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Abstract 

 

The start of the digital revolution came through the metal-oxide-semiconductor field-effect 

transistor (MOSFET) in 1959 followed by massive integration onto a silicon die by means of 

constant down scaling of individual components. Digital systems for certain applications require 

fault-tolerance against faults caused by temporary or permanent influence. The most widely used 

technique is triple module redundancy (TMR) in conjunction with a majority voter, which is 

regarded as a passive fault mitigation strategy. Design by functional resilience has been applied to 

circuit structures for increased fault-tolerance and towards self-diagnostic triggered self-healing. 

The focus of this thesis is therefore to develop new design strategies for fault detection and 

mitigation within transistor, gate and cell design levels. 

The research described in this thesis makes three contributions. The first contribution is based on 

adding fine-grained transistor level redundancy to logic gates in order to accomplish stuck-at fault-

tolerance. The objective is to realise maximum fault-masking for a logic gate with minimal added 

redundant transistors. In the case of non-maskable stuck-at faults, the gate structure generates an 

intrinsic indication signal that is suitable for autonomous self-healing functions. As a result, logic 

circuitry utilising this design is now able to differentiate between gate faults and faults occurring in 

inter-gate connections. This distinction between fault-types can then be used for triggering 

selective self-healing responses. 

The second contribution is a logic matrix element which applies the three core redundancy 

concepts of spatial- temporal- and data-redundancy. This logic structure is composed of quad-

modular redundant structures and is capable of selective fault-masking and localisation depending 

of fault-type at the cell level, which is referred to as a spatiotemporal quadded logic cell (QLC) 

structure. This QLC structure has the capability of cellular self-healing. Through the combination 

of fault-tolerant and masking logic features the QLC is designed with a fault-behaviour that is 

equal to existing quadded logic designs using only 33.3% of the equivalent transistor resources. 

The inherent self-diagnosing feature of QLC is capable of identifying individual faulty cells and 

can trigger self-healing features.  

The final contribution is focused on the conversion of finite state machines (FSM) into memory to 

achieve better state transition timing, minimal memory utilisation and fault protection compared to 

common FSM designs. A novel implementation based on content-addressable type memory (CAM) 

is used to achieve this. The FSM is further enhanced by creating the design out of logic gates of the 

first contribution by achieving stuck-at fault resilience. Applying cross-data parity checking, the 

FSM becomes equipped with single bit fault detection and correction.  
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Chapter 1: Introduction and Overview 

 

1.1. Introduction 

 

In the late 1950s the first bipolar junction transistor was invented at the AT&T Bell laboratories in 

the United States of America. This invention paved the way for the electronic revolution which 

subsequently followed by application of this development something which could not have been 

imagined at that time. In these applications the bulky electric tubes or electro mechanical relays, 

which were previously used for building all necessary electronic systems, were replaced by a 

bipolar junction transistor. This invention opened the way for smaller systems and the increased 

system uptime over the old systems made it a universal part of modern lifestyle. The real push into 

changing our lives pushed us into the digital age through the next big invention in 1959 of the 

metal-oxide-semiconductor field-effect transistor (MOSFET). In this thesis the MOSFET transistor 

is referred as the transistor. The electronic parameters of the bipolar junction transistor worked 

within the analogue functionality and the transistor was geared towards digital functionality. The 

newly developed chip industry designed integrated digital circuits on a planar silicon die surface in 

massive numbers and with standardised logic functionality placed in standardised packages. Since 

then the driving factor of the chip industry is to reduce the required silicon area per given logic 

function and, therefore, for that, as a result every 18 months the number of transistors per fixed area 

doubles. This was defined as a law in 1965 by Moore [39]. The continuous feature size reduction 

pushes the individual component or transistor into the nano-structure regions allowing even more 

integration of more individual logic functionality into a single chip. Because of the integration of 

even more logic functionality into one chip, this made them less likely to experience faults in the 

overall electronic system. These chips are not insusceptible against faults caused through a number 

of reasons based on their nano-structure feature size. In this thesis the main focus of faults which 

are going to be investigated is limited to radiation-induced effects causing temporary and 

permanent faults within the logic circuit. 

In the case of an error affecting the behaviour of the electronic system for counteracting the effects 

caused by the fault, the system needs to be fault-tolerant or self-healing. Any user of this particular 

system will experience this circumstance, that, using this electronic system, he wishes that the 

system can “mysteriously” repair or fix itself. Nature has equipped specimens with the capability of 

self-healing. Even humans are capable of self-healing of minor cuts through the skin. Due to the 

requirement of electronic system users the area of fault-tolerant, self-repairing or self-healing 

electronic systems was originated. Novel electronic system-level concepts were introduced and 

designed to meet this user requirement for certain applications.  
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The research work of this thesis is focused on creating a matrix logic structure which is capable of 

self-maintaining required logic functionality through autonomous fault detection and evaluation 

with minimum logic hardware overheads. 

 

1.2. Problem definition 

 

The motivation for this research work arose out of an increased requirement of equipping electronic 

logic systems designed for and implemented on Field Programmable Gate Arrays (FPGAs) 

platforms with self-maintaining capabilities to counteract the effects of radiation-induced faults in 

terrestrial systems. Radiation-induced faults in certain electronic components have been a known 

problem in space application using FPGAs-based systems as system platforms [40]. Continued 

efforts of the chip manufacturer to increase the amount of configurable logic circuit per square mm 

of their FPGA chips, are pushing the feature size into even smaller component structure 

dimensions. Feature sizes of individual components are created out of less than 10 atoms [41]. By 

reducing the feature sizes of individual components the sensitivity for radiation-induced faults 

increased dramatically. The increased sensitivity to radiation-induced faults was not only 

noticeable in space applications, but also in increased numbers of functional upset at terrestrial-

level systems [42-44]. The most sensitive areas for radiation-induced faults are the memory chips 

due to their dense structure and way of storing data [45]. Due to the increase of radiation-induced 

faults on terrestrial-level electronic systems, these systems are required to be designed with the 

same fault-tolerance mechanics as space-based electronic systems. This counter action, arising 

from the type of faults the systems experienced, included fault-masking or system reconfiguration 

initiated by system-independent checker structures. Both approaches require a trustworthy checker 

structure which in all circumstances must be able to detect faults and constructed to be per design 

fault-tolerant. Due to the fact that these logic systems are artificial logic structures mostly created 

out of the same components as the one which they are checking makes it harder to be fault-tolerant. 

Also both structures are running on the same die likely to have the same individual transistor fault 

characteristic. The functionality and task of a system-checker remains a philosophical question and 

is not part of this research work. The research work of this thesis is focused on the realisation of 

logic structure with built-in autonomous self-maintenance, minimal checker logic and limited 

hardware overheads. 

Radiation-induced faults on any integrated circuits are the result of activities on the sun, which is 

the centre of our cosmos and not a planet like the Earth, more like a ball of gas which is less 

cohesive [1]. Because of this the sun does not rotate like a solid planet, it is more like a process of 

rotating gas mass generating coronal mass ejection (CME) or ejecting solar flares into space (see 

Figure 1.1).  
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Figure 1.1: (left) Coronal mass ejection and (right) multiple solar flares [1] 

 

CME consists of massive amounts of electrons and protons, which are ejected into space. Released 

into space they are travelling long distances having an impact on anything they meet, noticeable in 

integrated circuits as random information corruption is one possibility. The effect can have the 

nature of a temporary or permanent hardware or data fault inside a digital logic circuit. Solar flares 

contain a massive amount of photons of all wavelengths, but not all have an impact on everything 

they meet [1]. The scaling of the complementary metal-oxide-semiconductor (CMOS) into the 

region of feature sizes close to single numbers atoms structures is resulting out of the continuous 

efforts of the chip industry over recent decades. The ongoing increase of components per certain 

die area was predicted by Moore’s law which was hypothesized in 1965 [39]. Modern integrated 

circuit structures are in the region of nanoscale dimensions making them even more susceptible to 

radiation-induced effects [5, 44]. Faults caused by radiation inside electronic logic systems made 

out of nanoscale components will then be relevant at ground level and  no longer the only fault 

conditions at high altitude applications [44]. The shrinking transistor structure has been the driving 

force over recent decades for producing more logic functionality into a given chip. This trend of 

increasing the logic functionality per given die area was driven by customer demand for better 

calculation performance of applications. FPGAs offer more active logic components than other 

chips and give the system designer more possibilities for creating their required System On a Chip 

(SOC) design. Computer aided design (CAD) tools are available to help the designers 

programming their required logic functionality into the FPGA chip. By having this flexibility and 

the capability of constantly reconfigurable logic structure inside an FPGA this made it unnecessary 

to produce an Application Specific Integrated Circuit (ASIC) with fixed combinational logic. 

Research done on the effects of transient-induced faults caused by radiation showed that 

combinational logic is much less susceptible than memory elements [46]. This shows that the logic 
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functionality controlled within an FPGA by memory elements could be altered with potentially 

critical effects on the overall system behaviour. These systems require a type of checker for 

maintaining the integrity of the electronic system or logic structures which can mask faults inside 

boundaries and fix the effects of any fault. 

 

1.3. Objectives 

 

System-fault identification in regards to temporal or permanent ones requires the means in some 

cases for a more enhanced system than the supervised system. If the system-checker is required to 

identify faults down to a gate, intra-gate-connection or interconnect level, these types of system-

checker require advanced test capabilities and broad system specific functional knowledge. Each of 

these requirements can be accomplished with state of the art dedicated digital circuits structures 

creating logic overhead. This logic circuit is required to have fast response timing for keeping the 

impact on the overall system behaviour to a minimum or even completely unnoticeable. For some 

type of systems a pre-defined response time is required to maintain system integrity. This fixed 

response times; for instance in an automotive safety-critical system, is that the system is supervised 

and governed by a required alteration of the watch-dog signal within a given time frame. Custom 

chips are available to be configured through external components for monitoring the required 

toggling of certain logic signals within a system specific time frame. This is an established method 

within fault tolerant systems. With this research work the focus is set beyond this established fault 

tolerant logic structures. 

This thesis research has the following objectives: 

 

- The design of a functional logic unit, which combines all of the three redundancy concepts 

(spatial, temporal and data) to show their combined capability for fault masking and 

correction. 

 

- Through altering the logic gate transistor level design, the goal was to design a logic gate 

with fault-masking and intrinsic fault-indication in case of the presence of a non-maskable 

fault. By constructing logic circuits out of this type of logic gate, a distinction between gate 

level and interconnect faults can be realised. 

 

- Design a majority voter structure, which is insusceptible to stuck-at faults. 

 

- Self-healing logic structures triggered by autonomous fault detection within given logic 

cluster boundaries and eliminated by a self-initiated repair process utilising dedicated spare 

logic units. 
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- Altering the description of the behaviour of a finite state machine such that it can be 

transferred into memory-only based hardware platform. This hardware platform offers the 

advantage of including fault tolerant features, allowing it to be used as a system checker for 

interconnection faults of a given logic structure. 

 

1.4. Framework of this research work 

 

This PhD thesis is organised as follows: 

 

Chapter 2 introduces the basic concept of an electronic system and its different types of central 

logic chips which are capable of governing its system behaviour. Comparisons between these 

different types with regard to radiation tolerance are drawn. Detailed information of different types 

of field programmable gate arrays (FPGAs) are illustrated and their development shown. 

 

Chapter 3 focuses on the effects of radiation onto electronic systems. Radiation effects are defined 

as single event effects (SEEs) and within this chapter a range of different types of SEEs are 

explored. Also their impact on static random access memory (SRAM) based FPGAs. The diverse 

simulation variety of fault-injection possibilities which can cause effects within electronic systems 

is discussed in detail. 

 

Chapter 4 introduces the impact of permanent and wear-out related faults within integrated circuits 

in future chip generation with smaller structure dimensions. By means of even smaller individual 

component sizes the likelihood of manufacturing fault-free chips will diminish and counter 

responses with regard to novel fault-tolerant designs are required. Due to their nano-size feature 

size of individual components chips are going to be more susceptible to radiation-induced faults of 

a temporal or permanent nature. These radiation-induced faults require fault-masking techniques 

for avoiding system errors. 

 

Chapter 5 focuses on fault-tolerant systems which are designed for avoiding the propagation of 

fault beyond system boundaries and its manifestation as a system error noticeable to the user of the 

system. This can be done by the use of selected logic structures which are capable of masking 

faults and providing correction at the same time. Applying these logic structures onto a given logic 

design increases the hardware overhead. 

 

Chapter 6 analyses the different fault-tolerant structures centred on hardware redundancy and 

spatiotemporal redundant structures. A novel concept of spatiotemporal redundancy for achieving 
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fault-tolerance and identification is demonstrated which is based on a time-triggered reconfigurable 

matrix cell.  

 

Chapter 7 introduces the difference between functional and fine-grained redundancy within an 

electronic logic system. Functional redundancy works on N-sets of functional blocks in this regard 

in information redundancy. Fine-grained redundancy is working on the gate level by using 

transistor redundancy. Fault-masking in functional redundancy is being done by majority-voting. 

Fine-grained redundancy offers the possibility of masking and correcting faults at individual gates. 

Fault rate analysis of this fine-grained structure shows the fault-tolerance capabilities and by fault 

occurrence optimisation distinguished fault-behaviour discovered.  

 

Chapter 8 focuses on the approach of mapping finite state machines (FSM) into memory for the 

benefit of elimination of programmable logic devices or combinational logic. Memory-based 

systems offer the advantage of better fault detection and correction, due to error-correcting coding 

of the data stored inside of these memory elements.  

 

Chapter 9 deals with the concept of self-healing within electronic logic systems. The concept of 

self-healing within any given logic system relies on the adding of spare or redundant logic 

elements. These elements are used in the case of a fault detected by the system-checker of this 

system. Electronic systems rely on trying to mimic self-healing on spare elements and a system-

checker identifying faulty behaviours. Nature realises self-healing without spare elements and 

external intervention. Logic gates with altered internal structure are capable of intrinsically 

indicating non-maskable faults and trigger reconfiguration without outer involvement. 

 

Chapter 10 outlines the final conclusion of this research work and indicates possible ongoing 

postgraduate research work from the work which has been performed to date. 

 

The appendix includes the simulation programmes written for the different simulations and fault-

behaviour analysis. 
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Chapter 2: Design of electronic systems 

 

2.1. Introduction 

 

In today’s world, electronic systems are part of our daily life and they change the way we do things 

due to their way of offering us more sophisticated solutions. The electronic system application 

versatility covers all parts of low to highly sophisticated systems. Safety-critical systems, which are 

highly sophisticated systems like medical systems, are required to function without faults or 

noticeable impact to the user, or in this case, for the patient. This trend of dependability and system 

uptime requires novel concepts of system structures and trustworthy system components. Ongoing 

trends within the chip industry for increasing the transistor count per silicon die area are only 

possible with ever shrinking size dimensions of the individual chip components. This trend of 

transistor count increase had been predicted and is reflected in Moore’s law from 1965 that every 

18 months the transistor count doubles per equal area [39, 47]. Through the reduction in active 

silicon material forming individual transistors the intrinsic variations of the doping atoms becomes 

more abundant. Due to this doping variation this will be reflected in higher faults rates during 

production and over the life-time [47]. This phenomenon makes the functionality of an entire chip 

dependent on the performance of a single transistor and, in this way, the whole functionality of an 

electronic system. The internal structure of an electronic system or electronic control unit (ECU) is 

centred on a type of application-specific logic chip or micro controller. The type to be selected for 

an ECU depends on the level of complexity of the application.  

This central logic chip governs the behaviour of the ECU and it can also be described as a 

processing engine. It accords with a Ford Motor Company document [48], which identified that 

70% of the overall project costs are going to be allocated for the design process of the ECU. This 

indicates the importance of the correct selection of the processing engine. The choice of correct 

processing engine or microcontroller for a given project has a direct impact on design process, 

verification, test and production. Costs for the total life cycle management are also included in this 

amount of project costs [48]. Depending on the complexity and nature of the usage of the ECU, the 

design and development is governed by the application specification and environmental conditions.  
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2.2. Basic structure of an electronic system 

 

Every electronic system is built out of functional units and the level of granularity is defining what 

fine-grained or coarse-grained functional units are, in accordance to [49] defining the level of fine-

grained and coarse-grained functional units as follows. Fine-grained functional units are capable of 

performing a single logic function on small numbers of bits whereas the coarse-grained functional 

unit is much bigger than the fine-grained level and contains, for instance, an arithmetic and logic 

unit (ALU) and, if required, memory. In this regard an electronic system is a coarse-grained 

functional unit. The basic structure of a coarse-grained electronic system or ECU is demonstrated 

in Figure 2.1 as a block diagram. Within the block diagram the central block containing the four 

functional elements of control logic section, memory, input/output section and logic unit is 

identified. The main block regarding logic complexity is the logic unit or processing engine. The 

total transistor count of the control unit is less than that of the memory block of the same system. 

The memory block contains the highest transistor density of all the blocks within the ECU. The 

blocks controlling logic and input/output sections are both required for data transfer in between 

different blocks. 

 

Control logic 
section

Memory

Logic unit
Input/Output 

section
Output

DAC

Input
ADC

 

 

Figure 2.1: Basic block diagram of an ECU with the central block of an ECU containing 

control logic section, memory, input/output section and logic unit 

 

Through the nature of the digital system interacting with the system in the outside world every 

electronic system requires an input and output block. Within the input block the analogue signals 

are being converted into digital signals and in the output block digital signals are being converted 

into analogue signals if required. It is also possible that purely digital based information is being 

used. Research done in the area of radiation effects on analogue-to-digital converter (ADC) shows 

that faults are possible and ADC conversion results are being altered by radiation [50, 51]. The 

digital-to-analogue converter (DAC) research showed that radiation is capable of altering the 

results due to bit flips [51]. Due to this radiation-hardened version for space application of the 

ADC and DAC is available and in use. If the radiation effects have an impact on electronic systems 
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at ground level on ADC or DAC is not part of this thesis and the information of each converter will 

be seen as fault-free in this work if required. Nowadays the production of ADC and DAC chips is 

moving away from being produced with precision-resistor networks in favour of CMOS-type 

structures. With this alteration of the production method these chips can be produced without costly 

resistor laser trimming or resistor paste printing. This will make this type of chips cheaper. By the 

use of CMOS based structures designing converter chips they could now be susceptible to radiation 

effects. Whether or not these chip types are prone to show effects due to radiation-induced faults at 

ground level or space is ongoing research work and the effects will depend on the actual feature-

size structure of the components. Also such research work is not part of this thesis due to the level 

of complexity for doing radiation injection into converter chips. 

The central block of the block diagram structure of an ECU demonstrated in Figure 2.1 is a logic 

unit of variable nature which controls the behaviour of the electronic system. The controlling of the 

behaviour can be done by variable or fixed application description. The variable solution is based 

on a µC, which is administered by an algorithm-based process description converted into µC direct 

executable commands. Alteration of the system behaviour can be done through modifying the 

process description and programming into the memory block of the µC. Another variable solution 

can be done by logic synthesis into memory-only. By the use of memory-only the electronic system 

can be designed without a µC or complex combinational logic circuit. The memory-mapped 

solution of an application is a self-governing memory block controlled by a single addressing 

register. Within this system structure the outputting of the required output functions depends on the 

input stimulus. The fixed application description is based on combinational or sequential logic 

executed by digital logic circuits. The logic circuits can be implemented on a custom-made chip 

like an ASIC or on a chip capable of creating the desired logic function by programmable logic 

structures like an FPGA. All of these diverse logic units are susceptible to radiation effects at 

variable conditions if the unit is not made as a radiation-hardened version of the used chip design. 

Radiation-hardening can also be performed with the help of logic functionality. 

 

2.3. Central logic unit variation for electronic systems 

 

The behaviour of the electronic systems is defined through the application requirements specified 

in the system specification for any electronic system. These requirements form the basis of the 

system action at required times including output release or the specific action on certain inputs. 

This dependency of input-controlled behaviour changes and generates predefined output following 

the input stimulus as a FSM. The description of an FSM regarding state processing is defined as if 

at any given time only one active state in processing exists. Two types of FSMs can be specified 

concerning the output response, a Moore and a Mealy FSM [52-54]. For a Moore FSM it is defined 

that the values of the outputs are released only by the state itself and not triggered by the input. The 
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Mealy FSM output release is described in conjunction of the state and input stimulus [55, 56]. This 

implementation of a Moore or Mealy FSM can be done on different central logic units. All of the 

different logic units are based on digital circuit theory [57] and it can be distinguished by working 

in sequential or combinational logic, where sequential logic means that the logic circuit output not 

only depends on the input stimulus, but also includes the history of the input stimulus and for this 

case this type of circuit design requires memory. Sequential logic is also divided into synchronous 

and asynchronous types. The output of the combinational logic only depends on the current input 

stimulus.  

 

2.3.1. Microcontroller 

 

Any type of µC or central processing unit (CPU) is a programmable integrated circuit for a 

multipurpose digital data application and is controlled by stored executable memory information. 

The memory attached to a CPU supplies executable CPU-specific instructions and data for certain 

instructions. A CPU contains the general blocks register, control logic section (CLS) and the 

arithmetic logic unit (ALU). In some cases the ALU is described as logic unit. A basic block 

diagram structure of a CPU is shown in Figure 2.1. The function of the CPU register is to be 

temporary data storage. This data within the register can be variable information for current or later 

use during execution and memory addresses for storing programme-specific execution sequences. 

The CLS translates the executable instructions out of the memory into commands to control the 

operation of the ALU, data handling, addressing of the memory and in-/output function.  

The embedded functionality of the CPU is hardwired by logic gates in the CLS. This means that 

every single executable instruction of the CPU is hardwired within the CLS. These logic circuits 

control the behaviour of the CPU and the logic hardware size depends on the number of 

instructions of the CPU. There are two types of CLS execution styles, which are utilised within 

different CPU designs, the complex instruction set computing (CISC) and the reduced instruction 

set computing (RISC). The difference between these two CLS types is in the logic circuit 

complexity of the CLS. The logic functionality of CISC-type CPUs requires more logic circuits 

within the CLS for creating instruction specific low-level operations sequences. CISC based CPUs 

are designed in a way that a single instruction executes several low-level operations in a given 

sequence to perform a specific function of one instruction. This can take usually several clock 

cycles of the central CPU clock until execution has been finished. In contrast, RISC based CPU 

executes a single function with one instruction in one clock cycle. This is due to the less complex 

structure of each instruction of an RISC-CPU. The functional complexity to perform a certain task 

is put into the program, which is stored in memory, then into complex decoding and controlling 

logic hardware within the CPU. 
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The ALU of a CPU performs arithmetic and logic operations. For performing these operations the 

ALU reads and writes registers which are controlled through the CLS. The complexity and 

transistor count has increased since the development of the very first produced CPU in silicon. 

Following this trend of increased transistor count Moore’s law, published in 1965, predicted that 

every 18 months the transistor count for a fixed die area doubles [39]. Due to the constant increase 

of transistor density this is only being accomplished by individual feature size reduction. These 

dimensional reductions of the individual transistors make the CPUs more susceptible to radiation-

induced faults. CPU chip producers had to alter the design of their products to make them resilient 

against radiation-injected faults [43, 44]. The most vulnerable components within a CPU are any 

memory elements, e.g. are registers, cache memory or memory-based pipelines. Radiation effects 

can cause a bit flip or latch-up altering of the stored information and this can result in system lock-

ups or incorrect system responses [43]. CPU supplier in the past had problems with radiation-

induced faults and they had to alter their chip design. For instance the 5th generation SPARC64 

from Fujitsu had its design altered in a way that 80% of the 200,000 latches had been converted to 

have parity checking to protect the CPU against radiation faults at ground level [43, 58]. This 

processor type had been fabricated in 130nm silicon on insulator (SOI) CMOS [58] and today’s 

CPUs are fabricated in even smaller feature size.  

Radiation hardened versions of CPUs are available for specific customers and applications. Since 

certain logic circuits of CPUs are protected against radiation-induced fault effects on memory 

circuits, the capabilities of built-in self-repairing is not part of any CPU. Today’s CPUs advance 

into multi-processor application or multi-cores on a single chip, which enables the core to be 

deactivated if, within one of these multi cores, a hardware-related fault condition occurs.  

 

2.3.2. Application specific integrated circuit 

 

Application specific integrated circuits (ASIC) are customised chips for a single purpose only. The 

functionality of the logic function is tailored for the customer’s need and is fixed by means of a 

design freeze. By using a custom chip for this particular application means that the use of industry-

standard integrated circuits for the customer has been excluded. This offers the advantage of cost 

reduction at the size and complexity of the printed circuit board (PCB) and individual component 

quantity. Another advantage of an ASIC is that it is optimised for a single purpose only and this 

will reduce the ASIC chip parameter area, delay and power consumption against a FPGA by ~21 

times, ~4 times and ~12 times respectively [2]. ASICs due to their optimised solution can be faster 

than CPU-based solutions. Because an ASIC is a customised chip, a combination of digital, 

analogue, and micro-electro-mechanical systems (MEMS) is possible. This possibility of 

combining different subsystems within one chip offers solutions otherwise not achievable as a 

component of the shelf (COTS). The main costs for utilising an ASIC as a solution within an 
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electronic system are the design costs which are due to uniqueness of the chip and compared 

against the production costs. Because of this the amortisation is only given in high volume 

production. Radiation hardened versions of ASICs can be designed on customer request and 

defined by their specification. Due to the fact that ASICs are produced on similar material and 

production steps as COTS chips, this makes any type of memory element within the design 

susceptible to radiation-induced faults. ASICs require the same techniques for radiation-hardening 

by design like other COTS chip-based applications. If self-healing is required from the customer or 

their application these capabilities within the ASIC logic circuit have to be conceived during the 

design phase and the logic structure cannot be altered after manufacturing by configuration by 

means of programming. The longest design phase for an ASIC is the full-custom design, because 

every circuit is designed for the specific customer application and no industry standard blocks can 

be used [3]. The shortest design phase is with a gate-array design. A gate-array design approach 

uses pre-fabricated gate-array structures where the final metallisation mask for the interconnection 

links between individual components is missing. The design of this ASIC only requires the 

generation of the different final metallisation masks on top of the gate array structure. 

 

2.3.3. Field programmable gate array 

 

FPGAs are pre-fabricated silicon chips offering a sea of logic functionality, which can be by means 

of electronic programming, transformed into any kind of digital circuit or system [3]. The internal 

structure of today’s static memory-based FPGAs (commonly specified as SRAM-based FPGA [3]) 

is demonstrated in Figure 2.2. The structure of an FPGA is equally balanced between functional 

blocks and interconnection blocks. Interconnection blocks establish the connection between 

functional blocks for the application design and will be regarded as interconnection throughout this 

thesis. The contrary connection definition is the intra-gate-connection, which establishes the 

connection between individual logic gate transistors placed in close proximity. The configuration 

of the FPGA functionality by programming is controlled by SRAM bits and divided into 

configuration bits for the interconnection and selection of the logic functionality. The functional 

block of RAM within an FPGA is part of the logic structure and the total chip area of memory cells 

for a given FPGA can be 50% to 90% of the total chip dies area [2, 6]. Modern FPGAs are 

transformed in complexity and logic functionality from the first programmable array logic (PAL) 

or programmable logic array (PLA). Both PLA and PAL internal logic structures are demonstrated 

in Figure 2.3. The PLA structure is presented in Figure 2.3a and the PAL structure in Figure 2.3b. 

Both are using programmable input selection sections, which are then feeding into an AND plane. 

For the PAL structure all the output signals of the AND section are being fed into an OR gate. 

Whereas for the PLA the selection of the AND gate output signal at the AND section is being 

realised by programming the connection or selection of the required input digital signal feeding 
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into an OR gate [3, 5]. In comparison the structure of the SRAM-based FPGA is of a matrix-type 

layout where at the cross points alternating functional blocks have been placed. Also today’s 

FPGAs are equipped with freely associated input and output pins in accordance with the needs of 

the circuit design and PCB design [3].  

 

 

 

Figure 2.2: SRAM-based FPGA with two connection blocks (CB), one switch block (SB), 

one logic block (LB) forming a single tile [2] 

 

  

(a)     (b)   

 

Figure 2.3: (a) PLA and (b) PAL architectures of the internal section structure [3, 4] 

 

The different functional blocks are designed for a specific functionality which is flexible enough to 

cover a wide range of logic alteration done by programming alteration, due to this wide range of 

logic versatility within a functional block of a common FPGA. This logic versatility gives the 
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FPGA the flexibility needed to fabricate almost any specified digital logic circuit envisaged by its 

user.  

The functionality of the switching block, which is placed between a set of connecting blocks, is to 

establish the application required routing of the interconnection between different connection 

blocks [2, 3]. All the interconnection routing done on an FPGA chip is done by the switching block 

and connecting block. Both are controlled by means of SRAM elements and are essential for 

creating logic circuits on an FPGA chip. In the case of faults within the routing blocks, or 

interconnection structure, an alteration of the logic outputs will reflect this. Distinction if the fault 

has been caused by a logic block or any interconnection block is limited. A test pattern applied onto 

the interconnecting block would reveal the existence of a faulty condition. The same external 

testing of the functionality of a logic block has to be executed to identify faulty behaviour. External 

testing is required for this chip structure to reveal and find faults within its structure. Would it not 

be better to have an FPGA or other type of logic structures with intrinsically built-in fault detection 

capability as nature offers for their efforts in regard to self-healing? 

Similar routing circuitry like the switching-block structure for generating the interconnection is in 

use for the flexible connection of the external input and output pins to matrix-style internal access 

style structures within any given FPGA chip [3]. The connection block is located around the logic 

block and makes the necessary connection between needed input/output pins and between logic 

blocks. The rule of generating interconnections between logic blocks is set to link logic blocks 

together which are located within close proximity to each other. Every logic block of an FPGA 

contains a cluster of basic logic elements and memory look-up tables, which can be used to provide 

customised logic functions [2]. Historically the first FPGAs designed were based on erasable 

programmable read-only memory (EPROM) and electronically EPROM (EEPROM) [59]. Today 

the most commonly used memory types in modern technology FPGAs are flash RAM, static RAM 

and antifuse approaches [3]. All of these different memory concepts are used for having the 

configuration data stored of the required logic functionality and interconnection setting with the 

internal FPGA structure in mind.  

Some of the modern day FPGAs are designed in a way that during operation of the chip, the 

configuration of the logic functionality and interconnection setting can be altered without 

interfering with the running operation and execution. This is called run-time reconfiguration (RTR) 

[60-63]. With this type of FPGAs the application designer is in a position to modify the active logic 

structure to perform a different application or alter the structure because a fault in a block requires 

a logic structure reconfiguration during operation. This flexibility offers the possibility to 

reconfigure a faulty FPGA logic structure during logic operation to continue working correctly and 

the exterior does not notice a change. The actual reconfiguration of the configuration data 

programmed into the FPGA requires an external device where alternative configuration settings are 

stored or a remapping system.  
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2.3.4. Mapping logic into memory 

 

Any individual or subsidiary electronic systems behaviour follows the rules of an FSM and is 

defined by its state diagram of this application. The state diagram can be transferred into a digital 

input/output sequence, which is then transferable into a truth table. This truth table represents all 

possible digital input stimuli with associated output responses. The information stored inside the 

truth table can be transferred into a memory unit. An example for transferring a JK-flip-flop into 

memory is demonstrated in Figure 2.4. The state transition table displayed in Figure 2.4(a) shows 

all the different possible states of the JK-FF which can exist and the associated output data. The 

coding and replacing of the state labels has been done in Figure 2.4(b) and can be seen as a truth 

table. Within Figure 2.4(c) a data reduction and combination in matching memory structures, 

produces the final memory data representing the memory-mapped JK-FF. 

 

 

(a)   (b)    (c)  

 

Figure 2.4: JK-flip-flop state transition table transformation into memory; (a) state  

transition table; (b) state transition table including coded replacement of states and  

can be seen as a trues table; (c) memory data created out of data from (b) 

 

With this step of transferring the system behaviour converted over into digital sequences, the 

mapping into an appropriate memory unit can be done. The memory-mapped state transfer offers 

the advantages of minimal control logic and an error-correctable memory block. The use of an 

error-correctable memory block is because of the effects that radiation can have on memory of 

causing bit flips and in this way state transition alteration. Error-correcting memory can detect this 

type of data alteration and fix it. The block diagram of a memory-mapped controller can be seen in 

Figure 2.5. By comparing this to a µC structure (see Figure 2.1) similarities can be identified. Both 

comprise a memory block and a logic block and in these two parts both are comparable. But the 

logic circuit amount is different for both solutions. The µC calculates the required transition out of 

the input stimulus using executable code stored in memory. In contrast, the memory logic 
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application adaptation contains all the necessary information within its unique memory-addressing 

structure, which is triggered by input stimulus. The memory for the memory-mapped solution can 

be linear addressable memory [64, 65] or content-addressable memory [33]. Linear addressable 

memory has the disadvantage that undefined input related addresses can upset the sequence of the 

state transition or retaining the system in one state.  

 

 

 

Figure 2.5: Block diagram of a memory-mapped FSM 

 

For accessing of the data stored in memory and in this way the simulation of the state transition 

behaviour is done through unique addresses. The addressing of a specific memory location, as part 

of the FSM state transition, is a combination of a unique state counter and input stimulus, which 

forms the unique address-pointer. The data stored at this location contains the information for the 

next state transition and output information. Fault-tolerance with regard to logic faults in the logic 

unit can be handled by redundancy. Faults within the memory data require error-correction 

hardware and in the case of non-fixable faults, rearrangement of the unique memory information 

structure. This cannot be done by the system itself and requires external offline rearranging if 

possible. 

 

2.3.5. Comparison of the different logic units 

 

Four different central logic units usable for an electronic system are CPU, ASIC, FPGA and 

memory-mapped logic, and they can be compared against each other. The main focus of the 

comparison will be on the possibility of self-healing in the case of permanent hardware faults and 

the capability to handle radiation-induced faults. The other key factors such as power consumption, 

signal delay and chip size are not part of this comparison done in this research work forming the 

foundation of this thesis. This is because fault-tolerance and self-healing capability are relevant for 

electronic systems, which are exposed to radiation-induced system alterations.  
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General comparison of the different controller types: 

 

- CPU: COTS standard types in most cases do not possess memory cell protection such as 

error correction codes (ECC) or designed-in radiation hardened circuit design. Highly 

specialised CPUs for example like the 5th generation SPARC64 from Fujitsu [6, 43] ,the 

LEON processor [66] (which is an open source implementation of a SPARC V8 processor 

adapted in an FPGA) or the IBM Power6 [67] are three examples of processors which are 

custom-made chips and produced in low numbers and which contain fault-tolerant 

solutions with regard to ECCs or redundancies. Fault-tolerance regarding permanent 

hardware faults can only be accomplished by redundancy of the whole CPU or at fine-grain 

redundancy at gate level. Modern multicore processors handle faults within one core in the 

way that this core gets deactivated. This approach eliminates the need for redundancy at 

any level within the chip. 

- ASIC: the whole circuit design has to be done in radiation-hardened design and ECC has 

been applied to memory elements of the processor. This type of ASIC is only produced in 

low numbers because it will only be used in low volume applications like satellites. Any 

subsequent necessary circuit changes are not possible after design freeze. For handling 

permanent hardware faults, the ASIC needs to be equipped with redundant structures at 

functional or gate level. The redundant structure is put in place during the design phase of 

the chip and every fault possibility has to be envisaged at this state. If a fault occurs within 

the switching circuit between redundant elements the approach for fault repair cannot be 

done and the fault cannot be fixed.  

- FPGA: can be described as a sea of logic. This sea of logic can be configured by means of 

programming in accordance to the specification, which governs the logic structure 

programmed inside the FPGA. During the entire design phase the intended logic structure 

can be altered because a fixed and final hardware structure will not be produced. The 

design is embedded inside a programming file, which can be also altered during the life-

time. This offers flexibility to the designer to alter the logic circuit layout to incorporate 

radiation hardened logic circuit structures at the appropriate locations throughout the chip 

design phase. Or even afterwards in uptime of the electronic system by reprogramming the 

target FPGA chip on the fly. This is possible through run-time reconfiguration of the 

FPGA configuration [60-63]. The Xilinx Virtex-6 contains ECC capabilities for the 

configuration data programmed into the configuration memory [68]. With this feature of 

the Virtex-6 alteration of radiation-induced faults can be detected and corrected.  

- Memory-mapped logic: the whole logic performance regarding input dependant output and 

system transition is mapped into memory. A comparatively small control logic circuit is 

governing the input and output activation of the memory block by creating the unique 
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address-pointer accessing the stored data. Due to the reduced logic count and low level 

complexity of the control logic redundancy for fault-tolerance can be applied. Fault-

tolerance at the memory level as for instance memory addressing logic faults can be coped 

with on a reduced scale by expanding the necessary memory and addressing register. The 

fault-tolerance is limited due to the unique memory addressing in conjunction with the 

input stimulus. 

 

In Table 2.1 an evaluation of the different controller types against the system requirements for 

creating a fault-tolerant system is shown. The different system requirements are: 

 

- Application fixed: with this point the capability of alteration of the application created 

within each controller is evaluated. The adaptation of alteration even after design freeze or 

during the life-time is needed to maintain an up-to-date system with can meet customer 

requirements.  

- Reconfiguration: the capability of altering the logic circuit structure during operation. This 

point shows how the system can be adapted in case of hardware faults. 

- Hardware requirement: the evaluation of hardware structure present within the evaluated 

controller type. The key is to have flexibility within a given logic structure offering the 

required logic functionality without having too much unused hardware resources. 

- Memory requirement: how much memory is required for storing the application specific 

code data, configuration data for hardware arrangement and general data storage during 

runtime. 

- SEU tolerant: indicates if the controller type has SEU tolerant features present for fixing 

radiation-induced bit alteration in memory. 

- Logic interconnection complexity: is a general evaluation of the way the individual logic 

functions are linked together. The key is short interconnection links between logic 

functions without too much unused hardware overhead. 

- I/O flexibility: evaluates the flexibility of the input and output connection with regard to 

designing a PCB with this controller type. The key is to give the PCB designer the 

possibility of arranging the chip interconnection with the best routing arrangement. 

 

By evaluation of the different points of Table 2.1 the best controller type for fault-tolerant systems 

can be found. Each point of this table is evaluated for each controller type, including finding the 

possible optimum fit for fulfilling the system requirement for each point and these points are 

coloured green within the table. For finding the best match of controller type meeting the system 

requirements the total number of fulfilments within the table are counted. 
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Table 2.1: Evaluation of the different controller types against system requirements 

 

Concluding by evaluation of Table 2.1 shows that for this comparison the FPGA can fulfil the 

requirements of fault-tolerance. This is because it covers a broad spectrum of attributes for a fault-

tolerant system design by its general chip design and makes it a perfect platform for fault-tolerant 

systems. 

Table 2.1 also shows that memory-mapped logic (MML) is the second best solution for a fault-

tolerant system design. MML indicates in some points a better solution than an FPGA chip. The 

two main points which make the MML controller second are COTS and SEU tolerance. The COTS 

point is because of the hardware requirement of the address-pointer. The fulfilment of the built-in 

SEU tolerance depends on the application specification. If ECC memory is used for an MML the 

system has built-in SEU tolerance. 

 

2.4. Development of FPGAs 

 

The development of the FPGAs started in the middle of the 20th century because of the demand for 

generating logic designs within a chip with a faster turnaround [5]. The first programmable logic 

was the logic mapping into memory with the help of read-only memory (ROM) and followed by 

programmable read-only memory (PROM). Both types are one time programmable logic array 

normally used for storing micro-controller executable instructions. The EPROM evolved out of this 

as the next generation of programmable logic array. All of this adaptation used N number of 

address inputs to implement a logic function stored in memory and through the number N it also 

defines the required and addressable memory size. The size of the addressable memory was the 

disadvantage of this application and the next developments were PAL and PLA with AND and OR 

gate arranged in alternating specific logic gate sections or planes (see Figure 2.3). In some chip 
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designs this logic structure also included D-type flip-flops. This gate arrangement offered the 

flexibility to programme combinational and sequential logic structures [5].  

Both chip designs PLA and PAL were limited by their internal structure only to allow fixed 

connection between input pins and logic gates. The demand of flexibility within the internal 

connection of a logic chip required an alternative and programmable interconnection arrangement. 

By adding the typical crossbar design for the interconnection to the chip structure the flexibility 

regarding connection was resolved. The added crossbar to the current logic chip significantly 

expanded the size requirements for the die [3]. The introduction of the static memory-controlled 

interconnection switches and logic configuration reduced the die size and increased the flexibility 

of this type of logic chip. Xilinx was the first company introducing the FPGA design, which is still 

used today. It was built around configurable logic blocks (CLB) [3] (demonstrated in Figure 2.2 

and Figure 2.8). These type of devices used bit stream programming to configure logic or 

interconnection structures, comparable to the devices with static memory [5]. The development of 

the FPGA is centred on the capability of programming the appropriate configuration into the 

memory controlled switches. Historically, the development included EPROM, EEPROM, flash, 

static RAM and antifuse configuration structures [5]. In modern day FPGA designs only the 

memory technology flash, static RAM and antifuse is applied [3]. Out of these three the static 

RAM is amongst the most used technology there is. All the current types of FPGAs are fabricated 

on CMOS technology and all developments of scaling can be utilised.  

 

2.4.1. SRAM-based FPGAs 

 

The SRAM programming technology is used by Xilinx, Lattice and Altera in their devices [5]. The 

advantages of SRAM or static RAM technology lies in the capability of indefinite re-

programmability [3]. SRAM or static RAM cells are designed in the way demonstrated in Figure 

2.6 and they are used in interconnection and implementing logic functionality throughout the entire 

FPGA chip structure.  

 

 

 

Figure 2.6: SRAM or static RAM cell structure for programming one bit [5] 
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With one SRAM cell the interconnection switch gets controlled to connect the required crossbar 

lines together. So each crossbar within an FPGA contains for each possible connection capability 

an SRAM cell. This means that a high number of SRAM cells are within one die location and 

SRAMs are susceptible to radiation effects. An alteration of a single SRAM cell affects the switch 

and in this way the interconnection of logic functions or logic gate intra-gate-connection. The gate 

level is constituent out of the individual transistors and intra-gate-connection. Intra-gate-connection 

in this regards is associated with connecting the individual transistors oriented in close proximity 

together for the required logic functionality. The design of one interconnection switch is 

demonstrated in Figure 2.2 (right-hand side bottom small figure) and an example of possible 

connection creatable with this switching structure is demonstrated in Figure 2.7 [6]. 

 

 

(a)       (b)         (c)   

 

Figure 2.7: Example of possible interconnection switching configuration; (a) orthogonal, 

(b) one type of diagonal, (c) another type of diagonal interconnection [6] 

 

For implementing logic structures in an FPGA the use of look-up tables (LUT), multiplexer 

(MUXs) and FFs are configured in the way for simulating the required logic function. These 

elements can be found in each of the CLBs within an FPGA. A block diagram of an FPGA 

capability of a switching element is described and the internal structure of a CLB illustrated. 
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Figure 2.8: (a) Block diagram of a SRAM based 4x4 CLB element structure  

with interconnection elements building the FPGA structure; (b) block  

diagram of the inside of a configurable logic block (CLB) [6] 

 

Due to the nature of the SRAM based memory the information stored is not permanent and has to 

be reprogrammed every time at power up of the FPGA-based system. This makes it necessary to 

have permanent storage alongside the FPGA or modern chip containing permanent storage on the 

chip, like flash memory, inside the chip. This type of permanent storage makes SRAM based 

FPGAs inefficient [3]. SRAM based FPGAs are fabricated in CMOS technology and this 

technology is susceptible to radiation-induced faults. The ongoing reduction in transistor scaling 

increases the sensitivity to terrestrial related radiation-induced faults. 

 

2.4.2. Antifuse-based FPGAs 

 

Antifuse-based programmable switches can be implemented in FPGAs. The advantage of this 

technology lies in the positioning of the fuse underneath the gate electrode at each of the transistor 

as a programmable controlled element of an FPGA. This technology does not require additional 

circuity added to each programmable switch. Two methods of creating the fuse are possible. One is 

based on using oxide nitride [3] and the other is a metal-to-metal-based [5] antifuse. The metal-to-
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metal-based approach can be done by positioning an insulation material like amorphous silicon or 

silicon oxide inside two metal layers [5]. A comparison between the SRAM and antifuse-based 

programmable switch regarding of chip structure is demonstrated in Figure 2.9. In Figure 2.9(a) the 

normal transistor layer structure is shown and in Figure 2.9(b) the one with the antifuse layer 

underneath the gate is illustrated. This technology could not be done with a standard CMOS 

process due to the need of additional process steps and masks. The mechanism of programming or 

altering the conductance of the fuse requires significant changes within the material of the fuse. 

This makes the adaptation of scaling within new chip designs a challenging and costly undertaking 

[5]. Because of this the newest CMOS advantages cannot be utilised in antifuse-based FPGAs. The 

technology “kilopass” changed the way the required antifuse process steps became part of the 

standard CMOS production if the 2T bitcell design is being used [69]. 

 

 

 

Figure 2.9: (a) SRAM vs. (b) Antifuse-based programmable switch of an FPGA [5] 

 

For programming the antifuse transistor a high voltage is needed for breaking down the antifuse 

and forming a conductive connection. This approach requires large programming transistors on the 

die for handling the high programming voltage. Also the antifuse programming requires a special 

programming device and programming has to be done before the chip gets mounted on the PCB. 

The chip production yield of antifuse-based FPGAs chips can be expected to be successfully 

programmable with confidence in the order of 90% yield [3]. This programming yield number 

indicates that a manufacturing test cannot detect every possible defect in a given chip [5]. Due to 

the only one-time programmable fuse the programmed design in the FPGA cannot be changed. 

This makes this type of FPGA insusceptible too radiation-induced faults altering the information on 

any programmable switch. Because of the non-volatile stored switching information, the device can 

function directly after power-up and no external non-volatile memory is required for reading the 

programming stream.  
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2.4.3. Flash-based FPGAs 

 

Flash-based programmable switches of an FPGA belong to the family of non-volatile memory and 

on power-on the FPGA system is already configured. This is similar to the antifuse-based FPGA 

devices. Due to the all-time constant programming state of the switches an external flash memory 

is not required as for the SRAM-based FPGA. The main difference between antifuse-based and 

flash-based FPGAs is in the number of re-programmability cycles. Antifuse-based programmable 

switches are only programmable one time and the flash-based switches can be reprogrammed a 

limited number of times. For instance the Actel ProAsic3 can be re-programmed 500 times [3]. In 

comparison the SRAM based programmable switches can be programmed an infinite numbers of 

times [5]. The functionality of the flash-based or EPROM based programmable switch is based on 

a gate that floats above the transistor. Onto this floating gate a charge can be stored and as long it 

stays above the threshold voltage level of the distinct high level this switching transistor will 

remain in the programmed state [7]. A valid high level can be maintained on the floating gate for 

up to 10 years [7]. Two types of flash-based memory structure can be distinguished, NOR and 

NAND gate type structure and both are illustrated in Figure 2.10 [7]. 

 

 

(a)      (b)  

 

Figure 2.10: Cell architecture for NOR (a) and NAND (b) gate design [7] 

 

Research done on the influence of radiation effects on the floating gate of a single flash-based 

programmable switch showed that no effect can be noticed for the low level. Effects on the high 

level can be noticed and a drop of the stored charge can lead to a drop below the threshold voltage 

of the high level. This would lead to alteration of the configuration of the stored design within the 

FPGA [7, 70]. In the case of the use of flash-based programmable FPGA systems the external flash 

based memory is no longer required and in these systems is eliminated. A reprogramming of an 

apparently faulty system by self-initiation is not possible. The system needs an external initiation 
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bit stream for reprogramming. FPGA manufacture offers chips where a designated flash storage is 

located next to the SRAM-based FPGA die within the same chip package. This combination allows 

the storage of the bit stream information of the specific design to be read at power-up initiation and 

the chip can function according to the required application [5].  
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2.5. Summary of chapter 

 

In this chapter the function of an electronic system was analysed in a way to identify the key 

functional block of it. The key functional block of every electronic system is the central control 

unit (CCU). This is due to the fact that the control of the application is governed by its logic 

structure and represents a significant amount of hardware. This central hardware needs to be 

insusceptible to faults. Faults of any type within this hardware affect the behaviour of this system 

and the selection of the fault tolerant strategy is significant. System fault tolerance is achieved 

through redundancy concepts, which are described in detail in chapter 4. Hardware level strategies 

for increased fault tolerances in regards to configuring the logic design of an FPGA are 

investigated with this chapter. The individual logic gates are not included within these different 

approaches and instead require alternative solutions. 

Different types of CCUs are being used throughout electronic systems worldwide and the four main 

types of CCUs in use are defined within this chapter for further examination. The focus of this 

examination was to reveal the best possible CCU platform for a fault-tolerant design of an 

electronic system. Through Table 2.1 the evaluation identified the FPGA to be the optimum match 

for these requirements. An FPGA offers the most requirement matches for a fault-tolerant system. 

This is due to the fact that the sea of logic and the ability to be reconfigured during execution are 

useful features of the FPGA for designing this type of electronic system. The second optimum 

CCU was the memory-mapped logic and this is due to the fact that the origin of the FPGA was 

memory-based logic adaptation. The origin of mapping logic into a flexible logic structure began 

with the use of memory replacing discrete logic gate structures by using memory-based platforms 

for the first attempt to design circuit logic behaviour in a quicker and more compact hardware 

structure. Before the use of memory each logic circuit had been designed out of discrete logic 

gates.  
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Chapter 3: Radiation effects on electronic system components 

 

3.1. Introduction 

 

Introducing and utilising electronic systems in a wider spectrum of applications also exposes these 

systems to a broader range of environmental conditions. One of these conditions is high energy 

particles generated from the suns radiation-induced fault caused by one high energy neutron 

particle can strike a single transistor of a logic gate within a chip. This particle strike of the 

transistor can alter the logic state on this transistor. In this case a soft error has occurred in this 

particular part of a chip and this could cause an upset of the behaviour of the electronic system. 

This upset could manifest itself in system malfunction behaviour or the system can mask the fault 

at a functional boundary. Fault-masking has to be within a defined logic block dependence on the 

logic circuit design of the electronic system. In the past, this type of system upset was associated 

with high altitude electronic systems such as satellites orbiting around the Earth or passing through 

space. In this application, specific logic circuit design solutions were applied to cope with soft 

errors within defined circuit system boundaries. The chip industry has continued to scale back the 

individual components of a given die into even more minor dimensions and this has triggered a 

negative effect on increased susceptibility against radiation-induced upsets within electronic 

systems even at terrestrial levels. Now soft errors can be experienced at terrestrial level similar to 

high altitude systems. This effect is especially noticeable in these high-density circuit chip 

structures within static or dynamic memory [71]. FPGA contains large number of memory cells 

used for configuration or data storage, which are used for logic function simulation or as memory 

banks. All of these memory cells are at risk of being altered by radiation-induced faults. Soft errors 

in combinational logic have not been of great concern so far with the current level of technology. 

But the ongoing trend of size reduction of individual transistors will make the combinational logic 

structure on a given chip susceptible to soft errors. In this regard, the whole chip and so the 

trustworthiness of the electronic system decreases and advancements to the logic design has to be 

put in place to regain it. 

 

3.2. The sun as source of the radiation effects in electronic systems 

 

The sun in our galaxy represents the centre planet. But in fact the sun is not a solid planet as the 

Earth is or the other planets surrounding the sun. It is more a ball of hot gases with a nuclear fusion 

reactor in its centre. In the core of the sun the temperature is 15 million degrees Celsius [72] 

sufficient enough to maintain this fusion process running for billions of years. The energy 

generated in the core of the sun needs 179000 years to get to the surface. The temperature drops 

below 2 million degrees [5] and the final surface temperature is around 5505 degrees Celsius [73]. 
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This surface temperature is still sufficient for particles to escape the gravity force of the sun and 

travel through the outer space. The released particles of the sun are protons, electrons, alpha ions 

and heavy ions. Also the sun ejects millions of tonnes of material during a CME into outer space, 

which creates solar winds. All these particles are bombarding the planets surrounding the sun and 

satellites within space.  

