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Abstract

This thesis presents the work towards the realisation of an interferometer
using bright solitary waves in a ring. The splitting of a bright solitary wave,
which is created from a 85Rb Bose-Einstein condensate in an optical waveg-
uide, is realised through scattering from a narrow potential well formed from
a tightly focussed red detuned laser beam. We observe reflection of up to
25% of the atoms, along with the trapping of atoms at the position of the
potential. Such a reflected fraction is much larger than the theoretical pre-
dictions for a single, narrow Gaussian potential. A more detailed model,
which accounts for the diffraction pattern of the laser beam, suggests that
the presence of these small subsidiary intensity maxima is the cause of the
enhancement in quantum reflection.

An upgrade of the apparatus sees a new set of magnetic coils, a compact
coil mount, and a crossed optical dipole trap with independently control-
lable beams implemented. This enables the control of magnetic curvature
and dipole trap position, and maximises the optical access to the science
cell. To generate a ring trap for the interferometry scheme, a spatial light
modulator (SLM) is incorporated into the experiment. Through underfill-
ing the SLM panel with the laser beam, and the use of the analytical first
phase guess prior to the error minimising Mixed Region Amplitude Freedom
(MRAF) algorithm, we are able to generate speckle-free, high quality holo-
grams of arbitrary shapes. Furthermore, we demonstrate atom trapping in
a ring potential, which is formed at the intersection of the SLM beam and a
red detuned horizontal light sheet.
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iv



v

their wise words and advices on both experimental techniques and personal
matters. Beyond Simon’s teams, I must also express my gratitude to the
Joint-Quantum Centre (JQC) in providing me a supportive environment. In
particular, I am grateful for all the theoretical insights and simulations pro-
vided by Simon Gardiner, John Helm, Christoph Weiss, and Tom Billam.

As for many experimental physics PhDs, the mechanical workshop is often
the unsung hero. My experiment would not have gone this far without their
marvellous works. I would like to thank Steve Lishman for managing and
improving my Inventor designs. I will never forget the local Geordie slangs he
taught me over the last few years! While G10 is probably the least favourite
material for the workshop to work with, I am immensely grateful for Mal-
colm Robertshaw and Kevin Ring for their patience in dealing with all the
modifications I had made for my coil mount!

On a more personal note, I cannot thank Arin Mizouri enough for being
such an amazing friend and housemate over the last eight years since we first
met at St. Mary’s College. Along with her unlimited positivity and endless
supply of cakes, her countless crazy moments, such as the kitchen explo-
sion, had made my time in Durham very special. Thanks must extend to my
housemates Sam Lear, Milda Vaitiekunaite, Swati Sridhar, Tim David, Reem
Radhi, Natalie Etchells, and Shane Gahan for being tremendously support-
ive. I thank them for always being around listening to me whinging when
I had a bad day in office. I will forever cherish the precious time we spent
together, had fun together, and got drunk together!

Parallel to my research, I had enjoyed running the Anglo-Japanese Society,
and I am grateful to have met all the amazing people via the platform. I
must also thank my friends on the other side of the world in Japan and
Hong Kong, who had proved that distance does not diminish friendships. I
thank Mutsuno Kan for always offering a listening ear to me, and encourag-
ing me all the time. For Saki Nakahara, Misa Kobayashi, Mie Suzuki, Miki
Kazama, Ayako Mino, along with other Mary’s crews, I thank them all for
their supportiveness and kindness, especially during my visits to Japan. I
thank Cathy Wong for all the laughter she brought, which cracked me up
time after time. Thanks must extend to Alison Choy, who remains one of
my best friends whom I can talk about almost everything with a glass of wine!

I thank Simon Brown, whom I have a very close friendship with since the
age of thirteen, for the endless supportive conversations and essay-like email
exchanges especially over the last few years. At some point we must accom-
plish the mission to go and see Mozart’s birthplace in Salzburg!

I want to give my special thanks to Haruna Yamada for always being there
supporting me. Whether it was getting stressful towards the end of my time



vi

in the lab, or getting grumpy having been stuck in the office till late night
writing my thesis, she never failed to keep me going and put a smile on my
face. Kokorokara kanshashiteorimasu. Thank you for standing by my side.
Thank you for all the heart-warming moments, and may it continues for
many years to come.

Last, but not least, I would like to thank my mum, dad, and my twin brother
Herrick, for all their loves and supports. I would not have gotten this far
were it not for them. I thank my parents for always offering me the best
caring and upbringing, even if receiving education in the United Kingdom at
an early age would mean sacrificing precious times together in Hong Kong.
Throughout my PhD, my family had given me a tremendous amount of helps
and confidence that got me going. Mum, dad, and Herrick: I love you, and
I am forever grateful for everything you have done for me.



Contents

Page

Abstract i

Declaration ii

Acknowledgements iv

Contents vii

List of Figures xi

List of Tables xiv

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Bose-Einstein condensation . . . . . . . . . . . . . . . 1
1.1.2 Soliton and bright solitary waves . . . . . . . . . . . . 2
1.1.3 Matter-wave interferometry . . . . . . . . . . . . . . . 4

1.2 Thesis context . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Theoretical background 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Bright solitary matter-waves from a BEC . . . . . . . . . . . . 10

2.2.1 Bose-Einstein condensation . . . . . . . . . . . . . . . 10
2.2.2 The Gross-Pitaevskii mean-field model . . . . . . . . . 11
2.2.3 Reduction to 1D GPE . . . . . . . . . . . . . . . . . . 14
2.2.4 Soliton solution . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Stability and collapse . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Soliton scattering from narrow potentials . . . . . . . . . . . . 18

2.4.1 High energy regime . . . . . . . . . . . . . . . . . . . . 19
2.4.2 Low energy regime . . . . . . . . . . . . . . . . . . . . 21
2.4.3 Soliton recombination . . . . . . . . . . . . . . . . . . 23

2.5 Interferometry with bright solitary waves . . . . . . . . . . . . 25
2.5.1 Mach-Zehnder interferometry . . . . . . . . . . . . . . 25
2.5.2 Sagnac interferometry . . . . . . . . . . . . . . . . . . 27

vii



Contents viii

2.5.3 Quantum enhancement in measurement precision . . . 28
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Experimental overview 30
3.1 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.1 Vacuum chamber . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 Laser system . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.3 Magnetic transport . . . . . . . . . . . . . . . . . . . . 33
3.1.4 Lasers for optical dipole trapping . . . . . . . . . . . . 33

3.2 Laser cooling in the MOT chamber . . . . . . . . . . . . . . . 34
3.3 Experimental techniques . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Magnetic trapping . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Levitation . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.3 Optical trapping . . . . . . . . . . . . . . . . . . . . . 37
3.3.4 Pure, hybrid, and levitated traps . . . . . . . . . . . . 38
3.3.5 Evaporative cooling . . . . . . . . . . . . . . . . . . . . 40
3.3.6 Absorption imaging . . . . . . . . . . . . . . . . . . . . 41

I Experiments with a tunable 85Rb BEC 44

4 Formation of 85Rb bright solitary matter-waves 45
4.1 Direct evaporation to 85Rb Bose-Einstein condensation . . . . 45

4.1.1 The 155 G Feshbach resonance of 85Rb . . . . . . . . . 45
4.1.2 Elastic and inelastic scattering . . . . . . . . . . . . . . 47
4.1.3 Efficient evaporative cooling . . . . . . . . . . . . . . . 51
4.1.4 Bose-Einstein condensation . . . . . . . . . . . . . . . 53

4.2 Realisation of bright solitary matter-wave . . . . . . . . . . . . 55
4.3 Reflection from a broad repulsive barrier . . . . . . . . . . . . 57
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Quantum reflection from a narrow attractive potential 60
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Narrow attractive Gaussian potential . . . . . . . . . . . . . . 61

5.2.1 Optical setup . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.2 Alignment . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.3 Trap characterisation . . . . . . . . . . . . . . . . . . . 69

5.3 Velocity control . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 Quantum reflection of the matter-wave . . . . . . . . . . . . . 73
5.5 Well depth dependence of the quantum reflection probability . 75
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



Contents ix

II Towards rotational sensing with bright solitary
waves 82

6 Experimental upgrade 83
6.1 Limitations of the existing setup . . . . . . . . . . . . . . . . . 83
6.2 Magnetic trap upgrade . . . . . . . . . . . . . . . . . . . . . . 85

6.2.1 Curvature and cancellation coils . . . . . . . . . . . . . 85
6.2.2 Winding small coils . . . . . . . . . . . . . . . . . . . . 89
6.2.3 Coil mount and coil arrangement . . . . . . . . . . . . 90
6.2.4 Installation of the magnetic coils . . . . . . . . . . . . 90

6.3 Vertical optical systems . . . . . . . . . . . . . . . . . . . . . . 92
6.4 Optical dipole trap upgrade . . . . . . . . . . . . . . . . . . . 94

6.4.1 Optical setup . . . . . . . . . . . . . . . . . . . . . . . 94
6.4.2 Time averaged optical potential . . . . . . . . . . . . . 97
6.4.3 Thermal lensing in AOD crystal . . . . . . . . . . . . . 99
6.4.4 Alignment and trap characterisation . . . . . . . . . . 100
6.4.5 Atoms pumped into F = 2 state by multimode laser . . 102

6.5 Voltage multiplier circuit . . . . . . . . . . . . . . . . . . . . . 103
6.6 Evaporative cooling to quantum degeneracy . . . . . . . . . . 106
6.7 Creation of an oblate BEC . . . . . . . . . . . . . . . . . . . . 109
6.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7 Generation of arbitrary optical potentials 112
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.2 Spatial light modulator (SLM) . . . . . . . . . . . . . . . . . . 113

7.2.1 Phase modulation of light . . . . . . . . . . . . . . . . 113
7.2.2 Working principle . . . . . . . . . . . . . . . . . . . . . 115
7.2.3 Optical setup . . . . . . . . . . . . . . . . . . . . . . . 118
7.2.4 Region of optimal performance . . . . . . . . . . . . . 119

7.3 Iterative Fourier Transform Algorithm . . . . . . . . . . . . . 123
7.3.1 Gerchberg-Saxton algorithm . . . . . . . . . . . . . . . 123
7.3.2 Mixed-Region Amplitude Freedom (MRAF) algorithm 124
7.3.3 Random phase and speckles . . . . . . . . . . . . . . . 126
7.3.4 Optical vortices and first phase guess . . . . . . . . . . 128

7.4 Analytical first phase guess . . . . . . . . . . . . . . . . . . . . 128
7.4.1 Geometrical beam shaping . . . . . . . . . . . . . . . . 130
7.4.2 Analytically approximated first phase guess . . . . . . 132
7.4.3 Exploring the parameter space . . . . . . . . . . . . . . 132
7.4.4 Input beam size dependent image quality . . . . . . . . 136
7.4.5 Beam position and size matching . . . . . . . . . . . . 139

7.5 Accurate image subtraction . . . . . . . . . . . . . . . . . . . 143
7.6 Example holograms . . . . . . . . . . . . . . . . . . . . . . . . 145
7.7 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.7.1 Modified MRAF with active correction . . . . . . . . . 148
7.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 149



Contents x

7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8 Atom trapping in arbitrary potentials 153
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.2 Light sheet potential . . . . . . . . . . . . . . . . . . . . . . . 156

8.2.1 Optical setup . . . . . . . . . . . . . . . . . . . . . . . 156
8.2.2 Installation and alignment . . . . . . . . . . . . . . . . 157
8.2.3 Characterisation of the light sheet . . . . . . . . . . . . 161

8.3 Incorporating the SLM into the experiment . . . . . . . . . . . 163
8.3.1 Optical setup . . . . . . . . . . . . . . . . . . . . . . . 163
8.3.2 SLM beam alignment . . . . . . . . . . . . . . . . . . . 164

8.4 Atom trapping in the arbitrary optical potentials . . . . . . . 169
8.4.1 Loading atoms into the ring trap . . . . . . . . . . . . 169
8.4.2 Atom loss from the arbitrarily shaped traps . . . . . . 171
8.4.3 Smoothness of the ring trap . . . . . . . . . . . . . . . 174

8.5 Comments and limitations . . . . . . . . . . . . . . . . . . . . 175
8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

9 Conclusion and outlook 178
9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
9.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A Coil data 182

B Calculation of trap depth of a ring 193

Bibliography 195



List of Figures

Figure Page

2.1 Low energy scattering between atoms and the origin of the
s-wave scattering length as. . . . . . . . . . . . . . . . . . . . 11

2.2 The metastable state and the collapse of an attractive 3D BEC. 17
2.3 Illustration of the classical, high energy, and low energy regimes. 22
2.4 Schematic of the Mach-Zehnder interferometer with bright

solitary waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Construction of the Sagnac interferometry with bright solitary

waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 The experimental apparatus of the vacuum table. . . . . . . . 31
3.2 The levitation gradient for 85Rb atoms in the F = 2, mF = −2

state at an external magnetic field. . . . . . . . . . . . . . . . 36
3.3 The pure, hybrid, and levitated traps. . . . . . . . . . . . . . . 38

4.1 The origin of Feshbach resonances and the 155 G Feshbach
resonance of 85Rb. . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 The elastic scattering cross-section for collisions involving
85Rb and 87Rb. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 The collisional properties against different magnetic bias fields. 50
4.4 Creation of 85Rb via direct evaporative cooling. . . . . . . . . 53
4.5 Demonstration of the tunable interactions of 85Rb BEC. . . . 54
4.6 BEC expansion over propagation time at different scattering

lengths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.7 Density profiles of repulsive BEC and soliton. . . . . . . . . . 56
4.8 Classical reflection from broad potential barrier. . . . . . . . . 58

5.1 Theoretical prediction of quantum reflection from the narrow
potential well. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Zemax design. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Optical setup of the narrow attractive potential. . . . . . . . . 66
5.4 The alignment of the narrow potential. . . . . . . . . . . . . . 68
5.5 Trap characterisation using parametric heating. . . . . . . . . 69
5.6 Velocity control of solitary wave. . . . . . . . . . . . . . . . . 71
5.7 Quantum reflection of the matter-wave from the narrow Gaus-

sian potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xi



List of Figures xii

5.8 Energy dependence of the quantum reflection probability. . . . 76
5.9 Theoretical prediction. . . . . . . . . . . . . . . . . . . . . . . 77
5.10 Effect of the tilt of the beam on the structure of the potential

well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1 Magnetic field and curvature calculation. . . . . . . . . . . . . 86
6.2 Magnetic field and curvature of the combined curvature coils

and cancellation coils system. . . . . . . . . . . . . . . . . . . 88
6.3 Illustration of the method of winding the small coils. . . . . . 89
6.4 Coil mount upgrade. . . . . . . . . . . . . . . . . . . . . . . . 91
6.5 Magnetic coils alignment. . . . . . . . . . . . . . . . . . . . . . 92
6.6 Vertical breadboard for mounting. . . . . . . . . . . . . . . . . 93
6.7 The new dipole trap setup. . . . . . . . . . . . . . . . . . . . . 95
6.8 Time averaged optical potential. . . . . . . . . . . . . . . . . . 98
6.9 Thermal lensing effect in AOD. . . . . . . . . . . . . . . . . . 99
6.10 Alignment of the moving beam. . . . . . . . . . . . . . . . . . 100
6.11 Parametric heating measurement in new dipole beams. . . . . 101
6.12 Pumping in F = 2 state by the multimode laser. . . . . . . . . 102
6.13 The voltage multiplier circuit. . . . . . . . . . . . . . . . . . . 104
6.14 Demonstration of the output of the voltage multiplier. . . . . 105
6.15 Balancing power in both dipole trap beams. . . . . . . . . . . 106
6.16 Cooling trajectory to 87Rb BEC. . . . . . . . . . . . . . . . . 107
6.17 Anisotropic expansion of an elongated BEC. . . . . . . . . . . 109

7.1 Generation of diffractive optical elements. . . . . . . . . . . . 114
7.2 Cross-section of the SLM panel. . . . . . . . . . . . . . . . . . 115
7.3 Optical setup for SLM testing. . . . . . . . . . . . . . . . . . . 119
7.4 Measuring the maximum diffraction angle of the SLM. . . . . 120
7.5 The change of diffraction angle and the normalised spot size

with respect to different gratings. . . . . . . . . . . . . . . . . 121
7.6 Illustration of the traditional Gerchberg-Saxtom algorithm. . . 123
7.7 Comparison between calculated intensity profiles generated

using the Gerchberg-Saxtom algorithm and the MRAF algo-
rithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.8 Speckles in the measured intensity pattern. . . . . . . . . . . . 127
7.9 Geometrical beam shaping. . . . . . . . . . . . . . . . . . . . . 129
7.10 Error analysis on varying the sizes of the signal region and the

target image of the first phase guess. . . . . . . . . . . . . . . 133
7.11 Error analysis on varying the mixing parameter of the MRAF

algorithm and the number of iterations. . . . . . . . . . . . . . 135
7.12 Effect of different input beam size on the square intensity pat-

tern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.13 Effect of different input beam size on the ring intensity pattern.138
7.14 Change of intensity distribution of a square by displacing the

simulated input beam position. . . . . . . . . . . . . . . . . . 140



List of Figures xiii

7.15 Matching the beam position. . . . . . . . . . . . . . . . . . . . 141
7.16 Matching the beam size. . . . . . . . . . . . . . . . . . . . . . 142
7.17 The spots matching procedure. . . . . . . . . . . . . . . . . . 143
7.18 The addition of 3 additional diffraction limited spots intro-

duces ghost images that distort the intensity profile. . . . . . . 144
7.19 Example holograms generated by the SLM. . . . . . . . . . . . 146
7.20 Error analysis on different intensity patterns with different

mixing parameter m. . . . . . . . . . . . . . . . . . . . . . . . 147
7.21 Feedback loop. . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.22 Image improvement after feedback. . . . . . . . . . . . . . . . 150

8.1 The propagation of the first order diffracted light field from
SLM about the Fourier plane. . . . . . . . . . . . . . . . . . . 155

8.2 Optical setup for light source for both the light sheet and the
SLM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.3 Optical setup of the light sheet. . . . . . . . . . . . . . . . . . 157
8.4 Initial light sheet alignment using the repump light. . . . . . . 158
8.5 Effect of the LS pitch on the trap depth. . . . . . . . . . . . . 159
8.6 Atom loss from tilted LS. . . . . . . . . . . . . . . . . . . . . . 159
8.7 Alignment of the LS position. . . . . . . . . . . . . . . . . . . 160
8.8 Characterisation of the LS. . . . . . . . . . . . . . . . . . . . . 161
8.9 Incorporating the SLM setup into the main experiment. . . . . 162
8.10 Longitudinal alignment of the SLM beam. . . . . . . . . . . . 165
8.11 Transverse alignment of the SLM beam. . . . . . . . . . . . . 167
8.12 Absorption images of atoms in arbitrary trap shapes. . . . . . 168
8.13 Loading procedure of the ring trap. . . . . . . . . . . . . . . . 170
8.14 Lifetime of the ring traps. . . . . . . . . . . . . . . . . . . . . 171
8.15 Trap depth of the ring along the SLM beam propagation. . . . 172
8.16 Smoothness of the ring trap. . . . . . . . . . . . . . . . . . . . 174

A.1 The magnetic field of a current loop at any point in space. . . 182
A.2 Magnetic field from a finite wire. . . . . . . . . . . . . . . . . 184
A.3 Calibration of the bias coils. . . . . . . . . . . . . . . . . . . . 186
A.4 Calibration of the quadrupole coils. . . . . . . . . . . . . . . . 187
A.5 Calibration of the curvature coils. . . . . . . . . . . . . . . . . 188
A.6 Calibration of the cancellation coils. . . . . . . . . . . . . . . . 189
A.7 Calibration of the Up-Down shim coils. . . . . . . . . . . . . . 190
A.8 Calibration of the North-South shim coils. . . . . . . . . . . . 191
A.9 Calibration of the East-West shim coils. . . . . . . . . . . . . 192



List of Tables

5.1 Lenses in the attractive potential system. . . . . . . . . . . . . 64

6.1 Components of the voltage multiplier circuit. . . . . . . . . . . 104

7.1 Technical specifications of the SLM in our laboratory. . . . . . 116
7.2 Parameters of the example holograms. . . . . . . . . . . . . . 145

A.1 Comparison of the expected and measured parameters of the
bias coils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.2 Comparison of the expected and measured parameters of the
quadrupole coils. . . . . . . . . . . . . . . . . . . . . . . . . . 187

A.3 Comparison of the expected and measured parameters of the
curvature coils. . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.4 Comparison of the expected and measured parameters of the
cancellation coils. . . . . . . . . . . . . . . . . . . . . . . . . . 189

A.5 Comparison of the expected and measured parameters of the
Up-Down shim coils. . . . . . . . . . . . . . . . . . . . . . . . 190

A.6 Comparison of the expected and measured parameters of the
North-South shim coils. . . . . . . . . . . . . . . . . . . . . . . 191

A.7 Comparison of the expected and measured parameters of the
East-West shim coils. . . . . . . . . . . . . . . . . . . . . . . . 192

xiv



Chapter 1

Introduction

1.1 Background

1.1.1 Bose-Einstein condensation

Bose-Einstein condensation (BEC) is a phenomenon predicted by Bose [1]

and Einstein [2, 3] in 1924 for an ideal Bose gas where particles obey Bose-

Einstein statistics. Unlike the half-spin fermionic particles that follow the

Pauli exclusion principle, there is no statistical limit on populating quan-

tum energy states with integer-spin bosons. At sufficiently low temperature,

the bosonic particles macroscopically occupy the lowest energy state and the

system ‘condenses’. The quantum mechanical wavefunctions of individual

bosons spatially overlap each other and merge into a single matter-wave. This

is in fact a quantum phase transition as the condensation is manifested from

the quantum statistics. BEC is closely connected to the rise of superfluid-

ity in Helium and superconductivity involving Cooper pairs of electrons [4–6].

It was not until about 70 years after the prediction that the first atomic BEC

was experimentally realised. In 1995, Wieman and Cornell demonstrated the

condensation of 87Rb [7], while the condensation of 23Na was achieved by

Ketterle [8]. The scientific significance of these experimental breakthroughs

was recognised by the Nobel prize in Physics in 2001. Following these ob-

servations, we have since seen an escalating interest in BEC physics. To

date, BECs of various dilute alkali gases have been created, such as 7Li [9],

1
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39K [10], 41K [11], 85Rb [12, 13], and 133Cs [14]. Adding to the family is

a host of other bosonic isotopes of elements, which includes calcium [15],

strontium [16–18], ytterbium [19], erbium [20] and chromium [21, 22]. All of

these have opened up the gateways to a broad range of advanced experiments

that demonstrate quantum mechanics on a macroscopic scale. For instance,

particle-wave duality – a property that lies at the heart of the bizarre world

of quantum mechanics, can be displayed through the interference between

condensates [23, 24]. Through balancing the dispersive nature of the con-

densate and the strength of the attractive interatomic interaction, one cre-

ates a macroscopic excitation known as a bright soliton [25]. It is robust to

collisions with other solitons, while multi-soliton interaction at a potential

barrier is phase-dependent. These properties, which will be discussed shortly,

are central to the motivation of this work, where we wish to utilise such a

matter-wave to construct an interferometer for rotational sensing.

1.1.2 Soliton and bright solitary waves

Mathematically, solitons are localised particle-like solutions to 1-dimensional

(1D) nonlinear differential equations [26]. They exhibit the following prop-

erties [27]:

• Their wave profile is maintained during propagation;

• They are localised, and decay or become constant at infinity;

• They are robust to collisions with other solitons.

It should be stressed that a true soliton only arises in 1D systems. In reality,

we can only at best create a quasi-1D system in the 3D physical world. While

the features of a true soliton are still observed with the additional dimensions

(see examples below), these systems inevitably deviate from the description

of a true soliton. Hence, to differentiate from a soliton, its 3D counterpart is

referred to as a solitary wave. However, the term soliton and solitary wave

are commonly used interchangeably in literature.

Solitons were first discovered by John Scott Russell in 1834 when he encoun-

tered the non-dispersive waves in the shallow water of the Union Canal [28].
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Described as ‘wave of translation’ in his own words, the first experimental

study of solitary waves was published in 1844 [28]. Extensive studies of soli-

tons have since been carried out in a diverse range of fields and media, which

include nonlinear optics and optical fibres [29–33], plasma physics [34], mag-

netism [35], and the human body [36].

In a degenerate Bose gas, the weak interatomic interaction gives rise to non-

linearity in the system. In the ultracold environment, the strength of such

interactions is determined by the s-wave scattering length, a quantity that

can be tuned by exploiting a Feshbach resonance [37]. Utilising such tunabil-

ity, the first experiments of BECs with attractive interactions were performed

with 7Li [9] and later on with 85Rb [12]. The stability of these condensates,

however, is strongly dependent on the trap geometry. In particular, an in-

creasing number of atoms in a 3-dimensional (3D) BEC leads to instability

of the condensate. These systems tend to infinitely increase the density in

order to reduce the interaction energy, which eventually results in a collapse

of the degenerate gas [25]. Given the name ‘Bosenova’, this phenomenon

has been experimentally observed [38–40], where a stable BEC implodes fol-

lowing a change from repulsive to attractive interatomic interaction in a 3D

trap. Remarkably, the stability of the attractive condensate is enhanced if

it is placed in a trap where the confinement along one direction is weak, or

ideally, effectively removed [25]. In such a trap, precise tuning of the scatter-

ing length allows an exact cancellation between the attractive interactomic

interaction and the dispersive wave-like nature of the condensate along this

‘free’ direction, resulting in the formation of bright solitary waves.

In 2002, single bright solitary waves from 7Li were realised at ENS, Paris [41].

Here, the attractive condensates with N ≈ 2 × 104 atoms were observed to

propagate over 1.1 mm in the optical waveguide without dispersion. In the

same year, soliton trains from 7Li were observed in another experiment at

Rice [42]. Later on in 2006, the formation of multiple solitons after the col-

lapse of an attractive 85Rb BEC in a 3D trap was demonstrated at JILA [43],

while a single 85Rb bright solitary wave was first realised here in Durham in

2012 [44].
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Interestingly, bright solitons possess particle-wave duality on a macroscopic

level: in a 3D geometry, the outcome of the interactions between two particle-

like solitons depends on the relative phase between them [45, 46]. This has

been experimentally observed: the solitons in the Rice and JILA experiments

collided and repelled each other during the oscillation in the trap [42, 43].

This led to the conclusion that, while the origin is not satisfactorily explained,

there exists a π phase difference between the neighbouring solitons [46]. Re-

cently, in-phase and out-of-phase binary soliton collisions, along with var-

ious phase dependent collisional dynamics, have been extensively studied

experimentally [47]. These observations, however, highlight again that much

theoretical work is still required in order for us to understand the soliton dy-

namics fully. Indeed, the phase relation between the two solitons in ref. [47],

which were created by dividing a single condensate using a repulsive barrier,

was not controllable. Nevertheless, the study of phase-sensitive macroscopic

collisional behaviour has sparked broad interests in constructing future in-

terferometers using bright solitary waves [42, 48–52], as will be explained in

the following section.

1.1.3 Matter-wave interferometry

Interferometers have long been established as an important tool in physics

for precision measurements. In an optical interferometer, a light wave is first

coherently split at a beam splitter. The two resulting partial waves sub-

sequently recombine, forming an interference pattern which depends on the

relative phase arising from the path difference before recombination. Matter-

wave interferometers make use of the wave-like properties of a particle. With

a non-zero mass, such an interferometer is highly sensitive to inertial effects

such as rotation and acceleration. The first experimental realisation of the

interference in atoms was achieved by Ramsey in the 1950s [53]. However, it

was not until about two decades later that the inertial effect on matter-waves

was first demonstrated, where a quantum mechanical phase shift of neutrons

in a gravitational field was reported [54]. With advancing laser technology,

the first experiments in matter-wave interferometry with atoms were eventu-

ally realised in the early 1990s [55, 56]. These experiments made use of two-

photon stimulated Raman transitions, using a laser pulse to split the atomic

matter-wave (originally in the hyperfine ground state) into a superposition of
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partial waves with different momenta. Analogous to the optical interferom-

eter, the phase of the two wavepackets evolves before recombining through

the application of a second laser pulse, creating interference depending on

the relative phase shift. Matter-wave interferometry has since seen a dra-

matic growth, demonstrating a broad range of applications, such as inertial

sensing [57], and measurements of the gradient of the Earth’s gravitational

field [58, 59], the gravitational constant [60], and the rotation rate [61–63].

The ability to split and recombine bright solitary waves and their phase-

dependent collisional behaviours have made them an intriguing candidate

for interferometry. In particular, the interacting solitary wave is predicted

to provide an interferometer that overcomes the standard quantum limit of

accuracy [49]. Such improvement in sensitivity has attracted many proposed

schemes of interferometers [49, 64, 65] and precision measurements such as

surface probing [48]. Recently, the first soliton interferometer of the Mach-

Zehnder type has been experimentally realised [66]. This interferometer is

constructed by driving Bragg transitions through the use of an optical lat-

tice aligned colinear with the optical waveguide. It is found that the solitonic

matter-waves enhance the visibility of the interferometer fringes.

In this thesis, we present the work towards the realisation of rotational sens-

ing with bright solitary waves – a scheme originally proposed in refs. [51, 52].

The key components are narrow potentials for splitting and recombining soli-

tons, as well as a ring trap for soliton propagation. A ring geometry, where

the axial trapping is absent, provides a system that describes a true soli-

ton that arises from the integrable nonlinear Schrödinger equation. More

interestingly, this interferometer does not rely on inspecting the interference

structure of condensates, but rather interpreting the relative phase directly

from the population transfer between the two split solitons after a scattering

event. Hence, such a scheme presents an exciting and an alternative way to

traditional matter-wave interferometers for precise inertial sensing.



Chapter 1. Introduction 6

1.2 Thesis context

This thesis presents work towards the realisation of rotational sensing using

bright solitary waves formed from 85Rb condensates. The first part of this

work presents the observation of quantum reflection of such matter-waves

from a narrow potential well. The experimental studies of soliton splitting

highlight the dependence of soliton collisional behaviour on the soliton ve-

locity, well depth, and the structure of the narrow potential. Gaining un-

derstanding of soliton interaction with attractive potentials also serves as a

springboard towards one of the long term goals of the experiment – to pre-

cisely probe the potential of a dielectric surface with bright solitons [48].

In the second and main part of this work we focus on developing the exper-

imental equipment and techniques that allow us to realise the bright soli-

tary wave interferometer. An apparatus upgrade is carried out, which sees

the implementation of new magnetic coils, a new optical dipole trap, along

with redesigned coil mounts and homebuilt electronics. Furthermore, a ring

trap, a key component of the interferometry scheme proposed in [51, 52],

is generated through a device known as a spatial light modulator (SLM).

Through phase imprinting, one can manipulate the light into desired inten-

sity patterns. This presents a great scope for generating ring traps for solitary

waves, as well as atom trapping in any arbitrary potentials. The transfer of

ultracold atoms from the dipole trap into the ring trap will also be discussed.

Prior to the author’s (MMHY) contribution to this work, the experiment was

already well developed by the following researchers: Sylvi Händel (SH), Anna

Marchant (AM), and Timothy Wiles (TW). SH was involved in the prelimi-

nary stage of the experiment which includes the construction of the optical

setup for laser cooling, the vacuum system, and the magnetic transport. Both

SH and AM carried out the optimisations and characterisations that led to

the first observation of 87Rb condensate in our laboratory. AM and TW

developed and characterised the crossed dipole trap, and subsequently, AM

demonstrated the creation of 85Rb BEC through direct evaporative cooling.

While a brief overview of the work up to the creation of 85Rb BEC is pre-

sented in this thesis, the readers are advised to refer to the theses of SH [67]

and AM [68] for in-depth discussions. Moreover, TW’s work on the experi-
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mental control system can be found in ref. [69].

Throughout this thesis we focus on the work undertaken by MMHY, which

are as follows: the alignment and characterisation of the waveguide was

achieved by TW and MMHY, which led to the realisation of the bright soli-

tary matter-waves and the observation of classical reflection from a broad

barrier performed by AM. MMHY designed and characterised the tightly fo-

cussed 852 nm light sheet, while the alignment and the initial experiments

with the narrow potential well was performed by MMHY and TW. MMHY

and AM proceeded to demonstrate quantum reflection of the bright solitary

waves from the potential well. For the upgrade of the apparatus, MMHY,

AM, and Ana Rakonjac (AR) were involved in the design, construction, and

implementation of the new magnetic coils and dipole beams. AM and AR

demonstrated the creation of 87Rb BEC in our new system. Building on Jan

Becher’s (JB) initial work on the SLM, MMHY optimised the performance

of the SLM which yielded smooth and speckle-free holograms. The SLM

setup and the horizontal light sheet optical setup in the main experiment

were designed and aligned by MMHY. The light sheet characterisation was

performed by MMHY and AR, while that of the SLM beam was carried

out by MMHY. Finally, MMHY, AM, and AR demonstrated the transfer of

atoms from the crossed dipole trap into the ring trap, which is formed at the

intersection of the SLM and the horizontal light sheet beams.

1.3 Thesis outline

The structure of this thesis is as follows:

• Chapter 2 provides a brief outline of the theoretical framework of bright

solitary waves and their interaction with narrow potentials.

• Chapter 3 describes the experimental apparatus and various experi-

mental techniques that are utilised for the measurements presented in

this thesis.

• Chapter 4 describes the journey from creating 85Rb condensates via

direct evaporative cooling to the realisation of bright solitary waves [13,

44].
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• Chapter 5 reports the results of quantum reflection of a bright solitary

wave from a narrow potential well [70].

• Chapter 6 describes the upgrade of the experimental apparatus. It

records the modelling, design, and implementation of our new magnetic

coils, optical dipole trap, and electronics. This chapter then demon-

strates the condensation of 87Rb in the upgraded setup.

• Chapter 7 describes the generation of arbitrary intensity patterns using

an SLM. A comprehensive optimisation of hologram quality is presented

in this chapter.

• Chapter 8 contains details of the implementation of the SLM beam and

a light sheet beam into the experiment. This chapter then reports the

observation of atom trapping in the ring trap.

• Finally, Chapter 9 summarises the work presented in this thesis and

presents the future goals and outlook of the experiment.



Chapter 2

Theoretical background

2.1 Introduction

In this chapter, we present a brief overview of the theoretical work behind

the goal of this project – to construct a bright solitary matter-wave interfer-

ometer for precise rotational sensing. Starting with introducing the BEC and

the Gross-Pitaevskii equation (GPE), we discuss the bright soliton solution

to the 1D GPE, soliton interaction with narrow potentials, and the utilisa-

tion of the phase-dependent soliton recombination at a potential barrier in

construction of interferometers.

A soliton, a self-focussing non-dispersive wave packet, can be formed from

a degenerate Bose gas by balancing the attractive interatomic interactions

and the dispersion of the condensate, as discussed in Section 1.1.2. Main-

taining its shape while it propagates, this mesoscopic matter-wave exhibits

robust particle-like bahaviour, enabling the study of quantum mechanics on a

much larger scale. The dynamics of binary solitary wave collisions have been

theoretically visited within the framework of mean field GPE [45, 46]. The

creation of multiple solitons can be achieved through the splitting of solitary

wave at narrow potentials. This process has been extensively studied theo-

retically with both repulsive potential barriers [64, 65, 71–73] and attractive

potential wells [74, 75]. For splitting to occur, the incoming soliton must

carry a kinetic energy larger than the difference between its ground state en-

ergy and the total ground state energy of the resulting solitons [72, 73, 76].

9
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In the regime where such an event is energetically allowed, the probabili-

ties of transmission and reflection depend strongly, but not exclusively, on

the kinetic energy of the incoming solitary wave compared to the potential

energy of the barrier/well. This creation of coherent localised condensates

is analogous to a beam splitter that coherently splits a light beam. The

two resulting solitary waves after splitting can subsequently be recombined

by scattering at a second potential barrier [77]. The outcome of the re-

combination depends strongly on the relative phase between the two soli-

tary waves [45, 46]. As such, soliton splitting and recombination have been

suggested as a fundamental component in the construction of matter-wave

interferometers [49, 52, 77, 78]. In particular, much to our interest, an inter-

ferometer for rotational sensing can be formed by splitting and recombining

the solitary waves that are confined in a ring geometry [51, 52]. On the other

hand, in a regime where splitting is energetically disallowed, one can generate

a quantum superposition state of solitary waves, or the so-called Schrödinger

cat state [50, 76, 79, 80].

2.2 Bright solitary matter-waves from a BEC

2.2.1 Bose-Einstein condensation

In a system of non-interacting, indistinguishable bosonic particles, the ther-

mal de Broglie wavelength of each particle is conventionally defined as

λdB =

√
2π~2

mkBT
, (2.1)

where m is the mass of the particle, T is the temperature of the ideal Bose

gas, ~ is the reduced Planck constant, and kB is the Boltzmann constant. Fol-

lowing Bose-Einstein statistics, such a system undergoes a quantum phase

transition when it is cooled to a low temperature where the de Broglie wave-

lengths of the individual bosons start to overlap [6, 81]. This phenomenon

of condensation occurs at a critical temperature Tc when the phase space

density (PSD)
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V(r)

0 r
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ψ(r)

r

(a) (b)

Phase shift

Figure 2.1: Low energy scattering between atoms and the origin of the s-wave scattering
length as. (a) Effect of low energy scattering from a molecular potential
V (r) (blue). The potential is a combination of the electrostatic repulsion
and van der Waals attraction. At long range, regardless of the potential, the
overall effect from scattering is a phase shift in the wavefunction (red solid)
compared to the wave scattered from a point-like particle at r = 0 (black
dashed). Figure adapted from ref. [86]. (b) At low energy the phase shift is
proportional to the scattering length as. This quantity can be geometrically
interpreted as the intersection of the tangent (black dotted lines) to the
unperturbed wavefunction at the vanishing point of the interatomic potential
with the r-axis [87]. Here, the red, solid (blue, dashed) curve illustrates the
positive (negative) scattering length.

