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Abstract

The study of amplitudes and related quantities in the N = 4 Super Yang-Mills

theory is a subject undergoing rapid evolution at the moment. In this work

we present a review of some of the key ideas and concepts which we use to

calculate `-loop, n-point amplitudes of varying helicity. We show that per-

forming a restriction on the external data of being in 1 + 1-dimensions allows

remarkably compact expressions to be obtained at both MHV and NMHV

levels. We use this data to motivate in 1 + 1-dimensions remarkably simple

formulae for all collinear-limits and ultimately a universal uplifting formula

which generates all n-point amplitudes of a particular loop-order and helic-

ity configuration from a small set of lower-loop amplitudes. We also use the

mechanism of the correlation function ↔ amplitude duality to construct the

integrand for the five-point amplitude in full four-dimensional kinematics to

six-loops in the parity-even sector and five-loops in the parity-odd sector. Fi-

nally we consider a rewriting of certain known momentum-twistor amplitudes

in terms of bi-twistor, six-dimensional X-variables and dimensionally regularise

these equations to match known O(ε) results. From this we make some obser-

vations about the requirements for this process to be successful in the limited



number of cases where the full O(ε) solution is known and provide an ansatz

for constructing the terms for more complicated amplitudes.
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Introduction

Scattering amplitudes in gauge theories (and gravity) are known to have a

significantly simpler underlying structure than that which is implied by the

manifestly local construction in Feynman diagrams. One theory which has

received much attention in recent years and where these simplifications are

particularly striking is the planar N = 4 supersymmetric gauge theory. In

fact, it is not unreasonable to expect that the entire S-matrix in this theory

can one day be determined from methods with their roots in the integrability

of planar N = 4 SYM.

In recent years much progress has been made in the calculation of scattering

amplitudes in maximally supersymmetric non-abelian Yang-Mills theory in

four-dimensions. In particular, interesting structures enabling new results have

been found for the amplitude integrand, both in the planar limit and the

full non-planar theory. Perturbative calculations utilising Feynman graphs

give complicated results with many cancellations and qualities such as gauge-

invariance are emergent-features not manifest term-by-term, additionally there

are a vast number of contributing diagrams, making it difficult to construct

even the integrand. To evaluate the integrand is, of course, the hardest step

- which we shall never attempt directly in this work - but it will naturally be

facilitated by finding simple concise forms of the integrands.

There have been three principal methods utilised for the generating of inte-

grands. (Generalised) Unitarity is the most widespread technique [24, 25, 37,

40], here one equates the leading singularities of the amplitude with those of an

ansatz - consisting of a sum of independent graphs with arbitrary coefficients -

which fixes all freedom. There are several restrictions and criteria as to which

1



2

graphs occur in the ansatz: in the planar limit one uses dual conformal invari-

ance [33, 36, 56, 58, 59], whereas in the full non-planar theory one can use the

colour-kinematics duality [17, 18]. This technique has been used to obtain the

four-point amplitude up to five-loops (planar [19, 21, 29, 31] and non-planar

[15, 16, 20, 27]), the five-point amplitude to three-loops [22, 48, 104] and the

six-point amplitude to two-loops [28, 43].

Second, one may employ a recursion relation determining higher-loop am-

plitudes in terms of lower-loop ones [10]. The original BCFW [38, 39] recursion

relation involved decomposing higher-point tree-level amplitudes into products

of three-point amplitudes, but subsequently this technique has been updated to

loop integrands [10]. The use of these on-shell methods, in particular utilising

the machinery of writing things in momentum-twistor variables, yields expres-

sions which are exceptionally compact compared to the (potentially) millions

of terms in the same calculation but performed using Feynman graphs. By

construction BCFW recursion leads to non-local integrands, i.e. individual

terms have poles which are not of 1
p2 type. Yet the existence of the Feynman

graph method guarantees the cancellation of such spurious singularities in the

sum of all terms. It remains a formidable problem though, to find simple local

forms for the BCFW output, since the recursion procedure - although vastly

more concise than any direct graph calculation - still blooms out considerably

at higher-loop order (although much progress has been made in the direction of

resolving this issue [11]). At this moment explicit formulae for local integrands

utilising this method are limited to MHV n-point amplitudes up to three-loops

and NMHV n-point amplitudes as far as two-loops [9, 10].

Third, another less widely known but extremely powerful technique starts

from an ansatz, but now fixes the coefficients by implementing the exponentia-

tion of infrared (IR) singularities at the level of the integrand by asserting that

the log of the amplitude should have a reduced singularity [23]. This method

has been used to obtain the four-point amplitude to seven-loops [23] and has

been shown to determine the n-point amplitudes at two- and three-loops for

any n [82]. Both this method and generalised unitarity customarily use graphs

with local integrands. In addition, the trial graphs used in generalised uni-

tarity methods typically contain only Lorentz products, with any parity-odd

structures being in the external variables only.

The work presented here differs from all three of these methods, here we

use only proposed dualities with other kinematical objects and building am-

plitudes from strict symmetry-arguments. In Chapter.2 we review some of the



3

principal concepts, notation and proposals of the planar-limit of the maximally

supersymmetric N = 4 super Yang-Mills theory. In particular, in addition to

simplifications occurring from working in the planar-limit of N = 4 SYM,

we take the additional step of imposing a kinematical restriction on external

momenta of scattered states. This corresponds to containing all external mo-

menta to reside in (1+1)-dimensions of the full (3+1)-dimensional Minkowski

space (the loop momenta remaining unrestricted). We finish Chapter 2 by

reviewing known results from [89, 91], where we know the analytical form of

the amplitudes given there simplifies considerably when one restricts to these

external kinematics, we can thus consider this restriction as a short-cut to-

wards establishing the underlying integrable structure of the amplitude in full

kinematics.

In Chapter 3 we demonstrate how we can extend these kinematical re-

strictions to the NMHV amplitudes [80] dealing with the problem of infinities

arising term-by-term from the spurious poles. We give n-point NMHV one-

loop amplitudes explicitly [80] as built purely from symmetry considerations.

In Chapter 4 we take inspiration from similarities in the form of the 8-point

MHV 2-loop and the 8-point NMHV 1-loop amplitudes and their extensions

to higher orders. Using this as motivation, and additionally a better under-

standing of collinear-limits in (1+1)-dimensions, we propose a universal MHV

“uplifting” formula to construct high-n amplitudes at a given loop-order from

lower-point ones and a piece that vanishes in all allowed collinear limits [80],

we then generalise this to a similar uplifting-formula for any n-point, NkMHV,

`-loop amplitude [80].

In Chapter 5 we return to the full (3+1)-dimensional Minkowski space for

the external momenta. In this theory it is known that the planar amplitude

can be generated from n-point functions of the energy-momentum multiplet of

the theory [67, 68, 73, 74] and we explore the form and consequences of this

proposed duality. Utilising this duality we extend work done at 4-points where

the method was used to construct the 6-loop planar and 4-loop non-planar am-

plitude [69], to the five-particle amplitude as far as five-loops completely and

six-loops in the parity-even sector [6]. In Chapter 6 we explain how to rewrite

amplitude integrands from momentum-twistors intoa 6-dimensional embedding

which can then be useful to attempt to dimensionally regularize these ampli-

tudes obtaining known results at five- and six-points at one- and two-loops. We

then propose an ansatz for the form of the dual-conformally invariant µ2-terms,

for n-point, `-loop MHV amplitudes. We give explicitly our dual-conformally
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invariant µ2-term predictions for the terms at five-point, three-loops as well as

four-point, four- and five-loop amplitudes.

Finally in Chapter.7 we present some of our key conclusions as well as

potential avenues of further research on the topics discussed.



2

Review of Amplitudes in 2d

Kinematics

During this chapter we will begin by introducing the objects of interest namely

planar, colour-ordered amplitudes. We will then review the manner in which

we take the four-dimensional theory into one where external data is in (1+1)-

dimensions, and explore the ways in which these limits effect our results.

Alongside this, we will be introducing the necessary technology to analyse and

express both our questions and results, such as the collinear limit restrictions,

the relevant symmetries of N = 4 SYM, the “Symbol” technology etc. Finally

we give a brief example of how all these symmetries, notations and technologies

can be used to produce the very simple result of the MHV two-loop remainder

function for an arbitrary number of external points in our reduced kinematics,

as given in [91].

2.1 Amplitudes Notation

In this thesis we will entirely be concerned by computing colour-ordered, n-

point, NkMHV amplitudes in planar N = 4 SYM theory: An,k.

Planarity and Colour-Ordering

First we concentrate on the decomposition of the amplitudes with regards

colour, starting with the ’t Hooft limit, where planar diagrams dominate, and

colour-ordering those diagrams. The gauge group in QCD is SU(3) however

we generalize this to SU(Nc), indeed this makes some of the group theory

structure more transparent. Gluons would now carry an adjoint colour-index

5
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a = 1, . . . , N2
c − 1, whereas quarks and anti-quarks carry an Nc or Nc index

i, j ∈ 1, . . . , Nc. The generators of SU(Nc) in the fundamental representation

are Nc ×Nc matrices we call (T a)ji .

For each gluon-quark-quark vertex in a generic Feynman diagram we obtain

a factor of (T a)j̄i . For any pure-gluon 3-vertex we include a structure constant

fabc, defined by
[
T a, T b

]
= i
√

2fabcT c and for each pure-gluon 4-vertex con-

tracted pairs of structure constants fabef cde. We note that clearly all gauge-

indices should be contracted and we consider the possible contractions of two

generators.

(T a)
j1
i1

(T a)
j2
i2

= δ
j2
i1
δ
j1
i2
− 1

Nc

δ
j1
i1
δ
j2
i2

(2.1.1)

where the sum over a is implicit. We see that the first term is a single trace

over both generators whereas the second term which is suppressed by a power

of Nc is a trace over each term separately. In the so-called t’ Hooft limit

we send Nc → ∞, suppressing this second type of contraction. The effect

this has is that the dominant terms are all of a single trace structure, which in

turn suppresses all non-planar diagrams which by nature of their non-planarity

have higher trace-structures. For further details on the ’t Hooft limit, see the

original paper [105].

The colour dependence of the amplitude can be factorised from the kine-

matic dependence and it is this factorisation which gives us so-called “colour-

ordered” amplitudes. To “colour-order” our amplitude is to write the full

amplitude in a particular colour decomposition which we here demonstrate at

tree level:

Atree
n ({pi, λi, ai}) = gn−2

∑
σ∈ Sn

Zn

Tr (T aσ(1) · · ·T aσ(n))Atree
n

(
σ(1λ1), · · · , σ(nλn)

)
(2.1.2)

here g is the gauge-coupling
(
g2

4π
= αs

)
with pi and λi representing the gluon

momenta and helicities respectively and Atree
n

(
σ(1λ1), · · · , σ(nλn)

)
being the

“partial amplitudes”, which contain all the kinematic information. The sum

across Sn
Zn

is required in order to sum over all distinct cyclic orderings in the

trace, it denotes the set of all permutations of the n-points however with only

one representative from all cyclically equivalent orderings. Note that such

a step would not be valid at the non-planar level where we have double-trace

structures etc. this represents (mathematically) the fact that in the non-planar

picture there is no longer a clear cyclic ordering of external particles. The

partial amplitudes are significantly simpler than the full amplitude as they are
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now colour-ordered: they receive contributions from diagrams with a particular

cyclic ordering of the gluons. Further details can be found in [14, 30, 49, 97, 98]

Supermultiplet and super-amplitude

The expression NkMHV relates to the helicity-degrees of the external vari-

ables. It can be seen from supersymmetric Ward identities [49, 58] that any

amplitude with all external particles being gluons with the same helicity or

with only a single opposite helicity gluon, give zero:

An(1±, 2±, · · · , n±) = 0 = An(1∓, 2±, 3±, · · · , n±) (2.1.3)

As such, the first non-zero amplitude is one with (n − 2) positive helicity

gluons and 2 negative-helicity gluons, this is called the Maximally Helicity

Violating amplitude (MHV). The amplitude with 3 negative helicity gluons

and the remainder being positive helicity gluons is called the next-to-MHV

(NMHV) amplitude etc. The final non-zero amplitude we can find would be

one with only two positive helicity gluons and the rest being negative-helicity,

namely Nn−4MHV = MHV which is also called anti-MHV and is clearly parity-

conjugate to the MHV amplitude where we interchange positive and negative

helicities.

Each NkMHV amplitude An,k is a combination of all possible physical am-

plitudes involving k+2 negative-helicity gluons and the rest positive-gluons,

together with amplitudes related to these by supersymmetry. For example, an

amplitude with 4 scalars and the remainder positive-helicity gluons is super-

symmetrically related to the MHV amplitude, or an amplitude with 4 negative-

helicity fermions and otherwise positive-helicity gluons to the NMHV ampli-

tude etc. These amplitudes are dependent on the bosonic variables which come

from on-shell momenta pi of external particles and fermionic Grassmann four-

vectors ηAi necessary to specify all the particle states of the SYM multiplet:

G+ + ηAi ψi,A + ηAi η
B
i φAB + εABCDη

A
i η

B
i η

C
i ψ̄

D
i + εABCDη

A
i η

B
i η

C
i η

D
i G

− (2.1.4)

Where we define G+ as a positive-helicity gluon, ψi,A a positive-helicity fermion

etc. Each An,k is of degree η8+4k where wewould expand An as a Taylor poly-

nomial in the Grassmann variables, see [79, 101] for further details.
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All An,k amplitudes can be collected together into a single object which we

call a super-amplitude

An =
n−4∑
k=0

An,k (2.1.5)

and each An,k can be recovered as a term with coefficient of η8+4k in the Tay-

lor expansion in terms of Grassmann variables ηAi . This means that we can

consider the process of scattering amplitudes to be enacted by complete super-

multiplets rather than merely by certain combinations of their constituents,

the particular components being extracted later from the complete answer as

a single term multiplied by a specific Grassmann product.

The Remainder Function

In general, it is customary to factorise out the tree-level contribution Atree
n ,

as well as the infrared (IR) divergences coming from loops from the other

kinematical dependence,

An = Atree
n MBDS

n Rn (2.1.6)

MBDS
n denotes the known BDS-expression [29] which is factorised out as it

contains all IR divergences of the amplitude and is known to factorise correctly

under simple collinear limits, i.e. where two or more consecutive momenta

become collinear. Rn is called the “remainder function”.

Using this, we see that to determine the complete amplitude it is sufficient

to calculate the remainder function. Rn is a super-function (i.e. a supersym-

metric function of both bosonic and fermionic variables) and can be Taylor

expanded in Grassmann η’s to give NkMHV remainder functions,

Rn =
n−4∑
k=0

Rn,k (2.1.7)

where any Rn,k is a finite, regularisation-independent, dual-invariant quantity.

By ’dual-invariant’ we mean that this function is invariant under both the stan-

dard conformal operators, and the conformal operators which come from the

duality between Wilson loops and amplitudes. To be explicit, in the MHV case

k = 0, it is predicted that Rn,0 is dual-conformally invariant and depends on

external momenta only through conformal-invariant variables called conformal

cross-ratios ‘ui,j;k,l’ [58], which we explore in greater detail later. For general

NkMHV amplitudes, the dual super-conformal invariance [59] fully present at

tree-level [33] becomes partially broken at loop-level, implying Rn,k depends
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on the external kinematics (momenta and helicities) through the cross-ratios

as well as dual super-conformal invariants [59] involving Grassmann variables.

There are conjectured dualities between the super-amplitude, super-Wilson

loops [44, 99] and supersymmetric correlation functions [67, 68, 73], either of

which is sufficient to explain the presence of the dual superconformal symmetry.

It will be advantageous to consider the logarithm of the remainder super-

amplitude, Rn = log(Rn). In perturbation theory it can be expanded in powers

of the coupling, and independently of this also in powers of η

Rn := log(Rn) =
∞∑
`=1

a`R(`)
n =

n−4∑
k=0

∞∑
`=1

a`R(`)
n,k (2.1.8)

Where here a is merely the original coupling constant, after expanding out the

Taylor series we collect all terms with a prefactor of a and that we call R1, all

terms proportional to a2 are collected to become R2 etc. We note here that

Rn,k will naturally have contributions from Rn,k but additionally from products

Rn,k‘Rn,k−k‘. We note that in our definition of Rn in (2.1.6) we factorised out

the entire tree-level super-amplitude (rather than, for example, only the MHV

expression as is sometimes done in the literature, see e.g. [46]). Thus all tree-

level contributions are cleanly separated from loops and the expansion on the

right-hand side of (2.1.8) starts from ` = 1 loops.

For MHV contributions, the expansion starts at 2-loops since R
(1)
n,0 = 0,

however we will return to this point later on in this chapter when we con-

sider our reduced kinematics and demonstrate this result there with additional

restrictions. In general four-dimensional kinematics, non-trivial two-loop con-

tributions start at 6-points, and R
(2)
6,0 was obtained numerically in [28, 57] and

later analytic expressions for R
(2)
6,0 were derived in [63, 64, 85]. The result for

general n
(
R

(2)
n,0

)
can be obtained numerically from the algorithm constructed

in [7]. The symbol [85] (see Sect 2.6) of the n-point amplitude R
(2)
n,0 is known

[45], as is the symbol of the six-point 3-loop MHV amplitude R
(3)
6,0 [51], the

six-point, 4-loop, MHV amplitude R
(4)
6,0 [50], the seven-point, 2-loop, MHV

amplitude R
(2)
7,0 [83] and the 6-point, 2-loop, NMHV amplitude R

(2)
6,1 [52]. In

special two-dimensional kinematics (see Sect 2.2), remarkably concise analytic

expressions for R
(2)
n,0 were derived in [62] at n=8 and in [89] for all n. An ansatz

for analytic expressions of the three-loop MHV expression R
(3)
n,0 were obtained

in [91] for n = 8 in special 2d kinematics and further generalised to n = 10.

This was then completed with additional ‘mixed’ terms up to n = 12 in [47].
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2.2 Special Kinematics and Collinear Limits

In the next few sections we follow our work in [80] and draw on earlier work

to outline the special two-dimensional kinematics we will subsequently use to

explore the structure of the amplitude. Alongside this, in Sect 2.4 we show

work presented in [80] on the way in which one can perform collinear limits

in 2d kinematics on the remainder function Rn and the manner in which this

helps us to constrain the form of our amplitude. These insights will eventually

lead to the uplifting formula in Chapter 4.

Variables

Super-amplitudes are functions of bosonic variables (the lightlike momenta

pi of external particles) as well as fermionic variables ηAi [101] (Here A is an

index for the four components of the Grassmann vector, and i labels which

variable it belongs to) which take into account the different states in the

super Yang-Mills multiplet which are being scattered. All k-components of

the NkMHV amplitudes An,k arise from the Taylor expansion of the super-

amplitude in terms of the Grassmann variables ηAi (see Sect 5 of [79]).

It will be expedient to rewrite the external data
{
pµi , η

A
i

}
in terms of “region

momenta” xα,α̇i,i+1 and their fermionic counterparts θαAi which are defined as

follows

pµσ
µ
αα̇ := pαα̇i =λαi λ̃

α̇
i = xαα̇i − xαα̇i+1 α, α̇ = 1, 2

λαi η
A
i = θαAi − θαAi+1 A = 1, 2, 3, 4 (2.2.1)

λαi and λ̃α̇i are standard two-component helicity spinors in terms of which

one can write any massless 4-momenta (pi). These new chiral superspace

coordinates Xi = (xi, θ
A
i ) define the vertices of the n-sided null polygonal

contour for the Wilson loop dual to the n-point super-amplitude [4, 34, 59].

We will also make use of momentum supertwistors [92, 100] which trans-

form linearly under SU(2, 2 | 4) dual-superconformal transformations. The

supertwistors are defined via

Zi =
(
Za
i , χ

A
i

)
=
(
λαi , xαα̇,iλ

α
i ; θAα,iλ

α
i

)
(2.2.2)

where Za denote the four bosonic, and χA the four fermionic components.
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2.3 Review of Helicity-Preserving Collinear

Limits

A collinear limit occurs when a number of consecutive external momenta are

changed towards having the same direction i.e. they become ‘collinear’. For

us the usefullness of these limits will be in using them to restrict the allowable

forms of an amplitude. As an example an n-point amplitude must become the

(n − 1)-point amplitude under ANY and ALL collinear limits of two neigh-

bouring external momenta, potentially with a small amount remaining which

we will call a ‘splitting function’ and whose form is highly non-trivial itself.

This restriction will later be used extensively to use the form of lower-point

amplitudes to build a higher-point amplitude.

Here we will describe how the collinear limits, where (m+1) consecutive

momenta (m ≥ 1) become collinear, act on the remainder super-amplitude

Rn and its logarithm Rn. In [80] we found a new and very simple formula

containing all collinear limits on all amplitudes in a single simple formula.

We begin with the simple and known result that the full super-amplitude An

factorizes in the (m+ 1)-collinear limit as follows

An → An−m × Splitm (2.3.1)

where An−m is a super-amplitude with n−m external states, and the expression

Splitm denotes the splitting function. The splitting function can on one hand

be thought of simply as “everything left over under the collinear limits once

the lower-point amplitude has been reformed”. However, in fact, the splitting

function is itself a super-amplitude, with all the necessary structure which

that implies. As such we can stratify Splitm in terms of the helicity-type of

those amplitudes in analog with (2.1.7), i.e. Splitm =
∑k

p=0 Splitm,p. As such,

we have different ‘types’ of splitting functions based on the value of p in this

sum. When p = 0 we call these “helicity-preserving” or“k-preserving” collinear

limits, since the helicity form of the principal amplitude remains unchanged

(e.g. NMHV → NMHV), when p 6= 0 we call these “helicity-changing” or

“k-changing” collinear limits as the principal amplitude changes helicity under

the limit (e.g. NMHV→ MHV). If we collect all these different collinear limits
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together we can express the effect of a collinear limit of m-points as:

An,k −→An−m,k × Splitm,0 + An−m,k−1 × Splitm,1 + ...

=
k∑
p=0

An−m,k−p × Splitm,p (2.3.2)

where k and p both denote the helicity-configuration of their respective am-

plitudes p = 0 being an MHV amplitude since it has no additional negative

gluons, p = 1 being an NMHV amplitude as it has one additional negative

gluon etc. These are all in analog to standard Grassmann expansion of super-

amplitudes (2.1.7).

The simplest collinear limit occurs when just two consecutive momenta in

the colour-ordered amplitude become collinear. The amplitude An factorizes

in this limit into the amplitude with n−1 external particles multiplied by the

splitting function, An → An−1 × Split1. It has been shown [29, 95] that the

BDS expression together with the tree-level amplitude, fully account for the

splitting amplitude Split1. This means that when we look at the action of this

minimal collinear limit on the remainder super-amplitude it has a particularly

simple form, Rn → Rn−1 (i.e. there is nothing left over in remainder function

after this collinear limit other than the super-amplitude Rn−1).

Let us next consider the triple collinear limit where m+1 = 3 consecutive

momenta become collinear, and furthermore we require that the helicity of

the amplitude is conserved, helicity-preserving collinear limits which focus on

the p = 0 term on the right-hand side of (2.3.2). The new feature of the

triple collinear limit compared to the simple collinear limit above, is that the

corresponding splitting function is no longer fully accounted for by the BDS

expression MBDS. When interpreted in terms of the remainder amplitude, the

factorisation theorem for the helicity-preserving triple collinear limit gives

lim
k fixed

Rn,k → Rn−2,k × Split2,0 = Rn−2,k ×R6,0 (2.3.3)

where Split2,0 is the helicity-preserving triple collinear splitting amplitude (or

to be more precise, the part which is not accounted for by the BDS expression).

Importantly, this splitting amplitude agrees with the 6-point MHV remainder

amplitude R6,0 [7, 28].



2.4 Full helicity changing and preserving collinear limits 13

Finally for helicity-preserving multi-collinear limits with (m + 1)-collinear

momenta, we have

lim
k fixed

Rn,k → Rn−m,k ×Rm+4,0 (2.3.4)

where similarly to (2.3.3) the splitting amplitude becomes the remainder am-

plitude Rm+4,0 itself [89, 90].

2.4 Full helicity changing and preserving

collinear limits

We are now ready to consider the general multi-collinear case, where we no

longer impose any restrictions on preserving the helicity-degree k of the ampli-

tude. We first published this work in [80] and its suprisingly compact form was

very important in making it of use for our work there on the Uplifting Formula

we derive in Chapter 4. Indeed the following equations can be seen as one of

the most important insights which led to the development and implementation

of the Uplifting Formula as it made possible the use of collinear-limits as a tool

to easily restrict the allowable forms of the remainder functions. We claim the

following simple formula as the analog of the super-amplitude factorisation

(2.3.1), directly for the remainder super-amplitude

Rn → Rn−m ×Rm+4 (2.4.1)

This formula can also be expanded in terms of Nk−pMHV components similarly

to (2.3.2) except that now all the splitting-function contributions are expressed

in terms of R’s:

Rn,k →Rn−m,k ×Rm,0 +Rn−m,k−1 ×Rm,1 + ...

=
k∑
p=0

Rn−m,k−p ×Rm,p (2.4.2)

The k-preserving collinear limit (2.3.4) is a special case of these general re-

lations which corresponds to a single term on the right-hand side of (2.4.2)

(p = 0).

The proof of this collinear factorization for Rn in (2.4.1) uses known uni-

versal collinear factorisation properties of amplitudes, combined with the dual-

superconformal symmetry of Rn. We know that the super-amplitude An has
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universal collinear factorisation limits (2.3.1), as does MBDS being the expo-

nent of the one-loop MHV amplitude. Therefore the remainder amplitude Rn

as defined in (2.1.6) must also have universal factorization properties. Thus we

only need to discover what the corresponding splitting super-amplitude is. To

do this let us focus on the maximal multi-collinear limits where n = m+ 4. In

this limit from universal factorisation we have Rm+4 → R4 × Splitm = Splitm

since R4 is trivial. On the other hand, the same (m+1)-collinear limit can be

achieved via a superconformal transformation on all m + 4 points which we

shall show below (Sect 2.5), therefore we have Rm+4 → Rm+4 in this case. The

conclusion is that the splitting amplitude Splitm = Rm+4 and (2.4.1) follows.

Taking the logarithm we get a linear realisation of multi-collinear limits,

Rn → Rn−m +Rm+4 (2.4.3)

equations (2.4.3) or (2.4.1) constitute our main result as far as general collinear

limits are concerned, and they will play a key role in constructing the uplift

to general n of the amplitude in the 2d external kinematics which we later

turn our attention to. However, first we wish to re-emphasize that ultimately

we claim that the simplest, linear realisation of these multi-collinear limits is

found by taking the logarithm of the super-amplitude and not acting on the

super-amplitude itself. The simplification of collinear limits which we here

present is wonderfully compact and allows us a very easy way, when writing

our amplitudes in the correct form, to see that amplitudes obey the correct

collinear limits. The key upshot, as will be seen in later chapters is that this

allows easy use of collinear limit restrictions to constrain the allowed form for

amplitudes.

2.5 Collinear limits and (super)conformal

transformations

The reason for the very simple form of the collinear factorisation of reduced

amplitudes under the (m+1)-collinear limit comes from universal collinear fac-

torisation of super-amplitudes, combined with (dual) superconformal symme-

try. Applying the (m+1)-collinear limit on a (m+4)-point reduced amplitude

gives the 4-point super-amplitude (which is simply 1 for the reduced super-

amplitude) multiplied by the splitting super-amplitude. On the other hand as

we shall show now, performing the (m+1)-collinear limit on the (m+4)-point
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super-amplitude can be achieved via a superconformal transformation. Indeed

this superconformal transformation will become the definition of the collinear

limit, defining precisely the relative speed with which the fermionic coordinates

approach collinearity compared to the bosonic variables.

We will give collinear limits in terms of superconformal transformations for

the case of interest, namely in 2d kinematics, since the discussion is particu-

larly simple here and the motivation for the simplifications resulting from these

kinematics is given in Sect.2.7. We discuss the superconformal group SL(2|2)

acting on unconstrained variables (super-twistors) (z, χ) as defined in (2.2.1)

and (2.2.2). The bosonic case is simply the well-known Möbius transforma-

tion. The general 4d bosonic case was discussed in [3] where it was related to

the family of conformal transformations preserving a light-like square and the

generalisation of this to the superspace case should follow.

So we begin with an (m+4)-point reduced super-amplitudeRm(Z1, . . .Zm+4)

(where this is a function of supertwistors Z defined in (2.2.1) and (2.2.2),) and

we wish to perform the (m+1)-collinear limit on this. To this effect we want

to send zm+4, zm+2, . . . z6 → z4 and similarly χm+4, χm+2, . . . χ6 → χ4. In par-

ticular all odd-point variables are unchanged and we do not act on them (in 2d

kinematics they are acted on via a separate SL(2 | 2)+ which we can choose

to be the identity) but more importantly z2 and χ2 are also unchanged. In

other words we wish to find an SL(2 | 2)− transformation (or more precisely

family of transformations) which keeps z2, χ2 fixed whilst all other z → z4 and

all other χ→ χ4.

We can find precisely such a transformation. We use standard coset tech-

niques to implement the SL(2|2) transformations. For example, the conformal

part of SL(2|2) acts as follows

z → az + b

cz + d
, χ→ χ

cz + d
. (2.5.1)

We first use this to send z2 → 0, z4 → ∞ and χ2, χ4 → 0. At this point

there is a simple family of transformations keeping these points fixed (b =

c = 0 , d = 1/a), so that z → a2z, χ → aχ with a parametrising a family

of conformal transformations, and a→ 0 corresponding to the collinear limit.

Finally, transforming back to the original coordinates we thus construct the



16

explicit conformal transformation implementing our collinear limit as

z → z2 a
2(z−z4)−z4(z−z2)

a2(z−z4)−(z−z2)

χ→ aχ (z4−z2) + (1−a) [ aχ2 (z−z4) + χ4 (z−z2)]

(z−z2)−a2(z−z4)
. (2.5.2)

Notice that the z transformation is simply a Möbius transformation as ex-

pected. The points (z2, χ2) and (z4, χ4) are fixed, but in the limit a → 0 all

other points approach (z4, χ4) corresponding to the collinear limit.

In particular when z is close to z4 the transformation simplifies to

z−z4 → a2(z−z4) +O(z−z4)2 χ−χ4 → a (χ−χ4) +O(z−z4) . (2.5.3)

We see that we are taking a very specific collinear limit, where the χ’s approach

the limit at half the rate that the z’s approach the limit.

Thus we have shown that the (m + 1)-collinear limit zm, zm−2, . . . z6 → z4

and similarly χm, χm−2, . . . χ6 → χ4 can be implemented (and indeed explic-

itly defined) via a family of superconformal transformations. Since Rm+4 is

superconformally invariant, the function is unchanged by the collinear limit,

in particular it is finite and we have Rm+4 → Rm+4. Thus Rm+4 is the (m+1)-

collinear splitting amplitude.

2.6 The Symbol

We follow the discussion of [91] and introduce the fundamental concepts as-

sociated with the use of “the symbol”. There is a wealth of material on the

symbol and its role in fundamental physics and scattering amplitudes, for fur-

ther information see [41, 44, 51, 63, 64, 84, 85]. Essentially this prescription

is a method to map highly complicated polylogarithmic functions and their

relatives to tensors involving rational functions. By utilising this tool one can

render obscure polylogarithmic identities to manifest algebraic identities which

the tensor satisfies. Using this the authors of [85] reduced a 17-page formula ex-

pressing the direct computation of the hexagon Wilson loop at 2-loops [63, 64]

to a single line. Some more recent results which concern amplitudes at the

integral level have been given as symbols rather than functions [44, 51].

The “symbol” itself is still a relatively new (at least to physicists’) and

increasingly important tool, in the context of particle physics. It was intro-

duced in [85] and has already proved itself both highly powerful and useful in
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the specialised and highly supersymmetric arena of N = 4 SYM. However, we

might anticipate that it will be useful more generally in particle physics (see

e.g. [41]).

The symbol associates to any (generalised) polylogarithm, a tensor whose

entries are rational functions of the arguments. The rank of the tensor is

equal to the weight of the polylogarithm. For example log(x) is a function of

transcendentality one (weight one) and so gives rise to a 1-tensor

S(log(x)) = x (2.6.1)

If we now consider the classical polylogarithms of transcendentality w, they

have a symbol given as

S(Liw(x)) = −(1− x)⊗
w−1︷ ︸︸ ︷

x⊗ · · · ⊗ x (2.6.2)

The symbol inherits several properties from logarithms

· · · ⊗ xy ⊗ · · · = · · · ⊗ x⊗ · · ·+ · · · ⊗ y ⊗ . . .

· · · ⊗ 1

x
⊗ · · · = − · · · ⊗ x⊗ . . . (2.6.3)

from which naturally follows the key property that the symbol vanishes if and

only if any of its entries equal unity

· · · ⊗ 1⊗ · · · = 0 (2.6.4)

It is also blind to multiplication by constants.

The final property of the symbol we require is to understand how to take

the symbol of products of functions. To do this we take the shuffle product of

the symbol of each function

S(fg) = S(f)qqS(g) (2.6.5)

For example,

S(Li2(x) log(y)) = (−(1− x)⊗ x)qq y
= −(1− x)⊗ x⊗ y − (1− x)⊗ y ⊗ x− y ⊗ (1− x)⊗ x

(2.6.6)
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and for three log functions, we have

S(log(x) log(y) log(z)) = xqq yqq z = (x⊗ y + y ⊗ x)qq z
= x⊗ y ⊗ z + x⊗ z ⊗ y + z ⊗ x⊗ y + y ⊗ x⊗ z + y ⊗ z ⊗ x+ z ⊗ y ⊗ x

(2.6.7)

The symbol can be defined recursively and for many purposes it can be use-

ful to do so, for example multiple polylogarithms are motivated more naturally

in this manner. One can write the total derivative of any weight-w generalized

polylogarithm (here we mean any function with a well-defined rank-w symbol)

as follows:

df =
∑
i

gid log(xi) (2.6.8)

where the gi are weight (w−1)-polylogarithms. Then the corresponding symbol

is given as

S(f) =
∑
i

S(gi)⊗ xi (2.6.9)

This definition together with (2.6.1) gives all the above properties.

Before continuing we should note that the symbol is only sensitive to the

highest weight transcendentality part. There is a generalization of these ideas

(using Bloch groups) which gives the complete Hopf algebra [81] and as such

can determine the lower transcendentality terms too [65]. However in N = 4

all amplitudes at a given loop order are expressed in functions of uniform

transcendentality and as such we will not have recourse to explore these ideas

here.

The symbol is exceptionally useful since it trivializes very complicated iden-

tities involving polylogarithms, reducing them to a linear algebra problem. The

most spectacular example of such a simplification, as mentioned earlier, is in

reducing the 17 page formula which was computed for the hexagon two-loop

Wilson loop in [63, 64] to the single line formula in [85]. However the inverse

process whereby one finds the function from the symbol is far from straightfor-

ward to do in practice. Indeed the symbol is generally much more complicated

and longer than the actual functions which produce it due to the shuffle product

and additionally the symbol is also usually non-unique. The great advantage

of the special kinematics we consider here is that the functions that occur will

turn out to be relatively simple and after obtaining the symbol we are able to

reconstruct the functional form for the amplitudes we consider.
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There is an additional constraint acting on the symbol whose effect is to

ensure that the symbol corresponds to a genuine function, the so-called integra-

bility constraint. The fact that d2f = 0 together with its recursive definition

give these non-trivial and powerful constraints on the symbols of functions.

Namely for a weight w-tensor we obtain (w−1) equations

S(f) =
∑

x1 ⊗ · · · ⊗ xw ⇒ (xi ∧ xi+1)
∑
i

x1 ⊗ . . . x̂i ⊗ x̂i+1 ⊗ · · · ⊗ xw = 0

(2.6.10)

where the hatted terms are omitted from the symbol. We make extensive use

of this constraint in deriving our later results. Indeed we next turn to the

n-point, 2-loop, MHV calculation as an example using what we have set out

thus far, as calculated in [91].

There is still much more currently known as well as to be learnt about the

symbol, however to avoid an excess of non-essential background material we

will avoid giving additional information and direct the interested reader to the

aforementioned references.

2.7 Two-dimensional Kinematics

In this section we give details and conventions for the special kinematics,

first introduced in [5], where the external momenta pi lie entirely in (1 + 1)-

dimensions. However first we wish to briefly introduce the concept of a Wilson

loop

A Wilson Loop variable is defined as the trace of a path-ordered exponential

of a gauge field transported along a closed line C.

WC := Tr

(
Pexp

[
i

∮
C

Aµdx
µ

])
(2.7.1)

where this quantity has a duality to certain amplitudes calculated in planar

N = 4. However, here we are interested in the contour C which has a very

simple relationship to the dual-momenta defined in (2.2.1), where it is easy

to see that due to conservation of momentum, these variables xαα̇i provide a

polygon with the edges being the momenta. Part of such a contour is shown in

Fig.2.1 where in this instance all the momenta lie in (1 + 1)-dimensions and as

such we have drawn the figure in light-cone coordinates. The region momenta

xαα̇i (vertices of the corresponding Wilson loop contour) have the following
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Figure 2.1: Figure illustrating part of a zig-zag Wilson loop contour in 2d
kinematics. Vertices xαα̇i are here defined in terms of light-cone coordiantes.
In 2d the contour can also be specified by giving every other vertex x2,x4,x6,...
and a prescription such as (2.7.2) to differentiate between ‘flipped’ contours.

form in lightcone coordinates (x+, x−):

xi =

{
(zi−1, zi) , i even

(zi, zi−1) , i odd
(2.7.2)

Only an even number of vertices is possible in this 2d kinematics, and we

continue denoting it as n (rather than 2n as sometimes done in the literature).