The magnetic field of the Earth is formed from the inner core of the Earth into outer space until it 

encounters the effects of the solar winds. This magnetic field protects the Earth against the solar 

winds generated from the sun. When the Earth’s magnetic field comes in contact with the solar 

winds, the magnetic field is compressed by the effect of the high energy particles. The magnetic 

field of the Earth, which is not facing the sun, is being elongated into space. Both of these effects 

on the Earth’s magnetic field are being illustrated in Figure 3.1. The magnetic field of the Earth has 

the shape of belts around the Earth inner core and these magnetic belts extend into outer space. The 

American astrophysicist James Van Allen was the first to predict their existence in 1958. In Figure 

3.2 both belts of the Earth’s magnetic field are shown. The outer belt of the magnetic field of the 

Earth is capable of trapping high energy (0.1-10 MeV) electrons, the inner belt of the Earth’s 

magnetic field traps high concentrations of low energy (range of hundreds of keV) electrons and 

high energetic protons with energies exceeding 100 MeV [74]. 

 

 

 

Figure 3.1: Solar wind and Earth’s magnetic field interaction [8] 
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Figure 3.2: Van Allen radiation belts of the Earth magnetic field [9] 

 

3.3. History and impact of single event upset effects on electronic systems 

 

A single event upset (SEU) happens when a high energy particle or electro-magnetic radiation 

collides with a sensitive component of an electronic system and is capable of altering its data 

condition. Historically the first effects of high energy particles altering electronic equipment 

happened through the detonation of nuclear bombs above ground level around the world between 

1954 and 1957. During these nuclear tests the first effects of unexplainable anomalies on electronic 

monitoring equipment happened and could not be explained. The equipment indicated faulty 

behaviour but no hardware fault could be identified and the term soft-error was associated with this 

phenomenon. Soft-errors were also encountered during the first satellite space explorations. In 

1978, the phenomenon of altered behaviour within electronic systems due to soft-errors in 

integrated circuits were explained with the presence of alpha particles in the packaging material 

emitted by traces of uranium and thorium impurities of these chips [44, 75]. This soft-error effect 

caused by a chip housing contamination was first reported by Timothy C. May and M.H. Woods. 

The material of the integrated circuits had been modified in a way that no more radiation was 

eradiated and the phenomenon of soft-errors caused by contaminated packaging material was 

dissolved. James Ziegler described in 1979 the mechanism that high energy particles from space 

can cause a soft-error within an electronic system at sea level [44, 76].  

The range of effects caused from soft-errors can be of transient and permanent manifestation in a 

chip structure of an electronic system after a hit by a high energy particle. The impacts of SEUs on 

a given chip normally are of a transient nature and randomly distributed over the chip die area. 

Permanent impacts to the affected circuit structure are possible in some cases. SEUs can occur 

within a memory cell or a logic latch [10] and according to [10, 77] the SRAM soft-error rate will 
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increase by 8% per chip generation. Figure 3.3 shows the graph of the soft-error rate per chip 

generation. The current design of FPGAs is primarily designed with programmable SRAM based 

switches and LUTs. Soft-errors are playing a significant role in the fault sensitivity of FPGAs. The 

radiation-induced soft-error can cause a bit flip within a memory cell. The detection and fixing of 

this type of memory fault can be done with the help of ECC. The FPGA chip manufacturer Altera 

offers in some of their FPGA designs an automatic cyclical redundancy check for correcting 

configuration bit alteration [78]. Soft-error introduced alteration of information on a flip-flop is 

harder to detect and because of this is impossible to correct.  

 

 

 

Figure 3.3: Soft-error rate per chip generation (logic and memory structure included) [10] 

 

3.4. Definition of single event effect 

 

A single event effect (SEE) is caused by a single radiation event, like a high energy particle, 

striking the silicon die of a chip. At the die location where the particle hits the silicon die a charge 

is generated along the track of the high energy particle. This charge created within the silicon die 

can affect the chip structure in close proximity and alter the stored conditions on transistors or only 

a single transistor [16]. In this case a soft-error at this single transistor has occurred and this is 

defined as single bit upset (SBU). If no permanent damage has occurred and in the case of new data 

getting written to this individual transistor of a memory cell, the transistor is capable of storing the 

new data. If no permanent alteration to this particular transistor happens it will continue working 

correctly after the incident. In the case of a collision of a high energy particle with a high density 

transistor structure, the created charge at the track can affect multiple transistors in close proximity. 

This case represents a multibit-upset (MBU) within a high density transistor structure which can be 

found in memory elements of systems. SBUs and MBUs can happen in an electronic system 

located in space, like a satellite or within an electronic system at terrestrial level such as an ECU of 
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a car. The radiation sources affecting the two electronic systems at these altered altitudes are 

different. Radiation-induced SEEs in electronic systems in space can be due to three variation of 

particle types: ionised particles (which are part of the natural galactic background), solar particles 

and high energy protons trapped in the Earth’s Van Allen belts (see Figure 3.2). The terrestrial 

SEEs are caused by neutrons and protons created through the collision of cosmic particles with an 

atom in the Earth’s atmosphere.  

The likelihood of a fault happening in a silicon chip structure due to an SEE depends on the chip 

technology used and the radiation intensity. Different chip technologies have different 

susceptibility to SEEs and this susceptibility also depends on the linear energy transfer (LET) of 

each particular particle [16]. The susceptibility of the different chip technologies is specified by the 

LET threshold (𝐿𝐸𝑇𝑇𝐻). The total amount of radiation over time can cause long-term damage or 

degradation effects to integrated circuits. This type of radiation-induced fault is relevant for space 

application, where electronic systems are exposed for years to continuous striking by radiation 

particles. An example of this is a satellite on a mission to Mars which takes many years to 

complete. The constant injection of radiation particles into a chip of the system will show 

degradation effects on the silicon based structural elements of the chip over time in space, which is 

due to the nature of total radiation effects in relation to time and space. This aspect of long-term 

radiation-induced fault-types is not part of this research work. 

 

3.4.1. Types of SEEs 

 

SEEs can be divided into two categories; transient and permanent causing faults within a given 

electronic circuit. A transient or non-destructive SEE is a fault where the information is stored or 

passed through a type of component in which it can be stored and the information is altered in a 

way that it is changed until new information updates this altered information. A permanent or hard 

SEE is a fault affecting an active component in a way that the SEE changes the information on an 

active component in such a means that the new information cannot be altered by any stimulation 

[16].  

 

Transient SEEs within an electronic system are the following ones according to [76]: 

 

- SEU or SBU affects the information stored on an active electronic component in a 

temporal means and not as permanent information alteration. Any new information can be 

stored on the affected component afterwards.  

- Multiple-cell upset (MCU) means that at least two or more memory cells of latches are 

affected by the event. 
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- MBU indicates that at least two or more bits of a data word are altered by the radiation 

event. 

- Single event transient (SET) affects the signal level for a short time within a combinational 

logic signal path. This can be an interconnection between two logic gates. If the SET gets 

stored within a memory element like an FF at the right time an SEU has occurred within 

this electronic system.  

- Single event interrupt (SEFI) occurs if the system malfunctions due to a bit flip within the 

system critical memory element. 

 

Permanent SEEs within an electronic system are the following ones according to [79]: 

 

- Single event latch-up (SEL) occurs by means of turning on the parasitic bipolar transistors 

between n-well/p-well and substrate within a silicon die. In a CMOS intrinsic bipolar 

junction transistors are being created due to their manufacturing process, forming n-well/p-

well combinations inside the die. If these formations are forming a parasitic n-p-n-p 

structure in this way a PNP and NPN transistor are structurally stacked next to each other. 

Through this stacking a thyristor-like device between Vcc and GND rail has been created 

and with a satisfactory voltage level affecting both transistors can be turned on and 

maintain this condition until a power-cut. A high energy particle can trigger this thyristor-

like device and will create a short circuit between Vcc and GND inside the chip. This effect 

occurs with significant current flow. The current flow usually results in the destruction of 

the chip and only a power-down of the chip can resolve this condition. Latch-up resistant 

design alterations for CMOS chips are in place to prevent SELs from happening. 

- Single event burn-out (SEB) is caused through an increased current flow between Drain-

Source paths of a Power-MOSFET. This current flow will destroy the component. If the 

power of the component gets discontinued or interrupted in time the component or chip can 

be saved from burning out. 

- Single event gate rupture (SEGR) happens through a higher gate current level than the one 

specified for a Power-MOSFET. This current flow could cause the destruction of the gate-

dielectric of the Power-MOSFET and it can be cleared by means of a component power 

interruption.  
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3.4.2. Linear energy transfer function 

 

If a SEE occurs within affected silicon chip is depending on the LET level caused by the particle, 

which is affecting the silicon chip. The level of LET within a given material depends on the mass 

and energy of the radiation particle and within the type of material it is travelling [16].  

 

 

The level of the LET can be calculated as follows: 

 

𝐿𝐸𝑇 =  
1

𝜌

𝑑𝐸

𝑑𝑥
  [5, 16]   (Equation 3.1) 

 

In equation 3.1 the expression E is the energy of the radiation particle, 𝑑𝑥 the unit of the material 

and 𝜌 is the density of the material. The LET unit is defined in 𝑀𝑒𝑉
𝑐𝑚2

𝑚𝑔
. The LET threshold 

(𝐿𝐸𝑇𝑇𝐻) defines the minimum level of LET created within a certain material by a certain type of 

radiation particle, which will create enough energy, that it has an effect on the components. The 

cross section (𝜎) defines the number of upsets within a given area based on the number of particles 

the chip device gets exposed to.  

 

3.4.3. SEU in relation to sea-level 

 

When a radiation particle enters the Earth’s atmosphere it can collide with Earth’s atmospheric 

atoms and will produce a cascade of secondary radiation particles. These secondary particles 

produced by this collision are pions, muons and neutrons. The average timespan before decaying of 

these pions and muons are in the region of nanoseconds and microseconds. Where the neutrons 

average lifespan before decaying is in the region of 10 to 11 minutes and, in the case of a collision 

with another atmospheric atom, another cascade of secondary radiation particles are created [17]. 

The flux of these secondary radiation particles fluctuates with the altitude and location to the Earth. 

Due to the small thickness of the Earth’s atmosphere within the outer stratosphere, the flux of the 

secondary radiation particles is small and increases to its maximum value at 13km altitude against 

sea-level. This point is also known as the Pfotzer point. Thereafter the flux of the secondary 

particles decreases until sea-level. A rough approximation of the flux level at a given altitude can 

be calculated with the following equation: 
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𝐹𝑙𝑢𝑥 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑣𝑒𝑟 𝑠𝑒𝑎 𝑙𝑒𝑣𝑒𝑙 =  𝑒
(

119.685𝐻−4.585𝐻2

136
)
  [17] (Equation 3.2) 

 

With equation (3.2) the flux level can be calculated and H defines the altitude over sea-level in 

kilometres. The level of flux of secondary particles for Denver Colorado, USA elevation is 3.5 

times higher than at sea-level. A typical airplane which flies at an altitude of 10km will expose the 

electronic systems to a 228 times higher-level of flux than at sea-level [17].  

 

3.5. SEE impacts on SRAM-based FPGAs 

 

The key advantage of an FPGA is the possibility to configure the interconnection and logic 

resources freely and as often as required for the application and even during operation alteration of 

these FPGA resources is possible. This configuration of the FPGA happens by means of 

programming bit sequences into configuration memory. The configuration memory within an 

FPGA can be of an SRAM, antifuse or EEPROM memory function and their functionality has been 

described in a previous chapter. Each of these different memory types reacts differently to 

radiation-induced upsets. FPGAs-based on SRAM-type configuration memory are the most 

commonly ones used as application platforms for today’s electronic systems. SRAM-based FPGAs 

are amongst the most susceptible to radiation-induced upsets among the three memory types used 

in FPGAs. In this dissertation the primary focus of FPGA-specific configuration type memories lies 

on the SRAM-based configuration controlled FPGAs. This is because they are the most commonly 

used FPGAs in today’s electronic systems due to the reconfiguration capability and the application 

of choice for fault-tolerant systems.  

The number of configuration memory cells of an FPGA represents the vast majority of the total 

number of memory cells implemented on a given FPGA chip [80]. SEEs effects in an SRAM-based 

FPGA can affect the data within the configuration memory or the data within the user memory of 

the logic circuit (in these cases flip-flops, look-up tables or memory cells). These two types of 

memory-related faults due to SEEs causing effects within an FPGA are the primary focus of this 

dissertation. SEEs within the clocking logic can be possible and the effect can be that the entire 

FPGA design is turned off [80]. The effects on the clocking logic will not be further investigated in 

this research work because the logic and memory part of the FPGA is the primary focus of this 

thesis. 

 

3.5.1. SEE impact on configuration data stored in SRAMs 

 

Radiation-induced faults on the configuration information stored in the SRAM of an FPGA can be 

affected in a way that information is altered. This altered configuration information will affect the 

intended routing and logic resources of the design programmed inside the FPGA. Due to the size of 
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the configuration memory of an FPGA it is possible that the radiation-induced faults are within a 

part of the configuration memory, which is not being used by the application. In this case the fault 

has no effect on the logic structure running on this FPGA. The SEEs effect on the routing part 

affects the interconnection between different logic blocks of the design created within an FPGA 

and a bit flip within this sensible part of the FPGA has a severe impact on the interconnection 

between logic functions. The fault in the interconnection configuration memory part of the FPGA 

can manifest itself as disconnection of a logic interconnection, creating a new interconnection 

between logic blocks or bridging two interconnections together [5, 80]. An example of an altered 

interconnection within the switching matrix is demonstrated in Figure 3.4. In this case a different 

signal coming from another logic part is routed to the same logic unit instead of the intended logic 

signal. 

 

 

 

Figure 3.4: SEE-induced alteration of the interconnection within a switching matrix [5] 

 

3.5.2. SEE impact on user data stored in SRAM 

 

Today’s modern FPGAs contain two types of memory elements within the logic part of the user 

application. The first memory type is a standard memory structure, which is based on SRAMs to 

store data of the user application. The second memory type is a memory-based LUT in which 

output values of logic function are transferred and stored in LUT memory and read upon request. 

By the use of this step the logic functionality is transferred into SRAM-based LUT memory 

eliminating the need of implementing every possible combinational logic functions within this 

logic block. In the case of a bit flip within the LUT the intended logic function is altered to give a 

result from an alternative and incorrect logic function. This fault condition is demonstrated in 

Figure 3.5 where the output value of an AND gate stored in the LUT gets altered by means of an 

SEE into a NAND gate output value. 
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Figure 3.5: SEE alteration of the stored logic function data to another logic functionality [5] 

 

3.5.3. SEE impact on the user logic 

 

How the configurable logic within an FPGA gets used depends on the logic design requirements 

and specification of the user. In general the logic can be used as combinational or sequential logic 

design and both designs are likely to be affected by SEEs, most likely by SEUs and SETs. The 

effect of an SET manifest in combinational and sequential logic if the glitch is caused by the SET is 

captured in a memory element. Sequential logic designs contain embedded flip-flops, which are 

acting as a memory element in the logic circuit for storing past values. The manifestation of an 

upset caused by an SEU or SET within a sequential logic circuit requires a type of in circuit 

memory element in which it is getting stored but only if the enabling line of the memory element 

gets activated to store the current data at the timing around the glitch. The storing of the altered 

information in the memory element needs to be coinciding with the temporary glitch affecting the 

logic circuit otherwise it will be without any effect on the system [75]. In this way the circuit 

timing and the delay caused by the combinational logic are important features for the possible 

manifestation of SEEs altered information having an effect within this system. Memory elements 

within a combinational or sequential logic circuit can be altered by an SEU if it is hit by a high 

energy particle directly. 

 

3.6. Simulation of SEE faults in an electronic system 

 

During its life-time it is quite possible that a given electronic system will be exposed to any number 

of SEEs, which can be noticed or can happen unnoticed by this system. For the verification of the 

fault-handling capability of an electronic system by putting it into space or waiting for naturally 

caused upsets is not timing and budged wise. Within both natural test set-ups the fault-causing 

conditions are unpredictable and the amount of possible upsets cannot be controlled or predicted. 

By the use of natural radiation sources of any type the test coverage cannot be predicted. A possible 

simulation of using a radiation source for directly bombarding a chip with naturally caused 
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radiation is to use Californium-252 (Cf-252). By using Californium-252 a constant flux rate for a 

given time is guaranteed [81]. The disadvantage of using Californium-252 is that the chip has to be 

bare die without the housing for being subjected to the radiation from the source in close proximity 

to the die.  

Impacts of SEEs onto an electronic system need to be appropriately simulated for testing the fault-

tolerance of a given electronic system for a defined and controllable impact on this system. 

Different test set-ups are possible for simulation of an SEE on electronic systems which is 

illustrated in Figure 3.6. Most of the shown fault-injection methods in Figure 3.6 work on a coarse-

grained level by injecting a fault in a way that a logic function by itself gets altered or inputs are 

being changed. The fault-injection method based on logic equation simulation can work on fine-

grained simulation in which the individual transistor of a gate gets simulated and a fault gets 

applied onto an individual transistor. In this way the effects of radiation on single transistors are 

possible and the fault effects on the whole system can be evaluated. Simulation of the whole logic 

gate is also possible. But for this research work the fine-grained simulation of individual logic gate 

transistors has been chosen because, by this method, the impact of redundant transistors in the case 

of transistor faults can be better evaluated.  
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Figure 3.6: Overview of fault-injection methods [11] 

 

For the analysis of the fault-tolerant efficiency designed inside in an electronic system the ability to 

repeat and reproduce the two factors is required for certification testing. By repetition the key focus 
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is put onto the ability of repeating the experiments exactly or with a very high level of precision 

over and over again. The main target of reproducing is the capability to regenerate the same results 

over and over again. This can be achieved by exactly controlling the experiment and in this way the 

radiation effects on the whole system. 

 

3.6.1. Simulation-based fault-injection 

 

The use of simulation tools during development and design of an electronic system offers the 

possibility of injection of faults into the application model and the simulation of the application 

within a computer reveals the response of the injected fault. The injection of faults into a simulated 

application works in altering logical values during application simulation without having any target 

hardware available. This injection approach works on system-model simulation or on emulating 

hardware. 

 

3.6.1.1. VHDL-based fault-injection 

 

The fault-injection simulation on Verilog hardware description language (VHDL) can be done by 

using two approaches for simulating fault-injection onto a target circuit. The first approach for the 

fault-injection technique is to use the simulator command tools. By using the command tools it is 

possible that during runtime of the simulation signals and variables of the model can be 

manipulated. This technique does not alter the VHDL code of the application circuit. The second 

fault-injection technique uses direct VHDL code manipulation in a way that it alters the model by 

adding saboteurs or diversifies the individual model of a single component.  

 

3.6.1.2. Fault-injection with means of run-time configuration manipulation 

 

The fault-injection approach, which is done by run-time configuration, takes advantage of hardware 

prototyping. This hardware prototyping is normally done on an FPGA-based hardware emulator. 

This offers all the advantages of run-time reconfiguration needed for this fault-injection approach. 

The use of an emulator for the synthesis of each fault-injected design description has to be 

synthesised, placed and routed. The disadvantage of this type of approach is that the simulation 

time increases with the size of the design and number of faults which have to be injected. By using 

the approach of bit-stream modification after the synthesis, placement and routing of the design the 

test time can be reduced. For performing a fault-injection simulation only some of the bits in the 

bit-stream have to be altered. 
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3.6.1.3. Fault-injection into logic equation 

 

For the fault-injection approach into logic equation each of the individual logic gates of the logic 

structure used for the electronic system are descripted with the help of individual logic equation. 

Each of the logic gates are being split into pull-up and pull-down network as demonstrated in 

Figure 3.7 for a NAND gate. In this case the pull-up network represents the functional side of the 

gate, which creates a connection to the high-side or Vcc rail and the opposite for the pull-down 

network. The operation of the standard NAND gate circuit illustrated in Figure 3.7 is described by 

the logic expressions 𝑋1 + 𝑋2 for pull-up network and 𝑋1 ∙ 𝑋2 for pull-down network. Out of 

these two expressions the overall output signal is determined according to [36] out of four possible 

logic states. Logic state one is the low output active, which in this case defines that the pull-down 

network logic equation is the true one. The logic state two is the high output active, which means 

that the pull-up network logic equation is the true one. Both these logic states are producing valid 

output results and are the normal working states with regards to accurate output signal. The third 

logic state is where pull-up and pull-down networks are off and the output is in an undefined state. 

For this state both logic equation pull-up and pull-down are not true. In contrast the fourth state is 

where pull-down and pull-up networks are turned on and create a short circuit between Vcc and 

GND rails. All these definitions of the different logic gate states are defined within Table 3.1 [36]. 

 

 

 

Figure 3.7: Circuit layout of a standard NAND gate with identification of 

pull-up and pull-down network 
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Table 3.1: All four possible logic state for a NAND gate in accordance with [36] 

 

This fine-grained evaluation of the logic functionality makes it possible to simulate individual 

transistor faults and their impact on the whole circuit. In Figure 3.8 some of the possible fault 

conditions in which an individual transistor can be functional are demonstrated. The fault 

conditions A, B and C of Figure 3.8 represent a disconnection of the transistor and conditions D, E 

and F are showing shorts between two of the transistor pins. Each transistor of the logic gate can 

now be put into different fault conditions and simulated with the help of the pull-up and pull-down 

network logic equation. By using the logic equation approach the overall impact of a single fault 

onto the whole logic system can be simulated and evaluated. In this thesis two types of fault 

simulation of individual transistors are being used for fault simulation on fine-grained-level logic 

gates simulation, stuck-at high (SAH) and stuck-at low (SAL) faults. This method has been chosen 

to study the response of a logic gate by affecting single transistors of it with faults for a set duration 

of time. By using this method, a logic gate output or behaviour can be put into different states than 

the normally permitted ones. All of the other fault injection methods described within this chapter 

affect the function of a logic system or specific input or output values. This can be by random 

distribution or at selected locations for fixed or variable time duration. The fault model used for 

this work is of stationary nature for a set time at selected locations in order to achieve comparable 

results amongst different logic systems. 

The faults caused by effects happening to the intra-gate-connection, which can have the same 

effects as the one at the transistor level, will not be individually investigated. This is because these 

intra-gate-connections are dependent on the actual chip design and this is beyond the scope of this 

thesis. SAH represents the condition that the transistor is on all the time which will be represented 

in the logic equation with a high or one level. The SAL condition represents the condition that the 

transistor is off all the time and within the logic equation this case is simulated with a low or zero 

value. 
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Figure 3.8: Some possible electronic faults in a transistor with regard to 

open connection or shorts between two pins [12]  

 

3.6.2. Physical-based fault-injection 

 

The physical simulation of fault-injection requires the final or a certain level of completion of the 

application hardware and software. It is possible that different physical fault-injection set-ups are 

possible for the simulation of fault-injection. One set-up can be done on the software level and the 

other can be done on hardware and software together. For the second set-up the final hardware and 

software design should be used. This is because variation of the target design can affect the 

behaviour response after fault-injection. The fault-injection can be done on the hardware or on the 

software of the second fault-injection set-up. If during the fault-injection test a problem regarding 

fault-masking occurs, the appropriate non fault-tolerant component of the application has to be 

exchanged or updated regardless of whether it is hardware or software. Reassessment of the altered 

target has to be performed. Different physical hardware fault-injection methods are available. 

 

3.6.2.1. Hardware fault-injection 

 

For hardware fault-injection the appropriate application hardware needs to be used. Two hardware 

test set-ups are possible, contact or contactless testing of the appropriate application hardware. The 

first test method of contacting the application hardware has certain limitations and advantages. The 

advantage of using contacting the hardware under test is that fault-injection can be repeated and 

altered in any possible way. The limitation of contact-based fault-injection on a given hardware lies 

in the access capability of the test coverage. Physical contact and fault-injection capability is 

limited by pins used to make interconnection possible between components. Access to internal 

circuit structures within a chip is not possible with this test method. The faults injectable into the 

circuits can be of voltage or current nature [11] or simulation of stuck-at conditions [82]. Two 
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contact-based fault-injection procedures on hardware level are feasible. The first method is based 

on using test pins to contact the suitable test pads on the PCB, which should not be done due the 

fact that probing on individual components, like surface mount devices (SMD), can damage the 

component due to the spring force of the probe. Because of this the layout of the application PCB 

needs to be considered with the suitable test pads in place. The second method uses a chip socket to 

act as an access point for injection of a fault into the circuit. Today more and more components on 

a PCB are of SMD nature; these components cannot be accessed through chip sockets. 

Contactless testing of application hardware can be done with any type of radiation source capable 

of causing an upset within the hardware under test. By using radiation sources a duplication of the 

natural environmental, which exists in space, is performed and a contactless fault-injection into the 

chip design or structure can be performed. Radiation sources are producing high energy particles, 

which can be used for bombarding the chip structure to cause the same effects as in space but at a 

much higher rate. Through this a simulation of a life-time exposed to radiation particles can be 

performed within a short period of time. A heavy ion source used for SEU simulation is for 

instance Californium-252 (Cf-252) [82-84], which offers a good source of constant radiation output 

for bombarding the entire chip. For simulation of alpha particles Americium-241 (Am-241) [85] 

can be used which is widely available due to the use within smoke detectors. The Americium-241 

is produced as a film and can be cut to the size required for causing SEE in parts or the whole chip. 

Another way of generating static proton and heavy ion radiation is with the help of cyclotron 

facilities producing a range of high energy particles which can be used to bombard the chip [86, 

87]. With the help of the cyclotron facility it is possible to bombard only a small area of the chip if 

required or the entire chip. By only causing an SEE within an area of a chip, the unexposed chip 

area can be used for verification purposes. By utilising radiation sources, random bombardment of 

a chip can be performed similar to space-caused radiation effects. If every part of the entire logic 

structure has been exposed to high energy particles cannot be assured because of the randomness of 

the natural radiation distribution hitting the chip die. This method of using radiation sources is a 

method, which can be used on every type of silicon-based chip and it is not limited to FPGA-type 

chips only. Using natural radiation sources for simulation of SEU in high numbers means that the 

target chip has to be de-lidded otherwise the metal lid used for chip housing interferes with the 

radiation, which could affect the chip structure [81]. 

Another contactless way of injecting faults into an electronic system is by electromagnetic 

interference. This technique is the common disturbance in automotive vehicles, trains, airplanes or 

industrial plants due to high current flow in nearby electronic systems [82]. With the help of a burst 

generator an electromagnetic field can be generated, which then can affect the whole PCB, the 

whole system or only a single chip. Through this electromagnetic field, alteration within the data 

stored in individual transistors takes place and the fault-tolerant features of the system have to cope 

with them. 
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3.6.2.2. Software fault-injection 

 

Software based fault-injection into the application simulation or system is a low-cost and easy-to-

control method for testing the effects on a fault-tolerant system. Its approach is to change the 

contents of memory or register information in accordance to specific fault models. With alteration 

of information the emulation of hardware faults or injected software faults manifest within the 

software and the performance of fault-masking algorithm can be evaluated [11, 82]. Software-

based fault-injection can be done at compile-time or at runtime. The method of fault-injection at 

compile-time introduces errors into the source code of the target programme and generates a 

modified application software [11]. This altered software gets downloaded into the target hardware 

and executed to verify its fault-tolerant capability. The fault-injection method of introducing faults 

at runtime works on the principle that at a trigger point alteration of memory or registering of 

information has taken place. 
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3.7 Summary of the chapter 

 

This chapter is about the increased sensitivity against radiation effects on individual components of 

a given logic chip. The increased sensitivity of individual chip components in the case of individual 

transistors is increasing through ongoing downscaling of these components over past decades. 

Radiation-induced effects are impacting high-altitude applications but the smaller feature sizes of 

modern-day chips experience radiation upsets at terrestrial level now. In this work the focus of 

radiation effects was put onto the FPGA due to the selection as the best CCU platform for an 

electronic system. Due to the capability of freely configuring the logic structure interior of an 

FPGA is controlled by switches in conjunction with SRAM elements. Radiation particles 

bombarding a given FPGA chip die are able of altering the stored information written inside these 

SRAM elements. This alteration of the stored information in the SRAM-based configuration 

memory will, in a way, modify the intended logic design configured inside the FPGA for fulfilling 

the application requirements. Simulation of different fault-injection methods modelling the effects 

of radiation-induced faults within a given electronic systems were evaluated.  

Different fault injection methods are used to simulate and evaluate the fault tolerant behaviour of a 

system under test. These methods needed to be evaluated, in order to find a suitable method for the 

work on making logic gates insusceptible against a specific type of faults. Fault injection into a 

system can be performed by temporal randomly or stationary applied fault types at fixed or 

randomly selected locations of the system. The selected method for this thesis for injection and 

simulating faults at each of the individual transistors of a logic gate is a stationary influence with a 

fixed digital level. 

The simulation of breaking down logic gates into pull-up and pull-down networks including 

evaluation of individual transistors of this structural configuration showed that the logic gate 

responded within four feasible logic states. One of these logic gate states offers the condition 

required to be used as a uniquely identifiable signal in case of a fault presented within the logic 

gate. Detection and triggering on this signal could be used for the purpose of initiation of self-

healing features, which is going to be investigated in chapter 7. 
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Chapter 4: Review of type of faults and their behaviour on an electronic 

system 

 

4.1. Introduction 

 

Every man-made electronic system can suffer from an electronic fault at any time during operation. 

Faults can be through undetected manufacturing hardware defects, which become faults or show 

wear-out characteristics of individual components within the integrated circuit. Both these types of 

permanent hardware faults are going to increase in future electronic systems, which are based on 

integrated circuits. This is because feature sizes of these components are being scaled down, due to 

process development of chip manufacturing moving down into the regions of nano-structures of 

individual components. The requirement of producing fault-free chips in the future will only be 

possible through capital investments of the chip manufacturers. Faults within a system with this 

feature size of individual components can also be possible because of radiation-induced effects. 

Radiation-induced effects which alter data within memory in most cases on a temporary basis 

within a given chip will only increase in the future. Both types of faults, permanent and temporary, 

can have different effects on the behaviour of the electronic system. Some take effect right away 

and alter the electronic system behaviour in a way that is noticeable to the user or the outside 

world. If the fault is able to propagate through the system passing to every functional boundary this 

fault become an error of the system. The opposite is that faults can also be masked within the 

system before they can effect or alter the required system responses. A system, which is capable of 

masking fault autonomies, has a system structure that is designed in a way to handle faults by 

masking them. The electronic system can also be equipped with self-healing circuit features, which 

can handle and correct faults within the circuit structure before it passes a system boundary. Certain 

techniques are proven concepts for fault-masking and they will be identified, described and 

analysed within this chapter.  

 

4.2. Impact of chip feature-scaling development on fault-behaviour 

 

Until very recently the driving factors for the microcontroller industry have been cost, performance 

and reduction of chip die size. Reducing the chip die size is the key figure for the overall chip 

price. The less silicon is required for a given chip the less is the price of the given chip. The 

reduction of transistor size was predicted by Moore in 1965 and he forecast that every 18 months 

the transistor count on a fixed silicon die area doubles. Even today this law still remains valid but 

by moving into the region of nano-structures the law will possibly no longer be valid in future. By 

increasing the amount of transistors produced on a given die area, this trend will go hand in hand 
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with new challenges for the chip industry. These challenges are going to change their objective. 

The reliability and yield of their product will see the biggest impact. In real terms a 5% loss of a 

typical 90-nm chip fab would be around $100 million per year due to permanent faults [88]. An 

overview of possible failure mechanisms of semiconductor devices is illustrated in Figure 4.1 [13-

15]. The chip industry is working on counteraction like adding spare circuity on a chip, which can 

be patched in for a faulty chip component. For doing this the entire chip has to be tested thoroughly 

to detect any possible fault and trying to fix the fault with patching in spare components for 

keeping their yield numbers up. This process is a time consuming task and requires sophisticated 

test equipment. Another possible approach could be to equip chips with the capability to fix 

themselves autonomously in the event of a permanent fault presence within the logic structure of 

the chips. With this approach the reliability of chips will increase over their life-time due to 

counteraction taken by the chip itself against wear-out effects.  
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Figure 4.1: Overview of possible failure mechanisms of semiconductor devices [13-15] 
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Parameter degradation of single transistors due to the reduced active silicon feature structure can 

lead to permanent faults and will affect the system during its operation time. For these types of 

faults a chip cannot be tested during its manufacturing process. It can only be modelled to calculate 

the time frame in which the chip will work fault-free before wear-out effects take place. The 

dimensions of one transistor will gear towards single digit atom count used for their feature size. 

This will reduce the amount of dopant atoms present within its structure. By reducing the transistor 

size, with every generation by two, the dopant atoms decrease accordingly and the predicted trend 

is demonstrated in Figure 4.2 for the random dopant fluctuation.  

 

 

 

Figure 4.2: Graph of the random dopant fluctuation due to feature size reduction [16] 

 

As demonstrated in Figure 4.2 the predictability of the reliability of the doping with a single 

transistor will be unpredictable. This indicates that two transistors produced side by side on the 

same die will have different electronic parameters. The performance of these two transistors with 

regard to operational behaviour will be different. The oxide thickness of each individual transistor 

will have a high level of impact on the overall performance of the entire chip. Due to the overall 

reduced transistor size the oxide thickness gets thinner and this increases the leakage current of this 

particular chip. In order to overcome this problem one possibility could be that the oxide thickness 

can be increased to counteract the leakage current. By increasing the oxide thickness the switching 

speed of the individual transistor is going to be reduced and in this way the logic performance of 

the chip [16, 41]. Finding the right balance of all the different parameters of producing a chip is the 

challenge for the chip industry. But a reduction of the oxide thickness increases the wear-out 

behaviour of each transistor differently during life-time use of this chip [89]. This increase in wear-

out can lead to permanent faults, for instance that a transistor stays active at all times. That type of 

fault would represent an SAH fault of this particular transistor. Right after the production of the 

new chip it has a random number of imperfections within the oxide layer within different 

transistors and this is distributed across the chip die. At first the wear-out of the oxide will alter the 
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timing behaviour of the affected transistor and in this way the response time of this logic gate gets 

slower. In this case these types of fault are identified as soft breakdowns and this will lead to a 

permanent fault of the particular transistor. The definition of this type of fault condition is 

identified as stuck-at transistor faults behaviour [90]. A different failure can happen with reduced 

dimension size of the components of the chip die, this is the electro migration. Electro migration 

happens due to the reduced isolation gap between tracks. A smaller gap between two tracks will 

increase the electric field between them and this field can lead to electro migrational growth. 

Electro migration happens due to metal ions migrating due to an electronic field over time and 

could cause faults like short or open circuits [91]. These types of faults are considered as 

permanent hardware faults. Electronic shorts can be against other signals, Vcc or GND. Electro 

migration is a typical fault within the application system during life-time use and not during the 

production of the electronic system. This makes this type of fault within a given chip a concern for 

the manufacture of the electronic system and its end user.  

As happens right now some IC manufacturers scrap products if they have a single fault or did not 

pass their manufacturing test and/or cannot be fixed. That is because the current manufacturing 

failure rate for producing conventional complementary metal oxide semiconductor (CMOS) 

devices is roughly 10−7 − 10−6 faults [92]. This failure rate will change in the future and chip 

manufacturers need to deal with these defective parts within their production. For the user of these 

chips another key figure is the failure-in-time (FIT) rate, measured in one failure in 109 device 

(chip) hours uptime. Applying a given FIT rate of 10 on a given number of one million components 

(e.g. transistors) operating for one thousand hours would mean to expect 10 components having 

failures. The chip user acceptance FIT rate for electronic devices in the year 2000 was 10 FITs for 

a certain chip type. But for the future the users are expecting a smaller FIT rate for a given chip 

family [89]. This expectation does not coincide with the demand for more functionality and speed 

out of a given chip area. These chip customer demands can only be achieved by increasing the 

stress on the chip because of higher current densities and higher electronic fields within smaller 

geometric transistor dimensions. Another industry-used failure definition for a single electronic 

component is the value of the mean time to failure (MTTF). Each single component (e.g. 

transistors) could have a MTTF of a billion years. But due to the fact that a single microcontroller 

has hundreds of millions of individual components with individual MTTF, the overall MTTF of the 

microcontroller could be just a few months. Today’s electronic systems contain a number of chips 

and so the overall MTTF of this particular electronic system could be possibly months or weeks or 

days [93]. Figure 4.3 is showing the definition of MTTF within a system. 
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Figure 4.3: Mean time of failure-type definition within a system [17] 

 

In Figure 4.3 two more industry definition for mean time of failure are demonstrated. The first is 

mean time between failure (MTBF) and the second one is mean time to repair (MTTR). MTTR 

defines the time between the detection of the fault and the time it takes to repair the fault. MTBF is 

the added time of MTTF and MTTR together and describes the time frame for how long it takes 

before the system works fault-free again [93]. Two more definitions are being used for the 

description of the ability of a system’s fault-handling capability, which are mean time to manifest 

(MTTM) an error and mean time to detect (MTTD) a fault. These two types of fault definitions are 

linked to configuration bits used to define functionality within a flexible programmable logic 

system like an FPGA. MTTM defines the time an error is dormant within a system. A dormant 

fault is a fault which is not active at the time due to fact that it could be possible that the fault is 

present within a occasionally used or a spare part of the chip/circuit [94]. This time can vary 

depending on the functionality assigned to this faulty configuration bit. Only in the case of actually 

using this functional part of the chip or logic structure of the application where the fault is located, 

will the effects of the fault show up within the system. The MTTD defines the elapsed time 

between the corruption of the configuration bit and the detection of the faulty bit within the 

configuration [95]. 

 

4.3. Definition of fault and error in an electronic system 

 

The definition of a fault being active within an electronic system is when the circuit or logic system 

produces an error, which represents a result or action that deviates from the correct service state of 

the equipment [95]. Because of this link between the different phases it takes for the manifestation 

a fault within an electronic system the phases have to be described in more detail. First, a fault 

occurs within a sub function of an electronic system, which triggers an error. The error sets off a 

failure within the subsystem or sub-function. A failure is the end product of a system-level or 

functional hardware block fault. This is only the case if the failure shows up on the boundary of the 

system otherwise the fault is dormant. Any type of dormant fault could be present within systems 
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parts, which are not in an active or used part within the system on a frequent count. Even they can 

be present in spare part, which are only be used in cases of reconfiguration and in this case are not 

sufficient for fixing a faulty system [94]. For the stability of any electronic system the propagation 

of any fault through the system has to be prevented and this is the area of fault-tolerant systems. If 

an electronic system shows an error or delivers incorrect results this happens because of a fault or 

failure within this system. In this way an error is more or less the manifestation of a fault for the 

user of this electronic system. Errors within an electronic system could manifest themselves during 

operation time, e.g. a changed memory bit within a memory cell. Only in the case of activation of 

these faulty logic parts of the chip will the fault show up and possibly traverse through an 

electronic system. The definition of a fault-tolerant system is that it is designed to deal with faults 

within given design limitations for maintaining the required system functionality. A fault within an 

electronic system could be caused by a hardware or software fault. The research work done for this 

thesis is focused only on the electronic hardware faults. 

 

4.4. Faults and errors in an electronic system 

 

With Figure 4.4 the possible fault propagation within an electronic system is demonstrated. In the 

case A of Figure 4.4 the fault is being masked within the inner scope of the electronic system with 

the help of fault-tolerant logic. The electronic system will not show an error at the outer system 

scope. So the user of this system will not know that a fault happens within his electronic system. In 

the case of a masked fault which happened at the inner scope of the system the system designer has 

designed an indication for this purpose and the user will be informed about it. In case B of Figure 

4.4 the fault shows up in the outer scope visible to the user. This can be through an alteration of the 

required system response.  

One approach to deal with faults in a system is to mask the fault within the inner scope of the 

system. In this case the outer system scope will not see the fault and will generate no error or 

system misbehaviour. The technique of fault-masking relies on the capability of detecting a fault 

which exists within the electronic system and is adapting the logic design of the system to cope 

with this type of fault. In some cases different masking capabilities have to be used. Miscellaneous 

masking schemes are available for electronic logic systems. 

 



Chapter 4: Review of type of faults and behaviour on an electronic system 

[52] 
 

 

 

Figure 4.4: Fault propagation within system [17] 

 

4.5. Types of faults in an electronic system 

 

All these different types of electronic hardware faults within an electronic system can be classified 

into three categories: permanent, intermittent and transient faults. Besides these three main fault 

categories two more fault-types have to be mentioned which are benign and malicious type faults.  

A benign fault of an electronic system is a fault condition when the system just goes dead during 

normal operation without any prior indication. This kind of fault-type would be easily detectable 

and repairable, but the impact of this fault happening during operation could be a real misfortune 

for the user of this system. If this kind of possible fault happens during a space flight of a satellite 

the whole project would be lost without the possibility of repairing the system. Malicious faults, 

which are also called Byzantine faults, are such as when a system will deliver reasonable looking 

results on request but these results are incorrect. For example an altitude sensor of an airplane 

reports 1000-feet altitude instead of the correct 8000-feet altitude [96]. These two types of faults 

are falling into the category of logic function-related faults or even design related. Because of the 

way benign faults happen within a system they cannot be resolved within this block or system. Due 

to that impact and the way these faults react they will not be part of this research work. 

 

4.5.1. Transient faults in an electronic system 

 

Transient faults occur and vanish within a system and manifest themselves in most cases in the 

nature of bit flips, which got stored or logic gate malfunction. The root cause of a transient fault is 

due to a high energy particle like a neutron or alpha particle hitting the silicon structure of the chip. 

This impact of this particle has to be near a transistor or capacitor of a static random access 

memory cell logic to cause a bit flip. This is due to the energy induced at this point of the chip 
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where the particle struck. The current ongoing dimension reduction of all components on a chip 

reduces the amount of charge stored within the capacitor of a static random access memory 

(SRAM) cell. Due to this reduced charge stored within the capacitor it makes it more susceptible to 

gamma particle radiation [25]. 

By hitting the silicon chip structure the high energy particle creates a charge that alters the voltage 

levels in this area and can flip a bit in a memory cell or a logic latch. Within the memory chip the 

effect of the flipped bit can be detected and corrected with the help of parity bits and ECC.  

Researchers expect that per new generation of chip technology the soft-error rate per logic state 

will increase by 8%. In Figure 4.5 the soft-error rate in relation to the technology generation is 

demonstrated and is showing that the soft-error rate for future chip structures will increase. This is 

happening because of the reduced component size of a given chip into the nano regions and this 

will cause the likelihood of an increase of soft-errors at sea-level increases. These soft-error effects 

in a given next-generation chip will no longer only be a problem to high altitude applications and 

because of this it will require the same fault-tolerant approaches to be implemented for low altitude 

applications.  

The detection and correction of flip bits caused by energy particles within a flip-flop of a chip is a 

much harder problem [16]. New chips are equipped with more functionality built-in and because of 

the reduced size the number of components within a given chip area is significantly increased. Both 

points lead to bigger chip sizes within the package and this means an increase of the target area for 

energy particles [25]. 

 

 

 

Figure 4.5: Soft-error failure-in-time of a chip (logic and memory) [10] 

 

The second cause of this type of fault can be electromagnetic interferences. Transient faults cannot 

be fixed with the exchange of the hardware [97]. This type of fault gets described as single event 

upset (SEU). In the case that this upset happens in the same component with a certain frequency, 
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this is getting defined as a single event rate (SER) for this specific component. Because of the 

transistor structure dimensions being close to nano-style feature size on a chip it is possible to 

generate MBUs by a single radiation hit. It is much easier to generate MBUs within a memory chip 

due to the density of memory cells within a certain area. The SER gets commonly measured in FIT. 

Modern chips with their reduced structure dimensions of a single transistor will have soft-error 

rates, which are producing a failure rate that is higher than all the permanent hardware failures 

combined. Today’s electronic devices have a typical failure rate of a gate oxide breakdown, metal 

electro migration for example of 1-50 FIT for a single device type. The overall FIT rate of a chip 

will be due to the critical reliability mechanisms of any chip, which are going to be more in the 

range of 50-200 FIT. By comparing the chip FIT rate against an easily exceeding SER driven FIT 

rate of possible 50000 FIT/chip the scope of the relevance of the FIT driving effect changes [16]. 

These numbers show that in the future the soft-error-induced FIT rate is going to be the dominant 

FIT rate within an electronic system of a given application in the future. According to [98] the FIT 

rate at sea level for latches and SRAM cells varies between 0.001 – 0.01 FIT/bit which increases 

with altitude. The combined FIT rate of a whole chip is the sum of all raw FIT rates multiplied by 

the soft error susceptibility factor of this individual component [98]. 

 

4.5.2. Permanent faults in an electronic system 

 

A permanent fault can be described in this way; as that part of an electronic system that produces a 

fixed result permanently. This result in any digital system can be either correct or incorrect. For 

example if the permanent created result due to the fault is a constant digital high level and in the 

case the system is requiring a high level result, which means that the evaluation of the result will be 

seen as correct even if the result has not been generated. But in the case of a required zero level it is 

incorrect. Judging the correctness of the circuit only on the comparison against similar circuit 

output will not always reveal a faulty system. It could be possible that more output results for 

evaluation are required or another type of indication in the case of a fault is necessary.  

A permanent fault reflects irreversible physical changes within a chip logic circuit of the system 

[97]. In this way a permanent fault will remain for an indefinite period within the electronic system 

until this device or component gets replaced. A permanent fault can be best described with the 

example of a defective light bulb. In the case of a fault the light bulb will not generate light. The 

fault will only be fixed in the event of replacing the light bulb. Within an electronic system this 

could mean for example that at a given chip an input or output of a logic gate is stuck-at high or 

zero permanently. This type of fault could be due to wear-out, migration, manufacturing issues or 

using the device out of specification. Latch-up effects within the chip can also act as a permanent 

fault. The difference between hardware related issues and latch-ups means that the latch-ups can be 

resolved with power cycling. But in some cases a burn-out of the particular logic circuit, which is 
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having a latch-up, can become a permanent hardware fault. In this case the hardware needs to be 

replaced with new equipment or the chip by itself is capable of altering the application-specific 

logic structure to be reconfigurable for avoiding this part of the chip. 

 

4.5.3. Intermittent faults in an electronic system 

 

Intermittent faults are faults, which could appear and disappear over time during the operational 

period of the electronic system. As the name indicates this kind of fault is not of a permanent 

nature, it will happen from time to time. Sometimes errors, which are intermittently affecting an 

electronic system, tend to occur within this system in bursts if the transient fault happens at the 

same location and activation [97]. Intermittent faults can be seen as an early device indication for 

permanent faults, which could manifest within this device as a certain individual component. An 

example of an intermittent fault could be a partial oxide wear-out of a single transistor of a chip. A 

study, which has been done, was based on fault data collected from a number of data servers for 

identifying intermittent faults and their effect on the operation of these data servers. This data 

represented the fault data of these data servers over 310 operational years. The data showed that the 

systems experienced 6% intermittent single-bit errors (SBE) within their memory during the time 

of observation. All these faults were corrected with the memory error correcting code (ECC) and 

therefore no service interruption happened. Failure analysis carried out when possible indicated 

that manufacturing residues on the contacts of the memory cards caused an intermittent contact 

problem [97]. This was seen as the root cause of the intermittent bit faults within these data servers. 

 

4.6. Detection of fault or error occurrence in an electronic system 

 

As Figure 4.4 demonstrated, the definition of a fault is that the fault stays within the limits of the 

functional block of the total electronic system. The fault gets identified at the boundary of the 

functional block and masked. Faults which are masked stay within the functional block 

unnoticeable to the outside world. Errors are manifestations of faults occurring within any system 

noticeable to the outside world. This indicates that the fault had passed through every boundary of 

each functional block. For masking a fault at the functional block boundary different approaches 

such as majority-voting or comparing can be applied within a logic based system. 
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4.6.1. Majority voter at the boundary of a functional block 

 

The function of a majority voter can be seen as majority-voting the overall output result out of a set 

of individually created or a stored number of data bits. In this way the majority voter is working on 

the concept of data redundancy, which should all represent the same value. The functional block 

diagram of majority voter in general is demonstrated in Figure 4.6. According to von Neumann 

[99] at least more than N
2⁄  of the inputs (Yx) supplied from the identical circuits (M) have to carry 

the correct result for a majority-voted result. The identical circuits (M) are forming the main 

functional block of an electronic system and the number M represents the number of hardware 

overheads compared to a single structure. In principle the voter demonstrated in Figure 4.6 can 

only work on single digital results or data structure due to the direct comparability of the system 

results. The majority-voted result of single digital results can be done within one clock cycle. For a 

majority-voting based on data structures the voting has to majority vote on each individual data 

structure bit and this must accord to the number of data bits the structure contains. For creating a 

majority-voted output result of the data, each individual bit of the data word has to be majority-

voted and has to be in accords to the requirement of more than N
2⁄  bits have to match of the same 

data structures. It is also possible to create a majority voter, which will take the whole data 

structure and create a majority-voted output result by means of doing the comparison of the whole 

data within one clock by parallel majority-voting. This concept would require the number of data 

bits majority voter working in parallel. 

 

 

 

Figure 4.6: Majority voter block diagram for an NMR system [18] 

 

The majority voter demonstrated in Figure 4.7 shows the logic circuit of a conventional triple 

module redundant (TMR) majority voter. The Boolean equation of this TMR voter is: 

 

𝑌1 = (𝑋1⋀𝑋2)⋁(𝑋1⋀𝑋3)⋁(𝑋2⋀𝑋3)  (Equation 4.1) 
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Figure 4.7: Conventional triple module redundant (TMR) majority voter  

logic circuit created out of single logic gates 

 

For this example of a majority voter a TMR system gets chosen because it is the minimal redundant 

system, which is fulfilling the von Neumann rule. The resulting truth table of the majority voter for 

a TMR system is shown in Table 4.1. The principle of majority-voting can be observed within the 

data shown in Table 4.1 and the rule that N
2⁄  of the inputs are required to have the same result for 

the majority vote to generate a valid output result. The results of the table reflect this rule for all the 

different input sequences. The data represented in Table 4.1 shows the output results of a fault-free 

majority voter for a TMR system. But how is the output result of a TMR majority voter affected by 

fault-injection of SAH or SAL faults at different injection points in accordance with Figure 4.8? 

The majority voter is the functional block within a fault-tolerant system based on fault-masking and 

the fault-behaviour affects the fault performance. The reliability calculation for a TMR-based fault-

tolerant system demonstrates the impact on the overall reliability of a TMR system with majority 

voter. The general reliability equation for a TMR system with majority voter is for two out of three 

subsystems of a TMR system to be correct is: 

 

𝑅𝑡𝑚𝑟 𝑤𝑖𝑡ℎ 𝑣𝑜𝑡𝑒𝑟(𝑡) = 𝑅𝑣𝑜𝑡𝑒𝑟(𝑡) ∑ (3
𝑖
)(1 − 𝑅(𝑡))𝑖𝑅(𝑡)3−𝑖1

𝑖=0  (Equation 4.2) 

General TMR reliability equation with majority voter 

 

𝑅𝑡𝑚𝑟 𝑤𝑖𝑡ℎ 𝑣𝑜𝑡𝑒𝑟(𝑡) = 𝑅𝑣𝑜𝑡𝑒𝑟(𝑡) ∑ (3
𝑖
)𝑅(𝑡)𝑖(1 − 𝑅(𝑡))3−𝑖3

𝑖=2  (Equation 4.3) 

TMR reliability equation with majority voter where two out of  

three subsystems are correct 

 

𝑅𝑡𝑚𝑟 𝑤𝑖𝑡ℎ 𝑣𝑜𝑡𝑒𝑟(𝑡) = 𝑅𝑣𝑜𝑡𝑒𝑟(𝑡)(3𝑅2(𝑡) − 2𝑅3(𝑡)) (Equation 4.4) 

The reliability equation of a TMR system with majority voter  

where two out of three subsystems are correct 
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As equation 4.4 shows the overall reliability of a TMR system with majority voter is determined by 

the reliability of the majority voter. This is due to the multiplication of the reliability of the 

majority voter with the overall reliability of the whole TMR system. In this regard the majority 

voter can be seen as the single point of failure within this fault-tolerant structure. Any deviation of 

a 100% reliable majority voter cannot be tolerated for the performance of the reliability of a fault-

tolerant and reliable TMR system with majority voter. In this regard the question of the fault-

tolerance of a majority voter will show how the fault-tolerance of a TMR system with majority 

voter affects the trustworthiness of this system. 

