
Durham E-Theses

Complexity Classi�cations for the Valued Constraint

Satisfaction Problem

POWELL, ROBERT,DAVID

How to cite:

POWELL, ROBERT,DAVID (2016) Complexity Classi�cations for the Valued Constraint Satisfaction

Problem, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/11485/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/11485/
 http://etheses.dur.ac.uk/11485/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Complexity Classifications for the
Valued Constraint Satisfaction

Problem

Robert D. Powell

A Thesis presented for the degree of

Doctor of Philosophy

Engineering and Computing Sciences

Durham University

England

November 2015

Dedicated to
Arnold Powell

17th May 1933 - 4th September 2013

Complexity Classifications for the Valued

Constraint Satisfaction Problem

Robert D. Powell

Submitted for the degree of Doctor of Philosophy

November 2015

Abstract

In a valued constraint satisfaction problem (VCSP), the goal is to find an assignment

of values to variables that minimizes a given sum of functions. Each function in

the sum depends on a subset of variables, takes values which are rational numbers

or infinity, and is chosen from a fixed finite set of functions called a constraint

language. We study how the computational complexity of this problem depends

on the constraint language. We often consider the case where infinite values are

disallowed, and refer to such constraint languages as being finite-valued.

If we consider such finite-valued constraint languages, the case where we allow vari-

ables to take two values was classified by Cohen et al., who show that submodular

functions essentially give rise to the only tractable case. Non-submodular functions

can be used to express the NP-hard Max Cut problem. We consider the case where

the variables can take three values, and identify a new infinite set of functions called

skew bisubmodular functions which imply tractability. We prove that submodular-

ity with respect to some total order and skew bisubmodularity give rise to the only

tractable cases, and in all other cases Max Cut can be expressed. We also show that

our characterisation of tractable cases is tight, that is, none of the conditions can be

omitted. Thus, our results provide a new dichotomy theorem in constraint satisfac-

tion research. We also negatively answer the question of whether multimorphisms

can capture all necessary tractable constraint languages.

We then study the VCSP as a homomorphism problem on digraphs. By adapting

a proof designed for CSPs we show that each VCSP with a fixed finite constraint

language is equivalent to one where the constraint language consists of one {0,∞}-

valued binary function (i.e. a digraph) and one finite-valued unary function. This

latter problem is known as the Minimum Cost Homomorphism Problem for digraphs.

We also show that our reduction preserves a number of useful algebraic properties

of the constraint language.

Finally, given a finite-valued constraint language, we consider the case where the

variables of our VCSP are allowed to take four values. We prove that 1-defect chain

multimorphisms, which are required in the four element dichotomy of Min CSP,

are a special case of more general fractional polymorphisms we call {α, β}-1-defect

fractional polymorphisms. We conclude with a conjecture for the four element case,

and some interesting open problems which might lead to a tighter description of

tractable finite-valued constraint languages on finite domains of any size.

Declaration
The work in this thesis is based on research carried out at the Department of En-

gineering and Computing Sciences, Durham University, England. No part of this

thesis has been submitted elsewhere for any other degree or qualification and it is

all my own work unless referenced to the contrary in the text.

Chapter 1 consists mainly of background material to introduce the problem being

addressed, while chapter 2 introduces further background material and my own

individual unpublished work. Chapters 3 and 4 contain my contributions to the joint

publications [31] with Anna Huber and Prof. Andrei Krokhin, and [51] with Prof.

Andrei Krokhin. Chapter 5 consists of my own individual unpublished work.

Copyright c© 2015 by Robert D. Powell.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

3

Acknowledgements
First of all I have to thank my supervisor, Prof. Andrei Krokhin, for introducing

me to the study of valued constraint satisfaction which has eventually culminated

in this thesis. I am indebted to him for his patient guidance, encouragement and

helpful suggestions throughout my studies. This work would certainly not have been

possible without his support.

My thanks go to the Engineering and Physical Sciences Research Council for the

financial support that has allowed me to produce this thesis.

I also owe a great debt of gratitude to all of the staff and students of St Mary’s

College that I’ve had the pleasure to meet since 2006! The college community is

truly something special, and my experience of studying in Durham would have been

much the poorer without it. Special thanks have to go to St Mary’s College bar,

darts club and pool club, without which this thesis may have been finished somewhat

sooner! Whilst it would be impossible to thank everyone individually here, there are

a handful of people who deserve a special mention for their friendship and support

over the years. First Mike Gillard, for vastly improving my darts, teaching me how

to run a bar, and showing me how to complete a PhD (slowly). Next to Matt

Watson Snr, Matt Watson Jnr, and Will Grummitt for the many enjoyable hours

spent playing darts, pool and snooker. Last, but by no means least, to Ryan Hanley,

for all the useful discussions and the regular reminders that I was actually in Durham

to study!

Finally, I would like to thank all of my family and friends for their support during

my time at Durham.

4

Contents

Abstract 1

Declaration 3

Acknowledgements 4

1 Introduction 8

1.1 Complexity Theory: A Brief Overview 8

1.2 Constraint Satisfaction Problems . 10

1.3 Complexity of CSP . 12

1.3.1 Constraint Languages . 12

1.3.2 Polymorphisms . 14

1.3.3 Known Dichotomy Theorems 17

1.4 Valued Constraint Satisfaction . 19

1.5 Multimorphisms . 21

1.6 Fractional Polymorphisms . 23

1.7 Expressibility . 24

1.8 Tractability and Complexity Classifications 25

2 Domain Reductions and Cores 30

2.1 Introduction . 30

2.2 Domain Reducing Multimorphisms 30

2.3 Cores . 32

2.4 Multimorphisms as Digraphs . 36

2.4.1 3-element domain . 37

3 Skew Bisubmodularity and the Three Element Dichotomy 39

3.1 Introduction . 39

3.2 Fractional Polymorphisms . 40

5

Contents 6

3.3 A Characterisation of α-bisubmodularity 42

3.4 A Dichotomy Theorem . 45

3.5 Multimorphisms are not enough . 54

4 Reducing VCSP to Min-Cost-Hom 58

4.1 Introduction . 58

4.2 Homomorphisms . 59

4.3 Proving Poly-Time Equivalence . 61

4.3.1 Constructing (D, u) . 62

4.3.2 Reduction from VCSP(wA) to MinCostHom(D, u) 64

4.3.3 Reduction from MinCostHom(D, u) to VCSP(wA) 65

4.4 Preservation of Algebraic Properties 73

4.5 Dealing with Short Components . 78

4.6 A Hard Case . 80

5 Fractional Polymorphisms as Digraphs 82

5.1 Introduction . 82

5.2 Two Element Domains . 84

5.3 Three Element Domains . 85

5.4 Moving to Four Element Domains . 89

5.5 1-defect chains . 91

5.6 Generalising 1-defect chains . 92

5.6.1 An example . 94

5.7 Conjectures and Open Problems . 96

March 31, 2016

List of Figures

1.1 Complexity classes. 10

2.1 The four possible connected digraphs on three vertices. 37

4.1 The digraph D built from the weighted structure wA. 64

4.2 The target digraph D of Example 21. 81

4.3 The source digraph G of Example 21. 81

5.1 The three connected digraphs on three vertices with no 3-cycles. . . . 85

5.2 An example digraph exhibiting generalised submodularity. 90

5.3 The two possible 1-defect chains on the four element domain. 91

5.4 Seven digraphs describing fractional polymorphisms on four element

domains. 97

7

Chapter 1

Introduction

1.1 Complexity Theory: A Brief Overview

A number of theoretical and practical problems that arise in computer science require

the user to assign certain values to certain variables given a set of conditions they

must adhere to. One of the simplest examples of these problems, worked on by

children of all ages (and computer scientists!), is the map colouring problem. Given

a map of some randomly shaped countries can you colour the map so that no two

countries that share a border have the same colour?

Given two colours, say red and blue, there is a simple algorithm to solve the prob-

lem. First choose a country at random and colour it blue, then colour all of its

neighbours in red. For each of those countries now coloured red, colour each of their

neighbours in blue. Proceeding in this way will either yield a valid colouring of all

the countries, or a point will be reached where the algorithm forces two neighbouring

countries to have the same colour. The number of steps required to complete this

algorithm is bounded by the number of countries (multiplied by some independent

constant), therefore we say this algorithm runs in polynomial time in the number of

countries.

Now consider you are given three colours, and you have the same condition that

no two countries that share a border may have the same colour. If we start by

colouring a country at random, then we still have a choice of colours for each of its

neighbours. This additional choice makes the problem significantly more difficult.

In fact, the best known algorithm for deciding if there is a valid 3-colouring of a

particular map has a running time of c · 1.3289n as shown in [5]. Therefore unlike

8

1.1. Complexity Theory: A Brief Overview 9

the 2-colouring example, the problem of 3-colouring cannot currently be solved in

polynomial time, and it is not known if a polynomial time algorithm can even exist.

However, if we were to be given a 3-colouring of a map, it is very easy to verify if it

is a valid colouring or not.

Problems such as 2-colourability, which can be solved in polynomial time, are con-

tained in the complexity class P. On the other hand 3-colourability falls into the

complexity class NP. NP contains all problems for a which a valid solution can

be easily verified, despite the fact it may be very difficult to find such a valid solu-

tion. It is easy to see that P ⊆ NP as if we can efficiently find a valid solution we

can easily verify a valid solution by simply finding it. However, a major unsolved

problem in complexity theory asks the question: Does P = NP? A large number

of proofs have been offered, claiming both equality and disequality, but so far none

have been accepted as correct by the academic community.

A problem is said to be NP-hard if it is at least as hard as any problem in NP.

More formally a problem is NP-hard if every problem in NP can be reduced to it

in polynomial time. Problems that are both in NP and NP-hard are called NP-

complete problems. It may be useful to consider the diagram of these complexity

classes shown in Figure 1.1.

Assuming P 6= NP the set of problems that are in NP, but neither in P or NP-

Complete are often referred to as NP-Intermediate problems. A result of Ladner [47]

states that the class of NP-Intermediate problems is non-empty and a number of

problems have been suggested to occupy this complexity class. Well known examples

of which include integer factoring, the discrete logarithm problem and graph isomor-

phism. For these types of problems there is no known polynomial time algorithm

to solve them, but they have not been proved to be NP-complete. The discrete

logarithm problem is of particular importance as several cryptographic algorithms

base their security on the fact that solving a discrete logarithm problem is compu-

tationally difficult. Also in various prime number searches, the discrete logarithm

problem is used in sieving algorithms to eliminate obvious non-prime candidates

with small factors. If a polynomial time algorithm were to be found for the discrete

March 31, 2016

1.2. Constraint Satisfaction Problems 10

P = NP

NP-Hard

P=NP=

NP-Complete

P 6= NP

NP-Hard

P

NP-Complete

NP

Figure 1.1: Complexity classes.

logarithm problem this would have profound effects on these fields.

Even with this brief introduction to the field, it is clear that the study of computa-

tional complexity is of huge importance, not just theoretically but also for practical

applications such as computer security. Throughout this thesis we assume that

P 6= NP, and investigate the complexity of a particular problem known as the val-

ued constraint satisfaction problem, which we introduce later in this chapter, along

with some known complexity results.

1.2 Constraint Satisfaction Problems

The problem of assigning some values to variables given a set of conditions, that

we have introduced informally above, is formally known as a constraint satisfaction

problem (or CSP for short). In order to formally define the CSP we first need to

introduce some notation. Let D be a finite set we call the domain, and let Dn be

all the possible n-tuples that can be constructed from elements of D. Any subset of

Dn is called an n-ary relation.

Definition 1. Let D be a set of labels, V be a set of variables, and C be a set of

constraints. Each constraint c ∈ C is a pair (x, R) where x is a list of m variables,

March 31, 2016

1.2. Constraint Satisfaction Problems 11

and R is an m-ary relation over D. The constraint satisfaction problem is the

decision problem that asks is there a function f : V → D that satisfies all of the

constraints. That is, for every constraint, the assignment of values to the list of

variables x appears in R.

If there exists such a function f , then we say that the CSP is satisfiable, otherwise

it is said to be unsatisfiable.

A number of well known problems in computer science can be captured by this

definition. Let us revisit the map colouring problem we discussed earlier, and express

this explicitly as a CSP. If we are given k colours with which to colour the map this

is known as the k-colouring problem.

Example 1. Given a positive integer k and a graph G = (V,E) the k-colouring

problem asks us to find a valid colouring of the vertices V . To interpret this as a

CSP we let the set of vertices V be the set of variables, and the domain is the set

of colours {1, 2, ..., k}. For every edge (a, b) ∈ E we have a constraint whose list

of variables is [a, b], and whose binary relation R contains all tuples where a 6= b.

Finding a valid k-colouring of G is now the problem of finding a mapping f : V → D

that satisfies all of the constraints.

As another example consider the well studied n-queens problem, see [6] for a wide

survey of known results and open problems. The basic n-queens problem is that of

placing n queens on a n×n chessboard such that no two queens threaten each other,

that is they do not appear on the same row, column or diagonal. We show that not

only is it possible to describe this as a CSP problem, but it can be described in

a number of ways. Here we present two examples of CSPs encoding the n-queens

problem.

Example 2. Let the variables, V be the individual squares of the chessboard xi,j with

rows i = 1, 2, ..., n and columns j = 1, 2, ..., n. Let D = {0, 1} where 0 represents

no queen and 1 represents a queen. The set of constraints come in three classes.

Firstly there is a set of constraints for each row where
∑n

j=1 xi,j = 1. Secondly there

is set of constraints for each column where
∑n

i=1 xi,j = 1. Finally, there are 4n− 2

constraints introduced by the diagonals such that the sum on each diagonal is at most

March 31, 2016

1.3. Complexity of CSP 12

1. A mapping f : V → D that satisfies all of those constraints is a valid solution to

the n-queens problem.

Example 3. Let the variables, V , be the rows of the chessboard x1, x2, ..., xn. Let

D = {1, 2, ..., n} which will represent the column in which a queen appears. The

set of constraints this time only come from two sources. First there is a constraint

for each column - for each i, j ∈ D, xi 6= xj. Secondly there is a constraint for

each diagonal - for each i, j ∈ D, xi − xj 6= i − j and xi − xj 6= j − i. A mapping

f : V → D that satisfies all of those constraints is a valid solution to the n-queens

problem.

1.3 Complexity of CSP

We have seen that it is possible to describe some well known problems as CSPs

but why are they interesting to theoreticians? It is simple to see that general CSP

problems are hard to solve and we have explicitly seen an example of this with

the 3-colourability problem. However the problem of 2-colourability shows us that

some CSPs can be solved in polynomial time, and this is what is interesting from

a complexity theory perspective. If we impose restrictions on the CSPs we con-

sider we hope to reduce the complexity of the problem, making it computationally

easier.

1.3.1 Constraint Languages

One of the most studied restrictions is known as a constraint language restriction,

see [3, 4, 7, 9, 10, 23, 53]. This restricts the types of relations that can appear in

the constraints of a CSP, thus potentially allowing us to find a polynomial time

algorithm for this smaller set of problems.

Definition 2. Let RD be the set of all relations over a finite domain D. A constraint

language over D is a finite set Γ ⊆ RD.

Definition 3. Given a constraint language Γ we define CSP(Γ) to be the class of

all instances of CSP where each constraint relation is in Γ.

To demonstrate how constraint language restrictions affect the complexity of CSP

consider the following two examples. First we consider the problem known as 2-

March 31, 2016

1.3. Complexity of CSP 13

satisfiability (2-SAT) as a CSP, a problem that is polynomial time solvable with

several known algorithms [2, 22, 46], the best of which solves the problem in linear

time.

Example 4. In the 2-SAT problem we are given a formula in conjunctive normal

form where all clauses contain two variables. As an example we could have the

following instance consisting of three clauses

(x0 ∨ x1) ∧ (¬x1 ∨ x2) ∧ (x0 ∨ x2).

The equivalent problem CSP(Γ) has domain D = {0, 1}, variables V = {x0, x1, x2},

and a constraint for each of the three clauses. Consider the first clause, its scope

would be [x0, x1] and its relation is the set R00 = D2 \ (0, 0). Building a constraint

for each clause our constraint language becomes Γ = {R00, R10}. Note that both

the first and third clause have the same constraint relation but they have different

scopes. It is simple to see that any 2-SAT problem can be represented as a CSP in

this way with a constraint language consisting of relations that can be expressed as

a disjunction with two literals. In reverse, any instance of CSP(Γ) where Γ consists

solely of these relations is equivalent to a 2-SAT problem and therefore can be solved

in polynomial time.

Now consider the 3-satisfiability problem (3-SAT), which is one of Karp’s 21 NP-

complete problems [39].

Example 5. In the 3-SAT problem we are given a formula in conjunctive normal

form where all clauses contain three variables. As an example we could have the

following instance consisting of three clauses

(x0 ∨ x1 ∨ x2) ∧ (¬x0 ∨ x1 ∨ ¬x2) ∧ (x0 ∨ ¬x1 ∨ x2).

As in the previous example we can construct an equivalent instance of CSP(Γ) with

domain D = {0, 1}, variables V = {x0, x1, x2}, and a constraint for each of the three

clauses. However this time our constraint language would be Γ = {R000, R101, R010}.

Again any 3-SAT problem can be represented as a CSP in this way, and any instance

of CSP(Γ), where Γ consists of relations that are expressed as a disjunction of three

literals, is equivalent to a 3-SAT problem, and thus is NP-complete.

March 31, 2016

1.3. Complexity of CSP 14

In Example 4 we have a problem that can be solved in polynomial time, whereas

in Example 5 we have a problem that is NP-complete, but the two problems have

the same domain and variables. The only difference between the problems is the

relations allowed by the constraint language, thus showing that the complexity of

solving CSP(Γ) depends on Γ.

This leads to a major open problem in complexity theory. Whilst we have shown

that some for some choice of Γ the problem CSP(Γ) is in P, and for a different choice

of Γ the problem is instead NP-Complete, is it true that CSP(Γ) will always fall

into one of these complexity classes? This dichotomy question was formally stated

as a conjecture by Feder and Vardi [23].

Conjecture 1 ([23]). For any constraint language Γ, the decision problem CSP(Γ)

is either in P or it is NP-complete.

Without a definitive proof of this dichotomy we cannot rule out the possibility that

there is a constraint language Γ such that CSP(Γ) is an NP-Intermediate problem,

see [47], i.e. it is neither in P or NP-Complete. A proof of the dichotomy would not

only close a long standing problem but also aid those who are practically trying to

solve CSPs, by offering a fixed set of reasons for being polynomial time solvable (with

appropriate algorithms), or conversely explaining why their CSP is NP-Complete.

All results to date support the dichotomy hypothesis and we now introduce the

algebra needed to present those results.

1.3.2 Polymorphisms

In order to describe the dichotomy results on two and three element domains we

first introduce the algebraic notion of a polymorphism.

Definition 4. Let Γ be a constraint language and let R be a constraint relation

in Γ of arity n. A function f : Dk → D is called a polymorphism of R if for all

combination of tuples:

(x11, ..., x1n), ..., (xk1, ..., xkn) ∈ R⇒ (f(x11, ..., xk1), ..., f(x1n, ..., xkn) ∈ R.

March 31, 2016

1.3. Complexity of CSP 15

The function f is applied to the tuples componentwise as shown below:

(x11, x12, · · · , x1n) ∈ R

(x21, x22, · · · , x2n) ∈ R
...

...
...

(xk1, xk2, · · · , xkn) ∈ R

↓f ↓f ↓f
(y1, y2, · · · , yn) ∈ R

where yi = f(x1i, x2i, ..., xki).

If f is a polymorphism of all constraint relations in Γ then we say that f is a

polymorphism of Γ. The set of all polymorphisms of a constraint language Γ is often

written as Pol(Γ).

Using this definition we can explicitly define the ternary polymorphisms majority

and minority.

Definition 5. A function f : D3 → D is called a majority function if for all

x, y ∈ D:

f(y, x, x) = f(x, y, x) = f(x, x, y) = x.

Similarly a function f : D3 → D is called a minority function if for all x, y ∈ D:

f(y, x, x) = f(x, y, x) = f(x, x, y) = y.

Note that on the two element domain there is precisely one majority function which

we denote as Mjrty, and also precisely one minority function which we denote as

Mnrty.

Example 6. Consider a constraint language Γ with a single constraint relation

R = {(0, 0, 0), (0, 0, 1), (1, 0, 0)}. It is easy to see that the Mjrty function defined

above is a polymorphism of R (and therefore Γ). However, this constraint relation

March 31, 2016

1.3. Complexity of CSP 16

does not exhibit a Mnrty polymorphism as we now show:

(0, 0, 0) ∈ R

(0, 0, 1) ∈ R

(1, 0, 0) ∈ R

↓ ↓ ↓

(1, 0, 1) /∈ R

Applying the Mnrty function componentwise we obtained the tuple (1, 0, 1) which is

not a member of our constraint relation R. Therefore the Mnrty function is not a

polymorphism of R (and therefore Γ).

Before trying to determine the complexity of a constraint language it is useful to

consider if we can add additional relations to the constraint language without chang-

ing its complexity. This is often referred to as expressibility, or the expressive power

of the constraint language.

Example 7 ([64]). Consider the CSP instance that consists of four variables V =

{x0, x1, x2, x3}, with domain D = {0, 1, 2}, and constraints as depicted in the figure

below, where 6= is the binary disequality relation. It is easy to see that the variables

x1 and x4 must always be assigned the same value, and hence they are implicitly

constrained by the equality relation. Therefore we say = is expressible by 6=.

x1

x2

x4

x3

6=

6=

6=

6=
6=

=

Definition 6 ([10]). The expressive power of a constraint language Γ, denoted 〈Γ〉,

is the set of relations that can be expressed using

1. relations from Γ ∪ {=} (where {=} is the equality relation),

2. conjunction,

3. existential quantification.

March 31, 2016

1.3. Complexity of CSP 17

Theorem 1 ([10,35]). Let Γ be a finite constraint language, and ∆ ⊆ 〈Γ〉. There is

a polynomial time reduction from CSP(∆) to CSP(Γ).

This theorem can be rewritten in terms of the polymorphisms of the constraint

languages.

Theorem 2 ([7, 35]). Let Γ and ∆ be finite constraint languages. If Pol(∆) ⊆

Pol(Γ), then there is a polynomial time reduction from CSP(Γ) to CSP(∆).

This theorem proves that the complexity of CSP(Γ) is totally determined by the

polymorphisms of Γ. Therefore the aim is now to identify which polymorphisms are

responsible for describing polynomial time solvable CSPs.

1.3.3 Known Dichotomy Theorems

The following theorem describes the polynomial time solvable cases of CSP over a

two element domain, originally proven by Schaefer [53]. Here however we choose to

present the more modern algebraic view of the dichotomy as presented by Chen [13].

Theorem 3 ([13, 53]). Let Γ be a constraint language and let D = {0, 1}. CSP(Γ)

can be solved in polynomial time if it has one of the following six polymorphisms:

1. Constant unary operation 0;

2. Constant unary operation 1;

3. Binary AND operation ∧;

4. Binary OR operation ∨;

5. Ternary Mjrty operation;

6. Ternary Mnrty operation.

Otherwise CSP(Γ) is NP-complete.

The complexity of CSP is also fully characterised on a three element domain.

Theorem 4 ([7]). Let Γ be a constraint language and let D = |3|. CSP(Γ) can be

solved in polynomial time if it has one of 10 algebraic properties. Otherwise CSP(Γ)

is NP-complete.

We direct the reader to [7] for the details and proof of Theorem 4 .

Both of these results support the Feder-Vardi dichotomy conjecture, which is fur-

ther supported by the following result and conjecture of Bulatov, Jeavons and

March 31, 2016

1.3. Complexity of CSP 18

Krokhin [10] often referred to as the Algebraic CSP dichotomy conjecture. First

we introduce a type of polymorphism called a Taylor polymorphism.

Definition 7 ([27]). A polymorphism f is said to be inclusive in position i if it

satisfies an identity involving two variables with different entries in position i. Let

aj, bj ∈ {u, v} for j = 1, 2, ..., k with ai 6= bi, such that the identity

f(a1, a2, ..., ak) = f(b1, b2, ..., bk)

holds for all variables u, v ∈ V . A polymorphism inclusive in every position is called

a Taylor polymorphism.

Probably the most well known special case of a Taylor polymorphism is a near-

unanimity polymorphism, which satisfies the identity

f(u, u, ..., u, v) = f(u, u, ..., v, u) = ... = f(v, u, ..., u, u) = u.