PSD = nλ3
dB = ζ

(
3

2

)
= 2.612, (2.2)

where n is the particle density [6, 81]. ζ(α) =
∑∞

j=1 j
−α is known as the

Riemann Zeta function. The critical temperature for an N -atom bosonic

system is

Tc =
Eα
kB

(
N

ζ(α)

)1/α

, (2.3)

where the parameter α depends on the trap geometry [82]. For a harmonic

trap with trap frequencies (ωx, ωy, ωz), α = 3 and Eα = ~(ωxωyωz)
1/3. For a

uniform trap and a toroidal (ring) trap, α = 3/2 and α = 5/2 respectively.

Their respective expressions for Eα can be found in literatures such as [83]

(uniform) and [84, 85] (ring).

2.2.2 The Gross-Pitaevskii mean-field model

In contrast to the ideal Bose gas, alkali atoms confined in an optical or

magnetic trap do in fact interact with each other [6]. The Gross-Pitaevskii
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mean-field model is a well established description of the dilute1, weakly-

interacting Bose gas system. This system contains N interacting identical

bosons with mass m in the condensate which are trapped in an external

global potential U(r). This mean-field model only holds if the BEC ground

state is macroscopically populated, i.e. N � 1 and T � Tc. The N -body

Hamiltonian of the mean-field model is given by the second quantisation form

[88]

Ĥ =

∫
dr Ψ̂†(r, t)

(
− ~2

2m
∇2 + U(r)

)
Ψ̂(r, t)

+
1

2

∫
dr dr′ Ψ̂†(r, t)Ψ̂†(r′, t)V (r− r′)Ψ̂(r′, t)Ψ̂(r, t)

(2.4)

where Ψ̂(r, t) and Ψ̂†(r, t) represent the annihilation and creation field op-

erators of bosons respectively. The interactions must be dominated by two-

body collisions at low energy where it is sufficient to consider only the s-

wave partial waves, characterised by the s-wave scattering length as. We

refer to Fig. 2.1 for a pictorial explanation of the origin of as. In this limit

it is shown that, regardless of the interatomic potential, the overall effect

on the scattered wave at long range is a phase shift [86] (see Fig. 2.1(a)).

Thus one can simplify such interactions by replacing the molecular potential

(shown in blue in Fig. 2.1(a)) by an effective potential V (r− r′) = gδ(r− r′)

where the nonlinearity g is given by g = 4π~2as/m [82, 88, 89]. Employing

this effective potential, and normalising the wavefunction to atom number

N =
∫

dr |Ψ(r, t)|2 =
∫

drn(r, t) (where n(r, t) is the particle density), the

Heisenberg representation of Eq. 2.4 takes the form

i~
∂

∂t
Ψ(r, t) =

[
− ~2

2m
∇2 + U(r) + gN |Ψ(r, t)|2

]
Ψ(r, t), (2.5)

which is the mean-field Gross-Pitaevskii equation (GPE). The nonlinearity

coefficient can take either positive or negative values depending on the sign

of as, where as > 0 (as < 0) corresponds to repulsive (attractive) interatomic

interactions. In some systems, the strength of this interaction can be con-

trolled via a Feshbach resonance. This will be detailed in Chapter 4. The

1This commonly refers to Bose gases with density below 1015 cm−3 [82].



Chapter 2. Theoretical background 13

external potential U(r) in the GPE can take many forms. Experimentally,

BECs have been confined in both magnetic potentials [90, 91] and pure op-

tical dipole potentials [92–95]. The generation of these trapping potentials

in our experiment will be presented in Chapter 3. These commonly used

‘traditional’ traps are well approximated by a 3D harmonic trap

U(r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (2.6)

where ωx, ωy, ωz are the trap frequencies in their respective directions.

Non-interacting solution

The ground state energy of the condensate is characterised by the chemical

potential, µ, which is the energy required to remove a particle from the

system. By substituting Ψ(r, t) = φ(r) exp(−iµt/~) into Eq. 2.5, one obtains

the time-independent GPE in the form of

µφ(r) =

[
− ~2

2m
∇2 + U(r) + gN |φ(r)|2

]
φ(r). (2.7)

In the non-interacting regime, where g = 0, Eq. 2.7 is reduced to the

Schrödinger equation for a single particle. Assuming the non-interacting

condensate is trapped in a 3D harmonic confinement described by Eq. 2.6,

the ground state solution is given by

φ(r) =
(mω̄
π~

)3/4

exp
[
−m

2~
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)]
, (2.8)

where ω̄ = (ωxωyωz)
1/3.

Thomas-Fermi solution

In the limit of Nas/l̄� 1, where l̄ =
√
~/mω̄ is the mean harmonic oscillator

length, the strong repulsive interactions push the atoms further out in the

trap. This leads to a condensate density profile broader than that of the

non-interacting ground state solution. The kinetic energy term in Eq. 2.7

becomes small when compared to the dominant interaction and potential

terms, and hence can be neglected. This is known as the Thomas-Fermi

approximation, where the density profile of the trapped condensate is given
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by

n(r) =

(µ− U(r))/gN for µ > U(r),

0 elsewhere.
(2.9)

It is clear from Eq. 2.9 that the density of the condensate drops to zero

at U(r) = µ. This defines the Thomas-Fermi radius. For a spherically-

symmetric harmonic trap where ω̄ = ωx,y,z, the Thomas-Fermi radius of the

condensate is

RTF =

√
2µ

mω̄2
, (2.10)

where the chemical potential in the Thomas-Fermi limit takes the form

µ =
~ω̄
2

(
15Nas
l̄

)2/5

. (2.11)

2.2.3 Reduction to 1D GPE

By constructing a strongly anisotropic trap, one can engineer the effective

dimensionality of the system. Consider a cylindrical trap by setting ωr =

ωy = ωz with ωr � ωx. If the transverse harmonic oscillator length ar =√
~/mωr < ξ, where

ξ =
1√

8πnas
(2.12)

is the healing length of the BEC2, the elongated BEC can be considered to be

effectively 1D [25]. In this limit, one can factorise the classical field function

Ψ(r, t) into

Ψ(r, t) = ψ(x, t)χ(y)χ(z) ≡ ψ(x, t)

√
mωr
π~

exp

(
−mωr(y

2 + z2)

2~

)
. (2.13)

If we substitute Eq. 2.13 into the 3D GPE (Eq. 2.5) and integrate over the

transverse degrees of freedom, we arrive at

2The distance over which the BEC density grows from 0 to n.
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i~
∂

∂t
ψ(x, t) =

[
− ~2

2m

∂2

∂x2
+
mω2

xx
2

2
+ g1DN |ψ(x, t)|2

]
ψ(x, t), (2.14)

where g1D = 2~ωras [96, 97] (a factor of a constant energy shift ~ωr is omitted

as it can be absorbed into the 1D chemical potential [98]). Eq. 2.14 is known

as the 1D GPE.

2.2.4 Soliton solution

In the homogeneous regime (ωx → 0), Eq. 2.14 becomes a standard integrable

nonlinear Schrödinger equation (NLSE) which takes a common form of

i
∂u

∂t
+

1

2

∂2u

∂x2
+ u|u|2 = 0. (2.15)

Zakharov and Shabat showed that the NLSE can in fact be exactly solved

by a method known as inverse scattering transform [99] which leads to soli-

ton solutions. For a repulsive nonlinearity (g > 0), the solution describes

a dark soliton, which is characterised by a notch in the condensate density

with a sharp phase gradient of the wavefunction at the position of the lo-

cal density minimum [100]. Dark solitons in a BEC have been realised via

various methods, such as the manipulation of the BEC phase through phase

imprinting [101, 102], the manipulation of the BEC density where the local

reductions in density evolve into dark solitons [103, 104], and a combination

of the previous two methods [105]. On the other hand, for an attractive

nonlinearity (g < 0), the solution in fact describes a bright soliton. In the

case of the 1D GPE (Eq. 2.14), in the absence of axial confinement, the exact

solution is given by

ψ(x, t) =
ar√

2|as|ls
sech

(
x− vt
ls

)
exp

[
i
mv

~
x+ i

(
~ls
2m
− mv2

2~

)
t

]
, (2.16)

where

ls =
a2
r

|as|N
(2.17)

is the spatial extent of the soliton and v is the soliton velocity [25]. It is clear

that solutions of this form possess the unique properties of solitons. For

instance, they do not decay over time due to the absence of real exponents in
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Eq. 2.16. In collision with another soliton, while they are subject to a shift in

position and phase, the soliton profiles are maintained asymptotically [106].

2.3 Stability and collapse

In reality, BECs created in the laboratory are intrinsically 3D objects in

a 3D trap. The introduction of the additional dimensions and the non-

vanishing inhomogeneous trap potential (ωx > 0) removes the integrability of

the NLSE. The new ground state thus deviates from the true soliton solution

described in Eq. 2.16. However, such a system still supports solutions that

exhibit the non-dispersive soliton-like nature, which are formally known as

bright solitary waves, as discussed in Section 1.1.2. The stability of the

3D attractive condensate can be understood by variational analysis [107,

108]. We begin by expressing the energy functional of the time-independent

dimensionless 1D GPE3 as

Ẽ1D[ψ] =

∫
dx̃

[
1

2

∣∣∣∣ ∂∂x̃ψ(x̃)

∣∣∣∣2 +
α2x̃2

2
|ψ(x̃)|2 − 1

2
|ψ(x̃)|4

]
, (2.18)

where α = ~ωx/4mω2
r |as|2N2. As the soliton units will be used through-

out the rest of this section and the earlier parts of Section 2.4, the tilde,

which denotes the dimensionless variables, will be omitted for brevity. In

the homogeneous limit (ωx → 0), one retrieves the integrable NLSE with an

exact soliton solution of a sech profile. In contrast, in the limit of infinite

axial confinement (ωx → ∞) the solution ψ(x) tends towards a Gaussian

function. One can readily visualise that the ground state of the true soliton

solution transforms from a sech profile to a Gaussian profile by reducing the

anisotropicity of the external potential U(r) [97]. As such, it is appropriate

to choose a Gaussian ansatz as the wavefunction in a 3D cylindrical trap

geometry, given by

Ψ(r) =

(
1

π3/2axa2
rbxb

2
r

) 1
2

exp

[
−1

2

(
x2

a2
xb

2
x

+
r2

a2
rb

2
r

)]
, (2.19)

3The soliton rescaling is commonly used due to the mathematical convenience [97].
Denoting dimensionless variables with tildes, the conversions from physical units to
soliton units are as follows: length x = x̃~2/mg1DN , time t = t̃~3/mg21DN2, energy
E = Ẽmg21DN

2/~2 [109].
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Figure 2.2: The metastable state and the collapse of an attractive 3D BEC. The plot
shows the energy per particle in an isotropic harmonic trap (in units of α as
defined in the text) as a function of the variational Gaussian width bx for
different values of k = N |as|/ar.

where ax =
√

~/mωx is the axial harmonic oscillator length, br and bx are

the dimensionless radial and axial lengths that characterises the Gaussian

ansatz. Substituting Eq. 2.19 into the 3D equivalent of Eq. 2.18,

E3D[Ψ] =

∫
dr

[
1

2
∇Ψ(r) · ∇Ψ∗(r)

+
α2

2

(
x2 +

ω2
rr

2

ω2
x

)
|Ψ(r)|2 − 4π

(
|a|N
ar

)2

|Ψ(r)|4
]
,

(2.20)

one obtains the energy functional of the BEC trapped in a 3D cylindrical

potential

E3D(bx, br) =
α

4

[(
b2
x +

2ωr
ωx

b2
r

)
+

(
1

b2
x

+
2ωr
ωx

1

b2
x

)
−
√

8ωr
πωx

N |ax|
ar

1

bxb2
r

]
.

(2.21)

The three terms in Eq. 2.21 represent the kinetic energy, trap potential, and

the interaction energy. This variational analysis shows that the interaction

is dependent on the trap geometry. Here, we define the dimensionless inter-

action parameter

k =
N |as|
ar

. (2.22)
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To demonstrate how the strength of this interaction term relates to the con-

densate stability, let us consider a spherically symmetric trap, where we set

ωx = ωr and bx = br. The energy functional of a condensate in this isotropic

geometry, in units of α, is plotted for different values of k as shown in Fig. 2.2.

A local energy minimum, hence the condensate metastability, only exists for

some values of k. Beyond this critical value kc, which is commonly referred

to as the collapse parameter, the condensate is unstable and undergoes col-

lapse. For an isotropic condensate, kc = 0.671 [88, 96, 110]. Consequently,

one can define the critical number of the system as

Nc =
kcar
|as|

. (2.23)

An attractive condensate in a 3D trap with N > Nc is regarded as unstable

and collapse follows. This phenomenon has been observed experimentally in
7Li [38] and 85Rb [39, 40, 68]. Interestingly, formation of multiple solitons

has been observed following the collapse of an attractive 3D BEC [42, 43].

In summary, it is vital to balance N , ar, and as in order to realise bright

solitary waves experimentally [41, 42, 44, 47].

2.4 Soliton scattering from narrow potentials

As mesoscopic, self-focussing structures, bright solitary waves present a rich

testing ground for the realisation of quantum mechanical effects on a macro-

scopic scale. One of the major long-term aims of this experiment is to probe

atom-surface interactions with the dielectric surface of a prism. At short

range, the interaction is dominated by the attractive van der Waals and

Casimir-Polder potentials [111, 112]. Scattering from such a potential, sig-

nificant quantum reflection is predicted if the kinetic energy of the soliton is

sufficiently low. More specifically, it is when the local wave vector k changes

by more than k over a distance of 1/k [48, 113]. That is, one requires a slow

soliton and a rapidly changing potential. In the case of a repulsive potential,

quantum tunnelling is predicted when the system approaches similar condi-

tions [114]. Indeed, theoretical studies have shown that there exists a wide

range of behaviours for solitons interacting with narrow potential barriers/

wells depending on the energy regime [51, 72, 73, 75–77]. In essence, the
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kinetic energy Ek, dependent on the soliton’s velocity, is transferred into the

interaction energy through the soliton’s collision with the potential [109].

Soliton splitting, including 50:50 splitting, can only occur if

Ek > Es = [EG(N − n) + EG(n)]− EG(N), (2.24)

where the splitting energy Es is the difference between the ground state ener-

gies EG of the two resulting solitons (one with n and one with N −n atoms)

and the original, incoming soliton with N atoms. This is defined as the

high energy regime. In contrast, some splitting events become energetically

forbidden when Ek . Es, and hence entering the low energy regime. The

boundaries of these regimes will be discussed in this section. Although we

will not discuss it further in this thesis, one should be aware that collisions

with narrow potentials also yield a time-decaying radiation, in addition to

the outgoing solitons [72]. Other interesting outcomes, such as the forma-

tion of the soliton molecules [115], have also been reported. In the following

discussion, we closely follow the works by Helm [51, 52, 77, 109] and Gert-

jerenken [76].

2.4.1 High energy regime

Let us consider first the splitting of the bright solitary wave at a narrow re-

pulsive barrier. By comparing the splitting on Gaussian barriers to splitting

on delta-function barriers, it can be seen that the reflection or transmission

coefficients are strongly dependent on the width of the barrier [65, 77, 109].

These studies have been carried out in a 1D GPE framework with a homo-

geneous configuration. The physical system can be expressed by adding an

additional barrier potential to the dimensionless 1D GPE in Eq. 2.18

E[ψ] =

∫
dx

[
1

2

∣∣∣∣ ∂∂xψ(x)

∣∣∣∣2 +

(
Vb(x) +

α2x2

2

)
|ψ(x)|2 − 1

2
|ψ(x)|4

]
, (2.25)

where Vb(x) is the dimensionless expression of the additional narrow barrier.

Here, we set ωx = 0 to remove the harmonic confinement. Two types of

barrier potentials are explored, namely
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Vb(x) =

qδ(x) for delta-function potential,

2q

wx

√
2π

exp
(
−2x2

w2
x

)
for Gaussian barrier with 1/e2 radius wx,

(2.26)

where q =
∫∞
−∞ Vb(x) dx defines the strength of the barrier. A key result from

ref. [72] shows that after the collision with the barrier at a velocity v,4 the

amplitudes of the transmitted (AT) and reflected (AR) solitons are given by

AT = max(0, 2|t(v)| − 1) and AR = max(0, 2|r(v)| − 1), (2.27)

where t(v) and r(v) are the magnitudes of the transmitted and reflected

components for plane waves in linear quantum mechanics. The transmission

and reflection coefficients from the delta function barrier are

T (v) = |t(v)|2 =
v2

v2 + q2
and R(v) = |r(v)|2 =

q2

v2 + q2
. (2.28)

In events where AT = 0 or AR = 0, the outgoing wave does not contain a

soliton, but instead only radiation will be observed [77].

This result is compared with the case of a Gaussian barrier. It is shown that

the discrepancy of the transmission coefficients between the Gaussian barrier

and the delta function increases with the ratio q/v [77]. For a fixed, finite

barrier width, the higher the potential height is, compared to the kinetic en-

ergy Ek, the lower the transmission as the wave function decays. In contrast,

for Ek > Vb(0) where the soliton has sufficient energy to ‘go over the barrier’,

one enters the classical transmission regime which sees a greatly enhanced

transmission. As such, to ensure soliton splitting at a narrow barrier in the

high energy regime without classical transmission, the soliton velocity v in

soliton units must satisfy

v2

2
� 2q

wx
√

2π
, (2.29)

or equivalently in dimensional, S.I. units, it is simply

4The soliton unit for velocity is |g1D|N/~ = 2ωr|as|N .
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v �
√

2V0

m
, (2.30)

where V0 is the height of the barrier5. For the rest of this thesis, we will

resume the use of the physical, dimensional units. Eq. 2.30 is plotted in

Fig. 2.3(a), which indicates the boundary between the classical transmission

and the high energy regimes. Although it is not shown in Fig. 2.3(a), as men-

tioned previously, the system enters the low energy regime when Ek . Es.

The transition into such a regime will be discussed in Section 2.4.2.

In scattering the soliton from a narrow potential well, studies on the Rosen-

Morse potential [74] and the rectangular well [75] suggest that narrow poten-

tials, with width smaller or comparable to the spatial extent of the soliton,

are needed for observable quantum reflection. For significant quantum reflec-

tion from the potential, one again requires low velocity (see Section 5.2). In

particular, adding to reflection and transmission as an outcome of the scat-

tering event, nonlinear trapping at the potential well occurs for slow solitons.

This is due to the resonant interaction between the soliton and the bound

states in the potential well, as well as the loss of centre of mass kinetic energy

of the soliton via radiation loss [75]. Such soliton dynamics can be potentially

utilised to experimentally probe the bound states of the localised potential

well.

2.4.2 Low energy regime

For a slow soliton incident on a narrow potential where Ek . Es, the kinetic

energy of the soliton becomes insufficient to split the soliton into two spatially

well separated parts. This describes the low energy regime where splitting

events become inaccessible and thereby a mesoscopic quantum superposition

is created. Such transition from the high to low energy regime is somewhat

analogous to a quantum mechanical transition from a product state wave-

function to an entangled system where the soliton can only be observed to

be fully transmitted or reflected from the potential [51, 76].

5While it is not explicitly written in the expression, the width wx of the barrier should
be at least comparable with, or less than, the spatial extent of the soliton [77].
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Figure 2.3: (a) The purple region indicates the regime where only classical transmis-
sion can occur, as defined in Eq. 2.30. The system undergoes transition
into the high energy regime when the velocity drops below the boundary.
(b) Energetically allowed and disallowed splitting in the low energy regime.
Parameters are as defined in the text. For Ek/|EG(N)| ≥ 0.75, all states
are energetically allowed (white). For Ek/|EG(N)| < 0.75, splitting events,
starting from 50:50 splitting, become energetically disallowed (red). Grey
shows the splittings that remain energetically allowed. Figure taken from
ref. [76].

The following analysis of soliton splitting is based on a classical comparison

between the soliton ground state energies before and after a splitting event,

regardless of the type and strength of the perturbation potential. Consider

the system without axial trapping (by setting α = 0 in the 1D homogeneous

energy functional Eq. 2.18). As previously defined, let N and n be the total

atom number in the condensate and the number of atoms in one of the

resulting solitons respectively. The dimensional ground state energy of an

N -particle soliton is [76]

EG(N) = − 1

24

mg2
1D

~2
N(N2 − 1). (2.31)

For splitting to occur, one must satisfy the condition stated in Eq. 2.24.

Hence, by substituting Eq. 2.31 into Eq. 2.24, and subsequently dividing it

by |EG(N)|, we arrive at6

Ek
|EG(N)|

≥ 3
n

N

(
1− n

N

)
. (2.32)

With the centre of mass kinetic energy defined as Ek = N~2k2/2m =

6Here, we take the mean field limit, where N → ∞ and g1D → 0 with Ng1D =
constant [76].
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Nmv2/2, we find that the required velocity for which all splitting events

are energetically allowed is

v ≥
√

6

m

n

N2

(
1− n

N

)
|EG(N)|. (2.33)

n
N

(
1− n

N

)
within Eq. 2.32 maximises when n/N = 0.5, or 50:50 splitting.

This sets the boundary between the high and low energy regimes. In order

for a continuum of splitting events including 50:50 splitting to occur, one

must satisfy the condition Ek/|EG(N)| ≥ 0.75, or v ≥
√

3|EG(N)|/2mN ,

which is indicated by the white region of Fig. 2.3(b). Using the experimental

parameters presented in Chapter 5, where N = 6000, as = −7 a0, ωr = 2π ×
18.2 Hz, this is equivalent to v ≥ 0.13 mm s−1. Below this velocity, some

splitting events (starting with 50:50 splitting) are energetically disallowed

(red) and thereby describe a quantum superposition. This region can be

referred to as the Schrödinger kitten state as there exists a spread of possible

states which can be expressed as [76]

|ψ〉n =
1√
2

(
|N − n, n〉+ eiα|n,N − n〉

)
, n /

N

4
(2.34)

in Fock-state notation. At small Ek/|EG(N)| (the exact boundary depends

on N), one retrieves the Schrödinger cat state, expressed as

|ψ〉0 =
1√
2

(
|N, 0〉+ eiα|0, N〉

)
, (2.35)

where all the particles are observed to be either transmitted or reflected on an

individual measurement. These macroscopic quantum superpositions of soli-

tary waves offer interesting physics, such as the generation of mesoscopically

entangled Bell states from distinguishable solitons [116], and applications for

atom interferometry experiments [50, 80].

2.4.3 Soliton recombination

Solitons in 1D

In a true 1D environment, the soliton-soliton interaction is completely elastic.

After collision, while there are asymptotic shifts to the position and phase,
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the amplitude of the solitons remains unaffected [106]. Thus a potential

barrier is required to facilitate the soliton recombination. This is achieved

by arranging the barrier at the position where the two solitons collide. The

outcome of such collision depends strongly on the relative phase difference

∆φ between the two incoming solitary waves. For two identical solitary waves

in the high energy regime colliding at a delta-function barrier (one travelling

at a velocity +v and its counterpart at −v), the absence of axial trapping

yields an exact analytical expression of the transmission coefficient from the

barrier. For well separated outgoing solitary waves,

T± =
1

2
[1± sin(∆φ)], (2.36)

where T+ and T− represent the fraction of the total atom number that end

up in their respective sides of the barrier [51]. Numerical calculation in the

same literature shows, however, that such relation is skewed as a result of

the interactions between the solitary waves as they approach the potential

barrier.

Solitons in higher dimensions

A non-vanishing axial trap frequency introduces additional dimensions to

the system, which can lead to inelastic soliton collisions [46, 117, 118]. The

outcome of these collisions is strongly dependent on the phase difference ∆φ

between the two solitons. At ∆φ = 0, as the two solitons fully overlap each

other, it is possible that the number of atoms in the condensate exceeds

the critical number Nc [46]. Within the framework of GPE, such a system

will undergo collapse. On the other hand, at ∆φ = π, the two solitons

effectively ‘repel’ each other which suppresses the collapse [46]. This stability

was in fact observed over a range of phase difference π/2 ≤ ∆φ ≤ 3π/2

by Carr et al. [117]. For intermediate phases 0 < ∆φ < π, population

transfer between the two solitons at the collision can occur [46]. The phase

dependence of the bright soliton collision has been recently experimentally

demonstrated [47]. In addition, the relative velocity of the solitons plays a

key role in the outcome, where one can restore the elasticity if the velocity

is sufficiently high [46].
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Figure 2.4: Schematic of the Mach-Zehnder interferometer with bright solitary waves in
(a) a harmonic potential, and (b) a toroidal/ring potential. A single solitary
wave (red) is split into two solitons (blue) from a narrow potential barrier.
In propagation to their point of collision at a barrier the system accumulates
a phase δMZ. Experimentally, δMZ can be gained by imprinting a phase on
one of the solitons. The solitons then recombine at the barrier, with the
outcome (purple) used do deduce δMZ. Adapted from ref. [109].

2.5 Interferometry with bright solitary waves

Bright solitary waves offer an intriguing resource for performing interferome-

try [42, 48–52, 64, 65, 77, 80, 119]. Indeed, the ability to coherently split and

recombine bright solitary waves at a narrow potential is analogous to split-

ting a light beam at a beam splitter in an optical interferometer [72, 73]. In

this section, we will discuss the construction of two interferometers, namely

the Mach-Zehnder interferometer and the Sagnac interferometer, using the

bright solitary waves.

2.5.1 Mach-Zehnder interferometry

In optics, a Mach-Zehnder interferometer is a device that can determine the

relative phase between two incoming coherent light beams [120]. Construct-

ing this system with bright solitary waves, one requires the following three

steps:

1. Coherent splitting of the solitary wave at a narrow potential barrier,

which requires the single solitary wave to be in the high energy regime.

2. Evolution of the two matter-waves within the system, while the relative

phase difference increases by the amount δMZ (in practice, one can

imprint a phase shift to one of the solitons to actively control δMZ).
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3. Recombination at a narrow barrier located at the point of final soliton

collision.

The outcome is dependent on the total phase difference ∆φ which is deter-

mined by examining the population transfer of atoms after step 3. In the case

of a delta-function barrier, upon splitting the system picks up a π/2 relative

phase difference, itself a good estimate for splitting at a narrow Gaussian

barrier [77]. An in-depth discussion on the phase accumulation at a splitting

event from a barrier with a finite width can be found in ref. [78]. The total

phase shift in Eq. 2.36 is hence ∆φ = π/2+δMZ + ε, where ε is the parameter

that quantifies the velocity dependent skewness [51].

The interferometer has been considered in two different trap geometries [51],

namely a weakly harmonically trapped system and a toroidal/ring trap ge-

ometry shown in Fig. 2.4(a) and (b) respectively. While the former is exper-

imentally straightforward to create, the presence of axial trapping removes

the integrability of the system. Given a high anisotropy, as discussed in Sec-

tion 2.2, solitary waves in such a geometry still possesses features of a true

soliton and thus are applicable to interferometry. A ring trap, on the other

hand, gives a periodic geometry where the axial trapping is absent. In such a

geometry, the matter-waves are exact soliton solutions in the mathematical

context, where the recombination process at the narrow barrier is well de-

scribed analytically, as discussed in Section 2.4.3. Generation of a ring trap

will be discussed in Chapter 7.

Both configurations of a Mach-Zehnder interferometer show similar features,

where behaviours are closely linked to the energy regime of the solitons. For

the high energy regime, the interference follows Eq. 2.36 with ε ≈ 0. In the

transition to the low energy regime (v ∼ 0.13 mm s−1 with the parameters

in Chapter 5), ε increases and the interference curve is skewed. In the low

energy regime, the interferometer becomes impracticable, which is caused

by the disallowed splitting events where dynamics are complicated by the

sensitivity to quantum fluctuations in the position and momentum of the

solitons [51].
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Figure 2.5: Construction of a Sagnac interferometer with bright solitary waves. (a) The
Sagnac effect. Path lengths of the two counterpropagating waves in a rotating
frame of radius r at angular frequency Ω have a total difference of 2∆l. (b)
Sagnac interferometry with bright solitary waves. The solitons propagate
along the ring potential in a rotating frame. The interferometer consists of
three steps: (i) The initial soliton (red) splits at the first barrier. (ii) The two
resulting solitons (blue) propagate along the ring where the Sagnac phase
accumulates. (iii) The two solitons recombine at the second barrier at half
the distance of the circumference from the first barrier, where the outcome
(purple) depends on the phase difference.

2.5.2 Sagnac interferometry

The ring geometry is intrinsically interesting because there are interesting

dynamical phase effects associated with the multiply connected regions. One

of which is the Sagnac interferometer, first experimentally demonstrated with

light in a rotational frame by Sagnac [121, 122]. This concept is illustrated in

Fig. 2.5(a). Over time ∆t, a wave moving at a constant velocity v propagates

over a distance ∆L = v∆t and picks up a phase shift ∆φ = 2π∆L/λ. Sagnac

interferometry considers two waves counterpropagating at velocity v in a rest

frame in a ring geometry with radius r. If the ring rotates at an angular

velocity Ω,7 the wave travelling in the same direction as the rotation covers

a longer distance than its counterpart at the point of interference. This

leads to a phase difference δS = 4π∆l/λ between the two waves just before

the collision. In a generalised Sagnac picture of any closed path, the phase

difference is given by

δS =
4π

vλ
Ω ·A, (2.37)

where A is the area enclosed by the paths of the two waves [61, 123]. The

Sagnac interferometer has been extended from light to matter-waves, where

7We only consider low rotation velocity, where v � rΩ.
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rotational phase shifts have been observed in neutron [124], electron [125],

and atom [56] interferometers. A thorough discussion in [52] suggests that

the Sagnac interferometer can be realised in the framework of splitting and

recombination of solitary waves in a ring geometry. Rather than observing

a shift in the Ramsay fringes in the atom interferometer [56], one looks for

the population transfer between the solitons after recombining at a narrow

barrier. Illustrated in Fig. 2.5(b), the setup is identical to the Mach-Zehnder

interferometer in a ring geometry except that the phase difference is man-

ifested by the rotation of the laboratory frame8 at rate Ω. While a full

analysis of the phase evolution can be found in ref. [52], one arrives at the

same expression of δS by replacing λ in Eq. 2.37 with the de Broglie wave-

length λ = 2π~/mv of an atom with mass m [61]. The Sagnac phase shift is

thus

δS =
2m

~
Ω ·A =

2m

~
Ωπr2. (2.38)

Analogous to the Mach-Zehnder interferometer, the transmission coefficient

after the recombination at the second barrier is

T± =
1

2

[
1± sin

(
δS +

π

2
+ ε
)]

=
1

2
[1± cos(δS + ε)]. (2.39)

Velocity once again plays an important role in the transmission at the recom-

bination stage, with the spectrum suffering skewness towards the low energy

regime. Sharp transmission responses are expected for sufficiently fast soli-

tons with numbers of atoms N & 1000, where one can confidently deduce

the Sagnac phase δS [52].

2.5.3 Quantum enhancement in measurement preci-

sion

The quantum superposition of the mesoscopic bright solitary waves in the low

energy regime can be exploited as quantum enhancement of the measurement

precision [126]. Creating superpositions of ultracold atoms counterpropagat-

ing around a ring trap, it is shown that such entanglement is capable of

8Helm et al. [52] also considers a single barrier system, which will not be discussed in
this context.
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carrying out Heisenberg limited precision measurements [127]. That is, the

ultimate quantum limit allowed by quantum mechanics with the precision

scales as 1/N , where N being the number of non-interacting particles in the

system. This Heisenberg limit, however, can be surpassed in a nonlinear

Hamiltonian where all possible k-body interactions are included. Here, the

optimal sensitivity for an entangled initial state is scaled as 1/Nk [128]. In

contrast, it is scaled as 1/Nk−1/2 for an initial product state. Thus for a

bright solitary wave manifested from a dilute Bose gas (k = 2), one can the-

oretically construct an interferometer with a precision beyond the quantum

limit.

2.6 Summary

We have discussed the theoretical background relating to the creation of

bright solitary wave from a BEC. We have focussed on the interaction of soli-

tons with a narrow potential, where we have shown that a broad spectrum

of outcomes are expected depending on the energy regimes of the system.

Solitons can be split, and subsequently recombined at a narrow potential

barrier positioned at the point of soliton collisions, with the outcome de-

pending strongly on the relative phase between the incoming solitons. This

sparks the theoretical and experimental interests in realising interferometers

using bright solitary waves.



Chapter 3

Experimental overview

In this chapter, we provide a brief overview on the experimental apparatus

and various techniques used for obtaining the data presented in this thesis.

For more comprehensive details and the in-depth optimisations of the appa-

ratus, we refer to the following previous theses: refs. [67–69]. The x, y-axes

are as defined in Fig. 3.1, while z-axis represents the vertical direction.

3.1 Apparatus

In our experiment, atoms are first laser cooled in the magneto-optical trap

(MOT) chamber before being delivered to the science cell via magnetic trans-

port [67]. In this section, we outline the key components of the experimen-

tal apparatus that are involved in this process, which include the vacuum

chamber, the laser systems, and the magnetic transport using magnetic coils

mounted on a motorised translation stage.

3.1.1 Vacuum chamber

We refer to Fig. 3.1 for the experimental setup of the vacuum table. The

vacuum system is comprised of the MOT chamber and the science cell. These

two sections are connected through a differential pumping stage, which en-

ables fast loading of the MOT with relatively high background pressure whilst

ensuring an UHV environment for maintaining long lifetimes of atoms in the

science cell. The atoms are transported from the MOT to the science cell

30
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using the coils mounted on a motorised translation stage. An obstacle (a

right angled prism) is located midway between the two chambers. There

are two main reasons for implementing an obstacle along the transport axis:

firstly, it blocks the line of sight path for any stray hot atoms heading to-

wards the science cell, and secondly, it prevents the damage of the MOT

camera from high power beams that enter from the back of the science cell

by diverting the beams out of the system. Inside the glass science cell is

a super-polished Dove prism, which is designed for the purpose of probing

atom-surface interactions using bright solitary waves [48]. Previously, we

have already observed evaporation of a thermal cloud via such interaction

by utilising the prism [129]. Around the glass cell is a pair of magnetic coil

mounts, which accommodate copper coil pairs that generate the quadrupole

field, the bias field, and the shim fields. The dimensions of the magnetic coils

are detailed in ref. [67]. It should be highlighted that the vacuum system is

located on a separate optical table from the main laser system. This is to

isolate possible vibrations caused by the motorised translation stage, which

could reduce the quality of the laser frequency stabilisation.

3.1.2 Laser system

The laser table houses two Toptica DL100 (150 mW) extended cavity diode

lasers to produce light for cooling, repumping, spectroscopy, optical pumping,

and imaging. An additional Toptica BoosTA tapered amplifier is employed

to increase the power of the MOT beams, which enables us to use a larger

MOT beam size (1/e2 diameter ∼ 30 mm) and hence a larger capture volume.

In order to stabilise the DL100 lasers at the desired transition frequencies,

two different locking methods are used. For the cooling laser, modulation

transfer spectroscopy [130] is used to lock at −230 MHz from the 85Rb D2

(52S1/2 → 52P3/2) F = 3 → F ′ = 4 transition. The repump laser, on the

other hand, is locked −230 MHz from the 85Rb D2 F = 2 → F ′ = 3 via

frequency modulation spectroscopy [131]. In Chapters 6 – 8 87Rb is used,

with the lasers locked with the same offsets from the D2 F = 2 → F ′ = 3

(cooling) and F = 1→ F ′ = 2 (repump) transitions.
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The frequency detuning and the intensity of the beams described above are

all controlled via the acousto-optic modulators (AOMs), which allow precise

control and fast switching times. The light is subsequently delivered to the

vacuum optical table by optical fibres.

3.1.3 Magnetic transport

The transport coils are a pair of anti-Helmholtz magnetic coils mounted

on a motorised translation stage (Parker 404XR). In loading the trap, the

quadrupole gradient is switched on to 45 G cm−1 and subsequently ramped

to the transportation gradient of 180 G cm−1 in 500 ms. After the loading of

atoms from the MOT chamber, the transport coils are accelerated at 1 m s−2

until the velocity reaches 0.26 m s−1. The velocity is maintained before it

decelerates at 1 m s−2 to rest at the location of the static quadrupole trap

around the science cell1. The overall transportation time and distance are

∼ 2 s and 51 cm respectively.

To avoid the obstacle, a Helmholtz coil pair is used, which generates a bias

magnetic field of 216 G in order to shift the atoms in the transport quadrupole

trap upwards by 1.2 cm at the position of the obstacle. It should be pointed

out that the acceleration of such a shift (∼ 4 m s−2) and the initial accelera-

tion of the transport sequence are both very low compared to the acceleration

due to the quadrupole trap gradient ∼ 40 m s−2. Thus any heating effects

during the transport are minimal [67].

3.1.4 Lasers for optical dipole trapping

Optical crossed dipole trap

A crossed dipole trap in the science cell is formed from a single Gaussian

beam, derived from the 1064 nm IPG YLR LP-SF 15 W fibre laser, in a bow-

tie configuration [68]. As shown in Fig. 3.1, the dipole beam first enters

the science cell at 45◦ to the glass surface (beam 1), which is then inter-

sected by itself at 90◦ (beam 2). The beam radii of beam 1 and beam 2

at the intersection are 136µm and 125µm respectively. The trap centre is

1The magnetic coil configurations around the science cell are detailed in [67] which will
not be discussed here.
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located at ∼ 6 mm from the prism surface and 160µm below the magnetic

zero of the quadrupole field (this offset zoffset is to prevent Majorana loss,

see Section 3.3.1). The intensity of the beam is controlled by a single AOM

operating in a servo loop.

Optical waveguide

The light for the optical waveguide is derived from a 1064 nm Innolight

Mephisto 2 W laser. The beam enters the science cell through the back of

the Dove prism, intersecting at ∼ 45◦ relative to either of the dipole beams.

The beam is focussed to 117µm and the intensity is again controlled by an

AOM.

