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Abstract

This thesis introduces an alternative method to evaluate Stress Intensity Fac-

tors (SIFs) in computational fracture mechanics directly, using the Extended

Dual Boundary Element Method (XBEM) for 2D problems. A novel auxiliary

equation introduced which enforces displacement continuity at the crack tip

to yield a square system. Additionally, the enrichment method has been ex-

tended to 3D, so that the J-integral with XBEM and a direct technique are

used to evaluate SIFs. This includes a complete description of the formulation

of enrichment functions, a substitution of the enriched form of displacement

into boundary integral equations, treatment of singular integrals, assembly of

system matrices and the introduction of auxiliary equations to solve the system

directly. The enrichment approach utilizes the Williams expansions to enrich

crack surface elements for accurate evaluation of stress intensity factors. Sim-

ilar to other enrichment methods, the new approach can yield accurate results

on coarse discretisations, and the enrichment increases the 2D problem size by

only two degrees of freedom per crack tip. In the case of 3D, the number of the

new degrees of freedom depends on the desired number of crack front points

where SIFs need to be evaluated. The auxiliary equations required to yield a

square system are derived by enforcing continuity of displacement at the crack

front. The enrichment approach provides the values of singular coefficients KI

, KII and KIII directly in the solution vector; without any need for postpro-

cessing such as the J-integral. Numerical examples are used to compare the

accuracy of these directly computed SIFs to the J-integral processing of both

conventional and XBEM approximations.
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Chapter 1

Introduction

We must acknowledge that fracture is a significant issue in industrial applications, and

that improved design theories to counter fracture are needed. The fundamental question

each theory tries to answer is: what crack size is allowable within an existing structure,

while still ensuring safe operation? With regard to this issue, which is also referred to as

damage tolerance, Zenhder comments:

“Perhaps you would say that any crack, any flaw, is not allowable in the

jet aircraft that carries your family across the ocean. Unfortunately such an

aircraft does not exist. We must face reality square-on; recognize that flaws

exist and to the very best of our ability, design our structures, monitoring

protocols and maintenance procedures to ensure a low probability of failure

by fracture” [6]

(Fracture Mechanics, Alan Zehnder, 2012)

The aim of designing structures to resist fractures is not new. The capability of engineers

and architects to do so was exhibited in the ancient constructions erected by the Egyptians

and the Romans. However, modern construction techniques mean that structures are

more susceptible to damage and failure than during previous eras when more simple

constructions dominated. The analysis and design of structural materials in various fields

of engineering are driven by the aim to prevent crack propagation, which can ultimately

– 1 –
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give rise to a catastrophic failure. Such failure (e.g. Aloha Airline flight 243 Fig. (1.1) )

is considered seriously in the aerospace industry. While safety is in the premier place in

terms of importance, an overdesigned airframe can also result in excessive weight, so is to

be avoided. Likewise, in power plant design, engineers place considerable importance on

methods to prevent catastrophic failure, especially for processes involving the generation

of nuclear power. The theory of fracture mechanics has been developed to quantify the

effects on performance of cracks present in materials. To a certain extent, all structures

have cracks. Their existence results from basic defects in the constituent materials, or

the induced in the course of long service. Such cracks are assessed in terms of stability,

requiring a basic theory in fracture mechanics. The stability of a crack, and its critical

length at which unstable rapid propagation occurs, may be characterised by a parameter

known as the energy release rate [7]. Later, Stress Intensity Factors (SIFs) were introduced

by [8], as an essential coefficients to measure the magnitude of stress. The load pattern,

crack length and geometry of a structure determine the SIFs for each problem. The

implementation of SIFs to examine crack stability requires appropriate knowledge of stress

fields near the crack tip. It is unfortunate that analytical solutions are only available

for relatively simple and selected cases. However, SIFs can be determined numerically

for cases with complex geometry and boundary conditions, by applying computational

techniques such as the Boundary Element Method (BEM) and Finite Element Method

(FEM). However, using conventional FEM or BEM formulations is a challenge when

handling the singularity occurs at the crack tip [9].

Refining the mesh is a simple approach for capturing the behaviour of singular field

around the crack tip, yet the computational time is the price to be paid for this simplicity.

More complicated developments and adaptations are essential for the numerical methods

to solve fracture problems efficiently. These adjustments include basic procedures using

crack tip SIFs, as well as methods that are more complex constructing special crack

elements that model the stresses throughout the entire crack zone [10]. Significant progress

has been observed in the field using enrichment, with the introduction of the Partition
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Figure 1.1: Damaged Aloha airline flight 243 [1]

of Unity Method (PUM) [11]. An enriched basis can be formed by combining prior

knowledge of the solution space (e.g. Williams expansions [12]) and the nodal shape

functions associated with the mesh. This construction allows for accurate evaluation of

SIFs in crack problems. Additionally, enrichment can only be added to a local element

where the domain needs to be enriched. The finite element method was the first to utilise

the implementation of enrichment technique [13]. This allowed for accurate evaluation

of crack problems while using a coarse mesh. On the other hand, the boundary element

method has gained more attention as a useful technique for obtaining numerical solutions

to fracture problems, which (i) are dominated by effects on the boundary (i.e. the crack

surfaces), and (ii) involve a discontinuous stress and strain field. It also offered good

accuracy for solutions on the domain boundary, whereas finite element methods offered

greatest accuracy at integration points within the element. This enrichment technique

has recently been extended to BEM by [14], which has been used successfully to study

crack behaviour.

In this thesis, the Williams expansions for displacement are used to enrich the boundary

element method, giving an enriched method which is henceforth called the Extended

Boundary Element Method (XBEM). The use of enrichment has improved accuracy when

using a coarse mesh. The implementation of enrichment adds a small number of new

degrees of freedom to the system. Sufficient numbers of equations are generated using a

new method for enforcing the displacement continuity at the crack tip. A unique technique
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is used to solve for added degrees of freedom, allowing for the direct evaluation of SIFs

without the need for a postprocessing method, such as the J-integral. The enrichment is

only applied to crack surface elements offering greater flexibility for the same code when

used for both enriched and unenriched problems.

Generally, the context of this thesis begin with the coverage of fracture mechanics,

and gradually builds towards the boundary element method, leading to a greater focus

on the Dual Boundary Element Method (DBEM) and finally introducing the enrichment

of DBEM for 2D then 3D. In more details, the second chapter begins with a historical

review of fracture mechanics. The chapter then is extended to include the modes of

crack, Linear Elastic Fracture Mechanics (LEFM) and SIFs. The aim of the third chapter

is to present the advancement of numerical fracture mechanics achieved through FEM,

meshless methods and the boundary element method. In the fourth chapter, attention

is turned to the dual boundary element method to demonstrate the concepts associated

with the method beside the treatment of mathematical difficulties that arise when the

method is implemented. Following this, chapter five and six present the implementation

of enriched DBEM with examples. Overall, these chapters examine the advantages of

enriching DBEM, and reveal the main factors that affect efficiency and computing time.

Finally, the conclusion includes a summary of the results achieved, and observations and

recommendations for future research.

The novel contribution of the thesis will be presented in Chapters 5 and 6. Enrich-

ment of two-dimensional crack problems will be introduced in Chapter 5, where a novel

auxiliary equation to enforce displacement continuity at the crack tip is proposed to yield

a square system. This creates a system that can solve the unknown of additional degrees

of freedom directly. After this, a complete guide to enrich the Dual Boundary Element

Method in 3D will be presented in Chapter 6, including the formulation of enrichment

functions. In addition, it investigates the substitution of enriched displacement into the

boundary integral equations, the treatment of singular integrals and assembly of the sys-

tem matrices. Finally, the enforcement of crack front displacement yields the necessary
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auxiliary equations required to solve the unknown, added degrees of freedom.



Chapter 2

Fracture Mechanics

2.1 Introduction

The development of the study of fracture mechanics begins with analysis of the flaws and

imperfections within materials that are often considered the primary causes of the onset of

fractures. The effects of concentrated stresses, adjacent to imperfections or irregularities

have long been acknowledged. The concentration of stresses around a circular hole in an

infinite plate under uniaxial tension was first evaluated by Kirsch [15], who showed that

the maximum normal stress on the hole exceeds the applied far-field stress by a factor of

3, i.e. a stress concentration factor of 3 applies. Inglis [16] extended the investigation of

stress concentration to the more general case of an elliptical hole, where maximum stress

can be found by (1 + 2a/b)σ. This solution reveals the stress concentration factor is an

increasing function of the ellipse aspect ratio. Figure 2.1 shows when a� b a crack forms,

while a stress singularity develops near the crack tip. As a legacy of these developments,

the major axis of ellipse a is still used as a symbol to represent crack length. It is clear

that a direct application of Inglis solution will yield a singular value, since σc →∞ when

b→ 0.

The complexity and size of modern structures has generated numerous design issues,

including famous fracture mechanics failures, such as those that occurred in the Liberty

ships during World War II. Later the Aloha Airline flight 243 accident highlighted fatigue

– 6 –
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Figure 2.1: The development of fracture mechanics
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Figure 2.2: Liberty ships [2]

failure and associated public safety concerns motivating a desire to create optimum designs

to promote fracture mechanics from a scientific perspective as a fundamental engineering

tool. With this in mind, Griffith [7] proposed an energy based approach to overcoming

the mathematical difficulties associated with the presence of a physical singularity near

the crack tip. However, the Griffith Critical Energy Release Rate Gc only accounts for

energy required to break atomic bonds per unit surface area. Therefore, the method was

limited to estimating the critical crack length of brittle materials. Subsequently, Irwin [8]

extended Griffith’s work to tackle the energy associated with the plastic deformation of

ductile materials.

The solutions proposed by Griffith and Irwin were designed to answer the simple ques-

tion of whether failure would occur or not in response to applied stresses. However, Irwin

[17] also introduced stress intensity factors to describe the magnitude of the crack tip

singularities in a specific direction. Soon, Williams proposed expansions [12] that were

the first to express stresses and displacements in the field near the crack tip. These the-

ories offer the asymptotic stresses and displacements at the crack tip, including infinite

stress. These solutions indicate that the distribution of stresses and displacements are

similar, but that the magnitudes of these solutions would vary between geometries. In
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fact, change in geometries affects the magnitude of the stress intensity factors denoted by

KI , KII and KIII .

When making fracture assessments and, in particular, when predicting crack propaga-

tion, it is of great importance to have an accurate understanding of the field of stress in

the vicinity of the crack tip. In linear elastic fracture mechanics, the stress intensity fac-

tors play a major role in the description of the stress and displacement. The exact value

of SIFs can be calculated analytically in the case of a few special problems. However,

SIFs can be determined for a wider range of problems, including a different combination

of geometry and loading conditions by experiments or utilising numerical methods.

The present chapter tracks the early developments leading to analytical solutions. We

recall that this thesis is focused on the accurate valuation of SIFs by using an asymptotic

solution as an enrichment function. With LEFM in mind, the following sections illus-

trate the progress toward finding an approach offering a generalised analytical solution.

Subsequently, a section will be added to detail the use of 2D expansions to enrich 3D

problems.

2.2 Linear Elastic Fracture Mechanics

Theoretically, linear elastic fracture mechanics is the fundamental form of fracture me-

chanics, assuming that linear elastic material behaviour is essential. The assumptions

associated with the theory of LEFM state that the body material is elastic in the large

domain, although, at the same time, a vanishingly small inelastic region, known as the

plastic zone at the crack tip is neglected. Considering the linear behaviour of materials,

the stress state can be the basis of a crack growth criterion, whereas the stress field can

be determined analytically. The resulting crack growth criteria are considered locally,

since a small material volume at the crack tip is being examined. LEFM solutions con-

tain stress and displacement fields asymptotically close to the crack tip. The stress and

strain fields from the LEFM are no longer valid when there is a large plastic crack tip

zone, nor when materials exhibit nonlinear elastic behaviour. In this case, stress fields

cannot be used to describe the properties of crack growth. However, many engineering
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problems are considered to be linear elastic, since the majority of materials exhibit lin-

ear behaviour under normal operating service loads. The early development of fracture

theories is demonstrated in the following sections, which rely on the concept of LEFM.

2.3 Energy approach

Griffith [7] laid the foundations of his research in the analysis of the fracture mechanics

of glass. Based on previous studies by Inglis [16], about calculating stress concentrations

around elliptical holes, Griffith proposed a method for estimating fracture strength. How-

ever, the Inglis solution poses a mathematical difficulty, in that the implementation of

(1 + 2a/b)σ yields singular stress. This leads to the conclusion that materials have zero

strength, such that, even a small application of stress would result in material failure, as

stresses become infinite causing bonds to break. Therefore, Griffith shifted the focus of

his work from crack tip stresses to an energy balance calculation, which has since been

considered a critical advancement in materials science. The strain energy per unit volume

of a stressed material is given by,

U∗ =
1

V

∫
fdx =

∫
f

A

dx

L
=

∫
σdε (2.1)

considering σ = Eε for linear materials, the strain energy per unit volume given as,

U∗ =
Eε2

2
=

σ2

2E
(2.2)

After the crack has propagated to a depth of a in the material, the field surrounding

the crack surfaces is unloaded which results in a release of strain energy. Griffith employed

this concept to calculate the precise value of the released energy.

As shown in Fig. 2.3 the released strain energy can be illustrated by considering two

triangles adjacent to crack surfaces, with a width of a and a height of βa, as being free

from stresses, while the remainder of the material under full stress σ. Using the Inglis

solution for stresses around elliptic holes, Griffith was able to determine the value of the
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Figure 2.3: Stresses field adjacent to crack free surfaces

parameter β = π. The released strain energy U is equivalent to the strain energy per unit

volume multiplied by the volume of both triangles,

U = − σ
2

2E
πa2 (2.3)

here U refers to the strain energy released per unit thickness of a specimen. The strain

energy is released in response to crack propagation. However, crack propagation requires

bonds to be broken when the required energy is essentially absorbed by the material. The

surface energy S for a crack of length a with a unit depth is given by,

S = 2γsa (2.4)

where γs denotes surface energy, and the factor 2 is included as two free surfaces are

created. Fig. 2.4 shows the total energy of the crack which is the sum of the energy

required to form the new surfaces [7].

With the continuous propagation of the crack, the strain energy becomes increasingly

dependent on the quadratic nature of a. After the crack reaches critical length ac the
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Figure 2.4: Energy balance in the presence of cracks

system reduces its energy by allowing the crack to grow further. The increment of applied

stress is necessary for crack growth until it reaches a critical length when a = ac; after

this point it propagates spontaneously and rapidly. Unless care is taken, this can result

in rapid, unexpected and catastrophic failure. The critical crack length value is obtained

by setting the derivative of the total energy to zero,

∂(S + U)

∂a
= 2γs −

σ2
f

E
πa = 0 (2.5)

When the above condition is satisfied, the crack becomes unstable, and the critical

stress, denoted by σf can be found as,

σf =

√
2Eγs
πa

(2.6)

Griffith conducted his initial research on brittle materials, in particular glass rods. As

a result, the energy release rate presented by Griffith only contains surface energy γs.

However, for ductile materials, it is not possible to accurately model the fracture based

on just the consideration of surface energy. The effect of the plastic zone near the crack

tip was studied by Irwin which is demonstrated in the next section.
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2.4 Stress Intensity Factors

In a ductile material the region around the crack tip cannot sustain an infinite stress and

a plastic zone develops. Therefore, the energy required to extend the crack is greater than

the surface energy. This was initially considered by Irwin [8]. By including a term known

as the plastic work per unit area γp and replacing γs in Eqn. (2.6) with the combined

term γp + γs the critical stress evaluation of a crack can be extended to metals in a plane

strain by,

σf =

√
2E(γs + γp)

πa
(2.7)

using the energy release rate notation Eqn. (2.7) can be rewritten as,

σf =

√
EG

πa
(2.8)

where the energy release rate G = 2(γs + γp). Also Irwin identified the universality of

the crack tip singular stress field, showing that the stress intensity factors may be used

to determine the stress magnitudes. In addition, SIFs are able to differentiate between

the mode of the applied load. Moreover, SIFs describe the modes of loads by singular

coefficients, denoted asKI , KII andKIII associated with mode I, II and III, respectively,

as shown in Fig 2.5. Considering the directions of applied loads, a cracked body deforms

in three ways, depending on the movements of the crack surfaces in relation to each other.

These are commonly known as, opening mode (mode I), in which two crack surfaces are

drawn away from each other. Shearing or sliding mode (mode II), in which there is

sliding of two cracked surfaces over each other in line with the crack; and finally, tearing

mode (mode III), in which there is a sliding of the crack surfaces over each other in a

direction perpendicular to the crack line. When considering a crack in an infinite plate
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Figure 2.5: Crack deformation modes

under uniform tensile stress the singular coefficients relate to applied stress by,


KI

KII

KIII

 =
√
πa


σzz

σxz

σyz

 (2.9)

where a is half the crack length for a crack in an infinite plate, σij are the components of

the applied stress tensor (in the far field) and x, y, z are the cartesian coordinates system

(in cases when the crack local coordinates are different from global, then the crack local

coordinates are set to be n, b, t; see Fig. 2.6). These three basic modes are normally

studied when examining crack propagation. However, it is possible to use mixed-mode

growth, as crack growth may take place in a complicated stress field. SIFs are cumulative

for similar loadings, which implies that the SIF for an intricate system of loads may be

obtained by adding the SIFs obtained for each load separately.

2.5 Relationship between KI and G

Until now, two parameters describing crack behaviours have been presented. These are

the stress intensity factors and the energy release rate. The energy release rate defines

global behaviour, whereas KI is specific to the local parameter. A unique relationship

between KI and G exists in the case of linear elastic materials. Equation (2.8) expresses

G when the crack is in a plate of infinite dimension and subjected to uniform tensile
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Figure 2.6: Relationship between the global coordinates and the crack local coordinates

stress. KI for the same situation is expressed by equation (2.9). Substitution of the two

equations for plane stress gives,

G =
K2
I

E
(2.10)

Throughout this thesis, we will use the notation E ′ to avoid writing distinct expressions

to defined plane strain and plane stress (where E ′ is the modified Young’s modulus as

defined in Eqn. (A.1.12)). Hence, the relation between G and KI for plane stress, as well

as plane strain can be written as,

G =
K2
I

E ′
(2.11)

As already stated the two equations, (2.8) and (2.9) are applicable only to cracks

in an infinite plate; hence, we need to prove that the equation (2.11) states a general

relationship applicable to problems in any dimension. A proof can be found for this in

the crack closure technique performed by Irwin [17]. The analysis has been presented in

detail in Appendix C.1. For practical application, the SIFs for different geometry and

loading are given by,

KI = Y σ
√
πa (2.12)

where Y is a dimensionless geometrical factor. There are references containing multiple
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Figure 2.7: Williams configuration of a wedge and the special case to the right

values of Y for different cases [5]. A common case is Y = 1.12 for a small edge crack of

length a in a large plate. Energy release rate and SIFs are primarily used for examining the

crack stability. However, several methods have been proposed to analyse the distribution

of stresses around cracks. The following two sections demonstrate methods proposed

earlier by Williams [12] and Westergaard [18]; both approaches consider the local stress

field under certain global boundary conditions and configurations.

2.6 Williams expansions

Pioneering research by Williams shows the universal distribution of crack singularity for

elastic crack problems. Initial studies focus on stresses at the corner of a plate in different

boundary conditions and at various enclosed angles. The crack is a special case of Williams

problem, wherein the crack enclosed angle α equals π and the surfaces are considered

traction-free as presented in Fig. 2.7. Utilising Airy stress function Williams was able to

derive the stress expansions that describe stresses behaviour in the vicinity of the crack

tip. A complete representation of the derivation process can be found in Appendix C.2.

These, stress expansions near the crack tip can be written as,
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σnn =
∞∑
n=

n

2
r
n
2
−1
{
C1n

[(
2 +

n

2
+ (−1)n

)
cos
(n

2
− 1
)
θ +

(n
2
− 1
)

cos
(n

2
− 3
)
θ
]

− C2n

[(
2 +

n

2
− (−1)n

)
sin
(n

2
− 1
)
θ −

(n
2
− 1
)

sin
(n

2
− 3
)
θ
]}

(2.13a)

σbb =
∞∑
n=

n

2
r
n
2
−1
{
C1n

[(
2− n

2
− (−1)n

)
cos
(n

2
− 1
)
θ +

(n
2
− 1
)

cos
(n

2
− 3
)
θ
]

− C2n

[(
2− n

2
+ (−1)n

)
sin
(n

2
− 1
)
θ +

(n
2
− 1
)

sin
(n

2
− 3
)
θ
]}

(2.13b)

σnb =
∞∑
n=

n

2
r
n
2
−1
{
C1n

[(n
2
− 1
)

sin
(n

2
− 3
)
θ +

(n
2

+ (−1)n
)

sin
(n

2
− 1
)
θ
]

+ C2n

[(n
2
− 1
)

cos
(n

2
− 3
)
θ −

(n
2
− (−1)n

)
cos
(n

2
− 1
)
θ
]}

(2.13c)

where n and b denote the local coordinates with the origin at the crack tip. In this

system the n axis lies in the crack plane and the b axis is perpendicular to the crack

plane. Finally, Hooke’s law can be used to obtain strains, which then are integrated to

find displacements. The resulting expressions for the crack tip displacements can then be

written as,

un =
∞∑
n=

r
n
2

2µ

{
C1n

[(
κ+

n

2
+ (−1)n

)
cos

n

2
θ − n

2
cos
(n

2
− 2
)
θ
]

− C2n

[(
κ+

n

2
− (−1)n

)
sin

n

2
θ − n

2
sin
(n

2
− 2
)
θ
]}

(2.14a)

ub =
∞∑
n=

r
n
2

2µ

{
C1n

[(
κ− n

2
− (−1)n

)
sin

n

2
θ +

n

2
sin
(n

2
− 2
)
θ
]

− C2n

[(
κ− n

2
+ (−1)n

)
cos

n

2
θ +

n

2
cos
(n

2
− 2
)
θ
]}

(2.14b)

where µ is the shear modulus and κ is Kolosov’s constant defined as κ = 3 − 4ν and

κ = (3− ν)/(1 + ν) for plane strain and plane stress, respectively; ν being the Poisson’s

ratio. In the context of linear elastic fracture mechanics, the solutions for stresses and

displacements given by (2.14) and (2.13) are fundamental; since these yield an asymptotic
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Figure 2.8: Westergaard centred crack with two polar coordinate systems

analytical solution in the region close to the crack tip which other methods can use to

investigate accuracy.

2.7 Westergaard solution

Another technique was that proposed by Westergaard [18] to tackle crack problems and

provide solutions. This procedure uses the biharmonic equation, as an automatic sat-

isfaction guarantee when complex equations show analytical behaviour. Therefore, this

involves applying the complex analysis technique formerly submitted by Muskhelishvili

[19]. Here we consider a centred crack with two local polar crack tip coordinate systems,

as presented in Fig. 2.8.

The complex analysis technique utilises the complex variable z which is expressed as,

z − a = (x− a) + iy = r1e
iθ1 (2.15a)

z + a = (x+ a) + iy = r2e
iθ2 (2.15b)
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The steps of Westergaard’s solution begin by formulating a complex function as,

F (z) = Re
ˆ̂
Z(z) + y

[
Im Ẑ(z) + Im Ŷ (z)

]
(2.16)

here Z(z) and Y (z) are complex functions which will be described subsequently, while

the symbol (ˆ) denotes integration with respect to the complex variable z. Hence,

d
ˆ̂
Z

dx
= Ẑ,

dẐ

dz
= Z,

dŶ

dz
= Y (2.17)

As a result of the Cauchy-Riemann equations, it is possible to achieve the following

derivative expressions,

∂F

∂x
= Re Ẑ + y [ImZ + ImY ] (2.18a)

∂F

∂y
= Im Ŷ + y [ReZ + ReY ] (2.18b)

These equations need to be differentiated once again, and then substituted into expres-

sions relating the stresses to the Airy stress function (A.2.16); this will yield,

σxx = ReZ − y [ImZ ′ + Y ′] + 2ReY (2.19a)

σyy = ReZ + y [ImZ ′ + ImY ′] (2.19b)

σxy = −ReY − y [ImZ ′ + ImY ′] (2.19c)

These expressions can be used to derive strains by utilising the elastic constitutive

equations and then displacements using integration. Next, by using the semi-inverse

method, a convenient selecting from the complex functions Z and Y is required to satisfy

the problem’s boundary conditions. Westergaard chose the following complex functions

by considering the problem of the centred crack in an infinite plate.

Z(x) =
σz√
z2 − a2

, Y (z) = 0 (2.20)
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The substitution of expressions (2.20) into the functions that relate stress to the Airy

stress function (A.2.16), the solution for stresses in a centre crack can be written as,

σxx =
σr
√
r1r2

cos

(
θ − θ1 + θ2

2

)
− σa2

(r1r2)
3
2

r1 sin(θ1) sin

(
3

2
[θ1 + θ2]

)
(2.21a)

σyy =
σr
√
r1r2

cos

(
θ − θ1 + θ2

2

)
+

σa2

(r1r2)
3
2

r1 sin(θ1) sin

(
3

2
[θ1 + θ2]

)
(2.21b)

σxy =
σa2

(r1r2)
3
2

r1 sin(θ1) cos

(
3

2
[θ1 + θ2]

)
(2.21c)

If a point that lies close to one of the crack tips is selected, then the following relationship

can be assumed,

r2 ≈ 2a, r ≈ a, θ2 ≈ θ ≈ 0 (2.22)

When Eqn.(2.22) is substituted into Eqns. (2.21), this gives the following expressions

in the vicinity of either of the crack tips,

σnn =
σ
√
πa√

2πr
cos

(
θ

2

)[
1− sin

(
θ

2

)
sin

(
3θ

2

)]
(2.23a)

σbb =
σ
√
πa√

2πr
cos

(
θ

2

)[
1 + sin

(
θ

2

)
sin

(
3θ

2

)]
(2.23b)

σnb =
σ
√
πa√

2πr
cos

(
θ

2

)
sin

(
θ

2

)
cos

(
3θ

2

)
(2.23c)

where (n, b) are the crack local coordinates with the origin at the crack tip, see Fig.

2.8. The term σ
√

2π is a constant for a particular geometry and loading; hence, it

is replaced with the constant KI . By recalling the first order terms of the Williams

expansion for an edge crack (2.13), and comparing the expressions in (2.23), we observe

that the two equations are identical. This further proves that regardless of geometry or

loading equations relating stresses and displacement around a crack are the same. Also the

constant KI is the key parameter governing the magnitudes of stresses and displacements.

In a similar manner, the singular coefficient for mode II can be determined, and then

substituted into (2.21), to generate expressions for stresses around the crack tip, which
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are given by,

σnn =
KI√
2πr

cos

(
θ

2

)[
1− sin

(
θ

2

)
sin

(
3θ

2

)]
− KII√

2πr
sin

(
θ

2

)[
1− cos

(
θ

2

)
cos

(
3θ

2

)]
+ . . . (2.24a)

σbb =
KI√
2πr

cos

(
θ

2

)[
1 + sin

(
θ

2

)
sin

(
3θ

2

)]
+

KII√
2πr

sin

(
θ

2

)[
1− cos

(
θ

2

)
cos

(
3θ

2

)]
+ . . . (2.24b)

σnb =
KI√
2πr

cos

(
θ

2

)
sin

(
θ

2

)
cos

(
3θ

2

)
+

KII√
2πr

sin

(
θ

2

)
cos

(
θ

2

)
sin

(
3θ

2

)
+ . . . (2.24c)

Hooke’s law is used to obtain strains, which are then integrated. This allows for writing

the displacements surrounding the crack tip as,

un =
KI

2µ

√
r

2π
cos

(
θ

2

)[
κ− 1 + 2 sin2

(
θ

2

)]
+

KII

2µ

√
r

2π
sin

(
θ

2

)[
κ+ 1 + 2 cos2

(
θ

2

)]
(2.25a)

ub =
KI

2µ

√
r

2π
sin

(
θ

2

)[
κ+ 1− 2 cos2

(
θ

2

)]
− KII

2µ

√
r

2π
cos

(
θ

2

)[
κ− 1− 2 sin2

(
θ

2

)]
(2.25b)

where µ is the shear modulus of the material. These expressions can be used to determined

the stress and displacement at any point around the crack, once parameters KI and KII

are evaluated. The stress intensity factor defines strains and stress as well as displacements

in the vicinity of the crack tip; on the other hand, the net change in the potential energy

caused by extension of the crack length is defined by the energy release rate. Finally, the

antiplane shearing mode which is the third mode in fracture mechanics (mode III), does
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Figure 2.9: Local coordinates at a 3D the crack front

not occur in the plane of the problem.

2.8 Singular field problems in anti-plane mode

A crack in a three-dimensional geometry is an essential component of fracture analysis

and fracture toughness examination, as it appears frequently when assessing failures.

However, we must present mode III before considering stress intensity factors in three-

dimensions. The antiplane shearing or tearing mode (mode III) does not appear in planar

elasticity, which explains why this mode was not included in the studies of Williams and

Westergaard. A cracked body subjected to antiplane loading always yields similar form of

stress singularity distribution at the crack tip as shown by [20]. The evaluation of mode

III needs to be considered in a cylindrical coordinate r, θ, t; such that r is measured

from the crack front, and 0 < θ < ±π in the plane n − b which is perpendicular to the

crack surface, while t is perpendicular to the n − b plane, as presented in Fig. 2.9. Its

useful to introduce all the components associated with the new added axis t for mode I

and II. Firstly, stress and displacement components in the antiplane shearing for mode

I are given by,
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σtt = ν(σnn + σbb) plane strain (2.26a)

σtt = 0 plane stress (2.26b)

σnt = σbt = 0 (2.26c)

ut = 0; (2.26d)

and for mode II,

σtt = ν(σnn + σbb) (2.27a)

σnt = σbt = 0 (2.27b)

ut = 0; (2.27c)

where σ and u are the local stresses and displacements. The asymptotic stresses for mode

III can be expressed as

σnn = σbb = σtt = σnb = 0 (2.28a)

σnt = − KIII√
2πr

sin
θ

2
(2.28b)

σbt =
KIII√

2πr
cos

θ

2
(2.28c)

Also the asymptotic displacements for mode III are,

un = ub = 0 (2.29a)

ut =
KIII

2µ

√
r

2π
sin

θ

2
(2.29b)

where µ is the shear modulus of the material. A crack three-dimensional body can be

treated as two-dimensions, since the field containing the crack front singularity is approx-

imately two-dimensional. An investigation by [21] found the crack tip stress singularity

is identical to the form of the two-dimensional singularity. In addition, a study by [22]
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demonstrated that the distribution of asymptotic stresses around a penny shaped crack

is similar to the two-dimensional result. The analytical stress intensity factor for a penny

shaped crack in an infinite domain under mode I conditions [23]; is given by,

KI =
2

π
σ
√
πa (2.30)

where KI is the singular coefficient for mode I, σ the applied stress, and a the radius of

the penny shaped crack. The use of two-dimensional SIFs for three-dimensional problems

requires special care, since SIFs depend on the location of the point at the crack front,

at which the stresses are evaluated. Furthermore, for 3D problems a body is modelled by

volume and a crack by a smooth surface while the front of a crack by a smooth curve.

Taking any point as the origin of the local coordinates include an n-axis pointing along

the direction of the propagation of the front, a b-axis perpendicular to the plane of the

crack, and a t-axis tangent to the crack front, as presented in Fig. 2.9.

In applications, a fracture toughness of materials can be used to determine the critical

value of SIFs. In general fracture toughness is used to indicate the resistance of materials

to propagate a pre-existing flaw. Standard engineering procedures assume that flaws of

various sizes are present to some extent in all materials, since they cannot be certain if

a material is defect free. However, engineers have made use of LEFM theory to obtain

fracture toughness, as denoted byKIc, KIIc andKIIIc for mode I, II and III, respectively.

In this approach, the flaw shape, material geometry, boundary conditions and material

fracture toughness are considered to assess the ability of materials to resist fracture.