Maróti and McKenzie [49] showed that Taylor polymorphisms are equivalent, with

respect to tractability, to a generalisation of near-unanimity polymorphisms called

weak near-unanimity (WNU) polymorphisms which are idempotent, f(u, u, ..., u) =

u, and satisfy the slightly weaker identity

f(u, u, ..., u, v) = f(u, u, ..., v, u) = ... = f(v, u, ..., u, u).

We also briefly introduce the notion of a core constraint language. Essentially if a

constraint language is not core there is some domain element that is not required,

which we can remove and therefore we only have to solve the problem over this

smaller domain. Technically we define a core constraint language as follows:

Definition 8. A constraint language Γ is called a core constraint language if every

unary polymorphism of Γ is injective. An injective function is a function f such

that if a 6= b then f(a) 6= f(b).

Theorem 5 ([10]). For any core constraint language Γ, if Γ does not exhibit a Taylor

polymorphism (or equivalently a weak near-unanimity polymorphism) then CSP(Γ)

is NP-complete.

Conjecture 2 ([10]). For any core constraint language Γ, if Γ admits a Taylor

polymorphism (or equivalently a weak near-unanimity polymorphism) then CSP(Γ)

is in P.

March 31, 2016

1.4. Valued Constraint Satisfaction 19

Not only does the algebraic CSP dichotomy conjecture state that all problems

CSP(Γ) are in either P or NP-complete, but it also suggests the exact boundary

separating them. The known dichotomy results on two and three element domains

presented previously both satisfy the conditions of the algebraic dichotomy conjec-

ture.

1.4 Valued Constraint Satisfaction

The problem with standard constraint satisfaction problems is they are very strict,

you can either satisfy all of the constraints or you cannot. Many problems require

a more flexible framework, i.e. a framework that offers some amount of optimisa-

tion.

A simple framework that offers this flexibility is Max CSP. Here we take a CSP

and we attempt to maximise the number of constraints that are satisfied. In this

case all assignments of values to variables give a feasible solution, but the optimal

solution is that which satisifes the most constraints. It may be possible that there

is an optimal solution that satisfies all of the constraints.

Another problem that introduces optimisation is that of Min-Ones. Consider a CSP

over a two element domain D = {0, 1}. The aim of the Min-Ones problem is to

satisfy all of the constraints of the CSP, whilst minimising the number of variables

that are assigned value 1. This problem essentially says that some solutions are

better, or more desirable, than other solutions, and we want the most desirable

solution.

However, in this thesis we primarily study the complexity of the valued constraint

satisfaction problem (referred to as VCSP). It is the most general of the constraint

satisfaction frameworks and can be used to express a number of well known problems,

including CSP as a special case. In the VCSP framework every assignment of domain

values to variables is a solution, and has an associated cost. The aim is to find a

solution with minimal cost, referred to as an optimal solution. The VCSP is formally

introduced below.

Let D be a fixed finite set. LetQ+ be the non-negative rational numbers with infinity.

March 31, 2016

1.4. Valued Constraint Satisfaction 20

Let Φ
(m)
D be the set of all functions from Dm to Q+, and then ΦD =

⋃∞
m=1 Φ

(m)
D . The

functions in ΦD are often referred to as cost functions.

Definition 9. Let V = {x1, . . . , xn} be a set of variables. A valued constraint over

V is an m-ary expression, φ(x), where x ∈ V m and φ ∈ Φ
(m)
D . An instance I of

VCSP can be written as a single function φI(x1, . . . , xn) =
∑q

i=1wi · φi(xi) where

the φi’s are valued constraints and the wi’s are non-negative rational weights. An

optimal solution to I is a mapping h : V → D that minimises φI.

Definition 10. A valued constraint language, Γ, is a finite subset of ΦD. Given a

valued constraint language Γ we define V CSP (Γ) to be the class of all instances of

VCSP where the cost functions of all the valued constraints are in Γ.

Note that it is also possible to define both valued constraint languages over infinite

domains, and infinite valued constraint languages. For the purposes of this thesis

we will use the term constraint language to mean a finite valued constraint language

(not to be confused with a finite-valued constraint language where cost functions

return values in Q+).

The VCSP framework is exceptionally broad, and as such it captures a large number

of well studied problems. Here we give some examples of the problems that can be

represented as VCSPs.

Example 8. The standard CSP can be expressed as a VCSP, where all cost function

are {0,∞}-valued, representing tuples allowed and disallowed respectively. Valued

constraints consisting of such {0,∞}-valued cost functions are often referred to as

crisp constraints.

Example 9. Consider the MAX CSP problem we referred to earlier. When seeking

an optimal solution to an instance of MAX CSP, maximising the number of satisfied

constraints is the same problem as minimising the number of unsatisfied constraints.

Given an instance Φ of MAX CSP we can construct an equivalent instance of VCSP.

Each constraint in Φ has a corresponding valued constraint which assigns cost 0 if

the tuple is allowed, and cost 1 if the tuple is disallowed. Therefore any instance

of MAX CSP is equivalent to an instance of VCSP consisting of only {0, 1}-valued

cost functions.

March 31, 2016

1.5. Multimorphisms 21

Example 10. Consider the well known NP-hard problem MAX CUT, where given

an edge-weighted graph the aim is to partition the vertices into two sets and max-

imise the total weight of the edges with endpoints in different sets. It is easy to see

that this problem can be expressed as a VCSP. Let fMC : {0, 1}2 → Q+ be such

that fMC(0, 1) = fMC(1, 0) < fMC(0, 0) = fMC(1, 1). Let ΓMC = {fMC}, then

V CSP (ΓMC) is equaivalent to MAX CUT, thus V CSP (ΓMC) is also NP-hard.

1.5 Multimorphisms

As we have seen earlier, polymorphisms have proven to be important algebraic tools

for characterising the complexity of constraint languages [4, 7, 10]. We can define

polymorphisms of valued constraints in a similar fashion to that for relations seen

in Definition 4.

Definition 11. Let φ : Dm → Q+ be a cost function and Feas(φ) = {x ∈ Dm|φ(x)

is finite} be the feasibility relation of φ. An operation f : Dk → D is a polymorphism

of φ if for any x1, x2, . . . , xk ∈ Feas(φ) we have f(x1, x2, . . . , xk) ∈ Feas(φ).

For any valued constraint language Γ we will say that f is a feasibility polymorphism

of Γ if f is a feasibility polymorphism of all cost functions φ ∈ Γ. The set of all

feasibility polymorphisms of Γ will be denoted Pol(Γ).

In order to study the complexity of valued constraint languages however we require

a more general notion, referred to as a multimorphism. These are essentially collec-

tions of polymorphisms, with each assigned the same weight. The definition does

however allow the same polymorphism to appear more than once. For the purpose

of this thesis we will not need the full generality of the definition of multimorphisms,

and thus we only provide the definitions of the specific cases of unary, binary and

ternary multimorphisms.

Definition 12. Let Γ be a valued constraint language over a finite set D. Γ has

the unary multimorphism 〈f〉 if every cost function φ ∈ Γ, of arity n, satisfies the

inequality:

φ(f(a)) ≤ φ(a)

for all a ∈ Dn, where f is applied component wise.

March 31, 2016

1.5. Multimorphisms 22

Definition 13. Let Γ be a valued constraint language over a finite set D. Γ has the

binary multimorphism 〈f1, f2〉 if every cost function φ ∈ Γ, of arity n, satisfies the

inequality:

φ(f1(a, b)) + φ(f2(a, b)) ≤ φ(a) + φ(b)

for all a, b ∈ Dn, where f1, f2 are applied component wise.

Definition 14. Let Γ be a valued constraint language over a finite set D. Γ has the

ternary multimorphism 〈f1, f2, f3〉 if every cost function φ ∈ Γ, of arity n, satisfies

the inequality:

φ(f1(a, b, c)) + φ(f2(a, b, c)) + φ(f3(a, b, c)) ≤ φ(a) + φ(b) + φ(c)

for all a, b, c ∈ Dn, where f1, f2, f3 are applied component wise.

Example 11 (Submodularity [24, 48, 54]). Let (D,∨,∧) be an arbitrary lattice. A

function φ : Dn → Q+ is called submodular if it satisfies the inequality

φ(a ∨ b) + φ(a ∧ b) ≤ φ(a) + φ(b)

for all a, b ∈ Dn. If φ satisfies the inequality we say that φ admits or exhibits the

multimorphism 〈∨,∧〉.

Example 12 (Bisubmodularity [1,24,50,52]). Let D = {−1, 0, 1}, and fix the order

−1 > 0 < 1 on D. Define binary operations ∨0 and ∧0 on D, as follows:

x ∨0 y =

 Max(x, y) if {x, y} 6= {−1, 1}

0 otherwise

x ∧0 y =

 Min(x, y) if {x, y} 6= {−1, 1}

0 otherwise

where the operations Max and Min are taken with respect to the above order on D.

A function φ : Dn → Q+ is called bisubmodular if it satisfies the inequality:

φ(a ∨0 b) + φ(a ∧0 b) ≤ φ(a) + φ(b)

for all a, b ∈ Dn. If φ satisfies the inequality we say that φ admits or exhibits the

multimorphism 〈∨0,∧0〉.

March 31, 2016

1.6. Fractional Polymorphisms 23

Example 13. Let Γ be a vauled constraint language over the domain D = {−1, 0, 1}

that consists of the single unary function φ, where φ(−1) = 0, φ(0) = 1 and φ(1) = 0.

It is easy to check that φ is submodular with respect to the order 1 > 0 > −1. Let

x = 1, y = 0, then we get:

φ(1 ∨ 0) + φ(1 ∧ 0) ≤ φ(1) + φ(0)⇒ φ(1) + φ(0) ≤ φ(1) + φ(0).

Now let x = −1, y = 0, and we get:

φ(−1 ∨ 0) + φ(−1 ∧ 0) ≤ φ(−1) + φ(0)⇒ φ(0) + φ(−1) ≤ φ(−1) + φ(0).

Finally let x = −1, y = 1, and we get:

φ(−1 ∨ 1) + φ(−1 ∧ 1) ≤ φ(−1) + φ(1)⇒ φ(1) + φ(−1) ≤ φ(−1) + φ(1).

Given that the functions ∨ and ∧ are symmetric we don’t need to reverse the inputs.

The case when x = y holds with equality due to idempotency, and thus we have

checked all possible pairs of inputs, and the submodularity inequality holds for them

all. Therefore φ is a submodular function. However, it is also easy to check that φ

is not bisubmodular. Let x = −1, y = 1, and we get:

φ(−1 ∨0 1) + φ(−1 ∧0 1) ≤ φ(−1) + φ(1)⇒ 2φ(0) ≤ φ(−1) + φ(1).

which does not hold as 2 · (1) � 0 + 0. Therefore the function φ is not bisubmodular.

1.6 Fractional Polymorphisms

Since the introduction of multimorphisms in [17] an even more general notion of a

fractional polymorphism was introduced in [15], as defined below.

Definition 15 ([15]). Let φ : Dm → Q+ be a cost function and let C ⊆ Pol(k)(φ) be

k-ary polymorphisms. A function ω : C → [0, 1] is a k-ary fractional polymorphism

of φ if it satisfies the following conditions:

•
∑

f∈C ω(f) = 1;

• for all x1, x2, ...xk ∈ Feas(φ)∑
f∈C

ω(f)φ(f(x1, x2, ..., xk)) ≤
1

k
(φ(x1) + φ(x2) + ...+ φ(xk))

March 31, 2016

1.7. Expressibility 24

The set of polymorphisms {f |ω(f) > 0} are often referred to as the support of the

fractional polymorphism ω, written as supp(ω). If ω is a fractional polymorphism

of all the functions φ, of a valued constraint language Γ, we say that Γ admits or

exhibits ω. The set of all fractional polymorphisms of a valued constraint language

is written fPol(Γ).

Example 14. Consider the general definition of a binary multimorphism from Defi-

nition 13. We can represent the binary multimorphism as a fractional polymorphism

with k = 2, w(f1) = 1
2

and w(f2) = 1
2
.

Example 15. We can rewrite the submodularity condition from Example 11 as a

fractional polymorphism by letting the functions f1 and f2 in the example above be

the polymorphisms Min and Max.

Throughout the course of this thesis we will refer to certain properties of fractional

polymorphisms which we describe here for reference.

Definition 16. Let f : Dk → D be a polymorphism in the positive support of

a fractional polymorphism ω. f is called idempotent if f(x, x, ..., x) = x for all

x ∈ D. An idempotent operation is called cyclic if f(x1, x2, ..., xk) = f(x2, ..., xk, x1)

for all x1, x2, ..., xk ∈ D. Similarly an idempotent operation is called symmetric

if f(x1, x2, ..., xk) = f(xπ(1), xπ(2), ..., xπ(k)) for all x1, x2, ..., xk ∈ D and all per-

mutations π. We say that the factional polymorphism ω is idempotent, cyclic or

symmetric if all of the polymorphisms in supp(ω) have the appropriate property.

1.7 Expressibility

Definition 17. For a constraint language Γ, let 〈Γ〉 denote the set of all functions

φ(x1, . . . , xm) such that, for some instance I of VCSP(Γ) with objective function

φI(x1, . . . , xm, xm+1, . . . , xn), we have

φ(x1, . . . , xm) = min
xm+1,...,xn

φI(x1, . . . , xm, xm+1, . . . , xn).

We then say that Γ expresses φ, and call 〈Γ〉 the expressive power of Γ.

Definition 18. If functions φ, φ′ ∈ ΦD are such that φ can be obtained from φ′ by

scaling and translating, i.e. φ = a · φ′ + b for some constants a ∈ Q+ and b ∈ Q,

then we write φ ≡ φ′. For Γ ⊆ ΦD, let Γ≡ = {φ | φ ≡ φ′ for some φ′ ∈ Γ}.
March 31, 2016

1.8. Tractability and Complexity Classifications 25

Theorem 6 ([15, 17]). Let Γ and Γ′ be constraint languages on D such that Γ′ ⊆

〈Γ〉≡.

• If VCSP(Γ) is tractable then VCSP(Γ′) is tractable.

• If VCSP(Γ′) is NP-hard then VCSP(Γ) is NP-hard.

Lemma 1. We say that a finite-valued constraint language Γ can express MAX

CUT (see Example 10) if there exists distinct a, b ∈ D such that Γ can express a

unary function u with argmin(u) = {a, b} and a binary function h where h(a, b) =

h(b, a) < h(a, a) = h(b, b). If Γ can express MAX CUT then VCSP(Γ) is NP-hard

and all constraint languages Γ where VCSP(Γ) is known to be NP-hard satisfy this

condition [31, 59].

We have already seen that polymorphisms capture the complexity of ordinary CSPs,

and there exists an equivalent result for VCSP.

Theorem 7 ([14]). For any Γ ⊆ ΦD and any φ ∈ ΦD, we have φ ∈ 〈Γ〉≡ if and only

if Pol(Γ) ⊆ Pol(φ) and fPol(Γ) ⊆ fPol(φ).

Combined with Theorem 6 this implies that the tractability or NP-hardness of a

valued constraint languages is characterised by its fractional polymorphisms and fea-

sibility polymorphisms. When considering only finite-valued constraint languages,

the complexity is determined by the fractional polymorphisms alone. It follows

that it is sufficient to study fractional polymorphisms in attempting to identify all

tractable finite-valued constraint languages.

1.8 Tractability and Complexity Classifications

Using the concept of multimorphisms a number of complexity classifications have

been obtained. First is the dichotomy for valued constraint languages over a two

element domain established in [17]. You will need to recall the definition of majority

and minority operations from Definition 5.

Theorem 8 ([17]). Let Γ be a valued constraint language on the two element domain

D = {0, 1} with costs in Q+. If Γ has one of the following multimorphisms then

V CSP (Γ) is tractable:

March 31, 2016

1.8. Tractability and Complexity Classifications 26

1. 〈0〉;
2. 〈1〉;
3. 〈Max,Max〉;
4. 〈Min,Min〉;
5. 〈Min,Max〉;
6. 〈Mjrty,Mjrty,Mjrty〉;
7. 〈Mnrty,Mnrty,Mnrty〉;
8. 〈Mjrty,Mjrty,Mnrty〉.

In all other cases V CSP (Γ) is NP-hard.

Example 16. We can rewrite the ternary multimorphism 〈Mjrty,Mjrty,Mjrty〉

required in the Boolean VCSP dichotomy as a fractional polymorphism. Let k = 3

and the functions f1 and f2 be the polymorphisms Mjrty and Mnrty respectively,

with ω(f1) = 2
3

and ω(f2) = 1
3
. It is easy to check that all the conditions of being a

fractional polymorphism hold.

If we take the previous theorem and restrict the valuation structure by excluding

infinite costs, some of the possible cases collapse into one another, giving the much

simpler theorem below.

Theorem 9 ([17]). Let Γ be a valued constraint language on the two element domain

D = {0, 1} with costs in Q+. If Γ has one of the following multimorphisms then

V CSP (Γ) is tractable:

1. 〈0〉;
2. 〈1〉;
3. 〈Min,Max〉.

In all other cases V CSP (Γ) is NP-hard.

There is also a known dichotomy for conservative valued constraint languages, which

we define below. In order to present the dichotomy we also need the definition of

tournament operations and (symmetric) tournament pair multimorphisms.

Definition 19 ([44]). A valued constraint language Γ is called conservative if Γ

contains all {0, 1}-valued unary cost functions.

Definition 20. A binary operation f : D2 → D is a tournament operation if f

is commutative, f(x, y) = f(y, x), and f is conservative, f(x, y) ∈ {x, y}, for all

March 31, 2016

1.8. Tractability and Complexity Classifications 27

x, y ∈ D. The dual, g, of a tournament operation, f , is the tournament operation

satisfying f(x, y) 6= g(x, y) when x 6= y.

A multimorphism 〈f, g〉 is a tournament pair multimorphism if both f and g are

tournament operations. If g is the dual of f then this is known as a symmetric

tournament pair multimorphism (STP).

Theorem 10 ([44]). Let Γ be a conservative valued constraint language over a finite

domain D. VCSP(Γ) is tractable if:

• Γ admits a conservative binary multimorphism 〈f1, f2〉, and

• Γ admits a conservative ternary multimorphism 〈g1, g2, g3〉,

and there is a set M of two-element subsets of D such that:

• for every pair {a, b} ∈ M , 〈f1, f2〉 restricted to {a, b} is an STP multimor-

phism, and

• for every pair {a, b} /∈M , 〈g1, g2, g3〉 restricted to {a, b} is a 〈Mjrty,Mjrty,Mnrty〉

multimorphism.

Otherwise VCSP(Γ) is NP-hard.

This characterisation has recently been simplified to the following:

Theorem 11 ([60]). Let Γ be a conservative valued constraint language. If Pol(Γ)

contains a majority polymorphism then VCSP(Γ) is tractable. Otherwise VCSP(Γ)

is NP-hard.

Again if we restrict the cost functions to finite values then the classification can be

significantly simplified.

Theorem 12 ([44]). Let Γ be a conservative finite-valued constraint language. If

Γ admits an STP multimorphism then VCSP(Γ) is tractable, otherwise VCSP(Γ) is

NP-hard.

This result can be further simplified as it can be shown that a finite-valued constraint

language that admits an STP multimorphism is also submodular on some total

ordering. The proof of this is given implicitly in [16] and explicitly in [43].

Consider the conditions of submodularity and bisubmodularity shown previously

in Examples 11 and 12 respectively. It has long been known that if a function

March 31, 2016

1.8. Tractability and Complexity Classifications 28

exhibits either of these conditions it can be minimised in polynomial time, but

the algorithms required are complex and unique. For example there are numerous

different polynomial time algorithms known to solve submodular problems, see [24,

32–34,54].

However, thanks to recent work of Thapper and Živný [57], there is now a much

simpler algorithm that implies tractability for both submodular and bisubmodular

functions as well as numerous other functions. This algorithm is called the basic

linear programming relaxation, known from hereon as BLP. Given an instance Φ of

VCSP, defined by Φ(x) =
∑q

i=1 wi · φi(xi), with variables V we define BLP(Φ) as

follows:

BLP(Φ) = min

q∑
i=1

∑
si∈Dxi

wi · φi(si)λi,si

s.t.
∑

si∈Dxi |si(x)=a

λi,si = µx(a), 1 ≤ i ≤ q, x ∈ xi, a ∈ D

∑
a∈D

µx(a) = 1, x ∈ V

λi,si = 0, 1 ≤ i ≤ q, φi(si) =∞

We minimise over the variables µx(a), where x ∈ V and a ∈ D, and λi,si , where

1 ≤ i ≤ q and si ∈ Dxi . These variables take real values on the interval [0, 1], and

can be seen as probability distributions on D and Dxi respectively.

Given an instance Φ of VCSP, we say that BLP solves Φ if the optimal value of

BLP(Φ) equals the optimal value of Φ. BLP solves a valued constraint language Γ if

BLP solves every instance Φ ∈ VCSP(Γ). Finally it is shown in [43,57] that if BLP

solves Γ, then Γ is tractable. We will use the main theorems of [57] throughout this

thesis, and therefore we present them here.

Theorem 13 ([42, 57]). Let Γ be a valued constraint language with cost functions

that only take finite values. The following are all equivalent:

1. BLP solves VCSP(Γ).

2. For every k > 1, Γ has a k-ary symmetric fractional polymorphism.

3. Γ has a binary symmetric fractional polymorphism.

March 31, 2016

1.8. Tractability and Complexity Classifications 29

4. For every n > 1, Γ has a fractional polymorphism ω such that supp(ω) gener-

ates a symmetric n-ary operation.

A semilattice operation is any operation f : D2 → D where f is associative, commu-

tative and idempotent. In other words f(x, f(y, z)) = f(f(x, y), z), f(x, y) = f(y, x)

and f(x, x) = x respectively. Every semilattice operation trivially generates sym-

metric operations of all arities - hence we have the following corollary:

Corollary 1 ([43]). If Γ has a fractional polymorphism with a semilattice operation

in its support, then BLP solves VCSP(Γ).

Consider the submodularity and bisubmodularity multimorphisms from Examples 11

and 12 respectively. If a constraint language Γ consists of all submodular cost func-

tions then VCSP(Γ) is tractable by BLP as the submodularity multimorphism has

the semilattice operations ∨ and ∧ in its support. If Γ consists of all bisubmodular

cost functions then VCSP(Γ) is tractable by BLP as the bisubmodularity multimor-

phism has the semilattice operation ∧0 in its support.

We will repeatedly make use of the fact that a single semilattice operation in the sup-

port of a fractional polymorphism implies tractability of the underlying constraint

language throughout this thesis.

March 31, 2016

Chapter 2

Domain Reductions and Cores

2.1 Introduction

Following the successful complexity classification of VCSPs on 2-element domains [17],

the obvious extension is to consider VCSPs on 3-element domains. Discovering a

similar dichotomy result on the 3-element domain could offer useful insights into the

types of fractional polymorphisms that give rise to tractable instances of VCSP on

finite domains of any size.

Let us consider the VCSP over the domain D = {−1, 0, 1} with costs in Q+. We

have already seen that the fractional polymorphisms (multimorphisms in this case)

〈Min,Max〉 and 〈min0,max0〉 define tractable constraint languages, as will 〈−1〉,

〈0〉 and 〈1〉. Where do we start looking for other possible fractional polymorphisms

that could describe tractable languages? It seems reasonable to conduct a case

analysis of the multimorphisms we can derive from the polymorphisms such as

Min,Max,min0 and max0 as these simple polymorphisms imply tractability by

Theorem 13.

2.2 Domain Reducing Multimorphisms

For the purposes of this section we need the following definition:

Definition 21. Let D = {−1, 0, 1} and define the binary operations max−1 and

min−1 as follows:

max−1(x, y) =

 Max(x, y) if {x, y} 6= {0, 1}

−1 otherwise

30

2.2. Domain Reducing Multimorphisms 31

min−1(x, y) =

 Min(x, y) if {x, y} 6= {0, 1}

−1 otherwise

where the operations Max and Min are taken with respect to some given order on the

elements of D. The operations max0, min0, max1 and min1 can be defined likewise.

Now consider the multimorphisms 〈f, g〉 where f, g ∈ {Min,Max,minx,maxx}

and x ∈ D. It can be quickly checked that most of these multimorphisms imply

the presence of one of those five tractable multimorphisms identified previously.

However there are six cases that do not, and the presence of any one of these six

multimorphisms imply that one of the elements of the domain is unnecessary, and

can simply be thrown away. Hence we will now refer to them as domain reducing

multimorphisms. This allows us to solve the problem using the results for two-

element domains [17] instead.

