 2006; Valkama et al. 2014). The 

ringing recovery data were African-European in extent, therefore the polygon data were clipped to 

the African-European flyway (Error! Reference source not found.).  

The centroid-centroid and the distance weighted distribution approaches for estimating 

migration distance were compared, for all migratory species using paired t-tests. Both methods of 

estimating migration distance were also compared with ring recovery distance estimates for the 

example species.  
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Figure 5.1 BirdLife polygon data for the Barn swallow (Hirundo rustica), on the breeding range (red) and the 

non-breeding range (blue). The polygon data are constrained to the African-Eurasian migration flyway. Black 

points are the ringing and recovery data for Barn swallow obtained from the three European migration atlases 

(see text for details). 
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5.4 Results 

The red-breasted flycatcher (F. parva) example illustrates that using centroid-centroid 

methods to estimate migration distances is flawed. Despite the non-breeding grounds of F.parva 

occurring in Pakistan and India (Figure S 6), this species is projected to have suitable climate in two 

disparate regions on the non-breeding range (Figure 5.2). This novel area of climatic suitability is an 

area where the species is categorised as “origin uncertain” by BirdLife International, that is, the 

species provenance in an area is not known (it may be native, reintroduced or introduced) (Figure S 

6). The centroid-centroid approach for estimating migration distances is obsolete in this scenario, as 

it is unable to adapt to this, and instead choses a point in between the two non-breeding areas as its 

destination point, when in reality, the species is not projected to occupy this area in the non-

breeding season. In contrast, the distance weighted method for estimating migratory distances 

shows a wide range of distances estimated for this species, to a number of disparate, climatically 

suitable locations (Figure 5.2b). 
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Figure 5.2 Predicted baseline breeding (red) and non-breeding (blue) distribution of the red-breasted flycatcher (F. parva). a) Arrows indicate the locations chosen to 

estimate distance using the centroid-centroid method. b) Frequency histogram of distances estimated using the distance weighted estimation method in blue.  Dashed line 

indicates the median distance for this species (3980 km) and dotted line is the distance estimated using centroid to centroid distance (3383 km). 
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5.4.1 Hirundo rustica example 

Median migration distances for the Europe-African migratory barn swallows were estimated 

to be 6131 km when the centroid-centroid approach was used, and 5740 km when the distance-

weighted estimation approach was used. 

Histograms of migratory distances (km) estimated using the distance weighted distribution 

approach were overlaid with histograms of distances estimated from ring recovery data (Figure 5.1). 

Ring recovery distance estimates fell within the distance estimates from polygon data using the 

distance weighted estimation approach. Distances calculated using the distance weighted method 

were slightly left skewed (Figure 5.3). 

 

 

Figure 5.3 Frequency histogram of the distances (in km) estimated using the distance weighted distribution 

approach (grey) the ring recovery data (blue). The ring recovery distance estimates exclude South Africa as it 

contained the majority of ringing recoveries, and therefore distances became right-skewed. 
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5.4.2 Distance estimates across all migratory species 

Centroid-centroid estimates of migratory distance are significantly larger than estimates 

from the distance weighted distribution approach (paired t(333)= -7.58, p <0.0001) for 334 migratory 

species (Figure 5.4). 

 

Figure 5.4 Migration distances (±SE) between the breeding and non-breeding ranges for 334 migratory species 

calculated using the centroid approach and the distance weighted approach. Notches indicate the 95% 

confidence intervals of the median, with a lack of overlap indicating a significant difference at the 5% level. 

 

Migration distances were significantly larger for migrants that breed at higher latitudes 

(centroid-centroid: F=76.9(1,318), P <0.0001 and distance weighted: F=158.5(1,318), P <0.0001). 

Distances estimated using distance weighting were significantly larger for African-Eurasian migrants 

than for migrants of the Americas and Asian-Australasian flyways (F(2,317)=4.62, P = 0.01). Centroid-

centroid distance estimates were significantly larger for migrants of the Americas flyway than for 

African-Eurasian and Asian-Australasian migrants (F(3,316)=47.56, P < 0.001). Mapped mean migration 

distance for migrants shows that distance is larger for more northern species for both methods for 

estimating distance (Figure 5.5 a and b), but distance estimates were larger for North American 

migrants when the centroid-centroid approach is used than when the distance weighted distance 

estimate approach was employed. 
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Figure 5.5 Mean migration distance (km) for all breeding migrants based on a) the distance weighted estimation approach and b) the centroid-centroid approach for 

estimating distance. 
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5.5 Discussion 

 In order to estimate migration distances, an approach that incorporated both climatic 

suitability data for a species, as well as a cost of migration distance, was developed. Migration 

distances between breeding and non-breeding ranges were estimated more frequently between 

cells that were both climatically suitable and closer to one another. This approach also returned a 

range of likely migration distances that species would face rather than single estimate of mean 

migration distance. Finally, the advantage of this method over the centroid-centroid approach was 

that this approach was less rigid than the centroid approach, and allowed for the estimation of 

distances to novel climatically suitable locations that were predicted closer to the breeding areas of 

a given species. 

 The centroid-centroid method of estimating migration distances is a simple approach that 

has been used to estimate migratory distances for birds (Doswald et al. 2009; La Sorte et al. 2013). 

However, the centroid approach for estimating migration distance only estimates distance between 

the means of a species breeding/non-breeding range, and does not consider distances faced by 

individuals from across the range. This is particularly important as studies are reporting that species 

are shifting their range margins more than the centre of a range (Mason et al. 2015), and therefore 

changes in migration distances may be underestimated. Additionally, the centroid-centroid approach 

is inflexible and can produce illogical migration distances when species’ have multiple breeding and 

non-breeding locations, as was illustrated by the example species F. parva. A further issue with this 

method is that in order to estimate distance, it is necessary to threshold the probabilistic climate 

suitability data to convert them to a binary presence-absence format. Thresholding has been 

criticized for being dependent on prevalence, and, importantly, for the arbitrary choice of threshold 

value which has been shown to drastically alter projections of species distributions (Allouche, Tsoar 

& Kadmon 2006; Nenzen & Araujo 2011). 

 The distance-weighted estimation approach provided a range of potential migratory 

distances for a species, as opposed to the centroid approach which is one value of mean migration 

distance. The distance weighted method is a more nuanced approach and was more flexible than 

the centroid-centroid method of estimating distances, as it allowed for the selection of novel 

climatically suitable non-breeding areas, if they were closer to the breeding range than the observed 

non-breeding areas. Distances were calculated in a more biologically meaningful way, whereby the 

majority of distances were estimated between climatically suitable cells in the breeding grounds and 

the non-breeding grounds, where I assume species are more likely to occur. Additionally, the cost of 

distance was incorporated to this method of estimating distance, whereby closer, climatically 
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suitable non-breeding areas were preferentially selected for calculating migration distance.  Finally, 

the distance weighted approach maximised the use of the data by avoiding conversion of the data to 

a binary presence-absence format.  

 Across all species, migration distances were estimated to be larger when using the centroid-

centroid approach than the distance-weighted estimation approach to calculate migration distance. 

This is likely to be as a result of the latter approach allowing for distances to be calculated to closer, 

climatically suitable locations. Migration distances were larger for migrants that breed at higher 

latitudes. In general, species that breed at the highest latitudes have the longest migration distances 

between the breeding and non-breeding ranges (Alerstam, Hedenstrom & Akesson 2003). The most 

extreme example of this is the Arctic tern (Sterna paradisaea) which breeds in the Arctic and spends 

the non-breeding season in the Antarctic (Rappole 2013). Migration distances were also larger for 

Afro-European migrants than for migrants of the Americas or Asian-Australasian flyway. This may be 

because of the Saharan desert barrier which requires a long distance crossing of this for migrants to 

reach the productive areas south of the Sahel (Moreau 1972). 

When the distance weighted approach for estimating distances from polygon data was 

compared with ring recovery data estimates, it was apparent that the ring recovery data for H. 

rustica was biased in space. The majority of the recovery data for barn swallows in Africa were from 

South Africa where there is a ringing scheme, “The South African Bird Ringing Scheme”. This 

highlights the issue of non-random samples of ringing recovery data, where the probability of finding 

and recording a ringing recovery varies geographically (Korner-Nievergelt, Liechti & Thorup 2014).   

Migratory species occupancy at a given site is dependent on the climatic suitability of the 

area (Guisan & Zimmermann 2000a), as well as the distance between the non-breeding and 

breeding grounds (Duijns et al. 2012). The suitability of the habitat is also related to the number of 

conspecifics and competitors, as well as the productivity and quality of the site (Ramos et al. 2015). 

Therefore, migratory species make complex decisions when selecting their habitat on both the 

breeding and non-breeding grounds. These additional considerations have not been explicitly tested 

here, but incorporating these effects would improve the realism of estimated migration distances. 

An issue with the distance weighted distribution approach for estimating migration distance is that 

the density of individuals in a given cell was not taken into account. A cell is chosen for estimating 

distance based on the climatic suitability for a species and distance to the breeding range, but 

ignores the density of potential conspecific or competitors already in a given cell. Therefore, a cell 

may be repeatedly selected to estimate distance that would be unsuitable for a migrant (despite the 

suitable climate) if it was already at full of competitors and conspecifics. Finally, for some species, 
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suitable climate space was available for a migratory species closer to the breeding grounds that are 

currently unoccupied. This could be because despite the suitable climate space, the area is 

unsuitable for reasons not explicitly tested in this study (habitat homogeneity, competition, 

predators, inter-annual climate variability (Jetz & Rahbek 2002; Alerstam, Hedenstrom & Akesson 

2003; Ahola et al. 2007; Allouche et al. 2012)). Further, species that make multiple stops on the non-

breeding grounds might be simulated to winter too close to the breeding areas using the distance-

weighted estimation approach, as they would be modelled to go to the nearest suitable sites, and 

not to move on when they become unsuitable. 

The selection of suitable, closer, yet currently unoccupied non-breeding ranges could be of 

interest, as it could highlight novel areas for future overwintering, as migration is costly and shorter 

migration distances are likely to be selected for (Pulido & Berthold 2010). Furthermore, it could 

highlight areas where species are expected to occur but do not for other reasons such as 

competitive exclusion (Leathwick & Austin 2001; Meier et al. 2011), or a lack of necessary habitat 

(Torres et al. 2015) for the species. These additional contributors to the distribution of a species 

must be considered when using SDMs for conservation planning, because species distributions are 

not solely constrained by climate (Guisan & Thuiller 2005).  