2.9 Stress Intensity Factors in Fatigue

Fatigue is damage that occurs as sub-critical crack growth under a cyclical load. Fatigue

cracks continue to propagate under this cyclical load until they either retard or reach a

critical length at which rapid and catastrophic failure occurs. Since, cracks are accepted

to exist in structures under the concept of damage tolerance. It is vital that engineers are

able to predict the crack growth rate subject to cycle load, not only for aircraft but also
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other structures. Therefore, the part in question can then be replaced or repaired before

the crack reaches a critical length. A fundamental yet simple equation, which might often

be used to determine the crack growth rate is the Paris law [24]. By examining a number

of alloys he realised that a log-log scale gives a straight line when the crack growth rate

is plotted against the range of SIF, as presented in Fig.2.10. Mathematically this can be

written as,

da

dN
= C(∆K)m (2.31)

where a denotes the crack length, and N is the number of cycles. C and m are con-

stants dependent on the material properties, whereas ∆K represents the range of the

stress intensity factor. Unquestionably, SIFs are the most significant parameters used for

calculations of the rate of crack growth, with large accuracy dependence.

Table 2.1: Effect of SIFs error on the evaluation of N using Paris Law

Alloy m C
NE

0.5% ∆KIE 1% ∆KIE 1.5% ∆KIE

A533 Steel [25] 2.2 2× 10−11 1.09 2.17 3.22
40H Steel [25] 2.97 3.96× 10−12 1.47 2.91 4.33
1045 [26] 3.5 8.2× 10−13 1.73 3.42 5.08
A1 PA7 [25] 4 7× 10−11 1.98 3.9 5.78

It has been shown that in the vicinity of the crack exhibits singular stresses at the

Figure 2.10: A log− log graph shows SIFs and fatigue relationship
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point of the crack tip. Furthermore, the presence of singularity and the need for accurate

evaluation of SIFs combination creates a challenge for any numerical method. Therefore,

it is of great importance to evaluate SIFs accurately to allow Paris law to yield accurate

results. To demonstrate this, we have considered a flat sheet under mode I cycling load

with various material properties. Table 2.1 shows the sensitivity of N to error in the

evaluation of KI . Errors of 0.5%, 1% and 1.5% respectively, were imposed on the SIFs,

then we calculated N using correct ∆K and ∆Ks with the imposed errors. The results

demonstrate that the percentage error in N is a function of m and can be written as,

NE ≈ m∆KIE (2.32)

where NE and ∆KIE are the percentage error in N and ∆KI , respectivly. Therefore,

it is clear that the inaccuracy of KI will be amplified by m in the crack growth rate

estimation. It should be noted that the material property m can be considerably higher

for other materials, which lead to higher errors in the estimation of fatigue life. This

error may lead to a failure to replace the damaged parts, or to set a precise schedule for

inspections.



Chapter 3

Numerical Fracture Mechanics

3.1 Numerical Methods

Numerical methods form the most commonly used practical techniques for obtaining SIFs

for two-dimensional and three-dimensional cracked bodies subjected to complex loading

conditions. In fact, numerical simulation is a valid substitute tool for scientific experi-

ments (particularly in relation to complex engineering problems) that can be expensive,

time consuming, and in some cases dangerous. The following section presents the lat-

est developments in popular methods that have been used for solving crack problems in

LEFM.

3.1.1 Finite element method

The finite element method is a numerical technique used to compute solutions associ-

ated with boundary value problems in engineering analysis. The finite element approach

is currently applied to a comprehensive range of engineering fields. The method has

been extensively employed in the analysis of structures, solids, fluids and heat transfer.

Although it is difficult to date exactly the invention of FEM [27–31], it is clear the develop-

ment of finite element methods for solving practical engineering problems was accelerated

by the advent of the digital computer .

The FEM governing equations are generally expressed as partial differential equations.

– 27 –
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Figure 3.1: Finite element method with triangular mesh

These equations are written in a weak form through utilising domain integration to satisfy

the governing equations in an average manner [32]. The virtual work of a domain V with

boundary S subject to body force bi and traction ti can be expressed as,

∫
V

σijδεijdV =

∫
V

biδuidV +

∫
S

tiδuidS (3.1)

where σij and δεij are components of stress and virtual strain respectively, and ui and δui

represent the components of displacements and virtual displacement. The integration of

the domain is approximated by summation over a finite number of elements that discretise

the domain. Fig. 3.1 represents a two-dimensional domain in which triangular elements

are used for discretisation. The variables are defined and determined at the nodal points,

and the assessment of the domain variables is obtained by interpolation over an individual

element. Shared nodes allow for the assembly of elements into a global system of equations

capable of being represented in matrix form as,

[K]{u} = {f} (3.2)

where K is the stiffness matrix, u is the primary variable that needs to be determined, and

f is the applied load. The stiffness matrix for a structural finite element holds the material
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Figure 3.2: Quarter point element

and geometrical information which expresses the element resistance to deformation under

loading conditions. These deformations can include axial tension, shear, bending, and

torsional effects. The term stiffness matrix is also employed with non-structural analyses

including fluid flow and heat transfer, since this matrix expresses the resistance of the

element to change when external influences are applied [33].

The application of FEM to resolving crack problems involves significant difficulties,

which arise when determining the singular field near the crack tip. Standard finite element

methods only use regular polynomial functions for ui, εij and σij. Therefore, they present

a poor representation of the crack singularity as illustrated by [34]. Mesh refinement can

be used at the crack tip, but a large number of elements can be required to achieve the

required accuracy, and this has obvious consequences on computational efficiency. It is

the genre experience that determines whether the mesh is optimal, or sufficient, for the

problem under analysis. However, accuracy needs to be balanced with computational

time and difficulties in relation to smooth mesh generation.

The use of a specialised element with the ability to capture the singularity (e.g. quarter-

point) is considered, in order to avoid the refinement of the mesh. The quarter-point fun-



3.1. Numerical Methods 30

damental concept consists of modifying an isoparametric element with quadratic shape

functions such that the mid-node position is changed [35]. Therefore, the coordinates

of this node are shifted from the middle to the position of the quarter-point toward the

crack tip see Fig. 3.2. The element displacement and stress fields are transformed into

a form that precisely presents the radial function of the crack tip field. The non-linear

mapping between the natural and local coordinates (known as nodal-distorted shape func-

tions) produces the singular 1/
√
r behaviour. The two-dimensional quarter-point element

can be generated from either a triangular, or a quadrilateral element, through changing

the mid-nodes along two edges [36]. For instance, a quarter-point method has been em-

ployed by [37] for two-dimensional and three-dimensional problems in LEFM. Although,

various techniques used to extract SIFs in a postprocessing step, including stress field,

displacement field, and J-integrals. Furthermore, the presented two-dimensional edge

crack results show that the best accuracy was achieved by the J-integral with an absolute

error of 0.32%. For three-dimesnsons, the results for a central penny shaped crack show

improve accuracy when the quarter-point element is employed with the J-integral. In

addition, the quarter-point element was used for anisotropic by [38], whereas M -integral

is used for extracting the SIFs. The submitted results demonstrate that an absolute error

of 0.03% can be obtained with refined mesh for a two-dimensional edge crack. However,

curved crack modelling requires particular attention. Alternatively, enriched FEM can be

used to add singularity behaviour to the displacement approximations.

3.1.2 Extended Finite Element Method

Based on the FEM, the Extended Finite Element Method (XFEM) is a numerical ap-

proach designed specifically for treating discontinuities. Two types of discontinuity are

generally considered, including weak discontinuities and strong discontinuities. Whereas

weak discontinuities are found within the solution variable derivatives, strong disconti-

nuities appear in the problem solution variables. The development of enriched elements

has been established by Benzley [13], followed by the identification of the partition of

unity approach, which was introduced by Melenk & Babuška [11]. In 1999, the concept of
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XFEM was first introduced by [39], followed by the method gaining additional attention

[40–45].

The utilisation of the partition of unity functions whose values adds up to unity at ev-

ery point in the domain, is the primary concept behind the partition of unity methods. In

general, the incorporation of a non-polynomial function is obtained through the concept

of the partition of unity, and it is then possible to combine any set of functions to express

the field locally [39]. It is important to note that, these non-polynomial functions are

undistorted by the multiplication by shape functions because the shape functions exhibit

the partition of unity property. Moreover, these functions may include any priori knowl-

edge of the solution by experimental results or any analytical solution of the problem

while the extended finite element method enables the inclusion of the local enrichment of

approximation spaces.

The two-dimensional crack asymptotic displacement field enrichment can be achieved

by employing a set of crack tip displacement functions incorporating the radial and angular

behaviour as presented by [11]; and can be written as follows,

Ψ(x) = {Ψ1, Ψ2, Ψ3, Ψ4} =

[√
r cos

θ

2
,
√
r sin

θ

2
,
√
r sin θ cos

θ

2
,
√
r sin θ cos

θ

2

]
(3.3)

where r and θ denote the local coordinates with the origin at the crack tip. It should be

noted that the partition of unity for finite element method [11] is similar to the extended

finite element method [39], apart from the fact that XFEM is a local partition of unity

method. Locally refers to the fact that only a region adjacent to the cracks is enriched

with enrichment functions, employing the concept of the partition of unity. However, the

introduction of additional degrees of freedom renders it problematic to implement the

XFEM into pre-existing commercial finite element codes.

In general, XEFM is utilised to model crack propagation without the need for remesh-

ing. Also, the implementation of enrichment improves the SIFs accuracy, results presented

by [39], show an accurate evaluation of SIFs when using a local enrichment approach. For

two-dimensional edge crack in a rectangular plate under shear load the absolute error of
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KI and KII were 0.5% and 1.6%, respectively. In thee-dimensions, central penny shaped

crack in a cube under uniaxial load considered by [41]. The presented results reveal an

error of 1.4% when a sufficient number of elements are used. The XFEM has been under

continuous development as a tool for fracture mechanics [46]. Hence, it exhibits accurate

determination of SIFs while using coarse mesh.

3.1.3 Phase Field method

The concept of the phase field method consists of the introduction of a phase field that

tracks the location of defects and cracks implicitly. The crack is expressed by a new

added field variable, which is one if it is intact and zero if the material is fully cracked

and cracking is considered as a phase transition problem [47]. In phase field crack models

are expressed by a regularization parameter which controls the width of the transition

zone, in which the developing damage field is interpolated between 1 and 0.

The phase field approach is attractive due to its ability to evaluate elegantly compli-

cated fracture procedures, including crack initiation, propagation and branching, both

in general situations and for three-dimensional geometries, without the need to use ad-

ditional specialised approaches. A number of different phase field approaches have been

investigated for fracture mechanics over the previous decade [48]. Based on Griffith theory

a number of phase field models for quasi-static brittle fracture have been independently

submitted, extended from the variational formulation and the associated regularised for-

mulation for brittle fracture by [49, 50]. Furthermore, the complete process for quasi-static

crack initiation, propagation and branching is governed by minimising the energy func-

tional; which can be written as,

E(u,Γ) = Ed(u) + Es(Γ) =

∫
Ω

ϕ0(ε(u)) dΩ +Gc

∫
Γ

ds (3.4)

where Ed(u) denotes the elastic energy and Es(Γ) represents the energy required to create

the crack. Gc is the material fracture toughness and ϕ0 is the elastic energy density

in relation to Griffith’s theory. The approach has been extended by [49] to enable an
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efficient numerical treatment of Eqn. (3.4) by utilising a regularised form. Therefore, the

regularised energy functional Eε(u, s) can be written as,

Eε(u, s) =

∫
Ω

(s2 + η)ψ0(ε(u)) dΩ +Gc

∫
Ω

(
1

4ε
(1− s2) + ε|∇s|2

)
(3.5)

where s is a field variable, known as the crack field parameter. The value of s varies

smoothly from s = 1 for undamaged material to s = 0 for fully separated material. An

artificial residual stiffness of a totally broken phase, s = 0, is modelled by the small

dimensionless parameter η which is essential to prevent numerical difficulties. Alternate

minimisation and back-tracking algorithms are employed to determined the solution of

Eqn. (3.5) as revealed in [49].

However, the use of the phase field to model crack problems imposes a number of re-

strictions on the mesh. Moreover, the finite element discretisation needs to be sufficiently

fine in comparison to the length of the regularization parameter, where the parameter

needs to be sufficiently fine to obtain reasonable results and determine singular field ap-

pearing near the crack. A study carried out by [51] suggests that the appropriate value

of the regularisation parameter is 1% of the global geometric dimension of the specimen.

The phase field method has been utilised to model various types of interfaces. These

include electromagnetic wave propagation [52], contact of liquid and solid problems [53],

study of crystal structures [54] and applications that related to medicine [55] . In ad-

dition, there has been a continuous investigation of phase field methods for cracks for

two-dimensions [47]. However, a small number of studies have been extended to the

three-dimensional [56], in which crack front instabilities subjected to mixed mode condi-

tions were examined. The computational cost of three-dimensional modelling is very high,

leading to the use of grid adaptivity and highly parallelised techniques, being essential to

the provision of efficient algorithms (consult [47] for further information).
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3.1.4 Configurational Forces method

The method of configurational forces, also known as material forces, represents a robust

technique for examining various types of material defects. The approach is utilised to

investigate defects and track material deformation. Phase transformations and fracture

mechanics are also among its applications. The configurational forces method was estab-

lished by Eshelby [57, 58] to study internal forces acting on a crack tip singularity. Based

on restrictive constitutive equations by [59], Gurtin [60] presented a general configura-

tional force balance, outlined as follows (in keeping with the notation of [60]),

∫
∂R

Dm da+

∫
R

fda+

∫
∂B

Cv ds+

∫
B

eda = 0 (3.6)

where R is a three-dimensional domain that intersects with the phase interface, and m

is an outward unit normal to ∂R. B is the interface surface in R, and n is a normal to

this surface and v is the outward unit normal to the curve ∂B, as illustrated in Fig. 3.3.

The configurational fields presented in Eqn.(3.6) comprise the following: D is bulk stress,

which operates in response to the exchange of the material surface at the boundary of

R. Generalised surface tension C is stress within the interface that acts in response to

the increment in the interfacial region and the changes in the orientation of the interface.

In addition, e and f are the internal forces distributed over the interface and the bulk

volume, respectively.

Moreover, several formulations have been proposed, including fracture initiation de-

fects for a brittle fracture [50, 61], and numerical evaluation of material configurational

forces at static fracture fronts [62–65]. For instance, a numerical implementation using

finite element method was introduced by [66], considering a variational formulation of

brittle fracture in elastic solids. The presented results for a two-dimensional edge crack

in rectangular plate under tensile stress show that, an accuracy of 8.8% can be achieved

when a refined mesh is used. In addition, the configurational forces method has been

implemented successfully in fracture propagation with the finite element, extended finite
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Figure 3.3: The interface contained within the control volume

element and discontinuous Galerkin method by [67–69]. Recently, configurational force

has been applied to fracture mechanics by [70], in order to consider large, isotropic and

hyperelastic problems in three-dimensions. Furthermore, this approach can be easily ex-

tended to deal with anisotropic materials. However, the configurational forces method

is currently incapable of handling non-smooth crack kinking [71]. Additionally, further

limitations include crack branching and multiple crack coalescence, which have not been

considered or formulated.

3.1.5 Meshless methods

The FEM has been implemented in a large number of fields of research, with considerable

success. However, the use of FEM places limitations and restrictions on the quality of

the mesh. As a result of mesh interpolation, distorted and low quality mesh leads to the

increment of errors, and the subsequent requirement for remeshing is time consuming for

both humans and machines, particularly when dealing with complex three-dimensional

geometries as shown by [72]. Additionally, classical mesh based techniques are not fully

suited to addressing an issue of discontinuity that fails to align with the element edges,
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Figure 3.4: Visibility criterion of meshfree nodes

leading to discontinuities being handled by remeshing or discontinuous enrichment. Com-

monly, costly remeshing can generally be avoided by the enrichment of the approximation

functions, thus adding new degrees of freedom to the system.

The fundamental concept behind meshfree methods is to provide an accurate solution

to an integral equation through a set of nodes arbitrarily distributed in the domain, and

without defining a mesh that relates these nodes to one another [73]. In a similar concept,

a number of meshfree techniques have been proposed to date, with the earliest being

submitted simultaneously by Lucy [74], and Gingold and Monaghan [75] who introduced

smoothed particle hydrodynamics.

An element free Galerkin method was proposed by [76] to handle linear elastic fracture

problems. The approach uses a visibility criterion to model crack discontinuity, such that

the domain of influence for a node near the crack is truncated when intersecting with

the crack surface as in Fig. 3.4. It based on the fact that a node on one side of the

crack surface will not affect points on the opposite side of the crack surface. However, the

implementation of visibility criterion creates difficulties when dealing with nodes near the

crack tip. An improved continuous meshless approximations utilising the diffraction and

transparency method submitted by [77] to treat near crack tip nodes.

An enrichment of the element free Galerkin method has been introduced by [78, 79],

where the linear elastic fracture mechanics approximation is enriched both extrinsically

and intrinsically. An example of method enriched by the analytical solution in an extrinsic
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manner is presented by [80], as,

u(x) =
∑

Npu(x)p +

nk∑
n=1

K̂n
I ψ

n
I + K̂IIψ

n
II (3.7)

where nk is the total number of cracks, up is the nodal displacement and N is the usual

polynomial basis. K̂I and K̂II denotes the additional degrees of freedom for mode I and

II, respectively. The functions ψnI and ψnII are the leading order terms of Williams dis-

placement expansions. Recently, an element free Galerkin method has been employed to

evaluate stress intensity factors for cracks in composite material [81]. In the proposed ap-

proach, the integral interaction technique has been extended to the element free Galerkin

method, and the newly developed interaction integrals have been introduced for the anal-

ysis of mixed mode fracture problems. The submitted results show that, the obtained

KI by the proposed EFGM agree with the analytical results for various combinations of

E2/E1 and a/W ratios.

Noted in element free Galerkin, polynomial shape functions are replaced by functions

based on moving least squares expression [82]. Moreover, the integration of the weak

form integral equation is obtained over a regular background grid (making it to some

extent not truly meshless). Utilising this formulation coupled with an enriched basis in

two-dimesnsions, [83] were able to obtain an accurate evaluation of SIFs with an absolute

error of 0.3%. However, in the Meshless Local Petrov Galerkin (MLPG) method [84],

the integration is considered over multiple overlapping sub-domains centred on the nodes.

The assumption being that if the equation is satisfied over these sub-domains, then it will

also be satisfied over the volume as a whole. The method has been successfully applied

to model elastoplastic fracture problem of moderately thick plate by [85].

In general, meshfree methods benefit from higher order continuity and yield a smoother

stress distribution near the crack fronts [72]. Although meshfree methods have been

implemented in most fields of structure and fracture mechanics, difficulties remain in the

development of efficient computational algorithms with sufficient nodal integration and

scalable application of essential boundary conditions [86].
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3.1.6 Boundary Element Method

The boundary element method is a numerical technique applied to solve Partial Differen-

tial Equations (PDEs). PDEs, expressing the behaviour of the unknown both inside and

on the boundary of a domain, are transformed into an integral equation over the boundary.

Subsequently, the numerical solution to this equation is calculated at the boundary only,

while internal stresses and strains can be evaluated through a post-process step. Based

on the formulation proposed by Green [87], Jaswon [88] used a direct boundary integral

equation formulation to solve potential problems numerically. Furthermore, Rizzo [89]

extended the method to elastostatics, and this was later adapted to solve 3D problems

by [90].

The use of the BEM in linear elastic fracture mechanics has now become well estab-

lished, and is commonly implemented in practice. The ability to accurately evaluate the

stress intensity factors is the main reason for using the BEM over other methods, such

as the FEM [91]. Therefore, many approaches have been submitted to estimate SIFs

using the BEM. However, the direct application of the BEM to coplanar surfaces (i.e.,

two crack surfaces lying on the same plane) leads to mathematical degeneration [92]. On

the other hand, this difficulty can be overcome for symmetrical geometries by imposing

the symmetry of the boundary conditions and then considering only one crack surface.

A more general and widely applied technique for non-symmetrical cracks was submitted

by [93]. This approach uses the formulation of multi-domains which can be implemented

for anti-symmetrical as well as symmetrical crack problems in both two-dimensional and

three-dimensional configurations. The method splits the body into multi-domains; each

domain has artificial boundaries, with the consequence that a domain has only one crack

surface. However, the use of sub-domain method introduces extra degrees of freedom

and is difficult to automate for crack propagation modelling. Alternatively, the dual

boundary element method presented by [94–96] has been confirmed as a general and

efficient method for modelling cracks. Indeed, the DBEM can model coplanar surfaces

problems in a single domain formulation by applying the displacement boundary integral
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equation to one surface and the traction boundary integral equation to the opposite

surface. However, the main difficulty arising from the formulation of the DBEM is the

requirement to evaluate of Cauchy and Hadamard principal value integrals, occurring in

the traction BIE [97]. Thus, the derivation of the DBEM has considered the required

conditions for the existence of these singular integrals; however, certain restrictions are

imposed on the selection of the shape functions for elements on the crack surfaces [94].

The method has been applied successfully to model cracks in two-dimensions whereas

the values of SIFs are extracted by the J-integral [94]. The results show that accuracy

of 0.4% when the ideal J-integral path is selected. The DBEM was also extended to

three-dimensions [95] and the J-integral is used to obtain the SIFs for inclined crack in a

cylinder.

Commonly, adaptive techniques are applied to the boundary element method in order

to overcome the singular behaviour associated with the crack tip. The most frequently

used approach including the subtraction of singularity method and the weight function

method, as presented in [98]. However, in most postprocessing procedure is needed to

evaluate the stress intensity factors, which can be achieved using path independent contour

integrals.

3.1.7 Extended Boundary Element Method

The finite element method has been used as a framework for a large number of modified

techniques that have been formulated for fracture analysis. However, the use of the

boundary element method as a framework has increased, due to the ability to capture

discontinuous functions and to provide accurate results on the boundary, which is where

the crack lies. The method proposed by [99] introduced the formulation of special singular

shape functions including Williams expansion, which expresses a crack tip singularity.

Embedded unknowns are added in the formulation of the shape functions, hence, there is

a need to employ auxiliary boundary integral equations.

Furthermore, Williams expansions have been used with the BEM by Portela et al.

[97] to subtract the singularity by dividing the domain into singular and regular fields.
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The technique was able to evaluate KI and KII directly. Recently, the partition of unity

approach was used by Simpson and Trevelyan [14], who presented an enriched boundary

element method in a similar manner to the XFEM. Moreover, this work extended the

benefits of XFEM to provide high accuracy of the SIFs from a coarse and boundary-only

discretisations. Indeed, they extended the application of the enrichment method to curved

cracks [100]. However, both implementations relied on the use of the J-integral [101] to

calculate the SIFs. A similar approach for anisotropic materials was submitted by [102]

to explore the use of enrichment functions embedded into the boundary element method

formulation. The main advantage of this approach was the reduction in the additional

degrees of freedom generated opposed to the classical partition of the unity approach. The

enrichment functions were obtained using the Stroh formalism [103]; a concise formulation

that is dependent only on material properties.

The use of the square root behaviour for enrichment is not new; an earlier approach in

which the square root was introduced into the shape functions for special crack tip ele-

ments was proposed by Li, et al. [104], and applied to the relative crack face displacements

in a symmetric Galerkin BEM based on weak form integral equations. The current thesis

describes an new enriched XBEM algorithm for fracture mechanics. The starting point

of this work, as presented in Alatawi and Trevelyan [105], is to develop a new method for

writing the auxiliary equations and thereby recover the SIFs directly from the solution

vector, precluding the need for a postprocessing stage like the J-integral.

3.2 Assessment of Stress Intensity Factors

In making fracture assessments, particularly the prediction of crack propagation, it is

important to have an accurate understanding of the stress field in the vicinity of the crack

tip. In the context of linear elastic fracture mechanics, SIFs together with the Williams

expansions, play a major role in the determination of stresses and displacements that

distributed over the singular field. Studies on the calculation of SIFs have yielded various

approaches that include analytical and numerical techniques. Essentially, analytical meth-

ods are only suitable for specifically defined crack geometries and boundary conditions.
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Thus, in the case of a wide range of problems with simple geometry and loading, the SIFs

can be determined from handbooks (e.g. [23]). However, when dealing with complicated

shapes and boundary conditions, engineers must make use of numerical methods in order

to resolve the stress fields and thereby, reveal the SIFs.

Generally, the evaluation of SIFs can be classified into either direct or postprocessing

methods. Direct methods offer the speed and flexibility to evaluate higher order terms.

The direct value of SIFs are extracted by manipulating the calculation of displacements

and stresses related to elements adjacent the crack tip. In the main, two methods are most

commonly used to obtain SIFs directly, which include the enriched element [13] and the

hybrid element [106]. The difference between these approaches is evident in the treatment

of the displacement compatibility. In the case of the hybrid element approach, displace-

ment compatibility is enforced by minimising a functional that contains displacements

and added unknowns. Whereas, in the case of enriched element formulation, displacement

compatibility is exactly satisfied through applying a transition element, which connects

the regular element and the enriched element at the crack tip. An example of hybrid

element use is the work by Xiao and Karihaloo [4], which aimed to evaluate SIFs and

the coefficients higher order terms. Whereas, enrichment by a square root was introduced

into the shape functions for special crack tip elements in an earlier study by Li, et al.

[104]. On the other hand, the J-integral is a postprocessing approach taken over a closed

independent integral path and based on energy approach. Furthermore, the J-integral is

the most popular postprocessing technique and is available to general purpose FEM and

BEM codes that do not have any particular formulations injected in order to deal directly

with the stress singularity.

The increasing applications of composite and non-linear materials in many engineering

fields has motivated researchers to consider the resistance of these materials to crack

initiation and propagation, which requires the determination of the SIFs. Recently, several

approaches have been added, including fractal hybrid finite elements [107] and fractal-

like FEM [108] for handling bi-material problems. The fractal finite element method,
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which divides the domain into a regular and a singular region, where the crack tip is

the centre of similarity for the singular region was introduced by [109, 110]. Furthermore,

several generalised stress intensity factor methods have been proposed to handle composite

material accurately, as presented in [111, 112].

The Gauss Chebyshev method was modified by [113] in such a way as to directly

evaluate the stress intensity factors at the crack tips. Moreover, the extrapolation of

displacements or stresses [114] can be used to evaluate SIFs with acceptable accuracy.

Further examples of the successful application of the direct evaluation of stress intensity

factors can be found in [115, 116]. In the context of LEFM, many analytical techniques

have been developed which involve the direct and postprocess evaluation of SIFs [117].

However, for the purposes of this thesis, the J-integral (a postprocessing method) has

been employed to verify numerical results and demonstrate the effect of the use of the

enriched boundary element method. Therefore, it is essential to present the J-integral

decomposition for both two-dimensional and three-dimensional problems.

3.2.1 J-integral

The J-integral was introduced by Rice [101] as a general approach to detrmine the energy

release rate. Rice demonstrated that the J-integral is a path independent approach, since

the evaluation of the integral in a far field around a crack tip is related to the deformation

near the crack tip. The advantages of using the J-integral method are that it can be

computed numerically along a path around the crack tip, and can be employed for linear

and non-linear problems. Several numerical techniques [118–121] have been developed

utilising the J-Integral to evaluate the components of SIFs for various type of cracks

using both the BEM and the FEM, and including two-dimensional and three-dimensional

problems. Two techniques used to extract the SIFs from a mixed mode J-integral for 2D

and 3D crack problems will be presented shortly.
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Figure 3.5: J-integral path in 2D domain

3.2.1.1 Decomposition of the 2D J-integral

Consider a path Γ surrounding a 2D flat crack with local coordinates x, y originating at

the crack tip, so that the path starts at a point on the lower crack surface and ends at a

point on the upper crack surface, as shown in Fig. 3.5. The J-integral can be defined as,

J =

∫
Γ

(
Wnx − ti

∂ui
∂x

)
dΓ (3.8)

where ui and ti are the displacement and traction components, respectively. In addition,

nx is the outward normal in x-direction to the path Γ. The integral path Γ is a closed

contour around the crack tip that includes parts from the upper and lower crack faces. It

is sufficient not to include the portion of the path along the crack surfaces when analysing

traction-free crack problems, since nx = ti = 0. Finally, W as it appears in equation (3.8)

represents the strain energy density and can be defined as,

W =
1

2
σijεij (3.9)

where σij and εij are the stress and strain components, respectively. In order to gain a

better understanding of the crack behaviour, it is necessary to express the J-integral in

terms of the SIFs. Since the J-integral is equivalent to the energy release rate, it can be
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Figure 3.6: J-integral with symmetrical internal points

expressed in terms of the SIFs for the 2D plane stress (see Eqn. (C.1.7)); as,

J =
K2
I

E ′
+
K2
II

E ′
(3.10)

where E ′ is the modified Young’s Modulus for plane stress and plane strain as presented

in Eqns. (A.1.12). Consider a special case, when KII equals zero (pure mode I), then a

simple rearrangement of Eqn. (3.10) will yield the value of KI directly. However, very

often cracks in actual geometry are subjected to mixed mode crack conditions. Thus, it

is important to decouple the J-integral into the two components of mode I and II in the

case of mixed mode cracks. Indeed, several approaches have been submitted to decompose

the J-integral into its components, including [122, 123]. A simple technique suggested by

Ishikawa, et al. [124] is to separate the J-integral into mode I and II. They demonstrated

that the components on the J-integral path, which include strain, displacement, stress

and traction, can be decoupled analytically if a symmetrical mesh is placed around the

crack tip. Consider two symmetrical points P (x, y) and P ′(x,−y) around the crack line

as presented in Fig. 3.6. Here, σij, εij, ui and ti are the field components of the point

P (x, y), and similarly σ′ij, ε
′
ij, u

′
i and t′i are the field components of the point P ′(x,−y);

then the symmetrical and anti-symmetrical parameters can be written as,
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σij = σIij + σIIij (3.11a)

εij = εIij + εIIij (3.11b)

ui = uIi + uIIi (3.11c)

where 
σIxx

σIyy

σIxy

 =
1

2


σxx + σ′xx

σyy + σ′yy

σxy − σ′xy

 ,


σIIxx

σIIyy

σIIxy

 =
1

2


σxx − σ′xx

σyy − σ′yy

σxy + σ′xy

 (3.12a)


εIxx

εIyy

εIxy

 =
1

2


εxx + ε′xx

εyy + ε′yy

εxy − ε′xy

 ,


εIIxx

εIIyy

εIIxy

 =
1

2


εxx − ε′xx

εyy − ε′yy

εxy + ε′xy

 (3.12b)

 uIx

uIy

 =
1

2

 ux + u′x

uy − u′y

 ,

 uIIx

uIIy

 =
1

2

 ux − u′x

uy + u′y

 (3.12c)

Since, the J-integral path is symmetrical around the crack plane when y = 0, then

the outward normals associated with the points P (x, y) and P ′(x,−y) hold the following

relationship,

(n′x, n
′
y) = (nx,−ny) (3.13)

The substitution of Eqns. (3.11) into Eqn. (3.8) bearing the relationship with Eqn.

(3.13) in mind, means that the J-integral can be presented as,

J = JI + JII (3.14)

where JI and JII are defined as,

Jl =

∫
Γ

(
1

2
σlijε

l
ijnx − tli

∂uli
∂x

)
dΓ l = I, II (3.15)
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The J-integral is widely implemented in both the FEM and the BEM to determine

the SIFs with high accuracy. In the case of three-dimensions, the decomposition of the

J-integral yields the SIFs for modes I, II and III, which will be represented in the next

section.

3.2.1.2 Decomposition of the 3D J-integral

In a similar manner to the decomposition of the J-integral in 2D, the individual SIF

components of the J-integral are obtained from the field parameters that are combined

from symmetrical points around the crack plane. The implementation of the J-integral to

three-dimensional crack problems has been presented by [125–128]. Subsequently, Rigby

and Aliabadi [129] applied the correct decomposition to the three-dimensional problems,

where the J-integral is presented as,

J(η) =

∫
Γε

(
Wnn − ti

∂ui
∂xn

)
dΓ

=

∫
C+γ

(
Wnn − ti

∂ui
∂xn

)
dΓ−

∫
Ω(C)

∂

∂xt

(
σit

∂ui
∂xn

)
dΩ (3.16)

where i = n, t, b and W represents the strain energy density and nn is the unit normal in n-

direction. Whereas, ti and ui are the traction and displacement components, respectively.

The contour Γε is identical to Cε; however it proceeds in an anticlockwise direction. The

value of the integrand is dependent on the location η at the crack front as shown in Fig.