 

 

 

Table 4.1: Truth table of the TMR majority voter  

demonstrated in Figure 4.7 

 

For analysing the fault-behaviour of the conventional TMR majority voter regarding SAH or SAL 

faults injected into the circuit at the appropriate points in accordance with Figure 4.8, a fault rate 

analysis will reveal the fault-behaviour effects. This simulation was performed to reveal the fault 

rate (FR) of the circuit and the effect on the majority-voted output with regard to trustworthiness. 

For indicating a fault the comparison between the output result of the fault-free against a fault-

injected one for a given input stimuli has been used. In this case for a TMR majority voter any 

deviation of the output value of the fault-free results (shown in Table 4.1) can be seen as an 

untrustworthy output result. Out of this type of results it can be seen as a system error generated 

and passing through a functional boundary caused through a fault within the majority voter. This 

example illustrates the impact the fault within the majority voter has on the fault-behaviour of the 

entire system and proves the point that the majority voter is the single point of failure. The method 

of FR was chosen because it offers the best comparability of fault-behaviour between different 

system structures. The calculation of the FR of a given circuit structure can be done by the 

following equation that is usable for different circuit structure set-ups:  

 

𝐹𝑅 =
𝑁𝐹𝑎𝑢𝑙𝑡𝑠

𝑁𝐼𝑛𝑝𝑢𝑡_𝑆𝑡𝑖𝑚𝑢𝑙𝑖
∙ 100% (Equation 4.5) 
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The FR for the fault simulation of the TMR majority voter is shown in Table 4.2 with a total FR of 

22.6% for injected stuck-at fault simulations at appropriate stimulus points (see Figure 4.8). Each 

of these results of the TMR majority voter in response of a stuck-at fault-injection is a deviation 

and resulting in an error (see Figure 4.4). This error revealed by means of stuck-at fault-injection 

shows that the trustworthiness for the TMR majority voter is given by an FR of 22.6%. With this 

FR the TMR majority voter will generate 77.4% correct results under the influence of a stuck-at 

fault and cannot be identified as a fault-tolerant or a 100% correctly working system under the 

influence of a stuck-at fault. Out of this fault-behaviour and the importance of the majority voter on 

the overall system behaviour the majority voter will require further analysis work for increasing the 

competence of this vital functional block of a fault-tolerant system. This further analysis and circuit 

alteration is carried out within Chapter 7. 

The majority voter in general is placed at a boundary of a subsystem and supplies a result into 

another subsystem or to the outside of the system. Masking of a faulty generated output signal in 

this circuit set-up is shown in Figure 4.7 and is not part of the logic structure. So in the case of a 

fault within the TMR majority voter the faulty output signal will propagate through the system and 

will pass functional system boundaries. Inherent or designed into the circuit structure capabilities of 

fault-indication is not possible with the circuit demonstrated in Figure 4.7. 

 

 

 

Figure 4.8: Conventional TMR majority voter logic circuit with  

stuck-at simulation points (1 to 13) 

 

 

 

Table 4.2: Fault rate data of the stuck-at simulation at specified  

injection points indicated in Figure 4.8 
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If a fault-tolerant TMR majority voter (see Figure 4.7) is required the circuit needs an additional 

circuit part that indicates through a signal if not all input signals (Yx) of the TMR majority voter do 

not have the same digital value. For this example the number of inputs for any type of logic gate 

used within a circuit is limited to two inputs. This has been chosen for evaluation purposes. The 

fault-indication circuit is demonstrated in Figure 4.9 where 𝑌𝐹̅̅ ̅̅  indicates the situation that not all 

input signals feeding into the majority voter are of the same logic level value.  

 

   

(a)      (b)       

 

Figure 4.9: TMR majority voter with fault indicator circuit for the case that inputs  

are homogenous. (a) for homogenous of all inputs,  

(b) for homogenous of two out of three 

 

The fault-indication solution demonstrated in Figure 4.9(a) is for the case that all inputs are 

homogenous and the logic equation is therefore: 

 

𝑌𝐹̅̅ ̅̅ = (𝑋1 ⊕ 𝑋2) ∨ (𝑋1 ⊕ 𝑋3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  (Equation 4.6) 

 

The equation demonstrated in Equation 4.6 and the corresponding Figure 4.9(a) represent a circuit 

for indication of consistent input signals feeding into the TMR majority voter. This circuit solution 

is not in accordance with the von Neumann rule that N
2⁄  inputs have to be the same and a matching 

circuit in accordance with this rule is shown in Figure 4.9(b). For this circuit the logic equation is: 

 

𝑌𝐹̅̅ ̅̅ = (𝑋1 ⊕ 𝑋3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∨ (𝑋1 ⊕ 𝑋2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ∨ (𝑋2 ⊕ 𝑋3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   (Equation 4.7) 

 

With this circuit structure (shown in Figure 4.9(b)) this altered TMR majority voter is now able to 

indicate that a deviation of one input signal has occurred. For these different faults indication 
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signals of these altered TMR majority voters will indicate a fault condition to the higher controlling 

circuit. With these fault-indication signals the identification of the specific fault within a path is 

possible and with the help of another circuit structure the identification of the faulty input path is 

possible. The identification of the faulty input path is possible through an evaluation of the 

majority-voted result signal against the individual voter signals. This approach also discloses the 

cured influence of a fault affecting a single track of a TMR system to a system controller of this 

TMR system. A simple comparison circuit is delineated in Figure 4.10 and the associated logic 

equations of this circuit are the following ones:  

 

𝑌𝐹𝑋1 = 𝑋1 ⊕ 𝑌1 (Equation 4.8) 

𝑌𝐹𝑋2 = 𝑋2 ⊕ 𝑌1 (Equation 4.9) 

𝑌𝐹𝑋3 = 𝑋3 ⊕ 𝑌1 (Equation 4.10) 

 

 

 

Figure 4.10: TMR majority voter with output fed-back comparator  

against inputs for identifying faulty input path 

 

For a fault-tolerant TMR majority voter the total circuit would be a combination out of the 

following circuits illustrated in Figure 4.9(b) and Figure 4.10, which then would work side by side. 

This combination would indicate the presence of a fault and the fault creating input path of the 

TMR system. Comparing the overhead based on transistors the following logic gate transistor 

counts has been used:  

 

AND = 6 Transistors, OR = 6 transistors, NOR = 4 transistors,  

XOR = 12 transistors, XNOR = 14 transistors. 
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Total transistor count in accordance with the figures and comparison against the transistor count of 

the TMR majority voter (see Figure 4.7) is represented in Table 4.3. The overhead for the different 

circuit configuration is significant. By using two standard input logic gates for making the TMR 

majority-voter fault-tolerance the overall problem of faults is still maintained due to the fact that in 

the case of a faulty component within the circuit no indication of this is built-in. 

 

 

 

Table 4.3: Transistor count comparison against TMR voter  

(see Figure 4.7) as overhead 

 

4.6.2. Comparator at the boundary of a functional block 

 

Instead of the majority-voting a comparison of the results produced from individual blocks can also 

be used for avoiding fault propagation through the system. The resulting circuit uses less individual 

components than the TMR majority voter, which in this case should result in a reduced FR. This 

comparator approach is mostly used for dual redundancy electronic systems displayed in Figure 

4.11 in which a single AND gate is being used as the comparator. 

 

 

 

Figure 4.11: Dual redundancy electronic system with AND-gate  

as a comparator at the output 

 

This simple comparator solution done with the AND gate has a significant impact on the FR of this 

set-up. In the case of a mismatch between both output results an overall result of zero is produced 

and this correlates to a 50% FR. The circuit shown in Figure 4.11 needs a means of output 

mismatch indication to a hierarchical higher control system. A simple solution is described in 

Figure 4.12 where this comparison of the two outputs has been done with a single XOR gate [100]. 
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Figure 4.12: Dual redundancy electronic system with AND gate  

comparator and XOR gate as fault indicator 
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4.7. Summary of the chapter 

 

Emphasis in this chapter was placed on temporary and permanent faults within a given logic 

structure and their effect on the whole electronic system. In general any electronic system is 

divided into different functional logic blocks and each functional logic block can be defined as 

surrounded by a boundary. A fault which passes through this boundary unnoticed and without 

masking/fixing is defined as an error. This behaviour puts the trustworthiness of the whole system 

into question. Measuring at the boundary of the functional logic subsystem is required to perform 

fault-tolerance and masking. The most commonly used logic structure to perform the task at the 

boundary is the TMR majority voter. TMR majority voter requires a triplication of the functional 

logic circuit for generating three independent output results. This by itself generates 200% 

hardware overhead. The trustworthiness of the functionality of the functional block depends on the 

fault-behaviour of the TMR majority voter. A fault-injection simulation performed on the input and 

output structure of the discrete voter structure reveals its fault response to stuck-at high/low faults. 

This simulation revealed that the FR of a TMR majority voter is 22.6%. Fault identification with 

regard to identification of outputs feeding into the voter requires additional logic circuit facility. 

The FR of the voter indicates that an altered logic structure or fault-tolerant logic gates are required 

for designing a fault-tolerant TMR majority voter. Within a fault-tolerant TMR system the majority 

voter can be seen as the single point of failure for the system. Because of the impact the majority 

voter has on the fault-tolerance research work with regard to increasing the fault-tolerance of the 

majority voter will be one focus of this thesis. 
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Chapter 5: Concepts for increasing dependability of logic systems 

 

5.1. Introduction 

 

Fault-tolerant systems are capable of preventing the propagation of a fault through their logic 

structure, which subsequently could manifest as a noticeable error to the world outside of this 

system. The fault-masking capabilities of these types of systems rely on certain logic structure 

designs created to equip logic-based systems with fault-tolerance. By applying these techniques 

onto a given logic circuit, the reliability of the resulting circuit regarding fault-tolerance will be 

increased. This is the direct benefit but in most cases it comes with a price to pay, which is logic 

overhead. This logic overhead affects all parameters of the logic circuit.  

 

5.2. Fault-tolerant per system design 

 

The concept of fault-tolerance per system design can be achieved with two different approaches. 

The first one is fault-masking and the second one is fault correction. The fault-masking principle 

works on the concept of using redundancy within the output result creating functional blocks so 

that through means of comparing or majority-voting a final output result can be generated. Reliable 

systems working with the approach of redundancy usually exploit one of the three possible 

redundancy forms: temporal (time), spatial (hardware) or pertaining to information [88, 101]. The 

information redundancy can also be defined as data redundancy where a set of the same value is 

generated independently or stored within different memory locations. A generalised block diagram 

of the majority-voting principle structure for an N-type design is shown in Figure 4.6, which is 

used for the spatial redundancy principle for generating a single output data out of redundant data. 

The original design principle was described in 1956 by von Neumann [99] for logic designs with a 

high number of redundant copies of the same logic structure. The most commonly used redundancy 

structure is the three-parallel electronic system or TMR working side-by-side, which also fulfils the 

requirement that more than half of the redundant systems produce the same output result. Dual 

redundancy systems cannot fulfil this requirement and an output result comparison can be utilised, 

in which case both output results have to be identical. Comparison cannot offer fault-masking due 

to the fact that there is no comparison in the case of a non-matching situation. The overall reference 

is missing by only having two output results. Another type of spatial redundancy can be applied 

onto the individual transistors creating the logic gate function, which has been proposed by El-

Maleh et al in [22]. This paper proposed to replace every transistor of a logic gate with an 𝑁2-

transistor structure. Through this approach the altered logic gate is fault-tolerant against stuck-at 

faults. The principle of fault correction within a logic circuit defined as quadded logic structure was 

introduced in 1960 by Tryon for a certain set of logic gates and in 1963 Jenson expanded it by 
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another gate type [102]. The principle of fault correction can be done with replacing each two input 

logic gate by four individual four-input logic gates. The fault correction works on the principle of 

interwoven signal paths to these four logic gates and alteration of logic functionality throughout the 

circuit.  

 

5.3. Fault-tolerant approaches based on fault elimination or masking 

 

Fault-tolerance within an electronic system can be performed with the help of two entirely different 

methods. The first method is to mask the faulty output result out of N-numbers of output results, 

these outputs are created by independent system structures. By using N-numbers of identical 

system structures a single fault within one cannot propagate through the entire system because of 

the masking done by means of output signal comparator for a dual system or majority-voting for N-

number of redundant systems. The impact of faults onto the behaviour of these two approaches has 

been analysed in detail within Chapter 4. For the creation of the N-number output results three 

different redundancy concepts can be used: spatial (hardware), temporal (time) and pertaining to 

information [88, 101]. In today’s electronic systems the spatial redundancy is used in the majority 

of fault-tolerant systems and in the form of TMR circuit structure in connection with a majority 

voter. The second method is to detect, locate and repair the faulty part of the logic structure. This 

approach of fault-tolerance is achieved through logic structure reconfiguration within an 

appropriate device. 

 

5.3.1. Redundancy concepts in a system 

 

Redundancy concepts in a system can be broken down into two concepts. The first concept of 

system redundancy is looking in detail at the creation of a set of output results, from which the 

overall output result can be determined. To achieve this, three different system-based concepts can 

be utilised: spatial (hardware), temporal (time) and data (information) [88]. For the two redundancy 

concepts of spatial (hardware) and temporal (time) a valid output is generated by the use of 

majority-voting, which is working on the principle of data redundancy. The second concept 

focused on fine-grained redundancy centred on the transistors of each logic gate to perform fault-

masking within the individual logic gates [22]. 
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5.3.1.1. Spatial redundancy system structure 

 

Spatial or hardware redundancy was originally postulated and described in 1956 by von Neumann 

for high numbers of redundancy [99]. It is also referred to as N-module redundancy (NMR) as 

displayed in Figure 4.6. N copies of the same logic design or functional block work side-by-side to 

generate N-numbers of output results, which fall into the category of data redundancy. The 

resulting N output results are fed into a decision-making circuit, thus creating a majority result out 

of the N-number output results. This majority result is valid if it is representing the value of more 

than N
2⁄  output results which have the same value [99, 103]. In the case of N=2 this overall output 

result is generated by a comparator and for N>2 by a majority voter gets used. The original concept 

of von Neumann was designed for N-number redundant devices where N was a big enough number 

of duplicated copies of the original functional block design. This concept of using a big enough 

number of functional block redundancies has the problem of logic hardware complexity and 

overhead. The most commonly used adaptation of his concept is TMR and it is represented in 

Figure 4.6 with the setting of N=3. TMR is used in mission critical systems and it is a balance 

between circuit complexity and reliability. The number of redundancy blocks (R) required for 

creating an NMR system that can tolerate a required number of faults (E) feeding into the majority 

voter can be determined by the following equation: 

 

𝑅 ≥ 2 ∗ 𝐸 + 1  [104]   (Equation 5.1) 

 

In accordance with equation 5.1 a TMR system can tolerate one fault feeding into the majority 

voter. If the system is a dual module redundant (DMR) structure the equation 5.1 and N
2⁄  can never 

both be achieved and no real majority-voted result can be generated within this system. Because of 

the equation N 2⁄  the values of R within equation 5.1 will be odd numbers to fulfil the fault-tolerance 

for a certain number of faults (E). In a DMR system both modules have to generate the same result 

otherwise if one module is given an incorrect result the DMR system has a 50% chance of 

generating the correct output result. This means in this case that the DMR system holds and 

indicates the mismatch by means of a system-fault-flag. 

Different types of NMR-based systems can be applied to make a system fault-tolerant. The basic 

version of an NMR system is the DMR system, which works in lock-step system configuration 

[101]. In some DMR-based applications the system repeats the execution until the results are 

matching or until a certain number of repeats have been reached. In this case, the DMR-based 

system is put on hold and this puts the system into a safe condition. The presence of a fault that 

cannot be resolved will be indicated by the use of a system-fault-flag. DMR-based systems are used 

in safety-critical automotive applications like anti-lock break systems (ABS) [79, 101]. 
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The hardware or spatial TMR system is the system which uses three identical copies of the same 

functional circuit block working side-by-side to generate three output results in a lock-step 

approach [101]. TMR is the base for all the deviation set-ups applied for making logic designs 

radiation hardened by design and remains by far the most popular redundant system until today.  

Variations of hardware TMR can be: 

 

- Block TMR or BTMR [105] is an older methodology by triplicating the functional block 

and adding a majority voter. 

- Local TMR or LTMR [105] is focused on triplication of the result storing elements within 

a BTMR and where the data path remains a single path. The resulting output majority-

voted value gets fed back into every flip-flop (FF) to correct any incorrectly stored values 

within the output FFs of the LTMR. This fed-back loop can be seen as a self-correcting 

circuit. 

- Global TMR or GTMR [105] uses the approach of triplicating everything throughout the 

system and due to this the upset rate regarding faults is very low. The triplication includes 

the clock and domain circuit of the system, so they are independent of each other. The use 

of the approach of GTMR can be seen in the use of large chip area overhead and power 

usage.  

- Distributed TMR or DTMR [105] is a basic version of GTMR in which everything gets 

triplicated but this does not include the global clock-routing and reset. By not including the 

clock into the triplication like the GTMR it is susceptible against upsets causing faults. 

- Selective TMR or STMR [105] only triplicates selective circuits within the system which 

can be identified as sensitive to SEU-induced faults. Due to the unique identification of 

sensitive circuits this method cannot be automated by tools [106]. In paper [107] two more 

different concepts for STMR have been proposed. The first one is coarse-grained TMR or 

CGTMR referred to in [107] using the method to triplicate large parts of the logic circuit of 

the system. The second one is fine-grained TMR (FGTMR) [107] which directly triplicates 

fine parts of the circuits and uses BTMR on these parts. 

- Functional TMR or FTMR [105, 108] works on the principle that the functional blocks are 

triplicated and feed into a triple majority voter circuit. The resulting majority-voted values 

get stored into triple sequential logic where the output gets fed into a triple majority voter 

to generate the three independent overall results. These results are fed into the next FTMR 

block and get fed back into the functional blocks of the first FTMR system for correction 

of output values, if necessary. 

- R-fold modular redundancy or RMR, where R is an odd number for the number of 

redundant system copies working side by side [109]. In the case of R=3 it represent a TMR 

system. 
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- Cascaded triple modular redundancy or CTMR [109] uses three individual BTMRs within 

its data path for creating a set of three fault-tolerant data paths. So each of these data paths 

has its own BTMR system. At the end all majority-voted values of the three BTMR 

systems are fed into a majority voter creating an overall majority-voted result out of these 

three BTMR subsystems. 

- Xilinx TMR or XTMR [95, 107] is part of the Xilinx development platform and can be 

selected during design and compilation of the logic design. XTMR applies the following 

logic structural design onto the application design; it triplicates all the following functional 

blocks of the system: input/output, the throughput logic and inserts fed-back logic for 

register data correction. In comparison with CTMR, XTMR is more advanced in protecting 

data with the help of a feed-back register for checking if soft-error has occurred within this 

data path. Also XTMR is part of the Xilinx design library and will be in use for a number 

of applications where Xilinx FPGAs chips are used. This will make the XTMR approach 

most certainly the new industry standard of radiation-hardening for logic devices within 

FPGA devices. The XTMR solution is coming with a price in logic resources, performance 

limitations, power consumption and vulnerability of the voter. 

 

All of the described versions above of TMR systems are working in lock-step approach centred on 

the individual output results. Without the lock-step approach the majority-voting of the different 

output results would not be possible without mismatches due to timing problems. 

 

5.3.1.2. Temporal redundancy system structure 

 

Temporal redundancy uses redundancy in time differently to the spatial redundancy of the N-type 

system redundancy approach [19]. The TMR system is the most common approach, which uses 

three copies of the same functional block to produce a set of output results out of these and with the 

help of a majority voter an overall output result gets voted. In the case of a transient fault or 

permanent defect within one functional block one output result of this set of output results will be 

different and by the use of majority voter will be excluded. The approach of spatial redundancy 

increases the hardware complexity and if a system is needed where timing is less important than 

hardware complexity, time redundancy can be utilised [110]. The method of time redundancy 

works on the concept of creating a set of output results with only one functional block by using it 

recurrently within a set time frame to create a set of output results. These output results are being 

stored within separate memory cells. If a similar set of output results comparable to a TMR system 

performance is required three memory cells are needed and each memory cell is filled after one 

clock cycle. Novel concepts of memory utilisation could be applied onto the part of the storing of 

the results generated after each temporal cycle. Within this research work a direct comparison 
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between TMR, quadded logic structure and QLC within their output result structure is based on the 

concept of using an N-number input majority voter logic circuit. This is because the majority voter 

is the logic circuit, which is handling the fault-masking for the feeding logic functional block. 

Out of these stored output results a majority-voted result can be formed similar to the TMR system. 

The idea behind time redundancy is that if any type of intermittent or transient fault occurs it will 

only happen within one output result creation due to the duration of the effects of the SEU [111]. In 

the case of a permanent hardware fault in this functional block of the temporal-redundant system 

all results created at different time intervals will have the same error. The overall majority-voted 

output result will be affected and the incorrect output result gets chosen. Temporal redundancy 

systems are designed to handle transient faults and not permanent hardware faults [19]. For 

handling permanent faults within a temporal-redundant system an addition to the original structure 

has been proposed in paper [19]. This concept uses data encoding algorithms before execution of 

the functional block and inverse algorithm for data decoding afterwards for different execution 

time frames within one general cycle. The sequence of result creation for the logic structure 

illustrated in Figure 5.1 is working in accordance with a specified process flow. The first result gets 

generated without data coding, the second one with one type of algorithm and the third result gets 

created with an altered algorithm. Out of this set of output results an error-free result gets majority-

voted and the block diagram for the data encoded temporal-redundant system following the flow 

defined beforehand is illustrated in Figure 5.1. Through this approach a single permanent fault 

within the single functional block can be compensated because of using two different coding 

approaches for the generation of the three output results for the data [19]. 

 

 

 

Figure 5.1: Timing sequence of the encoding/decoding approach of the permanent  

fault-masking temporal redundancy structure [19] 

 

A different concept of using temporal redundancy instead of TMR was proposed in [19] as a time-

shared TMR (TSTMR) concept and in [112] as a quadruple time redundancy (QTR) concept. The 

following chapter describes the concept of these two papers in more detail. Both concepts work 

with the principle of splitting the functional block into three individual sub-blocks, which are 
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getting their input data through MUXs. These MUXs are splitting the input data into three sub-data 

segments of the whole data structure. The resulting outputs out of these three sub-blocks are fed 

into a majority voter and by the use of a DeMUX unit the corresponding sub output result data gets 

generated. The TSTMR block diagram of an adder is delineated in Figure 5.2. With the TSTMR 

structure errors correcting adder and multipliers have been created accordingly. Similar to the 

concept of splitting the data into three blocks as done for the TSTMR concept, the QTR concept 

splits the data into four blocks. So instead of using three clock cycles for the TSTMR concept the 

QTR concept needs four clock cycles to generate a set of four output data result structures. These 

data result structures are fed into a majority voter for the generation of the output data structures. 

The disadvantage of TSTMR and QTR is to generate the suitable MUX and DeMUX units, which 

are, in this case, to be implemented within an FPGA, and are susceptible to SEUs. This would 

make this structure unreliable. 

 

 

 

Figure 5.2: TSTMR error correcting adder [19] 

 

5.3.1.3. Information redundancy data structures 

 

The information redundancy works on the principle that additional data or information is being 

added to the information or to protected data stored or used within an electronic system. The added 

data facilitates detection and correction of faults within the information data. Information 

redundancy can also be used in an approach of storing redundant copies of the same data at 

different locations or memory units. This concept of working with multiple copies of the same data 

is data redundancy and out of this set of individual values a common value has to be generated. The 
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generation of this common value out of this set of values is performed by a majority voter. 

Information redundancy adds extra bits to the information data, which protects against transient 

errors or permanent faults within the memory cells used to store the data. This data, which got 

added to the original data, is reflecting in a way the content of the stored information in memory so 

that in the case of an alteration of the information it can be detected and regenerated. For storing 

this information data plus added protection data more memory cells per individual information 

word are required and because of this efficient compact protection concepts are needed. 

The most commonly used error-correcting code (ECC) is based on the Hamming code, which is 

designed to detect a certain number of faults within the original data and is also able to correct 

them or indicate the presence of an un-correctable amount of them. Beyond a certain number of 

faults within the data ECC is capable of detection without fault correction. The fault-tolerance 

mechanism of the ECC is based on arithmetic equations or specific data structures. This principle 

of Hamming code was invented in 1950 by R.H. Hamming [113] and since then many variations 

tailored for a certain application, which are based on this mechanism, have been proposed and 

implemented over time. 

 

5.3.1.4. Fine-grained redundancy on logic gate level 

 

Fine-grained transistor redundancy is centred on the approach of adding redundant transistors 

within the logic gate. This adding of redundancy to a common gate is done with the focus of 

improving the fault-tolerant behaviour of this specific logic gate. The fault-tolerance enhancement 

done through the logic gate could empower the gate to mask certain types of faults or indicate the 

presence of non-maskable faults. The part of indicating of non-maskable faults is the area this 

thesis will focus on and can be seen as an innovated concept. With manufacturability in mind the 

adding of redundant transistors is best done in complements of two. This is because for 

manufacturing these redundant transistors can be created by adding only two parallel strips of p- 

and n-diffusion material to the existing design. It could be possible that the redundant transistors 

are using possibly the same poly-silicon input lines, which makes it easily addable to the common 

logic gate chip design [12]. Most effective combinations are based upon adding an odd number of 

transistors so that the original transistor is replaced by an even number of transistors. By using the 

redundancy rule of adding transistors only by even numbers of redundant transistors this rules out 

odd-based redundant transistor structures. The maximum number of transistors added as 

redundancy to a single original logic gate transistor was limited to three within this thesis. Thus in 

total a quadded transistor structure is replacing one logic gate transistor. Beyond this point the 

created fault-tolerant gate structures defeat the proposed target of this work of creating the smallest 

possible gate structure to cope with certain types of stuck-at faults. 
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Within [21] from Naran S. et al it was proposed that dual transistors as redundancy are getting 

added in parallel to the circuit structure and in [22] from El-Maleh A.H. et al quadded transistor 

structure are being proposed for replacing a single transistor of a given logic gate. By using dual 

transistor structure this type of gate will not be capable of masking one permanent fault. But it is 

capable of masking SAL faults, which has been verified within [20] from Djupdal A. et al with the 

help of finding the best redundant structure by using evolutionary principles to find the best 

transistor structures for enhancing fault-tolerance to a given logic gate function. An SAL resilient 

inverter logic gate was the result of this investigation, which has been found within the paper [20] 

and is described in Figure 5.3. The structure of this altered logic gate has a parallel redundant 

transistor structure for each original logic gate transistor. 

 

 

 

Figure 5.3: Best evolved SAL resilient inverter gate [20, 21] 

 

The quadded transistor replacement structure proposed in [22] is represented in Figure 5.4 and can 

also be described as 𝑁2 transistor structure. This structure is capable of handling (𝑁 − 1) 

permanent faults within each single quadded transistor replacement structure. This masking of an 

SAH fault within this transistor structure is possible as long as the fault is only one permanent SAH 

fault per replacement transistor structure of an original logic transistor. Investigation performed has 

shown that this design can tolerate certain combinations of two permanent SAH faults but this 

depends upon their locations. Also within Figure 5.4(a) the cross connection indicated between the 

centres of the quadded transistor structure has an impact on the fault-tolerance. Without the cross 

connection (see Figure 5.4(b)) two independent SAH faults within each signal path are possible, 

with the cross connection (see Figure 5.4(a)) only if both SAH faults are present within the top or 

bottom part of each of the signal paths.  
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(a)      (b) 

 

Figure 5.4: The two possible replacement quadded transistor structures for a single 

transistor of a common logic gate [22]; (a) with and (b) without cross bridge 

 

5.3.2. Reconfiguration concepts in a system 

 

The concept of fault-tolerance by reconfiguration of the logic design can only be achieved by using 

suitable chips composed of a uniform logic structure that are configurable by software. This 

uniform reconfigurable chip structure includes programmable logic, interconnection and everything 

associated with configuration capability through memory [114]. These chip structures can be found 

within commercial off-the-shelf (COTS) chips like FPGAs. FPGAs chips support two different 

reconfiguration options. The first one is the reconfiguration at run-time or dynamically and the 

second applying reconfiguration only to a defined part of the device, which is called partial 

reconfiguration of a logic block [115]. Customised chips that are also capable of offering 

reconfiguration features are mostly designed for a certain application and not for adapting a general 

application on the fly. In general, reconfiguration of a given logic circuit design requires the 

capability of altering the way the logic circuit design is implemented within a fine-grained logic 

elements structure provided within a given chip. Different methods of reconfiguration can be 

utilised for constructing fault-tolerant logic circuit designs.  

 

  



Chapter 5: Concepts for increasing dependability of logic systems 

[75] 
 

5.3.2.1. Data scrubbing 

 

The logic gate design configured within an FPGA is executed and stored within most modern-day 

FPGAs within SRAM elements. Chapter 2.3.3 shows that the assignment of SRAM within an 

FPGA can be 50% to 90% of the actual memory of a particular FPGA type. In [116] the allocation 

of configuration memory of a Xilinx Virtex XCV1000 chip was 97.4% of the total memory bits. 

Through these SRAM-type bits the configuration of the logic circuit gets set and alteration of this 

information changes the designed circuit structure. SEUs altering the memory information can only 

be detected through evaluation of the results generated through this circuit structure or through read 

back of the data stored in the configuration memory. After the read back a comparison against a 

golden copy reveals SEU-related bit alteration. The altered data can then be overwritten and this 

task is referred as data scrubbing [117, 118]. This process is also described as read-back scrubbing. 

Hardware related faults within the chip cannot be detected through this approach. The technique of 

data scrubbing is not directly an approach of reconfiguration by altering a given circuit structure 

due to a fault within a certain part of the chip structure. Data scrubbing, or better described as 

rewriting the original configuration information rather, is a re-establishing of the intended logic 

circuit design defined through the configuration data. Scrubbing can be divided into internal and 

external scrubbing. Internal is done with the help of ECC associated with configuration memory 

banks. In the case of a single-bit alteration through an SEU the altered bit within the configuration 

data can be detected and restored with the ECC controller. External data scrubbing of a device is 

divided into blind and read-back data scrubbing. Blind data scrubbing is writing the golden copy of 

the configuration data stored in an external memory into the FPGA regardless of whether a fault 

has occurred or has not occurred. The concept of read-back data scrubbing involves first reading 

back the entire data of the device and checking for data alterations. In case of a found data 

alteration this data and only the altered data gets written. 

 

5.3.2.2. Reconfiguration with pre-defined data 

 

In the case of a permanent fault within a logic circuit design configured data within an FPGA the 

approach of using reconfiguration with pre-defined configuration data requires that the general 

layout of the FPGA structure is divided into equal blocks, in this example into column-based 

blocks. Each block contains a certain part of the whole design. In the case of a fault within one 

function block, a predefined unused block is used to act as a replacement for this faulty block. The 

configuration data of the different function blocks can be assigned to the blocks to the right of this 

replacement block [23, 24]. This principle of logic design reconfiguration of a given logic design 

inside an FPGA by means of block-dependent rearrangement is shown in Figure 5.5. Within this 

figure is demonstrated the occurrence of a hardware fault within the functional block 3, which is 
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currently used for function D of the application’s logic design. This block experiences a fault which 

requires logic structure reconfiguration. The internal structure inside the FPGA is rearranged due to 

the hardware fault present and detected in FPGA block 3 that the currently unused FPGA block 5 

(see Figure 5.5(a)) is used for the functional block D reconfiguration (see Figure 5.5(b)). This 

reconfiguration involves the shift of functional block C into FPGA block 4 and the functional block 

D into FPGA block 5. After the reconfiguration the unused FPGA block 5 before the presence of 

the fault is now FPGA block 3 which contains the hardware fault. 

 

 

 

Figure 5.5: Column-based precompiled individual functional blocks. The fault-free configuration  

is displayed in (a) and an altered configuration after a fault is shown in (b) [23, 24] 

 

The division of the entire FPGA structure into homogeneous pre-compiled blocks can be done in 

any shape and size and this all depends on the application design of the system. The specification 

of certain block structures within the given application design has to be done during the design of 

the logic structure prior to the compilation of the configuration file data. 

 

5.3.2.3. Tile approach with rotating reconfiguration 

 

The four-tile approach within a given logic cell is defined in [25] from Lach J. et al. This logic 

structure has a fixed input/output interface and contains four-tiles. The structure of this tile 

approach is shown in Figure 5.6(a). The logic functionality of each tile is not pre-defined or fixed 

and hence the tiles may be regarded as a configurable logic unit and are implemented within the 

CLBs of the FPGA. Each logic cell can be a unique logic function selected or programmed into an 

LUT out of the functionality of a CLB. For example within the four-tile approach, which is 

illustrated in Figure 5.6(a), a fixed logic circuit has been defined as shown in Figure 5.6(b). The 

tiled logic structure implements the fixed logic circuit using three out of the four logic units: the 

remaining logic unit acts as a spare in the case of a hardware fault of another one. The 

interconnection between different logic cells is not part of the investigation and proposed solution 

of [25] for a fault-tolerant system solution. In the case of a fault within the interconnection 
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structure complex reconfiguration of this interconnection structure for replacing a faulty logic cell 

would require a set of pre-compiled configuration data for each possible arrangement. Another 

solution for this problem could be during run-time with the help of an embedded microcontroller 

on the FPGA chip or with the help of an external arrangement. All these approaches are complex 

and would have a noticeable impact on the availability of the system during interconnection 

reconfiguration. A possible solution for the reconfiguration problem of this logic cell matrix could 

be by creating a fixed line structure for routing input or output signals through this fixed line 

structure. This concept would require a fixed amount of lines between logic cells, which is given 

within an FPGA. But within an FPGA the routing is done by means of the interconnection and 

which is optimised during compilation of the logic design through the compiler tool. For creating 

this bus-type interconnection structure it would have to be forced during compilation or a unique 

chip design has to be created.  

Reconfiguration of the interconnections between the internal logic units does not affect the 

input/output interface of the logic cell. Any type of reconfiguration of the internal structure follows 

a pre-defined arrangement, which is illustrated in Figure 5.7 subsections I to IV, in the form of a 

clockwise reconfiguration. 

 

     

(a)   (b)    

 

Figure 5.6: (a) Logic cell with four logic units in accordance with [25]; 

(b) Internal logic structure created out of the three logic gates 

 

The fixed logic circuit designed in each logic cell forms the logic circuit shown in Figure 5.6(b). 

With this logic circuit the following logic function for an example is taken out of [25] and has been 

created: 

 

Boolean function 𝑌 = (𝐴 ∧ 𝐵) ∧ (𝐶 ∨ 𝐷)  (Equation 5.2) 

 

The implementation within a logic cell of this Boolean function (Equation 5.2) from above is 

shown in Figure 5.7 Hardware fault detection within this logic cell has to be done by external 

functionality and in the case of a hardware fault, reconfiguration data is used, which is also stored 
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externally within a memory-based functional block. After the detection of a hardware fault within a 

logic cell a pre-defined altered configuration is applied, which alters the logic cell accordingly. The 

predefined reconfiguration data mimics a clockwise rotation of the configuration until a fault-free 

configuration has been detected by the external functional checker. The limitation of this approach 

arises by virtue of not directly identifying the logic unit that has a hardware fault. Through the 

clockwise rotational reconfiguration the identification of the faulty logic unit can be achieved 

because presumably the newly created spare logic unit is the one with the hardware fault. This 

cannot really be in the case of the concept of critical and non-critical logic gate alteration, which is 

illustrated in Table 5.1.  

 

 

 

Figure 5.7: Clockwise reconfiguration of the internal circuit structure for  

maintaining the required Boolean function [25] 

 

5.4. Fault-tolerant approach based on fault-masking 

 

The concept of fault-masking gets used within an electronic system to prevent any propagation of 

faults through the electronic system and in the case of a fault it gets masked at a functional 

boundary. The first idea of using redundant information paths assessed by a majority voter had 

been first introduced by von Neumann in 1952 in an oral form and 1956 in paper form [99]. This 

concept is in use as a TMR system with a majority voter as the minimal solution of this concept. 

The approach of fault-masking within an electronic system can be done by knowing what is the 

correct output result or statistical evaluation of a set of output results of a given electronic system. 

The first method of knowing the resulting output values of an electronic system triggered by a 

certain input stimulus can make the whole logic system obsolete. The logic system is obsolete 

because why have a complex logic circuit if all the output results are matched to the corresponding 
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input stimulus and could be programmed into a memory accessible by means of addressing? By 

defining all this input/output information it is also possible to replace the logic circuit with an 

appropriate memory chip. The addressing of the memory chip is used for the input stimulus 

translation into the correct memory address. The stored data at this address is the corresponding 

output result for this input or address stimulus. In the case of using the memory-mapped solution as 

a logic circuit checker it has to work parallel to the logic circuit. In this case the assumption has to 

be that the checker system is fault-free throughout its operation. If a fault-detecting electronic 

system is required a combination of two systems in lock-step approach will create the required 

fault-detecting system. One of these systems is going to be the original logic circuit and the other 

one the checker system. This combination of two systems would be halted in the case of a detection 

of a mismatch between both systems, which also does coincide as fault-indication. For this case a 

supervisor checker system would be required to determine the correct response for this situation of 

the system at this point. The supervisor checker is also required to contain the correct results for the 

current input stimulus as the checker system. In this way the entire system transforms into a 

majority-voting system, which is more or less the same solution as the second method for fault-

masking. This system can also be defined as a TMR system with majority-voting. Within this 

system or in any other system using a majority voter a fault-masking logic structure has been added 

to the original functional structure. This majority voter is a vital functional block where applied 

within any fault-tolerant system. 

 

5.5. Fault-tolerant approach based on fault correction 

 

The concept of creating an electronic system with the capability of fault correction deviates from 

the concept of fault-masking. Fault-masking within an electronic system is based on detection and 

correction of a fault at a functional boundary. A system with fault correction works on the concept 

of using logic circuits, which enables the logic structure to correct faults by means of its logic 

circuit arrangement. The concept of fault correction and performing the required logic functionality 

at the same time was introduced by Tryon in 1958 with the quadded gate logic structure [119, 120]. 

This original work focused on the logic gates AND, OR and NOT. In 1963 Jenson expanded the 

logic gate selection with the NOR gate [102] and with this the whole fundamental range of basic 

logic gate functionality was covered. The quadded logic gate structure cannot perform fault-

masking, it is more likely the kind of failure correction by the use of a given logic arrangement and 

which performs the required logic function at the same time. Quadded logic gate structures require 

a majority voter for performing the fault-masking. It requires four times the logic circuit compared 

to a standard logic circuit design and each replacing logic gate becomes a four-input one [102, 119, 

120]. Quadded logic circuits can correct all single faults within the structure through interwoven 

redundant logic structure [37]. The concept of interwoven redundant logic structure is applied onto 
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the input interconnection between the different layers of logic gates. With the help of replicated 

input signals to each logic gate in accordance with a specific pattern, the fault correction within the 

quadded gate structure can be achieved. In [37] Pierce also introduced with interwoven redundant 

logic structure the concept of critical and subcritical errors between logic gates. Interwoven 

redundant logic structures like the quadded logic design can fix permanent and transient faults until 

the last layer of logic gates. Faults appearing at the last interconnection layer will affect the output 

results in a way that an equal amount of zeros and ones are fed into a majority voter - (i.e. a 

majority-voted result does not exist).  

For the investigation of the fault-correcting capability of the interwoven logic structure the type of 

faults will be limited to stuck-at faults i.e. SAH or SAL at the interconnection structure. Internal 

effects of stuck-at faults injected at the individual transistors will not be done for this fault 

investigation. The analysis of the fault-behaviour caused by the individual logic gate transistors and 

increasing their resilience against stuck-at faults through redundancy is part of Chapter 7. The 

results of this fault-handling capability of a quadded logic system will be based on fault-behaviour 

regarding SAL and SAH individual results and will be based on comparison of FR. The FR is 

calculated with the equation 4.2 for all the different simulation cases analysed within this chapter. 

An example for the FR calculation can be seen in appendix 2. 

The resulting impact of stuck-at fault conditions for different types of logic gates is illustrated in 

Table 5.1 [37]. The definition of a critical fault is that a stuck-at fault at the input will lead to a 

stuck-at fault at the output of this logic gate. A subcritical fault for a logic gate is that a stuck-at 

fault at the input will not cause a stuck-at fault at the output of this logic gate. 

 

Function 
Subcritical error  

in the input 
Critical error  
in the input 

Output error due 
to critical error 

AND 0 → 1 1 → 0 1 → 0 

OR 1 → 0 0 → 1 0 → 1 

NAND 0 → 1 1 → 0 0 → 1 

NOR 1 → 0 0 → 1 1 → 0 

 

Table 5.1: Critical and subcritical faults within different logic gate types [37] 

 

Applying quadded logic design structures to a given logic design means that every logic gate is 

replaced by four logic gates and each having four-inputs. An example of transforming an XOR 

logic gate built out of individual gates (see Figure 5.8(a)) into quadded logic gate structure is 

shown in Figure 5.8(b). With logic equation 5.3a to 5.3c the logic functionality of the XOR logic 

gate is described. With logic equation 5.4ax to 5.4cx the logic functionality of the quadded logic-

based XOR logic gate is defined and the interwoven input arrangement can be observed. All these 
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equations are the foundation of the logic simulation under stuck-at fault-injection at specific points 

delineated in Figure 5.9 in subfigures (a) and (b).  

 

(a)    

 

(b)  

 

Figure 5.8: XOR logic gate design in (a) standard logic gate structure  

and (b) quadded logic gate structure 

 

Logic equation describing the behaviour of the XOR logic gate designed out of three logic gates in 

accordance with circuit shown in Figure 5.8(a). 

 

𝑃 = 𝑋1 ∧ 𝑋2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  (Equation 5.3a) 

𝑄 = 𝑋1 ∨ 𝑋2  (Equation 5.3b) 

𝑌1 = 𝑃 ∧ 𝑄  (Equation 5.3c) 
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The logic equations for the quadded logic design of the XOR logic gate (see Figure 5.8(b)) 

designed on the basis of the standard XOR logic gate shown in Figure 5.8(a). 

 

𝑃0 = 𝑋11 ∧ 𝑋12 ∧ 𝑋21 ∧ 𝑋22̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  (Equation 5.4a1) 

𝑃1 = 𝑋12 ∧ 𝑋11 ∧ 𝑋22 ∧ 𝑋21̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  (Equation 5.4a2) 

𝑃2 = 𝑋13 ∧ 𝑋14 ∧ 𝑋23 ∧ 𝑋24̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  (Equation 5.4a3) 

𝑃3 = 𝑋14 ∧ 𝑋13 ∧ 𝑋24 ∧ 𝑋23̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  (Equation 5.4a4) 

 

𝑄0 = 𝑋11 ∨ 𝑋12 ∨ 𝑋21 ∨ 𝑋22  (Equation 5.4b1) 

𝑄1 = 𝑋12 ∨ 𝑋11 ∨ 𝑋22 ∨ 𝑋21  (Equation 5.4b2) 

𝑄2 = 𝑋13 ∨ 𝑋14 ∨ 𝑋23 ∨ 𝑋24  (Equation 5.4b3) 

𝑄3 = 𝑋14 ∨ 𝑋13 ∨ 𝑋24 ∨ 𝑋23  (Equation 5.4b4) 

 

𝑌11 = 𝑃0 ∧ 𝑃3 ∧ 𝑄0 ∧ 𝑄3  (Equation 5.4c1) 

𝑌12 = 𝑃1 ∧ 𝑃2 ∧ 𝑄1 ∧ 𝑄2  (Equation 5.4c2) 

𝑌13 = 𝑃2 ∧ 𝑃1 ∧ 𝑄2 ∧ 𝑄1  (Equation 5.4c3) 

𝑌14 = 𝑃3 ∧ 𝑃0 ∧ 𝑄3 ∧ 𝑄0  (Equation 5.4c4) 

 

The standard XOR logic gate design (Figure 5.9(a)) contains 9 fault-injection points and the 

quadded logic XOR logic gate design (Figure 5.9(b)) contains 68 fault-injection points. At each 

fault-injection point SAL or SAH faults are statically applied for the duration of altering each 

possible input combination at the circuit inputs, which is in this case four-input combination. The 

corresponding output values generated for each input stimulus have been evaluated against the 

known good value. Figure 5.9(b) shows four-inputs instead of the two inputs of the standard XOR 

logic gate design in accordance with Figure 5.9(a). At these four-inputs of the quadded logic gate 

structure a set of four equal input values is applied and no faults affecting these inputs are subject 

of this simulation. For the standard XOR logic gate the output value is a single bit and for the 

quadded logic XOR logic gate design a set of four output bits. The evaluations of the sets of bits 

are done by comparison of the individual bits against known good values. For the overall 

evaluation of the accuracy of the resulting output sets an evaluation by the use of a voter simulation 

indicates if in a case of a faulty output this fault can be masked or not. 
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(a)    

 

(b)  

 

Figure 5.9: XOR gate design in (a) standard gate structure and (b) quadded gate structure  

both with specific defined stuck-at fault-injection points 

 

Table 5.2 represents the results of the stuck-at fault-injection simulation for the standard XOR gate 

represented. The results indicate that by means of injecting a fault at every injection point certain 

faults are being corrected and others show an impact on the output values of the logic structure. 

The total FR for all nine fault-injection points and all possible fault stimuli for the standard XOR 

logic gate is 36.1%. Due to the single bit nature of the output value, masking of this fault is not 

possible and the results will have an effect on the overall circuit. A standard XOR logic gate by 

itself cannot be identified as fault-free under the influence of stuck-at faults injected at the defined 

injection points. In accordance with the simulation results shown in Table 5.2 it is shown that the 
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most impact on the combined fault-behaviour effect onto this logic structure are the injection points 

1, 2 and 9. Including these points within the simulation has been important because of the nature of 

comparing a logic unit against another type of logic unit structure and the interface points are the 

central points of every unit. Points 1 and 2 are the corresponding input pins and a stuck-at fault at 

this point will affect the input stimulus pattern. Point 9 affects the output behaviour of this logic 

gate construction in a way that a permanent output value is present. A fault-tolerant version of the 

standard XOR logic gate is only possible with the help of additional checker hardware or by 

creating a TMR-style XOR logic gate. As found with the analysis of the standard XOR logic gate 

the fragile points are both inputs and the output. This fault condition of faulty central inputs can be 

applied onto the TMR version of the XOR logic gate. The central input, feeding into the TMR 

structure, is the corresponding weakest point similar to the inputs of the standard XOR logic gate. 

The majority voter in this regard is sharing the same fault-behaviour as the standard XOR logic 

gate and this can be expanded onto any logic structure. Central inputs and outputs of logic circuits 

in this regards are the main weak points for influences by faults.  

 

Fault point 1 2 3 4 5 6 7 8 9 

Fault SAL 2 2 1 1 1 1 2 2 2 

Fault SAH 2 2 1 1 1 1 1 1 2 

 

Table 5.2: Breakdown of the different fault results of the fault-injection at the different  

injection points of the standard XOR logic gate displayed in Figure 5.9(a) 

 

The quadded logic design of the XOR logic gate (see Figure 5.8(b)) has 68 fault-injection points 

(see Figure 5.9(b)) where stuck-at fault-injections are going to reveal the fault-behaviour of this 

logic structure. The individual result evaluation of the output responses after stuck-at fault-injection 

for the quadded logic gate structure is illustrated in Table 5.3 in a way that each single bit deviation 

of the output result set of the quadded logic structure is counted as an individual fault.  

Injecting a stuck-at fault-type at the fault-injection points 1 to 40 (see Figure 5.9(b)) can be 

corrected within the interwoven quadded logic circuit design and no alteration of the output result 

set deviates from the defined good output values. For injection points 41 to 68 each injected SAL 

fault has an effect on the output result set. The output values creating logic gates for this design are 

AND logic gates and according to Table 5.1 the critical fault condition, which alters the output is 

an SAL fault at the input of this type of logic gate. This SAL fault simulation is equivalent to a 

logic gate output stuck-at low feeding into the AND logic gate. This is a possible fault condition for 

a logic gate and the effect on the performance of the quadded logic circuit is tremendous. Injecting 

an SAL fault into the injection points 41 to 48 of the quadded logic circuit (see Figure 5.9(b)) alters 

the output result set in such a way that an equal distribution of zeros and ones in the output result 

set is generated. By means of this output result distribution a majority voter circuit is connected to 
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the outputs of the quadded logic circuit, which is shown in Figure 5.9(b). The shown logic circuit is 

not capable of determining the correct majority-voted output value and defaults to a zero output 

value. This fault effect on the resulting majority-voted output value is caused through the combined 

injection of the SAL fault into the interwoven redundant signals feeding into the inputs of two 

output-creating logic gates at the same time. The incorrect resulting output sets corresponding with 

the stuck-at fault-type injection at points 49 to 68 (see Table 5.3) can all be masked through a 

majority voter circuit and will not have a negative effect on the following logic circuit of the whole 

system. 

 

Injection point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Fault SAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fault SAH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Maskable -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

                  
Injection point 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

Fault SAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fault SAH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Maskable -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

                  Injection point 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 

Fault SAL 0 0 0 0 0 0 4 4 4 4 4 4 4 4 2 2 2 

Fault SAH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Maskable -- -- -- -- -- -- no no no no no no no no yes yes yes 

                  Injection point 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 

Fault SAL 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

Fault SAH 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 

Maskable yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes 

 

Table 5.3: Breakdown of the different fault results of fault-injection at the different  

injection points of quadded logic XOR logic gate in accordance with Figure 5.8(b) 

 

Altering the circuit components of the standard XOR logic gate, which is shown in Figure 5.8(a), 

into a version with a NOR logic gate as the output logic gate changes the sensitivity of it to another 

output dependent critical fault. In accordance with Table 5.1 this critical fault for the NOR logic 

gate is the SAH condition. This can be translated into an SAH fault, which has been injected into 

the fault-injection points creating similar fault-behaviour like the SAL fault affecting the logic 

circuit shown in Figure 5.8(a), with AND logic gate creating the output. For the comparison 

between fault-behaviour the quadded logic design of the XOR logic gate displayed in Figure 5.8(b), 

was adapted in accordance with the logic gate configuration that is shown in Figure 5.10. The 

similar fault-injection test which was used to create Table 5.3 was applied onto this circuit and the 

resulting fault-behaviour is illustrated in Table 5.4.  
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Figure 5.10: XOR logic gate design in standard gate structure with  

altered output logic gate different from figure 5.8(a) 

 

The equal fault-behaviour in response to the stuck-at fault-injection similar to the one illustrated in 

Table 5.3 is delineated in Table 5.4 for the quadded logic circuit designed in accordance with the 

logic gate definition displayed in Figure 5.10. The same non-correctable output condition is present 

within this data and triggered through SAH fault injected at points 41to 48. This behaviour follows 

the definition defined within Table 5.1 and affects the output result set of the quadded logic 

structure. These output result sets cannot be fixed by means of the interwoven interconnect 

structure or masked through a majority voter. These faults are fault cases where the quadded logic 

design cannot fix a stuck-at fault and these faults generate an output result at the majority voter 

which defaults to a given value. This value can be correct or not but this is indeterminate by the 

standpoint of fault-tolerance. Calculating the FR for these discovered fault cases of the quadded 

logic reveals that it is 5.9%. This FR is taking only the faults where the majority voter is not 

capable of masking the fault present at the output of the quadded logic circuit. The FR for the ones, 

which can be masked by the use of a majority voter, is 8.8%. By taking all the faults present at the 

output as either maskable or non-maskable the total FR is 14.7% and this is, for a fault-tolerant 

concept not an expected value, especially that all the faults are related to the last logic gate set of 

the quadded logic structure. The corresponding fault-injection points are 41 to 68. All of these 

fault-injection points affect the resulting output values. The output-creating logic gates of the 

quadded logic structure are the most vulnerable ones and would need a logic structural 

enhancement to become fault-tolerant. 
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Injection point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

Fault SAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fault SAH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Maskable -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

                  
Injection point 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

Fault SAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fault SAH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Maskable -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 

                  
Injection point 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 

Fault SAL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fault SAH 0 0 0 0 0 0 4 4 4 4 4 4 4 4 2 2 2 

Maskable -- -- -- -- -- -- no no no no no no no no yes yes yes 

                  
Injection point 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 

Fault SAL 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 

Fault SAH 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

Maskable yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes yes 

 

Table 5.4: Breakdown of the different fault results of fault-injection at the different  

injection points of quadded logic XOR logic gate transformed out of Figure 5.10 
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5.6. Summary of the chapter 

 

The focus in this chapter was placed on the different concepts of fault-masking or correcting within 

a given logic circuit. Fault-masking works on the concept of majority-voting by the use of a set of 

output results to generate the majority-voted output value. The set of output results can be 

generated by the use of spatial (hardware), temporal (time) or data (information) redundancy. 