5.4.1 Conclusion 

The distance-weighted estimation approach was chosen to estimate migration distances of 

species under future climate change (Chapter 6). This approach negates the need to threshold data 

and incorporated suitability estimates, whereby suitable cell-cell distances were more likely to be 

estimated. Moreover, a cost of migration distance was incorporated, whereby further distances 

were less likely to be selected for the distance estimation process. Finally, this approach was more 

flexible and allowed for the estimation of distances to novel, closer, yet climatically suitable areas 

that may become inhabited by migrants in the future.  
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6.1 Abstract 

Migratory species are particularly vulnerable to climate change, with the potential for 

intricately timed and long-established relationships of migratory species’ with their environment to 

become disrupted. Breeding and non-breeding ranges of migratory species may shift in response to 

climate change, and in some cases may move apart, potentially leading to future declines. 

Conversely, some migrants might benefit from shorter migrations, and such shifts are already being 

observed. Migration distance is also likely to affect the arrival time of migrant birds on the breeding 

grounds, which has been linked to survival and reproductive success. Projecting potential changes to 

migratory strategies in the future is important to understand additional costs or benefits to 

migratory species as a consequence of climatic change.  

Correlative species distribution models were used to relate migratory species distributions 

across the globe, on breeding and non-breeding areas, to contemporary climates. Future potential 

distributions of migratory species on their breeding and non-breeding grounds were projected using 

an ensemble of future climate change scenarios. Distances between simulated potential breeding 

and non-breeding ranges were compared for individual species, using current and future climate 

projections, and changes in potential migratory distances in the future were evaluated.  

In general, distances between the breeding and non-breeding areas are projected to 

increase for migrants in the future. This is largely a consequence of breeding ranges shifting 

poleward, while non-breeding ranges show little latitudinal shift in a given direction. Some novel 

potential non-breeding locations are simulated closer to the breeding areas, highlighting possible 

novel non-breeding sites for migrants in the future. Breeding species turnover was highest at higher 

latitudes, as was the change in breeding migrant species richness between now and the future. 

Important breeding sites for migrants are projected to become even more northerly in the future. 

Although there was variation in projected migratory patterns due to variable climate change 

projections, climatic suitability consistently improved for migrants on the breeding areas across all 

three global migration flyways.  



95 
 

6.2 Introduction 

Anthropogenic climate change and ongoing human-induced threats, such as habitat loss, pose 

major threats to global biodiversity (Walther et al. 2002; Thomas et al. 2004; Brook, Sodhi & 

Bradshaw 2008; Pereira et al. 2010). Understanding species’ responses to climate change is one of 

the most pressing scientific challenges. Correlative species distribution models (SDMs) have been 

developed to assess the potential impacts of climate change on biodiversity (Peterson et al. 2011; 

Guisan et al. 2013). Climatic change is driving poleward shifts in species’ ranges for many taxa 

(Parmesan & Yohe 2003; Hickling et al. 2006; La Sorte & Thompson 2007) but, more recently, 

attention has shifted to the variation in responses among species (Eglington & Pearce-Higgins 2012; 

Gillings, Balmer & Fuller 2015; Palmer et al. 2015). 

Migratory species may be particularly vulnerable to climate change, with the potential for 

intricately timed and long-established relationships between migratory species’ and their 

environments to become disrupted. Breeding bird populations have been declining across Europe, in 

particular long-distance migrants (Sanderson et al. 2006). Recent studies have reported changes in 

the spring migration of birds (Knudsen et al. 2011), with the advancement of arrival dates to the 

breeding grounds in a pattern consistent with climate change (Sparks 1999; Cotton 2003; Thorup, 

Tøttrup & Rahbek 2007; Saino et al. 2011). A change in climate may lead to a mismatch between 

timing of migration and resource availability on both the breeding and non-breeding areas (Both & 

Visser 2001; Both et al. 2006; Gordo 2007). Arctic breeders have been shown to have reductions in 

reproductive success or complete breeding failure if they arrive at their breeding grounds outside a 

very narrow time window (Alerstam & Lindstrom 1990; Bauer, Gienapp & Madsen 2008). Natural 

selection should favour birds that can synchronise migration with peaks of resource availability, 

particularly as migrating birds use chains of stopover sites en route, which often differ in seasonality 

(Bauer, Gienapp & Madsen 2008). Long-distance migrants are particularly vulnerable to mismatches 

because climate in their breeding and wintering areas may be changing at different speeds, 

hampering appropriate adaptation (Both & Visser 2001). Further, short distance migrants spend the 

winter closer to the breeding areas in comparison with long-distance migrants, which may allow 

such species to fine-tune the timing of spring migration in response to climate (Rubolini et al. 2007; 

Moller, Rubolini & Lehikoinen 2008). Indeed, the breeding populations of long-distance migrant 

birds are already in decline (Both et al. 2006; Sanderson et al. 2006; Heldbjerg & Fox 2008; Moller, 

Rubolini & Lehikoinen 2008).  

Arrival date can be advanced in several ways: by increasing speed of migration, by departing the 

wintering grounds earlier, and by shortening the migration distance (Coppack & Both 2002). Global 
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climate change has led to increased winter temperatures in North-West Europe, and studies have 

shown that migration distances have decreased for short distance migrants (Visser et al. 2009). 

These changes in migratory distance are as a result of non-breeding ranges shifting northward 

(Visser et al. 2009; Pulido & Berthold 2010; Kullberg et al. 2015), resulting in migrants wintering 

closer to breeding areas. The resulting shortened migration distance is likely to modify the timing of 

spring arrival of migrants to the breeding grounds (Coppack & Pulido 2004; Pulido 2007; Pulido & 

Berthold 2010), which means these species can better time their arrival to breeding areas to the 

timing of food availability (Coppack & Both 2002; Walther, Berger & Sykes 2005). Current climate 

change is favouring birds wintering closer to the breeding grounds as it reduces migration costs and 

facilitates the rapid adaptation to shifts in the timing of food emergence on the breeding grounds 

(Visser & Both 2005; Bradshaw & Holzapfel 2008). Under climate change, migrants may become 

more sedentary as warmer climates allow for species to overwinter on the breeding grounds 

(Berthold 2001). An artificial selection experiment in a population of blackcaps (Sylvia atricapilla) 

suggested that residency could rapidly evolve in migratory populations if selection for shortened 

migration persists (Pulido & Berthold 2010). However, the observed shorter migration distances are 

inconsistent with what is expected from climate change, where migration distances are expected to 

increase because breeding ranges (often located at higher latitudes) respond strongly to latitudinal 

climatic gradients, but non-breeding ranges (often located in tropical regions) do not (Huntley et al. 

2006; Doswald et al. 2009).  

SDMs are used widely in ecology for identifying species’ habitat preferences, and for predicting 

how the suitability of habitats might change in space or time.  SDMs have found particular utility in 

predicting species’ potential responses to climate change (Huntley et al. 2008; Doswald et al. 2009; 

Barbet-Massin, Thuiller & Jiguet 2012). Migration distances have been estimated from the distance 

between centroids of predicted breeding and non-breeding ranges (Doswald et al. 2009). 

Additionally, species range shifts are often calculated by estimating the distance between the 

centroid of the current species range with the centroid of the projected future or past species range 

(Lyons, Wagner & Dzikiewicz 2010; Gillings, Balmer & Fuller 2015). Importantly, centroid-centroid 

distance estimates convey little nuanced detail of how migrations might change in the future. 

Centroid shifts do take into consideration the shape of a species range, and therefore shifts may not 

be detected if they occur at range margins. Moreover, migrant species distributions are not 

necessarily continuous, with the same species breeding on disparate continents or countries, often 

making centroid estimates nonsensical.  
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Few studies have assessed the potential impacts of climate change on the non-breeding grounds 

of migrants (but see Austin & Rehfisch 2005; Studds & Marra 2007; Barbet-Massin et al. 2009), and 

fewer still have assessed the impact of climate change on migratory species on both their breeding 

and non-breeding ranges (Bohning-Gaese & Lemoine 2004; Doswald et al. 2009; Wilson et al. 2011). 

Doswald et al. (2009) showed that, although potential range extent varied among Sylvia warblers, a 

group of trans-Saharan migrants, in general, both breeding and non-breeding ranges were projected 

to increase in extent by the end of the 21st Century. Migration distances were projected to increase, 

and in many cases novel potential future non-breeding areas were simulated, which suggested that 

new migration routes may need to develop in response to climate change. Certainly, as a result of 

such changes, birds may need to develop new migration strategies, for instance, by increasing the 

number or duration of stopovers used, in order to obtain sufficient energy for longer journeys 

(Schaub & Jenni 2001).  

Most studies of the effects of climate change migrant distributions have focused on the breeding 

ranges of species, and are mainly North America and Europe focussed (Hurlbert & Haskell 2003; 

Lemoine & Bohning-Gaese 2003; Monkkonen & Forsman 2005; Wisz, Walther & Rahbek 2007b; 

Honkanen et al. 2010; Morrison et al. 2013; Blackburn & Cresswell 2015). However, it is clear that 

there are important links between the periods that migrants spend on the often widely separated 

breeding and non-breeding locations (Marra, Hobson & Holmes 1998; Gill et al. 2001; Gordo et al. 

2005; Morrison et al. 2013). Without a solid understanding of the year-round geographic 

distributions of migrant species, long term conservation plans become difficult (Webster et al. 2002; 

Small-Lorenz et al. 2013). Despite this, there has been no (to my knowledge) previous assessment of 

the impacts of projected climate change on migratory species, on both the breeding and non-

breeding seasons, at a global scale.  

Here I assess the potential impacts of climate change on long-distance migratory birds 

across the globe using an ensemble of future climate change projections. I model the relationship 

between contemporary species distributions and climate, using correlative SDMs. From this the 

spatial and temporal patterns of projected climate change impacts for migratory species are 

assessed globally. Changes in migration distance are evaluated, allowing for species to develop new 

migratory strategies should novel climatically suitable areas become available closer to the breeding 

grounds in the future. 
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6.3 Methods 

6.3.1 Species distribution data 

Breeding and non-breeding range polygons for 443 fully migratory bird species (those with 

fully non-overlapping breeding and non-breeding ranges), were obtained from BirdLife International 

(Birdlife International & NatureServe 2011). These polygons were overlaid to a 0.5 degree (approx. 