3.7. In the case of traction-free cracks, the contour integral over the crack faces is zero.

Furthermore, Rigby and Aliabadi demonstrated that the J-integral can be split into two

parts to yield symmetrical and anti-symmetrical parts, which can be written as,

J = JS + JAS (3.17)

where JS and JAS denote the symmetrical and anti-symmetrical parts, respectively. The

symmetrical part is identical to mode I, whilst the anti-symmetrical part consists of modes
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Figure 3.7: J-integral definition in 3D domain

Figure 3.8: J-integral with symmetrical internal points on surface

II and III, represented as,

JS = J I and JAS = J II + J III (3.18)

where J I , J II and J III are the J-integral components for modes I, II and III. Under

further analysis, the decomposition approach separates the components of modes II and

III. The three components are related to the J-integral by,

J(η) = J I(η) + J II(η) + J III(η) (3.19)

Consider a symmetrical contour around the crack plane (see Fig. 3.8) such that for

any pair of symmetrical points P and P ′, the normals n and n′ are related as,



3.2. Assessment of Stress Intensity Factors 48

n(nn, nb, 0) = n′(nn,−nb, 0) (3.20)

Then the decomposition of the stresses can be represented by,

σij = σIij + σIIij + σIIIij

=
1

2



σnn + σ′nn

σnb − σ′nb

σnt + σ′nt

σbb + σ′bb

σbt − σ′bt

σtt + σ′tt



+
1

2



σnn − σ′nn

σnb + σ′nb

0

σbb − σ′bb

0

σtt − σ′tt



+
1

2



0

0

σnt − σ′nt

0

σbt + σ′bt

0



(3.21)

The decomposition of the strain is obtained from the stress decomposition by applying

Hooke’s law. The strain components can be written as,

εij = εIij + εIIij + εIIIij

=
1

2



εnn + ε′nn

εnb − ε′nb

εnt + ε′nt

εbb + ε′bb

εbt − ε′bt

εtt + ε′tt



+
1

2



εnn − ε′nn

εnb + ε′nb

0

εbb − ε′bb

0

εtt − ε′tt



+
1

2



0

0

εnt − ε′nt

0

εbt + ε′bt

0



(3.22)

The displacement can be obtained from Eqn.(3.22) by employing the relationship be-

tween strains and displacements (see Eqn. (A.1.3)) as,

∂ui
∂xj

=
∂uIi
∂xj

+
∂uIIi
∂xj

+
∂uIIIi

∂xj
(3.23)
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The substitution of the decomposed field parameters in equations (3.23), (3.22) and

(3.21) into equation (3.16), yields the J-integral components in terms of mode I, II and

III, and can be written as,

J(η)l =

∫
C

(
W lnn − σlij

∂uli
∂xn

nj

)
dΓ

+

∫
Ω(C)

(
∂σlin
∂xn

+
∂σlib
∂xb

)
∂uli
∂xn

dΩ−
∫

Ω(C)

σlit
∂2uli
∂xn∂xt

dΩ (3.24)

where l = I, II, III. The integration value over the domain Ω(C) can be obtained in two

steps. First, we evaluate the line integral of L1, L2 and L3 using Simpson’s Rule. Then,

Newton-Cotes can be used, since the arcs (L1, L2, L3) are equally spaced (see Fig. 3.8);

for illustration a four points Newton-Cotes can be written as,

JA =
r

8
(3L1 + 3L2 + L3) (3.25)

where JA is the integral over the shaded segment. Likewise, we can obtain the integration

value for all other segments. Since the J-integral components are obtained separately for

each mode, then the SIFs can be determined (see Eqn.(C.1.7)) at any crack front position

as,

J(η) =
K2
I (η)

E ′
+
K2
II(η)

E ′
+
K2
III(η)

2µ
(3.26)

where E ′ denotes modified Young’s modulus and µ is the shear modulus. The J-integral

can be sufficiently evaluated using the BEM, since the required parameters at the internal

points on the integration path are accurately determined. The calculation of internal

points is obtained by employing boundary integral equations (see Sec. 4.1.6), which can

be achieved without the need for discretising the domain. Moreover, the J-integral is

evaluated by integrating the parameters of internal points (stress, strain and derivative

of strain ) along the integration path in a plane that is perpendicular to the crack plane.

Consequently, the J-integral is able to yield highly accurate results without modifying

the boundary mesh.
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3.3 Conclusion

Over the past three decades, the methods described in this chapter have been used to

solve many crack problems [33, 39, 47, 70, 83, 97, 104]. However, many of these methods

are still under development, whereas some methods have already been confirmed to be

more suitable for particular types of problems. Undeniably, the finite element method is

the most popular. Nevertheless the limitations of the method have prompted researchers

to explore alternative approaches. Several techniques have been introduced to modify

the FEM, to obtain the singular behaviour around the crack tip, including the quarter-

point element, the XFEM, phase field methods and the configurational forces method.

Likewise, restrictions on mesh quality have encouraged the community to investigate

meshfree methods. In contrast, the boundary element method has now become established

as a robust numerical procedure for solving cracks in fracture mechanics problems. The

reduction in the dimensionality and the yielding of accurate SIFs for two-dimensional and

three-dimensional problems are the important advantages of the BEM over the FEM.

The following chapters in this thesis will focus mainly on the boundary element method,

including the formulation and numerical implementation for fracture mechanics.



Chapter 4

Boundary Element Method

4.1 Formulation of BEM

Key advancements in the historical development of the boundary element method were

introduced in Section 3.1.6, and further details can be found in [130]. The BEM is now

established as a numerical tool made available to engineers and scientists. The superiority

of the method over other approaches can be demonstrated, if implemented to model

appropriate applications. Currently, BEM is not as popular as FEM, for several reasons.

Mainly, this is because of the difficulties associated with the mathematical formulation

and treatment of singularity. In addition, FEM is very versatile since a weak form can

be written for any PDE and a corresponding formulation can be developed, so that the

FEM can be applied to a wide variety of problems found in science and engineering. By

contrast, the BEM is limited to problems for which a Green’s function is available. The

FEM is also far more straightforward to apply for non-linear problems.

The BEM solution is calculated at the boundaries, and it is not required to evaluate

the required function through the domain. The solution at internal points is given by

direct evaluation in a postprocessing step, since the unknown boundary distribution is

determined. Therefore, the solution space dimensions are reduced by one unit in com-

parison to the problem physical domain. Consequently, BEM has far fewer degrees of

freedom and therefore a much smaller system matrix. Furthermore, BEM offers accurate

– 51 –
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results for crack problems; hence cracks lay on the boundaries.

This chapter presents the formulation of BEM, by constructing a system of equations,

which can be implemented numerically. The formulation of the boundary element method

can be obtained directly or indirectly, however both techniques yield similar results. The

integral equation is formulated in the case of direct formulation, in terms of unknown

boundary source functions. Moreover, the derivation of the direct integral equation starts

by either applying the Betti-reciprocal theory or the weighted residual method. The

following section demonstrates the use of the reciprocal theorem to derive the direct

integral equation.

4.1.1 Betti-reciprocal theory

The development of the reciprocal theorem is attributed to Maxwell, Betti and Rayleigh

[131]; it is a robust theory for analysing linear elastic problems. Here, the Boundary

Integral Equation (BIE) is derived by utilising the reciprocal theorem under conditions of

equilibrium. We start by considering two systems, (a) and (b) in which the stresses and

strains corresponding to each system are (σij, εij) and (σ∗ij, ε
∗
ij), respectively. According

to the reciprocal theorem the work done by the stresses of system (a) on the strains of

system (b) is identical to the work done by the stresses of system (b) on the strains of

system (a). This can be presented in the form of an integral relationship As shown by

[131] and can be written as,

∫
V

σijε
∗
ijdV =

∫
V

σ∗ijεijdV (4.1)

where V is an arbitrary volume domain. When using the strain-displacement relationship

from Eqn. A.1.3, the strains in (4.1) can be expressed in terms of displacements as,

∫
V

1

2
σij
(
u∗i,j + u∗j,i

)
dV =

∫
V

1

2
σ∗ij (ui,j + uj,i) dV (4.2)
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By utilising symmetrical terms σij and σ∗ij, Eqn. (4.2) can be simplified to,

∫
V

σiju
∗
i,jdV =

∫
V

σ∗ijui,jdV (4.3)

where

1

2
σij
(
u∗i,j + u∗j,i

)
=

1

2

(
σiju

∗
i,j + σiju

∗
j,i

)
=

1

2

(
σiju

∗
i,j + σjiu

∗
j,i

)
= σiju

∗
i,j (4.4)

The first term in the Eqn.(4.3) can be expressed as,

∫
V

σiju
∗
i,jdV =

∫
V

[(σiju
∗
i ),j −σij,ju∗i ] dV (4.5)

It is convenient to note that, Eqn.(4.5) was derived by considering the product rule of

the first term on the right hand side. The term σij,j is associated with the body force

term bi by the equilibrium Equation (A.1.2), and can be substituted into (4.5) to give,

∫
V

σiju
∗
i,jdV =

∫
V

(σiju
∗
i ),j dV +

∫
V

biu
∗
i dV (4.6)

Now, we must consider transforming the domain integrals into boundary integrals.

This can be achieved by employing the divergence theorem. Consider an arbitrary 3D

domain V with a smooth surface S, and a function f which holds continuous derivatives

with respect to the coordinates (x, y, z). Then the volume integral can be expressed on

the surface as, ∫
V

fi,idV =

∫
S

finidS (4.7)

where ni is the unit outward normal (see Fig. 4.1). When applying the divergence theorem

to the first term on the right hand side of Eqn.(4.6); this gives,
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Figure 4.1: A 3D arbitrary domain V with boundary S

∫
V

σiju
∗
i,jdV =

∫
S

σiju
∗
injdS +

∫
V

biu
∗
i dV (4.8)

By utilising the traction-stress relationship, Equation (4.8) can be rewritten as,

∫
V

σiju
∗
i,jdV =

∫
S

tiu
∗
i dS +

∫
V

biu
∗
i dV (4.9)

By returning to equation (4.3) and applying identical procedures to the right hand

side, the final expression can be presented as,

∫
S

tiu
∗
i dS +

∫
V

biu
∗
i dV =

∫
S

t∗iuidS +

∫
V

b∗iuidV (4.10)

Equation (4.10) is known as Betti’s reciprocal work theorem. This is a system of linear

equations with a unique solution that can be achieved by utilising Betti’s theorem to ob-

tain a boundary integral equation, which links two sets of tractions and displacements for

systems (a) and (b), such that system (a) consists of unknown displacements and tractions

and system (b) contains known displacements and tractions. Therefore, in the following

sections, we derive the displacement boundary integral equation, before introducing the

fundamental solution.
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4.1.2 Somigliana’s identity for displacement

Betti’s Reciprocal work theorem, which has been demonstrated in the previous section,

can be used to derive the boundary integral equation for elastostatic problems. Therefore,

the body force bi in Eqn. (4.10) can be assumed to correspond to a point force at a location

X ′ in an infinite sheet. By using the Dirac delta function ∆(X −X ′), the body force bi

can be presented as,

b∗i = ∆(X −X ′)ei (4.11)

where ei denotes a unit vector, representing a unit positive force in the i direction applied

at X ′. We can then introduce a useful Dirac delta function property, which can be written

as, ∫
V

f(X)∆(X −X ′)dV = f(X ′) (4.12)

The substitution of Eqn. (4.11) into the last integral term in Eqn. (4.10) using the

property in Eqn. (4.12), yields,

∫
V

b∗iuidV =

∫
V

∆(X −X ′)eiuidV = ui(X
′)ei (4.13)

The displacement fields corresponding to the point force solution can be expressed as,

u∗i = Uij(X
′, X)ej (4.14)

Likewise, the traction solution can be written as,

t∗i = Tij(X
′, X)ej (4.15)

The use of (4.14), (4.15) and (4.13) with some rearrangement and cancellation of the

unit vector ei, allows the Eqn. (4.10) to be written as,

ui(X
′) =

∫
S

Uij(X
′, x)tj(x)dS −

∫
S

Tij(X
′, x)uj(x)dS +

∫
V

Uij(X
′, X)bj(X)dV (4.16)
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Figure 4.2: Point force applied at X ′ in domain V with surface S

where x ∈ S. Eqn. (4.16) is known as the Somigliana’s identity for displacements [131],

which relates the displacement value at any internal point X ′ within domain V to bound-

ary S displacements and tractions (see Fig. 4.2). However, the solution for a point on

the boundary S, can be obtained by considering the limit as X ′ → x′ (where x′ ∈ S).

Since, the fundamental solutions show singular behaviour when r → 0, we therefore must

introduce them before proceeding with the derivation.

4.1.3 Fundamental solutions

The term fundamental solution is commonly used to describe the solution of governing

equations due to a point force [132]. Moreover, a fundamental solution can simply be

defined as a representation of the response of an infinite homogeneous domain to a point

load. It is therefore essential to be able to obtain the individual fundamental solution for

a particular differential equation in a 2D or 3D domain.

Generally, the derivation of fundamental solutions relies on the existence of the point

force solution. Here, Navier’s equation has been used to express the unit point force

applied at point X ′; which can be written as,

µui,jj +
µ

1− 2ν
u∗j,jj + ∆(X −X ′)ei = 0 (4.17)

The use of the Galerkin vector is the most common technique for deriving a fundamental



4.1. Formulation of BEM 57

solution [131]. Therefore, through the utilisation of the Galerkin vector, displacement u∗i

can be expressed as,

u∗i = Gi,kk −
1

1− 2ν
Gk,ik (4.18)

The substitution of Eqn. (4.18) into Eqn. (4.17) yields,

µGi,kkjj −
µ

2(1− ν)
Gk,ikjj +

µ

1− ν

[
Gj,kkij −

1

2(1− ν)
Gk,jkij

]
+ ∆(X −X ′)ei = 0 (4.19)

since Gk,ikjj = Gk,jjki = Gj,kkjj = Gk,jjki, then Eqn. (4.19) can be simplified to;

µGi,kkjj + ∆(X −X ′)ei = 0 (4.20)

and using the Laplace operator, the term Gi,kkjj can be expressed by ∇2(∇2Gi), and

equation (4.20) can be written as,

µ∇2(∇2Gi) + ∆(X −X ′)ei = 0 (4.21)

At this point, let Fi = ∇2Gi, therefore Eqn. (4.21) can be expressed as,

∇2Fi +
1

µ
∆(X −X ′)ei = 0 (4.22)

The solution for Eqn. (4.22) can be obtained from potential theory and is also known

as Kelvin’s point force solution [133]. The three-dimensional solution is written as,

Fi =
1

4πµr
ei (4.23)

and the Galerkin vector for three-dimensional problems is expressed as,

Gi =
1

8πµ
rei (4.24)
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The substitution of the derivative of Eqn. (4.24) into Eqn. (4.18) yields,

u∗i =
1

8πµ

(
r,kkei −

1

2(1− ν)
r,ikek

)
(4.25)

By noting that r,kk = 2/r and r,ik = (δik − r,ir,k)/r, Eqn. (4.25) therefore can be

represented as,

u∗i =
1

16πµ(1− ν)r
[(3− 4ν)δij + r,ir,j] ej (4.26)

The substitution of Eqn. (4.26) into (4.14) gives,

Uij(x
′, x) =

1

16πµ(1− ν)r
[(3− 4ν)δij + r,ir,j] (4.27)

where Uij(x
′, x) is the displacement fundamental solution for 3D elasticity problems, rep-

resenting the displacement in the direction j at point x due to unit point load acting in the

i direction at x′. The traction fundamental solution can be determined by utilising the re-

lationship between displacement and strain, and then between strain and stress.Therefore,

the traction can be written as,

t∗i =
−1

8π(1− ν)r2

{
∂r

∂n
[(1− 2ν)δij + 3r,ir,j]− (1− 2ν)(njr,i − nir,j)

}
ej (4.28)

where ni is the outward normal acting at the field point. The substitution of Eqn. (4.28)

into (4.15) gives,

Tij(x
′, x) =

−1

8π(1− ν)r2

{
∂r

∂n
[(1− 2ν)δij + 3r,ir,j]− (1− 2ν)(njr,i − nir,j)

}
(4.29)

where Tij(x
′, x) is the traction fundamental solution for elasticity problems, which repre-

sents traction in the direction j at point x due to unit point load acting in the i direction

at x′. Differentiation of (4.27) with respect to x′ in the k direction yields,

Uij,k(x
′, x) =

1

16πµ(1− ν)r2
[(3− 4ν)δijr,k + 3r,ir,jr,k − r,iδjk − r,jδki] (4.30)
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Similarly, the differentiation of Eqn. (4.29) with respect to x′ in the k direction yields,

Tij,k(x
′, x) =

1

16π(1− ν)r3

{
3
∂r

∂n
[(1− 2ν)δijr,k +ν(δikr,j +δjkr,i )− 5r,i r,j r,k ]

+ 3ν(nir,j r,k +njr,i r,k ) + (1− 2ν)(3nkr,i r,j +njδik + niδjk)

− (1− 4ν)nkδij

}
(4.31)

By utilising the relationship between stress and strain, Eqn. (4.30) can be written as,

Dkij =
1

8π(1− ν)r2
[(1− 2ν)(r,jδki + r,iδjk − δijr,k) + 3r,ir,jr,k] (4.32)

and likewise equation (4.31) can be expressed as,

Skij =
µ

4π(1− ν)r3

{
3
∂r

∂n
[(1− 2ν)δijr,k +ν(δikr,j +δjkr,i )− 5r,i r,j r,k ]

+ 3ν(nir,j r,k +njr,i r,k ) + (1− 2ν)(3nkr,i r,j +njδik + niδjk)

− (1− 4ν)nkδij

}
(4.33)

Similar procedures can be used to obtain the fundamental solution for two-dimensional

problems. Therefore, the solution for Eqn. (4.22) for two-dimensional problems can be

written as,

Fi = − 1

2πµ
ln(r)ei (4.34)

and the Galerkin vector for two-dimensional problems is given by,

Gi = − 1

8πµ
r2 ln(r)ei (4.35)

By following the same steps as required for three-dimensions, the two-dimensional

fundamental solution for displacement is expressed as,

Uij(x
′, x) =

1

8πµ(1− ν)

[
(3− 4ν) ln

(
1

r

)
δij + r,ir,j

]
(4.36)
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and the two-dimensional fundamental solution for traction is given by,

Tij(x
′, x) =

−1

4π(1− ν)r

{
∂r

∂n
[(1− 2ν)δij + 2r,ir,j]− (1− 2ν)(njr,i − nir,j)

}
(4.37)

Differentiation of Eqn. (4.36) with respect to x′ in the k direction gives the the funda-

mental solution for the strain integral equation, which can be written as,

Uij,k(x
′, x) =

1

4πµ(1− ν)r
[(3− 4ν)δijr,k + 2r,ir,jr,k − r,iδjk − r,jδki] (4.38)

Likewise, differentiation of Eqn. (4.37) with respect to x′ in the k direction yields,

Tij,k(x
′, x) =

µ

4π(1− ν)r3

{
3
∂r

∂n
[(1− 2ν)δijr,k +ν(δikr,j +δjkr,i )− 5r,i r,j r,k ]

+ 3ν(nir,j r,k +njr,i r,k ) + (1− 2ν)(3nkr,i r,j +njδik + niδjk)

− (1− 4ν)nkδij

}
(4.39)

By addressing the relationship between stress and strain, Eqn. (4.38) can be written

as,

Dkij =
1

4π(1− ν)r
[(1− 2ν)(r,jδki + r,iδjk − δijr,k) + 2r,ir,jr,k] (4.40)

and similarly Eqn. (4.39) can be expressed as,

Skij =
µ

4π(1− ν)r2

{
2
∂r

∂n
[(1− 2ν)δijr,k +ν(δikr,j +δjkr,i )− 4r,i r,j r,k ]

+ 2ν(nir,j r,k +njr,i r,k ) + (1− 2ν)(2nkr,i r,j +njδik + niδjk)

− (1− 4ν)nkδij

}
(4.41)

The fundamental solutions presented above are suitable for plane strain implemen-

tation. However for plane stress problems, fundamental solutions can be obtained by

using the modified Young’s modulus and Poisson’s ratio as defined in Eqns. (A.1.12) and

(A.1.13). Since the fundamental solutions have been now established, we can proceed
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Figure 4.3: Semi-circular added domain on the boundary

Figure 4.4: Hemispherical added domain on the boundary

with the formulation to move the source point X ′ to the boundary.

4.1.4 Displacement BIE

The Displacement Boundary Integral Equation (DBIE) is the final step in the derivation

of the boundary integral equation. Next, we recall Eqn. (4.16), which can be used to

evaluate any source points inside domain V . Since, the fundamental solutions Uij(x, x)

and Tij(x, x) are a function of r, they become singular as r → 0. Therefore, considering the

limit as X ′ → x′ is essential to obtain a solution for the points on the boundary. Moreover,

to avoid the singular behaviour, the integration domain can be split into a singular and

regular integral [131]. This can be achieved by considering a vanishing domain around

the singular point x′. In the case of two-dimensional problems the vanishing domain can

be defined as a semi-circular region with a radius ε and centred at point x′ as illustrated

in Fig 4.3. Whereas, with three-dimensional problems, the vanishing domain is defined

as a hemispherical region with radius ε and centred at point x′, as presented in Fig. 4.4.

Now, the problem boundary S∗ can be defined as,

S∗ = (S − Sε) + S∗ε (4.42)
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where Sε is the segment which has been removed from the boundary S. Next, we apply

the limit to the first term on the right hand side of Eqn. (4.16), which can be written as,

∫
S

Uij(X
′, x)tj(x)dS = lim

ε→0

∫
(S−Sε)

Uij(x
′, x)tj(x)dS + lim

ε→0

∫
S∗ε

Uij(x
′, x)tj(x)dS (4.43)

It is important to observe that, the first term on the right hand side of (4.43) is

integrable and can be evaluated numerically using an appropriate scheme. Whereas, the

second term on the right hand side of (4.43) contains a singularity of the order O(ln(1/r))

in two-dimensions and O(r−1) in three-dimensions. However, the value of the integral is

bounded; in fact, it tends to zero when ε→ 0, further details can be found in [134].

Now, consider the second term on the right hand side of Eqn. (4.16). When applying

the limit it can be written as,

∫
S

Tij(X
′, x)uj(x)dS = lim

ε→0

∫
(S−Sε)

Tij(x
′, x)uj(x)dS + lim

ε→0

∫
S∗ε

Tij(x
′, x)uj(x)dS (4.44)

where both terms on the right hand side of Eqn. (4.44) contain singularity of the order

O(r−1) in two-dimensions and O(r−2) in three-dimensions. In this case, the Cauchy

Principal Value (CPV) is used to evaluate the first term on the right hand side of Eqn.

(4.44). Whereas, the second term on the right hand side can be regularised by expanding

the displacement (i.e. the displacement uj(x) is differentiable) about the source point,

using the first term in the Taylor series expansion; which can be written as,

lim
ε→0

∫
S∗ε

Tij(x
′, x)uj(x)dS

= lim
ε→0

[∫
S∗ε

Tij(x
′, x)[uj(x)− uj(x′)]dS

]
+ uj(x

′) lim
ε→0

[∫
S∗ε

Tij(x
′, x)dS

]
(4.45)

The first term on the right hand side of Eqn. (4.45) is equal to zero, since the displace-

ments must be continuous. Whereas, the second term can be expressed as,

uj(x
′) lim
ε→0

[∫
S∗ε

Tij(x
′, x)dS

]
= αij(x

′)uj(x
′) (4.46)
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where αij represents a jump term. By substituting the outcome of the limiting processes

into Eqn. (4.16), then the displacement boundary integral can be written as,

Cijuj(x
′) +−

∫
S

Tij(x
′, x)uj(x)dS =

∫
S

Uij(x
′, x)tj(x)dS +

∫
V

Uij(x
′, X)bj(X)dV (4.47)

where −
∫

denotes the CPV integral, and the free term is defined as Cij(x
′) = δij(x

′)+αij(x
′).

Commonly, the free term Cij is evaluated using rigid body motion, however the derivation

of the jump term αij can be found in Appendix B.1. It is important to note that, the last

term in Eqn.(4.47) still needs to be integrated over domain V . However, in many cases

(i.e. thermoelastic, centrifugal loading) these can be transformed into boundary integrals,

or alternatively, can be neglected in the case of zero body forces.

4.1.5 Numerical implementation of BIE

The analytical integration of Eqn. (4.47) in the present form is difficult, unless the

boundary of a domain can be expressed using a simple equation such as a circular curve.

In order to implement the boundary integral equation for any geometry, it is essential to

consider numerical integration. The numerical edition of the boundary integral equation

is referred to as the boundary element method. The numerical integration procedure

involves dividing the integral boundary S into small segments n̄, also known as elements,

as illustrated in Fig 4.5. Furthermore, the geometry xj, displacement uj and traction

tj parameters can be described over individual elements by utilising arbitrary functions,

which can be expressed mathematically for 2D (illustrated in [131]) as,

xj =
m∑
ā=1

N ā(ξ)xāj

uj =
m∑
ā=1

N ā(ξ)uāj

tj =
m∑
ā=1

N ā(ξ)tāj (4.48)



4.1. Formulation of BEM 64

Figure 4.5: Discretisation of 2D boundary into elements

where m is the total number of nodes on the element and ā is the node number. Shape

functions N are polynomials of degree m−1, and each shape function is equal to 1 at the

associated node ā, and zero at all other nodes. Here, ξ is a non-dimensional coordinate and

is defined over the element as −1 ≤ ξ ≤ 1 as shown in Fig 4.5. A discretised boundary

element can be achieved by substituting Eqns. (4.48) into Eqn. (4.47), which can be

written in the absence of body forces as,

Cij(x
′)uj(x

′) +
Ne∑
n̄=1

m∑
ā=1

P n̄ā
ij u

n̄ā
j =

Ne∑
n̄=1

m∑
ā=1

Qn̄ā
ij t

n̄ā
j (4.49)

where Ne is the total number of elements, and P n̄ā
ij and Qn̄ā

ij can be expressed as,

P n̄ā
ij =

∫ 1

−1

N ā(ξ)Tij [x′, x(ξ)] J n̄(ξ)dξ (4.50a)

Qn̄ā
ij =

∫ 1

−1

N ā(ξ)Uij [x′, x(ξ)] J n̄(ξ)dξ (4.50b)

where J n̄(ξ) denotes the Jacobian of transformation, which relates the global Cartesian

coordinates to the local coordinate ξ, and is given by:

J n̄(ξ) =

√(
dx

dξ

)2

+

(
dx

dξ

)2

(4.51)
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Figure 4.6: Nine node continuous element

Similarly, the three-dimensional geometry xj, displacement uj and traction tj param-

eters can be approximated over each element using shape functions, and can be written

as,

xj =
m∑
ā=1

N ā(ξ1, ξ2)xāj

uj =
m∑
ā=1

N ā(ξ1, ξ2)uāj

tj =
m∑
ā=1

N ā(ξ1, ξ2)tāj (4.52)

where ξ1 and ξ2 local variables are defined as −1 ≤ ξ1, ξ2 ≤ 1, as illustrated in Fig.

4.6. The three-dimensional discretised boundary element can be obtained by substituting

Eqns. (4.52) into Eqn. (4.47), which can be written in the case of zero body forces as,

Cij(x
′)uj(x

′) +
Ne∑
n̄=1

m∑
ā=1

P n̄ā
ij u

n̄ā
j =

Ne∑
n̄=1

m∑
ā=1

Qn̄ā
ij t

n̄ā
j (4.53)
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where P n̄ā
ij and Qn̄ā

ij are defined for 3D problems as,

P n̄ā
ij =

∫ 1

−1

∫ 1

−1

N ā(ξ1, ξ2)Tij [x′, x(ξ1, ξ2)] J n̄(ξ1, ξ2)dξ1dξ2 (4.54a)

Qn̄ā
ij =

∫ 1

−1

∫ 1

−1

N ā(ξ1, ξ2)Uij [x′, x(ξ1, ξ2)] J n̄(ξ1, ξ2)dξ1dξ2 (4.54b)

where J n̄(ξ1, ξ2) is the Jacobian of transformation, which describes the relationship be-

tween the global Cartesian coordinates and the local coordinates ξ1 and ξ2, and is defined

as,

J n̄(ξ1, ξ2) =
√
J2

1 + J2
2 + J2

3 (4.55)

where

J1 =
∂xy
∂ξ1

∂xz
∂ξ2

− ∂xz
∂ξ1

∂xy
∂ξ2

(4.56)

J2 =
∂xz
∂ξ1

∂xx
∂ξ2

− ∂xx
∂ξ1

∂xz
∂ξ2

(4.57)

J3 =
∂xx
∂ξ1

∂xy
∂ξ2

− ∂xy
∂ξ1

∂xx
∂ξ2

(4.58)

It is important to note that, the shape functions change for the same type of element

if the nodes layout on the element is changed. In terms of elements, these can be selected

from various types of elements including straight lines, quadratic curves or cubic splines.

In fact crucially, the accuracy of any boundary element method programme depends on

the type and the size of selected elements.

At this point, the system of generated equations must be assembled into a system

of matrices in order to use a numerical solver. This can be achieved by using nodal

collocation which is the most commonly used method in the implementation of BEM.

In this process, the discretised integral Eqns. (4.49) and (4.53) are evaluated by placing

the source point x′ at each nodal point. Here, the location of the collocation point is
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considered to be xc, thus the discretised integral equations can be written as,

Cij(x
c)uj(x

c) +
Ne∑
n̄=1

m∑
ā=1

P n̄ā
ij (xc)un̄āj =

Ne∑
n̄=1

m∑
ā=1

Qn̄ā
ij (xc)tn̄āj c = 1,M (4.59)

where M represents the total number of collocation nodes. However, before evaluating the

double summation in Eqn. (4.59), it is necessary to consider the displacement continuity

requirement over the boundary. Therefore, the displacement of shared nodes in the case

of a continuous element must be combined, which allows the second term in Eqn. (4.59)

to be expressed as,
Ne∑
n̄=1

m∑
ā=1

P n̄ā
ij (xc)un̄āj =

M∑
γ̄=1

H̄cγ̄
ij u

γ̄
j (4.60)

where γ̄ is the global node number. In Eqn. (4.60), shared nodes are combined and

the summation can now be computed over nodes denoted by γ̄. As tractions on shared

nodes can differ, the summation term on the right hand side can be computed without

combining, to give,
Ne∑
n̄=1

m∑
ā=1

Qn̄ā
ij (xc)tn̄āj =

Ne∑
n̄=1

m∑
ā=1

Gcn̄ā
ij (xc)tn̄āj (4.61)

The substitution of Eqns. (4.60) and (4.61) into Eqn. (4.59) yields,

Cij(x
c)uj(x

c) +
M∑
γ̄=1

H̄cγ̄
ij u

γ̄
j =

Ne∑
n̄=1

m∑
ā=1

Gcn̄ā
ij (xc)tn̄āj (4.62)

Since free term Cij arises when x′ = x, it is possible to express the free term using

Kronecker delta as,

Cij(x
c)uj(x

c) +
M∑
γ̄=1

H̄cγ̄
ij u

γ̄
j = Cij(x

c)δcγ̄ +
M∑
γ̄=1

H̄cγ̄
ij u

γ̄
j =

M∑
γ̄=1

Hcγ̄
ij u

γ̄
j (4.63)

This allows Eqn. (4.62) to be rewritten as,

M∑
γ̄=1

Hcγ̄
ij u

γ̄
j =

Ne∑
n̄=1

m∑
ā=1

Gcn̄ā
ij (xc)tn̄āj (4.64)
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Eqn. (4.64) can now be expressed in matrix notation as,

[H ]{u} = [G]{t} (4.65)

where H is a square matrix of the size 2M × 2M containing the integration values of P n̄ā
ij

and the jump term (see Appendix B.1), and G is a 2M × 2Nem matrix containing the

integration values of Qn̄ā
ij . The vector u has 2M components and t has 2Nem components,

holding unknown and prescribed conditions for displacement and traction, respectively.

However, swapping the columns of both the H and G matrices to transfer unknowns to

the left hand side and prescribed conditions to the right hand side allows the system of

Eqn. (4.65) to be written as,

[A]{x} = {y} (4.66)

where x is a vector holding all unknown boundary conditions, y is a vector containing

the multiplication results of prescribed boundary conditions and associated coefficient and

the coefficients matrix A contains the unknown related coefficients.