In our notation zi components with odd values of i lie along the x+-axis, and

the “even zi’s” are along the x−-axis, as one can see instantly from Fig. 2.1. We

will frequently refer to them as ‘odd’ and ‘even’ coordinates. All the (bosonic)

functions we consider can be written in terms of Lorentz invariant intervals

zij := zi−zj where both i, j are either even or odd. In this notation we must

remember that the even and odd coordinates are independent of each other.

It is instructive to view the 2-dimensional kinematics from the point of view

of momentum twistors (2.2.2). In 2d the bosonic twistors Za
i = (λαi , xα̇α,iλ

α
i )

reduce as follows, for all even values of i we have

pαα̇i =

(
0 0

0 p−i

)
= λαi λ̃

α̇
i ⇒ λαi =

(
0

1

)
, λ̃α̇i =

(
0

p−i

)
, (2.7.3)

and

xα̇α,iλ
α
i =

(
x+
i 0

0 x−i

)(
0

1

)
=

(
0

zi

)
. (2.7.4)
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For odd values of i the story is similar, and as a result, momentum twistors in

2d have a checkered pattern:

Zi =

{
(Z1

i , 0, Z
3
i , 0) ≡ (1, 0, zi, 0) i odd

(0, Z2
i , 0, Z

4
i ) ≡ (0, 1, 0, zi) i even ,

(2.7.5)

which is a manifestation of SU(2, 2)→ SL(2)+ × SL(2)− in 2d.

In 2d kinematics it is then natural to define an SL(2)±-invariant two-

bracket of twistors,

< ij >:=


Z3
i Z

1
j − Z1

i Z
3
j i and j odd

Z4
i Z

2
j − Z2

i Z
4
j i and j even

0 otherwise

(2.7.6)

From (2.7.6) and the right-hand side of (2.7.5) we have that < ij >= zij and

the Lorentz-invariant intervals zij have the standard two-bracket interpretation

(but in terms of reduced 2d twistors rather than helicity spinors).

Furthermore, the standard SL(2, 2)-invariant twistor 4-bracket contraction,

< ijkl >:= εabcdZ
a
i Z

b
jZ

c
kZ

d
l , (2.7.7)

reduces in 2d to a product of two-brackets if there are two even and two odd

indices, or vanishes otherwise: e.g. < 1234 >=< 13 >< 24 >. The principal

point here is that lightcone coordinates are interchangeable with twistors in 2d

and only two-brackets of bosonic twistors (of the same parity) can appear.

For super-amplitudes in 2d, being “super” i.e. supersymmetric it may

be considered natural to consider a supersymmetric reduction, SU(2, 2|4) →
SL(2|2)+ × SL(2|2)−, under which momentum supertwistors (2.2.2) become

[46]

Zi = (Za
i ; χAi ) =

{
(Z1

i , 0, Z
3
i , 0;χ1

i , 0, χ
3
i , 0) i odd

(0, Z2
i , 0, Z

4
i ; 0, χ2

i , 0, χ
4
i ) i even ,

(2.7.8)

and we will indeed mostly consider this additional reduction in fermionic co-

ordinates also. On the other hand one should beware that while we may still

compute meaningful forms for either Rn,k or Rn,k the MHV-prefactor to this

from (2.1.6) contains

δ(8)

(
n∑
i=1

λiηi

)
(2.7.9)
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which under this SU(4) splitting necessarily goes to zero. For Rn,k with k = 0, 1

this reduction in the fermionic superspace co-ordinates has no effect beyond

a trivial alteration between the way in which the fermionic variables can be

contracted, which does not change any of the amplitudes in this case. All

results obtained can straightforwardly be uplifted to the case with full fermionic

dependence1. Beyond NMHV this restriction however does mean a loss of

information. Why this matching should be the case at NMHV level is not

well understood, but comes from the observed fact that the negative helicity

must, for some unknown reason, be split equally between even-labelled and

odd-labelled particles.

The remainder function Rn is dual conformally invariant [59, 61] and as

such its lowest bosonic component (Rn,0) can be written as a function of cross-

ratios. The non-MHV components (Rn,k>0) also depend on superconformal

invariants involving Grassmann variables. We first concentrate on the purely

bosonic case of the MHV amplitudes.

We define the most general cross-ratios in special 2d kinematics as

uij;kl =
< il >< jk >

< ik >< jl >
. (2.7.10)

This equation is meaningful only for i, j, k, l being ALL odd or ALL even. In

other words, all the cross-ratios fall into two separate classes with all indices

being even or with all indices odd. Cross-ratios with indices of mixed parity

(even and odd) do not exist.

The general cross-ratios in 2d kinematics also satisfy an additional algebraic

constraint,

ui,j;k,l = 1− ui,l;k,j . (2.7.11)

Fundamental cross-ratios are given by,

uij =
x2
i,j+1x

2
i+1,j

x2
i,jx

2
i+1,j+1

=
〈i−1, j+1〉〈i+1, j−1〉
〈i−1, j−1〉〈i+1, j+1〉 = ui−1,i+1;j−1,j+1 . (2.7.12)

For the lowest in n cases, n = 8 and n = 10, all non-trivial 2-component cross-

ratios are of the form ui,i+4, with i = 1, . . . , 4 for the octagon, and i = 1, . . . , 10

for the decagon with the additional constraint:

n = 8 : 1−ui,i+4 = ui+2,i+6 , i = 1, 2 (2.7.13)

n = 10 : 1−ui,i+4 = ui+2,i+6 ui−2,i+2 , i = 1, . . . , 10. (2.7.14)

1 I.e. non-vanishing (χ1, χ2, χ3, χ4) in both equations (2.7.8)
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At n = 8 points there are just four fundamental cross-ratios, u1, u2, v1 and v2:

u1 := u1,5 , u2 := u2,6 , u3 := 1−u1 := v1 , u4 := 1−u2 := v2 .

(2.7.15)

In order to relate general cross-ratios to this reduced set we may use

ui,j;k,l =

j−1∏
I=i+1

l−1∏
K=k+1

uI,K . (2.7.16)

This reduced set of ui,j cross-ratios also has a 4d interpretation (2.7.12), ui,j =
x2
i,j+1x

2
i+1,j

x2
i,jx

2
i+1,j+1

.

For the two lowest-n cases (the octagon and the decagon), all non-trivial

2-component cross-ratios are of the form ui,i+4 (2.7.13), with i = 1, . . . , 4 for

the octagon and i = 1, . . . , 10 for the decagon. The cross-ratios ui,j are still

not all independent because of equations (2.7.11), leaving n − 6 (i.e. 2 for

the octagon and 4 for the decagon) independent solutions. For the octagon

(2.7.11) amounts to

n = 8 : 1−ui,i+4 = ui+2,i+6 , i = 1, 2 , (2.7.17)

and for the decagon,

n = 10 : 1−ui,i+4 = ui+2,i+6 ui−2,i+2 . (2.7.18)

To simplify notation at low n, it is sometimes convenient to use

ui := ui,i+4 . (2.7.19)

While at n = 8 and n = 10 these are the only cross-ratios, this is no longer

true at n ≥ 12 where ui,j cross-ratios appear with j − i ≥ 6. More details on

the cross-ratios in the special kinematics can be found in [89].

2.8 Collinear limits in the 2d kinematics

From the zig-zag kinematics it is clear that the lowest collinear limit one can ap-

ply and remain within the (1+1)-dimensional kinematics is the triple collinear

limit, where three consecutive edges collapse into one.The reason for this is

that amplitudes in two-dimensional kinematics require an even number of ex-

ternal particles and as such a simple double-collinear limit would require us
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zn−2

zn
zn−3

zn+1

zn−1

Figure 2.2: Figure illustrating the triple/soft collinear limit zn → zn−2 while
the variable zn−1 remains free.

taking two momenta restricted to opposite lightcone directions and taking the

limit as they approach each other, which would necessarily be as they both

approached 0. This would not be a collinear limit, in fact it would be a double-

soft limit and as such we will only consider collinear limits of an odd-number

of particles. More precisely a triple collinear limit this should be thought of as

a collinear-soft-collinear limit, where three edges with momenta pn−2, pn−1 and

pn collapse into a single edge pn−2. In practice, in a triple collinear limit the

middle momentum becomes soft, pn−1 → 0. In terms of twistors, or the light-

cone components zi’s, we see that zn → zn−2 while the variable zn−1 remains

free, as demonstrated in Fig 2.2.

We will ultimately be writing our amplitudes in terms of cross-ratios ui,j

and as such it is important to understand how the triple collinear limits in

particular act on these objects. Naturally any collinear limit which leaves

all terms i−1, i+1, j−1 and j+1 unaffected will have no effect on the cross-

ratio. However, if we have any collinear limit which acts across i or j, that is

i−1↔ i+1 and j−1↔ j+1 send:

lim
i−1→i+1

ui,j = lim
i−1→i+1

〈i−1, j+1〉〈i+1, j−1〉
〈i−1, j−1〉〈i+1j+1〉 =

〈i+1, j+1〉〈i+1j−1〉
〈i+1j−1〉〈i+1j+1〉 = 1

(2.8.1)

If we next consider a collinear limit which takes i+1 ↔ i+3 then we have a

simple modification for the cross-ratio which generically will be well-defined

and non-zero, with the exception being any collinear limit sending i+1↔ j−1

or j+1↔ i−1, where the term would go to 0.

The final collinear limit will be where e.g. i−1 becomes soft such as when

i−2↔ i, this in turn sends i−1→ 0 (this is the soft-limit implicit in our triple

collinear limit) which could potentially lead to an ill-defined term log(ui,j) =
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log
(
〈i−1,j+1〉〈i+1,j−1〉
〈i−1j−1〉〈i+1,j+1〉

)
. As such, we require any term with i−1 in the argument

of the symbol entry to drop out, that is we require multiplication by another

term which goes to zero under i−2 ↔ i etc. We use these ideas explicitly

when we derive results in two-dimensional kinematics both below and in later

chapters and hope that through later use the brief explanation here gains

additional clarity.

In the 2d kinematics there are no non-trivial cross-ratios at 6-points (lowest

non-trivial case being R8,0). Additionally the 6-point remainder amplitude

R6 is a (coupling dependent) constant multiplied by the tree-level amplitude,

which can be reabsorbed into Rn which we now call R̃n [91].

R̃n = Rn −
n− 4

2
R6 , (2.8.2)

So at the level of super-amplitudes and for all triple collinear limits, we have

R̃n → R̃n−2 . (2.8.3)

We remark here that for Rn = logRn expressions at different order in the loop

expansion do not mix,

R̃(`)
n → R̃(`)

n−2 , (2.8.4)

R̃(`)
n → R̃(`)

n−m + R̃(`)
m+4 , for m ≥ 4 , (2.8.5)

and thus R̃n is the natural object to use for collinear uplifts of amplitudes to

higher number of points. Before we continue, let us first clarify what precisely

we mean by the term, “uplift”. By uplift we intend that we wish to write

down the n-point amplitude in such a way that the reduction under a triple

collinear limit to the (n−2)-point amplitude is manifest. So if we find the

correct combination of the (n−2)-, (n−4)-,... point pieces and an additional

vanishing part, then we can construct the n-point amplitude in this way, where

collinear limit restrictions are manifest. For example the 10-point, 2-loop MHV

amplitude in 2d kinematics must be a combination of the 6- and 8-point pieces

and a part which vanishes in all collinear limits as we shall see next.
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2.9 2-loop, n-point MHV Amplitude in Re-

duced Kinematics

Before we turn our attentions to the two-loop amplitude, we should first ask

ourselves why not start with the one-loop case? We first demonstrate that

there can be no non-trivial kinematic function at 6-points in 2d kinematics

and as such the more detailed analysis can commence at 8-points. We show

that such a function (i.e. an 8-point, 1-loop function) cannot exist, since under

the simple triple collinear limit we should obtain the 6-point, 1-loop MHV

amplitude. However this must necessarily be constant since all cross-ratios at

6-points go to a constant in the 2d kinematical limit:

〈1, 2, 3, 4〉〈4, 5, 6, 1〉
〈1, 2, 4, 5〉〈3, 4, 6, 1〉 →

〈1, 3〉〈5, 1〉〈2, 4〉〈4, 6〉
〈1, 5〉〈3, 1〉〈2, 4〉〈4, 6〉] = 1 (2.9.1)

etc. As such we can have no conformal cross-ratios at 6-points in our reduced

kinematics, meaning all remainder functions at 6-points must be a constant

with respect to kinematics.

Before continuing let us briefly set out the basis of two-dimensional cross-

ratios at eight-points and discuss their behaviour under our standard triple

collinear limits. At eight-points there are four cross-ratios all of the form

ui,i+4:

u1,5 u3,7 u2,6 u4,8 (2.9.2)

These cross-ratios are related to one another by the simple equations

u1,5 = 1− u3,7 u2,6 = 1− u4,8 (2.9.3)

as such when u1,5 → 0 under a triple collinear limit then necessarily u3,7 → 1

and vice versa. As such if we have u1,5 in the symbol then we necessarily need

u3,7 in the symbol such that the term vanishes whenever either u1,5 or u3,7 goes

to 0, and naturally there is an analogous statement about u2,6 and u4,8. So let

us briefly see what happens to u1,5 under all 8 possible triple collinear limits

since the other results can be deduced from this simply by cyclicity. Let us

remind ourselves that we defined u1,5 as:

u1,5 =
〈8, 6〉〈2, 4〉
〈8, 4〉〈2, 6〉 (2.9.4)
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and this remains completely unaffected by all limits acting solely on odd-

labelled particles e.g. lim1→3. So let us write down what happens to this term

under the other four triple collinear limits:

lim
2↔4

u1,5 = 0 lim
4↔6

u1,5 = 1 lim
6↔8

u1,5 = 0 lim
8↔2

u1,5 = 1 (2.9.5)

So as we can see u1,5 goes to 1 under any triple collinear limit across 1 or 5 but

goes to zero in triple collinear limits across 3 or 7. In general then our result

which we shall use from this point forward is simply:

lim
i−1↔i+1

ui,j = 1 = lim
j−1↔j+1

ui,j (2.9.6)

Now at 8-points one-loop, it is very simple to see that there is no weight-two

symbol (meaning no 2-tensor) which we can write down and which vanishes

in all triple collinear limits. For example if we wrote u3,7 ⊗ u1,5 then by our

definition (2.9.6) this would vanish in all triple collinear limits across 1,3,5 and

7 e.g. 8 → 2 and 4 → 6 etc. However it is only a function of even-points

and as such is left untouched by collinear limits such as 1 → 3. This very

easily demonstrates that in these reduced kinematics there can be no one-loop

remainder function at 8-points and by a simple induction argument, for any

number of external points.

We approach the question of the 8-point 2-loop remainder function in the

same vein, we now try to write a weight-4 symbol which vanishes in every

collinear limit. Note that here we want to write down the most general weight-4

symbol we can, but it must obey the dihedral symmetry (cyclicity and parity)

in addition to vanishing in all collinear limits and then also being ‘integrable’.

We will assume, as was done in the derivation [89, 91], that all entries of the

symbol are cross-ratios. This assumption has later been shown to be too re-

strictive for all two-dimensional kinematic amplitudes [47] and we need to allow

certain linear combinations of cross-ratios. Note that these linear-combinations

do not allow any single entry to vanish under more than two collinear limits,

to be explicit this means a symbol of weight n can only ever disappear in a

maximum of 2n distinct triple collinear limits. As such we will first begin using

the original assumptions of [89, 91] and then discuss possible additional terms

once we relax this assumption.

It is simple to see that if entries can only contain cross-ratios then every

symbol must contain all four of the cross-ratios at 8-points. If any ui,i+4 cross-

ratio is missing then the triple collinear limit across i and i + 4 will not go
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to a constant (2.9.6). For example if we take u2,6 ⊗ u2,6 ⊗ u4,8 ⊗ u1,5 then, as

discussed above, under the collinear limit 2 → 4 ⇒ u1,5 → 0, but we do not

have the cross-ratio u3,7 → 1 and this term ‘blows up’. Therefore we clearly

require inclusion of all cross-ratios and so we consider the 4! different symbols

which contain all 4 of the cross-ratios. Imposing the dihedral symmetry we

obtain only 3 non-trivial, independent terms and a constant R(2)
6 :

R(2)
8 = aX (2)

8 + bY(2)
8 + cZ(2)

8) + 2R(2)
6 (2.9.7)

where

S(X (2)
8 ) = u1,5 ⊗ u2,6 ⊗ u3,7 ⊗ u4,8 + 7 terms related by dihedral symmetry

S(Y(2)
8 ) = u1,5 ⊗ u2,6 ⊗ u4,8 ⊗ u3,7 + 7 terms related by dihedral symmetry

S(Z(2)
8 ) = u1;5 ⊗ u3,7 ⊗ u2,6 ⊗ u4;8 + 7 terms related by dihedral symmetry

(2.9.8)

All three terms separately vanish in the collinear limit, and are symmetric

under the full dihedral symmetry.

We now need to consider whether these symbols match to any actual func-

tion, that is, do they satisfy the integrability condition? We will derive the

first of these integrability conditions carefully and leave the other two as an

exercise. Let us consider the integrability condition (2.6.10) based on the

derivatives hitting the first two entries. When the derivatives act on the term

S
(
X (2)

8

)
we gain the term:

a
du1,5 ∧ du2,6

u1,5u2,6

u3,7 ⊗ u4,8 (2.9.9)

since d log (u1,5) = du1,5

u1,5
etc. We follow the same process when the derivatives

act on the first two entries of the other two terms and this gives us our first

restriction:

a
du1,5 ∧ du2,6

u1,5u2,6

u3,7 ⊗ u4,8 + b
du1,5 ∧ du2,6

u1,5u2,6

u4,8 ⊗ u3,7

+c
du1,5 ∧ du3,7

u1,5u3,7

u2,4 ⊗ u3,7 + dihedral = 0 (2.9.10)

Where “+ dihedral” represents all the additional terms related to these by

dihedral symmetry. We obtain two more equations from the derivatives hitting
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the first two entries, the second and third entries and the final two entries.

These restrictions are:

a
du2,6 ∧ du3,7

u2,6u3,7

u1,5 ⊗ u4,8 + b
du2,6 ∧ du4,8

u2,6u4,8

u1,5 ⊗ u3,7

+c
du3,7 ∧ du2,6

u3,7u2,6

u1,5 ⊗ u4,8 + dihedral = 0

a
du3,7 ∧ u4,8

u3,7u4,8

u1,5 ⊗ u2,6 + b
du4,8 ∧ du3,7

u4,8u3,7

u1,5 ⊗ u2,6

+c
du2,6 ∧ du4,8

u2,6u4,8

u1,5 ⊗ u3,7 + dihedral = 0

(2.9.11)

Now we consider the wedge terms, and since u1,5 = 1− u3,7 and u2,6 = 1− u4,8

then du1,5 = −du3,7 and du2,6 = −du4,8. The minus sign disappears at the

level of the symbol as it is blind to constants but this means there is only

independent wedge product du1,5 ∧ du2,6, since:

du1 ∧ du3 = du2 ∧ du4 = 0 du1 ∧ du2 = du1 ∧ du4 etc. (2.9.12)

So for example (2.9.10) becomes:

(a− b)du1,5 ∧ du2,6

u1,5u2,6
(u1,5 ⊗ u2,6 − u2,6 ⊗ u1,5 + u2,6 ⊗ u3,7 − u3,7 ⊗ u2,6+

u3,7 ⊗ u4,8 − u4,8 ⊗ u3,7 + u4,8 ⊗ u1,5 − u1,5 ⊗ u4,8) (2.9.13)

The other restrictions are analogous and fix the result a = b = c.

This results in the symbol for log(u1,5) log(u2,6) log(u3,7) log(u4,8). As such

it is therefore clear that the suprisingly simple form for the 8-point 2-loop

remainder function is fixed to be:

R(2)
8 = a(X (2)

8 + Y(2)
8 + Z(2)

8 ) + 2R(2)
6

= a log(u1,5) log(u2,6) log(u3,7) log(u4,8) + 2R(2)
6 (2.9.14)

which agrees with known results [91] where a = −1
2

and R(2)
6 = −π4

36
. As

such we have been able to derive the 8-point 2-loop remainder function purely

from symmetry considerations and some assumptions about the entries of the

symbol up to two un-fixed coefficients, of which one is merely the 6-point 2-loop

constant.

The question now becomes once we relax the assumption as done in [47]
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what additional terms could we include in this analysis? Note that the result

of R
(2)
n;0 from [89] has been shown to be correct, numerically and with other

non-trivial checks, as such if we find that under our symmetry restrictions

there are additional permitted terms, this indicates there must be additional

restrictions preventing these terms from appearing. For example it is simple

enough to see that the term u1,5⊗u3,7⊗ u1,5−u2,6

u3,7
⊗u4,8 satisfies the property that

it vanishes in all triple collinear limits (2.9.6), so what is the reason that such

a term does not appear in the 8-point MHV remainder function? We could

also use entries of this more complicated form v−w
1+v

in more than one position,

indeed we could have all four entries of the symbol string being of this more

complicated form, provided it still vanishes under collinear limits. In [47] an

additional assumption was made when deriving the 2-loop NMHV amplitude

that this is not the case and these terms appear in only one position. This led

to the correct results for the 2-loop NMHV amplitude and in turn the 3-loop

MHV amplitude as checked numerically, however there seems to be no proof of

this yet. We use this assumption and show therefore that these terms cannot

be included in the two-loop MHV remainder function.

There are important restrictions on where we can and cannot place these

additional, more complicated terms within the symbol string. Firstly as was

explained in [54], where the authors working in four-dimensions built the sym-

bol of the four-point amplitude at three-loops dealing with terms of our new

form, we note that these terms cannot occur in the first position. The reason

for this is simply that the first entries of a symbol determines the branching

points of the function, and the symbol of the discontinuity across the branch

cut is obtained by dropping this first entry from the symbol. For Feynman in-

tegrals without internal masses the branch cuts extend between points where

one of the Mandelstam invariants = 0,∞. As such, the first entries of the sym-

bol must be distances between two points x2
ij, which combined with conformal

invariance means that the first-entries of conformally invariant functions must

be cross-ratios. Equally as in [45] we note that the branch cuts themselves

have branch cuts, the kinematical interpretation of which is more complicated,

but dictate the location of the endpoints can involve at most one extra channel

and therefore should be similar to the first entry, i.e. the second entry of a

symbol of a conformal function can only be a cross-ratio. It is not until the

third position where the branch cut discontinuity may depend on up to three

channels that we can have more complicated entries, these ideas being utilised

in [78] as well as elsewhere.
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Additionally, following [53] we will assume that the last entry of the symbol

has restrictions preventing the placing of these more complicated terms there

also. The observations of [45] suggests that this fact may be related to a

supersymmetric formulation of the Wilson loop. These observations suggest

that the full symbol of any conformal function should also have its final symbol

entry drawn from the cross-ratios alone. As such we now know that these

more complicated entries cannot appear in the first, second or last slots of our

symbol, meaning at two-loops they can only appear in the third position. Now

it is simple to see that they disappear under the integrability condition. To

see this consider the single term

α [u4,8 ⊗ u3,7 ⊗ (u1,5 − u2,6)⊗ u1,5] (2.9.15)

and take the integrability condition on the final two entries gives us a contri-

bution

α
−du2,6 ∧ du1,5

(u1,5−u2,6)u1,5

u4,8 ⊗ u3,7 (2.9.16)

for this term to be cancelled we would need another term to give the term with

the opposite sign. This would clearly require another symbol entry u1,5 − u2,6

which can only go in the third spot and then the rest is fixed to be identical

to the term above. As such the only solution is for α = 0, and these terms not

to contribute here, however for the three-loop MHV amplitude these terms do

indeed contribute.

We will consider the question of building the amplitude at 10-points and

beyond in two stages and this approach will be a blueprint of sorts for later

work. We first ask what functions we could add at 10-points such that they

disappear in all possible collinear limits. Secondly we ask what is the correct

way to “uplift” the 8-point amplitude so that in any triple collinear limit we

recover the correct 8-point amplitude. The generalisation of this process to

higher-loop order, higher helicity configurations and higher points is the prin-

cipal result of the first half of this thesis. However the result for purely MHV

amplitudes was written down in [89] and [91] first, before it was generalised in

[80] and as such we will give the result for this case before moving on to the

question of implementing the 2-dimensional restrictions to NMHV amplitudes

in the next chapter.

There is no weight-4 tensor which disappears in all triple collinear limits at

ten-points. If we apply a similar analysis to that we performed at eight-points

we can see that we would need all five cross-ratios inside the symbol (2.9.6),
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as such we would require a symbol string of weight 5. For example the term

u1,5 ⊗ u3,7 ⊗ u2,6 ⊗ u4,8 := S where these indices are understood mod(10), this

term does not vanish in the triple collinear limits 8↔ 10 and 9↔ 1:

lim
10→8

S =
〈8, 6〉〈2, 4〉
〈8, 4〉〈2, 6〉 ⊗ u3,7 ⊗ u2,6 ⊗ u4,8 6= 0 (2.9.17)

Once again we note that relaxing the condition on the entries of the symbol

to contain particular linear-combinations of cross-ratios cannot contribute to

terms vanishing under additional collinear limits. This means that a weight

four symbol can never disappear under more than 8 distinct triple collinear

limits. It is clear that there will be no collinear-vanishing term at ten-points

or indeed at any higher number of points. This means the entire problem of

solving the n-point, 2-loop, MHV remainder function is merely the problem of

correctly uplifting the 8-point answer. It is known from [91] and [89] that the

correct way to do this is simply:

R(2)
10 = −1

2
(log(u10,2;4,6) log(u1,3;5,7) log(u2,4;6,10) log(u3,5;7,1) + cyclic)− π4

12
(2.9.18)

where we recall this definition of the cross-ratios from (2.7.12). Note that the

term written out explicitly, under the triple collinear limit 10→ 8 goes to:

R(2)
8 (1, 2, 3, 4, 5, 6, 7, 8) = −1

2
(log(u8,2;4,6) log(u1,3;5,7) log(u2,4;6,8) log(u3,5;7,1))−π

4

12
(2.9.19)

It is simple to check that all other terms either go to zero or cancel with one

another in this limit and a similar result can trivially be concluded for all other

triple collinear limits, due to cyclicity.

As such we conclude that the 2-loop, 10-point remainder function is uniquely

fixed by the 8-point function as found in [89, 91], which satisfies the correct

collinear limits and symmetries. This same analysis can be performed for all

higher points and as such we can obtain the n-point 2-loop remainder function

in the following way, if we label:

S
(2)
8 (xi, xj, xk, xl) = R(2)

8 (i−1, i, j−1, j, k−1, k, l−1, l) (2.9.20)

then the n-point answer can be written

R(2)
n =

∑
i/j/k/l/i

S
(2)
8 (xi, xj, xk, xl) + constant (2.9.21)
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where the notation i/j means i+1 < j, and the sum is understood to be cyclic.

This is the first and simplest manifestation of the general uplifting formula

which we will now dedicate the next two chapters to deriving as in [80]. We

first show how to include NMHV amplitudes in this analysis. Then, revisiting

this example and defining the notation more generally, we will give a general

formula for determining all n-point, NkMHV, `-loop amplitudes up to unfixed

constants, as an uplift of lower-point amplitudes and collinear vanishing parts

and discuss the recipe for determining these pieces.





3

NMHV One-Loop Amplitudes in

Two-Dimensional Kinematics

3.1 NMHV Amplitudes and R-Invariants

Let us start by considering the principal difference between the MHV and the

NMHV remainder functions, namely the introduction of additional fermionic

variables which count the extra negative helicity state. All of these amplitudes

are of order η12 (in the Taylor expansion in Grassmann variables) and as such,

once we move to the remainder function and remove the MHV prefactor and

with it a polynomial of η8, we are left with terms proportional to η4. We

know from our earlier discusssion of the superamplitude Sect 2.1 that all these

amplitudes are supersymmetrically related to the 3-negative gluon amplitude,

which will be proportional to η4
i , where i labels the additional negative he-

licity gluon. We also are aware that the amplitude must be dual-conformally

invariant. From this the question becomes how do we write down dual con-

formal invariant functions which supersymmetrically contain all the additional

helicity information for these NMHV amplitudes?

These invariant functions are known as “R-invariants” first derived in [59]

and then recast in momentum-supertwistor space in [100] and [8] which devel-

ops a geometrical picture of the R-invariants as polytopes which we will make

use of and which was a fore-runner of the recent Amplituhedron. We avoid a

long derivation, referring the interested reader to the above references, instead

we will simply give a definition and exploration of the relevant features.

An R-invariant is a dual-conformally invariant function of both bosonic and

fermionic variables as given in [100]. Note that four-brackets are functions of

35
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momentum twistors, and we use short-hand e.g. 1 ≡ Z1 etc.

R1,2,3,4,5 = R(Z1,Z2,Z3,Z4,Z5)

:=
δ0|4(χ1〈2, 3, 4, 5〉+ cyclic)

〈1, 2, 3, 4〉〈2, 3, 4, 5〉〈3, 4, 5, 1〉〈4, 5, 1, 2〉〈5, 1, 2, 3〉 (3.1.1)

where most of this notation should be familiar, however the numerator contains

a fermionic δ-function of χ-(Grassmann-)variables which we shall explain. A

fermionic δ-function acts in much the same way as a normal δ-function, in the

equation above it imposes the constraint (χ1〈2, 3, 4, 5〉 + cyclic)4 = 0, which

enforces all the supersymmetric relations between different helicity states in the

superamplitude. The χ-variables are related to our earlier fermionic variables

η through the definitions (2.2.1),(2.2.2) which we reproduce:

λαi η
A
i = θαAi − θαAi+1 A = 1, 2, 3, 4

Zi = (Zα
i , χ

A
i ) = (λαi , xαα̇,iλ

α
i ; θAα,iλ

α
i ) (3.1.2)

Returning to (3.1.1) we note that this function has five poles, these being

whenever any of the 4-brackets in the denominator go to zero. Some of these

poles are physical poles of the amplitude i.e all those of the form 〈i, i+ 1, j, j+

1〉 → 0, corresponding to pi · pj → 0. Those not of this form are spurious poles

which should drop out in the complete amplitude and we will revisit these

in the next couple of subsections. Suffice to say that such spurious poles will

cause problems term-by-term when we restrict our data to the two-dimensional

kinematics where (for example at 6-points) 〈5, 1, 2, 3〉 → 0.

Let’s now consider the way in which we will use these R-invariants to con-

struct amplitudes, the simplest way to see this is to start by calculating tree-

level amplitudes. We start with the 5-point NMHV amplitude which is simply

R1,2,3,4,5 × MHV. It is non-trivial to check that this is just the parity-flip

of the MHV amplitude which it must be at 5-points, since NMHV ≡ MHV.

At 6-points we have many ways of expressing the tree-level NMHV remain-

der function due to non-trivial linear identities which the R-invariants obey,

however the two we will concentrate on are:

R
(0)
6,1 = R1,2,3,4,5 +R3,4,5,6,1 +R5,6,1,2,3

= R2,3,4,5,6 +R4,5,6,1,2 +R6,1,2,3,4 (3.1.3)

we note here that there should be no confusion in notation between R-invariants
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and the notation for the remainder function since the indices distinguish one

from the other, for example the superscript (0) denotes that this is a tree-level

amplitude. We also will often use [1, 2, 3, 4, 5] := R1,2,3,4,5 as defined in (3.1.1)

as elsewhere in the literature.

We first encounter non-trivial linear relations at 6-points as we noted above,

so if we label the R-invariants at 6-points by their missing argument, we can

write the relation (3.1.3) as

(1) + (3) + (5) = (2) + (4) + (6) (3.1.4)

To check this equality in generality is highly non-trivial and it is not until

later in the chapter will we develop a method to check whether any two sets

of R-invariants are equivalent or not. Here we simply remark upon it as a

curious aside, lacking a unique way to write our amplitude will potentially be

an issue in our later analysis. For now though let us move on and see how

these R-invariants arise in the loop-level amplitudes.

In [9] we find an expression for the 5- and 6-point, one-loop NMHV ampli-

tude remainder as follows:

R
(1)
5,1 = [1, 2, 3, 4, 5]

(∫
AB

〈AB13〉〈1245〉〈2345〉−〈AB(512) ∩ (123)〉〈1345〉
〈AB12〉〈AB23〉〈AB34〉〈AB45〉〈AB51〉

)
(3.1.5)

where (512)∩ (123) denotes the intersection of these two planes in momentum-

twistor space, for calculational purposes we can re-express it simply as 〈5121〉Z2

Z3−〈5122〉Z3Z1 +〈5123〉Z1Z2 which naturally simplifies as the first two terms

are both zero.

R
(1)
6,1 = (1+g+g2) [(1)− (2) + (3)]

∫
AB

〈AB13〉〈AB46〉〈5612〉〈2345〉
〈AB12〉〈AB23〉〈AB34〉〈AB45〉〈AB56〉〈AB61〉

(3.1.6)

where g : i → i + 1 acts on everything to its right, both R-invariants (here

labelled as in (3.1.4) by the particle missing from argument) and integral. In

the integrals above there must be consideration made for the correct measure

and manner in integrating over the pair of twistors AB, however such a dis-

cussion would take us too far from our main aims and we will not elaborate

on it here, instead leaving it to [9, 100] and other associated papers.

In this chapter we will derive the one-loop analytic NMHV amplitudes in

2d kinematics purely from symmetry constraints. Not only do we avoid any

integration, but we will find a very simple uplift to all number of external
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points, and we will draw comparison between this and the uplift of the two-

loop MHV amplitude, thus motivating the search for a universal uplift in the

next chapter. First though we will have to deal with the issue of spurious poles

and it is to this we now turn our attention.

3.2 A Finite Basis of R-invariants in 2d

Let us begin this section by considering the NMHV, tree-level amplitudes which

can be written in the BCFW form [39]:

R
(0)
n,1 =

∑
1<i<j≤n

R1,i−1,i,j−1,j (3.2.1)

Where we defined the R-invariants before this in (3.1.1). From this we con-

centrate first on the 6-point, NMHV, tree-level amplitude which is written in

equation (3.1.3). Let us take the first term R1,2,3,4,5 and consider what poles it

has which are physical, which poles are unphysical but finite and which poles

are unphysical and ‘blow up’ in 2d kinematics. We recall (3.1.1) that:

R1,2,3,4,5 =
δ0|4(χ1〈2, 3, 4, 5〉+ cyclic)

〈1, 2, 3, 4〉〈2, 3, 4, 5〉〈3, 4, 5, 1〉〈4, 5, 1, 2〉〈5, 1, 2, 3〉 (3.2.2)

At six-points the only physical poles - i.e. ones which correspond to a Feynman

graph channels - are of the form 〈i, i+1, j, j+1〉 = 〈1, 2, 3, 4〉 and 〈2, 3, 4, 5〉.
This leaves us with three ‘spurious’ poles, which means that they do not cor-

respond to a channel in the Feynman graphs and as such should not be poles

of the complete amplitude, i.e. they should drop out of the overall sum. These

three poles are split into two groups, recall that four-brackets are only non-

zero if there are two-odd and two-even particles (2.7.7). The first group is

poles which are spurious but do not ‘blow-up’ in the two-dimensional kine-

matics 〈4, 7, 1, 2〉. The second and more interesting group of two-poles are

those which are both spurious and blow-up in the two-dimensional kinematics

〈3, 4, 5, 1〉 and 〈5, 1, 2, 3〉, and we now consider these one at a time.

Firstly we ask where else we could obtain a term which has the pole

〈3, 4, 5, 1〉? It should be clear that this can only come from two terms if we

require them to be of the form used in (3.2.1), the one we started with R1,2,3,4,5

and a new term R1,3,4,5,6. As such given that this is a spurious pole there would

be a kinematical choice where this pole and only this pole diverges and as such

it must be this combination which is free of this spurious pole. Similarly if we
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consider our second pole 〈5, 1, 2, 3〉 it is clear from an equivalent argument that

this must be cancelled using a term R1,2,3,5,6. From this argument it is appar-

ent that when one has a divergent pole there is a unique term in the BCFW

expansion (3.2.1) which must be included to cancel that divergent pole. So we

now have the combination

R1,2,3,4,5 +R1,2,3,5,6 +R1,3,4,5,6 (3.2.3)

From (3.1.3) we can see that this is in fact the six-point NMHV tree but let us

consider these as three terms in the BCFW expansion of the n-point amplitude.

If we make a list of the poles which diverge in two-dimensional kinematics we

will now find that there are three terms and each occur in two R-invariants

〈3, 4, 5, 1〉, 〈5, 1, 2, 3〉 and 〈3, 5, 6, 1〉. Clearly at six-points this must be finite

since this is the complete amplitude, however since only the same poles occur

(and necessarily cancel) independent of how many external points there are,

then this must necessarily be a finite combination for R-invariants in two-

dimensional kinematics.