56km x 56km at the equator) grid. A species was considered to be present in a grid-cell if the species’ 

polygon intersected the cell by 10% or more. From the initial 443 species, I excluded species that 

spent a significant portion of their time at sea because their occurrence is unlikely to be linked to 

terrestrial climate. Due to model building limitations, particularly when using data splitting for model 

validation, species that occupied fewer than 30 cells on their breeding or non-breeding grounds 

were excluded from further analyses. After this process, 340 species of long-distance migrant 

remained, and were used for subsequent analyses.  

6.3.2 Contemporary climatic data 

Bioclimatic variables for a 50-year interval (1950-2000), were obtained from WorlClim v1.4 

(Hijmans et al. 2005, http://www.worldclim.org/) at a 0.04° resolution. These data were aggregated 

to a 0.5° resolution to match the species data by calculating the mean value of all the 0.04° cells that 

fell within each 0.5 degree cell. Four non-correlated bioclimatic variables were chosen a priori for 

analyses as described in chapter 4: mean temperature of the warmest quarter; annual precipitation; 

seasonality of precipitation and seasonality of temperature.  

6.3.3 Future climate projections 

Future projections of bioclimatic variables were obtained from WorldClim (Hijmans et al. 

2005) for two time periods: 2050 (average for 2041-2060) and 2070 (average for 2061-2080). Three 

generalised circulation models from the IPCC’S CMIP5 project (GCMs: CCSM4, HadGEM2-ES, MIROC-

ESM-CHEM) for four representative concentration pathways (RCPs) were used. These GCMs were 

selected as they contained all four available RCP scenarios for both time periods. These data were 

obtained at a 0.04° and aggregated to a 0.5° resolution to match the species data, as was done for 

the baseline climate data. The four RCP scenarios (RCP2.6 [sometimes referred to as RCP3PD], 

RCP4.5, RCP6 and RCP8.5) were developed for the IPCC fifth assessment report (IPCC 2013) based on 

the fifth phase of the Coupled Model Inter-comparison Project5 (CMIP5, http://cmip-

pcmdi.llnl.gov/cmip5/). These RCP scenarios incorporate the complex interactions of climate 

systems, ecosystems (such as land use and land cover change), and human activities (such as the 

emergence of new technologies, and socioeconomic development) to provide plausible descriptions 

http://cmip-pcmdi.llnl.gov/cmip5/
http://cmip-pcmdi.llnl.gov/cmip5/
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of how the future might unfold (Moss et al. 2010; van Vuuren et al. 2011; Rogelj, Meinshausen & 

Knutti 2012). The four RCPs (RCP2.6, RCP4.5, RCP6, and RCP8.5) are named after a possible range of 

radiative forcing values in 2100 relative to pre-industrial values (+2.6, +4.5, +6.0 and +8.5 W/m2, 

respectively). RCP8.5 can be interpreted as a high emissions scenario, and RCP2.6 as the lowest 

emissions scenario (van Vuuren et al. 2011).   

6.3.4 Species distribution models 

The relationship between each species’ current distribution and the four bioclimatic 

variables was modelled separately for the breeding and non-breeding ranges, using two modelling 

approaches: a machine-learning technique (random forests, RFs) and a regression method 

(generalised additive models, GAMs) as explained in chapter 5. Models were conditioned on 

presence-absence data, with presences coming from the gridded BirdLife polygons (Birdlife 

International & NatureServe 2011) and absences drawn using the distance weighted absence 

selection approach, outlined in Chapter 2. The effect of spatial autocorrelation in SDMs was 

minimised using a blocking approach (following Bagchi et al. 2013), in which the transferability of 

fitted models to spatially segregated test data was assessed, as described in chapters 4 and 5. In 

total, there were 100 models for each species (2 SDMs X 10 pseudo-absence repetitions X 5 jack-

knife iterations). 

Models calibrated using baseline data were then projected to the future using future climate 

change projections for the two time periods (2050 and 2070) for each of the four RCP scenarios 

using climate change predictions from 3 GCMs. To avoid projecting migratory species distributions to 

unrealistically distant locations, the SDMs were applied to the migration flyway that each species 

currently occupies. The world was divided into three major migratory flyways (as defined by BirdLife 

International: http://www.birdlife.org/flyways/) as follows: The Americas flyway (120°W to 30°W), 

the African-Eurasian flyway (30°W to 60°E) and the Asian-Australasian Flyway (60°E to 120°E), which 

encompass the migratory routes of the majority of terrestrial migrants (Figure S 4). This approach 

retained as suitable any areas that became climatically suitable but which occur between the 

breeding and non-breeding range within a migration flyway. For wide-ranging species that utilise 

several flyways, species distributions were modelled and projected separately to each of the flyways 

in which they occurred. A small number of species (76 species) follow migratory routes that do not 

match with the three major flyways. For such species, individual flyways (and hence combinations of 

regions to which models were applied) were established. For example, the Amur falcon (Falco 

amurensis) breeds in eastern Asia but spends the winter-in sub-Saharan Africa. For this species, the 

http://www.birdlife.org/flyways/
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potential future breeding and non-breeding range was evaluated across the African-Eurasian and 

part of the Asian-Australasian flyways. 

6.3.5 Estimating climatic suitability for migrants globally 

Models were used to predict the probability that a given cell would contain suitable climate 

for each migratory species using present climate and 24 (4 RCP scenarios X 3 GCMs X 2 time periods) 

future climate change projections. For each species, change in the climatic suitability was the 

summed climatic suitability across the migration flyway for the future period, divided by the 

summed current suitability for that species across the same flyway. This was calculated separately 

for each species on the breeding and non-breeding grounds. This projected change in suitability was 

calculated for each of the future climate change projections, and the 95% quantiles were used to 

assess uncertainty. For each cell across the globe, where the change in climatic suitability was >1, a 

species was projected to gain suitability, and where it was <1, a species was projected to lose 

climatic suitability. When the 95% quantiles for each species change in climatic suitability estimates 

overlapped with 0, these projections are less certain than projections which showed directional 

consensus in suitability change across the different GCMs, SDM methods and jack-knife iterations.  

6.3.6 Species richness 

The projected species richness for migrants was estimated (separately for breeding and non-

breeding richness) by summing the probabilities that each of the species modelled would find 

suitable climate within a given cell in the migration flyway within which it occurs. Projected change 

in species richness between the present and future periods was calculated as a proportional change 

relative to current projected richness. 

To test whether change in species richness was related to latitude, the world was divided 

into 6 longitudinal and 12 latitudinal bands to minimise the effect of spatial autocorrelation. The 

mean change in species richness was determined for each of the 108 blocks. An ANOVA was used to 

determine if the estimated mean species richness change for each block (breeding and non-breeding 

separately) differed among the longitudinal bands (Figure S 7). The longitudinal bands were: band 1= 

[70 to 80° latitude]; band 2= [50 to 70° latitude]; band 3= [30 to 50° latitude]; band 4= [0 to 30° 

latitude]; band 5= [-30 to 0° latitude]; and band 6= [-50 to -30° latitude].  
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6.3.7 Species turnover 

Species turnover for each cell between the current and future time periods (2050, 2070)  

was calculated using the Bray-Curtis index of dissimilarity between two communities (Bray & Curtis 

1957), as: 

𝑇𝑗[𝑡] =  
∑ | 𝑃𝑗𝑘[𝑡2]𝑠

𝑘=1 − 𝑃𝑗𝑘[𝑡1]

∑ | 𝑃𝑗𝑘[𝑡1]𝑠
𝑘=1 + ∑ 𝑃𝑗𝑘[𝑡2]𝑠

𝑘=1

                       [1] 

where t1= baseline, t2= future, j= species turnover for each cell between t1 and t2, and Pjk is the mean 

suitability of species k within a cell across the GCM projections. Species turnover was estimated 

separately for the breeding and non-breeding areas, and for the four RCP scenarios. 

6.3.8 Migration distance 

To estimate typical potential migration distances, the distance-weighted suitability approach 

outlined in Chapter 4 was used. First, continuous suitability data (from both the breeding and non-

breeding range models) were converted to presence-absence projections, using a thresholding 

approach that maximised the Kappa statistic (Cohen 1960). The Kappa statistic measures model 

accuracy while correcting for accuracy expected to occur by chance (Cohen 1960). Second, a cell was 

randomly selected from the modelled breeding range of a species (i.e. the range after applying a 

threshold, as described above), weighted by the suitability of a cell, and 100 cells were randomly 

selected from within the modelled non-breeding areas. A ‘least-cost’ approach was used to find the 

most suitable non-breeding cell to the focal breeding cell, from among the 100 candidate non-

breeding locations. The non-breeding cell was selected based on POCC (modelled climatic suitability 

from the SDMs) weighted by the great circle distance (km) between the two selected cells (Dmin, 

where shorter distances are favoured), as follows: 
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This distance between the chosen non-breeding cell and the breeding range cell was 

recorded. This process was repeated 1000 times for each migratory species, the range of migratory 

distances recorded, and the median distance calculated. Subsampling a series of non-breeding cells 

(100 cells per iteration) was undertaken because to estimate distances between each breeding cell 

and all non-breeding cells for all iterations and species, would be computationally prohibitive. 

Secondly, this approach introduced stochasticity, which prevented a single suitable non-breeding 
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site close to the breeding grounds being selected in all iterations. For widespread migrants that use 

multiple flyways, a median migratory distance was recorded for each flyway. 

6.3.9 Change in migration distance  

Potential changes in median migration distance were expressed as the percentage change in 

distance between present and potential future median migration distances. Should novel, 

climatically suitable locations emerge for migrants in the future, then the range of potential 

migration distances could alter. Therefore, potential changes in the range of migration distances 

between present and potential future migration ranges were also estimated. Median migration 

distances across the three time periods (baseline, 2050, 2070) were compared using a repeated 

measure ANOVA (to account for the fact that the same species were found in each time period). The 

percentage change in median migration distance and the percentage change in the range of 

migratory distances between 2050 and 2070 were compared using paired t-tests (to control for 

species). 