Spatial and data redundancy are the most frequently applied concepts within logic systems to mask 

a fault. Temporal redundancy comes with the disadvantage of the required timing to generate a set 

of results if used in time-critical applications. The advantages of temporal redundancy are reduced 

hardware requirements and good at handling transient effects causing data alteration within the 

hardware. Another disadvantage of this concept is that in the case of a permanent hardware fault 

within the functional logic block all the output results of the result set are altered in the same way. 

Due to this constant alteration of all output results it will become the majority-voted output result. 

For overcoming this effect in temporal-redundant logic system hardware reconfiguration or other 

approaches can be utilised for creating hardware alteration, which create unique hardware set-ups 

for each output result creation. As found within this chapter each of the three redundancy concepts 

has disadvantages in at least one area of logic circuit structure. A novel concept would be, if it was 

possible, to combine all three redundancy concept within one fault-tolerant systems approach and 

through the combination disadvantages of one redundancy concepts could be resolved by another 

redundancy concept. 

Fault correction within a given logic structure requires a specific logic design to perform the 

required logic functionality and fault correction at the same time. The concepts of quadded logic 

structure fulfil both of these proposed requirements and have been published in associated papers. 

For evaluation of the fault-correction capability of a quadded logic circuit a given circuit was 

injected with stuck-at faults and the output results were compared against the known good ones. 

The FR generated from these incorrect output results had been used as an indication of the fault-

correction capability of quadded logic circuits. In general any quadded logic circuit requires a 

majority voter for generating a single majority-voted output result and at the same time for masking 

of a certain percentage of faults present within the output results. The quadded logic circuit is 

relying on the majority voter regarding masking faults which are being generated within the circuit 

structure and because of this are present within the output results at the output of the quadded logic 

structure. A certain set of faults generated within the quadded logic circuit cannot be masked with 

the help of the majority voter or by the interwoven interconnection structure of the quadded logic 

structure. These types of faults show that the quadded logic circuit is not completely capable of 

correcting all faults within its logic structure.  

In all cases of fault-masking the majority voter is the central functional block to make a logic 

system fault-tolerant by the means of fault-masking. As shown in the previous chapter the FR of a 
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majority voter requires hardware alteration to the logic circuit of a common majority voter to be 

more fault-tolerant. These hardware modifications are needed to make the voter fault-free 

regardless of the fault happening within its circuit structure. The impact of the majority voter in 

terms of the FR requires further investigation with the goal of creating a fault-tolerant majority 

voter logic circuit for stuck-at faults by the use of altered logic gates. 

The following question arose out of this chapter. Is it possible to alter the fine-grained transistor 

structure of a logic gate to be better equipped against stuck-at faults at the transistor level with a 

minimal hardware overhead and what impact on a given logic circuit can be achieved? Does this 

altered logic gate design offer a feature, which could be utilised for an intrinsic built-in feature for 

initiation of circuit alteration without the influence of external logic circuitry? Would it be possible 

to combine the three redundancy concepts spatial (hardware), temporal (time) or data within one 

overall redundant concept and what kind of impact has this concept on the FR compared against 

quadded logic structure? Can it be done to create an FSM with minimal fault-tolerant hardware 

fulfilling the task of fault location identification within a given logic structure? 
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Chapter 6: Design of a fault-tolerant temporal-redundant matrix element 

 

6.1. Introduction 

 

Within this chapter the question stated in Chapter 5 concerning combining the three redundancy 

concepts spatial (hardware), temporal (time) or data within one overall redundant concept is going 

to be further investigated. The combination of the three redundancy concepts will originate a new 

logic structure within a fixed functional block. This logic structure will contain an overlap of the 

fault-handling capabilities of these redundancy theories and its ability will be evaluated by fault-

injection. The effectiveness of the new concept will be evaluated against the quadded logic 

structure. This direct comparison has been selected for the fact that both structures comprise the 

feature of fault correction and generate equal number of output results. The quadded logic is 

achieving this through spatial redundancy and a distinct fixed gate interconnection. In contrast the 

newly created logic structure utilises temporal triggered logic gate rearrangements out of a fixed 

number of logic gates for achieving the same fault behaviour. 

A logic system designed for accomplishing certain functionality cannot by itself be fault-tolerant 

without increasing the logic complexity and hardware of the desired logic functionality. The 

increased complexity of the fault-tolerant logic system reflects the fault-tolerant approach chosen 

by the system designer required to meet the specification of the system. Fault-tolerance by masking 

a fault of a logic system requires a set of results, out of which a majority voter can generate the 

majority-voted output result, under the assumption that more than half of the output results are 

valued ones. Temporal-redundancy reuses the same logic hardware for a specified number of times 

to generate an independent set of output results from each other. Permanent hardware faults within 

this logic hardware system will generate consistent faulty output results. By overcoming this 

constant effect of a permanent hardware fault within a part of the logic system it can be addressed 

by using temporal-dependent hardware reconfiguration. This temporal-dependent logic hardware 

reconfiguration requires a newly designed logic structure, which can be time-triggered and altered 

accordingly to the necessary logic functionality. The newly designed logic structure is based on the 

concept of a matrix structure due to the reconfigurable requirement. This matrix structure is 

designed with the capability of using a defined logic overlapping for every output result generation 

out of its given matrix structure. This logic overlap is altered with each timing cycle and it also 

excludes some logic functions for this duration. Through this non-fixed and overlapping hardware 

logic usage identification of faults within this matrix structure can be achieved and reacted on.  

 

  



Chapter 6: Design of a fault-tolerant temporal-redundant matrix element 

[91] 
 

6.2. A fault-tolerant temporal-redundant structure 

 

The concept of fault-tolerance is based on the level of functional complexity which is involved and 

how it can be distinguished between the levels of functional complexity. The functional complexity 

can be broken down into fine-grained and coarse-grained functional complexity. Fine-grained 

complexities specify the functional complexity to be a single functional one and through combining 

several of these fine-grained units a higher-level functional complexity can be achieved. Coarse-

grain complexity specifies the functional complexity as an ALU and if required a memory circuit. 

Coarse-grained structures can perform functionalities on their own [49]. Out of this a fault-tolerant 

system is a coarse-grained functional unit. The coarse-grained fault-tolerant logic systems work on 

the principle of fault-masking or fault correction for containing a fault within a given functional 

block and preventing the fault from propagating through the system to become an error. The 

concept of fault correction requires a certain type of logic structure, like the quadded logic 

structure. This logic circuit structure involves a robust design of logic and interwoven 

interconnection for the logic functionality. The generation of the single-valued output result of a 

quadded logic system is generated by the use of a majority voter. The concept of fault-masking is 

working on the principle of using a defined number of redundant functional logic blocks to produce 

a set of output results independently of each other. In this regard it is working with the data 

redundancy concept for the set of output values. These sets of results are processed by a majority 

voter to vote on the majority result. Both concepts require a majority voter and this is why the voter 

is a vital functional block within any fault-tolerant system. Faults affecting the majority voter are 

altering the majority-voting of the overall output result and counteract any fault-tolerance put in 

place for generating the set of output results feeding into the majority voter. 

A fault-tolerant electronic logic system, which is based on majority-voting, requires a set of N-

number of individually generated and stored output or results, out of which more than N
2⁄  of the 

output results represent the same value [99, 103]. The most commonly used fault-tolerant logic 

design is the TMR structure feeding into a majority voter, (see 4.6.1. majority voter at the boundary 

of a functional block) which masks single faulty output results of one subsystem. In this regard a 

TMR system is based on a spatial redundant concept to produce a set of three output values, which 

are data redundant. TMR-based systems are designed for time-critical logic designs due to the 

simultaneous generation of the three output results within the same time frame. This task of 

generation of three independently produced logic system output results requires three identical 

logic circuits working side by side and this increases the logic hardware requirement by 200% 

overhead without the majority voter logic circuit. The reduction of the hardware overhead of a 

fault-tolerant system can be done with temporal redundancy reusing one set of logic hardware a 

given number of times to generate by temporal difference independent output results from each 

other. These results are stored in separate memories, one per each generated output result. These 
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stored output results are evaluated by a majority voter, which polls on the common output result. A 

system, which is using temporal redundancy, can be described as a temporal-redundant system 

(TRS). A TRS is designed for handling transient faults affecting its logic hardware and preventing 

these faults from propagating beyond functional block boundaries. The effect of a transient upset 

onto any logic structure can only become a fault if the deviation of the logic value coincides with 

the storage of the altered output result or the intermittent internal value of this logic circuit. In this 

way transient faults within a temporal-redundant logic system can, in the best case, modify only 

one value of the set of output results and this depends on the occurrence of the frequency of the 

transient upsets. A permanent fault within the logic hardware used by the TRSs alters the output 

result sets in a consistent way during the generation of the individual output results. Due to this 

consistent fault within the set of the output results the majority-voted result will reflect it as a 

common factor amongst them. In this way permanent hardware faults within the functional logic 

block (FLB) of a TRS require a similar redundant FLB to generate independent output results, 

which can be evaluated against the other output results in a lock-step approach. By expanding the 

TRS with a redundant FLB a hardware-redundant structure has been assembled similar to a dual 

hardware-redundant system. This system increases the hardware requirement and takes the TRS 

away from reducing unnecessary hardware overhead.  

How can a logic structure be based on the three redundancy theories and show what kind of impact 

this combination will have on the fault-handling ability? This question can and will be answered 

within this chapter through the creation of a temporal-dependent reconfigurable “round-robin” 

matrix element for creating a set of data redundant output results. The logic structure design will be 

based on the three redundancy theories and is combining their fault-handling capabilities into 

forward-thinking features. In this chapter the capability of this matrix element of handling faults is 

the goal of this thesis. The concept of making a TRS resilient against stuck-at faults is based on the 

idea of temporal-depending alteration of the logic gate structure generating for the output value 

during one clock cycle. By using a fixed number of clock cycles a set of independently generated 

output results will be generated. This set of output results can be seen as data redundancy concept. 

Altering the logic circuit structure of the FLB of the TRS in accordance with the generation of each 

output result bears the approach of not having a permanent fault affecting logic gate functionality 

constantly present in the used logic circuit. This temporal-depending reconfiguration of a logic 

circuit is embedded into a defined matrix cell, which can be used to build a matrix element. The 

fault-handling capability of this matrix element gets evaluated against known fault-tolerant logic 

circuit structures. Can a temporal-dependent reconfigurable matrix element be as good as or even 

better than a quadded logic circuit structure performing the same logic functionality?  
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6.3. Design of a fault-tolerant temporal-dependent reconfigurable round-robin element 

 

For creating a fault-tolerant logic system two different approaches can be applied within a logic 

system, fault-masking with the help of majority-voting or fault-correcting within a given logic 

structure. A TMR system uses fault-masking by the use of a majority voter and a quadded logic-

based system combines both fault-tolerant approaches. Influence on the output value of a fault-

tolerant system based on fault-masking by majority-voting requires that more than N
2⁄  of the data 

redundant output results have to be created under the influence of a given fault or faults before the 

voted output results are affected. In this chapter, the focus of the number of faults present in a logic 

system, which is going to be analysed is limited to one stuck-at fault only within a given logic 

structure. Because of this a comparison of the fault-handling capability of the temporal-dependent 

reconfigurable round-robin matrix element against a TMR-based system is not possible. For the 

creation of a noticeable majority-voted output result alteration at the voter of a TMR system it 

requires two FLB of this TMR system to be under the influence of at least one fault at the 

appropriate logic circuit location, which is capable of altering the output value. The only time a 

TMR-based system can be altered by one fault only, is when the fault happens at one of the 

common inputs feeding into the three FLBs of the TMR system and altering an input signal all the 

time. A quadded logic structure generates four independent output results coming out of four 

individual logic gates at the output layer with interwoven interconnection between each gate layer. 

By design a quadded logic-based system should be fault-tolerant through fault-masking and 

correcting against faults happening at its interwoven interconnection network. In Chapter 5 the 

analysis of the behaviour of a quadded-based logic circuit revealed through Table 5.3 and Table 5.4 

that by applying stuck-at faults at certain fault-injection points at the interwoven interconnection 

structure the creation of faults at the output of the circuit occurs, which are non-maskable faults. 

The objective of this concept of temporal-dependent reconfigurable round-robin matrix element 

was to create a logic structure similar in output results numbers and equal or better fault-tolerant 

behaviour like a quadded logic system structure. The matrix element incorporates the three 

redundancy concepts spatial (hardware), temporal (time) and data (information) for achieving its 

fault-tolerant behaviour. The matrix element, which can also be seen as cluster, has to be designed 

with fever logic gates and interconnections between logic gates than required for a quadded logic 

circuit. For the achieving of these objectives within a matrix element, a combination of the tile-

reconfigurable matrix structure proposed in [25] by Lach J. et al and the reconfigurable logic block 

proposed in [26] by Koal T. et al has been utilised within this matrix element for providing 

configurable logic functionality within this matrix element. Within Figure 6.1(a) the principle of 

the tile-based reconfigurable matrix structure has been developed and is outlined in [25] by Lach J. 

et al with the focus of limited localised reconfiguration through pre-defined reconfiguration data 

for this cell divided into tiles in case of a fault within one tile. This matrix structure with its general 
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structure has been used as the central component for designing the temporal-dependent 

reconfigurable round-robin matrix element. The alteration applied to its behaviour was to use time 

dependent reconfiguration of the internal four-tile structure instead of fault triggered 

reconfiguration performed by an external system. The temporal reconfiguration is performed 

through adding a switchable interconnection structure between the four-tile elements. These 

interconnection switches are controlled by a programmable time-triggered shift-register. By doing 

so the concept of temporal and spatial redundancy of achieving fault-tolerance has been applied 

and can be identified as one functional principle. The reconfigurable logic block proposed in [26] 

by Koal T. et al was developed with the focus of maintaining a required logic functionality within 

given and fixed access points regardless of a fault present within its block. The block diagram of 

the reconfigurable logic block is illustrated in Figure 6.1(b). This concept of reconfigurable logic 

functionality has been designed into each of the four-tiles of the matrix element without deleting 

the proposed replacement block for internal fault-tolerance. Also the proposed functional blocks 

within its structure were replaced by fixed logic gate functionality. As defined within the concept 

of [26] the internal switches remain unchanged but they are controlled by the same time-triggered 

shift-register controlling the initial functional principle. Due to these changes to the internal tile 

structure they had more logic units and represented the second functional principle. The second 

functional principle is applying spatial redundancy within the logic unit. The logic unit can be seen 

as fine-grained logic granularity and through this the level of logic complexity has been defined for 

this research work. Coarse-grained logic functionality has not been selected due to the fact that this 

research work focused on demonstrating a fault-tolerant concept possible through this approach. 

Also this work is limited to the analysis of the fault-tolerance of a single matrix element and not a 

multidimensional array of these matrix elements performing elaborate logic functions. These array 

structures can be achieved in principle with this matrix element, but further research work has to be 

performed on the design of these array structures, which are beyond the research objective of this 

thesis. 
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(a)    (b) 

 

Figure 6.1: (a) Matrix structure divided into tiles which can be localised  

reconfigured in the case of a fault within a single tile [25];  

(b) A reconfigurable logic block between fixed interconnection points for maintaining a  

logic functionality in the case of a fault within a functional block [26] 

 

The temporal-dependent reconfigurable round-robin matrix element combines both functional 

principles and the resulting functional block diagram combining both principles is illustrated in 

Figure 6.2. The central part of this matrix element is within the four logic units, which provide the 

necessary flexibility for fulfilling the logic function alteration triggered by the clock cycle. Before 

each time-triggered alteration the current specified logic structure will perform the required logic 

functionality by using the input stimulus for generating an output value. The number of time-

triggered alterations defines the number of output values and due to the comparison against the 

quadded logic structure, four output values will be generated. This set of output values represents 

the concept of data redundancy and the last of the three redundancy concepts utilised within the 

matrix element to achieve fault-tolerance. 

Due to the fact that this matrix element contains four logic units it can also be described as quadded 

logic cluster (QLC). Each of the different functional blocks of a QLC which are shown in Figure 

6.2 has the following functionality:  

 

- register block 

- switching unit 

- logic unit 

 

The register block of the QLC is shown in Figure 6.2 as the central controlling block and is realised 

in the logic circuit as a loop-back shift-register. The function of the loop-back shift-register within 

the QLC is to control each switch within the QLC elements switch and logic unit. The required 

logic functionality can be configured for the logic circuit design within the individual logic units by 

the programming of the configuration data into the shift-register. With every clock cycle the 

configuration data within the shift-register gets shifted by one position and the logic functionality 
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for the associated logic units is altered accordingly. Through the loop-back of the shift-register the 

configuration data rotates around and this can be seen as temporal-controlled round-robin 

reconfiguration of the matrix element or QLC. The other block of the QLC functional block 

diagram shown in Figure 6.2 is also controlled by the means of this shift-register and this is the 

switching block for controlling the inter-block connection.  

 

Switch
Unit
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Unit

Logic
Unit
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Unit

Logic
Unit

Register

In/Out
 

 

Figure 6.2: Functional block diagram of the temporal-dependent  

reconfigurable round-robin matrix element 

 

The functional block diagram of the QLC is transformed into a general block diagram of the QLC, 

which is illustrated in Figure 6.3. The clockwise orientation pointing arrow in the centre of the 

general block diagram of the QLC represents the temporal-dependent loop-back shift-register, 

which is controlled by a central clock and is illustrated in Figure 6.4(a). The shift-register is divided 

into four sections SR1 to SR4 and each section is linked to the corresponding logic unit. For 

instance the SR1 section is linked and controlling the logic unit 1 or is also defined as A (see 

Figure 6.6(b)). As shown in Figure 6.2 the shift-register is controlling the switch unit and the 

configuration of the logic unit. Through the switch unit the shift-register is controlling the selection 

of a defined number of logic units within one clock cycle to be used for performing required logic 

functionality. The selection of the logic unit is done through the control line SU1 to SU4 of the 

associated shift-register section SR1 to SR4 and is shown in Figure 6.4(a). The choice of the 

selected logic function has been done by means of switches inside each logic unit and is shown in 

Figure 6.4(b). The logic function required is done by means of selecting the required logic gate 

through the switches S1.x of the logic unit 1, which are controlled through the corresponding shift-

register section for example. All the required reconfiguration of the QLC is done by means of 

switches and not by reconfiguration through reprogramming a section of a configurable chip, like a 

FPGA. Because of the use of switches for the temporal-triggered reconfiguration the 

implementation of the QLC within a COTS chip like an FPGA is not feasible and for further fault-

tolerant behaviour analysis software simulation has to be used. 
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The four logic units of the general block diagram of the QLC represent the reconfigurable logic 

blocks needed to alter the logic functionality of the single logic unit of the QLC. The alteration of 

the logic functionality can be done out of a set of logic functions and in accordance with the 

designed and required overall logic circuit. The logic functionality within a logic unit is altered as a 

physical logic gate controlled through switches and not as a memory-based look-up table done in 

FPGAs-based logic circuit designs. The internal physical logic gate structure of a single logic unit 

is delineated in Figure 6.4(b). By choosing switchable physical logic gates at this state of the QLC 

instead of memory-based look-up tables the logic circuit design at stuck-at simulation at the 

different interconnection can be compared to other logic circuits. Also using physical logic gates 

eradicates the susceptibility against SEUs and eliminates a lock-step redundant checker system 

working parallel to the QLC for fault checking. The resulting fixed logic gate configuration within 

a QLC per each clock cycle uses only three out of the four logic units. The generic fixed logic gate 

configuration is outlined in Figure 6.5(a). The table described in Figure 6.5(b) shows the different 

selectable physical logic gate functionalities within a single logic unit of a QLC. The table also 

contains the relevant coding information for the selection of the logic functionality. This coding or 

configuration information is written to the shift-register of a QLC and is shifted by one clock cycle. 

After four clock signals the full round-robin cycle has finished and the relevant output results 

stored within memory. Because of the four clock signals the QLC will generate four output results 

comparable to the number of output results of a quadded logic structure and these four independent 

output results can be seen as data redundancy. The selection of this four basic logic gate 

functionality and the resulting internal logic unit circuit makes it possible to adapt other logic gate 

functionality like XOR or XNOR with the help of an entire QLC. 

 

 

 

Figure 6.3: General block diagram of the quadded logic cluster 
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(a)   (b)     

 

Figure 6.4: Functional blocks of the QLC matrix element; (a) the shift-register which  

controls the selection of logic units and the selection of the logic gate functionality;  

(b) internal structure of logic unit with switches for selecting logic gate functionality 

 

   

(a)      (b)       

 

Figure 6.5: (a) Internal logic gate combination of the QLC per one clock cycle; 

(b) Logic function corresponding to the required selection 

 

The functionality of the QLC is based on the concept of altering a fixed amount of logic units per 

clock cycle, which is present within a QLC as logic unit structure for creating and maintaining the 

pre-defined logic gate circuit structure (see Figure 6.5(a)). The associated logic units of the QLC 

used for the creation of the pre-defined circuit structure are exchanged in accordance with the clock 

cycle. The required logic functionality specified for each logic unit of the pre-defined circuit 

structure will be maintained through the data linked to each logic unit by the shift-register data. By 

only utilising three out of the four possible logic units within a QLC it is guaranteed that between 

each clock cycle an overlay of 2
3⁄  of the logic units through the fixed logic circuit exists (see Figure 

6.5(a)). By using this overlay between each clock cycle a faulty logic unit rotates through the pre-

defined circuit structure and for one clock cycle it will not be used. Through this concept of using 

different logic gate functionality for each of the logic unit of the pre-defined fixed logic structure, a 

faulty logic gate within a logic unit will only be used within one clock cycle throughout the four 

clock cycles. By applying this approach the faulty logic gate within one logic unit will only affect 
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one of the four output results and so can be identified. This approach of using different sets of logic 

units with a defined overlay will have an effect on dormant faults, which can in the best case only 

be unnoticed for one clock cycle. 

During each clock cycle alteration only one logic unit is exchanged out of the fixed logic circuit in 

accordance with the pre-defined circuit schema. The resulting different pre-defined logic circuits 

configurations, which are going to be created out of the four logic units for the four matrix clock 

cycles (defined and shown in Figure 6.5(a)) are illustrated in Figure 6.6(b). Within Figure 6.6(a) 

the four logic units are labelled for reference purposes with the letter A to D. Figure 6.6(b) shows 

the different pre-defined logic configurations utilising the appropriate logic units labelled with 

these letters. The configuration is utilising three out of four logic units in a round-robin approach 

altered per matrix clock cycle. The matrix clock cycle defines the internal matrix count and it is 

triggered by a central clock. By comparing the used logic units at two different succeeding matrix 

clock cycles, for instance matrix clock cycles 2 and 3, represented in Figure 6.6(b) the utilisation of 

the logic units can be seen. Matrix clock cycle 2 uses logic units A, C, D and matrix clock cycle 3 

uses logic units A, B, D. The logic unit overlay of this fixed logic configuration between these two 

matrix clock cycles is A and D. Both remaining logic units B and C are only used during one 

matrix clock cycle in this example and a more detailed example for the function of the shift register 

is outlined in Figure 6.7. Within this example the adaptation of a XOR logic gate function is 

performed through the fixed logic configuration. The time triggered round-robin function through 

the shift-register for the four clock cycles is illustrated. For each clock cycle the data within the 

shift-register and the associated used logic units within the QLC element are outlined. This concept 

of defined logic unit utilisation within a reconfigurable matrix per clock cycle will be used for fault 

identification within a QLC.  

 

 

(a)     (b)   

 

Figure 6.6: (a) Block diagram of QLC with labelled logic units, 

(b) configuration of logic units in conjunction to round-robin clock 
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Figure 6.7: Detailed example of the mapping of a XOR logic function onto the  

QLC elements and shift-register details for the full round-robin cycle 

 

6.4. Fault-handling capability of QLC compared against quadded logic structures 

 

Fault-handling within a logic system per definition can be based on two concepts. The use of these 

concepts can be done within the logic structure as fault-correcting or at the boundary between 

functional blocks as fault-masking. The internal fault-tolerance of a logic system is based on the 

concept of redundancy and usually uses one of these three redundancy forms: temporal (time), 

spatial (hardware) or data [88, 101]. The most applied approach of spatial redundancy is applied 

onto logic circuit designs and commonly utilised as N-type identical copies of hardware working in 

parallel. This structure can be seen as a redundant system and the generation of N-number of 

outputs can be seen as data redundancy. All the N-number output results of the redundant systems 

have to be majority-voted to get a single overall output result. This is the concept of boundary-
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based fault-tolerance by means of fault-masking without fault correction. The quadded logic circuit 

structure offers the fault-handling capability of fault correction within its logic structure and fault-

masking at the output logic gate interface by the use of a majority voter. The boundary fault-

handling applied at the functional block outputs requires a decision-making device, which in most 

cases is fulfilled through a majority voter.  

The evaluation of the fault-handling capability of quadded logic structure vs. QLC is split into two 

parts. Part one is based on evaluation of fault correction performed by the use of the internal logic 

structure and the second part is based on the effect of adding a majority voter to the logic structure. 

For comparing the fault-handling capability of both logic circuits the investigation will be aligned 

on the fault-rate analysis for each logic circuit.  

 

6.4.1. Fault-handling evaluation of quadded logic vs. QLC, both without voter 

 

The first investigation of the fault-tolerance of quadded logic vs QLC will be done on the basis of 

fault-tolerance of the logic circuit by itself without using a majority voter for fault-masking. 

Quadded logic circuits per design are capable of performing fault correction by the use of 

interwoven interconnection and the use of four logic gates with four-inputs. The QLC works on the 

concept of temporal-triggered reconfiguration by using a set of logic functionality, which is altered 

by 1 3⁄  for each clock cycle. Both logic concepts are designed to generate a set of four independently 

generated output results, which can be seen as data redundancy. But how independent is the 

generation of this set of output results in the presence of stuck-at fault-injection at the inputs and 

outputs of the individual logic gates of each logic structure? The stuck-at faults are going to be 

injected into the inputs and outputs of each logic gate within each logic structure. This investigation 

will show the fault-tolerance capability of both these logic circuits. Fault-behaviour investigation of 

the impact of interconnection between logic gates of the quadded logic and QLC structure has not 

been done and has not been specified for this research work as fault-free. In this analysis work all 

the used switches within the QLC matrix element performing logic circuit alteration are defined as 

fault-free. This is because of the fact that their fault-behaviour would create erratic logic structures, 

which is beyond the set scope of this thesis. 

For the evaluation a fair comparison of the fault-handling capabilities for these two different logic 

circuits a common logic structure must be used. For this analysis the pre-defined logic structure 

that is defined in Figure 6.5(a) is going to be used. This circuit structure is created within the QLC 

matrix element at each matrix clock cycle with the help of interchanged use of logic units. The 

fault-handling capability of the QLC is compared against the quadded logic structure performing 

the pre-defined logic structure with alteration of the logic functionality within the logic units by 

using a defined set of logic gate functionality. Both fault-injection evaluations of the logic circuit 

are done within MATLAB simulations. The MATLAB simulation performed the required logic 
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function as a true logic gate function. No memory mapping was performed. The faults injected into 

the inputs or outputs of a logic function were done by altering the required variable before the logic 

function evaluates the input data for generating the output. In the case of a fault of the output of 

logic gate the output value was altered accordingly after the logic function evaluation. For 

generating the possible faulty outputs the entire input range was evaluated one by one and the 

resulting outputs out of the pre-defined logic structure with the selected logic function combination 

were stored in an array. This data array was compared against the same output sequence generated 

by a fault-free version of the pre-defined logic structure. Each deviation of the comparison was 

counted and the FR was calculated with the equation 6.3. The MATLAB code and an example of 

the logic structure evaluation can be found within appendix 3.3. 

This fault-handling evaluation is performed by applying all the different logic gate combinations 

possible at each logic gate specified within the table of Figure 6.5(b). The resulting output values of 

the circuit under influence of the injected stuck-at faults are compared against the known good 

output value of the fault-free logic circuit one. By applying this method of fault-injection into both 

logic circuits a distinction between maskable faults (M), output values which deviated from the 

correct value as faults (F) and non-maskable faults (NM) can be made. The sum of faults (F) and 

NM faults of one type of logic circuit under the influence of injected stuck-at faults is the total 

number of faults. These types of faults are the deviation from the correct output value of the fault-

affected logic circuit and these types of faults can propagate throughout the functional boundary 

into the next functional block of a complex system. The definition for maskable faults (M) means 

that N
2⁄  of the output values at the majority voter contain the same value and these output values 

match the correct output value compared with the logic structure without a fault being injected. 

Non-maskable faults are faults where the output value set, which are going into the majority voter, 

are equally distributed between zeros and ones. In this case the majority voter will generate a zero 

output value as a majority-voted result due to the internal logic circuit structure (see Figure 6.10 for 

a four-input majority voter). In some cases the majority-voted output value of zero is the correct 

value expected for this input stimulus. This fault-behaviour condition is not given in all possible 

cases of this logic circuit. 

The logic circuit structure for the fault-tolerance evaluation of QLC vs. quadded logic structure is 

based on the pre-defined logic structure outlined in Figure 6.5(a). For this pre-defined logic 

structure design N=64 different logic gate combinations are possible based on the logic 

functionality defined within the table of Figure 6.5(b). The resulting FR of each logic gate 

combination after the SAH and SAL fault-injection has been evaluated and the resulting FR has 

been determined. The resulting FRs is shown within a table for each design. The structure of these 

tables is that each column of this table is identifiable through the variance of the logic functionality 

of the pre-defined logic structure. Instead of the logic functionality the selection information out of 

the table, which is displayed in Figure 6.5(b), has been used for writing the selection number into 



Chapter 6: Design of a fault-tolerant temporal-redundant matrix element 

[103] 
 

the column fields of the resulting FR of both logic structures within their analysis result tables. This 

concept is also applied on the result table of the reference result table to make the three tables 

comparable based on their resulting FR. 

 

(a)  

 

(b)  

 

Figure 6.8: (a) Shows the logic gate configuration for logic function alteration and 

fault-injection points at the inputs and outputs of each logic gate; (b) shows the  

same as (a) but for the quadded logic structure 

 

For the evaluation of the fault-tolerance of both logic structures under the influence of SAH and 

SAL injected faults the FR for each variation of the logic configuration applied onto the pre-

defined logic structure has been established. The pre-defined logic structure is demonstrated in 

Figure 6.5(a) and is built out of individual logic gates without any fault-tolerant hardware features 
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and this logic structure is the reference logic gate structure for fault-tolerance evaluation. Figure 

6.8(a) shows the fault-injection points for this generic logic gate structure and these points are 

going to be used in principle for the two other logic circuit structures with fault-tolerance. The 

QLC internal logic structure, which is performing the same logic structure defined within Figure 

6.8(a), has the same fault-injection points at inputs and outputs of each logic gate as the reference 

logic structure. The generic quadded logic structure is defined within Figure 6.8(b) and the 

corresponding fault-injection points located at each input and output of all logic gates are also 

defined within this illustrated figure.  

The FR results of the SAH and SAL fault-injection simulation applied onto the reference logic gate 

structure performing the pre-defined logic circuit are represented in Table 6.1. This table represents 

the logic combinations possible by using the four logic gates selectable within each logic unit. The 

total number of combinations can be calculated by: 

 

𝑁𝑣𝑎𝑟 = 𝑁
𝑙𝑜𝑔𝑖𝑐 𝑔𝑎𝑡𝑒𝑠

𝑁𝑙𝑜𝑔𝑖𝑐 𝑢𝑛𝑖𝑡𝑠
  (Equation 6.1) 

𝑁𝑣𝑎𝑟 =  43 = 64 

 

The number of possible logic variations within this set-up is 64 and the different variations are 

represented within the table through the columns L1, L2 and L3. Each logic set-up is colour coded 

in accordance to the definition of Figure 6.5(b). Each row of this table represents the applied 

variation of one of the 64 possible logic gate functionalities in accordance with the logic gate 

selection defined within the table of Figure 6.5(b). The FR of each row of Table 6.1 represents the 

sum of all individual FRs after applying all possible input stimuli at the logic structure, while being 

under the influence of stuck-at faults at one of the defined injection points. The values of these 

faults are shown in the table within the F column. For the calculation of the FR of one of these 

logic gate variations the total number of possible output variations had to be defined. This value 

can be calculated with: 

 

𝑁𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑟 = 𝑁𝐹𝑎𝑢𝑙𝑡 𝑡𝑦𝑝𝑒𝑠 ∙ 𝑁𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑟 ∙ 𝑁𝑓𝑎𝑢𝑙𝑡 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠  (Equation 6.2) 

𝑁𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑟 = 2 ∙ 16 ∙ 7 = 224 

 

For this logic gate structure, which is defined in Figure 6.8(a), the number of possible output 

variations is 224. This reference logic gate structure has no fault-handling capability in regards of 

fault-masking or correcting due to the lack of a reference output value feeding into a majority voter 

or comparator or input signal redundancy, which are feeding into a set of redundant logic gates. 

Because of these missing fault-handling capabilities each of the faults is a fault that is a deviation 

to the correct output result and will propagate through the system. The propagation of this fault 
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through the single logic gate structure will be seen as an error of this system due to the lack of 

fault-tolerant circuit features as illustrated in Figure 4.4.  

Within this reference logic gate constellation, each of the 64 logic gate variations show deviation of 

the output value under the influence of a stuck-at fault injected at the injection points defined at 

Figure 6.8. Comparable evaluation can be done on the basis of FR numbers. FR of a logic system 

can be calculated in the following way:  

 

𝐹𝑅 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑢𝑙𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑜𝑔𝑖𝑐 𝑟𝑒𝑠𝑢𝑙𝑡𝑠
∙ 100  (Equation 6.3) 

 

The fault range defined by minimum and maximum of the FR for the reference logic gate structure 

evaluation shows the following values taken out of Table 6.1. The minimum 𝐹𝑅𝑚𝑖𝑛 = 14.3% and 

the maximum of 𝐹𝑅𝑚𝑎𝑥 = 28.6% have been evaluated for the reference logic structure under the 

influence of stuck-at faults. Both values are common results for a set of logic gate variations shown 

in Table 6.1. Table 6.2(a) displays all the logic gate variations for the minimum 𝐹𝑅𝑚𝑖𝑛 and Table 

6.2(b) displays the same for the maximum  𝐹𝑅𝑚𝑎𝑥 logic gate variations taken out of Table 6.1. 

Within both tables the breakdown of the faults is done by the causing fault-injection point. The data 

reveals that the majority of the faults causing injection points are around the logic gate L3 for the 

reference logic gate structure, which is the output-producing logic gate. Due to the similarity of the 

FRs documented within Table 6.1 for the different logic gate variations the Table 6.2(c) shows the 

faults per injection point breakdown as an example for the other sub-tables. As shown in Table 

6.2(a) and Table 6.2(b) the fault-injection points, which are causing the most faults are around the 

output-generating logic gate L3 for all the different logic gate variations. The fault-causing 

injection points are affecting the inputs and the output of the L3 logic gate. 

This evaluation of the fault-handling capability of a reference logic gate design forms the basis of 

this comparison and each one of these fault-tolerant logic gate designs needs to show better FR 

results. 
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Table 6.1: Results of fault simulation in accordance of logic gate alteration applied onto Figure 6.6  

(a) reference logic gate circuit performing the fixed logic structure of Figure 6.5(a) 
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(a)      (b)      

 

 

(c)      

 

Table 6.2: Fault breakdown per fault-injection point for the reference logic gate structure;  

(a) shows all the logic gate variations for the minimum FR; (b) shows all the logic gate  

variations for the maximum FR; (c) shows the breakdown in regards to fault  

injection point of the first table of Table 6.1 
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The next FR analysis of stuck-at high/low faults injected into a logic structure at defined injection 

points is performed onto the quadded logic circuit without a majority voter circuit evaluating the 

generated output results. The adaptation of the base circuit structure of this quadded logic circuit 

adapting the fixed logic structure is displayed in Figure 6.8(b). Each of the individual logic gates of 

the circuit, shown in Figure 6.8(b) will be generalised in a way that the logic functionality 

illustrated in this figure is going to be replaced with Lx.y replacements. These Lx.y replacements 

are going to be used for the logic alteration specified for this simulation in accordance with the 

table, which is shown in Figure 6.5(b). As determined in Chapter 5 the alteration of the interwoven 

signals between the different logic gate levels of the quadded logic structure shows that there is no 

impact on the fault-tolerance of this logic structure. Due to this evaluation it had been found that 

the alteration of the interwoven signal structures of a quadded logic structure is not required and the 

reference quadded logic circuit stays the way as shown in Figure 6.8(b). The fault-injection points 

specified for the quadded logic structure are also represented in Figure 6.8(b) and these points are 

going to be utilised for this stuck-at fault-injection simulation. The FR results for this fault-

injection simulation are illustrated in Table 6.3 in the same way for all possible logic function 

variations as for the single logic gate reference structure in Table 6.1. In addition to the labels and 

definition of Table 6.1 the Table 6.3 has more of the following columns. The column M shows the 

number of faults, which are maskable through a voter due to the fact that only one single output 

value is incorrect. The column NM illustrates the number of faults, which are non-maskable with a 

majority voter due to the fact that the output set contains 50% ones and 50% zeros. Because of this 

value distribution no majority voter can vote on a majority output value. The total number of output 

results is calculated for this logic structure with equation 6.2: 

 

𝑁𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑟 = 𝑁𝐹𝑎𝑢𝑙𝑡 𝑡𝑦𝑝𝑒𝑠 ∙ 𝑁𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑟 ∙ 𝑁𝑓𝑎𝑢𝑙𝑡 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠 

𝑁𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑟 = 2 ∙ 4 ∙ 68 = 544 

 

For establishing the fault-tolerance capability of the quadded logic structure a comparison between 

the reference logic gate structure and quadded logic structure will detail this. The overall FR 

performance of these two logic gate structures will show that the quadded logic structure has an 

overall much lower FR value for the different logic variations than the reference logic gate 

structure. The quadded logic structure under the influence of stuck-at faults injected at the fault-

injection points defined at Figure 6.8(b) has the following FR range of minimal 𝐹𝑅𝑚𝑖𝑛 = 0.0% 

value and the maximum 𝐹𝑅𝑚𝑎𝑥 = 9.2%. value. For any logic gate alteration having a 𝐹𝑅𝑚𝑖𝑛  of 

zero value indicates that for this logic gate combination definition realised within the fixed logic 

structure has created a fault-free or completely fault-tolerant logic circuit. Analysing the fault data 

regarding where these fault-injection points are triggering a fault and a non-maskable fault is 

located, the data did not show a clear pattern about where these injection points are. The most 
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common fault location points have been 41 to 48 throughout the data but these are not the majority 

ones. These injection points have been identified within Table 5.3 to cause non-maskable faults 

within a quadded logic structure. Figure 6.8(b) illustrates why these fault-injection points are 

central points of impact due to the fact that a stuck-at fault injected at these locations simulates a 

faulty output of a logic gate feeding into the output value-generating logic gates. The one stuck-at 

fault affects two output-generating logic gates at the same time and this causes the fact that two of 

the four output values can be affected.  

A direct comparison between the reference logic gate structure and the quadded logic structure can 

be done on the basis of calculation of the average FR out of the 64 logic gate alteration cases. The 

average FR for the reference logic gate structure is 21.43% and for the quadded logic designs it is 

3.49%. This comparison of the average FR shows that the quadded logic design has a significant 

impact on the numbers of faults present at the outputs of this logic circuit before feeding it into the 

majority voter. The quadded logic structure has a 6.14 times better fault-handling performance than 

the reference logic gate structure.  

 

 

 

Table 6.3: Results of fault simulation in accordance with logic gate alteration applied  

onto Figure 5.9 quadded logic gate circuits without voter 

 

The third analysis of the fault-handling capability of a QLC is the last one for this evaluation. For 

the simulation of the fault-behaviour affected under the influence of injected SAH and SAL faults 

into the logic circuit the internal structure of logic unit (see Figure 6.4) requires fault-injection 

points. As indicated within this figure, stuck-at faults are only injected at inputs or outputs of this 

logic structure. Fault effects, caused by the switches, which are not able to close or stay closed 

continuously, are excluded from this analysis. The effects of interconnect faults are also not part of 
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this analysis. The exclusion of these two analysis points is due to the simulation and data analysis 

work involved, which should be extensive.  

The location of these injection points within the logic unit is outlined in Figure 6.9. The fault-

injection is only required to be performed on one of the four logic units of the QLC. Applying only 

the fault-injection points within one logic unit is because of the temporal-dependent reconfiguration 

with a round-robin utilisation of each logic unit within the QLC. Due to the round-robin approach 

of logic unit utilisation the one faulty logic unit will be used within every possible arrangement 

within the pre-defined logic gate structure. Because of this utilisation, injection faults in each logic 

unit do not get other results as with those only using one logic unit. The main difference is going to 

be that a set of four identical results has been created without gaining more fault-behaviour 

information. The set-up for this fault-injection for creating the simulation data of the FR table, the 

logic unit C of a QLC is the one where all the stuck-at faults are being injected. The selection of the 

fault-injection points within the fixed logic structure has been defined in accordance with Figure 

6.9. The creation of the FR has been done in the same way as for the two other fault-injection 

simulations by utilisation of all possible logic gate variations and the resulting FR is displayed in 

Table 6.4. Within this table the same labels are being used with the same definition as Table 6.3. 

The total number of output results of this logic structure is calculated with equation 6.2: 

 

𝑁𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑟 = 𝑁𝐹𝑎𝑢𝑙𝑡 𝑡𝑦𝑝𝑒𝑠 ∙ 𝑁𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑟 ∙ 𝑁𝑓𝑎𝑢𝑙𝑡 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠 

𝑁𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑟 = 2 ∙ 16 ∙ 15 = 480 

 

The QLC structure has the following range of FR with minimal 𝐹𝑅𝑚𝑖𝑛 = 0.8% value and the 

maximum 𝐹𝑅𝑚𝑎𝑥 = 9.2% value. When breaking down the fault data into the fault-causing 

injection points it does not show a clear pattern about where these injection points are. The most 

common fault-injection points within the data are the points 1, 2 and 15 due to their central 

functionality for the input and output of the logic unit. The average FR for the QLC structure is 

3.97% over the 64 diverse simulation cases. In comparison to the average FR of the reference logic 

gate structure with 21.43% and of the quadded logic structure at 3.49%, the QLC average FR is 

only 0.48% higher than the value of the quadded logic design. 

 

 

 



Chapter 6: Design of a fault-tolerant temporal-redundant matrix element 

[111] 
 

 

 

Figure 6.9: Fault-injection points at the logic structure of a logic unit excluding the  

switches and interconnection between the logic gates 

 

 

 

Table 6.4: Results of fault simulation in accordance with logic gate alteration applied onto 

Figure 6.6 QLC in accordance with injection points indicated in Figure 6.9 without voter 

 

6.4.2. Fault-handling evaluation of quadded logic vs. QLC, both with voter 

 

Digital systems, which use spatial redundancy, [88, 101] are required to reduce the N-output results 

supplied from the N-time redundant digital systems back down into one overall digital output result 

of this system. The generation back into one output result is done with the help of majority-voting 

in almost every case of an N-time redundant digital system. The impact of injected SAH or SAL 

faults onto the correctness of a majority voter has been evaluated within Chapter 4.6.1 and is not 

relevant for this evaluation of the fault-handling capability of these two different logic structure 
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designs of this chapter. In this chapter only the impact of the majority voter on the total fault-

handling capability for these two designs is going to be evaluated and the central requirement for 

this evaluation is the fault-tolerance of the majority voter in regard to fault-masking. For this 

chapter the majority voter is fault-free and works without faults in accordance with the following 

equation for a majority voter done on four-inputs: 

 

𝑌1 = (𝑋1⋀𝑋2⋀𝑋3)⋁(𝑋1⋀𝑋2⋀𝑋4)⋁(𝑋1⋀𝑋3⋀𝑋4)⋁(𝑋2⋀𝑋3⋀𝑋4) (Equation 6.4) 

 

The logic circuit design of this four-input majority voter is outlined in Figure 6.10(a) and this voter 

is added to the output of each of these two logic structures under evaluation. In Figure 6.10(b) the 

truth table of the four-input majority voter is defined and this truth table data is used for the fault-

masking evaluation for both logic structures. The QLC design requires three memory elements for 

the first three output values to be stored until the last output value has been generated. Also for this 

fault-injection simulations regarding stuck-at high of low fault evaluation these memory elements 

are fault-free and do not create faults by altering information stored inside them in any way. 

 

    

(a)     (b) 

 

Figure 6.10: (a) four-input voter circuit; (b) truth table of the  

four-input majority voter 

 

The evaluation of the fault-handling capability of the combined circuit of quadded logic and 

majority voter under the influence of stuck-at high or low faults injected at the relevant injection 

points specified at Figure 6.8(b), is delineated in Table 6.5. This table represents only the total 

number of faults per logic gate alteration due to the fact that the output result of the voter is the 

majority-voted result. No other output values are being generated by this logic circuit. A 
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comparison of this majority-voted output result against a known good output value determines if 

this output value is correct or faulty. If the comparison determines that the output value is faulty it 

will be counted as a fault. This quadded logic structure with majority voter has the FR range of 

minimal 𝐹𝑅𝑚𝑖𝑛 = 0.0% value and the maximum 𝐹𝑅𝑚𝑎𝑥 = 8.8% value. The average FR over the 

64 resulting FR cases is 2.02% for the quadded logic structure. Compared against the other average 

FR found so far, shows that this is the lowest average FR so far and indicates the significance of the 

impact of a majority voter on the overall system FR. A quadded logic structure without a majority 

voter has in accordance with Table 6.3 an average FR of 3.49% and by adding a majority voter to 

the same logic structure it reduces the average FR by 1.47% to 2.02%. The cases of fault-free logic 

gate variance for a majority voter less quadded logic system are 24 cases or 37.5% of all cases 

outlined in Table 6.3. This ratio of fault-free cases improves by adding a majority voter and 

increases in this way to 32 cases, which are now been seen as fault-free indicated. This rise in fault-

free cases represents an increase of 12.5% to be 50% of all cases.  

 

 

 

Table 6.5: Results of fault simulation in accordance with logic gate alteration applied  

onto Figure 5.9 quadded logic gate circuits with voter 

 

The impact of adding a majority voter to the QLC structure has been evaluated in the same way as 

the evaluation of the fault-handling capability of the quadded logic structure and is illustrated in 

Table 6.4. The resulting FR under the influence of stuck-at high or low faults injected at the 
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appropriate fault-injection points (see Figure 6.9) and the same assumption of only using one logic 

unit to do so is displayed in Table 6.6. This table shows the faults counted per logic alteration 

where the deviation of the majority-voting output result against a known good output result exists. 

This is done in the same way as for the quadded logic structure evaluation. The QLC structure with 

added majority voter has the range of FR of minimal 𝐹𝑅𝑚𝑖𝑛 = 0.0% value and the maximum 

𝐹𝑅𝑚𝑎𝑥 = 6.5% value. The average FR of these 64 cases for this logic system is 2.25%. In 

comparison to the majority voter less QLC system a reduction of the average FR of 1.72% has been 

achieved. It can be observed in Table 6.6 that four fault-free logic alteration set-ups are within the 

whole simulation range and this represents 6.3% of all cases. This result is in contrast to no fault-

free cases within the simulation data of the system without majority voter. This is also for the 

quadded logic structure by adding a majority voter, which is masking faults within the result data 

and because of this a majority voter is a vital functional block within the fault-handling capability 

of any system. 

 

 

 

Table 6.6: Results of fault simulation in accordance with logic gate alteration applied onto 

Figure 6.6 QLC in accordance with injection points indicated in Figure 6.9 with voter 
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6.4.3. Overview of simulation results of the different systems 

 

For comparing the fault-handling capabilities of both logic structures a defined set of results has to 

be used. The design of the reference logic gate performing the fixed logic structure will be 

excluded because of the lack of fault-handling capabilities. The comparison of the fault-handling 

capability of this different multi output result system set-ups will be based on average FR, min/max 

value of FR and the number of faults deviating from correct output values. Table 6.7 shows the 

defined selection of results of the fault-injection simulation for quadded and QLC logic gate 

structure of the fixed logic structure. For a comprehensive analysis of the fault-handling capability 

the total number of faults deviating from the correct output value is divided into incorrect output 

values, which are indicated as a fault (F) and non-maskable faulty outputs (NM). Both these values 

are added to Table 6.7 because of their nature of the behaviour of the system. Faults (F) shown at 

the central output of each logic structure are passing through into the next logic system without 

identification or an external checker running side-by-side generating fault-free results. The external 

checker could be used for checking the correctness of the output value independent and 

unrestricted. By using an external checker the hardware overhead is going to be increased and the 

trustworthiness of the checker has to be assured. So the total number of faults (F) caused by stuck-

at high/low fault-injection is an important fault-handling indication of a system. Non-maskable 

(NM) faults can on the other hand, be identified through two possible ways with some additional 

logic structure. First by checking that the not majority-voted output results of the logic system fulfil 

the majority voter rule, which is N
2⁄  of the number of outputs containing the same value [99]. The 

second solution is the majority-voted output result feedback for comparison against each not 

majority-voted logic output result for identifying the number of deviations. In the case of two 

deviations a non-maskable fault has altered the majority-voted output result. If one of these 

solutions has been applied onto a logic structure the identification of this non-maskable condition is 

possible and this can be indicated to prevent the fault transition through the system unnoticed.  

 

 

 

Table 6.7: Overview of different results of quadded and QLC logic design  

including with (w) or without (w/o) majority voter 
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Based on the average FR for these two logic structures the quadded logic design has the lowest 

average FR of 2.02% in comparison to the QLC structure with added majority voter. Even that the 

QLC structure with majority voter has a lower maximum FR for a single logic gate alteration the 

average FR over all cases is still higher than the quadded logic structure. That the quadded logic 

structure has a lower average FR over all cases is due to the fact that it has more fault-free logic 

alteration set-ups as the QLC structure. For both logic structures the number of incorrect output 

values indicated as a fault (F) remain at the same level regardless of the presence of a majority 

voter or without one. This is due to the fact that the injected stuck-at high or low fault creates an 

altered output result affecting all individual output values or more than N
2⁄  of them for creating a 

correct majority-voted output result. The numbers of faults (F) for the different logic structures are 

illustrated in Table 6.7. The total fault numbers of both logic structures are 192 for the quadded 

logic structure and 166 for the QLC structure. Putting these numbers of faults (F) of both logic 

structures into perspective to the total number of stuck-at fault-injection simulation runs, the 

percentage of the quadded logic structure is 0.55% and 0.54% for the QLC structure. Both output 

values are of almost similar percentage value and only the absolute value difference between both 

numbers of fault (F) values reveals which of the logic structures requires an external checker. In 

this case the quadded logic structure has the higher number of faults (F), which means that a 

system-checker would be required for this structure. 

This value difference is 26 between both total fault (F) values from the two logic structure designs. 