3.2 Laser cooling in the MOT chamber

The first stage of the cooling sequence is performed in the MOT chamber

(details of the operation of a MOT are documented in textbooks [86, 87] and

thus will not be discussed). This involves three stages:

1. The MOT: it is in the usual configuration with three pairs of counter-

propagating beams, as illustrated in Fig. 3.1. Typically ∼ 1×109 atoms

are loaded into the MOT in ∼ 30 s.

2. The compressed-MOT (CMOT): once the MOT stage is complete, a

20 ms CMOT stage follows. This step involves relaxing the quadrupole

trap gradient from 10 G cm−1 to 5 G cm−1, reducing the repump light in-

tensity and increasing the detuning of the cooling light (from −15 MHz

to −35 MHz) simultaneously. This allows the atoms to fall into the

F = 2 state. Atoms are cooled due to a reduction in the atom-photon

scattering rate, and thus a denser sample can be achieved.

3. Optical molasses: the main difference between the optical molasses

and the MOT is that the magnetic field is absent for the former. The

polarisation gradient of the beams experienced by the atoms leads to

further cooling of the sample [132]. For a during of 15 ms, the detuning

of the cooling light is further increased to −90 MHz in the absence of

the quadrupole field.
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After the molasses cooling stage, the 85Rb atoms are optically pumped with

a 2 ms pulse to the low field seeking F = 2,mF = −2 state. The cooled

atomic sample is subsequently transferred to the magnetic quadrupole trap

generated by the transport coils.

3.3 Experimental techniques

In this section, we summarise various basic experimental techniques that

are used throughout this document, which includes magnetic trapping, opti-

cal dipole trapping, levitation against gravity, different trap configurations,

evaporative cooling, and absorption imaging.

3.3.1 Magnetic trapping

Magnetic trapping is achieved using the quadrupole trap generated by the

quadrupole coils which are in anti-Helmholtz format. The coils are aligned

along the z direction where x and y represent the radial directions. In a

changing magnetic field ∆B, an atom with a magnetic dipole moment µ

experiences a change in energy

∆E = µ∆B = mFgFµB∆B, (3.1)

where mF , gF , and µB are the atom’s magnetic sub-level, the hyperfine Landè

g-factor, and the Bohr magneton respectively. As atoms align themselves

along the magnetic field lines, the magnetic potential U(r) is hence propor-

tional to the magnitude of the magnetic field such that

U(r) = µ|B(r)|. (3.2)

The quadrupole magnetic field has the form |B(ρ, z)| ≈ (∂B/∂ρ)
√
ρ2 + 4z2,

where ρ2 = x2 + y2 [87]. The magnetic field varies linearly along the coil

axis at a quadrupole gradient of B′z = ∂B/∂z = 2∂B/∂ρ, which is used for

providing levitation of atoms against gravity (see Section 3.3.2). Away from

the field zero at z = 0, the atoms would feel the trapping potential as long

as they remain in the low field seeking trappable state. Atom trapping in
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the quadrupole trap is only effective if the change of the field vector is slow

compared to the Larmor frequency

ωLarmor = mFgFµBB/~, (3.3)

which decreases when an atom approaches the field zero. A spin flip into

an untrappable state might then occur. This phenomenon is known as the

Majorana spin flip [133], which leads to atom loss from the trap [134].

3.3.2 Levitation

The system is said to be exactly levitated when the quadrupole gradient

exactly cancels out the gravitational gradient. Via Eq. 3.2, this condition is
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µB′z = mg, (3.4)

where m is the atomic mass and g is the acceleration due to gravity. In the

absence of additional magnetic fields, the levitation gradient for 85Rb in the

F = 2,mF = −2 state (87Rb in the F = 1,mF = −1 state) is 22.4 G cm−1

(30.5 G cm−1).

Throughout the work with 85Rb, a bias field B is employed for tuning the

interatomic interaction via a Feshbach resonance (see Section 4.1.1). Such a

magnetic field leads to Zeeman splittings of the hyperfine states as a result

of the coupling between the orbital and spin angular momenta of the atoms.

This is represented by the Breit-Rabi diagram, as shown in Fig. 3.2(a). The

magnetic moment µ, defined as the rate of change of Zeeman energy at

a given field B (blue dashed line of Fig. 3.2(a)), thus becomes a function

of the bias field B. As shown in Fig. 3.2(b), in the weak field regime of

Zeeman splitting, the magnetic moment µ(B) of 85Rb 2S1/2 F = 2, mF =

−2 hyperfine spin state decreases with an increasing magnetic field. Using

Eq. 3.4, the exact levitation gradient at a given bias field can be calculated,

as shown in Fig. 3.2(c).

3.3.3 Optical trapping

While a detailed description of optical dipole trapping is given elsewhere [94],

we will briefly outline the key equations that are used throughout this work.

The underlying principle of an optical dipole trap comes from the interaction

between the far detuned light field and the induced dipole moment. At

large detunings, the dipole force, which dominates over the radiation force

from photon scattering, is proportional to the intensity gradient of the light

field. In a limit of large detuning2 and negligible saturation, the dipole trap

potential depth from the dipole force of a Gaussian beam is expressed as

U0 = αI0, (3.5)

2Such that the detuning is much larger than the fine electronic transition structure of
an atom.
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Figure 3.3: Examples of different trap configurations. The optical trap shown is the
crossed dipole trap described in Section 3.1.4 operating at 10 W. The black
(red) curves show the combined potential along the dipole beam propagation
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where

I0 =
2P

πwxwy
, (3.6)

which is the peak intensity of the beam with 1/e2 radii wx and wy at a power

P . α is the polarisability of the atoms [135], which is given by

α = −πc
2

2

∑
i

DiΓi
ω3
i

(
1

ωi − ωL

+
1

ωi + ωL

)
. (3.7)

Here, i denotes the transitions included in the sum. In particular, we sum

over all D1 and D2 transitions of Rb, with D1 = 1 and D2 = 2 for D1

and D2 transitions respectively. Γi denotes the natural linewidths of the

corresponding transition, ωi is the transition frequency and ωL is the laser

frequency. Note that the sign of the optical detuning ∆ ≡ ωL−ωi has a direct

influence on the dipole potential: a red detuned (blue detuned) beam, ∆ < 0

(∆ > 0), would result a potential well (barrier) where atoms are attracted

(repelled) by regions of high intensity.

3.3.4 Pure, hybrid, and levitated traps

Throughout this work, different combinations of the optical dipole trap, the

quadrupole trap, and the magnetic bias field are used. The three configu-

rations, namely the pure trap, the hybrid trap, and the levitated trap, are
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described below:

Pure trap

Only the optical trapping is involved. In the absence of a levitation gradient,

the gravitational potential gradient reduces the trap depth of the optical trap

along the vertical direction, as shown in Fig. 3.3(a). The vertical trap depth

can be higher or lower than the horizontal counterpart, depending on the

beam power P .

Hybrid trap

The quadrupole trap is present in addition to the optical trap. Its gradient

dominates the trap frequencies along the dipole beams, as well as providing

levitation against gravity for atoms in the trap, as shown in Fig. 3.3(b).

In a crossed dipole trap configuration, the presence of quadrupole gradient

maximises the trap depth through levitation and provides confinement along

the arms of the laser beams. Thus a hybrid trap offers a larger trap volume

than an all optical trap (see Section 3.3.5). The strength of the confinement

depends on the displacement between the dipole trap and the magnetic zero.

Such displacement, zdis, can be shifted by the magnetic bias field B via zdis =

zoffset +B/B′z (zoffset = 160µm is the offset between the quadrupole trap and

crossed dipole trap in the absence of bias magnetic field, see Section 3.1.4).

The resulting trap frequency at the z = 0 plane, thus the axial trap frequency

along a single dipole beam, is given by [134]

ωaxial =
1

2

√
µB′z
mzdis

. (3.8)

Levitated trap

From Eq. 3.8 one sees that an application of a magnetic bias field can ef-

fectively remove the magnetic confinement in the hybrid trap. In the ex-

periments with 85Rb, where B ∼ 165 G and B′z ∼ 26 G cm−1 are commonly

used, the shift is zdis ∼ 6 cm. Here, the axial trap frequency along the dipole

beams ωaxial is calculated to be ∼ 1 Hz. This is illustrated in Fig. 3.3(c).
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3.3.5 Evaporative cooling

Evaporative cooling selectively removes the most energetic atoms from the

trap, and allows the remaining atoms to rethermalise to a lower tempera-

ture through elastic scattering. Two types of evaporative cooling are used

throughout this work, namely the radio frequency (RF) evaporation and

evaporation in an optical dipole trap.

RF evaporation

RF evaporation is employed at the beginning of the cooling sequence in the

science cell. After the atoms are transported from the MOT chamber, they

are transferred to the static quadrupole trap. More energetic atoms occupy a

larger volume of the magnetic trap, and hence experience a higher magnetic

field. By applying an RF field with frequency ωRF that is in resonance with

such atoms, spin flips occur when

~ωRF = ∆mFgFµBB, (3.9)

where ∆mF = 1. These energetic atoms eventually end up in untrappable

states and are subsequently lost from the magnetic trap. The remaining

atoms in the trap then rethermalise to a new Maxwell-Boltzmann distribu-

tion with a lower mean energy.

Evaporation in an optical dipole trap

Direct evaporation is a process that describes the removal of the hotter

atoms in the trapped atomic sample by lowering the trap depth. This is

achieved by either ramping the beam power of an optical dipole trap down

to a lower value, or by a gradually reducing the levitation and thereby ‘tilting

the trap’ [136].

As mentioned previously, the resulting cloud rethermalises to a lower temper-

ature. The cooling depends strongly on the elastic scattering rate. In order

to reach degeneracy, an efficient evaporation is desirable. The evaporation

efficiency is defined as
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γ = − log(PSDf/PSDi)

log(Nf/Ni)
, (3.10)

where i and f denote the initial and final values of an evaporation ramp re-

spectively [137]. By optimising γ, one achieves the highest increase in PSD

with the lowest atom lost. The evaporation trajectory of 85Rb will be dis-

cussed in Chapter 4.

Evaporative cooling is carried out in all three trap configurations described

in Section 3.3.4. A detailed comparison between cooling atoms in these

traps in our experiment can be found in previous theses [68, 69]. In brief,

one defines an evaporation parameter, η, which quantifies how far into the

kinetic energy distribution atoms are removed from a particular trap. This

can be thought of as the fraction of the trap depth U0 = ηkBT that the mean

kinetic energy kBT of the trapped atoms equilibrate to. While η ∼ 10 for an

optical trap [138], this quantity varies slightly with different trap geometries.

For our hybrid trap, η = 12.6(5), which is the highest among the trap types

described in the previous section [68, 69]. In contrast, η = 9.8(5) for our

levitated trap. Interestingly, for the pure trap in our experiment, η = 8.7(5)

at higher powers and η = 11.0(5) at lower powers. This transition is linked to

the effect of gravity on the trap depth, where evaporation preferably occurs

along the vertical direction at low beam power.

3.3.6 Absorption imaging

We use destructive absorption imaging to extract information about the

cloud. The full calculation and derivation of various parameters, such as

the number of atoms N and the temperature of the sample T , are detailed

elsewhere [67–69, 139] and thus they will not be reproduced here. We will

quote some of the key equations that are related to the measurements pre-

sented in this work.

Absorption imaging relies on the absorption of the resonant light by the

atoms, from which the scattering of light leaves a shadow of the atomic

sample when the remaining imaging probe beam is imaged. The amount

of the light that remains after propagating through the atomic sample is
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characterised by the optical depth (OD) via

I(x, z) = I0 exp(−OD(x, z)), (3.11)

where I0 is the peak intensity of the imaging probe beam. OD is calculated

by processing 3 separate images taken by the CCD camera:

• Iatoms: with presence of the atoms and the probe light;

• Iprobe: probe light without the atoms;

• Ibg: the background noise without the probe light.

Using Eq. 3.11, the optical depth can hence be obtained through

OD(x, z) = ln

(
Iprobe − Ibg

Iatoms − Ibg

)
. (3.12)

The optical setup for the horizontal imaging is shown in Fig. 3.1, which con-

sists of two lenses between the atoms and the camera: lens 1 with a focal

length of f1 = 160 mm is placed at 160 mm from the atoms, while lens 2

with a focal length of f2 = 250 mm is placed at 250 mm from the CCD sen-

sor. For a correctly focussed system, the theoretical magnification factor is

f2/f1 = 1.56. The magnification factor, and thus the pixel size on the cam-

era, can be calibrated by mapping out the centre of mass of the atomic cloud

in free fall due to gravity.

Number of atoms

Assuming the atomic cloud has a Gaussian shape with widths (1/e2 radii)

σx and σz in their respective directions, the number of atoms in the cloud

can be calculated using

N =
2π

σ0

ODpeakσxσz, (3.13)

where σ0 = 3λ2/2π for a two level atom [139].

Temperature of the atoms

The temperature of the atomic cloud is required for calculating various quan-
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tities such as the peak density and the phase space density. The atomic sam-

ple undergoes ballistic expansion after being released from a harmonic trap.

By measuring the cloud widths after various expansion times τ , also known

as the time of flight (TOF), the temperature of the cloud in both horizontal

(x) and vertical (z) directions can be extracted by fitting the straight line

σ2
x,z(τ) = σ2

x,z(0) +

(
kBT

m

)
τ 2, (3.14)

where σ(0) is the width of the atomic cloud in the trap [68, 139]. For long

TOFs where σx,z(τ)� σx,z(0), an approximation can be made by neglecting

the initial cloud width, which allows us to calculate the cloud temperature

with a single absorption image. In our experiment, an expansion time of

τ & 18 ms is found to be sufficient to provide a good estimation of the tem-

perature of a thermal cloud [68].

For atomic clouds that are close to degeneracy, one requires a relatively long

expansion time (τ ∼ 100 ms) to observe the thermal expansion. In order to

avoid the atomic cloud dropping ‘off the screen’, a levitated TOF is often

employed instead, where the atomic cloud is levitated during the expansion

after the release from the trap.
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Chapter 4

Formation of 85Rb bright

solitary matter-waves

85Rb BEC was first realised in a weak Ioffe-Pritchard magnetic trap [12], and

later on through sympathetic cooling with 87Rb [140, 141]. In this chapter we

demonstrate the creation of a condensate via direct evaporative cooling in an

optical crossed dipole trap. The evaporation trajectory is carefully tailored

in order to achieve a high evaporation efficiency. The BEC is subsequently

transferred into an optical waveguide. Through precise tuning of the scat-

tering length using a Feshbach resonance, we successfully realise the bright

solitary wave which is robust against collision with a broad repulsive barrier.

This chapter comprises results from refs. [13, 44].

4.1 Direct evaporation to 85Rb Bose-Einstein

condensation

4.1.1 The 155 G Feshbach resonance of 85Rb

The interaction strength, determined by the nonlinearity g in the GPE

(Eq. 2.5), can be controlled by a scattering resonance feature known as a

Feshbach resonance. While a more in-depth discussion of the theoretical

origin of the resonance can be found elsewhere [37], we explain the basic fea-

tures of the resonance by using the two-channel model shown in Fig. 4.1(a).

In scattering theory, an open channel refers to collisions between free parti-

45
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cles, while a closed channel supports a bound molecular state with energy

Ec. These two channels are characterised by the molecular potential curves

Vbg and Vc respectively as functions of the atomic separation, as sketched in

Fig. 4.1(a). For large atomic separation, the two free atoms in the ultracold

gas are connected asymptotically by Vbg. As the two free atoms approach,

the potential is represented by the open channel. In the ultracold domain,

the collisional energy E is typically low (E → 0) [37]. A Feshbach resonance

occurs when the bound molecular state Ec in the closed channel is energeti-

cally close to the collisional energy E. As such, even weak coupling can result

in a strong mixing between the two channels. Providing that the magnetic

moments differ for the two channels, such resonant coupling can be conve-

niently achieved by applying an external magnetic field, which effectively

alters the energy difference between Ec and E. The ability in tuning atomic

scattering properties has made the magnetically tuned Feshbach resonance

a widely used tool for experiments such as the realisation of bright solitary

matter-waves [41–44], the study of the BEC-BCS crossover [142, 143] and

ultracold molecules [144, 145].

A magnetically tuned Feshbach resonance is described by a simple expression.

By applying an external magnetic field B close to the Feshbach resonance

magnetic field Bres, the variation of the s-wave scattering length takes the

form
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as(B) = abg

(
1− ∆

B −Bres

)
, (4.1)

where abg represents the background scattering length and ∆ is the width

of the resonance feature [146, 147]. The reason for using 85Rb in our ex-

periment is closely related to this equation. While essentially all isotopes of

alkali-metal atoms exhibit Feshbach resonances, features with large widths ∆

suitable for tuning the scattering properties are usually less accessible. Let

us consider 87Rb as an example: the broadest resonance, which appears at

1007 G, only has a width of ∆ = 0.2 G [148]. In contrast, for 85Rb atoms

in the F = 2, mF = −2 state, the resonance at Bres = 155.041(18) G is

∆ = 10.71(2) G wide [149], which is shown in Fig. 4.1(b). At the zero cross-

ing of the scattering length at 165.85(5) G [149], the variation of the scattering

length (obtained by differentiating Eq. 4.1 and approximating B ≈ Bres + ∆

at around as = 0) is

das
dB

∣∣∣∣
as=0

= abg
∆

(B −Bres)2

∣∣∣∣
as=0

≈ abg

∆
= −40 a0 G−1. (4.2)

This broad Feshbach resonance of 85Rb at an easily achievable magnetic field

hence allows precise tuning of the scattering length in the vicinity of as = 0,

which has already been broadly used for controlling interatomic interactions

in a condensate [12, 39, 40, 43, 150, 151]. The tunability of the scattering

length thus makes 85Rb an attractive candidate for realising solitary waves

experimentally.

4.1.2 Elastic and inelastic scattering

The first step in creating bright solitary waves requires a tunable 85Rb con-

densate. However, unlike the commonly used 87Rb, evaporative cooling of
85Rb atoms is more difficult [12, 147, 153]. This is caused by two main fac-

tors: low elastic and high inelastic collision rates.

Elastic scattering

Efficient evaporation relies on a high ‘good-to-bad’ collision ratio. ‘Good’

collisions refer to the elastic scattering between atoms, while ‘bad’ collisions
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Figure 4.2: The elastic scattering cross-section for 87Rb – 87Rb, 85Rb – 87Rb, and 85Rb
– 85Rb collisions at different collision energies. Figure taken from [152].

refer to the inelastic scattering. Elastic collisions are responsible for the

rethermalisation of the atomic cloud that remains in the trap after the re-

moval of more energetic atoms. Such a collision rate is given by [154]

Γel = 〈n〉σ〈vrel〉, (4.3)

where 〈n〉 is the mean density of the atomic cloud and 〈vrel〉 is the mean rela-

tive velocity where 〈vrel〉 =
√

16kBT/mπ for atoms in a harmonic trap [155].

σ is the elastic scattering cross-section. For a low temperature collision1

between indistinguishable bosons, it takes the form

σ =
8πa2

s

1 + k2a2
s

, (4.4)

where k is the wavevector [156]. Due to the energy dependence of σ, the

collision rate (Eq. 4.3) is often expressed as Γel = 〈n〉〈σvrel〉. Furthermore,

rather different from 〈n〉 and 〈vrel〉, σ is a scattering property that is strongly

dependent on the isotope. It can be seen in Fig. 4.2 that for the collisional en-

ergy, defined as 〈E〉 = m〈vrel〉2/2, the elastic scattering cross-section of 85Rb

– 85Rb collision is less than that of 87Rb – 87Rb and 85Rb – 87Rb collisions for

〈E〉 & 100µK [152]. The variation of σ of 85Rb – 85Rb collision cross-section

1Such that the de Broglie wavelength of the atom is much larger than the geometric
mean of the scattering length and the effective range of the interaction [156].
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features a Ramsauer-Townsend type minimum at ∼ 375µK [152], which is

almost two orders of magnitude lower than that of 87Rb – 87Rb collisions.

The low elastic cross-section of 85Rb – 85Rb collisions means that the evap-

oration is less efficient than the cases where 87Rb is involved. Consequently,

long evaporation times are required owing to the slow rethermalisation.

Inelastic scattering

In addition to the elastic scattering, atoms suffer from inelastic collisions

which ultimately lead to atom loss from the trap. There are three main loss

mechanisms: background loss, two-body inelastic collisions, and three-body

inelastic collisions.

Background loss is caused by collisions of trapped atoms with high energy

background particles in the vacuum at room temperature. Subject to the

quality of the vacuum, this is generally the least dominant among the three

loss mechanisms. Two-body losses originate from dipole relaxation when

two particles collide. This can cause spin flips to an untrappable states.

The loss rate goes as Γ2−body = −K2〈n〉, where K2 is the two-body decay

constant [139]. In contrast, three-body inelastic collisions leads to three-body

recombination. This describes the process where two atoms form a molecule

and a third unbound atom carries away the excess energy and momentum

from the collision. The molecular binding energy ε released is often very

large compared to a typical trap depth and so both the molecule (carrying

ε/3) and the single atom (carrying 2ε/3) are too energetic to remain in the

trap [157]. Alternatively, if the highly energetic atom or molecule remains

in the trap, it is possible for further collisions with other atoms in which

the excess kinetic energy causes heating. The loss rate of such process is

characterised by Γ3−body = −K3〈n2〉, where K3, scales with a4
s [158–160], is

the three-body decay constant. It is worth mentioning that both loss rates

become more prominent for higher atomic densities. Previous works have

experimentally determined the decay constants for 85Rb far from the broad

Feshbach resonance (a magnetic field of 250 G was used), which are [139, 153]

K2 ≈ 2× 10−14 cm3 s−1 and K3 ≈ 4× 10−25 cm6 s−1. (4.5)
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Figure 4.3: (a) Efficiency γ of a fixed evaporation trajectory at different magnetic fields.
(b) The corresponding temperature of the thermal cloud. (c) The wide
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recombination rate K3 shows strong magnetic field dependence. The red
dashed line indicates zero crossing of as. Solid black lines in (a), (b), and
(d) are guides to the eye only. Figure taken from [13].

In constrast, for 87Rb [139, 161],

K2 ≈ 3× 10−18 cm3 s−1 and K3 ≈ 4× 10−29 cm6 s−1, (4.6)

which are both approximately four orders of magnitude lower than those

of 85Rb. As a result, direct evaporative cooling of 85Rb to degeneracy

is extremely challenging as the efficiency is undermined by the high loss

rate. Fortunately, since both K2 and K3 are dependent on the scattering

length [162, 163], the evaporation efficiency of 85Rb can be improved by

making use of the Feshbach resonances. It has been demonstrated in various

atomic isotopes of alkali-metals that both quantities can be tuned over several

orders of magnitude and the atom loss thereby suppressed [139, 141, 150].
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4.1.3 Efficient evaporative cooling

We achieve efficient evaporation through understanding the interplay be-

tween the elastic and inelastic scattering close to the Feshbach resonance.

The atomic cloud for such a measurement is prepared as follows: after the

transfer into the science cell quadrupole trap, the atomic cloud typically con-

tains ∼ 5× 108 atoms at a temperature of ∼ 380µK. Due to the low elastic

scattering rate at this temperature, forced RF evaporation (consists of sev-

eral ramps and holds) is carried out for a total duration of 26 s. This results

in a cloud of 3 × 107 atoms at 42µK with PSD = 5 × 10−5. To proceed,

atoms are loaded into the crossed dipole trap (which is switched on at a

constant power of 10.1 W throughout the RF evaporation) by relaxing the

quadrupole gradient from 180 G cm−1 to ∼ 21.5 G cm−1 in 500 ms, which is

just below the exact levitation gradient at 22.4 G cm−1 (see Section 3.3.2).

Despite only 20% of the magnetically trapped atoms being transferred into

the optical trap, there is a gain of a factor of 30 in the PSD as a result of

an increase in trap frequencies and the atoms equilibrating to a lower tem-

perature (∼ 10µK) in the new trap. As the crossed dipole trap is located

∼ 160µm from the quadrupole field zero (see Section 3.1.4), the atoms expe-

rience a small magnetic bias field of ∼ 0.3 G which maintains the alignment

of the quantisation axis. Evaporation in the hybrid trap follows by ramping

the beam power down to 2.7 W in 5 s. Due to the magnetic confinement along

the wings of the dipole beam, the trap depth is set by the vertical direction.

At this stage, we wish to apply a bias field of ∼ 155 G in order to access the

Feshbach resonance to control the scattering properties such that efficient

evaporation can be achieved. As such, the magnetic confinement of the trap

is effectively removed and atoms now only remain in the crossed region of

the trap.

To tailor an optimised evaporation trajectory, our aim is to examine at what

magnetic field yields the most efficient cooling. We explore this by indirectly

probing the efficiency γ (Eq. 3.10) through a fixed evaporation routine for

different magnetic fields. The efficiency for a 50 G window spanning the zero

crossing of the Feshbach resonance is shown in Fig. 4.3(a). Despite a clear

peak at 161 G, the broader as < 0 peak at 175 – 185 G gives a marginally

better performance. As the magnetic field approaches the zero crossing of the
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scattering length at ∼ 166 G, the elastic scattering rate decreases according

to Eq. 4.3 and Eq. 4.4. This leads to poor rethermalisation, and as a result,

one observes a peak in the atomic temperature shown in Fig. 4.3(b).

We wish to extract the magnetic field dependence of the three-body loss

coefficient. To achieve this, an atomic cloud at T ∼ 0.15µK is first prepared

at 175 G. The magnetic field is then ramped to a new value in 10 ms, while

the trap is subsequently deepened from 1.4µK×kB to 27.5µK×kB. In doing

so, the loss of atoms from evaporation due to a relative difference between

the cloud temperature in the new field and the trap depth is suppressed.

The lifetime of such a trap allows us to measure the atom loss and the

heating of the cloud caused by three-body collisions. The K3 coefficient can

be determined by fitting the data with the solutions to the coupled differential

rate equations

dN

dt
= − N

τbg

− βN
3

T 3
and

dT

dt
= β

N2

T 3

T + Th
3

, (4.7)

where τbg is the decay time from background collisions, Th is the recombi-

nation heating energy per lost atom, and β = K3(mω̄2/2πkB)3/
√

27 (ω̄ is

the geometric mean of the trap frequencies as defined in Section 2.2.2) [157].

While it is likely that both two and three-body collisions contribute to the

atom loss from the trap, it is generally difficult to differentiate between the

two loss mechanisms [147]. Therefore, due to the high atomic density in the

compressed trap, combined with a stronger density dependence of the three-

body loss rate over the two-body loss rate (see Section 4.1.2), we choose to

neglect the two-body effect in fitting the data.

As shown in Fig. 4.3(d), the minimum inelastic rate appears near the zero

crossing of the Feshbach resonance. This, however, coincides with the region

with low elastic collision and hence poor evaporation efficiency. Away from

as ∼ 0, the inelastic losses for as < 0 are marginally lower compared to

as > 0 and hence a better evaporation performance for the region at 175 –

185 G. Thus, to proceed in the cooling, we operate at a bias field within the

range of 175 – 185 G in order to achieve efficient evaporation.
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Figure 4.4: Creation of 85Rb via direct evaporative cooling. (a) Evaporation trajec-
tory to reach BEC. RF evaporation in the quadrupole trap (circles) and
evaporation in hybrid trap (black squares) are performed at ∼ 0 G. Initial
evaporation in the levitated trap is performed at 175 G, which is decreased to
161.3 G during the latter stage of cooling (for PSD > 0.5), shown in hollowed
squares. Inset: from right to left shows the density profiles for a thermal,
bimodal and condensed atomic cloud. (b) Horizontal cross-sections of the
condensate column density for a thermal (top), bimodal (centre) and con-
densed (bottom) sample as the dipole beam power is reduced. Figure taken
from [13].

4.1.4 Bose-Einstein condensation

Following the hybrid trap evaporation, to create a levitated trap, the bias

field is ramped rapidly (∼ 10 ms) to 175 G. After a brief hold for 500 ms, two

more evaporation ramps were carried out resulting in an atomic sample of

2.5× 105 atoms at 150 nK with PSD = 0.5. The bias field is then ramped to

161.3 G (as ∼ 315a0) because a stable condensate cannot be formed at the

negative scattering length at 175 G (as ∼ −205a0) [164]. Further evaporation

is carried out, and at a power of 0.3 W, condensation of 85Rb is observed.

The final trapping geometry is almost spherical, with trap frequencies of

ωx,y,z = 2π× (31, 27, 25) Hz . The overall evaporation time in the dipole trap

spans for 14.5 s, and the optimised complete evaporation trajectory is shown

in Fig. 4.4(a). Through varying the final beam power, we record the tran-

sition from the thermal cloud to condensate as shown in Fig. 4.4(b). At a

trap depth of ∼ 360 nK, we are able to produce a pure 85Rb BEC containing

∼ 4× 104 atoms.
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Figure 4.5: Demonstration of the tunable interactions of 85Rb BEC. (a) Cloud width
along the vertical direction after a fixed expansion time at different scatter-
ing lengths. The measurement is carried out for both a condensate (black
squares, 55 ms TOF) and a thermal cloud (red circles, 25 ms TOF). (b)
Breathing mode oscillation of the cloud width when the scattering length is
jumped from ∼ 315 a0 to ∼ 50 a0 and held in the trap at the final scattering
length. Figure taken from [13].

To demonstrate the tunability of the atomic interactions of a condensate, two

simple experiments are carried out. In the first measurement the magnetic

field is jumped to a new value within the range of 155 – 175 G at the point of

release from the dipole trap. The size of the cloud is measured after a 55 ms

expansion time. As shown in Fig. 4.5(a), a change in the scattering-length-

dependent interaction strength manifests a change in the cloud size (black

squares). At large and positive as, the cloud expands rapidly. The expansion

decreases as as approaches the zero crossing at 165.75 G. By further reducing

the magnetic bias field, as becomes large and negative, where the condensate

becomes unstable and subsequently undergoes collapse [40]. This leads to

an increase in the measured cloud size. The same experiment for a thermal

cloud shows a distinct contrast, where the comparatively low density leaves

the atomic sample insensitive to the atomic interactions. As a result, there

is no observable change in the cloud size at different magnetic fields.

In the second measurement, the magnetic field applied to the trapped BEC

is jumped to a new value where the corresponding scattering length changes

from ∼ 315a0 to ∼ 50a0. The instantaneous change of scattering length (to

small but positive as in a near spherical trap) puts the system well in the

Thomas-Fermi regime. Such a sudden change of the Thomas-Fermi radius
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Figure 4.6: BEC expansion over propagation time at different scattering lengths as.
(a) Condensate expansion in the waveguide at different values of scatter-
ing lengths. The horizontal width is the root mean square radius of the
condensate, and the solid lines are linear fits to the experimental data. (b)
The change of condensate expansion rate as a function of N and as. The
solid curve is the theoretically calculated expansion rate using a cylindrically
symmetric 3D GPE [44]. Figures taken from ref. [44].

(RTF = 11µm→ 8µm using Eq. 2.10) would induce a breathing mode oscil-

lation of the condensate width at a frequency of
√

5ω̄ [88]. This oscillatory

feature is observed, as shown in Fig. 4.5(b), at a frequency in good agreement

with the expected value [13].

4.2 Realisation of bright solitary matter-wave

We remind ourselves that bright solitary waves are well localised wavepack-

ets with attractive interatomic interactions in a quasi-1D geometry where

their amplitude and width are maintained over time. In proceeding to the

realisation of such matter-waves, we first need to place the condensate in a

geometry that mimics the 1D condition. This is achieved by transferring the

condensate from the 3D crossed dipole trap into the single optical waveguide

described in Section 3.1.4. For details of the alignment and the characteri-

sation of the waveguide see refs. [68, 69].

In order to transfer the condensate into the waveguide, we first ramp the

magnetic field close to as = 0 in 50 ms. This reduces the equilibrium width

of the condensate and thereby places the condensate approximately in the

harmonic oscillator ground state of the dipole trap. After a 10 ms hold to

allow the bias field to stabilise, the waveguide is switched on at 0.17 W and
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Figure 4.7: Density profiles of (a) a repulsive BEC (as = 58 a0, N = 3.5 × 103) and (b)
a bright solitary wave (as = −11 a0, N = 2.0× 103) as they propagate along
the waveguide. The crosscuts of the OD are the horizontal profiles of the
condensates after 140 ms propagation. Figures from ref. [44].

the dipole beam is switched off simultaneously. The waveguide beam power

is chosen such that the radial trap frequency ωy,z approximately matches that

of the crossed dipole trap at the final stage of evaporation. To maximise the

trap depth of the waveguide, the quadrupole trap gradient is jumped to the

exact levitation gradient of ∼ 26 G cm−1 (see Fig. 3.2(b)) at the same step.

Together with a bias field of ∼ 165 G, the magnetic trap frequency along

the waveguide, calculated using Eq. 3.8, is ∼ 1 Hz which dominates over the

optical trap frequency (∼ 0.1 Hz). The trap frequencies of this waveguide

potential are ωx,y,z = 2π × (1, 27, 27) Hz.

The minimum of the weak magnetic harmonic potential is located at ∼
2.6 mm from the crossed dipole trap further away from the prism, thus the

condensate is set in motion towards the trap minimum as soon as the trans-

fer is complete. The realisation of a bright solitary wave requires the spatial

extent of the BEC to remain unchanged during its propagation along the

waveguide. To search for the scattering length as < 0 where the resulting

attractive interatomic interaction exactly balances out the dispersion of the

matter-wave, we measure the rate of expansion of the condensate at various

scattering lengths. In order to do so, we simply switch the magnetic field

to a new value after the crossed dipole trap is removed. The effect of the

final scattering length on the size of the BEC during its propagation along

the waveguide is shown in Fig. 4.6(a). As the scattering length decreases,

the expansion ceases. Shown in Fig. 4.6(b), the expansion rate of the con-
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densate with N = 2 × 103 atoms drops to essentially zero at as = −11a0.

The lack of dispersion of the attractive condensate thus indicates the for-

mation of bright solitary wave. In Fig. 4.7, we compare the propagation of

a repulsive BEC (as = 58a0, N = 3.5 × 103) with the bright solitary wave

(as = −11a0, N = 2 × 103). The dispersion of the repulsive BEC along

the axial direction of the waveguide reduces the OD during the propagation,

where such significant drop is absent for the bright solitary wave.

4.3 Reflection from a broad repulsive barrier

We examine the robustness of the particle-like bright solitary wave by using

a wide (1/e2 radius of 130µm) and a repulsive (532 nm) Gaussian barrier.

This beam intersects the waveguide at ∼ 45◦, where the point of intersection

is displaced from the crossed dipole trap by 455µm further away from the

prism. As the barrier is much wider than the size of the soliton, only classi-

cal outcomes are expected. Hence, much like ‘rolling a ball up a hill’, only

a full reflection or transmission is expected depending on the kinetic energy

of the system compared to the barrier height. Let us simplify our system

by neglecting the loss of kinetic energy as the solitary wave approaches the

broad barrier potential. This gives an upper bound to the kinetic energy of

the solitary wave at the position of the barrier, which is ∼ 440 nK×kB (or

∼ 9 mm s−1). By using a barrier with its potential height greater than the

kinetic energy, and in the case shown in Fig. 4.8(a) and (b) where a potential

of 760 nK × kB is used, clean reflection is observed. Lowering the barrier

height will eventually see the solitary wave carrying sufficient kinetic energy

to ‘roll all the way up the hill’ and over to the other side of the barrier. The

position of the solitary wave at 150 ms after release against different barrier

heights are shown in Fig. 4.8(c). In addition, Fig. 4.8(d) shows the com-

parison of the condensate widths between a soliton with barrier, repulsive

BEC with barrier, and a freely propagating repulsive BEC. While the bright

solitary wave maintains its shape without dispersion throughout the propa-

gation time, the width of the repulsive BEC with the presence of the barrier

shows an oscillatory behaviour. This is in contrast with the unobstructed

case where the repulsive BEC expands linearly. We attribute this as a con-

sequence of the large spatial extent of the dispersive BEC, which causes a
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Figure 4.8: Classical reflection from broad potential barrier. (a) Density profiles of a
bright solitary wave reflected from a broad repulsive barrier with its position
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the barrier height. Red circle (black square) indicates full transmission (re-
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Figures taken from ref. [44].
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strong compression as it goes against the barrier.

4.4 Summary

We have demonstrated that efficient evaporation of 85Rb can be achieved

by tuning the scattering properties in the vicinity of a Feshbach resonance.

Through this, a tunable 85Rb BEC with N = 4× 104 atoms is formed from

direct evaporative cooling in an optical crossed dipole trap. After the trans-

fer into the waveguide, the expansion of the propagating condensate ceases

as the scattering length decreases. At as = −11 a0 and N = 2 × 103, the

matter-wave propagates over 1 mm without dispersion and the bright solitary

wave is formed. The particle-like behaviour of the bright soliton is shown

through a classical collision with a broad repulsive barrier. This is an impor-

tant stepping stone towards the probing of macroscopic quantum mechanical

behaviour through scattering the bright solitons from narrow potentials.



Chapter 5

Quantum reflection from a

narrow attractive potential

5.1 Introduction

Previously, we demonstrated the creation of bright solitary waves by tuning

the interatomic interaction of the 85Rb BEC in an optical waveguide using a

Feshbach resonance. The matter-wave, observed to remain undispersed after

propagation for over 1 mm, showed robust classical reflection from a broad

repulsive barrier. The next objective is to probe quantum effects with the

mesoscopic wave packets. While one of the main goals of the experiment is

to explore atom-surface interactions using bright solitary waves incident on

the Dove prism, it is extremely challenging to achieve with the experimental

setup. Currently, the solitary wave is released from the dipole trap ∼ 6 mm

from the prism surface. This is beyond the maximum observed propagation

distance (∼ 1.5 mm) from which the atomic cloud remains soliton-like. An

upgrade to the apparatus is hence required to realise such experiments, which

will be discussed in detail in Chapter 6.