To assess the potential for migrants to select novel breeding or non-breeding destinations in 

the future, histograms of the frequency for which a given migration distance was selected across the 

1000 replicates, were produced for each species. I test for a change in the modality of number of 

core non-breeding localities, and their distances from the breeding range. For instance, the shape of 

the histogram could change from a unimodal shape to a bi-modal distribution. 

Using these distance frequency distributions (see, for example, Figure 6.1), parametric 

bootstraps were used to sequentially test the number of components (or modes) in a mixture model 

framework for each species (MixTools package, R, Benaglia et al. 2009). A mixture model is a 

probabilistic model that is used to represent the presence of sub-populations within an overall 

population, when the subpopulations have not been specifically identified in the data set. Gaussian 

mixture models were used to estimate the species-specific number of predicted migratory modes 

based on distance estimations. Parametric bootstraps were used to test (using the likelihood ratio 

statistic) whether a k-component fit, versus the alternative hypothesis of a (k+1)-component fits the 

distribution best. Testing ended once the p-value was above the significance level of P=0.05 (Young 

2007). The overall change in the number of migration modes for all species across the three 

migration flyways were compared using a Chi-square test. 
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Figure 6.1 Simulated data were used to illustrate of the type of data used to assess number of migration 

modes. Frequency histogram shows the distances (1000 replicates) estimated between the chosen climatically 

suitable cell on the breeding ground and the climatically suitable, closer, cell chosen on the non-breeding 

range. For assessing the number of modes, the test of k=1 versus k=2 components showed that two 

components were significantly better than 1 (α=0.05). However, when comparing k=2 versus k=3 components, 

P=0.19 indicating that there was no statistically significant evidence for selecting k>2. Given this, I assume that 

for this example, there are two migration modes.  

Distances (km) 
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6.4 Results 

Species distribution models for predicted occurrence of 340 migratory species across the 

breeding and non-breeding areas showed good discriminatory power (breeding AUC: median = 0.94, 

min= 0.77, max=1.00) and non-breeding AUC: median=0.94, min=0.79, max=1.00). AUC values >0.9 

reflect very good discrimination and those >0.7 show useful discrimination (Swets 1988). 

Presented results are projections using the RCP8.5 projection unless otherwise stated. This is 

the most extreme climate change projection, but overall patterns did not differ greatly among RCP 

projections. I chose to present the most extreme projection to illustrate the worst-case scenario for 

migrants in the future. 

6.4.1 Change in climatic suitability 

Projected impacts of climate change on the representation of suitable climate for 334 long-

distance migrants across the globe showed that migrants were expected to experience a gain in 

climatically suitable space of 56.3%, (95% CI [14.6, 90.5]) on their breeding areas by 2070, when 

using the RCP8.5 projection. There was considerable variation among migration flyways, with a 

similar proportion of migrants on the African-Eurasian flyway losing (Figure 6.2, median= 49.5%, 

(95% CI [10.2, 83.2])) and gaining (median=50.4%, (95%[16.8, 89.7])) suitable climate space on both 

breeding and non-breeding areas. In contrast, Asian-Australasian migrants were projected to lose 

63.5%, 95% CI [2, 94.8] of their suitable climatic space in the non-breeding areas by the end of the 

21st Century, while losing 44.8%, (95% CI [7, 91.7]) of suitable climate space on the breeding areas. 

Migrants in the Americas were projected to experience increased availability of suitable climatic 

space on both the breeding (median=62.4%, (95% CI [16.3, 92.4])) and non-breeding 

(median=65.6%, (95% CI [23, 95])) areas. By 2070 there was only consensus on whether species were 

projected to experience increased or decreased climatic suitability for fewer than 25% of species 

across the breeding range and 20% of species across non-breeding areas. A greater proportion of 

these species are likely to experience increased climatic suitability across the breeding and non-

breeding ranges (Table 6.1). Non-breeding climatic suitability is more consistently diminished for 

African-Eurasian migrants than for migrants on the other two flyways (Table 6.1). 
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Figure 6.2 Number of migrant species on the breeding and the non-breeding areas which were projected 

(using the RCP 8.5 scenario) to experience increasing or decreasing climatic suitability across the three 

migration flyways, by the end of the 21
st

 Century. Light shading displays the number of species for which 

climatic suitability was projected to increase/decrease based on the median climatic suitability (calculated 

across the GCMs, SDMs and jackknife iterations). For both seasons, dark colour shows the number of species 

for which there was a consistent trend in projected change estimates (where 95% quantiles did not overlap 

with 0). 
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Table 6.1 Change in climatic suitability for all species across the globe between the baseline period and the future time periods (2050, 2070). Reported are the percentages 

(numbers) of species likely (where the 95% quantiles show directional consensus) to experience increasing or decreasing climatic suitability in each time period across 

breeding and non-breeding regions for each migratory flyway (AF= African-Eurasian, AM= Americas, AA= Asia-Australasian). Decreasing climatic suitability values excluded 

as they are simply 100 minus the values present for increasing climatic suitability. 

  Breeding Non-breeding 

  Increasing CS  Increasing CS 

Period Flyway RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5  RCP 2.6 RCP 4.5 RCP 6.0 RCP 8.5 

 AF 93.1% (27) 87.9% (29) 90.6% (29) 72.5% (29)  86.7% (13) 83.3% (15) 83.3% (15) 78.2% (18) 

2050 AM 77.4% (24) 79.4% (27) 81% (29) 73.3% (22)  85.7% (30) 86.1% (31) 85.7% (30) 83.3% (30) 

 AA 88.2% (15) 77.8% (14) 82.4% (14) 70% (14)  90% (10) 84.6% (11) 88.9% (8) 83.3% (10) 

 
 

AF 92% (23) 83.3% (25) 76.5% (26) 
 

67.6% (23)  86% (12) 80.1% (17) 76.2% (16) 
 

79.2% (19) 

2070 AM 79% (23) 71.4% (20) 71.4% (20) 66.6% (20)  85.3% (29) 86.5% (32) 86.1% (31) 82.4% (28) 

 AA 87.5% (14) 82.4% (14) 76.5% (13) 65% (13)  90% (9) 83.3% (10) 83.3% (10) 83.3% (10) 



107 
 

6.4.2 Change in species richness 

There are clear spatial patterns in projected change in species richness for 2070 based on 

RCP 8.5 projections on both the breeding and non-breeding areas (Figure 6.3). Breeding migrant 

species richness differs significantly across latitude (ANOVA: F(5,61)=10.64, P <0.0001), where richness 

increases significantly at higher latitudes (50 to 80° latitude) and decreases significantly at latitudes 

of between 30° and 50° (Figure 6.4, Post Hoc Tukey p <0.01 for both). Migrant species richness on 

the breeding grounds is projected to significantly decrease by 6.9 (± 2) species in latitudes of 50° to -

50°, and increase by 2.6 (± 4) species at latitudes of 50 to 80°. The lowest change in migratory 

richness is in lower latitudes (30° to -50°), where there is currently low breeding migrant richness 

(Figure 6.3a). Overall, migratory species richness in the non-breeding areas is projected to decrease 

on average by -2.9 ± 1.7 species (Figure 6.3, Figure 6.4, ANOVA: F(5,61)=5.033, P <0.001). Migratory 

species richness in non-breeding areas was significantly decreased in latitudes of 0-30° (Figure 6.4, 

Post Hoc Tukey p <0.001). 

Areas of higher latitude that are currently relatively species poor (Figure 6.3a) are projected 

to experience increased species richness of breeding migrants for mid- and late-century climate 

change projections (presented RCP8.5 2070 projections, Figure 6.3b,c,e and f). Areas that currently 

contain high levels of breeding migrant species richness (Figure 6.3a) are projected to lose species 

richness in the future by over 30 species per cell (Figure 6.3b). For non-breeding migrants, areas in 

Brazil are projected to have increased species richness in mid-and late-century climate change 

projections, with more southern areas projected to experience loss in non-breeding species richness. 

Areas in Africa, India and Asia are projected to generally experience losses in non-breeding migrant 

species richness (Figure 6.3e,f).  
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Figure 6.3 Projected global impacts of climate change (RCP scenario 8.5) on species richness. Maps show projected changes in the number of species for which there is suitable climate 

between present and 2070. a) Is baseline breeding migrant species richness; b) Is the projected change in the number of species of migrants breeding in these areas. Future climates are likely 

to be suitable for a greater (red) or a fewer number of species (blue). Colour intensity indicates the magnitude of change. Grey area is low change, from -3 to + 3 species (includes no change). 

c) Shows areas that are projected to show the greatest gain (red) and loss (blue) in breeding migrant species richness in these areas (the lower and upper bounds of the 95% CI’s of predicted 

change in richness). d) Depicts baseline non-breeding migrant species richness; e) Shows the projected change in the number of migrants on the non-breeding grounds.  Future climates are 

likely to be suitable for a greater number (red) or a fewer number (blue) of species. Colour intensity indicates the magnitude of change. f) regional projections of model residuals highlight 

areas that are projected to have the greatest gain (red) and loss (blue) in the number of non-breeding species (lower and higher bounds of the 95% CI’s of predicted change in suitability). 
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Figure 6.4 Mean change in species richness on the a) breeding and b) non-breeding areas for four latitudinal bands (from high latitude to low latitude). The longitudinal 

bands were: band 1= [70 to 80° latitude]; band 2= [50 to 70° latitude]; band 3= [30 to 50° latitude]; band 4= [0 to 30° latitude]; band 5= [-30 to 0° latitude]; and band 6= [-

50 to -30° latitude]. Blue dashed line indicates no change in species richness.  
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6.4.3 Change in species turnover 

Overall, median turnover in migratory species increased from 18% (95% confidence range= 

16.7%- 21.8%) in 2050 to 21.3% (16.7-26.9%) in 2070 across their breeding ranges for all RCP 

scenarios (Figure 6.5). Median turnover in migrants on the non-breeding areas increased from 17.6% 

(16.1-21%) to 20.5% (16.1-26.7%) for the same periods (Figure 6.5).  

 

Figure 6.5 Median (95% quantiles) projected species turnover for each migration flyway (red= African-

Eurasian; green= Americas; and blue=Asian-Australasian) calculated across the globe in two time periods (2050 

and 2070) across for migrants on the breeding and non-breeding ranges.  