Theorem 14. Let Γ be a valued constraint language over domain D = {−1, 0, 1}

with cost functions φ : Dn → Q+. The elements of the domain satisfy the order

1 > 0 > −1. If Γ has one of the following six multimorphisms then V CSP (Γ) is

tractable by submodular minimisation over a domain of reduced size:

• 〈Min,max0〉
• 〈Min,max1〉
• 〈Min,max−1〉
• 〈Max,min0〉
• 〈Max,min1〉
• 〈Max,min−1〉

Proof. For simplicity we shall prove just the first case, but a very similar argument

follows for all cases. Assume Γ has the multimorphism 〈Min,max0〉, then all cost

functions φ ∈ Γ (of arity n) must satisfy the inequality:

φ(Min(a,b)) + φ(max0(a,b)) ≤ φ(a) + φ(b) for all a,b ∈ Dn.

If we consider the case where {a,b} = {1, -1} then this inequality becomes:

φ(-1) + φ(0) ≤ φ(1) + φ(-1) ⇒ φ(0) ≤ φ(1).

March 31, 2016

2.3. Cores 32

Therefore any solution that assigns value 1 to a variable could instead assign the

value 0 to the variable and the overall cost cannot be worse. This gives us the benefit

of being able to simply ignore the domain element 1 and solve this problem over the

domain D = {−1, 0}. Over this reduced domain the function max0 is exactly the

function Max, so our multimorphism simplifies to 〈Min,Max〉 and the constraint

language Γ is tractable by known results.

2.3 Cores

In order to simplify the complexity classifications of VCSP over larger domains we

would prefer not having to consider domain reducing multimorphisms. It is useful

therefore to introduce the notion of core valued constraint languages. Intuitively a

valued constraint language is not core if there is an element of its domain, a ∈ D,

such that any instance has an optimal solution that does not use a. We can simply

remove the element a from D reducing the problem to a smaller domain. This

allows us to only have to consider core constraint languages when attempting to

prove complexity classifications.

A number of different definitions of core constraint languages have appeared in

literature. The technical definition of a core that we use in [31] is the following.

Definition 22 ([31]). A valued constraint language Γ on D is a core if, for each

a ∈ D, there is an instance Ia of VCSP(Γ) such that a appears in every optimal

solution to I.

The following proposition further reduces the set of interesting core valued constraint

languages. Given a valued constraint language Γ, let Γc be the language containing

the functions of Γ and all the functions obtained by fixing variables in functions of

Γ, e.g. g(x, y) = f(x, a, y) ∈ Γc if f ∈ Γ and a ∈ D.

Proposition 1 ([31]). Let Γ be a core valued constraint language on an arbitrary

finite domain D. Then

1. 〈Γc〉 contains a set of unary functions {ua|a ∈ D} such that argmin(ua)={a},

2. VCSP(Γ) is tractable if and only if VCSP(Γc ∪ {ua|a ∈ D}) is tractable,

March 31, 2016

2.3. Cores 33

3. VCSP(Γ) is NP-hard if and only if VCSP(Γc ∪ {ua|a ∈ D}) is NP-hard.

It is therefore sufficient to consider only core valued constraint languages Γ which

are closed under fixing values for a subset of variables and which contain a unary

function ua with argmin(ua)= {a} for each a ∈ D. The last condition also implies

that fPol(Γc) consists of the idempotent members of fPol(Γ), a condition which

proved important in the algebraic approach to the CSP [3,10].

Before proving Proposition 1 we need an auxiliary lemma. For a mapping ϕ : {xa|a ∈

D} → D, let sϕ be the unary operation on D such that sϕ(a) = ϕ(xa).

Lemma 2. Assume that Γ is a core. There exists an instance Ip of VCSP(Γ) with

variables V = {xa|a ∈ D} such that, for each optimal solution ϕ ∈ Opt(Ip), the

following holds:

1. the operation sϕ is injective (i.e. a permutation),

2. for every instance I ′ of VCSP(Γ) and every ϕ′ ∈ Opt(I ′), the mapping sϕ ◦ϕ′

is also in Opt(I ′).

Proof. Since Γ is a core, for every element a ∈ D, there exists an instance Ia of

VCSP(Γ) such that a is in the image of all optimal solutions to Ia. Assume without

loss of generality that the sets of variables in VIa in these instances are pairwise

disjoint. Let fa be the objective function in Ia, and consider the instance I1 of

VCSP(Γ) whose objective function is
∑

a∈D fa. The image of every optimal solution

to I1 must be equal to D. Arbitrarily choose one optimal solution to I1 and, for

each a ∈ D, identify with xa all variables in VI1 that are mapped to a in the chosen

solution. We get a new instance I2 of VCSP(Γ) with variables V = {xa|a ∈ D}.

Notice that the image of each optimal solution ϕ to I2 is still all of D because

any optimal solution to I2 gives rise to an optimal solution to I1 with the same

image. Hence, I2 satisfies condition (1) of the lemma, and the mapping ϕid defined

by ϕid(xa) = a is an optimal solution to I2. Let f2 denote the objective function of

I2.

Let ϕ ∈ Opt(I2) be such that sϕ falsifies condition (2) of the lemma. That is, there

is an instance I3 of VCSP(Γ) and ϕ3 ∈ Opt(I3) such that sϕ ◦ ϕ3 is not optimal for

March 31, 2016

2.3. Cores 34

I3. Clearly, ϕ 6= ϕid. For each a ∈ D, identify with xa all variables x in VI3 with

ϕ3(x) = a. The obtained instance I4 has the following properties: VI4 ⊆ {xa|a ∈ D},

the mapping ϕ4 defined as the restriction of ϕid to VI4 is an optimal solution to I4,

while sϕ ◦ ϕ4 is not. Let f4 denote the objective function of I4, and consider the

instance I5 with variables VI5 = {xa|a ∈ D} and objective function W ·f2 +f4 where

W is large enough to ensure that each optimal solution to I5 must be an optimal

solution to I2. Furthermore, notice that ϕid is an optimal solution of I5, while ϕ

is not. Thus, we will replace I2 with I5 and repeat this procedure until we remove

from the set of optimal solutions all mappings ϕ such that sϕ falsifies condition (2)

of the lemma. Since there are finitely many such mappings, we eventually obtain

the desired instance Ip.

Proof. (of Proposition 1). To prove item (1), take the instance Ip from Lemma 2.

Let fp be the objective function of Ip. For any a ∈ D, consider the unary function

ua obtained from fp by fixing each xb with b 6= a to b. Since ϕid is an optimal

solution to Ip, a ∈ argmin(ua). On the other hand, by Lemma 2(1), ua(a) < ua(b)

for each b 6= a. It is easy to see that ua ∈ 〈Γc〉.

By Theorem 6, the problems VCSP(Γc) and VCSP(Γc ∪{ua|a ∈ D}) have the same

complexity. Therefore, to prove items (2) and (3), it suffices to show that problems

VCSP(Γ) and VCSP(Γc) have the same complexity. Take an arbitrary instance I

of VCSP(Γc) and assume without loss of generality that the sets of variables of I

and Ip are disjoint. Replace each fc in I by the corresponding f with constants,

and then replace each constant a by the variable xa. The new instance I1 is an

instance of VCSP(Γ), denote its objective function by f1. Consider the instance I2

of VCSP(Γ) with objective function f1 +W · fp where W is a large enough number

to ensure that each optimal solution to I2, when restricted to VIp = {xa|a ∈ D},

is an optimal solution to Ip. Since ϕid is an optimal solution to Ip, the optimal

solutions to I are precisely restrictions to VI of those optimal solutions to I2 whose

restriction on VIp is ϕid.

Each optimal solution ϕ to I gives rise to an optimal solution to I2 which coincides

with ϕ on VI and with ϕid on VIp . In the other direction, let ϕ2 be an optimal solution

March 31, 2016

2.3. Cores 35

to I2. Its restriction to VIp is an optimal solution ϕ
′
2 to Ip. By Lemma 2(1), the

operation sϕ′2
is a permutation on D. By applying Lemma 2 to I ′ = Ip, it follows

that each mapping ψt such that sψt = st
ϕ
′
2

, t ≥ 1, is an optimal solution to Ip. Choose

t so that st
ϕ
′
2

= s−1

ϕ
′
2

. Now apply Lemma 2(2) to ψt and ϕ2 ∈ Opt(I2). It follows that

ϕ
′′
2 = s−1

ϕ
′
2

◦ ϕ2 is an optimal solution to I2, and by construction ϕ
′′
2(xa) = a for each

a ∈ D. Hence, the restriction of ϕ
′′
2 to VI is an optimal solution to I.

Thapper and Živný [59] present a different definition of a core but then go on to

show their definition coincides with that of Definition 22. First we need the following

definition.

Definition 23 ([59]). Let S ⊆ D. The sub-language Γ[S] of Γ induced by S is the

valued constraint language defined on domain S and containing the restriction of

every function f ∈ Γ onto S.

Definition 24 ([59]). A valued constraint language Γ is a core if for every unary

fractional polymorphism ω of Γ, supp(ω) contains only injective operations. A valued

constraint language Γ′ is a core of Γ if Γ′ is a core and Γ′ = Γ[h(D)] for some

h ∈ supp(ω) with ω a fractional polymorphism of Γ.

The proof that the definitions of cores given in Definition 22 and Definition 24 are

equivalent is given in Lemma 4.2 of [59].

Finally we consider the most recent definition of a core valued constraint language

as given by Kozik and Ochremiak [45].

Definition 25 ([45]). A valued constraint language Γ is a core if for every unary

fractional polymorphism ω of Γ, supp(ω) contains only bijective operations. Γ is

called a rigid core valued constraint language if it exhibits exactly one unary poly-

morphism, which is the identity.

The definition of core constraint languages given by Thapper and Živný (Defini-

tion 24) and Kozik and Ochremiak (Definition 25) are identical, however it is shown

in [45] that we can restrict ourselves to rigid cores when searching for tractable

valued constraint languages, thus simplifying the problem.

Now we remark that the complexity classification for VCSP over two element do-

March 31, 2016

2.4. Multimorphisms as Digraphs 36

mains with only finite costs (Theorem 9) can be simplified using the notion of core

constraint languages. The first two cases, 〈0〉 and 〈1〉, clearly imply that the con-

straint language Γ is not core and thus we get the following simple theorem:

Theorem 15. Let Γ be a core valued Boolean constraint language with costs in Q+.

If Γ has the multimorphism 〈Min,Max〉 then V CSP (Γ) is tractable, otherwise it is

NP-hard.

2.4 Multimorphisms as Digraphs

All known tractable finite-valued constraint languages we have examined so far ex-

hibit symmetric binary multimorphisms, that is, for all pairs of domain elements x

and y, if f(x, y) = x then g(x, y) = y, or if f(x, y) = z then g(x, y) = z. Examples

of symmetric binary multimorphisms include Submodularity [24,48,54], Bisubmod-

ularity [1, 24, 50, 52] and Tournament Pairs [16, 44]. The simplicity of symmetric

binary multimorphisms allows for them to be easily represented as digraphs. First

let each element of the domain of our problem be a vertex in the digraph, and then

represent the functions f and g as arcs. If f(x, y) = x then we draw a directed arc

from vertex y to vertex x, and the function g is that opposing the direction of the

arcs, so g(x, y) = y. If f and g are non-conservative i.e. f(x, y) = z then g(x, y) = z,

then we draw no arc between the vertices x and y.

As we have previously seen, we only want to consider core constraint languages

when proving complexity classifications. However we know from Theorem 14 that

certain multimorphisms imply the underlying constraint language is not core, hence

the digraphs representing those multimorphisms should be excluded.

The following lemma of Thapper and Živný [59] shows that we only need to consider

connected digraphs, else the underlying constraint language is not core.

Take a digraph describing a fractional polymorphism of a core valued constraint

language Γ over D and replace the directed edges with undirected edges, call this

graph S. Let T be a graph that records the definable two element subsets of the

domain D. That is T is the undirected graph T = (V (T), E(T)) with:

• V (T) = D

March 31, 2016

2.4. Multimorphisms as Digraphs 37

(c) (d)

(a) (b)

Figure 2.1: The four possible connected digraphs on three vertices.

• E(T) = {{a, b}| there exists a unary function u expressible from Γ such that

argmin u = {a, b}}

Lemma 3. E(T) ⊆ E(S) and T is connected.

Over small domains where it is possible to easily draw all possible connected digraphs

this could help identify novel multimorphisms that imply tractability, and perhaps

build dichotomy theorems from. It is trivial to check that the only connected digraph

on the two element domain describes submodularity, and we know this is the only

multimorphism responsible for tractability of finite-valued constraint languages over

two elements (see Theorem 15).

2.4.1 3-element domain

Drawing and examining all the possible binary multimorphisms on three elements

may lead to novel tractable cases as yet unidentified, and help build a dichotomy

theorem. Consider all the possible connected digraphs on three vertices, they all fall

into one of the four classes seen in Figure 2.1.

Firstly lets consider the digraphs (c) and (d) of Figure 2.1. The multimorphisms

described by these digraphs are known as symmetric tournament pair multimor-

March 31, 2016

2.4. Multimorphisms as Digraphs 38

phisms [16], which we defined in Definition 20.

The tractability of valued constraint languages that admit a symmetric tournament

pair multimorphism was proven in [16] by a reduction to the problem of minimising

submodular functions. It is also shown that any valued constraint language with

a tournament pair multimorphism is tractable by reduction to a symmetric tour-

nament pair [16]. Note that by construction of our digraphs we can only describe

symmetric tournament pairs as the function g is always the dual of f . It has more

recently been shown that any valued constraint language with finite costs that ad-

mits a symmetric tournament pair multimorphism is also submodular with respect

to some total ordering of its domain elements [43]. Due to this we do not need to

consider these multimorphisms in a complexity classification on the three element

domain as we know it must include submodularity already.

Now consider the digraphs (a) and (b). Both of these digraphs describe well known

multimorphisms already known to be tractable. Digraph (a) describes bisubmodu-

larity, often seen written as 〈min0,max0〉, which in this case would imply the vertex

with the two incoming arcs is labelled 0. Digraph (b) describes submodularity, with

the total order of the domain elements in the direction of the arcs. Therefore these

two digraphs offer nothing new in the search for more tractable fragments.

This confirms that the only symmetric binary multimorphisms that identify tractable

core valued constraint languages on three element domains are 〈Min,Max〉 and

〈min0,max0〉. This leads to a number of questions as to why no dichotomy has

yet been proven. Firstly, is the three element domain the first case that requires

the more general notion of fractional polymorphisms to define its tractable cases?

Possibly there is some binary multimorphism which is non-conservative and non-

symmetric that has not been considered, or it might even be required to consider

ternary multimorphisms? Finally it may be that there is some alternative reason

for hardness on three element domains that is yet to be identified. In Chapter 3

we will consider an example of a core valued constraint language which will help to

ultimately answer these questions.

March 31, 2016

Chapter 3

Skew Bisubmodularity and the Three

Element Dichotomy

3.1 Introduction

As the approach of drawing multimorphisms as digraphs had yielded no clues in

the hunt for a dichotomy for finite-valued constraint languages on the three element

domain it is clear a different tactic is required. The idea this time is to construct an

example of a core finite-valued constraint language which is neither submodular or

bisubmodular, yet also not obviously NP-hard. The hope is that such an example

will lead to a new tractable class of constraint languages or a new reason for hardness

that is unrequired on the two element domain. We thank Vladimir Kolmogorov for

the following example.

Note that throughout this chapter we often represent a unary function f : D → Q+

where D = {−1, 0, 1} as a vector of values [f(−1), f(0), f(1)] for simplicity.

Example 17. Let Γ be the valued constraint language over D = {−1, 0, 1} which

consists of the three unary functions u1 = [5, 1, 0], u2 = [1, 0, 0] and u3 = [0, 0, 1]

and the binary function h defined below:

39

3.2. Fractional Polymorphisms 40

y

x

0 2.1 3

0 2 3.1

0 2.2 3.2

Note that we can also express the unary function u4(x) = minyh(x, y) = [0, 2, 3].

The unary cost functions u1, u2, u3, u4 ∈ Γ prohibit all unary polymorphisms except

for the trivial identity polymorphism, hence Γ is a rigid core valued constraint

language. Γ is not submodular under any labelling of domain elements, in this

particular labelling h(1,−1)+h(−1, 1) � h(−1,−1)+h(1, 1). Γ also does not exhibit

a bisubmodular multimorphism. The unary function u2 excludes bisubmodularity

with root -1, u3 excludes root 1 and u4 excludes root 0.

3.2 Fractional Polymorphisms

Let us continue to consider the constraint language Γ from Example 17. Using a

quick computational search it is easy to identify number of fractional polymorphisms

expressed by Γ. If we fix the domain ordering to −1 > 0 < 1, one of those fractional

polymorphisms identified is the following:

φ(x) + φ(y) ≥ 1

3
φ(x ∧0 y) +

1

3
φ(x ∨0 y) +

2

3
φ(pca(x, y)) +

2

3
φ(qac(x, y))

for all x, y ∈ D, where

pca(x, y) =

 0 if (x,y)=(1,-1)

x otherwise
and qac(x, y) =

 0 if (x,y)=(-1,1)

y otherwise

This fractional polymorphism has a bisubmodular type term and two functions pca

and qac that are nearly first and second projections respectively. We now know that

VCSP(Γ) is tractable by BLP [57] because this fractional polymorphism has the

semilattice operation ∧0. The problem with this fractional polymorphism is that it

March 31, 2016

3.2. Fractional Polymorphisms 41

is very specific to the example constraint language, and the operations pca and qac

are not symmetric. It would be ideal if we could replace pca and qac with alternative

operations, and to see if this is possible we apply the fractional polymorphism to

itself.

Substitute x with pca(x, y) and y with qac(x, y) and apply the fractional polymor-

phism to obtain the inequality:

φ(pca(x, y)) + φ(qac(x, y)) ≥ 1

3
φ((pca(x, y)) ∧0 (qac(x, y))) +

1

3
φ((pca(x, y)) ∨0 (qac(x, y)))

+
2

3
φ(pca((pca(x, y)), (qac(x, y)))) +

2

3
φ(qac((pca(x, y)), (qac(x, y))))

If we test all possible values for x and y we can simplify the terms on the RHS to

obtain the inequality:

φ(pca(x, y)) +φ(qac(x, y)) ≥ 1

3
φ(x∧0 y) +

1

3
φ(x∨−1 y) +

2

3
φ(pca(x, y)) +

2

3
φ(qac(x, y))

Rearrange the inequality and scale to get:

φ(pca(x, y)) + φ(qac(x, y)) ≥ φ(x ∧0 y) + φ(x ∨−1 y)

Substituting back into our original fractional polymorphism we obtain:

φ(x) + φ(y) ≥ φ(x ∧0 y) +
1

3
φ(x ∨0 y) +

2

3
φ(x ∨−1 y)

The resulting fractional polymorphism now looks very similar to the bisubmodular-

ity multimorphism, but the weight of the operation ∨0 has been reduced to allow

a positive weight to be associated with the operation ∨−1. This leads us to the

following definition.

Definition 26. Let α ∈ (0, 1]. We say that a function f : {−1, 0, 1}n → Q+

is α-bisubmodular (towards 1) if it has the fractional polymorphism µ such that

µ(∧0) = 1/2, µ(∨0) = α/2, and µ(∨1) = (1− α)/2.

I.e. A function f , of arity n, is α-bisubmodular (towards 1) if, for all tuples a,b ∈

{−1, 0, 1}n,

f(a ∧0 b) + α · f(a ∨0 b) + (1− α) · f(a ∨1 b) ≤ f(a) + f(b). (3.2.1)

March 31, 2016

3.3. A Characterisation of α-bisubmodularity 42

A unary function f is α-bisubmodular if and only if (1 + α) · f(0) ≤ f(−1) + α ·

f(1).

Note that α-bisubmodular functions towards −1 can be defined by using ∨−1 instead

of ∨1. For simplicity we assume that α-bisubmodular functions are skew towards

1, unless explicitly stated otherwise. Notice also that the 1-bisubmodular functions

(towards 1 or −1) are the ordinary bisubmodular functions from Example 12.

Example 18. Let us reconsider the functions in Example 17. It is simple to check

that all of those functions are 1
3
-bisubmodular (towards -1). As a concrete example

we show how easy it is to check the unary function u4(x) = [0, 2, 3]. A function is

1
3
-bisubmodular (towards -1) if it satisfies the inequality

φ(x) + φ(y) ≥ φ(x ∧0 y) +
1

3
φ(x ∨0 y) +

2

3
φ(x ∨−1 y)

The only interesting case is {x, y} = {1,−1} as otherwise this inequality checks for

submodularity which is trivially true for unary functions. Let x = 1 and y = −1, we

get:

φ(1) + φ(−1) ≥ φ(0) +
1

3
φ(0) +

2

3
φ(−1)

⇒ 3 ≥ 2 +
2

3
.

Thus we satisfy the inequality and this unary function is 1
3
-bisubmodular (towards

-1).

In fact checking if functions are α-bisubmodular is very simple, as we prove in the

following section.

3.3 A Characterisation of α-bisubmodularity

Let ≤ denote the partial order on {−1, 0, 1} such that 0 ≤ t for all t ∈ {−1, 0, 1}

and -1 and 1 are incomparable. Also let ≤ denote the componentwise partial order

on {−1, 0, 1}n. For every c ∈ {−1, 1}n, let c↓ = {x ∈ {−1, 0, 1}n|x ≤ c}. This set

is called the orthant of c.

Definition 27. For every c ∈ {−1, 1}n, a function f : {−1, 0, 1}n → Q+ is submod-

ular in the orthant of c if the α-bisubmodularity inequality holds for all a, b ∈ c↓.

March 31, 2016

3.3. A Characterisation of α-bisubmodularity 43

Note that in any given orthant, in each coordinate only one of -1 or 1 can appear.

Therefore the condition of satisfying α-bisubmodularity simply becomes submodular-

ity with the elements ordered as 0 < 1 and 0 < −1.

Proposition 2. A function f : {−1, 0, 1}n → Q+ is α-bisubmodular for some α ∈

(0, 1] if and only if the following conditions hold:

1. f is submodular in every orthant

2. every unary function obtained from f by fixing values for all but one variable

is α-bisubmodular

In order to prove this proposition we first need the following lemma.

Lemma 4. If f : {−1, 0, 1}n → Q+ is submodular in every orthant and every unary

function obtained from f by fixing all but one variable is α-bisubmodular then every

unary function obtained from f by fixing and identifying variables is α-bisubmodular.

Proof. Let f be a function that satisfies the conditions of the lemma. Let g :

{−1, 0, 1}m → Q+, with 1 ≤ m ≤ n, be the function obtained from f by fixing values

for some variables. Let h : {−1, 0, 1} → Q+ be obtained from g by identifying all

the remaining variables i.e. h(x) = g(x, ..., x). We have to show that (1 + α)h(0) ≤

h(−1) + αh(1).

We will use induction on m. The case m = 1 holds by the assumption of the lemma,

now assume the result holds for m− 1.

Induction hypothesis applied to g(x,...,x,1) gives:

g(−1, ...,−1, 1) + αg(1, ..., 1, 1) ≥ (1 + α)g(0, ..., 0, 1)

Submodularity in the orthant of (-1,...,-1,1) gives:

g(−1, ...,−1, 0) + g(0, ..., 0, 1) ≥ g(0, ..., 0, 0) + g(−1, ...,−1, 1)

The assumption on unary functions applied to g(-1,...,-1,x) gives:

g(−1, ...,−1,−1) + αg(−1, ...,−1, 1) ≥ (1 + α)g(−1, ...,−1, 0)

Multiplying the second inequality by (1 + α) and summing the three inequalities

gives the required h(−1) + αh(1) ≥ (1 + α)h(0).

March 31, 2016

3.3. A Characterisation of α-bisubmodularity 44

Using this lemma we can now prove Proposition 2.

Proof. (of Proposition 2). The only if direction follows from the definitions, so it

remains to prove the other direction. Let f satisfy conditions (1) and (2) of the

proposition. By Lemma 4 every unary function obtained from f by fixing and

identifying variables is α-bisubmodular.

Let x,y ∈ {−1, 0, 1}n. For any x, y ∈ D, we have x ∧0 y ≤ x ≤ (x ∨0 y) ∨0 x and

(x ∨0 y) ∧0 y ≤ (x ∨0 y) ∨0 x, and thus x ∧0 y,x, (x ∨0 y) ∧0 y and (x ∧0 y) ∧0 x are

all in the orthant of x ∨0 y) ∨0 x. This gives

f(x) + f((x ∨0 y) ∧0 y) ≥ f(x ∧0 y) + f((x ∨0 y) ∨0 x) (3.3.2)

For any x, y ∈ D, we have (x∨0 y)∧0 y ≤ y ≤ (x∨0 y)∨0 y and x∨0 y ≤ (x∨0 y)∨0 y

and thus (x∨0 y)∧0 y,y,x∨0 y and (x∨0 y)∨0 y are all in the orthant of (x∨0 y)∨0 y.