Let us take this example and try to reformulate precisely the same argument

in a more general way starting with the term R1,i−1,i,j−1,j where we will assume

i and j are both even. As such we have two poles which will diverge in the

two-dimensional kinematics 〈1, i−1, i, j−1〉 and 〈j−1, j, 1, i−1〉. Now just as

above there are terms which contain these poles and in turn they also contain

an additional but identical pole in each, giving us for example the combination:

R1,i−1,i,j−1,j +Ri−1,j−1,j,1,2 −Rj−1,1,2,i−1,i (3.2.4)

which should provide us a finite combination and which we have checked nu-

merically. Note that this is not constructed in terms of BCFW-terms with only

the form R1,i−1,i,j−1,j but by terms cyclically related to these and given this it

is almost unique, we could have started with the same term and completed it

as:

R1,i−1,i,j−1,j −Ri−1,j−1,j,n,1 −Rj−1,n,1,i−1,i (3.2.5)

However these are the only two options if we wish to use BCFW-style terms.

We now wish to show that these are indeed finite combinations independent

of the R-invariants in two-dimensional kinematics independently of how many

external particles we have. We will then find a nicer way to express these

combinations in two-dimensional kinematics which do not have these poles
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which diverge term-by-term.

In [8, 92] the authors give an elegant geometric picture for R-invariants

as polytopes which has most recently been used and generalise to the Am-

plituhedron [12, 13]. We will avoid giving all the details of this geometric

picture but give the key concepts which will allow us to see that these above

combinations do indeed represent finite-combinations of R-invariants in two-

dimensional kinematics.

Considering the basic NMHV R-invariants [a, b, c, d, e] and taking an arbi-

trary deformation Za → Za = zZf Cauchy’s theorem gives the familiar 6-term

identity

[a, b, c, d, e]+[b, c, d, e, f ]+[c, d, e, f, a]+[d, e, f, a, b]+[e, f, a, b, c]+[f, a, b, c, d] = 0

(3.2.6)

This can be seen in the two different representations of the 6-point, tree-level

NMHV amplitude (3.1.3). This 6-term identity(3.2.6) is a rearrangement of

this. This lack of uniqueness poses a simple question: If we are presented with

two different combinations of R-invariants then how do we determine if the two

expressions are equivalent. As such we wish to find a method of characterising

the equivalence classes of expressions which differ by these identities.

To this end we imagine a “5-simplex” [abcdef ] which is completely anti-

symmetric in its indices. Then if we consider taking the “boundary” of this

simplex using a boundary operator ∂. Each boundary of such a simplex is a

“face” of five out of the six arguments with an orientation which meaning that

it is completely antisymmetric in its indices. Then our earlier 6-term identities

(3.2.6) emerges as

∂ [abcdef ] = [a, b, c, d, e] + [b, c, d, e, f ] + [c, d, e, f, a] + [d, e, f, a, b]

+[e, f, a, b, c] + [f, a, b, c, d] = 0 (3.2.7)

What this boundary operator is doing is giving us a democratic list of the faces

of this 5-simplex. It is simple to ascertain that ∂2 = 0, which means that R1

and R2 are equivalent up to 6-term identities if we can find a simplex σ such

that

R1 = R2 + ∂σ ⇒ ∂R1 = ∂R2 (3.2.8)

As such, whilst the representation of an amplitude in terms of R-invariants

is not unique the “boundary” of the amplitude is invariant. This is in fact

saying that two sets of R-invariants are equal if the list of their poles is equal,
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we obtain these poles in an analogous manner using the same mechanism as

above:

∂ [abcde] = [abcd] + [bcde] + [cdea] + [deab] + [eabc] (3.2.9)

where we note that this produces nothing more than the democratic sum over

poles of the R-invariant - this is not merely coincidence and further explanation

is given in [8]. To be explicit this result tells us that it is the pole-structure

of a set of R-invariants which is the invariant quantity and an amplitude is

uniquely determined by its pole structure.

Let us then use this boundary operator (3.2.9) on the combination (3.2.4)

to see which poles remain throughout this combination, note that a pole will

cancel when two-poles emerge with opposite site e.g. [a, b, c, d] + [b, c, d, a]. So

if we apply this boundary operator to (3.2.4) and simplify we eventually have

the set

[i−1, i, j−1, j] + [i, j−1, j, 1] + [j, 1, i−1, i] + [j−1, j, 1, 2] + [j, 1, 2, i−1]

[2, i−1, j−1, j] + [1, 2, i−1, i] + [2, i−1, i, j−1] + [i, j−1, 1, 2] (3.2.10)

Now we note that since we specified above that i and j were even there are no

poles here which vanish in the two-dimensional kinematics. There are however

still spurious poles, for example in general the last pole [i, j−1, 1, 2] will not

correspond to a physical pole of the form [a−1, a, b−1, b], as such this is NOT

a spurious-free combination, it is however a finite combination in generic two-

dimensional kinematics.

We are now in a position where we can write down a basis of finite combi-

nations of R-invariants in two-dimensional kinematics. To do this we will work

only with R-invariants of the form Rr;s,t = Rr,s−1,s,t−1,t, that is we shall only

use R-invariants which are cyclically related to the BCFW-style R-invariants

(3.2.1). Given this we find the following cases:

Rr;s,t +Rs;t,r +Rt;r,s r, s, t all even/odd (3.2.11)

Rr;s,t +Rs;t,r −Rt−1;r,s r, s even/odd ; t odd/even (3.2.12)

Rr;s,t −Rs−1;t,r −Rt−1;r,s r even/odd ; s, t odd/even (3.2.13)

Note that in deriving these combinations the only restrictions we have made

are in using BCFW-like terms Rr;s,t in order to prevent terms with no physical

poles such as R1,4,7,8,9 occurring. In particular we have made no restrictions on
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the fermionic data (η’s or equivalently χ’s). We reiterate that these combina-

tions are not spurious-free and the boundary-operator argument (3.2.8) demon-

strates that only the full tree-level amplitude can be completely spurious-pole

free at any number of external points. However these combinations do form

a finite basis in 2d kinematics, we now will turn to taking these combinations

and expressing them in a purely two-dimensional fashion which we can use

thereafter and which has no disappearing four-brackets to contend with.

3.3 Two-Dimensional R-invariants

We first considered the 6-point, NMHV, tree-amplitude and by hand put in

particular χ-components in an effort try to establish a way to write the combi-

nation R1,2,3,4,5+R3,4,5,6,1+R5,6,1,2,3, that is we simply calculated on a computer

the result for particular cases and from this attempted to guess the full answer.

In turn we used this to create expressions for the other finite-combinations

(3.2.11)-(3.2.13). The first result we found was that there are no non-zero

terms which do not have two χeven’s and two χodd’s, so for example if we look

for the χ4
1-component we must find it is zero. This immediately suggests a

factorisation of sorts into the odd-sector and the even-sector. Also, as can

only have been the case, the eventual term must always be able to be written

in two-brackets of odd-terms and two-brackets of even-terms and these obser-

vations in combination led to the definition of a new R-invariant which is a

function of three twistors R̃(Zr−1,Zr,Zs−1,Zs,Zt−1,Zt)

R̃(r, s, t) =
εABCD (χr〈s, t〉+ cycle)AB (χr−1〈s−1, t−1〉+ cycle)CD

〈rs〉〈st〉〈tr〉〈r−1, s−1〉〈s−1, t−1〉〈t−1, r−1〉 (3.3.1)

for r, s, t all even or odd. Here the indices A,B,C,D in the numerator

relate to the fermionic variables so we really mean εABCD
(
χAr 〈s, t〉+ cycle

)(
χBr 〈s, t〉+ cycle

)
... This is a function of six-external particles, three even and

three odd and has a natural factorisation into two parts where we may write

one part as

[a, b, c]AB =
(χa〈bc〉+ cycle)AB

〈ab〉〈bc〉〈ca〉 (3.3.2)

We briefly remark that in [13] there are dual-triangles which represent am-

plitudes in a toy-model and these objects (3.3.2) directly correspond to the

polytope model for these two-dimensional ‘half’ R-invariants. We then checked

numerically for a variety of different helicity-configurations and for n ≤ 26 that
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the following equations hold:

Rr;st +Rs;tr +Rt;rs = −R̃(r, s, t) r,s,t all even

Rr;st +Rs;tr −Rt−1;rs = R̃(r, s, t) r,s even, t odd (or vice versa)

Rr;st −Rs−1;tr −Rt−1;sr = −R̃(r, s, t) r even, s,t odd (or vice versa)

(3.3.3)

We have no conclusive justification for why, with the full SU(4)-symmetry in-

tact and as such no restrictions on the χ-variables, we should find that all

NMHV remainder functions which are not of the form χevenχevenχoddχodd van-

ish. This however is obvious from the right-hand side of (3.3.3) since there we

must take two even-χ’s and two odd-χ’s to achieve an SU(4)-invariant.

We now know that since any collection of R-invariants, at any loop order,

must be expressible as a linear combination of our base cases (3.3.3), if they

really are to be a basis of finite-terms in 2d kinematics. As such we should be

able to express all amplitudes as finite-valued functions multiplied by R̃(r, s, t)

functions or alternatively [a, b, c]AB-functions. Note that the first case is more

powerful as it tells us that particles appear in pairs r−1, r etc. So we will have

terms of the form [a, b, c] [a−1, b+1, c−1] etc. This is a good restriction as it

enforces some natural form of locality e.g. 1
〈ab〉〈a−1,b+1〉 ∼ 1

〈a−1,a,b,b+1〉 which is a

physical pole. However it may become easier subsequently to use the [a, b, c]AB

notation.

We find from this the simplest way to express our amplitude (only valid for

the restricted (1 + 1)-dimensional case) is:

M
(0)
n,1 =

∑
1<jCk<n

R̃(1, j, k)(−1)1+j+k (3.3.4)

We note that these results provide an improvement on those derived in [46]

where following our work the authors ensured that the R-invariants did not

blow-up term-by-term by using a reference-twistor and dividing the SU(4) R-

symmetry into SU(2)× SU(2) as follows

χeven = (∗, 0, ∗, 0) χodd = (0, ∗, 0, ∗) (3.3.5)

Where here the asterisks denote non-zero values. As such this results in turning

our ‘half’, two-dimensional R-invariants (3.3.2) into genuine two-dimensional
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delta-functions

[a, b, c] =
δ0|2 (χa〈bc〉+ cycle)

〈ab〉〈bc〉〈ca〉 (3.3.6)

However although this varies from our work in the fermionic region, in the

bosonic components and at NMHV this completely agrees with our prescrip-

tion. Once we consider going to N2MHV, differences emerge between the dif-

ferent prescriptions. Were we to write down

R
(0)
6,2 = [1, 3, 5]AB [1, 3, 5]CD [2, 4, 6]EF [2, 4, 6]GH εABEF εCDGH (3.3.7)

such an expression would be non-vanishing, whereas with SU(4) → SU(2) ×
SU(2) one necessarily obtains a δ0|2-function appearing twice in the numerator

and as such the amplitude evaluates to zero. So it is clear that beyond NMHV

such a prescription loses additional information than merely the bosonic re-

striction. Note also that this SU(4)-splitting also causes the MHV-prefactor

to vanish

δ4|4

(
n∑
i=1

λiηi

)
= δ2|4

(∑
i even

λiηi

)
δ2|4

(∑
j odd

λjηj

)
= 0 (3.3.8)

meaning that under this restriction all amplitudes are zero, although the struc-

ture of the remainder functions can still be of interest.

Using these insights, as well as the notation derived so far in this chapter,

we next attempt to write down the NMHV, one-loop, 8-point amplitude in

reduced 2d-kinematics purely from symmetry considerations. We will then

consider uplifting to n-points before we introduce theQ-equation derived in [46]

explaining how it relates our one-loop, NMHV amplitude at (n+2)-points to

the n-point, MHV, 2-loop amplitude, thus providing a non-trivial consistency

check.

3.4 One-Loop NMHV Amplitude

We want to build the NMHV one-loop amplitudes in an analogous way to how

we constructed the earlier MHV amplitudes - that is, using only symmetries

and collinear limits. From our observed result that all NMHV amplitudes have

only non-zero contributions for χ-combinations which have two even and two

odd χ’s, we can say that the form of the NMHV one-loop amplitude will be a

sum over terms with an even R-invariant part, an odd R-invariant part and a
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weight-two polylogarithm with cross-ratio arguments. These two R-invariant

halves are naturally contracted by the completely antisymmetric tensor εABCD

but we will not write this out explicitly. To use an analogous argument to the

MHV case we will first have to develop a notation which allows us to explicitly

see which collinear limits are being imposed by the R-invariants.

To this end we return to

[a, b, c]AB =
δAB(χa〈bc〉+ cyclic)AB

〈ab〉〈bc〉〈ca〉 (3.4.1)

and under the limits of colliding any two of these points it is simple to see they

vanish e.g.

lim
a→b

[a, b, c]AB =
δAB(χb〈bc〉+ χb〈cb〉)
〈bb〉〈bc〉〈cb〉 = 0 (3.4.2)

As such this term vanishes in the limits a ↔ b, b ↔ c and c ↔ a. If on the

other hand we take a pair

[a, b, c]AB − [a, b, d]AB =
δAB(χa〈bc〉+ cycle)

〈ab〉〈bc〉〈ca〉 − δAB(χa〈bd〉+ cycle)

〈ab〉〈bd〉〈da〉 (3.4.3)

this now vanishes under two collinear limits, both terms disappearing individ-

ually under a↔ b and the terms cancelling one another under the limit c↔ d.

This combination will be more useful for our purposes.

We use the notation

Mi,j = [i−1, i+1, j−1]− [i−1, i+1, j+1] (3.4.4)

and thus imposes triple collinear limits:

lim
i−1↔i+1

Mi,j = 0 = lim
j−1↔j+1

Mi,j (3.4.5)

note that ‘i’ and ‘j’ must be both even or both odd. There is a special case

in this definition where j = i ± 2, for example if j = i + 2 then we have only

one term in our Mi,i+2 = − [i−1, i+1, i+3], however this still imposes the triple

collinear limits across i and i+2. We might legitimately ask if there is not some

other linear combination of R-invariants which imposes 3 collinear limits? Of

course a simple 3-bracket does do this but they will not all be triple collinear

limits with the maximum being two as in Mi,i+2. If we attempt to add more

terms to impose more triple-collinear limits we find that we cannot and our
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equations always reduce to a simple Mi,j form due to the linear restriction:

[a, b, c]− [b, c, d] + [c, d, a]− [d, a, b] = 0 (3.4.6)

this equation also tells us Mi,j = −Mj,i.

In analogy to these new R-invariant combinations we will also introduce a

compact form for writing our the logarithmic functions of cross-ratios:

Li,j = log(ui,j) (3.4.7)

We now see that both Li,j and Mi,j disappear in the triple-collinear limits

across i and j (2.9.6). As such we now find that M ’s and L’s play very similar

roles in the construction of our amplitudes and this similarity is not accidental

as we will show at the end of this chapter when we relate the one-loop NMHV

amplitude to the two-loop MHV amplitude, using the Q̄-equation [46].

Before this though let us build the NMHV one-loop amplitude which must

be of the form ∑
ModdMeven (L⊗ L) (3.4.8)

Where this tensor product is that of the symbol defined in the previous chapter.

Since each M can impose two triple-collinear limits, then the tensor product

must implement two even and two-odd limits, since we want to implement at

least 8 different collinear limits meaning that we cannot obtain a non-trivial

6-point contribution. Note that ui,i+2 = 0 (2.7.12) and this means that we are

unable use Mi,i+2 in the construction of a term which vanishes under all triple-

collinear limits since we would have be unable to put a term in the symbol

which imposes the other two collinear limits across i+ 4 and i+ 6. As such at

8-points, largely in analogy with the MHV derivation from Sect 2.9, we find we

have only one term which satisfies the restrictions of collinear limits ((2.9.6)

and (3.4.5)), cyclicity and parity:

αM1,5M2,6 (L3,7 ⊗ L4,8 + L4,8 ⊗ L3,7)+cyclic = M1,5M2,6 log(u3,7) log(u4,8)+cyclic

(3.4.9)

Once again we are impressed with the simplicity of this equation and this

alone helps to motivate further exploration into reduced kinematic amplitudes

to higher k, l and n.

If we look to the 10-point case then in much the same vein as the two-loop

MHV case, we can see that we cannot construct any term which vanishes in

all 10 triple collinear limits. As such we again need only consider how to uplift
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the 8-point remainder function to 10-points so that it reduces to the correct

8-point function in all triple-collinear limits. The uplifting takes precisely the

same form as the two-loop MHV case (2.9.20)-(2.9.21):

S
(1)
8,1(i, j, k, l) = R

(1)
8,1(i−1, i+1, j−1, j+1, k−1, k+1, l−1, l+1)

R(1)
n,1 =

∑
iCjCkCl(−1)i+j+k+lS

(1)
8,1(i, j, k, l) + constant (3.4.10)

This identical uplift, along with the similarity between the forms of the 8-

point MHV 2-loop remainder function (2.9.14) and the 8-point NMHV one-

loop function (3.4.9), where we will repeat the 2-loop MHV uplifting formula

here to allow easier comparison between the two forms.

S
(2)
8,0(xi, xj, xk, xl) = R(2)

8,0(i−1, i, j−1, j, k−1, k, l−1, l)

R(2)
n,0 =

∑
i/j/k/l/i S

(2)
8,0(xi, xj, xk, xl) + constant (3.4.11)

This led us to attempt to generalise the process of building the functions

stratified by how many triple-collinear limits they disappear under, as well

as an uplifting process for all n-point, NkMHV, `-loop amplitudes and this

is the topic of the next chapter. First however, we will introduce one last

tool developed in [46] which directly links the NMHV one-loop amplitude to

the two-loop MHV amplitude and further justifies the search for our universal

uplift.

3.5 Q̄-equation

The BDS subtracted amplitude must be invariant under a chiral half of the

dual superconformal symmetry [33, 45, 100] as well as the R-symmetry. Indeed

it is believed to be invariant under dual-conformal operators as motivated

by the dualities with Wilson Loops [34, 44, 61, 99] and correlation functions

[67, 68, 73]. So the remainder function is left unchanged under action by the

following operators:

Qa
A = (Qα

A, S̄
α̇
A) :=

n∑
i=1

Za
i

∂

∂χAi
RA
B :=

n∑
i=1

χAi
∂

∂χBi
Ka
b :=

n∑
i=1

Za
i

∂

∂Zb
i

(3.5.1)
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However the BDS-subtracted amplitude does not a priori behave equivalently

under generators of the other chiral half,

Q̄A
a = (SAa , Q̄

A
α̇ ) :=

n∑
i=1

χAi
∂

∂Za
i

(3.5.2)

In [42, 46] it is conjectured that this symmetry can however be restored through

a quantum corrected Q̄-operator, defined by the following equation [46] in the

full four-dimensional theory

Q̄A
aRn,k = aResε=0

∫ τ=∞

τ=0

(d2|3Zn+1)Aa
[
Rn+1,k+1−Rn,kR

tree
n+1,1

]
+ cyclic (3.5.3)

Where we take the residue at ε = 0 of this integral. Here a = 1, 2, 3, 4 is a

momentum twistor index, A is the SU(4)-index and ε, τ parametrise Zn+1 in

the collinear limit (τ being related to the longitudinal momentum fraction)

Zn+1 = Zn − εZn−1 + CετZ1 + C ′ε2Z2 (3.5.4)

and a as an overall factor being a = a(g2), one quarter of the anomalous cusp

dimension

a :=
1

4
Γcusp = g2 − π2

3
g4 +

11π4

45
g6 + · · · (3.5.5)

which is known exactly for all values of the coupling.

This quantum corrected operator is well worth investigation purely on

its own merits, however here we will be shortly giving a much simpler two-

dimensional version for use on our equations and as such we will try to keep

details of the full version limited. The equation is anticipated to be exact at

all orders of the coupling, though in [46] it was only approached perturbatively

in a. In this paper (3.5.3) was proposed to be an all-loop expression for the

action of the dual-superconformal generators Q̄, in terms of a one-dimensional

integral over the collinear limit of a higher-point amplitude. We will write the

simpler two-dimensional version of the Q̄-equation (3.5.3):

Q̄AaR2n,k = a

∫
d1|2λ+

n+1

∫
d0|1λ−n+1

(
R2n+2,k+1−Rtree

2n+2,1R2n,k

)
+cyclic (3.5.6)

:= aλ−n,a lim
λ−n+1→λ

−
n

∫ λ+
1

λ+
n

〈λ+
n+1dλ

+
n+1〉

∫
d2χ+

n+1(dχ−n+1)A(parenthesis)

+cyclic

However we will rewrite this later in a more user-friendly format.
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The simplified setting of two-dimensional kinematics was a problem ap-

proached in [46] which used our idea of splitting the SU(4) symmetry into

SU(2) × SU(2), and showed how we realte tree-level N2MHV → one-loop

NMHV → two-loop MHV in these kinematics through (3.5.6). We have used

these ideas often in our exploration of amplitudes in two-dimensional kinemat-

ics and have developed a more compact way of enacting the process by which

the right-hand side of (3.5.6) can be simplified. As such in the remainder of

this chapter we will outline our notation for this equation and use it to show

how to relate the 1-loop NMHV to the 2-loop MHV amplitude.

We express the Q̄-equation in the following manner:

Q̄nR
`
n,k = lim

n+2→n
Qn+2

(
lim

n+1→n−1
− lim

n+1→1

)
On+1R

`−1
n+2,k+1+cyclic (3.5.7)

We define the operations Q, Q̄ and O as:

Oi,AB = ∂2

∂χABi ∂χBi
∫
〈ZidZi〉

QA =
n∑
i=1

Qi,A Qi,A = Zi
∂

∂χAi

Q̄A =
n∑
i=1

Q̄A
i Q̄A

i = χAi
∂

∂Zi
(3.5.8)

the operations Q and O have the following effects (where Mi,j;k,l = [i, j, k] −
[i, j, l]):

On+1Mi,j;k,n+1 → Li,j;k,n+1

Qn [i, j, n+ 2] = Q̄n log
[n+ 2, j]

[n+ 2, i]
(3.5.9)

As such, for our case of interest we are to consider the following equation

where we shall input the right-hand side to obtain known expressions for the

left-hand side.

Q̄8R
(2)
8,0(1, 2, . . . , 8) = (lim

9→7
− lim

9→1
)O9 lim

10→8
Q10R

(1)
10,1(1, 2, . . . , 10) (3.5.10)

Knowing the form of the uplift in terms of S’s given in (3.4.10) we can im-

mediately evaluate this equation. However rather than consider all possible

S’s it is simple to see we need only those which contain both 10 and 9 as well

as not disappearing in the collinear limit lim10→8 alongside one of lim9→7 or

lim9→1. As such, it is sufficient to consider only the pair S8(x2, x4, x6, x10) −
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S8(x3, x5, x7, x10). Now let us take just the first term here (2.9.20), defined as

S8(x2, x4, x6, x10) = (M1,3;5,9L3,5;9,1+M3,5;9,1L1,3;5,9)

×(M2,4;6,10L4,6;10,2 +M4,6;10,2L2,4;6,10) (3.5.11)

which can be seen to transform under the right-hand side of (3.5.7) to:

2L1,3;5,7L3,5;7,1

(
L4,6;8,2Q̄8 log

[8, 4]

[8, 2]
+ L2,4;6,8Q̄8 log

[8, 4]

[8, 6]

)
(3.5.12)

equally the other term S8(x3, x5, x7, x10) evaluates to precisely the same thing

and as such we simply need to add cyclic terms as in (3.5.7). Note at this stage

however the dual-conformal invariance is not manifest in our writing although

we know it must be present as the left-hand side of (3.5.7) is manifestly dual-

superconformally invariant.

The fact that this intermediate stage ‘loses’ a symmetry, which is necessarily

present at both the start and end of the calculation, is a strong clue that there

must be a better way to perform this calculation. Such a rewriting would

not require the symmetry to be magically reassembled during the last stage of

cycling the terms. However despite much effort we have failed to find such a

way to enforce this despite the very obvious similarities between the starting

point and the final equation for the simplest examples such as this. If we finish

off now by cycling our answer, we find that up to an overall integer factor:

Q̄8R
(2)
8,0 = Q̄8 (L1,3;5,7L3,5;7,1L2,4;6,8L4,6;8,2) (3.5.13)

as we would of course expect. The constant of proportionality relates the

unfixed constant (from our method) for the 1-loop NMHV amplitude to that

of the 2-loop MHV amplitude. Note also the striking and suggestive result

that to relate the 1-loop NMHV result to the 2-loop MHV result is as simple

as setting M → L throughout the NMHV amplitude and multiplying by the

correct constant factor. Despite this very suggestive approach we have found

that this naive approach does not extend in full generality beyond these early

examples.

The Q̄-equation does provide restrictions distinct from those mentioned

earlier at sufficiently high complexity, such as on the NMHV, 2-loop amplitude

by relating it to the 3-loop MHV amplitude. However, we have not found a

concise way to see these restrictions beyond simply following through the entire

calculation with unfixed coefficients and seeing what restrictions must take
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place to allow for the dual-conformal symmetry to be reunited. In conclusion it

would be very desirable to find a re-casting of this expression which maintains

dual-conformal invariance at all stages however for the moment such a re-

casting is not available. We will refer to this equation (3.5.7) in the next

chapter which is devoted to generalising the S-equation uplifting mechanism

to general amplitudes in 2-dimensional kinematics.





4

Uplifting Amplitudes in Two -

Dimensional Kinematics

In this chapter we will first demonstrate the manner in which we build the

general form of the 10-point `-loop MHV amplitude written in terms of the

8-point amplitude and we provide explicit expressions at 2- and 3-loops. We

subsequently use this to motivate our main result of the chapter: firstly a

general n-point, `-loop collinear uplift formula for MHV amplitudes followed

by a generalisation of this to NkMHV amplitudes. We outline the work which

has been done since the publication of these equations in [80] and discuss what

specialist redundancy is needed so that tree-level NMHV amplitudes are not

included in this uplifting process. This chapter is based primarily on work in

[80] with most subsections mapping directly across, there are however updates

to maintain consistency with more recent work.

4.1 8- and 10-point MHV amplitudes at 3 loops

The 8-point MHV amplitude at 3 loops R(3)
8 was first determined in [91], where

this derivation was based on the assumption that the amplitude has a sym-

bol whose entries are cross-ratios2. This assumption has recently been revised

so that at 3-loops we now have additional symbol entries such as u1−u2 and

1−u1−u2 (2.7.15), however such alterations do not effect the uplifting construc-

tion but merely the form of the components. We review the construction of the

2 At 1 and 2-loops this amounts to logarithms only in the amplitude [91] and starting from
3-loops the reconstructed functions involve also polylogarithms Lin(·).

53
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uplifting formula as presented in [80] and the reader is referred to Appendix.A

for additional details on the construction of the component functions.

Insisting that the 8-point function be cyclically (and parity) symmetric,

and that it vanishes in the collinear limit (2.9.6) z8→z6 i.e. u1,5→0 , u3,7→1

with u2,6, u4,8 unconstrained 3 leads to a 3-loop amplitude of the form:

R(3)
8 =

∑
σ,τ

aστfσ(u1)fτ (u2) (4.1.1)

Here aστ = aτσ are some rational coefficients, and the sum is over the set of

functions fσ with the following properties:

fσ(u) = fσ(1−u) (4.1.2)

fσ(0) = 0 (4.1.3)

fσ(u) is a (generalised) polylogarithm. (4.1.4)

(4.1.2) is required for reasons of cyclic symmetry, since under a cyclic shift by

two: u1,5→u3,7 = 1−u1,5. Whereas (4.1.3) is required, since alongside (4.1.2)

it imposes the triple-collinear limit restrictions (2.9.6). Furthermore the total

polylog weight (or “degree of transcendentality”) of R(3)
8 must be six, due to

the uniform transcendentality property of perturbative amplitudes in N=4

SYM. Indeed in general this means that at `-loop order the polylog weight is

2` for all functions.

In [91] all possible functions fσ with only simple cross-ratios in the symbol

were listed (see also Appendix A where these functions are called f+
σ ), and there

we also take the additional terms with symbol entries of the form u1−u2 etc.

from [47]. In [91] there is a unique weight-two function f(u) = log(u) log(1−u),

3 weight-three functions, and 7 weight-four functions, leading to a total of 13 a

priori unfixed coefficients aστ . Further constraints arise from the OPE analysis

of [77] which fix 6 of these, leaving 7 unfixed coefficients4.

The form of the 8-point amplitude (4.1.1) generalises straightforwardly be-

yond three-loops by simply allowing the functions fσ to have more general

3 Note that we need not consider cyclically equivalent collinear limits zi→zi−2, since they
will follow automatically from cyclic symmetry.

4 It is tempting to assume a further simplification of the structure, namely that the fσ are
of weight 3 only. This would be consistent with all currently known facts and would leave
just 3 unfixed coefficients, however we will not be making this assumption in this work.
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weight, such that the total weight is 2`.

R
(`)
8 =

∑
σ,τ

aστf
(`)
σ (u1)f (`)

τ (u2) (4.1.5)

It is also valid at two-loops where there is only one allowed function (up to

a multiplicative constant), f (2)(u) = log(u) log(1−u), and we reproduced the

original two-loop result at 8-points found in [62] and reviewed in Chapter 2

R
(2)
8 = −1

2
log(u1) log(u2) log(u3) log(u4) + constant . (4.1.6)

We recast the uplift which we already have, of the 8-point amplitude to 10-

points which we presented in Chapter 2 for the 2-loop, MHV case (2.9.21) and

in Chapter 3 for the 1-loop NMHV amplitude (3.4.10), and following [91] write

it in a more general fashion which permits a 10-point vanishing contribution.

The idea being to write down all 10-point functions which reduce to the 8-point

amplitude in the triple collinear limit, plus an additional contribution which

is required to vanish in all such limits. This lead to 5

R
(`)
10 = 1

2

∑
σ,τ aστ

(
f

(`)
σ (u1)f

(`)
τ (u2)−f (`)

σ (u1)f
(`)
τ (u4)+1

2f
(`)
σ (u1)f

(`)
τ (u6)

)
+cyclic+V

(`)
10

(4.1.7)

The last term
(
V

(`)
10

)
denotes a generic 10-point function which vanishes in

all triple collinear limits. It is reproduced in Appendix A at 3-loop level from

Ref. [47, 91]

The construction of the non-vanishing contribution under triple collinear

limits (everything apart from V10) was specific to the case at hand where the 10-

point amplitude reduces to the 8-point amplitude. If we want to uplift (4.1.7)

to 12 and higher points, we need to come up with an alternative, generalised

and potentially more geometric procedure.

Note that the general 10-point expression has a more complicated structure

than the result at two loops:

R̃
(2)
10 = −1

2
(log(u1) log(u2) log(u3) log(u4)) + cyclic . (4.1.8)

5 The original derivation in [91] was performed at 3-loops, but the resulting expression (in
terms of the functions f (`)) remains valid at `-loops.
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The reason for this simplification is the corresponding simple form of the 2-

loop function f (2)(u) = log(u) log(1−u). Using this, together with the fact

that at 10 points 1−u1 = u9u3 (2.7.15) along with cyclic symmetry, one can

check that all the minus signs in (4.1.7) disappear (for ` = 2) and the result

reduces to (4.1.8).

It is becoming clear that at the level of the symbol it is extremely useful

to cast things in terms of the fundamental cross-ratios uij since they (or more

precisely their logarithms) form a basis for the vector space upon which the

tensor-symbol is constructed. However as far as writing functions down at

higher points, these are not the natural objects to use. For example we can see

that the function f(u1) = f(1− u1) = f(u9u3) can be thought of as a function

of the product

u9u3 = u10 6;4 2 (4.1.9)

which is not a simple cross-ratio.

At a higher number of points there is no reason to expect only functions of

the simple cross-ratios to appear. There is of course no contradiction here as

even though the function in our example has an argument which is a product

of simple cross-ratios, the symbol of this function will be expressed in terms of

the simple cross-ratios themselves due to the product property of the symbol

(2.7.16). Thus the symbolic construction of amplitudes in [91], based on the

identification of the basis of the amplitude symbol in terms of simple uij’s

continues to hold in this way, but the functions corresponding to these symbols

at higher n are not best represented in terms of simple cross-ratios. For our

example (4.1.9) it is clear that the natural argument would be the cross-ratio

u10,6;4,2. Note that we still have to relax this condition as it remains impossible

to express u1,5−u2,6 as a product of simple cross-ratios. However, the form

of these extra contributions is heavily limited, as briefly addressed in Sect 2.9

in our derivation of the 8-point, 2-loop MHV amplitude, and these additional

terms do not influence the derivation of the uplifting formula since they do not

effect the number of collinear limits a term may disappear under.

Let us consider recasting R̃
(`)
10 in terms of the complete 8-point amplitudes

R̃
(`)
8 as we have already seen in earlier chapters, rather than manipulating its

building blocks fσ/τ (u) as was done in (4.1.7). We are in fact able to completely

solve the constraints from collinearity using this process.
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4.2 8− and 10−points recast

We can completely and explicitly solve the constraints coming from collinear

limits at 3-loops in terms of three structures, related to the 8-,10- and 12-point

amplitudes and more generally at `-loops in terms of the m-point functions

Sm with m ≤ 4`. But first, to motivate the general formula, we recast the 8-

and 10-point amplitudes in a form more suitable for generalisation, and in the

process introduce the new concepts we will need.

In the two examples we have given thus far (2.9.21) and (3.4.10) we defined

an intermediary function S8 (2.9.20). This was a function of xi’s related to the

8-point amplitude, and we wrote the uplift in terms of this object. We will

write all our uplift formulae in terms of S-functions and for the moment we

will keep relating the 8-point functions S8 directly with the amplitudes R̃8 as

indeed in earlier chapters. In the following subsection we will argue that this is

a particularly simple example of a more general procedure and we will rewrite

the S-functions accordingly.

Our first step is to return the problem back to a function of z’s, that is,

R
(2)
8,1(u1, u2) = R

(2)
8,1(z1, z2, z3, z4, z5, z6, z7, z8) . (4.2.1)

Now, in making attempts to lift this to higher points, we notice that in the

higher point amplitudes which are combinations of 8-point functions as in

(2.9.21), the z’s always appear in consecutive pairs, but with the odd element

of the pair always appearing before the even element. This is exactly what

happens in the definition of xi in terms of zi:

pαα̇i ≡ λαi λ
α̇
i = xαα̇i −xαα̇i+1 α, α̇ = 1, 2 (4.2.2)

It suggests that we further think of the amplitude as a function of position

coordinates x’s instead of z’s so that:

2S
(2)
8 (xi, xj, xk, xl) := R̃

(2)
8 (x+

i , x
−
i , x

+
j , x

−
j , x

+
k , x

−
k , x

+
l , x

−
l ) , (4.2.3)

Where we defined R̃ in (2.8.2), but which we repeat here

R̃n = Rn−
n−4

2
R6 , (4.2.4)
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(4.2.3) implies,

2S8(x2, x4, x6, x8) = R̃8(z1, z2, z3, z4, z5, z6, z7, z8) . (4.2.5)

These equations can be viewed as defining the function S8.6 Thus via S8 we

are specifying the Wilson loop zig-zag contour (see Fig.1 in Chapter 2) by

specifying every second vertex. To allow us a better insight into the conse-

quences of this decomposition, let us examine the symmetries of the function

S8(x2, x4, x6, x8). The symmetries of the Wilson loop R̃8(z1, . . . z8), namely

cyclic symmetry Cn under which each zi → zi+1, and parity of the 8-point

Wilson loop R̃8(z1, . . . z8)→ R̃8(z8, . . . z1) give the following

S8(x2, x4, x6, x8) = S8(x4, x6, x8, x2) = S8(x6, x8, x2, x4) = S8(x8, x2, x4, x6)

S8(x2, x4, x6, x8) = S8(xf1 , x
f
3 , x

f
5 , x

f
7)

S8(x2, x4, x6, x8) = S8(xf8 , x
f
6 , x

f
4 , x

f
2) . (4.2.6)

The first equation follows from cyclicity in z applied twice, i.e. zi→zi+2, and

the second equation is a consequence of zi→zi+1. In the last two equations we

have defined the flipped x position

x = (x+, x−) ⇒ xf = (x−, x+) . (4.2.7)

This is necessary in order to properly define the cyclic symmetry in terms of

the x-variables.

Interestingly, for the 8-point amplitude in the form (4.1.5) there exists this

additional discrete symmetry – the flip symmetry – where each x-argument of

S8 becomes flipped,

S
(`)
8 (xi, xj, xk, xl) = S

(`)
8 (xfi , x

f
j , x

f
k , x

f
l ) (4.2.8)

despite the fact that this is not an expected symmetry of the Wilson loop

contour. We identify this symmetry by considering S8 of even arguments,

2S8(x2, x4, x6, x8) = R̃
(`)
8 (z1, z2, z3, z4, z5, z6, z7, z8) =

∑
σ,τ

a(`)
στf

(`)
σ (u1)f (`)

τ (u2)

(4.2.9)

6 In the following section we will in fact generalise this definition by including an additional
contribution to S8 which is distinct from the 8-point amplitude R̃8 but will vanish in the
8-point combination and only emerge at higher-loops.
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and compare this with S8 written in terms of the same variables having been

flipped,

2S8(xf2 , x
f
4 , x

f
6 , x

f
8) = R̃8(z2, z1, z4, z3, z6, z5, z8, z7) =

∑
σ,τ

aστfσ(u2)fτ (u1)

(4.2.10)

To understand the right-hand side, note that cross-ratios u1 = u15 and u2 = u26

by definition depend only on even or on odd z-variables respectively,

u1 =
〈86〉〈24〉
〈84〉〈26〉 =

z86z24

z84z26

, u2 =
〈17〉〈35〉
〈15〉〈37〉 =

z17z35

z15z37

, (4.2.11)

hence the distribution of zi’s inside R̃8 in (4.2.9,4.2.10) implies that these two

equations are related by u1 ↔ u2. The symmetry aστ = aτσ alongside the

summation over all functions fσ and fτ implies that the resulting expressions

are symmetric under the interchange u1 ↔ u2 and equation (4.2.8) follows.