 

 Species turnover was greater across the breeding ranges than across the non-breeding 

ranges (Figure 6.6). Further, species turnover was projected to be higher for 2070 than for 2050 for 

both breeding and non-breeding migrants (Figure 6.5, Figure 6.6). Areas in northern latitudes were 

projected to experience the greatest amounts of species turnover (Figure 6.6). 
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Figure 6.6 Projected percentage turnover in species composition for mid-Century (a and b) and the end of the 21
st

 Century (c and d) based on the RCP 8.5 scenario climate 

projections.  Percentage species turnover of breeding migrants are depicted in a and c, and percentage species turnover of non-breeding migrants is shown in b and d. 
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6.4.4 Change in migration distance 

Median migration distances (km) were projected to increase significantly across the three 

time periods (Repeated measures ANOVA: Figure 6.7: F=72.64(2,644) < 0.001).    

 

Figure 6.7 Difference in median (95% quantiles) projected migration distance (km) across all species for three 

time periods (baseline, 2050 and 2070).  

 

Across all migrants, 22% of species are projected to have shorter median migration distances 

in the future, while 78% (252 species) are projected to have longer migration distances by 2070. 

Migration distance was significantly larger for migrants in 2070 than 2050 (Figure 6.8, Paired t-test: 

t=-3.29, df =319, P<0.001). 
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Figure 6.8 Percentage change in median migration distances for migrants between baseline and the two time 

periods (2050, 2070). 

The range (standard deviation of migratory distances estimated across the 1000 iterations 

for each species) of migration distances that species are likely to experience in the future are 

projected to increase for 74% of species and decrease for 26% of species by 2070. The range of 

migration distances that species are likely to face are 4% larger for 2070 than for 2050 (Figure 6.9, 

Paired t-test: t=-2.1, df=319, p<0.05). 

 

Figure 6.9 Percentage change in the range of migration distances that species are likely to travel for 2050 and 
2070. 



114 
 

 

Figure 6.10 a) Observed breeding and non-breeding ranges for Thrush Nightingale (Luscinia luscinia) from BirdLife (Birdlife International & NatureServe 2011); b) frequency histogram of the 

baseline predicted migration distances (km) estimated using the distance weighted distribution approach. Dotted line is the median migration distance for this species (8132 km); c) projected 

(RCP 8.5) breeding and non-breeding distributions of L. lucsinia for 2070 and c) frequency histogram of the future predicted migration distances (in km) estimated using the distance weighted 

distribution approach. The dotted line is the median migration distance estimated for this species (6105 km). Image of Thrush Nightingale from C. Bobzin, http://www.christofbobzin.de 

licenced under the creative commons attribution share alike 3.0, Germany.  

http://www.christofbobzin.de/
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Numbers of migration modes across all species were projected to increase by 2070 for 31% 

of migrants, decrease for 27% of migrants and remain the same for 42% of migrants. Whether 

increasing or decreasing, the predicted number of migration modes for species did not differ 

significantly between flyways (χ2= 8.9, df= 4, P=0.06). The projected increase in the number of 

migration modes by 2070 was in response to the emergence of novel, climatically suitable locations 

that were less distant than current non-breeding locations for these species. An example species for 

which the number of flight modes was found to increase using the in a mixture model framework 

(described in methods) is depicted in Figure 6.10. For this species, the number of modes was 

predicted to increase from 2 to 3, as novel, climatically suitable areas that were closer to the 

breeding range for the species emerged in the region surrounding Bangladesh. 

6.5 Discussion 

This study provides the first assessment of climate change impacts on future migrant species 

at a global scale. My results suggest that climate change has the potential to dramatically impact the 

distributions of migratory species on both the breeding and non-breeding areas, across the globe. 

This assessment should highlight the potential threats that climate change poses for migrants in 

different locations globally, to aid the targeting of conservation and monitoring efforts. Here I 

discuss my findings in relation to change in climatic suitability, species richness, species turnover and 

migration distances. 

6.5.1 Climatic suitability 

There is considerable spatial heterogeneity in projected impacts of climate change on 

climatic suitability for migrants across the breeding and non-breeding areas, with the impacts of 

climate change increasing towards the end of the 21st century. Overall, climatic suitability was 

projected to increase globally, but there was considerable variability among flyways. Migrants of the 

Americas flyway were projected to have increased climatic suitability for both breeding and non-

breeding areas, whereas Asian-Australasian migrants were projected to experience decreasing 

climatic suitability on the non-breeding areas. African-Eurasian migrants were projected to 

experience decreasing climatic suitability on both breeding and non-breeding areas. These findings 

are in accordance with a recent study (Stephens et al. 2016) whereby population trends for long-

distance migrants in North America are positive for those species that are expected to respond 

positively to climate in the future. In contrast, long distance European migrants showed negative 

population trends for those that were expected to respond positively as well as those expected to 

respond negatively under future climate change. Given the findings by Stephens et al. (2016) and the 

predicted increase in climatic suitability for long-distance migrants in the Americas from my study, 
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migrants in the Americas flyway may fare better in the future than their African-Eurasian and Asian-

Australasian counterparts. 

6.5.2 Species richness and turnover 

 Species richness of breeding migrants was projected to increase at high latitudes, but 

decrease where there are currently large numbers of breeding migrants present. This is in 

agreement with studies which show that species are shifting their ranges poleward in a pattern that 

is consistent with climate change (Thomas & Lennon 1999; Hickling et al. 2006; Brommer, 

Lehikoinen & Valkama 2012). In contrast, the change in species richness of migrants on the non-

breeding areas showed no consistent change with latitude. African-Eurasian and Asian-Australasian 

non-breeding areas were projected to experience declines in richness because of declines in climatic 

suitability in these areas, which contrasts with migrants in South America, where species richness is 

projected to increase in currently low diversity regions for non-breeding migrants as climatic 

suitability in this region increases. Climate change is therefore likely to affect breeding and non-

breeding ranges to different extent, as has been proposed previously (Doswald et al. 2009). Note, 

however, that the quality of species occurrence data on the non-breeding grounds is poorer than for 

the breeding grounds for most species. 

Forecasting the effects of future climate change on species distributions using SDMs can be 

fraught with uncertainties (Bagchi et al. 2013), but measuring the uncertainty associated with 

predictions makes interpreting these results more robust (Garcia et al. 2012; Bagchi et al. 2013; 

Baker et al. 2015). Although uncertainty was high, models that showed congruence projected 

migrants to experience increased climatic suitability across the three migration flyways for both 

breeding and non-breeding seasons (Table 6.1). 

Turnover was projected to be highest between present and 2070, with areas in the northern 

latitudes experiencing higher species turnover than areas of lower latitudes. These climate change 

impacts on turnover could result in altered community composition and create non-analogue 

communities in the future (Urban, Tewksbury & Sheldon 2012). Species interactions such as 

competition and predation have not been assessed in this study, but have been shown to alter 

species responses to climate change (Mason et al. 2014), and is a further effect that must be taken 

into consideration. Areas of high turnover will have modified community structure, which may lead 

to ecosystem disruption (Peterson et al. 2002).    



117 
 

6.5.3 Migration distance 

Migration distances were projected to increase for most long-distance migrants (79%), and 

decrease for 22%. This is despite the fact that for many species (31%), in future, some novel non-

breeding areas were predicted to arise closer to the breeding areas than currently occur. This is 

likely due to the poleward shift of breeding ranges, while non-breeding migrant occurrence did not 

show consistent poleward latitudinal shifts. Non-breeding ranges located in tropical areas are not 

projected to move in consistent directions because of a lack of latitudinal climatic gradients (Huntley 

et al. 2006). Increasing migration distances will exacerbate the pressures upon long-distance 

migrants. Already migrants declines are occurring, attributed, in part, to likely mismatches with 

peaks of food availability on the breeding grounds (Both et al. 2006; Jones & Cresswell 2010; Saino 

et al. 2011). Migrants thus need to time their migration in accordance with resource dynamics along 

the migration route as well as at breeding/wintering sites in order to gain greater fuel loads for 

longer migrations (Saino et al. 2004; Gordo & Sanz 2008). 

In contrast with long-distance migrants, short-distance migrants are predicted to decrease 

their migration distances, largely as a consequence of non-breeding areas shifting closer to the 

breeding areas (La Sorte & Thompson 2007; Visser et al. 2009). Short-distance migrants are 

therefore better able to predict conditions on the breeding grounds better as they are responding to 

cues that are closely linked to conditions indicating optimal arrival time, such as temperature 

(Cotton 2003; Gordo et al. 2005). In contrast, long-distance migrants may respond to cues that are 

entirely uncorrelated with the timing of spring phenology (Jones & Cresswell 2010). Short distance 

migrants should therefore not suffer the consequences of mistiming arrival or breeding as long-

distance migrants do (Both et al. 2006). Indeed, if short-distance migrants can better adapt to 

changing climatic conditions than long-distance migrants, the latter may suffer a competitive 

disadvantage, leading to further declines in these species (Visser et al. 2009).  

In many cases, potential future non-breeding ranges were simulated in regions far from the 

current non-breeding grounds, suggesting that in order for migrants to utilise these areas in 

response to climate change, they would need to develop new migration routes. This may not be 

possible, as although migrant species are highly mobile, migratory routes of birds are often 

genetically determined, thus migration routes may be conserved despite substantial climatic 

changes (Ruegg & Smith 2002; Ruegg, Hijmans & Moritz 2006). Additionally, factors that have not 

been considered in this study may limit species distributions in conjunction to climate. These include 

the availability of suitable habitats, change in land-use practices, as well as species interactions 

which will contribute to complexities in predicting future occurrences of migratory species (Hill, 
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Thomas & Huntley 1999; Chamberlain et al. 2000; Jetz, Wilcove & Dobson 2007; Ockendon et al. 

2014). 

In order to understand bird movements it is necessary to acquire data of where they are 

traveling. An important, but not yet understood, issue in the study of migrating birds, is 

understanding the extent to which breeding and non-breeding populations are connected (or 

migration connectivity) (Webster et al. 2002). It is clear that the periods that migrants spend in 

widely separated and disparate ecological locations in different periods of their annual cycle are 

inextricably linked (Marra, Hobson & Holmes 1998; Gill et al. 2001; Gordo et al. 2005; Morrison et al. 