This gives

f(y) + f(x ∨0 y) ≥ f((x ∨0 y) ∧0 y) + f((x ∨0 y) ∨0 y) (3.3.3)

For a, b ∈ {−1, 0, 1}, define the binary operations ∨a,b as follows:

x ∨a,b y =


x ∨0 y if {x, y} 6= {−1, 1}

a if x = −1 and y = 1

b if x = 1 and y = −1

For any x, y ∈ D, we have x∨0 y ≤ x∨0,1 y ≤ x∨1 y and x∨1,0 y ≤ x∨1 y, and thus

x ∨0 y,x ∨0,1 y,x ∨1,0 y and x ∨1 y are all in the orthant of x ∨1 y. This gives

f(x ∨0,1 y) + f(x ∨1,0 y) ≥ f(x ∨0 y) + f(x ∨1 y) (3.3.4)

Applying α-bisubmodularity of the unary function obtained from f by identifying

all those variables with indices i such that xi = −1 and yi = 1 and fixing all other

variables gives

f((x ∨0 y) ∨0 x) + αf(x ∨1 y) ≥ (1 + α)f(x ∨0,1 y) (3.3.5)

The same arguement with identifying all those variables with indices i such that

xi = 1 and yi = −1 and fixing all other variables gives

f((x ∨0 y) ∨0 y) + αf(x ∨1 y) ≥ (1 + α)f(x ∨1,0 y) (3.3.6)

March 31, 2016

3.4. A Dichotomy Theorem 45

We can then create the following chain of inequalities

f(x) + f(y) + f(x ∨0 y) + 2αf(x ∨1 y)

≥ f(x) + f((x ∨0 y) ∧0 y) + f((x ∨0 y) ∨0 y) + 2αf(x ∨1 y)

≥ f(x ∧0 y) + f((x ∨0 y) ∨0 x) + f((x ∨0 y) ∨0 y) + 2αf(x ∨1 y)

≥ f(x ∧0 y) + (1 + α)f(x ∨0,1 y) + (1 + α)f(x ∨1,0 y)

≥ f(x ∧0 y) + (1 + α)f(x ∨0 y) + (1 + α)f(x ∨1 y)

where the first inequality follows from (3.3.3), the second from (3.3.2), the third from

(3.3.5) and (3.3.6), and the final one from (3.3.4). By comparing and rearranging

the first and final expressions in the chain of inequalities above we get the required

f(x) + f(y) ≥ f(x ∧0 y) + αf(x ∨0 y) + (1− α)f(x ∨1 y).

3.4 A Dichotomy Theorem

In this section we will generalise the following two theorems, the classification for the

Boolean case [17] and the complexity classification for the case of a three-element

domain and 0-1-valued functions [37], to a general classification for the case of a

three-element domain.

Theorem 16 ([17]). Let Γ be a core constraint language on D = {0, 1}. Either Γ

consists of submodular functions and VCSP(Γ) is tractable, or Γ can express MAX

CUT and VCSP(Γ) is NP-hard.

Theorem 17 ([37]). Let |D| = 3 and let Γ be a core constraint language on D

consisting of 0-1-valued functions. If the elements of D can be labelled −1, 0, 1 such

that each function in Γ is submodular on the chain −1 < 0 < 1, then VCSP(Γ) is

tractable. Otherwise, Γ can express MAX CUT and VCSP(Γ) is NP-hard.

Now we generalise these two results as we present a dichotomy theorem for the three

element domain with core finite-valued constraint languages, which is the main result

of [31].

Theorem 18. Let |D| = 3 and let Γ be a core constraint language on D. If the

elements of D can be renamed −1, 0, 1 in such a way that:

March 31, 2016

3.4. A Dichotomy Theorem 46

• each function in Γ is submodular on the chain −1 < 0 < 1, or

• there is some α ∈ (0, 1] such that each function in Γ is α-bisubmodular

then VCSP(Γ) is tractable. Otherwise, Γ can express MAX CUT and VCSP(Γ) is

NP-hard.

The tractability aspect follows directly from Theorem 3.1 of [57], which proves

VCSP(Γ) can be solved in polynomial time by BLP (as discussed in Section 1.8).

For the hardness part, by Lemma 1 and Proposition 1, it suffices to show that Γ can

express MAX CUT. In order to prove this and complete the proof of Theorem 18

we need the following four lemmas.

By Proposition 1 we know that for a core valued constraint language Γ, the problem

VCSP(Γ) has the same complexity as VCSP(Γc ∪ {ua|a ∈ D}), hence let Γ =

Γc∪{ua|a ∈ D}. Note that changing Γ in this fashion does not affect the properties

identified in Theorem 18.

Lemma 5. Let Γ be a core valued constraint language with |D| = 3. Assume for

each a ∈ D, Γ contains a unary function ua with argmin(ua) = {a}. For at least

two of the distinct two-element subsets X ⊆ D, 〈Γ〉 contains the unary function uX

with argmin(uX) = X.

Proof. Let D = {a, b, c}. For convenience we write a unary function f as a vector

[f(a), f(b), f(c)]. By translating and scaling we assume ua = [0, 1, β], ub = [γ, 0, 1]

and uc = [1, δ, 0] where β, γ, δ > 0.

Consider the following:

[1, δ, 0] + (1− δ)[0, 1, β] = [1, 1, (1− δ)β]

(β − 1)[1, δ, 0] + δ[0, 1, β] = [β − 1, βδ, βδ]

If (1− δ)β > 1 then 1− δ > 0 and β − 1 > βδ, then the unary functions above are

u{a,b} and u{b,c}.

Now consider:

γ[1, δ, 0] + (δ − 1)[γ, 0, 1] = [γδ, γδ, δ − 1]

(1− γ)[1, δ, 0] + [γ, 0, 1] = [1, (1− γ)δ, 1]

March 31, 2016

3.4. A Dichotomy Theorem 47

If (1− γ)δ > 1 then 1− γ > 0 and δ − 1 > γδ, then the unary functions above are

u{a,b} and u{a,c}.

Finally consider:

[0, 1, β] + (1− β)[γ, 0, 1] = [(1− β)γ, 1, 1]

(γ − 1)[0, 1, β] + β[γ, 0, 1] = [βγ, γ − 1, βγ]

If (1− β)γ > 1 then 1− β > 0 and γ − 1 > βγ, then the unary functions above are

u{b,c} and u{a,c}.

Thus assume that (1 − δ)β ≤ 1, (1 − γ)δ ≤ 1 and (1 − β)γ ≤ 1. Note that it is

impossible for more than one of these inequalities to be equality. For example, if the

first two inequalities are equalities then 1 − δ > 0, so δ < 1, which in turn implies

that 1 − γ > 1, i.e γ < 0, which is not permitted. Therefore at least two of these

inequalities must be strict.

Let (1 − δ)β < 1, (1 − γ)δ < 1 and (1 − β)γ = 1, the unary functions u{a,c} and

u{b,c} are generated as follows:

β[1, δ, 0] + [0, 1, β] = [β, 1 + βδ, β]

δ[γ, 0, 1] + [1, δ, 0] = [1 + γδ, δ, δ]

Let (1 − δ)β < 1, (1 − β)γ < 1, and (1 − γ)δ = 1, the unary functions u{a,b} and

u{a,c} are generated as follows:

γ[0, 1, β] + [γ, 0, 1] = [γ, γ, βγ + 1]

β[1, δ, 0] + [0, 1, β] = [β, 1 + βδ, β]

Let (1 − β)γ < 1, (1 − γ)δ < 1, and (1 − δ)β = 1, the unary functions u{a,b} and

u{b,c} are generated as follows:

γ[0, 1, β] + [γ, 0, 1] = [γ, γ, βγ + 1]

δ[γ, 0, 1] + [1, δ, 0] = [1 + γδ, δ, δ]

Finally we have the case where all three inequalities are strict, (1−β)γ < 1, (1−γ)δ <

1, and (1−δ)β < 1, and all three unary functions u{a,b}, u{a,c} and u{b,c} are generated

March 31, 2016

3.4. A Dichotomy Theorem 48

as follows:

γ[0, 1, β] + [γ, 0, 1] = [γ, γ, βγ + 1]

β[1, δ, 0] + [0, 1, β] = [β, 1 + βδ, β]

δ[γ, 0, 1] + [1, δ, 0] = [1 + γδ, δ, δ]

Thus we can always express at least two of the three unary functions u{a,b}, u{a,c}

or u{b,c}.

By Theorem 6, the problems VCSP(Γ) and VCSP(Γ ∪ {uX |uX ∈ 〈Γ〉}) have the

same complexity, hence we can now let Γ = Γ ∪ {uX |uX ∈ 〈Γ〉}.

We can always rename the elements of D into −1, 0, 1 such that the two 2-element

subsets guarenteed by Lemma 5 are {−1, 0} and {0, 1}. From now on we assume

that D = {−1, 0, 1} and that Γ contains the unary functions u{−1,0} and u{0,1}, as

well as the functions u−1,u0 and u1 as Γ is core. The unary function u{−1,1} may or

may not be present in Γ. By translating and scaling we can assume u{−1,0} = [0, 0, 1]

and u{0,1} = [1, 0, 0].

Lemma 6. One of the following holds.

1. 〈Γ〉 contains a function u{−1,1} such that argmin(u{−1,1}) = {−1, 1},

2. for some α ∈ (0, 1], every unary function in 〈Γ〉 is α-bisubmodular towards 1,

3. for some α ∈ (0, 1], every unary function in 〈Γ〉 is α-bisubmodular towards

−1.

Proof. Assume 〈Γ〉 contains a unary function h with h(−1) ≤ h(0) ≥ h(1). If only

one of the inequalities is strict we can add h to one of u−1 or u1 with a suitable coef-

ficient to obtain a function where both inequalities are strict. Once both inequalities

are strict we can add to h either u{−1,0} and u{0,1} with a suitable coefficient to obtain

a function u′ with argmin(u′) = {−1, 1}, which can be translated and scaled into

u{−1,1}. If condition (1) of the lemma does not hold then we can make the following

March 31, 2016

3.4. A Dichotomy Theorem 49

assumption:

No unary function h ∈ 〈Γ〉 satisfies h(−1) ≤ h(0) ≥ h(1), unless h(−1) = h(0) = h(1).

(*)

Now we need to show that every unary function in 〈Γ〉 is α-bisubmodular towards

1 or towards -1. Let Λ be the set of all unary functions from D to Q obtained by

translating and scaling each function in 〈Γ〉≡ so that each function g ∈ Λ satisfies

g(0) = 0 and g(−1) ∈ {−1, 0, 1}. It suffices to show that there is an α ∈ (0, 1]

such that all g ∈ Λ satisfy 0 ≤ α · g(1) + g(−1), hence α-bisubmodular towards 1,

or all g ∈ Λ satisfy 0 ≤ α · g(−1) + g(1) hence α-bisubmodular towards −1. Note

that when we scale the functions u−1 and u1 to be in Λ they have the following

properties: u−1(−1) = −1, u−1(1) > 0, u1(−1) ∈ {0, 1} and u1(1) < 0.

We prove the case that shows all functions in Λ must be α-bisubmodular towards 1,

else we get a contradiction with (*). It is easy to see that if all unary functions in Λ

satisfy f(−1) + f(1) ≥ 0, then they are all 1-bisubmodular. Therefore consider the

case of a unary function f ∈ Λ where f(−1) + f(1) < 0. We perform a case analysis

on the three possible values for f(−1).

1. f(−1) = 0. Then f(1) < 0, but this contradicts (*).

2. f(−1) = 1. Let Z1 be the set of all unary functions g in Λ with g(−1)+g(1) < 0

and g(−1) = 1. Then g(1) < −1 for all g ∈ Z1. Let α = infg∈Z1(− 1
g(1)

), then

0 ≤ α < 1. If α = 0 there is a g′ ∈ Z1 with g′(1) < −u−1(1), but the

function g′ + u−1 contradicts (*). If α > 0 all unary functions g ∈ Λ with

g(−1) = 1 are α-bisubmodular towards 1. Now either all unary functions in

Λ are α-bisubmodular towards 1, or there is a unary function h ∈ Λ with

h(−1) = {0,−1} and α · h(1) + h(−1) < 0. If h(−1) = 0, then h(1) < 0, and

we contradict (*). Let h(−1) = −1, then h(1) > 0 else we contradict (*), and

the inequality α ·h(1)+h(−1) < 0 forces α < 1
h(1)

. By definition of α there is a

unary function g′ ∈ Z1 with − 1
g(1)

< 1
h(1)

. The function g′ + h contradicts (*).

3. f(−1) = −1. Let Z−1 be the set of all unary functions g ∈ Λ with g(−1) = −1.

Now g(1) > 0 for all g ∈ Z−1 by (*). Let α = infg∈Z−1 g(1). Since f ∈ Z−1

and f(1) < 1, we have 0 ≤ α < 1. If α = 0 there is a unary function g ∈ Z−1

March 31, 2016

3.4. A Dichotomy Theorem 50

with g(1) < −u1(1), and the function g + u1 contradicts (*).

A similar case analysis shows that all functions in Λ must be α-bisubmodular towards

-1, or else one gets a contradiction with Assumption (*).

If u{−1,1} ∈ 〈Γ〉, by Theorem 6, the problems VCSP(Γ) and VCSP(Γ∪ u{−1,1}) have

the same complexity, hence we can let Γ = Γ ∪ u{−1,1}.

Let us first consider the case when u{−1,1} ∈ Γ, where u{−1,1} = [0, 1, 0]. Clearly,

any function from Φ
(1)
D can be obtained as a positive linear combination of u{−1,0},

u{0,1}, and u{−1,1}. This means that Γ contains all unary functions. Such constraint

language are called conservative, and their complexity is classified in [44]. This

classification can be stated as follows: either Γ has an STP multimorphism or else Γ

can express MAX CUT. It is now known that an STP multimorphism can be simply

reduced to submodularity, thus in this case Theorem 18 holds.

Let us assume for the rest of this section that u{−1,1} /∈ Γ. By Lemma 6, we have

that, for some α ∈ (0, 1], the unary functions in Γ are α-bisubmodular, all towards

1 or all towards -1. Let us assume they are all α-bisubmodular towards 1, the

other case is symmetric. If every function in Γ is α-bisubmodular then we are done.

Otherwise, by Proposition 2, Γ contains a function which is not submodular in some

orthant. The following lemma is well known, see [61]. The notion of submodularity

from Example 11 can be naturally extended to the direct product of lattices, by

defining the operations component-wise.

Lemma 7. Let D1, . . . , Dn be finite chains. If a function f : D1 × . . .×Dn → Q+

is not submodular then some binary function obtained from f by fixing all but two

coordinates is not submodular.

By Lemma 7 we can assume that Γ contains a binary function which is not sub-

modular in some orthant. If Γ contains a binary function which is not submodular

in the orthant of (1,1) or (-1,-1) then, by Lemma 7.8 of [17], Γ expresses MAX CUT

with u{−1,0} or u{0,1} respectively and we are done. So assume that Γ contains a

binary function f that is not submodular in the orthant of (-1,1).

If every function in Γ is submodular on the chain −1 < 0 < 1 then we are done.

March 31, 2016

3.4. A Dichotomy Theorem 51

Otherwise, by Lemma 7, Γ contains a binary function, g, which is not submodular

on this chain. We can assume that the function g is submodular both in the orthant

of (1,1) and in the orthant of (-1,-1), otherwise we are done. If g satisfies both

g(1, 0)+g(0,−1) ≤ g(0, 0)+g(1,−1) and g(0, 1)+g(−1, 0) ≤ g(0, 0)+g(−1, 1) then

it can be easily checked that g is submodular on −1 < 0 < 1. Since this is not the

case, at least one of the inequalities fails. We can assume, permuting the variables

of g if necessary, that g(1, 0) + g(0,−1) > g(0, 0) + g(1,−1). The following lemma

finishes the proof of Theorem 18.

Lemma 8. If Γ contains binary functions f and g such as above then 〈Γ〉 contains

a binary function which is not submodular in the orthant of (−1,−1).

Proof. By translating, we can assume that f(0, 0) = 0 = g(0, 0), so we have f(0, 1)+

f(−1, 0) < f(−1, 1) and g(1,−1) < g(1, 0)+g(0,−1). We define the binary function

f ′ as follows:

f ′(x, y) =


f(x, y) + (f(−1, 0)− f(0, 1))u{−1,0}(y) if f(0, 1) < f(−1, 0),

f(x, y) + (f(0, 1)− f(−1, 0))u{0,1}(x) if f(0, 1) > f(−1, 0),

f(x, y) if f(0, 1) = f(−1, 0).

We have f ′ ∈ 〈Γ〉, f ′(0, 1) = f ′(−1, 0), and f ′(0, 1) + f ′(−1, 0) < f ′(−1, 1). Now we

can obtain, by scaling f ′, a binary function f ′′ in 〈Γ〉 with f ′′(0, 0) = 0, f ′′(0, 1) =

f ′′(−1, 0) = 1, and f ′′(−1, 1) > 2. We can assume that f = f ′′ from the beginning.

We define the binary function g′ as follows:

g′(x, y) =


g(x, y) + (g(0,−1)− g(1, 0))u{−1,0}(x) if g(1, 0) < g(0,−1),

g(x, y) + (g(1, 0)− g(0,−1))u{0,1}(y) if g(1, 0) > g(0,−1),

g(x, y) if g(1, 0) = g(0,−1).

We have g′ ∈ 〈Γ〉, g′(1, 0) = g′(0,−1) and g′(1,−1) < g′(1, 0) + g′(0,−1). If

g′(1,−1) ≤ 0, let C > −g(1,−1) and define the binary function g′′ as

g′′(x, y) = g′(x, y) + C(u{−1,0}(x) + u{0,1}(y))

for all x, y ∈ D. Otherwise we let g′′ = g′. We have g′′ ∈ 〈Γ〉, g′′(1, 0) = g′′(0,−1),

and 0 < g′′(1,−1) < g′′(1, 0)+g′′(0,−1). Now we can obtain, by scaling g′′, a binary

March 31, 2016

3.4. A Dichotomy Theorem 52

function g′′′ in 〈Γ〉 with g′′′(0, 0) = 0, g′′′(0,−1) = g′′′(1, 0) = 1, and 0 < g′′′(1,−1) <

2. We can assume that g = g′′′ from the beginning.

Note that f(−1, 1) − 2 > 0 and g(1,−1) > 0. By scaling the function u1, we

can obtain a unary function u′1 in 〈Γ〉 with g(1,−1) < u′1(0) < min{2, f(−1, 1) +

g(1,−1) − 2} and u′1(1) = 0. By adding u{0,1} with a large enough coefficient, we

can obtain a unary function v in 〈Γ〉 which still fulfils

g(1,−1) < v(0) < min{2, f(−1, 1) + g(1,−1)− 2} and v(1) = 0,

but where the value v(−1) is as large as we want. For our purposes

v(−1) ≥ max{2− f(0,−1)− g(−1, 0), 3− f(−1,−1)− g(−1, 0),

3− f(0,−1)− g(−1,−1), 4− f(−1,−1)− g(−1,−1)}

is large enough. Now 〈Γ〉 also contains the binary function s defined by

s(x, z) := miny∈D{f(x, y) + v(y) + g(y, z)}

for all x, z ∈ D. We have

s(−1, 0) = min{f(−1, 0) + v(0) + g(0, 0), f(−1, 1) + v(1) + g(1, 0)}

= min{1 + v(0), 1 + f(−1, 1)}

= 1 + v(0),

s(0,−1) = min{f(0, 0) + v(0) + g(0,−1), f(0, 1) + v(1) + g(1,−1)}

= min{1 + v(0), 1 + g(1,−1)}

= 1 + g(1,−1),

s(0, 0) = min{f(0, 0) + v(0) + g(0, 0), f(0, 1) + v(1) + g(1, 0)}

= min{v(0), 2}

= v(0),

s(−1,−1) = min{f(−1, 0) + v(0) + g(0,−1), f(−1, 1) + v(1) + g(1,−1)}

= min{2 + v(0), f(−1, 1) + g(1,−1)}

= 2 + v(0).

March 31, 2016

3.4. A Dichotomy Theorem 53

Since g(1,−1) < v(0), it is easy to see that s is not submodular in the orthant of

(−1,−1).

As s is not submodular in the orthant of (−1,−1), we can express MAX CUT

with u{0,1}. Therefore VCSP(Γ∪ s) is NP-hard, and as the problems VCSP(Γ) and

VCSP(Γ ∪ s) have the same complexity by Theorem 6, we know that VCSP(Γ) is

NP-hard.

This is the first dichotomy result for VCSP where there are infinitely many necessary

conditions for tractability as proven in the following proposition.

Proposition 3. For every rational α ∈ (0, 1], there is a core constraint language

Γα on {−1, 0, 1} satisfying all of the following conditions:

1. Γα is α-bisubmodular, but not α′-bisubmodular for any α′ 6= α.

2. For any permutation of the names of −1, 0, 1 and any α′ ∈ (0, 1], Γα is not

α′-bisubmodular under that renaming, with the only exception when α = α′ = 1

and the renaming swaps 1 and −1.

3. Γα is not submodular on any chain on D,

Proof. Let α = p/q where 0 < p ≤ q are positive integers. Consider the following

functions:

• unary e = [1, 0, 1], uα = [p+ q, q, 0], and vα = [0, p, p+ q]

• binary fα such that fα(1,−1) = fα(−1, 1) = 1, fα(0,−1) = fα(−1, 0) = 1 + q,

fα(−1,−1) = 1 + p+ q, and f(x, y) = 0 on the remaining pairs (x, y).

Let Γα = {e, uα, vα, fα}. It can be directly checked that all functions in Γα are

α-bisubmodular (Proposition 2 can also be used for checking fα) and that the unary

functions in Γα make it a core.

Notice that fα is not submodular when restricted to {−1, 1}. Therefore Γα is not

submodular on any chain on {−1, 0, 1}. It is easy to check that uα is not α′-

bisubmodular for any α′ > α, and vα is not α′-bisubmodular for any α′ < α. We

demonstrate the first case here.

March 31, 2016

3.5. Multimorphisms are not enough 54

For the unary function uα to be α’-bisubmodular it must satisfy the inequality:

(1 + α′) · uα(0) ≤ uα(−1) + α′ · uα(1)

(1 + α′) · q ≤ p+ q + α′ · 0

α′q ≤ p

α′ ≤ p/q

α′ ≤ α

Therefore uα is not α’-bisubmodular for any α′ > α. A similar argument proves vα

is not α′-bisubmodular for any α′ < α.

It is also easy to check that the unary operations guarantee that any permutation of

the names of elements −1, 0, 1 cannot make Γα α
′-bisubmodular for any α′, except

swapping −1 and 1 when α = α′ = 1.

3.5 Multimorphisms are not enough

As mentioned before all known tractable core valued constraint languages were char-

acterised by multimorphisms. It has been shown that the complexity of valued

constraint languages can be characterised by fractional polymorphisms [15], but it

was an open question, asked by Thapper and Živný [58], as to whether all VCSPs

solvable by BLP could be characterised by just multimorphisms. The discovery of

α-bisubmodularity now answers that question as the set of 1/2-bisubmodular func-

tions cannot be defined by multimorphisms. Clearly not every unary function is 1/2-

bisubmodular, so by showing that each multimorphism of a set of 1/2-bisubmodular

functions captures unary functions that are not 1/2-bisubmodular we prove that

tractable VCSPs cannot be characterised by multimorphisms. This result comple-

ments a previous observation that multimorphisms are also not enough for capturing

expressibility (Appendix B of [19]).

It suffices to prove the following proposition:

Proposition 4. There is a finite set Γ of 1/2-bisubmodular functions such that each

multimorphism of Γ is a multimorphism of every unary function on {−1, 0, 1}.

March 31, 2016

3.5. Multimorphisms are not enough 55

Proof. Let µ be a multimorphism of a function f . Then there are operations

F1, . . . , Fk ∈ O(k)
D such that

k∑
i=1

f(Fi(x1, . . . ,xk)) ≤
k∑
i=1

f(xi) (3.5.7)

for all x1, . . . ,xk ∈ Dn, where n is the arity of f . We define the function F : Dk →

Dk by F = (F1, . . . , Fk) and identify µ with F. For the proof of Proposition 4 we

will use the following 1/2-bisubmodular functions:

• unary functions u{−1,0} = [0, 0, 1] and u{0,1} = [1, 0, 0],

• unary functions v1 = [−1, 0, 2] and v−1 = [1, 0,−2],

• binary commutative function b such that b(−1,−1) = 4, b(−1, 0) = 2, b(−1, 1) =

−1, b(0, 0) = 0, b(0, 1) = −2 and b(1, 1) = −4.