4.1.6 Internal points

The system of linear equations has now been solved, and the values of displacements and

tractions determined for all nodes on the boundary. Therefore, it is a straightforward mat-

ter to compute displacement at any internal point by utilising the displacement boundary

integral equation [135]. Moreover, the displacement at the internal point can be obtained

by considering the interior point to be x′ and substituting all the boundary displacements

and tractions into (4.47), where the fundamental solutions Uij and Tij can be obtained

from (4.36) and (4.37) for two-dimensional and (4.27) and (4.29) for three-dimensional

problems.

The strain at an interior point can be evaluated by taking the derivative of the dis-

placement boundary integral equation. Here, zero body forces are considered, thus the
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derivation of (4.47) with respect to x′ can be written as,

uj,k(x
′) +

∫
S

Tij,k(x
′, x)uj(x)dS =

∫
S

Uij,k(x
′, x)tj(x)dS (4.67)

where the derivative of the fundamental solutions Uij,k and Uij,k can be determined from

(4.38) and (4.39) for two-dimensional, and (4.30) and (4.31) for three-dimensional prob-

lems. Moreover, due to the differentiation, the order of the singularity in equation (4.67)

increased to a hypersingularity. However, the singularity does not appear, since the inte-

rior point never lies on the boundary. Therefore, the free term Cij has also been dropped

in the derivation processes.

The stress for internal points can be obtained by applying Hooke’s law to equation

(4.67) to give,

σj,k(x
′) +

∫
S

Skij(x
′, x)uj(x)dS =

∫
S

Dkij(x
′, x)tj(x)dS (4.68)

where Dkij and Skij can be evaluated using (4.40) and (4.41) for two-dimensional, and

(4.32) and (4.33) for three-dimensional problems.

As there is no singularity behaviour observed in the evaluation of internal points, all

integrations can be evaluated using the standard Gaussian-Legendre (GL) quadrature

method. However, should the interior point lies very close to the boundary, it would be

important to consider using near singular integral schemes.

4.2 Modelling of crack coplanar surfaces

In the context of linear elastic fracture analysis, BEM has established itself as one of

the most accurate numerical methods [131]. However, direct implementation of the BEM

to crack problems gives rise to mathematical degeneration. Earlier, Cruse [92] reported

the mathematical difficulty that emerges when using the displacement boundary integral

equation to model crack problems. Rows associated with crack surface nodes in matrices

H and G become identical leading to a singular system; therefore no reasonable solution
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Figure 4.7: Coplanar surfaces for edge crack

can be obtained.

Several methods have been proposed to overcome the indeterminate system of equations

including symmetrical simplification, multi-domain and the DBEM approach. Further-

more, the reader can find advantages and limitations associated with each method in Sec.

3.1.6. However, this section aims to introduce the approach used to model the crack

surfaces in this thesis. Therefore, the derivation of the dual boundary element method

for the coplanar crack is presented next.

4.2.1 Displacement integral equation

The formulation of the displacement boundary integral equation for the coplanar crack

surfaces begins by recalling Eqn. (4.16), which can be written for internal points X ′ as

presented by [94], and in the absence of body forces as,

ui(X
′) =

∫
S∗+S+

c +S−C

Uij(X
′, x)tj(x)dS −

∫
S∗+S+

c +S−C

Tij(X
′, x)uj(x)dS (4.69)

where S−c and S+
c denote the lower and upper crack surfaces, respectively. The remaining

boundary is denoted by S∗, as shown in Fig. 4.7. It can be seen, from the outward

normal relationship that ni(x
−) = −ni(x+) the fundamental solutions (see Sec. 4.1.3) on

the lower crack surface relate to those on the upper crack surface by,
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Uij(X
′, x+) = Uij(X

′, x−)

Tij(X
′, x+) = −Tij(X ′, x−) (4.70)

where x+ and x− are the field points associated with the upper and lower crack surfaces,

respectively. Combining the two crack surfaces, such that Sc = S−c = S+
c allows Eqn.

(4.69) to be written as,

ui(X
′) =

∫
S∗
Uij(X

′, x)tj(x)dS −
∫
S∗
Tij(X

′, x)uj(x)dS

+

∫
Sc

Uij(X
′, x)Σtj(x)dS −

∫
SC

Tij(X
′, x)∆uj(x)dS (4.71)

where ∆uj and Σtj are given by

∆uj = uj(x
+)− uj(x−)

Σtj = tj(x
+) + tj(x

−) (4.72)

From the traction relationship in Eqn. (4.70), we can see Σtj = 0, when applying equal

and opposite tractions to the crack surfaces. Additionally, Σtj = 0 when a traction-free

crack is considered. Now, the domain source point X ′ can be placed on the upper crack

surface S+
c as x+, by following the BIE derivation illustrated in Sec. 4.1.4, and Eqn.

(4.71) can be written for traction-free cracks as,

Cij(x
+)uj(x

+) + Cij(x
−)uj(x

−) =

∫
S∗
Uij(x

′, x)tj(x)dS

−
∫
S∗
Tij(x

′, x)uj(x)dS +−
∫
SC

Tij(x
′, x)∆uj(x)dS (4.73)

The coincidence of the source point x+ with x− on the opposite crack surface S−c gives

rise to the extra free term Cij(x
−)uj(x

−). Moreover, the use of Eqn. (4.73) to collocate

on x− will yield a set of identical rows to those generated by collocating on x+. Therefore,

Eqn. (4.73) will be used for collocation on one of the crack surfaces, and an additional

integral equation will be introduced now for collocating on the other crack surface.
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4.2.2 Traction integral equation

The formulation of the stress integral equation can be achieved in a similar manner to

the displacement integral equation as seen in [94]. Therefore, the stress integral equation

for collocation points x− on the lower crack surface S−c can be written as,

1

2
σij(x

−)− 1

2
σij(x

+) = −
∫
S

Dkij(x
−, x)tk(x)dS

−=

∫
S

Skij(x
−, x)uk(x)dS (4.74)

where =
∫

denotes the Hadamard finite part integral. Multiplying Eqn. (4.74) by the

outward unit normal ni(x) at the source point x−, allows the traction boundary equation

to be written as,

1

2
tj(x

−)− 1

2
tj(x

+) = ni(x
−)−
∫
S

Dkij(x
−, x)tk(x)dS

−ni(x−)=

∫
S

Skij(x
−, x)uk(x)dS (4.75)

The fundamental solutions Dkij and Skij hold the following relationship:

Dkij(x
′, x+) = Dkij(x

′, x−)

Skij(x
′, x+) = −Skij(x′, x−) (4.76)

Using the relationships (4.76), the first term on the right hand side of Eqn. (4.75) can

be expressed as,

−
∫
S

Dkij(x
−, x)tk(x)dS

= −
∫
S−c

Dkij(x
−, x)t−k (x)dS +−

∫
S+
c

Dkij(x
−, x)t+k (x)dS +−

∫
S∗
Dkij(x

−, x)tk(x)dS

= −
∫
S−c

Dkij(x
−, x)

[
t−k (x) + t+k (x)

]
dS +−

∫
S∗
Dkij(x

−, x)tk(x)dS (4.77)



4.2. Modelling of crack coplanar surfaces 73

Similarly, the second term on the right hand side of Eqn. (4.75) can be expressed as,

=

∫
S

Skij(x
−, x)uk(x)dS

= =

∫
S−c

Skij(x
−, x)u−k (x)dS + =

∫
S+
c

Skij(x
−, x)u+

k (x)dS + =

∫
S∗
Skij(x

−, x)uk(x)dS

= =

∫
S+
c

Skij(x
−, x)∆uk(x)dS + =

∫
S∗
Skij(x

−, x)uk(x)dS (4.78)

The substitution of Eqns. (4.77) and (4.78) into Eqn. (4.75) yields,

1

2
tj(x

−)− 1

2
tj(x

+) = −ni(x−)=

∫
S+
c

Skij(x
−, x)∆uk(x)dS − ni(x−)=

∫
S∗
Skij(x

−, x)uk(x)dS

+n−i (x)ni(x
−)−
∫
S−c

Dkij(x
−, x)

[
t−k (x) + t+k (x)

]
dS + ni(x

−)−
∫
S∗
Dkij(x

−, x)tk(x)dS (4.79)

In the case when equilibrium traction tj(x
−) = −tj(x−) is assumed, Eqn. (4.79) can

be rewritten as,

tj(x
−) + ni(x

−)=

∫
S+
c

Skij(x
−, x)∆uk(x)dS

+ni(x
−)=

∫
S∗
Skij(x

−, x)uk(x)dS = ni(x
−)−
∫
S∗
Dkij(x

−, x)tk(x)dS (4.80)

Now, the Traction Boundary Integral Equation (TBIE) can be used for collocation on

the lower crack surface without regenerating identical rows to the displacement boundary

integral equation.

4.2.3 Dual Boundary Element Method (DBEM)

Chen [136] and Portela et al. [94] independently introduced the DBEM to resolve two-

dimensional problems and later Mi and Aliabadi [95] extended the approach to three-

dimensional problems. The dual boundary element method is an easy to implement and

computationally efficient technique for modelling crack problems in BEM. The method

employs of two independent boundary integral equations; where the displacement bound-

ary integral equation is used when collocating on one crack surface, and the traction
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Figure 4.8: Crack characteristics when using the DBEM

boundary integral equation is used on the other surface. When the DBIE is used for

collocation on x′ on the upper crack surface, Eqn. (4.73) can be represented as,

Cij(x
′)uj(x

′) + Cij(x̂)uj(x̂) +−
∫
S

Tij(x
′, x)uj(x)dS =

∫
S

Uij(x
′, x)tj(x)dS (4.81)

where x̂ is the point coincident with the source x′, but lying on the opposing crack surface

as shown in Fig. 4.8. When using TBIE to collocate at x′ on the lower crack surface,

Eqn. (4.80) can be expressed as,

1

2
tj(x

′)− 1

2
tj(x̂) = −

∫
S

Dij(x
′, x)tj(x)dS −=

∫
S

Skij(x
′, x)uj(x)dS (4.82)

The main challenge with DBEM implementation is the evaluation of the Cauchy principal

value integral which arises in DBIE and TBIE, and the Hadamard finite part integral ob-

served in TBIE. Certainly, the existence of strongly singular and hypersingular integrals

requires particular attention when choosing shape functions for the crack surfaces. The

application of the displacement integral equation imposes continuity of the displacement

components at the collocation nodes. Whereas, the traction integral equation requires

displacement derivatives that are continuous at the collocation points. These conditions

can be satisfied automatically by using discontinuous quadratic elements. The implemen-

tation of DBEM and the treatment of singular integrals will be shown in the following

section.
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4.3 Evaluation of the DBEM integrals

This section concentrates on evaluating the dual boundary element method integrals,

since BEM integrals are implicitly included in DBEM. In fact, the accuracy of BEM and

the DBEM results rely on an accurate evaluation of boundary integral equations, which

mainly consist of fundamental solutions. It was demonstrated earlier that fundamental

solutions are singular, and that this singularity depends on the distance r between the

source point x′ and the field point x. Therefore, integrals can be categorised into regular

and singular integrals. In the case of a regular integral, a numerical quadrature method

can be used to directly obtain the integral value. Whereas, singular integrals can be

classified into weakly singular, strongly singular and hypersingular, and can be treated

according to the order of the singularity. In addition, particular attention needs to be

directed toward the near singular integral when the source point is very close to the field

element. In order to evaluate these singularities several techniques have been developed;

it is the aim of this section to address the methods used in this thesis.

4.3.1 Regular integrals

Non-singular integration is the simplest type of integral and occurs when the source point

is at a distance from the element containing the field point. Commonly, regular integrals

can be computed using a numerical quadrature method, such as the Gauss-Legendre

quadrature. The use of GL permits numerical integration of a function defined over an

interval between −1 and +1. Therefore, for example the integrand P n̄ā
ij , as it appears in

Eqn. (4.50a) can be calculated using the Gauss-Legendre scheme as,

P n̄ā
ij =

∫ 1

−1

N ā(ξ)Tij [x′, x(ξ)] J n̄(ξ)dξ ≈
Ng∑
g=1

N ā(ξg)Tij [x′, x(ξg)] J
n̄(ξg)wg (4.83)

where ξg and wg are Gauss points and associated weights respectively (these points and

related weight can be found in any textbook e.g. [131]), and Ng describes the total number

of Gauss points. Similarly, the three-dimensional integrand P n̄ā
ij , appears in Eqns. (4.54a)
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Figure 4.9: Adaptive method to determine the required number of integration points

and can be obtained numerically as,

P n̄ā
ij =

∫ 1

−1

∫ 1

−1

N ā(ξ1, ξ2)Tij [x′, x(ξ1, ξ2)] J n̄(ξ1, ξ2)dξ1dξ2

≈
Ng2∑
g2=1

Ng1∑
g1=1

N ā(ξg1 , ξg2)Tij [x′, x(ξg1 , ξg2)] J
n̄(ξg1 , ξg2)wg1wg2 (4.84)

where ξg1 and ξg2 represent the GL points and the associated weights wg1 and wg2 . It

is necessary to increase the number of integration points when the source point x′ is

positioned closer to the field element. However, the increment of the integration points

directly effects the computational cost. Therefore, it is convenient to consider an adaptive

technique to improve the efficiency of the numerical integration. This can be achieved

using the ratio of the size of the field element and the distance r, that is l/r, (where l is

the element size), as proposed by [137]. In the case of three-dimensional problems, l can

be replaced with the field element diagonal d, as illustrated in Fig. 4.9. However, near

singular integration methods can be used, when a higher number of integration points is

required.

4.3.2 Near singular integrals

Gauss-Legendre quadrature can be used to obtain the value of regular integrals when

the collocation point is distant from the field element. However, the accuracy of any

integration is significantly affected by the singularity observed in fundamental solutions
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when the source point is close to the field element. This effect is proportional to the kernels

order of singularity. In the case of low order singularity, it is sufficient to use higher orders

of integration. However, kernels containing strongly singular and hypersingular require

alternative treatment.

4.3.2.1 Element sub-division

An effective approach with which to evaluate the near singular involves dividing the

field element into sub-elements [135]. Moreover, instead of increasing the integration

points across the element, the division of elements allows the integration points to be

concentrated where they are most needed. The use of a sub-element technique imposes

calculation of transformation Jacobian associated with local sub-element coordinates. Al-

ternatively, the Telles transformation method [138] can be used for near singular integrals,

as will be introduced shortly in relation to the treatment of weakly singular integrals.

4.3.3 Weakly singular integrals

When the collocation point lies inside the field element, the form of numerical integration

required depends on the order of the singularity. In this case, the use of a higher order of

integration is insufficient, and can result in increasing the error when a large number of

integration points are used.

4.3.3.1 Logarithmic Gaussian quadrature

In the case of two-dimensional weakly singular integrals (see Table 4.1), a particular type

of Gauss-Legendre can be used to achieve the integration. Commonly, the first choice

when evaluating integrals comprising a logarithmic singularity is the logarithmic Gaussian

quadrature routine, which allows evaluation of the integral in a similar manner to the GL

quadrature. Therefore, the logarithmic integral appears in the 2D weakly singular kernels
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Table 4.1: Degree of singularity for 2D and 3D kernels

Kernel
Two-dimensions Three-dimensions

Order Singularity type Order Singularity type
Uij O(ln(1/r)) Weakly singular O(1/r) Weakly singular
Tij O(1/r) Strongly singular O(1/r2) Strongly singular
Dkij O(1/r) Strongly singular O(1/r2) Strongly singular
Skij O(1/r2) hypersingular O(1/r3) hypersingular

as defined in Eqns. (4.50b) and can be obtained as,

Qn̄ā
ij =

∫ 1

−1

N ā(ξ)Uij [x′, x(ξ)] J n̄(ξ)dξ

=

∫ 1

0

N ā(ξl)Uij [x′, x(ξl)] J
n̄(ξ)dξl

≈
Ngl∑
gl=1

N ā(ξgl)Uij [x′, x(ξgl)] J
n̄(ξgl)wgl (4.85)

where ξgl and wgl are logarithmic Gauss points and weights respectively. It is critical to

consider the transformation of integration limits, since the logarithmic Gauss-Legendre is

expressed by the limits 0 to 1 instead of −1 to +1. In the case of a continuous element,

the linear transformation can be computed as ξl = 0.5(1 + ξ) and ξl = 0.5(1 − ξ) when

collocating on the first and last points respectively. Whereas, the element needs to be

divided into sub-elements when collocating on the middle point or when a discontinuous

element is used.

4.3.3.2 Variable transformation in 2D

Alternatively, the Telles transformation [139] can be employed to evaluate weakly singu-

lar integrals. This approach has also been validated for the evaluation of near singular

integrals. The transformation is formulated to allow the Jacobian to eliminate the sin-

gularity, this then means the integral can be accurately evaluated using Gauss-Legendre

quadrature. Consider a weakly singular function f(ξ) at a point ξ′ where −1 ≤ ξ′ ≤ 1,

this can be expressed in Telles form as,

∫ 1

−1

f(ξ)dξ =

∫ 1

−1

f

{
(η − η̄)3 + η̄(η̄2 + 3)

1 + 3η̄2

}
3(η − η̄)2

1 + 3η̄2
dη (4.86)
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Figure 4.10: Collapsed quadrilateral element

where η̄ is given by

η̄ = 3
√
ξ′ξ∗ + |ξ∗|+ 3

√
ξ′ξ∗ − |ξ∗|+ ξ′ (4.87)

and ξ∗ is defined as,

ξ∗ = ξ′2 − 1 (4.88)

where η is the new local coordinate. It can be seen from Eqn. (4.86) that the Jacobian

presented by (η − η̄) is equal to zero at singular point ξ′. This simple technique provides

an accurate evaluation for weakly singular integrals, and reduces the computational cost

in cases involving near singular integrals. It is convenient to mention that, the Telles

transformation can be applied to the double integrals that appear in three-dimensional

problems.

4.3.3.3 Variable transformation in 3D

Alternatively, the transformation of variables in three-dimensions can be obtained by map-

ping a triangle element into a square elements; such that the Jacobian of transformation

is equal to zero at the singular point. This can be achieved in the case of a quadrilateral

element by subdividing the element into triangular sub-elements, as suggested by [140].

Next, we define new local coordinates η1 and η2 as illustrated in Fig. 4.10 and a new
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linear shape functions as,

ξ1(η1, η2) = L1(η1, η2)ξ11 + L2(η1, η2)ξ12 + L3(η1, η2)ξ13 + L2(η1, η2)ξ14

ξ2(η1, η2) = L1(η1, η2)ξ21 + L2(η1, η2)ξ22 + L3(η1, η2)ξ23 + L2(η1, η2)ξ24 (4.89)

where ξ11 and ξ21 are the local coordinates ξ1 and ξ2 for point 1. The linear rectangular

shape functions L1, L2, L3 and L4 are defined as,

L1(η1, η2) =
1

4
(1− η1)(1− η2)

L2(η1, η2) =
1

4
(1 + η1)(1− η2)

L3(η1, η2) =
1

4
(1 + η1)(1 + η2)

L4(η1, η2) =
1

4
(1− η1)(1 + η2) (4.90)

At the singular point x′ the rectangle collapses, and points 1 and 2 are joined as,

ξ11 = ξ21 and ξ12 = ξ22 (4.91)

The transformation Jacobian for transferring local coordinates from ξ1 and ξ2 to η1

and η2, can be calculated as,

J(η1, η2) =
∂ξ1

∂η1

∂ξ2

∂η2

− ∂ξ2

∂η1

∂ξ1

∂η2

(4.92)

where the derivative of ξ1 and ξ2 with respect to η1 can be calculated as,

∂ξ1

∂η1

=
∂L1

∂η1

ξ11 +
∂L2

∂η1

ξ21 +
∂L3

∂η1

ξ31 +
∂L4

∂η1

ξ41

∂ξ2

∂η1

=
∂L1

∂η1

ξ12 +
∂L2

∂η1

ξ22 +
∂L3

∂η1

ξ32 +
∂L4

∂η1

ξ42 (4.93)

The derivative of ξ1 and ξ2 with respect to η2 is calculated similarly. Finally, the
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three-dimensional weakly singular integral in (4.54b) can be written as,

Qn̄ā
ij =

∫ 1

−1

∫ 1

−1

N ā(ξ1, ξ2)Uij [x′, x(ξ1, ξ2)] J n̄(ξ1, ξ2)dξ1dξ2 (4.94)

=

∫ 1

−1

∫ 1

−1

N ā(η1, η2)Uij [x′, x(η1, η2)] J n̄(ξ1, ξ2)J n̄(η1, η2)dη1dη2 (4.95)

The transformation technique can be used for near singular integrals by projecting the

source point to the nearest point on the field element and treating it as a singular point.

4.3.4 Strongly singular and hypersingular integrals

Evaluating strongly singular and hypersingular integrals (see Table 4.1) is considered to be

a difficult task in the implementation of DBEM, since Gauss-Legendre quadrature is not

applicable. Several techniques have been developed to handle these type of integrals [96],

including indirect, analytical and semi-analytical integration. In the case of a strongly

singular integral, the most commonly used method is rigid body motion. This indirect

method allows the evaluation of singular terms corresponding to the Cauchy principal

value. However, rigid body motion cannot be used with DBEM. Alternatively, an ana-

lytical integration method is available for DBEM when a particular type of element is

used. Moreover, if a flat discontinuous element is considered, then strongly singular and

hypersingular integrals can be reduced to simple expressions. However, the assumption

made for analytical integration restricts the geometry of the problem. In addition, since

the aim of this thesis is to enrich the DBEM, a more general method should be consid-

ered. Therefore, a semi-analytical integration technique is demonstrated below for the

treatment of enriched 2D and 3D singularities.

4.3.4.1 Singularity subtraction technique

The approach used to evaluate strongly singular and hypersingular integrals is a semi-

numerical technique known as the subtraction of singularity method [141]. In this ap-

proach, integrands are expanded using the Taylor series, which allows singular terms to be

removed from the integrand, and leaves only regular terms that can be computed directly
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using a standard GL quadrature. The singular terms can then be integrated analytically

and returned to the integral. This is a general approach that can be applied to any dis-

placement approximation, enabling the enrichment function to be included as part of the

singular integral.

2D semi-analytical integral

Guiggiani and Casalini [141] introduced a direct evaluation of the Cauchy princi-

ple value. The approach contains a complete treatment of singular integrals in two-

dimensions, including all free-terms associated with the limiting process. The method

can be demonstrated for 2D problems by considering the hypersingular kernel Skij, which

appears in the traction boundary integral Eqn. (4.82), and can be written as,

I = =

∫ 1

−1

Skij(ξ
′, x(ξ))N ā(ξ)J(ξ)dξ (4.96)

Let F (ξ′, ξ) be defined as,

F (ξ′, ξ) = Skij(ξ
′, x(ξ))N ā(ξ)J(ξ) (4.97)

The aim now is to expand F (ξ′, ξ) into a form that allows non-singular and singular

terms to be separated easily. Therefore, using the Laurent series F (ξ′, ξ) is expanded as,

F (ξ′, ξ) =
F−2(ξ′)

(ξ − ξ′)2
+
F−1(ξ′)

(ξ − ξ′)
+O(1) (4.98)

where F−2(ξ′) and F−1(ξ′) are local terms that depend on the first and second derivatives

of the Kernel, Jacobian and shape functions N ā, which are evaluated at a singular point

ξ′. The singularities are now expressed by (ξ − ξ′)2 and (ξ − ξ′) to allow easy analytical

integration. The remaining terms are not singular and can be integrated numerically. The

focus then is on the integration of singular terms which need to be added to the integral

once integrated.

By following a similar process to the limiting procedure introduced in Sec. 4.1.4, we
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Figure 4.11: Limiting procedure with local coordinate system

consider a semicircle vanishing domain centred at source point ξ′. However, here the limit

is taken with respect to the local coordinate as ξε → 0, where the integral is split into

two intervals [−1, ξ′ − ξε] and [ξ′ + ξε, 1] as illustrated in Fig. 4.11. Since, the integration

intervals are defined, it is now possible to express the integral including the singular parts

as,

I =

∫ 1

−1

[
F (ξ′, ξ)−

(
F−2(ξ′)

(ξ − ξ′)2
+
F−1(ξ′)

(ξ − ξ′)

)]
dξ

+ lim
ε→0

{∫ ξ′−ξε

−1

F−1(ξ′)

(ξ − ξ′)
dξ +

∫ 1

ξ′+ξε

F−1(ξ′)

(ξ − ξ′)
dξ

+

∫ ξ′−ξε

−1

F−2(ξ′)

(ξ − ξ′)2
dξ +

∫ 1

ξ′+ξε

F−2(ξ′)

(ξ − ξ′)2
dξ +N ā(ξ)

bkij(ξ)

ε

}
= I0 + I−1 + I−2 (4.99)

where the first term I0 consists of a regularised integral and can be computed directly

using Gauss Legendre quadrature. The second term I−1 includes the singular integral

related to F−1, which can be integrated analytically.

The singular terms are integrated analytically with consideration of the limit as ξε → 0.

Therefore, the relationship between ε and the infinitesimal boundary ξε can be expressed

about the source point ξ′ using the Taylor series as,

ε = J(ξ′)ξε +O(ξε) (4.100)
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If the higher order terms are ignored, ξε can be obtained as,

ξε =
ε

J(ξ′)
(4.101)

The substitution of (4.101) into I−1, and analytical integration yields,

I−1 = lim
ε→0

{∫ ξ′− ε
J(ξ′)

−1

F−1(ξ′)

(ξ − ξ′)
dξ +

∫ 1

ξ′+ ε
J(ξ′)

F−1(ξ′)

(ξ − ξ′)
dξ

}

= F−1(ξ′) ln

∣∣∣∣ 1− ξ′

−1− ξ′

∣∣∣∣ (4.102)

The third term I−2 containing the free-term emerges from the limiting process and the

singular integrals related to F−2. Similarly, analytical integration can be obtained after

substituting (4.101) into I−2, which gives,

I−2 = lim
ε→0

{∫ ξ′− ε
J(ξ′)

−1

F−2(ξ′)

(ξ − ξ′)2
dξ +

∫ 1

ξ′+ ε
J(ξ′)

F−2(ξ′)

(ξ − ξ′)2
dξ +N ā(ξ)

bkij(ξ)

ε

}

= F−2(ξ′)

[
1

−1− ξ′
− 1

1− ξ′

]
(4.103)

The final form of the integral can be written as,

I =

∫ +1

−1

[
F (ξ′, ξ)−

(
F−2(ξ′)

(ξ − ξ′)2
+
F−1(ξ′)

(ξ − ξ′)

)]
dξ

+ F−1(ξ′) ln

∣∣∣∣ 1− ξ′

−1− ξ′

∣∣∣∣+ F−2(ξ′)

[
1

−1− ξ′
− 1

1− ξ′

]
(4.104)

Now, the hypersingular integral can be evaluated easily, having obtained the values

of F−2 and F−2. Conveniently, in the case of strongly singular integrals, the term I−2 is

equal to zero which simplifies the problem further.

3D semi-analytical integrals

The semi-analytical treatment of the strongly singular and hypersingular was extended

by Guiggiani and Gigante [134] for use with three-dimensional problems. The singular

integral is expanded using the Taylor series to allow the subtraction of singular terms in
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Figure 4.12: limiting procedure for three-dimensional problems

a similar manner to that used with the two-dimensional treatment. The method can be

illustrated for 3D problems by considering the hypersingular kernel Skij as an example;

this can be written as,

I =

∫ 1

−1

∫ 1

−1

Skij(x
′, x)N ā(ξ1, ξ2)J(ξ1, ξ2)dξ1ξ2 (4.105)

The limiting procedure for three-dimensional problems begins by considering discon-

tinuous elements and denoting a portion of the boundary S containing the source point

x′ by Sε. However, to make the analytical integrals simple, the limit is considered with

respect to local coordinates as illustrated in Fig. 4.12. Applying the limit to Eqn. (4.105),

gives,

I = lim
ε→0

{∫
Rs−ξε

Skij(x
′, x)N ā(ξ1, ξ2)J(ξ1, ξ2)dξ1ξ2 +N ā(ξ′)

bikj(x
′)

ε

}
(4.106)

where the last term in Eqn. (4.106) represents the free-term that emerges because of the

limiting process. Following common practice in BEM, the polar coordinate system (ρ, θ)

centred at ξ′ relates to the local coordinate as,

ξ1 = ξ′1 + ρ cos θ

ξ2 = ξ′2 + ρ sin θ (4.107)
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By noticing that dξ1dξ2 = ρdρdθ, the combination of (4.105) and (4.107), yields,

I = lim
ε→0

{∫ 2π

0

∫ ρ̂(θ)

α(ε,θ)

Skij(x
′, x)N ā(ρ, θ)J(ξ1, ξ2)ρdρdθ +N ā(ξ′)

bikj(x
′)

ε

}
(4.108)

Now, let F (ρ, θ) be defined as,

F (ρ, θ) = Skij(x
′, x)N ā(ρ, θ)J(ξ1, ξ2)ρ (4.109)

Since the function F (ρ, θ) is a singular of order ρ−2, the use of Laurent series expansion

with respect to ρ, gives,

F (ρ, θ) =
F−2(θ)

ρ2
+
F−1(θ)

ρ
+O(1) (4.110)

where F−2 and F−1 are real functions of θ. It is crucial for these functions to depend

on θ to represent the asymptotic behaviour of F (ρ, θ) when ρ → 0. Additionally, it is

necessary to introduce α(ε, θ) in the form of the Taylor series expansion with respect to

ε, which can be expressed as,

ρ = α(ε, θ) = εβ(θ) + ε2γ(θ) +O(ε3) (4.111)

where β(θ) and γ(θ) are related to the kernel being integrated and can be easily evaluated.

By adding and subtracting the first two terms of the series expansion (4.110) in expression

(4.108), we obtain,

I = lim
ε→0

{∫ 2π

0

∫ ρ̂(θ)

α(ε,θ)

[
F (ρ, θ)−

(
F−2(θ)

ρ2
+
F−1(θ)

ρ

)]
dρdθ

+

∫ 2π

0

∫ ρ̂(θ)

α(ε,θ)

F−1(θ)

ρ
dρdθ

+

∫ 2π

0

∫ ρ̂(θ)

α(ε,θ)

F−2(θ)

ρ2
dρdθ +N ā(ξ′)

bi(x
′)

ε

}
= I0 + I−1 + I−2 (4.112)
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where the first term I0 is regular and can be evaluated using standard quadrature rules.

The second term I−1 includes the singular integral related to F−1, which can be integrated

as,

I−1 = lim
ε→0

∫ 2π

0

∫ ρ̂(θ)

α(ε,θ)

F−1(θ)

ρ
dρdθ

= lim
ε→0

∫ 2π

0

F−1(θ) [ln |ρ̂| − ln |α(ε, θ)|] dθ

=

∫ 2π

0

F−1(θ) ln |ρ̂| dθ − lim
ε→0

∫ 2π

0

F−1(θ) ln |α(ε, θ)| dθ

=

∫ 2π

0

F−1(θ) ln

∣∣∣∣ ρ̂

β(θ)

∣∣∣∣ dθ − lim
ε→0

{
ln ε

∫ 2π

0

F−1(θ)dθ

}
=

∫ 2π

0

F−1(θ) ln

∣∣∣∣ ρ̂

β(θ)

∣∣∣∣ dθ (4.113)

We consider the property
∫ 2π

0
F−1(θ)dθ = 0, since F−1 has a property such that

F−1(θ) = −F−1(θ + π); further detail on this can be found in [134]. Eqn. (4.113) shows

that I−1 is equivalent to a one-dimensional regular integral. Similar treatment can be

applied to I−2 such that,

I−2 = lim
ε→0

{∫ 2π

0

∫ ρ̂(θ)

α(ε,θ)

F−2(θ)

ρ2
dρdθ +N ā(ξ′)

bi(x
′)

ε

}

= lim
ε→0

{∫ 2π

0

F−2(θ)

[
− 1

ρ̂(θ)
+

1

α(ε, θ)

]
dθ +N ā(ξ′)

bi(x
′)

ε

}
= lim

ε→0

{∫ 2π

0

F−2(θ)

εβ(θ)

(
1− εγ(θ)

β(θ)

)
dθ +N ā(ξ′)

bi(x
′)

ε

}
−
∫ 2π

0

F−2(θ)

ρ̂(θ)
dθ

= lim
ε→0

1

ε

{∫ 2π

0

F−2(θ)

β(θ)
dθ +N ā(ξ′)bi(x

′)

}
−
∫ 2π

0

F−2(θ)

[
γ(θ)

β(θ)
+

1

ρ̂(θ)

]
dθ

= −
∫ 2π

0

F−2(θ)

[
γ(θ)

β(θ)
+

1

ρ̂(θ)

]
dθ (4.114)

It is convenient to observe that I−2 is equivalent to a one-dimensional regular integral.