2013). Migrant species are often intensively studied during one season (usually breeding) and not 

the other (Salewski & Jones 2006). Without a solid understanding of the year-round geographic 

distributions and habitat requirements of migrant species, long term conservation plans become 

difficult (Webster et al. 2002; Small-Lorenz et al. 2013). The need to understand the alarming 

population declines of long-distant migrants (Sanderson et al. 2006) requires the study of migration 

patterns and the impacts of climate and land-use change on these patterns across all stages of the 

migratory cycle (breeding, non-breeding and staging areas) (Tøttrup et al. 2012; Small-Lorenz et al. 

2013). Conservation of migratory species in the future will depend on obtaining information on 

migratory connectivity to inform any decisions and meeting the challenge of ensuring conservation 

strategies cover areas across the full migration route for species. 

Here, I have shown that migrant distributions on the breeding and non-breeding areas can 

be accurately predicted using SDMs, and that predictions can be made of the location of suitable 

climate for migrants given future climate change projections. These geographic projections of 

climatically suitable locations for migrants could therefore be used to inform conservation 

management decisions (Guisan et al. 2013). Further, I have shown that as species distributions shift 

in response to projected changes in climate, concordant changes are expected to occur within 

communities. Correlative models currently ignore the biotic interactions species may face (from 

predators, competitors, prey) which can lead to misinformed predictions on the constraints species 

may face in terms of the reassembly of communities in the future (Schaefer, Jetz & Böhning-Gaese 

2008). Understanding the long term implications of these trends represent an important challenge 

for scientists.  
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6.5.4 Conclusion 

 This study highlights that while there is considerable geographic variability associated with 

projecting the impacts of future climate change on migratory species across the globe, conclusions 

can be made about what challenges migrants are likely to face given these changes. In particular, I 

showed that climate change will substantially alter the breeding distributions of many migratory 

species; species distributions on the non-breeding areas are not projected to show such obvious 

directional shifts. Important breeding sites for migrants are projected to become even more 

northerly in the future. As a consequence of these divergent shifts between the breeding and non-

breeding future ranges for species in the future, migration distances were projected to increase. 

Although there was variation in projected migratory patterns because of variable climate change 

projections, climatic suitability consistently improved for migrants on the breeding areas across all 

three global migration flyways. These results are a first step to determining the global consequences 

of climate change on migratory birds, and could be used to inform conservation planners in securing 

the persistence and future of currently declining long-distant migrants.  
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7.1 Synthesis 

In this thesis I investigated the relationship between environmental predictors and 

migratory species occurrence and richness, at a global scale, with the aim of using these 

relationships to infer possible effects of climate change on migratory species. This work has 

illustrated the myriad of influences that climate has on migratory species distribution patterns, 

highlighting that future climate change impacts on these important species are likely to be varied 

and complex. This analysis focuses on migratory bird distributions globally to assess the climatic 

determinants of their occurrence in order to predict climatically suitable locations for these species 

in the future. Furthermore, this project illustrates the importance of considering the impact of biotic 

factors, such as the cost of migration, for assessing potential shortfalls or benefits that range shifts 

might incur upon this group of mobile species. Here, I discuss the findings and novelty of this 

research, including recommendations for future research.  

In the following section I set out the core results of each chapter and discuss these results as 

a whole within the wider framework of our current understanding, before outlining limitations and 

assumptions of the work not previously addressed. Finally, I present gaps and questions raised by 

this research, and suggest avenues for further research. 

7.2 Thesis discussion 

Rapid loss of biodiversity has occurred across the globe in recent decades, driven primarily 

by human modification of the environment, and is a major driver of ecosystem change (Sala et al. 

2000; Butchart et al. 2010; Cardinale 2012; Hooper et al. 2012). Preventing the loss of biodiversity is 

a global priority (Rands et al. 2010), as the loss of biodiversity could have profound effects on 

ecosystem functioning (Loreau et al. 2001), with consequences for the resilience of ecosystems to 

environmental change (Mori, Furukawa & Sasaki 2013). Given that rapid declines in migrant birds 

have been observed (Sanderson et al. 2006; Kirby et al. 2008), understanding the drivers of 

migratory species richness across the globe, in both breeding and non-breeding seasons, is an 

essential first step toward mitigating declines in these species, and is central to conservation 

planning (Jiguet et al. 2005).  

In Chapter 2, I investigate the importance of plausible drivers that explain migratory species 

diversity globally. Studies that have analysed migrant species richness have often focused on the 

breeding ranges of migrant species (Lemoine & Bohning-Gaese 2003; Barcena et al. 2004), 

overlooking the patterns and drivers of diversity of migrants in non-breeding areas, and how the two 

might be related. I show that migratory species richness on both the breeding and non-breeding 
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ranges can be predicted using a set of ecologically meaningful variables. Resident species richness 

was found to be an important predictor of migratory species richness globally, which supports the 

idea that migrants may be using areas of high resident richness as cues for profitable site selection 

(Monkkonen & Forsman 2002; Thomson, Forsman & Monkkonen 2003). Further, diversity was 

driven by the location relative to the breeding and non-breeding grounds, thus supporting the idea 

that the cost of migration distance affects the distance birds are willing to travel between the two 

sites (Wikelski et al. 2003; Newton 2008; Somveille, Rodrigues & Manica 2015).  

By mapping spatial trends in migrant species richness globally, I present the locations of 

biodiversity hotpots for these vulnerable species, which can be used for assessing conservation 

priorities (Jiguet et al. 2005). However, species richness metrics can be dominated by common and 

widespread species (Jetz & Rahbek 2002; Rahbek et al. 2007b), which may conceal areas which are 

rich in small ranged species, often the focus of conservation efforts (Rahbek et al. 2007b).  Another 

metric of biodiversity, phylogenetic diversity, has been proposed as an indicator of functional 

diversity and evolutionary potential (Lankau et al. 2011; Winter, Devictor & Schweiger 2012). The 

potential loss of evolutionary information has been realised (Heard & Mooers 2000; Purvis et al. 

2000), and recent studies have shown that for birds, the locations of high species richness and high 

phylogenetic diversity do not necessarily overlap (Voskamp et al. 2015, in review). 

Correlative models are the most widely used approach for modelling current and potential 

future species distributions (Beerling, Huntley & Bailey 1995; Araujo & Guisan 2006; Thuiller et al. 

2006). Many studies have focused on methodological techniques to enhance performance of species 

distribution models (SDMs) (Elith et al. 2006; Pearson et al. 2006; Barbet-Massin & Jetz 2014). 

Despite this, the selection of an appropriate study area over which to select absences can be 

problematic and is a frequently overlooked aspect of SDM methodology. However, delineating the 

study region is not straightforward, as it depends on knowledge of the natural history and the 

dispersal ability of a species, as well as information about the landscape of interest, including the 

configuration of suitable habitats and barriers to dispersal (Soberon & Peterson 2005; Barve et al. 

2011). Defining this is particularly difficult for migrant species (that inhabit spatially and temporally 

distinct areas during their annual migratory cycle, and that have the ability to disperse large 

distances) and for invasive species, whose potential area for expansion is unknown (Vaclavik & 

Meentemeyer 2009). In chapter 3, I propose the use of a distance weighted absence selection 

approach that avoids the need to use a predefined study extent. I found that the 
1

𝐷𝑒
2 (De is the 

distance from the nearest edge of a given virtual species’ distribution) weighting metric that 

balanced the reproduction of climatic suitability across a range of suitabilities, and performed well at 
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reproducing the distributions of virtual species was the best method for selecting absences. This is a 

novel and important solution to a common methodological issue.  

In chapter 4, I use the absence selection approach created in Chapter 3 to develop SDMs 

that relate migrant distributions, globally, to climatic predictors at present. These analyses revealed 

that the importance of climatic variables for migrant distributions varied across the globe, and by 

season, which implies that relationships of migrants with climate in one migration flyway may not be 

the same as in others. Species polygon data, which give geographic information about where a 

species occurs and where it does not (presence-absence), was used for these analyses. The use of 

presence-absence data for SDMs has been criticised because they do not account for species 

abundances within a species range extent (Jiménez-Valverde, Lobo & Hortal 2008; Jimenez-Valverde 

et al. 2009). Furthermore, the role of presence-absence data in ecological research has been 

questioned, as heterogeneity among individuals or among populations cannot be accounted for at 

the species level (Davis et al. 1998; Dormann 2007; Kearney, Wintle & Porter 2010). However, here I 

have demonstrated that presence-absence data can contribute considerably to ecology, for instance 

revealing the influence of climate on species distributions at present, which is a valuable first step 

for understanding the broad effect of climate on the distributions of migratory species.  

Accurate estimates of migratory distance are important to determine any costs or benefits 

to migration in the future should migratory distances change. I establish a method of estimating 

migration distance (Chapter 5) which improved on the simple centroid-centroid distance estimation 

approach used in previous studies (Helm, Hanski & Pärtel 2006; Huntley et al. 2008; Doswald et al. 

2009). The approach developed was more biologically meaningful than centroid-centroid distances, 

as it also considered migration distance as a cost (Somveille, Rodrigues & Manica 2015). This is more 

appropriate than the centroid-centroid approach, which gives little information of the underlying 

processes which might alter migration distance. Although this method gave more nuanced estimates 

of migration distances for species, the method could be improved upon. For example, if abundance 

data were to be incorporated into the selection of climatically suitable cells on the non-breeding 

ranges, then the effects of conspecific competition (Salomonsen 1955), characterised by leap-frog 

migration (Swarth 1920; Stanley et al. 2015) which are currently not considered in this study could 

be incorporated in this distance estimation approach. 

I investigate potential changes in migratory distributions and in species specific migratory 

distances, and discuss the implications of projected changes in these (Chapter 6). These analyses 

show the influence of future climate change on migratory species in terms of: changes in available 

climatically suitable space, changes in species richness and changes in species turnover. A number of 
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findings from this chapter raise matters that could have significant implications for the conservation 

of migratory species. First, migrant distributions on the breeding and non-breeding areas were 

accurately predicted using SDMs, thus future projections of the location of suitable climate for 

migrants were made which could inform conservation management decisions (Guisan et al. 2013). 

Second, higher latitudes were projected to experience larger species turnover than areas at lower 

latitudes. Climate change impacts on turnover could result in altered community composition and 

create non-analogue communities in the future (Urban, Tewksbury & Sheldon 2012), which may lead 

to ecosystem disruption (Peterson et al. 2002). Species interactions such as competition and 

predation were not assessed here, but have been shown to alter species responses to climate 

change (Mason et al. 2014), and is an effect that must be taken into consideration.  