If the logic structure is going to be equipped with an external checker the logic design for the 

quadded logic structure has to be at least 15.66% covering more fault cases than the one for a QLC 

structure. The number of non-maskable (NM) faults for both logic structures is reduced by 50% 

and this is due to the added majority voter. The majority voter behaviour is defined in Figure 

6.10(b) and the fault condition of both logic structures regarding non-maskable faults is defined for 

an equally distribution of zeros and ones within the direct output results. For the two logic 

structures an evenly allocation of zeros and ones means that the direct output result contains two 

zeros and two ones randomly orientated. The majority-voted result for this input sequence is as per 

the definition of Figure 6.10(b) in all cases zero. This output result of the majority voter, which 

does not reflect a majority-voted result is more likely a default value. That output value is now used 

to compare it against the correct output value and in 50% of the non-maskable output results it is 

the correct value of zero. This condition is not given per design of the logic structure in conjunction 

with a majority voter. It is more to do with a 50% chance of being correct. If the whole system is 

required to indicate the presence of this condition existing for a generated directly produced output 

set, the logic structure has to be expanded with an external majority-voted output feedback 

comparator for each individual output signal. In the case of the presence of two deviating single 

output values compared to the majority-voted output value an indication can be generated and then 

be indicated through the system-checker. The system-checker on the other hand cannot alter the 



Chapter 6: Design of a fault-tolerant temporal-redundant matrix element 

[117] 
 

output set into the correct output set and due to the nature of the output value distribution it is also 

only in 50% of the cases correct. If the system-checker needs to indicate this fault correctly, the 

system-checker has to be designed in a way that the system-checker looks for three of the same 

kind of values present within the logic structure output set. In the case of an equal distribution of 

ones and zeros the checker indicates this as a fault condition for this particular functional block. 
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6.5. Summary of the chapter 

 

The questions answered within this chapter are: would it be possible to combine the three 

redundancy concepts of spatial (hardware), temporal (time) or data (information) within one overall 

redundancy concept and what kind of impact will this concept cause on the FR compared against 

quadded logic structure? 

The central question about combining all three redundancy concepts into one concept can be 

answered with the logic structure that fulfils the request to be a QLC structure. The QLC structure 

is based on a matrix structure divided into four logic units similar to the tile concept shown in 

Figure 6.1(a) and each unit contains a range of configurable logic circuits similar to the one shown 

in Figure 6.1(b) for a range of logic functions. This logic structure is using spatial redundancy and 

the functional logic circuit inside a QLC has a fixed three out of four logic unit’s structure which is 

defined in Figure 6.5(a). 

The novelty of the QLC structure has been done by the use of time-triggered round-robin 

reconfiguration of a fixed functional logic circuit shown in Figure 6.6(b). Through this approach 

the temporal and data redundancy is fulfilled. By using the data redundancy the N-numbers of 

independent output results are being generated. Each output result out of this set of output results 

has been generated where ⅔ of the logic units of the fixed logic circuit overlap for every time-

trigger. With this concept of logic units overlap the identification of a logic unit with a permanent 

fault can be achieved through the alternating utilisation of the logic unit by the fixed logic circuit. 

The time-triggered round-robin reconfigurable QLC structure is designed for being fault-tolerant. 

The final fault-tolerance of any N-number-based generating logic structure is achieved by the use 

of a majority voter. As analysed within Chapter 4 the majority voter is capable of masking faults 

but as a logic circuit it cannot be considered as fault-tolerant. 

The second question was about the comparison between the newly created logic structure vs. 

quadded logic has been answered in the chapter through an FR analysis. The analysis was 

performed over a wide range of logic functions injected with faults, by applying each possible 

variation feasible regarding logic functionality onto the individual logic gates creating the fixed 

logic structure. A range of 64 different logic set ups under the influence of stuck-at high or low 

faults had been analysed for generating FR for each logic configuration. The fault-handling 

capability of QLC vs. quadded logic structure of the FR of each logic configuration has been 

compared and the results are represented in Table 6.8. The results reveal that the fault-handling 

capability of the QLC structure is not as good as the quadded logic structure. The FR for quadded 

logic without (w/o) majority voter is 12.1% and with (w) majority voter 10.2% better than the QLC 

structure. Comparing the individual FR for each logic configuration shows for the maximum FR 

that the QLC is 26.1% better than the quadded logic structure. This indicates that the QLC structure 

fault-handling performance is not comparable with the quadded logic structure, but the absolute 
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number of faults within a variable logic configuration is smaller and therefore the QLC is the better 

logic circuit in terms of fault sensitivity. 

 

 

 

Table 6.8: Comparison result of FR analysis for QLC vs. quadded logic 

under the influence of stuck-at high or low faults injected 

 

The main concept developed and proven within this chapter is centred on the design of the 

temporal-dependant reconfigurable round-robin matrix or QLC matrix element. Within the QLC 

matrix element the three redundancy concepts of spatial, temporal and data are combined in a way 

that a unique fault-localisation and discrimination is inherent within the logic structure. Through 

the correct combination of the three redundancies within the QLC matrix element fault-masking 

and correcting has been achieved close to the capabilities of a quadded logic structure, but without 

the use of interwoven interconnection structure and not by using quadded module redundancy. By 

design, the quadded logic structure is capable of performing fault-tolerance by means of fault-

masking and correcting. The QLC logic structure has an inherent concept of fault-localisation, 

which is beyond the two fault-tolerant approaches of the quadded logic structure. This fault-

localisation concept is accomplished by the utilisation and mixing of temporal-triggered 

reconfiguration and partial overlapping hardware structure used during each time slot. A detailed 

description of the QLC logic structure fault-localisation feature is part of Chapter 9. The impact of 

the majority voter on N-number redundantly generated output results has been analysed. This 

analysis revealed the significance of the majority voter for the overall fault-tolerance of these type 

of logic systems and required further research work in fine-grained logic structures. The majority 

voter needs to be by definition fault-tolerant and equipped with fundamental fault detection, which 

requires logic gate alteration. Both requirements towards the logic gates are investigated further 

within Chapter 7. Beyond these requirements a concept of intrinsic triggered self-healing of a given 

logic function within a fine-grained logic structure has been developed and analysed within the 

following chapter. The localisation and distinction between logic gate and interconnect faults is 

another essential requirement towards a fault-tolerant system. A concept of achieving this 

requirement is going to be analysed and fulfilled within the Chapter 9 of this thesis. 
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Chapter 7: Design of a fault-tolerant logic gate 

 

7.1. Introduction 

 

This chapter deals with the question stated within Chapter 5 about whether it would be possible to 

alter the fine-grained transistor structure of a logic gate to be better equipped against stuck-at faults 

at the transistor level with a minimal hardware overhead and what impact on a given logic circuit 

can be achieved? Does this altered logic gate design offer a feature which could be utilised for 

intrinsic built-in feature for initiation of circuit alteration without the influence of external logic 

circuitry? Both questions are going to be answered within this chapter by the means of the 

conducted research. The developed redundancy fine-grained transistor structure has been applied 

onto standard logic circuits to show their usefulness for increasing the fault-tolerance of these 

gates. The altered logic gates are resilient against SAL faults and for the SAH faults it indicated the 

influence on the logic gate through an intrinsically built-in indication signal. Self-healing of faulty 

logic gates can be designed out of these altered logic gates. 

Fault-tolerances of electronic systems are achieved through the usage of redundancy applied onto 

the logic structure at a functional or fine-grained level. Functional level redundancy uses N-number 

of the same logic circuit design to generate N-number of output results. Out of them a majority 

voter generates a single majority output result. Fine-grained redundancy is applied onto the 

transistor structure of the individual logic gates increasing the insensibility against faults affecting 

the individual transistors of this logic gate. The main difference between both approaches is that the 

functional approach requires a functional block performing majority output voting versus the fine-

grained transistor structure, which is an intrinsic fault-tolerant part of each logic gate. 

The aim of fine-grained transistor level redundancy is a combination of fault-masking and fault 

detection strategy applied to logic gates to achieve immunity to any single stuck-at high or low 

fault conditions affecting a logic gate transistor. In the case that the logic gate cannot perform fault-

masking or detection for a stuck-at fault this logic gate structure contains a built-in feature of clear 

indication detectable by a higher-level system. Through a number of FR analyses performed on 

various alterations of the fault-tolerant redundant transistor design, the optimum design was 

revealed fulfilling this set of requirements. The requirements for this redundant transistor level 

logic gate are fault-masking and fault detection coverage of this logic gate with minimum transistor 

redundancy overhead. It will be shown that with this logic gate structure it is possible to achieve 

both 100% immunity to SAL faults and detection of non-correctable SAH faults. The logic gate’s 

capability of clearly indicating a non-correctable SAH faults within its transistor structure is 

demonstrated and is set in contrast to simulation results. The combination of fault-masking and 

detection within a logic circuit is used within self-reconfiguring logic circuit design. 
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7.2. A fault-tolerant logic gate 

 

The constant increase in transistor density occurs every 18 months within a given chip achieved by 

the chip manufacturer predicted by Moore’s law from 1975 [39, 47], is pushing the feature size of 

individual transistors into the region of being built out of only a few atoms. This small structure 

sizes require tighter process control at each level of fabrication and even higher sophisticated 

production test facilities. Due to the increased levels of defects present within a given chip, better 

built-in self-test (BIST) functionality is required by meeting the right balance between test 

coverage and test time. Test time during production of a chip can be seen as a non-value adding 

feature to the chip and must be kept to a bare minimum. 

The current 90 nm chip fabrication technology however involves only 20 to 30 layers of atoms and 

the resulting gate oxide thickness of a single transistor is reduced down to 5 nm or less [12]. 

Beyond current technology nodes, uniformity of transistor parameters within a chip cannot be 

sustained without major fabrication innovations and as a result transistor-level shorts, which 

account for the most common fault in chip fabrication, must be considered [89, 93]. Besides 

production test yield enhancement, fluctuation in transistor operation will be affecting in-service 

chip performance over the life-time and will increase the likelihood of transient and permanent 

single transistor faults [88].  

A common method of testing the fault-handling or testing the functionality of a circuit is to force 

inputs or output pins or access points to a stuck-at high or low level. The total number of responses 

with regard to stuck-at high or low faults injected is dependent on the accessibility to the logic gate 

structure. This technique has been used for the fault-handling capability of the quadded logic and 

QLC structure within Chapter 6 as a tool for generating FR numbers, which can be used to compare 

fault-tolerance of logic structures. It is also used in production related logic circuit testing to 

determine if a system is fault-free or not. Logic structures within a chip by itself due to their 

inaccessibility to individual logic gates are making it hard to perform stuck-at high or low fault-

injection to all logic elements. Due to the limited accessibility to all logic functionality, simulation 

of the logic structure had to be used for evaluation of the fault-handling capability of the entire 

system. 

 

7.2.1. Comparing of logic gates responses under the influence of fault-injection 

 

The injection of stuck-at high or low faults into a logic gate can be done from the outside at the 

pins or at the individual transistors forming the logic gate function. The accessibility of the 

individual transistors of a logic gate is, per design, limited because logic circuit feature sizes on a 

silicon die are becoming smaller and test/contact pads within the design in most cases do not exist. 

So to perform stuck-at high or low fault-injection at the individual transistors an alternative to real 
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transistors can be achieved through the simulation of the circuit in use. The output responses of a 

logic gate differ under the influence of where the fault is being injected at the individual access 

points throughout the circuit.  

The first fault-injection analysis is performed on the interface pins of a logic gate. This simulation 

will reveal the fault-behaviour of a logic gate as an entire structure. By injecting a stuck-at fault at 

the input or output pins of any logic gate, the resulting output value under the influence of a stuck-

at fault will be of a clear output of a one or a zero value. Both these output results represent the two 

functional states of any given logic gate, state one and two in accordance with [36]. Figure 7.1(b) is 

representing the result of applying stuck-at high or low faults at a NAND logic gate at the indicated 

fault-injection points shown in Figure 7.1(a). The results found within the fault-injection simulation 

have been verified with a NAND logic gate on an experimental breadboard and the voltage levels 

have been checked with a voltage multi-meter.  

 

(a)  

 

 

(b)         

 

Figure 7.1: Analysing the behaviour of a NAND gate under the influence of stuck-at fault 

(a) definition of the fault-injection points at input and output pins; 

(b) output results of the NAND gate under the influence of stuck-at faults 

 

The second analysis is performed on the individual transistors of a logic gate to reveal the fault-

behaviour of the logic gate on the fine-grained level. This analysis is carried out for analysing the 

difference between entire versus fine-grained fault-injection behaviour of a logic gate. Applying a 

single stuck-at high or low fault at an individual transistor of a logic gate is the same as applying a 

specified voltage level, which is representing the equivalent of a high or low digital levels, at the 

gate pin of a transistor. By doing so the channel between drain and source of this particular 

transistor is activated or de-activated. This means that this particular transistor is either turned on or 

turned off. Within this thesis work the meaning of SAH affecting a transistor is representing an 

active or switched-on transistor regardless what kind of gate voltage has to be applied to make this 
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happen. The definition for the SAL, which is used in this thesis, is that it will never turn on 

regardless of the gate voltage or de-activate it. The simulation results of a spice simulation of 

injected stuck-at high or low faults at individual transistors of a NAND logic gate built out of four 

transistors is outlined in Figure 7.2(b). The required fault-injection points of the four NAND logic 

gate transistors are defined in Figure 7.2(a). For the spice-based simulation of the NAND logic gate 

generated out of individual transistors the selection of the transistors had been done out of the 

generic phil_fet library of the spice simulator software. The final design of the fault-tolerant logic 

gate design has been built out of power MOSFETs on an experimental breadboard and a PCB 

design to prove the logic gate behaviour. For this hardware analysis the following MOSFETs have 

been used: on the pull-up network the IRFD9024 MOSFET [121] and for the pull-down network 

the IRFD020 MOSFET [122]. The conversion of the voltage output levels into digital high or low 

representation has been based on the voltage vales defining the CMOS digital levels in accordance 

with [38] and is represented in Table 7.1 accordingly. The spice simulation results of the stuck-at 

high or low fault-injection simulation at the individual transistors of a NAND gate indicates that 

the logic gate can get into two more logic state conditions, which are defined within [123] as logic 

gate state three and state four respectively. This logic gate state behaviour has been verified with 

the experimental breadboard and with the PCB design (see appendix 6 & 7). On both platforms the 

logic gate state behaviour, defined with states three and four, could be confirmed. 

The definition of the third logic state of a logic gate defining the output of the gate has been 

isolated from Vcc (pull-up network) and GND (pull-down network) (see Figure 7.2(a) for definition 

of networks). This condition is also referred as tristate condition or isolation of the output through 

the deactivation of the pull-up and pull-down networks of a logic gate. If at this state the output is 

floating and it is remaining in the logic level of the previous state [36], this can be seen as memory 

condition and this type of fault is shown in Figure 7.2(b) for the fault-injection points S1 and S2 

under the influence of an SAL injected fault indicated through mem within the table. The logic gate 

state three can also be seen as a high-impedance condition of the logic gates output. 

The definition of the fourth logic state is that at the same time the pull-up and pull-down network is 

conductive and a short circuit between the Vcc and GND rail has been created. Through this path an 

increase of the Iddq current will show the presences of the state at which the logic gate is currently 

in. The Iddq current within CMOS represents the supply current (Idd) in the quiescent state after all 

the transistor switching and stable inputs. This type of logic gate behaviour under the influence of a 

fault is shown in Figure 7.2(b) for fault-injection points S3 and S4 under the influence of an 

injected SAH fault. This short-circuit path between the Vcc and GND rail creates an increase of the 

Iddq current for the duration of the presence of this fourth logic gate state. Because of the direct 

connection of Vcc and GND rail a significant current flow is occurring within the transistor 

structure of the logic gate and due to this value of the current level it can be harmful to the circuit 

structure. 
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(a)     

 

 

(b)           

 

Figure 7.2: Simulation results of Spice simulation of NAND gate with stuck-at fault-injection 

at individual transistors; (a) definition of the fault-injection points at each transistor; 

(b) output results of the NAND gate under the influence of stuck-at faults 

 

 

 

Table 7.1: CMOS definition of input and output voltage levels representing  

high and low digital conditions [38] 

 

Evaluating the fault-behaviour regarding fault-injection of these two different NAND logic gate 

set-ups has revealed that a direct correlation between both performances is not possible, because it 

must be known where the fault has been injected and how it affects the logical evaluation of the 

input stimulus. A fault at the interface structure of a logic gate affects the input stimulus going into 

the logic gate. By altering the input sequences into an altered version the generated output value 

will follow this change. Direct fault-injection at the individual transistor of a logic gate puts the 

logic gate into another altered logic gate state than the two valued ones. These two logic states are 

three and four for certain types of stuck-at fault-injection in combination with a defined input 

sequence. The method of fault-injection at the individual logic gate transistors indicates the 
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required analysis approach needed for this thesis research work to optimise a logic gate structure in 

terms of fault-tolerance. The additional logic gate state could be utilised in terms of designing a 

logic gate with only three of the four general inherent logic gate states. The correct selection out of 

these two logic gate states will equip the newly designed logic gate beyond fault-tolerance. 

Especially the fourth logic gate state where both gate networks are active at the same time and in 

conjunction with a certain input stimulus it could be a possible arrangement for equipping this 

altered logic gate design to indicate non-maskable faults affecting its performance. 

 

7.2.2. Identifying the functionality of a fault-tolerant logic gate 

 

The designing of a fault-tolerant logic gate, which is able to tolerate a single stuck-at high or low 

fault affecting one of the logic gate transistors will need a structure, in which a certain number of 

redundancies through transistors can mask or correct each type of these faults within the logic gate 

transistor structure. In the event that this transistor structure cannot mask or correct a specific type 

of stuck-at fault, an intrinsic signalling capability needs to indicate this fault condition to the 

outside of this logic gate structure. The design specifications for the fault-tolerant logic gate are the 

following ones:  

 

- The total number of redundant transistors used to fulfil the fault-tolerant requirement has to 

be minimised under the consideration of maintaining a symmetrical geometrical transistor 

arrangement within the pull-up and pull-down network.  

- If masking or correcting of a stuck-at fault is not possible for this logic gate structure it has 

a built-in clear indication signal for indicating the occurrence of this fault condition. This 

indication signal can be used by any higher controlling structure governing the logic gate 

structure for initiation of self-healing effects embedded into the circuit structure. 

 

In addition to the above points the fault-tolerant design of the logic gate has to achieve the generic 

requirements of not generating incorrect output results and the appearance of logic state three to 

manifest at the logic gate output. A fault-tolerant generic structure, which can be applied onto any 

type of logic gate transistor structure was proposed in [22] in which every single logic gate 

transistor was replaced with a matrix style 2x2 or generically defining 𝑁2 transistor structure. In 

this proposal 𝑁 defines the matrix dimensions and according to the paper also defines with 𝑁 − 1 

the number of faults this logic gate structure is capable of masking or correcting as a minimum 

fault number. This fault-tolerant logic gate has a 300% hardware overhead compared to a standard 

logic gate, which is based on the transistor count of the logic gate. 

The optimisation of a logic gate structure has been done in a way that all incorrect output values, 

state three and fourth state faults are masked or corrected, with the help of an overhead of 
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redundant transistors within this logic gate structure. A fine-grained SAL fault-tolerant inverter has 

been proposed in paper [20] and the circuit structure is displayed in Figure 7.3(a). Within Figure 

7.3(a) the fault-injection points at the transistor gates of the individual transistors of the SAL fault-

tolerant inverter have been defined. The stuck-at high or low fault-injection analysis reveals that 

the fault-tolerant inverter is capable of handling a single SAL fault without a noticeable alteration 

of the logic gate output value deviating from the correct output value. Through the injection of 

SAH at the two points S3 and S4 defined in Figure 7.3(a) two effects on the fault-tolerant inverter 

can be absorbed, which is an incorrect output value and the state four condition of this logic gate. 

By applying SAH faults at injection points S1 and S2 of the same inverter shown in Figure 7.3(a) 

the correct output values are generated in conjunction with logic state four. Each SAH fault causes 

the presences of the fourth logic state within the SAL fault-tolerant inverter gate. Per design this 

gate is tailored to handle a certain type of single stuck-at fault and in this case SAL faults. The data 

illustrated in Figure 7.3(b) also highlights the capability of this gate of indicating the existence of 

an SAH fault within the individual transistor structure, which cannot be masked. During the 

influence of the SAH fault the logic gate switches into logic gate state four and the short circuit 

between Vcc and GND rail causes an increase of the Iddq current. In this case this design concept of 

the fault-tolerant inverter resilient against SAL faults matches the requirements of designing a 

fault-tolerant logic gate focused on in this chapter. 

 

(a)  

 

 

(b)         

 

Figure 7.3: SAL fault-tolerant inverter proposed in [20]; (a) circuit structure of 

SAL fault-tolerant inverter with injection points; (b) output results of the  

INV gate under the influence of stuck-at faults 
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7.2.3. Design of a fault-tolerant NAND logic gate 

 

As specified in the previous chapter the fault-tolerant NAND logic gate needs to fulfil the two 

requirements specified with the use of minimum redundant transistor count and clear indication of 

non-maskable faults. The maximum solution for the design of this fault-tolerant logic gate has been 

outlined in [22] as a quadded transistor-type logic gate (see Figure 5.4) and in [20] the design of a 

SAL fault-tolerant inverter (see Figure 7.3(a)). For finding the optimised fault-tolerant NAND gate 

the general structure of a NAND gate is displayed in Figure 7.4(a) and is transferred into a building 

block (BB) structure, which is shown in Figure 7.4(b). The NAND gate altered into a generic 

structure is needed for the analysis of finding the optimised logic gate design by systematically 

altering the content within the BB blocks. 

 

 

(a)     (b) 

 

Figure 7.4: (a) Standard NAND gate structure; (b) NAND gate  

with replaced transistor with building blocks (BB) 

 

Within the BBs of the NAND gate structure outlined in Figure 7.4(b) a defined variety of transistor 

structures is going to be inserted. These different transistor structures are being created up to a 

certain number of transistors and all possible circuit variations. For each of these created NAND 

gates, a stuck-at high and low faults injection simulation at all the possible fault-injection points 

specified to be at the transistor gate has been performed for the evaluation of the fault-tolerance of 

this structure. The transistor structures are made by increasing the number of transistors until the 

quadded logic design structure has been reached, which represents a total number of four 

transistors within one BB. Within Figure 5.4 the two possible general BBs for a quadded logic gate 

are displayed and in Figure 7.7 one of these general BBs is used to show the structure of a quadded 

transistor NAND logic gate. For this analysis each possible circuit variation will be generated to be 

put into the BB of the NAND gate structure displayed within Figure 7.4(b). For each increased 
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transistor to the BB a set of transistor structural circuit combinations has been generated and this is 

illustrated in Figure 7.5. Up to the maximum number of transistors each logic circuit structure 

variations have been generated and the total number of variations is 21. In Figure 7.5 with C1 until 

C21 an overview of all these different transistor structures is outlined and it also defines which of 

them are being used in this analysis for finding the logic structure fulfilling the relevant 

requirements. All the different transistor combinations have been done with p-channel MOSFET 

types for uniformity required for the creation of pull-up networks logic gate path. The selection of 

the p-channel MOSFET has been done at this analysis point to illustrate the only combinational 

variety. The required complementary n-channel MOSFET configurations are used for the 

simulation of the logic gate functionality for the fault-injection simulation. All these different 

structures shown in Figure 7.5 are going to be applied into BB1 and BB2 and the complementary 

configuration with n-channel transistor into BB3 and BB4 of Figure 7.4(b). The configuration 

transistor variations shown in Figure 7.5 are going to be applied onto the structure shown in Figure 

7.4(b) in a way that both BBs of the pull-up network are containing one configuration setting until 

all the different configuration variations have been interchanged in the two BBs of the pull-down 

network. For each transistor structure configuration within the different BBs a complete stuck-at 

high and low fault-injection simulation at each transistor has been carried out to evaluate the fault-

handling capability of this particular NAND gate design. These simulations have been analysed 

within MATLAB in a way that the both networks of the NAND logic gate are being described by 

logic equations individually. The advantage of breaking the NAND logic gate function into two 

descriptive logic equations means that each variable of these equations represents an individual 

transistor. In this way the simulation of individual fault-injection into transistors can be analysed. 

The injection of stuck-at faults into these logic equations has been done by direct altering of the 

input data at the necessary data location accordingly for simulating a fault. A SAH will result in a 

high value when being altered and the contrasting value for an SAL. For example the pull-up and 

pull-down logic equations for a standard NAND logic gate which is shown in 7.3(a) are the 

following: 

 

𝑌𝑝𝑢𝑙𝑙−𝑢𝑝 = 𝑋1̅̅̅̅ + 𝑋2̅̅̅̅   (Equation 7.1) 

𝑌𝑝𝑢𝑙𝑙−𝑑𝑜𝑤𝑛 = 𝑋1 ∙ 𝑋2  (Equation 7.2) 

 

𝑌1 = {
0 ∶  𝑋1 ∙ 𝑋2

  1 ∶  𝑋1̅̅̅̅ + 𝑋2̅̅̅̅
  (Equation 7.3) 

 

By the use of splitting the logic gate function into 𝑌𝑝𝑢𝑙𝑙−𝑢𝑝 and 𝑌𝑝𝑢𝑙𝑙−𝑑𝑜𝑤𝑛 and injecting SAH or 

SAL faults at each transistor of the created logic gate structure equivalent in the logic gate 

equations, the two logic states three and four can be identified and recorded. The optimum for the 
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fault-tolerant NAND gate is reached when the number of logic state three-causing faults is zero and 

the state four causing faults are the only ones causing faulty output behaviour of this altered logic 

gate by means of added transistor redundancy. 

 

 

 

Figure 7.5: All variations of transistor redundancy structures done for incremental increase  

of transistors performed up to quadded transistor structure 

 

The fault-handling evaluation of the different NAND gate structures created out of the different 

transistor arrangements C1 to C21 displayed in Figure 7.5 has been based on fault count analysis. 

Each NAND gate set-up had been exposed to single SAH or SAL at a time applied onto each 

individual transistor of this gate construction. After each simulation the corresponding fault count 

for this gate set-up has been established and the results are displayed in Table 7.2 and Table 7.3 

accordingly. Within Table 7.2 the number of faults (𝐹#𝑆𝐴𝐻) caused under the influence of a single 

SAH at each individual transistor is displayed and Table 7.3 displays the numbers of faults (𝐹#𝑆𝐴𝐿) 

for single SAL influence on each individual transistor of the NAND gate set-up. As a reference 

point for both tables the combination pull-up network C12 and C13 with corresponding pull-down 

network represents the two generic quadded transistor-style NAND gates with are fault-tolerant for 

single SAH and SAL fault-injection. Both Tables show for these four design cases of the NAND 

gates each zero total numbers of faults, which makes these designs fault-tolerant by design. 
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Table 7.2: Simulation results of the fault count (𝐹#𝑆𝐴𝐻) per NAND gate configuration  

under the influence of a single SAH at each individual transistor of the gate set-up 

 

 

 

Table 7.3: Simulation results of the fault count (𝐹#𝑆𝐴𝐿) per NAND gate configuration  

under the influence of a single SAL at each individual transistor of the gate set-up 
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The optimal fault-tolerant NAND gate structure had been found by the means of the analysis of 

Table 7.3, which shows the number of faults caused by SAL fault-injection into each NAND logic 

gate variation. By finding the NAND logic gate in which SAL faults have no noticeable effect on 

the output value it fulfils, is the requirement set for the optimal fault-tolerant NAND gate. Within 

the data of the table each zero result of a NAND gate design represents this logic gate arrangement. 

Evaluating Table 7.3 to find the first zero entry from the upper left-hand corner of this table, it will 

indicate the NAND gate design accomplishing the minimum transistor count. The first zero entry 

within Table 7.3 happens at the configuration arrangement of pull-up network configuration C3 and 

pull-down network configuration C3. The resulting NAND gate design is illustrated in Figure 7.6 

and has a 100% hardware overhead compared against a standard NAND gate design shown in 

Figure 7.4(a). The data of the table proves that this logic gate design is fault-tolerant against single 

SAL faults like the SAL fault-tolerant inverter of Figure 7.3(a). The internal design of the transistor 

structure of the SAL fault-tolerant inverter also shows parallel redundancy of the individual 

transistors. 

 

 

 

Figure 7.6: Single stuck-at fault resilient (SAFR) NAND gate design as a result of the  

single SAL fault-injection simulation data is displayed in Table 7.3 

 

In Table 7.2 the total numbers of faults caused by a single SAH-injected fault are being entered into 

the table in relationship to the configuration variation of the pull-up and pull-down network. For 

the optimal fault-tolerant NAND gate with the configuration C3 & C3 identified out of Table 7.3 

data is used for finding the SAH corresponding total number of faults for the same configuration. 

The total number of faults within the optimised NAND gate is eight SAH-related faults. These 

faults are caused through single SAH faults and the effect on the functionality of the NAND gate 

means that for certain single input stimulus the logic state four occurs for each of these faults. Each 

of these faults within the fault-tolerant optimised NAND gate creates a short-circuit connection 

between Vcc and GND rail through the pull-up and pull-down network transistors. This direct path 
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created through the transistors is the lowest possible direct connection imaginable within this logic 

gate circuit. Because of this the Iddq current increases significantly and is wanted per design 

specification as a clear indication signal intrinsically built-in into the optimised NAND gate shown 

in Figure 7.6 as indication of a non-maskable SAH fault affecting the logic gate. The logic gate 

changed into logic state four, which also changes the output behaviour from digital into analogue 

signal behaviour and this means that the output can be any voltage between Vcc and GND. The 

voltage level depends on the internal resistor value of the transistors within the pull-up and pull-

down network. The output voltage level has to be translated with the help of Table 7.1 to get a 

digital indication if required. These results have been validated through transferring the gate design 

onto a PCB design (see appendix 8) including fault-injection points. The resulting behaviour 

matched the behaviour found through the simulation and the results have been published in the 

following conference paper [124]. 

In Table 7.4 for each individual transistor of the optimised NAND gate the corresponding input 

condition (IC) is listed, which produces the fourth logic state condition within the logic gate under 

the influence of a single SAH fault-injection at one transistor. For the transistors T1 to T4 of the 

optimised NAND gate the same IC applies to put the gate into the fourth logic state condition. This 

means for the logic gate that the injected SAH fault happens within the pull-up network and this 

alters the output status into constantly connecting Vcc to the output of the logic gate. For creating 

the current path the pull-down network has to become conductive through IC4. This pattern also 

generates logic zero condition at the output of the logic gate which is an incorrect value. That 

happens when the analogue output voltage of 0.88V is translated with the help of Table 7.1 into 

digital values. 

 

 

 

Table 7.4: Results of SAH fault-injection at each individual transistor of the two input NAND gate 

and the corresponding IC where the fourth logic state occurs 

 

7.2.4. Validation of the optimised fault-tolerant NAND logic gate 

 

The optimised NAND gate design found is displayed in Figure 7.6 and needs to be validated for 

consistency of the fault numbers specified within Table 7.2 and Table 7.3. This approach is the first 

verification of the correctness of the logic gate design found. The second approach was done 

through building the optimised NAND gate design on a breadboard and measuring the circuit 

behaviour under the influence of injected stuck-at faults. A cross check on this type of fault-tolerant 
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NAND logic gate design under the influence of single SAH or SAL injected faults needs to confirm 

the recorded faults numbers, which are displayed in Table 7.2 and Table 7.3. The simulation 

validation has to be performed in a way that the test is starting with a standard NAND gate where 

each of the individual transistors are affected by injection of a single SAH and SAL fault into each 

transistor of the gate. For the evaluation the pull-up and pull-down network transistor structure has 

been modelled with individual logic equation for each network. The equations are of the same 

structure as equations 7.1 and 7.2. These logic equations are being evaluated within MATLAB and 

both results for pull-up and pull-down network produce the selection of which network will 

produce the output state. Through the evaluation of the logic equation for pull-up and pull-down 

network the relevant logic states can be identified. In case both logic equations are producing logic 

high conditions for each equation, which will put the logic gate into logic state four. For the 

condition that both equations are generating low condition, this will result in logic state three. After 

each simulation run, a single transistor has been added as a redundant transistor to the standard 

NAND gate transistor. The flow of adding one redundant transistor starts with the top left transistor 

and continues in a clockwise direction through the individual standard NAND gate transistors. This 

approach of adding one transistor as a redundancy continues until the full quadded transistor 

NAND gate design has been formed. The whole sequence of adding single transistors to the 

standard NAND is illustrated in Figure 7.7 and the incrementally added transistors are labelled 

NAND+1 to NAND+12. The label NAND+1 means, for example, that this is the first added 

transistor to the standard NAND gate transistors. 

 

 

 

Figure 7.7: NAND gate with increased redundancy by NAND+1 until NAND+12 
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The evaluation of the fault-handling capability has been done in the same way as in chapter 7.2.3 

by simulation of the pull-up and pull-down network in logic equations within MATLAB and the 

results of these two logic equations have been compared against known values. In the case of a 

deviation against the correct output value, the FR per incremental added transistor to the logic gate 

design can be established. In Figure 7.8(a) the FR per incremental added redundant transistor to the 

standard NAND gate in accordance with Figure 7.7 is plotted. The bar plot of the FR shows 

continued decline of the FR due to the added redundant transistor. Because of the added redundant 

transistor the fault-handling capability of the NAND gate increases with each added redundant 

transistor. As per [22] stated the quadded transistor structure defined by 𝑁2 is capable of handling 

𝑁 − 1 faults. The value N for the quadded logic transistor structure for the finding of a minimum 

fault-handling capability is 𝑁 = 2. This can be observed through the plot shown in Figure 7.8(a) by 

the downward trend until zero FR for quadded transistor-style structure indicated by NAND+12. In 

this case the transistor count of the logic gate is sixteen. This makes it 300% hardware overhead for 

creating a logic gate which is fault resilient for a single stuck-at fault. 

In Figure 7.8(b) the total number of faults plotted against the incremental added redundant 

transistor to the standard NAND gate reflects that at a certain level of added redundant transistors 

the number of faults declines down to zero. Within this plot of Figure 7.8(b) the total number of 

faults illustrated per individual result bar has been separated into logic states three and four 

contributing faults. This has been done to determine the NAND gate configuration where the logic 

state three indicates zero faults and only logic state four is affecting the fault-behaviour of this 

NAND gate design. This effect can be observed for the NAND gate design at graph point 

NAND+4. At this point the design indicates the same number of redundant transistors with the 

same internal circuit structure as found in chapter 7.2.3 for the optimal NAND gate. At this point 

the total number of faults affecting the logic gate is eight, which is the same value as defined with 

Table 7.2 and Table 7.3 for the similar logic gate design. Through this the simulation-based 

verification of the optimum NAND gate design shows that the resulting design defined with Figure 

7.6 represents the optimum design fulfilling the requirements. 
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(a)   

 

(b)   

 

Figure 7.8: (a) FR analysis for the standard NAND gate with increased added transistor 

redundancy.(b) Total number of faults broken down into state three and fourth per  

increased added transistor redundancy (The bar is split into top part logic state  

three and bottom part logic state four) 

 

7.2.5. Scalability of optimised fault-tolerant NAND logic gate 

 

The current research work for the optimised fault-tolerant NAND logic gate investigation was 

based on a two input logic gate type. The fundamental structure for this type of logic gate is 

outlined in Figure 7.4(b) and the different configuration transistor arrangements of Figure 7.5 were 

applied in a systematic way to find the optimum solution for a two input NAND logic gate. The 

solutions shown in Table 7.2 and Table 7.3 with C3 for pull-up network and C3 for pull-down 
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network are not limited to two input logic gates. The three input version of the NAND gate with 

transistors being replaced with BB is outlined in Figure 7.9. Due to the symmetric increase of the 

BB within the three input NAND gate the fault-handling capability found for the two input NAND 

gate version (see Figure 7.6) will maintain the same fault conditions for stuck-at faults. The fault 

count for the single SAH fault-injection of the two input logic gate is shown in Table 7.2. For the 

pull-x networks variation C3/C3 will increase from eight to twelve for the three input logic gate 

with the same effect in Iddq. 

 

 

 

Figure 7.9: Increasing two input NAND gate with BB to a three input version 

 

Because of the symmetric structure of the internal logic gate transistor structure the upscaling to 

any number of inputs can be done through increasing the number of BB per pull-x network. The 

behaviour simulation of the standard three input NAND gate on the injection of SAH and SAL 

faults at each of the individual transistors is represented in Table 7.5. The gate responses match the 

responses of a two input NAND gate with the perception of having three identical faults where 

beforehand only two faults had been noticed. This is due to the fact that the three input gate is 

containing two more transistors than the standard NAND gate per pull-x network. The transforming 

of the standard three inputs NAND into a SAL fault-tolerant logic gate can be done by using the 

NAND gate structure outlined in Figure 7.9 with configuration unit C3 of Figure 7.5. The resulting 

three inputs NAND gate is like the two input optimised NAND single injected SAL fault-tolerant 

and for single SAH faults the gate is working in logic state four. In Figure 7.10 the internal 

transistor structure is outlined with all transistors labelled for the single fault SAH or SAL injection 

at each individual transistor. The corresponding ICs which are required to get this NAND gate into 

logic state four are indicated in Table 7.6. 
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Table 7.5: Simulation results of Spice simulation of three input NAND gate with stuck-at  

fault-injection at individual transistors (mem represents memory effect) 

 

 

 

Figure 7.10: Three input optimised NAND  

gate resilient to SAL faults 

 

 

 

Table 7.6: Results of SAH fault-injection at each individual transistor of the two input  

NAND gate and the corresponding IC where the fourth logic state occurs 

 

  



Chapter 7: Design of a fault-tolerant logic gates 

[138] 
 

7.3. Alteration of other fundamental logic gates according to design specification 

 

Within the previous chapters the optimum solution for the NAND gate has been found and 

evaluated. This NAND gate structure (see Figure 7.6) is fulfilling the specification for a fault-

tolerant logic gate with the help of Table 7.2 and Table 7.3 and cross evaluated with Figure 7.8(b). 

The design structure of the NAND gate is similar to the proposed logic structure for the SAL single 

fault-tolerant inverter introduced in [20] and shown in Figure 7.3(a). This single SAL fault-tolerant 

inverter fulfils the specification set in this thesis for the design of a fault-tolerant logic gate. The 

last fundamental logic gate out of the family of the logic gates is the NOR logic gate. The range of 

fundamental logic gates are the following types inverter, NAND and NOR. These gates are defined 

as fundamental logic gates due to the fact that these types of logic gates are designed out of the 

minimal numbers of individual transistors. The Figure 7.11(a) shows the standard NOR gate 

structure. 

For finding the optimum NOR gate, which meets the same specification defined for the NAND 

gate, it requires the same analysis strategies to be used. The main difference between the NAND 

and the NOR gate concerns to the internal transistor circuit structure. The internal structure of the 

NOR gate (see Figure 7.11(a)) is in reference to a NAND gate (see Figure 7.4(a)) swapped around. 

This means that the pull-up and pull-down transistor network is swapped. The test follows the same 

strategy performed at the NAND logic gate by applying single SAH and SAL faults at the 

individual transistors of the NOR gate for finding the deviating results at the output of the NOR 

gate. The analysis for finding the optimum NOR gate design has been performed in the same 

manner evaluated for the NAND gate. This evaluation had been performed by interchanging the 

different transistor configurations (which are defined within Figure 7.5) within the BBs of the 

altered NOR gate injecting single SAH and SAL faults at the individual transistors of the logic gate 

design. Through this the total number of faults has been revealed and the analysis will indicate the 

optimum NOR gate design. Performing the single SAH and SAL fault-injection on the NOR gate 

portrays the same total fault numbers as the NAND gate had and which are represented in Table 7.2 

for SAH faults being injected and Table 7.3 for SAL faults being injected. With regards to absolute 

fault count there is no difference between the NAND and the NOR gate. Because of the fault 

numbers being similar, the same configuration resulting out of Table 7.2 and Table 7.3, which is 

C3 for the pull-up network and C3 for the pull-down network, can be revealed. The internal circuit 

structure varies between NAND and NOR in a way that structurally the pull-up and pull-down 

transistor networks are switched (see Figure 7.2) for the NOR logic gate compared to the NAND 

logic gate. The optimal NOR gate design fulfilling the specification is shown in Figure 7.11(b). 
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(a)     (b)   

 

Figure 7.11: (a) Standard NOR logic gate; (b) optimised NOR gate resilient to SAL faults 

 

By having these three essential logic gate functionalities of inverter, NAND and NOR gate with the 

inherent capability of being single stuck-at fault resilient (SAFR) for SAL faults and indicating an 

SAH fault, all the other logic gates can now be substituted through a structure of the fundamental 

SAFR type logic gate versions. Through this the fault-handling capability of logic circuits can be 

improved. 

 

7.4. Converting standard logic circuits into fault-tolerant logic circuits 

 

The effectiveness of the SAFR type logic gates can be evaluated by the means of replacing 

standard logic circuits with SAFR-logic gates. A direct comparison between the faults-handling 

performances of a standard logic circuit against the transformed fault-tolerant logic circuit is based 

on FR comparison of the circuits and this will show the improvement in fault immunity. For this 

comparison three standard logic circuits were chosen. The first circuit is the full digital 2 bit adder, 

which is one of the fundamental logic circuits within digital systems and can be scaled for higher 

bit numbers, if required. The second is the C17 circuit out of the ISCAS-85 benchmark circuit [27] 

and the last circuit is a three input majority voter. 

 

7.4.1. Comparing a 2-bit full adder design implementation 

 

The full adder is one of the central logic circuit functions in many given digital applications and is 

used in a vast spectrum of systems. Each microcontroller contains an adder for the required bit size 

needed for fulfilling the required operational calculations. Optimisation and fault-tolerance for 

different designs can be found throughout the literature. Concepts of fault-tolerance require a logic 

checker for identification of faulty output results or a concept of adder redundancy. For this 
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comparison the full 2-bit adder has been designed only out of NAND logic gates and the circuit is 

displayed in Figure 7.12. The standard design of the full 2-bit adder uses 11 individual NAND 

gates and therefore uses in total 44 individual transistors. The SAFR-NAND gate design of the 

same adder type requires 88 individual transistors within also 11 individual SAFR-NAND gates. 

The individual FR for the different circuit designs is evaluated by applying single SAH and SAL 

faults injected at each individual transistor of the individual logic gates of the adder circuit. Table 

7.7(a) and Table 7.7(b) represent the FR of these two dissimilar designs, which are using the 

different logic gate types. Table 7.7(a) shows the simulation results of the standard gates and Table 

7.7(b) for the SAFR-gate design. The FR improvement of the circuit design done in SAFR-NAND 

gates over the standard NAND gates is 3.11 times better. The SAFR-NAND gate improves the FR 

by 67.9% compared to a non-fault-tolerant logic gate circuit like the one displayed in Figure 7.12. 

All faults of the SAFR-NAND gate based design are related to injection of SAH faults into the 

fault-tolerant version of the adder. Each of these faults also increases the Iddq current for the 

duration of the presence of the fault within the circuit and the required IC. Monitoring of the 

current by means of an external current monitoring circuit makes it possible for flagging faulty 

output results or triggering self-repair functionality designed into the circuit. The hardware 

overhead compared on the basis of individual transistors is 100% due to the redundant structure 

within the SAFR-NAND gate. This hardware overhead is universally applicable for the use of a 

SAFR-type gate in comparison to standard gates, which will always be 100% hardware overhead. 

 

 

 

Figure 7.12: Logic gate circuit of a full 2-bit adder constructed  

only out of NAND logic gate designs 
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(a)   (b) 

 

Table 7.7: (a) FR analysis of the standard 2-bit full adder.(b) shows  

the FR of the same logic gate structured using only 

SAFR-NAND gates for the full adder design 

 

7.4.2. Comparing a C17 circuit design implementation 

 

The C17 test circuit was chosen out of the ISCAS-85 benchmark circuit [27] because the entire 

logic circuit is created only with NAND logic gates. The C17 circuit is displayed in Figure 7.13, 

and contains six NAND gates. Converting the C17 circuit into using only SAFR-NAND gates is as 

easy as exchanging the standard logic NAND gates with SAFR-NAND gates without circuit 

modifications. The resulting circuit looks the same as shown before in Figure 7.13. The fault-

handling performance of both circuits has been done through the injection of single SAH and SAL 

faults at each individual transistor of each logic gate. With the resulting faults the FR per gate and 

the overall FR had being calculated. The results of these simulations are displayed in Table 7.8(a) 

for the standard gate version and Table 7.8(b) for the SAFR-gate design. The results show that the 

fault-handling capability is 3.09 times better for the C17 circuit, created only out of SAFR-NAND 

gates. The FR for the only SAFR-NAND gate circuit of the C17 application is improved by 67.7%. 

All faults are related to SAH-injected faults, which also increases the Iddq current at the same time. 

Identification of these faults and flagging them is possible through an external current monitoring 

device. No SAL faults alter the output behaviour of the C17 circuit and if an SAL fault is affecting 

a single transistor of the circuit it is masked. 
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Figure 7.13: C17 test circuit out of the ISCAS-85  

benchmark circuit library [27] 

 

 

(a)   (b) 

 

Table 7.8: (a) FR for the standard NAND gate implementation;  

(b) FR for the SAFR-NAND gate implementation 

 

7.4.3. Comparing a three input majority voter circuit design implementation 

 

The most commonly used implementation of a majority voter is outlined in Figure 4.7 and the 

circuit is constructed out of standard AND and OR logic gates. The logic equation of this majority 

voter design is defined as follows: 

 

𝑌1 = (𝑋1 ∧ 𝑋2) ∨ (𝑋1 ∧ 𝑋3) ∨ (𝑋2 ∧ 𝑋3) (Equation 7.4) 

 

The adaption of this majority voter into only using NAND gates is possible and the circuit is 

outlined in Figure 7.14. The logic equation for this majority voter is the following one: 

 

𝑌1 = 𝑋1 ∧ 𝑋2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∧ 𝑋1 ∧ 𝑋3̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ∧ 𝑋2 ∧ 𝑋3̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (Equation 7.5) 

 

The transformation of the majority voter, designed out of only NAND gates, can easily be altered 

into a SAFR-NAND gate only version. All the required SAFR-NAND gates sizes are available due 
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to the scaling described in chapter 7.2.5. In this chapter the three input version of a SAFR-NAND 

gate had been realised with the same behaviourally aspects defined in the specification for the two 

input gate version. The different FRs for both majority voter implementations has been done by 

means of injecting single SAH and SAL faults into the individual transistors of the logic gates of 

both designs. This method has been used already for all the other implementations of circuit 

adaptations with SAFR-NAND gates. The resulting FR out of the simulation is shown in Table 7.9. 

The results in this table show that the fault-handling capability of the SAFR-NAND gate based 

majority voter is 3.5 times better than the standard logic gate implementation. This configuration of 

the majority voter, designed out of SAFR-NAND gate improves the FR by 71.5%. All of the 

remaining faults are SAH-related faults and these faults also increase the Iddq current at the same 

time. This increase of the Iddq current is a clear indication of a fault happening within the majority 

voter circuit designed, which cannot be masked. The design of the majority voter only out of 

SAFR-NAND gates makes it possible for identifying these kinds of faults affecting the circuit. The 

SAFR-NAND gate based majority voter got a fault-tolerant design, which overcomes the fault-

related shortcomings of the standard logic gate design pointed out throughout this research work. 

 

 

 

Figure 7.14: Majority voter constructed  

out of NAND gate 

 

 

(a)   (b) 

 

Table 7.9: (a) FR for the standard NAND gate implementation;  

(b) FR for the SAFR-NAND gate implementation 
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7.5. Converting the logic unit of the QLC into using SAFR type logic gates only 

 

The original design of the logic unit of a QLC had been done in a discrete circuit structure, in 

which each logic function had been utilised by means of its specific logic gate function and is 

displayed in Figure 7.15(a) as a copy of Figure 6.4. This means that four logic gates are working 

side-by-side will increasing the needed chip area unnecessarily. By looking into the transistor count 

of this design and excluding the switching transistors of this logic unit design done for the QLC 

shows that it needs to alter the logic unit design. This original design of a logic unit requires 20 

signal transistors. The adaptation of the logic unit to work with SAFR-type logic gates only is 

described in Figure 7.15(b). This design of the logic unit contains all the fault-handling capabilities 

described through the adaptation of other types of standard logic circuits. The price for the fault-

handling performance is that this design out of SAFR-NAND gates of the logic unit needs 40 signal 

transistors. With a 100% hardware overhead the logic unit has a better fault-handling capability. 

This type of logic unit design also has another disadvantage through the isolation of all the 

individual logic gates at default. The unused logic gate is still powered up during the entire power-

up time. This increases the power consumption of the logic structure and will make the original 

design almost not useable. The functionality of the unaltered logic unit requires more coding 

information defined in Figure 6.8(b). This means in this case 3 bits per logic unit without fault-

tolerant information protection is required. In general the switching structure for both designs 

remains the same and requires in total 24 transistors. 

 

 

(a)     (b)     

 

Figure 7.15: (a) Logic unit design done out of standard logic gates; 

(b) Logic unit adapted to work with SAFR-type logic gates 

 

Altering the design of the logic unit away from the discrete circuit structure towards a less 

hardware requiring version of the logic unit is essential for hardware reduction at the coding level 

and the signal transistor count. The design of the minimal hardware requiring logic unit by 
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maintaining equal logic functionality is represented in Figure 7.16(a). This design of the logic unit 

is formed from SAFR-type logic gates only and it requires only 10 signal transistors without 

switching transistors. This is 50% fewer signal transistors than the original discrete solution of the 

logic unit design. The logic unit designs of Figure 7.15 require 24 switching transistors and the one 

of Figure 7.16(a) only 12 transistors. The total transistor count number for the original design (see 

Figure 7.15(a)) is 44 and the optimised version (see Figure 7.16(a)) only requires 22, which is a 

reduction by 50% on the total transistor count. 

The fault-handling in regards to single SAH and SAL injected faults is limited to the SAFR logic 

unit design. This is per SAFR-type logic gate design used in the logic structure single SAL fault-

tolerant and indication of SAH faults. Certain types of single SAH faults are masked within the 

circuit structure and, if not possible, a clear indication through an increase of Iddq current flags it to 

an external hardware checker. The coding of the logic selection of this design is much more 

compact and requires for all the altered logic units of a QLC only 2 bits per logic unit 

configuration. The default logic functionality is AND logic function and through this logic 

functionality is always connected between input and output pins. 

 

  

(a)      (b)   

 

Figure 7.16: (a) Optimised logic unit towards minimal logic gate use and minimal coding bits; 

(b) Coding table for the selection of required logic function of the minimal  

hardware requiring logic unit 
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7.6. Summary of the chapter 

 

This chapter focused on answering the following research question: would it be possible to alter the 

fine-grained transistor structure of a logic gate to be better equipped against stuck-at faults at the 

transistor level with a minimal hardware overhead and what fault-handling impact on a given logic 

circuit can be achieved? For answering this question a detailed analysis of the entire different 

possible transistor redundancy alteration within a certain range had been done and applied into 

generating defined logic functionality. The upper range was defined by a known fault-tolerant fine-

grained approach of the quadded transistor structure where every transistor is replaced by a 

network of four transistors. The quadded transistor structure is resilient against single SAH and 

SAL faults by having 300% hardware overhead. The basic logic function for this research is the 

NAND gate and all the different transistor structural variations of these logic gate configurations 

were exposed to fault-injection of stuck-at high or low at the individual transistor forming these 

logic gates. The FR data found indicated that for a certain minimum number of added redundant 

transistors done in a certain way the newly created NAND logic gate was masking SAL faults. Due 

to this feature this type of gate is referred to as SAFR-logic gate. The SAFR-gate responded for all 

SAH faults injected into the gate in conjunction with certain input pattern stimulation with a short 

between Vcc and GND rail. Through this short the Iddq increased significantly and this increase of 

the Iddq current is usable as an indication signal for non-maskable SAH faults presented within the 

gate. The resulting form of adding redundant transistors to a given logic gate was applied onto the 

NOR gate with the same behavioural responses as the altered SAFR-NAND gate. Validation of the 

approach can be used for upscaling the number of inputs of a given logic gate and maintains the 

same gate behaviour showing that this was feasible for any number of added inputs to a gate. 

The question about equipping the newly created SAFR-logic gate with an intrinsic built-in feature 

for indicating that a non-maskable fault is affecting the gate can be answered. The newly created 

SAFR-logic gate increases the Iddq considerably through logic state four and because of this 

increase it can be monitored and can be reacted upon. Due to the level of this current increase it is a 

unique indication of this fault condition. The part of the question about the possibility of triggering 

a self-repairing or self-healing based on this current signal will be answered within Chapter 9. 

The comparison between FR of logic structures with and without this SAFR-logic gate is 

summarised in Table 7.10. The data shown in Table 7.10 compares a set of logic circuits designed 

out of standard and SAFR-logic gates on the basis of FR data. The FR data has been created 

through injection of SAH and SAL faults into the individual transistors of each logic gate of the 

circuit. Each logic circuit created out of SAFR-logic gates has a lower FR by far than the one 

created out of standard logic gates. For all the non-maskable faults of the SAFR-logic gate circuits 

the occurrence is indicated through the increased Iddq current to the system outside. In this way the 
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circuit designed out of SAFR-logic gates are fault-tolerant through fault-masking and indication of 

non-maskable faults. 