In the present chapter, we focus on the realisation of quantum reflection of

bright solitary waves from a narrow optical potential well. Contrasting to a

repulsive barrier where both classical and quantum reflection and transmis-

sion are possible [44, 69], reflection from a static potential well is a distinctive

quantum behaviour. Depending on the probed parameter regime, theoretical

60
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Figure 5.1: Theoretical prediction of quantum reflection from the narrow potential well.
(a) Plot of the reflection coefficient R of a single particle from the Rosen-
Morse potential, defined in Eq. 5.3. Here, d = (1.9/1.66)µm = 1.14µm. The
dashed line indicates the velocity of the solitary wave in our measurements.
(b) Zoomed-in version of (a).

studies have demonstrated that such a system exhibits significant quantum

reflection for low energy solitons [74]. Significant resonant trapping is also

predicted when the attractive potential is capable of supporting a number

of bound states [75]. In the following, we will discuss the generation of the

narrow attractive potential, followed by the measurements and the analysis

of the results obtained from our system.

5.2 Narrow attractive Gaussian potential

We refer to the detailed theoretical analysis and calculation by Wiles [69]

on the requirement of the apparatus in order to observe quantum reflection

of the bright solitary wave from a potential well. In brief, let us consider

a simplified picture where we approximate the solitary wave with a single

particle. After release, this particle propagates along the x-direction towards

a potential well with a Gaussian form

VG(x) = −U0 exp

[
−2x2

w2
x

]
, (5.1)

where U0 > 0 denotes the trap depth and wx is the tightly focussed waist. It

is calculated that, for observable quantum reflection, one requires wx . 2µm

and a low solitary wave velocity [69]. This velocity requirement can be

evaluated by first considering an incoming plane wave incident on a potential
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V (x) = −U0sech2
(x
d

)
, (5.2)

which is known as the Rosen-Morse potential. This potential V (x) approx-

imates VG(x) when setting d = wx/1.66, and it has an exact expression for

the reflection coefficient of a single atom with mass m and kinetic energy

Ek [165]

R =
cos2

(
π
2

√
1 + 8mU0d2/~2

)
sinh2(πkd) + cos2

(
π
2

√
1 + 8mU0d2/~2

) , (5.3)

where

k =

√
2mEk
~2

=
mv

~
. (5.4)

This approximation, plotted in Fig. 5.1(a) (with a close-up in Fig. 5.1(b)),

shows that for wx = 1.9 µm, a small incoming velocity (. 0.5 mm s−1) is

needed to observe any reflection from an incoming plane wave, regardless of

the trap depth. In particular, one requires v . 0.4 mm s−1 for > 10% reflec-

tion, while v . 0.2 mm s−1 is required for > 50% reflection to be observed.

An additional optical system for the narrow potential, as well as a mechanism

for velocity control, are thus necessary.

5.2.1 Optical setup

To generate a narrow potential, we design an optical system such that the

resulting beam profile is a form of light sheet. Such an optical system is

tailored to produce a desired focus of . 2µm. That is, one requires the

diffraction limit of the system, defined by the airy radius rAiry, to satisfy

rAiry = 1.22
λf

D
. 2µm, (5.5)

where D is the diameter of the optical aperture [166]. While it is clear that

one desires a short f with a large lens diameter, the spatial limitation of

the experimental apparatus restricts the choice of the optics. With atoms

positioned 12 mm from the glass surface, the lower limit of the focal length
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Figure 5.2: Narrow Gaussian potential beam modelling using Zemax. (a) Geometric ray
tracing shows how the beam propagates to form the elongated direction of
the potential. The diagram is to scale. The details of the lenses are listed
in Table 5.1. (b) Simulation of the beam propagation via Physical Optics
Propagation (POP) on Zemax. z = 0µm indicates the position of the tightly
focussed waist. The beam radii in x-direction wx(z) are (from left to right):
14µm, 7.4µm, 1.9µm, 7.4µm, and 14µm. The dimensions of the images
are: height = 1.26 mm, width = 0.06 mm. (c) Cross-sectional cut of the
tightly focussed beam waist. Inset shows a close-up of the first subsidiary
intensity maxima of the diffraction pattern.
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Number Lens Maker f (mm) Glass type(s)
1 AC254-040-B Thorlabs 40 N-SH6HT, N-BAF10
2 AC254-060-B Thorlabs 60 N-SF6HT, N-LAK22
3 160-YD-25 Comar 160 N-BK7
4 AL2018-B Thorlabs 18 S-LAH64

Table 5.1: Lenses in the attractive potential system, which are ordered and numbered
according to Figure 5.2(a). Note that lens 3 is a cylindrical lens.

f of the last optic is fixed. With the limits set by Eq. 5.5, one requires the

numerical aperture (NA), defined as NA = η sin(arctan(2f/D)),1 to satisfy

NA > 0.25. While high NA is commonly achieved using microscope objec-

tives or complex multi-element lenses in atomic experiments [167–169], they

are ruled out due to their short focal lengths and spatial requirements. To

produce a beam with the required waist size, we use a series of spatially

separated lenses, which are carefully chosen and modelled using the optical

design program Zemax.

The optical system comprises of 4 optics is shown in the ray diagram in

Fig. 5.2(a) with the optics listed in Table 5.1. Here, we use the light derived

from a homebuilt λ = 852 nm diode laser. It is delivered to the main experi-

mental setup using a single mode optical fibre, while an AOM is employed for

power control. As illustrated in Fig. 5.2(a), the fast diverging beam from the

fibre output is collimated by a pair of achromatic doublets with focal lengths

f = 40 mm (lens 1) and f = 60 mm (lens 2) to a 1/e2 radius of ∼ 2.3 mm.

It then passes through a cylindrical lens with f = 160 mm (lens 3), which

focusses the beam along the y-axis while keeping the x radius constant. The

now elongated beam is focussed by a high NA aspheric lens (NA = 0.488)

with f = 18 mm (lens 4) to form a light sheet. In the Zemax simulation, the

distance between the last surface of lens 3 and first surface of lens 4 is set to

180 mm. This is chosen such that the beam appears to be collimated in the

y-direction after the last lens. Using the rearranged equation of the Gaussian

beam propagation, wx(z) = wx(0)
√

1 + (z/zR)2, with the assumption that

the Rayleigh range zR � f , we estimate that the expected waist size along

the x-direction is

1η is the refractive index of the medium. Here, we assume the propagation of the light
field is in air, thus we set η = 1.
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wx(0) ≈ λf

πwx(f)
= 2.1µm, (5.6)

where wx(z) denotes the x beam radius at a position along z, with the fo-

cus at z = 0. The calculated diffraction limit using Equation 5.5 is 0.94µm

which satisfies the requirement of rAiry . 2µm.2 Since we will only refer to

the beam size at z = 0 for the rest of the chapter, we will use the simplified

notation of wx ≡ wx(0) and wy ≡ wy(0).

A direct measurement has been attempted to measure the beam dimensions

of the complete optical setup using existing measurement apparatus, which

includes a knife-edge mounted on a translation stage driven by a differential

actuator with a smallest graduation of 0.5µm (Thorlabs DM22). This has

proved to be problematic due to the large aspect ratio of the beam radii of

the two axes, as even a slight tilt of the light sheet relative to the knife-edge

would lead to an invalid beam size measurement. A full characterisation

of the narrow potential is accomplished by the use of the trapped atoms

at the potential which will be discussed in Section 5.2.3. Nevertheless, cal-

culating using Zemax’s Physical Optics Propagation (POP) function3, one

can visualise the beam propagation as shown in Fig. 5.2(b). The calculation

shows that the optical system yields an elongated potential with beam radii

(wx, wy) = (1.9µm, 280µm), which is within the desired range of . 2µm

along the x-direction. A cross-sectional cut of the beam profile wx is shown

in Fig. 5.2(c). Notice that there exist weak diffraction patterns on both sides

of the tight focus. Despite a peak intensity of 0.8% of that of the central peak,

these subsidiary maxima play a significant role in the reflection probability

from the potential well. This will be discussed in depth in Section 5.6.

5.2.2 Alignment

The narrow potential beam formed by the optical system described in Sec-

tion 5.2.1 enters the science cell vertically from above, as illustrated in

Fig. 5.3(a). With a tight focus of wx = 1.9µm, which translates to Rayleigh

2The diameter of lens 4 is 20 mm.
3In contrast to geometric ray tracing, POP considers a coherent light with diffractions

from all surfaces along its propagation path taken into account.
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Figure 5.3: Optical setup of the narrow attractive potential. (a) The experimental setup.
Atoms are cooled in the crossed dipole trap (not shown), and then transferred
into the optical waveguide. Additional axial confinement is provided by the
magnetic quadrupole and bias fields. The beam of the narrow attractive po-
tential enters the science cell from above, with the tightly focussed waist wx

intersecting with the waveguide. While not shown in the diagram, a steering
mirror is located between the cylindrical lens and the second collimation lens
for transverse beam alignment. (b) The adjustable mount for the high NA
aspheric lens. The inset shows the lens mount made from TUFNOL epoxy
glass fabric laminates grade G10. With the lens glued on to the bottom
of the mount, the M22 × 0.5 (in mm) thread (equivalent to 1.4µm deg−1)
allows us to accurately adjust the z position of the tightly focussed waist.
The mount, which has a clear aperture of (diameter) 18 mm, is mounted in
the aperture of the coil mount above the science cell.
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range zR = πw2
x/λ = 13µm, the beam diverges rapidly away from the waist,

as shown from the simulation in Fig. 5.2(b). Hence one requires a mechanism

to adjust the z position of the waist precisely for vertical beam alignment.

This is achieved by mounting lens 4 on a threaded lens mount with a pitch

of 1.4µm deg−1 which is shown in Fig. 5.3(b). By turning the mount, the

waist position is displaced vertically while the waist size remains constant as

the beam is collimated along the x-direction before lens 4.

The alignment of the narrow attractive potential involves three stages: the

initial alignment, horizontal alignment, and vertical alignment.

Initial alignment:

We follow the procedure outlined in [69] (Section 7.4.2). In brief, one first

centres the probe beam for vertical imaging4 on the atoms at the crossed

dipole trap. The probe beam then functions as a reference for the narrow

potential beam to overlap. This guarantees the beam is located closed to the

crossed dipole trap.

Horizontal alignment:

After the initial alignment, one aligns the x position of the beam using

trapped atoms in the waveguide. At the intersection of the narrow attrac-

tive potential and the waveguide, the resulting trap depth is the sum of the

two potentials, i.e. atoms will see a sudden dip in the potential. Thus the

alignment is carried out by looking for a disruption of atom density along

an elongated atomic cloud. Such a cloud is created by magnetically confin-

ing the thermal atoms along the waveguide with a combination of magnetic

quadrupole field B′z and the magnetic bias field. Such a magnetic harmonic

potential dominates the weak optical axial trapping (< 0.1 Hz) and has a trap

frequency defined by Eq. 3.8. Whilst the exact levitation gradient is used

during the alignment, different bias fields have been employed for different

desired spatial extent of the elongated cloud. During the atom expansion

in the waveguide, the potential well remains constant at maximum beam

4Despite having a focussed vertical imaging system as outlined in ref. [69], the images
are disrupted by harsh fringes possibly due to the extra sensitivity of vibrations when using
a high NA imaging lens. The vertical imaging system hence is not used for measurements
beyond the alignment stage.



Chapter 5. Quantum reflection from a narrow attractive potential 68

100µm

0ms 10ms 20ms 30ms 40ms 50ms 60ms 70ms
z

x

200µm

WG

Potential well

z

x

(b)

(a)

Figure 5.4: The alignment of the narrow potential. The beam is in a form of a light
sheet, with its larger waist along the direction of the imaging probe beam.
(a) Alignment of the horizontal position. The presence of the potential well
causes a disruption in a cigar-shaped atomic cloud in the waveguide, confined
axially with the magnetic harmonic potential. Note in this snapshot that
the beam of the potential well is tilted. (b) Atom trapping in the narrow
potential at different time instances after the crossed dipole trap is switched
off. The position of the trapped atoms in the final image indicates the
position of the waist.

power. Fig. 5.4(a) shows an example where the narrow potential is located.

By adjusting the steering mirror between lens 2 and lens 3, one can thus

optimise the horizontal position of the potential with the trapped atoms.

Vertical alignment:

Precise vertical alignment requires trapping atoms in the narrow potential

well only. Given that the expected tightly focussed waist is wx = 1.9µm

(and wy ∼ 280µm), the calculated trap depth and trap frequency along the

z-direction with levitation are 2.1µK and 2π×170 Hz respectively at a beam

power of 3.87 mW. Hence the potential well should suffice to trap and hold

atoms with a temperature of . 200 nK [138]. The atom loading is carried

out by first overlapping the x position of the potential well with the crossed

dipole trap. The magnetic quadrupole gradient is set to just under levitation

at 20.8 G cm−1. After evaporatively cooling the atoms in the pure crossed

dipole trap to T ∼ 100 nK, the potential well is switched on at 3.87 mW. At

the end of the evaporation, atoms are held in the 3-beam trap for 100 ms

before the dipole beams are switched off. Fig. 5.4(b) shows a sequence of

images of different time instances after the switching off of the crossed dipole

trap. While the hottest atoms in the single beam trap escape from the waist
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Figure 5.5: Trap characterisation using parametric heating. Measurements are carried
out at a beam power of 3.87 mW. A Lorentzian line shape is fitted to the
first harmonic resonance feature corresponding to (a) wx and (b) wy.

under gravity, the atoms soon equilibrate with the single beam trap where

atoms can be held in such trap for over 1 s. One can thus use the trapped

atoms to align the vertical position of the waist by adjusting the lens mount.

The potential well is aligned such that the waist wx intersects the waveguide

at 160µm from the crossed dipole trap.

5.2.3 Trap characterisation

Using the atoms trapped in the narrow potential well, one can extract infor-

mation about the trap such as the trap frequency and the trap depth. There

are two methods used in this thesis to measure the former: 1. by displacing

the atomic sample from the centre of the harmonic potential and record the

oscillatory motion of the centre of mass of the cloud after it is released, and

2. via parametric heating [94]. Here the trap frequencies are measured by

the second method. Adding modulation to the laser beam power can result a

driven oscillator where energy is efficiently injected into the trapped atoms.

This increases the temperature of the atoms and eventually leads to atom

loss from a trap with a finite trap depth. This resonance feature is most no-

ticeable at the first harmonic (twice the trap frequency) and it can be used

to verify the beam waist.

The oscillation frequencies of the potential well ωx and ωy are related to the

optical trap depth U0 and the 1/e2 beam radii (wx and wy) by
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ωx =

(
4U0

mw2
x

)1/2

and ωy =

(
4U0

mw2
y

)1/2

(5.7)

using the harmonic approximation [94]. By substituting the expressions for

the peak intensity (Eq. 3.6) and the trap depth (Eq. 3.5) of a Gaussian beam

into Eq. 5.7, we obtain

wx =

(
ωy
ω3
x

γP

)1/4

and wy =

(
ωx
ω3
y

γP

)1/4

, (5.8)

where γ = 8α
πm

= 1.02×10−10 m4 J−4 s−4 for 85Rb atoms at λ = 852 nm. Using

this relation, we can compute the beam radii from the trap frequencies in

both radial directions of the Gaussian beam at a particular beam power.

To perform parametric heating, we use an identical experimental sequence

used for z alignment of the potential well described in Section 5.2.2. Holding

the atoms at the tightly focussed waist at 3.87 mW for 1 s after the switching

off of the dipole trap, a sine-wave modulation is then applied to the beam

power for 1 s. The results are shown in Fig. 5.5, where the trap frequencies

are measured to be ωx = 2π × 1.62(13) kHz and ωy = 2π × 5.4(5) Hz. Using

Eq. 5.8, the beam radii at z = 0 are calculated to be wx = 1.9(2)µm and

wy = 570(40)µm. Note while wx is in excellent agreement with the simulated

value in Zemax, wy appears to be about twice of the estimated value. One

plausible explanation is that the distance between lens 3 and lens 4 is different

from the simulation after the z alignment of the potential well. In contrast

to the x-direction, the beam size increases in the y-direction further along

the beam path away from the focus of lens 3. Nevertheless, with a waist

wx = 1.9(2)µm, we are in a good position to proceed to realising quantum

reflection of a bright solitary wave.

5.3 Velocity control

The scattering of a bright solitary wave from a repulsive [51, 77] or attrac-

tive potential [75] is predicted to vary with the energy relationship between

the solitary wave and the potential barrier/ well. In the case of a narrow
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Figure 5.6: Velocity control of solitary wave. Here the distance between the solitary wave
and the narrow potential well is fixed. A shows the oscillation amplitude of
the solitary wave. (a) No offset magnetic field. (b) With offset magnetic field
Bx. It shifts the quadrupole trap centre xQT towards the starting position
of the solitary wave xDT. The position of the narrow attractive potential is
marked as xw. (c) The velocity of the solitary wave at the position of the
potential well xw as a function of the distance between the quadrupole trap
(QT) centre xQT and the release point xDT. The distance xw − xDT is fixed
at 160µm.
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attractive potential, the probability of observing quantum reflection is en-

hanced if the incoming solitary wave is sufficiently slow [74]. In particular,

it is calculated in Section 5.2 that observable quantum reflection (& 10%) in

the current setup only arises for velocity . 0.4 mm s−1. It is thus essential

to have control over the velocity of the solitary wave, in addition to the well

depth, which is controlled by changing the laser power with the AOM.

The propagation of the solitary wave along the waveguide is due to a weak

harmonic potential produced by the combination of the magnetic quadrupole

field gradient B′z and the magnetic bias field B, as seen in Eq. 3.8. As il-

lustrated in Fig. 5.6(a), upon release, the solitary wave undergoes harmonic

oscillation, and the maximum velocity vmax (at the bottom of the magnetic

potential) is related to the oscillation amplitude A by vmax = Aωaxial. Assum-

ing no energy loss in the system, the amplitude A is the distance between the

release point xDT and the centre of the quadrupole trap xQT. By denoting

xw as the position of the narrow potential well, the velocity of the solitary

wave at the position of the narrow potential is [68]

v = −ωaxial(xDT − xQT)

√
1−

(
xw − xQT

xDT − xQT

)2

. (5.9)

Hence, the velocity v can be controlled by shifting the position of the mag-

netic potential centre. For low velocity, one needs to shift the magnetic

potential centre from the original position (∼ 2.6 mm away from the dipole

trap where the solitary wave is released) to a position close to the dipole

trap, as illustrated in Fig. 5.6(b). Such a shift can be achieved by applying

an offset magnetic bias field Bx along the x-direction, where the displacement

of the trap centre is given by ref. [129]

∆x =
2Bx

B′z
. (5.10)

In the following experiment, we position the narrow potential well at

xw − xDT = 160µm from the crossed dipole trap where the solitary wave

is released. As illustrated in Fig. 5.6(b), the axial waveguide potential is at

138µm from the crossed dipole trap and 22µm from the narrow attractive

potential, resulting in an incident velocity at the potential well of∼ 1 mm s−1.
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(a)

(b)

Figure 5.7: Quantum reflection of the bright solitary wave from the narrow Gaussian
potential. The position of the solitary wave, relative to the potential well, is
plotted as a function of propagation time. In the absence of the well (blue
triangles) the atoms undergo harmonic motion in the waveguide (theoretical
trajectory indicated by solid line). In the presence of the well the solitary
wave splits, with atoms being both transmitted (red circles) and reflected
(black squares) from the attractive potential. The black dashed curve shows
the theoretical trajectory of an elastic collision. Inset: False colour images
taken at (a) 375 ms and (b) 475 ms with the narrow attractive potential
present (right) and absent (left).

Note that it is larger than the desired velocity of . 0.4 mm s−1. Whilst this

method of velocity control is capable of reducing the velocity v < 1 mm s−1,

as shown in Fig. 5.6(c), the velocity dependence on oscillation amplitude

means that the motion of the solitary wave is difficult to resolve with our

horizontal imaging, which has a pixel size of 5.2µm.

5.4 Quantum reflection of the matter-wave

In the preparation of the bright solitary wave, we proceed with a simi-

lar method described in Chapter 4. In order to load the 85Rb BEC with

N ∼ 6× 103 from the crossed dipole trap into the optical waveguide, we first

ramp the scattering length to a small and positive value, ∼ 5a0 in 50 ms. This

is followed by simultaneously ramping the crossed dipole beams off and the

waveguide beam on in 250 ms. At the same time, the magnetic quadrupole
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field gradient is ramped up to exactly levitate the atoms, while the mag-

netic bias field is ramped to give an s-wave scattering length of as = −7 a0.

This value of as is chosen such that the condensate dispersion is balanced

by the attractive interatomic interactions, thereby creating bright solitary

waves. The offset magnetic field is also switched on at this stage to displace

the magnetic trap centre along the x-direction. The resulting background

potential has trap frequencies of ωx,y,z = 2π × [1.15(5), 18.2(5), 18.2(5)] Hz.

With the measured beam sizes obtained from parametric heating described

in Section 5.2.3, one can calculate the exact trap depth of the narrow attrac-

tive potential. In our initial experiment, the potential well depth is set to

1µK × kB, which is switched on at the beginning of the waveguide loading

procedure described above. After the release of the solitary wave into the

waveguide, its position is tracked by imaging multiple instances of the same

experimental sequence at different times. Once the solitary wave reaches the

well at ∼ 200 ms, we observe a splitting of the wavepacket and identify three

distinct resulting fragments: atoms transmitted, reflected, and confined at

the potential well. The centre of mass positions of both the transmitted and

reflected atomic clouds are tracked and plotted in Fig. 5.7. The majority of

atoms in the solitary wave are transmitted (red circles), following the same

trajectory as in the freely propagating case (blue triangles), undergoing har-

monic motion in the waveguide (solid line). Around 25% of the atoms are

reflected from the narrow attractive potential and propagate in the opposite

direction to the transmitted component (the method of obtaining the num-

ber in each cloud will be explained in Section 5.5). It is observed that the

turning point of the reflected atoms occurs ∼ 50 ms later than for the trans-

mitted atoms. This is due to the 22µm displacement of the well position

from the centre of the oscillation. By comparing the measured trajectory of

the reflected fragment with that of an elastic collision (black dashed curve

on Fig. 5.7), we note that the turning point is ∼ 20µm short of the release

position. This suggests that some energy is dissipated during the splitting

process. The remaining atoms, which account for . 10% of the total atom

number, are confined close to the attractive potential.
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5.5 Well depth dependence of the quantum

reflection probability

To explore the effect of the potential well depth relative to the energy of the

incoming solitary wave, we vary the beam power of the potential well whilst

keeping all other parameters constant. The solitary wave is split and the

resulting fragments are allowed to spatially separate before imaging. This

corresponds to 475 ms of propagation time from the point of release. To cal-

culate the reflection probability, three fixed regions of the absorption images

are defined: transmitted (T), confined (C), and reflected (R) as shown in the

inset of Fig. 5.8 (a). The number of atoms associated to T, C, or R is mea-

sured by taking the sum of the pixel values in each of these regions. Using

these values, we define the reflection probability as R/(R + C + T)× 100%,

while the values for the transmitted and confined parts are calculated in the

same way.

We find there is no observable reflection from the narrow potential well for

trap depths < 100 nK×kB. Above this threshold, we see that the probability

of reflection increases sharply (Fig. 5.8 (a)), and correspondingly the number

of atoms transmitted drops (Fig. 5.8 (b)). For a trap depth of 1µK × kB,

we observe a reflection of ∼ 25%. We also note that the number of atoms

confined at the position of the well increases with increasing well depth, as

shown in Fig. 5.8 (c).

In these splitting experiments we observe the width of the transmitted and

the reflected clouds to be larger than the original solitary wave. This result

is, at least qualitatively, in agreement with the theoretical description of a

solitary wave in a quasi-1D geometry [25]. For the original solitary wave with

the parameters presented in Section 5.4, the spatial extent of the soliton,

defined by Eq. 2.17, is calculated to be ls ≈ 3µm. Hence, theoretically,

the reflected fragment from the potential well with depth 1µK × kB, which

accounts for ∼ 0.25N atoms, should acquire 4 times the size of the original

solitary wave. However, limited by the resolution of our imaging system and

the distance by which the resulting clouds can be spatially separated, we are

unable to reliably fit a Gaussian line shape to the images and thus we are
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Figure 5.8: Energy dependence of the quantum reflection probability. (a) Percentage
of incoming atoms reflected as a function of well depth. Atoms reach the
well with a velocity of 1 mm s−1. Below a well depth of ∼ 100 nK × kB no
appreciable reflection is observed. Inset: Reflection percentage is expressed
as the number of atoms in the region labelled ‘R’ as a percentage of the total
atom number calculated for the three boxed regions shown. These regions
correspond to atoms being classified as transmitted (T), confined (C) or
reflected (R) from the well. The percentage of atoms (b) transmitted and
(c) confined is calculated in a similar way. The negative data points in (a)
and (c) are manifested from the subtraction of the background noise from
the absorption image.
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tern [VJ(x)] and truncated diffraction pattern [V
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J (x)] potentials which
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unable to report a quantitative figure for the increase in width.

5.6 Discussion

We recall that the velocity of the solitary wave is higher than the desired

value of v . 0.4 mm s−1. With a higher momentum, the measured reflec-

tion fraction of ∼ 25% somewhat contradicts the theoretical prediction. We

address this discrepancy by examining the effect of the structure of the po-

tential well on the quantum reflection probability.

We first confirm the lack of substantial reflection from the narrow Gaussian

potential VG(x) (Eq. 5.1) by numerical simulations of the 1D GPE (see the

lower curves in Fig. 5.9). In these simulations,5 we use a simplified model

5The numerical simulations of the 1D GPE are courtesy of the theory group of the
Joint Quantum Centre (JQC), Durham-Newcastle.
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Figure 5.10: Effect of the tilt of the beam on the structure of the potential well. (a)
Zemax simulation of the beam profile at the tightly focussed waist with
small deviation angles of the beam from the normal of lens 4. (b) Zoomed-
in version of (a).

of the experiment as follows, which consists of a quasi-1D GPE similar to

Eq. 2.14

i~
∂ψ(x, t)

∂t
=

[
− ~2

2m

∂2

∂x2
+ V (x) + U(x, t) + g1DN |ψ(x, t)|2

]
ψ(x, t), (5.11)

where U(x, t) represents the time-dependent background potential. We

model the latter as

U(x, t) =
1

2
m
[
ωxDT

(t)2(x− xDT)2 + ωxQT
(t)2(x− xQT)2

]
, (5.12)

where xDT = −160 µm (xQT = −22 µm) represents the position of the min-

imum of the dipole trap (quadrupole trap) potential along the waveguide,

or the x-direction. The trap frequencies for these potentials are ramped

linearly over the first τ = 250 ms: ωxDT
(t) = max{ωDT(τ − t)/τ, 0} and

ωxQT
(t) = min{ωQTt/τ, ωQT}, for ωDT = 2π× 30 Hz and ωQT = 2π× 1.15 Hz.

The static narrow potential well V (x) is centred at x = 0, and the atoms

move towards positive x. N = 6000 atoms are used in the simulation. For

the nonlinearity term g1D = 2~ωras, ωr = 2π × 18.2 Hz which is the radial

trapping frequency of the waveguide. We work with ψ(x, t) normalised to

unity, and initialise the simulation with ψ(x, t) in the ground state of the

system for potential U(x, t = 0).
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As shown in Fig. 5.9, wavepackets in the model described above only exhibit

very weak reflection (. 4%) from the Gaussian potential VG(x), both for

the non-interacting case as = 0 (Fig. 5.9(a)), and the case of bright solitary

waves with as = −7a0 (Fig. 5.9(b)).

In order to explain the enhanced quantum reflection in the experiment, we

look more closely at Eq. 5.3. One possible explanation is a mismatch of the

energy relation. However, the movement of the solitary wave (by mapping

out the centre of mass motion at different time after release) rules out the

possibility that the velocity is less than half of 1 mm s−1. On the other hand,

a potential width < 1.9µm would also enhance the probability of reflection.

This motivates us to consider the effects of subsidiary diffraction maxima

of the red-detuned light field used to create V (x), which is predicted by

the Zemax simulation shown in Fig. 5.2(c). For a light field that passes

through a lens with a solid circular aperture, one expects the intensity (one

dimensional) I(x) to have a Fraunhofer diffraction pattern in a form of

I(x) = I0

2λfJ1

(
πDx
λf

)
πDx

2

, (5.13)

where I0 is the peak laser intensity, D is the aperture diameter, and J1 repre-

sents a Bessel function of the first kind with n = 1 [170–172]. In general, the

less intense subsidiary maxima have a narrower width than the central maxi-

mum. For instance, in our system, using Eq. 5.13, the theoretical value of the

width between the central maximum and the first minimum (i.e. the Airy

disk) is 0.94µm, while the width between the first minimum and the second

maximum is 0.32µm. Eq. 5.3 suggests that, at least when taken in isolation,

the subsidiary maxima may be liable to produce significant reflection, albeit

very low trap depth. In addition, the presence of multiple potential wells

can itself enhance reflection — as seen, for example, in Bragg reflection of

BECs from a multiple-well lattice with slowly-varying well depths [173] —

although in our case the rapid variation in the well depths precludes a similar

quantitative analysis.

The exact dimensions of the diffraction pattern at the tightly focussed waist,
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however, are not precisely known. The alignment of the narrow attractive

potential requires both mirror steering and rotating the lens mount, as dis-

cussed in Section. 5.2.2. Thus it is likely that the incident angle of the beam

on the high NA aspheric lens (lens 4) deviates from 90◦. Such deviation

causes the diffraction pattern to skew to one side. As illustrated in Fig. 5.10,

the resulting intensity profile, and hence the structure of the subsidiary max-

ima, is very sensitive to the incident angle. Nevertheless, as a generic model,

and using Eq. 5.13, we consider a potential associated with the intensity

pattern of Fraunhofer diffraction from an aperture as

VJ(x) = −V0

[
wx
x
J1

(
2x

wx

)]2

, (5.14)

and the same potential truncated after the first subsidiary maximum (second

subsidiary intensity minimum);

V
(trunc)
J (x) =

{
VJ(x) |2x/wx| < α2,

0 |2x/wx| ≥ α2,
, (5.15)

where α2 is the second positive zero of J1(x). As shown in Fig. 5.9 (inset),

these potentials have a similar central minimum to VG(x), but with an ad-

dition of one (V
(trunc)
J (x)) or a decaying series (VJ(x)) of subsidiary minima.

The results of simulations for both noninteracting wavepackets, Fig. 5.9(a),

as = 0 and for bright solitary waves, Fig. 5.9(b), as = −7a0, show that

the reflection is greatly enhanced for both of these potentials compared to

VG(x), for the range of well depths used in the experiment. The presence

of subsidiary diffraction maxima in the beam producing the potential well

thus provides a plausible explanation for the enhanced reflection probabili-

ties observed in the experiment. The similarity of the results for VJ(x) and

V
(trunc)
J (x) indicates that the oscillatory structure of the reflection coefficient

is primarily a transmission resonance effect, attributable to the three-well

potential composed of the main beam maximum and the largest two sub-

sidiary diffraction maxima.

There are a few differences evident when the experimental results are com-

pared to the simplified model. Firstly, in the generic model, one expects

negligible confinement (< 1%) at the potential well. Secondly, the experi-
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mental curve of reflection exhibits no resolved oscillations and has a lower

overall magnitude. We have excluded small shot-to-shot changes in the in-

coming soliton velocity due to small (∼ ±5 µm) shifts in the alignment of the

experimental potentials as a cause of this, since changing the initial displace-

ment of the soliton by up to ±5 µm in the model leads to a negligible change

in reflection coefficient. We therefore suspect that these differences arise from

effects not captured by our simple model, which may include the exact struc-

ture of the potential well (possibly including time-dependent fluctuations),

three-dimensional effects, and finite-temperature effects.

5.7 Summary

In summary, we have observed quantum reflection of a bright solitary matter-

wave from a narrow, attractive potential. Such a potential, formed by a

tightly focussed laser beam, is produced through a carefully tailored optical

system designed using Zemax, where the waist is measured to be 1.9(2)µm

along the propagation direction of the solitary wave. With controls on both

the well depth and the velocity of the solitary wave, reflection probabilities

of up to 25% are observed, with the remaining atoms either transmitted or

becoming trapped at the position of the potential well. Modelling of the

system suggests that the exact spatial characteristic of the potential well is

crucial in determining the amount of reflection observed, with the presence

of multiple diffraction intensity maxima, rather than a single Gaussian max-

imum, playing an essential role. The realisation of quantum reflection and

the splitting of the solitary waves is an important stepping stone towards

the construction of an interferometer with bright solitary waves. In the next

stage of the experiment, we proceed to construct an interferometer in a ring

geometry where the splitting and recombination of the solitary wave is facil-

itated by a repulsive barrier. Detailed in Chapter 2, such a system preserves

the integrability owing to the absence of axial trapping. This allows us to

study the interferometry using true solitons from NLSE in the mathematical

sense. In long term, the measurements of soliton splitting at the attractive

potential also taught us how to study quantum reflection due to the surface

Casmir-Polder potential, where the robust nature of the bright solitary waves

makes them the ideal candidates for such experiments [48].
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Chapter 6

Experimental upgrade

Previously, with the use of the apparatus described in Chapter 3, we demon-

strated the creation of bright solitary waves in Chapter 4. This is achieved

by transferring the 85Rb BEC from a crossed dipole trap into an optical

waveguide. By scattering the bright solitary waves from a tightly focussed

potential well, we demonstrated the quantum reflection of such matter-waves

from a narrow attractive Gaussian potential in Chapter 5. However, in pro-

ceeding to advanced experiments with the solitary waves such as probing the

atom-surface interaction and interferometry, an upgrade of the apparatus is

required. In this chapter, we first lay out the limitations of the existing setup,

which are then tackled by an implementation of a new setup of the magnetic

coils and the optical dipole trap. We conclude the chapter by the demon-

stration of the creation of 87Rb condensates with the use of the upgraded

experimental apparatus.

6.1 Limitations of the existing setup

• Magnetic fields and background harmonic potential: The mo-

tion of the solitary wave has relied on the 1 Hz background harmonic

potential resulting from the combination of the quadrupole gradient

and bias magnetic field, a result given by Eq. 3.8. We have discussed

in Section 5.3 that the velocity of the solitary wave is directly related to

the oscillation amplitude of the motion, that is, the distance between

the centre of the crossed dipole trap and the weak harmonic potential

83
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along the waveguide. This method poses a shortfall if one wishes to

study the solitary waves at a low velocity as the centre of mass would

appear to be almost at rest if the oscillation amplitude is close to, or

below, the resolution of the imaging system. In particular, with the

parameters presented in Chapter 5, v . 0.13 mm s−1 is needed if one

wishes to observe quantum superpositions with bright solitary waves

(see Section 2.4.2). This requires an oscillation amplitude of the solitary

wave to be . 21µm using Eq. 5.9 (here we assume the potential barrier

locates at the minimum of the quadrupole trap potential). With a pixel

size of 5.2µm in our imaging system, it is extremely difficult to resolve

such scattering events. Furthermore, the presence of the unremovable

background harmonic potential also sets a limit to the anisotropy of

trap frequency that the atoms would experience.

• Inflexibility of the dipole trap: To compensate for the insufficient

beam power of the single mode 15 W 1064 nm IPG laser, it was opted

to form a crossed dipole trap in a bow-tie configuration to give the

desired trap depth of ∼ 100µK× kB. Crossing at 6 mm away from the

prism surface to avoid the beam being clipped by the prism, the current

setup is not suitable for the atom-surface interaction experiment with

solitary waves [48] as it requires the transport of a degenerate gas over

a distance greater than we have been able to demonstrate.

• Restricted optical access: The current coil mount covers an un-

necessarily large area, which makes it difficult to place any optics at

. 120 mm from the centre of the science cell. Optical access is very

limited as space is taken up by the optics for dipole beams in a bow-tie

configuration, the waveguide, the imaging probe beam, and the sup-

porting posts for the top coil mount. This makes it extremely difficult

to install extra optical systems, such as a tightly focussed light sheet,

which is necessary for providing the vertical confinement of the ring

traps, which will be discussed in Chapter 8.

• Vertical optical setup: One of the main aims of this project is to de-

velop a ring potential, a vital component in the interferometry scheme

proposed in [52]. In order the measure the Earth’s rotation, the gen-

eration of such a potential (which will be discussed in Chapter 7) re-

quires the implementation of a laser beam that enters the science cell
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vertically. Thus, in addition to the optics for generating the narrow

potential and vertical imaging, more optics are required to be mounted

above the coil mount. It is hence essential to develop a rigid hardware

which allows the optics to be secured above the coils.

To address the limitations, the following upgrades have been implemented:

• Additional magnetic coils, namely curvature and cancellation coils,

have been developed to control the curvature of the magnetic field;

• A compact coil mount has been designed to increase the optical access;

• A vertical breadboard has been designed to accommodate the optics of

the vertical optical systems;

• A new optical dipole trap has been developed, where each dipole beam

can be independently controlled;

• With the use of an acousto optical deflector, and a home built voltage

multiplier circuit, one of the dipole beams can be displaced transversely.

This enables us to translate the crossed dipole trap towards the prism.

The design, implementation, and optimisation of these upgrades will be dis-

cussed in detail in the following sections. As tuning the scattering length

through a Feshbach resonance is not required for the system optimisation,
87Rb atoms are used for the rest of this thesis owing to their relatively low

inelastic losses compared to 85Rb [150, 159, 161].

6.2 Magnetic trap upgrade

In this section, we concentrate on the removal of the magnetic curvature, as

well as a compact design of the magnetic coils and mount to maximise the

optical access.