Third, areas that are climatically suitable for migrants were projected to increase globally, 

but there was considerable variability across flyways. Migrants of the Americas flyway were 

projected to have increased climatic suitability for both breeding and non-breeding areas, whereas 

Asian-Australasian migrants were projected to experience decreasing climatic suitability on the non-

breeding areas, and African-Eurasian migrants were projected to experience decreasing climatic 

suitability on both breeding and non-breeding areas. Given these results, migrants in the Americas 

flyway may fare better in the future than their African-Eurasian and Asian-Australasian counterparts. 

Overwhelming evidence exists that long-distance migratory species are in serious decline in the 

Palearctic-African migration system (Bohning-Gaese & Bauer 1996; Sanderson et al. 2006; Ockendon 

et al. 2012), as well as migrants following the Palaearctic-Asian migration patterns (Laaksonen & 

Lehikoinen 2013). Long-term data sets in North America show over half of all Nearctic-Neotropical 

migrants have experienced substantial declines over the past 40 years (BirdLife International 2008b). 

Despite predicted increases in climatic suitability for migratory species within the Americas flyway, 

important habitats for these migrants are under threat from anthropogenic impacts such as forest 

fragmentation, tropical deforestation and agricultural expansion which may contribute to declines of 

migrants in the Americas flyway (Murphy 2003; Kirby et al. 2008; Newton 2008). Protected area 

networks are a key component to protecting biodiversity from anthropogenic threats (Baker et al. 

2015). For some migratory species, existing protected areas will be adequate to allow these species 

to adapt to change, but others (such as those of the Americas flyway) will benefit from conservation 

actions which improve the extent of suitable habitat (Hole et al. 2011). The need to consider shifts in 

the distribution of migratory species are recognised within international conservation initiatives 

(Trouwborst 2012). The identification of locations that will maintain present and future migratory 

species distributions is important for conservation investment, and the projections of future 
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migratory species distributions in this thesis are an important step for incorporating shifts into 

conservation planning (Carvalho et al. 2011; Hole et al. 2011) 

Finally, migration distances were projected to increase for the majority of long-distance 

migrants. Increasing migration distances will exacerbate the pressures upon long-distance migrants. 

Already declines are occurring in migratory species, attributed, in part, to likely mismatches with 

peaks of food availability on the breeding grounds (Both et al. 2006; Jones & Cresswell 2010; Saino 

et al. 2011). In seasonal environments, an organism’s fitness is determined by the timing of life 

history events (Miller-Rushing et al. 2010). Natural selection should favour migratory birds that can 

synchronise migration with peaks of resource availability, particularly as migrating birds use chains 

of stopover sites en route which often differ in seasonality (Bauer, Gienapp & Madsen 2008). Timing 

of migration is of particular interest, as migratory birds, particularly long distance migrants, are 

constrained by time and energy during migration (Wikelski et al. 2003). Arctic breeders have been 

shown to have reductions in reproductive success or complete breeding failure if they arrive at their 

breeding grounds outside a very narrow time window (Alerstam & Lindstrom 1990; Bauer, Gienapp 

& Madsen 2008). Declines of the pied flycatcher in the Netherlands have been attributed to a 

disruption of the synchronicity between the flycatcher’s migration and the emergence of caterpillars 

caused by climate change (Both et al. 2006). Thus migrants need to time their migration in 

accordance with resource dynamics along the migration route as well as at breeding/wintering sites 

in order to gain greater fuel loads for longer migrations (Saino et al. 2004; Gordo & Sanz 2008). 

Although stopover habitats are used by many species as refuelling stations during migration, which 

can be critical for survival and successful reproduction, stop-overs are rarely incorporated into 

conservation strategies (Sheehy, Taylor & Norris 2011). For instance, the US National fish, wildlife 

and plants climate adaptation strategy does not address the needs of migratory species in their plan 

(Runge et al. 2014).  

 Observed declines in Afro-Palearctic migrants have been attributed to a myriad of factors, 

including climate change (Lemoine & Bohning-Gaese 2003), habitat loss or deterioration on 

breeding, non-breeding and staging locations (Berthold 2001; Schaub, Kania & Köppen 2005) and 

hunting pressure (McCulloch, Tucker & Baillie 1992). Well-loved migrants in the UK such as the 

spotted flycatcher (Muscicapa striata), the turtle dove (Streptopelia turtur) and the nightingale 

(Luscinia megarhynchos), have shown dramatic declines in recent decades (SUKB 2014). In Chapter 6 

I project decreasing availability of suitable climatic space on both the breeding and non-breeding 

locations of African-European migrants. Conservation along the migration route (across breeding, 



126 
 

non-breeding and staging areas) will be of crucial importance to conserve these summer visitors in 

the face of projected climate change. 

 
The aim of researching migration is to understand when, where, why and how animals 

migrate (Alerstam, Hedenstrom & Akesson 2003; Wilcove & Wikelski 2008). Migratory movements 

may have wide reaching ramifications for other animals, including humans, as migratory species 

have the potential to spread emerging diseases across geographic barriers (Liu et al. 2005b; Olsen et 

al. 2006). Furthermore, migration is not simply the movement of animals, but the coupling of 

ecological communities globally, and the mediation of ecological community diversity and stability 

(recently reviewed in Bauer & Hoye 2014). Given the potential of migration to affect ecological 

networks across the world, the ramifications of the potential decline of migratory species are vast. 

The methods developed in this thesis need not apply solely to migratory birds, but to a range 

of migratory taxa. For instance, species distribution models have been applied to marine ecosystems 

(Dambach & Rödder 2011) and used to design reserve networks for riverine fish (Esselman & Allan 

2011). Modeling migratory species in these taxa poses similar challenges to ecologists as modeling 

migratory birds does. For example delineating a boundary or extent to the study region for these 

species is a challenge, particularly for marine species, where simple boundaries (such as a country 

boundary) cannot be applied. The methods developed in chapter 3 overcome the necessity to 

delimit an extent based on arbitrary decisions, and could be used for the study of wide-ranging 

marine species. The conservation of terrestrial migrants is challenging, as these species not only face 

climate change impacts, but are increasingly affected by human modification of the landscape 

through which they migrate (Serneels & Lambin 2001). Terrestrial migration, such as for that of the 

endangered Mongolian saiga antelope (Saiga tatarica mongolica) is primarily challenged by 

anthropogenic forces such as degradation of pastures by livestock grazing as well as over-harvesting 

by poaching (Clark & Javzansuren 2006). Saiga numbers have plummeted by more than 95% in under 

two decades (Milner-Gulland et al. 2001). The conservation of terrestrial species thus needs to 

incorporate climate and well as land-use changes into conservation frameworks. 

7.3 Assumptions and limitations 

Climatic means provide useful metrics of relative change in climatic conditions over time, 

and are likely to be relevant in environments that respond slowly to climatic variability (Etterson & 

Shaw 2001), or where life histories allow species to buffer this variability (Post & Stenseth 1999; 

Morris et al. 2008). However, without explicitly accounting for variability in climatic conditions mean 

values alone are unlikely to be a good predictor of species’ sensitivities and adaptive capacity to 
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climate (Deutsch et al. 2008). While using 30-year averages revealed broad associations between 

species and climatic conditions, variables that correspond to the time (or indeed, the period before 

arrival) in which migrants are located on the breeding or non-breeding areas, are likely to vastly 

improve the robustness of these models (Huntley 1995; Heikkinen, Luoto & Virkkala 2006). For 

instance, rain in the Sahel in the preceding winter can advance migratory species spring arrival 

across Western Europe (Both 2010). 

Both Chapters 4 and 6 draw on distributions derived from species distribution models 

(SDMs). Despite widespread use of these models to derive spatial predictions of the environmental 

suitability of species (Guisan & Thuiller 2005; Elith & Leathwick 2009), limitations on their accuracy 

and predictive power are widely recognised (Araújo & Peterson 2012; Dormann et al. 2012b; 

Heikkinen, Marmion & Luoto 2012). These models often rely solely on climatic descriptors of a 

species distribution, ignoring historical factors (such as geographic barriers), evolutionary processes 

and biotic interactions; all of which also influence distributions (Guisan & Thuiller 2005; Austin 2007; 

Jiménez-Valverde, Lobo & Hortal 2008). Improvements of SDMs could be made, both in terms of  

their biological realism and their transferability to novel environments, by the use of process-based 

distribution models (or mechanistic models) (Dormann et al. 2012a) which explicitly incorporate 

physiological processes (Kearney & Porter 2009), and can include processes such as dispersal 

(Barbet-Massin, Thuiller & Jiguet 2012) and biotic interactions (Kissling et al. 2011; Wisz et al. 2012). 

7.4 Future directions of further research 

In order to understand bird movements it is necessary to acquire data of where they are 

travelling. An important, but not yet understood, issue in the study of migrating birds, is migratory 

connectivity, the extent to which individuals from the same breeding area overwinter in the same 

areas (Webster et al. 2002). It is clear that the periods that migrants spend in widely separated and 

disparate ecological locations, in different periods of their annual cycle, are inextricably linked 

(Marra, Hobson & Holmes 1998; Gill et al. 2001; Gordo et al. 2005; Morrison et al. 2013). Migrant 

species are often intensively studied during one season (usually breeding) and not the other 

(Salewski & Jones 2006). Without a solid understanding of the year-round geographic distributions 

and habitat requirements of migrant species, long term conservation plans become difficult 

(Webster et al. 2002; Small-Lorenz et al. 2013).  

Massive mark-recapture efforts of bird ringing (banding) means birds can be individually marked 

and later recaptured, providing evidence of their movements. In spite of such efforts, we still do not 

know where many individual birds ringed (usually on the breeding grounds) spend their winter 

because the probability of finding and recording a ringed bird varies geographically, and is 
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particularly low in some regions, such as on sub-Saharan non-breeding grounds (Korner-Nievergelt, 

Liechti & Thorup 2014). Exciting new advances in remote sensing techniques, as well as the analyses 

of genetic markers and chemical isotopes offer a level of insight that was previously unavailable 

(Webster et al. 2002; Rundel et al. 2013). Remote sensing techniques (such as fitting satellite tags or 

geolocators to birds) has revolutionised our understanding of avian migratory pathways as well as 

the locations of non-breeding areas and stop-overs for some species (Delmore, Fox & Irwin 2012; 

Stach et al. 2012).  