 

 

 

Table 7.10: Comparison between the standard and SAFR logic gate-created logic circuits 

 

The fine-grained redundancy at the individual transistor level increases the hardware requirement 

by 100%. If the SAFR-logic gates are going to be used for example, for creating a TMR system, 

the hardware requirement for this logic structure will be at 300% besides the hardware overhead of 

a TMR system. This would make the hardware overhead of the entire TMR system at 500%. The 

hardware evaluation indicates that at this moment the usefulness of creating an entire system out of 

SAFR-logic gates would be questionable. As a general concept and because of the evaluation of the 

fault-behaviour of a majority voter the design of the entire majority voter out of SAFR-logic gates 

offers a fault-tolerant benefit. Because of this fault-tolerance benefit the newly designed majority 

voter will mask all SAL faults and indicate the presence of SAH to a monitoring system. 

In accordance with equation 4.4 the reliability of a TMR system with majority voter depends on the 

reliability of the majority voter because of the directly multiplication with the reliability of the 

TMR system. Any improvement done to the majority voter increases the reliability of the entire 

system by far. A majority voter created out of SAFR-logic gates will increase the fault-tolerance 

and the analysis of the FR is shown within Table 7.10. 

 



Chapter 8: Mapping FSM functionality into memory 

[148] 
 

Chapter 8: Mapping FSM functionality into memory  

 

8.1. Introduction 

 

FSMs are, in our electronic system world, the central type of logic application in use for a wide 

range of different applications. These applications can be a simple vending machine or an engine 

controller of an airplane. This extensive spectrum of applications is due to the fact that within a 

FSM only one process state is active and an alteration out of this state can only be done through 

defined ICs and stored information. The common approach of the implementation of FSMs is done 

based on a programmable logic device (PLD) or combinational logic done on a programmable 

platform or individual logic elements. All of these FSM application platforms have advantages and 

disadvantages in regarding hardware and software design. PLD-based FSMs are controlled by 

means of a solution specific programmed state flow, which can be done with a wide range of 

programming languages. Combinational based FSMs are fixed within their state flow due to their 

fixed interconnection of the individual logic elements, and it can be done on a programmable logic 

platform like an FPGA alteration by means of altering the logic structure and reprogramming. For a 

hardwired individual logic elements solution of an FSM any alteration can only be done with 

redesign of the hardwired interconnection and if needed by the changing of logic elements. In the 

case of adding fault-tolerance or self-healing capabilities to any of these different types of FSMs 

the complexity and hardware overhead will be significant. 

An alternative solution for creating an FSM can be done by mapping the state flow into individual 

unique binary sequence information, which then can be stored in a memory unit. For accessing this 

information stored inside the memory a simple addressing logic circuit is required. The input and 

output data requires another simple circuit for extracting the data out of the stored memory data. 

All this combined into one system creates a memory-based FSM. Due to its simple hardware 

structure in terms of ‘memory-mapping’ of logic inside a uniform memory element makes adding 

self-healing concepts feasible. This is because of the use of only memory and data stored within it. 

Including fault-tolerance concepts to this memory-based FSM can be done regardless of the FSM 

state flow. 

Within this chapter the first part of the research question, if it can be possible to create an FSM 

with minimal fault-tolerant hardware fulfilling the task of fault location identification within a 

given logic structure, is going to be investigated. Due to the use of SAFR type logic gates, the fault 

finding focus can be placed on the detection of interconnection faults. Test and detection concepts 

for interconnection faults require a sophisticated system checker and the system’s behaviour is 

governed by the FSM principle. This system checker should be based on a fault tolerant approach 

whilst requiring minimal hardware structure. For this case, the minimal fault-tolerant hardware is 

based on using a memory-only based platform in which the FSM logic functionality is mapped into 
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memory data entries. The state transition of this FSM is based on only on reading memory 

locations in which the required state behaviours are encoded. This novel FSM platform concept is 

used as the functional platform for the design of a system-checker identifying fault 

interconnections within a given logic structure. This research work is part of Chapter 9. Because of 

the minimal hardware requirement the combination of FSM functionality mapped into memory-

only will build the base of a system-checker. The advantage of this approach is that fault-tolerance 

based on data protection does not require sophisticated hardware. By including fault-tolerance in 

the system-checker competence makes any type of self-checking concepts obsolete. 

 

8.2 Principle of FSM architecture 

 

In our lives we are using digital systems in a vast variety of applications, the concept of having 

only one single state or instruction active at one time within these systems is the unique behaviour 

of an FSM. Another feature of an FSM is that it contains a fixed mapping between input stimulus 

and output pattern stored within one state. Because of this fixed behaviour the concept of an FSM 

is the central and most common application controlling concept inside electronic systems. We can 

find it within a vending machine, a turn cross, an ATM machine and a safety-critical system inside 

an automobile. In all these applications an FSM concept is governing the controller [125]. The 

transition from active state to another state can only be done through specific input stimulus and 

stored data. The basic block diagram of an FSM includes logic structures, which contain decisions 

and memory element to store events [55]. Another example of the use of the FSM principle is the 

“Turing machine” of Alan Turing, which makes it possible to model the behaviour of a computer 

within a mathematical model. The basic principle of the “Turing machine” is the idea of an infinite 

memory tape, on which a read/write head controlled by a programme manipulates symbols [126]. 

The central control for the “Turing machine” is the programme, which is controlling the behaviour 

of the head. A programme is in general being described as an FSM implementation controlling the 

input and output activities of the machine. 

A formal and general description of the input/output mapping of an FSM can be done through 

equations. In these equations the logic design of the FSM with a certain number of inputs I, outputs 

O and states S can be specified as a 5-tuple (I,O,S,δ,ω). The state transition function of the FSM is 

defined as δ : I x S  S and the FSM output function is defined as ω : I x S  O [31, 56].  

How the output response is controlled within the FSM defines the type of FSM to be either a 

Moore or a Mealy state machine. An FSM-based on the Moore concept define that the output 

function (O) is controlled by the current state (S) only and not by the input stimulus (I). The formal 

definition is defined as ω : S  O and a block diagram of a Moore-based FSM is shown in Figure 

8.1(a) [28, 54, 55]. The Mealy concept applied onto an FSM defines that the output function (O) 

depends on the state (S) and the input stimulus (I) and is formally defined as ω : I x S  O. The 
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block diagram of the Mealy-based FSM is illustrated in Figure 8.1(b) [28, 53, 55]. Amongst these 

two concepts there is a uniquely important dissimilarity within their state structure. This is that a 

Mealy FSM requires less state transition compared to a Moore FSM. Within a Mealy-based FSM 

the state structure is of a more compact state transition structure then the Moore state transition 

structure [127]. 

The FSM is controlled through the state transitions, which are defining the required input stimulus 

for a transition and, if applicable, the required output information. The entire state transition flow is 

defined within the state diagram and all the information of the state diagram can be transferred into 

a state transition table. An example of a state diagram of a JK-flip-flop (JK-FF) is illustrated in 

Figure 8.2(a). The truth table of the example JK-FF is displayed in Figure 8.2(b) and represents the 

general behaviour specified as the user of this type of flip-flop (FF) and will experience if it is used 

as a black box or part of a logic circuit. Figure 8.2(a) shows the state transition within the JK-FF 

and at each state transition indicated through an arrow at which the required input stimulus and 

corresponding output sequence is defined. This information along the arrows has the format 

𝑥1𝑥2/𝑦1𝑦2 in which 𝑥1𝑥2 represents the input sequence and 𝑦1𝑦2 the output sequence. The input 

sequence defines the required input stimulus for the state transition change and for the example 𝑥1 

is representing the J-input, which makes 𝑥2 to be the K-input. The corresponding output sequence 

defines the data produced at the output of the JK-FF and has the following format where 𝑦1 is 

representing the Q-output, which makes 𝑦2 the inverse of the Q-output and therefore it is possible 

to eliminate 𝑦2 from the arrow in a general way. The transformation of all this information of each 

state transition is specified by the truth table (see Figure 8.2(b)) [128].  
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Figure 8.1: (a) Block diagram of a Moore-based FSM;  

(b) Block diagram of a Mealy-based FSM [28] 
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Figure 8.2: (a) state diagram of a JK-FF; (b) truth table of the JK-FF  

 

By filling the state table for special cases where the output function (O) is independent of the 

previous state, a ‘don’t care’ condition is possible within the state transition table and the functional 

representation of this condition is λ. Due to this the logic definition of this FSM changes from a 5-

tuple definition into a 6-tuple one, which is defined as (I,O,S,δ,ω,λ) [127]. The state transition of 

the Moore and Mealy concepts defines the basic functionality of an FSM. In the case that an FSM 

is coded with the help of a higher-level descriptive programming language there are three 

commonly used coding methods applicable [29]. These different coding styles are illustrated in 

Figure 8.3(a to c) [30]. 

The coding method of a combined single process (CSP) uses a single state, which controls both the 

state transition and the output functionality of the FSM coded in this programming style. The 

output information is stored in a register and is maintained as long as the register information does 

not get altered. A block diagram of the CSP-FSM programming structure is displayed in Figure 

8.3(a). The coding style state-separated combinatorial output (SCO) uses two states for a state 

transition and the output function is directly generated out of combinational logic. The output 

function is not stored in a register of the CSP style. This is because it is generated through 

combinational logic, which requires no memory. A block diagram of the SCO-FSM programming 

structure is shown in Figure 8.3(b). The coding style state-separated registered output (SRO) is of 

the same programming style as the SCO style, but only an output register is added to this FSM 

coding structure. Within the state flow there is a single-state delay in the generation of the output 

signals after the decoding through the output combinational logic. A block diagram of the SRO-

FSM programming structure is illustrated in Figure 8.3(c) [29]. 
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(a)  

 

(b)  

 

(c)  

 

Figure 8.3: Demonstration of the three different coding style within block diagrams 

(a) Coding style combined single process (CSP); 

(b) Coding style state-separated combinatorial outputs (SCO); 

(c) Coding style state-separated registered outputs (SRO) [29, 30] 

 

8.3. Objective of mapping FSM logic functionality into memory 

 

FSM-based electronic systems are used within a wide range of applications. This is because of the 

unique way FSMs are performing through a given process description by only allowing one active 

state at one time and a state transition can only be triggered through a unique input stimulus. 

Output functionality is linked to the state transition and follows a defined sequence. This unique 

processing sequence performed by an FSM can be converted into unique digital information, which 
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can be stored inside a memory-based LUT. This transformation of the state transition description 

into unique digital data can be performed for a Moore or Mealy FSM. The difference between both 

state machine styles is in the way the output information is generated, which has to be taken into 

account.  

The elementary principle for the transfer of the state transitions of an FSM into an LUT memory 

structure requires that it is essential that for each state transition a memory row is allocated, which 

is uniquely addressable. It is vital that for the stored data within the LUT memory for each LUT 

memory row the same data structure has to be used [129]. The minimum numbers of rows within 

the LUT memory is defined by the number of state transition entries used for the FSM. By using a 

linear addressable LUT the number of addresses is defined by 2𝑁_𝑎𝑑𝑑𝑟 in which N_addr is the 

binary number of uniquely necessary addresses for the access of the LUT memory. The address of 

the LUT is a combination of the number of inputs stimuli and the number of state transitions 

encoded within binary bits [125]. Because of this the size of the LUT can be quite big with not all 

LUT memory rows containing state information of the FSM state transitions. Also the number of 

addressable rows grows exponentially due to 2𝑥. By transforming the state transition information 

of an FSM into a uniquely addressable LUT memory containing the state information the LUT 

memory can be accessed through a simple address register. The hardware requirement for this 

memory-based FSM design is reduced compared against a PLD-based FSM.  

The block diagram of this memory-based FSM is displayed in Figure 8.4 with the central deviation 

compared against the three different coding styles, which are illustrated in Figure 8.3(a) to Figure 

8.3(c). This deviation is the state memory pointer used for accessing the required state transition 

within the LUT and also contains the output information of this state transition. The state pointer 

contains the following information’s input stimulus, state transition and output information within 

binary-coded form. By combining these data they are forming a unique address for accessing the 

required LUT row which is necessary for reading the required state transitions information. 

 

 

 

Figure 8.4: Block diagram of the memory-based FSM structure [30] 
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8.4. Mapping of a FSM logic functionality into memory 

 

Mapping logic-based FSM functionality into a memory-based FSM requires access to the state 

transition information. The state transition description of any FSM can be done within a state 

transition diagram or a state transition table. Both define the state transition behaviour of the FSM 

and for creating the memory-based LUT the entries of the state transition table contain in general 

the necessary starting point information for the transfer of the state table into LUT memory. The 

state transition table can be created out of the state transition diagram if the state table does not 

exist for this FSM. The first step of transforming the state transition table information into unique 

LUT memory addresses is already achieved through unique binary coding of the individual state 

transitions and including the binary-coded input stimulus within the table. In most cases the second 

step is the optimisation of the input and output data including the arrangement of the data structure 

within the memory entries. With the help of the following examples the application of this transfer 

process will be demonstrating. 

 

8.4.1. Mapping a JK-flip-flop into memory 

 

A JK-FF is a simple FSM because it can only be in one state at a time and this is the definition of 

an FSM. The state diagram of a JK-FF is specified within Figure 8.5(a). Within this state diagram 

for each state transition the required input stimulus is defined at each state transition. Another 

possible way to define the state transition is to use a state transition table and the corresponding 

state table for a JK-FF, which is displayed in Figure 8.5(b). The structure of the state table is as 

follows. The column labelled with input defines the required input stimulus, (indicated by red 

numbers) which is necessary for altering the current state transitioning to another state. The state 

transition is defined within the column state where the left slide represents the current state 

(indicated by green numbers) and the right side indicates the next state where the FSM is going to 

be transitioned (indicated by blue numbers) if the corresponding input stimulus of this row are 

applied to the FSM. In the case of the JK-FF FSM which has two states s1 and s2, the output 

column of the table specified in Figure 8.6(b) contains the associated output information (indicated 

by yellow numbers) for the current state transition.  

For transforming the state table into LUT memory information the states s1 and s2 of this table, 

which are displayed in Figure 8.6(a) have to be uniquely binary-coded. This binary-coded 

information is used for replacing the states within the state table accordingly. For the JK-FF FSM 

s1 is coded with ‘01’ and s2 with ‘10’ in the state table of the JK-FF FSM example. The adaptation 

of the coding of the state table for the JK-FF FSM example is represented in Figure 8.6(b). Figure 

8.6(a) shows the JK-FF state table without state substitution. In Figure 8.6(b) the state table is 

displayed with the uniquely binary-coded state information replacing the states of the state table. 
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Out of the table described in Figure 8.6(b) the required memory LUT information can be derived 

from and is illustrated in Figure 8.6(c). The information within this table represents the following 

memory information. On the left side of the table the unique memory address information for the 

current FSM state can be found and on the right side the next state of the FSM is defined after 

transition triggered by input stimulus. In this special case for the JK-FF FSM the next state and the 

output information are of the same binary value. Due to this information can be combined by using 

only one data word within the memory. 

 

S2
10

S1
01

01/01

00/01

01/01

10/10

11/10

11/01

00/10

10/10

  

(a)      (b) 

 

Figure 8.5: Shows the state information required for the JK-FF FSM 

(a) state diagram of a JK-FF; (b) state table of a JK-FF 

 

 

(a)   (b)   (c)   

 

Figure 8.6: The state transition table of the JK-FF is transformed into a memory-usable table 

for a memory-based FSM adaptation [31]; (a) state table; (b) state table with binary-coded  

state replacement; (c) memory LUT information 
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As indicated within Figure 8.6(c) the address length of the input stimulus is four bits long and this 

makes the state pointer also four bits long. The state pointer is split into two sections. The upper 

two bits are for the data of the input stimulus and the lower two bits are for the coded states. This 

information shown in Figure 8.6(c) can now be transferred into the memory LUT block of the 

memory-based FSM shown in Figure 8.4. The memory LUT-based state transition through the 

different states works as follows and defined by the block diagram. The state pointer is loaded with 

the reset or power-up address-pointer “0000” and with the word information “01” into the lower 

two-bit side of the state pointer. The memory-based word information “01 is the data of the 

memory with the address “0000”. The upper two-bit side of the state pointer is reserved for the 

input stimulus. After the input stimulus has occurred and is stored inside the state pointer register, a 

memory-read signal is generated for reading out the next state information out of the memory 

labelled by the state pointer data. The storing of the new data in the lower two-bits of the state 

pointer happens after the read-out of the memory LUT. 

The size of the memory is defined by the length of the data word stored within the memory row 

and the number of necessary addressable memory rows. The necessary addressable rows within the 

memory LUT can be calculated with: 

 

𝑁𝑟𝑜𝑤 = 2𝑁_𝑆𝑃_𝑏𝑖𝑡  (Equation 8.1) 

 

In this equation the N_SP_bit stands for number of bits of the state pointer, which are used for the JK-

FF implementation, which is four bits and in this case 𝑁𝑟𝑜𝑤 is sixteen. The example for the JK-FF 

has only eight states, which are defined within Figure 8.5(b) and does not include the reset entry 

requirement. In this case for the JK-FF it means a total of nine rows or addresses used of the 

sixteen memory rows of the memory-only-based LUT FSM. The remaining seven rows are 

considered out of the state transiting prospective as ‘don’t care’ addresses, which are part of this 

memory LUT-addressing range due to the linear addressing. These ‘don’t care’ addresses in the 

LUT memory are, if retrieved by the state pointer, undesirable states of the JK-FF FSM. Filling 

these ‘don’t care’ rows with a defined state to avoid the fact that the JK-FF FSM alters its state into 

undefined state condition does not solve the problem. The JK-FF has two stable state conditions 

and, by only using one of these defaults state conditions; the applied state as default will have a 

50% chance of being the incorrect default state. For avoidance of having a memory LUT with 

‘don’t care’ rows would be the better solution and this can be achieved with elimination of the 

linear memory against a content-addressable memory (CAM).  
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8.4.2. Mapping of an FSM into memory LUT 

 

The mapping of an FSM into memory LUT will be shown with the example of a vending machine, 

which is designed to release a can of soda after the price of 30 cent is paid. In the case of over 

payment the vending machine will release a can of soda and the money which has been overpaid. 

The vending machine works as follows: A can of soda has the price of 30 cents and the machine 

accepts 5 cents (N), 10 cents (D) and 25 cents (Q) in any order until the price of 30 cents is 

reached. This example has been published in [32] with a minimal state diagram, which is shown in 

Figure 8.7. Within this example of [32] for the state marked with ‘15’ the input stimulus ‘D’ with 

the state transition to ‘25’ is missing. Within [30] an altered version of the soda-vending FSM is 

illustrated, which includes the missing state transition and an optimisation regarding number 

‘return D’ has been performed. The state diagram of [30] is shown in Figure 8.7. Both state 

diagrams, which are displayed in Figure 8.7 and Figure 8.8, are lacking the correct input stimulus 

definition at each state. The missing state transition is the loop-back state transition until at each 

state another coin has been applied into the vending machine. For both figures the state transition 

through the vending process has been pre-defined instead of a randomly selected sequence. 
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Figure 8.7: FSM state diagram of the soda machine [32] 
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Figure 8.8: Optimised FSM state diagram of the soda machine [30] 

 

The vending machine FSM is defined with all input stimulus and output functions per state 

transition and is described in Figure 8.9. For this state diagram the assumption for making this 

FSM-based machine work is the following one. There has to be at all times sufficient coins for 

change and also sufficient numbers of cans of soda inside the machine. If a check of both of these 

minimum levels is necessary to be added to the state diagram, it has to be checked right after the 

start for one transition run through the state diagram. The first check is going to be the defined 

minimum levels of coins inside the machine at this time and is necessary because the number of 

coins with variable nomination is unknown when starting. The second check is going to be the 

level of soda cans and will be done right after the finished run through the state diagram as part of 

the loop-back to the start. 

The definition of the input stimulus per state transition, for example, has been done in this way that 

‘I:D’ represents I for input stimulus with a 10 cents (D) coin. At each state the loop-back transition 

has been done with the input stimulus defined as ‘I:~C’ where as long as no coin (C) is inserted 

into the vending machine, this state transition is true and will be maintained. The ‘~’ represents in 

this case the no function. The output function is defined at the state transition triggered by an input 

stimulus and is defined as ‘O’ as output with the corresponding coin selection in accordance with 

the coin definition. The ‘soda’ state is incorrect due to the fact that a dispensing function should be 

in accordance with the input trigger after reaching 30 cents or more as part of the normal output 

function. But this is a final state generated out of a state transition triggered by an input stimulus. 

This output state transition will be performed in conjunction with this reaching the 30 cents and an 

input stimulus will be generated within the state transition flow. This state has been added to the 

state diagram to indicate the end of the FSM state transition and the loop-back to the beginning. 
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Figure 8.9: State diagram of the soda machine with definition of all input stimuli and  

output functions per state transactions as required for the state diagram 

 

Transferring the state diagram, which is shown in Figure 8.9, into a data structure that can be used 

within a memory LUT-based FSM is illustrated in Figure 8.6 and applied onto the soda machine 

FSM. The result of this transfer into memory LUT is illustrated in Table 8.1. Table 8.1(a) is 

illustrating the results of the transformation of the state diagram information into the state transition 

table. Each state transition is represented with at least one line in the table. The table entry for the 

loop-back transition at each state waiting for the insertion of a coin is transferred as ‘---0’ into the 

state transition table input column (see Table 8.1(a) column Input). The information ‘---‘ in front of 

the ‘0’ of this input row entry, represents the ‘don’t care’ condition for these particular input 

stimuli. Regardless of these inputs this state transition is going to be executed as long as the input 

stimulus coin is zero. In the case of an insertion of any type of coin this input flag will alter to one 

in conjunction with the input stimulus representing the type of coin. For simplification of the input 

stimulus information the data can be coded with the coding information shown in Table 8.2(b) and 

similar coding has been done for the output information with the help of Table 8.2(c). Coding of 

the input information offers another benefit and this is due to the coding a linear structure within 

the input stimulus can achieve. The secondary benefit through this effect is that the addressing 

structure can be altered into a linear format if applicable.  

After both alterations, by applying the coding information onto the table data of Table 8.1(a), the 

reduced table is outlined in Table 8.1(b). The next step towards memory LUT usable data is to 

replace the states with the coding information shown in Table 8.2(a) and the result of this state 

coding is outlined in Table 8.1(c). Adapting Table 8.1(c) towards usable data for memory LUT 

FSM requires a unique addressing structure for each row of the state table. Because of creating 
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unique addressing, the data of Table 8.1(c) is required to be reformatted for a specific format. The 

memory address format needs to be of the following format. The coded state information needs to 

be within the high part of the address word and coded input stimulus in the low part of the address 

word. Applying this format onto the address word creates a unique address-pointer and the result is 

shown within the address column of Table 8.1(d). The selection of the address format has been 

done because the coded state information is unique by itself and the coded input stimulus is a 

linear-bit sequence done with a fixed number of bits. The combining of this information for each 

row of the state table will generate a unique address as demonstrated in Table 8.1(d), but it is 

possible that unused addresses are amongst these sets of addresses. These unused addresses within 

a linear addressable memory could potentially affect the transition of the FSM if these addresses 

are selected by random chance.  

The format of the word data of Table 8.1(d) has been created out of the combination of the coded 

state in the upper part of the word, which is followed by the coded input stimulus ‘no coin’ in the 

middle part of the word and the output coding in the low part of the word. The input stimulus ‘no 

coin’ is a fixed value throughout all the words in Table 8.1(d) because these bits are going to be 

replaced with actual coded input stimulus data for triggering a state transition.  
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 (a)   (b)           (c)          (d) 

 

Table 8.1: These tables are showing the transfer of state transition table information into  

memory LUT data : (a) state transition table; (b) state transition table with coded input  

and output stimulus in accordance to Table 8.2(b & c); (c) state transition table like (b)  

with coded states according Table 8.2(a); (d) memory LUT data 

 

 

(a)    (b)    (c) 

 

Table 8.2: Coded information: (a) different states; (b) input coin information; 

(c) output information 

 

The total number of addresses for this soda memory LUT-adapted FSM example can be calculated 

with the equation 8.1. For the variable N_SP_bit the value of 5 bits is used for addressing a row of the 

memory LUT and for this case 𝑁𝑟𝑜𝑤 is 32. In this example the numbers of rows defined within Table 
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8.1(d) is 24. In this example eight rows are unused within the memory LUT structure of the FSM. 

Due to the address structure these eight unused addresses are beyond the used memory rows and a 

simple address-limit detector can be added to the circuit to protect the FSM from upsets. In the case 

of elimination of these rows of addresses a CAM can also offer the necessary expectation. 

 

8.4.3. Comparison between memory LUT and PLD  

 

The implementation of the soda vending machine into two different application platforms forms the 

base for the comparison. For the first implementation the memory-mapped logic solution of the 

FSM has been chosen and the second one is a PLD-based platform, which in this case is an 8051 

microcontroller development board Silab C8051f120. The implementation of the FSM has been 

coded in assembler programming language. (see appendix 9 & 10) It was used for the 

implementation due to the fact that the assembler code is hardwired logic functionality of the 

chosen microcontroller and can be directly executed by defined clock cycles. The coding style for 

both implementations has been done for both adaptations of the FSM into the platform in 

accordance with Figure 8.4. For the PLD platform it is implemented by using a limited number of 

assembler commands, which are MOV, ADD, AND, XOR, relative jump at zero and jump. The 

assembler programme has been done within a total byte count of 94 bytes for this application. With 

this assembler code a comparable state table handling programme has been created, which reads 

out a memory address and decodes the information for the next state transition. In this regard it is 

acting as a state transition pointer working through the state transition table and creating the 

necessary output information in accordance with the state table. Because of this fact the state table 

also needed to be implemented within the 8051 microcontroller memory, which fills up 24 bytes. 

So the total byte usage within the PLD-based platform is 118 bytes. The implementation of the 

memory-mapped logic solution of the FSM only requires the state transition table, which needs to 

be implemented into a memory block. The memory usage of the state transition table is 24 bytes 

and it is of the same format as the one for the PLD application. The memory usage ratio between 

these two application platforms is 4.92. The memory-mapped logic solution requires 4.92 times 

less memory that the PLD-based solution. 

The comparison of the runtime within the state transition table is evaluated for different cases and 

the results are shown in Table 8.3. For the creation of the data of the table the coin wait-related 

times have been excluded from the data for both applications, because of the unpredictable time 

between injecting coins. 
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Table 8.3: Comparison of cycle time for both FSM implementations within the two application 

platforms; (PLD programme logic device; MMLS memory-mapped logic solution) 

 

Table 8.3 is showing the maximum and minimum timing cases of the two applications and some 

in-between cases. The setting for the longest run through the state diagram is evaluated with case 

one because this case uses the most extreme coin input sequence with the most outputs. The fastest 

input-triggered sequence is case four reaching the 30 cents for the price of the soda which can be 

done with two coins. As indicated within the table the reaction time of the memory-mapped logic 

solution uses one cycle for each state transition. Where the PLD-based platform runtime varies, no 

direct timing ratio between these two applications can be found. 

 

8.5. Comparison of different memory LUT concepts 

 

The central component of the memory LUT-based FSM is illustrated in Figure 8.4 and this is the 

memory block. Memory is cheap and available in all kinds of diverse types and it can be 

distinguished in general between read/write and read-only memory. For both types in general the 

linear addressing for accessing the data is the common factor. Through the JK-FF and soda 

machine FSM examples it has been found that due to the linear addressing the transferring of the 

state transition table into memory LUT can create gaps in the memory-addressing structure. Due to 

the coding of the input stimulus for the vending machine example the memory-addressing structure 

has been designed from the transferred state table without address gaps. This addressing of the 

memory has been of linear form. This was possible through the use of coding the input information, 

which is not always possible for all the cases. The example of the soda machine only had some 

unused addresses of the memory addressing unallocated. These addresses would require a filter 

function at the state pointer for avoiding the generation of these addresses by mistake inside the 

state pointer. Another possible memory type which is useful for the memory LUT-FSM 

implementation is the content-related search system, which is part of the CAM technique [33].  

The content-related search system is built out of two blocks with different tasks and is displayed in 

Figure 8.10 as one of different possibilities for this technology. The functional block on the left-

side of the figure is the CAM block and on the right-side of the figure is the information memory. 

The CAM block in Figure 8.10 on the left is the memory used for finding the corresponding entry 



Chapter 8: Mapping FSM functionality into memory 

[164] 
 

of the search request within the CAM. The CAM block is in a way a big matrix of two input AND 

gates. One input of all these AND gates within one column is enabled with the one of the search bit 

information at the same time. The other input of each AND gate within this column is connected to 

a memory cell in which the content of each row is programmed into individual memory cells. After 

a match has been established within one row of the search memory of the CAM, the resultant 

address-pointer is generated for the accessing of the data within the information memory. This 

search match happens within one cycle due to the parallel information comparison within this AND 

gate matrix structure. The parallel search and match approach this the advantage of the CAM 

technology. The address-pointer from the CAM is used for reading out the relevant data out of the 

information memory. The information block can be a RAM or ROM circuit but in most cases it is 

RAM circuit for flexibility. Both memory types are of a linear addressing nature and not capable of 

searching inside of the whole data stored with a single cycle to find a match. CAM search pattern 

works in a way that in the case of not finding a 100% match within the data stored inside its 

matching matrix it looks for the close match. The close match is identified by only a single bit 

deviation and is going to be taken as a match. The corresponding information address-pointer will 

be used. For the correct state transition defined with the state diagram a deviation in terms of using 

the close data match cannot be done for the correct state transition of an FSM and has to be 

eliminated.  

 

 

 

Figure 8.10: CAM based implementation of a content-related  

search system out of [33] 

 

The internal structure of a CAM is an array of cells and the dimensions are a certain number of bits, 

which are used for the data word length and a certain number of rows of different data words. Each 

cell is capable of storing a single bit of a word and performs the comparison against the parallel-

supplied search data word. Within one data word row of this cell matrix a match-line runs across all 

row cells connecting all these cells together for generating the signal data match at the match-line 

sensing amplifiers. This match-line-sensing amplifier converts an analogue signal into a digital 
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signal. The match-line signal is generated in the way that before a new search word is applied onto 

the cell array the match-line-sensing amplifier gets charged up into the state of data match found. 

During the phase of finding the match after the search data has been applied onto the cell array at 

each row which does not match, the match-line sensing gets discharged. This will only leave the 

one match-line with a match-indicating charge remaining [33]. In this way the CAM internal circuit 

structure is a combination of digital and analogue design and the creating of a fault-tolerant circuit 

design against SEUs can be done for the data-storing part. But not for the analogue part where 

SEUs could potentially discharge the match-line-sensing amplifier by direct hit of a particle. The 

protection of the stored data within the cells can be done with parity checking and this concept was 

proposed in [130].  

 

8.5.1. Creating a fault-tolerant CAM circuit concept 

 

The current structure of the CAM internal circuit is due to the combination of the digital and 

analogue circuit not being fault-tolerant by itself. Protection of the stored data within the CAM cell 

array can be done with parity checker concepts as proposed in paper [130], which is part of the 

CAM internal circuity. For creating a fault-tolerant CAM structure, the protection of the data is one 

concept. The protection of the CAM internal circuit that is performing the data matching and 

comparison finding, requires a different hardware solution to make it fault-tolerant. The CAM 

hardware alteration, which will achieve fault-tolerance, is shown in Figure 8.11 and this hardware 

alteration only uses digital circuity for data match finding and indication through address-pointer to 

the RAM. The change to the original CAM circuity is that the search cell matrix is replaced by a 

combination of programmable inverters per single data bit feeding into an AND gate. This AND 

gate is performing the data matching of supplied and stored information. Due to the parallel 

structure of this AND gate arrangement the match-and-find time is still one cycle similar to the 

original CAM design which also used parallel match-and-find hardware structures. This example 

selected as showing the fault-tolerant approach is displayed in Figure 8.11 and contains a four word 

content searchable memory block with the following search structure vertically by four bits per 

word horizontal. Each of these four bits forming the vertical word is feeding the output of the 

programmable inverters into a four-input AND gate and if all four-inputs are high signals, this will 

generate a high signal at its output. This high signal at the AND gate indicates that a match has 

been found in this vertical word row and the corresponding address-pointer will be generated for 

pointing onto the correct data inside the RAM block. The RAM block of this design example is of 

the same structure as the one of the original CAM and has not been altered. 

The programmable inverter is a combination of a single memory cell, which controls, if the input 

signal feeding into the AND gate inputs, is inverted or not. The block diagram of the programmable 
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inverter is described in Figure 8.12 and will be used within the block diagram illustrated in Figure 

8.11. 

 

 

 

Figure 8.11: Fault-tolerant CAM block diagram 

 

The function of this altered CAM circuit is by only using digital logic gates and for these the SAFR 

logic gates of Chapter 7 can be used. Internal faults related to stuck-at faults can be masked or 

clearly indicated if a non-maskable fault occurs with an increase in Iddq current. Using the SAFR 

logic gates makes the altered CAM circuit fault-tolerant against hardware related faults of stuck-at 

fault nature. With regards to alteration of individual data information stored inside the memory 

elements due to SEUs, a different technique can be applied. 

 

 

 

Figure 8.12: Block diagram of the programmable inverter 
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8.5.2. Protecting data memory inside CAMs against SEUs 

 

The concept of the CAM method finding a data word structure within the entire memory data in 

one cycle is based around an array of memory SRAMs cells where comparison functionality has 

been added [130]. The central data storing part of an SRAM cell for storing one bit is done through 

a bi-stable latching circuit, which is sensitive against alpha particle or neutron hits. These are most 

commonly known as SEUs and in which case the stored bit data of this cell can be altered and a 

data error occurs. In the case of SRAMs, which are used as memory for a computer system, a parity 

check bit per data word reveals the alteration of a single data bit within a defined data word. 

Because of SEUs happening within a computer system some systems are performing for each read 

data word from the SRAM, a check of the parity bit and if necessary correct the fault before 

sending it to the requesting circuit unit. This check of the data can only happen when the specific 

data word in memory is being accessed, otherwise any altered data bits within the memory are 

dormant faults and accumulative adding faults in the event of constant SEUs is taking place within 

the memory. In this case it is possible that more than one data alteration can happen within one data 

word and for this case the parity check would be ok or cannot correct the fault. In general a process 

like constant data scrubbing would help in this case. But for this a copy of the data has to be stored 

somewhere else for write-back or a constant parity check of the whole memory regardless of the 

currently accessed data has to take place. 

Within paper [130] it was proposed to add parity bits to the row data word as part of the data word 

match-and-find process. In this paper a Hamming code with four parity bits is being proposed with 

results in nine added parity CAM cells per word. This type of Hamming code is an adaptation of 

the extended Hamming (256, 247, 4). The 256 represents the total number of bits, whilst the 247 

defines the total number of data bits, which are being protected by a certain number of parity bits. 

The four indicates the total number of parity bits and in this case is done with nine data bits of the 

overall number of bits. Due to the fact that the parity bits are part of the search data word the 

match-and-find sequence requires that these parity bits are identical to the one stored inside the 

CAM. A one-bit miss is still considered a match in accordance to the paper [130] if this missing bit 

is part of the error-correcting code. This check can only be performed after the row data of the 

CAM would have been read and the parity check can be generated. But this is not part of the 

concept proposed in [130] and a one-bit mismatch is the general feature of the CAM method 

identified in [33].  

The error-correcting feature proposed as research work for this thesis is targeted at eliminating 

single data-bit alteration within the search memory array and is displayed in Figure 8.13. This 

concept is based on the same concept of utilisation of parity bits as the one proposed in [130] but 

with the difference of only using a single parity bit per horizontal and vertical data arrangement of 

the memory. By altering the parity-bit orientation towards a cross matrix this concept is capable of 
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identifying the bit position within the matrix through the overlay of horizontal and vertical parity 

checks. Through a simple reverse of the data of this specific cell the fault can be fixed. The parity 

check of the CAM cell matrix can be done through a constant evaluation of the data stored inside 

the CAM matrix, which will require some hardware overhead to it. This hardware overhead is due 

to the permanent generation of the parity bit for this arrangement. In the case of the requirement of 

reduced hardware overhead this can be achieved for the price of delayed altered bit identification 

with the help of a MUX switching for each of the vertical and horizontal rows, which can switch 

through them for performing parity bit generation. This parity-bit can then be compared with the 

required parity bit for this matrix arrangement. In case of a mismatch a correction of this fault can 

be achieved by inverting the data bit at the parity checked cross section for fault correction. All 

these fault tolerant features applied to the hardware used by a FSM implementation will create a 

fault tolerant FSM platform with inherent fault detection features. The constant evaluation of the 

data stored within the altered CAM structure detects and corrects data which is affected by SEU 

within the memory and the use of SAFR logic gates covers the stuck-at type faults. 

 

 

 

Figure 8.13: Concept of identification of a single data-bit alteration  

within a stored data matrix of a CAM circuit 
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8.6. Summary of the chapter 

 

This chapter was focused on resolving the problem of creating a minimal hardware requiring FSM 

platform with fault-tolerant features. Fault-tolerance should be achieved with minimal hardware 

overhead and must not impact the performance of the FSM. 

The solution for this problem has been achieved by mapping FSM functionality into a memory-

only-based system platform. Application specific behavioural transitions can be broken down into a 

sequence of individual steps and transferred into a step or state flow in tabular form. 

The functionality of an FSM works on the concept of having only one state active at a time together 

with state transitions triggered by input stimuli. If required, the outputting of data may be 

performed during state transition. Current FSM applications are based on fixed hardware circuits or 

programmed into PLD systems. The structure of the FSM state table makes it possible to transfer 

the behaviour into a memory-based platform wherein the functionality of the approach operates by 

utilising the memory address as a combination of state and input data that represents the FSM state 

and state transition triggers. Utilising the memory-only platform for the FSM design also requires 

an address-pointer, which generates the next memory location to be read out of the combination of 

input and current state transition data.  

Comparison with a PLD-based system revealed that the memory-mapped approach displays a 

constant response time for each state transition and requires less memory. It may be argued that a 

potential drawback of the memory-only platform is that stored data in memory is not necessarily 

linear in nature and contains data gaps that may compromise the integrity of the FSM. Research 

performed on the memory structure revealed that, by using a data coding approach, the data 

structure within the memory may be manipulated into gap-free data structures. This FSM state 

transition data coding approach has the combined benefits of memory structure compaction and 

requiring less memory. The next step towards further memory compaction was arrived at through 

the utilisation of CAM hardware. Within this modified memory-only structure the required data can 

be stored within this memory and any possible remaining data gaps are eliminated. 

In summary, a novel design of content access memory has been designed by a combination of 

SAFR-type logic gates and CAM-type memory implementation. Utilisation of SAFR-type logic 

gates adds the property of underlying, intrinsic fault-tolerance and discrimination against stuck-at 

fault-types (as discussed in Chapter 7) while the CAM implementation increases the integrity of the 

next state transition. 
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Chapter 9: Design of self-healing logic structure 

 

9.1. Introduction 

 

The concept of self-healing in electronic systems is the attempt of the system designers to mimic 

the capability nature has given animals and even humans to be gifted by fixing, for example, 

injuries that are happening to their bodies. An example of self-healing performed in animals or 

humans is the capability in the event of an injury to heal or repair a cut through the skin without 

external intervention. Self-healing in nature is performed through intrinsic capabilities of the body 

and it is always performed without external intervention of any kind. The underlying and important 

feature of self-healing in nature is built on self-diagnosis of an incident on any part of the body 

tissue that has made an impact requiring an inherent healing feature. Also the mechanism of 

healing is performed by means of moving material to the place of need or working with the 

material at the location where the healing needs to take place. There are cases where electronic 

systems are becoming part of autonomous systems where the key feature is put into maintaining 

system functionality as long as possible even in the event of a fault within a part of the circuit 

[131]. This can be achieved through giving the electronic circuit design if done within 

reconfigurable FPGAs that can alter their circuit layout and structure to exclude a faulty region or 

activate redundant structures. Both of these features require an external or built-in checker system 

for detecting, locating and repairing. This reliance upon external features defeats the idea of 

intrinsically reacting self-healing systems. The key feature of self-healing within any electronic 

system with this feature relies on inherent self-diagnosis of the occurrences of faults within the 

system hardware similar to biological systems. 

System designers seek self-healing capabilities to be incorporated as part of the system design 

hence creating fault-tolerant or self-maintaining systems that prolong their operational life-time. 

Compared with the capability of nature, where these capabilities are intrinsically part of the natural 

system, man-made systems require external logic circuitry to detect abnormal output values or 

irregular system responses. System-checkers currently take the form of a common design, which is 

created either on the same chip or else using a second chip that is subjected to the same failure 

mechanism as the logic circuit that is being protected. However protection of the system-checker 

itself will lead to even more complex circuit designs that will become even harder to protect. As a 

result, the ideal self-healing circuit would incorporate all necessary redundancy logic structures and 

self-checking mechanisms as part of their intrinsic system design. 

This chapter is focused on answering the three fundamental questions of how self-healing 

properties can be achieved within electronic circuits. The first research question was left 

unanswered from Chapter 7 regarding the utilisation of intrinsic self-diagnosis of the manifestation 

of stuck-at faults within a SAFR-logic gate and the initiation of circuit alteration without the 
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influence of an external logic circuitry. These aspects are addressed below with the help of an 

example circuit capable of reconfiguration at runtime in case of a stuck-at fault without an impact 

on the operational performance. The second research question is centred on the self-healing feature 

of the QLC element, which is capable of determining the location of faults at the logic unit level. 

The third research question relates to incorporating FSM capable of fault location and repair within 

logic designs, thus becoming part of the overall self-healing strategy. BIST and BISR functionality 

is combined to achieve fault-localisation with FSM logic structures. 

 

9.2. A self-healing fine grained logic structure 

 

The concepts of self-healing within an electronic logic circuit in comparison to the features nature 

offers for self-healing are not directly comparable. Out of this perspective the concept of self-

healing within any man-made system would require an intrinsically built-in capability for fault 

detection and a means of fixing faulty components through circuit manipulation at fine-grained 

level to be a self-healing system. Due to this a concept of self-healing within any electronic system 

can be seen as an umbrella statement for other self-* capabilities such as self-diagnostic, self-

detection and self-reconfiguration. For example, in nature the axolotl [34] (see Figure 9.1) (known 

as Mexican salamander or ambystoma mexicanum) is able to perform epimorphosis on the 

regeneration of limbs, organs, parts of the non-vital regions of the brain and heart. The axolotl can 

do all of this without any external help or having redundant body parts waiting to be used in the 

case of a fault. The key enabling feature present in the case is that of self-diagnosis that triggers 

self-healing when required.  

Self-healing inherently present in nature is necessary in electronic systems and it is needed to be 

adapted into any complex electronic system requiring the capability of prolonging operational life-

time. Present-day electronic systems do not offer sufficient built-in self-diagnostics as part of the 

inherent circuit fault detection capabilities. Whenever these systems are affected by the occurrence 

of a fault any detection is done through limited fixed resources of this logic circuitry. Self-healing 

is focused on prolonging the uptime of the system through reconfiguration and selective exclusion 

of hardware parts of the system that require enhanced self-diagnostics. But in contrast to any 

natural system, every known instance of self-healing electronic systems requires strategically 

placed spare hardware structures within the overall design that can be used for replacement. 

Another disadvantage of man-made systems versus natural approaches is that the approach of self-

healing requires self-limiting or inhibiting of self-healing action within an electronic system 

utilising self-healing. Additional requirements for the self-healing strategy require capabilities for 

assessing the success of healing if the functionality has been restored to the level prior to the 

occurrence of the fault. Evaluation of the remaining resources is also required for the establishment 
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if further self-healing attempts are to be made. All these requirements are needed within a man-

made adaption of a self-healing concept within an electronic system. 

A central tenet of this thesis is focused on empowering logic gates with the capability of an 

inherently built-in indication of the occurrence of a fault within its logic gate structure. For an 

electronic-based system done, for example, within an FPGA, the task of self-healing is mostly done 

by means of reconfiguration performed with the help of pre-compiled configuration logic structure 

data. Furthermore, reconfiguration of the FPGA is done by an external device and it is not part of 

the internal logic configured within the target FPGA. The reconfiguration of an electronic system is 

therefore limited to coarse-grained logic resources such as interconnect fabric and CLBs and 

cannot influence the necessary fine-grained logic resources. The function of the CLB and QLC is to 

perform the required logic operation for the application and in this regards a direct replacement 

within a FPGA circuit structure would be possible. This replacement can be done in a way that a 

single QLC is put in place of a CLB and this replacement defines the level of scaling achievable 

with the QLC design. The use of single QLCs maintains the features of fault detection within the 

QLC and the self-initiation of fine-grained self-healing features. For the self-healing of a QLC, 

local interconnection reconfiguration is required. This is provided through the FPGA 

interconnection design, which can be maintained or needs expansion for providing the required 

interconnection structure between individual QLCs. 

Within any electronic system structure the system designer needs to predict possible fault 

conditions within parts of the application circuit structure or else use a large scale modular 

redundant logic design of the main logic structure. Unfortunately, the resource cost for this case is 

very high in order to mitigate for single errors. Figure 5.5 of Chapter 5 represents one possible 

example where a predefined spare column within a set of columns will be used in the case of a fault 

within another column as a replacement. This concept of using a single column within a set of other 

columns as a replacement is proposed within [23] as a concept of self-repair. In a sense, self-repair 

is part of self-healing because a predefined replacement is used in case of a fault. For performing 

self-repair the logic system is required to have resources for fault detection which are either built-in 

or by external means. Otherwise the logic circuit would need resources of intrinsically built-in 

capability of fault detection on which it can react. 
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Figure 9.1: Axolotl (ambystoma mexicanum) [34] 

 

9.2.1. Concepts for fault self-detection with the SAFR-NAND gate 

 

The most commonly used fault-tolerant concept in logic systems, which requires fault-masking 

and/or fault-tolerance is based on the NMR system with majority voter. A generic block diagram of 

this type of logic system is shown in Figure 4.6 and it is based on the work proposed by von 

Neumann [99]. The most commonly used adaptation of an NMR-based system structure is the 

TMR system with majority voter. A simple example of this type of fault-tolerant system is 

described in Figure 4.7. For creating a fault-tolerant and self-repairing logic circuit the majority 

voter of the TMR system needs to be expanded with the capability of information comparator and 

its design would require it to be fault-tolerant by itself. The concept of information assessment at 

the majority-voted output signal requires having a voted output signal feed into a comparison 

circuit in which this signal is individual when compared with the output signals of each redundant 

module of the TMR system. A simple example of this concept is illustrated in Figure 4.10 where it 

is used for the indication of the incorrect TMR module path. This indication signal can also be used 

for triggering a reconfiguration of the TMR system if it is running on a runtime reconfigurable 

platform like an FPGA, for example, and predefined reconfiguration data is available within an 

external device. Different reconfiguration concepts are available to perform this task and each of 

them has been designed for a certain concept and purpose. Reconfiguration is an action responding 

on identifying fault hardware down to a pre-defined logic block. The key for doing so is fault-

localisation within a given logic circuit down to a gate level, in best case down to the single faulty 

component of this logic system. In this case the fault-tolerant design of the system is based upon 
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fine-grained redundancy structures. Fault-localisation performed down into this kind of detail can 

only be done with significant hardware overhead and test time. 

In chapter 7.2.3 the design of a SAFR-NAND gate has been illustrated and the outcome is 

displayed in Figure 7.6. The evaluated SAFR-NAND logic gate design has the inherent feature of 

being able to mask single SAL faults and indicating non-maskable SAH faults through an increase 

of the Iddq current. This increase of the Iddq current is a unique indicator of a non-maskable single 

SAH fault within the gate. The current increase can also be used as an intrinsically built-in feature 

of the SAFR-NAND gate to indicate the need for repair or healing action. To evaluate the increase 

of the Iddq current value during a non-maskable SAH fault within the SAFR-NAND gate, the 

transistor design of the gate is transferred into the resistor-based model for evaluation. This transfer 

from transistor to resistor-based model is shown in Figure 9.2. The resistor-based model of the 

SAFR-NAND gate is defined in Figure 9.2(b) and the resistor replacement of a transistor is a 

voltage-controlled switch between two resistor values, which are the two states of RDSOFF and 

RDSON of the associated transistor. These two state approaches of the transistor are only working 

for the digital stimulation when the transistor is either switched off and replaceable by RDSOFF or 

switched on meaning RDSON is active. For the simulation and calculation of the Iddq current 

verification the following transistors have been used: the transistors for the pull-up side or network 

(labelled with TRH1..4) are BSP230 and for the pull-down side or network (labelled with TRL1..4) 

are BSP126. For both transistors of the pull-up and pull-down network the RDSOFF is defined as 10 

M Ohm within the device specification. For the RDSON for the pull-up network transistor, which is 

the BSP230 transistor, the resistor value is defined as 17 Ohm taken out of [132]. The RDSON of the 

transistor transfer of the pull-down network transistor-,which is the BSP126 transistor, is defined as 

5 Ohm in accordance with [133].  

 

 

(a)     (b) 

 

Figure 9.2: (a) Internal transistor structure of SAFR-NAND gate; (b) SAFR-NAND  

gate converted from transistor into variable resistors structure 
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For the evaluation of the Iddq current value during an increase caused by a single SAH fault at a 

single transistor of the SAFR-NAND gate a single circumstance out of Table 7.4 has been selected 

which is the transistor T6 under the influence of an SAH fault (see Figure 9.2(a)). For this case the 

Iddq current increase is going to happen during the input sequence X1=0 and X2=1, which has been 

taken out of Table 7.4. The T6 or TRL2 represents the transistor with the SAH fault within the pull-

down network of the SAFR-NAND gate. Due to this specific input sequence the following 

transistors are being turned on and because of its identical resistor value the following 

simplification can be defined: the values for TRH1 and TRH2 are identical and RTRHON is used 

instead and the same applies for RTRLON. The overall resistor value of the resistor replacement 

estimation of the SAFR-NAND gate can be calculated as follows: 

 

𝑅𝐶𝑜𝑚 =
𝑅𝑇𝑅𝐻𝑂𝑁

2

2∗𝑅𝑇𝑅𝐻𝑂𝑁
+ 𝑅𝑇𝑅𝐿𝑆𝐴𝐻 +

𝑅𝑇𝑅𝐿𝑂𝑁
2

2∗𝑅𝑇𝑅𝐿𝑂𝑁
   (Equation 9.1.) 

𝐼𝑑𝑑𝑞 =
𝑉𝑐𝑐

𝑅𝐶𝑜𝑚
⁄    (Equation 9.2.) 

 

The Iddq current for this example with Vcc=5V is a theoretical Iddq current of 312.5 mA but the 

maximum current capability of the BSP230 transistor is in accordance with the datasheet 210mA 

[132]. The transistor maximum current capability will limit the maximum current flow within the 

SAFR-NAND gate within this arrangement in case of a short circuit path between Vcc and GND. 

Another point has to be made about the level which the Iddq current can reach and this is that it is 

the highest possible current flow within the logic gate. This current path inside the logic gate is a 

result of this fault condition and it is a constant flow over time. This current flow can cause damage 

to local chip structure. Because of this danger precautions for the current presences within a given 

chip have to be taken to avoid permanent chip faults. 