Note also that S8 satisfies the following properties under the collinear limit

z8 → z6 (i.e. x8 → x7 as can be seen immediately from Fig.1 in Chapter 2):

lim
x8→x7

S8(x2, x4, x6, x8) = 0 , (4.2.12)

or more generally/geometrically

S8(xi, xj, xk, xl) = 0 if xk and xl are light-like separated . (4.2.13)

Having defined the object S8 we now re-examine the 10-point, `-loop ampli-

tude (4.1.7):

R̃
(`)
10 = 1

4

∑
σ,τ aστ f

(`)
σ (u1)

(
f

(`)
τ (u2)−f (`)

τ (u4)+f
(`)
τ (u6)−f (`)

τ (u8)+f
(`)
τ (u10)

)
+cyclic+V

(`)
10 (4.2.14)

This can be rewritten in terms of S8 in a suggestive way which will allow

generalisation to n-points as

R̃
(`)
10 (z1, z2, . . . , z8) =

∑
1≤i1Ci2Ci3Ci4≤10

S
(`)
8 (xi1 , xi2 , xi3 , xi4)(−1)i1+···+i4 + V10 .

(4.2.15)

where, as before, V10 is an additional collinear vanishing contribution. The

summation convention in this formula has been used a few times, we recall to

the reader that it simply states that each ik > ik−1 + 1.
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The alternating sign in the sum in this formula combined with the prop-

erty (4.2.13) of S8 are enough to show that this has the right behaviour under

collinear limits and we will see this explicitly below. However more interest-

ingly these observations lead to immediate generalisation to higher points and

arbitrary loop order. Thus far we have done no more than generalise to `-

loops the uplifting procedure from 8 → 10 points which we used in earlier

chapters, motivating this uplifting procedure from our perspective of collinear

limits more explicitly. However next we produce our first key result of the

chapter: the full MHV uplift formula.

4.3 The general formula for the n-point collinear

uplift

We claim that the n-point MHV amplitude for ` ≥ 1, at any loop order is

given by

R̃(`)
n (z1, z2, . . . , zn) =

∑
1≤i1Ci2Ci3Ci4≤n

S
(`)
8 (xi1 , xi2 , xi3 , xi4)(−1)i1+···+i4 +

+
∑

1≤i1C···Ci5≤n

S
(`)
10 (xi1 , xi2 , . . . , xi5)(−1)i1+···+i5 +

+
∑

1≤i1C···Ci6≤n

S
(`)
12 (xi1 , xi2 , . . . , xi6)(−1)i1+···+i6 +

+ · · ·+
+

∑
1≤i1C···Ci2`≤n

S
(`)
4` (xi1 , xi2 , . . . , xi2`)(−1)i1+···+i2` . (4.3.1)

Here in order to simplify the notation we have defined the symbol C as follows

iC j ⇔ i < j − 1. This operation removes terms in the sum with consecutive

x’s e.g. Sm(. . . , xi, xi+1, . . . ).

This is a deceptively simple formula. The full n-point amplitude for arbi-

trary n, and arbitrary loop order is given explicitly in terms of just (2` − 3)

m-point functions, Sm with m = 8, 10, 12, . . . 4`. Let us start by returning to

the minimal case of n = 8 external particles. Equation (4.3.1) then implies,

R̃8(z1, z2, . . . , z8) = S8(x2, x4, x6, x8) +S8(x1, x3, x5, x7) . (4.3.2)
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A simple possibility is that the two terms are in fact the same, S8(x2, x4, x6, x8) =

S8(x1, x3, x5, x7) = 1
2
R̃8 which is the method we previously employed in chap-

ter two when we found the MHV 2-loop amplitude and the NMHV 1-loop

amplitude.

There is however, a more general solution to this equation, necessary be-

yond 2-loops, where S8(x2, x4, x6, x8) 6= S8(x1, x3, x5, x7). To examine it, we

rewrite (4.3.2) in terms of z-variables,

R̃8(z1, z2, . . . , z7, z8) = S8(z1, z2, . . . , z7, z8) +S8(z1, z8, . . . , z7, z6) . (4.3.3)

The left-hand side must by cyclically symmetric in zi→zi−1. To guarantee this

we must impose the flip symmetry (4.2.8) on S8. When applied to the second

term on the right-hand side of (4.3.3) we find,

R̃8(z1, z2, . . . , z7, z8) = S8(z1, z2, . . . , z7, z8) +S8(z8, z1, . . . , z6, z7) , (4.3.4)

which automatically gives a cyclically symmetric combination, even though

the S8 individually are not required to have it. We can now divide S8 into two

parts, so that,

S8(x2, x4, x6, x8) =
1

2
R8(z1, z2, . . . , z8) +T8(x2, x4, x6, x8) , (4.3.5)

S8(x1, x3, x5, x7) =
1

2
R8(z1, z2, . . . , z8) +T8(x1, x3, x5, x7) . (4.3.6)

T8 is thus an additional contribution to S8, which is not determined by the

amplitude R8. To ensure that T8’s indeed do not appear in (4.3.2) we require

that

T8(x2, x4, x6, x8) +T8(x1, x3, x5, x7) = 0 , (4.3.7)

which is guaranteed by the flip symmetry of T8 together with the anti-symmetry

under zi → zi+1,

T8(x1, x3, x5, x7)→T8(xf1 , x
f
3 , x

f
5 , x

f
7) = −T8(x2, x4, x6, x8) . (4.3.8)

The entire S8 can be constructed using the method of [91] as we explain in

Appendix A. In other words, the contributions to the amplitude R8 are con-

structed using f+ functions and the additional contributions – to T8 – are

constructed from f− functions.

We now consider the next-to-minimal case n = 10. The first line on the
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right-hand side of (4.3.1) gives a non-trivial sum of S8 contributions. These are

the contributions of R̃8’s and contributions of T8’s, since the latter no longer

cancel each other in the sum. Novel contributions at 10-points then arise from

the second line on the right-hand side of (4.3.1):

S10(x2, x4, x6, x8, x10)−S10(x1, x3, x5, x7, x9) . (4.3.9)

To be cyclically symmetric in z-variables these functions have to be anti-

symmetric under the flip symmetry (due to the relative minus sign in (4.3.9)).

Together with T8’s these contributions from S10’s will give precisely the van-

ishing part of the 10-point function, V10
7.

We now return to the general expression (4.3.1), interestingly this formula is

most simply written in terms of x-variables rather than z’s. To see that this is

non-trivial, imagine rewriting the right-hand side back in terms of z variables.

We see that rather than having arbitrary z dependence, the z’s only appear

in each term as pairs of nearest neighbours, i.e. if a term depends on zi then

it will necessarily depend also on either zi+1 or zi−1. Writing in terms of x’s

is a short-hand way of displaying this dependence. Furthermore, the objects

Sm have properties which are similar, but nicer than the corresponding low-

point amplitudes R̃m. We now detail the properties of Sm for general m before

proving that our formula correctly solves the constraints coming from collinear

limits.

The m-point objects Sm have similar properties to the S8-functions which

we discussed above. Firstly, they are conformally invariant functions of m

z-variables or equivalently m/2 x-variables: Sm(z1, . . . zm) = Sm(x2, . . . xm)

where x2 = (z1, z2) etc. They are also symmetric under cyclic symmetry in

x-variables (but not necessarily in z),

Sm(x2, x4, . . . xm) = Sm(x4, x6, . . . , xm, x2) . (4.3.10)

and parity symmetric. Furthermore, we also require that they satisfy the

additional flip (anti)-symmetry,

Sm(xi1 , xi2 , . . . xim/2) = (−1)m/2 Sm(xfi1 , x
f
i2
, . . . xfim/2) . (4.3.11)

7 It was this process which was used in [47] to build one-loop N2MHV, two-loop NMHV
and three-loop MHV amplitudes at 10-points.
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The Sm’s must also vanish in the collinear limit zm→zm−2 i.e. xm→xm−1

lim
xm→xm−1

Sm(x2, . . . , xm−2, xm) = 0 (triple collinear limits) . (4.3.12)

A useful and more geometrical way of saying this would be

Sm(xi, . . . , xj, xk) = 0 if xj, xk become light-like separated . (4.3.13)

Finally Sm must also vanish in the multi-collinear limits, where (p+1) con-

secutive momenta become collinear: zm, zm−2, . . . , zm−p+2→zm−p, or

xm→xm−1, xm−2→xm−3, . . . , xm−p+2→xm−p+1 for p = 2, 4, . . .m− 4 i.e.

Sm(xi, xj . . . , xk) = 0
if any set of 2, 3, . . . or (m/2−2) consecutive points

become mutually light-like separated.

(4.3.14)

That is, we require that the S-functions vanish in all allowed multi-collinear

limits. By “allowed” we mean that we cannot insist that Sm vanishes when too

many points become collinear due to conformal invariance (see Sect 2.5). The

limit when m/2−1 points become collinear is conformally equivalent to points

being in generic positions and so Sm cannot vanish in this limit. Similarly

when all m/2 points become collinear.

To show that (4.3.1) is indeed the n-point function, we must first prove that

this expression is cyclic, that it satisfies the correct properties under collinear

limits and that it is unique. That (4.3.1) is cyclically symmetric in z-variables

comes straight from its definition, the (anti)-flip symmetry (4.3.11) together

with cyclicity of Sm in its x-arguments. In the next subsection we argue that

it behaves correctly in all collinear limits, then we discuss the uniqueness of

the structure.

4.4 R̃n has the correct collinear limits

Consider the simplest collinear limit allowable in our 2d kinematical region,

the triple collinear limit zn→zn−2 i.e. xn→xn−1. Using

lim
xn→xn−1

Sm(i, j . . . k) = Sm(i, j, . . . k) for i, j, . . . k 6= n− 1, n and

lim
xn→xn−1

[Sm(i, j . . . k, n−1)−Sm(i, j, . . . k, n)] = 0 , (4.4.1)
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as such, one can very easily see that we have the required result:

lim
xn→xn−1

R̃n(z1, . . . , zn) = R̃n−2(z1, . . . , zn−2) (4.4.2)

as required under collinear limits.

To prove the correct property under multi-collinear limits we need to work

a little harder. The multi-collinear limit, where p+ 1 edges become collinear is

defined for even p as zn, zn−2, . . . , zn−p+2→zn−p. This is the same as pairwise

limits on consecutive x-variables, xn→xn−1, xn−2→xn−3, . . . , xn−p+2→xn−p+1

as can be easily seen from Fig.2 in Chapter 2. More geometrically, we can

separate all the x-variables into two sets:

Sp+2︷ ︸︸ ︷
xn−p, xn−p+1←xn−p+2, . . . , xn−1←xn, x1,

Sn−p−2︷ ︸︸ ︷
x2, . . . , xn−p−1 (4.4.3)

In this limit all points in the set Sp+2 = {xn−p, xn−p+1 . . . , x1} are becoming

mutually light-like separated (i.e. collinear), whereas the points in the set

Sn−p−2 = {x2 . . . , xn−p−1} remain unchanged. Now the S’s vanish whenever r

consecutive points become light-like separated for r = 2, 3, . . . m
2
−2 as discussed

in (4.3.14). Since all the points in Sp+2 become light-like separated from each

other, this means that Sm vanishes unless all, or all but one of the points are

in Sp+2 or Sn−p−2, i.e.

Sm(i1, . . . ir, j1, . . . jm̄−r)→ 0 for r = 2, . . . , m̄−2

and where {i1, . . . , ir} ∈ Sm−p−2 and {j1, . . . , jm̄−r} ∈ Sp+2 , (4.4.4)

where we have defined m̄ = m/2. So the sum of S’s appearing in R reduces

to ∑
2≤i1C···Cim̄≤n+1

Sm(xi1 , xi2 , . . . , xim̄)(−1)i1+···+im̄

−→
∑

2≤i1C···Cim̄−1≤n−p−1

n+1∑
j=im̄−1+2

Sm(xi1 , xi2 , . . . , xim̄−1 , xj)(−1)i1+...im̄−1(−1)j

+
∑

n−p≤j1C···Cjm̄−1≤n+1

j1−2∑
i=2

Sm(xi, xj1 , xj2 , . . . , xjm̄−1)(−1)j1+...jm̄−1(−1)i .

(4.4.5)
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Now consider the first term of this last expression, and in particular focus on

the sum over j. We have that

n+1∑
j=im̄−1+2

Sm(xi1 , xi2 , . . . , xim̄−1 , xj)(−1)j

=

n−p−1∑
im̄=im̄−1+2

Sm(xi1 , . . . , xim̄)(−1)im̄+
n+1∑
j=n−p

Sm(xi1 , . . . , xim̄−1 , xj)(−1)j

=

n−p−1∑
im̄=im̄−1+2

Sm(xi1 , . . . , xim̄)(−1)im̄+Sm(xi1 , . . . , xim̄−1 , xn−p)

−Sm(xi1 , . . . , xim̄−1 , xn+1) (4.4.6)

where in the last equality we have used the fact that xj is one of the vertices

becoming collinear, in the limit xn→xn−1, xn−2→xn−3, . . . , xn−p+2→xn−p+1,

thus the alternating sum collapses to the two boundary cases. Inserting this

back into (4.4.5) and using cyclicity, we can include this most succinctly by

including the end-points n−p and n+1 = 1 in the sum to rewrite the first term

on the right-hand side of (4.4.5) in the suggestive form∑
1≤i1C···Cim̄≤n−p

Sm(xi1 , xi2 , . . . , xim̄)(−1)i1+···+im̄ . (4.4.7)

So, we have massaged the first term on the right-hand side of (4.4.5) into a

nice form. The second term in (4.4.5), despite its superficial similarity to the

first term, looks decidedly trickier to manipulate into something pleasant, since

instead of one-point becoming collinear m/2−1 of the points are becoming

collinear. However, here we can make use of the fact (used in [3]) that the

collinear limit we are performing is conformally equivalent to a different multi-

collinear limit. In the conformally equivalent case, instead of the points in

Sp+2 becoming collinear and the points in Sn−p−2 remaining unchanged, we

have the converse: the points in Sp+2 remain unchanged and the points in

Sn−p−2 become collinear. With this observation we see that in this conformally

equivalent setting, only the point xi is becoming collinear and the points xj

remain unchanged. We can then perform analogous manipulations to those

leading to (4.4.7) on the second term on the right-hand side of (4.4.5) to obtain
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the final result∑
2≤i1C···Cim̄≤n+1

Sm(xi1 , . . . , xim̄)(−1)i1+···+im̄

→
∑

1≤i1C···Cim̄≤n−p

Sm(xi1 , . . . , xim̄)(−1)i1+···+im̄

+
∑

n−p−1≤j1C···Cjm̄≤n+2

Sm(xj1 , . . . , xjm̄)(−1)j1+···+jm̄ . (4.4.8)

Now this is true for any value of m and since our general formula for the

amplitude (4.3.1) is made from such structures as these, we conclude that in

the multi-collinear limit

R̃n → R̃n−p + R̃p+4 , (4.4.9)

precisely as we require.

We here note that this simple analysis and presentation of collinear-limits

is worthy of consideration in of itself. The technique of building amplitudes

from the perspective of collinear limits is only a practicable possibility because

of the neat presentation we have made of the collinear limits both in [80]

and again here (4.4.9). In particular it is worth mentioning that much of the

analysis for collinear limits in 2d-kinematics can be derived in an analogous

manner for the full four-dimensional model and we would expect a similar

pattern to emerge for the splitting amplitudes. Additionally, we expect that if

a large enough number of points become collinear, then by conformal symmetry

arguments, this will be equivalent to a conformal transformation and as such

leave the amplitude invariant. We will make no efforts here to formalise these

arguments for the full four-dimensional picture and simply leave it as an aside.

4.5 Uniqueness of the Uplift

We have just demonstrated that (4.3.1) gives a solution of the constraints

from collinear limits, but how unique is this solution? To examine this ques-

tion, imagine that the formula (4.3.1) failed to give the correct result for R̃n

at n-points (but succeeded below this point). Then consider the difference

between the prediction from (4.3.1) and R̃n, R̃n−R̃(4.3.1)
n . Since both obey the

same collinear limits, this is an n-point function which vanishes in all allowed

collinear limits. So we would expect to be able to absorb this into the defi-

nition of the collinear vanishing object Sn. But at n-points the only obvious
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properties R̃n−R̃(4.3.1)
n must satisfy are conformal invariance, cyclic (and par-

ity) symmetry and that it should vanish in all allowed collinear limits. Our

functions Sm on the other hand possess two additional restrictions, namely:

1. S
(`)
m = 0 for m > 4`,

2. Sm(x) = (−1)m/2Sm(xf ) (flip (anti)-symmetry) .

So we need only focus on the question of why the collinear vanishing part of

R̃n should possess these additional properties.

The first point, that there is no collinear vanishing, cyclically symmetric,

`-loop function beyond 4`-points, was argued in [91]. For completeness we

briefly repeat the argument, based on examining the symbol of Sm. The cen-

tral assumption of [91] was that the basis of the symbol (in 2d kinematics) is

made out of simple cross-ratios uij. These cross-ratios have a clear and simple

behaviour in two collinear limits, those associated with the edges i or j, specif-

ically log uij → 0 when either zi+1→zi−1, or zj+1→zj−1. Thus, the presence

of uij in the symbol of Sm makes it vanish in the collinear limits associated

with the edges i or j. To make sure that Sm vanishes in all possible collinear

limits its symbol must contain uij’s for all pairs of edges. If we add terms in

the symbol which are linear combination of u’s they cannot impose more than

2 collinear limits, so this argument remains unchanged even after a relaxation

of this assumption. At `-loops, there are 2` tensor products of uij’s in the

symbol, and they can connect maximally 4` different edges. This means that

collinearly vanishing functions exist only up to m = 4` points.

Moving on to the second point, for functions S4m′ satisfying the flip (anti)-

symmetry, we have found the unique collinear uplift, and this is valid without

any further constraints on Sm, in particular it need not satisfy any linear

identities and the formula manifestly satisfies the correct collinear behaviour.

There is no such manifest collinear uplift for an S4m′ which does not satisfy

the flip symmetry as the amplitude would lose cyclicity in z-variables. To

put it another way, any further solutions for these cases would have to satisfy

very special non-trivial linear identities between functions defined at different

points.

In later subsections we will extend this analysis to non-MHV amplitudes

and obtain similar conclusions and we will also explain how the tree-level

NMHV amplitudes evade these constraints precisely by satisfying such non-

trivial identities. They evade our conclusions by not manifestly having the

correct collinear behaviour (and indeed they are not manifestly cyclic either).
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They only have these properties after taking into account linear identities which

we believe to be special to tree-level, meaning that at loop level the only solu-

tion is of the form (4.3.1).

4.6 Special cases

We first return to once again considering the n-point, 2-loop result of [89]. At

2-loops, by inserting the 8-point result

S
(2)
8 (z1, . . . , z8) = −1

4
log(u17;53) log(u31;75) log(u28;64) log(u42;86) (4.6.1)

into our MHV uplifting formula (4.3.1)

R̃(2)
n (z1, z2, . . . , zn) =

∑
1≤i1Ci2Ci3Ci4≤n

S
(2)
8 (xi1 , xi2 , xi3 , xi4)(−1)i1+···+i4 (4.6.2)

and finally rewriting in terms of the basis ui,j’s, we correctly reproduce the

form of the two-loop result in earlier chapters (2.9.21).

The 3-loop MHV formula (4.3.1) for any number of points contains essen-

tially only three independent terms. It reduces to

R̃(3)
n (z1, z2, . . . , zn) =

∑
1≤i1Ci2Ci3Ci4≤n

S
(3)
8 (xi1 , xi2 , xi3 , xi4)(−1)i1+···+i4

+
∑

1≤i1C···Ci5≤n

S
(3)
10 (xi1 , xi2 , . . . , xi5)(−1)i1+···+i5

+
∑

1≤i1C···Ci6≤n

S
(3)
12 (xi1 , xi2 , . . . , xi6)(−1)i1+···+i6 , (4.6.3)

where the multi-collinearly vanishing function S12 is constructable using the

methods of [91] as was demonstrated in [80] and later updated to include

symbol entries of the form u1−u2 [47]. In particular these methods involved

writing down all possible terms allowed under cyclicity, parity, integrability of

the symbol and disappearing in all twelve triple-collinear limits. We will show

that the general formula correctly reproduces the 10-point result and gives

the entire collinear vanishing term at 10-points, V10 in (4.2.14), with terms not

included in [80] which contain symbol entries of the form u1,5−u2,6 being added

from the appendices of [47].
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S10 contribution to R10

We first consider the S10 collinear vanishing contribution toR10 constructed

explicitly in the most general fashion under the assumption that only cross-

ratios can occur in the symbol. At 10-points there are 10 fundamental cross-

ratios

ui := ui,i+4 , i = 1, . . . , 10 (4.6.4)

which can be divided into 5 even (u1, u3, . . . , u9), and 5 odd cross-ratios (u2,

u4, . . . , u10). It was argued in [91] that V10 is assembled from functions of even

cross-ratios times functions of odd cross-ratios as follows:

fi(ueven)fj(uodd) + cyclic + parity , (4.6.5)

where these functions fi must themselves vanish in any collinear limit. To do

this they must have weight-3 and each term must contain 3 consecutive cross-

ratios of given parity, e.g. u1, u3, u5. They are not difficult to find analytically

[91]:

f1(u1, u3, u5) = log(u1) log(u3) log(u5)

f2(u1, u3, u5) = log(u3)

(
Li2(u1)−Li2(1−u3)+Li2(u5)−π

2

6

)
f3(u1, u3, u5, u7, u9) =

∑
i=1,3,5,7,9

(Li3(ui)−Li3(1−ui))−ζ3 . (4.6.6)

Here f1 and f2 give 5 independent functions via cyclic permutations of the

arguments, whereas f3 is cyclically symmetric giving only 1 independent func-

tion, as such we have 11 functions in total.

Let us now rewrite these functions in a basis which diagonalises the action

of the cyclic group8,

f
(k)
1 (z1, z3, z5, z7, z9) :=

∑5
j=1 f1(u2j, u2j+2, u2j+4)e2πijk/5 k = 0, . . . , 4

f
(k)
2 (z1, z3, z5, z7, z9) :=

∑5
j=1 f2(u2j, u2j+2, u2j+4)e2πijk/5 k = 0, . . . , 4

f
(0)
3 (z1, z3, z5, z7, z9) := f3(u2, u4, u6, u8, u10) (4.6.7)

Note here that the i in the argument of the exponentials is not an index and

is instead i =
√
−1. These new functions lie in irreducible representations of

8 Here we mean the cyclic group which acts separately on the even and odd variables, so in
this case it is C5
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the cyclic group, in fact they are eigenstates of the cyclic group,

f (k)
a (z3, z5, z7, z9, z1) = e2πik/5f (k)

a (z1, z3, z5, z7, z9) (4.6.8)

Note additionally that under parity, we find f (k) → f (5−k). Then by construc-

tion both V10 appearing in (4.1.7) and S10 appearing in (4.3.1) are C5 and

parity invariant combinations of these functions.

Recall that the only distinction between S10 and V10 is that S10 contains

the additional symmetry that it must be invariant under flips of the variables.

To obtain cyclic (C10) invariant combinations, a function carrying cyclic repre-

sentation k must multiply a function carrying cyclic representation −k. This is

very simple to see if we consider the action of cyclic symmetry on such a com-

bination. The first term which has a cyclic representation k picks up a factor

of exp2πik/5 whereas the second term necessarily comes with a factor exp−2πik/5

where these two factors combine to give 1. As such there is no additional factor

and simply the two functions have switched roles, now the first has gone from

e.g. odd variables → even variables whereas the second has switched from

being a function of even variables to odd variables. As such a combination

f
(k)
a (z1, z3, . . . )f

(−k)
b (z2, z4, . . . ) requires a term f

(k)
a (z2, z4, . . . )f

(−k)
b (z3, z5, . . . )

to be cyclically invariant.

f (k)
a (z1, z3, . . . )f

(−k)
b (z2, z4, . . . ) + f (k)

a (z2, z4, . . . )f
(−k)
b (z3, z5, . . . ) (4.6.9)

If we now define all functions in the set zodd = (z1, z3, . . . ) and zeven =

(z2, z4, . . . ) then we see we need to cycle the very last function backwards

by two and we pick up a factor of e−2πik/5. This implementation of cyclic sym-

metry is used when we shortly define our complete collinear-vanishing function

(4.6.10).

Let us first construct V10: the most general combination of functions which

vanish in all collinear limits and with no additional flip-(anti)symmetry re-

quirements. This is given by a linear combination of the 12 collinear vanishing

contributions to the remainder function listed in Appendix A. These are now

written as

f
(k)
a (zodd)f

(−k)
b (zeven) + e−2πik/5f

(−k)
b (zodd)f

(k)
a (zeven) + a↔ b (4.6.10)

f
(0)
3 (zodd)f

(0)
a (zeven) + f

(0)
a (zodd)f

(0)
3 (zeven) a = 1, 2, 3 (4.6.11)

where zodd := z1, z3, z5, z7, z9 and zeven := z2, z4, z6, z8, z10. In the first equation

we have a, b = 1, 2 and k = 0, 1, 2 thus it gives 9-independent functions, in the
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second equation a = 1, 2, 3 giving 3 more. Clearly these 12 functions are

simple recombinations of the 12 functions in (4.6.6). We can see (4.6.10) is

now cyclically invariant under C10, where as we discussed the first line above

(4.6.9) and the second line is constructed from functions which are themselves

cyclically symmetric (4.6.6) provided they are in a combination where we can

swap even↔odd variables, but we will pick up no additional factors. This

is our final result for V10 under our assumption from [80] that all entries are

simple cross-ratios.

Let us now compare this with the construction of S10. These are constructed

from the same building block functions, with an additional constraint that they

must be antisymmetric under flip symmetry. They are given as

S10(x2, x4, x6, x8, x10) 3 f
(k)
a (zodd)f

(−k)
b (zeven)− f (−k)

b (zodd)f
(k)
a (zeven)

+f
(k)
b (zodd)f

(−k)
a (zeven)− f (−k)

a (zodd)f
(k)
b (zeven)

(4.6.12)

Non-vanishing contributions arise from k = 1, 2 and a, b = 1, 2 so we have

6 contributions in total. Note in particular that the invariant representation

k = 0 drops out here. Now, the contribution from S10’s to R10 dictated by the

S-formula (4.3.1):

R̃ 3 S10(x2, x4, x6, x8, x10)−S10(x1, x3, x5, x7, x9) (4.6.13)

becomes

(1−e2πik/5)
(
f (k)
a (zodd)f

(−k)
b (zeven)+e−2πik/5f

(−k)
b (zodd)f (k)

a (zeven)+a↔ b
)

(4.6.14)

We can now see that the contribution of S10’s to the 10-point amplitude (4.6.10)

gives a clearly identifiable subset of the most general collinearly vanishing

contribution V10. They are the same functions, simply multiplied by a constant

factor (1−e2πik/5) which plays no role except in the case k = 0 where it vanishes.

Thus we clearly see that the contribution of S10 yields the entire collinear

vanishing part ofR10 except the pieces constructed from the cyclically invariant

functions f
(0)
a . We will now see how these missing building blocks are correctly

filled in by contributions from S8 or more precisely T8. For more details on the

functions and their combinations etc. in this construction see Appendix A.
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T8 contribution to R10

Now consider the contribution of S8 to R10 where, following our earlier

scheme (4.3.5), we split S8 into R8 and T8 parts. The role of R8 is com-

pletely clear, it is the 8-point amplitude and furthermore it contributes to the

collinearly non-vanishing part of all higher point amplitudes. The first con-

tribution of T8 however arises only at 10-points where it contributes to the

collinearly vanishing part of the answer. Here we wish to identify and trace

through the T8 contribution to V10

From Appendix A we obtain

T8(x2, x4, x6, x8) =
∑
σ,τ

bστf
−
σ (u1)f−τ (u2) (4.6.15)

where bστ = bτσ and the functions f−σ , σ = 1, 2, 3 are listed in Appendix A.

These functions f−σ are all weight 3. It turns out that contributions of T8 of

the form (weight 2)× (weight 4) vanish at all points. We will discuss this

point further at the end of this subsection. In terms of the z-variables these

functions satisfy the following property.

f−σ (z3, z5, z7, z1) = −f−σ (z1, z3, z5, z7) (4.6.16)

i.e. they are invariant with an alternating sign under cyclic (C5) symmetry.

Inserting T8 into the S-formula

R̃10 ∈
∑

1≤i1Ci2Ci3Ci4≤10 S8(xi1 , xi2 , xi3 , xi4)(−1)i1+i2+i3+i4

∈∑1≤i1Ci2Ci3Ci4≤10 T8(xi1 , xi2 , xi3 , xi4)(−1)i1+i2+i3+i4 (4.6.17)

and performing the sum we have

R̃10 ∈
∑
στ

bσ,τFσ(z1, z3, z5, z7, z9)Fτ (z2, z4, z6, z8, z10) (4.6.18)

where

Fσ(z1, z3, z5, z7, z9) (4.6.19)

= f−σ (z1, z3, z5, z7)−f−σ (z1, z3, z5, z9)+f−σ (z1, z3, z7, z9)−f−σ (z1, z5, z7, z9)+f−σ (z3, z5, z7, z9)

= f−σ (z1, z3, z5, z7)+f−σ (z9, z1, z3, z5)+f−σ (z7, z9, z1, z3)+f−σ (z5, z7, z9, z1)+f−σ (z3, z5, z7, z9)
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Note that the functions Fσ, although constructed from four-point building

blocks, are in fact cyclically invariant 5-point functions. Furthermore, inspec-

tion of the right-hand side of (4.6.19) shows that they also vanish in all collinear

limits. Thus we see that the right-hand side of (4.6.17) corresponds precisely

to k = 0 contributions to V10 using the earlier cyclic-group language. We have

six contributions

F1F1 F1F2+F2F1 F1F3+F3F1 F2F2 F2F3+F3F2 F3F3

(4.6.20)

and these are the six previously missing contributions in V10, not accounted

for by S10 earlier in this subsection, more details are given in Appendix A.

One obvious question is what happens if we use (weight 2) × (weight 4)

functions, f−, to construct T8. According to the above discussion this should

produce a (weight 2) × (weight 4) collinear vanishing contribution to S10 which

we know is not present in V10, giving an apparent contradiction. In reality it

is easy to see that all such contributions vanish. There is a unique weight 2

function f−(u) = Li2(u)−Li2(1−u) and when we plug it into (4.6.19) we see

that the corresponding function (Fσ) vanishes. When written in terms of the

symbol this identity is manifest; in terms of the polylogarithms this becomes

the equation

Li2(u1)+Li2(u3)+Li2(u5)+Li2(u7)+Li2(u9)−(ui ↔ 1−ui) = constant

(4.6.21)

Writing this in terms of u1, u5 via the Y-system

u3 = 1−u1u5 u7 =
1−u5

1−u1u5

u9 =
1−u1

1−u1u5

(4.6.22)

is equivalent to the famous non-trivial five-term identity for the dilogarithm

(Abel’s pentagon relation) first discovered by Spence in 1809. We should em-

phasize this result, as we believe this is potentially only the simplest example

of the reproduction of known (or potentially unknown) logarithmic identities

which will emerge from physical motivations in systems such as this but from

more complicated amplitudes.

At higher loops such as 10-loops we will have a symbol of length 20 and if

there is the thus-far-observed result that the symbol of a 2d remainder function

must be divided precisely evenly between n/2 even cross-ratios and n/2-odd

cross-ratios then there may indeed be a series of very highly non-trivial can-

cellations of all other terms not of these weights e.g. (weight 12) × (weight
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8) or (weight 16)×(weight 4) in analogy to (4.6.21). This would deserve fur-

ther investigation to establish whether such asymmetrically-weighted terms

appear after all once you go to higher-loop orders? Or do such terms disap-

pear through non-trivial logarithmic identities and are these identities known?

Here though, we merely conclude that as mentioned earlier no (weight 2) ×
(weight 4) contributions survive in V10 while weight 3 functions have already

been accounted above. We also note that the contributions involving weight 2

functions f− also disappear from Vn at all higher n.

To summarise we have demonstrated that T8 and S10 together generate all

possible collinear vanishing 10-point functions. And this confirms that the S-

formula, at least in this instance, does not miss anything. It has subsequently

been used at N2MHV one-loop and NMHV two-loops in [47].

Higher points

This general pattern continues in a similar way to higher points. We con-

struct S2m’s from the product of collinear vanishing building block functions

of even and odd z’s. We choose a basis of these which diagonalise the cyclic

group and call them f
(k)
i , where k is the representation of the cyclic group Cm

and ‘i’ labels the inequivalent functions. The S-formula gives the contribution

Sm =aij;k

(
f

(k)
i (zodd)f

(−k)
j (zeven)+(−1)mf

(−k)
j (zodd)f

(k)
i (zeven)

+ parity) k = 0, 1, . . .m , (4.6.23)

giving the contribution to (the collinear vanishing part of) Rm

aij;k
(
1 + (−1)me2πik/m

) (
f

(k)
i (zodd)f

(−k)
j (zeven)

+e−2πik/mf
(−k)
j (zodd)f

(k)
i (zeven) + parity

)
(4.6.24)

This yields all possible collinear vanishing m-point amplitudes, except those

built from k = 0 (m odd) or k = m/2 (m even). In other words the S-formula

omits the cyclically invariant symmetric building block functions if m is odd,

or in the case where m is even it misses out the functions cyclically invariant up

to a sign. However, just as earlier in this subsection, the missing contributions

at 2m-points do in fact contribute at 2m+2 points and presumably fill the full

space of available functions (although we have only checked this at the 8 to 10

point level). As such we now have a proposal for the complete uplift formula



4.7 Collinear uplift of n-point NkMHV amplitudes 75

for MHV amplitudes.

4.7 Collinear uplift of n-point NkMHV am-

plitudes

The general formula for lifting MHV amplitudes to higher points immediately

suggests generalisation to NkMHV superamplitudes. To do so we will need to

examine odd superspace variables in 2d and the form of the collinear limit.

As discussed earlier in Chapter 2, superamplitudes can be written in chi-

ral superspace depending on superspace coordinates Xi = (xi, θ
A
i ) where the

bosonic components xi are given in terms of 2d lightcone coordinates. Exam-

ining the implications of the light-like condition for the θ’s in 2d kinematics,

we find that the condition can be solved in an analogous manner to the way

we write x’s in terms of z’s, but for the Grassmann coordinates θ’s and χ’s:

θαAi =

{
(χAi−1, χ

A
i ) , i even

(χAi , χ
A
i−1) , i odd

. (4.7.1)

Indeed, comparing with the supertwistor we find that the χ’s are precisely the

odd supertwistor variables (2.2.2) just as the z’s were the bosonic twistors.

The general formula (4.3.1) giving all n-point MHV amplitudes in terms of

a finite number of collinear vanishing functions generalises immediately now to

the non-MHV case. Indeed the collinear limits zn→zn−2 must be accompanied

by identical limits for the Grassmann coordinates χn→χn−2. Here one does

have to be careful about the relevant speed at which we take the limit. We

here take the collinear limit in a supersymmetric way. More precisely the

collinear limit can be taken as a particular superconformal transformation on

the relevant vertices (the details of this limit were given in Sect 2.5).

So, precisely as for the MHV case we have collinear vanishing functions,

this time of the super-coordinates Sm(X2, X4, . . . , Xm) which satisfy cyclicity,

parity, flip symmetry and the collinear vanishing properties in all (allowed)

collinear limits, so

Sm(X1, X3, . . . Xm−1) = Sm(X2, X4, . . . Xm) = Sm(Xm, Xm−2, . . . X2) (4.7.2)

lim
Xm→Xm−1

Sm(X2, X4, . . . Xm) = 0 . (4.7.3)
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Or more generally Sm vanishes whenever any (allowed) number of consecutive

X’s become light-like separated (in the supersymmetric sense: X1 = (x1, θ1)

and X2 = (x2, θ2) are light-like separated if x2
12 = 0 and θ12αx

αα̇
12 = 0) i.e.

Sm(Xi, Xj . . . , Xk) = 0
if any set of 2, 3, . . . or m/2−2 consecutive points

become mutually light-like separated.

(4.7.4)

We note that Sm(X1, X3, . . . Xm−1) is a function of superspace variables,

and is not the same object as the MHV function Sm(x1, x3, . . . xm−1) with

purely bosonic-variables from the previous subsection. The latter however is

given by the zero-th order in θ expansion of the former. As we are here dis-

cussing superamplitudes, the NkMHV label k does not appear in R̃n and Sn in

formulae below, but the NkMHV amplitudes R̃n,k will arise as θ4k components

of R̃n(X).