It is easy to check that these functions are indeed 1/2-bisubmodular. Let Γ =

{u{−1,0}, u{0,1}, v1, v−1, b}. If F preserves each tuple in Dk as a multiset, we say that

F preserves multisets. It is easy to see that in this case the inequality (3.5.7) holds

with equality for every unary function. So the following lemma finishes the proof of

Proposition 4.

Lemma 9. If F is a multimorphism of Γ then F preserves multisets.

Proof. We first show, using the unary functions from Γ, that if a multiset is not

preserved by F, then F modifies it in the following way: the number of 1s is reduced

by some number x ∈ N, and the number of -1s is reduced by 2x.

Let (d1, . . . , dk) ∈ Dk, ` be the number of 1s in (d1, . . . , dk) and m the number of

-1s. Let `′ be the number of 1s in F(d1, . . . , dk) and m′ the number of -1s. Applying

(3.5.7) with u{−1,0} and u{0,1} gives `′ ≤ ` and m′ ≤ m, and applying (3.5.7) with v1

and v−1 gives

2`′ −m′ = 2`−m.

Now we will show, using the binary function b ∈ Γ, that any multiset has to be

preserved by F. Let d = (d1, . . . , dk) ∈ Dk, ` the number of 1s in d and m the

number of -1s. Let `′ be the number of 1s in F(d) and m′ the number of -1s.

March 31, 2016

3.5. Multimorphisms are not enough 56

Without loss of generality let d1 = · · · = d` = 1 and F1(d) = · · · = F`′(d) = 1. We

have `′ = `− x and m′ = m− 2x for some x ∈ Z≥0. If x = 0 we are done.

Let [k] be the set of indices of d, and [`] the set of indices where d has a 1. As an

example - if d = (1, 1, 1,−1, 0, 0) then [k] = {1, 2, 3, 4, 5, 6} and [`] = {1, 2, 3}.

For every p ∈ [`] let x(p) ∈ (D2)k be defined as follows: x
(p)
p := (dp,−1) = (1,−1)

and x
(p)
i := (di, 1) for every i ∈ [k]\{p}. Also for every p ∈ [`] let e(p) ∈ Dk be

defined as follows: e
(p)
p := −1 and e

(p)
i := 1 for every i ∈ [k]\{p}.

We have:

k∑
i=1

b(x
(p)
i) = −1− 4(`− 1)−m− 2(k − `−m)

= −2k − 2`+m+ 3.

The multiset (−1, 1, . . . , 1) has to be preserved by F, so for every p ∈ [`] there is

exactly one j(p) ∈ {1, . . . , k} with Fj(p)(e
(p)) = −1. If Fj(p)(d) = −1 we have:

k∑
i=1

b(Fi(x
(p)
1 , . . . ,x

(p)
k)) = −4`′ + 4− (m′ − 1)− 2(k − `′ −m′)

= −2k − 2`′ +m+ 5

= −2k − 2(`− x) + (m− 2x) + 5

= −2k − 2`+m+ 5

which is a contradiction to (3.5.7).

If Fj(p)(d) = 0 we have:

k∑
i=1

b(Fi(x
(p)
1 , . . . ,x

(p)
k)) = −4`′ −m′ + 2− 2(k − `′ −m′ − 1)

= −2k − 2`′ +m′ + 4

= −2k − 2(`− x) + (m− 2x) + 4

= −2k − 2`+m+ 4

which also is a contradiction to (3.5.7).

March 31, 2016

3.5. Multimorphisms are not enough 57

So for every p ∈ [`] we have Fj(p)(d) = 1. This yields {j(p)|p ∈ [`]} = [`′], and if

`′ < `, there must be two different indices p, q ∈ [`] such that j(p) = j(q).

Let x ∈ (D2)k be defined as follows: xp := (1,−1), xq := (−1, 1) and xi := (1, 1) for

every i ∈ [k]\{p, q}. Then we have:

k∑
i=1

b(xi) = −1− 1− 4(k − 2) = −4k + 6 and

k∑
i=1

b(Fi(x
(p)
1 , . . . ,x

(p)
k)) = 4− 4(k − 1) = −4k + 8

which is a contradiction to (3.5.7).

So we cannot have `′ < `, and thus we have `′ = ` and m′ = m.

March 31, 2016

Chapter 4

Reducing VCSP to Min-Cost-Hom

4.1 Introduction

It is known that any CSP with a fixed constraint language is polynomial time equiv-

alent to one where the constraint language consists of a single binary relation (i.e. a

digraph) [11, 12, 23]. A recent proof of this by Buĺın et al. [11, 12] gives a reduction

that preserves a number of algebraic properties of the constraint language that are

known to charaterise the complexity of the corresponding CSP. In this chapter we

adapt that proof to the VCSP framework and show that each VCSP, with a fixed

valued constraint language of finite size, is polynomial-time equivalent to one where

the constraint language consists of a single {0,∞}-valued binary function (i.e. a

digraph), and a single finite-valued unary function. Problems of this type have al-

ready been studied as the Minimum Cost Homomorphism Problem (referred to as

MinCostHom), which makes this result somewhat surprising as it was believed that

MinCostHom was essentially a more restricted optimisation problem than VCSP.

We also prove that this reduction preserves some important algebraic properties of

the valued constraint language.

It should be noted that a complementary result has been obtained in [18]. There it

is shown (with a much simpler construction) that any VCSP can be reduced to a

VCSP consisting of a single unary weighted relation and binary relations (but not

a single binary relation as we achieve).

58

4.2. Homomorphisms 59

4.2 Homomorphisms

Firstly we introduce homomorphisms and graph homomorphisms, and then show

how to cast CSP and VCSP as homomorphism problems.

Definition 28. Let τ be a relational signature, that is a set of relational symbols R

each with an associated arity ar(R). A relational τ -structure A consists of a finite

domain D together with a relation RA on D of arity ar(R) for each R ∈ τ . Let X

and A be τ -structures with domains X and D respectively. A homomorphism from

X to A is a function h : X → D, such that for each R ∈ τ and each tuple x ∈ RX ,

h(x) ∈ RA.

Definition 29. Let A be a finite relational τ -structure. Then CSP (A) is the follow-

ing decision problem: Given a finite τ -structure X is there a homomorphism from

X to A?

For the purposes of this chapter we define a digraph as a structure G = (V G, EG)

with vertices v ∈ V G and directed edges e ∈ EG.

Example 19. The digraph homomorphism problem asks whether an input digraph G

admits a homomorphism to a fixed digraph H. I.e. Is there a mapping h : V G → V H

such that if (u, v) ∈ EG then (h(u), h(v)) ∈ EH. This is also known as the H-

colouring problem [26], and if H is a complete graph on k vertices then it is the

k-colouring problem.

It is known that restricting CSP from general structures to digraphs does not reduce

the difficulty of classifying the complexity.

Theorem 19 ([11, 12, 23]). For every structure A, there is a digraph H such that

CSP(A) and CSP(H) are polynomial-time equivalent.

Now we introduce the Minimum Cost Homomorphism Problem.

Definition 30. In the MinCostHom(A) problem, one is given an input τ -structure

X and, in addition, for each x ∈ X, a unary cost function ux : D → Q+ specify-

ing the cost of mapping x to each individual element in D. The goal is to decide

whether there is a homomorphism h from X to A and if so find one of minimal total

cost
∑

x∈X ux(h(x)). For a set ∆ of unary cost functions, let MinCostHom(A,∆)

March 31, 2016

4.2. Homomorphisms 60

denote the subproblem of MinCostHom(A) where all unary functions in instances

are of the form w · u where w ∈ Q+ and u ∈ ∆. If ∆ = {u}, we write simply

MinCostHom(A, u).

The problem MinCostHom(A) was studied in a series of papers, and complete com-

plexity classifications were given in [25] for undirected graphs, in [28] for digraphs,

and in [55] for general structures. Partial complexity classifications for the problem

MinCostHom(A,∆) were obtained in [56, 62, 63]. One can see that MinCostHom is

an intermediate problem between CSP and VCSP, as there is an optimisation as-

pect, but it is limited in the sense that it is controlled by separate unary functions,

without explicit interactions of variables.

We will now define VCSP as a homomorphism problem, following [57] (see also [14]).

This will allow us to easily reuse many results from [11,12].

Definition 31. A weighted relation ρ of arity k on a set is a function from some k-

ary relation R on this set to Q+. A weighted τ -structure wA is τ -structure such that

each relation ρwA in wA is weighted, i.e. ρwA : RA → Q+. By ignoring the weight

functions, one can turn a weighted τ -structure wA into an ordinary, unweighted,

τ -structure A.

An instance of VCSP(wA) is given by a weighted τ -structure wX . A feasible solution

to this instance is a homomorphism h from X to A, and its cost is given by

cost(h) =
∑

R∈τ,x∈RX
ρwX (x) · ρwA(h(x)).

The goal is to decide if such a homomorphism exists, and if so find one with minimal

cost.

Definition 32. For an m-ary cost function φ : Dm → Q+, we define the feasibility

relation, Feas(φ), of φ as follows: (x1, x2, ..., xm) ∈ Feas(φ) ⇔ φ(x1, x2, ..., xm) <

∞.

There is an obvious correspondence between valued constraint languages and weighted

structures: any constraint language Γ can be turned into a weighted structure wA

as follows. Turn each function φ ∈ Γ into a weighted relation ρ : Feas(φ) → Q+,

simply by ignoring the tuples with infinite cost, then introduce a signature τ con-

March 31, 2016

4.3. Proving Poly-Time Equivalence 61

taining a symbol Rφ of arity k for each function φ ∈ Γ of arity k. Clearly, one

obtains a weighted τ -structure. One can also reverse this procedure to convert a

weighted structure into a valued constraint language.

The correspondence between VCSP(wA) and VCSP(Γ) can be seen as follows. If

wX is an instance of VCSP(wA), then one can view the domain of wX as the set

of variables in an instance I of VCSP(Γ), and each tuple x ∈ RX gives rise to a

valued constraint φ(x) with weight ρwX (x) where φ ∈ ΦD is the function obtained

by extending ρwA with infinite values. Then the homomorphisms from X to A are

precisely the solutions to I of finite cost, and the correspondence preserves the costs.

Thus, VCSP(wA) and VCSP(Γ) are effectively the same problem.

Note that if all functions in Γ are {0,∞}-valued, i.e. VCSP(Γ) is in fact a CSP, then

the weighted structure wA obtained from Γ as described above will be 0-weighted,

i.e. effectively unweighted, and VCSP(wA) is the same problem as CSP(A). It is

also clear that if all functions in Γ are {0,∞}-valued or unary finite-valued, then

VCSP(Γ) is MinCostHom(A,∆) for the obvious choice of A and ∆.

4.3 Proving Poly-Time Equivalence

Firstly we introduce some simple definitions relating to digraphs that we will need

in the construction of the main theorem of this paper. As already seen we define

a digraph as a structure G = (V G, EG) with vertices v ∈ V G and directed edges

e ∈ EG. We write the directed edge (a, b) ∈ EG as a→ b for simplicity.

Definition 33. A digraph P is an oriented path if it consists of a sequence of vertices

v0, v1, ...vk such that precisely one of (vi−1, vi), (vi, vi−1) is an edge, for each i =

1, ..., k. We denote the initial vertex v0 by ιP.

Definition 34. Given a digraph G, any two vertices a and b in G are connected if

there is an oriented path between them.

A digraph G is said to be connected if it has only a single connected component. The

length of an oriented cycle is defined as being the absolute value of the difference

between edges oriented in one direction and edges oriented in the opposite direction.

A connected digraph is then balanced if all of its cycles have zero length [23]. The

March 31, 2016

4.3. Proving Poly-Time Equivalence 62

vertices of a balanced digraph can be organised into levels, that is for every directed

edge (a, b) ∈ EG, lvl(b) = lvl(a) + 1. The minimum level of G is 0, and the top level

is the height of G. We will often refer to vertices on level 0 as base vertices.

Here we present the main theorem of this chapter, and the remainder of this section

details the proof.

Theorem 20. Let wA be a weighted structure that is a rigid core. There is a

balanced digraph D which is a rigid core and a finite-valued function u such that

problems VCSP(wA) and MinCostHom(D, u) are polynomial-time equivalent.

Proof. We can assume without loss of generality that wA contains only one weighted

relation, say of arity n. If it contains more, say, ρ1, . . . , ρt where, for 1 ≤ j ≤ t,

the arity of ρj is nj, than the standard trick is to take the direct product ρ of these

relations. Specifically, if ρj : Rj → Q+ then ρ : R1 × . . . × Rt → Q+ is such that

ρ(a1, . . . , at) = ρ1(a1) + . . . + ρt(at). It is well known and not hard to see that

replacing ρ1, . . . , ρt with ρ does not change the complexity of VCSP(wA).

The reduction from VCSP(wA) to MinCostHom(D, u) follows from Lemmas 11

and 12, and the reduction in the opposite direction is shown in Lemma 13.

The proofs of these results rely heavily on the proofs developed for ordinary CSPs

by Buĺın et al. [11,12], with D being exactly the same digraph constructed for CSPs,

and u constructed using similar ideas. In particular if the constraint language A

is crisp, then u ≡ 0, and our VCSP is essentially a CSP, and our proof follows the

proof of [11,12].

4.3.1 Constructing (D, u)

We will take a rigid core valued constraint language of finite size, Γ, and construct a

balanced digraph D and a unary function u, withD(Γ) = (D, u), such that V CSP (Γ)

and V CSP (D(Γ)) are polynomial-time equivalent.

We use the same construction as [11,12] for zigzags and single edges, that is a zigzag

is the oriented path • → • ← • → • and a single edge is the path • → •.

March 31, 2016

4.3. Proving Poly-Time Equivalence 63

Recall that n is the arity of the single weighted relation ρ in wA. For S ⊆

{1, 2, . . . , n} define QS,l to be a single edge if l ∈ S, and a zigzag if l ∈ {1, 2, . . . , n}\

S.

As in [11,12] we define the oriented path QS (of height n+2) by

QS = • → • +̇ QS,1 +̇ QS,2 +̇ · · · +̇ QS,n +̇ • → •

where +̇ denotes the concatenation of paths.

Now take R, i.e. the underlying relation of ρ, and the domain D of wA, and as a

starting point consider the digraph with vertices D ∪ R and edges D × R. Then

replace every edge (d, a) ∈ D×R with the path Q{i:d=ai}, and this is the digraph D.

To complete the construction, we define a unary function u. Let V D be the vertices

of D, and note that R ⊆ V D. Let u to be a unary function from V D to Q+ such

that

u(v) =

 ρ(v) if v ∈ R

0 otherwise.

The digraph D is identical to the digraph defined in [11,12] and due to our definition

of R the number of vertices in D remains as (3n+ 1)|R||D|+ (1− 2n)|R|+ |D| and

the number of edges as (3n + 2)|R||D| − 2n|R| as proven in [11, 12]. Also as noted

in [11,12] this construction can be performed in polynomial time.

Example 20. Consider the weighted structure wA over the domain D = {0, 1} with

the single weighted relation

ρ(x, y) =


2 if (x, y) = (0, 1)

1 if (x, y) = (1, 0)

undefined otherwise.

The digraph D constructed from ρ is shown in Figure 4.1. The unary function built

from ρ is

u(v) =


2 if v = (0, 1)

1 if v = (1, 0)

0 otherwise

for every vertex v ∈ V D.

March 31, 2016

4.3. Proving Poly-Time Equivalence 64

0 1

(1, 0) (0, 1)

Figure 4.1: The digraph D built from the weighted structure wA.

Lemma 4.1 of [12] states that the unary polymorphisms of relation R and of digraph

D are in one-to-one correspondence. Hence, we immediately get the following.

Lemma 10. wA is a rigid core if and only D is a rigid core.

4.3.2 Reduction from VCSP(wA) to MinCostHom(D, u)

Given an instance of VCSP(wA0), where wA0 is some weighted structure, the vari-

ables in any constraint in that instance are explicitly constrained. It is also possible

that any subset of variables in that instance are implicitly constrained due to com-

binations of constraints. The weighted relation describing this implicit constraint

may not belong to wA0, but is said to be expressible by wA0.

Definition 35. Given an instance wX of VCSP(wA0) with domain X = {x1, ..., xn},

and a tuple of distinct elements W = (x1, . . . , xt), where t ≤ n, define weighted re-

lation ρWwX as follows:

ρWwX (a1, . . . , at) = min
h:X→A, h(x1,...,xt)=(a1,...,at)

cost(h). (4.3.1)

Note that if, for some (a1, . . . , at), there is no homomorphism h : X → A such that

h(x1, . . . , xt) = (a1, . . . , at) then ρWwX (a1, . . . , at) is undefined. A weighted relation ρ

is expressible by wA0 if there is an instance wX of VCSP(wA0) with domain X,

and W ⊆ X, such that ρ = ρWwX .

Lemma 11 ([17]). Let wA and wA0 be weighted structures. If every weighted

relation ρ in wA is expressible by wA0, then VCSP(wA) is polynomial-time reducible

to VCSP(wA0).

March 31, 2016

4.3. Proving Poly-Time Equivalence 65

Let wA0 be the weighted relational structure containing only weighted relations ED

and u, where ED simply assigns 0 to every edge of D.

Lemma 12. wA is expressible by wA0.

Proof. All we need to see is that the domain D and weighted relation ρ of wA can be

expressed by wA0, in the sense of Equation (4.3.1). Consider the weighted structure

wX that contains the binary 0-weighted relation corresponding to the oriented path

Q∅ (defined above) and the empty unary relation. Let x be the initial vertex of Q∅
and let W = {x}. Then D, as a unary 0-weighted relation, can be defined as ρWwX .

Indeed, the homomorphisms from X to A are simply homomorphisms from Q∅ to

D, and it is clear that the images of x under such homomorphisms are exactly the

base elements of D, i.e., precisely the elements of D.

To express ρ, consider the weighted structure wX whose binary 0-weighted relation

corresponds to the digraph obtained by identifying the terminal vertices of n directed

paths Q{1}, . . . ,Q{n}, and whose unary relation contains a single element y, the

common vertex of the paths Q{1}, . . . ,Q{n}, with weight 1. Let W = {x1, . . . , xn}

where xi is the initial element of Q{i}. Again, it is not hard to see from the definitions

of D and u that this ρWwX is precisely the required weighted relation ρ.

4.3.3 Reduction from MinCostHom(D, u) to VCSP(wA)

It is well known that fixed template CSPs can be modelled as homomorphism prob-

lems [23], and we will use this in the feasiblity aspect of our main theorem as it is

in [11,12]. In order to complete the proof of the following lemma, and therefore the

proof of the main theorem of this chapter, we first require a technical detail.

Let wA′ be the structure obtained from wA by adding the weighted relation ρ0,

which is obtained from ρ by making every weight 0. It is shown in [14] that

VCSP(wA) and VCSP(wA′) are polynomial-time equivalent.

Lemma 13. MinCostHom(D, u) reduces to VCSP(wA′) in polynomial time.

Proof. Let (G,W) be an instance of MinCostHom(D, u), where G is a digraph and

W is a unary weighted relation over V G responsible for the optimisation aspect of

March 31, 2016

4.3. Proving Poly-Time Equivalence 66

the problem. Formally (to match Definition 30), we can assume that the vertices of

G outside W have function 0 · u applied to them.

Our reduction is a modification of a reduction in [11,12]. Specifically, Stages 1 and

3a of the reduction are exactly the same, but Stages 2 and 3b are modified.

Stage 1: Verify G is balanced and test height.

This initial check is to verify that that G is balanced and that G has height not

greater than m, the height of D. If either of these conditions fail there can be no

homomorphism from G to D and we return the fixed NO instance of VCSP(wA′).

It is easy to see that these checks can be performed in polynomial time.

It is clear that if G is balanced and has the right height then, under any homomor-

phism from G to D, only vertices of top level in G can be mapped to the vertices

of top level in D. Therefore, any vertex in W that is not from the top level cannot

possibly affect the cost of a homomorphism, and so can be safely removed from W .

From now we will assume that W , if non-empty, contains only top level vertices of G.

Stage 2: Elimination of short components.

If G contains a connected component H of height less than m (a short component)

then we can find an optimal solution for this component directly in polynomial time

as in [11,12], the proof of which is in Section 4.5. We repeat this procedure for every

short component and if there is any component H for which there is no solution

then we return the fixed NO instance of VCSP(wA′). Provided there is an optimal

solution to all short components we can ignore these components for the remainder

of the reduction. If G itself is of height less than m then finding an optimal solution

to every connected component completes the reduction and we output some fixed

YES instance of VCSP(wA′).

Stage 3a: Construction of B′.

This stage is identical to Stage 3A of [11,12] and is included here only for complete-

March 31, 2016

4.3. Proving Poly-Time Equivalence 67

ness. In this stage we build the “object” B′, which consists of a list of tuples, some

of them with subscripts, and a list of equalities. These tuples contain sets of vertices

of D and new vertices created during the algorithm. We will also need the following

technical detail from [11,12].

Say that a digraph H is satisfiable in a digraph H′ if there is a homomorphism from

H to H′. It is shown in [11, 12] that, for any connected balanced digraph H, there

is a smallest set S ⊆ {1, ..., n} such that H is satisfiable in QS, and this set can be

efficiently found. We denote this set by Γ(H)1.

Any new vertices created in the algorithm to construct B′ should be unique, and we

remind the reader that the height of G is m and the arity of the weighted relation

ρ in wA is n. Say that the internal components of G are the connected components

of the induced subgraph of G obtained by removing all vertices of height 0 and m.

The algorithm is as follows:

Firstly we create tuples from the top level vertices of G. For each such vertex e,

there will be one tuple with subscript e.

For every vertex e in G of height m and for i = 1 to n, do the following:

1. Identify all internal components C of G such that i ∈ Γ(C) and C has an edge

to e.

2. If there are no such components, add a new vertex x to the ith component

(vertex set) of the output tuple for e.

3. Else, for each such internal component C, do

(a) If C has edges to vertices of level 0 in G, say b1, . . . , bj, then add them to

the ith vertex set of the output tuple for e.

(b) Else, add a new vertex x to the ith vertex set of the output tuple for e.

This completes the first part of the algorithm for constructing B′ and now we create

tuples (that will not have subscripts) using the base vertices of G.

1Notation Γ(H) is from [11,12], not related to valued constraint languages Γ.

March 31, 2016

4.3. Proving Poly-Time Equivalence 68

For every level 0 vertex b and for i = 1 to n do the following:

1. Identify all internal components C of G such that C has an edge to b, but no

edge to any vertex of height m.

2. For each such internal component, if they exist, do

(a) if i ∈ Γ(C) then add b to the ith vertex set of the output tuple for b.

(b) if i /∈ Γ(C) then add a new vertex x in the ith vertex set of the output

tuple for b.

The algorithm is completed by creating a list of equalities, L, showing (some of the)

vertices that will have to be mapped to the same vertex by any homomorphism from

G to D. The rules for creating L are as follows.

i. If there is an internal component with edges to distinct vertices e and f of height

m in G, then we write e = f .

ii. If there is an internal component with edges to distinct vertices b and c of height

0 in G, then we write b = c.

Stage 3b: Construction of wX ′.

In a modification to the construction of structure B in the proof of [11,12], we con-

struct weighted structure wX ′ containing two weighted relations ρ′w and ρ′0. The

relation ρ′0 will be the 0-weighted relation identical to the (unique) relation in struc-

ture B from [11,12], whilst ρ′w is built using W , and controls the optimisation aspect

of the reduction.

We start with building the equality graph. Its vertices are the base vertices of G

and the new vertices created in stage 3a of the algorithm. The rules to create edges

in the equality graph are taken directly from [11,12].

The three rules for creating an edge in the equality graph are:

i. Add an edge from vertex a to vertex b if a and b lie in the same vertex set in

B′.

ii. Add an edge if a = b is an equality in L.

March 31, 2016

4.3. Proving Poly-Time Equivalence 69

iii. Add an edge if a and b appear in the ith vertex set of two tuples with subscripts

e and f where e = f is an equality in L.

Each element in the domain X ′ of wX ′ will be the set of vertices of a connected

component of the equality graph. It follows from the construction that all vertices

from the same connected component have to be mapped to the same element under

any homomorphism from G to D.

To obtain the tuples of ρ′0 we replace the vertex set in every coordinate of every tuple

of B′ with the set of vertices of the connected component containing that vertex set

in the equality graph, and remove all of the book-keeping subscripts. Each tuple in

the weighted relation ρ′0 is assigned weight 0.