6.2.1 Curvature and cancellation coils

An integral part of the new magnetic coil design is to introduce an additional

pair of coils for curvature control. Named the curvature coils, an ideal design
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Figure 6.1: (a) Magnetic field and (b) curvature calculations of a pair of coils, each with
1 turn and 1 A in a R and S parameter space. The mark (x) indicates the
chosen dimensions of the curvature coils.

should have a maximised curvature that cancels the 1 Hz background trap

frequency, but also has a minimised effect to the overall bias magnetic field

near the field centre. Both quantities, namely the bias magnetic field and the

field curvature, depend strongly on the coil radius R and the coil separation

S (as defined in Appendix A). Calculated using Eq. A.3, the axial magnetic

field at the mid point of the coil pair is presented in Fig. 6.1(a). It shows that

in order to minimise the resulting magnetic bias field, a small R and S � R

is desirable. This, however, does not coincide with the region that satisfies

the first requirement. As shown in Fig. 6.1(b), the maximum magnitude of

the curvature is achieved where R is small and S ' 2.5R. Thus upon the in-

troduction of the curvature coils, it is inevitable that the resulting magnetic

field contributes to the overall bias field.

This led to the design of a pair of magnetic coils that cancels the bias field

produced by the curvature coils at the centre of the coils. The cancellation

coils are connected to the curvature coils in series such that they produce

an equal but opposite magnetic field to the curvature with the same current

I. Denoting Cv and Cl for curvature and cancellation coils respectively,

and using Eq. A.3 evaluated at the mid point of the coil pair, the required

condition is

nCvR
2
Cv[

(SCv

2
)2 +R2

Cv

]3/2 =
nClR

2
Cl[

(SCl

2
)2 +R2

Cl

]3/2 . (6.1)

Furthermore, we choose the Helmholtz configuration for the cancellation
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coils, namely RCl = SCl, such that the contribution of the curvature by

such a coil pair is minimal. Hence the relation between these two set of coils

is simplified to

nCvR
2
Cv(

4
5

((
SCv

2

)2
+R2

Cv

))3/2
RCl = nCl, (6.2)

which allows us to design the most appropriate cancellation coils. To finalise

the coil design, spatial restrictions such as an aperture reserved for vertical

imaging, and the space occupied by the water-cooled quadrupole coils, are

taken into account. By fixing the radii of the nCv = 33 turns curvature coils

to be RCv = 24 mm, the smallest separation without taking up the space

reserved for the quadrupole coils (See Fig. 6.4) is SCv = 66 mm. Note that

it is larger than SCv = 47 mm where the curvature for RCv = 24 mm is

maximum. In keeping the coils and the coil mount compact, the Helmholtz

cancellation coils have the radii RCl and separation SCl both at 51.4 mm.

Using Eq. 6.2, one calculates the required number of turns for the cancel-

lation coils is nCl = 20. The measured dimensions and magnetic fields of

the two additional coils pairs are presented in Appendix A, along with the

quadrupole and bias coils which are identical to the original design.

To demonstrate the use of the curvature and cancellation coils, the radial

and axial magnetic fields at 5 A are presented in Fig. 6.2(a) and (b), where

the red curves are the fits using Eq. A.3 and Eq. A.4. Fig. 6.2(c) shows

that the additional coils are capable in both increasing the trap frequency

and producing anti-trapping, depending on the direction of the current in the

coils. While the magnetic field at the mid point of the coils is too small for the

Hall probe used to provide a reliable measurement, it can be deduced from

the fits in Fig. 6.2(a) and (b). As suggested in Fig. 6.2(d), the magnetic field

is not perfectly cancelled. When operating, the coils introduce an additional

field of 40 mG A−1 which contributes directly to the overall magnetic bias

field. At the zero crossing of the scattering length of 85Rb atoms in the

F = 2,mF = −2 state at 166 G, the additional field causes a change in

scattering length by |∆as| = 1.6 a0A
−1 (using Eq. 4.2). As a result, the

current applied to the bias coils will require adjustment when operating the

additional coils in order to obtain a desired combined magnetic bias field.
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Figure 6.2: Magnetic field and curvature generated by the combined curvature coils and
cancellation coils system with a current of 5 A. Here, the discrete data points
and the curves are experimental measurements and theoretical calculation
respectively. (a) Total magnetic field along the radial direction. (b) Total
magnetic field along the axial direction. (c) Comparison of the trap frequency
between curvature coils only (black, solid) and curvature coils cooperating
with the cancellation coils (red, dashed). (d) Total magnetic bias field at the
centre when both curvature and cancellation coils are used, which varies at
40 mG A−1.
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Curvature coil

Cancellation and UD shim coils

d

Figure 6.3: Illustration of the method of winding the small coils. The copper wire (or-
ange), glued using epoxy adhesives (blue), is arranged in the aluminium coil
former (grey) protected by a thin layer of mylar (green). (a) The arrange-
ment of the curvature coils, with a spacing of 6d between the walls. (b)
The arrangement, with a different number of layers, of the cancellation coils
and the shim coils. The spacing between the walls is 5.5d. (c) Simultaneous
winding of the curvature coils (smaller radius), the cancellation and the UD
shim coils (larger radius).

6.2.2 Winding small coils

In addition to the introduction of the curvature and cancellation coils, the

shim coils, which are responsible for shifting the quadrupole centre and field

nulling, were redesigned in the new setup in order to generate larger magnetic

fields. Wound using a diameter d = 0.8 mm copper wire, the 3 sets of shim

coils, namely the North-South (NS), East-West (EW), and Up-Down (UD),

shift the field zero along the x, y, and z direction respectively. These coils

are designed to be compact in order to be placed closed to the science cell

to generate higher magnetic fields with fewer turns and lower currents. As

illustrated in Fig. 6.3, the coils are wound in aluminium coil formers where

the spacing between the walls is carefully chosen. All the walls are protected

by a thin layer of mylar as epoxy adhesive glue is applied to each layer of

wires. By applying force at both ends of the wire during the winding process,

the tension firmly forces the wire into the structure where each layer is d/2

offset from the layer below. This minimises the spacing between the wires
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and hence maximises the rigidity of the coil. Once the glue is set, the coil

can be completely separated from the coil formers where the mylar can be

removed. These compact coils can then be simply inserted to the coil mount

with a predetermined separation distance.

6.2.3 Coil mount and coil arrangement

The magnetic coils are secured in a coil mount (made from G10), which

consists of a top and a bottom component separated by 36 mm. As shown in

Fig. 6.4(a), pairs of quadrupole coils (quad), bias coils (bias), the curvature

coils, cancellation coils, and the UD shim, sit in the grooves with depths

that provide the desired coil separation. In addition, the RF coil, necessary

for RF evaporation in the early phase of atom cooling in the science cell,

is positioned on top of the bottom coil mount. The 2 turn circular RF coil

with diameter 37 mm is wound from d = 1.0 mm a copper wire. In order to

match the impedance of the RF amplifier, a high power (3 W) 50 Ω resistor

(Multicomp MCKNP02UJ0500B00) is connected to the RF coil in series.

The axis of the magnetic coils, marked by the dotted-dashed line, is located

at ∼ 3 mm from the surface of the Dove prism. This distance is chosen to

avoid atom loss from getting too close from the prism [67]. The top mount

has its area greatly reduced by 65% from the previous design, allowing optics

to be placed and mounted on the M6 threaded holes shown in Fig. 6.4(b)

closer to the science cell. There is a M36×1 threaded aperture at the centre

of both coil mounts, which enable us to securely mount and adjust high NA

lenses if high imaging resolution is required. Moreover, the compact design

of the EW and NS shim coils, as seen in Fig. 6.4(c), maximises the optical

access to the science cell.

6.2.4 Installation of the magnetic coils

The connections of the magnetic coils to the power supply and the cool-

ing water from the barrier cooler are identical to the previous generation

described in [67]. The current through all the coils are controlled by a home-

built LabVIEW programme ‘DExTer’ as detailed in [69].

The alignment of the coils, in essence, is to locate the atomic cloud trapped
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Figure 6.4: Coil mount upgrade. (a) A cross-sectional cut of the coil assembly around
the science cell. The squares and circles in the coils denote water-cooled
3.5 mm×3.5 mm and d = 0.8 mm copper wires respectively. This is with
an exception of the curvature coils and the RF coil which are wound from
d = 1.0 mm wires. (b) Bird’s eye view of the coil arrangement. (c) The
location of the rectangular NS and EW shim coils. (d) Coil assembly showing
the enhancement of optical access to the science cell, due to the former-free
coils.
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Figure 6.5: Magnetic coil alignment. (a) The dimensions of the prism (grey) and prism
mount (white) used for coil alignment (bird’s eye view). Images of the atomic
clouds trapped in the quadrupole trap using (b) horizontal imaging and (c)
vertical imaging systems.

in the quadrupole magnetic potential close to the prism without atom loss

due to the surface. The coil mount is first carefully positioned such that

the science cell locates in between the top and bottom mounts and through

one of the NS shim coils, as illustrated in Fig. 6.4(d). The number of atoms

transferred from the transport magnetic trap into the science cell quadrupole

trap is shown to remain approximately constant over ∼ 5 cm displacement

between the two coil axes [67]. Thus by using the existing transfer routine

detailed in Section 3.1.3, one obtains a trapped atomic sample for precise

alignment, albeit with unoptimised transfer. Making use of the dimensions

of the prism and prism mount (see Fig. 6.5(a)), we use both temporary setups

of horizontal and vertical absorption imaging to position the quadrupole trap

centre at ∼ 3 mm from the front surface of the prism. As shown in Fig. 6.5(b)

and (c), where the trapped atoms are imaged after 2 ms TOF, the position

of the coil mount is finalised such that the trapped atoms are located normal

to the mid point of the prism.

6.3 Vertical optical systems

In the vertical direction, a vertical breadboard (made from G10) is designed

to accommodate the optics for vertical imaging and additional systems such

as the creation of arbitrary trap potentials (see Chapters 7 and 8). As shown

in Fig. 6.6, the 300 mm×230 mm breadboard overhanging above the science

cell has a total of 90 M6 threaded through holes which enable us to pop-

ulate the board for future use. This vertical breadboard is mounted on
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Figure 6.6: Vertical breadboard provides versatility in mounting optics to send laser
beams from above, as well as being used for vertical imaging. The probe
beam, coloured in red, enters the science cell from below and is incident on
the CCD after passing through the imaging lenses. For illustration purpose,
the rest of the vacuum chamber beyond the science cell is not drawn here.
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an aluminium breadboard (black). It should be noted that this aluminium

breadboard is not directly on top of either the coil mount or the transport

coils to prevent magnetic field distortion from induced eddy currents.

For the vertical imaging, an f = 100 mm achromatic lens (Thorlabs AC508-

100-B) and an f = 300 mm achromatic lens (Thorlabs AC508-300-B) are

used, resulting a 3× magnification. This gives a pixel size of 2.6µm, which

is nearly half of that of the horizontal imaging (5.1µm). To enable accurate

focussing, the f = 100 mm lens and f = 300 mm lens are placed on a slid-

able slot and a translation stage respectively. In between the lenses, there

is a notch dichroic beamsplitter (Semrock NFD01-785-25×36) which reflects

light with λ = 750 − 840 nm. The focussing procedure of the vertical imag-

ing system typically involves two simple steps (assuming the probe beam is

centred on the atoms):

1. Focus the probe beam to a spot by the second lens. The positions of the

second lens and the camera are adjusted such that the waist appears

at the CCD sensor.

2. Install the first lens. With a small target of an atomic cloud (typically

from a crossed dipole trap, which will be discussed shortly), adjust the

position of the lens such that the measured cloud width is minimised

as defocusing causes image distortion. See [67, 69] for more detailed

examples.

6.4 Optical dipole trap upgrade

6.4.1 Optical setup

In the new dipole trap setup, we replaced the 15W IPG laser with a 50W

multimode IPG laser (YLR-50-LP-AC-Y12) with wavelength λ = 1070 nm.

With over three-fold increase in the laser power, a crossed dipole trap with

trap depth > 100µK× kB can be comfortably formed from two independent

beams split from the single laser source. In contrast to the original setup, the

new optical setup sees one beam passes through the Dove prism perpendicu-

larly along the x-direction, while its counterpart enters the science cell along
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Figure 6.7: The new dipole trap setup. (a) Beam diffraction into first order (m = 1) by
the acousto opitcal deflecter (AOD). The lens is placed at one focal length
f from the AOD such that the transmitted beam paths are parallel to the
zeroth order (m = 0) beam regardless of the diffraction angle φ. (b) Optical
setup. The laser output is split into the waveguide (WG) and the moving
beam (MB) which intersect in the science cell. The position of the crossed
diople trap can be displaced along the WG by varying the drive frequency
applied to the AOD, which is indicated by the green arrows on the MB.
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the y-direction. With independent control in beam power, this configuration

allows smooth transfer of the BEC from the crossed dipole trap into a single

beam by simply ramping the second beam off after degeneracy is reached.

For this reason, we name the first beam the waveguide (WG) as it resembles

the waveguide of our original setup.

For optimal loading of atoms from the magnetic quadrupole trap (QT) into

the optical dipole trap (DT), the DT centre needs to be located close to

the QT centre. At ∼ 3 mm from the prism surface, the DT position is

too far away from the prism surface for future experiments of atom-surface

interaction. Thus, a mechanism is needed for adjusting the position of the

second beam, here named the moving beam (MB), for translating the DT

from close to the QT towards the surface of the prism. This is achieved

by the implementation of an acousto optical deflecter (AOD, Isomet D1135-

T110L-TC)1. The working principle of an AOD is identical to an AOM except

that the device is optimised for beam deflection, which is well documented

in the literature [174, 175]. In brief, by applying an acoustic frequency to

the crystal medium TeO2, the input optical beam is diffracted into different

orders m = 0, 1, 2, . . . under Bragg diffraction when it passes through the

crystal. Adjusting the beam alignment into the AOD can maximise the

diffraction efficiency at m = 1. The diffraction angle φ is given by

φ =
λν

vs
, (6.3)

with vs and λ denoting the speed of sound in the crystal medium and the

wavelength of light respectively [176]. The applied acoustic frequency, ν, is

controlled by a tunable RF driver RFA3110-4, which varies linearly (85 –

145 MHz) with an input voltage (0 – 10 V). With a maximum scan angle of

φ = 13 mrad, the beam displacement is achieved by focussing the deflected

beam from the AOD using a converging lens with focal length f . This lens is

placed at a distance f from the output of the AOD such that the beam paths

after the lens are always parallel, as shown in Fig. 6.7(a). The waist of the

MB is located 2f from the AOD where it intersects with the WG. Providing

the Rayleigh range zR of the WG is sufficiently large, one expects minimal

change in the DT geometry over the MB displacement of

1The centre frequency and the RF bandwidth are 110 MHz and 50 MHz respectively.
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∆x = f∆φ =
fλ∆ν

vs
. (6.4)

The optical layout of the new DT system is presented in Fig. 6.7(b). With an

output beamsize of 788(4)µm, the laser beam is split into two by a polarisa-

tion beam splitter. The WG, with its power controlled using an AOM (Isomet

M1080-T80L-NIR), enters the science cell through the back of the prism and

intersects the MB. For the purpose of beam alignment, the last lenses in both

beam paths, namely f = 300 mm (Thorlabs AC254-300-C) for the WG and

f = 250 mm (Thorlabs AC254-250-C) for the MB, are mounted on transla-

tion stages. Using Eq. 6.4, one calculates that the expected range of the MB

displacement is 3.25 mm. Note that the MB after the last mirror shares the

same path with the probe beam for horizontal absorption imaging. Thus to

avoid obstructions to the probe beam, the mirror (reflection at λ = 1070 nm

and transmission at λ = 780 nm) with a dimension of 25 mm×36 mm is fixed

on a plate mounted directly on the coil mount. Given the ability to form

a dithered time averaged trap, which will be discussed in Section 6.4.2, a

smaller MB waist is chosen compared to the WG. The waists of the MB and

WG are measured to be 65(1)µm and 102(1)µm respectively2. Note that as

a precaution, the WG power is restricted to . 6 W to limit the laser power

dissipation inside the vacuum system.

6.4.2 Time averaged optical potential

By taking the response time of the electronics into account, the output beam

of the AOD can be scanned at a frequency νscan in excess of ∼ 5 kHz. This

is comfortably higher than the radial trapping frequency νMB = 420 Hz at a

trap depth of 100µK×kB. In the scenario where νscan � νMB, atoms in such

trap cannot respond kinematically (for instance, ‘following’ the beam move-

ment) but rather see a time averaged optical potential. Scanning at a much

higher frequency also prevents parametric heating of atoms that occurs if

νscan ≈ 2νMB/n, n = 1, 2, . . . [94, 177]. These potentials are smooth with the

resolution limited by the beam waist. Depending on the RF power profile,

2These are measured by a home built Gaussian beam profiler which consists of a high
resolution Thorlabs CMOS camera DDC1545M and a MATLAB Gaussian fitting pro-
gramme. Measurements are carried out at low power - at 10% of the maximum laser
output.
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Figure 6.8: Time averaged optical potential. (a) Simulation of trap depths of the sta-
tionary MB (red) and MB with dithering amplitude of 200µm (black) in
a triangular waveform, both at 40 mW. (b) Measured intensity of the MB
dithered at maximum range with amplitude of ∼ 1.5 mm. (c) Normalised
intensity of the cross-section of (b).

different intensity patterns in 1D can be generated with one AOD, which can

be extended into 2D with an extra AOD or a dual-axis AOD [178]. This,

along with other methods of arbitrary potential generation, will be discussed

in Chapter 7.

Fig. 6.8(a) illustrates an example of the time averaged potential when

the MB is dithered in a triangular waveform at an amplitude of 200µm

(∆ν ∼ 3 MHz). As the beam power remains constant in the simulation, the

larger area that the dithered potential covers leads to a lower trap depth than

the stationary beam. The dithering yields an elongated, flat-bottomed trap

potential. Fig. 6.8 (b) and (c) show the measured time averaged intensity

with the maximum scanning range of 3.25 mm (∆ν ∼ 50 MHz) in a trian-

gular waveform. While the intensity can be approximated to be constant in

short scanning range, the intensity profile is skewed at maximum scanning

range. We attribute this as a result of a varying diffraction efficiency of the

AOD across the RF bandwidth. Nevertheless, as we will demonstrate shortly

in Section 6.7, applications of the time averaged potential, such as the cre-

ation of an elongated BEC, typically only requires a short scanning range

(∼ 100µm) and hence the effect of the skewness is minimal.
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Figure 6.9: Thermal lensing effect in AOD. The MB radii are measured at a fixed point
(waist position after the f = 250 mm lens at low laser power and RF power)
along the horizontal (solid) and vertical (hollow) directions against different
output beam power of the AOD. The measurement is repeated for two laser
output set points: 50% (black squares) and 77% (red triangles). This is
equivalent to 13.2 W and 20.3 W incident on the AOD respectively. The
blue line indicates the beam size measured at a very low power.

6.4.3 Thermal lensing in AOD crystal

In forming a time averaged potential, higher power is required for a larger

dithering amplitude in order to maintain the overall trap depth. For this

reason, ∼ 20 W is reserved for the MB, which is four times the maximum

power of WG. However, by applying a high power of 20.3 W (equivalent

to laser set point of 77%) on the AOD, we noticed that the output beam

size deviates from the value measured at low power. As shown in Fig. 6.9,

while the output beam power increases by applying higher RF power, the

vertical (horizontal) waist size increases (decreases). This is the thermal

lensing effect in the TeO2 crystal, which is mainly caused by the existence of

impurities [179, 180]. These sites absorb both optical and acoustic energies,

resulting a non-uniform temperature distribution in the crystal which affects

the performance of the AOD. Hence, this effect is more prominent when a

higher optical and/or acoustic energy is used. Indeed, as shown in Fig. 6.9,

the ellipticity of the beam waist increases with RF drive power. At low RF

drive power, the average waist size is > 70µm in the case of 20.3 W (red

triangles) incident on the AOD, while the beam converges to a smaller waist

of 65µm at a lower optical power of 13.2 W (black squares), where the laser

output is set to 50%. Moreover, for all RF drive power tested, the beam radii
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Figure 6.10: Alignment of the moving beam. The number of atoms trapped in the MB
beam varies with the (a) vertical and (b) horizontal beam position relative
to zero of the magnetic quadrupole field at (x, z) = (0, 0). The red curves
are a guide to the eye only.

are measured to be larger at a higher beam power of 20.3 W. This leads to

a lower trap depth at the same output power when a higher incident optical

power is used. Hence, in order to avoid deformation of the beam shape, both

low incident optical and RF powers are favourable. We thus only operate

the AOD when the laser power incident on the device is . 5 W, while also

keeping a low RF power at a diffraction efficiency below 50%.

6.4.4 Alignment and trap characterisation

The alignment of the dipole beams is carried out by first optimising the posi-

tion of the MB and subsequently aligning the WG to form the crossed dipole

trap. To do this, we examine the number of atoms loaded into the hybrid

single beam dipole trap at different positions relative to the quadrupole trap

zero. The horizontal and vertical positions of the beam are scanned through

steering the second to last mirror in the MB path. The experimental rou-

tine is inherited from before the rebuild: after the transportation, the MB

is switched onto 10.4 W during the RF evaporation in the quadrupole trap

at 180 G cm−1. The tight quadrupole trap is then relaxed from 180 G cm−1

to just under levitation at 30 G cm−1 in 250 ms. After the ramp, the atoms

are held in the single beam trap with weak magnetic confinement for 500 ms

before an 8 ms TOF for horizontal absorption imaging. From Fig. 6.10 where

we plot the number variation against scan, we can roughly estimate the po-

sition of the field zero as Majorana spin flips causing a dip in the measured

atom number. This measurement allows us to locate the MB at ∼ 150µm
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Figure 6.11: Parametric heating measurement in the new dipole beams. Here a
Lorentzian curve is fitted to the first harmonic of the resonance feature
to find the centre. (a) WG at 3.75 W. (b) MB at 5.08 W.

below the plane of the field zero [134].

Once the MB is aligned, it serves as a target for the alignment of the WG.

By loading atoms into the WG with a weak magnetic confinement, the cigar

shaped atomic cloud after 2 ms TOF indicates the position of the beam. By

steering the last mirror of the WG path, the vertical and horizontal positions

of the WG can be optimised (such that it crosses the MB) via horizontal

and vertical imaging respectively. The crossed dipole trap is formed at the

intersection of the two beams, which is at a default position of 2.96 mm from

the Dove prism.

The trap frequencies of both beams are determined by parametric heating

measurements (see Section 5.2.3). Assuming the beams are perfectly circular,

the expression relating the beam waist w and the radial trapping frequency

ωr is

w =

(
8αP

πmω2
r

)1/4

, (6.5)

which is a simplified version of Eq. 5.8, where P is the beam power and α is

the the polarisability for Rb at λ = 1070 nm. The measurements are carried

out for each single beam trap individually. For the WG (MB), initial evapo-

ration is carried out until the beam power reaches 1.25 W (1.91 W). The beam

power is then ramped back up to 3.75 W (5.08 W) in 25 ms (50 ms) to sup-

press the evaporation. Power modulation is then applied for 500 ms (250 ms)
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Figure 6.12: Pumping to F = 2 state by the multimode laser with two different MB
powers, namely (a) 20.3 W and (b) 5.1 W. Atoms are imaged without the
use of repump light to determine the number of atoms in F = 2. The
measurements are then repeated with the use of repump light, where the
total atom number is measured.

before the atomic cloud is imaged. The results are shown in Fig. 6.11, where

the trap frequencies for MB (at 5.08 W) and WG (at 3.75 W) are measured

to be 2π × 441(2) Hz and 2π × 148(2) Hz respectively. This translates to

wMB = 70(1)µm and wWG = 110(1)µm. Both waists are in good agreement

with the measurements obtained using the beam profiler, as presented in

Section 6.4.1.

6.4.5 Atoms pumped into F = 2 state by multimode

laser

In Chapter 4, we discussed the minimisation of two and three body losses

during evaporative cooling in the creation of 85Rb BEC. While three body in-

elastic collisions are not as severe between the 87Rb atoms (see Section 4.1.2),

the use of a multimode laser introduces an extra channel for atom loss. With

its broad multi-frequency spectrum, typically in hundreds of GHz, a range

of longitudinal modes are distributed with a separation of ∼ 15 MHz [181].

The linewidths of the D1 and D2 atomic transitions are 6 MHz, while the hy-

perfine splitting of the ground state, namely the F = 1 and F = 2 states, is

6.834 GHz. As explained in [181, 182], it is likely that there exists 2 longitu-

dinal modes separated by this frequency. As a result, optical pumping from

the normally populated F = 1 state to F = 2 by the laser via a 2 photon

Raman transition is possible. Driven by collisions, transitions back to F = 1

might follow, from which the internal energy is converted into kinetic energy
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of the colliding atoms. As the kinetic energy is much higher than the trap

depth, such a process leads to an overall loss in atom number from the trap.

To examine this, we carry out the same measurement as suggested in [181].

Normal absorption imaging requires atoms to be repumped to the F = 2

state as the probe beam drives the closed transition F = 2 → F ′ = 3.

Hence imaging the atomic sample without the repump beam allows us to

identify the number of atoms that are excited to the upper hyperfine ground

state by the 1070 nm laser. Imaging the atoms after a variable hold time in

the dipole trap, the measurement is repeated for two different MB powers

as shown in Fig. 6.12. Consistent with the literature, a higher laser power

pumps more atoms into the F = 2 state initially. It is then followed by a

decay with increasing hold time, which corresponds to the decay of the total

atom number in the trap [181]. However, rather different from the published

observations [181], the F = 2 population is only a very small fraction of the

overall atom number. In our case, 20.3 W in the MB has an intensity of

264 kW cm−2 which pumps 1.6% of atoms into the upper hyperfine ground

state. It contrasts with 21% reported in [181] when a beam with an intensity

of 309 kW cm−2 is used. Since the majority of our experimental sequences

are run at low power to avoid beam deformation by the AOD, we conclude

that this pumping effect should only have a minimal contribution to the atom

loss.

6.5 Voltage multiplier circuit

In Section 6.4.1, it is mentioned that the diffraction angle of the AOD for the

MB is controlled by a single voltage input to the driver. Thus to control the

initial loading position, the trap width when dithered, and the movement of

the crossed trap along the WG generally requires a carefully tailored voltage

signal. One possible solution is through implementing a programmable func-

tion generator to supply the suitable voltage to the AOD. However, simple

functions such as ramping up the modulation amplitude is a non-trivial oper-

ation for such function generators. Instead, we have devised a straightforward

way to change and modulate the supply voltage at any point during an ex-

perimental routine by using the voltage multiplier circuit shown in Fig. 6.13.
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Figure 6.13: The voltage multiplier circuit, runs on ±15 V, has a final output voltage as a
multiplication and summation of different voltage inputs. The components
are listed in Table 6.1.

Item Type Component details

V1

BNC input

Voltage Input 1
V2 Voltage Input 2
V3 Switch trigger
V4 LabVIEW voltage offset
M Voltage multiplier chip AD633
S Analog switch DG418
L Linear voltage regulator 7805

A1,A2 Op Amp TL082
R1

Resistor
51 kΩ

R2 62 kΩ
R3,R4,R5,R6 10 kΩ

R7 Trimmer 10 kΩ
D1,D2 Diode BAT46
C1,C2 Capacitor 100 nF

Table 6.1: Components of the voltage multiplier circuit.
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Figure 6.14: Demonstration of the output of the voltage multiplier. The inputs are as
follow: V1 is a 2 Hz triangular wave with an amplitude of 5 V, V2 varies
linearly from 0 – 10 V in 8 s, V4 varies linearly from 0 – 6 V in 8 s, and a
default offset at 2 V. The green circles/ovals (i) – (iv) illustrate the shapes
and the positions of the time averaged potential at their corresponding
points in the plot of the output voltage.

At the heart of this circuit, the multiplier chip (marked M) outputs a voltage

which is a multiplication of the two inputs, namely V1 and V2, with a scal-

ing factor. Interchangeable with each other, one is connected to a function

generator that generates a desired waveform usually at a frequency ∼ 5 kHz,

while one is connected to the analog LabVIEW output with control voltage

0− 10 V. The latter acts as a scaling factor of the oscillation amplitude and

thus allows to control the width of the dithered trap when the circuit is em-

ployed as an input for the AOD.

Once the multiplier is switched on at V3, the modulation will be added

on top of two offset voltages: one is a direct offset at input V4 that takes

the analog voltage output from LabVIEW, while one is a built-in default

offset via the trimmer R7. All of the voltage inputs and initial values are

added at the summation stage, which forms the final output voltage. An

example of the circuit in operation is illustrated in Fig. 6.14. At (i), there

is no dithering (V2 = 0 V) and movement (V4 = 0 V), hence the output

voltage is simply the default offset at R7. The trap potential is non-dithered

and at default position. From time = 1 s onwards, the oscillation amplitude
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Figure 6.15: Balancing power in both dipole trap beams. Atoms are evaporated along
different paths depending of the relation between the trap depth of MB
(UMB) and WG (UWG). (a) UMB > UWG. (b) UMB ∼ UWG. (c) UMB <
UWG.

increases linearly with the application of V2, while the offset voltage increases

linearly by ramping V4 up. As a result, one expects both the dithering

amplitude and the positional offset to increase with time. The final output

voltage of the circuit is given by

Output = [Default offset at R7] + V4 + 0.02× V1× V2. (6.6)

Note from Fig. 6.13 that the output is lower bounded at 0 V through the

super diode. This limit is for the purpose of protecting the RF driver from

a negative voltage.

6.6 Evaporative cooling to quantum degener-

acy

With the new magnetic coils and optical dipole beams installed and op-

timised, we are in a good position to perform evaporative cooling in the

crossed dipole trap to reach degeneracy. After the initial cooling in the MOT,

N = 1.7 × 108 87Rb atoms at a temperature T = 130µK are transferred to

the quadrupole trap at the science cell. This is followed by 3 RF ramps for

RF evaporation in the quadrople trap with a gradient of 180 G cm−1, yielding

N = 2.4×107 atoms with PSD = 4×10−5 and T = 42µK. The dipole beams

are also switched on, with the dipole laser output set to 77% (38.5 W). While

the WG power is servoed to 5.6 W, the MB is not servoed at this stage. Here,
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Figure 6.16: Evaporation trajectory to 87Rb BEC in a pure optical dipole trap. The
dashed line denotes the BEC transition point at PSD = 2.61. The dotted
lines partition the evaporation into three stages, namely RF evaporative
cooling in the magnetic trap (RF), evaporative cooling via MB ramp in a
hybrid trap (Hybrid I), and direct evaporative cooling in a pure/hybrid trap
via simultaneous MB and WG ramps (Pure/Hybrid II). Inset: Horizontal
cross-section of the condensate column density of a bimodal cloud. The
solid red curve is a double Gaussian fit where the dotted red curve shows
the thermal fraction of the condensate.

the RF power applied to the MB AOD is kept at 50% diffraction efficiency,

which gives an output power of 7.0 W.3 In doing so, the thermal lensing effect

in the AOD crystal at high RF power is reduced. The loading of atoms into

the crossed dipole trap is completed by relaxing the quadrupole gradient to

30 G cm−1.

At this point, the trap depth of the MB is significantly larger than the WG,

which causes the atoms to preferentially evaporate along the MB as shown

in Fig. 6.15(a). In contrast, Fig. 6.15(c) shows that atoms will preferentially

escape from the crossed dipole trap via the WG if the trap depth relation is

reversed. Thus, the first stage of evaporative cooling performed in the hybrid

trap is aimed at balancing the trap depths such that evaporation occurs along

3A pure crossed trap with the stated beam powers has a combined trap depth (along
the beam) of 179µK×kB.
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both beams, as shown in Fig. 6.15(b). Knowing the beam waists allows us to

calculate the power relation between the beams for a balanced trap: equating

the equations for the trap depth for both beams (using Eq. 3.5 and Eq. 3.6)

yields a simple relation between the beam powers P and waists w

PWG =
w2

WG

w2
MB

PMB = 2.47PMB. (6.7)

Using this equation, it is calculated that 2.3 W in the MB gives an equal trap

depth as 5.6 W does in the WG. This power is reached by first ramping the

laser output power from 77% to 35% in 1 s and keeping the AOD RF power

constant at 50%. It is then followed by a 200 ms MB ramp in RF power

whilst the laser power is kept constant. This method has an advantage of

enhanced resolution for servoing the MB at power below 4.3 W. At this point,

N = 3.2 × 106 atoms with T = 8µK and PSD = 7.8 × 10−3 remain in the

trap, which is shown in the ‘Hybrid I’ region marked in blue in the evapo-

ration trajectory in Fig. 6.16. To proceed to condensation, we compare the

differences of experimental sequences and evaporation trajectories between

evaporation in a pure trap and a hybrid trap.

Pure trap

After 2 s of rethermalisation hold, the quadrupole gradient is slowly ramped

off in 200 ms resulting a pure optical dipole trap. During this stage a small

bias field (∼ 1 G) is ramped on to define the quantisation axis in the trap,

which prevents atom loss from the optical trap due to spin flips to other

states. This is followed by 3.25 s of linear ramps of MB and WG power

and rethermalisation holds where the trap depths of both beams are kept

the same. In the absence of levitation against gravity, vertical evapora-

tion eventually dominates in the later stage of the cooling trajectory as the

gravitational force becomes comparable to the dipole forces applied to the

atoms. The evaporation trajectory is shown in red circles (marked ‘Pure’)

in Fig. 6.16. Degeneracy is reached with pure condensates of N = 5 × 105,

which is comparable to the results obtained using the old crossed dipole trap

(N = 6 × 105) [68]. The final trap depth in the absence of levitation is

1.4µK× kB and the final trap frequencies are 2π × (66, 103, 98) Hz.
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Figure 6.17: (a) The aspect ratio (vertical/horizontal) of the BEC (black square) and
the thermal cloud (red circle) at 110 ms after release from the time aver-
aged potential, as a function of the dither amplitude of the MB. (b) The
absorption images of the BEC data in (a) at various dither amplitude.

Hybrid trap

In contrast to the pure trap experimental sequence, the quadrupole gradient

is kept at ∼ 30 G cm−1 throughout the evaporation. Evaporation along the

vertical direction thus dominates at all stages due to the magnetic confine-

ment along the dipole beams. Over 16 s, 5 linear ramps of MB and WG

power and rethermalisation holds are carried out, where the optimised evap-

oration trajectory is presented in black squares (marked ‘Hybrid II’ in black)

in Fig. 6.16. One can immediately see that fewer atoms are removed for the

gain in PSD in the process compared to the pure trap case, in which degener-

acy is reached with N = 1.1× 106 atoms – about twice the number of atoms

in the pure trap BEC. The final calculated trap depth is ∼ 820 nK× kB and

the trap frequencies are 2π × (25, 39, 47) Hz.

6.7 Creation of an oblate BEC

In this section, we demonstrate the creation of an oblate BEC in an elongated

trap. This is achieved by dithering the MB at the end of the evaporative cool-

ing in the hybrid trap described in Section 6.6. In doing so, the shape of the
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crossed trap is changed from near-spherical to elongated. By releasing a con-

densate from such an elongated trap, the cloud expands anisotropically, in

which faster expansion is expected along the direction where the trap con-

finement is stronger. In the case of a non-interacting BEC, this effect is a

consequence of the Heisenberg uncertainty principle, ∆x∆p > ~, where ∆x

and ∆p represent the spread in position and momentum respectively. Here,

the tighter axis has a smaller spread in position ∆x, and thus a bigger mo-

mentum spread ∆p which results in a faster expansion of the condensate

along that direction [183]. In the case of 87Rb BECs where interatomic in-

teractions are repulsive (87Rb has a positive background scattering length of

as ∼ 100 a0 [184]), this effect is amplified as the repulsive interaction pushes

the atoms further apart in the direction where the atoms are initially tightly

confined [183].

The measurement is carried out by adding a dither ramp after degeneracy is

reached with the use of the voltage multiplier described in Section 6.5. With

the application of a 5 kHz oscillatory voltage input in a triangular waveform

at V1, the dithering amplitude of the MB is ramped up by a straightforward

linear voltage ramp at V2 to a target value in 100 ms. The atoms are then

held in the time averaged potential for a further 100 ms. Throughout the

dithering, the MB and WG beam powers remain constant. By switching both

beams off, the atoms are released where the aspect ratio (vertical/horizontal)

of the cloud is recorded after 110 ms TOF. As shown in Fig. 6.17(a) (and the

absorption images in Fig. 6.17(b)), the aspect ratio increases with the dither

amplitude, which confirms that the atomic samples remain condensed after

the transfer into the elongated trap. In contrast, such feature of anisotropic

expansion is absence for a thermal cloud4, as shown in Fig. 6.17(a).

6.8 Summary

In this chapter, we have discussed the experimental upgrade of the magnetic

coils and a new dipole trap. The introduction of the curvature and cancel-

lation coils enables us to control the curvature of the magnetic field without

adding a large magnetic bias field. To accommodate these coils alongside

4N ∼ 2× 106 and PSD ∼ 1.
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with the quadrupole, bias, and shim coils, a compact coil mount is designed

which enhances the optical access. The crossed dipole trap in a bow-tie

configuration is replaced by two independent beams, namely the waveguide

(WG) and the moving beam (MB), derived from a 50 W λ = 1070 nm fibre

laser. While the WG enters the science cell through the Dove prism per-

pendicularly, the MB, with the ability to displace the intersection along the

WG driven by the AOD, enters the science cell along the horizontal imaging

probe beam path. The homebuilt voltage multiplier circuit, which controls

the RF frequency of the AOD, enables us to easily displace the dipole trap

towards the Dove prism, as well as creating a time averaged potential. In or-

der to avoid the deformation of the MB due to the thermal effect in the AOD

crystal, we have shown that it is favourable to use both low input laser and

RF powers whenever it is possible. We finish the chapter by demonstrating
87Rb BEC creation in the newly implemented magnetic and optical setup.



Chapter 7

Generation of arbitrary optical

potentials

7.1 Introduction

So far, we have realised the splitting of bright solitary waves at a narrow

Gaussian potential. The second generation of the experiment allows the ad-

justment in dipole trap position and magnetic field curvature. One last bolt

missing in the mechanism for realising the rotational interferometry exper-

iment with bright solitary waves described in Chapter 2 is the ring shaped

atomic trap.