A spice simulation where the SAFR-NAND gate is using these specified transistors was performed 

to verify the Iddq current value for the fault present indication which exists within the SAFR-logic 

gate circuit structure. The spice simulation result is outlined in Figure 9.3. 
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Figure 9.3: Current response of the SAFR-NAND gate with the presence of a single SAH  

fault at T6 transistor (see Figure 9.2(a)) and required input stimulus 

 

The spice simulation results, which are displayed in Figure 9.3, are clearly showing the presence of 

a single SAH fault within the circuit structure of the SAFR-NAND gate indicated through the 

increase of the Iddq current. This fault is triggered by the input stimulus X1=0 and X2=1. These are 

the correct input stimuli for creating the short circuit path between Vcc and GND as defined within 

Table 7.4. The value of the Iddq current is -210mA during the time the correct input stimulus is 

applied to the SAFR-NAND gate. The value of the Iddq current is the same value as the saturation 

current of the BSP230 transistors. In this way the calculation of the current level matches the spice 

simulation hardware constellation specified within the transistor specifications. Due to the presence 

of the single SAH fault at T6 of the SAFR-NAND gate structure this type of fault condition is out 

of the range where the output value is correct and only the increased Iddq current indicates the 

existence of the fault. The arrangement of the transistor structure within the SAFR-NAND gate is 

able to mask a single SAH fault at the transistors T5 to T8 of the SAFR-NAND gate (see Figure 

9.2(a)) for a set of input stimulations and for the input stimulation defined within Table 7.4 it is 

indicating this condition through the increased Iddq current.  
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9.2.2. Initiation of self-healing of a circuit designed out of SAFR-NAND gates 

 

The initiation of self-healing or self-repairing after a permanent fault presented within the SAFR-

NAND gate requires a clear and distinguished signal to the outside of the gate structure. With the 

Iddq current increase in the case of a single SAH fault affecting one of the SAFR-NAND gate 

transistors this is a suitable indicator, which has been designed into the gate structure. A possible 

method of introducing self-healing could be the use of a burning open fine-fuse within the different 

transistor paths of the SAFR-NAND gate. This fuse would disconnect the affected transistor and 

the remaining redundancy transistor maintains a working logic gate. The level of the Iddq current 

increase should be in the region of using a burning open fine-fuse for permanently interrupting the 

connection of an individual transistor out of the logic gate structure. The problem of using this type 

of disconnecting fuse within the internal logic gate structure is the component space required on a 

possible chip. By creating a disconnection fuse on a chip through fine metal traces the reliability of 

the consistency of the required reacting current could be a production challenge. Also the required 

component space needed on the chip area would be significant.  

The disconnection of a transistor by fine-fuse requires the correct current over time. The time it 

takes for the fine-fuse to react on the current at which level it should disconnect is according to 

[134] a problem, which makes the introduction of conventional fine-fuses within the SAFR-NAND 

gate obsolete. The Iddq current increase during the occurrence of a single SAH fault-injection 

should be enough to disconnect an installed 50mA fine-fuse. This particular value has been chosen 

because with the selected transistor types the Iddq is going to be around -210mA. The ratio between 

these two values is four times. The datasheet specifies for a 400% ampere rating compared to the 

face value of a certain response time and in this case the reaction time can be between 3ms and 

300ms. This makes this technology inappropriate to use within this type of application.  

Another disconnecting fusing technology could be used instead of conventional burning open fine-

fuses, which can be the memristor proposed in [135], with its application-specific definition of its 

breakdown behaviour in accordance with [136]. The basic principle of a memristor is that it can 

switch between two resistor values triggered through the influence of a certain current level passing 

through the memristor. Certain current levels are associated with each one of the two possible 

inherent resistor values of the memristor. So it can be used as a low and high impedance current 

triggered switch. The functionality of the memristor is similar to the function of a fuse. The 

important difference between these two fuses is that the disconnecting fine-fuse can only react on a 

current with a certain level for one time only and the memristor can be used as a switch. The 

alteration between both resistor values happens within a specified time frame and this timing 

parameter is the key parameter to make this technology usable for the requirements of the SAFR-

NAND gate. Research work on finding the right parameters for the memristor is beyond the scope 

of this thesis and cannot be worked on at this time. But the memristor could be easily integrated 
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within a chip design as part of the silicon versus having conventional burn-through fuses. The 

dimensions of the memristor would fit into an interconnection via within the silicon structure of the 

chip and if a non-permanent disconnection of a single transistor of a SAFR type gate is needed it 

could be selected as a design solution or chip component.  

A third possible fusing technology usable for the decommissioning of a faulty individual transistor 

within an SAFR-NAND gate due to a single SAH fault could be the eFUSE technique proposed in 

[137]. An application specific solution regarding autonomic hardware self-healing was proposed in 

[138] where a general concept of using eFUSE technology for switching in redundant autonomist 

chips has been proposed. This fuse technology uses the electro migration capability within silicide 

polysilicon, which created an electronically writable chip element [137]. The initial resistor value 

for the eFUSE has been indicated in the paper of 120 ohms, which only allows the placement 

directly in the supply or ground connection of the SAFR-NAND gate. The noticeable disadvantage 

of adding this resistor value of around 240 ohms to the Iddq current-creating path will reduce the 

current flow significantly. In the example beforehand the resistor value was theoretically 16 ohms 

creating 312.5 mA and with 240 ohms added only 19.5 mA. By placing the eFUSE into supply and 

ground connection and in the case of a single transistor fault within the gate the entire SAFR-

NAND gate is going to be disconnected. Because of the disconnection of the entire SAFR-NAND 

gate within a given logic circuit detection logic has to be developed for this case. This detection 

logic would lead to hardware overhead and an entire SAFR-NAND gate is needed to replace all the 

faulty ones. The usage of the eFUSE inline within the supply lines of a logic structure has not been 

proposed and researched within these papers. It could be possible that the eFUSE technology 

cannot be used in this regards. The normal use of the eFUSE element is for storing non changeable 

information within a chip. The eFUSE capability of supplying a logic structure would require 

research to see the limitations and capabilities for this specific application. It is the writer’s 

perspective that this is beyond the capabilities and scope of this thesis, but the technology of 

eFUSE could lead to usable logic structures, which also could be included within a chip during the 

normal design phase. 

All proposed solutions to disconnect a single faulty transistor or the entire SAFR logic gate require 

detection logic for identifying the occurrence of this event. Without the detection the remaining 

fault-absorbing capacity of the logic circuit cannot be accounted for. 

The solution, which is going to be applied within this thesis in terms of identifying the Iddq current 

increase after a non-maskable single SAH fault affecting a transistor within the SAFR-NAND gate, 

is a current sensing by means of a current shunt. The voltage drop across the current shunt is in 

conjunction with the current level. This voltage drop is changed by a signal convertor into a single 

digital signal, which can trigger possible selective deactivation or reconfiguration within a logic 

system. This concept is more a current sensing followed by converting than a current measurement 
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with built-in level detection. It will be referred to as current sensing and conversion fuse (ccfuse) 

within this thesis. A block diagram of the ccfuse concept is illustrated in Figure 9.4.  

 

SAFR 
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LogicInput

Current 
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Vcc

Current 
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Level 
changer

GNDFault
 

 

Figure 9.4: Block diagram of the SAFR-NAND gate simulating a SAH  

fault-injection and ccfuse fault-clearing capability 

 

The self-healing approach proposed with the block diagram illustrated in Figure 9.4 needs to be 

evaluated within a spice simulation to measure the timing of the self-healing feature. For this 

evaluation the faulty transistor of the SAFR-NAND gate needs to alter the output value of the gate. 

The alteration of the output value into a faulty output is required to evaluate the capability of the 

self-healing process in terms of how quick the output value is reflecting the correct value again and 

with regard to the timing of the self-healing. In accordance with Table 7.4 the transistors T1 to T4 

(see Figure 9.2(a)) are showing the required impact of fault-behaviour. For this evaluation the 

transistor T3 of the SAFR-NAND gate has been selected. The output value of the SAFR-NAND 

gate will indicate an undefined output value during the presence of a single SAH fault at T3 of the 

logic gate in conjunction with the input stimulus of X1=1 and X2=1. At the same time the Iddq 

current will increase for the indication of the presence of a non-maskable fault within the logic 

gate.  

The block of Figure 9.4 with the label logic is representing the logic structure where the input 

sequence gets altered for creating a permanent SAH condition of a specific transistor during 

simulation. In this case it is the T3 transistor. This logic block is capable on request to clear or add 

the presence of any type of simulated stuck-at faults at a certain logic gate transistor within the 

logic equations. By doing it this way the hardware overhead and complexity around each individual 

transistor of the SAFR-NAND gate is reduced.  

Figure 9.5(a) shows the spice simulation of the block diagram of Figure 9.4 with the simulation of 

an injected single SAH fault at T3 at the SAFR-NAND gate. For this spice simulation the self-

healing capability specified within the block diagram has not been activated; only the presence of 

the current increase is active to show the Iddq current increase. The increased Iddq current is shown 
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through the currflag within the spice simulation data. The SAH fault happens at the 2ms marker of 

this spice simulation. The SAFR-NAND gate response caused by this fault is in accordance with 

the condition specified in Table 7.4 and simulation response can be seen in the time frame 3.5ms to 

4ms for the input stimulus X1=1 and X2=1. The output value for this time frame is indicated 

through the spice simulation as not being able to indicate an appropriate digital logic level for this 

time frame. This means that the output value for this time frame is undefined. This undefined 

output value caused by the required input stimulus and the presence of a single SAH fault within 

this SAFR-NAND logic gate remains active until the SAH fault or IC is cleared or altered.  

In Figure 9.5(b) the same spice simulation as for Figure 9.5(a) is re-simulated but at this time the 

self-healing features of the circuit are active. As previously, the single SAH fault is injected into T3 

of the SAFR-NAND logic gate and this is happening at the same time marker of 2ms. The required 

input stimulus is happening at 3.5ms and at this time the fault shows up within the spice simulation 

data with this time stamp. This is similar so far to the simulation data shown in Figure 9.5(a) 

without self-healing being active. At the time marker of 3.5ms in Figure 9.5(b) for the circuit with 

self-healing capability the functionality can also be seen in Figure 9.6. In this figure a detailed 

simulation plot is shown for the time frame 3.2ms to 3.8ms of the simulation data taken from 

Figure 9.5(b). 

 

 

(a) 

 

 

(b) 

 

Figure 9.5: (a) SAFR-NAND gate with SAH fault at T3 without self-healing capabilities; (b) the 

same condition as in (a) including this time self-healing capabilities for fault correction 

 

Within Figure 9.6 a higher resolution plot of the simulation is shown of a particular time frame of 

the data taken from Figure 9.5(b). This time plot illustrates the behaviour of the self-healing 

capability that is described by the block diagram illustrated in Figure 9.4. At the time of 3.5ms both 

X1 and X2 are high, which are creating the critical input sequence triggering the fault identification 

and this will cause the SAH fault to affect T3 of the logic gate to alter the output value into 

undefined. At the same time the Iddq current increases as the indicating signal of the non-maskable 
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fault affecting the logic gate. From this time stamp onwards the fault-tolerance of the logic gate in 

conjunction with the ccfuse is required and the timing plot shows the flow of the events. After the 

critical input stimulus is applied at the inputs of the logic gate, its output response under the 

influence of the SAH fault is an undefined output condition. This is indicated through the yellow 

line within the out signal of the plot illustrated in Figure 9.6. This output condition lasts until 

3.58ms until the ccfuse circuit, which is combining analogue to digital current-based conversions, 

is applied onto the Iddq current signal of the logic gate. The ccfuse circuit is transforming the Iddq 

current signal into a digital signal. The Iddq current increase for this fault case is defined by the 

equation 9.2 up to the maximum current-carrying capability of the transistor from the time 3.5ms 

onwards. The ccfuse circuit identifies this current from the time 3.5ms onwards and until the time 

of 3.55ms the current to digital signal transforming circuit holds the currflag at zero within the 

simulation data. This is due to the internal signal runtime within the ccfuse circuit. After this time 

of 3.55ms the currflag output is in the undefined logic state identifiable through the yellow line 

within the plot until the time stamp of 3.58ms and at this time point a clear high signal is present 

for the currflag within the simulation data. This high signal at the currflag output of the ccfuse 

circuit triggers the self-healing of the SAFR-NAND gate and takes place immediately by 

deactivation of the presence of the SAH fault influence on T3 of this logic gate. This deactivation is 

simulating a decommissioning of the faulty transistor T3 of the SAFR-NAND gate. This 

decommissioning could be a burn open fine-fuse component, which is part of the logic gate circuit, 

as an example without the addressed problems described beforehand. As described beforehand 

there are different components usable for decommissioning a faulty transistor. This definition and 

integration into the SAFR-logic gate is undefined at the moment of this research work and this is 

because different possibilities for a fuse device have been investigated and all require prolonged 

research work, which is beyond the timeline of this thesis. The fault presence deactivation shows 

the effect within the logic gate in changing the output signal out into a defined logic state of zero. 

This is the correct output value for the current input stimulus of X1=1 and X2=1. The key concept 

of this simulation is that the decommissioning of the faulty transistor within the SAFR logic gate 

takes place without the use of an external checker system. 

The desired circuit effect was the decommissioning of the fault-causing transistor of the logic gate 

and in this case the decommissioning of transistor T3 of the SAFR-NAND gate. The deactivation 

of the influence of the single SAH fault on T3 of the logic gate alters the output into the correct 

state, which also causes the Iddq current to decrease immediately to zero current flow. This change 

of the current flow can be seen in Figure 9.6(a) bottom graph, which is showing the current flow 

through the SAFR-NAND gate. At the time of 3.9ms the current is zero, which is normal for this 

type of circuit. This triggering of the self-healing is latched inside a flip-flop and maintains the 

deactivation of fault influences on the T3 transistor of the logic gate for the duration of the 
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simulation onwards. It can be seen in Figure 9.5(b) that at time 5.5ms no incorrect output value at 

out is present and no Iddq current increase triggers the currflag signal. 

 

 

(a) 

 

(b) 

Figure 9.6: (a) Detailed time slot taken out of Figure 9.5b of the simulation of a single SAH fault  

at T3 of an SAFR-NAND gate with self-healing capabilities for fault correction; 

(b) Higher time frame resolution of the digital signals of the self-healing phase 

 

Within Figure 9.6(b) the response timing of the self-healing feature is outlined and the present 

limits can be observed. The response time for the self-healing circuit used at this time within this 

research is around 16.5µs. This time frame is the time difference between the presence of the fault-

causing IC applied onto the logic gate and in this simulation it is 3.5ms. The 3.5ms is the zero point 

or t0 for estimation of the time difference of fault-condition triggering through IC and logic gate 

responses. The time of the logic gate of 16.5µs is mainly due to the current-converting circuit 

design, which is the standard positive supply rail current-sensing circuit design taken out of [35]. 

This circuit is shown in Figure 9.7 and converts the current through a current shunt into a signal 

between GND and Vcc.  

The converting capability can be calculated with the following equation: 

 

𝑉𝑂 = 𝐼𝐿𝑜𝑎𝑑 ∙ 𝑅𝑆 (
𝑅2

𝑅1
⁄ )    (Equation 9.3)  [35] 
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The response time of the detection of the Iddq current increase by the current sensing circuit is 

important for the performance of the self-healing feature for this logic gate. For the measurement 

the corresponding voltage graph of the output voltage of the supply rail current-sensing circuit in 

relation to the digital signals is outlined in Figure 9.8. The time marked with t1 represents the time 

point where the voltage level has been reached for the logic gate to alter its output value into a high 

value. This voltage level is within this spice simulation defined at 2V and causes the current 

detection circuit response time to be the 16.5µs, which can be identified within the graph of this 

simulation. Compared with the standard specification of CMOS 5V technology logic this voltage 

level for identifying a high level at its input is ≥3.5V. Applying this voltage level onto the output 

voltage graph displayed in Figure 9.8 of the current-sensing graph would push the switch to a 

definite high signal to 28µs identified with t3. The delta between both times t1 and t3 is 11.5µs or 

41.07% difference. This time difference between the spice simulation and an actual circuit is of 

significance and cannot be neglected. The time where the current flag indication switches back to 

zero is labelled with t2 at the same voltage level of 2V for this spice simulation. The standard 

specification of CMOS 5V technology defines the voltage level for the input at a voltage level of 

≤1.5V. Applying this voltage level at the current-sensing graph of Figure 9.8 the time marked with 

t4 is 63µs. The delta between t2 and t4 is 4µs or 6.78%. Overall, the performance of a real circuit 

would be different to the spice simulation in terms of self-healing response time and further work 

should be focused on the supply rail current-sensing solution regarding the use of only using a 

digital circuit instead of an analogue one with altered voltage levels for identifying high and low 

signals. 

 

 

 

Figure 9.7: Standard positive supply rail current-sensing circuit taken out of [35] 
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Figure 9.8: Output voltage graph of the supply rail current sensing in  

relationship to the digital signals of the self-healing phase 

 

The timing of the impact of the self-healing feature triggered by the Iddq current increased in 

relationship to the output behaviour indicates the response time of the intrinsic feature of this 

circuit. The timing simulation of these signals has been performed. The effect on the Iddq current 

flowing in the SAFR-NAND gate in relationship to the output voltage of the supply rail current-

sensing circuit is represented in Figure 9.9. At the time t0 the Iddq current increases within a short 

time of around 1µs to its maximum current level limited through the transistor-specific drain-

source current, also known as the maximum current capability which is specified within the 

datasheet [133]. As analysis with Figure 9.8 shows at the time t1 the ccfuse circuit switches from 

zero to high indicating a single SAH fault, which is affecting a single transistor of the SAFR-

NAND gate. The alteration of the currflag (see Figure 9.5) activates the self-healing capability of 

this gate and eliminates the effect of the SAH fault happening to this transistor. Due to the 

elimination of the SAH fault the Iddq current decreases at the time t1 back to zero. This is the 

normal condition of the Iddq current for this situation. Also at this time t1 the output value of the 

logic gate changes into the correct output value from being undefined beforehand and for this case 

to be zero. Also within this figure the duration of the increased Iddq current can be evaluated and the 

current is flowing 16.5µs within the SAFR-logic gate.  
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Figure 9.9: Output voltage graph of the supply rail current-sensing circuit in  

relationship to the Iddq current of the SAFR-NAND logic gate 

 

9.2.3. Initiation of self-healing at SAFR-NAND gate with reconfiguration 

 

In Chapter 5.3.2.2 the concept of using reconfiguration with predefined configuration data for 

altering the logic structure within an FPGA in the case of a fault present inside a certain logic block 

of the whole logic structure is presented. For performing this approach, the system designer needs 

to evaluate all possible fault conditions and counteract with an altered logic design. For all these 

different logic designs he has to generate the appropriate configuration data files. All these data 

files of the different logic design configuration data sets are going to be stored outside of the FPGA 

within a memory circuit and this memory circuit is part of an external checker system. After 

evaluating the fault location within the logic structure of the FPGA, the system-checker will select 

the appropriate data set and alters the configuration of the FPGA by reprogramming. This specific 

concept requires a system-checker and also a memory element storing all predefined data sets. All 

of this represents hardware overhead and increases the likelihood of a system-fault due to SEUs or 

hardware related issues. 

The SAFR-NAND gate has an intrinsically built-in indicator for non-maskable single SAH faults 

affecting a single transistor of the logic gate. An SAH fault and the required IC will increase the 

Iddq current and this current increase can be used to trigger self-healing concepts without an 

external checker circuity. All other fault conditions within the SAFR-logic gate are masked and not 

noticeable for the user of this logic gate. This self-healing circuity is able to fix a transistor with a 
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fault by means of selective decommissioning of the SAFR-NAND gate. This would be possible if 

an appropriate fusing technology had been added to each of the individual transistors of the SAFR-

logic gate.  

Due to the fact that the current design is not equipped with this fusing technology another approach 

of fine-grained self-healing has been chosen. The currflag signal defined within Figure 9.5 will be 

used for triggering a fine-grained reconfiguration of two SAFR-NAND logic gates. This 

reconfiguration has the goal of maintaining the required logic functionality of the logic structure 

during runtime of the systems in the case of a non-maskable fault affecting the logic gate. All this 

is going to be done by only using the Iddq current indicator for the initiation of self-healing by 

means of reconfiguration without external use of a system-checker.  

The basic principle of the logic structure is shown in Figure 9.10 where, in this logic structure, the 

intrinsically built-in capability of fault fed-back through Iddq current triggers the switch between 

two SAFR-NAND gates. Both SAFR-NAND gates are altered in a way that a transistor has been 

added inline within the GND and Vcc line each. The function of these transistors is to act as an 

isolation switch, isolating the SAFR-NAND gate from the power rail. By isolation of the central 

logic part of the SAFR-NAND gate from the supply voltages the logic gate is put into a floating 

output condition and the output will reflect this condition as being undefined. This condition is 

referred to as a tristate logic condition of a logic gate in accordance with [36]. The select logic 

block represented in Figure 9.10 located between both SAFR-NAND gates is going to generate the 

required digital signals for switching between both gates in terms of working or tristate condition. 

The select logic block is triggered by the currflag signal. The output logic block of this block 

diagram is situated where both logic gates are feeding their output signals in and it is capable of 

selecting the valid output signal of the active SAFR-NAND gate. The correct selection is 

performed due to the fact that the faulty one or the standby gate has a floating output, which 

represents an undefined output condition. Everything else of this block diagram shown in Figure 

9.10 is similar to the one shown in Figure 9.4 in terms of functionality.  
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Figure 9.10: Block diagram of Iddq current triggered self-healing of the system performance 

in the case of the presences of a SAH fault by means of reconfiguration 

 

Figure 9.11 shows the simulation results of the circuit constructed within spice following the block 

diagram as it is displayed in Figure 9.10. At this time the single SAH fault is injected into the T1 

transistor (see Figure 9.2(a)) of the first SAFR-NAND gate. In accordance with Table 7.4 a single 

SAH fault injected into T1 of the SAFR-NAND gate requires the IC condition X1=1 and X2=1. 

Through this IC combination and the transistor T1 under the influence of SAH the Iddq current 

increases and the logic gate output value is undefined. The different outputs are labelled in the 

block diagram as the following out1, out2 and out3 which are going to represent the different sub-

functionalities. The labels out1 and out2 are the representation of the output values of the two 

SAFR-NAND gates and out3 represents the overall output value of this logic construction coming 

out of the output selector. The yellow lines within the timing plot for the labels out1 and out2 

represent within the simulation data the time frames in which one of the two outputs is switched 

into tristate or floating state [36]. During this time the output value is floating, which means that it 

is undefined and this is due to the fact that the logic gate is isolated from both sides of the supply 

rail. The output out3 represents during the whole simulation a constant output value, which means 

that at any time during the simulation out3 does not have an undefined state. This output is the only 

visible output for the user of this logic structure and during the simulation it experiences no 

incorrect output value that has been generated. At the time of 2ms a single SAH fault is injected 

into transistor T1 of the first SAFR-NAND gate, which is the one on the left of the block diagram 

illustrated in Figure 9.10. The required IC condition of X1=1 and 2=1 in accordance to Table 7.4 is 

happening at 3.5ms during this simulation run and at this time point the first SAFR-NAND gate on 

the left becomes faulty with the known features of increasing the Iddq current and undefined output 

value. The self-initiated switchover between both these SAFR-NAND gates is triggered through 

the Iddq current increase and this can be seen within the simulation timing data regarding output 



Chapter 9: Design of self-healing logic structure 

[188] 
 

depending switch of the tristate value after the time 3.5ms. A more detailed timing diagram of this 

switchover of the time around 3.5ms is illustrated in Figure 9.12.  

 

 

 

Figure 9.11: Self-initiated switchover between two SAFR-NAND gates triggered through 

the Iddq current for maintaining functionality after SAH fault occurred 

 

With Figure 9.12 a more detailed timing diagram of the spice simulation illustrated in Figure 9.11 

is outlined to show the fine detailed switchover between both SAFR-NAND logic gates around the 

time of 3.5ms. The trigger for the self-initiated switchover or self-healing is the IC combination 

X1=X2=1. Within this timing diagram shown in Figure 9.12 the features of how the output value 

out3 is going to be generated is evaluated and indicated as trustworthy. As long as the currflag is 

set high the logic structure using the output value of out3 should wait until this flag is switched 

back to zero. At this time the overall output value out3 has come to a stable and correct output 

value. A detailed evaluation and comparison against the timing parameters can be found within 

chapter 9.2.2. Figure 9.13 shows the same timing breakdown as shown in Figure 9.8 for the 

evaluation of the response time evaluation of the current sensing circuit in relation to the digital 

signals. The reference timing point is t0 with 3.5ms. The currflag switches at 16.5µs, indicated 

through t1 from undefined into high triggering the self-initiated self-healing of this logic structure 

by means of logic gate reconfiguration. In Figure 9.8 the SAH fault was cleared and in Figure 9.13 

the switchover or reconfiguration between both logic gates is performed. Both these events happen 

at the same time point t1. All the timing parameters found in Figure 9.13 match those found in 

Figure 9.8. In this regard the performance of the self-healing in terms of clearing a fault or 

switching between two SAFR-NAND gates, matches and is showing the same performance. A 

difference between both timing parameters was not expected due to the fact that both ccfuse 

circuits are identical copies of each other. The Iddq current behaviour found in Figure 9.9 matches 

the one illustrated in Figure 9.14 in both performance and timing. 
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Figure 9.12: Ttiming diagram of the self-initiated switchover between two SAFR-NAND gates 

triggered through the Iddq current for maintaining functionality after SAH fault occurred 

 

 

 

Figure 9.13: Output voltage graph of the supply rail current sensing in relationship to the digital 

signals of the self- initiated switchover between two SAFR-NAND gates triggered through 

the Iddq current for maintaining functionality after SAH fault occurred 
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Figure 9.14: Output voltage graph of the supply rail current sensing circuit in relationship  

to the Iddq current of the SAFR-NAND logic gate similar to the Figure 9.13 

 

9.3. Fault identification capabilities within the QLC logic structure 

 

The self-diagnostic feature is required for triggering the self-healing in the case of a fault within its 

logic structure. A comparison between the QLC and quadded logic structure is performed for 

showing the fault identification capability of the QLC logic structure. The QLC logic structure has 

the fault-tolerant capability due to the time-triggered round-robin reconfiguration of a fixed logic 

circuit. A faulty logic unit will rotate through this logic set-up and will generate altered output 

results for each cycle. The quadded logic structure is designed with the approach of having built-in 

fault correction and fault-masking. For both logic structures the majority voter performs the bulk of 

the fault-masking, similar to every other system where a majority voter is used. Fault identification 

within both logic structures requires external checker systems because neither of these logic 

structures can perform this task through its internal logic structure. Both logic structures are fault-

tolerant but not for all possible logic combinations applicable within the fixed logic structure which 

the data shows of the simulated carried out within Chapter 6. The data of the different numbers of 

faults per logic set-up within the fixed logic structure can be found within Tables 6.5 and 6.6 and 

an overview of the main conditions can be found within Table 6.7. In this table the total number of 

faults (F) has been accounted for which can pass through the functional boundary, in this case the 

majority voter, as valued output results. Both logic structures require an external checker to detect 

these faulty output results for the required logic structure performed. This external checker will 
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work on the concept of identifying the faulty part or functional block of the system and will also 

identify the fault-causing logic part through the evaluation of the data set. After the identification of 

the fault-causing logic part the system-checker can trigger a reconfiguration or self-healing by the 

use of spare logic hardware designed into the logic structure for this purpose. For a more detailed 

fault identification down into the logic unit of the QLC reference can be found within Chapter 7, 

which focused on altering the internal logic structure into a fault-tolerant design. 

One possible common approach for making both logic structures to be 100% fault-tolerant is a 

parallel system approach. Both logic structures in parallel have to be of equal logic structures, 

which are using the same input signals for generating an output result at the same time as a single 

logic structure. After the generation of both these output results a comparison takes place and both 

output results have to match in order to generate a valid overall output value. This set-up would be 

considered as a lock-step parallel system (see chapter 4.6.2). By doing so the idea of creating a 

minimal hardware requiring a fault-tolerant system would be obsolete because of the 100% 

hardware overhead due to the parallel logic circuit and the use of a comparator. Because of the 

hardware overhead a simpler external system-checker is the other option, which could be applied to 

both logic structures and two possible applications are described within this chapter out of a wide-

ranging set of solutions. The first application is working on the principle of identifying output 

result inconsistencies of a single functional block of these two logic structures. Another application 

is working on the concept of a majority-voted output result fed-back solution, which can be used 

for a TMR-based system or any other system in which a clear separation of the output-generating 

logic circuit can be made (see chapter 4.6.1). 

The first application solution for a simpler checker is to add an additional logic structure to the 

logic system, which can monitor the output values of each output-generating functional block to 

spot abnormal output sequences and indicate it to a higher-level control system. This solution 

would check if all the output values of the functional blocks match and no single deviation of one 

output result exists (principal logic structure can be seen in Figure 4.9 and Figure 4.12). This is a 

simple way of performing fault identification of a single fault-causing output-generating logic path. 

This would be a system, which is based on diagnosing a fault but has no features of correcting the 

fault-causing hardware.  

The second application is designed around the concept of comparing the majority-voted output 

result to each of the individual output results of each functional block. By the means of individual 

result comparison any deviation between output results can be used for identifying a fault-

generating functional block. The deviation between output results indicates that a fault within one 

of the functional blocks is actively affecting the logic circuit behaviour. An example block diagram 

of a TMR-based system with majority-voted output signal fed-back for comparing the individual 

output result of each signal path is described in Figure 9.15. This figure shows a TMR-based 

system with majority voter fed-back system for comparison against the individual functional blocks 
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of the TMR system. Because of this an identification of the fault-causing functional block is 

possible and actions of repair can be taken. 

Both external checker applications can be used on either one of the logic structures and are capable 

of detecting faults. These system-checker solutions cannot fix a fault within a functional block, 

they are only capable of indicating its existence to a higher control system. 
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Figure 9.15: TMR-based block diagram with majority-voted output signal  

fed-back into individual output signal comparison 

 

A different type of the second external checker application for the QLC structure is built around 

feeding back the majority-voted output signal to a comparator identifying abnormalities within the 

individual output signals of the functional blocks, which are feeding into the majority voter. With 

the help of this set-up the incorrect logic structure path can be identified in case of a clear 

separation between the individual primary logic paths. Through this a faulty primary logic path can 

be identified and corrected through reconfiguration of this part of an FPGA to match a new fault-

free circuit layout. This task is possible for a TMR-based system (represented in Figure 9.15) and a 

QLC-based system but not for a quadded logic-based system. The quadded logic structure is done 

with the focus of fault-tolerance with the help of an interwoven interconnected structure between 

the different logic gate levels. Isolation of an individual faulty logic gate or sub-system is not 

possible for quadded logic-style structures or not even with a sophisticated external checker 

system. The design of the temporal-dependent reconfigurable round-robin matrix element or QLC 

was focused on the use of a set of logic gates within a fixed logic structure by constant 

reconfiguration. The arrangement of the reconfiguration is represented in Figure 6.6(b) with the 

individual clock-related logic unit arrangements. Due to the round-robin reconfiguration and the 

defined 2
3⁄  logic gate overlay an identification of a fault down to a single logic unit is possible. For 

achieving the diagnosing of a faulty logic unit within the QLC structure, the external checker 

system for the majority-voted output fed-back signal, shown in Figure 9.15, had to be redesigned 

for the QLC logic structure. The timing of the majority voter after the QLC structure has to be 

expanded by one clock cycle after all the necessary four output results had been generated. Also the 

newly designed checker system requires separated and associated with one of the clock cycles as 
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fault-flag memory element for each individual output result validation. Each of these fault-flag 

memories represents a specific clock cycle of the time-triggered QLC round-robin cycle. These 

fault-flag memory elements’ task is to set flags in case a fault in this particular clock cycle has been 

identified and latched until a certain number of faults are detected. The block diagram of this 

altered and expanded QLC system is displayed in Figure 9.16. The fault-flag memory element 

stores the occurrence of a fault within its associated clock cycle flag until it is cleared. With the 

help of these fault-flags and the knowledge of the clock cycle defined logic units utilisation for 

creating the pre-defined logic structure, an identification of the fault-causing logic unit can be 

performed. After the identification of the fault-causing logic unit self-healing features can be 

triggered for exclusion of this unit and replacing it with a working fault-free spare unit. 

An example of the faulty logic unit identification is shown in Table 9.1 where the faulty logic unit 

is logic unit B with an SAH output fault of a given QLC structure. This permanent stuck-at fault 

occurs before the second full execution of the full cycle of the QLC. The logic unit B is defined 

within Figure 6.6(b). Each row of the table represents a full cycle of four clock cycles required for 

a full round-robin approach of the QLC structure for generating a set of four output results. The 

correct output values for the different clock cycle results are represented through OC1 to OC4. 

These values are compared to the values OF1 to OF4 which were created under the possible 

influence of a fault within one of the individual logic units. Within Table 9.1 the following labels 

are used in this way. The labels I1 to I4 represent the individual input stimulus applied at this point 

onto the QLC element. Through the labels L1 to L3 the required logic gate functionality selected at 

this moment is represented in accordance with Figure 6.5(b). Within the column labelled with M 

the occurrence of a maskable fault at this moment within the QLC structure has been identified and 

the opposite has happened within the column labelled NM. In this column the occurrence of a non-

maskable fault is reported. The column labelled with F represents a fault generated through the 

majority voter in comparison to the known correct value. The majority voter will generate an 

overall zero value in the case of a contradictory input data sequence. This case is given in the case 

of an equal split of zeros and ones feeding into the majority voter. 

The first identifiable fault is detected at order number 2 in faulty output 4 (OF4) and the deviation 

against the correct value OC4 sets the fault-flag 4 (FF4). The internal structure of the comparator 

has the built-in feature of switching from a four to a three input comparator after the first fault-flag 

has been set. This is needed to maintain a trustworthy comparator. By not deactivating the fault-

causing output a situation of equal value distribution can occur from now on and no correct 

comparison of the fed-back majority-voted signal is possible. The same feature of input 

downscaling happens for the majority voter to maintain a trustworthy system. This approach of 

input downscaling can be seen as the first layer of self-healing capability designed into the logic 

structure shown in Figure 9.16. A functional logic circuit of the input decreasing majority voter is 

illustrated in Figure 9.17. The central part of this logic circuit is a standard four-input majority 
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voter in conjunction with an input and output switching unit (SW). Through these switching units a 

selective deselection on specific input signals is possible. The input switching unit isolates the 

fault-carrying input signal and switches the remaining input signals in a way towards the majority 

voter that a working voter missing one input signal is possible. This means that the top AND logic 

gate of the majority voter shown in Figure 9.17 is isolated and is not used for the voting. The 

hardware overhead for this type of majority voter in compared against a standard four-input 

majority voter is in the switching units, which is controlled through the fault-flag memories. The 

minimum input signals used by the decreasing majority voter are two input signals. At this point 

the majority voter is converting the redundant logic system into a lock-step system. The self-

diagnosing required for triggering this self-healing feature of the decreasing majority voter is the 

identification of the first faulty output comparison. The loss of one output-generating logic path 

decreases the quadded system to a TMR system. A further deselection of another output-generating 

logic path for the example shown in Figure 9.16 will put this system into a lock-step approach. 

Within a lock-step system both outputs have to be of equal value and due to this in the case of a 

disagreement, the system cannot determine which the incorrect value is. This set-up of the 

deselecting majority voter cannot be used within this set-up because a fault-localisation capable of 

identifying the fault-causing logic unit of the QLC element is not possible. The second identifiable 

fault happens at order number 6 in faulty output 1 (OF1) setting the fault-flag 1 (FF1). The final 

fault-flag is set at order number 8 though the faulty output 2 (OF2) sets fault-flag 2 (FF2) and 

triggers the identification of the individual logic gate. The trigger for the identification of the faulty 

logic unit happens, after three fault-flags are set. In this case it is exclusively specified through the 

missed fault-flag 3 (FF3) which identifies the logic unit B. This also matches the logic unit 

utilisation per clock cycle. Within this clock cycle the fault-flag for logic unit 3 is not used (see 

Figure 6.6(b)) and has not been showing up as a fault during the simulation run which is shown in 

Table 9.1. Through the use of the logic unit arrangement during each round-robin clock cycle 

which was shown in Figure 6.6(b) and with the help of the fault-flag the faulty logic unit can be 

identified. The clock cycle is matching the fault-flags in this regard, that the fault-flag 1 is 

associated with the clock cycle 0. By comparing the fault-flags with the definition of the used logic 

units in conjunction with the fault-flag which is not set, the clock cycle 2 shows that in this logic 

unit use the logic unit B is not used and no fault has been detected for these clock cycles. By not 

using logic unit B within this clock cycle a fault-causing unit could not alter the output result and 

because of this it is the fault-causing unit. The correct identification of this faulty logic unit can 

now be used for replacing this unit with a spare fault-free unit. 
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Figure 9.16: QLC with majority voter output fed-back into comparator for identification 

of faulty individual output signal stored in fault-flag associated with clock cycle 

 

 

 

Figure 9.17: Functional diagram of a decreasing input using majority  

voter through the use of the two switching units (SUx) 

 

 

 

Table 9.1: The simulation data flow of a fault within a logic unit and the approach of using  

round-robin logic structure reconfiguration for the identification of the single faulty 

logic unit. In this case the logic unit B with an SAH fault (see Figure 6.6(b)) 

 

At this point the logic structure within each logic unit represents single logic gate functionality. The 

analysis of this fault identification capability up to this point shows that this concept of the round-
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robin reconfigurable logic structure inside the QLC logic element can handle altered logic 

complexity within each logic unit for identifying a faulty logic unit. The altered logic complexity 

represents logic circuits with n-number logic gates which are beyond the single logic gate currently 

designed into each logic unit today. One of the disadvantages of upscaling the number of logic 

gates used within a single logic unit is that the current approach of time-triggered reconfiguration 

will lead to hardware overhead controlling logic gate functionality and interconnection forming this 

logic structure. Due to this problem a fixed logic structure would be a better approach in 

implementing this. Also identification of a faulty individual logic gate inside this logic structure 

would require specific self-testing capabilities added to each QLC element or as an external 

checker testing as faulty identified logic units through a QLC element array.  

 

9.4. Circuit interconnection fault-localisation through memory-based BIST functionality 

 

Every digital system is a combination of logic functionality and interconnection between the logic 

function and an interface. Faults like stuck-at can affect both parts of a given digital system. Digital 

systems only have two valued signal types operating within the structure. Stuck-at faults are also 

altering these two types into only one of these signal types. Through these fault identification can 

work on pattern matching for possible fault-localisation. This task is performed by an external 

checker system monitoring the signals of a digital system. The complexity of this type of checker is 

defined by the task of this checker and is in most cases controlled by a type of microcontroller. 

Within Chapter 8 the mapping of a given FSM into a memory-based platform replacing 

combinational and sequence-based platforms has been analysed. The system-checker performing 

the localisation of a fault within the interconnection structure of a digital system will be based on 

this concept due to the digital nature of the signals. An analogue system has the same structure like 

the digital system of interconnection between components. The difference between these two 

systems means that the analogue-based system is using a wide range of internal system signals and 

fault-localisation, which cannot be based on the same concept as in digital systems. The research 

work presented throughout in this thesis is focused on digital systems only with the exception of 

the Iddq current used in the SAFR-type logic gates. Stuck-at faults in a digital system can affect 

each part of the system in a different way. For creating fault-tolerant digital systems the distinction 

between the affected parts of the systems and fixing it is the challenge. The detection of this type of 

fault requires hardware for performing BIST and built-in self-repair (BISR) functionality. A self-

healing system requires at least both of these functionalities as part of the system and in the best 

case without external intervention during the task of fault-handling. This chapter is focusing on 

combining BIST and BISR into a single function for interconnection fault-localisation and adding 

it to a given logic system. This newly created checker will be designed in a minimal hardware 

requiring design based on the findings presented in Chapter 8. This logic system needs to be 
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capable of handling a wide spectrum of single stuck-at faults affecting different interconnection 

parts of a given logic system by itself.  

The effects of single stuck-at faults at the interconnection points of a TMR majority voter system 

have been illustrated in Figure 4.8 and defined in Table 4.2. This table illustrates the effects of 

output alteration due to stuck-at faults measured in FR on the TMR majority voter system after the 

impact of injecting stuck-at faults into a majority voter system at the injection points defined in 

Figure 4.8. The FR range of this system is 13% as a minimum and 50% as a maximum for different 

injection points. Its average FR is 22.77% taken over all injection points for the TMR majority 

voter. Analysing the effect of stuck-at fault onto the internal transistors of a logic gate is described 

in Figure 7.2 for the example of a NAND gate and shows that the average FR is 18.75%. By 

comparing both it can be evaluated that the FR for the internal transistor associated set-up is less 

than the one for the interconnection one. This is because stuck-at faults injected into the 

interconnection structure of a logic system alter the input information to any number of logic gates 

altogether. This alteration of the input information at any number of logic gates input is because all 

are connected to this fault-occurring part of this interconnection. A stuck-at fault affecting a single 

transistor of a logic gate affects only a sub-input information within an individual logic gate. The 

distinction between the faults happening at these different elements of a digital system is the key 

for the development of unique fault identification test systems as part of the self-healing 

requirement. This test system is adapted into a memory-mapped FSM for the protection of the test 

system against faults. 

The fault concept of identifying interconnection faults caused by stuck-at conditions within a given 

digital circuit is based on the utilisation of only using SAFR type logic gates within the digital 

circuit structure. By only using SAFR type logic gates the internal non-maskable stuck-at faults at 

the individual transistors of each gate can be identified through the clear current increase of Iddq. 

This current increase of Iddq is only happening during the time of affecting the circuit with the 

stuck-at fault and if the required IC is applied at the faulty SAFR type logic gate. In all other cases 

the fault can be masked. The test circuit C17 of [27] is illustrated in Figure 9.18 and has been 

constructed only by using SAFR-NAND gates. The required corresponding stuck-at fault-injection 

points at the interconnection within the C17 circuit have been added and are shown in the same 

figure. Table 9.2 shows all possible IC combinations, which can be applied to a fault-free C17 

circuit and the resulting output values for each of these different IC stimuli. The C17 circuit was 

simulated within MATLAB including the stuck-at fault location points indicated in Figure 9.18. In 

Table 9.4 the results of the SAL injected faults at the fault-injection point S1 to S17 are displayed. 

This table results have been cross checked by creation of the C17 circuit on a breadboard by using 

standard NAND logic gates and the same SAL injection simulation has been performed. The result 

of this simulation on the hardware matches the results found by software simulation. (see appendix 

6 of the test set-up) 
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The data within Table 8.6 represents the correlation between the fault-injection point and the 

external IC stimulus at the C17 circuit for injecting SAL faults at the different possible injection 

points. In this table in the case of a deviation from the correct output value (defined within Table 

9.3) happening it is indicated through the coded deviated output value at this fault-injection versus 

IC cross point. The deviated output value is in accordance with Table 9.3 and by using the same 

colours for coding, it can be better identified within Table 9.4 and Table 9.5. In Table 9.5 the 

results of the SAH-injected faults similar in structure as the ones for SAL outlined in Table 9.4 are 

exposed. Also the results shown in this table have been verified through running the same set-up as 

before on the breadboard for SAH-injected faults and both results match. 

 

 

 

Figure 9.18: Test circuit C17 of [27] with added stuck-at fault-injection  

points for interconnection fault simulation 

 

 

 

Table 9.2: IC related output results of the C17 circuit without  

the presences of a fault within its circuit 
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Table 9.3: Output result coding of the C17 circuit 

 

 

 

Table 9.4: Corresponding fault location with IC and resulting output values in accordance 

with Table 9.2 for SAL fault-injection at C17 fault-injection points S1 to S17 

 

 

 

Table 9.5: Corresponding fault location with IC and resulting output values in accordance 

with Table 9.2.4 for SAH fault-injection at C17 fault-injection points S1 to S17 

 

The FR for the SAL fault-injection data is displayed in Table 9.4, which gets to an overall value of 

5.93% and the FR for the SAH fault-injection data is displayed in Table 9.5 reaching an overall 

value of 9.01%. More interesting is the overlay of SAL- and SAH-related faults tables 9.4 and 9.5 

into one combined table. This overlay of both these tables has been done in Table 9.6 and reveals 

that the fault patterns for SAL and SAH do not overlay. Each fault caused by an injected stuck-at 

fault is a unique fault and this can be useful for a system-checker whose task is the identification of 

fault locations with the help of these unique configurations. These unique configurations are the 
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combination of IC and one of the incorrect output sequences. For example, at IC19 its pattern is in 

accordance with Table 9.2 ‘01001’ and the correct output value is ‘11’. Each deviation from this 

output value is caused by a stuck-at fault within the interconnection part of the C17 circuit. In this 

way with an output value of ‘00’, which is coded as “A” in combination with the IC19 stimulus, 

the fault-causing interconnection injection point can be identified. For this example the fault-

causing interconnection injection point or the faulty interconnection can be directly identified and it 

is S9 due to the data of Table 9.6. Identifying the interconnection injection point S9 within Figure 

9.18 reveals that this interconnection is connected at an output feeding two inputs from two 

different logic gates. In this fault case the interconnection between output and the split into two 

interconnections needs to be repaired. 

Within this thesis two concepts have been researched for fixing the fault-creating interconnection. 

The first solution is shown in Figure 9.19 in which the two data sets that are IC and circuit output 

are fed into an address of the memory-mapped FSM presented in Chapter 8. The difference is that 

no feedback data path will be used in this application because alteration of the address through the 

memory data is not needed. The generated address in the pointer is fed into the memory and the 

evaluation signal is read out of the memory controlling the output filter. In the case of an incorrect 

output value of the C17 circuit the filter suppresses the generation of the output values at the output 

register and indicates the presence of a fault within the C17 circuit per a status flag. In this case this 

concept is more of a fault-monitoring system without the capability of fault correction. Fault 

correction is possible by storing the correct output values within the memory data of the evaluation 

signal. By using the stored data for replacing the incorrect output data, it could be argued that the 

memory-based system-checker can replace the C17 circuit altogether. This is an open point of 

discussion because eventually every digital system where all the output combinations created 

through input stimulus are known would be subject to being replaced. This discussion is beyond the 

research timeline of this thesis.  

The second concept is built on the capability of selective reconfiguration of the interconnection 

between the logic gates. This concept is showing the capability of the technique of identifying a 

faulty interconnection within a logic circuit and responding to this with self-healing features. The 

system-checker for this concept is based on the memory-mapped FSM strategy presented in 

Chapter 8 and utilised in the same way as the first concept. The memory-mapped logic 

functionality will not be used as one FSM operating within one memory block. Instead several 

small FSMs are defined within the same memory block. Each of these individual FSMs is 

associated with an IC applied to the C17 test circuit. The IC and the output data resulting from this 

stimulus create the required data set for the address-pointer which points to a certain memory 

location. If the data at this memory location has a specific type of structure, a fault free circuit 

response is indicated and no further action of the checker system is required. Every other data entry 

is linked to an interconnection fault, which is present within the test circuit. The combination of IC 
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and output data contains the information about the faulty interconnection and these combinations 

are presented within Table 9.6. The column of this table represents the IC condition and each row 

entry, which contains a value, is linked to an interconnection of the test circuit. Empty row 

elements are indicating that faults at these interconnections do not impact the output data or the 

circuit is capable of masking these faults. The same output data value can be linked to different 

interconnection faults. For finding the fault causing interconnection all these links have to be coded 

and, for stepping through this list, address-pointer alteration is required.  

The feature of the address-pointer alteration through the memory data is needed for this concept 

because in some cases a fault search within a set of possible interconnections is necessary. By 

altering the data within the address-pointer different locations can be checked until the fault-

causing interconnections has been found. The strategy of identifying faulty interconnection can be 

seen as self-diagnosing within a logic system with the help of minimal hardware overhead. As 

described within the example of IC19 the fault location has been identified as interconnection in 

which injection point S9 is feeding in (see Figure 9.18). After this localisation of the faulty 

interconnection, now a selective reconfiguration of this interconnection can be triggered for fixing 

the fault. Table 9.6 also shows that for almost every IC stimulus a set of identical incorrect output 

values exists. In this case the memory-based fault identification checker needs to work through the 

list of fault locations and alter the interconnection indicating the injection point until the output 

shows the correct output value. In case the reconfiguration does not resolve the fault the performed 

reconfiguration needs to be reset to the original interconnection. The system should only alter the 

faulty interconnection but not all possible interconnections to save resources.  

 

 

 

Table 9.6: Overlaid corresponding fault location with IC and resulting output values in accordance 

with Table 9.2 for SAH and SAL faults injection at C17 fault-injection points S1 to S17 
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Figure 9.19: Expansion of C17 circuit by memory-based fault-existing checker 
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9.5. Summary of the chapter 

 

Within this chapter the remaining question raised in Chapter 7 of utilising the inherent built-in 

feature of the SAFR-logic gate for the self-initiation of circuit alteration without the influence of 

external logic circuitry needed to be researched. 

As in Chapter 7, the SAFR type logic gate is equipped with an inherent feature of indicating non-

maskable SAH faults by means of Iddq current increase. The indication of a fault presented within 

the circuit designed out of SAFR-logic gates, renders dedicated system-checkers that ordinarily 

monitor such events obsolete. Explicit fault detection and correction through traditional modular 

redundancy and fault-masking through majority-voting is not required. The hardware overhead of 

this system design has been generated through fine-grained redundancy at transistor level, which 

offers inherently built-in fault identification and masking. 

Using the Iddq current increase within an SAFR-logic gate for indication of a non-maskable fault 

produces a distinctive current signal, which can be converted into a digital signal. This signal can 

then be used for triggering self-reconfiguration action, thus maintaining functionality of the circuit. 

The digital signal is used either to decommission single transistors or reconfigure the logic gate 

structure. Simulations demonstrated a simple current converter design that is capable of eliminating 

stuck-at faults within a given redundant logic gate structure without external system checking. It 

was also proposed that this self-elimination of stuck-at faults through inherently built-in logic gate 

strategies could be regarded as self-healing. 

Decommissioning of single faulty transistors within a logic gate through different types of fine-fuse 

technologies has been looked into. The standard burned open fine-fuse has been evaluated and has 

been neglected because of an unreliable current level and response time.  

The reconfiguration between two SAFR-logic gates triggered by the Iddq current signal has been 

analysed and successfully demonstrated by simulation. This concept can be applied to an entire 

functional logic circuit performing an application specific task. 

A further extension of SAFR design is to protect the majority voter within conventional modular 

systems such as TMR, thus increasing their fault-tolerance. This exploits the immunity of SAFR 

gates against the influence of stuck-at faults so that the fault-tolerance of the majority voter will 

increase even further as was proven within Chapter 7. This fault-tolerant concept will impact the 

reliability of the majority voter. 

The question about the self-healing capability of the QLC in terms of fault-localisation down to the 

faulty logic unit has also been analysed. The combination of time-triggered reconfiguration 

response in conjunction with alternate logic unit utilisation is done within the QLC element, thus 

forming a basis for fault-localisation. The altered and fixed overlay between each cycle rotates a 

faulty logic unit through a fixed quadded cell logic structure. Each output result is generated at 

different timing cycles and hence are affected through the faulty logic unit in a different way. 
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Therefore one, and only one, result is fault-free due to its exclusion. The analysis of the resulting 

set of output values indicates any persistent inconsistency. In the case of two incorrect values 

appearing, the generation of the majority-voted output value has the tendency of creating a faulty-

voted output value, which has been revealed within Chapter 5 and Chapter 6. Because of this 

failure the fault-localisation concept was proposed to perform a decreasing input utilisation of the 

majority voter. Through this, a single detected faulty output value will trigger the deselection of 

this output-generating path and alters the four-input voter into a three input voter. From this time 

onwards the system’s behaviour is like a TMR system and faults within this set-up can be truly 

related to the fault-causing logic path. By keeping a track on fault-causing logic paths through the 

help of fault latches, the required data for the localisation of the fault-causing logic unit can be 

collected. Through a certain data configuration in conjunction with the know-how of the utilisation 

of the logic units used for each cycle, the faulty logic unit can be identified. After the identification 

a selective process of self-healing can be triggered for re-establishing a fault-free QLC element. 

The third research question raised in this thesis was about creating an FSM structure, which is 

capable of performing the task of fault-localisation and repairing it within a given logic circuit. For 

this task, BIST and BISR are required. This may be achieved through the memory-mapped FSM 

approach, as researched in Chapter 8, and further combined with fault-tolerance. The identification 

and repairing of a fault-occurring within a given logic structure was achieved by incorporating the 

logic functionality by SAFR-type logic gates. This allows a distinction between stuck-at faults 

within logic gates and their interconnections. The analysis of the fault responses generated by 

stuck-at faults affecting the interconnections revealed a correlation between fault location and 

input/output data sets. It was found that this correlation is unique for the different fault locations 

within interconnection structures and is described with the help of input and output data analysis. 