The weighted relation ρ′w will be defined on (some of the) tuples on which ρ′0 is

defined. Assume that ρ′0(A1, . . . , An) is defined. Then ρ′w(A1, . . . , An) is defined if

and only if there is e ∈ W such that the tuple (B1, . . . , Bn) ∈ B′ with subscript e

satisfies Bi ⊆ Ai for all 1 ≤ i ≤ n. In this case, the weight of ρ′w(A1, . . . , An) is the

sum of weights w(e) over all such e.

It is stated in [11,12] that homomorphisms from G to D are in one-to-one correspon-

dence with homomorphisms from X ′ to A′ which we elaborate here. Let h : G→ D,

we want to show there is a corresponding homomorphism h′ : X ′ → A′. By con-

struction X ′ consists of tuples whose elements are vertex sets, where each vertex set

can contain bottom vertices of G and any new vertices created in stage 3a of the

algorithm above. Consider all vertex sets of all tuples of X ′. No two of these vertex

sets have any vertices in common, unless the vertex sets are identical, as they would

have been identified and grouped together by the equality graph in stage 3b. If a

vertex set consists of only new vertices then that vertex set appears only once in

one tuple of X ′ (note that we ignore repeated tuples in X ′). It is noted in [11, 12]

that any tuple in X ′ that consists of only new vertices can be ignored. We note that

such a tuple can be mapped anywhere by a homomorphism h, and therefore the

homomorphisms h and h′ are only in one-to-one correspondence if we ignore such

tuples.

March 31, 2016

4.3. Proving Poly-Time Equivalence 70

The homomorphism h maps bottom vertices of G to bottom vertices of D, and by

definition the bottom vertices of D are the elements of A′. If we consider a tuple in

X ′ where each of its elements is a vertex set containing at least one bottom vertex

of G, then we know which element this maps to in A′ as we know where h mapped

that vertex to in D. Therefore the homomorphism h fully determines how h′ acts

on vertex sets containing at least one bottom vertex of G.

Now consider the case of a tuple in X ′ which has at least one element which is a

vertex set containing only new vertices. We will assume this element is in the ith

position of the tuple. These new vertices were created in stage 3a, either in step 2

or step 3(b) by a specific top vertex of G, or in step 2(b) by a specific base vertex

of G, and will therefore fall into exactly one of the following two cases.

First consider the case where a new vertex was created from a specific top vertex e

of G. The new vertex was created as there is either no internal component C with

an edge to e such that i ∈ Γ(C) (Step 2), or all the internal components C with

edges to e and i ∈ Γ(C) have no edges to any base vertices (Step 3(b)). Given a

homomorphism h : G → D we can identify which top vertex t in D the vertex e

is mapped to. Therefore we can identify the unique internal component CD in D

with i ∈ Γ(CD) that has t as its top vertex, and the base vertex of D to which it

is connected. Thus we have identified the base vertex in D (i.e. the element in A′)

which is mapped to by our vertex set containing only new vertices, and therefore

determined how h′ acts on this vertex set.

Now consider the case where the new vertex was created by a base vertex b of G

(Step 2(b)). Note that we only create a new vertex if there is at least one internal

component of G with an edge to b that has no edge to any top vertex. Furthermore

we note that if there is such an internal component and it has Γ(C) = ∅ the tuple we

would obtain in X ′ would consist of only new vertices and should be ignored. Let C

be an internal component with an edge to b and Γ(C) 6= ∅. Under a homomorphism

h : G → D we can identify where the base vertex b is mapped to in D, and also

where the vertices of C are mapped to. Thus we can identify the specific top vertex

t of D that is at the end of the oriented path that C mapped to. Now we can use the

March 31, 2016

4.3. Proving Poly-Time Equivalence 71

same method as before to identify the base vertex of D that our new vertex must

map to. That is we identify the unique internal component CD in D with i ∈ Γ(CD)

that has t as its top vertex, and then identify the base vertex of D to which it is

connected. The homomorphism h maps our new vertex to that base vertex of D,

and therefore we have determined how h′ acts on this vertex set.

The above cases cover all possible vertex sets that can appear in tuples of X ′, and

hence we have fully defined h′ given h. It remains to argue that h′ is a homomorphism

from X ′ to A′, i.e. for each tuple x ∈ X ′, h′(x) ∈ A′. By construction the tuple

x ∈ X ′ corresponds to a top vertex e of G, which is mapped, by the homomorphism

h, to a top vertex t = h(e) of D. The vertex t has a corresponding tuple in A′, and

this is the tuple h′(x) ∈ A′. This can be seen by considering an element of the tuple

x, each of which is a vertex set - a set of base vertices of G. These vertices all map

to the same base vertex in D, which then corresponds with the appropriate element

in the tuple h′(x) ∈ A′. Therefore for every tuple x ∈ X ′ we have h′(x) ∈ A′, and

hence h′ : X ′ → A′ is a homomorphism.

The argument in the reverse direction is much simpler. Given an arbitrary homo-

morphism h′ : X ′ → A′, we can easily recover the homomorphism h : G → D. By

construction the tuples in X ′ correspond to top vertices of G, while their elements

are sets of bottom vertices (and new vertices). Likewise the tuples of A′ correspond

to top vertices of D, and their elements are bottom vertices. Therefore given the

homomorphism h′ we know which top vertices of G map to which top vertices of

D, and likewise for the bottom vertices. Each internal component of G is then

forced into mapping onto the only satisfiable path available in D, and thus we have

recovered the homomorphism h : G→ D.

Given that we can fully determine h′ given h, and vice versa, we have successfully

proven that h and h′ are in one-to-one correspondence.

It also follows from our construction of ρ′w that the corresponding homomorphisms

will have the same cost as we now show.

March 31, 2016

4.3. Proving Poly-Time Equivalence 72

Consider a homomorphism h : G→ D, it will have the following cost:

cost(h) =
∑
e∈W

we · u(h(e))

The corresponding homomorphism h′ : X ′ → A′ will have the following cost:

cost(h′) =
∑

(A1,...,An) s.t.
ρ′w is defined

ρ′w · ρ(h′(A1), . . . , h′(An))

Let e be a top vertex in G, then h(e) is a top level vertex in D. Also let (A1, . . . , An)

be a tuple in X ′, then (h′(A1), . . . , h′(An)) is a tuple in A′. By construction each

of the top vertices of G corresponds with a tuple in X ′, and each of the top level

vertices in D corresponds with a tuple in A′. Given the one-to-one correspondence

between the homomorphisms h and h′, if the vertex e in G corresponds with the

tuple (A1, . . . , An) in X ′, then the vertex h(e) in D corresponds with the tuple

(h′(A1), . . . , h′(An)) in A′. The cost of applying the homomorphism h to the vertex e

is u(h(e)). Similarly the cost of applying the homomorphism h′ to the corresponding

tuple (A1, . . . , An) is ρ(h′(A1), . . . , h′(An)). It follows from the definitions of u and

ρ that we have u(h(e)) = ρ(h′(A1), . . . , h′(An)).

Finally we argue that costs of h and h′ are equal. First consider the case where

all of the vertices e ∈ W map to unique top vertices in D, that is if e1 6= e2 ⇒

h(e1) 6= h(e2). Then ρ′w = we by definition, and therefore cost(h) = cost(h′). Now

consider the case where h maps at least two vertices in W , say e1 and e2, to the

same top vertex in D. This implies that both u(h(e1)) = ρ(h′(A1), . . . , h′(An)) and

u(h(e2)) = ρ(h′(A1), . . . , h′(An)). Therefore the weight ρ′w must be the sum of the

weights we1 and we2 , in order for cost(h) = cost(h′), and this holds by the definition

of ρ′w.

If the set W is empty then the cost of h is undefined. In turn there would be

no tuples (A1, . . . , An) such that ρ′w is defined, and the cost of h′ would also be

undefined. This reduces the problem to the feasibility problem as in [11,12].

March 31, 2016

4.4. Preservation of Algebraic Properties 73

4.4 Preservation of Algebraic Properties

The study of algebraic properties (e.g. polymorphisms) of constraint languages has

been very useful in classifying the computational complexity of CSPs. It has been

the basis of a number of important results such as the CSP dichotomy proof on 3-

element domains [7] and the work of Barto and Kozik [4] and Bulatov [8] describing

constraint languages that are solvable by local consistency methods (problems of

bounded width). The algebraic CSP dichotomy conjecture [10] predicts, in terms of

polymorphisms, where the split between polynomial time and NP-complete prob-

lems occurs.

The important properties of polymorphisms are usually given by identities, i.e.

equalities of terms that hold for all choices of the variables involved in them. Recall

some of the important types of operations we have seen previously:

• An operation f is idempotent if it satisfies the identity f(x, . . . , x) = x.

• A k-ary (k ≥ 2) operation f is weak near unanimity (WNU) if it is idem-

potent and satisfies the identities f(y, x, . . . , x, x) = f(x, y, . . . , x, x) = · · · =

f(x, x, . . . , x, y).

• A k-ary (k ≥ 2) operation f is cyclic if f(x1, x2, . . . , xk) = f(x2, . . . , xk, x1).

• A k-ary (k ≥ 2) operation f is symmetric if f(x1, . . . , xk) = f(xπ(1), . . . , xπ(k))

for each permutation π on {1, . . . , k}.

For example, the algebraic dichotomy conjecture can be re-stated as follows [10,49]:

for a core structure A, CSP(A) is tractable if A has a WNU polymorphism of

some arity, and NP-complete otherwise. For a core A, the problems CSP(A) has

bounded width if and only if A has WNU polymorphisms of almost all arities [4].

For a core weighted structure wA such that each weighted relation in wA is defined

on all tuples of the corresponding arity, VCSP(wA) is solvable in polynomial time

if wA has symmetric fractional polymorphisms of all arities [59], and it is NP-hard

otherwise.

It is well known and easy to see that a (weighted or unweighted) structure is a rigid

March 31, 2016

4.4. Preservation of Algebraic Properties 74

core if and only if all its polymorphisms are idempotent.

An operational signature is a set of operation symbols with arities assigned to them.

An identity is an expression t1 = t2 where t1 and t2 are terms in this signature. An

identity t1 = t2 is said to be linear if both t1 and t2 involve at most one occurrence

of an operation symbol, and balanced if the variables occuring in t1 and t2 are the

same (e.g. f(x, x, y) = g(y, x, x)). (This notion is not related to balanced digraphs).

A set Σ of identities is linear if it only contains linear identities, idempotent if for

each operation symbol, f , the identity f(x, x, ..., x) = x is in Σ and balanced if all

of the identities in Σ are balanced. Note the identities defining WNU, symmetric

and cyclic operations above are linear and balanced.

Recall the structure wA0 from Lemma 12. Since wA is expressible in wA0, every

fractional polymorphism of wA0, when restricted to D, is a fractional polymorphism

of wA (see [14]). Hence the presence of a fractional polymorphism ω : C → [0, 1]

such that the operations in C satisfy some set of identities carries over from wA0

to wA. We show that, for linear balanced sets of identities, the converse is also

true.

First we must introduce some facts about connected components of powers of D.

Let Dk be the direct kth power of the digraph D, i.e. its vertices are the k-tuples of

elements of D, and (c,d) is an edge in Dk if and only if, for all 1 ≤ i ≤ k, (ci, di) is

an edge in D. Consider the diagonal of D, i.e. the set {(c, . . . , c) | c ∈ V D}. Clearly,

the diagonal is contained in one connected component of Dk, denote it by ∆k. We

will need some properties of Dk proven in [12], and remind the reader of the fact

that the vertices of a balanced digraph can be organised into levels, such that for

every directed edge (a, b), lvl(b) = lvl(a) + 1.

Lemma 14 ([12]). We have both Dk ⊆ ∆k and Rk ⊆ ∆k.

Lemma 15 ([12]). Assume that a connected component ∆′ of Dk contains a tuple

c = (c1, . . . , ck) such that lvl(c1) = . . . = lvl(ck). Then every d = (d1, . . . , dk)

satisfies lvl(d1) = . . . = lvl(dk) and also either ∆′ = ∆k or ∆′ is one-element.

As in [11,12] we define a linear ordering on the vertices of the digraph D. For every

e = (a, r) ∈ D × R, denote the path Q{i:a=ri} in D by Pe. Also, write Pe,l to mean

March 31, 2016

4.4. Preservation of Algebraic Properties 75

QS,l where Pe = QS. First, fix a linear ordering �1 on D and extend it to any linear

ordering � of E = D × R such that if (d1, t1) � (d2, t2) � (d1, t3) then d1 = d2.

Now define the mapping ε : V D → E by setting ε(x) to be the �-minimal e ∈ E

such that x ∈ Pe. Finally we define the linear order v on the vertices of the digraph

D, where x < y if either:

lvl(x) < lvl(y), or

lvl(x) = lvl(y) and ε(x) ≺ ε(y), or

lvl(x) = lvl(y), ε(x) = ε(y), and x is closer to ιPε(x) than y.

Lemma 16 ([12]). Let K and L be subsets of V D such that L 6⊆ R and

• for every x ∈ K there is y′ ∈ L such that x→ y′ is an edge in D, and

• for every y ∈ L there is x′ ∈ K such that x′ → y is an edge in D.

If c and d are the <-minimal elements of K and L, respectively, then c → d is an

edge in D.

Now we introduce the main theorem of this section.

Theorem 21. Let wA and (D, u) be as in Theorem 20. If wA has a k-ary fractional

polymorphism ω : C → [0, 1] such that operations in C satisfy a linear balanced set

Σ of identities then (D, u) also has a k-ary fractional polymorphism ω0 : C0 → [0, 1]

such that there is a bijection between C and C0, and the operations in C0 satisfy Σ.

In particular, if ω is such that some operation in C (or all non-projection operations

in C) is WNU then the same holds for ω0. Similarly, if ω is such that some operation

in C (or all non-projection operations in C) is cyclic or symmetric then the same

holds for ω0.

Proof. It is shown in [11, 12] how polymorphisms of ρ can be transformed (in fact,

extended) to polymorphisms of D in such a way that any set of linear balanced

identities carries over. The transformation there is designed to preserve not only

balanced identities, and, for our purposes, we can use a simplified version of it.

Let C0 be obtained from C by applying this (simplified) transformation to all non-

projection operations in C and extending projection operations in C so that they

stay projection operations. Obtain ω0 from ω by using this bijection between C0 and

March 31, 2016

4.4. Preservation of Algebraic Properties 76

C, i.e. keep the weights of operations the same. Then ω0 will be a fractional poly-

morphism of D. Indeed, since D is 0-weighted, the last condition in the definition

of a fractional polymorphism will be trivially satisfied, while the other conditions

trivially carry over. Hence, it only remains to ensure that ω0 is a fractional poly-

morphism of u. For this, we extend the operations f from C to operations f0 on

V D in such a way that, for any v1, . . . , vk ∈ V D, we have f0(v1, . . . , vk) ∈ R only if

v1, . . . , vk ∈ R. With this condition, the fact that ω0 is a fractional polymorphism

of u follows from the fact that ω is a fractional polymorphism of ρ, as we show in

the rest of the proof.

Let Σ be a set of linear balanced identities in operations symbols {fλ | λ ∈ Λ}

such that, interpreting each fλ as a specific operation fAλ ∈ C, the operations

{fAλ | λ ∈ Λ} satisfy Σ. We can without loss of generality assume that {fAλ | λ ∈ Λ}

is the set of all non-projection operations in C.

We will extend each projection operation in C to the corresponding projection on

V D and each non-projection operation fAλ ∈ C to a polymorphism fDλ of D in such

a way that {fDλ | λ ∈ Λ} will also satisfy Σ. The construction will also ensure that

ω0 obtained from ω as described above is indeed a fractional polymorphism of u.

As in [11, 12], let the digraph Z be the zigzag with vertices labelled 00, 01, 10 and

11, such that we describe the oriented path 00 → 01 ← 10 → 11. Given a vertex

pair {x, y} in the zigzag, define the operation ∧ such that x ∧ y is the vertex closer

to 00. For each λ ∈ Λ, let fZλ (x1, ..., xk) =
∧k
i=1 xi where k is the arity of fλ. It is

clear that the set {fZλ | λ ∈ Λ} satisfies any balanced set of identities.

Now we define polymorphisms {fDλ | λ ∈ Λ}. Fix λ ∈ Λ, assume that fλ is a k-ary

non-projection operation and let c ∈ (V D)k. If c ∈ Rk then (fAλ)(k)(c) will denote the

element of R obtained by applying fAλ to the tuples c1, . . . , ck ∈ R component-wise.

Note that (fAλ)(k)(c) ∈ R because fAλ is a polymorphism of R. Similarly, we can

apply fAλ to elements e1, . . . , ek ∈ D × R and obtain an element (fAλ)k+1(e1, ..., ek)

from D ×R.

March 31, 2016

4.4. Preservation of Algebraic Properties 77

Construct fDλ as follows:

Case 1. c ∈ Dk ∪Rk.

1a. If c ∈ Dk, we define fDλ (c) = fAλ (c).

1b. If c ∈ Rk, we define fDλ (c) = (fAλ)(k)(c).

Case 2. c ∈ ∆k\(Dk ∪Rk).

Let ei = ε(ci) for 1 ≤ i ≤ k and e = (fAλ)k+1(e1, ..., ek). Let 1 ≤ l ≤ k be minimal

such that ci ∈ Pei,l for all 1 ≤ i ≤ k.

2a. If Pe,l is a single edge, then we define fDλ (c) to be the vertex from Pe,l having

the same level as all the ci’s.

If Pe,l is a zigzag then at least one of the Pei,l’s is a zigzag as well. For every 1 ≤ i ≤ k

such that Pei,l is a zigzag let Φi : Pei,l → Z be the unique isomorphism. Let Φ denote

the isomorphism from Pe,l to Z.

2b. If all of the Pei,l’s are zigzags, then fDλ (c) = Φ−1(fZλ (Φ1(c1), ...,Φm(ck))).

2c. Else, we define fDλ (c) to be the v-minimal element from the set {Φ−1(Φi(ci))|Pei,l
is a zigzag}

Case 3. c /∈ ∆k.

Define fDλ (c) to be the v-minimal element from the set {c1, ..., ck}.

The definition of fDλ in [12] is similar, but Case 3 there is split into three subcases

(3a)-(3c), which is unnecessary for our purposes, as we use their (3c) throughout

our Case 3. The proof that fDλ is a polymorphism of D is a subset of the proof of

Claim 5.7 in [12].

It remains to show that ω0 is a fractional polymorphism of u, i.e. ω0 and u satisfy the

last condition in the definition of a fractional polymorphism. When applied to u, this

condition says that, for any x1, . . . , xk ∈ V D, we have
∑

f∈C0
ω0(f)u(f(x1, x2, ..., xk)) ≤

1
k
(u(x1) + u(x2) + ... + u(xk)). Recall that, by definition, u(x) = 0 for all x ∈

V D\R. By inspecting our definition of fDλ , it is clear that if fDλ (x1, . . . , xk) ∈

R then x1, . . . , xk ∈ R. Thus, if not all x1, . . . , xk are in R, the only possi-

March 31, 2016

4.5. Dealing with Short Components 78

ble non-zero terms appear in the RHS of the inequality, and hence it is trivially

true. On the other hand, if all x1, . . . , xk are in R then f(x1, . . . , xk) ∈ R and so

u(f(x1, . . . , xk)) = ρ(f(x1, . . . , xk)). In this case, the inequality holds because the

inequality
∑

f∈C ω(f)ρ(f(x1, x2, ..., xk)) ≤ 1
k
(ρ(x1) + ρ(x2) + ... + ρ(xk)) holds for

ω.

4.5 Dealing with Short Components

In this section, we provide the argument justifying Stage 2 of the algorithm from

the proof of Lemma 13.

Although we consider VCSPs, when eliminating short components of an input di-

graph G, we first check that the components are satisfiable in D using the method

for standard CSPs as in [11]. This involves testing that components are satisfiable

in some fixed family of directed paths, and then we can identify their associated

costs. Recall that a path QS has zigzags in every position i where i /∈ S, and thus

we have the following lemma:

Lemma 17 ([11]). Consider the paths QS where S ⊆ {1, ..., k}.

1. CSP(Q[k]\{i}) is solvable in polynomial time for any i ∈ {1, . . . , k}, even when

singleton unary relations are added.

2. For any S ⊆ {1, . . . , k} the problem CSP(QS) is solvable in polynomial time.

Definition 36. Let QS1, QS2 , . . . ,QSl
be paths that all have the same initial (or

terminal) vertex in D. Define F to be the fan structure obtained when these paths

are amalgamated at their shared vertex v, and u|F be our unary function restricted

to F.

Lemma 18. MinCostHom(F, u|F), restricted to inputs of height less than m, is

polynomial-time solvable.

Proof. Consider an instance H = (H,W) of MinCostHom(F, u|F). We may assume

H has a homomorphism to F, has height strictly less than the height of F, and is

a single component. We call a homomorphism from H to F a solution, and H is

satisfiable if it has a solution. We now consider the following cases:

March 31, 2016

4.5. Dealing with Short Components 79

1. First check if H has a solution that does not involve v.

In this case H must be satisfiable within at least one of the paths QSi
of F and

by applying (2) of Lemma 17 to every path QSi
we can identify all paths where

H is feasible. It is possible that a vertex u of H can be interpreted at different

heights in a path QSi
, and we use the unary singletons to fix a particular height

for u to test for a solution. If we do not find a solution fixing u at that height

we successively try new heights for u. If we find no solutions for H at any height

in any path QSi
then we continue to case 2. If there is a solution and a vertex of

H maps to a top level vertex t in F and t ∈ W then the cost of that mapping is

u|F(t). If H has multiple solutions with non-zero cost then we choose the solution

with the minimal cost, and H reduces to a single valued tuple of the objective

function of A determined by t, with cost u|F(t). If no vertex of H maps to a

vertex in W in any feasible solution then H has no influence on the optimisation

problem and is ignored for the remainder of the reduction.

2. H has a solution involving v.

If v /∈ W we follow the same procedure given in [11] as there is no optimisation

to consider. That procedure is given here for completeness. First choose a vertex

h ∈ H, and check if h can be interpreted at height m in the same way as (1)

of Lemma 17. Consider the components Cj of the induced subgraph obtained

by removing the vertices of height m from H. Test every component Cj for

satisfaction in a path QSi
, with the highest level vertices of Cj constrained to

be at height m− 1 in QSi
. If every component Cj can be satisfied in some path

QSi
, then H is satisfiable in F. Should H not be satisfiable in F for a particular

choice of vertex h then select a new vertex h, and repeat until H is found to be

satisfiable in F (as we assume H has a feasible solution).

If v ∈ W then H reduces to a single valued tuple in the objective function of A

determined by v, with cost u|F(v).

March 31, 2016

4.6. A Hard Case 80

4.6 A Hard Case

An interesting problem to consider now is which digraphs can capture hard VCSPs.

For the case of ordinary CSPs there is the following result.

Theorem 22 ([23]). Every CSP is polynomial time equivalent to a balanced digraph

homomorphism problem with only 5 levels (but not just 4 levels, which is polynomial

time solvable).

Note that 5 levels means the digraph has height 4, and 4 levels means the digraph

has height 3.

Now we offer an example of a digraph and unary function which can capture MAX

CUT, and therefore the standard definition of hardness we use for VCSP.

Example 21. Let D = {0, 1} and consider the digraph D shown Figure 4.2. Let the

unary function u(v) be

u(v) =

 1 if v = b or v = c

0 otherwise

for every vertex v ∈ V D.

Now consider the instance (G,W) of MinCostHom(D, u), where G is the source

digraph shown in Figure 4.3 and W contains both of the top level vertices of G.

It is straightfoward to see that the homomorphism that maps s → x and t → y

has cost 0, as does the homomorphism that maps s → y and t → x. However

the homomorphism that maps s → x and t → x has cost 2, and likewise for the

homomorphism that maps s → y and t → y. If we consider these homomorphisms

the possible mappings of variables to domain values then we have a problem with

cost(0, 0) = cost(1, 1) > cost(0, 1) = cost(1, 0), and thus we capture MAX CUT.

Note that the digraph D could have an oriented path from x to c and similarly

from y to b that consist of a single edge followed by two zigzags and another single

edge. However no path in G can possibly map onto these oriented paths, so they

are omitted from D for clarity of the diagram.

March 31, 2016

4.6. A Hard Case 81

b c

x y

a d

Figure 4.2: The target digraph D of Example 21.

s t

Figure 4.3: The source digraph G of Example 21.

March 31, 2016

Chapter 5

Fractional Polymorphisms as Digraphs

5.1 Introduction

As we have seen in Chapter 2 all tractable multimorphisms 〈f, g〉 are representable

as digraphs, with each domain element represented as a vertex, and the functions

f and g as arcs. However, based on the work in Chapter 3 it is now proven that

multimorphisms cannot capture all tractable constraint languages, and as such we

need the more general definition of fractional polymorphisms. An obvious problem

to consider now is can we describe these necessary fractional polymorphisms as

digraphs in a similar fashion?