In this case, since a higher order singularity is considered, both terms εβ(θ) and ε2γ(θ)

must be retained in the expansion (4.114) for α(ε, θ). By collecting the previous results,

the final expression for the evaluation of hypersingular integrals in three-dimensions can



4.4. Conclusion 88

be written as,

I =

∫ 2π

0

∫ ρ̂(θ)

0

[
F (ρ, θ)−

(
F−2(θ)

ρ2
+
F−1(θ)

ρ

)]
dρdθ

+

∫ 2π

0

{
F−1(θ) ln

∣∣∣∣ ρ̂

β(θ)

∣∣∣∣ dθ − F−2(θ)

[
γ(θ)

β(θ)
+

1

ρ̂(θ)

]}
dθ (4.115)

The Eqn. (4.115) shows that the quantity I, which is initially given via a limiting

process, including a hypersingular integral and an unbounded term, is equal to a regular

double integral in addition to a regular one-dimensional integral. It essential to note that

the integral must have a finite value since the integral equation that it sits in relates to

a real physical problem [134]. Moreover, the limiting process is considered to have been

performed exactly, since all singular integrations have been carried out analytically. In

the case of strongly singular integrals, further simplification can be made to Eqn. (4.115),

since the term F−2 is equal to zero.

4.4 Conclusion

The BEM is a robust method applied to analyse fracture mechanics and evaluate SIFs [91].

The formulation of BEM presented in this chapter was obtained directly, by constructing

a system of equations that can be implemented numerically. This began by utilising Betti-

reciprocal theorem under conditions of equilibrium to derive the BIE. Next, Somigliana’s

identity for displacements was implemented to relate the displacement value at any inter-

nal point within the domain to displacements and tractions located at the boundary. The

displacement boundary integral equation can then be achieved by applying the limit as

the internal point approach to the boundary. Consequently, the jump terms that emerge

from the limitation process are evaluated analytically. The domain is then discretised

to allow for the numerical evaluation of integrals. Utilising the collocation method, the

system of generated equations can be assembled into a system of matrices to be solved

numerically. However, in cases where the source point is located in the same or close to

the field element, a proper approach must be used to determine the value of the integrals
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accurately. Furthermore, the treatment of singular and nearly singular integrals depends

on the degree of singularity. A subtraction technique [134] was presented in the chapter to

tackle strongly singular and hypersingular integrals; whereas, a transformation approach

can be used to evaluate near singular integrals.

In cases of modelling crack problems with coplanar surfaces (i.e. two crack surfaces

lying on the same plane), a mathematical difficulty emerges, which leads to a singular

matrix. This occurs as the rows associated with crack surface nodes in the system become

identical. However, the DBEM approach can be implemented to overcome this difficulty.

In addition, the singular field in the vicinity of the crack tip/front required spatial treat-

ment. Hence, conventional basis functions are insufficient for capturing the displacement

behaviour. The next chapter introduces the enrichment of DBEM in 2D to improve the

ability of the basis functions to obtain displacements accurately.



Chapter 5

Enrichment of 2D Dual Boundary

Element Method

5.1 Introduction

In linear elastic fracture mechanics, SIFs play a significant role in the evaluation of stresses

and displacements in the vicinity of the crack tip. However, it is well known that because

of the singularity that appears at the crack tip, obtaining SIFs using numerical methods

without modification is inefficient. Moreover, the need to use a very refined mesh near the

crack tip was first noted by [9]. Since then, research into numerical fracture mechanics

has involved developing algorithms that can offer a more efficient solution. The reader

can find reviews of common methods utilised to obtain accurate results using a coarse

mesh in Sec. 3.1.

It can be seen that the application of XFEM reduced the need for mesh refinement,

and also separated the mesh from the crack path enabling crack propagation analysis to

proceed without the need for remeshing. For these reasons it has spawned a considerable

volume of literature. The enrichment technique was extended to BEM to take advan-

tage of methodological features, including the ability to capture discontinuous functions

and to support accurate solutions offered on the domain boundary. Various enrichment

techniques have been proposed [104, 142] to resolve two-dimensional problems; since a

– 90 –
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wide range of fracture problems can be simplified into plane stress or plane strain. Re-

cently, the partition of unity approach was used in a manner similar to XFEM by Simpson

and Trevelyan [143], who presented an enriched boundary element method, naming it as

XBEM. The proposed approach demonstrates the application of two types of formulation:

local and global enrichment. In the case of local formulation, the enrichment functions

were derived from the first-order terms of the Williams expansion, enabling the enriched

displacement to be written as,

un̄j =
m∑
ā=1

N ā(ξ)un̄āj +
m∑
ā=1

L∑
l=1

N āΨul (ξ)An̄ājl (5.1)

where m and N ā are the number of nodes on the element and the shape functions, re-

spectively; and n̄ denotes the element number. An̄ājl denotes the enrichment coefficient,

and Ψul (ξ) the set of L basis functions obtained from the first-order terms of the Williams

expansion, as given by Eqn. (3.3). The use of Eqn. (5.1) in the case of flat element

introduces two additional Degrees Of Freedom (DOFs) per node, and in the case of a

curved element eight DOFs were added to the system per node. Simpson and Trevelyan

noted that a large number of enriched elements or the application to a curved crack had

a negative effect on the conditioning of the system; in many cases this led to a poor

quality solution. Therefore, a small number of elements were enriched to minimise the

number of added degrees of freedom, and an appropriate number of additional collocation

points were used to yield a square system. These additional collocation points have been

allocated over the enriched elements. It is essential to note that this method was used to

improve the estimation of the displacement near the crack, and that SIFs were obtained

in a postprocess step using the J-integral.

As an alternative, the global formulation submitted by Simpson and Trevelyan [14, 143]

permits direct evaluation of SIFs, and reduces additional unknowns to only two degrees of

freedom. This approach enables the formulation of enrichment functions from Williams

expansions (2.25), in a similar manner to that applied by Benzley [13]; hence the enriched
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displacement is given by

uj =
m∑
ā=1

N ā(ξ)uāj + K̃Iψ
u
Ij + K̃IIψ

u
IIj (5.2)

where K̃I and K̃II denote enrichment coefficients for modes I and II, that can correspond

to SIFs when the required displacement continuity is provided. The enrichment functions

ψuIj and ψuIIj are defined as,

ψuIx =
1

2µ

√
r

2π
cos

(
θ

2

)[
κ− 1 + 2 sin2

(
θ

2

)]
(5.3a)

ψuIIx =
1

2µ

√
r

2π
sin

(
θ

2

)[
κ+ 1 + 2 cos2

(
θ

2

)]
(5.3b)

ψuIy =
1

2µ

√
r

2π
sin

(
θ

2

)[
κ+ 1− 2 cos2

(
θ

2

)]
(5.3c)

ψuIIx = − 1

2µ

√
r

2π
cos

(
θ

2

)[
κ− 1− 2 sin2

(
θ

2

)]
(5.3d)

It can be noted that uāj in Eqn. (5.2) is a nodal coefficient; it does not represent nodal

displacement. Instead, the real displacement can be obtained by combining the three

terms. Alternatively, real displacements and stress intensity factors can be evaluated

directly by subtracting the nodal values of the enrichment functions. This can be achieved

by interpolating displacements as,

uj =
m∑
ā=1

N ā(ξ)uāj + K̃I

m∑
ā=1

N ā(ψuIj − ψ̄uIj) + K̃II

m∑
ā=1

N ā(ψuIIj − ψ̄uIIj) (5.4)

where ψ̄uIj and ψ̄uIIj represent the value of the enrichment functions ψuIj and ψuIIj at node ā.

The use of the interpolation functions N ā(ψuIj−ψ̄uIj) and N ā(ψuIIj−ψ̄uIIj), which equal zero

at all nodal points on the element allows for real displacements to be obtained. Moreover,

to yield a square system, additional boundary integral equations are formulated from the

crack tip solution. However, the use of the new boundary integral equations restricts

the method to model problems that consist of only a single crack tip. The use of this

technique was capable of yielding the SIFs with an approximate error of 2.5%. In addition,
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the enrichment shows superior improvement in the J-integral results. Subsequently, the

approach was extended to assess curved cracks [100], since this adds only two extra degrees

of freedom per crack tip to the system.

In this thesis, the XBEM approach is extended using a modified form of enrichment

(similar to the global enrichment functions used by Simpson and Trevelyan [14]) in com-

bination with crack tip displacement constraint equations, to provide the values of SIFs

directly. The aim of the method demonstrated here is to provide solutions to problems

by achieving a considerable reduction in the number of degrees of freedom required to

determine results with prescribed accuracy. The discussion begins by presenting the for-

mulation of the method while outlining the enrichment of the dual boundary element

method. Next, the implementation and the treatment of the singularity are introduced.

Finally, verification of the method is given, by comparing the direct SIFs against the J-

integral, and in addition the effect on the J-integral results when using XBEM is shown.

5.2 Formulation

The main purpose of enrichment is to introduce auxiliary functions to provide a better

estimation of the required variation, which would present difficulties when using standard

polynomial functions. With this in mind, the most convenient choice for capturing the

singular field that appears in the vicinity of the crack tip, is the leading order terms

of Williams expansions (as represented by Eqns. 2.13). Moreover, the use of Williams

expansions was confirmed to have improved the approximation of displacement in earlier

work by Simpson and Trevelyan. The same strategy of enrichment is used here to yield

identical expression for enriched displacements, which are then applied to the boundary

integral equations.

5.2.1 Enrichment of Displacement

A considerable volume of literature demonstrated that the singular field near the crack

tip cannot be captured using standard quadratic interpolation of displacements in BEM

unless highly refined meshes are used. Alternatively, the use of an asymptotic analytical
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expression for displacements around the crack tip, within the BIE, exhibits an improve-

ment in accuracy when using coarse meshes. The well-known Williams expansion for near

crack tip displacement as expressed in Eqn. (2.25) as presented by [100], which can be

written in terms of KI and KII as,

uj = KIψIj(r, θ) +KIIψIIj(r, θ) (5.5)

The enrichment function implemented and used here is identical to that introduced by [14].

However, the enrichment function is rewritten here with a slight change in notation, since

the current formulation permits the modelling of more than one crack tip. In addition, a

rotation matrix is introduced to the enrichment function, as the displacement evaluated

via enriched terms is associated with crack local coordinates, which originated at the

crack tip. Therefore, Eqn. (5.5) can be used to enrich an otherwise classical piecewise

polynomial shape function approximation, of displacement near the crack tip, in a fashion

similar to that described in early work by Benzley, as follows,

{uλx uλy}T = [uā(x)]{N ā(ξ)} + K̃λ
I [Rjq(α)]{ψλIn(r, θ) ψλIb(r, θ)}T

+ K̃λ
II [Rjq(α)]{ψλIIn(r, θ) ψλIIb(r, θ)}T (5.6)

where uā(x) is given by

uā(x) =

 ux1 ux2 ux3

uy1 uy2 uy3

 (5.7)

where ux1 and uy1 denote the displacements in x and y-direction for node 1 on element ā.

The coefficients K̃λ
I and K̃λ

II describe the unknown amplitudes of the enrichment functions

ψλIq and ψλIIq, as related to the crack tip λ, and are found as terms in the XBEM solution

vector. The rotation matrix R is used to transfer displacements from the crack’s local

coordinates (n, b) to global coordinates (x, y) (see Appendix A.3), as presented in Fig. 5.1.

It was mentioned earlier that uāj is no longer the nodal displacement (as in the conventional
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BEM), but instead is to be viewed simply as a coefficient scaling the Lagrangian shape

function N ā for node ā. It is noted that Eqn. (5.5) predicts the displacement components

to vanish at the crack tip, i.e. at r = 0. Therefore, an important role of the first term

in (5.6) is to capture non-zero displacement of the crack tip. Using the new notation the

terms ψIq(r, θ) and ψIIq(r, θ) can be written as,

ψλIn =
1

2µ

√
r

2π
cos

θ

2

[
κ− 1 + 2 sin2 θ

2

]
(5.8a)

ψλIIn =
1

2µ

√
r

2π
sin

θ

2

[
κ+ 1 + 2 cos2 θ

2

]
(5.8b)

ψλIb =
1

2µ

√
r

2π
sin

θ

2

[
κ+ 1− 2 cos2 θ

2

]
(5.8c)

ψλIIb =
−1

2µ

√
r

2π
cos

θ

2

[
κ− 1− 2 sin2 θ

2

]
(5.8d)

where r and θ are polar coordinates centred at the crack tip, µ is the shear modulus and

κ is a parameter defined as κ = 3 − 4ν and κ = 3−ν
1+ν

for plane strain and plane stress,

respectively; ν being the Poisson’s ratio. Since, the formulation introduces an accurate

expression for the crack tip displacement behaviour, a more accurate result is anticipated

for crack problems when the enriched expression is substituted into boundary integral

equations.

5.2.2 Extended Dual Boundary Element Method

As shown in Sec. 4.2.3, applying the classical direct collocation BEM to problems contain-

ing cracks results in rank deficiency, since duplicate equations are formed when collocating

on coincident nodes on opposing crack surfaces. The dual boundary element method [94]

overcomes this difficulty, and is also an efficient technique for modelling crack problems in

BEM. The method consists of two independent boundary integral equations; where DBIE

is used when collocating on one crack surface, and TBIE is used on another. Therefore,

the enriched form of the displacement is substituted into the DBIE equation, as given by
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Figure 5.1: Crack local coordinates and elements related to each crack tip

(4.81). The resultant equation can be expressed in discretised form as,

Cij(x
′)uj(x

′) + Cij(x̂)uj(x̂) +
Ne∑
n̄=1

m∑
ā=1

P n̄ā
ij u

n̄ā
j +

Ne∑
n̄=1

P̃ n̄λ
iI K̃

λ
I

+
Ne∑
n̄=1

P̃ n̄λ
iIIK̃

λ
II =

Ne∑
n̄=1

m∑
ā=1

Qn̄ā
ij t

n̄ā
j (5.9)

where Ne and m are the total number of elements and number of nodes per element,

respectively. The free terms Cij emerge from the strongly singular integral of the traction

kernel. x and x′ denote the usual field and source point in boundary element methods,

and x̂ is the point coincident with the source, but lying on the opposing crack surface. It

is important to note that the second jump term is zero for cases when collocating on the

exterior boundary, as there is no coincident point with x′. The values for P n̄ā
ij and Qn̄ā

ij

are given by Eqns. (4.50a) and (4.50b) respectively, and the new terms P̃ n̄λ
jI and P̃ n̄λ

jII are
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defined as,

P̃ n̄λ
iI =

∫ 1

−1

[Tij(x
′, x(ξ))][Rjq(α)]{ψλIn(ξ) ψλIb(ξ)}TJ n̄(ξ)dξ (5.10a)

P̃ n̄λ
iII =

∫ 1

−1

[Tij(x
′, x(ξ))][Rjq(α)]{ψλIIn(ξ) ψλIIb(ξ)}TJ n̄(ξ)dξ (5.10b)

where ξ ∈ (−1, 1) is the local parametric coordinate used to describe the element, Jn(ξ)

is the Jacobian for the coordinate transformation, and Tij represents the traction funda-

mental solutions. Enrichment is only applied to elements on the crack surfaces, and in

the vicinity of the crack tips; therefore, for most elements displacement is expressed in

the usual shape function form. If element n̄ is unenriched, then P̃ n̄λ
jI = 0 and P̃ n̄λ

jII = 0. In

addition, as θ = ±π at the crack surfaces for a flat crack, ψλIq and ψλIIq are only functions

of r. It should be noted that the free terms that emerge from the limiting procedure

have not been affected by the enrichment, since the terms related to enriched integrals

are cancelled out during implementation.

The substitution of enriched displacement into the traction boundary integral equation

as given by (4.82); means the resultant equation can be written in a discretised form as,

ni(x
′)

Ne∑
n̄=1

m∑
ā=1

En̄ā
kiju

n̄ā
k + ni(x

′)
Ne∑
n̄=1

Ẽn̄λ
IijK̃

λ
I

+ni(x
′)

Ne∑
n̄=1

Ẽn̄λ
IIijK̃

λ
II = ni(x

′)
Ne∑
n̄=1

m∑
ā=1

F n̄ā
kijt

n̄ā
k (5.11)

In this work we consider traction-free cracks, so that tj(x
′) and tj(x̂) in (4.82) vanish.

This means they can then be dropped in the description of the enriched form. The regular

terms En̄ā
kij and F n̄ā

kij are given by

En̄ā
kij =

∫ 1

−1

N ā(ξ)Skij(x
′, x(ξ))J n̄(ξ)dξ (5.12a)

F n̄ā
kij =

∫ 1

−1

N ā(ξ)Dkij(x
′, x(ξ))J n̄(ξ)dξ (5.12b)

where Skij and Dkij denote the derivative of the fundamental solution for traction and
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displacement and are given by Eqns. (4.41) and (4.40). In cases when the element n̄ is

unenriched, then Ẽn̄λ
Iij = 0 and Ẽn̄λ

IIij = 0, or otherwise are given by

Ẽn̄λ
Iij =

∫ 1

−1

[Skij(x
′, x(ξ))][Rjq(α)]{ψλIn(ξ) ψλIb(ξ)}TJ n̄(ξ)dξ (5.13a)

Ẽn̄λ
IIij =

∫ 1

−1

[Skij(x
′, x(ξ))][Rjq(α)]{ψλIIn(ξ) ψλIIb(ξ)}TJ n̄(ξ)dξ (5.13b)

It is clear after introducing the enrichment equations (5.9) and (5.11) that new degrees

of freedom arise. The main advantage of formulating the enrichment, as stated above,

is that the number of extra degrees of freedom is limited to two per crack tip. Thus,

increasing the number of enriched elements does not affect the size of the system. In order

to achieve a square system of equations, an additional collocation point can be used, and

this makes it possible obtain K̃λ
I and K̃λ

II as part of the solution vector. However, as

will be shown in the numerical examples, the additional collocation point does not yield

accurate SIFs directly in situations when the crack tip has non-zero displacement.

5.2.3 Crack Tip Tying Constraint

DBEM involves a hypersingular integral equation which imposes requirements on the con-

tinuity of displacement derivatives at the collocation point. Continuity cannot normally

be achieved because of the C0 continuity of shape functions at nodes shared by adjacent

elements. Therefore, most DBEM implementations utilise discontinuous elements. In this

type of element, the nodes are located within the body of the element as shown in Fig.

5.2. As a result of discontinuous element is that a displacement discontinuity is frequently

observed at the crack tip. While this does not preclude attainment of accurate SIFs, it

does provide an opportunity to design a simple set of auxiliary equations while at the

same time enforcing a displacement continuity as observed in the physical problem being

modelled.

Crack tip displacement can be approximated by extrapolating over the adjacent el-

ements on the upper and lower crack surfaces. This allows for the use of a new tying

constraint that (i) provides a very simple form for the additional equations required to
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Figure 5.2: Two-dimensional continuous and discontinuous element

accommodate the extra enrichment degrees of freedom, (ii) allows the enrichment ampli-

tudes K̃λ
I and K̃λ

II to approximate closely the stress intensity factors KI and KII , and

thereby (iii) removes the need for J-integral computations. This can be achieved by the

simple method of constraining against a displacement discontinuity at the crack tip.

We define element A, as parameterised by local variable ξA, the element on the upper

crack surface and touching the crack tip at ξA = 1, and further define element B, as

parameterised by the local variable ξB, the element on the lower crack surface and touching

the crack tip at ξB = −1. Applying the expression (5.6) to give the displacement at the

crack tip which is denoted as point y, and equating the values from the elements A and

B, yields,

{Na(1)}T{uaλAj}+ K̃λ
I [Rjq(α)]{ψλIn(y) ψλIb(y)}T + K̃λ

II [Rjq(α)]{ψλIIn(y) ψλIIb(y)}T

= {N b(−1)}T{ubλBj}+ K̃λ
I [Rjq(α)]{ψλIn(y) ψλIb(y)}T + K̃λ

II [Rjq(α)]{ψλIIn(y) ψλIIb(y)}T

(5.14)

where Na
A(ξA) and N b

B(ξB) denote the shape functions for nodes a and b of elements A

and B respectively. Terms uaAj, u
b
Bj present the coefficients multiplying the respective

shape functions for these nodes (these are not nodal displacements, which they would

be in conventional BEM, but are no longer because of the injection of the enrichment

functions). It should be noted that, the enrichment terms cancel at the crack tip since
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r = 0. Therefore, constraint Eqn. (5.14) can be simplified and rearranged as,

{Na(1)}T{uaλAj} − {N b(−1)}T{ubλBj} = 0 (5.15)

The use of constraint Eqn. (5.15) for displacements in both directions x and y, provides

two additional equations for each crack tip. These equations are appended to the BEM

system formed by collocation at the nodes, creating a square system. Solving the system

for unknowns allows K̃λ
I and K̃λ

II to be revealed in the solution column with high accuracy.

5.3 Implementation

Implementation of TBIE and DBIE requires much care when evaluating the hypersingular

and strongly singular integrals. It should be noted that the use of enrichment functions

does not change the order of the singularity. Meanwhile, the use of TBIE imposes certain

conditions on the selection of the elements used for the discretisation of crack surfaces.

These conditions require the tangential derivative of the solution to be continuous because

the existence of Cauchy and Hadamard principal value integrals. It is routine to overcome

this problem while still using collocation, by using discontinuous elements, in which the

nodes are located within the body of the element, and not at its ends. Collocation on

these nodes satisfies the Holder continuity requirements for the hypersingular integral

equation, since the shape functions are continuously differentiable at these points.

5.3.1 Evaluation of singular integrals

A semi-analytical technique outlined in Sec. 4.3.4.1 and introduced by [144] to subtract

singularity is used here, since it allows straightforward evaluation of enriched terms. Now,

we recall Eqn. (4.104) which was implemented to evaluate hypersingular and strongly

singular integrals. The expression can be seen to depend on the determination of the

nonsingular functions F−1 and F−2 which evaluated at the source point. These functions

can be obtained by utilising Taylor series expansions around the source point ξ′. Consider

applying this technique to the enriched hypersingular integral as given by Eqns. (5.13a),
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this can yield,

F (ξ′, ξ) = Skij(x
′, x(ξ))Rjq(α)ψλIq(ξ)J

n̄(ξ) (5.16a)

F−2(ξ′) = CkCr2(ξ′)F0(ξ′)Rjq(α)ψλIq0(ξ′) (5.16b)

F−1(ξ′) = Ck
{
Cr2(ξ′)

[
F0(ξ′)Rjq(α)ψλIq1(ξ′) + F1(ξ′)Rjq(α)ψλIq0(ξ′)

]
+ Cr1(ξ′)F0(ξ′)Rjq(α)ψλIq0(ξ′)

}
(5.16c)

where Ck is a constant related to the kernel being integrated, and Cr1(ξ′), Cr2(ξ′), F0(ξ′)

and F1(ξ′) are obtained from the first and the second terms of the Taylor expansion for

Skij(x
′, x(ξ))J n̄(ξ). In addition, ψλIq0(ξ′) and ψλIq1(ξ′) are the first and the second terms of

the Taylor expansion of ψλIq(ξ). Precisely the same procedures can be used to evaluate the

mode II enriched integral given by (5.13a). It should be noted that, the rotation matrix

Rjq(α) is treated as a constant within the integral since it is not a function of ξ. In the

case of an unenriched hypersingular integral given by (5.12a), the procedures are similar,

and the integral can be evaluated as,

F (ξ′, ξ) = Skij(x
′, x(ξ))N ā(ξ)J n̄ (5.17a)

F−2(ξ′) = CkCr2(ξ′)F0(ξ′)N ā
0 (ξ′) (5.17b)

F−1(ξ′) = Ck {Cr2(ξ′) [N ā
1 (ξ′)F0(ξ′) +N ā

0 (ξ′)F1(ξ′)]

+ Cr1(ξ′)N ā
0 (ξ′)F0(ξ′)} (5.17c)

where N ā
0 (ξ′), N ā

1 (ξ′) are respectively the first and the second terms of the Taylor ex-

pansion for the shape function N ā(ξ). A complete description when obtaining the terms

that appear in (5.16) and (5.17) is given in Appendix B.2. Once these terms have been

obtained, it is possible to evaluate all the integrals using Eqn. (4.104). Strongly singular

integrals can be evaluated in a similar manner; however, because of the lower order of

singularity the term F−2(ξ′) equals zero.
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5.3.2 Enrichment procedure

The proposed method provides no restriction on the number of enriched elements, allow-

ing all elements on the crack surfaces to be enriched. In fact, using more elements for

enrichment has been observed to improve accuracy, as will be seen in the results. How-

ever, the number of nodes used for the displacement constraint needs to be ten or fewer

due to the highly oscillating nature of the Lagrangian polynomial near the edge of the

interval [145]. This is known as Runge’s phenomenon, and implies that an interpolation

with a high order polynomial over equidistant points is ill-conditioned, which results in a

small variation in the data being able to cause huge variations in the interpolant. This

problem can be overcome by using non-equally spaced elements at the crack surface, as

presented by [146].

5.3.3 Matrix assembly

The matrices H and G are constructed by collocating at each nodal point in turn, where

the integration over each field element yields a 2 × 6 sub-matrix. In cases when the

field element is enriched, an additional 2 × 2 sub-matrix is generated and collected in

columns related to the crack tip. The use of DBEM in the current work implies that the

displacement boundary integral equation is used on the outer boundary and on the upper

crack surface, whereas the traction boundary integral equation is applied to determine

the lower crack surface.

The effect of implementing the current approach on the system matrices is minimised.

This can be demonstrated by the system matrices given by (4.65) where no change is

made to the right hand side, since traction-free crack surfaces are considered. Whereas,

on the left hand side, the additional columns holding the coefficients related to K̃I and

K̃II are inserted in the last part of matrix H . Moreover, auxiliary equations given by

(5.15) are inserted in the last rows in H , as shown by Fig. 5.3. It should be noted that

each crack tip increases the size of matrix H and vector u by two; this should not affect

the implementation, since it yields a square system.
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Figure 5.3: Assembly of the system matrices with enrichment terms

Efficient evaluation of the integrals can be obtained by calculating the kernel on one

occasion, to be used with the shape functions. In the case of enriched elements the same

calculated kernel is used with the enrichment functions. The coefficients of K̃I and K̃II

are very small compared to the displacement coefficients in matrix H , which affects the

system’s conditioning number. However, this can be overcome by scaling the affected

columns [135].

A code written in MatLab is used to model two-dimensional crack problems in linear

elastostatic. Apart from a function that used to generate the Gaussian points and weight

[147], the code has not been copied nor translated from any existing codes. The code was

tested by solving a problem with a well-known analytical solution of crack in an infinite

domain [8]. Fig. 5.4 demonstrates the code constructor; it also shows the main loops

and if statements that used within the body of the code. An adaptive method used to

accelerate the code by calculating the ratio of r/l (see Sec. 4.3.1) to find the required

number of integration points. The evaluation of integrals giving by P n̄ā
ij , Qn̄ā

ij , P̃ n̄λ
iI , P̃ n̄λ

iII

and En̄ā
kij, F

n̄ā
kij, Ẽ

n̄λ
Iij, Ẽ

n̄λ
IIij for DBIE and TBIE, respectively, depends on the degree of

singularity and can be achieved by appropriate method as illustrated in 5.3.1. The code

consists of two loops; the first loop is performed over collocation points, whereas the

nested loop is performed over field elements. In a final step, the displacement constraint

entries are calculated and added to the appropriate rows in matrix H . Using a direct
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solver, the generated square system of matrices can be solved for all unknowns including

K̃λ
I and K̃λ

II .

5.4 Numerical Examples

The implementation requirements for the enriched DBEM have been covered. Therefore,

verification of the method, and an evaluation of the ability to yield accurate results is

presented in this section. The effect of non-zero crack tip displacement is demonstrated

through the presentation of two cases, which are carefully selected in pure mode I. Next,

the effects of both the number of enriched elements and the number of nodes used for

displacement constraints are presented. The ability to treat various types of crack mode

and applied conditions using this method is illustrated through examples, including pure

mode II, bending and mixed mode.

5.4.1 Mode I

Two pure mode I cases have been selected to show the effect of crack tip displacement. The

first case (case 1) is a centre crack in an infinite homogeneous elastic flat plate as shown

in Fig. 5.5. This has a well-known exact solution in which the crack tip displacement is

zero. The XBEM model is formed from the actual crack surfaces along with a contour,

Γext, truncating the infinite domain. This contour is formed in such a way that the entire

XBEM domain lies close to the crack tip, and so pure mode I applies. Traction-free crack

surfaces are prescribed, and on Γext calculated displacements using Williams expansions

have been used as boundary conditions. The second case (case 2) considers an edge crack

in a flat plate under uniaxial traction (pull-pull), as shown in Fig. 5.6. The reference

solution [5] represented by a ratio of KI/K0 has been used as there is no exact solution

available. The considered dimensions are a = h = 0.5W . Both cases are treated as plane

stress.

Case 1 : Fig. 5.7 shows the displaced shape considering (a) the component of the

displacement for the crack surface enriched elements associated with the second and the

third term of Eqn.(5.6); (b) the component of the displacement represented by the shape
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Figure 5.4: Flowchart of the implemented code for enriched DBEM
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Figure 5.5: Infinite flat plate (case 1)

Figure 5.6: Square flate plate under axial tension (case 2)

Figure 5.7: Displacment components for case 1

Figure 5.8: Displacment components for case 2
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Figure 5.9: Results of KI for Mode I using various methods

function expansion in the first term of Eqn. (5.6), and (c) the total displacement consid-

ering all three terms of (5.6). In this special case the enrichment functions ψλIq, ψ
λ
IIb can

capture the displacement field over the crack surfaces. Consequently, there is no contri-

bution from the shape functions. In Fig. 5.9a we display the percentage errors in SIF

KI using (i) conventional, unenriched DBEM with the J-integral, (ii) enriched XBEM

with the J-integral, (iii) direct K̃I from enriched XBEM using extra collocation points

to provide the additional integral equations required, and (iv) direct K̃I from enriched

XBEM using Eqn. (5.15) to enforce the displacement continuity at the crack tip. It is seen

that all the enriched methods produce highly accurate SIF results in comparison with the

conventional (piecewise polynomial) BEM J-integral solutions. Because the enrichment

is ideal, results can be achieved with very small numbers of degrees of freedom. In order

to compare the accuracy of the different methods, we focus on the set of results at 312

and 314 degrees of freedom from Fig. 5.9a. Table 5.1 shows the error compared to exact

KI , which can be calculated as 17.7245MPa
√
m . In addition, the complete results that

used to calculate the error and to plot Fig. 5.9a are shown in Appendix D.1.

Case 2 : Fig. 5.8 presents the displaced shape for the second case. Fig. 5.8a shows

the displacement component represented by the second and the third terms of Eqn.(5.6),

Fig. 5.8b shows the displacement contribution by the shape function terms in (5.6), and
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Table 5.1: Errors comparison for case 1

Method ndof KI [Pa
√
m] % Error

Unenriched DBEM J-integral 312 17626523.75 -0.55299
XBEM J-integral 314 17724524.44 -0.00008

XBEM Direct K̃I (colloc.) 314 17724790.96 0.00142

XBEM Direct K̃I (Tying) 314 17724564.26 0.000145

Table 5.2: Case 2 results compared to [5]

Method ndof KI [Pa
√
m] % Error

Unenriched DBEM J-integral 372 53775818.85 1.1333
XBEM J-integral 374 53299223.93 0.2333

XBEM Direct K̃I (colloc.) 374 50677080.10 -4.7000

XBEM Direct K̃I (Tying) 374 53142056.71 -0.0667

Fig. 5.8c shows the total displacement considering all three terms of (5.6). Evidence

shows that the enrichment functions no longer provide a complete basis for the crack

displacement, and that the shape functions are required to compensate, so that the total

displacement is approximated accurately. Fig. 5.9b shows convergence of the various

methods tested (note that the reference solution is approximate). In Table 5.2 we present

the numerical values of KI/Ko, for the models with 372 and 374 degrees of freedom (the

results used to calculate the error and to plot Fig. 5.9b can be found in Appendix D.1).

The XBEM with J-integral and the direct method using the tying constraint are both

capable of delivering results very close to the reference solution.