These data sets are transferred into a memory-mapped FSM taking the form of state transitions and 

that are in turn used for the BISR function. The functionality of BIST is part of the BISR due to the 

fact that if the input/output data does not generate a request for repair then this output value is 

assumed correct. This overall concept was proven by applying it to the standard C17. 
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Chapter 10: Conclusions and further work 

 

10.1. Conclusions 

 

The primary objective of this research work was to investigate the usefulness of novel self-healing 

and fault-tolerant concepts based on fine-grained redundancy for electronics structures. As 

observed in nature, comprehensive self-diagnosis is required for inherent self-healing capability 

and specific structures for detecting the occurrence of a fault are needed within the functional 

circuit. Equipping a logic gate with inherently built-in self-diagnosis was the main focus of this 

research work. The realisation of this feature for self-diagnostic triggered self-healing has been 

achieved within a range of logic structure designs wherein the equivalent of healing a cut to the 

skin of a human is triggered by the self-diagnostic of this part of the body and will set off the 

complex process of repairing the injury. The proposed self-healing concepts have been validated by 

means of various numerical simulations and hardware set-ups ranging from low-level logic gate 

structures to combined redundancy concepts implemented within a single logic structure all with 

the objective of improving the fault-tolerance and intrinsic, triggered self-healing capability. Any 

reliable system that incorporates fault-tolerance within an electronic system is based on one of 

three redundancy strategies: spatial (hardware), temporal (time) or pertaining to information, each 

of which offers advantages for the fault-tolerant response of the electronic system to which it is 

applied. These three strategies have formed the central set of redundancy concepts of this research 

work. 

The ever increasing logic performance in electronic systems is due in part to the downscaling of the 

individual components manufactured on a given chip which are in turn increasingly sensitive to 

fault effects that may be permanent or transient by nature, and which can be counteracted by fault-

correcting or masking techniques by means of applied redundancy in conjunction with a robust 

majority voter. Reliable systems are centred on one or both techniques through certain logic 

structures, increasing the fault-tolerance of the system by means of a certain provision of 

redundancy. These types of systems generate N equal output signals through which fault-tolerance 

is assured. Due to the N-number of output results, a single overall output is formed by majority-

voting and through this fault-masking occurs. The majority voter investigated by itself is, however, 

not fault-free and represents a single point of failure within an otherwise reliable system. As a 

result, analysis has been carried out in Chapter 4 and enhancement of the fine-grained transistor 

structure performed within Chapter 7 resulted in improved fault-behaviour of the majority voter. A 

detailed analysis of the fault-behaviour of each redundancy concept has been carried out within 

Chapter 5, where the analysis conclusion was that the spatial (hardware) redundancy had the 

overall best fault-tolerance performance for permanent and transient faults out of the analysed set 

of redundancy concepts. For example, evaluated on system performance by using spatial as the 
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reference, temporal requires N-executions times and information time for valuation and correcting. 

The fault-tolerance improvement of each redundancy concepts comes with a price to pay with 

regard to hardware overhead, performance or a system-checker that is not part of the original 

functional logic structure. 

This thesis considered three core contributions outlined within the abstract of this work for self-

healing in electronics. The central core contribution investigated was the combining of all three 

redundancy strategies into one logic design with the objective of creating a structure possessing 

advanced, inherent fault-tolerant features that each strategy cannot offer individually. For 

comparison of each fault-handling capability, the quadded logic structure performing a set of logic 

functionalities was used. Quadded logic structures with majority-voting perform fault correction 

and masking simultaneously within their logic structure and their derived architecture is briefly 

summarised here. The combination of the three redundancy concepts within one logic structure was 

investigated according to a matrix element structure, or QLC, composed of four-tiled logic 

elements. Within each logic element, a set of logic functions can be selected through configuration 

switches that control the connections between logic functions and their appropriate input/output 

interfacing. These switches are connected to a loop-back shift-register and internal connections are 

established through runtime configurable control switches to create a predefined logic functional 

arrangement out of three of the four logic elements. These switches are in turn controlled by the 

loop-back shift-register located within the matrix element. The shift-registers are themselves 

central to the control of all QLC functions, and which are therefore responsible for selection of 

logic functionality within each logic element and interconnections. Finally, they also nominate the 

active selection of the used three out of four logic elements within a specific round-robin cycle. By 

using three out of four logic elements, a reuse of logic elements is possible and allows for fault-

localisation through 50% overlap of elements from the previous cycle. Through this arrangement, 

the inherent capability of identifying a fault-causing logic unit within the QLC structure was further 

investigated. It had been established that, due to the use of a round-robin cycle, unique 

identification of the fault-causing logic unit is achievable and further that this can permits self-

initiated repairing or elimination of the offending logic unit without an external system-checker. 

This may be seen as a system-level structure containing self-healing capabilities by design. 

The QLC architecture was then used to create a circuit which is tolerant to permanent and/or 

transient faults within one of its configurable logic elements, thus preventing errors from 

manifesting at QLC outputs. From the perspective of fault-tolerant behaviour, the QLC was shown 

to be equivalent to the classic quadded logic structure for a variety of different applied logic 

functions evaluated by injection of stuck-at faults and calculating FR numbers. The complete FR 

comparison showed that the QLC with majority voter has an average FR of 2.25% whereas the 

quadded logic structure with majority voter has an average FR of 2.02% (see Table 6.8, Chapter 6) 

and therefore both logic structures are very similar in terms of fault-handling. Hence, in contrast to 
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the singular redundancy strategy of quadded logic, comparable fault-tolerance capability is possible 

by combining different redundancy strategies. As a result of this new-found flexibility the QLC is 

also capable of locating the individual logic element out of the four elements that contains a fault, 

thereby going beyond basic fault-masking. This was achieved by analysing the fault signature 

contained within the set of outputs generated by the temporal round-robin scheme. Finally, a 

comparison between the number of logic gate transistors between both QLC and equivalent 

quadded designs showed that the QLC structure uses one-third fewer transistors excluding 

interconnection overheads. 

The second core concept associated with the core contribution explored in this thesis focused on 

improvements made to the fault-tolerance of the majority voter logic. The analysis within Chapter 

4 identified that the majority voter is considered a single point of failure within a reliable system. 

Because of this, any fault-tolerant system using a majority voter is susceptible to non-maskable 

faults coinciding within the voting logic. The most common type of internal fault is the stuck-at 

fault, on which this fault-handling analysis was based. Instead of designing a majority voter with 

fault-tolerant logic an alternative voter design capable of both masking stuck-at faults within its 

gate logic and indicating non-maskable stuck-at faults was introduced. Traditional redundancy 

methods have used industry-standard logic gates designed out of transistor structures without 

redundancy. Fine-grain redundancy is applied in a way wherein each transistor within the network 

is replaced by four transistors, thus forming a design boundary in which minimal logic gate designs 

have been explored by others. Further, it was shown that fault-masking and detection may be 

achieved with certain redundancy structures i.e., masking one type of stuck-at fault and indicating 

the occurrence of another type of stuck-at fault by means of a clear signal. This analysis was done 

within Chapter 7 and specific redundant transistor structures analysed for their combined masking 

and indicating properties. Through this, a universal structure was proposed based on utilising twice 

as many transistors as the standard logic gate that is suitable for building a variety of standard logic 

gates such as NOT, NAND and NOR. Each of these was analysed in turn. Each gate 

implementation achieves SAL fault-masking combined with a selective indication of all SAH fault 

conditions. For the latter case, indication is guaranteed for one input state that triggers a distinct 

Iddq current increase. Thus, in addition to SAL masking, all SAH faults can be indicated by this 

SAFR strategy. Returning to the problem of building resilient voting logic, the SAFR strategy was 

then applied to a generic majority voter design using NAND SAFR gates and it was shown that the 

resulting FR was reduced by a factor of 3.5 times. Furthermore the benefit of SAH fault-indication 

is retained within the voter via individual Iddq current indication. Through this fine-grained 

alteration of the transistor redundancy structure within the logic gates a stuck-at fault-tolerant 

majority voter has been created. 

The next concept reported in this thesis focused on the approach of utilising the SAFR fault-

indication capability as a trigger for self-healing logic, which is related to the central core 
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contribution. Contemporary faults tolerant systems operate in conjunction with an external checker 

agent that monitors the behaviour of the system and seeks to protect against faults that would 

otherwise propagate across multiple logic blocks. By contrast, intrinsic fault-indication internal to 

the logic gates itself is a fundamentally different approach that does not rely upon external circuity. 

Within Chapter 9 a novel logic circuit built out of SAFR-NAND gates including reconfigurable 

means forms the basis for self-healing by measuring the Iddq current and selectively triggering upon 

a certain threshold level a self-initiated reconfiguration action. Reconfiguration was demonstrated 

principally via switchover. Following injection of an SAH fault into the nominal logic gate the 

offending fault is indicated through the increased current that is converted into a current to digital 

voltage signal. This digital fault-indicating signal is used for triggering rapid reconfiguration 

whereby the nominal gate is isolated and a fault-free logic gate activated in its place within a short 

time period. After this reconfiguration, which happens within the valid clock cycle of the logic, a 

fault-free result is maintained without interruption. Thus inherent fault-masking, selective 

indication and reconfiguration properties that amount to self-healing capability have been 

demonstrated. 

Another concept, which covers the third contribution, was investigated in this thesis and focused on 

designing a memory-only-based FSM platform with fault-tolerant features as a foundation concept 

for the concept of localising gate interconnection faults. Most common FSM platforms are based 

on logic circuits or PLDs, the research approach taken here was to confine the FSM utilising 

platform into a memory-only implementation thus reducing the necessary execution logic to a bare 

minimum. Fault-tolerant features specific to protecting data within memory have been explored 

based on a continuous approach that operates on the entire data set. Further cross-correlated parity 

checking was designed that combines the detection of dormant data faults and direct localisation 

and identification of the incorrect data bit. 

A strategy was developed for transforming a given FSM functionality into memory-only-based 

platform through the observation that its state transition table contains the starting information for 

this. By applying a unique coding to this data a uniform and independently addressable data 

structure was developed. An example of an FSM soda machine application showed the following 

advantages over a non-memory-only-based FSM implementation: i) the implementation was done 

in memory-only and compared to a conventional PLD implementation; ii) the comparison showed 

that the state transitions of the memory-based version could be executed within a fixed time for 

every transition while the PLD implementation exhibited inconsistent state transition timings and, 

iii) the memory usage for the memory-based implementation was 4.92 times less than the PLD-

based implementation. Point ii demonstrates the potential for EDC-protected memory-only-based 

FSM platforms for real-time applications. A further adaptation of this concept into a novel CAM 

design allowed the further reduction of memory utilisation and advanced fault-tolerance, which 

were built upon the use of SAFR type logic gates.  
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The final concept considered in this thesis is based on localising gate interconnection faults 

occurring between logic gates within a given logic structure by a process of cross-referencing input 

stimuli and output data within a memory-only FSM. Logic gate faults and gate interconnection 

faults may be distinguished by observing the SAFR gate current together with the overall output. 

This was demonstrated in Chapter 9 using the C17 standard benchmark circuit wherein the SAH 

and SAL fault-injection simulation revealed 59.74% of all faults produced an incorrect output 

result. The remaining faults were masked within the circuit, thus indicating that the circuit masked 

40.26% interconnection faults. The data further indicated that each of these faults can be associated 

with a unique input stimulus and output value, which revealed that each individual fault may be 

specified through input stimuli and output value sets. Thus FSMs can be designed that are capable 

of localising single faulty gate interconnections and triggering the necessary self-reconfiguration 

that acts to exclude the offending interconnection. Importantly, this concept successfully achieves 

self-initiated fault-localisation and repair without reliance upon external checking systems, a core 

requirement considered at the outset of the thesis with respect to all self-healing systems whether 

biological or artificial. 

 

10.2. Further work 

 

The research work introduced within this thesis builds upon related research in the area of 

redundant design and identifies building blocks for creating self-healing logic structures through 

the steps of theoretical analysis, implementation and fault response evaluation. However, as in any 

scientific research, ongoing improvements and advancements are still possible. Potential directions 

to be followed include: 

 

i. Design of building blocks of SAFR-type logic gates 

 

The generic structure of the three fundamental logic gates NOT, NAND and NOR are designed, 

analysed and simulated. The next step is to create a set of these gates on a defined structure with 

fixed input/output/fault-injection interfaces. These building blocks can then be used for the creation 

of fundamental logic circuits for the verification of their fault-tolerant behaviour, the altered design 

being done through SAFR type logic gates.  

 

ii.  Design of self-healing features for the QLC matrix structure: 

 

The present design of the QLC element in conjunction with analysing circuity is capable of 

identifying the faulty logic unit within its own structure. The follow-on steps of self-healing in this 

particular logic unit require a scaling to larger design involving multiple QLC design cells based on 
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the individual QLC element considered here. Spare logic resources could be formed within this 

matrix structure and would need to be shared between neighbouring QLC elements to minimise 

hardware overhead. This idea is one possible way for creating a fault-tolerant self-healing QLC 

fixed matrix structure. A further idea is to create a ‘sea’ of individual logic and control units which 

during runtime is used to create the requisite logic structure for different QLC elements through the 

allocation of nearby fault-free logic units. This allocation follows predefined rules and, in the case 

of a fault within one logic unit, the reallocation of the remaining fault-free logic units for the logic 

structure is triggered. 

 

iii.  Design of custom System-on-Chip (SoC) Platform for SAFR-type logic gate array: 

 

The present designs of SAFR type logic gates exist as individual circuits and not as a working 

integrated chip. The future work proposal in (i) will help to explore the limitations and 

functionalities of larger-scale SAFR type logic gate circuits and should be used within chip circuit 

simulations before the final array structure is designed. The resulting array or matrix-type structure 

would contain configurable interconnections and the fundamental-type logic gates. These 

fundamental logic gates could in turn be replaced by the logic unit structure designed in Chapter 7, 

which offers configurable logic functionality, with further analysis opportunities using EDA tools. 

 

iv.  Design of custom SoC Platform for QLC: 

 

The SoC concept could be further extended to include QLC arrays wherein SAFR gates are 

incorporated according to the methods described in Chapter 6. With this SoC chip different 

standard logic circuits could be configured to evaluate the performance of the QLC structure. 

Through fault-injection capabilities added to the chip, comprehensive fault-behaviour simulation 

could be carried out and analysed.   
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Appendix 2: Example of FR calculation for SAH and SAL fault injection into a XOR logic 

gate structure in accordance with Figure 5.9(a) 

 

With this example the evaluation of the FR calculation, which is the basis for the analysis, is 

performed on the XOR logic gate of Figure 5.9(b). At each injection point SAH and SAL faults are 

going to be injected and all possible input combinations are getting applied. Every deviation is 

marked with red and the total fault number matches the number shown in Table 5.2. 
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Appendix 3.1: MATLAB program for Chapter 4 for the FR generation data of the majority 

voter under the influence of stuck-at fault injected at specified injection points 

Within this MATLAB program the majority voter under the influence of stuck-at high or low faults 

is getting simulated. The entire possible combinational inputs sequence is getting applied onto the 

majority voter for one injected fault. Each set of results is getting compared against a known good 

set of results for the identification of the incorrect output sequences. The fault-injection location 

and the type of fault can be specified at the time of the function call. 

 

function [out] = voter01 (st,lo) 
in = [0 0 0;0 0 1;0 1 0;0 1 1;1 0 0;1 0 1;1 1 0;1 1 1]; 
ou = [0;0;0;1;0;1;1;1]; 
  
z = []; 
z1 = size(in); le = z1(1); 
  
for i = 1:le 
    x1 = in(i,1); x2 = in(i,2); x3 = in(i,3); 
    if (st==1) x1 = lo; end 
    if (st==2) x2 = lo; end 
    if (st==3) x3 = lo; end 
    x11 = x1; x21 = x2; 
    if (st==4) x11 = lo; end 
    if (st==5) x21 = lo; end 
    y1 = x11&x21; 
    if (st==10) y1 = lo; end 
    x12 = x1; x32 = x3; 
    if (st==6) x12 = lo; end 
    if (st==7) x32 = lo; end 
    y2 = x12&x32; 
    if (st==11) y2 = lo; end 
    x23 = x2; x33 = x3; 
    if (st==8) x23 = lo; end 
    if (st==9) x33 = lo; end 
    y3 = x23&x33; 
    if (st==12) y3 = lo; end 
    y = y1|y2|y3; 
    if (st==13) y = lo; end 
    z = [z;y]; 
end 
z = [ou z]; 
out = z; 
end 
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Appendix 3.2: MATLAB program for Chapter 5 for the FR generation data of the logic 

circuits XOR-gate and quadded logic version of the XOR function under the influence of 

stuck-at fault injected at specified injection points 

function [out] = xorlogic02 (lo,st) 
in = [0 0;0 1;1 0;1 1]; 
ou = [0;1;1;0]; 
  
z = []; 
z1 = size(in); le = z1(1); 
  
for i = 1:le 
    x1 = in(i,1); x2 = in(i,2); x3 = in(i,1); x4 = in(i,2); 
    if (lo==1) x1 = st; x3 = st; end 
    if (lo==2) x2 = st; x4 = st; end 
    if (lo==3) x1 = st; end 
    if (lo==4) x2 = st; end 
    if (lo==5) x3 = st; end 
    if (lo==6) x4 = st; end 
    y1 = ~(x1&x2); y2 = x3|x4; 
    if (lo==7) y1 = st; end 
    if (lo==8) y2 = st; end 
    y = y1&y2; 
    if (lo==9) y = st; end 
    z = [z;y]; 
end 
z = [ou z]; 
out = z; 
end 
 

function [out] = quaddedlogic02 (lo,st) 
in = [0 0;0 1;1 0;1 1]; 
ou = [0;0;0;0;1;1;1;1;1;1;1;1;0;0;0;0]; 
  
z = []; 
z1 = size(in); le = z1(1); 
  
for i = 1:le 
    x1 = [in(i,1) in(i,1) in(i,1) in(i,1)]; 
    x2 = [in(i,2) in(i,2) in(i,2) in(i,2)]; 
    p = zeros(1,4); q = zeros(1,4); o = zeros(1,4); 
    if (lo>=1)&&(lo<=4) x1(1) = st; end  
    if (lo>=5)&&(lo<=8) x2(1) = st; end 
    xn = [x1(1) x1(2) x2(1) x2(2) x1(2) x1(1) x2(2) x2(1) x1(3) x1(4) x2(3) x2(4) x1(4) x1(3) x2(4) x2(3)]; 
    if (lo>=9)&&(lo<=24) xn(1,lo-8) = st; end 
    p(1) = ~(xn(1)&xn(2)&xn(3)&xn(4)); 
    p(2) = ~(xn(5)&xn(6)&xn(7)&xn(8)); 
    p(3) = ~(xn(9)&xn(10)&xn(11)&xn(12)); 
    p(4) = ~(xn(13)&xn(14)&xn(15)&xn(16)); 
    xn = [x1(1) x1(2) x2(1) x2(2) x1(2) x1(1) x2(2) x2(1) x1(3) x1(4) x2(3) x2(4) x1(4) x1(3) x2(4) x2(3)]; 
    if (lo>=25)&&(lo<=40) xn(1,lo-24) = st; end 
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    q(1) = (xn(1)|xn(2)|xn(3)|xn(4)); 
    q(2) = (xn(5)|xn(6)|xn(7)|xn(8)); 
    q(3) = (xn(9)|xn(10)|xn(11)|xn(12)); 
    q(4) = (xn(13)|xn(14)|xn(15)|xn(16)); 
    if (lo>=41)&&(lo<=44) p(1,lo-40) = st; end 
    if (lo>=45)&&(lo<=48) q(1,lo-44) = st; end 
    yn = [p(1) p(4) q(1) q(4) p(2) p(3) q(2) q(3) p(3) p(2) q(3) q(2) p(4) p(1) q(4) q(1)]; 
    if (lo>=49)&&(lo<=64) yn(1,lo-48) = st; end 
    o(1) = yn(1)&yn(2)&yn(3)&yn(4); 
    o(2) = yn(5)&yn(6)&yn(7)&yn(8); 
    o(3) = yn(9)&yn(10)&yn(11)&yn(12); 
    o(4) = yn(13)&yn(14)&yn(15)&yn(16); 
    if (lo>=65)&&(lo<=68) o(1,lo-64) = st; end 
    y = [o(1);o(2);o(3);o(4)]; 
    z = [z;y]; 
end 
z = [ou z]; 
out = z; 
end 
 

function [out] = nandfailvoter (st) 
  
ls = size(st); 
x1 = ls(1); 
x2 = ls(2); 
z = []; 
  
for i = 1:x1 
    if (xor(st(i,1),st(i,3))) 
        y = st(i,1:x2); 
        z = [z;y]; 
    end 
end 
out = z; 
end 
 

  



Appendix 

[226] 
 

Appendix 3.3: MATLAB program for Chapter 6 for the FR generation data of the 

comparison of the fault-behaviour of the generic logic gate structure and the QLC structure 

under the influence of stuck-at fault injected at specified injection points 

 

This MATLAB programs can be controlled through input values to perform different logic 

functionality within a fixed logic structure. The same logic selections can be used on the QLC 

structure for performing the same logic functionality. Both logic structures are subjected to stuck-at 

high and low fault-injection at specified injection points within the interconnection. The generic 

logic set-up FR data is the basis for the comparison against the QLC structure. 

function [out] = genlogic01 (lo,st,l1,l2,l3) 
in = [0 0 0 0;0 0 0 1;0 0 1 0;0 0 1 1;0 1 0 0;0 1 0 1;0 1 1 0;0 1 1 1; 
      1 0 0 0;1 0 0 1;1 0 1 0;1 0 1 1;1 1 0 0;1 1 0 1;1 1 1 0;1 1 1 1]; 
  
z = []; 
z1 = size(in); le = z1(1); 
  
for i = 1:le 
    x1 = in(i,1); x2 = in(i,2); x3 = in(i,3); x4 = in(i,4); 
    if (l1==1) p1 = (x1&x2); end 
    if (l1==2) p1 = ~(x1&x2); end 
    if (l1==3) p1 = (x1|x2); end 
    if (l1==4) p1 = ~(x1|x2); end 
    if (l2==1) p2 = (x3&x4); end 
    if (l2==2) p2 = ~(x3&x4); end 
    if (l2==3) p2 = (x3|x4); end 
    if (l2==4) p2 = ~(x3|x4); end 
    if (l3==1) ou = (p1&p2); end 
    if (l3==2) ou = ~(p1&p2); end 
    if (l3==3) ou = (p1|p2); end 
    if (l3==4) ou = ~(p1|p2); end 
    if (lo==1) x1 = st; end 
    if (lo==2) x2 = st; end 
    if (lo==3) x1 = st; end 
    if (lo==4) x2 = st; end 
    if (l1==1) p1 = (x1&x2); end 
    if (l1==2) p1 = ~(x1&x2); end 
    if (l1==3) p1 = (x1|x2); end 
    if (l1==4) p1 = ~(x1|x2); end 
    if (l2==1) p2 = (x3&x4); end 
    if (l2==2) p2 = ~(x3&x4); end 
    if (l2==3) p2 = (x3|x4); end 
    if (l2==4) p2 = ~(x3|x4); end     
    if (lo==5) p1 = st; end 
    if (lo==6) p2 = st; end 
    if (l3==1) y1 = (p1&p2); end 
    if (l3==2) y1 = ~(p1&p2); end 
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    if (l3==3) y1 = (p1|p2); end 
    if (l3==4) y1 = ~(p1|p2); end 
    if (lo==7) y1 = st; end 
    l = l1*100+l2*10+l3; 
    z = [z;l ou y1]; 
end 
out = z; 
end 
 

function [out] = runqlc01 () 
z = []; ftag = 3; 
for i1 = 1:4 
    for i2 = 1:4 
        for i3 = 1:4 
            c2 = 0; c4 = 0; 
            for ii = 1:15 
                s = [i1 i2 i3]; 
                c1 = qlcmat01(s,ftag,ii,0); c2 = c2 + nandfail06(c1); 
                c3 = qlcmat01(s,ftag,ii,1); c4 = c4 + nandfail06(c3); 
            end 
            cc = c2 + c4; cd = cc(2:3); ce = (sum(cd)/480)*100; 
            z = [z;i1 i2 i3 cc ce]; 
        end 
    end 
end 
out = z; 
end 
function [out] = qlcmat01 (s,fa,ft,sh) 
in = [0 0 0 0;0 0 0 1;0 0 1 0;0 0 1 1;0 1 0 0;0 1 0 1;0 1 1 0;0 1 1 1; 
      1 0 0 0;1 0 0 1;1 0 1 0;1 0 1 1;1 1 0 0;1 1 0 1;1 1 1 0;1 1 1 1]; 
  
z = []; 
z1 = size(in); le = z1(1); 
  
for i = 1:le 
    x1 = in(i,1:4); 
    yc1 = []; yc2 = []; y1 = Q_cell_matrix01(1,s,x1,0,0,0);  
    for c = 1:4 
        y2 = Q_cell_matrix01(c,s,x1,fa,ft,sh); 
        yc1 = [yc1 y1]; yc2 = [yc2 y2]; 
    end 
    z = [z;s yc1 yc2]; 
end 
out = z; 
end  
 

function [out] = Q_cell_matrix01 (con,sel,inp,ftag,ift,ishl) 
aft=0;bft=0;cft=0;dft=0; 
ashl=0;bshl=0;cshl=0;dshl=0; 
  
if(ftag == 1) aft=ift;ashl=ishl; end 
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if(ftag == 2) bft=ift;bshl=ishl; end 
if(ftag == 3) cft=ift;cshl=ishl; end 
if(ftag == 4) dft=ift;dshl=ishl; end 
  
 h_i = [0,0]; 
 a1 = sel(1); a2 = sel(2); a3 = sel(3); 
 b1 = [inp(1),inp(2)]; b2 = [inp(3),inp(4)]; 
 if (con == 1) 
  h_i(1) = Gate_a1 (a1,b1,aft,ashl); 
  h_i(2) = Gate_b1 (a2,b2,bft,bshl); 
  out = Gate_c1 (a3,h_i,cft,cshl); 
 end 
 if (con == 2) 
  h_i(1) = Gate_b1 (a1,b1,bft,bshl); 
  h_i(2) = Gate_c1 (a2,b2,cft,cshl); 
  out = Gate_d1 (a3,h_i,dft,dshl); 
 end 
 if (con == 3) 
  h_i(1) = Gate_c1 (a1,b1,cft,cshl); 
  h_i(2) = Gate_d1 (a2,b2,dft,dshl); 
  out = Gate_a1 (a3,h_i,aft,ashl); 
 end 
 if (con == 4) 
  h_i(1) = Gate_d1 (a1,b1,dft,dshl); 
  h_i(2) = Gate_a1 (a2,b2,aft,ashl); 
  out = Gate_b1 (a3,h_i,bft,bshl); 
 end 
end 
 

function [ out ] = Gate_a1( ii_s,ii_i,ft,ftshl) 
  
 if (ft == 0) 
  out = Q_cell_lu4 (ii_s, ii_i); 
 else 
  out = Q_cell_luft4 (ii_s, ii_i, ft, ftshl); 
 end 
end 
 
function [ out ] = Gate_b1( ii_s,ii_i,ft,ftshl) 
  
 if (ft == 0) 
  out = Q_cell_lu4 (ii_s, ii_i); 
 else 
  out = Q_cell_luft4 (ii_s, ii_i, ft, ftshl); 
 end 
end 
 

function [ out ] = Gate_c1( ii_s,ii_i,ft,ftshl) 
  
 if (ft == 0) 
  out = Q_cell_lu4 (ii_s, ii_i); 
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 else 
  out = Q_cell_luft4 (ii_s, ii_i, ft, ftshl); 
 end 
end 
 

function [ out ] = Gate_d1( ii_s,ii_i,ft,ftshl) 
  
 if (ft == 0) 
  out = Q_cell_lu4 (ii_s, ii_i); 
 else 
  out = Q_cell_luft4 (ii_s, ii_i, ft, ftshl); 
 end 
end 
 

function [out] = rungelo09 () 
z = []; 
for i1 = 1:4 
    for i2 = 1:4 
        for i3 = 1:4 
            c2 = 0; c4 = 0;  
            for i = 1:68 
                c0 = quaddedlogic05(0,0,i1,i2,i3); 
                c1 = [c0 quaddedlogic05(i,0,i1,i2,i3)]; c2 = c2 + nandfail03(c1); 
                c3 = [c0 quaddedlogic05(i,1,i1,i2,i3)]; c4 = c4 + nandfail03(c3); 
            end 
            cc = c2 + c4; cd = cc(2:3); ce = (sum(cd)/544)*100; 
            z = [z;i1 i2 i3 cc ce]; 
        end 
    end 
end 
out = z; 
end 
function [out] = quaddedlogic05 (lo,st,l1,l2,l3) 
in = [0 0;0 1;1 0;1 1]; 
  
z = []; 
z1 = size(in); le = z1(1); 
  
for i = 1:le 
    x1 = [in(i,1) in(i,1) in(i,1) in(i,1)]; 
    x2 = [in(i,2) in(i,2) in(i,2) in(i,2)]; 
    p = zeros(1,4); q = zeros(1,4); o = zeros(1,4); 
     
    if (lo>=1)&&(lo<=4) x1(1) = st; end  
    if (lo>=5)&&(lo<=8) x2(1) = st; end 
     
    xn = [x1(1) x1(2) x2(1) x2(2) x1(2) x1(1) x2(2) x2(1) x1(3) x1(4) x2(3) x2(4) x1(4) x1(3) x2(4) x2(3)]; 
    if (lo>=9)&&(lo<=24) xn(1,lo-8) = st; end 
    if(l1==1) 
p(1)=(xn(1)&xn(2)&xn(3)&xn(4));p(2)=(xn(5)&xn(6)&xn(7)&xn(8));p(3)=(xn(9)&xn(10)&xn(11)&xn(
12));p(4)=(xn(13)&xn(14)&xn(15)&xn(16)); end 
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    if(l1==2) 
p(1)=~(xn(1)&xn(2)&xn(3)&xn(4));p(2)=~(xn(5)&xn(6)&xn(7)&xn(8));p(3)=~(xn(9)&xn(10)&xn(11)&
xn(12));p(4)=~(xn(13)&xn(14)&xn(15)&xn(16)); end 
    if(l1==3) 
p(1)=(xn(1)|xn(2)|xn(3)|xn(4));p(2)=(xn(5)|xn(6)|xn(7)|xn(8));p(3)=(xn(9)|xn(10)|xn(11)|xn(12));
p(4)=(xn(13)|xn(14)|xn(15)|xn(16)); end 
    if(l1==4) 
p(1)=~(xn(1)|xn(2)|xn(3)|xn(4));p(2)=~(xn(5)|xn(6)|xn(7)|xn(8));p(3)=~(xn(9)|xn(10)|xn(11)|xn(1
2));p(4)=~(xn(13)|xn(14)|xn(15)|xn(16)); end 
         
    xn = [x1(1) x1(2) x2(1) x2(2) x1(2) x1(1) x2(2) x2(1) x1(3) x1(4) x2(3) x2(4) x1(4) x1(3) x2(4) x2(3)]; 
    if (lo>=25)&&(lo<=40) xn(1,lo-24) = st; end 
    if(l2==1) 
q(1)=(xn(1)&xn(2)&xn(3)&xn(4));q(2)=(xn(5)&xn(6)&xn(7)&xn(8));q(3)=(xn(9)&xn(10)&xn(11)&xn(
12));q(4)=(xn(13)&xn(14)&xn(15)&xn(16)); end 
    if(l2==2) 
q(1)=~(xn(1)&xn(2)&xn(3)&xn(4));q(2)=~(xn(5)&xn(6)&xn(7)&xn(8));q(3)=~(xn(9)&xn(10)&xn(11)&
xn(12));q(4)=~(xn(13)&xn(14)&xn(15)&xn(16)); end 
    if(l2==3) 
q(1)=(xn(1)|xn(2)|xn(3)|xn(4));q(2)=(xn(5)|xn(6)|xn(7)|xn(8));q(3)=(xn(9)|xn(10)|xn(11)|xn(12));
q(4)=(xn(13)|xn(14)|xn(15)|xn(16)); end 
    if(l2==4) 
q(1)=~(xn(1)|xn(2)|xn(3)|xn(4));q(2)=~(xn(5)|xn(6)|xn(7)|xn(8));q(3)=~(xn(9)|xn(10)|xn(11)|xn(1
2));q(4)=~(xn(13)|xn(14)|xn(15)|xn(16)); end 
     
    if (lo>=41)&&(lo<=44) p(1,lo-40) = st; end 
    if (lo>=45)&&(lo<=48) q(1,lo-44) = st; end 
     
    yn = [p(1) p(4) q(1) q(4) p(2) p(3) q(2) q(3) p(3) p(2) q(3) q(2) p(4) p(1) q(4) q(1)]; 
    if (lo>=49)&&(lo<=64) yn(1,lo-48) = st; end 
    if(l3==1) 
o(1)=(yn(1)&yn(2)&yn(3)&yn(4));o(2)=(yn(5)&yn(6)&yn(7)&yn(8));o(3)=(yn(9)&yn(10)&yn(11)&yn(
12));o(4)=(yn(13)&yn(14)&yn(15)&yn(16)); end 
    if(l3==2) 
o(1)=~(yn(1)&yn(2)&yn(3)&yn(4));o(2)=~(yn(5)&yn(6)&yn(7)&yn(8));o(3)=~(yn(9)&yn(10)&yn(11)
&yn(12));o(4)=~(yn(13)&yn(14)&yn(15)&yn(16)); end 
    if(l3==3) 
o(1)=(yn(1)|yn(2)|yn(3)|yn(4));o(2)=(yn(5)|yn(6)|yn(7)|yn(8));o(3)=(yn(9)|yn(10)|yn(11)|yn(12));
o(4)=(yn(13)|yn(14)|yn(15)|yn(16)); end 
    if(l3==4) 
o(1)=~(yn(1)|yn(2)|yn(3)|yn(4));o(2)=~(yn(5)|yn(6)|yn(7)|yn(8));o(3)=~(yn(9)|yn(10)|yn(11)|yn(1
2));o(4)=~(yn(13)|yn(14)|yn(15)|yn(16)); end 
     
    if (lo>=65)&&(lo<=68) o(1,lo-64) = st; end 
    y = [o(1);o(2);o(3);o(4)]; 
    z = [z;y]; 
end 
  
out = z; 
end 
 

function [out] = nandfail03 (st) 
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ls = size(st); 
x1 = ls(1); x2 = ls(2); 
z0 = 0; z1 = 0; z2 = 0; 
  
for i = 1:x1/4 
    p1 = ((i-1)*4)+1; p2 = i*4; 
    y1 = st(p1:p2,1); y2 = st(p1:p2,2); 
    a1 = sum(y1); a2 = sum(y2); a3 = 0; 
    if (a1 < a2) a3 = a2-a1; end 
    if (a2 < a1) a3 = a1-a2; end 
    if (a3==1) z0 = z0+1; end 
    if (a3==2)  
        z2 = z2+1;  
    else 
        v1 = voter4(y1); v2 = voter4(y2); 
        if (xor(v1,v2)) z1 = z1+1; end 
    end 
end 
out = [z0 z1 z2]; 
end 
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Appendix 3.4: MATLAB program for Chapter 7 for the purpose of analysing the fault 

behaviour of the QLC structure 

 

With this programmes the fault behaviour of the QLC structure is evaluated in regards of fault 

localisation down into the individual logic unit. 

 

function QcellTestAll (sel,inp) 
 tx=Qcelltestseq(sel,inp,1,0); 
 xlswrite('d:\test1.xls',tx,1,'A1'); 
 tx=QcellResultCheck(tx,4,4); 
 xlswrite('d:\test1.xls',tx,1,'A17'); 
tx=Qcelltestseq(sel,inp,1,1); 
 xlswrite('d:\test1.xls',tx,2,'A1'); 
 tx=QcellResultCheck(tx,4,4); 
 xlswrite('d:\test1.xls',tx,2,'A17'); 
tx=Qcelltestseq(sel,inp,2,0); 
 xlswrite('d:\test2.xls',tx,1,'A1'); 
 tx=QcellResultCheck(tx,4,4); 
 xlswrite('d:\test2.xls',tx,1,'A17'); 
tx=Qcelltestseq(sel,inp,2,1); 
 xlswrite('d:\test2.xls',tx,2,'A1'); 
 tx=QcellResultCheck(tx,4,4); 
 xlswrite('d:\test2.xls',tx,2,'A17'); 
tx=Qcelltestseq(sel,inp,3,0); 
 xlswrite('d:\test3.xls',tx,1,'A1'); 
 tx=QcellResultCheck(tx,4,4); 
 xlswrite('d:\test3.xls',tx,1,'A17'); 
tx=Qcelltestseq(sel,inp,3,1); 
 xlswrite('d:\test3.xls',tx,2,'A1'); 
 tx=QcellResultCheck(tx,4,4); 
 xlswrite('d:\test3.xls',tx,2,'A17'); 
tx=Qcelltestseq(sel,inp,4,0); 
 xlswrite('d:\test4.xls',tx,1,'A1'); 
 tx=QcellResultCheck(tx,4,4); 
 xlswrite('d:\test4.xls',tx,1,'A17'); 
tx=Qcelltestseq(sel,inp,4,1); 
 xlswrite('d:\test4.xls',tx,2,'A1'); 
 tx=QcellResultCheck(tx,4,4); 
 xlswrite('d:\test4.xls',tx,2,'A17'); 
end 
 
 
function [out] = Qcelltestseq (sel,inp,ftag,ishl) 
 xi=inp; 
 for j = 0:12 
    tdata = Q_cell_Test(sel,inp,ftag,j,ishl); 
    xi = [xi,tdata]; 
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 end 
 out = xi; 
end 
 
 
function [out] = Q_cell_Test (sel,inp,ftag,ift,ishl) 
 tdata = zeros(size(inp)); x=size(inp); 
 for j = 1:x(1) 
  for i = 1:x(2) 
   tdata(j,i) = Q_cell_matrix (i,sel,inp(j,1:x(2)),ftag,ift,ishl); 
  end 
 end 
 out = tdata; 
end 
 
function [out] = Q_cell_matrix (con,sel,inp,ftag,ift,ishl) 
aft=0;bft=0;cft=0;dft=0; 
ashl=0;bshl=0;cshl=0;dshl=0; 
if(ftag == 1) aft=ift;ashl=ishl; end 
if(ftag == 2) bft=ift;bshl=ishl; end 
if(ftag == 3) cft=ift;cshl=ishl; end 
if(ftag == 4) dft=ift;dshl=ishl; end 
h_i = [0,0]; 
 a1 = [sel(1),sel(2)];a2 =[sel(3),sel(4)];a3 = [sel(5),sel(6)]; 
 b1 = [inp(1),inp(2)];b2 = [inp(3),inp(4)]; 
 if (con == 1) 
  h_i(1) = Gate_a (a1,b1,aft,ashl); 
  h_i(2) = Gate_b (a2,b2,bft,bshl); 
  out = Gate_c (a3,h_i,cft,cshl); 
 end 
 if (con == 2) 
  h_i(1) = Gate_b (a1,b1,bft,bshl); 
  h_i(2) = Gate_c (a2,b2,cft,cshl); 
  out = Gate_d (a3,h_i,dft,dshl); 
 end 
 if (con == 3) 
  h_i(1) = Gate_c (a1,b1,cft,cshl); 
  h_i(2) = Gate_d (a2,b2,dft,dshl); 
  out = Gate_a (a3,h_i,aft,ashl); 
 end 
 if (con == 4) 
  h_i(1) = Gate_d (a1,b1,dft,dshl); 
  h_i(2) = Gate_a (a2,b2,aft,ashl); 
  out = Gate_b (a3,h_i,bft,bshl); 
 end 
end 
 
function [ out ] = Gate_a1( ii_s,ii_i,ft,ftshl) 
  
 if (ft == 0) 
  out = Q_cell_lu4 (ii_s, ii_i); 
 else 
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  out = Q_cell_luft4 (ii_s, ii_i, ft, ftshl); 
 end 
end 
 
function [ out ] = Gate_b1( ii_s,ii_i,ft,ftshl) 
  
 if (ft == 0) 
  out = Q_cell_lu4 (ii_s, ii_i); 
 else 
  out = Q_cell_luft4 (ii_s, ii_i, ft, ftshl); 
 end 
end 
 
function [ out ] = Gate_c1( ii_s,ii_i,ft,ftshl) 
  
 if (ft == 0) 
  out = Q_cell_lu4 (ii_s, ii_i); 
 else 
  out = Q_cell_luft4 (ii_s, ii_i, ft, ftshl); 
 end 
end 
 
function [ out ] = Gate_d1( ii_s,ii_i,ft,ftshl) 
  
 if (ft == 0) 
  out = Q_cell_lu4 (ii_s, ii_i); 
 else 
  out = Q_cell_luft4 (ii_s, ii_i, ft, ftshl); 
 end 
end 
 
function [out] = QcellResultCheck(xi,pi,pr) 
 a1 = size(xi); 
 x1 = xi(1:a1(1),(pi+1):(pi+pr)); 
 x2 = xi(1:a1(1),(pi+pr+1):a1(2)); 
 l1 = ((a1(2)-(pi+pr)))/pr; 
 erg3 = zeros((pr+a1(1)),l1); 
 for i1 = 1:l1 
     erg1 = zeros(1,pr); 
     erg2 = zeros(1,l1); 
     p1 = 1+((i1-1)*pr); 
     p2 = i1*pr; 
     xi1 = x2(1:a1(1),p1:p2); 
     xi2 = abs(xi1-x1); 
     for i2 = 1:pr 
         erg1(1,i2) = sum(xi2(1:a1(1),i2)); 
     end 
     for i2 = 1:a1(1) 
         erg2(1,i2) = sum(xi2(i2,1:pr)); 
     end 
     erg5 = [erg1,erg2]; 
     erg5 = rot90(fliplr(erg5)); 
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     erg3(1:(a1(1)+pr),i1) = erg5; 
 end 
 out = erg3; 
end 
 
function [out] = Q_cell_Test_full_adder () 
 sel0 = [1,0,0,0,1,1]; sel1 = [1,1,1,1,0,0]; 
 ftag = 0; ift = 0; ishl = 0; 
 a=[0,0,0;0 0 1;0 1 0;0 1 1;1 0 0;1 0 1;1 1 0;1 1 1]; 
 b=[a(1:8,1:2)]; b(1:8,3)=b(1:8,1); b(1:8,4)=b(1:8,2); inp = b; 
 c=[a(1:8,3)]; 
 td1 = zeros(size(inp)); x=size(inp); td2 = td1; 
 for j = 1:x(1) 
  for i = 1:x(2) 
   aftag = 1; aift = 4; aishl = 1; 
   ih0 = Q_cell_matrix (i,sel0,inp(j,1:x(2)),aftag,aift,aishl); 
   ih1 = [ih0 c(j) ih0 c(j)]; 
   td1(j,i) = Q_cell_matrix (i,sel0,ih1,ftag,ift,ishl); 
   ih2 = [b(j,1) b(j,2) c(j) ih0]; 
   td2(j,i) = Q_cell_matrix (i,sel1,ih2,ftag,ift,ishl); 
  end 
 end 
 out = [td2 td1]; 
end 
 
function [out] = sa_fc17 (sal,sac) 
y = []; t = zeros(1,6); 
a = [0 0 0 0 0 0 0;1 0 0 0 0 0 0;0 1 0 0 0 1 1;1 1 0 0 0 1 1;0 0 1 0 0 0 0; 
     1 0 1 0 0 1 0;0 1 1 0 0 1 1;1 1 1 0 0 1 1;0 0 0 1 0 0 0;1 0 0 1 0 0 0; 
     0 1 0 1 0 1 1;1 1 0 1 0 1 1;0 0 1 1 0 0 0;1 0 1 1 0 1 0;0 1 1 1 0 0 0; 
     1 1 1 1 0 1 0;0 0 0 0 1 0 1;1 0 0 0 1 0 1;0 1 0 0 1 1 1;1 1 0 0 1 1 1; 
     0 0 1 0 1 0 1;1 0 1 0 1 1 1;0 1 1 0 1 1 1;1 1 1 0 1 1 1;0 0 0 1 1 0 1; 
     1 0 0 1 1 0 1;0 1 0 1 1 1 1;1 1 0 1 1 1 1;0 0 1 1 1 0 0;1 0 1 1 1 1 0; 
     0 1 1 1 1 0 0;1 1 1 1 1 1 0]; 
b = size(a); 
ii = b(1); 
for i = 1:ii 
    x = a(i,1:b(2)); 
    i1 = sanand1_1(x(1),x(3),t(1),sal,sac); t(1) = i1; 
    i2 = sanand1_2(x(3),x(4),t(2),sal,sac); t(2) = i2; 
    i3 = sanand1_3(x(2),i2,t(3),sal,sac); t(3) = i3; 
    i4 = sanand1_4(x(5),i2,t(4),sal,sac); t(4) = i4; 
    y1 = sanand1_5(i1,i3,t(5),sal,sac); t(5) = y1; 
    y2 = sanand1_6(i3,i4,t(6),sal,sac); t(6) = y2; 
    y = [y;x(6) x(7) i y1 y2]; 
end 
out = y; 
end 
 
function [out] = sa4_fc17 (sal,sac) 
y = []; 
a = [0 0 0 0 0 0 0;1 0 0 0 0 0 0;0 1 0 0 0 1 1;1 1 0 0 0 1 1;0 0 1 0 0 0 0; 



Appendix 

[236] 
 

     1 0 1 0 0 1 0;0 1 1 0 0 1 1;1 1 1 0 0 1 1;0 0 0 1 0 0 0;1 0 0 1 0 0 0; 
     0 1 0 1 0 1 1;1 1 0 1 0 1 1;0 0 1 1 0 0 0;1 0 1 1 0 1 0;0 1 1 1 0 0 0; 
     1 1 1 1 0 1 0;0 0 0 0 1 0 1;1 0 0 0 1 0 1;0 1 0 0 1 1 1;1 1 0 0 1 1 1; 
     0 0 1 0 1 0 1;1 0 1 0 1 1 1;0 1 1 0 1 1 1;1 1 1 0 1 1 1;0 0 0 1 1 0 1; 
     1 0 0 1 1 0 1;0 1 0 1 1 1 1;1 1 0 1 1 1 1;0 0 1 1 1 0 0;1 0 1 1 1 1 0; 
     0 1 1 1 1 0 0;1 1 1 1 1 1 0]; 
b = size(a); 
ii = b(1); 
for i = 1:ii 
    x = a(i,1:b(2)); 
    i1 = sanand4_1(x(1),x(3),sal,sac); 
    i2 = sanand4_2(x(3),x(4),sal,sac); 
    i3 = sanand4_3(x(2),i2,sal,sac); 
    i4 = sanand4_4(x(5),i2,sal,sac); 
    y1 = sanand4_5(i1,i3,sal,sac); 
    y2 = sanand4_6(i3,i4,sal,sac); 
    y = [y;x(6) x(7) i y1 y2]; 
end 
out = y; 
end 
 
function [out] = safc17 (fl,fs) 
y = []; 
a = [0 0 0 0 0 0 0;1 0 0 0 0 0 0;0 1 0 0 0 1 1;1 1 0 0 0 1 1;0 0 1 0 0 0 0; 
     1 0 1 0 0 1 0;0 1 1 0 0 1 1;1 1 1 0 0 1 1;0 0 0 1 0 0 0;1 0 0 1 0 0 0; 
     0 1 0 1 0 1 1;1 1 0 1 0 1 1;0 0 1 1 0 0 0;1 0 1 1 0 1 0;0 1 1 1 0 0 0; 
     1 1 1 1 0 1 0;0 0 0 0 1 0 1;1 0 0 0 1 0 1;0 1 0 0 1 1 1;1 1 0 0 1 1 1; 
     0 0 1 0 1 0 1;1 0 1 0 1 1 1;0 1 1 0 1 1 1;1 1 1 0 1 1 1;0 0 0 1 1 0 1; 
     1 0 0 1 1 0 1;0 1 0 1 1 1 1;1 1 0 1 1 1 1;0 0 1 1 1 0 0;1 0 1 1 1 1 0; 
     0 1 1 1 1 0 0;1 1 1 1 1 1 0]; 
b = size(a); 
ii = b(1); 
for i = 1:ii 
    x = a(i,1:b(2)); 
    if (fl==1) x(1) = fs; end 
    if (fl==2) x(2) = fs; end 
    if (fl==3) x(3) = fs; end 
    if (fl==4) x(4) = fs; end 
    if (fl==5) x(5) = fs; end 
    xh1 = x(3); xh2 = x(3); 
    if (fl==6) xh1 = fs; end 
    if (fl==7) xh2 = fs; end 
    i1 = ~(x(1)&xh1); 
    if (fl==8) i1 = fs; end 
    i2 = ~(xh2&x(4)); hi21 = i2; hi22 = i2; 
    if (fl==9) hi21 = fs; hi22 = fs; end 
    if (fl==10) hi21 = fs; end 
    if (fl==11) hi22 = fs; end 
    i3 = ~(x(2)&hi21); hi31 = i3; hi32 = i3; 
    i4 = ~(x(5)&hi22); 
    if (fl==12) hi31 = fs; hi32 = fs; end 
    if (fl==13) i4 = fs; end 
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    if (fl==14) hi31 = fs; end 
    if (fl==15) hi32 = fs; end 
    y1 = ~(i1&hi31); 
    y2 = ~(hi32&i4); 
    if (fl==16) y1 = fs; end 
    if (fl==17) y2 = fs; end 
    tr = 100*fl+i; 
    y = [y;x(6) x(7) tr y1 y2]; 
end 
out = y; 
end 
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Appendix 4: Spice simulation circuit of SAFR-logic gates 
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Appendix 5: Fault results of the fault simulation in accordance of logic gate alteration for a 

certain selection of eight transistor-style variation 
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With these fault maps the correlation between fault causing transistor in relation the SAH and SAL 

fault injected are demonstrated. The highest number of faults per transistor is identified. 
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Appendix 6: Breadboard of the SAFR-NAND gate design 

 

 

 

  



Appendix 

[244] 
 

Appendix 7: PCB design of self-healing SAFR-NAND gate 
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Appendix 8: Circuit board design of the SAFR-NAND gate 
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Appendix 9: 8051 set-up for the simulation of the soda machine FSM  
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Appendix 10: Assembler code for the FSM soda machine 

 

$NOMOD51 
 
$include (c8051f120.inc) 
 
Array  equ 040h 
OutReq  equ P1.7 
OutCan  equ P1.2 
OutDim  equ P1.1 
OutCen  equ P1.0 
 
cseg  AT 0 
ljmp  Main 
 
 rseg Blink 
 using 0 
 
Main: 
 mov    WDTCN, #0DEh 
 mov    WDTCN, #0ADh 
 org 0 
 mov Array ,#000000000b 
 mov Array+1 ,#000000100b 
 mov Array+2 ,#000001000b 
 mov Array+3 ,#000001100b 
 mov Array+4 ,#000000100b 
 mov Array+5 ,#000001000b 
 mov Array+6 ,#000010000b 
 mov Array+7 ,#011111010b 
 mov Array+8 ,#000001000b 
 mov Array+9 ,#000010000b 
 mov Array+10,#000010100b 
 mov Array+11,#001111011b 
 mov Array+12,#000001100b 
 mov Array+13,#011111010b 
 mov Array+14,#001111011b 
 mov Array+15,#010111100b 
 mov Array+16,#000010000b 
 mov Array+17,#000010100b 
 mov Array+18,#000001100b 
 mov Array+19,#010111001b 
 mov Array+20,#000010100b 
 mov Array+21,#000001100b 
 mov Array+22,#000111000b 
 mov Array+23,#001111000b 
 mov Array+24,#010111001b 
 mov Array+25,#011111010b 
 mov Array+26,#000100000b 
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 mov Array+27,#011100000b 
 mov Array+28,#010111001b 
 
 mov SFRPAGE, #CONFIG_PAGE 
 
 mov XBR2,#040h 
 mov P2MDout,#000h 
 mov P3MDout,#0ffh 
 mov  P1MDOUT,#0ffh  
 mov  P0MDOUT,#000h 
 mov P3,#00h 
 mov P2,#0ffh 
 mov  P1,#00h 
 mov  P0,#0ffh 
 
Main1: jb P0.7,Main2 
 jmp Main1 
Main2: mov A,P2 
 anl A,#01fh 
 orl A,#040h 
 mov R1,A 
 mov A,@R1 
 mov P3,A 
Main3: jnb P0.7,Main4 
 jmp Main3 
Main4: jmp Main1 
 
END 
 

 