Ideally we would like to define a set of digraphs (on a finite domain) that describe

only the specific fractional polymorphisms necessary for tractability of finite-valued

constraint languages on that domain. We already know that a single semilattice op-

eration in the support of a fractional polymorphism is enough to ensure tractability

(see Theorem 13) of a constraint language, however only on two and three ele-

ment domains have we managed to narrow this down to specific necessary fractional

polymorphisms. This question of whether tight (or at least tighter) conditions for

tractability can be found is asked explicitly in [36]

In this chapter we present a definition for describing fractional polymorphisms as

digraphs, and attempt to define a set of digraphs for each domain that describe

only the necessary fractional polymorphisms for tractability on that domain. These

sets of digraphs (and thus the fractional polymorphisms they describe) on domains

of size two and three correlate exactly with the known tight dichotomy theorems

for domains of size two (see Theorem 15) and three (see Theorem 18). The only

82

5.1. Introduction 83

digraph that fits the definition on the two element domain describes submodularity,

and the two digraphs on the three element domain describe submodularity and α-

bisubmodularity. We also begin to investigate the set of digraphs defined on four

element domains, and offer generalisations of some previously identified tractable

fractional polymorphisms.

For the purposes of this chapter we consider fractional polymorphisms whose support

contains only symmetric binary operations. Given a cost function φ, of arity k, any

fractional polymorphism ω of φ that we consider can be written in the form:

φ(x) + φ(y) ≥
∑

f∈supp(ω)

w(f)φ(f(x,y)) and
∑

f∈supp(ω)

w(f) = 2

for all tuples x,y ∈ Dk.

Given the result of Thapper and Živný [59] that we presented earlier (see Lemma 3)

we know that a core valued constraint language will generate a connected digraph.

Therefore we offer the following definition of describing fractional polymorphisms as

digraphs, the idea for which is based on the operations present in the description of

skew bisubmodularity (see Definition 26).

Definition 37. Let Γ be a rigid core finite-valued constraint language over a finite

domain D. Let G be the connected directed acyclic graph whose vertices are the

elements of D and whose arcs describe a partial order of the elements of D, e.g if

a, b, c are elements of D that have the partial order a > b > c, then the digraph

contains directed arcs from a to b and b to c.

For any digraph G we say Γ exhibits the fractional polymorphism described by G if

every cost function φ ∈ Γ, of arity k, satisfies the inequality:

φ(x) + φ(y) ≥ s(x,y) + t(x,y)

for all tuples x,y ∈ Dk, where we define s(x,y) and t(x,y) as:

s(x,y) =
∑
c∈D

wscφ(x ∧c y) and
∑
c∈D

wsc = 1,

t(x,y) =
∑
c∈D

wtcφ(x ∨c y) and
∑
c∈D

wtc = 1.

March 31, 2016

5.2. Two Element Domains 84

The operations ∧c and ∨c are applied componentwise, returning the greatest lower

bound and least upper bound respectively, if they exist, and the domain element c if

not.

We should note that it is often possible to simplify the resulting fractional polymor-

phisms by applying them to themselves. The condition of being a directed acyclic

graph excludes directed cycles, but it is already known that directed cycles describe

tournament pair multimorphisms which have been proven to be tractable by reduc-

tion to submodularity [16, 43]. Thus any directed cycle could be replaced with a

chain, and this is a case that can be captured by Definition 37. Undirected 3-cycles

also represent tournament pair multimorphisms (and hence are reducible to sub-

modularity) but are automatically replaced by chains in Definition 37, due to the

partial order condition.

5.2 Two Element Domains

On the two element domain there is only one digraph that fits Definition 37, that is

the digraph on two vertices with a single edge between them.

Proposition 5. The fractional polymorphism described by the digraph on two ver-

tices with a single edge between them implies that all cost functions φ, of arity k, of

a core valued constraint language are submodular.

Proof. The digraph has a single pair of vertices connected by an edge and as such

we obtain the following functions s and t:

s(x,y) = wsxφ(x ∧x y) + wsyφ(x ∧y y) = wsxφ(x ∧ y) + wsyφ(x ∧ y) = φ(x ∧ y)

t(x,y) = wtxφ(x ∨x y) + wtyφ(x ∨y y) = wtxφ(x ∨ y) + wtyφ(x ∨ y) = φ(x ∨ y)

So our fractional polymorphism inequality is simply:

φ(x) + φ(y) ≥ φ(x ∧ y) + φ(x ∨ y)

for all tuples x,y ∈ Dk, which describes submodularity as defined in Example 11.

The only other digraph on two vertices is that with no edges, but it does not fit

Definition 37 as it is not connected. Lemma 3 imples that such a digraph describes

March 31, 2016

5.3. Three Element Domains 85

(c)

1

0

-1

(a)

-1 1

0

(b)

-1 1

0

Figure 5.1: The three connected digraphs on three vertices with no 3-cycles.

a fractional polymorphism which only captures valued constraint languages that are

not core.

Therefore Definition 37 is tight for the two element domain as it captures only

submodularity, and this is known to be the only condition for tractability for core

valued constraint languages on two elements.

5.3 Three Element Domains

As we have seen in Chapter 3, the three element domain is the first to exhibit a

dichotomy where fractional polymorphisms are necessary, as multimorphisms can-

not capture all tractable constraint languages. While it was possible to describe

bisubmodularity as a digraph as shown in Chapter 2, it was the fact that we had no

way to describe α-bisubmodularity as a digraph that led to us constructing Defini-

tion 37.

Through the following propositions we consider all digraphs on three vertices that

satisfy Definition 37, and they can be seen in Figure 5.1. Remember that the cycles

that can be drawn on three vertices that can be seen in Figure 2.1 do not fit the

description of digraphs that we are considering. They are known to be tractable by a

reduction to submodularity with respect to some totally ordered chain, so providing

we can describe submodularity we still capture these cases.

Proposition 6. Any valued constraint language that exhibits the fractional poly-

morphism described by digraph (c) of Figure 5.1 is submodular.

March 31, 2016

5.3. Three Element Domains 86

Proof. By definition:

s(x,y) = ws−1φ(x ∧−1 y) + ws1φ(x ∧1 y) + ws0φ(x ∧0 y)

t(x,y) = wt−1φ(x ∨−1 y) + wt1φ(x ∨1 y) + wt0φ(x ∨0 y)

As every pair of vertices has both a greatest lower bound and least upper bound we

can simplify s and t as:

(x ∧−1 y) = (x ∧1 y) = (x ∧0 y) = (x ∧ y)

(x ∨−1 y) = (x ∨1 y) = (x ∨0 y) = (x ∨ y)

Thus our fractional polymorphism inequality simplifies down to:

φ(x) + φ(y) ≥ φ(x ∧ y) + φ(x ∨ y)

for all tuples x,y ∈ Dk, where k is the arity of φ. This inequality again describes

submodularity (submodularity on a chain in this case).

Proposition 7. Any valued constraint language that exhibits the fractional poly-

morphism described by digraph (a) or digraph (b) of Figure 5.1 is α-bisubmodular.

Proof. First consider digraph (a). Every pair of domain elements has a greatest lower

bound, so we can simplify s as we did in the previous proof, but the pair {−1, 1}

does not have a least upper bound. Therefore we obtain the following functions:

s(x,y) = φ(x ∧ y)

t(x,y) = wt−1φ(x ∨−1 y) + wt1φ(x ∨1 y) + wt0φ(x ∨0 y)

Note that the operation ∧ defined here is identical to the operation ∧0 in the defi-

nition of α-bisubmodularity. Now we have the fractional polymorphism inequality:

φ(x) + φ(y) ≥ φ(x ∧ y) + wt−1φ(x ∨−1 y) + wt1φ(x ∨1 y) + wt0φ(x ∨0 y)

for all tuples x,y ∈ Dk, where k is the arity of φ.

If wt−1 = 0 or wt1 = 0 then this fractional polymorphism is exactly the definition

of α-bisubmodularity (see Definition 26), with wt0 = α. If wt−1 = 0 and wt1 = 0

March 31, 2016

5.3. Three Element Domains 87

then wt0 = 1 and the fractional polymorphism describes 1-bisubmodularity, which

is the original definition of bisubmodularity (as in Example 12). If both wt−1 > 0

and wt1 > 0 then we need to massage this fractional polymorphism to look like the

definition of α-bisubmodularity. We do that as follows.

Substitute x with x∨−1 y and y with x∨1 y and apply the fractional polymorphism

to itself to obtain:

φ(x ∨−1 y) + φ(x ∨1 y) ≥ φ((x ∨−1 y) ∧ (x ∨1 y)) + wt−1φ((x ∨−1 y) ∨−1 (x ∨1 y))

+wt1φ((x ∨−1 y) ∨1 (x ∨1 y)) + wt0φ((x ∨−1 y) ∨0 (x ∨1 y))

which simplifies to:

φ(x ∨−1 y) + φ(x ∨1 y) ≥ (1 + wt0)φ(x ∨0 y) + wt−1φ(x ∨−1 y) + wt1φ(x ∨1 y)

Without loss of generality assume wt−1 ≥ wt1, so wt−1 = wt1 + ε where ε = wt−1 − wt1.

Now we can rearrange our inequality:

(1− wt1)φ(x ∨−1 y) + (1− wt1)φ(x ∨1 y) ≥ (1 + wt0)φ(x ∨0 y) + εφ(x ∨−1 y)

Scaling this, substituting back into our fractional polymorphism inequality, and

simplifying the coefficients we obtain:

φ(x) + φ(y) ≥ φ(x ∧ y) +
wt−1 − wt1

1− wt1
φ(x ∨−1 y) +

1− wt−1

1− wt1
φ(x ∨0 y)

for all tuples x,y ∈ Dk, where k is the arity of φ. Let
1−wt

−1

1−wt
1

= α then
wt
−1−wt

1

1−wt
1

= 1−α

and again this is exactly the definition of α-bisubmodularity given in Definition 26.

Now consider digraph (b). In the case of regular bisubmodularity this digraph is

simply the dual of digraph (a), but this is not quite the case when considering

fractional polymorphisms instead of multimorphisms. Now every pair of elements

has a least upper bound, but the pair {−1, 1} does not have a greatest lower bound.

Therefore we obtain the following functions:

s(x,y) = ws−1φ(x ∧−1 y) + ws1φ(x ∧1 y) + ws0φ(x ∧0 y)

t(x,y) = φ(x ∨ y)

March 31, 2016

5.3. Three Element Domains 88

Note that the operation ∨ defined here is identical to the operation ∨0 in the defi-

nition of α-bisubmodularity. Now we have the fractional polymorphism inequality:

φ(x) + φ(y) ≥ ws−1φ(x ∧−1 y) + ws1φ(x ∧1 y) + ws0φ(x ∧0 y) + φ(x ∨ y)

for all tuples x,y ∈ Dk, where k is the arity of φ.

If ws−1 = 0 and ws1 = 0 then ws0 = 1 and the fractional polymorphism describes

1-bisubmodularity, which is the original definition of bisubmodularity. If ws−1 = 0

or ws1 = 0 then this fractional polymorphism returns exactly as α-bisubmodularity

would return on the same inputs with the correct coefficients. In a similar way to the

previous case if both ws−1 > 0 and ws1 > 0 then we need to massage this fractional

polymorphism to look more like the definition of α-bisubmodularity. We do that as

follows.

Substitute x with x∧−1 y and y with x∧1 y and apply the fractional polymorphism

to itself to obtain:

φ(x ∧−1 y) + φ(x ∧1 y) ≥ φ((x ∧−1 y) ∨ (x ∧1 y)) + ws−1φ((x ∧−1 y) ∧−1 (x ∧1 y))

+ws1φ((x ∧−1 y) ∧1 (x ∧1 y)) + ws0φ((x ∧−1 y) ∧0 (x ∧1 y))

which simplifies to:

φ(x ∧−1 y) + φ(x ∧1 y) ≥ (1 + ws0)φ(x ∧0 y) + ws−1φ(x ∧−1 y) + ws1φ(x ∧1 y)

Without loss of generality assume ws−1 ≥ ws1, so ws−1 = ws1 + ε where ε = ws−1 − ws1.

Now we can rearrange our inequality:

(1− ws1)φ(x ∧−1 y) + (1− ws1)φ(x ∧1 y) ≥ (1 + ws0)φ(x ∧0 y) + εφ(x ∧−1 y)

Scaling this, substituting back into our fractional polymorphism inequality, and

simplifying the coefficients we obtain:

φ(x) + φ(y) ≥ φ(x ∨ y) +
ws−1 − ws1

1− ws1
φ(x ∧−1 y) +

1− ws−1

1− ws1
φ(x ∧0 y)

Let
1−ws

−1

1−ws
1

= α then
ws
−1−ws

1

1−ws
1

= 1− α and we get the following inequality:

φ(x) + φ(y) ≥ φ(x ∨ y) + (1− α)φ(x ∧−1 y) + αφ(x ∧0 y)

March 31, 2016

5.4. Moving to Four Element Domains 89

for all tuples x,y ∈ Dk, where k is the arity of φ.

Given the same inputs this will always return the same output as the well known

α-bisubmodularity fractional polymorphism, so this is simply a different character-

isation of the constraint languages captured by α-bisubmodularity. If α = 1 this is

regular bisubmodularity again, and if α = 0 this fractional polymorphism describes

a valued constraint language that is not core.

Following the analysis of the fractional polymorphisms generated by each of the

digraphs in Figure 5.1 we see that the connected digraphs each describe a tractable

fractional polymorphism, and that we get a tight description of the tractable cases on

the three element domain. However we would prefer not to have two digraphs that

capture the same tractable constraint languages, but this would require a change to

definition 37. The possibility of altering this definition is considered later.

5.4 Moving to Four Element Domains

We have seen that all the fractional polymorphisms responsible for describing tractable

constraint languages on two and three element domains can be represented as con-

nected directed acyclic graphs. Now we move to four element domains, applying the

same definition of representing fractional polymorphisms as digraphs, in an attempt

to provide a tight set of conditions for tractability.

Let us begin by considering the few known results on four element domains. First

we introduce the notion of generalised submodularity.

Definition 38. Let D be a finite lattice - that is a partially ordered set where each

pair of elements {a, b} ∈ D has a least upper bound, ∨, and greatest upper bound,

∧. Any valued constraint language that admits the multimorphism 〈∨,∧〉 is said to

be submodular over the lattice D.

It is clear that constraint languages with the multimorphism 〈∨,∧〉 are tractable by

BLP.

Submodularity as we have introduced it previously is the case of generalised submod-

ularity where D is a totally ordered lattice, i.e. a chain. Generalised submodularity

March 31, 2016

5.4. Moving to Four Element Domains 90

d

b c

a

Figure 5.2: An example digraph exhibiting generalised submodularity.

only starts to be interesting on domains of size four or greater as on smaller domains

submodularity can only occur on a chain.

A multimorphism of this form is easily described as a digraph. Consider the example

over the four element domain shown in Figure 5.2. The constraint language is not

submodular (on a chain) as the domain elements b and c are incomparabale, but it

does exhibit the generalised submodularity multimorphism as every pair of elements

have a least upper bound and greatest lower bound. This digraph is also considered

in [38] as a special case of a 1-defect chain on four element domains, which we

investigate in the following section.

Another fractional polymorphism known to describe tractable valued constraint lan-

guages on four element domains is k-submodularity as defined by Huber and Kol-

mogorov [30]. This is a generalisation of bisubmodularity (which is only defined

on three element domains), which is the special case of k-submodularity where

k = 2. When considering four element domains we want the specific case of 3-

submodularity, and it is already known that valued constraint languages that are

3-submodular can be minimised in polynomial time by BLP [42, 57], see also The-

orem 13. However, as in the case of bisubmodularity it is likely we will need to

generalise 3-submodularity to allow for skewness.

March 31, 2016

5.5. 1-defect chains 91

(a)

b c

d

a

(b)

b c

d

a

Figure 5.3: The two possible 1-defect chains on the four element domain.

5.5 1-defect chains

Finally we consider a multimorphism introduced by Jonsson, Kuivinen and Thap-

per [38] that was required in the four element dichotomy for Min CSP. They refer to

it as a 1-defect chain multimorphism as it has a single pair of incomparible elements

in its domain.

Definition 39 ([38]). Let b and c be distinct elements on D. Let (D;<) be a partial

order that relates all pairs of domain elements except b and c. We call 〈f, g〉 a 1-

defect multimorphism if f, g : D2 → D are both commutative functions and satisfy

the following conditions:

• If {x, y} 6= {b, c}, then f(x, y) = Min(x, y) and g(x, y) = Max(x, y)

• If {x, y} = {b, c}, then {f(x, y), g(x, y)} ∩ {x, y} = ∅, and f(x, y) < g(x, y).

The tractability of languages admitting a 1-defect chain multimorphism was proven

in [38] in both the VCSP and Min CSP frameworks. Furthermore 1-defect chains

have also been shown to be tractable by BLP (Example 6 of [57]).

The two examples of 1-defect chains on four element domains are shown in Figure 5.3.

The diamond (digraph (b)) we have already seen in Figure 5.2 as an example of

generalised submodularity. Digraph (a) on the other hand describes a new tracable

class that was required to classify Min CSP over four elements. In [38] the authors

March 31, 2016

5.6. Generalising 1-defect chains 92

claim this digraph describes the multimorphism 〈f, g〉 where:

f :

a a a a

a b a d

a a c d

a d d d

g :

a b c d

b b d b

c d c c

d b c d

Neither of these operations is familiar from previous work. The operation f is

almost the greatest lower bound, except for f(b, c) = a, which would return d if

f was the greatest lower bound operation. Finally a question - if we ignore the

vertex a this digraph would describe α-bisubmodularity under the new definition of

drawing fractional polymorphisms as digraphs. Therefore is it also possible to skew

this multimorphism to obtain something more general in which this 1-defect chain

occurs as a special case?

5.6 Generalising 1-defect chains

Let us apply our fractional polymorphism definition to digraph (a) of Figure 5.3.

It fits the definition of being a connected directed acyclic graph based on a partial

order of its domain elements (b > d > a and c > d > a using the example from

Figure 5.3). Every pair of vertices has a greatest lower bound, but the pair (b, c) do

not have a least upper bound, so we obtain the following functions:

s(x,y) = φ(x ∧ y)

t(x,y) = wtaφ(x ∨a y) + wtbφ(x ∨b y) + wtcφ(x ∨c y) + wtdφ(x ∨d y)

Giving us the fractional polymorphism inequality:

φ(x) + φ(y) ≥ φ(x ∧ y) + wtaφ(x ∨a y) + wtbφ(x ∨b y) + wtcφ(x ∨c y) + wtdφ(x ∨d y)

for all tuples x,y ∈ Dk, where k is the arity of φ.

Substitute x with x ∨b y and y with x ∨c y and apply the fractional polymorphism

to itself. Simplifying the inequality gives:

φ(x∨b y) +φ(x∨c y) ≥ wtaφ(x∨a y) +wtbφ(x∨b y) +wtcφ(x∨c y) + (1 +wtd)φ(x∨d y)

March 31, 2016

5.6. Generalising 1-defect chains 93

Without loss of generality assume wtb ≥ wtc, so wtb = wtc + ε where ε = wtb−wtc. Now

we can rearrange our inequality:

(1−wtc)φ(x∨b y) + (1−wtc)φ(x∨c y) ≥ wtaφ(x∨a y) + εφ(x∨b y) + (1 +wtd)φ(x∨d y)

Scaling this, substituting back into our fractional polymorphism inequality, and

simplifying the coefficients we obtain:

φ(x) + φ(y) ≥ φ(x ∧ y) +
wta

1− wtc
φ(x ∨a y) +

wtb − wtc
1− wtc

φ(x ∨b y) +
wtd + wtc
1− wtc

φ(x ∨d y)

for all tuples x,y ∈ Dk, where k is the arity of φ. Let wt
a

1−wt
c

= α, and
wt

d+wt
c

1−wt
c

= β,

then
wt

b−w
t
c

1−wt
c

= 1 − α − β. We call this class of fractional polymorphisms {α, β}-1-

defects.

Definition 40. Let D = {a, b, c, d} and let (D;>) be a partial order that relates

all pairs of domain elements except b and c such that b > d > a and c > d > a.

A valued constraint language Γ exhibits an {α, β}-1-defect fractional polymorphism

(towards b) if for all cost functions φ ∈ Γ, of arity k, the following holds:

φ(x) + φ(y) ≥ φ(x ∧ y) + αφ(x ∨a y) + βφ(x ∨d y) + (1− α− β)φ(x ∨b y)

for all tuples x,y ∈ Dk.

Note that α, β-1-defects can be be skewed towards c instead of b by replacing the

operation ∨b with ∨c. For simplicity we will assume that {α, β}-1-defects are skewed

towards b, unless explicitly stated otherwise.

Valued constraint languages that exhibit an {α, β}-1-defect fractional polymorphism

can be minimised in polynomial time by BLP. In the case of α-bisubmodularity

taking the value α = 1 instantly described the special case of bisubmodularity, but

we cannot do that in this case to obtain the 1-defect chain identified in [38].

Proposition 8. The 1-defect chain multimorphism on the four element domain is

the special case {1,0}-1-defect fractional polymorphism.

Proof. Consider the {1,0}-1-defect fractional polymorphism. All cost functions that

exhibit this fractional polymorphism satisfy the following inequality:

φ(x) + φ(y) ≥ φ(x ∧ y) + φ(x ∨a y)

March 31, 2016

5.6. Generalising 1-defect chains 94

for all tuples x,y ∈ Dk, where k is the arity of φ, where:

∧ :

a a a a

a b d d

a d c d

a d d d

∨a :

a b c d

b b a b

c a c c

d b c d

Compare this to the original 1-defect chain multimorphism 〈f, g〉 given in [38], where:

f :

a a a a

a b a d

a a c d

a d d d

g :

a b c d

b b d b

c d c c

d b c d

The only difference is what element the functions return with the input {b,c}. It is

simple to prove however that applying the multimorphism 〈∧,∨a〉 twice returns the

same as 〈f, g〉.

Substitute x with x∧ y and y with x∨a y and apply the multimorphism 〈∧,∨a〉 to

obtain:

φ(x ∧ y) + φ(x ∨a y) ≥ φ((x ∧ y) ∧ (x ∨a y)) + φ((x ∧ y) ∨a (x ∨a y))

It is a simple exercise to confirm that φ((x∧y)∧ (x∨ay)) = φ(f(x,y)) and likewise

that φ((x ∧ y) ∨a (x ∨a y)) = φ(g(x,y)). Thus substituting back into our original

fractional polymorphism inequality we obtain:

φ(x) + φ(y) ≥ φ(f(x,y)) + φ(g(x,y))

Therefore if a valued constraint language Γ exhibits a {1,0}-1-defect chain fractional

polymorphism it also exhibits the 1-defect chain multimorphism 〈f, g〉, thus proving

the 1-defect chain is a special case of {α, β}-1-defect fractional polymorphism.

5.6.1 An example

It is trivial to see that constraint languages with {α, β}-1-defect fractional polymor-

phisms are tractable, but a more difficult question to answer is are they necessary

in building a dichotomy in the four element case?

March 31, 2016

5.6. Generalising 1-defect chains 95

Here we present an example of a valued constraint language that satisfies the def-

inition of having an {α, β}-1-defect fractional polymorphism but does not exhibit

generalised submodularity or the 1-defect chain 〈f, g〉.

Example 22. Let Γ be the valued constraint language over D = {a, b, c, d}, that

consists of the four unary functions u1 = [0, 2, 1, 1], u2 = [2, 0, 3, 1], u3 = [1, 3, 0, 1]

and u4 = [1, 2, 1, 0] and the binary function h(v1, v2) defined below:

a b c d

a

b

c

d

v1

v2
0 0 2 0

2 2 2 2

2 0 3 2

0 0 1 0

It is simple to check that Γ exhibits a {1
2
, 0}-1-defect fractional polymorphism with

defect {b, c} such that b > d > a and c > d > a.

The binary function h(v1, v2) is not submodular under any domain ordering. With

this ordering we see that:

h(b, c) + h(c, b) � h(b, b) + h(c, c)

The binary function also excludes a 1-defect chain multimorphism under any domain

ordering. With this ordering we see that:

h(b, c) + h(c, c) � h(a, c) + h(d, c)

It is trivial to check this constraint language excludes submodularity and 1-defect

chain multimorphisms under any domain ordering as the majority of orderings are

forbidden by the unary functions.

Therefore this example demonstrates a tractable core valued constraint language that

does not exhibit any other known fractional polymorphism over four elements, and

March 31, 2016

5.7. Conjectures and Open Problems 96

thus adds weight to the argument that this class of fractional polymorphisms may well

be necessary in constructing a complexity dichotomy on the four element domain.