By comparing the directly computed K̃I from enriched XBEM using extra collocation

points for case 1 and 2 the effect of the displacement discontinuity at the crack tip

becomes apparent. It is immediately evident that the use of XBEM enrichment (5.6)

without the use of the constraint (5.15) causes a significant deterioration in the ability of

K̃I to approximate KI directly; thus, in this case a J-integral is necessary. The injection of

the tying constraint, forcing displacement continuity at the crack tip, permits the directly

calculated K̃I to approximate KI . Highly accurate results have been achieved showing

better accuracy when compared to conventional J-integral BEM approaches.
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Figure 5.10: Effect of the number of enriched elements (case 1)

5.4.1.1 Number of enriched elements

A useful feature of the new enrichment presented here is that the enrichment functions

are not associated with nodal degrees of freedom, as in the Partition of Unity Method.

Instead, since the new degrees of freedom K̃I , K̃II are associated with the crack tip, this

enrichment technique provides the freedom to increase the number of enriched elements

without increasing the DOFs. The enrichment degrees of freedom are limited to two per

crack tip. By the term enriched element we describe an element (on a crack surface) over

which the displacement is approximated by Eqn. (5.6). The number of enriched elements

has a significant effect on the results, both when the J-integral is used to determine

SIFs and when the directly calculated K̃I , K̃II are used. For example, Fig. 5.10 shows a

reduction in error for case 1 when all crack surface elements are enriched. For this reason,

all the results are presented for models in which all the elements on the crack surfaces

are enriched. It should be noted that, increasing the number of enriched elements will

increase the computational time, since an additional calculation is needed for each enriched

element. However, the added computational time is negligible and can be balanced with

the required accuracy to achieve the optimum number of enriched elements.



5.4. Numerical Examples 110

150 200 250 300 350

2.92

2.94

2.96

2.98

3

3.02

ndof

K
I

K
o

Direct K̃I ( 9 nodes )

Direct K̃I ( 3 nodes )
Ref. (Rooke & Cartwright)

Figure 5.11: Effect of order of displacement extrapolation (case 2)

5.4.1.2 Order of extrapolation for tying constraint

The tying constraint enforces the continuity of displacement at the crack tip, expressed

through the equality of the displacements at this point as found by extrapolation of

displacements over the upper and lower crack surfaces. The constraint is presented in

Eqn. (5.15) by basing the extrapolation on the M nodes of each element touching the

crack tip. We use three-noded, quadratic discontinuous elements (i.e. M = 3). However,

it is possible to use a higher order Lagrangian extrapolation considering nodes on more

elements.

This technique has been found to deliver improved accuracy. Fig. 5.11 shows a com-

parison made (for the problem in case 2) of the convergence of SIF results obtained

from different orders of extrapolation. It compares results using 3 nodes to extrapolate

displacement to those when 9 nodes are used. These are the nearest nine nodes to the

crack tip on each crack surface. An improvement can be seen resulting from increasing the

order used for extrapolation of the displacement results to the crack tip. It is tempting to

suggest using even higher order Lagrangian polynomials; however, this could increase the

error due to Rung’s phenomenon. Since this difficulty emerges when the distance between

nodes is equal [146]; therefore, it can be overcome by employing unequal element size on
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the crack surface. Consequently, the needs for using certain element size can impose

restrictions on the type of implemented mesh which needs to balance with the required

accuracy.

5.4.2 Various crack lengths

This example illustrates the accuracy of the direct method when considering various crack

lengths. Fig. 5.6 shows the problem configuration, where the ratio of crack length to plate

width varies from 0.1 to 0.6. The results have been presented graphically in this example,

in contrast with the results provided by [5]. Fig. 5.12 demonstrates the normalised mode

I stress intensity factor for the varying crack length. There is excellent agreement between

the direct K̃I and J-integral with XBEM, as seen where conventional J-integral accuracy

lessens as crack length increases. It should be noted that the greatest accuracy afforded

by the reference solution is 1%.

The advantage of implementing BEM when modelling varying crack length is the reuse

of pre-calculated terms that associated with unchanged nodes. In presented example,

the terms related to the nodes on the outer boundaries have been used without change.

Whereas, the nodes on the crack surfaces have been re-evaluated after increasing the

crack length. This can save valuable computational time when handling a huge number

of cracks. In addition, it allows growing cracks with very small steps. Finally, coupling

of BEM with the proposed direct evaluation of SIFs can permit the assessment of crack

problems in terms of size and accuracy.

5.4.3 Pure Mode II

We also consider a square domain surrounding the tip of a crack in pure mode II. The

problem is shown in Fig. 5.13. The dimensions used in the analysis are h = 0.1a = 0.5W .

We prescribe boundary conditions as follows: The elements on the two crack faces are

traction-free, and we apply a displacement boundary condition equal to the pure mode

II to the elements on all other parts of the square boundary of the domain. We use

the algorithm described for enrichment to determine KII , the exact solution for which
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Figure 5.12: Various edge crack length under uniaxial stress

is KII = σ
√
πa, and compare the errors for the term K̃II against those from both a

conventional BEM solution and an enriched XBEM solution (both using the J-integral).

This comparison is shown in Fig. 5.14, and shows both enriched methods to provide

highly accurate solutions in comparison with the more slowly converging results of the

classical DBEM. As in the mode I (case 1) consideration, the enrichment is ideal here

leading to very small errors. To clarify further, the exact behaviour is included in the

approximation space through (in the mode II case) the third term on the right hand side

of Eqn. (5.6). The role of the first term in (5.6) can be viewed as the use of piecewise

polynomials to capture the difference between pure mode I and II and the displacements

in the case under analysis. The following sections consider cases in which the enrichment

is not ideal, i.e. we are not considering pure mode I and II.

Fig. 5.15 shows the deformed shape of the square plate under pure mode II load. The

accuracy of the enrichment approach can be demonstrated by analysing displacements

obtained at the upper and lower crack faces. Moreover, the displacement for pure mode

II is in x-direction whereas there is zero displacement in the y-direction. In this case, the

conventional polynomial can be used to capture the displacement on the crack faces, since

displacement exhibit linear behaviour. However, singularity emerges in the vicinity of the
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Figure 5.13: A square section sheet subject to shear
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Figure 5.14: Results for pure Mode II



5.4. Numerical Examples 114

Figure 5.15: The deformed shape of the square plate under pure mode II load

crack tip has an effect on the accuracy of obtained displacement. Therefore, the need

for higher accuracy can lead to the implementation of fine mesh. The use of enrichment

approach presented here is capable of capturing the displacement while implementing a

coarse mesh. In addition, the approach can be utilised to determine SIFs directly without

the need for a post-processing method.

5.4.4 Bending

A rectangular plate under bending is considered here, as shown in Fig. 5.16. The plate is

subjected to a bending moment, as applied to the upper and lower surfaces, as shown in the

figure, and we consider the case b = 2a. We compare the convergence of the two enriched

formulations, and classical unenriched DBEM in terms of the normalised stress intensity

factor KI/Ko (where Ko = 6M
√
πa/b2). The comparison is presented in Fig. 5.17,

and shows smooth convergence toward the reference value from [5](we note the reference

solution presented in [5] with an accuracy of 1%, which is rather large in comparison

with the errors which have been found). It is important to note that, the XBEM with

J-integral is outperforming XBEM with direct K’s; which can offer high accuracy via the
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Figure 5.16: Rectangular plate under bending

J-integral or what might be seen as acceptable accuracy from the direct K’s. However,

the J-integral possibly adds a considerable computational overhead, especially in 3D.

The enrichment approach offers an accurate representation of the displacement at the

crack face beside the direct evaluation of the SIFs. Fig. 5.18 shows the deformed shape

of the rectangular plate under bending load. The captured displacements on the upper

and lower crack faces can be used to demonstrate the accuracy of the proposed enrich-

ment approach. Furthermore, without the utilisation of the enrichment, the conventional

polynomial is incapable of capturing the behaviour of the displacement near the crack tip

since singularity emerges. The presented crack deformed faces show the
√
r nature of the

displacement. In addition, it can be seen that the use of enrichment reduces the effect of

crack tip displacement.

5.4.5 Mixed mode

In this section we apply the proposed enrichment to a mixed mode case for an inclined

edge crack in a finite plate under uniaxial tensile loads. For mixed mode cases it is

customary to use a decomposition technique (see Sec. 3.2.1.1) when using the J-integral,

in order to solve for both KI and KII . The plate contains an edge inclined crack at

an angle described as β, as shown in Fig. 5.19. The problem does not have an exact
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Figure 5.17: A comparison of normalised results for bending plate

Figure 5.18: Deformation of rectangular plate under bending
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Figure 5.19: Rectangular plate subject to shear [3]

solution; instead, the numerical solution obtained by Xiao et al. [4] is used. The plate

dimensions are W = h = 1, a = 0.6 and the angle of inclination β is 30◦. We consider

Young’s modulus and Poisson’s ratio as 105 and 0.25 respectively. Uniaxial tension σ = 1

is applied over the top edge of the plate, and zero displacements are prescribed in both

directions at the lower edge.

Results for KI are presented in Fig. 5.20 ; the direct approach, XBEM with the J-

integral and DBEM with the J-integral are used to evaluate the SIFs at various model

sizes. The reference solution is plotted as a horizontal line for comparison, and the reader

is reminded that this is also a numerical approximation and included for the purposes

of comparison. In the results it can be seen that the direct method converges smoothly

toward the same value as the J-integral methods. It is important to check for any divergent

behaviour since the obtained results are converging to a different value from the reference

solution. Therefore, a higher number of degrees of freedom is implemented which shows

SIFs obtained by direct approach and XBEM with the J-integral are converging to the

same value.

Similarly, XBEM and DBEM both with the J-integral and the direct approach are

utilised to determine KII . The results for KII are shown in Fig. 5.21, where a various

model sizes are used. In addition, the reference solution is plotted as a horizontal line for

comparison. The results reveal that the direct method converges smoothly toward the

same value as the J-integral method. It is important to recheck the results since they
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Figure 5.20: KI for inclined crack results compared to Xiao et al. [4]
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Figure 5.21: KII for inclined crack results compared to Xiao et al. [4]
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Figure 5.22: Variation of SIF values with respect to the inclination angles

are converging to a different value from the reference solution. Therefore, the number of

elements for modelling the problem has been increased. Consequently, the extracted SIF

values by the direct approach and XBEM with the J-integral can be noticed to converge

to the same value.

5.4.6 Various inclination angles

An inclined edge crack similar to that presented in Fig. 5.19 is analysed to demonstrate

the variation of SIF values with respect to the inclination angle. The inclined edge crack

is considered in a finite plate under tensile load. The plate is fixed in both directions

at the lower edge and stresses are applied to the upper edge in y-direction. The plate

dimensions are W = h = 1, a = 0.6 and the angle of inclination β varies between −80◦

and 80◦ by step of 10◦ . The Young’s modulus and the Poisson’s ratio are considered as

105 and 0.25 respectively. The applied tension is σ = 1, whereas zero displacements are

prescribed in x and y-direction at the lower edge.

Figure 5.22 represents the values of SIFs for mode I and II with respect to various

inclination angles. These results are obtained directly by implementing the enrichment
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approach. The Figure reveals the symmetric behaviour of KI , whereas the flip in sign can

be observed in the case of KII . Furthermore, the maximum value of KI can be achieved

in pure mode I when the crack is horizontal β = 0. The effect of near singular integrals

emerges when the crack is very close to the boundaries at inclination angles of −80◦ and

80◦. The advantage of using the proposed directly evaluated SIFs can be illustrated when

handling cracks near the boundaries. Moreover, the direct evaluation can be utilised

regardless how close the crack to the boundaries. Whereas, the use of the J-integral

can impose restrictions on the selection of the ideal integration path for the J-integral.

In addition, the implementation of DBEM allows the system matrices to be reused by

updating the columns and rows associated with crack surface nodes that changed with

the inclination angle.

5.5 Conclusion

Herein, a new extended dual boundary element method was presented, in which the en-

richment functions are based closely on the stress intensity factors in two-dimensional

Linear Elastic Fracture Mechanics. The approach utilises the Williams expansions for

displacement to enrich the elements on the crack surfaces. The implementation of enrich-

ment only adds two degrees of freedom per crack tip. The auxiliary equations required,

are therefore derived from the enforcement of displacement continuity at the crack tip.

The effect of applying enrichment to the system matrices is reduced by inserting addi-

tional columns holding the coefficients related to K̃I and K̃II into the last part of matrix

H . Since crack surfaces are considered traction-free, no enrichment needs to be applied to

the terms related to tractions. The implementation of enrichment increases the system’s

conditioning number which can be then overcome by the use of appropriate scaling factor.

However, the use of enrichment has no effect on the degree of singularity. The Guiggiani

method [134] is used to evaluate enriched terms. Moreover, the same approach can be

used to determine conventional terms that contain strongly singular and hypersingular

integrals.

The proposed method can be used to evaluate SIFs directly without any requirement for
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postprocessing calculations such as the J-integral. The results are improved by increasing

the number of enriched elements, since this can be done without increasing the size of

the system, and with negligible additional computational cost. In addition, accuracy can

be improved further by using high order Lagrangian polynomials (8th) when applying

the crack tip tying constraint. This method has been used to model various types of

problems, including pure mode I and II, bending, inclined crack and mixed mode. A

comparison of two pure mode I problems is used here to illustrate the effect of non-zero

crack tip displacement. Moreover, it can be observed that, the SIFs found from the direct

method converge to the same values as those from the J-integral, and the method clearly

outperforms the use of the piecewise polynomial DBEM. Hence the approach requires

minimal changes to be implemented. The next chapter presents an extension of this

method, to solve three-dimensional crack problems.



Chapter 6

Enrichment of the 3D Dual

Boundary Element Method

6.1 Introduction

In three-dimensional problems, stresses in the vicinity of a crack tip need to be obtained

with high accuracy to properly predict crack growth. Three-dimensional cracks can gener-

ally be classified into planar and nonplanar cracks. A crack is considered planar if it exists

on one plane; however, in LEFM all crack types are subject to the physical singularity at

the crack tip. This singularity results in mathematical difficulties affecting the direct use

of numerical methods. Therefore, to provide an accurate evaluation of singular stresses

many modified BEM and FEM have been submitted (see Sec. 3.1 for additional detail).

In terms of energy approaches, the Griffith theory was extended by [148] to three-

dimensional cracks, by the inclusion of a crack in a large sphere and imposing the condi-

tion of equilibrium across a spherical surface. Also, the J-integral was applied to three-

dimensional cracks, including a line and surface integral for a disk perpendicular to the

crack plane and centred at the crack front, where it can be decomposed [129] to deter-

mine the value of SIFs for each mode, as illustrated in Sec. 3.2.1.2. However, since the

evaluation of the surface integral requires calculation of the first derivative of stress, and

the second derivative of displacement field, it is typically neglected. On the other hand,

– 122 –



6.2. Formulation 123

when utilising the symmetric Galerkin method a direct approach [104] is employed to

obtain SIFs, although it is mathematically complex and not sufficiently flexible to be

added to existing code. The XBEM in 2D, as introduced earlier, was able to evaluate

stress intensity factors directly with high accuracy. The application of the same principle

to three-dimensional cracks reduces the computational time since SIFs can be evaluated

directly especially when considering crack growth.

This chapter extends the two-dimensional enriched boundary element formulation for

the applications of linear elastic fracture mechanics to three-dimensional problems. The

enrichment approach utilises Williams expansions to enrich the crack surface elements for

an accurate and direct evaluation of SIFs. Hartranft and Sih [149] confirmed that the

Williams expansions can be used for 3D problems directly if considering a disk perpen-

dicular to the crack plane (see Sec. 2.8). However, they also showed that the application

of the Taylor series to Williams expansions permits the evaluation of the off crack local

plane stresses and displacements.

When demonstrating the 3D approach, a penny shaped planar crack is considered,

and the Williams expansion for plane strain problems used for enrichment. Elements on

the crack surfaces have been arranged in a radial pattern to provide nodal information

over radial lines for the implementation of displacement continuity constraints. Similar to

what was observed in the previous chapter, a complete outline of the formulation and the

implementation are presented first. Next, numerical examples have been used to show

the accuracy of the direct results in comparison to the J-integral, and illustrating the

improvement of the J-integral when the XBEM is used.

6.2 Formulation

The enrichment strategy for three-dimensional cracks is similar to that presented for cracks

in two-dimensions. However, attention needs to be directed toward the stress intensity

factors, since they are now functions of the location along the crack front. The following

sections, introduce the enriched form of displacement first, and then demonstrate the

substitution of the enriched displacement into both DBIE and TBIE. In addition, the
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Figure 6.1: Crack local coordinates and global coordinates relationship

displacement constraints at the crack front, and the layout required for the crack surface

elements to yield a square system, are described.

6.2.1 Enrichment of displacement

In three-dimensions a penny shaped crack is considered in the formulation of enrichment

functions, in order to define a variable that express variation in SIFs along the crack front.

Therefore, Williams expansion for near crack tip displacements [12, 13], can be written

in terms of KI , KII and KIII as,

uj(η) = KI(η)ψIj(r, θ, η) +KII(η)ψIIj(r, θ, η) +KIII(η)ψIIIj(r, θ, η) (6.1)

where r and θ are the usual polar components in the n− b plane as presented in Fig. 6.1,

and η is the angle on the crack plane (given by η = tan−1(y/x) in the case of horizontal

crack) tracing the crack front, as shown in Fig. 6.1; and K̃I , K̃II , K̃III express continuous

variation in SIFs with η. Eqn. (6.1) is valid only in the small region around the crack

tip where the singular term dominates. However, for remote regions from the crack tip a

more general form of the displacement functions can be rewritten as,

{uj(η)} = [uāj (x)]{N ā(ξ1, ξ2)}+ [Rjq][ψlq(r, θ, η)]{K̃I(η) K̃II(η) K̃III(η)}T (6.2)
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Figure 6.2: Discretisation of SIFs at the crack front

where u is the nodal displacements, N represents the shape functions and R is the required

rotation matrix to transfer William expansion local displacements. Before we proceed

further, it should be noted that there is a need to express the continuously varying SIFs

in a discretised form to proceed with the analysis. Therefore, one dimensional shape

functions are used to interpolate the values of K̃I , K̃II and K̃III at points located at the

intersection of the crack front, with the radial lines upon which the nodes lie as illustrated

in Fig. 6.2. This can be achieved by

K̃l(η) = N f (ξ2)K̃λ
l where l = I, II, III (6.3)

where the discrete variables K̃λ
l lie in the solution vector and are found as part of the

XBEM solution. The discretised enriched approximation for displacement over an element

n̄ on a crack surface can be written as,

{uλj } = Rjq(ξ2)ψλ
lq(r, θ){K̃λ

I K̃
λ
II K̃

λ
III}T + un̄āj (x){N ā(ξ1, ξ2)} (6.4)

where ā denotes the node number and Rjq is a rotation that used to transfer displace-

ments from the crack local coordinates (n, b, t) to global coordinates (x, y, z). The nodal
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displacement matrix un̄ā is of size 3×m, where m is the total number of nodes on element

n̄. The square matrix ψλ is given by

ψλ
lq(r, θ) =


ψλIn ψλIIn ψλIIIn

ψλIb ψλIIb ψλIIIb

ψλIt ψλIIt ψλIIIt

 (6.5)

Entries of the matrix ψ(r, θ) describe the enrichment functions obtained from the first

order terms of Williams displacement expansions, and are defined as,

ψλIn =
1

2µ

√
r

2π
cos

θ

2

[
κ− 1 + 2 sin2 θ

2

]
(6.6a)

ψλIIn =
1

2µ

√
r

2π
sin

θ

2

[
κ+ 1 + 2 cos2 θ

2

]
(6.6b)

ψλIb =
1

2µ

√
r

2π
sin

θ

2

[
κ+ 1− 2 cos2 θ

2

]
(6.6c)

ψλIIb =
−1

2µ

√
r

2π
cos

θ

2

[
κ− 1− 2 sin2 θ

2

]
(6.6d)

ψλIIIt =
1

2µ

√
r

2π
sin

θ

2
(6.6e)

ψλIIIn = ψλIIIb = ψλIt = ψλIIt = 0 (6.6f)

where µ is the shear modulus and κ is the Kosolov constant defined as κ = 3 − 4ν and

κ = (3 − ν)/(1 + ν) for plane strain and plane stress, respectively. It should be noted

that, Eqn. (6.4) is general expression, and can be used to enriched any crack in three-

dimensions. However, the variable describing the variation of SIFs along the crack front

can differ. In the case of a flat edge crack, global coordinates can be used to present

variations in SIFs, as shown in Fig. 6.3.

Enrichment of the crack surface elements is achieved by substituting enriched displace-

ment into the displacement boundary integral equation and the traction boundary integral

equation, as will be demonstrated shortly.
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Figure 6.3: The use of global coordinates to define SIFs variation

6.2.2 Extended Dual Boundary Element Method

The previous chapter has demonstrated a direct evaluation of SIFs by enriching the DBEM

[94] for two-dimensional crack problems. Therefore, a similar concept can be applied

to three-dimensional problems. Enrichment can be achieved by substituting enriched

displacement into the DBIE given by (4.81); which can be written in a discretised form

as,

Cij(x
′)uj(x

′) + Cij(x̂)uj(x̂) +
Ne∑
n̄=1

m∑
ā=1

P n̄ā
ij u

n̄ā
j +

Ne∑
n̄=1

3∑
λ=1

P̃ n̄λ
iI K̃

λ
I

+
Ne∑
n̄=1

3∑
λ=1

P̃ n̄λ
iIIK̃

λ
II +

Ne∑
n̄=1

3∑
λ=1

P̃ n̄λ
iIIIK̃

λ
III =

Ne∑
n̄=1

m∑
ā=1

Qn̄ā
ij t

n̄ā
j (6.7)

where Cij denotes the free terms associated with strongly singular integrals of the traction

kernel. Ne and m are the total number of elements and the number of nodes per element,

respectively; x and x′ are the field point and source point in BEM, and x̂ is the point

coincident with source x′ at the opposing crack surface. The integrals P n̄ā
ij and Qn̄ā

ij are

given by Eqns. (4.54a) and (4.54b) respectively, and the new terms P̃ n̄λ
iI , P̃ n̄λ

iII and P̃ n̄λ
iIII
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are defined as,

P̃ n̄λ
iI =

∫ 1

−1

∫ 1

−1

Tij [x′, x(ξ1, ξ2)]Rjq{ψλIq(r, θ)}N
f
λ (ξ2)J n̄(ξ1, ξ2)dξ1dξ2 (6.8a)

P̃ n̄λ
iII =

∫ 1

−1

∫ 1

−1

Tij [x′, x(ξ1, ξ2)]Rjq{ψλIIq(r, θ)}N
f
λ (ξ2)J n̄(ξ1, ξ2)dξ1dξ2 (6.8b)

P̃ n̄λ
iIII =

∫ 1

−1

∫ 1

−1

Tij [x′, x(ξ1, ξ2)]Rjq{ψλIIIq(r, θ)}N
f
λ (ξ2)J n̄(ξ1, ξ2)dξ1dξ2 (6.8c)

where (ξ1, ξ2) are local parametric coordinates, Jn(ξ1, ξ2) is the Jacobian for coordi-

nate transformation, and Tij is the traction fundamental solutions. In addition, vectors

{ψλIq(r, θ)}, {ψλIIq(r, θ)} and {ψλIIq(r, θ)} are the first, second and third column in the ma-

trix ψ given by (6.5). If element n̄ is unenriched then P̃ n̄λ
iI = 0, P̃ n̄λ

iII = 0 and P̃ n̄λ
iIII = 0. In

reality, enrichment is only applied to elements on the crack surfaces, therefore most dis-

placements can be evaluated using products of shape functions and nodal displacements

in the usual way. In cases when the traction boundary integral equation as given by (4.82)

is applied to the crack surface, the enriched discretised form for traction-free cracks can

be written as,

ni(x
′)

Ne∑
n̄=1

m∑
ā=1

En̄ā
kiju

n̄ā
k + ni(x

′)
Ne∑
n̄=1

3∑
λ=1

Ẽn̄λ
IijK̃

λ
I + ni(x

′)
Ne∑
n̄=1

3∑
λ=1

Ẽn̄λ
IIijK̃

λ
II

+ni(x
′)

Ne∑
n̄=1

3∑
λ=1

Ẽn̄λ
IIIijK̃

λ
III = ni(x

′)
Ne∑
n̄=1

m∑
ā=1

F n̄ā
kijt

n̄ā
k (6.9)

where unenriched integrals En̄ā
kij and F n̄ā

kij are given by

En̄ā
kij =

∫ 1

−1

∫ 1

−1

N ā(ξ1, ξ2)Skij(x
′, x(ξ1, ξ2))J n̄(ξ1, ξ2)dξ1dξ2 (6.10a)

F n̄ā
kij =

∫ 1

−1

∫ 1

−1

N ā(ξ1, ξ2)Dkij(x
′, x(ξ1, ξ2))J n̄(ξ1, ξ2)dξ1dξ2 (6.10b)



6.2. Formulation 129

and enriched integrals are expressed as,

Ẽn̄λ
Iij =

∫ 1

−1

∫ 1

−1

Skij [x′, x(ξ1, ξ2)]Rjq{ψλIq(r, θ)}N
f
λ (ξ2)J n̄(ξ1, ξ2)dξ1dξ2 (6.11a)

Ẽn̄λ
IIij =

∫ 1

−1

∫ 1

−1

Skij [x′, x(ξ1, ξ2)]Rjq{ψλIIq(r, θ)}N
f
λ (ξ2)J n̄(ξ1, ξ2)dξ1dξ2 (6.11b)

Ẽn̄λ
IIIij =

∫ 1

−1

∫ 1

−1

Skij [x′, x(ξ1, ξ2)]Rjq{ψλIIIq(r, θ)}N
f
λ (ξ2)J n̄(ξ1, ξ2)dξ1dξ2 (6.11c)

If the field element n̄ is unenriched, then Ẽn̄λ
Iij = 0, Ẽn̄λ

IIij = 0 and Ẽn̄λ
IIIij = 0. It can

be seen from Eqns. (6.7) and (6.10), that the enrichment of the DBEM has added a

few degrees of freedom to the system. The number of newly added degrees of freedom

depends on the number of points at the crack front, where SIFs need to be evaluated.

The auxiliary equations required to yield a square system can be derived by enforcing the

continuity of displacement at the crack front, as demonstrated below.

6.2.3 Crack front tying constraint

In three-dimensional cracks, the equations required to yield a square system are generated

by enforcing the continuity of displacement at the crack front, which can be achieved by

following the same procedure as that illustrated in Sec. 5.2.3. However, unlike the two-

dimensional cracks, where the number of added degrees of freedom depends on the number

of crack tips, the three-dimensional added degrees of freedom depend on the mesh. For

instance, the mesh used for a penny shaped crack as shown in Fig. 6.4 has 24× 3 degrees

of freedom added to the system. In detail, the 24 denotes the black points (see Fig. 6.4)

at the crack front where SIFs must be evaluated, and 3 represents mode I, II and III for

each point. Therefore, various mesh configurations will generate the different numbers of

added degrees of freedom.

It can be seen from Fig. 6.4, that the nodes on the crack surface have been arranged

in radial lines, each of which is perpendicular to the crack front. The enforcement of

continuity of displacement for each radial line at the crack front yields sufficient equations

for a square system. In a similar manner to the two-dimensional case, we define element
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Figure 6.4: Crack surface elements layout for tying constraint

A as adjacent to the crack surface and parameterised by local variable ξA. This element

has a set of nodes on the upper crack surface and touching the crack tip at ξA = 1 as

shown in Fig. 6.5. On the opposite surface, we define element B, as parameterised by

local variable ξB and touching the crack tip at ξB = −1. Applying the expression (6.4)

to give the displacement at the crack tip as denoted by point y, and equating the values

from elements A and B, yields,

{Na(1)}T{uaj}+Rjqψlq(r, θ){K̃I K̃II K̃III}T

= {N b(−1)}T{ubj}+Rjqψlq(r, θ){K̃I K̃II K̃III}T (6.12)

where uaj and ubj are the nodal displacements along elements A and B, respectively. Notice

that, the enrichment terms in Eqn. (6.12) vanish at the crack front as r = 0, so the

constraint equation can be written after rearrangement as,

{Na(1)}T{uaj} − {N b(−1)}T{ubj} = 0 (6.13)

Applying Eqn. (6.13) to enforce the displacement continuity in the direction of x, y
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Figure 6.5: Displacement constraint elements on the crack surface

and z, provides three additional equations for each crack front location at which the three

SIF unknowns emerge. This makes it possible to accurately obtain unknowns including

K̃λ
I , K̃λ

II and K̃λ
III in the solution column.

6.3 Implementation

The use of DBEM for modelling three-dimensional crack problems consists of implement-

ing TBIE and DBIE. In a similar manner to that affecting two-dimensional problems, the

focus is given to the evaluation of hypersingular and strongly singular integrals. Although,

enrichment functions do not affect the singularity, the use of TBIE requires continuity of

C1 for shape functions at collocation points. This can be achieved by using discontinuous

elements, in which the nodes are located within the body of the element. In addition,

using discontinuous elements allows the generation of auxiliary equations to solve added

degrees of freedom.

6.3.1 Evaluation of singular integrals

The singularity subtraction approach submitted by [144] and demonstrated in Sec. 4.3.4.1

has been utilised in this thesis, since it permits the straightforward inclusion of enriched

terms. The evaluation of hypersingular and strongly singular integrals, when using this

technique can be achieved by integrating singular terms analytically and regular terms

numerically. Recalling Eqn. (4.115), which is suitable for the evaluation of hypersingular
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and strongly singular integrals, it can be seen that the equation depends on the determi-

nation of nonsingular functions F−1(φ) and F−2(φ). These functions can be obtained by

mapping local coordinates (ξ1, ξ2) to a polar system of (ρ, φ), and by utilising the Taylor

series expansions around the source points (ξ′1, ξ
′
2) . For instance, applying this technique

to the enriched hypersingular integral as given by Eqns. (6.11a) can yield,

F (ρ, φ) = Skij [x′, x(ρ, φ)]Rjq(ρ, φ){ψλIq(r(ρ, φ), θ)}N f (ρ, φ)J n̄(ξ1, ξ2) (6.14a)

F−2(φ) = CkCr2(φ)F0Rjq0{ψλIq0}N
f
0 (6.14b)

F−1(φ) = Ck

{
Cr2(φ)

[
F0

(
Rjq0{ψλIq1}(φ)N f

0 +Rjq0{ψλIq0}N
f
1 (φ) +Rjq1(φ){ψλIq0}N

f
0

)
+ F1(φ)Rjq0{ψλIq0}N

f
0

]
+ Cr1(φ)F0Rjq0{ψIq0}N f

0

}
(6.14c)

where Ck is the kernel constant, and Cr1(φ), Cr2(φ), F0(φ) and F1(φ) are obtained from

the first and the second terms of the Taylor expansion for Skij(x
′, x(ξ1, ξ2))J n̄(ξ1, ξ2).

In addition, ψλIq0 and ψλIq1(φ) are the first and the second Taylor expansion terms for

ψλIq[r(ρ, φ), θ]. It should be noted that in three-dimensions the rotation matrix Rjq(α),

needs to be expanded by the Taylor series since it is a function of (ξ1, ξ2). Likewise, the

one-dimensional shape functions N f (ρ, φ) should be expanded around the source point by

the Taylor series. Similar procedures can be used to evaluate enriched integrals for modes

II and III as given by (6.11b) and (6.11c). In cases of an unenriched hypersingular

integral such as that given by (5.12a), the procedures are similar, and the integral can be

evaluated as,

F (ρ, φ) = N ā(ρ, φ)Skij(x
′, x(ρ, φ))J n̄(ξ1, ξ2) (6.15a)

F−2(φ) = CkCr2(φ)F0N
ā
0 (6.15b)

F−1(φ) = Ck {Cr2(φ) [N ā
1 (φ)F0 +N ā

0F1(φ)] + Cr1(φ)N ā
0F0} (6.15c)

where N ā
0 and N ā

1 (φ) are the first and the second Taylor expansion terms for N ā(ρ, φ),

respectively. The derivations of terms appearing in (6.14) and (6.15) are outlined in Ap-

pendix B.3. Once these terms have been determined, it is possible to apply Eqn. (4.115)
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to evaluate all the integrals. In addition, strongly singular integrals can be evaluated in a

similar manner. However, because of the lower order of the singularity, the term F−2(ξ′)

equals zero. It should be noted that the employment of enrichment has not altered the

free terms arising from the strongly singular integrals, since these terms cancel out during

implementation. The cancellation occurs as the multiplication of the jump terms by the

enrichment functions have equal magnitude and opposite sign for upper and lower crack

surfaces.