Technological advances in measuring individual movements hold much promise for the future 

study of migratory species, such as reconstructing detailed pathways of individual birds (Delmore, 

Fox & Irwin 2012). For example, in order to better conserve the declining populations of cuckoo 

(Cuculus canorus) in Britain, the British Trust for Ornithology (BTO) have satellite tagged 

approximately 50 individuals to understand the circumstances that are contributing to their 

mortality (http://www.bto.org/science/migration/tracking-studies/cuckoo-tracking). Understanding 

the factors operating on migrating individuals throughout the annual cycle is essential for producing 

robust species distribution models in order to predict the ecological consequences of changes in 

climate and habitat in various locations throughout the year. In this thesis I have assessed species-

specific responses to climate, but it is clear that responses of individuals to climate add further 

complexity to predicting ecological responses to climate change (Deutsch et al. 2008). Satellite 

tracking, as well as offering important information on poorly studied non-breeding localities for 

species, can provide vital information on variation in phenology and distribution among individuals 

within a species (Liechti et al. 2015). Conservation of migratory species in the future will depend on 

obtaining information on migratory connectivity to inform any decisions and meeting the challenge 

of ensuring conservation strategies cover areas across the full migration route for species. 

An understanding of flight is of fundamental importance for studying bird migration (Alerstam & 

Hedenstrom 1998). In pioneering studies, theoretical concepts to analyse flight during migration 

were introduced to the field of optimisation theory (Tucker 1973; Pennycuick 1977; Pennycuick 

1978; Weber & Houston 1997; Houston 1998; Weber, Ens & Houston 1998). Given the effects of 

climate change on migration in terms of phenological and range shifts, it is surprising that there have 

been no studies (to my knowledge) that analyse the mechanistic processes of migration, while 

incorporating the effects of these predicted shifts. Biomechanical and physiological studies of flight 

could aid conservation efforts (Denny & Helmuth 2009). Combining these mechanistic effects with 

migration theory may enable more accurate predictions of the potential effects of climate change on 

migratory birds. Bayly et al. (2011) used body mass of Grasshopper Warblers (Sylvia borin) as well as 

http://www.bto.org/science/
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distance of migration these birds travel from their wintering to their breeding sites, to calculate how 

much body mass a Grasshopper warbler would need in order to cover the distances required with a 

i) non-stop flight method, or ii) using stopover sites. Body masses of recaptured birds, as well as 

flight range calculations suggested that less than 10% of birds in Portugal could have reached sub-

Saharan Africa without pausing at stopover sites for re-fuelling. Flight range equations (Pennycuick 

1977; Pennycuick 1978; Pennycuick 2008; Bayly, Rumsey & Clark 2011) could be used to describe the 

migration and fuelling strategies of migrants in the future. This could highlight potential threats for 

migrant species, should their migration distances increase (as was predicted in chapter 6), as well as 

whether or not, or how many, stop over locations need to be protected for species to complete 

migration (Bayly, Gómez & Hobson 2013). Provision of high-quality stopover sites that allow 

migrants to replace depleted nutrient and energy stores could aid conservation efforts of migratory 

species. 

I have shown that species distributions can be accurately predicted using presence-absence data 

and climatic variables (chapters 4 & 5). Where available, abundance data can improve the accuracy 

of SDMs (Howard et al. 2014). Furthermore, biotic interactions such as competition and predation 

have not been assessed in this study, but have been shown to alter species responses to climate 

change (Wisz et al. 2012; Mason et al. 2014) and is a further effect that must be taken into 

consideration. For example, diurnal altitudinal migration for a mountain ungulate, the alpine 

chamois (Rupicapra rupicapra), was influenced by temperature, but disturbance from domesticated 

sheep dwarfed this effect, shifting the altitudinal range of chamois dramatically upslope (Mason et 

al. 2014). Boreal owls interact positively with woodpeckers, as woodpeckers excavate cavities in 

trees, which provide nesting sites for secondary cavity nesters such as owls (Virkkala 2006). 

Predictions of four owl species distributions at large scales were significantly improved by 

incorporating biotic interactions (with six woodpecker species) to models (Heikkinen et al. 2007). A 

lack of understanding of the factors that limit species’ distributions, which may result in species 

under-filling their climatic niche (Sunday, Bates & Dulvy 2012) could lead to inaccurate projections of 

the impacts of climate change on species (Mason et al. 2014). 
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7.5 Conclusion 

This thesis represents an advance in our understanding of the issues of modeling migratory 

species, and highlights the need to improve these models to accurately predict the distributions of 

migratory species under future climate change projections. The challenges faced by migrants due to 

the rapidity of contemporary environmental change are unprecedented. The cumulative effects of 

climate and land-use change may seriously disrupt long established, intricately timed, relationships 

of migratory species to their environment (Small-Lorenz et al. 2013). The results from this thesis 

highlight that only considering one part of the annual migration cycle will seriously underestimate 

the effects of climate change on these species (Tøttrup et al. 2012; Small-Lorenz et al. 2013). 

Incorporating migratory movements in all stages of the migratory cycle into conservation planning 

frameworks is crucial in light of alarming population declines of long-distant migrants (Sanderson et 

al. 2006), and this thesis presents a first step towards better informed conservation planning for 

mobile species given future climate change projections. 
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Appendices 
 

 

Figure S 1 Global maps of variables used to predict migrant species richness a) Distance to the breeding range  

b) Distance to the non-breeding range c) Mean temperature of the coldest month d) Mean temperature of the 

warmest month e) Actual to potential evapotranspiration f) Habitat heterogeneity g) Productivity h) 

Seasonality i) Consistency of seasonality and j) Resident species richness. 
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Figure S 2 Mean standardised coefficient values (± 95% confidence intervals) of the full model of breeding 

migrant species richness for the breeding Australasian realm. Numbers indicate the frequency with which 

these variables were chosen in the best model across the 1000 randomly selected subsets of data. (1/2) is the 

predictor variable and (2/2) is the quadratic term of the predictor variable. Variables include APET (actual to 

potential evapotranspiration); Consistency of seasonality; INDVI (productivity); MTWM (mean temperature of 

the warmest month); non_br_distance (distance to the non-breeding grounds); Res.sprich (resident species 

richness) and SW (habitat diversity). Predictors that were included in the best models fewer than 90% of the 

time were excluded, in this case: SW, Consistency and INVDI were excluded from final predictions.  
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Figure S 3 Frequency histogram of the median area (km
2
) of occupancy for a random sample of real avian 

species distributions obtained from BirdLife International. 50 species were randomly sampled from the avian 

BirdLife polygon data 100 times, and the median of each sample was derived. Median area of virtual species 

range sizes created (in blue) falls within the distribution of real species.   
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Table S1. For methods that involved selecting absences at random, the process was replicated ten times to 

account for variability among the potential absences chosen.  The mean across virtual species of the 

coefficient of variation (CV) in AUC among the ten replicates for each absence selection approach and SDM 

was low, suggesting that AUC was reasonably robust to the selection of data.  

 CV of AUC by Species distribution model 

Method for selecting absences GAM GBM GLM RF 

Absences random 0.02 0.02 0.02 <0.01 

One over distance 0.08 0.08 0.08 0.01 

One over distance squared 0.09 0.10 0.10 0.02 

One over distance cubed 0.10 0.08 0.10 0.02 

 

 

 

Table S2. Model performance at predicting the distribution of virtual species within each left out test block 

was evaluated using AUC. Absences were those used to condition the model in each of the absence selection 

methods. Mean AUCs across 50 species x 10 repeats (once for CS) varied by absence selection method and by 

SDM approach. 

 Mean AUC (±SD) by species distribution model 

Method for selecting absences GAM GBM GLM RF 

Absences random 0.98 (0.02) 0.98 (0.02) 0.99(0.01) 0.99 (0.002) 

One over distance 0.83 (0.10) 0.83 (0.10) 0.83 (0.10) 0.98 (0.01) 

One over distance squared 0.74 (0.09) 0.73 (0.08) 0.74 (0.09) 0.97 (0.01) 

One over distance cubed 0.71 (0.08) 0.70 (0.08) 0.71 (0.08) 0.97 (0.02) 

Concentric shells 0.67 (0.07) 0.66 (0.07) 0.67 (0.07) 0.97 (0.02) 
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Figure S 4 Three major global flyways (from BirdLife International -http://www.birdlife.org/flyways/), the 

Americas flyway (green), the African-Eurasian flyway (red), and the Asian-Australasian flyway (blue). 

 

http://www.birdlife.org/flyways/
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Figure S 5 The relative importance of each climatic variable (MTWQ, AP, SP, ST) for predicting migrant 

occurrence of both breeding and non-breeding migrants on each of the six biogeographic realms (Afrotropical, 

Australasian, Indo-Malayan, Nearctic, Neotropical and Palearctic). 
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Figure S 6 Figure of Ficedula parva distribution adapted from BirdLife International (2016). Downloaded from 

http://www.birdlife.org on 03/05/2016. The term origin uncertain means the species is/was present, but it is 

not known if it is present during part or all of the year. 

 

 

 



162 
 

 

Figure S 7 The world was split into 9 longitudinal bands and 12 latitudinal bands (a) for analyses. These 

longitudinal bands were subsequently grouped into four bands (b), the fourth band is comprised of the 4
th

-9
th

 

latitudinal bands.  
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Figure S 8 Projected impacts of climate change (RCP scenario 8.5) on species richness across the globe. The 

maps show projected changes in the number of species for which there is suitable climate between present 

and the mid-21
st

 Century (2050). A) Shows the projected change in the number of species of breeding 

migrants.  Future climates are likely to be suitable for a greater number of species (red) or a fewer number of 

species (blue). Colour intensity indicates the magnitude of change. B) Shows areas that are projected to show 

the greatest gain (red) and loss (blue) in the number of breeding migrant species in these areas (lower and 

higher bounds of the 95% CI’s). C) Shows the projected change in the number of species of non-breeding 

migrants.  Future climates are likely to be suitable for a greater number of species (red) or a fewer number of 

species (blue). Colour intensity indicates the magnitude of change. and D) Shows areas that are projected to 

show the greatest gain (red) and loss (blue) in the number of non-breeding species in these areas. 

 

 

 

 

 

 

 

 