Note that the {α, β}-1-defect fractional polymorphism exhibited by the constraint

language in Example 22 is not unique. It also exhibits the {0, 1
2
}-1-defect fractional

polymorphism, and appears to exhibit all such fractional polymorphisms where α+

β = 1
2
. However this is not the case in general, as demonstrated in the following

example.

Example 23. Let Γ be the valued constraint language over D = {a, b, c, d}, that

consists of the four unary functions u1 = [0, 2, 1, 2], u2 = [2, 0, 3, 1], u3 = [1, 3, 0, 1]

and u4 = [1, 2, 1, 0] and the binary function h(v1, v2) as defined in the previous

example.

Γ exhibits a {1
2
, 0}-1-defect fractional polymorphism but no other {α, β}-1-defect

fractional polymorphism. The weight of the operation ∨b is fixed at 1
2

by the binary

function h and the unary function u3. The weight of the operation ∨a cannot be

more than 1
2

in order to balance the weights of the fractional polymorphism, and

cannot be less than 1
2

due to the unary function u1.

5.7 Conjectures and Open Problems

As we know there is no complexity dichotomy on the four element domain that iden-

tifies the exact fractional polymorphisms necessary for tractability. In this section

we offer a conjecture identifying the fractional polymorphisms we believe necessary

to construct such a dichotomy.

In the two and three element case we identified that all the fractional polymorphisms

necessary to construct the tractability side of the dichotomy could be described by

connected directed acyclic graphs based on the partial order of the domain elements.

Given this we can draw all the interesting digraphs on four vertices as shown in

Figure 5.4 (ignoring duals).

Digraphs (a) and (b) describe submodularity on a chain and lattice respectively as

we have seen numerous times. Digraph (c) represents the {α, β}-1-defect fractional

polymorphism developed earlier in this chapter. Digraph (e) describes a fractional

March 31, 2016

5.7. Conjectures and Open Problems 97

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.4: Seven digraphs describing fractional polymorphisms on four element

domains.

March 31, 2016

5.7. Conjectures and Open Problems 98

polymorphism which has k-submodularity [30] (3-submodularity on the four element

domain) as a special case. Future work would include generalising 3-submodularity

to allow for skewness in the same way as bisubmodularity on the three element

domain. It should also be noted that digraph (e) has 3 defects (pairs of incomparable

domain elements), and this is the most possible given Lemma 3. The removal of any

edge from (e) disconnects the digraph and would imply the underlying constraint

language is not core.

Digraphs (d), (f) and (g) are all yet to be studied but appear to be interesting

for different reasons. Digraph (d) could be described as a 2-defect chain, and can

probably allow for skewness, although it is unclear which domain elements it would

be possible to skew towards. Digraphs (f) and (g) on the other hand both have

one pair of domain elements that have a greatest lower bound but no least upper

bound, and one pair of domain elements that have a least upper bound but no

greatest lower bound. Therefore both of these digraphs will describe a fractional

polymorphism that includes all eight operations ∧w,∧x,∧y,∧z,∨w,∨x,∨y and ∨z in

its support.

Despite significant computational searching we are yet to find an example of a core

valued constraint language with a fractional polymorphism described by digraph (g)

that has no other fractional polymorphism described by digraphs (a)-(e). However

we cannot offer a full proof that the fractional polymorphisms described by digraphs

(f) and (g) are unnecessary in building a dichotomy on the four element domain.

With the lack of an obvious counter-example we offer the following conjecture.

Conjecture 3. Let Γ be a core finite-valued constraint language over a four element

domain. If Γ exhibits a fractional polymorphisms described by any of the digraphs

(a)-(e) in Figure 5.4 then VCSP(Γ) is polynomial time solvable. Otherwise VCSP(Γ)

is NP-hard.

If this conjecture is proven true it means the necessary fractional polymorphisms on

domains of sizes two, three and four all display the property of having the greatest

lower bound for all pairs of their domain elements. In fact, all known classification

results of finite-valued constraint languages have a necessary condition for tractabil-

March 31, 2016

5.7. Conjectures and Open Problems 99

ity that requires all pairs of domain elements to have a greatest lower bound. These

include the following (identified as tractable by BLP in [36]):

• Core {0,1}-valued languages over a two element domain [20, 40], a three ele-

ment domain [37], or including all unary {0,1}-valued functions [21]. Submod-

ularity on a chain is the necessary condition for tractability, hence we have the

greatest lower bound for all pairs of domain elements.

• Core {0,1}-valued languages over a four element domain [38] are tractable if

they are submodular on a lattice or exhibit a 1-defect chain. Submodularity

on a lattice has a greatest lower bound for all pairs of domain elements, and we

have shown the 1-defect chain multimorphism is a special case of the {α, β}-

1-defect fractional polymorphism, which has the greatest lower bound in its

support.

• Core finite-valued languages over a two element domain [17] are tractable if

they are submodular, and hence the domain elements have a greatest lower

bound.

• Core finite-valued languages over a three element domain [31] are tractable

if they are submodular on a chain, or skew bisubmodular. Both of these

conditions have the greatest lower bound in their support.

• Finite-valued languages containing all {0,1}-valued unary cost functions [44]

are tractable if they are submodular on a chain, and hence all pairs of domain

elements have a greatest lower bound.

An interesting problem to study based on this would be the following:

Problem 1. Let Γ be a core finite-valued constraint language over a finite domain.

Is it true that VCSP(Γ) is polynomial time solvable only when the domain elements

exhibit a partial order such that all pairs of domain elements have a greatest lower

bound, and hence the fractional polymorphisms of Γ have the greatest lower bound

in their support, and otherwise VCSP(Γ) is NP-hard?

If this problem can be proven true we will have found a tighter condition that

captures all necessary tractable finite-valued constraint languages than that given

March 31, 2016

5.7. Conjectures and Open Problems 100

in [59], which states that all tractable finite-valued constraint languages exhibit a

binary symmetric fractional polymorphism.

Furthermore we would be able to strengthen Definition 37.

Definition 41. Let Γ be a rigid core finite-valued constraint language over a finite

domain D. Let G be the connected directed acyclic graph whose vertices are the

elements of D and whose arcs describe a partial order of the elements of D, such

that every pair of domain elements has a greatest lower bound.

For any digraph G we say Γ exhibits the fractional polymorphism described by G if

every cost function φ ∈ Γ, of arity k, satisfies the inequality:

φ(x) + φ(y) ≥ φ(x ∧ y) + t(x,y)

for all tuples x,y ∈ Dk, where we define t(x,y) as:

t(x,y) =
∑
c∈D

wtcφ(x ∨c y) and
∑
c∈D

wtc = 1.

This definition ensures that there is a single vertex at the base of the digraph (if

you have two vertices at the base they will not have a greatest lower bound as in

digraphs (f) and (g) of Figure 5.4). Hence this definition also captures the tree sub-

modular functions defined by Kolmogorov [41]. It is shown in [41] that strong tree-

submodularity implies weak tree-submodularity which is defined as follows.

Definition 42 ([41]). A function f , of arity k, is weakly tree-submodular over a

domain D if it satisfies:

f(x) + f(y) ≥ f(x ∧ y) + f(x ∨ y)

for all tuples x,y ∈ Dk, where a∧ b is the greatest lower bound of a and b and a∨ b

is the unique node on the path from a to b such that the distance from a to a ∨ b is

the same as the distance from b to a ∧ b.

It is easy to see that the weakly tree-submodular fractional polymorphism is a special

case of Definition 41.

It should also be noted that fractional polymorphisms of the form described in Defi-

nition 41 bear a striking resemblance to the notion of submodularity with fractional

March 31, 2016

5.7. Conjectures and Open Problems 101

joins introduced by Hirai [29]. It is stated in [29] that submodularity with fractional

joins captures all the well known tractable cases we have seen throughout this the-

sis: submodularity, bisubmodularity, submodularity on trees, skew-bisubmodularity

and k-submodularity. An interesting problem would be to check if {α, β}-1-defect

fractional polymorphisms are captured, and hence the 1-defect chains of [38]. It

would also be interesting to determine how Definition 41 and submodularity with

fractional joins are connected, and if they capture exactly the same fractional poly-

morphisms.

March 31, 2016

Bibliography
[1] K. Ando, S. Fujishige, and T. Naitoh, “A characterization of bisubmodular

functions,” Discrete Mathematics, vol. 148, no. 13, pp. 299 – 303, 1996.

[2] B. Aspvall, M. Plass, and R. Tarjan, “A linear-time algorithm for testing the

truth of certain quantified boolean formulas,” Information Processing Letters,

vol. 8, no. 3, pp. 121–123, 1979.

[3] L. Barto and M. Kozik, “Absorbing subalgebras, cyclic terms and the constraint

satisfaction problem,” Logical Methods in Computer Science, vol. 8(1), pp. 1 –

26, 2012.

[4] ——, “Constraint Satisfaction Problems Solvable by Local Consistency Meth-

ods,” Journal of the ACM, vol. 61(1), 2014.

[5] R. Beigel and D. Eppstein, “3-coloring in time o(1.3289n),” J. Algorithms,

vol. 54, no. 2, pp. 168–204, 2005.

[6] J. Bell and B. Stevens, “A survey of known results and research areas for n-

queens,” Discrete Mathematics, vol. 309, no. 1, pp. 1–31, 2009.

[7] A. Bulatov, “A Dichotomy Theorem for Constraint Satisfaction Problems on a

3-Element Set,” Journal of the ACM, vol. 53(1), pp. 66–120, 2006.

[8] ——, “Bounded relational width,” Unpublished manuscript, 2009.

[9] ——, “Complexity of conservative constraint satisfaction problems,” ACM

Transactions on Computational Logic, vol. 12(4), 2011.

[10] A. Bulatov, P. Jeavons, and A. Krokhin, “Classifying the Complexity of Con-

straints Using Finite Algebras,” SIAM Journal on Computing, vol. 34(3), pp.

720–742, 2005.

102

Bibliography 103

[11] J. Buĺın, D. Delic, M. Jackson, and T. Niven, “On the reduction of the CSP

dichotomy conjecture to digraphs,” in CP’13, vol. 8124 of LNCS, 2013, pp.

184–199.

[12] ——, “A finer reduction of constraint problems to digraphs,” Technical report,

arXiv:1406.6413, 2014.

[13] H. Chen, “A rendezvous of logic, complexity, and algebra,” ACM Computing

Surveys, vol. 42, no. 1, pp. 2:1–2:32, 2009.

[14] D. Cohen, M. Cooper, P. Creed, P. Jeavons, and S. Živný, “An Algebraic The-

ory of Complexity for Discrete Optimisation,” SIAM Journal on Computing,

vol. 42(5), pp. 1915–1939, 2013.

[15] D. Cohen, M. Cooper, and P. Jeavons, “An Algebraic Characterisation of Com-

plexity for Valued Constraints,” in CP’06, vol. 4204 of LNCS, 2006, pp. 107–

121.

[16] ——, “Generalising submodularity and horn clauses: Tractable optimization

problems defined by tournament pair multimorphisms,” Theoretical Computer

Science, vol. 401, no. 1-3, pp. 36–51, 2008.

[17] D. Cohen, M. Cooper, P. Jeavons, and A. Krokhin, “The complexity of soft

constraint satisfaction,” Artificial Intelligence, vol. 170(11), pp. 983–1016, 2006.

[18] D. Cohen, M. Cooper, P. Jeavons, and S. Živný, “Binarisation via dualisa-

tion for valued constraints,” in Proceedings of the 29th AAAI Conference on

Artificial Intelligence (AAAI’15), 2015, pp. 3731–3737.

[19] D. Cohen, P. Creed, P. Jeavons, and S. Živný, “An algebraic theory of complex-

ity for valued constraints: Establishing a Galois connection,” Research Report

CS-RR-10-16, Computing Laboratory, University of Oxford, 2010.

[20] N. Creignou, S. Khanna, and M. Sudan, “Complexity classification of boolean

constraint satisfaction problems,” SIAM Monographs on Discrete Mathematics

and Applications, vol. 7, 2001.

March 31, 2016

Bibliography 104

[21] V. Deineko, P. Jonsson, M. Klasson, and A. Krokhin, “The approximability of

Max CSP with fixed-value constraints,” Journal of the ACM, vol. 55, no. 4,

2008.

[22] S. Even, A. Itai, and A. Shamir, “On the complexity of timetable and mul-

ticommodity flow problems,” SIAM Journal on Computing, vol. 5, no. 4, pp.

691–703, 1976.

[23] T. Feder and M. Vardi, “The Computational Structure of Monotone Monadic

SNP and Constraint Satisfaction: A Study Through Datalog and Group The-

ory,” SIAM Journal on Computing, vol. 28, pp. 57–104, 1998.

[24] S. Fujishige, “Submodular Functions and Optimization,” volume 58 of Annals

of Discrete Mathematics, Elsevier, 2nd edition, 2005.

[25] G. Gutin, P. Hell, A. Rafiey, and A. Yeo, “A dichotomy for minimum cost graph

homomorphisms,” European Journal of Combinatorics, vol. 29(4), pp. 900–911,

2008.

[26] P. Hell and J. Nešetřil, Graphs and Homomorphisms. Oxford University Press,

2004.

[27] ——, “Colouring, Constraint Satisfaction, and Complexity,” Computer Science

Review, vol. 2(3), pp. 143–163, 2008.

[28] P. Hell and A. Rafiey, “The Dichotomy of Minimum Cost Homomorphism Prob-

lems for Digraphs,” SIAM Journal on Discrete Mathematics, vol. 26(4), pp.

1597–1608, 2012.

[29] H. Hirai, “Discrete convexity and polynomial solvability in minimum 0-

extension problems,” SODA’13, pp. 1770–1778, 2013.

[30] A. Huber and V. Kolmogorov, “Towards Minimising k-Submodular Functions,”

arXiv:1309.5469, 2013.

[31] A. Huber, A. Krokhin, and R. Powell, “Skew Bisubmodularity and Valued

CSPs,” SIAM Journal on Computing, vol. 43(3), pp. 1064–1084, 2014.

March 31, 2016

Bibliography 105

[32] S. Iwata, “Submodular function minimization,” Math. Program., vol. 112, no. 1,

pp. 45–64, 2007.

[33] S. Iwata, L. Fleischer, and S. Fujishige, “A combinatorial strongly polynomial

algorithm for minimizing submodular functions,” J. ACM, vol. 48, no. 4, pp.

761–777, 2001.

[34] S. Iwata and J. B. Orlin, “A simple combinatorial algorithm for submodular

function minimization,” in Proceedings of the Twentieth Annual ACM-SIAM

Symposium on Discrete Algorithms, ser. SODA ’09, 2009, pp. 1230–1237.

[35] P. Jeavons, “On the algebraic structure of combinatorial problems,” Theoretical

Computer Science, vol. 200, no. 1-2, pp. 185–204, 1998.

[36] P. Jeavons, A. Krokhin, and S. Živný, “The Complexity of Valued Constraint

Satisfaction,” in Bulletin of the BEATCS, vol. 113, 2014, pp. 21–55.

[37] P. Jonsson, M. Klasson, and A. Krokhin, “The Approximability of Three-valued

MAX CSP,” SIAM Journal on Computing, vol. 35(6), pp. 1329–1349, 2006.

[38] P. Jonsson, F. Kuivinen, and J. Thapper, “Min CSP on Four Elements: Moving

Beyond Submodularity,” in CP’11, vol. 6876 of LNCS, 2011, pp. 438–453.

[39] R. Karp, “Reducibility among combinatorial problems,” in Complexity of Com-

puter Computations, ser. The IBM Research Symposia Series. Springer, 1972,

pp. 85–103.

[40] S. Khanna, M. Sudan, L. Trevisan, and D. Williamson, “The approximability of

constraint satisfaction problems,” SIAM Journal on Computing, vol. 30, no. 6,

pp. 1863–1920, 2001.

[41] K. Kolmogorov, “Submodularity on a tree: Unifying L#-convex and bisubmod-

ular functions,” MFCS’11, vol. 6907 of LNCS, pp. 400–411, 2011.

[42] V. Kolmogorov, “The Power of Linear Programming for Finite-valued CSPs: A

Constructive Characterization,” in Proceedings of the 40th International Col-

loquium on Automata, Languages, and Programming (ICALP’13), 2013, pp.

625–636.

March 31, 2016

Bibliography 106

[43] V. Kolmogorov, J. Thapper, and S. Živný, “The power of linear programming

for general-valued CSPs,” SIAM Journal on Computing, vol. 44(1), pp. 1–36,

2015.

[44] V. Kolmogorov and S. Živný, “The complexity of conservative valued CSPs,”

Journal of the ACM, vol. 60, no. 2, pp. 10:1–10:38, 2013.

[45] M. Kozik and J. Ochremiak, “Algebraic Properties of Valued Constraint Satis-

faction Problems,” in Proceedings of the 42nd International Colloquium on Au-

tomata, Languages, and Programming (ICALP’15), vol. 9134 of LNCS, 2015,

pp. 846–858.

[46] M. R. Krom, “The decision problem for a class of first-order formulas in which

all disjunctions are binary,” Mathematical Logic Quarterly, vol. 13, no. 1-2, pp.

15–20, 1967.

[47] R. Ladner, “On the structure of polynomial time reducibility,” Journal of the

ACM, vol. 22, no. 1, pp. 155–171, 1975.

[48] L. Lovász, “Submodular functions and convexity,” in Mathematical Program-

ming The State of the Art, A. Bachem, B. Korte, and M. Grötschel, Eds.

Springer, 1983, pp. 235–257.

[49] M. Maróti and R. McKenzie, “Existence theorems for weakly symmetric oper-

ations,” Algebra Universalis, vol. 59(3-4), pp. 463–489, 2008.

[50] S. McCormick and S. Fujishige, “Strongly Polynomial and Fully Combinatorial

Algorithms for Bisubmodular Function Minimization,” Mathematical Program-

ming, vol. 122, pp. 87–120, 2009.

[51] R. Powell and A. Krokhin, “A Reduction from Valued CSP to Min Cost Homo-

morphism Problem for Digraphs,” Technical report, arXiv:1507.01776, 2015.

[52] L. Qi, “Directed Submodularity, Ditroids and Directed Submodular Flows,”

Mathematical Programming, vol. 42(3), pp. 579–599, 1988.

March 31, 2016

Bibliography 107

[53] T. Schaefer, “The complexity of satisfiability problems,” in Proceedings of the

Tenth Annual ACM Symposium on Theory of Computing (STOC ’78), 1978,

pp. 216–226.

[54] A. Schrijver, “Combinatorial optimization: Polyhedra and Efficiency,” volume

24 of Algorithms and Combinatorics, Springer, 2003.

[55] R. Takhanov, “A dichotomy theorem for the general minimum cost homomor-

phism problem,” in In Proceedings of the 27th International Symposium on

Theoretical Aspects of Computer Science (STACS10), 2010, pp. 657–668.

[56] ——, “Extensions of the minimum cost homomorphism problem,” in Proceed-

ings of the 16th Annual International Conference on Computing and Combina-

torics (COCOON’10), 2010, pp. 328–337.

[57] J. Thapper and S. Živný, “The power of linear programming for valued

CSPs,” in 53rd Annual IEEE Symposium on Foundations of Computer Science

(FOCS’12), 2012, pp. 669–678.

[58] ——, “The power of linear programming for valued CSPs,” arXiv:1204.1079,

2012.

[59] ——, “The complexity of finite-valued CSPs,” in Proceedings of the Forty-fifth

Annual ACM Symposium on Theory of Computing (STOC’13), 2013, pp. 695–

704.

[60] ——, “Sherali-Adams relaxations for valued CSPs,” in Proceedings of the

42nd International Colloquium on Automata, Languages, and Programming

(ICALP’15), vol. 9134 of LNCS, 2015, pp. 1058–1069.

[61] D. Topkis, “Minimizing a submodular function on a lattice,” Operations Re-

search, vol. 26, no. 2, pp. 305–321, 1978.

[62] H. Uppman, “The complexity of three-element min-sol and conservative min-

cost-hom,” in Proceedings of the 40th International Colloquium on Automata,

Languages, and Programming (ICALP’13), 2013, pp. 804–815.

March 31, 2016

Bibliography 108

[63] ——, “Computational complexity of the extended minimum cost homomor-

phism problem on three-element domains,” in Proceedings of the 31st Inter-

national Symposium on Theoretical Aspects of Computer Science (STACS’14),

2014, pp. 651–662.

[64] S. Živný, “The Complexity and Expressive Power of Valued Constraints,” PhD

Thesis, University of Oxford, 2009.

March 31, 2016

Index
Γ, 20

Φ
(m)
D , 20

ΦD, 20

QS, 63

α-Bisubmodularity, 41

〈Γ〉, 24

〈∨,∧〉, 22

〈∨0,∧0〉, 22

∨, 17

∨0, 22

∧, 17

∧0, 22

wA, 60

wX , 60

{α, β}-1-defect chains, 93

1/2-bisubmodular, 54

2-SAT, 13

3-SAT, 13

Algebraic CSP dichotomy conjecture, 73

Assignment, 11, 19

Bisubmodularity, 22, 38

BLP, 28, 46

Colouring, 8, 11, 59

Computational Complexity, 10

NP, 10

P, 10

Constraint, 10

Crisp, 20

Valued, 20

Cost function, 20

CSP, 10

2-element, 17

3-element, 17

Bounded width, 73

Complexity, 14

Constraint language, 12

Core, 18

Dichotomy, 14, 17

Expressibility, 16

Graph homomorphism, 59

Cyclic, 24, 73

Digraph, 59, 61

Balanced, 61

Equality graph, 68

Oriented path, 61

Short component, 66, 78

Domain, 10

Dual, 27

Feas, 21, 60

Fractional polymorphism, 23

fPol, 24

supp, 24

Homomorphism, 59

CSP, 59

VCSP, 60

Idempotent, 24

109

INDEX 110

Identity, 74

Balanced, 74

Idempotent, 74

Linear, 74

k-submodularity, 90

Max CSP, 19

MAX CUT, 20, 25, 45, 80

Min CSP, 91

Min-Ones, 19

MinCostHom, 58

Multimorphism, 21

1-defect chain, 91

Symmetric binary, 36

Binary, 22

Digraph, 36

Symmetric tournament pair (STP),

26, 38, 50

Ternary, 22

Tournament pair, 26

Unary, 21

n-queens, 11

Optimisation, 19, 20, 28, 32, 33, 60, 65,

68

Orthant, 42

Submodular, 42

Polymorphism, 14

Majority, 15

Minority, 15

Near-unanimity, 18

Taylor, 18

Weak near-unanimity (WNU), 18, 73

Relation, 10

Rigid core, 35, 62

Semilattice, 29

Submodularity, 22, 28, 38

Symmetric, 73

Tractability, 25

Valued Constraint Language, 20

Conservative, 26, 50

VCSP, 19

0-1-valued, 45

2-element, 25, 36, 45

3-element, 45

4-element, 89

4-element dichotomy conjecture, 96

Core, 32

Dichotomy, 25, 36, 45

Expressibility, 24

Graph homomorphism, 60

Instance, 20

Rigid core, 35

Valued constraint language, 20

Weakly tree-submodular, 100

Weighted τ -structure, 60

Weighted relation, 60

March 31, 2016

	Abstract
	Declaration
	Acknowledgements
	Introduction
	Complexity Theory: A Brief Overview
	Constraint Satisfaction Problems
	Complexity of CSP
	Constraint Languages
	Polymorphisms
	Known Dichotomy Theorems

	Valued Constraint Satisfaction
	Multimorphisms
	Fractional Polymorphisms
	Expressibility
	Tractability and Complexity Classifications

	Domain Reductions and Cores
	Introduction
	Domain Reducing Multimorphisms
	Cores
	Multimorphisms as Digraphs
	3-element domain

	Skew Bisubmodularity and the Three Element Dichotomy
	Introduction
	Fractional Polymorphisms
	A Characterisation of alpha-bisubmodularity
	A Dichotomy Theorem
	Multimorphisms are not enough

	Reducing VCSP to Min-Cost-Hom
	Introduction
	Homomorphisms
	Proving Poly-Time Equivalence
	Constructing (D,u)
	Reduction from VCSP(wA) to MinCostHom(D,u)
	Reduction from MinCostHom(D,u) to VCSP(wA)

	Preservation of Algebraic Properties
	Dealing with Short Components
	A Hard Case

	Fractional Polymorphisms as Digraphs
	Introduction
	Two Element Domains
	Three Element Domains
	Moving to Four Element Domains
	1-defect chains
	Generalising 1-defect chains
	An example

	Conjectures and Open Problems