6.3.2 Enrichment procedure

Applying Williams expansions to three-dimensional problems requires more attention than

two-dimensional problems, since they are only valid for points located on a plane perpen-

dicular to the crack front, and in the vicinity of the crack front. In addition, it is crucial to

classify the problem as plane strain or plane stress, because of the use of two-dimensional

enrichment functions. It is worth mentioning that in this thesis only fully embedded

cracks are considered, so that it is suitable to use the plane strain form throughout.

In three-dimensional cracks, the number of added degrees of freedom is controlled by

the mesh. Consequently, it is important to arrange the nodes on the crack surface to yield

sufficient nodes for the displacement constraint. This can be demonstrated by considering

the crack mesh, as shown in Fig. 6.4, and comparing it with a refined mesh for the same

crack as presented in Fig. 6.6. It is evident that when the number of the crack front

points is increased, there are enough nodes for displacement constraint.

Eqn. (6.13) equates the extrapolated values for crack tip displacement using nodes

from element A to those found in element B. The three nodes (on a quadratic element)

aligned in the radial direction with the particular location on the crack front can be used

for displacement constraint. It has been observed that greater accuracy can be gained by

including additional nodes in the extrapolation; including those from adjacent elements.

However, in the case of when the distance between nodes is equal, only a maximum of 9

nodes are used to apply the continuity constraint [146].
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Figure 6.6: Crack surface elements layout with refine mesh for tying constraint

6.3.3 Matrix assembly

The system matrices for three-dimensional crack problems are typically assembled in a

similar manner to that demonstrated in Sec. 5.3.3. However, the sub-matrix containing

enrichment entries is now 3× 3 and can be obtained by computing the enriched integrals.

This requires the use of the rotation matrix R to transfer local displacement produced

by the enrichment function ψλ (see (6.5)) to global coordinates, which then multiplies by

the fundamental solution and shape functions. Since, the value of enrichment sub-matrix

entries is very small, it is important to scale system matrices to improve the condition

number. However, with the use of proper scaling, the implementation of enrichment has

been observed to affect the condition number only mildly of the system by increasing it

by approximately one order of magnitude.

The two-dimensional Matlab code is modified to model three-dimensional crack prob-

lems. The code was examined by comparing the analytical displacement with the code

numerical results for a cube under uniaxial load. A penny shaped central crack is then

introduced to the cube where the crack surface displacements are used to verify the accu-
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racy of the code. Fig. 6.7 demonstrates the code constructor; it also shows loops and if

statements that used within the body of the code. An adaptive technique used to acceler-

ate the code by calculating the ratio of r/d (see Sec. 4.3.1) to find the optimum number

of integration points. The evaluation of integrals depends on the degree of singularity and

can be achieved by an appropriate method as illustrated in 6.3.1. The code consists of

two loops; the first loop is performed over collocation points, whereas the nested loop is

performed over field elements. In order to accelerate the calculations, both loops can be

converted into MEX-files. Moreover, the implementation of MEX-files has increased the

speed of the code by ×100. In addition, parallel computing can be applied to the first

loop, since the rows associated with each source point can be evaluated independently.

The employment of the parallel technique to the first loop (see Fig. 6.7) has reduced

the computational time, although the achieved reduction depends on the number of used

cores. Further improvement can be achieved by reducing the required memory cost by

compressing the output matrices H and G into matrix A and vector y, as illustrated by

Eqn. (4.66). In a final step, the displacement constraint entries are calculated and added

to the appropriate rows in matrix A. Using a direct solver, the generated square system

of matrices can be solved to reveal the SIFs values along the crack front as K̃λ
I , K̃λ

II and

K̃λ
III .

6.4 Numerical Examples

The previous sections outlined a complete guide to the implementation of enriched DBEM.

The method adopted for verification and accuracy assessment is presented in this section.

The effect of enrichment implementation on displacement evaluation has been demon-

strated by showing the contribution of each term in regard to the enrichment equation

(6.4). The ability to treat penny shaped cracks with various orientations is illustrated by

examples; including pure mode I, inclined crack and multi cracks.
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Figure 6.7: Flowchart of the implemented code for enriched DBEM in 3D
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Figure 6.8: A set of aligned nodes perpendicular to the crack front

6.4.1 Effect of enrichment

To demonstrate the effect of enrichment on displacement estimation near the crack front,

a set of radially arranged points on the upper crack surface is selected as presented in Fig.

6.8. The displacement of these points is described using the enrichment function given

by (6.4). For comparison, a simple traction set of boundary conditions is applied where

the results are presented using curves showing: (i) the leading order term in the Williams

expansion (enrichment function), (ii) the analytical solution for the crack opening dis-

placement of a penny shaped crack in an infinite domain, and (iii) the difference between

(i) and (ii), which is required as the contribution from the shape function terms. Fig.

6.9 shows the contribution from the last term in Eqn. (6.4) is very small near the crack

front, and that the displacements are calculated mainly by the first term. However, the

last term in Eqn. (6.4) becomes more significant in the calculation of total displacement

when moving away from the crack front. This can be explained as the first term of (6.4) is

an asymptotic solution giving the best results near the crack front. This example demon-

strates the need to include the second term in Eqn. (6.4), as it can capture displacements

far from the crack front, and non-zero displacement of the crack tip.
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Figure 6.9: Displacement behaviour near the crack front

6.4.2 Pure mode I

A cube with a central penny shaped crack can be studied to demonstrate the accuracy of

the direct method. Figure 6.10 shows the stresses applied to upper and lower surfaces of

the cube; h is the cube side length and a is the radius of the crack where h/a = 40. This

example does not have an exact solution; however a small crack compared to the cube is

considered allowing for the use of the infinite domain solution. The exact solution for an

infinite domain as given by [142], can be calculated as KIo = 2
π
σ
√
πa. Fig. 6.11 presents

normalised results showing a very accurate estimation of SIF for mode I when the direct

method is used. A slight improvement in error can be noticed when the enriched DBEM

is used with the J-integral.

The obtained displacement at the crack surfaces has been studied to demonstrate the

effect of the enrichment utilisation on the displacement calculation. Therefore, the nodal

displacements at a two-dimensional cross-section at constant y have been considered. Fig.

6.12 shows the determined displacement at the crack surfaces by enrichment implementa-

tion. In addition, the figure represents the exact solution for a penny shaped crack in an
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Figure 6.10: Penny shaped crack in large cube
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Figure 6.11: A comparison of mode I SIF for penny shaped crack
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infinite domain [142] for comparison. The use of enrichment has improved the accuracy of

estimated displacements and a good agreement can be seen with the exact displacement.

Moreover, by focusing on the last two points at the crack front on the upper and lower

crack surfaces, it can be observed that the use of displacement constraint has closed the

crack opening displacement which allows for the direct evaluation of SIFs. Furthermore,

investigation of the unenriched elements at the centre of the crack shows an improvement

in accuracy by just applying the enrichment to elements adjacent to the crack front.

Fig. 6.13 presents the determined displacement at the crack surfaces by conventional

DBEM and the exact displacement for comparison. The effect of the crack tip singularity

can be noticed on nodal displacements near the crack front, whereas the calculated dis-

placements become close to the exact displacements near the crack centre. Moreover, by

focusing on the last two points at the crack front on the upper and lower crack surfaces,

the crack opening displacement can be observed. Therefore, the existence of the crack

opening displacement prevents the direct evaluation of SIFs and a postprocessing method

is required.

6.4.3 Number of enriched elements

Unlike in the Partition of Unity Method, in the enrichment technique presented here

the enrichment functions are not associated with nodal degrees of freedom. Moreover,

the implemented method provides freedom to increase the number of enriched elements

without increasing the DOFs, since the additional degrees of freedom K̃I , K̃II and K̃III

are associated with the number of points required at the crack front. Therefore, the new

DOFs are limited to three per each point required at the crack front. For these enriched

elements (on the crack surfaces), the displacement is approximated by the enriched form

of the displacement equation, as given by (6.4). It has been observed that, the number of

enriched elements has a significant effect on the results, both when the J-integral is used

to determine stress intensity factors and when the directly calculated K̃I is used. Hence,

a cube with central penny shaped crack similar to the example used in pure mode I (Sec.

6.4.2). In this example, a number of enriched elements have been used to demonstrate
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Figure 6.12: A 2D cross-section of the crack surface displacements obtained by enrichment
implementation

Figure 6.13: A 2D cross-section of the crack surface displacements obtained by conven-
tional DBEM
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Figure 6.14: A comparison of normalized mode I SIF for different number of enriched
elements

the impact on the accuracy of the results. Figure 6.14 shows a reduction in error for cases

when a greater number of the elements at the crack surface are enriched. It apparent that

optimum accuracy can be achieved by enriching all the elements at crack surface. For

this reason, all the results aside from this example, are obtained for models in which all

suitable elements (elements with a perpendicular aligned nodes to the crack front) at the

crack surfaces are enriched.

6.4.4 Order of extrapolation for the tying constraint

The tying constraint enforces the continuity of displacement at points where SIFs are

required at the crack front. It can be expressed through the equality of the displacements

at these points as found by extrapolation of valid nodal displacements (nodes located

on a virtual line that perpendicular to the crack front) over the upper and lower crack

surfaces. Constraint can be achieved by basing the extrapolation equation given by (6.13)

on a sufficient number of the nodes on those elements touching the crack front. However,

it is possible to use a higher order Lagrangian extrapolation that considers the nodes on

adjacent elements. In this example, a cube with a penny shaped crack, as presented in
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(a) case 1 : uniform mesh (b) case 2 : non-uniform mesh

Figure 6.15: A penny shaped crack with different types of mesh

Fig. 6.10; h is the cube side length and a is the radius of the crack where h/a = 40.

Whereas, two cases were considered for the crack mesh to show the effect of the number

of nodes used for the constraint.

The first case consists of an equal distance between the nodes on the crack surface,

as shown in Fig. 6.15a. In this case, the maximum number of nodes that can be used

for the constraint is 9, due to the rise of singularity in the extrapolation polynomial.

Figure 6.16 compares of the mode I stress intensity factor obtained via different orders

of extrapolation. It compares the results using 3 nodes to extrapolate displacement to

instances when 9 nodes are used. These will be the 9 nodes nearest to the crack front on

each crack surface. Improved results can be seen when increasing the order used for the

extrapolation of the displacement results to the crack front. It is tempting to suggest using

even higher order Lagrangian polynomials; however, this would then impose restrictions

on the distance between the nodes, due to Rung’s phenomenon.

In the second case, an non-uniform mesh has been used for elements on the crack sur-

faces, as presented in Fig. 6.15b. This allows utilization of a higher order Lagrangian

extrapolation for displacement constraint. In this case, a number of nodes were used

for the displacement constraint, including 3, 9 and 15 nodes on the enriched elements.
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Figure 6.16: Mode I SIF for penny shaped crack with uniform mesh

Figure 6.17 shows the mode I stress intensity factor was obtained from different orders of

extrapolation. The results presented in the figure show that an improvement in terms of

accuracy arises when increasing the order of the polynomial to extrapolate the displace-

ment. In addition, the effect of mesh refinement on the crack front can be seen when

comparing the displacement constraint using 3 and 9 nodes, according to the findings

from the two cases. Fig. 6.18 shows normalised mode I stress intensity factor when 9

nodes are used for displacement constraint in both cases.

Improved accuracy can be achieved when increasing the order used for the extrapolation

of the displacement, as confirmed by the results of the two cases were examined. However,

increasing the number of nodes used for displacement constraint imposes restrictions on

the mesh type. In addition, the effect of the non-uniform mesh can be observed on the

convergence rate of KI as shown in Fig. 6.18. Therefore, the effect of the non-uniform

mesh needs to be considered when the number of nodes used for displacement constraint

is increased. It can be seen from the results a good accuracy can be achieved by using

9 nodes for displacement constraint and without the need for using non-uniform mesh.

Finally, the restrictions imposed by the non-uniform mesh must be balanced with obtained
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Figure 6.17: Mode I SIF for penny shaped crack with non-uniform mesh
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Figure 6.19: A cube with a central penny shaped crack

improvement.

6.4.5 Variation of SIFs along the crack front

Typically, KI is constant along the crack front when considering an infinite domain.

However, in the case of a finite domain, a slight variation is apparent in the value of

KI , which rises because of the geometrical effects. These differences can be captured by

increasing the number of points at which SIFs need to be evaluated at the crack front. Two

finite geometries have been considered to study the variation of mode I stress intensity

factor along the crack front. The first example is a cube, with a central penny shaped

crack. Fig. 6.19 shows the stresses applied to the upper and lower surfaces of the cube; a

is the radius of the crack and h is the cube side length where h/a = 4. In this example, the

cube’s corners are located at angles π/4, 3π/4, −π/4 and −3π/4. The results presented in

Fig. 6.20 show the variation in KI for different mesh refinements. Clearly, increasing the

number of points at the crack front provides a more accurate evaluation of the variations

in SIFs.
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Figure 6.20: Mode I SIF variation for cube with penny shaped crack
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Figure 6.21: A Cylinder with a penny shaped crack

The second example considers a cylinder with a penny shaped crack, as presented in

Fig. 6.21. The cylinder has a radius d and height of 2h, where the height to radius ratio

is h/d = 0.5. Whereas, the crack length a relates to the cylinder radius d by a ratio

of a/d = 0.25. In this example, the crack was shifted from the centre by C, where C

can be calculated as C = d/6. The Poisson ratio is ν = 0.3 and the stress is applied at

the cylinder’s upper and lower surfaces. Fig. 6.22 represents the variation in the value

of KI along the crack front for a variety of mesh refinements. It can be observed that

in cases when non-smooth geometries or when unsymmetrical problems are considered,

more points are required at the crack front to capture the variation in the mode I stress

intensity factor.

6.4.6 On the computational cost

The computational cost when employing enrichment was also examined. Since the com-

putational cost associated with each element is cumulative, it rises as the number of

enriched elements increases. However, sufficient accuracy can be achieved by using fewer

elements when employing enrichment. The additional computational costs for evaluating

SIFs was calculated. The code has been run on a dual quad-core Intel Xeon platform
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Figure 6.22: Mode I SIF variation for cylinder with penny shaped crack
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Figure 6.23: A comparison of the required additional computational cost to evaluate SIFs

X5570 @2.93GHz configured with 24 GB of RAM, running under a 64-bit Microsoft op-

erating system. Fig. 6.23 shows the percentage of the additional cost associated with

both the J-integral and enrichment when applied to all the crack surface elements. In

this example, the number of points used on the J-integral path remains constant and

unaffected by the refinement of the mesh on the boundaries. In addition, when the mesh

is refined, the J-integral must be evaluated at more locations at the crack front. However,

the number of enriched elements increases as a result of the refinement of the mesh on

the boundaries. Notably the cost for evaluating SIFs at a specific location at the crack

front using enrichment is less than when using the J-integral. Arguably the cost of the

J-integral can be reduced by evaluating it at fewer locations at the crack front. However,

as mentioned in Sec. 6.4.5 there are instances when the variation of SIFs needs to be

captured accurately. Whereas, the number of enriched elements can be reduced by ap-

plying enrichment sufficiently to elements adjacent to the crack front while applying the

conventional approximation to the remaining elements, with a slight impact on accuracy.
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6.5 Conclusion

This chapter presents a three-dimensional extended dual boundary element method, with

enrichment functions based on the leading order term in the Williams expansions. The

enrichment was applied only to elements on the crack surfaces, while other elements

were treated in a conventional fashion. The use of enrichment contributes three degrees

of freedom to each location at the crack front, where K̃λ
I , K̃λ

II and K̃λ
III need to be

evaluated. It has been confirmed that enforcement of displacement continuity at the

crack front provides sufficient auxiliary equations to accommodate the additional degrees

of freedom arising because of enrichment. This yields a square system that can be solved

to evaluate SIFs directly without any requirement for postprocessing calculations such as

the J-integral. The additional columns holding the coefficients related to K̃I , K̃II and

K̃III are inserted into the last part of matrixH to reduce the effect on the system matrices

when implementing enrichment. Whereas the terms related to traction remain unchanged,

since crack surfaces are considered traction-free. An appropriate scaling factor is required

as the use of enrichment increases the system’s conditioning number. The utilisation

of enrichment does not increase the degree of singularity, and a subtraction technique

can be used to evaluate enriched terms. Also, a similar approach is used to determine

conventional terms that contain strongly singular and hypersingular integrals.

The proposed enrichment approach was used to evaluate SIFs directly without any

requirement for postprocessing calculations such as the J-integral. The results were im-

proved by increasing the number of enriched elements which can be achieved without

increasing the size of the system, with negligible additional computational costs. In

addition, accuracy can be improved by utilising additional nodes when applying the dis-

placement constraint. The method has been successfully used to model a penny shaped

central crack under pure mode I conditions. A comparison of the displacements obtained

using the enrichment function terms was undertaken to show the important of including

the nodal displacement. In addition, the results showed the directly determined SIFs were

accurate when compared with the J-integral method, even when using the J-integral with
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enriched DBEM.



Chapter 7

Conclusion

As outlined in the preceding chapters the need for a tool to provide an accurate evaluation

of SIFs, prompted interest in devising numerical methods capable of modelling fracture

problems efficiently and accurately. To achieve this goal, this thesis introduced a direct

approach to evaluating SIFs for two-dimensional and three-dimensional crack problems

in this thesis. Furthermore, by enforcing continuity at the crack tip, a novel auxiliary

equation was applied to yield a square system in two-dimensions. In addition, a new

formulation was introduced to demonstrate the enrichment of DBEM in 3D, including the

implementation of enriched displacements and the treatment of singular integrals. The

proposed approach utilised the enrichment of the DBEM, to capture crack tip singularity,

using the asymptotic solution near the crack tip in the form of the leading order term

in the Williams expansions for displacement. The implementation of this approach can

be achieved by applying minor changes to promote easy integration with a conventional

DBEM code.

For crack problems in two-dimensions, enrichment functions are introduced to the ap-

proximation of displacements for elements on the crack surface. Once an enriched form of

displacement is substituted into the DBIE and TBIE, an enriched dual boundary element

method is achieved, that can be applied to cracks with coincident crack surfaces. However,

the introduction of enrichment functions to the system prompts the need for additional

equations to yield a square system that is able to solve the newly added unknowns. The

– 153 –
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additional equations are produced by forcing the continuity of displacements at the crack

tip. These procedures are outlined in Chapter 5 where an enriched displacement approx-

imation and the associated additional degrees of freedom are stated. The method is then

applied to various types of cracks to verify accuracy and determine factors that could

affect accuracy. Observable remarks for cracks in two-dimensions are listed as key points

below:

• Enrichment terms are inserted after the latest column of conventional matrix H ,

whereas the right handed side matrix G is not affected by the enrichment.

• The implicit enrichment technique allows for the direct evaluation of stress intensity

factors without the need for a postprocessing method such as the J-integral.

• The use of enrichment introduces only two additional degrees of freedom to the

system per crack tip, and is not affected by the number of enriched elements.

• Additional equations can be generated by forcing displacement continuity at the

crack tip to yield a square system. These equations are straightforward in imple-

mentation and cheap to calculate.

• Enrichment of all crack surface elements shows improvement in the accuracy of

SIFs. In addition, further improvements to accuracy can be achieved by increasing

the number of nodes used for displacement constraints.

• The use of enriched DBEM with J-integral yields results that are more accurate

than direct SIFs. However, this comes at the cost of an additional postprocessing

calculation.

A similar concept to that used with two-dimensional problems has been applied to

cracks in three-dimensions. the literature confirms that, the crack tip asymptotic solution

is valid for cracks in three-dimensions when considering a perpendicular disc to the crack

plane. Therefore, the leading order term in the Williams expansions for displacement has

been utilised to enrich the displacement approximations for three-dimensional cracks. An



155

outline of how to extend the method to three-dimensions has been presented in Chapter 6.

A penny shaped crack has been considered to verify the method accuracy. The observed

remarks are listed as key points, as follows:

• The matrix assembly in three-dimension is similar to that used for two dimensions

cracks where the enrichment entries are added after the last column of the conven-

tional H matrix.

• The number of added degrees of freedom depends on the number of nodes at the

crack front where the stress intensity factor for modes I, II and III needs to be

evaluated.

• Additional equations can be generated by forcing displacement continuity at the

crack front. However, the displacement constraints in three-dimensions require a

sufficient number of nodes to be arranged in a perpendicular way to the crack front.

• Since the displacement calculated by the enrichment function is associated with

local coordinates with the origin at the crack tip, a rotation matrix must be used

to transfer this displacement to global coordinates.

• For a horizontal crack consisting only of pure mode I, the direct method can evaluate

stress intensity factor for mode I with remarkable accuracy without the need for a

postprocessing technique.

• The direct evaluation of stress intensity factor can be extended to assess SIFs for

mixed mode cracks.

The enrichment approach presented in this thesis can be achieved by applying enriched

displacement approximation to elements that are adjacent to the crack tip, which allows

for remaining elements to be handled in a conventional manner. This technique provides

flexibility, allowing the same code to be employed with enrichment or without enrichment.

Moreover, the use of the dual boundary element method enables crack problems with

coincident surfaces to be modelled in a single domain. However, the implementation of
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DBEM increases the integral singularity degrees that imply the need for an appropriate

method to be applied to strongly singular and hypersingular integrals. On the other hand,

the enrichment equations do not affect the degree singularity. Although they need to be

expanded to subtract the singularity (when considering apply Guiggiani method) since

they are functions of the intrinsic coordinates (ξ1, ξ2). In addition, it should be noted

that a suitable scale factor needs to be applied to the enrichment entries in matrix H

since the value of these entries is very small in comparison with the entries associated

with conventional terms.

Finally, the presented approach has the potential for further application and improve-

ment, as summarised in the following points:

• Since the direct approach allows SIFs to be evaluated directly without the need for

the postprocessing method. It is clear that the application of the method to crack

propagation will reduce computational costs, where SIFs need to be updated as

cracks advance through the material. In addition, the main advantage of using the

boundary element method is to include the newly added elements to the system by

each crack propagation step by calculating only rows and columns that correspond

to those additional elements.

• For two-dimensional crack problems the approach was extended to anisotropic ma-

terials by [102] to investigate enrichment functions embedded into the BEM formu-

lation. The enrichment functions were obtained using the Stroh formalism; a concise

formulation that is dependent only on material properties. In further developments,

this can be applied to anisotropic materials in three-dimensions.

• The XBEM approach described in this thesis could be further accelerated by using

the Fast Multipole Method (FMM) to provide a powerful solution. In addition, the

XBEM can be accelerated by Adaptive Cross Approximation (ACA). This allows

parts of the system matrix to be approximated without the determination of the

fundamental solution.
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• It is possible to extend the XBEM in three-dimensions to regions where the cracks

break out at the boundary surface. This will require a careful handling of the

enrichment at the higher order singularity at the breakout point, and also some

enrichment of the elements on the external surface. This latter enrichment for

three-dimensional XBEM could look very similar to the enrichment in 2D XFEM.
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Appendix A

Elastic Analysis

A.1 Basic equations of elasticity

Consider an element volume of a loaded body under equilibrium conditions in a three-

dimensional domain, as presented in Fig. A.1. Here, the stress acting on the element can

be defined by six stress components, which can be represented in tensor notation as σij

where i, j = x, y, z. Such that, σij is expressing a stress in j direction, which is acting on

a surface defined by a normal in i direction. It is convenient to note that, the stresses are

symmetry as σij = σji. The equilibrium equation for a body subjected to external forces

and body forces can be written in tensor form as,

∂σii
∂xi

+
∂σij
∂xj

+
∂σik
∂xk

+ bi = 0 (A.1.1)

where bi denotes body forces. The equation (A.1.1) can be written in compact form to

describe i 6= j 6= k as,

σij,j + bi = 0 (A.1.2)

To introduce strain, we must consider a small deformation where strain εij is defined in

terms of displacements as,

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(A.1.3)

– 175 –
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Figure A.1: Stress components on an infinitesimal element

where ui is the displacement in i direction. The compatibility equations of strain can be

expressed as,

∂2εii
∂x2

j

+
∂2εjj
∂x2

i

− 2
∂2εij
∂xi∂xj

= 0 (A.1.4a)

∂εij
∂xj∂xk

− ∂

∂xi

(
−∂εjk
∂xi

+
∂εik
∂xj

+
∂εij
∂xk

)
= 0 where i 6= j 6= k (A.1.4b)

Strains and stresses relationship is defined by Hooke’s law and can be expressed for an

elastic and isotropic material as,

εxx =
1

E
(σxx − ν(σyy + σzz)) , εxy =

1 + ν

E
σxy

εyy =
1

E
(σyy − ν(σxx + σzz)) , εyz =

1 + ν

E
σyz

εzz =
1

E
(σzz − ν(σxx + σyy)) , εzx =

1 + ν

E
σzx (A.1.5)
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where E is the Young’s modulus and ν is the Poisson’s ratio. Similarly, stresses can be

expressed in terms of strain as,

σxx = λe+ 2µεxx , σxy = 2µεxy

σyy = λe+ 2µεyy , σyz = 2µεyz

σzz = λe+ 2µεzz , σzx = 2µεzx (A.1.6)

where the shear modulus µ is defined as,

µ =
E

2(1 + ν)
(A.1.7)

the Lamé constant is given by,

λ =
2µν

2(1− 2ν)
(A.1.8)

and the volumetric strain e is defined as,

e = εxx + εyy + εzz (A.1.9)

Further simplification of the elasticity equations can be made by considering two-dimensional

plane strain or plane stress. The plane strain state is applicable to thick plates since

geometry and loading do not change significantly in the z direction. Furthermore, dis-

placement uz is zero, which impose the strain components in z direction as zero, such

that εzz = εzx = εzy = 0. When applying these assumptions, the strains for plane strain

are given by,

εxx =
1− ν2

E

(
σxx −

ν

1− ν
σyy

)
εyy =

1− ν2

E

(
σyy −

ν

1− ν
σxx

)
εxy =

1 + ν

E
σxy (A.1.10)
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The plane stress states can be applied to a thin plate, where stresses in the z direction do

not reach any significant value. Consequently, the stresses components in z direction are

assumed to be zero, such that σzz = σzx = σzy = 0. For plane stress strain components

are given by,

εxx =
1

E
(σxx − νσyy)

εyy =
1

E
(σyy − νσxx)

εxy =
1 + ν

E
σxy

εzz = − ν

1− ν
(εxx + εyy) (A.1.11)

Commonly plane strain is considered a general case and Young’s modulus, and Poisson’s

ratio are modified for the case of plane stress. The modified Young’s modulus is defined

as,

E ′ = E plane strain

E ′ =
E(1 + 2ν)

(1 + ν)2
plane stress (A.1.12)

where E ′ denotes the modified Young’s modulus. Similarly, modified Poisson’s ratio is

expressed as,

ν ′ = ν plane strain

ν ′ =
ν

1 + ν
plane stress (A.1.13)

where ν ′ represents the modified Poisson’s ratio.

It is convenient to illustrate how stresses are related to traction in this section. Consider

a body subjected to stress and under equilibrium conditions; if we cut through to create a

surface (see Fig. A.2) defined by the normal n; then, by state of equilibrium, the tractions

relate to the stresses by,
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Figure A.2: Traction components acting on the surface of an element

tx = σxxnx + σxyny + σxznz

ty = σyxnx + σyyny + σyznz

tz = σzxnx + σzyny + σzznz (A.1.14)

and in tensor form as,

ti = σijnj (A.1.15)

where ti is traction in i direction, and nj is the unit normal in j direction.

A.2 Airy stress functions

Several solutions to plane stress and plane strain problems can be resolved by utilising

a particular stress function technique. The Airy stress function is a widely employed

technique to reduce the general formulation of a problem to a single governing equation

which can be expressed by a single unknown. Furthermore, Airy [150] combines Eqns.

(A.1.2),(A.1.3) and (A.1.10) into one function, well known as the Airy stress function.

Consider, a cartesian coordinate (x, y), the relationships of the Airy stress function Φ and

stresses can be expressed as,
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σxx =
∂2Φ

∂y2
, σyy =

∂2Φ

∂x2
, σxy = − ∂2Φ

∂x∂y
(A.2.16)

Similarly, a polar cordinate (r, θ) can be expressed as,

σr =
1

r

∂Φ

∂r
+

1

r2

∂2Φ

∂θ2
, σθ =

∂2Φ

∂r2
, σrθ = − ∂

∂r

[
1

r

∂Φ

∂θ

]
(A.2.17)

where σr , σθ denote radial stress and tangential stress respectively, and σrθ is the

in-plane shearing stress. The substitution of equation (A.2.16) into equations (A.1.4a),

will result in a differential equation, which can be written as,

∂4Φ

∂x4
+ 2

∂4Φ

∂x2∂y2
+
∂4Φ

∂y4
(A.2.18)

Now, we introduce the harmonic operator, which can be defined as,

∇2 =
∂2

∂x2
+

∂2

∂y2
(A.2.19)

Likewise in polar coordinates, this can be written as,

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
(A.2.20)

Finally, the differential equation (A.2.18) can be found as,

∇4Φ = 0 (A.2.21)

Equation (A.2.21) is a recognised form of bi-harmonic equation.

A.3 2D rotation matrix

In general, the rotation of a coordinate system into another can be achieved using an

orthogonal matrix. In two-dimensions, the basic rotation matrix around the z-axis, relates

components of a vector in one coordinate frame and that in another frame. Therefore,
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the displacement components expressed by Williams expansion in the (n, b) local system

are related to nodal displacements in the (x, y) global system by

R =

 cosα − sinα

sinα cosα

 (A.3.22)

where R is the so-called rotation matrix and α is the angle between the two frames as

defined in Fig. 5.1. It should be noted that angle α is determined by the right hand rule.

Hence, α is positive if local axes (n, b) are rotated counterclockwise, and negative if the

local axes are rotated clockwise.

A.4 3D rotation matrix

In three-dimensional cracks, displacements are calculated by Williams expansions with

respect to local coordinates (n, b, t) can be transformed to global coordinates (x, y, z) by

using an appropriate rotation matrix. The rotation matrix for α about the z-axis can be

written as,

Rz(α) =


cosα − sinα 0

sinα cosα 0

0 0 1

 (A.4.23)

and the rotation matrix for ω about the y-axis can be expressed as,

Ry(ω) =


cosω 0 sinω

0 1 0

− sinω 0 cosω

 (A.4.24)
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similarly, the rotation matrix for ϕ about the x-axis can be expressed as,

Rx(ϕ) =


1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ

 (A.4.25)

Finally, the rotation matrix around z, y and x can be achieved by

R = RzRyRx (A.4.26)

It is important to note that, the local system (n, b, t) is left handed, whereas the global

system (x, y, z) is right handed. Consequently, the coordinate frame (n, b, t) must be

flipped before the application of any rotational operations.



Appendix B

BEM Supplementary Material

B.1 Limiting process for the kernel Tij

In this section, the jump term αij which associated with the singularity exhibited in

the kernel Tij for two-dimensional and three-dimensional problems are obtained. If we

consider a smooth 2D boundary as illustrated in Fig. B.1, and the distance between the

source point x′ and the field point x on the arc S∗ε is defined as r = |x′ − x|, This can be

presented in a polar coordinate system as,

Figure B.1: Semi-circular arc defined on the boundary for limiting process.