The general formula for the n-point amplitude is given, in exact analogy

with the MHV case, by

R̃(`)
n (Z1,Z2, . . . ,Zn) =

∑
1≤i1C···Ci4≤n

S
(`)
8 (Xi1 , Xi2 , . . . , Xi4)(−1)i1+···+i4

+
∑

1≤i1C···Ci5≤n

S
(`)
10 (Xi1 , Xi2 , . . . , Xi5)(−1)i1+···+i5

+
∑

1≤i1C···Ci6≤n

S
(`)
12 (Xi1 , Xi2 , . . . , Xi6)(−1)i1+···+i6

+ . . .

+
∑

1≤i1C···Cimmax/2≤n

S(`)
mmax

(Xi1 , Xi2 , . . . , Ximmax/2
)(−1)i1+···+immax/2

(4.7.5)

This constitutes our principle result which we have built to through these ini-

tial chapters. The reason for the strong similarity with the MHV case (4.3.1)

is because the collinear limits restrictions function in an identical fashion. We

discussed the behaviour of the R-invairants under collinear limits in the pre-

vious chapter (3.4.5) and have discussed the bosonic functions of cross-ratios

ui,j under collinear limits extensively before too (2.9.6). As such it should be

simple to see that both parts play similar roles in enforcing functions in (4.7.5)

to vanish under the required number of collinear limits. The important bound-

ary case where we have a multi-collinear limit in which superspace points in
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the set Sp+2 = {Xn−p, Xn−p+1, . . . , X1} become light-like separated (in the su-

persymmetric sense) from all other points in Sp+2 (i.e. collinear) whereas the

points in the set Sn−p−2 = {x2, . . . , xn−p−1} remain unchanged. Importantly

this limit can be described by performing a conformal transformation on the

points in Sp+2 (see Sect.2.5). In this limit one can see that

R̃n → R̃n−p + R̃p+4 , (4.7.6)

exactly as required. The proof follows by direct analogy to the arguments in

the MHV case around (4.4.1).

Thus, the only question remaining is that of how to fix how many S’s are

there, i.e. what is mmax? This will depend on the loop level ` and the order

in χ-expansion, i.e. the value of k. Based on the MHV bound, mMHV ≤ 4`

and the Q-equation of Ref. [46] which related NkMHV amplitudes at `-loops to

Nk−1MHV amplitudes at (`+ 1)-loops, one could expect that mmax = 4(`+k),

which certainly matches our results at NMHV one-loop, where R8 is sufficient

to fix all n-point amplitudes.

4.8 Tree-level NMHV amplitude

In this section we revise our procedure of the last chapter where we reduced

the known n-point tree-level NMHV superamplitudes down to 2d kinematics.

This was a non-trivial procedure, since each term diverges in 2d kinematics

and only certain combinations are finite.

We recap that in full 4d kinematics, the tree-level NMHV amplitude can

be expressed as [55, 59]

Rtree
n,1 =

1

2

∑
i,j

[1, i−1, i, j−1, j] . (4.8.1)

where the 5-brackets (which are totally anti-symmetric in their arguments) can

be written in momentum supertwistors as [100]

[i, j, k, l,m] =
δ0|4 (χi〈jklm〉+cyclic)

〈ijkl〉〈jklm〉〈klmi〉〈lmij〉〈mijk〉 . (4.8.2)
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We reduce the NMHV tree-level amplitudes to 2d kinematics and consider the

first non-trivial case: the 6-point amplitude. This is

Rtree
6,1 =

1

2
(〈13456〉+ 〈12356〉+ 〈12345〉) =

1

2
R̃(1, 3, 5) =

1

2
〈135〉〈246〉 .

(4.8.3)

Here the first equality comes directly from the general formula (4.8.1).

Due to the large number of identities, it is not clear which is the best way

of representing any amplitude at low points. However, gradually a general

picture began to emerge and we obtained a simple formula for the n-point,

NMHV, tree-level amplitude in 2d kinematics in terms of 3-brackets (3.3.4).

The result can be written

Rtree
n;1 =

∑
1≤jCk≤n

R̃ (1, j, k) (−1)1+j+k . (4.8.4)

which at 6-points correctly reproduces (4.8.3).

Let us then compare this NMHV tree-level result with our general result

for loop level superamplitudes, given in formula (4.7.5). First of all we see

that the formulae are strikingly similar with the same type of alternating sum.

The tree-level formula starts at 6 points however whereas (4.7.5) starts at 8-

points and for our formula we claim that collinear vanishing objects Sm can

only be uplifted to higher points for m ≥ 8 unless they satisfy very special

non-trivial linear identities. Looking closer we see that the main difference is

that in the tree-level formula (4.8.4) only two indices are summed over, the

first variable remaining fixed, so above in (4.8.4) we see the variable fixed at

Z1. This does not look cyclically invariant and indeed verification of cyclic

invariance requires the implementation of non-trivial linear identities between

the six-point R̃ (i, j, k) at different points. We can of course make it manifestly

cyclically symmetric by summing cyclic terms and dividing by n to give

Rtree
n;1 =

∑
iCjCkCi

1

n
R̃ (i, j, k) (−1)j+k . (4.8.5)

This has a form very similar to the general S-formula (4.7.5), the difference

is the appearance of the rather asymmetric looking (−1)j+k instead of the

more symmetric (−1)i+j+k one might expect. Indeed, imagine extending the
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S-formula to m = 6 to give∑
1≤iCjCk≤n

S6(i, j, k)(−1)i+j+k (4.8.6)

with a (−1)i+j+k factor. The problem is the entire result simply vanishes in

this case (e.g. six-points would yield S6(2, 4, 6)−S6(1, 3, 5) = 0).

So the question remains, how does the tree-level NMHV formula get round

this obstacle? The answer is that the S-formula is derived to obey manifest

cyclicity and manifest collinear limits. The NMHV tree-level formula does not

satisfy these requirements, but instead only satisfies cyclicity after taking into

account non-trivial linear identities.

For example, first consider taking the triple/soft collinear limit Zn→Zn−2

(i.e. Xn → Xn−1) on the tree-level NMHV expression (4.8.4). This gives

∑
4≤jCk≤n

1
2
R̃ (2, j, k) (−1)j+k −→

Xn→Xn−1

∑
4≤jCk≤n−2

1

2
R̃ (2, j, k) (−1)j+k

+
1

2
R̃ (2, n−2, n) (4.8.7)

correctly reproducing the collinear limit Rn;1→Rn−2;1+R6;1 manifestly. On

the other hand if we instead perform the limit Zn−1→Zn−3 (i.e. Xn−1→Xn−2)

on the tree-level NMHV expression (4.8.4) we get

∑
4≤jCk≤n

1

2
R̃ (2, j, k) (−1)j+k −→

Xn−1→Xn−2

∑
4≤jCk≤n

j,k 6=n−1,n−2

1

2
R̃ (2, j, k) (−1)j+k (4.8.8)

+
1

2

(
R̃ (2, n−3, n−1)−R̃ (2, n−3, n) + R̃ (2, n−2, n)

)
This also correctly reproduces the collinear limit Rn;1→Rn−2;1 +R6;1 but only

after taking into account the linear identity

R̃ (2, n−3, n−1)−R̃ (2, n−3, n) +R̃ (2, n−2, n) = R̃(1, n−3, n−1) . (4.8.9)

As such it is these non-trivial linear identities which allow NMHV tree-level

amplitudes to circumvent the uplifting formula. However we expect these spe-

cial conditions to only be present in the tree-level description and not beyond.
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4.9 Subsequent Work on Amplitudes in Re-

duced Kinematics

Since the publication of [80] and the general uplift formulae for amplitudes

in two-dimensional kinematics, there has been progress in both the area of

building amplitudes from symmetries as we have done here and other aspects of

two-dimensional kinematics for amplitudes. In this section we wish to provide

a quick update on the principal results of the new work, concentrating in

particular on [47] as it provided a natural next step to our work as presented

above as well as some minor amendments by relaxing certain assumptions

which proved too strong.

In [47] the authors used the techniques which we employed: cyclicity, parity,

collinear-limits, OPE constraints and additionally a much more prominent use

of the Q̄-equation to write down the next most complicated amplitudes. Having

split the SU(4) R-symmetry to SU(2)×SU(2) they calculated one-loop N2MHV

amplitudes at 8- and 10-points, two-loop NMHV amplitudes at 8- and 10-points

and three-loop MHV amplitudes at 8-points. We will neither reproduce their

results here or explain the details of these calculations, however there are some

important comments to be made.

As mentioned previously in this chapter, the authors of [47] used a weaker

set of assumptions about the symbol content than was previously used [80, 89,

91]. This set of additional assumptions can be captured as follows:

• For octagons in 2d kinematics at all loop-orders, only six different ‘letters’

can appear in the symbol: v, w, 1 + v, 1 + w, v − w, 1− vw. All of these

can already be found at 3-loops.

• The last entry of the symbol for MHV and NMHV octagons can only be

v, w, 1 + v, 1 + w.

• The `-loop NkMHV amplitude in 2d kinematics can be obtained by

collinear-uplifting the octagon, dodecagon etc. up to 4(`+ k)-gon. That

is, by uplifting basic building blocks of the type S8, S10, . . . S4(`+k). Fur-

thermore, the depth of the transcendental functions entering S
(`)
4m should

be at most `+ 2−m.

Where the cross-ratios v,w are defined in a subtly different way from our earlier

definitions, but to all intents and purposes fulfil the same role (see Appendix

A). Note that in the first term we have included the additional terms u − v
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and 1 − uv which are not simply cross-ratios. We discussed the role of these

in the case of the remainder function for the MHV 2-loop amplitude Sect.2.9.

However from the point of the 2-loop NMHV and 3-loop MHV remainder func-

tion and above these terms can no longer be ignored as they do contribute and

cannot be expressed in the symbol as simply cross-ratios. These additional

terms make working beyond these amplitudes to higher complexity a calcu-

lationally difficult task, however as already explained there are still limits to

where such terms can appear see Sect.2.9. Although these assumptions are all

well-motivated there is still no definitive proof of these properties, we however

briefly highlight work by [81, 85, 107] which attempts to give the complete

dictionary for the symbol first in the full four-dimensional case and later in 2d

kinematics [107].

The alteration in possible letters in the three-loop MHV case amended work

done in [80, 91] by adding extra terms. We have noted this at key points during

this chapter and presented the euqations for S
(3)
8 given in [47] in Appendix A

alongside the earlier formulae from [80]. However, primarily this work remains

unchanged and in particular the additional symbol choices do not affect the

derivation of the uplifting formula.

Before we finally depart from the work presented here we wish to make a

few comments about potential future directions for research and pitfalls. As

observed in [47] there is an interesting resemblance between the structure of

multi-loop amplitudes in R1,1 (i.e. in 1 + 1-dimensions) and that of correla-

tion functions. As an example, multi-loop integrals for four-point correlation

functions receive contributions from “mixing” terms e.g. x̄−x and 1−xx̄ at

3- and 4-loops, where x and x̄ are related to the two cross-ratios [54]. This

similarity deserves further investigation and, whilst not focussing on this, we

will be looking at the correlation function ↔ amplitude duality in the next

chapter.

As mentioned already it would be extremely useful to find a rewriting of

the Q̄-equation which does not require an intermediate step devoid of manifest

dual-conformal symmetry. This would also help in finding an easier way to

impose any constraints which the Q̄-equation places on the relations between

otherwise independent symbol strings. Despite investigation (with some of

this work referred to in Chapter.3) we have thus far failed to achieve such a

rewriting and have only succeeded in checking that the Q̄-equation does indeed

provide restrictions independent of those from our other symmetries: cyclicity,

parity, etc. Such additional restrictions would be potentially very useful in
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restricting possible forms of symbol strings at higher complexity and keeping

the calculations computationally feasible as we progress to higher k, ` and n.

It should not prove too difficult to adapt the ideas presented in this chapter

to the full four-dimensional kinematics in N = 4 since the decomposition of

an amplitude into a finite number of collinearly-vanishing terms at a range of

orders must still hold. Principle details about collinear-limits must be adapted

and the number of terms would grow since no longer are we limited to an even

number of external particles, however these alterations to the uplifting formula

would not make the formula overly complicated. The barrier to the imposition

of a similar scheme in the full kinematics would instead be a larger set of

‘letters’ in the alphabet for the symbol including some rational functions of

cross-ratios, it is this last alteration which potentially would make this process

infeasible.

The last obvious avenue for future research in this area is to simply attempt

calculations of more complicated amplitudes in `, k and n. At present the most

complicated amplitudes calculated in two-dimensional kinematics are at 10-

point N2MHV one-loop, 10-point NMHV 2-loops, and 10-point MHV 3-loops

amplitudes. If the 12-point amplitude was found and decomposed correctly for

each of these cases then the uplifting formula (4.7.5) would solve the complete

n-point amplitude in each of these cases.

We will now depart from studying two-dimensional kinematics and return

to the full four-dimensional picture and the study of multi-loop amplitudes

through the correlation function ↔ amplitude duality. This may well have

relevance for the two-dimensional kinematics as was observed in [47] however

we will not draw strong connections between the two.
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Multi-Loop Amplitudes at 4- and

5-points from Correlation

Functions to Amplitudes

In this chapter we will follow closely the work done in [6, 69] in first explaining

the correlator/amplitude duality. We then use this duality to derive multi-

loop amplitude results from correlation functions up to 6-loops for 4-points,

and (our new results from [6]) at 5-points obtaining results for 5-loops in the

parity-odd sector and 6-loops for the parity-even sector. We present many

results within the chapter but leave some of the high-loop results to Appendix

D.

5.1 Summary of The Correlation Function

↔ Amplitude Duality

As referred to in previous chapters, planar scattering amplitudes in N = 4

are dual to polynomial Wilson loops with lightlike edges [4, 28, 35, 57, 61]. It

was also recently demonstrated that both the amplitude and the Wilson loop

can be generated from n-point correlation functions of the energy-momentum

tensor multiplet of the theory [2, 67, 68, 73, 74]. To this end, the operators of

an n-point correlator are put on the vertices of an n-gon with lightlike edges.

The relationship between correlation functions and Wilson loops is rather di-

rect [2], since both are defined on configuration space and this connection

can be made supersymmetric [1, 44, 99]. In contrast, the connection between

83
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energy-momentum correlation functions and amplitudes is conceptually not

well understood, however it does provide a fully supersymmetric integrand du-

ality which exactly reproduces the BCFW based loop-integrands [1, 67, 68, 74].

The disc planarity of amplitudes is mapped to planarity on the sphere for the

correlation functions. To be specific, the correlation functions yield the square

of the amplitude integrands; here the amplitude discs are quite literally welded

together akin to the hemispheres of a ball touching at the equator.

The component operators in the energy-momentum tensor multiplet are

dual to supergravity states on AdS5 by the AdS/CFT correspondence [88, 96,

108]. We use superspace to package all the component operators into one

superoperator, here though we prefer to write OΛ(x) where Λ is simply a

schematic label describing the precise component in question.

Two- and three-point functions of these operators can be shown to be pro-

tected from quantum corrections. As the first non-trivial objects the four-point

functions have been intensely studied at both weak-coupling in field theory per-

turbation theory and at strong-coupling exemplifying the AdS/CFT duality.

The loop corrections to these four-point function take a factorised form [75]:

〈OΛ1OΛ2OΛ3OΛ4〉 = 〈OΛ1OΛ2OΛ3OΛ4〉tree+IΛ1Λ2Λ3Λ4(xi)×f(xi; a) (5.1.1)

In this equation I is independent of the ’t Hooft coupling a = g2N/(4π2) but

does depend on the particular component operators in question; all the non-

trivial coupling dependence lies in the single function f . We define all the

`-loop integrands:

f(xi; a) =
∞∑
`=1

a`

`!

∫
d4x5 . . . d

4x4+`f
(`)(x1, . . . , x4+`) (5.1.2)

We are aware that these f -functions may cause confusion with similarly named

functions in previous chapters, however to remain in keeping with published

work and other material elsewhere we will remain using the f -graph notation.

It is important to note that these f -functions are distinct from f -functions

from previous chapters.

The one- and two-loop contributions were computed using supergraphs [32,

71, 72, 76, 86]. In [69, 70] it was demonstrated that all the loop integrands have

a surprising and hidden symmetry through permuting internal and external
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variables.

f (`)(x1, . . . x4+`) = f (`)(xσ1 , . . . , xσ4+`
) ∀σ ∈ S4+` (5.1.3)

The S4+` invariance together with conformal covariance (these functions must

conform covariantly under conformal symmetry, in practice this simply means

f (`) must have conformal weight 4 at each of the (4 + `)-points, where for the

integration points this will be cancelled by the d4-integration), the absence of

double-propagator terms (which follows from an OPE analysis), and planarity

of the corresponding graph beyond one-loop constrains the number of undeter-

mined parameters in an ansatz of this type severely. As such that up to three

loops there is only one term in the ansatz. Indeed even at higher loops it was

possible to determine f (`) up to ` = 6 in combination with the criteria about

the exponentiation of infra-red (IR) singularities [69, 70]. We will derive these

graphs more explicitly in the next section, and much of this chapter will be

devoted to their derivation and use at 4-points and 5-points.

Note that the construction of any term f (`) is in terms of squared distances

x2
ij in both numerator and denominator. The graph obtained by considering

the denominator factors is called an f -graph and it is these graphs we will

use once we have fully explained them. These graphs provide an exceptionally

compact method through which we can display the full correlator. In these

diagrams we denote numerator factors by dashed lines, as such an f-graph with

numerator lines provides a unique associated integrand. We will derive and

explore these f -functions in greater detail in the next section, however for the

moment let us simply consider an overview of their use.

Specialising temporarily to four-points, the amplitude/correlation function

duality relates the four-point lightlike limit of f(xi; a) to the four-point remain-

der function M4(xi; a) (i.e. the full amplitude divided by the tree amplitude)

in dual-momentum space pi = xi−xi+1:

1 + 2
∑
`≥0

a`f
(`)
4 = (M4(xi; a))2 (5.1.4)

where

F
(`)
4 (x1, . . . , x4) = (external factor)× lim

x2
i,i+1→0

∫
d4x5 . . . d

4x4+`
f (`)

`!
(5.1.5)

where the limits are understood mod(4) and the external factor is nothing
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more than x2
13x

2
24Π1≤i<j≤4x

2
ij. We will provide a graphical interpretation of all

of these objects more explicitly following the work of [69]. However as a brief

summary: the limit on the left-hand side corresponds to selecting all possible

4-cycles in the f -graph and manipulating them so that each point is lightlike

separated from its neighbour. Thus we split the f -graph into two disc planar

amplitudes (“inside” versus “outside”) and these correspond to the two planar

amplitude integrands.

There has been much recent work towards an understanding of the inter-

action between the four-point correlation functions and their dual amplitudes

[66, 69, 70]. Indeed one can use this relation in reverse to read-off the correla-

tion function from the amplitude, and with this method f (7) was obtained in

[106] using the corresponding 7-loop amplitude [23].

Less has been made of the fact that the very same four-point correlation

function is related to particular combinations of higher-point amplitudes. This

remarkable feature is simply a consequence of the fact that loop corrections of

correlation functions are correlation functions with the Lagrangian inserted.

However, the Lagrangian is itself an operator in the energy-momentum super-

multiplet. Therefore we find that the loop-corrections of n-point correlators

of energy-momentum multiplets are given by certain higher-point correlators

of energy-momentum multiplets. These, in turn, are related to higher-point

amplitudes via the amplitude/correlation function duality. The details of this

are derived in greater detail in Appendix E and here we merely state the result:∑
`≥0

a`F
(`)
5 = M5M5 (5.1.6)

where F
(`)
5 (x1, . . . , x5) is constructed from the four-point correlator integrands

f (`).

F
(`)
5 (x1, . . . , x5) := (external factor)× lim

x2
i,i+1→0

∫
d4x6 . . . d

4x5+`
f (`+1)

`!
(5.1.7)

where here the external factor is 1
f (1) = Π1≤i<j≤5x

2
ij, M5 is the five-point MHV

amplitude (divided by tree-level) in similarity to the four-point relations, but

M5 is the NMHV amplitude not present at four-points. So to obtain the

five-point amplitudes rather than the four-point amplitude we simply take

the five-point lightlike limit not the four-point lightlike limit. The f (n) graph

contributes to the 4-point amplitude at the (n−4)-loop level and the (n−5)-

loop level for the five-point amplitudes.
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In addition to these comments, there is still the question of how (5.1.6)

uniquely determines M5? The perturbative expansion of the right-hand side

contains the parity-even part M5 + M5 (by choosing the leading 1 in either

factor) but it is also possible to obtain product terms. The (sphere) planar

part of the correlator integrand, on the left-hand side of the equation, breaks

into classes of terms. In analogy to earlier, taking the five-point lightlike limits

corresponds to choosing a five-cycle on the graph (as opposed to a 4-cycle for

the 4-point amplitude) which splits the f-graph into two disc planar pieces. The

`-loop integrand contains terms corresponding to a single `-loop integral as well

as products of m-loop and (`−m)-loop integrals. As such, equation (5.1.6) is

“stratified” into an over-determined system that turns out to be beautifully

consistent.

We explore the super-duality in Appendix E motivating there the principal

equations given above. We use these equations firstly at four-points Sect 5.2

and discuss the precise steps required to build the correlation function from

symmetries and subsequently calculate the amplitude, later we repeat these

steps with five external particles (Sect.5.4). Once we have discussed the theory

at four-points we will discuss work done in [69] on the four-point amplitude

up to 6-loops (Sect 5.3) before later doing the same for work at five-points as

we calculated in [6]: up to 6-loops in the parity-even sector and 5-loops in the

parity-odd sector.

5.2 Constructing the f-functions

It is now only the f -functions which concern us, as here lies all the interest-

ing remaining structure which we must understand to build up the amplitudes.

Here we will introduce the notion of f-graphs which are drawn from the denom-

inator factors of the f -functions (and we shall later add dotted lines indicating

the numerator factors). The objects f (`)(x1, . . . , x4+`) are rational functions,

symmetric in all (4+ `)-variables, conformally covariant, with weight 4 at each

point and with no double-poles. To display these functions graphically we label

the vertices of a graph by the dual-space points xi and edges denote propaga-

tors 1/x2
ij. We reproduce all f-graphs up to seven points in Fig.5.1 to see how

restrictive these requirements are. Since we sum over all permutations of the

vertices we need not label the graph - we sum over all possible labellings. Any

vertex with degree d>4 must be accompanied by d−4 numerator lines to bring

the total number of denominator lines minus numerator lines to be equal to
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Figure 5.1: We reproduce from [69] the diagram showing all f -graphs up to
7-points (i.e. 4-point 3-loops). The five-point graph is clearly non-planar since
it is K5 (the complete graph with five vertices), however it becomes planar
once we multiply it with the prefactor (E.0.6). The six-point graph f (2) and
the second of the seven-point graphs are planar, however the remaining graphs
are non-planar even after including the pre-factor in (E.0.6).
Since we know that the 4-point 3-loop amplitude is planar this will cause the
contributions from the final three graphs of this figure to disappear as was
shown in [69].

four. This corresponds to the fact that f (`) has conformal weight four at each

external and internal point, although we sometimes suppress the numerator

lines for visual simplicity (as we have done in Fig.5.1).

We now provide from [6] the f-graphs to five-loops at four-points and corre-

sponding expressions up to three-loops, we have re-drawn them, as compared

to Fig.1 in order that we can demonstrate the planarity of the higher-point

amplitudes.

Recall that the graphs do not require labelling as we will sum over all

possible labellings. So for example the f (1)-graph has the equation which

simply denotes the product of all propagators between all pairs of vertices, as

can be seen in the graph. Whereas the f (2)-graph is more complicated. We

start with the product of all possible propagators, however we then have the

wrong weighting for our points, we need to reduce the weight by one for each

vertex. We do this with a sum over all possible polynomials which have the

correct weight of one at each point, these will cancel with propagators in the

denominator and leave us with a function of the correct weight. We need the

factor of 1
48

to correct for the fact that labelling the vertices in all possible ways

will leave to over-counting of identical terms. After cancellation, every non-

vanishing term will have the form of the f (2)-graph. A similar story applies to

the f (3)-graph.
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f (1) = = 1∏
1≤i<j≤5 x

2
ij
,

f (2) = =
1
48

∑
σ∈S6

x2
σ1σ2

x2
σ3σ4

x2
σ5σ6∏

1≤i<j≤6 x
2
ij

f (3) =
=

1
20

∑
σ∈S7

x4
σ1σ2

x2
σ3σ4

x2
σ4σ5

x2
σ5σ6

x2
σ6σ7

x2
σ7σ3∏

1≤i<j≤7 x
2
ij

f (4) = + -

f (5) = - + + - + +

Figure 5.2: All contributing planar f-graphs for four-points and `-loops from 1-
5. We have included the equations for clarity for the first few, however beyond
this point it becomes increasingly lengthy to write out the equations.

We see from the above figure (which contains only the f -graphs which

will ultimately contribute to our amplitudes) that f (2) has no need of any

numerator term, whereas f (3) has a single numerator line which will connect

the two 5-valent nodes (marked out in blue in Fig.5.2). Note the discrepancy

between the number of three-loop graphs in Fig.5.2 as compared to Fig.5.1,

this is due to the vanishing contribution of the non-planar graphs, see [69].

At four-points the one- and two-loop contributions were calculated using

supergraphs in [32, 71, 72, 76, 86]. In contrast, three-loop results and beyond

were computed using the above symmetry considerations in addition to the

suppression of singularities in the coefficients [69, 70]. However, if we were to

follow our earlier arguments we may consider the f -graphs of Fig.5.2 as `-loop

correlators at 4-points, or (` − 1)-loop correlators at 5-points etc. We will

follow work done in [69] first, and consider 4-point, `-loop correlators before

the 5-point case is explored later (Sect 5.4).
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5.3 `-loop, 4-point Amplitudes

In planar N = 4 SYM the duality between correlation functions and ampli-

tudes (5.1.4) at four-points states that9:

lim
x2
i,i+1→0

(
G4/G

(0)
4

)
(x1, x2, x3, x4) =

[
(A4/A(0)

4 )(p1, p2, p3, p4)
]2

(5.3.1)

Notice that this relation (5.3.1) is one formulated in terms of integrands of

the two objects not in terms of Feynman integrals. The latter diverge in the

lightcone limit (for the correlation function) and for massless particles with

p2
i = 0 (for the amplitude), and hence would require a regularization, say

dimensional regularization to D=4-2ε dimensions (a process we will explore in

detail in the next chapter). What appears on the right-hand side of (5.3.1) is

the four-dimensional integrand of the amplitude, which is a rational function

of the momenta. This rational function, rewritten in terms of dual coordinates

(pµi = xµi − xµi+1), which we then compare with the rational integrand of the

correlation function. The latter is conformally covariant by construction, while

the integrand of the amplitude is known to have dual conformal invariance

[16, 19, 48, 60].

We once again re-iterate that the duality (5.3.1) only applies to the planar

limit of the two objects. The correlation function is known not to have non-

planar corrections at one- and two-loops [32, 76] and later it was demonstrated

that non-planar corrections do not appear below four-loops [69]. In contrast

the four-particle amplitude begins having non-planar corrections from two-

loops onwards [16, 27, 31].

The duality relation (5.3.1) involves the ratio of the correlation functions

defined in the kinematical configuration in which two neighbouring operators

are lightlike separated, x2
i,i+1=0. In this limit the left-hand side becomes (5.1.4)

lim
x2
i,i+1→0

(G4/G
(0)
4 ) = 1+2

∑
`≥1

a`f (`)(xi) (5.3.2)

where we have relabelled for simplicity:

lim
x2
i,i+1→0

x2
13x

2
24F

(`)
g=0(xi)→ f (`)(xi) (5.3.3)

9 The duality between Gn and AMHV
n with an arbitrary number of points was first proposed

in [73, 74]. It has since been extended to the super-correlation functions of stress-tensor
multiplets and non-MHV superamplitudes [1, 67, 68].



5.3 `-loop, 4-point Amplitudes 91

and the subscript g = 0 indicates that we are in the planar limit. Applying

the same actions to the scattering amplitudes, the perturbative corrections to

the scattering amplitudes A4 take the form

A4/A(0)
4 = 1+

∑
`≥1

a`M(`)(pi) (5.3.4)

With this the duality relation (5.3.1) reads:

1+2
∑
`≥1

a`f (`)(xi) =

(
1+
∑
`≥1

a`M(`)(pi)

)2

(5.3.5)

Expanding both sides in the coupling parameter and equating coefficients

(5.3.5) leads to the following series of equalities:

F (1) =M(1) F (2) =M2+1
2

(
M(1)

)2
F (3) =M(1)M(2)+M(3)

F (4) =M(1)M(3)+M(4)+1
2
(M(2))2 F (5) =M(1)M(4)+M(2)M(3)+M(5)

(5.3.6)

and inverting these equations we find

M(1) = F (1) M(2) = F (2)−1
2

(
F (1)

)2 M(3) = F (3)−F (1)F (2)+1
2

(
F (1)

)3

M(4) = F (4)−F (1)F (3)−1
2
(F (2))2+3

2
F (2)(F (1))2−5

8
(F (1))4 (5.3.7)

We use these results and our earlier discussions on how to build f -graphs from

symmetry following work in [69] to give us the four-dimensional integrands of

the four-particle scattering amplitude in the planar limit.

We start very simply by giving the result at one-loop, which comes from

our single K5-graph (recall that the K5-graph is simply the complete graph on

five vertices). When we combine it with prefactors etc. this gives us the simple

result

F (1)(x1, x2, x3, x4) =
x2

12x
2
13x

2
14x

2
23x

2
24x

2
34

(−4π2)

∫
d4x5f

(1)(x1, . . . , x5) (5.3.8)

Now f (1) is proportional to our K5-graph with no kinematical dependence in

the numerator.

f (1)(x1, . . . , x5) =
c(1)∏

1≤i<j≤5 x
2
ij

(5.3.9)
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In (5.3.9), the product of distances in the denominator has the required con-

formal weight (+4) at each point, which is equivalent to the statement that the

f -graph has all nodes being 4-valent. As such, the numerator has weight zero

implying it is a constant. This is the only constant which is unable to be fixed

without an explicit Feynman graph calculation, or alternatively comparison

with known values of anomalous dimensions from OPE data. Once we substi-

tute (5.3.9) into (5.3.8) we obtain the combination ac(1) in the numerator and

as such we are able to absorb c(1) into the definition of the coupling constant.

As such we set our first un-fixed constant c(1) = 1.

The two-loop correction to the correlation function takes the form

F (2)(x1, x2, x3, x4) =
x2

12x
2
13x

2
14x

2
23x

2
24x

2
34

2!(−4π2)2

∫
d4x5d

4x6f
(2)(x1, x2, x3, x4, x5, x6)

(5.3.10)

Recall that the function f (2)(x1, . . . , x6) is invariant under S6 permutations of

the six-points and if we take the hexagon shown in Fig.5.2 and express the

lines as propagators, we find:

f (2)(x1, . . . , x6) =
c(2)

x2
13x

2
14x

2
15x

2
16x

2
23x

2
24x

2
25x

2
26x

2
35x

2
36x

2
45x

2
46

+S6 permutations

(5.3.11)

Again, since all vertices have degree 4 there is no kinematical dependence in the

numerator, leaving only another unfixed constant c(2). In distinction with the

five-point f -graph the four-point, two-loop graph is planar and this continues

to hold for higher-loop orders as argued in Appendix A of [69].

If we place the explicit expression for f (2) into (5.3.10) we can then expand

F (2) into a sum of conformally covariant scalar two-loop integrals which may

appear more familiar to certain readers

F (2) = c(2)
(
h(1, 2; 3, 4)+h(3, 4; 1, 2)+h(1, 4; 2, 3)+h(2, 3, 1, 4)+h(1, 3; 2, 4)

h(2, 4; 1, 3)+1
2
(x2

12x
2
34+x2

13x
2
24+x2

14x
2
23) [g(1, 2, 3, 4)]2

)
(5.3.12)

where g(1, 2, 3, 4) is the one-loop massless box-function and h(1, 2; 3, 4) is the

two-loop massless ladder function:

g(1, 2, 3, 4) = − 1
4π2

∫
d4x5

x2
15x

2
25x

2
35x

2
45

h(1, 2; 3, 4) =
x2

34

(4π2)2

∫
d4x5d4x6

x2
15x

2
35x

2
45x

2
56x

2
26x

2
36x

2
46

(5.3.13)

Note here that all these expressions have no weight in the integration variables
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and weight +1 in all the physical external points as required. All remaining

h-integrals are obtained by permuting the indices of the external points. We

find that c(2) is also equal to one and there are several ways (discussed in [69])

to show this, one being simply in order to reproduce the known results:

M(1) = x2
13x

2
24g(1, 2, 3, 4)

M(2) = x2
13x

2
24 [h(1, 3; 2, 4) + h(2, 4; 1, 3)] (5.3.14)

noting that the term [g(1, 2, 3, 4)]2 cancels only for c(2) = 1. Note that these

relations should be understood at the level of the four-dimensional integrands.

Indeed (5.3.14) matches the known one- and two-loop results [27, 31, 87].

We now, lastly, present the 3-loop correction result as it demonstrates the

growth in graph topologies which has so far been hidden, and we will reserve

the remainder of the four-point results to Appendix D where we give the results

up to 6-loops from [69]. Let us start the 3-loop calculation from all possible

f -graphs, planar and non-planar, as drawn in Fig.5.1.

F (3)(x1, x2, x3, x4) =
x2

12x
2
13x

2
14x

2
23x

2
24x

2
34

3!(−4π2)3

∫
d4x5d

4x6d
4x7f

(3)(x1, . . . , x7)

(5.3.15)

where the S7-symmetric function f (3) is given in terms of the four-topologies

of Fig.5.1 as:

f (3)(x1, . . . , x7) =
4∑

α=1

c(3)
α f (3)

α (x1, . . . x7) =
4∑

α=1

c(3)
α

P
(3)
α (x1, . . . , x7)∏

1≤i<j≤7 x
2
ij

(5.3.16)

Here the sum runs over n`=3 = 4 different P-topologies and c
(3)
α are our 4

unfixed coefficients. From our diagrams in Fig.5.1 we can read off the necessary

numerator terms to be:

P
(3)
1 =

1

14
x2

12x
2
23x

2
34x

2
45x

2
56x

2
67x

2
71 + S7 permutations

P
(3)
2 =

1

20
(x2

12)2(x2
34x

2
45x

2
56x

2
67x

2
73) + S7 permutations

P
(3)
3 =

1

48
(x2

12x
2
23x

2
31)(x2

45x
2
56x

2
67x

2
74) + S7 permutations

P
(3)
4 =

1

48
(x2

12)2(x2
34)2(x2

56x
2
67x

2
75) + S7 permutations (5.3.17)

with the sum running over the S7-permutations of the indices and the coef-

ficients being such that each distinct term appears only once. As we have
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already remarked of all the f -graphs shown in Fig.5.1 only one is planar (i.e.

has genus 0) whereas the three remaining graphs have genus 1. Even after

the multiplication by the prefactor on the right-hand side of (5.3.15) these

graphs remain non-planar and as such might result in non-planar corrections

to the correlation function F (3). However it was shown in [69] that this is not

the case, the entire non-planar sector is ruled out by conditions on the singu-

lar behaviour of the correlation function. Instead we will have to wait until

higher-points for the first non-planar contributions to appear. However we do

not explore this in detail as we wish to move on to exploring this duality at

5-points and beyond. As such we refer the reader to [69] for more details at

4-points or see Appendix B, Appendix C and Appendix D for the higher-loop

integrands.

5.4 Refined Duality at 5-points

Let us proceed to the more complex case of 5-point amplitudes where we will

take the ρ4
5-component of a five-point correlation function. As such (E.0.3)

(the 5-point analog to (5.3.1)) will read:

G
(`)
5;1 |ρ4

5
=
a(`)

`!

5+∏̀
i=6

(∫
d4xi

)
G

(0)
5;1 |ρ4

5

f (`+1)(x1, . . . , x5+`)

f (1)(x1, . . . , x5)
(5.4.1)

At 5-points there are new allowed helicity-configurations from our earlier 4-

point discussion, namely we now have NMHV amplitudes where at 5-points

NMHV≡ MHV. Therefore

M5;1 = R1,2,3,4,5M5;0 (5.4.2)

where R1,2,3,4,5 is the 5-point R-invariant familiar from earlier chapters. Since

there is only one independent object we will henceforth drop the second sub-

script on M5;0 and write M5 instead. Furthermore, once we take the pentagon

light-like limit we will have

lim
x2
i,i+1→0

Gtree
5;1

Gtree
5;0

= 2R1,2,3,4,5 (5.4.3)
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as has been shown in [68]. The correlator/amplitude duality then implies

lim
x2
i,i+1→0

G5;1

Gtree
5;0

= 2R1,2,3,4,5M5M5 (5.4.4)

So combining (5.4.1), (5.4.3) and (5.4.4) and divide by the R-invariant com-

ponent 2R1,2,3,4,5 |ρ4
5

we directly obtain the relation between f(xi, a) and the

five-point amplitude as quoted earlier (5.1.7):∑
`≥0

a`F
(`)
5 = M5M5 (5.4.5)

with

F
(`)
5 := lim

x2
i,i+1→0

f (`+1)

`!f (1)
(5.4.6)

where the limit is understood mod(5). This is now an equation involving only

spacetime points and was used as the basis for all higher-point calculations we

performed in [6].