Ultracold atomic gas experiments in a potential with a ring geometry have

been of great interest in studies, including superfluidity [185], persistent

current [186–188], and atomic superconducting quantum interference device

(SQUID) [189, 190]. Many methods have been developed to generate such

potentials, such as magnetic trap manipulation [191, 192], RF dressing [193],

and optical trapping using a Laguerre-Gaussian beam [186] or the conical

refraction property of biaxial optical crystals [194]. These robust ring ge-

ometries have yielded exciting experimental results.

As the level of complexity in the experiments advances, extending from ring

potentials to more arbitrary optical potentials has become possible. We re-

call the implementation of dipole trapping via time-averaged potentials in

112
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our new system. An additional AOM with a scanning axis orthogonal to its

first counterpart would create a 2D drawing canvas. Already atom trapping

in potentials generated through this method have been realised for conden-

sate interference [195], atomic SQUID [189], and matter-wave circuits [196].

In addition, arbitrary shaped potentials can be created by applying an in-

tensity mask with blue detuned optical potentials [197, 198].

In this chapter, we will focus on developing techniques of phase imprinting on

a red-detuned Gaussian beam using a spatial light modulator (SLM). Part of

the family of diffractive optical elements, such devices have been incorporated

into cold atom experiments to generate arrays of dipole traps [199–203], ar-

bitrary trap potentials [185, 204, 205], and atom guiding potentials [206]. As

we will see shortly, the ability to generate desired trap geometries creates a

whole new playground for experiments, which includes bright solitary waves

in ring traps and degenerate gases in a 2D finite square well.

7.2 Spatial light modulator (SLM)

7.2.1 Phase modulation of light

From everyday life to laser optics, we are familiar with light focussing by an

optical lens and light refraction by a prism. When a light field of wavelength

λ is transmitted through such optical elements with reflective index η, it

experiences a phase shift

∆φ = 2π
(η − 1)l

λ
, (7.1)

where l is the thickness of the optics. One can intuitively understand this

by considering a light field with a source infinitely far away, incident perpen-

dicularly on a classical converging lens. The plane wavefront experiences a

continuous phase change in the radial direction of the lens, which results in

a conversion to a spherical wavefront that converges to a focal point.

As the phase shift of wavefront has a periodicity of 2π, one can in fact

design elements with |lη/λ| < 1 that reproduce the properties of classical
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Figure 7.1: Generation of diffractive optics. (a) From a classical plano-convex lens (left)
to a Fresnel lens (right). (b) From a refractive prism (left) to a blazed grating
(right). The red lines represent the wavefronts of a monochromatic light
while the black arrows perpendicular to the wavefronts show the propagation
direction of the light. The material in the grey region is removed as it does
not affect the final phase shift of the light.

optics. These optical components, such as the Fresnel lens, are known as the

diffractive optical elements (DOEs) [207]. The transformation from a classi-

cal plano-convex lens to its Fresnel counterpart requires removal of blocks of

material of thickness λ/η as shown in Fig. 7.1(a). Each block contributes to

a phase shift of 2π and thus has no overall contribution to the phase. The

resulting DOE, a Fresnel lens which modulates the phase of the incoming

wavefront smoothly from 0 to 2π, is known as the kinoform. DOEs manipu-

late light patterns with high diffraction efficiency [208], thus there has been a

great interest for optical engineers to design and fabricate DOEs that modify

wavefronts into desired patterns.

Consider a right angle refraction prism as shown in Fig. 7.1(b). With the

same principle, truncating the gradient in a periodicity of d resembles the

blazed grating. The relation between the grating period d and the diffraction

angle θm of light incident on a reflective grating at an angle θi is given by

mλ = d(sin θi + sin θm), (7.2)
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Figure 7.2: Cross-section of the SLM panel. The orientation of the liquid crystal, hence
the refractive index η, depends on the electric field E applied by the pixel
electrodes. The light field, reflected from the dielectric mirror, double-passes
the crystal layer and picks up a phase modulation depending on the voltage
applied at each individual pixel. Note that the example voltages are only for
illustrative purpose.

where m is the diffraction order. These traditional DOEs are tailored for spe-

cific applications, and therefore lack flexibility as a new specimen is required

even for a minor change of use. In the next section, we will see that the more

advanced, reconfigurable SLM overcomes this problem of inflexibility.

7.2.2 Working principle

The SLM modulates the phase of the incident light field via a reconfigurable

phase imprinting array. A typical configuration is illustrated in Fig. 7.2. In

the absence of an applied voltage at the electrodes, the elongated liquid crys-

tal molecules are aligned such that their long axes are parallel to the SLM

polarisation axis and perpendicular to the optical axis. An application of

voltage at each electrode, which is independently controllable, produces an

electric field E that rotates the long axis towards the optical axis. A light

field with its polarisation axis aligned parallel to the SLM polarisation axis

would hence experience an electric field dependent refractive index η(E) as it

passes through the liquid crystal. This allows the phase to be spatially mod-

ulated and hence a spatially dependent phase information can be imprinted

on to the reflected light.

The pixelated SLM plane is illustrated in Fig. 7.3. Across the area of Lx×Ly,
the panel comprises Nx×Ny pixels. Each pixel has an aperture with an area



Chapter 7. Generation of arbitrary optical potentials 116

Manufacturer Boulder Nonlinear Systems (BNS)
Model PDM512-1064-DVI (Standard XY series)
Nx, Ny 512, 512
Lx, Ly 7.68 mm, 7.68 mm
δx, δy 15µm, 15µm
β 100%

Damage threshold 10 W cm−2

Table 7.1: Technical specifications of the SLM in our laboratory.

of δxδy, within which axay is the effective pixel area. As phase imprinting

only applies to the light field incident on the effective region, the ratio, known

as the ‘fill factor’ β = axay/δxδy, defines the theoretical diffraction efficiency

of the system. The closer β is to unity, the less light ends up in the zeroth

order unmodulated fraction. The technical specifications of the SLM in our

experiment are listed in Table 7.1. In practice, we measure ∼ 65% in first

order diffraction m = 1, ∼ 10% in zeroth order m = 0, and the rest at other

diffraction orders m < 0 and m ≥ 2. This proportion is independent of the

phase pattern. The 25% of light shared between these higher orders appear

as ghost copies of the original image. They can be separated from the m = 1

image via a diffraction grating, which will be discussed in Section 7.3.

The SLM is operated with a NVIDIA graphics card, which supports a volt-

age scale of 216 = 65536, and is controlled using BNS’s control software that

translates a 24-bit 512× 512 pixels kinoform in .bmp format into the corre-

sponding voltages in the liquid crystal array1. Due to the nonlinear response

of the liquid crystal, the voltage calibration supplied by the manufacturer,

known as the look-up table (LUT), is required for the SLM to function prop-

erly. The kinoforms are generated using homebuilt MATLAB codes.

To see how a phase modulated light field can be reconstructed to form a

desired intensity pattern, let us first consider the time independent complex

amplitude

1The 24-bit image comprises of 8-bits of colour blue, 8-bits of green, and 8-bits of red.
The hardware ignores the blue bits, thus operation of the SLM requires a 16-bit graphics
card.
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U(r) ≡ a(r) exp (−iφ(r)) , (7.3)

which satisfies the Helmholtz equation

(∇2 + k2)U(r) = 0, (7.4)

where k = 2π/λ is the wavevector. A plane wave propagating along the

z-direction incident on the x-y-plane at z = 0 can be expressed as a Fourier

transform of a field comprised of an infinite number of infinitesimal plane

waves as

U0(x, y) =

∫ ∞
−∞

∫ ∞
−∞

χ0(u, v) exp (i2π(ux+ vy)) du dv, (7.5)

where χ0(u, v) du dv represents the amplitude of such waves. In practice,

the light field incident on the liquid crystals on the SLM often overfills the

SLM pixelated panel. By defining Ur(x, y) as the complex amplitude of the

reflected light by the illuminated SLM pixels, we write

Ur(x, y) = U0(x, y)tA(x, y), (7.6)

where tA(x, y) is known as the amplitude transmittance and a full expression

can be found in [209]. Assuming that the propagation distance z � λ and

the diffraction is small compared to the path length, i.e. (x2 + y2)1/2 < z,

the paraxial and Fresnel approximations are valid [210, 211]. The complex

amplitude can then be simplified to

Uz(x, y) = Ur(x, y) ∗ h(x, y), (7.7)

where the convolution kernel h(x, y) is defined as

h(x, y) =
eikz

iλz
exp

[
i
π

λz

(
x2 + y2

)]
. (7.8)

This diffraction integral of a light field through free space can be readily

extended to the Fourier transform properties of a lens. Imagine a positive

lens with a large aperture and minimal aberration, the pupil effect of such
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optics can be neglected [210]. Placing the lens at a distance ∆ from the plane

of transmittance (SLM plane) as shown in Fig. 7.3, the resulting light field

Uf at the focal plane f from the lens is related to Ur by

Uf (u, v) =
1

iλf
exp

[
i
k

2f

(
1− ∆

f

)
(u2 + v2)

]
F [Ur(x, y)]

(
u

λf
,
v

λf

)
,

(7.9)

where F [ · ](u/λf, v/λf) represents the forward Fourier transform evaluated

at spatial frequencies (u/λf, v/λf) [210, 211]. Note that in the case of ∆ =

f , the additional quadratic phase in Eq. 7.9 vanishes, which leaves us an

exact Fourier transformation between the SLM plane and the focal (Fourier)

plane. While the Fourier transform relation is not exact for ∆ 6= f due to

the presence of the quadratic phase, such an additional phase factor has no

consequence in the intensity distribution at the Fourier plane If (u, v) as it

only involves If (u, v) = |Uf (u, v)|2. This relation allows us to reshape the

light field at the Fourier plane by applying a phase modulation such that the

Fourier transformation of the resulting Ur is the desired intensity pattern.

However, in practice, an analytical solution of Ur with the correct phase

information only exists for a small class of patterns, which will be discussed

in Section 7.4. Fortunately, there are powerful algorithms developed in which

Ur can be numerically calculated such that the resulted Uf is very close to

the desired pattern. This will be discussed in Section 7.3.

7.2.3 Optical setup

The testing and optimisation of kinoform computations are carried out using

the optical setup shown in Fig 7.3. We use a fibre coupled 1064 nm laser

beam (Roithner LaserTechnik RLT1060-150G), which is collimated to a de-

sired beam radius. For initial measurements, the beam is collimated to a

1/e2 radius of ∼ 5 mm in order to cover the entire SLM array. At this beam

size, the intensity at each pixel is roughly comparable, thus the wavefronts

incident on the SLM can be estimated as plane waves. The polarisation

axis of the light beam is aligned parallel to the SLM polarisation via the

λ/2 waveplate and the PBS. When the axes are parallel (perpendicular), we

measure < 10% (> 75%) of the incoming light resulted in the zeroth order
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Figure 7.3: Typical optical setup for SLM testing. On the right hand side it shows the
propagation of the modulated beam from the pixelated SLM plane (brown)
at z = 0, through the Fourier lens of focal length f (blue) at z = ∆ to the
focal plane, or Fourier plane (green), at z = ∆ + f . Both the light and SLM
polarisation axes are into the page.

beam. To maintain a high performance in phase modulation, the beam is

incident on the SLM at a shallow angle (typically ∼ 10◦) from the normal.

The reflected beam is collected and focussed by an achromatic lens with focal

length f = 150 mm placed at a distance ∆ = f from the SLM.2 This is the

Fourier lens described in Section 7.2.2, which creates an intensity pattern

at the Fourier plane at z = 2f . A CCD camera (Andor LUCA, pixel size

= 8µm) is placed in the Fourier plane for imaging the resulting intensity

pattern.

7.2.4 Region of optimal performance

Before looking into the generation of the phase patterns and the intensity

patterns at the Fourier plane, it is necessary to understand the limits of the

optical setup. What is the smallest object in the Fourier plane? It is equiv-

alent to the maximum resolution in the plane. For any optical system, it is

defined by the diffraction limit, which is the distance between the first zeroes

in the diffraction pattern.

2It should be reminded that, from the discussion in Section 7.2.2, the choice of ∆ does
not affect the intensity pattern at the Fourier plane.
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Figure 7.4: Experimental setup to measure the maximum diffraction angle. The SLM
plane shows the kinoform of a grating with a = 20 and b = 20, where a and
b are as defined in the main text. The Fourier plane shows the image of the
displacement of the diffraction limited spot.

As our SLM has a fill factor of β = 100%, we can simplify the problem by

considering the whole SLM plane as a single square aperture as opposed to

an array of disconnected pixels. Thus the amplitude transmittance in Eq. 7.6

takes a simplified form of

tA(x, y) = rect

(
x

Lx

)
rect

(
y

Ly

)
, (7.10)

where the rectangular function is defined as

rect
(x
l

)
=

{
1 |x| < l/2

0 otherwise.
(7.11)

Substitute this to Eq. 7.9 and note that the intensity of a light field If (u, v) =

|Uf (u, v)|2, we retrieve the Fraunhofer intensity pattern from an rectangular

aperture3

If (u, v) =

(
LxLy
λf

)2

sinc2

(
Lx

u

λf

)
sinc2

(
Ly

v

λf

)
. (7.12)

By taking the cross-section of If (u, v) along u (or v due to symmetry), it is

straightforward to find the diffraction limit of the system,

3Here we assume the light field illuminating the aperture is a monochromatic plane
wave with a unit-amplitude for simplicity.
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Figure 7.5: The change of diffraction angle (black) and normalised spot size (blue) with
respect to (a) number of grating periods and (b) number of SLM pixels per
grating period d. The red curves are expected values. Note that (b) only
plots the data points for the number of grating period > 50, or < 10 px per
period.

au,v =
λf

Lx,y
, (7.13)

from which we define au,v as the pixel size on the Fourier plane. For the

optical setup described in Section 7.2.3, such a limit is calculated to be

au,v = 20.78µm. In addition, as we will see in Chapter 8, the Fourier plane

can be rescaled and projected with the use of a telescope after the Fourier

lens. In the case where the telescope consists of two lenses with focal lengths

f1 and f2, the pixel size on the new Fourier plane is simply au,vf2/f1.

Now, is there an upper limit to the size of the image reconstructed at the

Fourier plane? If there is, what is the limiting factor? To answer these

questions, we remind ourselves that the SLM is a reconfigurable DOE that

modulates the complex phase of a light field. A straightforward, simple

method of determining the upper limit is to replicate the effect of a classical

DOE and observe deviation from the expected effect, if any.

We recreate the diffraction grating discussed in Section 7.2.1 [208]. The phase

of such a DOE is

φgrating(x, y) =

(
2πa

Lx
x+

2πb

Ly
y

)
mod 2π, (7.14)

where a and b are the number of grating periods across the SLM in the x-

direction and y-direction respectively. The total number of grating period
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across the SLM is hence n = a+ b, while each grating period has size

d =
Ly
b

sin

(
arctan

Lxb

Lya

)
. (7.15)

By placing the Fourier lens at z = f as illustrated in Fig. 7.4, all the output

beams after the lens will be parallel to the zeroth order axis marked m = 0

regardless of the diffraction angle. Hence the displacement xd of the first

order (m = 1) diffraction limited spot is simply given by

xd = f sin θ1 =
fλ

d
. (7.16)

Fig. 7.5(a) shows that the diffraction angle θ1, evaluated from xd measured

using the CCD camera, is in excellent agreement with the predicted curve

(red) calculated from Eq. 7.16. Since the diffraction angle is less than 1.5◦, the

small angle approximation is valid and hence the linear relationship between

θ1 and d. More interestingly, the spot size (blue) only remains constant

for the number of grating periods up to n ∼ 130. That is, as shown in

Fig. 7.5(b), when the number of SLM pixels per grating period drops below

4. This is because one requires at least 4 discrete levels per grating period

for the binary optic approximation4 to the grating to hold [210]. With less

than 4 pixels per period, the overall phase imprinted by the SLM no longer

describes the diffraction grating which leads to an image distortion (here we

see a smeared spot) at the Fourier plane. Hence, we conclude from Eq. 7.16

that the image at the Fourier plane should be kept within the radius

Rmax =
fλ

4ax,y
(7.17)

from the zeroth order spot. In our setup where an f = 150 mm Fourier lens

is used, the lower limit au,v (the size of one pixel on the calculated Fourier

plane, from Eq. 7.13) and upper limit Rmax are calculated to be 21µm and

2.7 mm respectively.

4Binary optical elements are discretised, step-like approximations to ideal continuous
DOEs. They are often used in micromachining, with step size commonly on the order of
a few microns.
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Figure 7.6: Illustration of the traditional Gerchberg-Saxtom algorithm. Starting off with
a first phase guess φ(0)(x, y) and an intensity profile |Ur| on the SLM plane,
the light field propagates back and forth between the SLM and Fourier
planes. Subject to constraints in amplitude and free-varying phases, a fi-
nal phase is retrieved after j = n iterations.

7.3 Iterative Fourier Transform Algorithm

To achieve the goal of generating arbitrary optical traps, one must gener-

ate the kinoform that forms the desired intensity at the Fourier plane with

its complexity beyond the likes of traditional DOEs. However, unlike the

previous example of a diffraction grating where the kinoform is constructed

analytically, such a method is not applicable to most intensity profiles. This

phase retrieval problem is often approached by acquiring a numerical solution

from which its Fourier counterpart is a close approximation to the desired

intensity pattern. While different methods for phase retrieval have been de-

veloped such as the direct minimisation of a cost function [212] and the direct

binary search [213, 214], the main method is typically the computationally

efficient Iterative Fourier Transform Algorithm (IFTA) where the kinoform

is constructed by propagating the light field to and from the SLM plane and

the Fourier plane iteratively.

7.3.1 Gerchberg-Saxton algorithm

The most basic form of the IFTA is known as the Gerchberg-Saxtom algo-

rithm [215–217]. Illustrated by the block diagram in Fig. 7.6, the convergence

of the phase at the SLM plane is achieved by applying constraints to the am-

plitude of the complex amplitudes and allowing the phase in both SLM and

Fourier domains to vary. We will discuss the algorithm briefly.
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We first express the light fields Ur and Uf (the light fields at the SLM plane

and the Fourier plane respectively), as a combination of a real amplitude and

a complex phase. The first step of the algorithm is to choose an educated

first phase guess φ(0)(x, y) (the importance of a ‘good’ φ(0) will be discussed

in Section 7.3.4). φ(0), together with the real amplitude |Ur| which represents

the beam profile of the input Gaussian beam apodised by the physical bound-

aries of the SLM panel, are the two domains of the input complex amplitude

U
(1)
r . In the second step, we apply a Fast Fourier Transform (FFT) to U

(1)
r

to obtain Ũ
(1)
f with a phase ψ(1)(u, v) = arg

(
Ũ

(1)
f

)
. In physical terms, this

step is equivalent to the Fourier transform of the light field by the lens.

At this point the resulting amplitude |Ũ (1)
f | is replaced by the target ampli-

tude, related to the target intensity profile If (u, v) by |Uf | = (If (u, v))1/2.

The new complex amplitude U
(1)
f is subsequently reprojected to the SLM

plane via an inverse Fourier transform. By applying the amplitude con-

straint, i.e. replacing the arbitrary amplitude |Ũ (1)
r | with the original |Ur|,

we have completed one iteration and obtained an evolved phase φ(1)(x, y) =

arg
(
Ũ

(1)
r

)
. Repeating the algorithm will see the evolved intensity profile

|Ũ (j)
f |2 converge towards the target intensity If [215] as the error between

these two intensity profiles minimises. At j = nth iteration, the iteration is

terminated manually and outputs the final phase φ(n)(x, y) as the kinoform.

The choice of n will be discussed in Section 7.4.3.

7.3.2 Mixed-Region Amplitude Freedom (MRAF) al-

gorithm

The straightforward Gerchberg-Saxton algorithm has a main shortcoming

that the modulus constraints imposed on the SLM and the Fourier planes

are non-convex5 [218, 219]. The convergence is hence poor as there exist

many local minima during the projection. The Mixed-Region Amplitude

Freedom (MRAF) algorithm is a modified version of the Gerchberg-Saxton

algorithm which improves the quality of the outcome image vastly by intro-

5Optimisation problems are non-convex when there exist many different local minima.
In contrast, for a convex optimisation, local minima are themselves the global minimum.
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NR

SR(a) (b)

Figure 7.7: Comparison between calculated intensity profiles generated using (a)
Gerchberg-Saxton algorithm and (b) MRAF with rSR = 1 mm and m = 0.6.
The target intensity is a ring with radius r = 0.5 mm, width σ = 100µm,
and the Fourier lens has focal length f = 150 mm.

ducing an additional degree of freedom [220].

Central to the enhancement of the image convergence of the MRAF algorithm

is the introduction of an amplitude freedom in addition to the phase freedom

of its predecessor. As the target image often only occupies a small fraction

of the Fourier plane, suppressing the target intensity of the rest of the plane

outside the region of interest to zero imposes unnecessary restriction to the

convergence. MRAF modifies the algorithm by partitioning the Fourier plane

into a signal region and the noise region. While the signal region, often just

slightly larger than the target image, only allows the phase freedom, both the

amplitude and phase domains are free parameters in the noise region. The

relative distribution of the optical power in the two regions is quantified by

the mixing parameter m, 0 ≤ m ≤ 1 and the third step in the block diagram

Fig. 7.6 is modified to

U
(j)
f =


√√√√√√√m|Uf |2

∣∣
SR

∑
u,v

|Ũ (j)
f |

2

∑
u,v∈SR

|Uf |2

+

√√√√√√√(1−m)|Ũ (j)
f |2

∣∣
NR

∑
u,v

|Ũ (j)
f |

2

∑
u,v∈NR

|Ũ (j)
f |

2

 exp
(
iψ(j)(u, v)

)
,

(7.18)

where SR and NR denote the signal region and the noise region respectively.
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In particular, throughout the rest of the chapter, we define SR as the region

within the signal radius rSR from the centre of the image. Fig. 7.7(b) shows

the generation of a ring using the MRAF algorithm where a portion of the

optical power is expected to be scattered in the noise region. This is com-

pared with the same target intensity generated using the Gerchberg-Saxton

algorithm as shown in Fig. 7.7(a). In practice, the mixing parameter m is

determined empirically and usually requires executing the MRAF algorithm

multiple times with different combinations of parameters such as rSR and

first phase guess φ(0).

The MRAF algorithm is implemented to generate the phase patterns for the

rest of this chapter. The output phase of the algorithm is added linearly to

φgrating to form the final kinoform. In particular, a = b = 70 (as defined in

Eq. 7.14)6 is chosen for the diffraction grating in order to shift the centre

of the intensity pattern away from the zeroth order spot by 2.06 mm. This

also eliminates the interference between the desired intensity pattern with its

higher order ghost images [221]. Fig. 7.8(a) and (b) are examples of the final

kinoform and the calculated intensity pattern (MRAF, m = 0.3, iteration

n = 50) of a ring with r = 1 mm and width σ = 100µm.

In principle, the quality of the convergence of the MRAF algorithm would

yield a smooth and accurate intensity pattern on the Fourier plane. However,

as shown in the camera image in Fig. 7.8(c), the Gaussian ring suffers from

random, disjointed speckles which leads to a large discrepancy between the

calculated and the measured image. It is not suitable to implement a trap-

ping potential with such rapid intensity fluctuation. To create a speckle-free

image, and thus a smooth potential, we first need to understand the origin

of the speckles.

7.3.3 Random phase and speckles

The MRAF algorithm builds on the free varying phase domains on both

planes. With no constraints imposed on the phase on the Fourier plane, it

is likely that the phase ψ(n)(u, v) (which we have had no interest in thus

6This translates to d = 78µm.
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(a) (b)

(c) (d)

0.5mm

Figure 7.8: Generation of ring of r = 1 mm and σ = 100µm. (a) The kinoform at the
SLM plane. (b) Calculated target image. (c) Measured intensity pattern at
the Fourier plane. The ring is heavily distorted by speckles. (d) A calcu-
lated target image with a different first phase guess φ(0). The ring contains
multiple optical vortices which appear as intensity dips.

far) evolves to a random pattern with erratic spatial variation. Any adjacent

pixels on the Fourier plane can thus be exactly, or close to, π out of phase.

Since the light field from a laser source is coherent, we can deduce that the

origin of the speckle in the images is a local reduction in intensity due to the

destructive interference between the pixels.

The speckle problem is an intrinsic property of imaging with coherent

light [210]. Different methods for speckle suppression in holograms have been

developed, such as implementation of a partially coherent light source [222–

225] or by means of time averaged intensity patterns of fast changing or

superimposing multiple kinoforms [226–230]. These techniques often require

a special or multiple laser source(s), a continuous change in polarisation, or

continuously refreshing the kinoform (from which the maximum refresh rate

of our SLM is only 60 Hz) and hence they are not applicable to ultracold

atomic experiments.
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7.3.4 Optical vortices and first phase guess

A second contributor to the intensity dips is the introduction of optical vor-

tices. These are a result of phase singularities at which 0 to 2π phase windings

occur, analogous to the fundamental mode of a Laguerre-Gaussian beam. If

one wishes to remove such topological features, phase unwinding is required

which disrupts the error-reduction MRAF algorithm. As a result, once the

optical vortices form in the Fourier plane, they are very difficult to eliminate

and therefore they remain throughout the later iterations [204]. To improve

the control of the phase evolution, a technique of padding the input field

based on the Shannon Sampling Theorem [204, 210, 231] has been widely

implemented. Although there is a trade off in the efficiency of the diffracted

light, one sees a sufficient drop in vortex numbers. Furthermore, it has been

shown that a slowed convergence, such that in each iteration the new esti-

mate phase ψ(j) only replaces part of the previously calculated value ψ(j−1),

avoids the emergence of phase singularities [232].

These singularities are easily seen if one is careless with the first phase guess

φ(0). As an example, Fig. 7.8(d) shows a calculated image with multiple op-

tical vortices on the outside edge of the ring. The only difference between

Fig. 7.8(b) and (d) is that while the former uses a phase that resembles a

ring as φ(0), a phase of a defocussed Gaussian spot (also employed in [204])

is used for the input to generate the latter.

Indeed, as stressed by the original proposal of MRAF [220], the first phase

guess φ(0) as a controlled input to the algorithm, has a strong effect on the

quality of the phase retrieval. As it is shown that a different choice of φ(0)

could result in a different phase ψ(n) (to generate rings with, and without,

optical vortices), we will show in the next section that utilising this input

freedom can lead to a more slowly varying output phase.

7.4 Analytical first phase guess

In order to create a smooth trapping potential, the phase ψ(n) should be

continuous across the Fourier plane and absent of singularities. In identifying
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Figure 7.9: Geometrical beam shaping. (a) An analytically determined coordinate trans-
formation g maps the Gaussian beam profile A into a rectangular profile
g(A), which is a separable intensity function. The illustration is adapted
from [221, 233]. (b) Calculation of the input intensity Ĩf for first phase
guess of target intensities If of shapes (i) 1 mm×1 mm square, (ii) Gaussian
ring with r = 0.5 mm, σ = 100µm, and (iii) Kagome lattice with each lattice
site a Gaussian profile with 1/e2 radius = 40µm. Ĩf as a close approximation
of the target If , which is now separable in cartesian coordinates.
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a ‘good’ first phase guess φ(0), such that it yields a good approximation after

the first Fourier transform with a smooth phase ψ(0), the following iterations

would see a restricted evolution of ψ(j). This is due to a quick convergence

as the algorithm starts at a point close to a local minimum where the phase

is slowly varying.

7.4.1 Geometrical beam shaping

Let us take a step back to remind ourselves of the motivation for using the

MRAF algorithm. The iterative algorithm is used to generate an image which

stands as a good approximation to the target intensity pattern because the

exact phase solution to most 2D Fourier transforms is often extremely diffi-

cult to obtain. There are, however, a small class of shapes where it is possible

to find the exact analytical expression, one of which is where the target in-

tensity pattern If is separable in the coordinates of the Fourier plane. This

direct mapping from the SLM plane to the Fourier plane is known as geo-

metrical beam shaping.

We follow closely the treatment in [221, 233]. Consider a function g : R2 → R2

which defines a coordinate transform g(x, y)→ (u, v), i.e. mapping the carte-

sian coordinates from the SLM plane to the Fourier plane. The phase retrieval

consists of two steps: 1. to identify the function g that transforms a Gaussian

beam shape to a particular intensity pattern, and 2. to express the phase φ

in terms of g.

In an ideal case where no beam power is lost, we can express the geometrical

beam shaping from an area A on the SLM plane as

∫
A

|Ur(x, y)|2 dx dy =

∫
g(A)

|Uf (u, v)|2 du dv, (7.19)

where we simply equate the total intensity of the Gaussian beam Ir(x, y)

(LHS) to the target intensity If (u, v) (RHS)7. Hence we can write

g(A) = I−1
f [Ir(A)] , (7.20)

7We remind ourselves that the intensity and complex amplitude are related by I = |U |2.
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if both of the intensity functions can be found and are invertible. This

applies to the special case we are considering, namely the intensity profiles

are separable such that we can write

Ir(x, y) =

∫ x

−∞
|Ur,1(x′)|2 dx′

∫ y

−∞
|Ur,2(y′)|2 dy′ = Ir,1(x)Ir,2(y) (7.21)

for the input, and similarly

If (u, v) =

∫ u

−∞
|Uf,1(u′)|2 du′

∫ v

−∞
|Uf,2(v′)|2 dv′ = If,1(u)If,2(v) (7.22)

for the output intensity. The mapping now becomes separable, Eq. 7.20 takes

the form g(x, y) = (g1(x), g2(y)) where

g1(x) = I−1
f,1 [Ir,1(x)] and g2(y) = I−1

f,2 [Ir,2(y)] . (7.23)

According to the analysis in [234], one can realise the above coordinate trans-

formation in a Fourier transform picture where the phase is expressed in terms

of g1(x) and g2(y), and explicitly,

φanalytical(x, y) =
2π

λf

(∫ x

−∞
g1(x′) dx′ +

∫ y

−∞
g2(y′) dy′

)
. (7.24)

The factor at the front is a result of the specific transformation with a per-

fect lens f , where the output phase of the coordinates (u, v) at the Fourier

plane is related to the input phase at the SLM plane at a spatial frequency

(u/λf, v/λf) as discussed in Section 7.2.2. It should be noted that the geo-

metrical beam shaping maps the adjacent points on the SLM plane to adja-

cent points to the Fourier plane. Therefore, in principle the phase ψ at the

Fourier plane is smooth providing φanalytical(x, y) is smooth and continuous.

As an example, Fig. 7.9(a) illustrates the beam shaping from a Gaussian

profile to a rectangular function through coordinate transform g.
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7.4.2 Analytically approximated first phase guess

Our goal is to find a good mechanism to calculate a good first phase guess

which yields a good starting point for MRAF from which ψ(n)(u, v) remains

smooth after error minimisation. However, so far the analytical phase can

only be exactly solved if If is separable in the assigned orthogonal coordi-

nates. Fortunately, while an exact solution does not exist for more compli-

cated shapes, a close approximation to If , which in itself is separable, proves

to remain a very good initial input that yields a smooth ψ(j)(u, v) [221]. The

approximation Ĩf can be obtained by forced separation of coordinates via

Ĩf (u, v) =

∫ u

−∞
|Uf (u′, v)|2 du′

∫ v

−∞
|Uf (u, v′)|2 dv′. (7.25)

In practice, the target intensity pattern If (in Nx × Ny pixels) is first in-

tegrated along its two orthogonal axes, forming two vectors with lengths

Nx × 1 and 1 × Ny, which represent the intensity sums along the axes. A

new intensity pattern Ĩf is constructed from a tensor product between these

two vectors. This new intensity profile is now separable and thus a phase

φanalytical(x, y) can be obtained following the same procedure described in

Section 7.4.1. Ĩf of a square (here Ĩf = If as the square is separable in

cartesian coordinates), a ring, and a Kagome lattice are shown in Fig. 7.9(b).

In addition, the calculated phase φanalytical(x, y) can be multiplied by a pref-

actor of choice before being input into the MRAF algorithm as the first

phase guess φ(0)(x, y). This allows us to adjust the size of the intensity pat-

tern |Ũ (1)
f |2 after the first Fourier transform. The effect of this degree of

freedom on the convergence of the MRAF algorithm will be investigated in

Section 7.4.3.

7.4.3 Exploring the parameter space

From calculating the input phase φ(0) to obtaining the output phase φ(n)

from the MRAF algorithm, there are four parameters that affect the out-

come, namely: the size of |Ũ (1)
f |2, the size of the signal region, the mixing

parameter m, and the number of iterations n. In this section, we explore this

parameter space and investigate the effect of each parameter on the quality
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Figure 7.10: Error analysis on varying the sizes of the signal region and the target image
of the first phase guess. (a) Error as a function of the signal region radius

(red) and the ratio of the square sizes |Ũ (1)
f |2/If (black). (b) |Ũ (j)

f |2, j = 1

and j = 400 iterations with different square sizes |Ũ (1)
f |2 from first phase

guess: (i) 0.22 mm, (ii) 1 mm, (iii) 3 mm. The white dashed boxes indicate
the target If – a 1 mm × 1 mm square. The calculation uses an input
Gaussian beam with a 1/e2 radius of 1.2 mm.
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of the convergence of the algorithm.

A normalised 1 mm×1 mm square is used as target throughout the measure-

ments, where the intensity profile is defined as

If =

1 for |u|, |v| ≤ 0.5 mm,

0 elsewhere.
(7.26)

The error ε between the normalised computed square |Ũf |2 at the Fourier

plane and the target If is simply defined as the standard deviation of the

discrepancy between them:

ε =

√√√√ 1

N

∑
i,j∈If 6=0

[
|Ũf (ui, vj)|2 − If (ui, vj)

]2

, (7.27)

where N is the number of pixels in the sum.

Size of the signal region

First we look at the error ε as a function of the radius of the signal region

rSR. Measurements are carried out for different values of rSR that are larger

than the size of the square, while other parameters are kept constant: (size

of |Ũ (1)
f |2/ size of If ) ≈ 1, mixing parameter m = 0.5, and n = 400 iterations.

As shown by the red curve in Fig. 7.10(a), ε is insensitive to rSR, which indi-

cates that the convergence of the MRAF algorithm is largely unaffected by

the size of the signal region as long as the whole target intensity pattern sits

inside the region.

Size of the intensity pattern after first Fourier transform

We remind ourselves that the size of the intensity pattern |Ũ (1)
f |2 can be sim-

ply controlled through multiplying φanalytical(x, y) by a prefactor before being

used as the first phase input φ(0)(x, y) into the MRAF algorithm. Keeping

the mixing parameter m = 0.5, n = 400 iterations, and rSR = 1.5 mm, we

explore the effect on ε by changing the size8 of |Ũ (1)
f |2. Plotted as the black

curve in Fig. 7.10(a), one sees that while ε stays roughly constant at ∼ 0.1 for

8Here, the size of the square refers to the length of a side of the square.
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Figure 7.11: Error analysis on varying the mixing parameter of the MRAF algorithm
and the number of iterations.

the size of |Ũ (1)
f |2 larger than or equal to that of If , the discrepancy between

the final intensity pattern and the target If increases as the size of |Ũ (1)
f |2

becomes smaller than If . This is caused by the introduction of optical vor-

tices, where an example is shown in Fig. 7.10(b)(i). Here, the size of the

square after one Fourier transform is about one-fifth (0.22 mm) of the target

size. After n = 400 iterations, the resulting intensity pattern |Ũ (j)
f |2, j = 400

is somewhat erroneous with 32 optical vortices. For measurements with the

size of |Ũ (1)
f |2 larger than or equal to If , as illustrated in Fig. 7.10(b)(ii) and

(iii), optical vortices are not observed after the same number of iterations.

Hence we conclude that one should choose the prefactor for the first phase

guess such that (size of |Ũ (1)
f |2/ size of If ) & 1. In particular, this ratio is

chosen to be ∼ 1.1 for the rest of this chapter.

Number of iterations n

By choosing rSR = 1.5 mm and (size of |Ũ (1)
f |2/ size of If ) ∼ 1.1, we moni-

tor the error at each iteration of the MRAF algorithm for different mixing

parameters m. While m = 0.1, 0.2, · · · , 1.0 are tested, only 5 values of m

are shown in Fig. 7.11 for simplicity. As shown in Fig. 7.11(a), one sees a

rapid initial drop in error ε up to j ∼ 30, which is followed by a more gentle

decrease. The change in error per iteration, |∆ε|, is plotted in Fig. 7.11(b).

Here, the error minimisation stagnates for m = 0.5 and m = 0.9 as |∆ε| = 0,

while |∆ε| of m = 0.1, 0.2, 1.0 do not stagnate. In practice, from measur-

ing the light intensity at the Fourier plane with a CCD camera, we see no

significant improvement in image quality once |∆ε| drops to ∼ 10−3 − 10−4.

The number of iterations is therefore fixed to n = 400 for the measurements

presented in the rest of this chapter.
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Mixing parameter m

We learn from Fig. 7.11(a) that the error ε tends to be lower for a lower mix-

ing parameter m. This trend, however, does not follow when one measures

the light intensity pattern at the Fourier plane with a camera. In addition,

the effect of m on the image quality is observed to vary for different target

intensity patterns If . Consequently, the mixing parameter m is chosen em-

pirically from examining the error between the measured intensity pattern

and the target, which will be discussed shortly.

7.4.4 Input beam size dependent image quality

While the speckles can be eliminated through ensuring a less erratically vary-

ing phase at the Fourier plane, this is unfortunately not the only property

of a coherent light source that distorts the final image. The edge ringing ef-

fect, which arises when the light field passes through an aperture with sharp

edges [235], would cause fringing to the intensity pattern. In mathematical

context, it is precisely the boundaries of the SLM panel, characterised by the

amplitude transmittance tA(x, y) in Eq. 7.10, that causes the ringing effect.