– 183 –
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Figure B.2: Hemisphere surface defined on the boundary for limiting processes.

r = ε cos θ + ε sin θ

dS∗ε = εdθ

∂r

∂n
= 1

r,x = cos θ , r,y = sin θ (B.1.1)

When utilising the relations in Eqns. (B.1.1), the constant αxx can be determined as,

αxx =
−1

4π(1− ν)
lim
ε→0

∫
S∗ε

1

ε
[(1− 2ν) + 2r,xr,x]εdθ

=
−1

4π(1− ν)

∫ π

0

[(1− 2ν) + 2 cos2 θ]dθ = −1

2
(B.1.2)

and in a similar manner αxy, αyx and αyy can be obtain as,

αxy =
−1

4π(1− ν)

∫ π

0

2 sin θ cos θdθ = 0 (B.1.3)

αyx =
−1

4π(1− ν)

∫ π

0

2 cos θ sin θdθ = 0 (B.1.4)

αyy =
−1

4π(1− ν)

∫ π

0

[(1− 2ν) + 2 sin2 θ]dθ = −1

2
(B.1.5)

Whereas, the three-dimensional problem integral is considered over a hemisphere centred

at point x′ as shown in Fig. B.2. this can be presented in a spherical coordinate system

as,
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r = ε cosφ cos θ + ε sinφ cos θ + ε sin θ

dS∗ε = ε2 sin θdθdφ

∂r

∂n
= 1

r,x = cosφ cos θ , r,y = sinφ cos θ , r,z = sin θ (B.1.6)

Using the relations in Eqns. (B.1.6), the constant αxx can be obtained as,

αxx =
−1

4π(1− ν)

∫ 2π

0

∫ π/2

0

1

ε2
[(1− 2ν) + 3 cos2 φ cos2 θ]ε2 sin θdθdφ

= −1

2
(B.1.7)

and in similar manner to the αxx, we can obtain αxy, αyx and αyy, and in general αij =

−δ/2 as confirmed by the two-dimensional solutions.

B.2 Expansion of 2D singular integrals

The method proposed by [134] is used in this thesis to evaluate strongly singular and

hypersingular integrals; since, it allows the inclusion of enriched terms without adding

complexity to the integrals. It can be seen that, all hypersingular integrals involving the

multiplication of the kernel and the Jacobian of transformation. In the case of enriched

integrals, these terms are multiplied by enrichment functions, whereas for unenriched

elements the terms are multiplied by the shape functions. However, all the terms required

to determine enriched and unenriched integrals, and which are given by Eqns. (5.16) and

Eqns. (5.17) respectively , are presented in this section.

If we allow the components of the source and field points to be denoted as x′i and xi

respectively, then the Taylor series expansion about the singular point ξ′ can be expressed

as,



B.2. Expansion of 2D singular integrals 186

xi − x′i =
dxi
dξ

∣∣∣∣
ξ=ξ′

(ξ − ξ′) +
d2xi
dξ2

∣∣∣∣
ξ=ξ′

(ξ − ξ′)2

2
+ · · ·

= Aiδ +Biδ
2 +O(δ3) (B.2.8)

where the derivative of xi with respect to the local coordinate ξ can be achieved by taking

the derivative of the shape functions given by (B.4.42), which yield,

dxi
dξ

=
dN ā

dξ
xāi (B.2.9a)

d2xi
dξ2

=
d2N ā

dξ2
xāi (B.2.9b)

Using similar notations to those given in source [134], the constants A and C are

expressed as,

A =

√√√√ 2∑
i=1

A2
i (B.2.10a)

C =

2∑
i=1

AiBi (B.2.10b)

The derivative r,i is given by,

r,i =
Ai
A

+

(
Bi

A
− AiC

A3

)
δ +O(δ2)

= di0 + di1δ +O(δ2) (B.2.11)

and the term 1/r2 is expressed as,

1

r2
=

1

A2δ2
− 2C

A4δ
+O(δ2)

=
Cr2
δ2

+
Cr1
δ

(B.2.12)
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The Jacobian of transformation is given by J(ξ) =
√
J2
x(ξ) + J2

y (ξ) . However, it is

useful to also have the Jacobian expressed in terms of its components as,

Jx = nxJ = Ay + 2Byδ +O(δ2) (B.2.13a)

Jy = nyJ = Ax + 2Bxδ +O(δ2) (B.2.13b)

which can also be written in general form as,

Ji = Ji0 + Ji1δ +O(δ2) (B.2.14)

The constant Ck can be written in the case of the kernel Skij as,

Ck =
µ

2π(1− ν)
(B.2.15)

Since, the required components for expanding the terms SkijJ(ξ) are obtained, it can

be written as,

Skij(x
′, x(ξ))J(ξ) = Ck

[
Cr2
δ2

+
Cr1
δ

]
(F0 + F1δ) (B.2.16)

where F0 is given by,

F0(ξ′) = 2ν(Ji0dj0dk0 + Jj0di0dk0) + (1− 2ν)(2Jk0di0dj0 + δikJj0 + δjkJi0)

− (1− 4ν)δijJk0 (B.2.17)

and F1 can be written as,

F1(ξ′) = 2M [(1− 2ν)δijdk0 + ν(δikdj0 + δjkdi0)− 4di0dj0dk0]

+ 2ν [Ji0(dj0dk1 + dj1dk0) + Ji1dj0dk0 + Jj0(di0dk1 + di1dk0) + Jj1di0dk0]

+ (1− 2ν) [2(Jk0(di0dj1 + di1dj0) + Jk1di0dj0) + δikJj1 + δjkJi1]

− (1− 4ν)δijJk1 (B.2.18)
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where M is defined as,

M = dx0Jx1 + dy0Jy1 + Jx0dx1 + Jy0dy1 (B.2.19)

The remaining terms in the case of enriched integral, are enrichment functions which

can be expanded as,

Rjq(α)ψλIq(ξ) = Rjq(α)ψλIq(ξ
′) + Rjq(α)

dψλIq
dξ

∣∣∣∣∣
ξ=ξ′

(ξ − ξ′) + · · · (B.2.20)

= Rjq(α)ψλIq0(ξ′) +Rjq(α)ψλIq1(ξ′)δ +O(δ2) (B.2.21)

whereas in the case of an unenriched integral, the remaining terms are the shape functions

which can be written as,

N ā = N ā(ξ′) +
dN ā

dξ

∣∣∣∣
ξ=ξ′

(ξ − ξ′) + · · · (B.2.22)

= N ā
0 (ξ′) +N ā

1 (ξ′)δ +O(δ2) (B.2.23)

The substitution of the necessary terms given by (B.2.12), (B.2.15), (B.2.17), (B.2.18),

(B.2.21) and (B.2.23) into equations (5.16) and (5.17) allow the evaluation of hypersin-

gular integrals for both enriched and unenriched elements.

B.3 Expansion of 3D singular integrals

In a similar manner, three-dimensional singular integrals are expanded using the Taylor

series to enable the subtraction of singular terms. Therefore, all the terms required to

evaluate enriched and unenriched integrals, as given by (6.14) and (6.15) are illustrated

here. If the components of the field and the source point locations are expressed as xiand
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x′i then:

xi − x′i = ρ

[
∂xi
∂ξ1

∣∣∣∣
ξ1=ξ′1

cosφ+
∂xi
∂ξ2

∣∣∣∣
ξ2=ξ′2

sinφ

]

+ ρ2

[
∂2xi
∂ξ2

1

∣∣∣∣
ξ1=ξ′1

cos2 φ

2
+

∂2xi
∂ξ1∂ξ2

∣∣∣∣
ξ=ξ′

cosφ sinφ

+
∂2xi
∂ξ2

2

∣∣∣∣
ξ2=ξ′2

sin2 φ

2

]
+ · · ·

= ρAi(φ) + ρ2Bi(φ) +O(ρ3) (B.3.24)

where the derivative of xi with respect to the local coordinates ξ1 and ξ2 are given by

∂xi
dξ

=
∂N ā

∂ξ
xāi

∂2xi
dξ2

=
∂2N ā

∂ξ2
xāi

∂2xi
∂ξ1∂ξ2

=
∂2N ā

∂ξ1∂ξ2

xāi (B.3.25)

where the shape function derivatives are presented in Sec. B.4. Additionally, the constants

A and C in the three-dimensions are defined as,

A =

√√√√ 3∑
i=1

(Ai)2 (B.3.26a)

C =
3∑
i=1

AiBi (B.3.26b)

Using Eqn. (B.3.24), the derivative of r in i direction can be expressed using the Tailor

series as,

r,i =
Ai
A

+ ρ

(
Bi

A
− AiC

A3

)
+ · · ·

= di0(φ) + ρdi1(φ) +O(ρ2) (B.3.27)
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in a similar way, the term r−3 is given by

1

r3
=

1

A3ρ3
− 3C

A5ρ2
+O

(
1

ρ

)
=

Cr2
ρ3

+
Cr1
ρ2

+O

(
1

ρ

)
(B.3.28)

If the relationship between the Jacobian of transformation and normals (where Ji =

niJ) is considered, then the Jacobian components can be written as,

Ji = Ji(ζ) + ρ

[
∂Ji
∂ξ1

∣∣∣∣
ξ1=ξ′1

cosφ+
∂Ji
∂ξ2

∣∣∣∣
ξ2=ξ′2

sinφ

]
+ · · ·

= Ji0 + ρJi1(φ) +O(ρ2) (B.3.29)

At this point, the derivative of r in normal diction can be expressed as,

dr

dn
= d0 · J0 + ρ(d1 · J0 + d0 · J1)

= M0 + ρM1(φ) +O(ρ2) (B.3.30)

where M0 = 0, since AiJi0 ≡ 0. The constant Ck for the fundamental solution Skij, as

given by (4.33), can be expressed as,

Ck =
µ

4π(1− ν)
(B.3.31)

By utilising Eqns. (B.3.31), (B.3.29), (B.3.28) and (B.3.27), the terms SkijJ(ξ1, ξ2) can

be expressed as,

Skij(x
′, x(ξ))J(ξ) = Ck

[
Cr2
ρ2

+
Cr1
ρ

]
(F0 + ρF1) (B.3.32)

where F0 is defined as,

F0(φ) = 3ν(Ji0dj0dk0 + Jj0di0dk0) + (1− 2ν)(3Jk0di0dj0 + δikJj0 + δjkJi0)

− (1− 4ν)δijJk0 (B.3.33)
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and F1 can be written as,

F1(φ) = 3M1 [(1− 2ν)δijdk0 + ν(δikdj0 + δjkdi0)− 5di0dj0dk0]

+ 3ν [Ji0(dj0dk1 + dj1dk0) + Ji1dj0dk0 + Jj0(di0dk1 + di1dk0) + Jj1di0dk0]

+ (1− 2ν) [3(Jk0(di0dj1 + di1dj0) + Jk1di0dj0) + δikJj1 + δjkJi1]

− (1− 4ν)δijJk1 (B.3.34)

In cases where is an enriched element, the enrichment function can be expressed in

Taylor series form as,

ψλIq [r(ξ1, ξ2), θ] = ψλIq(ξ
′
1, ξ
′
2) + ρ

 ∂ψλIq
∂ξ1

∣∣∣∣∣
ξ1=ξ′1

+
∂ψλIq
∂ξ2

∣∣∣∣∣
ξ2=ξ′2

+ · · · (B.3.35)

= ψλIq0 + ρψλIq1(φ) +O(δ2) (B.3.36)

It should be noted that the one-dimensional shape functions used for the interpolation

of SIFs and the rotation matrix are a function of ξ2 only (e.g. flat crack is considered).

Therefore, the rotation matrix can be expanded as,

Rjq = Rjq(ξ
′
2) + ρ

[
∂Rjq

∂ξ2

∣∣∣∣
ξ2=ξ′2

sinφ

]
+ · · · (B.3.37)

= Rjq0 + ρRjq1(φ) +O(ρ2) (B.3.38)

Similarly the one-dimensional shape functions are given by

N f = N f (ξ′2) + ρ

[
∂N f

∂ξ2

∣∣∣∣
ξ2=ξ′2

sinφ

]
+ · · ·

= N f
0 + ρN f

1 (φ) +O(ρ2) (B.3.39)

Finally, the three-dimensional shape functions are expanded around the source point
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as,

N ā = N ā(ξ′1, ξ
′
2) + ρ

[
∂N ā

∂ξ1

∣∣∣∣
ξ1=ξ′1

cosφ+
∂N ā

∂ξ2

∣∣∣∣
ξ2=ξ′2

sinφ

]
+ · · ·

= N ā
0 + ρN ā

1 (φ) +O(ρ2) (B.3.40)

B.4 Shape functions

In BEM, elements are defined by shape functions and nodes. Moreover, the shape func-

tions exhibit a Kronecker delta property and change according to the positions of the

nodes on the element. In the case of a one-dimensional quadratic discontinuous element

the shape functions are given by

N1 =
9

8
ξ(ξ − 3

2
)

N2 = (1− 3

2
ξ)(1 +

3

2
ξ)

N3 =
9

8
ξ(ξ +

3

2
); (B.4.41)

and the first derivative of the shape functions can be expressed as,

dN1

dξ
=

9

4
ξ − 3

2

dN2

dξ
= −9

2
ξ

dN3

dξ
=

9

4
ξ +

3

2
(B.4.42)

In the case of 9-node two-dimensional quadrature element the shape functions can be
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written as,

N1 =
1

4s4
ξ1(ξ1 − s)ξ2(ξ2 − s)

N2 =
1

4s4
ξ1(ξ1 + s)ξ2(ξ2 − s)

N3 =
1

4s4
ξ1(ξ1 + s)ξ2(ξ2 + s)

N4 =
1

4s4
ξ1(ξ1 − s)ξ2(ξ2 + s)

N5 =
1

2s4
(s2 − ξ2

1)ξ2(ξ2 − s)

N6 =
1

2s4
ξ1(ξ1 + s)(s2 − ξ2

2)

N7 =
1

2s4
(s2 − ξ2

1)ξ2(ξ2 + s)

N8 =
1

2s4
ξ1(ξ1 − s)(d2 − ξ2

2)

N9 =
1

s4
(s2 − ξ2

1)(s2 − ξ2
2) (B.4.43)

where s is a parameter defining the position of the node as presented in Fig. B.3, which

equals 2/3 for discontinuous elements and 1 for continuous elements. The first derivative
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Figure B.3: 9-nodes two-dimensional quadrature element

of the shape functions with respect to ξ1 can be written as,

∂N1

∂ξ1

=
1

4s4
(s − 2ξ1)ξ2(s − ξ2)

∂N2

∂ξ1

=
1

4s4
(s + 2ξ1)ξ2(−s + ξ2)

∂N3

∂ξ1

=
1

4s4
(s + 2ξ1)ξ2(s + ξ2)

∂N4

∂ξ1

= − 1

4s4
(s − 2ξ1)ξ2(s + ξ2)

∂N5

∂ξ1

= −2
1

2s4
ξ1ξ2(−s + ξ2)

∂N6

∂ξ1

=
1

2s4
(s + 2ξ1)(s2 − ξ2

2)

∂N7

∂ξ1

= −2
1

2s4
ξ1ξ2(s + ξ2)

∂N8

∂ξ1

= − 1

2s4
(s − 2ξ1)(s2 − ξ2

2)

∂N9

∂ξ1

= −2/s4ξ1(s2 − ξ2
2) (B.4.44)
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Similarly, the first derivative with respect to ξ2 can be expressed as,

∂N1

∂ξ2

= − 1

4s4
ξ1(−s + ξ1)(s − 2ξ2)

∂N2

∂ξ2

= − 1

4s4
ξ1(s + ξ1)(s − 2ξ2)

∂N3

∂ξ2

=
1

4s4
ξ1(s + ξ1)(s + 2ξ2)

∂N4

∂ξ2

=
1

4s4
ξ1(−s + ξ1)(s + 2ξ2)

∂N5

∂ξ2

= − 1

2s4
(s2 − ξ2

1)(s − 2ξ2)

∂N6

∂ξ2

= −2
1

2s4
ξ1ξ2(s + ξ1)

∂N7

∂ξ2

=
1

2s4
(s2 − ξ2

1)(s + 2ξ2)

∂N8

∂ξ2

= −2
1

2s4
ξ1ξ2(−s + ξ1)

∂N9

∂ξ2

=
−2

s4
ξ2(s2 − ξ2

1) (B.4.45)

The second derivative can be obtained by deriving Eqn. (B.4.44) once more with
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respect to ξ1, which can be written as,

∂2N1

∂ξ2
1

= 2
1

4s4
ξ2(−s + ξ2)

∂2N2

∂ξ2
1

= 2
1

4s4
ξ2(−s + ξ2)

∂2N3

∂ξ2
1

= 2
1

4s4
ξ2(s + ξ2)

∂2N4

∂ξ2
1

= 2
1

4s4
ξ2(s + ξ2)

∂2N5

∂ξ2
1

= −2
1

2s4
ξ2(−s + ξ2)

∂2N6

∂ξ2
1

= 2
1

2s4
(s2 − ξ2

2)

∂2N7

∂ξ2
1

= −2
1

2s4
ξ2(s + ξ2)

∂2N8

∂ξ2
1

= 2
1

2s4
(s2 − ξ2

2)

∂2N9

∂ξ2
1

= − 2

s4
(s2 − ξ2

2) (B.4.46)

and deriving Eqn. (B.4.45) once more with respect to ξ2, gives,

∂2N1

∂ξ2
2

= 2
1

4s4
ξ1(−s + ξ1)

∂2N2

∂ξ2
2

= 2
1

4s4
ξ1(s + ξ1)

∂2N3

∂ξ2
2

= 2
1

4s4
ξ1(s + ξ1)

∂2N4

∂ξ2
2

= 2
1

4s4
ξ1(−s + ξ1)

∂2N5

∂ξ2
2

= 2
1

2s4
(s2 − ξ2

1)

∂2N6

∂ξ2
2

= −2
1

2s4
ξ1(s + ξ1)

∂2N7

∂ξ2
2

= 2
1

2s4
(s2 − ξ2

1)

∂2N8

∂ξ2
2

= −2
1

2s4
ξ1(−s + ξ1)

∂2N9

∂ξ2
2

= − 2

s4
(s2 − ξ2

1) (B.4.47)
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Next, deriving Eqn. (B.4.44) with respect to ξ2 or Eqn. (B.4.45) with respect to ξ1,

yields similar results, which can be written as,

∂2N1

∂ξ1∂ξ2

=
1

4s4
(s − 2ξ1)(s − 2ξ2)

∂2N2

∂ξ1∂ξ2

= − 1

4s4
(s + 2ξ1)(s − 2ξ2)

∂2N3

∂ξ1∂ξ2

=
1

4s4
(s + 2ξ1)(s + 2ξ2)

∂2N4

∂ξ1∂ξ2

= − 1

4s4
(s − 2ξ1)(s + 2ξ2)

∂2N5

∂ξ1∂ξ2

= 2
1

2s4
ξ1(s − 2ξ2)

∂2N6

∂ξ1∂ξ2

= −2
1

2s4
ξ2(s + 2ξ1)

∂2N7

∂ξ1∂ξ2

= −2
1

2s4
ξ1(s + 2ξ2)

∂2N8

∂ξ1∂ξ2

= 2
1

2s4
ξ2(s − 2ξ1)

∂2N9

∂ξ1∂ξ2

=
4

s4
ξ1ξ2 (B.4.48)

The above derivatives are essential for the treatment of singular integrals.



Appendix C

Fracture Mechanics Supplementary

Material

C.1 Crack Closure Proof

Let us consider a crack with an initial length of a+∆a and subjected to a load in Mode I,

as illustrated in figure C.1. In this case, it is appropriate to place the origin at a distance

of ∆a from the tip of the crack.

Considering the plate has unit thickness; we can force the crack to close by applying

a sufficient magnitude of stresses to the crack surfaces, with the length of ∆a from the

crack tip. The work required to close the tip of the crack relates to the energy release

Figure C.1: Stress applied to close a crack tip

– 198 –
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rate as,

G = lim
∆a→0

(
∆W

∆a

)
(C.1.1)

where ∆W is the work of crack closure, and is equivalent to the sum of contribution

to work from x = 0 to x = ∆a; so that,

∆W =

∫ x=∆a

x=0

σyyuy(x)dx =

∫ x=∆a

x=0

2
1

2
Fy(x)uy(x)dx (C.1.2)

where uy(x) is the displacement in y direction, as shown in Fig. C.1. Fy and σyy are

the force and the stress in y direction, respectively. A factor of 2 is included because

both crack surfaces are considered in the absolute distance of uy(x). The displacement

for mode I in y direction can be calculated as,

uy =
KI

2µ

√
r

2π
sin

(
θ

2

)[
κ+ 1− 2 cos2

(
θ

2

)]
(C.1.3)

Equation(C.1.3) can be simplified further by considering θ = π,

uy =
(κ+ 1)KI(a+ ∆a)

2µ

√
∆a− x

2π
(C.1.4)

Here, the stress intensity factor at the original of the crack tip is presented by KI(a+

∆a). For the shortened crack, the normal stress needed to close the crack relates to KI

as,

σyy =
KI(a)√

2πx
(C.1.5)

Substitution of equation (C.1.1) to (C.1.5) gives,
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GI = lim
∆a→0

(κ+ 1)KI(a)KI(a+ ∆a)

4πµ∆a

∫ ∆a

0

√
∆a− x

x
dx

=
(κ+ 1)K2

I

8µ
=
K2
I

E ′
(C.1.6)

Equation (2.11) is a general equation for mode I. The same steps described above can

also be used for other modes. In the case of mode II, relevant displacement and closure

stress are ux and τxy, and that for mode III is τyz and uz. A combination of three loading

modes is used to present the energy release rates,

G = GI + GII + GIII =
K2
I

E ′
+
K2
II

E ′
+
K2
III

2µ
(C.1.7)

The energy release rate is a scalar quantity. Hence, stress intensity factors are additive.

However, equation (C.1.7) assumes that the crack is planar and grows in a consistent

shape, whereas mixed-mode cracks do not.

C.2 Williams Expansions Derivation

Since the crack is a special case of Williams problem, as mention in Sec. 2.6. Therefore,

in order to solve this special problem Williams utilised the Airy stress function as Φ(r, θ),

defined in polar coordinates as,

Φ(r, θ) = rλ+1.F (θ) (C.2.8)

where r and θ are the polar coordinates system as defined in Fig. 2.7, and λ and F (θ)

are unknowns as yet unresolved. As shown by [151] the governing equation of linear elas-

ticity problems is the two-dimensional biharmonic equation in terms of function Φ(r, θ).

Accordingly, the differential equation (see Eqn. (A.2.21)) is expressed as,

∇4Φ(r, θ) = ∇2∇2Φ(r, θ) = 0 (C.2.9)
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where the Laplace operator∇2 for the case of polar coordinates is defined in Eqn. (A.2.20).

The substitution of Eqn. (C.2.8) into Eqn. (C.2.9) yields the following ordinary differen-

tial equation, [
d2

dθ2
+ (λ+ 1)2

] [
d2

dθ2
+ (λ− 1)2

]
F (θ) = 0 (C.2.10)

Equation (C.2.10) has a general solution for F (θ), which can be written as,

F (θ) = C1 cos(λ− 1)θ + C2 sin(λ− 1)θ + C3 cos(λ+ 1)θ + C4 sin(λ+ 1)θ (C.2.11)

C1, C2, C3 and C4 are arbitrary constants to be determined later by consideration of the

applied boundary conditions at the edges.

The relationship between the stresses and the Airy stress function is given by Eqn.

(A.2.17). Now, the substitution of (C.2.8) into (A.2.17) yields,

σrr = rλ−1[(λ+ 1)F (θ) + F ′′(θ)] (C.2.12a)

σθθ = rλ−1[λ(λ+ 1)F (θ)] (C.2.12b)

σrθ = −rλ−1[λF ′(θ)] (C.2.12c)

where ′ denotes the derivative of a function. The imposed boundary conditions for traction

free faces of the wedge require the following conditions,

σθθ = 0, σrθ = 0 for θ = ±α, r > 0 (C.2.13)

Respectively, the restrictions on F (θ) can be written as,

F (α) = F (−α) = 0 (C.2.14a)

F ′(α) = F ′(−α) = 0 (C.2.14b)

By assuming λ 6= 0 the conditions (C.2.14) are naturally satisfied by equations (C.2.12b)

and (C.2.12c). Now, the characteristic equation for the problem needs to be determined.
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A system of four simultaneous equations can be generated by applying boundary condi-

tions (C.2.14) into the general form of F (θ), as exhibited in (C.2.11), yielding,

C1 cos(λ− 1)α + C2 sin(λ− 1)α + C3 cos(λ+ 1)α + C4 sin(λ+ 1)α = 0(C.2.15a)

C1 cos(λ− 1)α− C2 sin(λ− 1)α + C3 cos(λ+ 1)α− C4 sin(λ+ 1)α = 0(C.2.15b)

(λ− 1)[−C1 sin(λ− 1)α + C2 cos(λ− 1)α]

+(λ+ 1)[−C3 sin(λ+ 1)α + C4 cos(λ+ 1)α] = 0(C.2.15c)

(λ− 1)[C1 sin(λ− 1)α + C2 cos(λ− 1)α]

+(λ+ 1)[C3 sin(λ+ 1)α + C4 cos(λ+ 1)α] = 0(C.2.15d)

Elementary algebraic operations can be used to separate these equations into two

independent groups of equations, each containing two constants. When the subequations

in (C.2.15) are added then the following results are obtained,

C1 cos(λ− 1)α + C3 cos(λ+ 1)α = 0 (C.2.16a)

C2(λ− 1) cos(λ− 1)α + C4(λ+ 1) cos(λ+ 1)α = 0 (C.2.16b)

Conversely, subtraction of the subequations in (C.2.15) gives,

C2 sin(λ− 1)α + C4 sin(λ+ 1)α = 0 (C.2.17a)

C1(λ− 1) sin(λ− 1)α + C3(λ+ 1) sin(λ+ 1)α = 0 (C.2.17b)

Equations (C.2.16) and (C.2.17) can be presented in a simpler matrix form as,

 cos(λ− 1)α cos(λ+ 1)α

(λ− 1) sin(λ− 1)α (λ+ 1) sin(λ+ 1)α


 C1

C2

 =

 0

0

 (C.2.18a)

 sin(λ− 1)α sin(λ+ 1)α

(λ− 1) cos(λ− 1)α (λ+ 1) cos(λ+ 1)α


 C3

C4

 =

 0

0

 (C.2.18b)
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The determinants of the coefficient matrices in (C.2.18) must be equal to zero in order

to obtain a meaningful solution. After simplification this gives,

sin 2λα = 0 (C.2.19a)

λ sin 2α = 0 (C.2.19b)

Equations (C.2.19) yield the non-trivial solutions to the problem of free-free boundary

conditions at the radial edge of a wedge. Hence, a wedge with apex angle α = π is a

special limiting case, Eqn. (C.2.19) becomes,

sin(2πλ) = 0 (C.2.20)

where the roots of (C.2.20) are given by

λ =
n

2
; n = 0,±1,±2,±3, ..... (C.2.21)

However, some of these roots must be excluded, as they yield unacceptable physical

results regarding the crack problems. Thus, the possible nature of this problem field

needs to be discussed in greater detail. The displacements are unbounded at the origin

when r = 0 for any n < 0, therefore n must have only positive values. Furthermore, an

infinite amount of strain energy is stored in a finite volume in the case of n = 0 ; hence

n = 0 is also rejected. Considering these conditions, the sum of all the terms contains

acceptable eigenvalues when λ = n/2 and n > 0 are included in the general solution.

From Eqn. (C.2.18) a relationship can be established between C1 and C3 also C2 and

C4. It is essential to note that, not all the constants C1, C2, C3 and C4 are independent.

Substituting λ = n/2 and α = π in equation (C.2.18), can provide the results for all

values of n when,

C3 = −n−2
n+2

C1

C4 = −C2

 ;n = 1, 3, 5, .... (C.2.22)
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and also,

C3 = −C1

C4 = −n−2
n+2

C2

 ;n = 2, 4, 6, .... (C.2.23)

Substitution of (C.2.22) and (C.2.23) into the general solution (C.2.11) by setting

λ = n/2 , and then into the Airy stress function (C.2.8); yields,

Φ(r, θ) =
∞∑

n=1,3,5,...

r1+n
2

[
C1

(
cos

[
n− 2

2
θ

]
− n− 2

n+ 2
+ cos

[
n− 2

2
θ

])
+ C2

(
sin

[
n− 2

2
θ

]
− sin

[
n− 2

2
θ

])]
+

∞∑
n=2,4,6,...

r1+n
2

[
C1

(
cos

[
n− 2

2
θ

]
− n− 2

n+ 2
+ cos

[
n− 2

2
θ

])
+ C2

(
sin

[
n− 2

2
θ

]
− sin

[
n− 2

2
θ

])]
(C.2.24)

The symmetric stress field with respect to the crack plane (mode I) can be obtained

by multiplying the even terms by C1. Similarly, the antisymmetric stress field (mode II)

is produced by odd terms involving C2. However, these two types of stress field can be

uncoupled and treated independently according to the principle of superposition. In order

to make use of Eqn. (C.2.24) we recall the relationship between an Airy stress function

and stresses, as expressed in Eqn. (A.2.16). Therefore, expressions for crack tip stresses
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can be obtained by substituting Eqn.(C.2.24) into Eqns. (A.2.16) to give,

σnn =
∞∑
n=

n

2
r
n
2
−1
{
C1n

[(
2 +

n

2
+ (−1)n

)
cos
(n

2
− 1
)
θ +

(n
2
− 1
)

cos
(n

2
− 3
)
θ
]

− C2n

[(
2 +

n

2
− (−1)n

)
sin
(n

2
− 1
)
θ −

(n
2
− 1
)

sin
(n

2
− 3
)
θ
]}

(C.2.25a)

σbb =
∞∑
n=

n

2
r
n
2
−1
{
C1n

[(
2− n

2
− (−1)n

)
cos
(n

2
− 1
)
θ +

(n
2
− 1
)

cos
(n

2
− 3
)
θ
]

− C2n

[(
2− n

2
+ (−1)n

)
sin
(n

2
− 1
)
θ +

(n
2
− 1
)

sin
(n

2
− 3
)
θ
]}

(C.2.25b)

σnb =
∞∑
n=

n

2
r
n
2
−1
{
C1n

[(n
2
− 1
)

sin
(n

2
− 3
)
θ +

(n
2

+ (−1)n
)

sin
(n

2
− 1
)
θ
]

+ C2n

[(n
2
− 1
)

cos
(n

2
− 3
)
θ −

(n
2
− (−1)n

)
cos
(n

2
− 1
)
θ
]}

(C.2.25c)

where n and b denote the local coordinates with the origin at the crack tip. It has

been noticed that including more terms of Eqns. C.2.25, when evaluating stresses near

the crack tips can lead to more accurate results.



Appendix D

Supplementary results

D.1 Pure mode I in two-dimensions

In Sec. 5.4.1, the pure mode I SIFs were studied for case 1 and 2 of an edge crack in

an infinite plate and a finite plate, respectively. The results used to plot Fig. 5.9a and

Fig. 5.9b are presented in this section. The SIFs for case 1 are shown in Table D.1. In

addition, the exact SIF value can be calculated using KI = σ
√
πa = 1.772453850905516×

108Pa
√
m.

Table D.1: SIFs for infinite plate (case 1)

Unenriched XBEM XBEM XBEM

ndof DBEM ndof J-integral Direct K̃I Direct K̃I

J-integral (colloc.) (Tying)
72 1742789905.83 74 1772029158.93 1775593310.28 1771588498.46
132 1753146120.45 134 1772421452.43 1772497708.45 1772431322.75
192 1757957719.29 194 1772446626.50 1772477692.93 1772450806.70
252 1760787045.25 254 1772451154.21 1772478576.89 1772455148.24
312 1762652375.22 314 1772452444.37 1772479096.26 1772456426.92

The SIFs values for a finite plate under tensile load (case 2) which have been used to

plot Fig. 5.9b are shown in Table D.2. The problem considered in case 2 does not have

an exact solution. Therefore, a numerical solution by [5] is used for comparison and to

calculate the errors. The reference numerical solution accurate within 1% and can be

calculated as;

– 206 –
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Table D.2: SIFs for finite plate under tensile load (case 2)

Unenriched XBEM XBEM XBEM

ndof DBEM ndof J-integral Direct K̃I Direct K̃I

J-integral (colloc.) (Tying)
132 53589319.84 134 52999752.18 45031591.82 52793286.99
192 53961286.35 194 53186644.01 47805323.36 52947518.19
252 53899227.78 254 53254300.98 49253347.32 53043363.38
312 53833299.46 314 53284118.03 50113915.05 53102663.92
372 53775818.89 374 53299223.94 50677080.10 53142056.72

KI

Ko

= 1.12− 0.23
a

W
+ 10.6

( a
W

)2

− 21.7
( a
W

)3

+ 30.4
( a
W

)4

(D.1.1)

where, a and W are the crack length and the plate width, respectively. In addition, Ko

can be calculated as Ko = σ
√
πa. The stress intensity factor value that been used to

calculate the error found to be KI = 53173615.53Pa
√
m
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