We next expand out the amplitude-side of this duality (5.4.5) in terms of

the loop-contributions of each part of the right-hand side:

F
(`)
5 =

∑̀
m=0

M
(m)
5 M

(`−m)

5 (5.4.7)

We can also make statements about the correlation side of this duality if we

proceed in our graphical manner from before. To define F
(`)
5 from our f -

graphs we know that we have two steps, firstly we multiply by the external

factor 1/f (1) =
∏

1≤i<j≤5 x
2
ij and secondly take the light-like limit. When we

multiply by the external factor
∏

1≤i<j≤5 x
2
ij this graphically corresponds to

deleting all numerator lines between external vertices, (or adding numerator

lines if no denominator line is present). Taking the light-like limit means

that any choice of 5-points labelled 1,2,3,4,5 will be suppressed if they are not

connected via edges [1,2],[2,3],[3,4],[4,5],[5,1] in the f -graph. As such we only

consider as external points, those which are connected through a 5-cycle.

Any cycle on a planar-graph necessarily divides the graph into two pieces,

for example those graphs we can embed on a sphere without crossing we put the

5-cycle on the equator and as such split the graph into northern and southern

hemispheres. Alternatively an embedding of the graph on the plane, a 5-cycle

splits the graph into an “inside” and an “outside” graph. Armed with this

insight, we now classify terms in F
(`)
5 according to the number m of points
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inside (or outside, whichever is smaller) the corresponding 5-cycle, as

F
(`)
5 =

b`/2c∑
m=0

F
(`)
5;m (5.4.8)

The classification of terms in F
(`)
5 according to their graph structure (F

(`)
5,m) is

illustrated in Fig.5.3. A simple way to determine the value of m for any given

x

x

5;1
F

(3)

F
5:0

(3)

f−graph with 5−cycle "inside" "outside" 1/f
(1)

Figure 5.3: A figure as shown in [6] which illustrates the classification of F
(`)
5

components into classes F
(`)
5;m starting from a single f -graph. We take two

examples of 5-cycles to be our external points and these choices divide the f -
graphs into two pieces, an “inside” and an “outside” with the correct planarity
conditions. The minimum number of vertices inside or outside the 5-cycle gives
m.

term in F
(`)
5 is to consider the reduced graph obtained if we delete all external

vertices and edges incident to them. As such, we end up with two disconnected

graphs of size m and (`−m). In a sentence, any 5-cycle splits the f -graph into

two parts and we find it useful to classify these five-cycles by the minimum

number of points either inside or outside F
(`)
5;m. After the five-cycle is taken,

multiplying by 1
f (1) which cancels all the propagators in the five-cycle and any

propagators between points on the five-cycle, alternatively any pair of points

on the five-cycle which are not connected by a propagator will have an inverse

propagator added in the numerator. These are the two steps demonstrated in

Fig.5.3 on the same f -graph but taking different 5-cycles.
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Ultimately, it should be apparent that under this process F
(`)
5 naturally

splits into the product of two graphs precisely as the duality with the amplitude

predicts (M5M5). Note that this product is only imposed at the level of the

denominator and we will find numerator lines connecting the two parts of the

graphs. These will be considered later, however they are directly related to

parity-odd terms in the amplitude.

In summary, we expect a more refined duality relating specific terms of F
(`)
5

to specific products of amplitudes as

F
(`)
5;m = M

(m)
5 M

(`−m)

5 +M
(`−m)
5 M

(m)

5 m = 0, . . . , b(`− 1)/2c
F

(`/2)
5;m = M

(`/2)
5 M

(`/2)

5 ` ∈ 2Z (5.4.9)

For this refined version of this duality to be true as stated we must be certain

there can be no interaction between different terms (i.e. different values of m).

The left-hand side is clearly well-defined since the inside and the outside of the

5-cycle on a planar f -graph is well defined. On the right-hand side we need

to ask if all terms in M
(`−m)
5 M

(m)

5 are uniquely identified by their topology

as being (` −m)-loops times m-loops objects. As such the question becomes

if we draw a pentagon around M
(m)
5 say, could we also draw some or all of

M
(`−m)
5 inside the pentagon without crossing? One can convince oneself that

this is indeed not possible: M
(m)
5 contains at least four external vertices, any

internal vertex of M
(`−m)
5 is connected to at least four external vertices and it

is impossible to draw both these graphs inside a pentagon without crossing.

5.5 Four-point graphs appear symmetrically

There is a simple all-loop consequence of this duality which we mention here,

namely that for 5-point amplitude graphs depending on only 4 external points

(i.e. with one massive external momentum), the massive point must always

appear symmetrically in all four places (where allowed). This will allow us to

simply express one representative of all such graphs with no ambiguity since

all dihedrally-related graphs will also be present.

It emerges that four-point graphs only arise in the parity-even part of the

amplitude (the general form of the parity-odd part will be discussed later,

however it is sufficient to say that they will always depend on all five-points).

The parity-even part of the amplitude is given by the m = 0 sector of F
(`)
m
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from (5.4.9), as such

F
(`)
5;Parity-Even = M

(`)
5 +M

(`)

5 (5.5.1)

The F
(`)
m sector has an “inside” and an “outside” as discussed in the previous

section, and for m = 0 the outside (say) has no vertices in it. The outside

and inside must both be planar, but the inside contains a vertex which is not

connected to any other point on the inside (apart from the two external points,

around the pentagon) since it is supposed to be a four-point graph. As the

f -graph has degree 4 or more at each point, this means there must be at least

two lines attached to this point on the outside of the pentagon. The outside

pentagon is then unique given planarity. In other words, the “inside” and

“outside” pentagons have the following form which combines into the f -graph

on the right. In this picture, the blue edges and vertex represent the four-point

amplitude graph in question (with conformal weight 1 at all four points). This

is essentially the process from Fig.5.3 in reverse

fx
(1)

4

3

2

1

5

Note that in the first step multiplying by f (1) necessarily adds a second graph

due to planarity, the two internal lines in the second graph could not be added

to the first graph whilst maintaining this planarity condition. However, now

we see the f -graph this four-point amplitude graph arises from, we can also

see that there are a number of choices of 5-cycles all giving rise to the same

amplitude graph but with the massive leg in different places:

2

3

1

4

5 5

1

2

4

33

2

4

1

5

2

1

3

4

5

In this case the massive leg is x2
14 and the leg shifts its position around the

amplitude. As such we can see that any four-point graph will appear symmetri-

cally with respect to the position of its massive leg in the five-point amplitude.

The principal result from this subsection was to highlight that, for any

four-point topology, the massive leg always appears in a completely symmetric

manner. From this, in [6] we were permitted to display only one of our class of

terms related by dihedral symmetry for reasons of brevity. We used an operator

“cyc” which performed precisely this role. That is, cyc[“term”] denotes the
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sum over all terms related by dihedral symmetry, or swapping position of the

massive leg for the four-point cases.

5.6 Five-Point Amplitudes at One- and Two-

Loops

As we did for the four-point case in Sect 5.3, we now explore the one- and

two-loop structures explicitly. Our duality at the lowest non-trivial order in

the coupling gives

F
(1)
5 = M

(1)
5 +M

(1)

5 (5.6.1)

where the correlator side
(
F

(1)
5

)
has only one term

F
(1)
5 = cyc

[
x2

13x
2
24

x2
16x

2
26x

2
36x

2
46

]
(5.6.2)

where cyc[] denotes a cyclic sum of the argument, leaving us with the sum

over one-mass boxes, and this is indeed the parity-even part of the one-loop

amplitude.

Having found the parity-even part of the one-loop amplitude we naturally

ask if we can obtain the parity-odd part too? To do this we need to go one

order higher in the coupling parameter. Our refined duality (5.4.9) with m = 1,

l = 2 gives

F
(2)
5;1 = M

(1)
5 M

(1)

5 (5.6.3)

so we check that this holds. The contribution to F
(2)
5 which corresponds to

product graphs (i.e. graphs with numerator lines connecting them) are given

by

F
(2)
5;1 =

(
x4

13x
2
24x

2
25

x2
16x

2
17x

2
26x

2
27x

2
36x

2
37x

2
47x

2
56

+cyclic {1, 2, 3, 4, 5}+x6 ↔ x7

)
+

x2
13x

2
14x

2
24x

2
25x

2
35x

2
67

x2
16x

2
17x

2
26x

2
27x

2
36x

2
37x

2
46x

2
47x

2
56x

2
57

= cyc

[
x4

13x
2
24x

2
25

x2
16x

2
17x

2
26x

2
27x

2
36x

2
37x

2
47x

2
56

+
x2

13x
2
14x

2
24x

2
25x

2
35x

2
67

x2
16x

2
17x

2
26x

2
27x

2
36x

2
37x

2
46x

2
47x

2
56x

2
57

]
(5.6.4)

If we equate this to M
(1)
5 M

(1)

5 we now have (together with (5.6.2)) two equations

for our two unknowns, M
(1)
5 and M

(1)

5 . Since the equations are quadratic the



100

solution necessarily requires a square-root whose sign will not be determined

without further information. However this sign equates to a choice of whether

mostly positive helicities is MHV or alternatively NMHV at 5-points. The

solution up to the sign of the square-root is simply

M
(1)
5 = 1

2

(
F

(1)
5 ±

√(
F

(1)
5

)2

−4F
(2)
5;1

)

M
(1)

5 = 1
2

(
F

(1)
5 ∓

√(
F

(1)
5

)2

−4F
(2)
5;1

)
(5.6.5)

Here we have written the full parity-even and parity-odd 5-point amplitudes

in terms of purely parity-even objects (but with a square-root). One might

legitimately ask for a better way of expressing the parity-odd piece without

this square-root and indeed there is such a way.

There is a unique, parity-odd, conformally-invariant tensor, this is easiest

to see in the six-dimensional formalism which we explain at the beginning

of the next chapter and use extensively thereafter. In this formalism it is

clear that there is a unique, parity-odd, conformally covariant object. It is a

function of six-points x1, x2, . . . , x6 each with weight 1 which we denote ε123456.

It has a natural form (as suggested by our notation) in the six-dimensional

formalism but can be expressed in many ways in the standard four-dimensional

formalism. Through this, it can be shown that the object inside the square-

root (thought of as an integrand product with integration points x6 and x7

which are symmetrised over) can be written in the more suggestive form(
F

(1)
5

)2

−4F
(2)
5;1 = − ε123456

x2
16x

2
26x

2
36x

2
46x

2
56

ε123457

x2
17x

2
27x

2
37x

2
47x

2
57

(5.6.6)

To see this, use the identity

ε123456ε123457 =

cyc
[
2x2

67x
2
13x

2
24x

2
35x

2
14x

2
25+x4

13x
2
24x

2
25x

2
46x

2
57−x4

13x
4
24x

2
56x

2
57−x2

13x
2
14x

2
24x

2
25x

2
36x

2
37

]
(5.6.7)

We at last obtain our final result for the five-point amplitude integrand to be

M
(1)
5 =

1

2

(
I(1)

1 + I(1)
2

)
(5.6.8)

The terms in this amplitude are displayed graphically in Fig.5.4
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I
(1)

2
I

1

(1)

Figure 5.4: One-loop, five-point, parity-even and -odd amplitude graphs. This
is simply a one-loop box in dual-coordinates, and a pentagon graph. The
starred vertex v indicates a factor iε12345v

.

I(1)
1 = cyc

[
x2

13x
2
25

x2
16x

2
26x

2
36x

2
56

]
I(1)

2 = cyc

[
iε123456

x2
16x

2
26x

2
36x

2
46x

2
56

]
(5.6.9)

We later show that this neat and compact form of the five-point amplitude is

consistent, with both the local expansion in terms of twistors [9] and with the

all-orders in ε-version containing a parity-odd pentagon [26].

We now follow precisely analogous steps to those used at one-loop to derive

and investigate the two-loop amplitude. The refined duality (5.4.9) gives two

equations involving M
(2)
5 , M̄

(2)
5 and lower-loop amplitudes

F
(2)
5;0 = M

(2)
5 +M

(2)

5

F
(3)
5;1 = M

(2)
5 M

(1)

5 +M
(1)
5 M

(2)

5 (5.6.10)

Therefore, precisely as before we have two equations for two unknowns, M
(2)
5

and M
(2)

5 , from which we can solve for these quantities separately.

We first rewrite the equations as follows

F
(2)
5;0 = M

(2)
5 +M

(2)

5

F
(2)
5;0F

(1)−2F
(3)
5;1 = (M

(2)
5 −M

(2)

5 )(M
(1)
5 −M

(1)

5 ) (5.6.11)

giving an equation for the parity-odd part of the two-loop amplitude in terms

of correlator quantities and the one-loop parity-odd amplitude. Again, it is

possible to simplify the parity-odd part of the amplitude at two-loops. To do

this, we start with an ansatz for the form of M
(2)
5 −M

(2)

5 . Since it is parity-odd

it necessarily contains a numerator factor of the six-dimensional ε-tensor. By

examination we find the parity-odd part of the two-loop amplitude

M
(2)
5 −M

(2)

5 =
1

2!
cyc

[ ±iε123456x
2
35

x2
16x

2
26x

2
36x

2
56x

2
37x

2
47x

2
57x

2
67

]
(5.6.12)



102

where this integrand represents a pentabox with an epsilon in the numerator.

Note that the ± here is derived from the one-loop part, as such once the sign

is fixed at one-loop it becomes fixed here too.

The full two-loop amplitude integrand is then

M
(2)
5 =

1

2× 2!

(
I(2)

1 + I(2)
2 + I(2)

3

)
(5.6.13)

where

I(2)
1 = cyc

[
x4

13x
2
25

x2
16x

2
17x

2
27x

2
36x

2
37x

2
56x

2
67

]
I(2)

2 = cyc

[
x2

16x
2
24x

2
25x

2
35

x2
17x

2
26x

2
27x

2
36x

2
46x

2
56x

2
57x

2
67

]
I(2)

3 = cyc

[
ix2

13ε123456

x2
16x

2
17x

2
27x

2
36x

2
37x

2
46x

2
56x

2
67

]
(5.6.14)

with the following corresponding graphs

I
3

I
2

(2) (2)

I1

(2)

Figure 5.5: Two-loop, five-point amplitude with the parity-even(
I(2)

1 and I(2)
2

)
and parity-odd

(
I(2)

3

)
parts shown. The starred vertex

v indicates a factor iε12345v

5.7 Higher Loop Amplitudes at Five-Points

It should be clear that this process can clearly be extended to higher orders. At

`-loops we contrive to use the refined duality (5.4.9) with `,m=0 and `+1,m=1

giving

F
(`)
5;0 = M

(`)
5 +M

(`)

5 (5.7.1)

F
(`+1)
5;1 = M

(`)
5 M

(1)

5 +M
(1)
5 M

(`)

5 (5.7.2)

From (5.7.1) we can always immediately read-off the parity-even partM
(`)
5 +M

(`)

5 .

Then, in analogy to (5.6.11) we can write(
M

(`)
5 −M

(`)

5

)(
M

(1)
5 −M

(1)

5

)
= F

(`)
5;0F

(1)
5 −2F

(`+1)
5;1 (5.7.3)
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which will always allow us to extract the parity-odd part of the `-loop graph in

terms of correlator quantities (F ’s) and the one-loop amplitude. So knowing

the right-hand side of this equation we can compute the parity-odd combination

M
(`)
5 −M

(`)

5 .

As at lower-loops we wish to rewrite this in a simpler form, i.e. in terms of

ε123456. In principle we could include epsilon objects with two or more internal

variables, for example ε123467. However we have thus far always found solutions

in which only a single internal variable is present in the argument of the ε. We

therefore make the following assumption.

Assumption: The parity-odd part of the five-point amplitude at any loop-

order can always be written in the form
∫
d4x6 . . . d

4x5+`ε123456f(xi) where

f(xi) is an integrand composed of x2
ij depending on all external and internal

variables. There is never an epsilon-tensor involving two or more integration

points.

With this assumption in place, the computation of the parity-odd contribu-

tion to the amplitude at `-loops from the correlator (5.7.3) becomes remarkably

straightforward. In the combination
(
M

(`)
5 −M

(`)

5

)(
M

(1)
5 −M

(1)

5

)
on the left-

hand side of (5.7.3) we consider the product of two epsilon tensors, one from

`-loops using the above conjecture and one from the one-loop amplitude. This

product contains a single term involving an inverse propagator between two

internal vertices (see (5.6.7))

ε123456ε123457 = 2x2
67x

2
13x

2
35x

2
25x

2
24x

2
14 + · · · (5.7.4)

Thus this will produce a product graph, a pentagon around x6 glued to a

higher-loop graph involving x7 together with a numerator x2
67 between them.

Such a product graph with numerator can be produced from the correlator

F
(`+1)
5;1 and uniquely singles out a corresponding ε-term in M

(`)
5 −M

(`)

5 . Similar

terms will also be of interest to us in the next chapter, where two integration

vertices are connected by a numerator line.

This can again be interpreted in the geometric language of correlator f-

graphs: 5-cycles in the f-graph split the graph into two halves. We look for

5-cycles which have the one-loop pentagon graph on one side. The other side

then gives us the parity-odd graph in question, where its coefficient is inherited

from the f-graph. This procedure is illustrated in Fig.5.6. That this simple rule

ultimately correctly reproduces the entirety of the parity-odd terms in (5.7.3)



104

x

x

Figure 5.6: Figure illustrating the procedure for obtaining the parity-odd part
of the five-point amplitude from the correlator f-graphs. The 5-cycle (shown in
red) splits the graph into two parts. The inside of the 5-cycle corresponds to the
one-loop parity-odd pentagon, whereas the outside corresponds to our higher-
loop, parity-odd graph. The starred vertex is the vertex which is attached to
the one-loop internal vertex via an internal line. In the first line we start with
a 5-cycle in f (3) contributing to F

(2)
1 , the “outside” of which determines the

parity-odd graph for M
(1)
5 . In the second-line we start with a 5-cycle on one

of the three f -graphs in f (4) contributing to F
(2)
5;1 . The “outside” of the 5-cycle

then determines the parity-odd graph for M
(2)
5 .

appears little less than miraculous and is reliant on many non-trivial cancel-

lations between graphs. We attempted to give some motivation of how and

why this works in the conclusion of [6] which we will review at the end of this

chapter. Note that through consistency we determine many of the correlator

coefficients not determined from the four-point amplitude/correlator duality

(determined by the rung-rule which arises from the consistency of the four-

point amplitude/correlator duality [69]). The first coefficient not determined

by 5-point consistency arises in f (6).

There are still further consistency requirements in these equations arising

from four-loops and above. Starting at four-loops, this arises since we require

the m=2 part of F
(4)
5 to be given by the product of two two-loop amplitudes

(determined through F
(2)
5;0 and F

(3)
5;1 i.e. F

(4)
5;2 =M

(2)
5 M

(2)

5 ).

We used this method to obtain the full three-loop, five-point amplitude

integrand (parity-even and parity-odd part) and checked that it indeed satisfies
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the consistency condition (5.7.3):

M
(3)
5 =

1

2

(
13∑
i=1

ciI(3)
i

)
(5.7.5)

where

c1 = · · · = c6 = c9 = · · · = c12 = 1 c7 = c8 = c9 = −1 (5.7.6)

and

I(3)
1 =

(
x6

13x
2
25

x2
16x

2
17x

2
18x

2
28x

2
36x

2
37x

2
38x

2
57x

2
67x

2
68

)
I(3)

2 =

(
x4

16x
2
24x

2
25x

2
35

x2
17x

2
18x

2
26x

2
28x

2
36x

2
46x

2
56x

2
57x

2
67x

2
68x

2
78

)
I(3)

3 =

(
x4

13x
2
25x

2
35x

2
46

x2
16x

2
18x

2
28x

2
36x

2
37x

2
38x

2
47x

2
56x

2
57x

2
67x

2
68

)
I(3)

4 =

(
x4

13x
2
24x

2
46

x2
16x

2
18x

2
26x

2
36x

2
37x

2
47x

2
48x

2
67x

2
68x

2
78

)
I(3)

5 =

(
x2

14x
2
16x

2
24x

2
25x

2
37

x2
17x

2
18x

2
26x

2
28x

2
36x

2
46x

2
47x

2
57x

2
67x

2
68x

2
78

)
I(3)

6 =

(
x2

16x
2
24x

4
25x

2
35

x2
18x

2
26x

2
27x

2
28x

2
36x

2
46x

2
56x

2
57x

2
58x

2
67x

2
78

)
I(3)

7 =

(
x2

13x
2
24x

2
25x

2
35

x2
18x

2
26x

2
28x

2
36x

2
37x

2
47x

2
57x

2
58x

2
67x

2
68

)
I(3)

8 =

(
x2

13x
2
14x

2
35

x2
16x

2
17x

2
36x

2
38x

2
48x

2
57x

2
67x

2
68x

2
78

)
I(3)

9 =

(
ix4

13ε123456

x2
16x

2
17x

2
18x

2
28x

2
36x

2
37x

2
38x

2
46x

2
56x

2
67x

2
78

)
I(3)

10 =

(
ix2

13x
2
14ε123456

x2
16x

2
17x

2
18x

2
28x

2
36x

2
38x

2
46x

2
47x

2
57x

2
67x

2
68

)
I(3)

11 =

(
ix2

24x
2
36ε123456

x2
16x

2
26x

2
28x

2
37x

2
38x

2
46x

2
47x

2
56x

2
67x

2
68x

2
78

)
I(3)

12 =

(
ix2

14x
2
27ε123456

x2
17x

2
18x

2
26x

2
28x

2
36x

2
46x

2
47x

2
57x

2
67x

2
68x

2
78

)
I(3)

13 =

(
ix2

13ε123456

x2
16x

2
17x

2
26x

2
36x

2
38x

2
48x

2
57x

2
67x

2
68x

2
78

)
(5.7.7)

also illustrated graphically in Figs.5.7 and 5.8, where each of these above terms

require cycling.
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Figure 5.7: Three-loop, five-point, parity-even amplitude graphs. White ver-
tices indicate external points x1, x2, x3, x4, x5 which are cyclically ordered in
either orientation, whereas black nodes are integration variables x6, x7, x8. A
black line between vertices i, j represents a propagator term 1/x2

ij. A dotted-

line indicates an inverse propagator x2
ij. The integrand expression I(3)

i is the
expression obtained by summing over all possible, distinct labellings.

I9 I
(3) (3)

10
I
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11

(3)

I1312I
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Figure 5.8: Three-loop, five-point, parity-odd amplitude graphs. A starred
vertex v indicates a factor ε12345v.

In Appendix.C we give the results of above analysis to obtain all four-point

planar and non-planar graphs. In [6] we additionally obtained the full five-

loop, parity-even and parity-odd amplitude. For this calculation we required

f (7) which was obtained in [106] from the four-point, seven-loop amplitude [23].

The seven-loop f -graphs and their coefficients were contained in the two sepa-

rate files 7LoopTopologies.txt and 7LoopCoefficients.txt attached to the arXiv

version of [6]. The result for the five-point amplitude consists of 318 different

parity-even topologies and 203 parity-odd graphs, which were given in the file

5pointamplitude.txt which also contained the six-loop parity-even integrand.

As a piece of complementay information we included in 5pointamplitudenum-

berofterms.txt, the number of independent terms obtained from every graph
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in 5pointamplitude.txt by the cyc [] operation. In order to obtain the parity-

odd part of the six-loop amplitude we would have needed f (8) which could be

obtained for example directly from the four-point, eight-loop amplitude were

it to become available.

In the next chapter we turn to discussing alternative representations of

these amplitudes allowing us to relate the results of this chapter to those

written in momentum-twistors and other ways. In particular we use six-

dimensional notation for which the ε-tensor becomes very natural. The aim

is to discuss how we might obtain the O(ε) terms, after we dimensionally reg-

ularise from d = 4→4−2ε dimensions, into the scheme. However let us first

discuss the results presented in this chapter, first derived in [6].

5.8 Conclusions

The supersymmetric correlator/amplitude duality in N = 4 provides a way

of relating objects with different numbers of outer points, or in- or out-going

particles respectively. In [6] and again in this chapter we exploited this feature

of the construction, deriving the integrand of the colour-ordered, five-point

amplitude up to five (and in the parity-even sector, six-) loops, from that of the

four-point function of energy-momentum multiplets. Previously this method

has been chiefly associated with the MHV four-point amplitude [69, 70].

The modification required to adapt from four- to five-points is that one

of the four-point integrand vertices must now be regarded as an outer-point.

Necessarily we lose one loop-order form our f -graphs in this way. It turns out

that the five-point integrand can only be uniquely fixed by taking into account

topological information: amplitude graphs are disc planar, while the correlator

integrands also contain products of two such graphs and are planar on the

sphere. We used the “(one-loop)×(higher-loop)” terms to gain more equations

on the loop corrections to the five-point amplitude. However, stripping off a

one-loop amplitude implies losing another loop-order.

A beautiful picture emerged where the parity-even, five-point, `-loop am-

plitudes correspond to the outside of those five-cycles in the planar correlator

f (`+1)-graphs which have no vertices on their insides. In contrast the parity-odd

amplitude graphs correspond to the outside of those five-cycles in the planar

correlator f (`+2)-graphs with a single vertex on their inside, once the correct

numerator replacement has been made.
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Our main new results were the four- and five-loop integrands for the five-

point MHV (or in this case equivalently the NMHV) amplitude. To this end,

the analysis of [69] was extended to the seven-loop integrand of the four-point

correlation function of energy-momentum multiplets. This in turn, was based

on the result [23] for the four-point MHV amplitude up to seven-loops. As

such, we modified a four-point amplitude into a five-point amplitude.

That this picture works out to be consistent is rather remarkable and non-

trivial. The duality with four-point amplitudes can be shown to be consistent

so long as the corresponding amplitude graphs obey the rung rule [31], (which

we have not discussed here) which in the correlator picture simply corresponds

to gluing pyramids onto the f -graphs [69]. Indeed, the mere existence of the

four-point duality predicts many of the coefficients of loop-level amplitudes (all

up to three-loops, the first two out of three four-loop f -graphs, and the first

six out of seven five-loop f -graphs (see [21] etc.)). What is the topological rea-

son stopping certain four-point, f -graphs being determined from lower loops?

Recall the refined four-point duality 2F
(`)
4;m = M

(m)
4 M

(`−m)
4 . Thus f -graphs

with four-cycles and with a non-trivial “inside” and “outside” (i.e. which con-

tribute to m > 0) are determined entirely in terms of lower-loop amplitudes.

Conversely f -graphs which give no contribution to F
(`)
m for m > 0 i.e. which

have no such four-cycle, cannot be determined from lower loop four-point am-

plitudes (see the final two graphs of f (4) and f (5) in Fig.5.2).

For the five-point duality on the other hand the consistency is much more

subtle and we have no clear understanding (i.e. a generalisation of the pyra-

mid gluing rung rule) for why this works. The confusion comes from the many

terms which appear when gluing two ε123456 together, many of which have to

cancel. However we remarked that the structure does indeed determine many

of the non-rung-rule-determined coefficients. Indeed merely the structure and

consistency of the picture determines all coefficients up to f (5). That is, the

mere existence of the amplitude/correlator duality at 4- and 5-points deter-

mines the four-point correlator and amplitude to five-loops and the five-point

amplitude to four-loops (parity-even) and three-loops (parity-odd). The first

coefficient which remains undetermined by these purely structural arguments

is that of the 10-point (6-loop) f -graph:



5.8 Conclusions 109

This is the first graph where it is not possible to find a five-cycle with some-

thing both inside and outside. Clearly any f -graph giving no contribution

to F
(`)
5;m for m > 0 (i.e. whose 5-cycles have either no vertices inside or al-

ternatively none outside) will not be determined by lower-loops and it seems

likely that the converse is true also: any f -graph contributing to F
(`)
5;m for

m > 0 will be determined from lower loops via the refined duality (5.4.9)

F
(`)
5;m = M

(m)
5 M

(`−m)

5 + M
(`−m)
5 M

(m)

5
10. Indeed we see that all the 5-cycles of

the graph above have either nothing inside (or nothing outside) them and this

is the first such f -graph, confirming this idea. Interestingly this graph is also

the first f -graph with a coefficient different from ±1, as it has the coefficient

2.

The integrands we find are given in a local form in configuration space,

which is very closely related to the twistor integrands of [9, 10]. As we will

demonstrate in the following chapter: the twistor numerators involving parity-

odd parts can be rather painlessly rewritten in terms of simple squares of

distances and the structure ε12345v = ε(X1X2X3X4X5Xv) where the X are co-

ordinates on the projective lightcone in 6d related to those of Minkowski space

(see next chapter). This object is conformally invariant and can be broken

down to a sum 4d terms of the type x2
1vεx2vx3vx4vx5v In the 6d epsilon 1,2,3,4,5

denote the outer points, and only the sixth variable is an integration point.

All parity-odd terms in our result are of this type; epsilon terms with more

than one integration vertex do not occur. By the use of Schouten identities

etc. one can remove any given point from an epsilon contraction, but at the

expense of introducing further denominator factors. Hence there is freedom as

to the writing of the end result, although the form we found is perhaps the

most natural one since it is manifestly free of higher poles like 1/x4
ij.

Interestingly, it is possible to generate the parity-even part of the five-point

amplitude from the parity-odd part up to four-loops using a few universal rules

for how to replace an epsilon term. These rules depend on the other numerator

terms multiplying the ε12345v. For example, clearly the one-loop result can be

rewritten as a single pentagon: upon replacing

iε123456 → (x2
16x

2
24x

2
35+x2

26x
2
14x

2
35+x2

36x
2
14x

2
25+x2

46x
2
13x

2
25+x2

56x
2
13x

2
24+iε123456)

(5.8.1)

10 This is a little subtle since we only determine the parity-odd part of M
(`−1)
5 from f (`)

itself. However the parity-even part also contributes to this formula, and so unless there

is complete cancellation between parity-even and parity-odd which seems unlikely, F
(`)
5;m

and the corresponding f -graph will be determined by the lower-loop amplitude.
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This is the only parity-odd graph with a numerator involving an ε and nothing

else. Other numerators have various x2 products multiplying the parity-odd

tensor. If we make the following replacements for a, b, c > 0:

ix2a
13ε123456 → x2a

13(x2
56x

2
13x

2
24+x2

46x
2
13x

2
25+x2

26x
2
14x

2
35+iε123456)

ix2a
13x

2b
14ε123456 → x2a

13x
2b
14(x2

56x
2
13x

2
24+x2

26x
2
14x

2
35−x2

16x
2
23x

2
45+iε123456)

ix2a
13x

2b
24ε123456 → x2a

13x
2b
24(x2

56x
2
13x

2
24+x2

26x
2
14x

2
35+x2

36x
2
14x

2
25+iε123456)

ix2a
13x

2b
14x

2c
24ε123456 → x2a

13x
2b
14x

2c
24(x2

56x
2
13x

2
24+x2

26x
2
14x

2
35

−x2
16x

2
23x

2
45−x2

46x
2
13x

2
25+iε123456)

(5.8.2)

and all forms related by cyclicity related, in an analogous manner, then the

parity-odd graphs will give the parity-even graphs for free up to four loops.

Beyond one loop, the easiest case to check is obviously the two-loop case, where

we use the first replacement. This procedure fails for the first time at 5-loops

where we are left with a single parity-even graph which is not determined by

the parity-odd sector in this manner:

This happens to be the single five-point amplitude graph, generated by the

10-point f -graph above, whose coefficient is undetermined by consistency with

the duality. So we see that these rules for obtaining parity-even graphs from

parity-odd are intimately related to the consistency of the whole system but

we have not fully probed this.

Note that the twistor numerators of [9, 10] also combine even and odd

graphs, (we will see more of this in the next chapter) and so the above re-

writing may give expressions closer to those. One direction for future work

might indeed be to search for a universal numerator describing higher-loop

n-point amplitudes.

Another direction for future work would be to consider the six-point light-

like limit. Defining

F
(`)
6 := (external factor)× lim

x2
i,i+1→0

∫
d4x7 . . . d

4x6+`
f (`+2)

`!
(5.8.3)
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where here the limit is understood mod(6) and the external factor is x2
12x

2
13x

2
15

x2
16x

2
23x

2
24x

2
26x

2
34x

2
35x

2
45x

2
46x

2
56 then we will find the formula∑

`≥0

a`F
(`)
6 = M6M6+NMHV contribution (5.8.4)

There are various complications which arise here. Firstly the NMHV con-

tribution needs to be separated out (although this may be possible due to

singularities in x2
14, x

2
25 and x2

36 which can only appear here and not in the

MHV sector). Another complication arises since there is no longer a distinc-

tion between product graphs and disc planar graphs. The graph (one-loop box)

×(one-loop box) can appear in a disc planar fashion and indeed does appear in

the two-loop, six-point result. Nonetheless we have seen that one can obtain

more information than appears at first sight from these considerations and this

certainly deserves further investigation.





6

N = 4 SYM Planar Scattering

Amplitudes to All Orders in the

Dimensional Regularization

Parameter

In this chapter we first introduce six-dimensional notation for our external

data of planar amplitudes, we subsequently use this notation to write down

the planar one-loop and two-loop MHV amplitudes at five- and six-points. We

extend this analysis by dimensionally regularising the amplitudes and obtaining

the contributions at O(ε). The eventual aim of this analysis, to restrict the

possible planar contributions at order epsilon and even to provide an ansatz

for such terms at higher order, in a purely dual-conformally invariant basis.

6.1 4d Minkowski coordinates in 6d X-variables

One can view conformally-compactified 4-dimensional Minkowski space as a

quadric inside RP5. Specifically we can describe Minkowski space in terms of

six projective coordinates XI living in 2+4 dimensions and satisfying the null

condition

X2
−1 +X2

0 −X2
1 −X2

2 −X2
3 −X2

4 =0 (6.1.1)

As such the conformal group SO(2, 4) acts linearly on these coordinates. The

4-dimensional Minkowski space coordinates xµ, µ=0, 1, 2, 3 can be obtained

easily from these by choosing a suitable representation for the homogeneous

113
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coordinates XI .

XI ∼
(

1−x2

2
, xµ,

1+x2

2

)T
I=− 1, 0, 1, 2, 3, 4 (6.1.2)

Note that of course we could generalise this process of embedding our four-

dimensional space into d-dimensional coordinates. It is possible to rewrite

these X-coordinates in the four-dimensional spinor representation (using that

SO(2,4) ∼ SU(2,2)), it is this representation which we employ later to consider

the integrands. As such we will consider this case in detail, there are two

versions:

XI → X=(ΣI)X
I

XI → X̃=(Σ̃I)X
I (6.1.3)

with the relation

X̃αβ=
1

2
εαβγδX

γδ (6.1.4)

concretely we make the following specific choice for six-dimensional Γ matrices

Γ1=

(
0 ΣI

Σ̃I 0

)

Σ−1=

(
ε 0

0 −ε

)
Σ̃−1=

(
−ε 0

0 ε

)

Σµ=

(
0 εσµ

εσ̃µ 0

)
Σ̃µ=

(
0 −σµε
−σ̃µε 0

)

Σ4=

(
ε 0

0 ε

)
Σ̃4=

(
ε 0

0 ε

)

where the Γ’s are 8x8 matrices, the Σ’s are 4x4 matrices, σ0=σ̃0=I2 and σi=−σ̃i
are the standard Pauli matrices and finally

ε=

(
0 1

−1 0

)

In particular the important property which must be satisfied by this choice is

(Σ̃I)αβ=
1

2
εαβγδ(ΣI)

γδ (6.1.5)
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giving (6.1.4), together with the Clifford algebra relations,

{ΓI ,ΓJ}=2ηIJ ⇒ ΣIΣ̃J+ΣJΣ̃I=Σ̃IΣJ+ΣIΣ̃J=2ηIJ (6.1.6)

where ηIJ is the flat metric in 2+4 dimensions. These relations imply the

following for any 6-vectors XI , XJ

XI,αβX̃
βα
J +XJ,αβ · X̃βα

I =2XI ·XJ XI,αβX̃
βα
I =XI ·XI (6.1.7)

we now turn to looking at conformal covariants and in turn to how we can use

this notation to express our integrands in terms of single- or double-traces etc.

Conformal Covariants

We now consider how we are to go about writing down conformal covariants.

This can be done either using vector X’s or spinorial X’s, in the vectorial no-

tation we use ηIJ or εIJKLMN to form invariants, those obtained using a single

εIJKLMN will be parity-odd. The covariants for 5-points and below must nec-

essarily be composed of only (XI ·XJ) (6.1.7) whereas at six-points and above

we may also have the parity-odd part ε(X1, X2, X3, X4, X5, X6) etc. Indeed one

can see that at six-points this is the unique parity-odd covariant piece. One

can convert these invariants to four-dimensional notation straightforwardly by

inputting

XI ·XJ → (xi−xj)2 (6.1.8)

ε(X1, X2, X3, X4, X5, X6)→∑
σεSσ

(−1)σx2
σ(1)ε(xσ(2), xσ(3), xσ(4), xσ(5))

(6.1.9)

As such at six-points we can construct the invariant

ε(X1, X2, X3, X4, X5, X6)

(X1·X4)(X2·X5)(X3·X6)
=
√

∆ (6.1.10)

where ∆=(u1+u2+u3−1)2−4u1u2u3 is the combination appearing in the 6-

point 2-loop remainder function [77, 78].