We explore the effects on the intensity patterns by using different beam sizes

incident on the SLM. Explicitly, we test beams with 1/e2 radii of 4.9 mm

(overfilling the SLM), 2.1 mm, and 1.2 mm, where the intensities of the beams

at the edge of the SLM are ∼ 50%, ∼ 5%, and ∼ 0% of the peak intensity

respectively. In this measurement, we vary the mixing parameter m while

fixing rSR = 1.5 mm, which follows from the analysis in Section 7.4.3. The

results for a 1 mm × 1 mm square and a r = 0.5 mm, σ = 100µm ring are

shown in Fig. 7.12 and Fig. 7.13 respectively.

We hereby define the flatness of the square, and the smoothness of the ring,

by using a slightly modified expression of the error ε from Eq. 7.27, which

now reads

ε =

√
1

NROI

∑
u′,v′∈ROI

[IM(u′, v′)− If (u′, v′)]2, (7.28)
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Figure 7.12: Effect of different input beam size on the square intensity pattern. (a)
Error as a function of mixing parameter m with different beam sizes. (b)
Measured images of the squares at m = 0.8. (c) Crosscuts across the middle
of the normalised intensity profiles of the squares.

where both the measured intensity IM and the target intensity If are nor-

malised to the mean of the intensity counts in the region of interest (ROI).

ROI for the square is the square itself, while it is along the circle with a ring

radius r for the ring.

Shown in Fig. 7.12(a), by overfilling the SLM with a beam radius of 4.9 mm,

we see that error of the square is low at ∼ 15% for m = 0.1 − 0.4, while it

dramatically increases for m ≥ 0.5. The regular fringes caused by the edge

ringing effect, as shown in Fig. 7.12(b), leads to an abrupt variation of the

intensity. It can be clearly seen from the crosscut shown in Fig. 7.12(c) that

the uniform intensity suffers from heavy distortion. For a smaller beam with

radius 2.1 mm, while ε for m ≤ 0.4 is ∼ 5% higher than the previous case, it
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Figure 7.13: Effect of different input beam size on the ring intensity pattern. (a) Error as
a function of mixing parameter m with different beam sizes. (b) Measured
images of the rings at m = 0.6. (c) Normalised intensities around the rings.



Chapter 7. Generation of arbitrary optical potentials 139

stays below 25% apart from the case where m = 1 (Gerchberg-Saxton). In

contrast, for the 1.2 mm beam (where the hard edges of the SLM panel have

no effects on the reflected, modulated beam), the error ε stays low at . 15%

over a broad range of mixing parameters, 0.3 ≤ m ≤ 0.9. The elimination

of the fringing effect by reducing the input beam size is best illustrated by

the crosscuts of the intensity profiles shown in Fig. 7.12(c). In addition, one

can readily see the advantage of acquiring a smaller beam that underfills the

SLM from Fig. 7.12(a): a good hologram with lower error can be achieved

with a higher proportion of light in the signal region, hence a higher light

usage efficiency.

The results of the ring, shown in Fig. 7.13, reveal a similar trend. While

one can see from Fig. 7.13(b) that the speckles in the manner of Fig. 7.8(c)

are absent, heavy fringing distorts the ring that uses the 4.9 mm Gaussian

beam. Fig. 7.13(a) shows that ε for all values of m in this case are at least

twice of that of the two smaller beams. The smoothness of the ring for the

1.2 mm beam, on the other hand, is below 10% for all m with ε ∼ 8 − 9%

for m ≥ 0.6. The small fluctuation of the intensity around this ring casts

a distinct contrast from the rings that use larger beam sizes, as plotted in

Fig. 7.13(c).

Throughout the rest of this chapter, we underfill the SLM with the 1.2 mm

beam due to the vast improvement in image quality and the enhancement in

the light usage efficiency. However, the reader should be aware of an obvious

downside of employing a smaller beam – the maximum input beam power is

severely restricted. With a damage threshold of 10 W cm−2 (see Table 7.1),

the power incident on the SLM is limited to 450 mW for an r = 1.2 mm beam.

This could mean insufficient trap depth for some holograms. Atom trapping

and the trap depths of the holograms will be discussed in Chapter 8.

7.4.5 Beam position and size matching

The application of geometrical beam shaping with a small beam means that

the description of the wavefront is vital. Displacing the beam, or simulating

an incorrect input beam size, would lead to a skewed, inaccurate measured
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Figure 7.14: Change of intensity distribution of a 1 mm×1 mm square by displacing the
simulated input beam position. A 1.2 mm Gaussian beam is used here.
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Figure 7.15: Error ε of the square at (a) (x, y) = (x′, 0) and (b) (x, y) = (0, y′) displace-
ments from the simulated beam position. The measurement is repeated
for two input Gaussian beam 1/e2 radii: 2.1 mm (red circles) and 1.2 mm
(black squares). The curves are added as a guide of eye.

image at the Fourier plane. In tackling this, we have developed an accurate

positioning and radius-matching procedure based on the minimisation of the

error ε. The 1 mm × 1 mm square is again employed for the optimisation,

while the ROI (see Eq. 7.28) for the error evaluation is a crosscut across the

middle of the square.

Beam position:

In positioning the beam accurately, rather than physically steering the beam,

we opt to adjust the simulated centre of Ir(x, y) in both the first phase cal-

culation and MRAF algorithms. As a result of the small input beam, a

slight mismatch between the physical and simulated beam centres would

lead to distortion of the measured image. Indeed, as shown in Fig. 7.14,

a deliberate offset to the simulated Ir adds skewness to the otherwise even

intensity distribution to the final, measured image. The bigger the offset

from (x, y) = (0, 0), the higher discrepancy between the measured and target

images and hence an increase in ε. The results of these measurements are

shown in Fig. 7.15. By finding the minimum point to both x and y-directions,

in principle the positions of the physical and simulated Ir can be matched

as precisely as 15µm, which is the pixel size of the SLM. In addition, the

measurement is repeated for an r = 2.1 mm beam and the results are shown

in red in Fig. 7.15. Although at the matching point ε is higher than that

of a r = 1.2 mm Gaussian beam, which has been discussed in the previous

section, we see a gentler rise in ε than r = 1.2 mm when the offset increases.

This shows that knowing the precise beam position is less critical for larger
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Figure 7.16: Incoming beam with measured Gaussian 1/e2 radius r = 1.2 mm. (a) The
effect of the measured intensity pattern if the simulated and measured beam
sizes are not matched correctly. (b) Error ε of the 1 mm×1 mm square
against simulated beam radius. It is measured with a crosscut through the
middle (black square) and the bottom (red circle) of the square. The red
line denotes the measured Gaussian beam radius r.

beams as the spatial variation of the intensity, or wavefront, is less rapid.

Beam size:

The matching of beam size is performed in a similar fashion as finding the

beam position: we change the simulated Gaussian beam radius and measure

the corresponding error. The resulting intensity profiles of the squares are

shown in Fig. 7.16(a). If the input beam is small, the calculation of the first

phase guess and the MRAF algorithm will generate a phase φ(n) that creates

a large diffraction angle. In contrast, a relatively large beam compared to the

target would mean that light is concentrated at the centre as the diffraction

angle is small. Fig. 7.16(a) shows that if the simulated beam size is too small

compared to the real input beam, the diffraction angle is too large such that

too much light is being diverted to the edges of the shape. Similarly, the

diffraction is insufficient if the simulated beam size is too large, causing a

low intensity at the edges. In both cases, the measured intensity IM deviates
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for image matching: -

Measured Target
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Final matching parameters:
Rotation angle, magnification, positional offsets
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Figure 7.17: The spots matching procedure. The additional spots are required for accu-
rate image matching. Here the measured and target images are deliberately
offset as an illustration of the mismatched case - one finds that the spots
are not overlapping each other after subtraction of the target from the
measured image, as shown in top right. The final matching parameters are
subsequently used for accurate image subtraction where no reference spots
are added.

from the flat square If and hence ε increases, as shown in Fig. 7.16(b). Note

that the minimum error of the crosscut through the middle of the square

is measured at r = 1.3 mm, which is 100µm larger measured beam radius.

However, as there appears greater leeway at the bottom of both error curves,

the simulated radius is kept to be the measured value of r = 1.2 mm.

The optimised simulated beam position and beam size are then applied to

the generation of various kinoforms. Unlike the square where an analysis of

the error to a flat-top rectangular intensity profile is trivial, such analysis for

more complicated shapes requires direct comparison between the measured

and target images. This process will be discussed in the following section.

7.5 Accurate image subtraction

To form a valid comparison between the images, the dimensions and the po-

sitions of the normalised9 measured intensity IM and the calculated intensity

9The intensity patterns are normalised to their respective average peak intensities here.
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1mm

Figure 7.18: Ghost images distort the target intensity profile after 3 additional diffrac-
tion limited spots are added. Left: Calculated image. Right: Measured
intensity.

If = |Ũ (n)
f |2 are required to be matched perfectly. To achieve this, we have

devised a procedure described as follows.

1. Image binning: In practice, the pixel size of IM , defined by the pixel

size of the CCD camera, is often different from the calculated pixel size

defined by Eq. 7.13, hence it is necessary to bin the raw image from

the CCD camera such that the new pixel size equals to au,v (here we

assume the camera pixel size > au,v. In the opposite scenario, binning

will be applied to If instead).

2. Spots matching: Matching IM and If manually for general shapes

can be tricky, especially for shapes without hard edges (such as a ring).

We thus devised a tool to minimise the error associated with the match-

ing process. That is, to introduce 3 additional spots separated by a

predefined distance in If with 3 additional linear grating phases to the

original kinoform. As discussed, these diffraction limited spots are the

smallest objects that can be created on the Fourier plane. Matching

these 3 reference points rather than using the target images as a ref-

erence, we are able overlap both images accurately via image rotation,

magnification, and positional offsets. A snapshot of this stage is illus-

trated in the top panel of Fig. 7.17. The holograms with reference spots,

however, are disrupted by many ghost images as shown in Fig. 7.18 and

thus cannot replace the original target as If . Nevertheless, as the hard-

ware is kept intact throughout the process, the matching parameters

obtained from spot matching procedure can simply be applied to the

spotless IM , generated by the original kinoform.

3. Subtraction: IM and If can now be directly compared, where the
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If Dimensions m ε ε(10%) Γ (%)
Square 1 mm× 1 mm 0.8 0.14 0.14 52
Ring r = 0.5 mm, σ = 100µm 0.6 0.08 0.08 39

Kagome Lattice site σ = 80µm 0.5 0.20 0.09 33
4 Gaussians σ = 100µm 0.3 0.12 0.07 20

Ring with traps Traps with σ = 70µm 0.6 0.10 0.04 39
SLM Feature width ∼ 2 mm 0.6 0.17 0.17 39
Star 300µm each side 0.8 0.13 0.13 52

MERRY X’MAS! σ = 40µm 0.6 0.24 0.11 39
Snowflake σ = 40µm 0.5 0.27 0.11 33

Table 7.2: The dimensions, mixing parameter m, error ε, error of the top 10% intensity
of the target intensity ε(10%), light usage efficiency Γ, as a percentage of the
light incident on the SLM, of the holograms presented in Fig. 7.19.

error ε of the image (with background omitted) is computed using

Eq. 7.28. Furthermore, as shown in the bottom panel of Fig. 7.17,

we define the discrepancy D as

D = IM − If , (7.29)

which will be used for the discussion of further image quality enhance-

ment via active feedback in Section 7.7.

The subtraction gives us a reliable calculation of the error ε of all shapes. In

addition, following the same treatment in [236], we also calculate the error

ε(10%) for the pixels within the top 10% of the target intensity counts. This

is due to the fact that atoms in optical traps equilibrate to about one-tenth

of the trap depth [138], as discussed in Section 3.3.5. As the trap depth

is directly proportional to the light intensity, only the brightest 10% of the

intensity pattern has notable effect to the trapped atoms.

7.6 Example holograms

Using a r = 1.2 mm Gaussian input beam with optimised simulated beam

positions and sizes, we are able to generate smooth, high quality images. In

Section 7.4.4, we have presented the results for a 1 mm×1 mm square and an

r = 0.5 mm, σ = 100µm ring, where the lowest measured errors are ε = 0.14
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

0.5mm

Figure 7.19: Example holograms generated by the SLM. The intensity profiles are: (a)
a square, (b) a ring, (c) a Kagome lattice, (d) 4 Gaussians, (e) a ring with
two Gaussian traps, (f) letters ‘SLM’, (g) a star, (h) a festive message
to the undergraduate physics students in the form of lattice spelling the
words ‘MERRY X’MAS!’, and (i) a snowflake lattice. The dimensions and
parameters used in the algorithm are detailed in Table 7.2.
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Figure 7.20: Error analysis on different intensity patterns from Fig. 7.19 (excluding the
square and the ring where the results are presented in Fig. 7.12 and Fig. 7.13
respectively) with different mixing parameter m. (a) The error ε of the
hologram. (b) The error ε(10%) of the pixels within the top 10% of the
target intensity counts.

and ε = 0.08 respectively. These results are typically comparable to some

of the best holograms produced to date [204, 221, 236]. Further examples

presented in Fig. 7.19 also show encouraging results. The variations of errors

ε and ε(10%) of these patterns as a function of mixing parameter m, shown in

Fig. 7.20(a) and (b) respectively, are in similar trends as the square and the

ring. With low error values lying within a broad range of mixing parameters

(between m = 0.3 and m = 0.8), one need not commit a harsh trade off

of light usage efficiency for the hologram quality [236]. Such efficiency, Γ,

calculated through multiplying the mixing parameter m with the proportion

of light (65% of the light incident on the SLM), is presented in the last

column of Table 7.2. From the same table, one can also see that the errors

ε(10%) of some of the chosen images (the ring, 4 Gaussians, and the ring with

traps) are close to the requirement of intensity fluctuation (. 0.05) for which

to realise atomtronic experiments with BECs. On the other hand, shapes of

uniform intensity, or of higher complexity such as the snowflake lattice, are in

general more erroneous. Further improvement in the quality of the hologram

can be achieved by means of a feedback that corrects the distortion of the

final image by the optical elements [188, 203, 221, 237]. In the next section,

we discuss the attempt of the technique reported in ref. [236].
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7.7 Feedback

Up to this point, the numerically determined solution to the phase retrieval

problem has been based heavily on the assumption that the Fourier plane

and the SLM plane are related by a perfect FFT. In practice, however, an

arbitrary and non-uniform phase shift is likely to be added to the light field

from sources including the nonlinear response of the SLM, aberrations and

pupil effects of the lenses, and imperfect curvature of optical elements. This

reduces the accuracy of the final image and the only way to compensate for

the unwanted phase is via means of feedback. Various feedback and correc-

tion methods have been developed [188, 203, 221, 237]. For example, one

can retrieve the phase of the total aberration, which can be described by

a set of 2D orthogonal functions known as the Zernike polynomials10 [238],

via the Shack-Hartmann algorithm [237]. This aberration phase can then be

removed by further kinoform manipulation. By using atoms in situ, aber-

ration correction of the Fourier plane inside a vacuum chamber has been

achieved [203]. Here, we implement the straightforward technique reported

in [236] where a corrected target intensity is calculated.

7.7.1 Modified MRAF with active correction

The additional feedback loop works as a supplementary loop after the main

MRAF algorithm. After n-iterations from the MRAF algorithm, the error ε

between IM and If is calculated. If ε is within the acceptable range, preferably

< 10%, which is the intensity fluctuation in state-of-the-art SLM generated

holograms [204, 221, 236], no feedback is required and the final kinoform is

executed, as shown in the flow-chart in Fig. 7.21. Otherwise, we undergo

the feedback loop, shown in red in the figure, via an active correction to the

target.

Given the expression for discrepancy D in Eq. 7.29, we now have an accurate

description of regions where the intensity is too high (low) as the corre-

sponding elements in D will appear to be positive (negative). In actively

compensating for the error in intensity, we calculate the corrected target

10Each polynomial corresponds to a specific classical aberration such as astigmatism
and coma.
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MRAF
j iterations

j = n

Image processing
and subtraction

Is error ε acceptable?

Yes No
END

Output phase Active correction

j = 1

Figure 7.21: Feedback loop, in red, is added after n iterations of the MRAF algorithm.
Details of image processing and subtraction are discussed in Section 7.5,
where active correction is described in Section 7.7.1.

If,i+1 such that

If,i+1 = If,i − αDi, (7.30)

where i denotes the number of feedback iteration and α is a real parameter

that takes value 0 < α ≤ 1. This is the gain parameter [236] which is

determined empirically every feedback loop to maximise the performance of

the correction. In other words, α is chosen such that the decrease in the ε

is maximised. The new target If,i+1 replaces If,i as the new target of the

MRAF algorithm where a new phase is generated after 1 MRAF iteration.

The feedback loop is then repeated with a new discrepancy Di+1, and a newly

determined α. As outlined in red in the flow-chart Fig. 7.21, the feedback

loop terminates when ε stagnates, or an acceptable ε is reached.

7.7.2 Results

To date, we have performed the feedback algorithm with two intensity tar-

gets, namely the ring and the square. While for the ring we have been unable

to obtain a significant improvement in the smoothness, encouraging results

for the square have been shown. Starting with the measured intensity pro-

file of a 600µm×600µm square after the normal MRAF algorithm shown in

Fig. 7.22(a), the ε of the crosscut drops from 0.10 to 0.06 after one feedback
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Figure 7.22: (a) Before feedback. (b) After one feedback loop with α = 0.2. (c) Compar-
ison of cross-sectional intensity profiles (through the centre of the square)
between (a) (red, dashed) and (b) (black, solid). (d) A typical evolution
of ε of the crosscut after several feedback loops. Here α has been kept the
same.
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loop with α = 0.2. The corrected image, shown in Fig. 7.22(b), shows that

the intensity at the edges and at the corner is brought down resulting in a

more uniform distribution across the square surface. In order to inspect the

effect of the feedback loop closely, we look at the cross-sectional cut through

the centre of the square which is shown in the intensity plot Fig. 7.22(c).

There is evidence that the abrupt intensity peaks on the edges are reduced,

while the intensity remains largely unchanged away from the edges as the

corresponding elements in D are very close to zero.

However, despite successfully obtaining a better image after one iteration, we

have not seen further improvement after additional feedback loops. While all

choices of α = 0.05, 0.10, · · · , 1.00 are tested for each feedback loop, the error

ε stagnates as shown in the typical feedback run in Fig. 7.22(d). Nevertheless,

with the use of a feedback loop, the error of the square is now brought in

line with the best reported values of 0.07 [204] and 0.06 [221].

7.8 Summary

The SLM is a maturing technology that offers great potential in beam shap-

ing. In experiments with ultracold atoms, this reconfigurable DOE opens the

door to new playgrounds for exciting physics using trapped atoms in arbi-

trary shaped potentials.

In this chapter, we have explored the working principle of the SLM. By im-

printing phase information to the incoming coherent Gaussian beam via the

512×512 pixel array, the desired intensity pattern forms at the Fourier plane

2f from the SLM plane. The calculation of the kinoform for a particular tar-

get pattern is far from trivial, where an exact analytical solution often does

not exist. The error minimising Mixed-Region Amplitude Freedom (MRAF)

algorithm is thus employed to solve the phase retrieval problem numerically.

While the iterative algorithm offers excellent amplitude convergence, the un-

constrained phase at the Fourier plane leads to a randomised phase distribu-

tion. As a consequence, the intensity pattern is speckle-disrupted due to the

destructive interferences in the Fourier plane.
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We have demonstrated that utilising the freedom of the initial phase input

to the algorithm has greatly enhanced the image quality. Through an an-

alytical first phase guess, where the separable approximation of the target

intensity pattern is calculated, the speckle at the Fourier plane is greatly

suppressed. The smoothness of the test patterns is further enhanced by ac-

quiring a smaller input beam, where the edge ringing effect is eliminated.

This yields excellent results, which include an r = 0.5 mm, σ = 100µm ring

of ε = 0.08. A feedback system has also been developed for active correction

in minimising the discrepancy between the measured and the target inten-

sity patterns, from which the error ε of the crosscut of the 600µm×600µm

square is reduced from 0.10 to 0.06. The results are promising and the in-

tensity patterns should suffice for future applications.



Chapter 8

Atom trapping in arbitrary

potentials

With the promising results on the generation of arbitrary intensity patterns

with the SLM, we are at a position where we can proceed to putting atoms

into such potentials. A 2D light sheet, which is tightly confined in one

direction, is implemented to provide axial confinement along the SLM beam

at the Fourier plane. In this chapter, we will present the optical setup and the

precise alignment of both beams, followed by a discussion of the transfer of

atoms into the arbitrary potentials. We will switch back to the conventional

coordinate system used in Chapter 2 – 6.

8.1 Introduction

The ultimate goal of developing the ring trap is to realise rotational sensing

with Sagnac interferometry using bright solitary waves, in a configuration

proposed by Helm et al. [52] (summarised in Section 2.5.2). After the reali-

sation of ring potentials, next on the list is to develop an understanding of

loading ultracold atoms into the toroidal trap.

To estimate the ring size for the interferometer, we ensure that when the

bright solitary wave is loaded, it remains soliton-like over the whole splitting

and recombination process. In Chapter 2, it is discussed that sharp trans-

mission responses from a narrow barrier require a sufficiently high velocity

153
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in the high energy regime, where the velocity also needs to satisfy Eq. 2.30

for the system to be definitely out of the classical transmission regime. As-

suming a barrier height of 0.5µK × kB, using Fig. 2.3(a) we pick a soliton

velocity of v ∼ 2 mm s−1 for the system to meet the requirements. In our

experiment, soliton-like behaviour has been observed for ∼ 600 ms (Fig. 5.7).

Adding the assumption of negligible initial propagation distance before soli-

ton splitting, the largest distance between the two potential barriers, or the

half circumference of the ring, is hence ∼ 1.2 mm. This yields a target ring

radius of r ∼ 400µm. The reader should be advised that this relatively small

ring can only provide a proof of scientific concept. Using Eq. 2.38, the range

of rotational frequencies detectable with this ring is 0 < Ω . 0.5 mrad s−1.

Thus in this system, the Earth rotation rate of ΩE ∼ 7 × 10−5 rad s−1 [61]

translates to a phase shift of δS ∼ 0.09 rads, which is small and difficult to be

differentiated from zero phase shift [52]. The sensitivity of the interferometer

can be improved by the use of a larger ring, as shown in Eq. 2.38. This can

be achieved by extending the lifetime of the solitary wave, a future goal of

this research.

In understanding the transfer of atoms from the crossed dipole trap into the

ring trap, we wish to first ‘fill the ring with atoms’, hence it is desirable to

create a smaller ring potential than the one described above. Opting for a

ring with size comparable to the dipole trap, we choose a ring with a radius

in the order of r ∼ 50µm. However, throughout Chapter 7 the f = 150 mm

Fourier lens was used. With a calculated Fourier plane pixel size of 20.78µm

(Eq. 7.13), the diameter of this r = 50µm ring on the Fourier plane calcu-

lated with the algorithms is only 5 pixels across. A shorter focal length, such

as f = 30 mm, is hence a more suitable choice of Fourier lens, where here the

pixel size is one-fifth of the case with the f = 150 mm lens. Unfortunately,

as a result of spatial restrictions in the apparatus, a one-lens system with

short focal length is extremely difficult to implement. Hence, alternatively,

we use an additional pair of telescope lenses after the f = 150 mm Fourier

lens to form a projected and rescaled Fourier plane inside the science cell.

The choice of the lenses will be discussed in Section 8.3.1.

The algorithms used for generating the arbitrary shapes in Chapter 7 rely on



Chapter 8. Atom trapping in arbitrary potentials 155

0µm

-100µm

-200µm

100µm

200µm

(a) (b) (c) (d) (e)

100µm

Figure 8.1: The propagation of the first order diffracted light field of the SLM about the
Fourier plane, which is marked at 0µm. Positive distance denotes images
further away from the Fourier lens. The Fourier lens used here is f = 30 mm.
(a) Ring with r = 50µm and σ = 20µm. (b) 100µm × 100µm square. (c)
Kagome lattice with lattice site σ = 8µm and minimum spacing s = 30µm.
(d) r = 90µm and σ = 20µm ring with 2 Gaussian spots of widths σ =
14µm. (e) Letters ‘SLM’.

placing amplitude constraints on both the Fourier plane and the SLM plane.

Thus there is no control over the light at any other positions along the prop-

agation path. The evolution of the shape of the first order diffracted beam

after the Fourier lens is non-trivial and varies with the kinoform. As shown

in different examples in Fig. 8.1, the light converges as it propagates after the

Fourier lens. The intensity patterns on either side of the Fourier plane show

strong resemblance to the target image, albeit deformed. Consequently, an

optical light sheet (LS), which is tightly focussed in one direction, is required

to provide the longitudinal confinement along the SLM beam at the Fourier

plane.
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Figure 8.2: Optical setup for light source for both the light sheet and the SLM.

8.2 Light sheet potential

8.2.1 Optical setup

Both the SLM and LS beams are derived from the single mode λ = 1064 nm

15 W fibre laser originally employed for the old crossed dipole trap. Shown

in Fig. 8.2, the beam is split into two separate paths which are coupled to

their respective optical fibres after a pair of telescope lenses. The power of

the SLM and LS beams are individually controlled by an AOM operating in

a servo loop.

The LS beam is delivered to the science cell with the optical setup illustrated

in Fig. 8.3(a). On the same level as the dipole beams, the LS beam is first

collimated to a radius of 500µm by a fibre collimator (Thorlabs F230APC-

1064). The vertical beam radius is subsequently expanded to 2.75 mm via two

successive cylindrical lenses, namely f = −13.7 mm (Thorlabs LK1816L1-C)

and f = 75.6 mm (Thorlabs LJ1054L1-C). After two steering mirrors, the

beam is aligned at 20◦ relative to the probe beam, which is focussed by a

f = 80 mm cylindrical lens in a 2-axes translation lens mount (Thorlabs

SCP05) secured directly on the bottom coil mount, as shown in Fig. 8.3(b).

The incident angle is chosen such that the waist can be brought close to the

prism surface (minimum displacement from the prism is 1.5 mm), while not

obstructing the probe beam path nor clipping the prism. For the purpose of

alignment, the first cylindrical lens is mounted on a single axis translation
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Figure 8.3: Optical setup of the light sheet (LS). (a) Schematic diagram of the optical
layout. (b) Photo of the LS setup. The f = 80 mm cylindrical lens is
mounted close to the science cell. (c) Illustration of the formation of a ring
trap, where the LS beam intersects the SLM beam at the Fourier plane.

stage with 13 mm travel (Thorlabs MT1/M). From theoretical calculations,

every 1 mm decrease in the distance between the first two lenses displaces

the final focus of the LS by 1.23 mm further away from the f = 80 mm lens,

whilst the waist changes by ∼ 0.5µm. Final beam waists in this system

are measured as 14µm and 520µm using the home built Gaussian beam

profiler. The tightly focussed waist appears to be larger than originally

anticipated (10µm), and we attribute the discrepancy to the fact that the

beam is collimated to a smaller-than-anticipated beam size. This increases

the ellipticity of the trap geometry of the horizontal plane. At the maximum

power of 179 mW, the trap frequencies (in the order of: along the beam

propagation; perpendicular to the propagation; vertical) of a pure trap are

calculated to be 2π × (4.1, 9.2, 310) Hz. This corresponds to a trap depth of

710 nK× kB (or 2.4µK× kB with levitation).

8.2.2 Installation and alignment

The initial alignment of the LS follows the technique similar to ref. [188].

After ensuring the LS is at the correct height on both sides of the science
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Figure 8.4: Initial light sheet alignment using the repump light. (a) Only the fraction
of the atomic cloud sliced by the LS ends up in the F = 2 state, which is
detectable through absorption imaging. (b) An absorption image of (a).

cell, the repump light is coupled into the LS fibre. As a consequence, only

atoms in the path of the LS are pumped to the F = 2 state, which is de-

tectable through absorption imaging, as illustrated in Fig. 8.4(a). Fig. 8.4(b)

shows an absorption image where only the atoms in the thermal cloud (after

12 ms expansion from the quadrupole trap) sliced by the repump LS can be

imaged. This technique, however, only helps us to locate the LS at approxi-

mately the correct vertical position. With an imaging path 20◦ from the LS,

OD is summed along the beam and hence the position of the waist could

not be located from horizontal imaging. Moreover, the 780 nm repump beam

has a focus displaced by 650(50)µm from that of the 1064 nm beam. Further

precise alignment therefore requires us to switch back to the original LS light.

Precise alignment requires atoms to be loaded into the LS from the crossed

dipole trap at the end of the evaporation sequence described in Chap-

ter 6 where atoms are cooled to near degeneracy in the hybrid trap. The

λ = 1064 nm LS is ramped on to 144 mW whilst both dipole beams are

ramped off simultaneously in 250 ms. The transfer into a pure LS trap is

completed by a subsequent 250 ms ramp off of the quadrupole trap. The

cold atomic sample transferred is used for optimisation of both beam tilt

and position.

Tilt:

The orientation of the LS is important due to the 2D pancake geometry. It

is vital for the LS to be horizontally level, as the pitch and the roll of the LS

would further reduce the low trap depth. The definition of the pitch, roll, and
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Figure 8.5: Effect of the LS pitch on the trap depth. (a) Illustration of the pitch, yaw,
and roll of the beam. (b) Illustration of the beam with a pitch 6= 0◦ (tilted).
(c) Vertical trap potentials of the level LS (red solid) and the tilted LS with
a pitch angle of 20◦ (black dashed). The power at the LS trap is 144 mW.
(d) Decrease of the trap depth of LS at 144 mW due the LS pitch angle.
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Figure 8.6: Atom loss from tilted LS. These are absorption images from horizontal imag-
ing at different time instances after the transfer of atoms into the LS.

yaw of the beam is illustrated in Fig. 8.5(a). While the horizontal imaging

is used for adjusting the roll of the LS, due to the orientation of the beams,

the pitch cannot be corrected in the same way. A non-zero pitch of the LS

beam results in a tilted beam, as illustrated in Fig. 8.5(b), which weakens the

overall trap due to the interplay with gravity. As shown in Fig. 8.5(c), while

a level LS beam alone has a trap depth of 365 nK× kB at 144 mW, it greatly

decreases to 174 nK× kB at 20◦ pitch angle. The decrease in the trap depth

becomes more significant at higher pitch angle, as plotted in Fig. 8.5(d).

A lower-than-expected trap depth increases the difficulty in retaining atoms,

which leads to an inevitable atom loss. This is shown in the horizontal ab-
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Figure 8.7: Alignment of the LS position. (a) Oscillatory motion of the centre of mass
of the atoms along the LS (longitudinal) after they are transferred from the
crossed dipole trap into the displaced LS trap. No transverse oscillation is
observed. (b) Comparison of the oscillatory motion of the atoms in an aligned
LS (black squares) with a displaced LS (blue triangles). (x, y) = (0, 0)
denotes the position of the crossed dipole trap. The blue line is a linear fit
to the data points of the oscillation of the centre of mass of the atomic cloud
in the displaced LS. Inset: Close up of the positions of the atom clouds after
loading into an aligned LS. Measurements are taken every 100 ms after LS
loading.

sorption images in Fig. 8.6. At 10 ms after atoms are loaded into the LS,

one sees only a fraction of the atoms are transferred into the LS while the

rest are dropped and lost from the trap. The atoms then undergo harmonic

oscillation along the LS as the waist is not overlapping the crossed dipole

trap. We observe severe atom loss from 50 ms onwards as the atomic cloud

approaches the lower end of the tilted LS trap. One can thus correct the

pitch of the LS by minimising the loss, which can be achieved through the

use of the steering mirrors shown in Fig. 8.3(a).

Position:

The alignment procedure involves translating the centre of the oscillatory

motion to the position of the dipole trap using vertical imaging. Fig. 8.7(a)

shows a typical example of such oscillations along the LS propagation direc-

tion where the LS waist is at (x, y) = (−175, 350)µm relative to the crossed

dipole trap centre.1 As the beam intersects the WG (x-direction) at 70◦, the

oscillatory motion of the atoms has both x and y components. The data in

Fig. 8.7(a) is obtained through rotating the coordinate system by 70◦. The

oscillation amplitude decreases as the waist is brought closer to the crossed

1For reference, the prism is located at (x, y) = (2.96, 0) mm.



Chapter 8. Atom trapping in arbitrary potentials 161

0 2 4 6 8

-60

-40

-20

0

20

40

60

z 
(µ

m
)

Time (ms)

(a) (b)

-10 -5 0 5 10

0

1

2

3
T

ra
p 

de
pt

h/
 k

B
(µ

K
)

z (µm)

Levitated LS
Pure LS

Figure 8.8: Measuring the vertical trap frequency of the LS. (a) Vertical trap potentials
of a levitated LS (black solid) and a pure LS with gravity (red dashed). At
a power of 144 mW, the trap frequencies are 2π × 305 Hz and 2π × 267 Hz
respectively. (b) Induced vertical oscillation of the atomic cloud.

dipole trap by steering the last mirror and adjusting the translation stage of

the first cylindrical lens. Once both traps overlap, the atoms appear to be

almost stationary upon transfer, shown by the data points in the red box in

Fig. 8.7(b).

Once the tilt and the position of the LS are optimised, atom loss from the

trap in the manner shown in Fig. 8.6 and the oscillation in the trap are both

eliminated. This leads to an enhanced lifetime in the trap, where atoms can

be held in the LS for well over 10 s. With the vertical waist of the LS (14µm)

being much smaller than that of the dipole trap (70µm for the MB), atom loss

during the transfer is inevitable. The optimised loading efficiency of ultracold

atoms from the hybrid trap into the aligned, pure LS is ∼ 50%. Typically,

loading is carried out towards the end of the BEC evaporation sequence,

where N = 5× 105 atoms of T ∼ 100 nK are successfully transferred into the

pure LS trap.

8.2.3 Characterisation of the light sheet

In order to measure the vertical trap frequency ωz, our approach is to induce

oscillatory motion to the centre of mass of the atoms in the trap. Here,

while the 250 ms simultaneous ramp off of the dipole beams and ramp on to

144 mW of the LS is identical to what has been used earlier on, it is followed

by a switch off of the quadrupole trap rather than the original 250 ms ramping
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Figure 8.9: Incorporating the SLM setup into the main experiment. The blue dashed
box indicates optics on the vertical plane viewed from the side, where the
rest are mounted on a horizontal breadboard. The SLM beam (red solid),
which shares the same optical path with the vertical imaging probe beam
(blue dashed) before entering the science cell, intersects the light sheet (green
oval), which enters the science cell (into the page) from the side at 70◦. The
rectangles with dashed border lines mark the positions of the mirrors that
divert the beam to the CCD cameras. CCD1 monitors the intensity pattern
with dimensions as calculated in the algorithm, while CCD2 monitors the
intensity pattern 5 times smaller. M1 – 4 are mirrors for beam steering.

off. Due to gravity, the unlevitated LS trap has a trap centre ∼ 3µm below

the equivalent of the levitated LS trap, as shown in Fig. 8.8(a). As a result,

the atoms experience a ‘kick’ from the abrupt switching and subsequently

undergo oscillation about the vertical trap centre of the LS. The results

are shown in Fig. 8.8(b), where the trap frequency of the pure LS trap at

144 mW is measured to be ωz = 2π × 270(4) Hz. Through modelling the

sagging trap under gravity, such a measured frequency translates to a vertical

waist of wz = 13.9(1)µm, which is in excellent agreement with the waist size

measured using the Gaussian beam profiler.
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8.3 Incorporating the SLM into the experi-

ment

8.3.1 Optical setup

The optical setup for arbitrary trap formation is illustrated in Fig. 8.9. Here,

the optics outside the blue dashed box are mounted on the same horizontal

plane 133 mm above the black breadboard shown in Fig. 6.6. The height is

chosen such that the components for the SLM beam do not obstruct that of

the vertical imaging system. Collimated to a 1/e2 radius of 1.2 mm via the

Thorlabs F220APC-1064 fibre collimator, the beam polarisation is ensured to

be aligned to the SLM polarisation axis by a PBS (Thorlabs PBSW-1064).

The λ/2 waveplate provides manual control on the power incident on the

SLM. The reflected beam then passes through the beam sampler (Thorlabs

BSF10-C) where a small amount of light is reflected for power servoing. The

beam is incident on the SLM panel at ∼ 10◦ from the normal, where the

maximum power at this point is restricted to 230 mW2. Similar to the pre-

vious optical setup in Fig. 7.3, the Fourier lens of f = 150 mm (Thorlabs

AC508-150-C) is placed one focal length from the SLM. This lens, together

with the optics further in the beam path, are aligned centred to the first

order diffracted beam, rather than the unmodulated zeroth order, in order

to minimise aberrations due to the curvature of the lenses. In addition, only

the first order diffracted beam is allowed through the aperture placed at the

Fourier plane 150 mm from the lens. This is to avoid the possibility of extra

traps in the science cell caused by the zeroth order spot and other higher

diffraction orders.

After the aperture, ∼ 65% of the beam power originally incident on the SLM

remains (see Section 7.2.2), from which the power is distributed between

the signal and noise region based on the choice of mixing parameter m in

the MRAF algorithm. As shown in Fig. 8.9, the SLM beam then shares the

same beam path with the counter propagating 780 nm probe beam for vertical

absorption imaging after passing through the notch mirror, where the probe

beam is reflected towards the imaging camera. Thus the first imaging lens,

2This can be further increased to a limit of 450 mW if needed.
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an achromatic doublet (Thorlabs AC508-100-B) with f = 100 mm, serves as

the second telescope lens of the SLM beam. A f = 500 mm lens (Thorlabs

AC508-500-C) is chosen for the first telescope lens to yield a magnification

of f2/f1 = 0.2 (with f1 and f2 represent the focal lengths of the first and

second telescope lens respectively). This lens is placed at ∼ 650 mm from the

Fourier lens and plays an important role in SLM beam alignment which will

be discussed in Section 8.3.2. The theoretical pixel size at the new Fourier

plane is therefore 4.2µm. From this point onwards, unless otherwise stated,

we refer this rescaled plane as the Fourier plane.