Equally we could consider covariants in the spinor representation, these

can be obtained simply by taking traces of the matrices X,X̃ multiplied to-

gether e.g. Tr(X̃1X2 . . . X̃2k−1X2k). Using (6.1.2) we can convert these into
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4-dimensional x-notation, the ε terms cancel and the other terms all go to-

gether to form differences of x’s

Tr(X̃1X2 . . . X̃2k−1X2k)→ Tr(x̃12x23 . . . x̃2k−1,2kx2k,1) (6.1.11)

Momentum Twistor Integrands in X-space

Another advantage of the X’s in their spinorial notation is their direct

relationship with momentum twistors, meaning it is straightforward to express

twistor integrands in traces of X’s. If Xi are lightlike separated or two copies

of the same XI (i.e. Xi·Xi+1 = 0 ∀ i) then we define

Xi,αβ:=Zi−1,[αZi, β] (6.1.12)

We will refer to these as bi-twistors throughout although to be specific they are

not yet true momentum twistors since they only satisfy lightlike separation.

However in a particular co-ordinate patch the restrictions to be twistors would

be met and then these would indeed be true bitwistors. While we will not go

into the details of this coordinate patch it should be acceptable to the reader

that to call these Xi,αβ bi-twistors is not unreasonable.

Now let’s consider various integrands as they are expressed in [9], starting

with a dual-conformal pentagon integral in terms of which one can write the

integrand of all one-loop amplitudes to at least O(ε):

Ii,j=
〈AB(i−1, i, i+1) ∩ (j−1, j, j+1)〉〈X, i, j〉

〈AB, i−1, i〉〈AB, i, i+1〉〈AB, j−1, j〉〈AB, j, j+1〉〈ABX〉 (6.1.13)

The numerator can be trivially rewritten through permutations of the en-

tries in each four-bracket, as such we could express it in the following way

〈i−1, i, i+1, [A〉〈B] j−1, j, j+1〉〈j,X, i〉 where there is an antisymmetry across

A↔ B. This form along with definitions (6.1.4), (6.1.12) suggest the following

form for Ii,j
Tr(X̃Xi+1X̃iX0X̃jXj+1)

(X0·Xi)(X0·Xi+1)(X0·Xj)(X0·Xj+1)(X0·X)
(6.1.14)

Note that the Trace above (i.e. Tr(·)) simply means that we close the indices

as follows Xαβ . . . X
·,α, this corresponds to taking the trace if we were to write

out our X’s as matrices. Here in the integration over twistors A, B becomes in-

tegration over the X-space variable X0. To see that this does indeed reproduce

the terms we want we may simply use (6.1.12) to expand out the numerator
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and see that after cancellations we are left only those terms we require. This

is a particularly simple example and we find that it will no longer be so simple

once we inspect higher loop-orders and more external points with lots of terms

which may have cancellations between them. As an example of this we have no

expression like (6.1) for MHV amplitudes with arbitrary numbers of external

points at 3-loops. Were we to use dual-momenta coordinates we would find

that (6.1) is equivalent to

Tr(x̃i,i+1xi+1,0x̃0,jxj,j+1x̃j+1,xxx,i)

x2
0,ix

2
0,i+1x

2
0,jx

2
0,j+1x

2
0x

(6.1.15)

The variable X is a reference twistor meaning it is an arbitrary value and

should drop out of the sum which gives the one-loop amplitude, we shall see

that the attempt to recover the full O(ε) answer will put restrictions on what

choice we can make for this reference twistor.

As a last demonstration, we recast the one-loop hexagon∫
AB

〈AB13〉〈AB46〉〈5612〉〈2345〉
〈AB12〉〈AB23〉〈AB34〉〈AB45〉〈AB56〉〈AB61〉 (6.1.16)

which may be more familiar to some readers as:

Tr(X̃3X0X̃1X2X̃6X0X̃4X5)
(X0·X1)(X0·X2)(X0·X3)(X0·X4)(X0·X5)(X0·X6)

=Tr(x̃3,0x0,1x̃1,2x2,6x̃6,0x0,4x̃4,5x5,3)

x2
0,1x

2
0,2x

2
0,3x

2
0,4x

2
0,5x

2
0,6

(6.1.17)

6.2 The meaning of µ2

The first thing we must do is explain how our ([X0] ·X0) is to be proportional

to µ2 and in turn gives us our ε contribution? Using the particular method of

embedding variables which we outlined (6.1.2), we dimensionally regulate the

integration variable X0 as follows:

X0=


1−x2

0

2

xν̂0
1+x2

0

2

 (6.2.1)
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where ν̂ is a 4−2ε dimensional index which takes part of the 4-dimensional

piece in a Lorentz metric with the extra −2ε dimensional piece ν.

xν̂0=

(
xi0

µ

)
(6.2.2)

Note that this X0 is zero when dotted with itself in a metric (+,+,-,-,-,-) which

is appropriately modified to (4− 2ε) dimensions, i.e. we find

X0 ·X0 =

(
1−x2

0

2

)2

+ x2
0 − x2

1 − x2
2 − x2

3 − µ2 −
(

1−x2
0

2

)2

(6.2.3)

However, when its inside the trace or epsilon then it only makes sense to

be in precisely 6-dimensions, as such we use [X0] to mean projected into 6-

dimensions, i.e. drop the µ. Note [X0] ·X0 6= 0 since we set the −2ε piece µ

to zero in the vector but we still have µ inside the x2
0 first and last entries. As

such we obtain:

−xν̂0x0,ν̂+x
ν
0x0,ν=µ

2 (6.2.4)

When we have the above integrals proportional to µ2 we would like to

simplify this by removing it from the numerator and aligning with previous

literature such as [102] by moving from 4-dimensions into 6-dimensions, this

section makes this transition explicit. Firstly we can break the integration over

4−2ε dimensions as follows:∫
d4−2εp

(2π)4−2ε
→
∫

d4p

(2π)4

∫
d−2εµ

(2π)−2ε
(6.2.5)

Any integral such as those above in which there is some power of µ2 in the

numerator is referred to as a µ-integral, which we now proceed to rewrite in a

dimensionally shifted manner. To do this we manipulate the integration over

µ as follows ∫
d−2εµ

(2π)−2ε
f(µ2) =

∫
dΩ−2ε

(2π)−2ε

∫∞
0
dµµ−2ε−1f(µ2)

=1
2

∫
dΩ−2ε

(2π)−2ε

∫∞
0
dµ2(µ2)−ε−1f(µ2) (6.2.6)

where the first step involves breaking the integration of the variable µ in −2ε-

dimensions into a −2ε-dimensional sphere and the remaining integration over
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the ‘radius’ µ. The area of a sphere in D=−2ε dimensions is given by:∫
dΩ−2ε=

(2π)−2ε

Γ(−ε) (6.2.7)

Now if we moderate the argument of f(µ2) by including µ2r we can absorb the

extra factors of µ2 into the integration measure as follows:

∫ d−2εµ
(2π)−2εµ

2rf(µ2) =
(2π)2r

∫
dΩ−2ε∫

dΩ2r−2ε

∫
d2r−2εµ

(2π)2r−2ε
f(µ2)

=−ε(1−ε)...(r−1−ε)(4π)r
∫

d2r−2ε

(2π)2r−2ε
f(µ2) (6.2.8)

So if r is a positive integer this analysis leads to the concise formula:

ID=4−2ε
n [µ2r]=−ε(1−ε)(2−ε)...(r−1−ε)ID=2r+4−2ε

n (6.2.9)

To be precise what this means for our integrals with a factor of µ2 in the

numerator (which we will encounter later) is that these integrals can be thought

of as being integrals in 6-dimensions but proportional to ε.

6.3 1 Loop MHV

We begin by considering the BCFW expression for a 1-loop MHV integrand

expression with a single reference twistor as given above in (6.1) (equation

(6.4) of [9]), which is given in the form of:

∑
i<j

〈AB(i−1, i, i+1) ∩ (j−1, j, j+1)〉〈Xij〉
〈ABX〉〈AB, i−1, i〉〈AB, i, i+1〉〈AB, j−1, j〉〈AB, j, j+1〉 (6.3.1)

We now recast this equation in 6d vectors Xi=(X i
−1, X

i
0, X

i
1, X

i
2, X

i
3, X

i
4), which

are null in the Lorentz metric (2, 4). Relating Xαβ
i =Zα

i Z
β
i+1−Zβ

i Z
α
i+1 and defin-

ing X̃α,β=εαβγδX
γδ, we find that the above equation can be rewritten as:

∑
i<j

Tr(X̃0Xi+1X̃iXX̃jXj+1)

(Xi·X0)(Xi+1·X0)(X·X0)(Xj·X0)(Xj+1·X0)
(6.3.2)

However in the interest of trying to dimensionally regularize this equation we

will consider the integration variable X0 as having 6−2ε components, with all

other X’s still having the full 6-components (though naturally being restricted

to a 4-dimensional space as can be seen in (6.1.2)).
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Expanding out the parity-even part of the trace (leaving the parity-odd

part for later):

Tr(X̃0Xi+1X̃iXX̃jXj+1)even (6.3.3)

=−(X0·X) [(Xi+1·Xj)(Xi·Xj+1)−(Xi·Xj)(Xi+1·Xj+1)]

+({[(Xj·X)(X0·Xi)(Xi+1·Xj+1)−(i↔ i+1)]−(j ↔ j+1)}+(i↔ j))

(6.3.4)

Then after cancellations we obtain only the sum over two-mass-easy boxes.

The parity-odd component is more complicated

−
∑
i<j

ε(X0, Xi+1, Xi, X,Xj, Xj+1)

(Xi·X0)(Xi+1·X0)(X·X0)(Xj·X0)(Xj+1·X0)
(6.3.5)

From this point it becomes expedient to consider the above equation separately

for a fixed number of external points. To this end we begin by limiting ourselves

to 5-points only, before moving on to the 6-point case.

Parity-Odd at 5-points

Clearly if j=i+1 the epsilon will vanish, as such we get only 5 terms in

the sum. We will be taking great care of our integration variables such as X0,

which lies in D-dimensions once we turn to dimensional regularization. Putting

over a common denominator this equation becomes:

−ε(X0, X1, X2, X,X3, X4)(X5·X0)+cyclic {1, 2, 3, 4, 5}
(X1·X0)(X2·X0)(X3·X0)(X4·X0)(X5·X0)(X·X0)

(6.3.6)

Note that X0 along with all other variables inside ε must lie in 6-dimensions

for this tensor to be well-defined. From this we now use the identity for 7

arbitrary points Yi, which are valid coordinates in 6-dimensions

ε(Y1, Y2, Y3, Y4, Y5, Y6)Y7+cyclic {1, 2, 3, 4, 5, 6, 7}=0 (6.3.7)

and applying this to the above case yields the numerator:

ε(X1, X2, X3, X4, X5, X0)(X·X0)+ε(X,X1, X2, X3, X4, X5)([X0] ·X0) (6.3.8)

where we remind ourselves that [X0] means we project from 6−2ε components

on to 6 components. Plugging this numerator into our overall equation and

setting ([X0] ·X0)=µ2, we find the parity-odd part of the integrand at 5-points
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to be equal to:

ε(X0,X1,X2,X3,X4,X5)
(X1·X0)(X2·X0)(X3·X0)(X4·X0)(X5·X0)

+ µ2ε(X1,X2,X3,X4,X5,X)
(X1·X0)(X2·X0)(X3·X0)(X4·X0)(X5·X0)(X·X0)

(6.3.9)

Before we consider (6.3.5) at 6-points we should discuss how to interpret our

above result. Notice firstly that by setting our reference twistor X to be any

external twistor, we lose the second of the two terms above. This is our first

example that once you dimensionally regularize the integrands the reference

twistors may no longer be arbitrary. The first of the two terms is however

X-independent and for generic external momenta will not vanish.

If we wish to match this term to known results then we have to solve

the remaining term in the following way, we set Ya=ε(X1, X2, X3, X4, X5, ·) ≡
α1X1+α2X2+α3X3+α4X4+α5X5+βI and solve for the coefficients by the se-

ries of simultaneous equations11:

Ya·Xi=0 i=1, ..., 5

Ya·I=ε(X1, X2, X3, X4, X5, I)=4α1+4α2+4α3+4α4+4α5 : =y (6.3.10)

where we have used the fact that Xi·I=4 for any physical Xi including X0.

Then, once we have solved these equations we set the numerator to be Ya·X0

which gives us

α1(X1·X0)+α2(X2·X0)+α3(X3·X0)+α4(X4·X0)+α5(X5·X0)+βy (6.3.11)

The first five terms cancel with one of the five propagators giving five boxes

and the last term leaves all six propagators and as such gives us a pentagon.

We obtain solutions for the coefficients of the form (si=Xi·Xi+2 ≡ 1
2
(pi+pi+1)2)

α1= −ys2s3(s1s2−s2s3+s3s4−s4s5+s5s1)

4
∑5
i=1(s2i s

2
i+1−2sis2i+1si+2+2sisi+1si+2si+3)

i ∈ mod(5)

β= ys1s2s3s4s5
8
∑5
i=1(s2i s

2
i+1−2sis2i+1si+2+2sisi+1si+2si+3)

i ∈ mod(5) (6.3.12)

To compare these solutions to other results in the literature we need to recast

these equations in terms of momentum variables.

We start by considering the denominator and make the ansatz Det(pi·pj),
where the si’s are defined as above as being Mandelstam variables and i, j run

11 Note here that I is the so-called infinity-twistor and is as such not a physical point since
it represents a point at infinity, this breaks dual conformal invariance.
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over 1, ..., 4.

Det(pi·pj) =

∣∣∣∣∣∣∣∣∣∣
0 (p1·p2) (p1·p3) (p1·p4)

(p1·p2) 0 (p2·p3) (p2·p4)

(p1·p3) (p2·p3) 0 (p3·p4)

(p1·p4) (p2·p4) (p3·p4) 0

∣∣∣∣∣∣∣∣∣∣
= 1

24

∣∣∣∣∣∣∣∣∣∣
0 (p1+p2)2 (p1+p3)2 (p1+p4)2

(p1+p2)2 0 (p2+p3)2 (p2+p4)2

(p1+p3)2 (p2+p3)2 0 (p3+p4)2

(p1+p4)2 (p2+p4)2 (p3+p4)2 0

∣∣∣∣∣∣∣∣∣∣
(6.3.13)

now we want to express all these terms in terms of si’s alone. The key is in

using momentum conservation
∑5

i=1 pi=0, note that as a result the following

stage is special to 5-points. For example, recalling that all external momenta

are null, we can express p1·p3 using the following series of equations:

1
2
(p1+p2+p3)2=1

2
(p4+p5)2

1
2
(p1+p3)2+s1+s2=s4 (6.3.14)

we now rearrange this and insert it and equivalent equations to get:∣∣∣∣∣∣∣∣∣∣
0 s1 s4−s1−s2 s2−s4−s5

s1 0 s2 s5−s2−s3

s4−s1−s2 s2 0 s3

s2−s4−s5 s5−s2−s3 s3 0

∣∣∣∣∣∣∣∣∣∣
(6.3.15)

=
5∑
i=1

(s2
i s

2
i+1−2sis

2
i+1si+2+2sisi+1si+2si+3) (6.3.16)

so (up to a constant factor) this agrees with our denominator from all our α’s

and β. Precisely the same reasoning and mode of calculation can show:

y=
√

Det [(I,X1, X2, X3, X4, X5)·(I,X1, X2, X3, X4, X5)T ]

=4

√√√√ 5∑
i=1

(s2
i s

2
i+1−2sis2

i+1si+2+2sisi+1si+2si+3) (6.3.17)
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Finally considering the numerator it is simple to find

Tr(p1p2p3p5)= [(p1·p2)(p3·p5)−(p1·p3)(p2·p5)+(p1·p5)(p2·p3)]

=− [s1s2−s2s3+s3s4−s4s5+s5s1] (6.3.18)

Where this trace is as earlier taken over the matrix representation of this

combination, but in practice simply means p1,α· . . . p
·α
5 . As such, using the

calculations shown above we can match coefficients and show that, for example,

the box associated with α1 can be written as:

−s2s3Tr(p1p2p3p5)√
−16Det(pi·pj)

1

(p0+p2)2(p0+p3)2(p0+p4)2(p0+p5)2
(6.3.19)

and our pentagon has the form,

−s1s2s3s4s5√
−8Det(pi·pj)

1

(p0+p1)2(p0+p2)2(p0+p3)2(p0+p4)2(p0+p5)2
(6.3.20)

There are several questions which immediately arise from these results. For

example, what happens if rather than setting our reference twistor to be a

physical external point we instead set it to be the infinity twistor I, or any

other arbitrary point? Or could we have reached this point by simpler methods

than this rather involved process, and how can we use these results to compare

with expressions found elsewhere? It is to this last question we now turn.

Following the work done by Schabinger [103] we note that the above equa-

tions are all to be understood as being in 4-dimensions in what is referred to

as the “geometric basis”. If we now use the equation given below to move into

the dual conformal basis of 4-dimensional boxes and a 6-dimensional pentagon,

then a simpler comparison may be possible from our original formula. This

utilises:

ID=4−2ε
5 =

1

2

[
5∑
j=1

CjI
(j),D=4−2ε
4 +2εC0I

D=6−2ε
5

]
(6.3.21)

Here I
(j),D=4−2ε
4 denotes a box missing the propagator (Xj+X0)2 but inD=4−2ε

dimensions, ID=6−2ε
5 denotes a pentagon in 6−2ε dimensions and the coeffi-

cients C0 and Cj are given as:

Ci=
n∑
j=1

S−1
i,j C0=

n∑
i=1

Ci (6.3.22)
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Which utilised the matrix Si,j defined as follows

Si,j=
1
2
(pi+...+pj−1)2 i 6= j

Si,j=0 i=j (6.3.23)

with i, j understood mod(n) and for more details on this work see Appendix A

of [103]. With these equations we have a way of relating a certain combination

of 4-dimensional boxes and pentagons (when we are in the so-called geometric

basis) to boxes in 4-dimensions and pentagons in 6-dimensions (dual-conformal

basis).

εID=6−2ε
5 =

1

C0

(
ID=4−2ε

5 −1

2

n∑
j=1

CjI
(j),D=4−2ε
4

)
(6.3.24)

Next we shall see that the parity-odd part of 5-points nicely maps into a single

pentagon in 6-dimensions proportional to ε, those familiar with the full O(ε)

5-point MHV amplitude might expect this based on the fact that the parity-

even part gives us all the 2-mass-boxes matching the known amplitude up to

O(ε), see equation (48) of [103] for this matching.

Calculating the necessary coefficients in (6.3.24) we find

2s1s2s3s4s5

2
√

Det(pi·pj)
ID=4−2ε

5 +
s2s3Tr(p1p2p3p5)√

Det(pi·pj)
I

(1),D=4−2ε
4 −...=ε

√
Det(pi·pj)ID=6−2ε

5

(6.3.25)

By checking these coefficients against αi with i=1, . . . , 5 and y those found in

(6.3.12) we can see there is a map from the parity-odd part of our amplitude to

a 6-dimensional pentagon with the pre-factor εε(p1, p2, p3, p4) ≡ ε
√

Det(pi·pj)
matching expectations from [102, 103] and elsewhere. The question now be-

comes could we have avoided the transitional calculations and gone straight

from the parity-odd pentagon in 4-dimensional X-space to this 6-dimensional

pentagon in momentum-space and obtained the correct pre-factor? We did not

use ([X0] ·X0) above, since our reference twistor X we set to be an external

twistor however from 6-points here onwards we cannot remove it in this way.

6.4 Parity-Odd at 6-Points

As we showed at the start of this chapter, the parity-even part of the n-point

amplitude is obtained in a very simple way, however at 5-points we used many
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constricting arguments in our investigation of the parity-odd part. So at 6-

points:

∑
i<j

Tr(X0Xi+1XiXXjXj+1)

(Xi·X0)(Xi+1·X0)(X·X0)(Xj ·X0)(Xj+1·X0)

=
Tr(X0X2X1XX4X5)(X3·X0)(X6·X0)

(X1·X0)(X2·X0)(X3·X0)(X4·X0)(X5·X0)(X6·X0)(X·X0)
+2 others

+
Tr(X0X2X1XX3X4)(X5·X0)(X6·X0)

(X1·X0)(X2·X0)(X3·X0)(X4·X0)(X5·X0)(X6·X0)(X·X0)
+5 others (6.4.1)

We restrict our attention to the parity-odd part where the Tr → ε, and

apply similar manipulations using 7-particle identities to express the above in

terms only proportional to ([X0] ·X0) or independent of X. The results are very

much analogous to those of the 5-point case and once we have worked through

all the terms using necessary Schouten identities we end up with the following

terms in the numerator:

−1

2
([X0] ·X0) [(X1·X0)ε(X2X3X4X5X6X)+cycle {1, 2, 3, 4, 5, 6}]

+
1

2
[(X·X0)ε(X2X3X4X5X6X0)+cycle {1, 2, 3, 4, 5, 6}] (6.4.2)

Here the second term is analogous to the term we solved at 5-points, and

is a function of only 5 of the 6 points in each term, thus we might expect

solutions to arise similar to those at 5-points. The other set of terms will now

NOT all disappear by setting X to be an external twistor. Indeed if we set X

to be X1 we will be left with an overall term 1
2
([X0] ·X0)ε(X1X2X3X4X5X6),

whereas if we set it to be X6 we would have the same answer but with a

minus sign at the front, this ambiguity has no obvious resolution. Moreover

when we compare to the all ε expansion of the 6-point amplitude from [24]

and work done subsequently, we find that the integral of a hexagon there has

a parity-even prefactor Tr [p1p2p3p4p5p6] where we currently find a parity-odd

prefactor. This collection of inconsistencies seems to indicate that the original

formula fails to capture the full ε behaviour of our amplitudes. As such we

look elsewhere to a generalisation of this formula with two reference twistors

also to be found in [9].
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6.5 1 Loop MHV - 2 Reference Twistors

We take the form of the one-loop, planar, MHV amplitude with arbitrary num-

ber of external points from (equation 48) [8], which at least before dimensional

regularisation is an equivalent function to that already considered, however

this function has two reference twistors X and Y . The equation in question is:

MMHV
1−loop,n=

∑
i,j

〈AB(Xi) ∩ (Y j)〉〈AB(i−1, i, i+1) ∩ (j−1, j, j+1)〉
〈ABX〉〈ABY 〉〈AB, i−1, i〉〈AB, i, i+1〉〈AB, j−1, j〉〈AB, j, j+1〉

(6.5.1)

where this numerator is understood to mean

(〈AXi〉〈BY j〉−(A↔ B))(〈A, i−1, i, i+1〉〈B, j−1, j, j+1〉−(A↔ B)) (6.5.2)

In X’s this numerator is simply Tr(X0X̃XiX̃i+1X0X̃j+1XjỸ ) which expanded

back out gives

=X0,ABX̃
BCXi,CDX̃

DE
i+1X0,EF X̃

FG
j+1Xj,GH Ỹ

HA

(6.5.3)

with X̃BC=1
2
εBCαβXαβ etc. We decompose these bi-twistors into single twistor

components, e.g. X0,EF=ZA,EZB,F−ZA,FZB,E and similarly for

Xi,CD=Zi,[CZi+1,D] etc. Expanding this out we find that we are left with only

four terms which match the original numerator as required.

So, we now proceed in a similar vein to the earlier case of a single reference

twistor. This leaves us with only two terms, one independent of X and one

dependent on both X and Y :

(X0·Xi+1)Tr(XX̃iX0X̃j+1XjỸ )−1
2
([X0]X0)Tr(XX̃iXi+1X̃j+1XjỸ )

(6.5.4)

In particular, the first term above is identical to the formula we were analysing

in the previous section (though with a minus sign) and we know how that acts

at 5- and 6-points. As such let’s limit ourselves to the last term above. If we

again impose the restriction that both X and Y are external twistors then we

ensure there is no parity-odd part until 6-points.

The first thing we will do is consider these twistors to be X → Xk+1 and

Y → Xk. Looking at the parity-even part at 5-points we can easily see there
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are no contributions until at least 6-points. Let us suppose we had not fixed X

and Y in such a nice way then we may have terms at six-points and beyond such

as Tr(X5, X3, X2, X5, X4, X1) this will contribute zero at 5-points, however will

give a non-zero result at 6-points once (X1·X5) 6= 0 and as such we see that,

setting X and Y to be external twistors alone is not sufficient to generate the

correct solution as we now show.

Consider 6-points where we will have two terms:

−([X0] ·X0)Trparity−even(X1X2X3X4X5X6)−([X0] ·X0)ε(X1X2X3X4X5X6)

(6.5.5)

this parity-odd term then cancels with the parity-odd part from before (Y →
Xk : =X6) which we recall has a minus sign in the above expression and a factor

of 2 since in this new expression we have no restriction that i < j. As such, it

looks very much like we have achieved the correct expressions at 5-points and

6-points, we need only to check the coefficients for the parts proportional to ε

and show

Tr(X1, X2, X3, X4, X5, X6)=Tr(p1, p2, p3, p4, p5, p6) (6.5.6)

which can be found very easily to be the case and to be equivalent to

Tr(p1, p2, p3, p4, p5, p6)=(s1t2s4+t1s6s3+s5s2t3−t1t2t3) (6.5.7)

the µ2 coefficient gives us the −ε, which results in a perfect matching.

So to be explicit, the key result we have shown in this subsection is that

the part of the expression proportional to ε precisely matches the expected

part from [102, 103] at 5- and 6-points. As such, assuming the rest matches as

postulated by [9] we have the result

A1−loop
MHV =

∑
i,j

Tr(X0X̃k+1XiX̃i+1X0X̃j+1XjX̃k)

(X0·Xk)(X0·Xk+1)(X0·Xi)(X0·Xi+1)(X0·Xj)(X0·Xj+1)
(6.5.8)

where k is fixed. Note we could easily sum over k also and divide by n, which

yields a slightly more symmetrical answer, and possibly this could be necessary

for 7-points or above. The above result is only shown explicitly for 6-points,

and modifications to the reference-twistor prescription cannot be forbidden

without further research in the area. Let us also make explicit that thus far we

have never been given the O(ε) terms by the expressions involving reference

twistors without restrictions. That is we have always been required to make

the “correct” choice for the reference twistors and as such we now attempt the
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same processes as above but for the two-loop equation which has no reference

twistors.

6.6 2-loop MHV

We wish to repeat this process again but for the two-loop amplitude, as such

we again start with an amplitude in momentum twistors as given in [9]:

1
2

∑
i<j<k<l<i

〈AB(i−1, i, i+1) ∩ (j−1, j, j+1)〉
〈AB, i−1, i〉〈ABi, i+1〉〈AB, j−1, j〉〈AB, j, j+1〉

× 〈i, j, k, l〉〈CD(k−1, k, k+1) ∩ (l−1, l, l+1)〉
〈ABCD〉〈CD, k−1, k〉〈CD, k, k+1〉〈CD, l−1, l〉〈CD, l, l+1〉

(6.6.1)

At 5-points we have the advantage that we are continually considering ‘bound-

ary cases’ 12 where either j=i+1 and k=j+1 (or indeed any other pair of

‘boundaries’). Indeed, at 6-points we have a similar result, which is that we al-

ways have one of three boundaries where the three we choose is irrelevant. Let

us begin then by considering how to express in a single trace or a double-trace

the boundary-term j=i+1, we do this to find:

1

2

Tr(XABX̃i+1XiX̃i+2)

(XAB·Xi)(XAB·Xi+1)2(XAB·Xi+1)(XAB·XCD)

× Tr(XCDX̃kXk+1X̃i+1Xl+1X̃l)

(XCD·Xk)(XCD·Xk+1)(XCD·Xl)(XCD·Xl+1)
(6.6.2)

Here we use indices in latin letters to indicate integration variables i.e. XAB =

Z[AZB] and we will integrate over the twistors ZA, ZB. We obtain an analogous

double-trace structure for the boundary l=k+1. Whereas for the boundary

where k=j+1 we find a term with numerator:

1

2
Tr(XABX̃iXi+1X̃j+1Xl+1X̃lXCDX̃j+2Xj+1X̃j+1) (6.6.3)

12 For arbitrary numbers of external particles we have no method for writing out the nu-
merator in traces, we require one pair of i, j, k, l to differ by one to allow us to write a
term in trace-structure. As such our first problem term emerges at 8-points when we have
external-particles and i=1, j=3, k=5 and l=7 or any cyclically related term.
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and denominator

(XAB·Xi)(XAB·Xi+1)(XAB·Xj)(XAB·Xj+1)(XAB·XCD)

(XCD·Xj+1)(XCD·Xj+2)(XCD·Xl)(XCD·Xl+1) (6.6.4)

We now express the 5-point amplitude in terms of the two boundary terms

i+1=j and k+1=l but with the use of the notation iC j to mean i+1 < j to

prevent double-counting of the case where both boundaries are in operation.

As such we have the claim:

A2−loops
MHV =∑

i<i+1<kCl<i

Tr(XABX̃i+1XiX̃i+2)

(XAB·Xi)(XAB·Xi+1)2(XAB·Xi+2)(XAB·XCD)

× Tr(XCDX̃kXk+1X̃i+1Xl+1X̃l)

(XCD·Xk)(XCD·Xk+1)(XCD·Xl)(XCD·Xl+1)

+
∑

i<j<k<k+1<i

Tr(XCDX̃k+1XkX̃k+2)

(XAB·Xi)(XAB·Xi+1)(XAB·Xj)(XAB·Xj+1)(XAB·XCD)

× Tr(XABX̃iXi+1X̃k+1Xj+1X̃j)

(XCD·Xk)(XCD·Xk+1)2(XCD·Xk+2)
(6.6.5)

We now look to expand this equation at 5-points into parity-even and

parity-odd parts, note that the parity-odd part bears a remarkable resemblance

to the 1-loop MHV solution given earlier.

A2−loops
MHV,5 =

(X1·X3)TrP.E.(XCD, X1, X2, X3, X4, X5)

(XAB·X1)(XAB·X2)(XAB·X3)(XAB·XCD)(XCD·X3)(XCD·X4)(XCD·X5)

− ε(XCDX1X2X3X4X5)

(XAB·X1)(XAB·X2)(XAB·X3)(XAB·XCD)

× (X1·X3)

(XCD·X3)(XCD·X4)(XCD·X5)(XCD·X1)
+cyclic (6.6.6)

If we expand out the parity-even part of this solution, then alongside the parity-

odd part we have 5 distinct terms which appear before cyclicity. We show these

terms in Fig.6.1, note the dotted lines indicate a contraction to be put in the

numerator and a crossed circle centred on a integration variable denotes an

epsilon which includes that variable and the other external variables. We can

very easily now see that these match the diagrams drawn in Fig.2 of [22] and

as such matches the 5-point two-loop amplitude found there up to coefficients
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(d)

(e)

(a) (b) (c)

Figure 6.1: All the diagrams which contribute to the five-point 2-loop MHV
amplitude, drawn both as standard (black) and dual-graphs (red). Note
that (c) and (d) have equivalent dual-graphs due to the fact they are parity-
conjugate to one another.

which we now turn our attention to. To check this, take the terms of (6.6.6)

and expand them out in all possible manners and this will match the dual-

graphs (red) in Fig.6.1 up to cyclic ordering of the indices. The standard

(black) graphs are included throughout as they may be more familiar to most

readers.

We use methods analogous with those we used to expand the ε(X1, X2, X3,

X4, X5, ·) from the integral I
(2)
(e) (ε) into a basis of Xi’s and the infinity twistor

I (as we did in Sec.6.3). This removes this integral from our expansion and

leaves us with only the other four. With this approach we match exactly the

result from [22]:

M
(2)
5 (ε)=

1

8

∑
cyclic

{
s2

12s23I
(2)
(d)(ε)+s

(2)
12 s15I

(2)
(c) (ε)+s12s34s45I

(2)
(b) (ε) (6.6.7)

s12s23s34s45s51√
Det(pi·pj)

[
2I2

(a)(ε)−2s12I
(2)
(b) (ε)

+
s12

s34s45

(
δ−++

s23

I
(2)
(c) (ε)−δ−+−

s51

I
(2)
(d)(ε))+

δ+−+

s23s51

I
(2)
(b) (ε)

]}
where δabc=s12s51+as12s23+bs23s34−s51s45+cs34s45. Once again at 5-points

there are no explicit dual-conformally invariant terms which are proportional

to µ2. As such to find evidence that we can obtain such terms without further

work through this method we will need to progress to the case of the 6-point,

2-loop MHV amplitude case where we expect that we will have some terms in

the geometric basis which will be proportional to µ2.
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6.7 MHV 2-loops 6-point Amplitude

Now looking at the 6-point, two-loop MHV amplitude we may take the terms

but with a suitably modified summation from the previous calculation and

additionally add the extra term where i+1 6= j and k+1 6= l. This leaves us

with only one option at six points j=i+2, k=i+3 and l=i+5 and putting this

into the 4-bracket archetype and transforming to X-notation we find the extra

term with numerator:

1

2
Tr(XABX̃i+2Xi+3X̃iXi+3X̃i+4XCDX̃i+5XiX̃i+1) (6.7.1)

and denominator

(XAB·Xi)(XAB·Xi+1)(XAB·Xj)(XAB·Xj+1)(XAB·XCD)

×(XCD·Xk)(XCD·Xk+1)(XCD·Xl)(XCD·Xl+1) (6.7.2)

Where we sum these terms over i and this allows us to write the following

A2−loop
MHV,6

=
1

2

 ∑
i<i+1<kCl<i mod(6)

(Xi·Xi+2)

(XAB·Xi)(XAB·Xi+1)2(XAB·Xi+2)(XAB·XCD)

× Tr(XCDX̃kXk+1X̃i+1Xl+1X̃l)

(XCD·Xk)(XCD·Xk+1)(XCD·Xl)(XCD·Xl+1)

+
∑

i<j<k<k+1<i mod(6)

(Xk·Xk+2)

(XAB·Xi)(XAB·Xi+1)(XAB·Xj)(XAB·Xj+1)

× Tr(XABX̃iXi+1X̃k+1Xj+1X̃j)

(XAB·XCD)(XCD·Xk)(XCD·Xk+1)2(XCD·Xk+2)
+

∑
i mod(6)

(6.7.1)

(6.7.2)


(6.7.3)

If we expand out as done in earlier sections and use Schouten identities and

dimensionally regularise XCD into (6−2ε)-dimensions then we have 6 terms all

related by cyclicity at O(ε):

µ2(X1·X3)(XCD·X2)ε(X1, ..., X6)

(XAB·X1)...(XAB·X3)(XAB·XCD)(XCD·X1)...(XCD·X6)
+cyclic (6.7.4)

these are contributions from a hexagon-box integral as in Fig.6.2. Having
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1

2

3

4

5

6

AB CD

Figure 6.2: A hexagon-box integral of the type which gives us our terms pro-
portional to ε

established the form of one of the possible O(ε) terms at 6-points we note that

we have a huge variety of ways of expressing these terms due to relations such

as Schouten identities.

If we write the terms directly out from (6.3) without using any relations

used at all we obtain the graphs shown in Fig.6.3. We only have three co-

efficients α, β and γ which are integers relating to the symmetry in each of

the three terms in (6.3). Note also that every graph in the figure which has

a parity-conjugate not cyclically related to itself comes out with an identical

pre-factor for both parity contributions, not necessarily non-trivial.

Note that we find α=β which comes naturally since the only difference be-

tween the two original terms is a relabelling and a difference in the restrictions

in the sum which could be exchanged. As such we are reduced to two integer

coefficients α an γ and the integral Id now comes with a zero coefficient as

predicted in [22], this again is a non-trivial check and we now match the form

in momentum-space with that given in the same reference.

Let us now consider the coefficients and in particular start with the 1-loop2

terms Iu, Iv and Iw along with their parity conjugates. At first glance these

terms seem to have a simple cancellation where (XAB·XCD) in the numerator

cancels the same term in the denominator. However once we dimensionally

regularise then this cancellation is no longer so simple. The denominator has

the complete D-dimensional variables whereas the numerator requires them to

be in 6-dimensions due to them being inside the trace. So our variables are

schematically of the following form:(
[XAB]

µAB

)
(6.7.5)
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(p)(o)(n)(m)

(g) (h) (i) (j) (k) (l)

(f)(e)
(d)(b)(a)

(q)

(r)

(v)
(w)

(u)(t)(s)

epsilon(1,2,3,4,5,6)

(x) (y) (z) (1) (2)

(c)

Figure 6.3: The set of all graphs given by expanding out our expression for the
6-point 2-loop MHV amplitude. Blue graphs are those we obtain by expanding
out and the black graphs are the dual-graphs which will be more familiar to
most readers.

So the ratio [XAB ]·[XCD]
XAB ·XCD

can be realised as 1 + µAB ·µCD
XAB ·XCD

. These terms give us

the following contribution proportional to 1 + µAB·µCD:

(X1·X4)2(X2·X6)(X3·X5)+(X1·X4)(X2·X4)(X3·X6)(X5·X1)
(XAB ·X1)(XAB ·X2)(XAB ·X3)(XAB ·X4)(XCD·X4)(XCD·X5)(XCD·X6)(XCD·X1)

+ (X1·X4)(X1·X3)(X2·X4)(X4·X6)−(X1·X4)2(X2·X5)(X3·X6)
(XAB ·X1)(XAB ·X2)(XAB ·X3)(XAB ·X4)(XCD·X4)(XCD·X5)(XCD·X6)(XCD·X1)

+cyclic

(6.7.6)

which it is then trivial to match to the coefficients c1 and c14 in [28]. All these

coefficients can be seen to match those in Equation (3.13) using Fig.3 in [28]

except from their term with coefficient c15, which is a hexa-box proportional

to µ2. However we also obtain the parity-conjugates to certain terms in c9−c11

not explicitly mentioned in this reference. Nonetheless this is sufficient to

demonstrate that our parity-even result matches all parts except the hexagon-

box term proportional to µ2.
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As such, although we can draw comparisons between standard terms and

O(ε)-terms they do not come naturally and completely from the standard

momentum-twistor expressions we have started from. In particular if we

take diagrams I
(2)
a , I

(2)
n and I

(2)
o we can add propagators and numerators

to cancel these to these diagrams to obtain a hexa-box. Having added for

example (XAB ·X1)(XAB ·X3)
(XAB ·X1)(XAB ·X3)

using a trace we rearrange the numerator to give
([XAB ]·XAB)(X1·X3)
(XAB ·X1)(XAB ·X3)

as an extra term and this gives us our missing µ2-term. How-

ever this is merely fixing the result by hand to match known results, we shall

now try and expand on the similarities between known terms and missing

µ2-terms.

6.8 Bridge between finite objects and O(ε)

terms

Let us now consider the form of the dual-conformally invariant µ2-terms we

have thus far obtained and attempt to form restrictions on their form. At

one-loop with five external points, we found there was no dual-conformally

invariant µ2 contribution. This could have very easily been guessed since the

full denominator of all physical poles would be (X0·X1)(X0·X2) . . . (X0·X5) and

as such the numerator only has a single X0 to ensure the correct conformal

weight, as such it is obvious no (X0·X0)-style term can appear in a planar

dual-conformally invariant fashion. At two-loops with five external points we

can have a ‘complete’ denominator

(X0·X1)· · ·(X0·X5)(X0·X0′)(X0′ ·X1)· · ·(X0′ ·X5) (6.8.1)

note however that this is naively non-planar and as such some denominator

lines must be cancelled in the numerator for planarity to be ensured. The

numerator will have two X0’s and two X0′ ’s which could conceivably contract

together to give a µ2 or µAB·µCD term. However we will now see that no such

planar graph can have only 5 external legs.

Let us then check that neither a pentagon-pentagon or hexabox diagram can

be drawn with only five external legs. Note that every vertex must naturally

be of valency ≥ 3. As can be seen from Fig.6.4 we see that we require at

least 6 external legs for either of these options to be viable and as such, in

similarity to the earlier cases there will not be enough integration variables in
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the numerator to allow µ2 or µAB·µCD terms to be present while maintaining

dual-conformal invariance.

Figure 6.4: With all vertices of valency 3 these are the first graphs at two-loops
which can give a µ2 contribution and both require 6 or more external particles.

What about at 3-loops? We draw graphs of only 3-valent vertices since

these will offer the largest number of free variables in the numerator and we

find there is only two diagrams with five external particles which can contribute

either a µ2 or µAB·µCD term for 5-point, 3-loops as shown in Fig.6.5

1

2 3

4

5

1 5

43

2

Figure 6.5: The first diagram could potentially contribute a µAB·µCD-term and
the second could contribute a dual-conformally invariant µ2-term

The first term of Fig.6.5 (penta-penta-box) could only come with a numer-

ator term (X0·X0′)(X1·X3)(X1·X4)(X2·X4)(X2·X5) and the second diagram

(hexa-box-box) with (X0·X0)(X1·X4)2(X2·X5)(X3·X5). For these to give µ2

contributions we must assume everything in the numerator is in fact projected

into four-dimensions, that is “they come from within a trace”. Note in partic-

ular that the first diagram comes with both a standard and a µ2 part. That is,

there is a transformation shown in Fig.6.6 whereby the contraction (X0·X0′)

in the numerator gives a contribution which cancels the same bracket in the

denominator and an extra part µAB·µCD where the propagator line remains.

As such, these can be seen as the only potential terms for O(ε) terms at 3-loops
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µAB · µCD

Figure 6.6: Note that the last term has no X0 or X0′ in the numerator but
otherwise the numerator should correspond precisely with that of the middle
term.

with 5 external particles and we have made a prediction for the coefficient of

both of these diagrams

If we recall our results up until this point for six external particles we

may see things which are analogous to our above analysis. The most general

denominator at one-loop describes a hexagon (X0·X1)· · ·(X0·X6) which could

then potentially come with a numerator term (X0·X0)Tr(X1 . . . X6) where for

reasons of cyclic symmetry the parity-odd part of this numerator vanishes and

we only are allowed the parity-even part which is precisely what we did find. At

six-points two-loops we found the penta-penta diagram and hexabox diagram

already drawn in Fig.6.4 precisely as we could have anticipated and nothing

additional could have been obtained as can easily be seen from trying to draw

more elaborate diagrams.

However, in the examples considered the coefficients so far found are far

from arbitrary, let us first consider the one-loop example. The process is indi-

µ2

Figure 6.7: Here we demonstrate a way to see the relation between coeffi-
cients of finite-terms and terms giving a µ2 contribution. The first step is to
pull 4-valent vertices into 3-valent vertices by inserting propagators and cor-
responding numerator terms. Then place these into a trace such that before
dimensional regularization you obtain only the necessary terms. Then after di-
mensional regularization you obtain in addition to all previously found terms
a µ2 term.

cated in Fig.6.7 namely we add in denominator lines and cancelling numerator

terms to turn every 4-valent vertex into a pair of 3-valent vertices and then put
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these numerator terms into the correct sum of traces. At this point and before

dimensional regularisation only the finite terms we want to get will come out

from the expansion of terms from within the trace. However after dimensional

regularisation we get a new and additional term which is proportional to µ2

and shown on the right of Fig.6.7, however we have had to add this term by

hand according to the prescription shown in Fig.6.7.

At two-loops and six external particles an analogous thing occurs once

again, firstly the penta-penta diagram contributes a finite part where (XAB·XCD)

cancels from the denominator but also a term proportional to µAB·µCD as pic-

tured in Fig.6.8 and once again where the last term does not contain any

additional XAB or XCD in its numerator. The hexabox contribution with six

µAB · µCD

Figure 6.8: Here we again see a contraction of XAB and XCD gives both a
standard contribution and a dual-conformally invariant µ2-term.

external particles can be seen as a contribution coming from the double-box

diagram but with similar manipulations to the two-mass-easy box shown in

Fig.6.7. That is we again insert cancelling numerator/denominator terms to

make all 4-valent vertices into pairs of 3-valent vertices, put the numerator

into traces whereby prior to dimensional regularisation we obtain only the cor-

rect terms and the dimensionally regularize to obtain the term proportional

to µ2. Such manipulations are shown in Fig.6.9, but note yet again we have

not derived this term without intervention. We propose that such a technique,

though not prescriptively defined, may provide a way to attampt to generate

missing terms.

µ2

Figure 6.9: Manipulations to obtain a term proportional to µ2 in precise anal-
ogy to the work shown in Fig.6.7
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Up until this point these methods can correctly predict the dual-conformally

invariant µ2-terms with the correct coefficients [28, 102, 103]. We now there-

fore use this method which has an easy geometrical implication which we have

demonstrated in the previous few Figures and we will use it to make predic-

tions for potentialO(ε) terms for n-point `-loop amplitudes. We start by seeing

when the first possible µ2-terms for 4-point amplitudes may occur.

The first possible µ2 contributions to four-point amplitudes occur at four-

loops as shown in Fig.6.10 where a contraction across the pentagons shown

there gives a finite contribution and a µAB·µCD contribution both with (X1·X3)2

(X2·X4)2 in the numerator to complete the correct conformal weights. In

µAB · µCD

Figure 6.10: Possible terms at four-loops with four external particles which
could contribute at O(ε).

Fig.6.10 there is also a hexagon attached to three boxes which could conceiv-

ably give a µ2 contribution, however it is simple to convince oneself that the

numerator terms could not be contracted in such a way as to give a non-zero

result. As such only the first diagram would be a potential µ2-term which

contributes. However in [16] the authors claim that N=4 SYM amplitudes of

four-particle amplitudes have no dual-conformally invariant µ2-terms through

four-loops. As such this method may not provide only terms which do in fact

contribute and as such only constructs possible µ2-terms which would then

make a highly restricted ansatz. Ideally we could now discover some process

whereby we could fix which terms from this ansatz do in fact contribute.

We finish this section by outlining once again the most general method

for obtaining all graphs which could potentially give a dual-conformally in-

variant µ2-term contribution. The key is to draw all planar graphs which are

constructed from only 3-valent vertices. Any of these graphs which have a

hexagon or more than one pentagon can potentially contribute either a µ2 or
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a µAB·µCD term. There may be certain diagrams such as the second example

in Fig.6.10 where there is no non-zero way to contract the remainder of the

numerator terms but this would become apparent quickly. This exceptionally

simple method gives us for example 3-possible “master graphs” for five-points

at four-loops as shown in Fig.6.11 where the contractions to get µ2-term con-

tributions can be done in several ways from the same graph.

Figure 6.11: All graphs at four-loops with five external particles which could
potentially give an dual-conformally invariant µ2-term contribution.

6.9 Conclusions

Let us now briefly review the contents of this chapter and attempt to draw out

conclusions and future directions for research. We set out the X-notation and

attempted to take momentum-twistor expressions for 5- and 6-point loop am-

plitudes [9] and then rewrite these in traces of X’s. Once we had achieved this

we dimensionally regularised the integration variables X0, X0′ , . . . to D=6−2ε

dimensions but kept all terms inside the trace projected to 6-dimensions. We

then demonstrated that we can recover the standard terms mapping back to

momentum twistors in agreement with [6, 22, 102, 103]. In addition we com-

pared our O(ε)-terms to those we wanted to obtain [102] to see if we naturally

obtained the correct terms from the momentum twistor integrands, which need

only be valid before dimensional regularisation. We found that naively regular-

ising the momentum-twistor integrands did not naturally produce the correct

O(ε)-terms.

We found that once one started to consider the dimensionally-regularised

results of the amplitudes from [9] written in these variables then the correct

O(ε)-terms appeared only if the “reference twistor” was of the correct form.

That is the five-point, one-loop equation with a single reference twistor only

gave the correct dual-conformally invariant µ2-term (i.e. 0) if X was a linear

combination of the external points. If we set X=I we could get a µ2 con-

tribution which we know does not occur. At 6-points this equation gives us
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no parity-even contribution at O(ε) whatever we set the reference twistor X

to be, so we looked at a different equation from [9] which had two reference

twistors. This equation gave us some of the correct O(ε)-terms if we set the

reference twistors to be consecutive external points X=Xi, Y=Xi+1. As such

we saw that it is indeed possible to obtain the correct O(ε)-terms from this

process but that the reference twistors are no longer arbitrary, certainly we

would not have found the correct terms if we had set X=Y=I the infinity

twistor. Continuing to the six-point, two-loop amplitude we found that there

was a term missing from the all orders in epsilon expansion after dimensional

regularisation, as such we confirmed that this process will not generate the

all-orders in ε-expansion.

During our comparison between five- and six-point one-loop and two-loop

amplitudes we also came across an interesting and new way to collect several

terms from [22, 102] together into a single object. From our form of writing

the terms we naturally obtain some parity-odd terms of the form:

ε(X1, X2, X3, X4, X5, X0)

(X1·X0)·s(X5·X0)

(X1·X3)ε(X1, X2, X3, X4, X5, X0)

(X1·X0′)·s(X3·X0′)(X0·X0′)(X0·X3)·s(X0·X1)
(6.9.1)

where we draw these diagrams in Fig.6.12

Figure 6.12: Parity-odd terms for five external particles at one- and two-loops
which need to be divided into several pieces once we map back to momentum
twistors and match results with [102] and [22].

For example the first of these terms - the five-point, one-loop pentagon -

when mapped back into momentum twistors gives six terms Fig.6.13. When we

expand ε(X1, X2, X3, X4, X5, ·)=
∑5

i=1 αiXi+βI which correspond when con-

nected with X0 to five one-mass boxes and a non dual-conformally invariant

pentagon. We discussed the mechanics of this mapping in detail in (6.3.11)

and the work following it, but here we wish to make a few remarks. There are

many reasons why our terms seem to us to be much nicer objects than their

corresponding momentum twistor collections. Firstly there is simply the issue

of our single parity-odd object being broken into several parity-even terms.
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5

i=1

i

Figure 6.13: From a single parity-odd term written in the six-dimensional bi-
twistor notation, mapping back into momentum twistors divides this single
term into five one-mass boxes and a non dual-conformally invariant pentagon.

Alongside this there comes the introduction of the infinity-twistor and in turn

a term which fails to be conformally invariant. These reasons alone would

be a good argument for the X-notation to be considered an excellent tool for

concisely expressing amplitude integrands.

Having explored one- and two-loops for five- and six-point amplitudes we

presented a method for constructing an ansatz for O(ε) terms at higher loop-

order or number of external particles. This can be seen at its most simple

to involve drawing all planar-graphs with n external particles using only 3-

valent vertices which had sufficient free integration variables in the numerator

to contract together. We claim that this method means dual-conformally in-

variant µ2-terms cannot appear until certain loop-orders depending on the

number of external particles: 4-points ↔ 4-loops, 5-points ↔ 3-loops, ≥ 6-

points ↔ 1-loop. Indeed we can immediately write down the single allowed

dual-conformally invariant µ2-term for five-points at 3-loops.

α
µAB·µEF (X1·X3)(X1·X4)

(XAB·X2)· · ·(XAB·X4)(XAB·XCD)(XCD·XEF )

× (X2·X4)(X2·X5)

(XCD·X1)(XCD·X2)(XEF ·X4)· · ·(XEF ·X1)
+cyclic (6.9.2)

Equally we saw there was only one-term at four-points and four-loops however

the four-point MHV N=4 SYM amplitudes have no dual-conformally invariant

µ2-terms through five-loops. Therefore understanding why this term does not

in fact contribute is the most natural and important question which arises from

this research.

One of the most severe limiting factors for taking this work further is the

paucity of data of O(ε)-results. Indeed beyond those O(ε)-terms we explored

here above, there are at the time of writing this and to the best of the author’s

knowledge no further terms known for any relevant amplitude. Potentially
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knowing results for five-points beyond three-loops and six-points beyond two-

loops would shed light on the questions and predictions of this work.

At present all amplitudes with ≥ 5 external particles are understood poorly

and there are a very limited number of results as compared to the four-point

case. As such potentially the most direct and fertile ground for continuing

this investigation is to calculate the O(ε)-integrand terms for the four-particle

amplitudes. We have here written down the ansatz for the single O(ε) term

which appears at four-loops, still at five-loops there are still a heavily limited

number of graphs which can contribute a µ2-term Fig.6.14. Understanding at

Figure 6.14: Graphs which can contribute at O(ε) at the level of the four-point,
five-loop amplitude.

which loop-order these terms do begin to appear and the relations between

their coefficients/numerators and those of the ‘related’ standard (O(ε0)) terms

in the manner discussed earlier (Fig.6.7) may illuminate the as yet unresolved

issues.
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Conclusions

In this final section we will review the principal results of our earlier work

at each stage and suggest the most pertinent potentials for future research.

We note that at the end of earlier chapters we have already provided some

concluding remarks regarding the work presented in that chapter. As such in

this final section we will limit ourselves to discussing only the principal results

and drawing out what seems to us to be the most likely avenue for future

research.

In Chapter.3 we incorporated the R-invariants and as such the NMHV

amplitudes into the two-dimensional kinematical picture joining the MHV am-

plitudes at two- and three-loops [89, 91]. We achieved this by finding a basis

where finite-combinations can be written in a manifestly 1+1-dimensional fash-

ion (3.3.2). Additionally in Chapter.2 we provided a more compact formula

for the action of collinear limits acting linearly on the log of the amplitude.

Especially in 2d kinematics we find remarkably simple formulae (2.8.5), later

in Chapter.4 generalising this to find an equally simple formula even in the full

helicity-changing limits (4.7.6).

Using these two developments together in Chapter.3 we used entirely sym-

metry arguments to be the first to construct the n-point one-loop NMHV

amplitude without any additional restrictions on the kinematics [80]. In [46]

through following our earlier suggestion and restricting the SU(4) R-symmetry

to SU(2) × SU(2), our work at NMHV provides an improvement on this sys-

tem as described in Chapter.3, in part as our form of expressing this amplitude

made manifest the connection (proved through the Q̄-equation) of the NMHV

one-loop amplitude to the MHV 2-loop amplitude.

143
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Using this similarity of form between different amplitudes at n-points, `-

loop NkMHV and n-points (` − 1)-loop Nk+1MHV motivated our search for

a universal method for constructing and uplifting these formulae to construct

higher point amplitudes from their lower-point counterparts. We proposed a

generalisation of the methods in [91] for the construction of higher-point, MHV,

`-loop amplitudes from lower-point, MHV, (` − 1)-loop amplitudes with an

additional collinear vanishing part (4.3.1). Then taking this as a starting point

we proposed an analogous formula for all n-point, NkMHV, `-loop amplitudes

which has subsequently been used to construct N2MHV one-loop and NMHV

two-loop amplitudes [47].

We mentioned at the end of Chapter.4 several avenues for further research

however we will repeat the most prominent here. Further calculations of more

complicated amplitudes is possible, however these calculations will become

increasingly computationally inefficient without further symmetries or other

restrictions on the allowable components. One such potential restriction is the

Q̄-equation (3.5.6) [46] which can be seen to give restrictions which are addi-

tional to those appearing from cyclicity, parity, integrability etc. A compact

form for seeing and implementing these restrictions would potentially hugely

help in reducing the number and form of the component functions allowable.

In addition it is possible that the OPE restrictions [3] which were used in [91]

should continue to provide additional restrictions of more complicated ampli-

tudes. Ultimately however, large steps forward in several areas, including the

rewriting of integrable symbols into generalised logarithms etc., would need

to be taken for this technique to be applicable to much more complicated

amplitudes.

In Chapter.5 we extended work done using the correlator/amplitude duality

at four-points [69] to incorporate complications arising at five-points [6]. Using

this refined duality (5.4.5) we constructed the parity-even amplitude to six-

loops and the parity-odd amplitude to five-loops [6]. The most natural next

steps are to continue this process to higher-loop level or to attempt the same

process forn = 6 (5.8.4). However both of these avenues have complications:

for the n = 5 case the number of terms quickly grows unwieldy as we go to

higher and higher loop-level, and there seems no obvious fix for this growth. In

trying to go to6-points we add a new complication that we now have N2MHV×
MHV and (NMHV)2 contributions, not just MHV ×MHV terms we have had

thus far. These extra amplitude contributions may be easy to isolate due to
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their differing pole structure, however this process will necessarily be more

complicated.

In Chapter.6 we rewrote amplitudes from momentum-twistor expressions

[9] to six-dimensional X-notation and attempted to dimensionally regularise

these expressions to D = 4− 2ε-dimensions, matching with previously known

results [22, 103]. We found that our expressions in X-space had several advan-

tages over the previously utilised momentum-twistor expressions. In particular

our single term
ε(X1, · · · , X5, x0)

(X1 ·X0) · · · (X5 ·X0)
(7.0.1)

becomes many terms in the map to momentum-twistors including losing ex-

plicit dual-conformal invariance. We also used our insights to construct an

ansatz for the O(ε) terms at higher-loop level or higher-point amplitudes,

giving these terms explicitly for five-point three-loops and four-point four-

and five-loops. To continue our ansatz to five-point four-loops etc. would

not be difficult however it is confirmation for these predictions in more com-

plicated, dimensionally-regularised amplitudes e.g. four-points and five-loops

which would be most useful for pushing this work onwards. Even if the predic-

tions prove to be too large our work has severely limited the number of possible

terms which can occur at O(ε) at least for four-loops and/or low-point ampli-

tudes.
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Symbols and functions at 3-loops

Let us first replicate the work presented in [80] before we present the additional

work done in [47] and the terms as presented there. The conjecture at the

centre of the method outlined in [91] for constructing MHV amplitudes in

special kinematics states that (the logarithms of) the fundamental cross-ratios

uij form the basis for the vector space on which the symbol of the amplitude

is defined.

In the formalism of [91] 8-point, 3-loop, MHV amplitudes have the following

structure:

R̃(3)
8 =

∑
σ,τ

aστf
+
σ (u1)f+

τ (u2) (A.0.1)

where aστ = aτσ are rational coefficients, and the sum is over the set of func-

tions f+
σ with the properties given in (4.1.4). The total polylog weight of R̃(3)

8

must be six which implies that the transcendental weights of individual func-

tions f+
σ can be 2, 4 and 3. We can now similarly write down the expression

for S8,

S
(3)
8 (x2, x4, x6, x8) =

∑
σ,τ

aστf
+
σ (u1)f+

τ (u2) + bστf
−
σ (u1)f−τ (u2)

=
1

2
R̃(3)

8 +T
(3)
8 (x2, x4, x6, x8) (A.0.2)

with bστ = bτσ and which utilize functions f±σ with the property

f±σ(u) = ±f±σ(v) , v = 1−u . (A.0.3)
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In [91] all possible (symbols and) functions f+
σ (u) were listed. It is straight-

forward to generalise this construction to functions f±σ . For weight-2 there is

only one function with properties (4.1.4) or (A.0.3),

weight 2: f+
weight 2(u) = log(u) log(v) . (A.0.4)

This weight-2 function is accompanied in (A.0.1) by functions f+
σ (u) of weight-

4. For completeness we list below symbols for all functions f±σ (u). They come

in two types, type-a and type-b:

weight 4 a :

Symb[f±a1] := u⊗ u⊗ u⊗ v ± v ⊗ v ⊗ v ⊗ u
Symb[f±a2] := u⊗ u⊗ v ⊗ u± v ⊗ v ⊗ u⊗ v
Symb[f±a3] := u⊗ v ⊗ u⊗ u± v ⊗ u⊗ v ⊗ v
Symb[f±a4] := v ⊗ u⊗ u⊗ u± u⊗ v ⊗ v ⊗ v

(A.0.5)

weight 4 b :

Symb[f±b1] := u⊗ u⊗ v ⊗ v ± v ⊗ v ⊗ u⊗ u
Symb[f±b2] := u⊗ v ⊗ u⊗ v ± v ⊗ u⊗ v ⊗ u
Symb[f±b3] := u⊗ v ⊗ v ⊗ u± v ⊗ u⊗ u⊗ v

(A.0.6)

It is important to note that as there is no function f− of weight 2 with the

desired properties and no mixed terms, i.e. f+
σ f
−
τ , are possible in (A.0.2), there

are no contributions to S8 (or to T8) from the weight-4 functions f−.

What remains is to examine the weight-3 functions, known as type-c. Here

we have (cf. [91]),

weight 3 c :

Symb[f±c1] := u⊗ u⊗ v ± v ⊗ v ⊗ u
Symb[f±c2] := u⊗ v ⊗ u± v ⊗ u⊗ v
Symb[f±c3] := u⊗ v ⊗ v ± v ⊗ u⊗ u

(A.0.7)

For the 8-point 3-loop amplitude itself, only the functions f+ appear in

Eq. (A.0.1). After imposing the constraint arising from the near-collinear OPE

of [77] the final result of Ref. [91] for the octagon at 3-loops is given by

R̃(3)
8 = log u1 log(1−u1)

[
α1 f

+
a3(u2) + α2 f

+
a4(u2)+α3 f

+
b2(u2)+α4 f

+
b3(u2)

]
+α5f

+
c2(u1)fc2(u2)+α6f

+
c2(u1)f+

c3(u2)+α7f
+
c3(u1)f+

c3(u2)

+f+
c1(u1)

[
1

2
f+
c1(u2)+2f+

c2(u2)+f+
c3(u2)

]
+(u1 ↔ u2) (A.0.8)
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with the f+
a , f+

b and f+
c functions are straightforwardly reconstructed from

their symbols in (A.0.5)-(A.0.7) and are listed in Eqs. (5.15) of Ref. [91].

To fully determine S8 at 3 loops, in addition to R̃(3)
8 we need the contri-

bution T
(3)
8 in (A.0.2) which comes solely from the f− functions. Since there

are no f− contributions at weight 2, the contributions to T
(3)
8 can arise only

from the weight-3 times weight-3 functions f− in (A.0.7). This gives 6 possible

functions

T
(3)
8 3

f−c1(u1, u3)f−c1(u2, u4)

f−c1(u1, u3)f−c2(u2, u4)+f−c2(u1, u3)f−c1(u2, u4)

f−c1(u1, u3)f−c3(u2, u4)+f−c3(u1, u3)f−c1(u2, u4)

f−c2(u1, u3)f−c2(u2, u4)

f−c2(u1, u3)f−c3(u2, u4)+f−c3(u1, u3)f−c2(u2, u4)

f−c3(u1, u3)f−c3(u2, u4)

(A.0.9)

In [47] the authors dropped the assumption which had been used up until

that point that the symbol only had entries which were simple cross-ratios. It

was found at the level of NMHV 2-loops and MHV 3-loops that the basis for

the symbol must include terms of the form u1 − u2 which is cyclically related

to 1−u1−u2. These entries cannot appear arbitrarily in the symbol as they

cannot be found in the first or last place of the symbol tensor. It is also only

such simple linear combinations which can appear, however even this small

addition to the possible entries for the symbol adds a large amount of possible

terms for more complex amplitudes. Here we will only include the amplitude

as presented in [47] and leave the derivation and exploration to be found there

for the interested reader.

Here the cross-ratios are defined differently with v = 〈13〉〈57〉
〈17〉〈35〉 and w =

〈24〉〈68〉
〈28〉〈46〉 . Using these the 8-point amplitude is given as

R
(3)
8,0 =

[
(f

a(3)
8,0 (v, w)+(v ↔ 1

v
))+(w ↔ 1

w
)+f

b(3)
8,0 (v, w)

]
+(v ↔ w)+f

c(3)
8,0 (v, w)

(A.0.10)

where the “non-trivial” part is contained solely in f
a(3)
8,0 :

f
a(3)
8,0 (x, y) =2Li2,2,2(

1

1+x
, 1+x,

1

1+y
)+2Li1,2,2(

1

1+x
, 1+x,

1

1+y
) log(1+x)+Li2,4(− 1

x
, xy)

+Li1,4(− 1

x
, xy) log(x)−Li2,2,2(

1

1+x
, 1+x, 1)−Li2,2,2(1, 1,

1

1+y
)

−Li1,2,2(
1

1+x
, 1+x, 1) log(1+x) (A.0.11)
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The remaining functions involve only classical or lower-weight polylogs, with
various symmetry properties:

f
b(3)
8,0 (x, y) =−2 log

(1+y)2

y

[
5Li5(−x)−Li4(−x) log(x)+7ζ4 log(1+x)+

1

6
ζ(2) log3 x+

1

4
ζ2 log

(1+x)2

x
log2 x

]
− [2Li3,1(−x, 1)+2Li2,2(1,−x)+2Li4(−x)+6Li3,1(1,−x)−2 log xLi2,1(1,−x)+4ζ3 log(1+x)]

× log(1+y) log
1+y

y
+

(
1

24
log4 x−31

4
ζ4

)(
1

2
log2 y−ζ2

)
(A.0.12)

f
c(3)
8,0 (x, y) =2

[
2Li3(−x)−Li2(−x) log x−1

2
log2(x) log(1+x)+

1

6
log3 x−ζ2 log

1+x

x

]
× (x↔ y)−67π6

1260

− log
(1+y)2

y
log

(1+x)2

x

[
2

3
log(1+y) log(1+

1

y
) log(1+x) log(1+

1

x
)+

1

12
log2 x log2 y−9

2
ζ4

]
(A.0.13)

Then proceeding to try and write this in an S-formula we define

S
(3)
8,0 =

[
f
a(3)
8,0 (v, w)+f

a(3)
8,0 (

1

v
,

1

w
)+

1

2
f
b(3)
8,0 (v, w)

]
+(v ↔ w)+

1

2
f
c(3)
8,0 (v, w)+δ

(3)
8,0(v, w)

(A.0.14)

where δ
(3)
8,0(v, w) is an undetermined function with the symmetry properties

δ
(3)
8,0(v, w) = δ

(3)
8,0(w, v) = −δ(3)

8,0(1/v, w). It can be chosen such that S
(3)
8,0 does not

diverge in on-shell limits, and by computing the 10-point symbol the authors

found that it could also be chosen such that only log6(·) and Li2(·) log4(·) terms

remain at 10-points after subtracting the uplifting. Furthermore, all terms of

the symbol of the remainder turn out to have three odd and three even twistor

entries. However, since the 10-point MHV amplitude is as yet insufficient to fix

the complete n-point amplitude, the authors did not attach a full formula for

S
(3)
8,0 but instead stated the general conjecture and left the further computations

open. Note that in these calculations the assumptions made in [80, 91] were

modified in the following ways (as already mentioned in the main text)

• For octagons in 2d kinematics to all loops, only 6 “letters” can appear

in the symbol:v, w, 1+v, 1+w, v−w and 1−vw, all of which are already

seen at 3-loops.

• The last entry of the symbol for MHV and NMHV octagons can only be

v, w, 1+v or 1+w.

These slight relaxations of earlier assumptions are necessary and although it

complicates the calculation, it does not cause all calculations to become cal-

culationally impractical.
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We now turn our attention to the 10-point amplitude, which was originally

obtained in [91] in the form given by Eq. (4.1.7) and was not modified by work

done in [47]. The first term on the right-hand side gives a particular solution

to the multi-collinear constraints. It is reproduced by the S8 contributions

(specifically by the f+f+ terms in (A.0.2). On the other hand, the second term,

V10 denotes a generic 10-point function which is constrained to vanish in all

triple collinear limits. This collinearly vanishing contribution was constructed

in [91].

Here, for convenience of the reader, we reproduce the form of V10 from [91].

In order to be able to uplift the 10-point result to 12 points and all higher

points using our general S-formula we do not need S12 but we need to know

that it can be deconstructed in terms of collinearly vanishing T8 and collinearly

vanishing S10 contributions.

At 10-points there are 10 fundamental cross-ratios

ui := ui,i+4 , i = 1, . . . , 10 (A.0.15)

which can be divided into 5 parity-even (u1, u3, . . . , u9), and 5 parity-odd cross-

ratios (u2, u4, . . . , u10). It was argued in [91] that V10 is assembled from func-

tions of parity-even cross-ratios times functions of parity-odd u’s as follows:

fi(ueven)fj(uodd) + cyclic + parity , (A.0.16)

where these functions fi must themselves vanish in any collinear limit. To do

this they must have weight-3 and each term must contain 3 consecutive cross-

ratios of given parity, e.g. u1, u3, u5. They are not difficult to find analytically

[91]:

f1(u1, u3, u5) = log(u1) log(u3) log(u5)

f2(u1, u3, u5) = log(u3)

(
Li2(u1)−Li2(1−u3)+Li2(u5)−π

2

6

)
f3(u1, u3, u5, u7, u9) =

∑
i=1,3,5,7,9

(Li3(ui)−Li3(1−ui))−ζ3 . (A.0.17)

Here f1 and f2 give 5 independent functions via cyclic permutations of the argu-

ments, whereas f3 is cyclically symmetric giving only 1 independent function,

as such we have 11 functions in total. These functions are combined together

to give a total of 12 independent weight-6 collinear vanishing contributions to
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V10:

f1(u1, u3, u5)f1(u2, u4, u6) + cyclic + parity

f1(u1, u3, u5)f1(u4, u6, u8) + cyclic + parity

f1(u1, u3, u5)f1(u6, u8, u10) + cyclic + parity

f1(u1, u3, u5)f2(u2, u4, u6) + cyclic + parity

f1(u1, u3, u5)f2(u4, u6, u8) + cyclic + parity

f1(u1, u3, u5)f2(u6, u8, u10) + cyclic + parity

f2(u1, u3, u5)f2(u2, u4, u6) + cyclic + parity

f2(u1, u3, u5)f2(u4, u6, u8) + cyclic + parity

f2(u1, u3, u5)f2(u6, u8, u10) + cyclic + parity

f1(u1, u3, u5)f3(u−i ) + cyclic + parity

f2(u1, u3, u5)f3(u−i ) + cyclic + parity

f3(u1, u3, u5)f3(u−i ) + cyclic + parity (A.0.18)
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Four-Point, Six-Loop, Planar

Topologies

Here we reproduce from [69] the 23 numerator polynomials for the four-point,
six-loop f -graphs of the rung-rule type:
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where the ellipses denote all the terms obtained through application of the

S10-permutation of indices.
There are 13 additional polynomials not fixed by the rung-rule method of

[69]:
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Appendix C

Four-Point, Four-Loop Topolo-

gies

We give the 29 non-planar f -graphs of genus 1. We will not display them

graphically but simply present the corresponding S8-polynomials:
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where the ellipses denote the terms with all possible S8-permutation of indices.





Appendix D

Five-Point, Four-Loop Amplitudes

We continue the process used in Chapter.5 as done in [69] to obtain the full

(parity-even and parity-odd part) four-loop, five-point amplitude and check

that it satisfies the consistency condition (5.7.3). For the four-loop result
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Note that all these above terms require cyclic addition and we have only

provided one term. The corresponding four-loop amplitude graphs are given

in Figs.D.2 and D.1.
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Figure D.1: Four-loop, Five-point, parity-odd amplitude graphs. A starred
vertex v indicates a factor iε12345v
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Figure D.2: Four-loop, five-point, parity-even amplitude graphs.



Appendix E

Supercorrelator↔ Superampli-

tude Duality

We here explore the correlator/amplitude duality [1, 2, 67, 68, 73, 74] and give

more detail and motivation to our equations in Chapter 5. To make the full

duality exact we utilise superspace and package the full set of component fields

of the energy-tensor multiplet into a single superfield O(x, ρ, ρ, y) = Tr(W 2)

where the trace is over the SU(N) gauge group, see [93, 94] and references

therein. The field strength multiplet W (x, ρ, ρ, y) lives on analytic superspace,

combining Minkowski space (x) with Grassmann odd coordinates ρ, ρ and y

coordinates which parametrise the internal symmetry of the N=4 model. Like-

wise, as we have used in previous chapters, amplitudes connected by super-

symmetry can be packaged into a superamplitude expressible in momentum

supertwistors [92, 100].

To obtain the full super-duality between any amplitude and the dual cor-

relation function of the above operators, one makes an identification between

lightlike coordinate differences on the correlator side with xi,i+1 = pi while

sending ρ → 0 at all points. The precise identification of the left-handed

Grassmann odd coordinates {ρi} with the odd part of the momentum super-

twistors {χi} is known [67, 68] but is not needed here, and in the amplitude

limits the y coordinates factor out.

We denote the n-point function of energy-momentum multiplets On as Gn
and as such the amplitude/correlator duality states

lim
x2
i,i+1→0

Gn
Gtree
n

= (Mn)2 (ρ = 0) (E.0.1)
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On the correlator side of the equation Gn denotes a superspace object contain-

ing, n-point correlators of any operators in the energy-momentum multiplet in

a single object, where some components go to zero once ρ → 0. The ampli-

tude side (Mn) contains all n-point amplitudes in the theory packaged in one

superspace object - the superamplitude. To be precise Mn is the full super-

amplitude divided by the tree-level amplitude, so the leading term ofMn is 1.

Both sides of this equation have expansions both in powers of the odd super-

space variables and the coupling constants, firstly expanding in odd superspace

variables

Gn =
n−4∑
k=0

Gn;k Mn =
n−4∑
k=0

Mn;k (E.0.2)

Where Gn;k and Mn;k contain 4k powers of the odd superspace variable, in

particular Mn;k is the NkMHV superamplitude.

By differentiation in the coupling constant it can be shown that

G
(`)
n;k =

a`

`!

∏̀
i=1

(∫
d4xn+id

4ρn+i

)
G

(0)
n+`,k+` ` > 0 (E.0.3)

where the superscript (`) indicates the loop order. To be explicit: the `-loop

correction to an energy-momentum, n-point function is given by a superspace

integral over a Born level correlator of the same type, simply with more points.

As such we may consider various n-gon limits of the same correlator. We cur-

rently know very little about the correlation functions Gn;k with k < n − 4.

However, following [69, 70] we have a wealth of information about the “max-

imally nilpotent” case k = n − 4. We will use this mechanism to construct

4-point and 5-point amplitudes from the correlators G
(0)
n;n−4 which were origi-

nally elaborated on for the higher-loop integrands of the four-point function

[69]

G
(`)
4;0 = a`

`!

∏`
i=1

(∫
d4x4+id

4ρ4+i

)
G

(0)
4+`;`

G
(`−1)
5;1 = a(`−1)

(`−1)!

∏`−1
i=1

(∫
d4x5+id

4ρ5+i

)
G

(0)
4+`;` (E.0.4)

According to [32, 69–72, 75, 76, 86] the Born level correlator with maximum

k = n− 4 (maximally nilpotent piece) has the form

G
(0)

4+`;`|ρ4
5...ρ

4
4+`

= I1234ρ
4
5 . . . ρ

4
4+`f

(`)(x1, . . . , x4+`) (E.0.5)
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where

I1234 =
2(N2 − 1)

(4π2)4
(x2

12x
2
13x

2
14x

2
23x

2
24x

2
34)

(
y2

12

x2
12

y2
23

x2
23

y2
34

x2
34

y2
14

x2
14

x2
13x

2
24 + . . .

)
(E.0.6)

Here the dots indicate terms subleading in both the 4-gon limit x2
12, x

2
23, x

2
34, x

2
41 →

0 and the 5-gon limit x2
12, x

2
23, x

2
34, x

2
45, x

2
51 → 0 which we are concerned with.
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