8.3.2 SLM beam alignment

We use the following procedure to achieve precise alignment of the SLM beam

such that the Fourier plane is brought to the aligned LS position.

Longitudinal:

Consider the simple telescope described in Section 8.3.1. With the position of

the second lens fixed, translating the position of the first lens by ∆z changes

the image distance after the second lens by ∆z′. Using the thin lens equation,

and providing that |∆z| is small, such shift in our system is given by

∆z′ = −
(
f2

f1

)2

∆z = −
(

100

500

)2

∆z = −0.04∆z. (8.1)

In other words, reducing the separation of the telescope lenses by 25 mm

moves the Fourier plane (or the focus of the Gaussian beam) towards the

f = 100 mm lens by 1 mm. This method of displacing the Fourier plane is

illustrated in Fig. 8.10(a). Through calculating the Gaussian beam propa-

gation, moving the f = 500 mm lens by ±40 mm results an approximately

linear change of the Gaussian waist by ∼ 5%. The change is small, thus by

measuring the beam size at a fixed point while varying the lens position sees

the Gaussian propagation recovered, as shown in Fig. 8.10(b). The alignment

into the science cell is similar to that of the narrow potential well described

in Section 5.2.2, where the position of the Fourier plane is identified via

atom trapping at the waist of the Gaussian beam (the kinoform used here

is a diffraction grating). Atoms are transferred to the SLM beam at the end
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Figure 8.10: Longitudinal alignment of the SLM beam. (a) Mechanism to translate the
location of the Fourier plane. Pushing the f = 500 mm lens forward reduces
the distance between the Fourier plane and the f = 100 mm lens. The red
shaded path illustrates the propagation of a normal Gaussian beam. With
a target intensity pattern of an r = 50µm, σ = 20µm ring, the images
on left are the intensity patterns at (i) −1.35 mm, (ii) 0 mm, (iii) 1.60 mm
from the Fourier plane. (b) Measured 1/e2 radius of a Gaussian beam (red
in (a)) at a fixed point after the f = 100 mm lens with different positions of
the f = 500 mm lens. (c) Measured radius of the ring with ring dimensions
defined in (a). Black square: fixing the measurement position, changing
the f = 500 mm lens position. Red triangle: changing the measurement
position, fixing the lens position. The straight curves are linear fit to the
data, see text. (d) Measured 1/e2 ring width, with ring dimensions defined
in (a).
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of the BEC cooling sequence described in Section 6.6. The SLM beam is

ramped on to 129 mW and the MB, WG, and quadrupole trap are ramped

off simultaneously in 250 ms. This is followed by a 75 ms hold of atoms in

the SLM trap before imaging.

The calibration of the first telescope lens position versus the Fourier plane po-

sition is achieved by making use of the convergence of the ring pattern. Using

CCD2 in Fig. 8.9, the radius of an r = 50µm, σ = 20µm ring is measured.

As shown in Fig. 8.10(c), it varies linearly at ± ∼ 200µm about the posi-

tion of the Fourier plane. Fixing the measurement position and varying the

f = 500 mm lens position gives a change of radius at a rate of −0.65(2)µm

per +1 mm lens displacement. In reverse, by fixing the lens position but

tracing the ring size along the beam one measures a rate of −0.0146(2)µm

per +1µm along the beam. From the two gradients, we obtain that a 1 mm

displacement of the Fourier plane requires a 22.5(7) mm translation of the

f = 500 mm position, which is in good agreement with the theoretically cal-

culated value. We attribute the slight discrepancy to the thickness of the

achromatic doublets. We note that the change in the ring width, however,

does not vary linearly, as shown in Fig. 8.10(d). This measurement is used

for the calculation of the trap depth of the ring at different points along the

SLM propagation, which will be discussed in Section 8.4.

Transverse:

In order to maintain the quality of the desired intensity pattern, one needs

to align the SLM beam such that it passes through the centre of the last

lens with an incident angle at, or close to, 90◦. Adjusting the alignment

only through steering the last mirror (M4) changes the incident angle on the

lens, as well as the incident position relative to the centre of the lens. This

translates the position of the Fourier plane as it changes the propagation

direction of the SLM beam after the lens, which reduces the incident angle

of the SLM beam on the LS. This can be easily examined by monitoring

the change of the shape at a fixed 2D plane with respect to mirror steering.

Shown in Fig. 8.11 with the example of r = 50µm, σ = 20µm ring, the x

translation of the SLM beam is coupled to the shrinking of radius and width

along the direction of displacement.
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Figure 8.11: Transverse alignment of the SLM beam by steering the last mirror before
the f = 100 mm lens. The changes in ring radii (black squares) and widths
(red triangles) with respect to the transverse displacement of the ring on
the Fourier plane are plotted. x = 0 mm denotes the position of the in-
tensity pattern on the Fourier plane from which the laser beam is incident
perpendicularly at the centre of the lens. Measured images at x = (i) 0 mm,
(ii) 2.03 mm, and (iii) 3.50 mm are shown in the right hand column.

For the alignment of the horizontal position of the SLM beam, we make

use of the vertical imaging probe for two main reasons. Firstly, the vertical

beam path is centred at the f = 100 mm imaging lens. Secondly, using an

aperture, one can create a small beam (diameter ∼ 2 mm) with the position

of the atoms in the crossed dipole trap at the centre of the beam. Once

the centre of the SLM beam path overlaps with that of the apertured probe

beam through steering M3 and M4, the SLM beam is at close proximity to

the crossed dipole trap. The experimental sequence for the transverse align-

ment is similar to the longitudinal alignment, except for that the LS is also

ramped on to 144 mW during the 250 ms ramp to provide confinement along

the z-direction. Using the location of the atoms, this method of alignment

has brought the SLM beam within ∼ 100µm from the dipole trap. Although

the beam steering is inevitable here for further fine adjustment, Fig. 8.11

shows that the effect to the intensity pattern should be minimal (a displace-

ment of ∼ 300µm sees the both the ring radius and width changes by 5%).

In order to check if both beams are correctly aligned, where the LS beam is

intersecting the SLM beam at the Fourier plane, we assess the shape of the

thermal cloud in the SLM+LS potential. This is achieved by first switching
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Figure 8.12: Absorption images of atoms in arbitrary trap shapes. (a) A ring with
r = 50µm and σ = 20µm. (b) A 80µm×80µm square. (c) A 4-site lattice
with spacing of 60µm. (d) A star with all sides the same at 60µm. The
large thermal cloud with low OD in the background is the fraction of atoms
that is not captured by the SLM+LS trap and thus falls due to gravity.
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the phase pattern on the SLM from the grating to the kinoforms generated

by the MRAF algorithm. At the end of the BEC evaporation trajectory in

the hybrid trap (see Section 6.6), the atoms are held in this trap for 1 s whilst

the LS is ramped on to 144 mW. It is followed by ramping both WG and MB

off and ramping the SLM beam on to 92 mW in 100 ms. The quadrupole

gradient is kept at just below exact levitation at 27.3 G cm−1 throughout

this process. Fig. 8.12 shows the absorption images of thermal atoms in 4

different shapes after a 50 ms hold in the trap. The dimensions of the images

agree with the target values, which confirms that the positions of both beams

are optimised.

8.4 Atom trapping in the arbitrary optical

potentials

In this section, we present the data of the current status of the experimental

progress. By making use of the MB, LS, and SLM beams, trapping of ultra-

cold atoms in ring traps in our experiment is realised. Unfortunately, after

the transfer into the SLM+LS trap, we encounter relatively high atom loss

from the trap which reduces the overall lifetime of the ring trap. We begin

by laying out the loading procedure, followed by a qualitative insight of the

atom loss mechanism. In addition, we will also present the analysis of the

smoothness of the ring trap.

8.4.1 Loading atoms into the ring trap

The loading procedure takes ∼ 2 s which is summarised in Fig. 8.13. At

the end of the final power ramp of the dipole beams in the evaporation, the

atoms are held in the crossed dipole trap whilst the SLM is ramped on in

1 s. It is followed by a 500 ms ramp off of the WG, whilst the dithering

amplitude of the MB is increased to 220µm. The MB power is ramped up

simultaneously to 1.7 W in order to ensure that the strong confinement along

the vertical direction is maintained. Recalling the robust nature of the SLM

beam propagation, the intensity pattern remains approximately unchanged

over the vertical radius of the MB (70µm). Hence, in the case where the

target pattern is a ring, the resulting atom cloud resembles the shape of a
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Figure 8.13: Loading procedure of the ring trap. The experimental loading sequence
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of the evaporative cooling routine. Different stages of the transfer process
are illustrated: Ultracold atoms in (i) crossed dipole trap, (ii) dithered MB
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Figure 8.14: Lifetime measurements of (a) the dithered MB and SLM trap and (b) the
SLM+LS trap. In the measurements, atoms are held at (a) configuration
ii, and (b) configuration iii, of Fig. 8.13 for various durations before release.
The atom number is measured after 37 ms TOF. Insets are absorption im-
ages of the atom-filled rings of r = 50µm, σ = 20µm.

hollow cylinder, as shown in Fig. 8.13(ii). The transfer into the SLM+LS trap

is achieved by ramping the LS on to 144 mW in 100 ms, and subsequently

ramping the MB off in 100 ms. This can be thought of taking a slice of the

hollow cylindrical atomic cloud at the position of the Fourier plane, as shown

in Fig. 8.13(iii).

8.4.2 Atom loss from the arbitrarily shaped traps

Through measuring atom loss from the trap, the lifetime of the SLM+LS ring

is found to be 12.7(6) s, as shown in Fig. 8.14(b). This is compared to the

results of the equivalent measurement with the dithered MB+SLM trap as

presented in Fig. 8.14(a). Although in this case a reliable lifetime cannot be

deduced due to a large error, it is apparent that the lifetime of the SLM+LS

trap is inferior to the dithered MB+SLM trap. Perhaps more puzzling, while

atoms stay trapped in the pure LS alone, the addition of the SLM beam at

a certain power range, which varies for different intensity patterns, signifi-

cantly enhances the atom loss. This is observed in both pure and levitated

SLM+LS traps. In the following, we present two possible causes of the loss

that have been investigated to the date that this thesis is written.

Dipole force along the SLM beam

From Section 8.1 it is shown that the propagation of the SLM beam, where
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the target intensity pattern is a ring, resembles a converging hollow cone.

Hence the peak intensity increases as the beam propagates further away from

the Fourier plane, and so as the trap depth U0. One suspicion is that the

dipole force on the atoms along the SLM beam is strong enough to drag atoms

out of the SLM+LS trap. To investigate this, we first assume that the inten-

sity pattern of the SLM beam about the Fourier plane is a perfect Gaussian

ring. Using the measured radius and ring width presented in Fig. 8.10(c) and

(d), we calculate the potential depth U0 at a given power P along the beam.

The derivation of the trap depth of a ring trap is presented in Appendix B. As

shown in Fig. 8.15, U0 varies approximately linearly within ±200µm about

the position of the Fourier plane. The gradient (red solid line), proportional

to the dipole force acting on the atoms, is calculated to be 2µK mm−1. By

comparing it to the potential gradient of gravity mg/kB ∼ 100µK mm−1

(where m is the atomic mass of 87Rb and g = 9.81 m s−2 is the gravitational

acceleration), the possibility that the atoms are pulled out of the SLM+LS

potential by the SLM beam dipole force is ruled out.

Heating effect from the transfer

Another possible explanation to the atom loss is that the temperature of

atoms increases during the transfer process. As such, atoms could become

too hot to remain in the trap. Indeed, in the example of transferring atoms

into a tighter harmonic trap, atoms are likely to be heated if the process is

non-adiabatic, which reduces the PSD [239]. In the case where the form of
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trap geometry changes during the transfer, the density of states is altered

which can also cause the temperature to increase, even if the loading is

adiabatic. Such an effect in the transfer of a Bose gas from a harmonic

potential into a ring trap has been evaluated analytically and numerically

for both thermal and degenerate cases [85]. In brief, let us consider the

thermodynamics of the system. In adiabatic loading, entropy is preserved

and hence remains constant throughout the process. The entropy S for a

thermal system T � Tc is given by [83, 85]

S

kBN
= (α + 1)− ln ζ(α)− ln PSD + ln ζ

(
3

2

)
, (8.2)

where the trap geometry dependent parameter α is as defined in Section 2.2.1.

Assuming all atoms are transferred from the harmonic trap (h) to the ring

trap (r), one can readily see that

PSDr

PSDh

=
ζ(αh)

ζ(αr)
exp(αr − αh) = 0.54. (8.3)

In other words, at the end of the loading process, the PSD is approximately

half of the initial value in the harmonic trap. This is likely to cause an in-

crease in the temperature of the atoms. For our system, the r = 50µm,

σ = 20µm ring trap is formed from 72 mW in SLM and 144 mW in LS

beams, resulting a levitated trap of ∼ 3µK × kB with trap frequencies

ωr,z ∼ 2π× (180, 300) Hz. With a loading time ∼ 1 s� min(2π/ωr,z) ≈ 6 ms,

the transfer process can be regarded as adiabatic [84]. The temperature of

the atoms prior to and after the transfer is measured after 37 ms TOF,3 where

an increase from ∼ 100 nK to ∼ 250 nK is observed. As a result, one requires

a trap depth of ∼ 2.5µK× kB, rather than ∼ 1.0µK× kB (atoms equilibrate

to ∼ 10% of the trap depth), for the loaded atoms to remain trapped.

In conclusion, to avoid atom loss from the heating effect, it is important to

either reserve enough overhead in the SLM beam power (hence a deeper trap),

or transfer atoms that are cooled to, or close to, degeneracy. A ring BEC can

be achieved by either carrying out evaporation in the final trap, or through

transferring a degenerate gas. In particular, providing that the condensate

3This assumes a harmonic trap, thus such a comparison can only form a qualitative
argument.
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Figure 8.16: Smoothness of the SLM+LS ring trap. (a) Absorption image of the ring.
The OD along the the ring, marked with the black circle, is measured. The
measurement, begins at the white dashed line, is taken clockwise around
the ring. (b) Normalised OD along the ring. Normalisation is obtained
through dividing the experimental data points by their mean value.

fraction in the partially condensed system in the harmonic trap is above

some threshold, it does not transform back into a thermal system and the

condensate fraction is well preserved during such adiabatic loading [84, 85].

8.4.3 Smoothness of the ring trap

We recall that the target smoothness of any trap features is required to be

no larger than ∼ 5% [190]. Propagation of a bright soliton through a po-

tential with small fluctuations can lead to unexpected behaviour. We have

already seen in Chapter 5 that the additional small potential ripples to the

deep potential well causes an enhancement to the quantum reflection. In a

weak random nonlinear potential, the rather ‘rocky’ propagation path can

cause either or both of the soliton mass and velocity to decay [240].

In Chapter 7, we have measured the standard deviation for different intensity

patterns at the original Fourier plane (after the f = 150 mm lens), where the

values are presented in Table 7.2. However, due to the extra glass surfaces

of the lens, mirrors, and the science cell along the beam path, images can

be distorted by aberrations. As a consequence, the quality of the intensity

patterns is likely to worsen at the projected Fourier plane inside the science

cell. By redefining the term ‘smoothness’ as the standard deviation of the

OD compared with the target values, we measure the smoothness of the ring

in the science cell using the trapped atoms. Using the atom-filled SLM+LS

ring shown in Fig. 8.16(a), we measure the OD fluctuation along the ring.
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The standard deviation of the normalised OD, as shown in Fig. 8.16(b), is

measured to be 15.5%. Much work for improving the smoothness is hence

required before one can use the ring trap for interferometry experiments.

8.5 Comments and limitations

In the hope of utilising this current setup for future interferometry experi-

ments with solitons, we outline some of the challenges that need to be ad-

dressed.

• The trap geometry of the light sheet is not symmetric/circular along the

horizontal directions. As a result, the trap frequency is non-zero along

the ring which deviates from the system considered in Section 2.5.2. For

a propagating bright soliton, the periodicity of the trap potential along

the ring can also induce effects such as radiative soliton decay [240].

This can be solved by correcting the ring intensity using the SLM, or

by carrying out modification to the combinations of the LS optics.

• The current transfer method cannot be applied for the creation of bright

solitary waves. In the hope of loading an attractive condensate into the

ring, the crossed dipole trap should overlap the path of the ring, but

not the centre of the ring. This can be achieved by either realigning

the SLM beam, or by shifting the ring pattern through an application

of a different grating on the SLM.

• The optical depth of the absorption images of atoms in arbitrary trap

shapes is typically in the order of ∼ 3 − 4, which sits at the limit of

such a traditional imaging method in providing proper measurements

of the column density of the cloud [241]. With the low probe inten-

sity to saturation intensity ratio, these clouds appear to be optically

thick and little probe light can penetrate through. This leads to poor

signal-to-noise ratio, as well as a loss of the information of the density

profile. The smoothness measurement described in Section 8.4.3 could

therefore contain artifact from the imaging system. Alternative imag-

ing techniques, such as strong saturation absorption imaging [241], is

thus required for obtaining images that truly reflect the density pro-
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files at high density, which should result in a better measurement of

the quality of the arbitrary traps.

• Although the feedback loop described in Section 7.7 has proved to

reduce the discrepancy between the measured and target intensity pat-

terns, the resulting improvement (∼ 4%) is somewhat minute. While

the feedback loop is yet to be tested with the use of atoms to date, other

powerful aberration correction tools, such as the Shack-Hartmann algo-

rithm [188, 203, 237], should also be considered. This method relies on

truncating the SLM panel into areas of linear phases (gratings). The

fraction of the beam incident on one of these areas are diffracted by a

known angle and is subsequently focussed to a spot at the Fourier plane

after one, or a series of, lenses (see Section 7.2.4). Any phase aberration

the beam picks up along its path would cause a displacement from the

target spot position. This can be used to retrieve the aberration related

phase information. In our experiment, this technique requires the use

of atoms trapped at the focus. Using a smaller beam which underfills

the SLM panel leads to an inability to retrieve the phase aberrations

in regions with low intensity and thus insufficient trap depths.

8.6 Summary

In this chapter, we have demonstrated the trapping of atoms in arbitrary

optical potentials. Such potentials are formed by a combination of the SLM

beam and a 2D light sheet which provides the necessary confinement along

the direction of the SLM beam propagation. A dithered MB is also employed

during the loading process. In the current state of the experiment, ∼ 5× 105

ultracold atoms are successfully loaded into a ring trap with dimensions r =

50µm, σ = 20µm, which has a lifetime of 12.7(6) s. An increase in the

cloud temperature is observed after the transfer, where we attribute the

change in trapping geometry to be the cause. The quality of the ring suffers

from the aberrations at the glass surfaces along the beam path, which sees

the measured smoothness of the ring plunge down to 15.5%. Aberration

correction is hence one of the major challenges that requires addressing in

the future. Nevertheless, the understanding of the transfer mechanics and

atom trapping in ring potentials brings us closer to the ultimate goal of
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realising a rotational interferometer using bright solitary waves.



Chapter 9

Conclusion and outlook

9.1 Summary

In this thesis we have demonstrated two important steps towards bright

solitary wave interferometry for rotational sensing, namely:

• The splitting of bright solitary waves (Part I);

• Atom trapping in a ring potential (Part II).

In Chapter 2, we reviewed the theoretical studies on how bright solitary

waves can be utilised to construct matter-wave interferometers. We dis-

cussed that the splitting and recombination of solitons at narrow potentials

depend strongly, but not exclusively, on the kinetic energy and the relative

phase of the solitons respectively. Loading the soliton into a ring trap, and

utilising the phase dependence of the outcome of soliton recombination at

barriers, form the main components of a solitary wave Sagnac interferometer.

Using the first generation of our experimental apparatus, as summarised in

Chapter 3, we showed in Chapter 4 the creation of 85Rb BECs through direct

evaporative cooling in the crossed dipole trap. We demonstrated the creation

of bright solitary waves by transferring the BEC into an optical waveguide,

and subsequently tuning the atoms to a small and negative scattering length

via the 155 G Feshbach resonance. The soliton’s particle-like behaviour was

shown from its classical reflection from a wide repulsive barrier.

178
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We reported the realisation of soliton splitting in Chapter 5, where quantum

reflection of up to 25% of atoms from a narrow potential well was observed.

Such a potential well was created by a tightly focussed light sheet with a waist

of 1.9(2)µm. The measured reflection fraction was, however, larger than the

theoretical prediction for a Gaussian beam. By modelling the system, we

found that the presence of multiple diffraction intensity maxima of the light

sheet, rather than a single Gaussian maxima, could cause an enhancement

in the reflection.

In Chapter 6 we presented the upgrade of the experimental apparatus. The

second generation consisted of additional magnetic coils which provided con-

trol of the magnetic curvature. A new dipole trap formed from a waveguide

and a moving beam allowed us to displace the trap centre to close to the

Dove prism, enabling the future experiment of probing atom-surface inter-

action with solitons – one of the long term goals of the project. Using the

new equipment, we also demonstrated the creation of 87Rb BECs in both the

static and the time averaged optical dipole traps.

A ring trap is at the heart of the proposed scheme of the bright solitary wave

interferometer. This was generated by the SLM through imprinting phase

information to the laser beam, as discussed in Chapter 7. This reconfigurable

diffractive optical element allowed us to create not only a ring trap, but

traps of any arbitrary shapes. The kinoforms for smooth and speckle-free

holograms were achieved through an analytical first phase guess and the

Mixed-Region Amplitude Freedom (MRAF) algorithm, combined with the

use of a smaller beam that underfilled the SLM panel. We reported high

quality intensity patterns, which included an r = 0.5 mm, σ = 100µm ring

with an error of 0.08. Finally, in Chapter 8, we presented the implementation

of this SLM optical setup, along with a horizontal light sheet, into the main

experimental setup. With the light sheet intersecting the SLM beam at the

Fourier plane, which were both aligned to the position of the dipole trap, we

demonstrated the successful transfer and the trapping of ultracold atoms in

the ring potential.
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9.2 Outlook

The ability to split solitary waves and trap atoms in ring potentials is a step-

ping stone to the realisation of the bright soliton Sagnac interferometer. The

soliton interactions with the attractive potential has also taught us ways to

proceed to probing the surface potential using solitons – one of the long term

goals of the experiment. In the final part of this thesis, we look at the future

work required to achieve these ultimate goals of the project.

The smoothness of the ring, as highlighted in Section 8.4.3, requires im-

provement as one must ensure a smooth propagation path for solitons to

avoid unexpected scattering events. While this can be achieved by means

of feedback (discussed in Chapter 7) with atoms, the foremost task prior to

such an operation is to improve the vertical imaging system. As suggested

in Section 8.5, the poor signal-to-noise ratio and a loss of spatial and optical

depth information when imaging the trapped atoms in situ can mask the

exact density profile of the atoms, and hence the intensity profile, of the ring

potential. To overcome such limitation of the low intensity absorption imag-

ing, alternatives such as the high intensity absorption imaging [241] should

be considered. Moreover, the goal of this project requires the ability to trace

the splitting and subsequent recombination of the same soliton at potential

barriers. As the current imaging technique is destructive, it is not suitable

for studying the dynamics and the evolution of the same atomic sample at

multiple time instances. Hence, to address this, a non-destructive imaging

technique, such as Faraday imaging [242], dispersive light scattering [243], or

partial-transfer absorption imaging [244], will be required in the future.

Along with the upgrade to the imaging system, the next stage is to revisit

the creation of bright solitary waves from 85Rb BECs using the second gener-

ation of the experimental apparatus. Moreover, a key difference between the

interferometry scheme proposed in [52] (also see Chapter 2) and our experi-

ment described in Chapter 5 is that soliton splitting and recombination are

facilitated by a narrow potential barrier, as opposed to a potential well. Thus

to proceed, a blue detuned laser beam with an optical setup similar to that

for the potential well will need to be developed and installed. By aligning

this blue detuned light sheet to intersect the waveguide, we can carry out in-
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teresting soliton splitting experiments similar to the measurement described

in Chapter 5. The removal of axial confinement using the curvature coil,

together with the freely adjustable launch velocity that strongly depends on

the acceleration of the moving beam [175], give great scope to experimentally

explore the energy regimes described in Chapter 2. In particular, decoupling

of the soliton velocity from the trap geometry means that very slow, spatially

well separated solitons are achievable. This offers interesting physics, such

as the creation of mesoscopically entangled Bell states via quantum super-

positions of the solitary waves [116].

To realise the solitary wave interferometer for rotational sensing, it will first

require a displacement of the ring with methods discussed in Chapter 8, such

that the crossed dipole trap intersects along the path of the ring. With the

ring intensity corrected using the SLM, the smooth toroidal potential will

then be intersected by the blue detuned light sheet described above. This

creates the two potential barriers that are half a ring circumference apart,

as illustrated in Fig. 2.5(b). By inspecting the population transfer after the

recombination of split solitons at the barrier, one can deduce the phase rela-

tion between the solitons, and subsequently the Earth’s rotation rate. This

solitary wave interferometer will be capable of producing measurements with

precision surpassing the standard quantum limit [127].

In addition, the current setup has all the components required for exploring

atom-surface interactions with bright solitons. The 3.25 mm scanning range

of the moving beam (Section 6.4.1) allows us to translate the dipole trap

close to the Dove prism, which sits 2.96 mm from the default position of

the trap. The prism is designed such that an additional blue detuned laser

beam can be used to produce an evanescent wave potential at the surface

of the prism [68, 69]. Combining with the surface potential as discussed in

Section 2.4, the potential at the prism surface can be tuned from attractive

to repulsive depending on the laser power. By releasing the bright soliton

into the waveguide towards the surface, this allows us to probe the short-

range atom-surface potential. Theoretical studies [48] have shown that such

a system could serve as an excellent surface probe with superior precision

over other systems where ultracold gases or repulsive BECs are used.
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Coil data

Calculation of the magnetic field and
curvature
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Figure A.1: The magnetic field of a current loop at any point in space. In the schematic
diagram, a circular coil with current I and radius R has a magnetic field
B̄ at point (r, z). (b) A coil pair with a coil separation S. Each coil has n
turns and a radius R.

A circular coil with a radius R and a current I generates a magnetic field B̄

at point (r, z) in space, as illustrated in Fig. A.1(a). Using the Biot Savart

law, one obtains the axial (Bz) and radial (Br) components of such magnetic

field:

Bz =
µ0I

2π

1

((R + r)2 + z2)1/2

[
K(k) +

R2 − r2 − z2

(R− r)2 + z2
E(k)

]
(A.1)

and
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Br =
µ0I

2π

z

r ((R + r)2 + z2)1/2

[
−K(k) +

R2 + r2 + z2

(R− r)2 + z2
E(k)

]
. (A.2)

Here, K(k) and E(k) are the complete elliptic integral, of the first kind and

second kind respectively, where k =
√

4Rr/[(R + r)2 + z2] [245]. Let us now

consider a pair of n-turn coils, where one coil is placed at z = S/2 and its

counterpart at z = −S/2 such that the coils are separated by the distance S,

as shown in Fig. A.1(b). The resulting magnetic field is simply the sum of

B̄ produced by each coil. In particular, the total axial magnetic field Bz,tot

along the coil axis (hence r = 0) is

Bz,tot|r=0 =
µ0nIR

2

2

[
1

((z + S/2)2 +R2)3/2
± 1

((z − S/2)2 +R2)3/2

]
,

(A.3)

where + (−) represents the coil configuration where the current I in the coils

are flowing in the same (opposite) direction. Similarly, with the current in

both coils flowing in the same direction, the magnetic field Bz,tot on the z = 0

plane is

Bz,tot|z=0 =
µ0nI

π ((R + r)2 + (S/2)2)1/2

[
K(k) +

R2 − r2 − (S/2)2

(R− r)2 + (S/2)2
E(k)

]
,

(A.4)

while Bz,tot|z=0 = 0 if the current in the coils are flowing in opposite direction.

The radial curvature of the axial magnetic field on the z = 0 plane by readily

calculating the second derivatives ∂2Bz,tot/∂r
2 of Eq. A.4. Evaluating at

r = 0 (or k = 0), and hence K(k) = E(k) = π/2, the expression for the

radial field curvature is greatly simplified to

∂2Bz,tot

∂r2

∣∣∣∣
r=0,z=0

=
µ0nIR

2

(R2 + (S/2)2)7/2

[
2R2 − 5

(
S

2

)2
]
. (A.5)
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Figure A.2: Magnetic field at point P from a finite wire.

In order to calculate the expected field for a pair of rectangular coils, one can

readily derive the equation by evaluating the magnetic fields from 4 separate

finite wires. The magnetic field at a distance r from a finite wire is given by

B =
µ0I

4πr
(cos θ1 − cos θ2), (A.6)

where θ1 and θ2 are the angles which parameterise the length of the finite wire

as shown in Fig. A.2. Now consider a rectangular coil with dimensions 2a

and 2b, the total magnetic field at point P along the axial axis x contributed

by one side of length 2a is

Ba =
µ0I

2π

a

[(x2 + b2) (x2 + a2 + b2)]1/2
, (A.7)

and similarly for one side of length 2b is

Bb =
µ0I

2π

b

[(x2 + a2) (x2 + a2 + b2)]1/2
. (A.8)

We can now extract the field component along the x-direction by multiplying

the above equations by b/ (x2 + b2)
1/2

and a/ (x2 + a2)
1/2

for side 2a and 2b

respectively. By symmetry, the fields along the axial axis contributed by the

other two sides are the same as their counterparts. Finally, by placing one

coil at x = S/2 and one at x = −S/2, the axial magnetic field at the centre

of the n-turn rectangular coil pair (of dimensions 2a× 2b) is
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B =
µ0nIab

π

[
1(

(x+ S/2)2 + b2
) (

(x+ S/2)2 + a2 + b2
)1/2

+
1(

(x+ S/2)2 + a2
) (

(x+ S/2)2 + a2 + b2
)1/2

+
1(

(x− S/2)2 + b2
) (

(x− S/2)2 + a2 + b2
)1/2

+
1(

(x− S/2)2 + a2
) (

(x− S/2)2 + a2 + b2
)1/2

]
.

(A.9)
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Figure A.3: Calibration of the bias coils using a current of 60 A. (a) and (b) show the
field along the radial directions, and (c) shows the field along the axial
direction. The bias coils have 2 × 2 turns using 3.5 mm × 3.5 mm copper
wire. The fit uses Eq. A.3 and Eq. A.4 with the real parameters presented
in Table A.1.

Theoretical Real
Inner Diameter [mm] 79 79
Outer Diameter [mm] 93 94
Inner Separation [mm] 38 39
Outer Separation [mm] 52 52

Equivalent coil radius [mm] 43.0 42.9
Equivalent coil separation [mm] 45.0 45.4

Resistance per coil [mΩ] 2.9 4.4
Field [G A−1] 0.807 0.813

Table A.1: Comparison of the expected and measured parameters of the bias coils.
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Quadrupole coils
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Figure A.4: Calibration of the quadrupole coils using a current of 60 A. (a) and (b) show
the field along the radial directions, and (c) shows the field along the axial
direction. The quandrupole coils have 3 × 3 turns using 3.5 mm × 3.5 mm
copper wire. The fit uses Eq. A.3 with the real parameters presented in
Table A.1. Note the quadrupole coils are in anti-Helmholtz configuration.

Theoretical Real
Inner Diameter [mm] 43 43
Outer Diameter [mm] 64 64
Inner Separation [mm] 36 36
Outer Separation [mm] 56 55

Equivalent coil radius [mm] 26.0 26.9
Equivalent coil separation [mm] 47.0 45.4

Resistance per coil [mΩ] 3.8 5.9
Field Gradient[G A−1cm−1] 0.995 1.022

Table A.2: Comparison of the expected and measured parameters of the quadrupole
coils.
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Curvature coils
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Figure A.5: Calibration of the curvature coils using a current of 5 A. (a) and (b) show
the field along the radial directions, and (c) shows the field along the ax-
ial direction. The curvature coils have 33 turns using copper wire with
1 mm diameter. The fit uses Eq. A.3 and Eq. A.4 with the real parameters
presented in Table A.3.

Theoretical Real
Inner Diameter [mm] 43 43
Outer Diameter [mm] 55 56
Inner Separation [mm] 60 61
Outer Separation [mm] 76 76

Equivalent coil radius [mm] 24.2 24.0
Equivalent coil separation [mm] 66.0 66.7

Resistance per coil [mΩ] 107.3 140.3
Field [G A−1] 3.558 3.502

Radial field curvature [G A−1 cm−2] -0.54 -0.53

Table A.3: Comparison of the expected and measured parameters of the curvature coils.
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Cancellation coils
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Figure A.6: Calibration of the cancellation coils using a current of 5 A. (a) and (b)
show the field along the radial directions, and (c) shows the field along
the axial direction. The cancellation coils have 20 turns using copper wire
with 0.80 mm diameter. The fit uses Eq. A.3 and Eq. A.4 with the real
parameters presented in Table A.4.

Theoretical Real
Inner Diameter [mm] 100 101
Outer Diameter [mm] 106 N/A
Inner Separation [mm] 48 48
Outer Separation [mm] 57 57

Equivalent coil radius [mm] 51.4 50.1
Equivalent coil separation [mm] 51.4 51.6

Resistance per coil [mΩ] 215.9 140.3
Field [G A−1] 3.500 3.615

Table A.4: Comparison of the expected and measured parameters of the cancellation
coils.
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Up-Down shim coils
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Figure A.7: Calibration of the Up-Down shim coils using a current of 5 A. Here shows
the field along the axial direction. The Up-Down shim coils have 15 turns
using copper wire with 0.80 mm diameter. The fit uses Eq. A.3 and Eq. A.4
with the real parameters presented in Table A.5.

Theoretical Real
Inner Diameter [mm] 106 N/A
Outer Diameter [mm] 110 110
Inner Separation [mm] 48 48
Outer Separation [mm] 57 57

Equivalent coil radius [mm] 53.9 53.3
Equivalent coil separation [mm] 51.4 51.6

Resistance per coil [mΩ] 169.8 218.2
Field [G A−1] 2.579 2.639

Table A.5: Comparison of the expected and measured parameters of the Up-Down shim
coils.
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North-South shim coils
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Figure A.8: Calibration of the North-South shim coils using a current of 5 A. Here shows
the field along the axial direction. The North-South shim coils have 25 turns
using copper wire with 0.80 mm diameter. The fit uses Equation A.9 with
the real parameters presented in Table A.6.

Theoretical Real
Inner length (horizontal) [mm] 58 58

Inner length (vertical) [mm] 44 43
Outer length (horizontal) [mm] 68 68

Outer length (vertical) [mm] 54 53
Inner Separation [mm] 118 118
Outer Separation [mm] 128 130

Equivalent coil dimensions (H×V) [mm] 62×48 62×46
Equivalent coil separation [mm] 123 124

Resistance per coil [mΩ] 183.8 239.6
Field [G A−1] 0.898 0.834

Table A.6: Comparison of the expected and measured parameters of the North-South
shim coils.
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East-West shim coils
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Figure A.9: Calibration of the East-West shim coils using a current of 5 A. Here shows
the field along the axial direction. The East-West shim coils have 25 turns
using copper wire with 0.80 mm diameter. The fit uses Equation A.9 with
the real parameters presented in Table A.7.

Theoretical Real
Inner length (horizontal) [mm] 118 119

Inner length (vertical) [mm] 26 26
Outer length (horizontal) [mm] 128 128

Outer length (vertical) [mm] 36 36
Inner Separation [mm] 70 70
Outer Separation [mm] 82 130

Equivalent coil dimensions (H×V) [mm] 123×31 100×31
Equivalent coil separation [mm] 76 76

Resistance per coil [mΩ] 257.4 273.2
Field [G A−1] 2.024 1.997

Table A.7: Comparison of the expected and measured parameters of the East-West shim
coils.



Appendix B

Calculation of trap depth of a

ring

To compute the trap depth of the ring potential at the Fourier plane of

the SLM beam, we first consider extending the Gaussian beam profile I in

one-dimension

I = I0 exp

(
−2x2

w2

)
(B.1)

into a ring form with radius R and 1/e2 width w (I0 is the peak intensity of

the ring). The total laser power P of the ring is related to the ring intensity

via

P =

∫ ∞
0

∫ 2π

0

I0 exp

(
−2(r −R)2

w2

)
r drdθ

= 2πI0

∫ ∞
0

exp

(
−2(r −R)2

w2

)
r dr.

(B.2)

Using substitution of u = r −R, we obtain

P = 2πI0

∫ ∞
−R

(u+R) exp

(
−2u2

w2

)
du

= 2πI0

[∫ ∞
−R
−w

2

4

d

du
exp

(
−2u2

w2

)
du+R

∫ ∞
−R

exp

(
−2u2

w2

)
du

]
.

(B.3)
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From mathematics textbook:

∫ ∞
0

exp

(
−x

2

a2

)
dx =

√
πa

2
(B.4)

and

∫ 0

a

exp

(
−x

2

b2

)
dx = −1

2

√
πb erf

(a
b

)
, (B.5)

We get

P = 2πI0

[
−w

2

4

[
exp

(
−2u2

w2

)]∞
−R

+ R

[∫ 0

−R
exp

(
−2u2

w2

)
du+

∫ ∞
0

exp

(
−2u2

w2

)
du

]]
= 2πI0

[
w2

4
exp

(
−2R2

w2

)
+R

[
−
√
π

2

w√
2

erf

(
−
√

2R

w

)
+

√
π

2

w√
2

]]

= πI0

[
w2

2
exp

(
−2R2

w2

)
+

√
π

2
Rw

(
1 + erf

(√
2R

w

))]
.

(B.6)

Using Eq. 3.5, the trap depth of the ring is hence

U0 =
αP

π
[
w2

2
exp

(
−2R2

w2

)
+
√

π
2
Rw

(
1 + erf

(√
2R
w

))] , (B.7)

where α is the polarisability. In cases where R � w, erf
(√

2R
w

)
→ 1 and

thus

U0 =
αP

π
[
w2

2
exp

(
−2R2

w2

)
+
√

2πRw
] . (B.8)
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