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ABSTRACT 

Endoplasmic reticulum (ER) stress is caused by the accumulation of mis/unfolded proteins 

in the ER. ER stress signalling pathways termed the unfolded protein response are 

employed to alleviate ER stress through increasing the folding capacity and decreasing the 

folding demand of the ER as well as removing mis/unfolded proteins. However, ER stress 

signalling pathways induce diverse cellular changes beyond changes to the ER. This study 

aims to further investigate some of these ER stress-mediated events.  

ER stress can cause activation of JNK. Prolonged ER stress-mediated JNK activation is 

reported to promote apoptosis whilst both acute and long-lasting JNK activation is 

proposed to cause insulin resistance. To begin with it is reported in this thesis that acute 

ER stress-induced JNK activation, which is dependent on IRE1α and TRAF2, promotes 

survival. In contrast to other studies, this thesis provides evidence that acute ER stress-

mediated JNK activation does not inhibit insulin signalling during ER stress in several cell 

lines. However, prolonged ER stress, in four different cell lines, does inhibit insulin 

signalling in a JNK independent manner. This study argues that ER-stress-induced insulin 

resistance during prolonged ER stress involves inhibition of trafficking of newly 

synthesised insulin receptors through the secretory pathway to the plasma membrane.  

Finally ER stress can activate inflammatory signalling pathways other than JNK and thus 

ER stress may promote inflammation. Neuroinflammation and ER stress are reported in 

Parkinson’s disease (PD) yet a link between them has so far not been investigated. Using a 

cellular model of PD, it is reported in this thesis that ER stress has the potential to activate 

neuroinflammation in PD. 
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1 INTRODUCTION 

The endoplasmic reticulum (ER) is responsible for the folding of membrane and secretory 

proteins. When proteins are mis or unfolded they can accumulate and cause ER stress. ER 

stress has the potential to cause inflammation. Inflammation may contribute to the 

development of various diseases. In particular obesity-induced inflammation is thought to 

cause insulin resistance in diabetes. Neuroinflammation has been strongly implicated in the 

development of the neurodegenerative Parkinson’s disease (PD). Inflammation is therefore 

an important aspect of these two diseases. Interestingly, ER stress has been implicated in 

both these diseases. The aim of this thesis is to investigate the role of endoplasmic 

reticulum stress and inflammation in the development of two age-related diseases; 

Parkinson’s disease and type-II-diabetes (T2D). Firstly, this introduction will describe the 

secretory pathway with specific focus on the ER. ER stress will then be explained with 

reference to activation of the unfolded protein response (UPR) and its ability to activate 

inflammatory signalling. Then inflammation and inflammatory signalling will be explored 

because discussing evidence linking the UPR to inflammatory signalling and cell fate 

decision making. After establishing the background information to ER stress/UPR-

mediated inflammation, the role of this signalling network will be explored in the context 

of T2D and insulin resistance. Finally, the role of the ER stress/UPR-mediated 

inflammatory signalling will be discussed in the context of neuroinflammation in the 

progress and development of PD. 

 

1.1  The secretory pathway 

In the 1960s it was discovered that in eukaryotic cells the secreted proteins are first 

localised to the ER before travelling within membranous structures until they reach the cell 

surface (Vitale and Denecke, 1999).  This pathway, which involves transport of newly 

synthesised secretory proteins to the cell surface, is known as the secretory pathway. The 

secretory pathway is responsible for the synthesis and sorting of a very large class of 

proteins.  Typically these proteins travel from the ER, through the Golgi complex, and 

eventually to endosomes, lysosomes or the cell surface.  
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1.1.1 The endoplasmic reticulum 

Firstly, to understand the importance of ER stress, it is important to explain the role of the 

ER because ER stress is caused by a build-up of mis and unfolded proteins in the ER. The 

ER is the first compartment in the secretory pathway. The ER is unique in that it is 

responsible for the folding of both its own resident proteins and all other proteins entering 

the secretory pathway. This is because most proteins which enter the secretory pathway 

only have to undergo one translocation event- they are co-translationally translocated into 

the ER lumen and can therefore remain folded for the rest of the pathway. Whereas 

proteins not entering the secretory pathway may have to be unfolded to cross membranes 

before being refolded in the compartment they are destined for.  All proteins entering the 

secretory pathway contain an ER signal sequence. The transmembrane domain of 

transmembrane proteins acts as the signal peptide. This signal peptide directs the ribosome 

synthesising the protein to the membrane of the ER. Synthesis of the polypeptide chain 

continues so that the protein is cotranslationally translocated into the lumen of the ER. As 

the polypeptide enters the ER lumen the ER signal peptide is removed by signal peptidases 

(Paetzel et al., 2002). 

After being inserted into the ER, the polypeptide chains undergo folding and modification. 

The ER is therefore the site of the earliest steps in the maturation of secretory proteins. 

These steps include the folding of nascent polypeptide chains and posttranslational 

modifications. There are many proteins in the ER responsible for protein folding, including 

foldases, chaperones and cochaperones, lectins, glycan-modifying enzymes and 

oxidoreductases (Braakman and Hebert, 2013). An important part of protein folding 

involves molecular chaperones. Molecular chaperones are present in all cellular 

compartments where protein folding occurs (Hartl et al., 2011). Molecular chaperones 

provide the cell with a means to prevent the interactions of hydrophobic residues present in 

polypeptides. This is important because hydrophobic regions can interact and cause 

aggregation of newly synthesised polypeptides (Schroder and Kaufman, 2005b). The most 

well studied ER resident chaperone is Grp78/BiP. Foldases such as protein disulphide 

isomerase (PDI) and peptidyl-prolyl cis-trans isomerases are responsible for catalysing 

steps in protein folding. 

Various posttranslational modifications occur in the ER, but the two most common are 

disulphide bond formation and asparagine (N)-linked glycosylation. The formation of 

disulphide bonds occurs between thiol groups of the cysteine residues in a polypeptide. 
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The function of a disulphide bond is to stabilise the protein into its folded topology. PDIs 

are responsible for the catalysis of disulphide bond formation in the ER. Recycling of the 

disulphide bonds is maintained by the FAD-dependent oxidases Erv2p and Ero1p 

(Ellgaard, 2004). 

N-linked glycosylation involves the attachment of an oligosaccharide to a polypeptide 

chain. Once translocated into the ER, proteins with the consensus sequence N-X-S/T are 

acceptors for N-linked glycosylation (Marshall, 1974). Transfer of the oligosaccharide to 

the asparagine residue in the glycosylation sequence is catalysed by the 

oligosaccharyltranferase (OST) (Weerapana and Imperiali, 2006). Once attached to the 

protein these hydrophilic carbohydrate glycans alter the biophysical properties of that 

protein which in turn affects the folding of the protein (Hanson et al., 2009). Before the 

carbohydrate is attached to a protein it exists as a lipid-linked oligosaccharide (LLO). The 

three carbohydrate building blocks of the LLO substrate are N-acetylglucosamine 

(GlcNAc), mannose (Man) and glucose (Glc) (Aebi, 2013). In the first steps of glycan 

synthesis the enzyme GlcNAC phosphotransferase (GPT) catalyses the transfer of 

GlcNAc-1-phosphate from UDP-N-GlcNAc to dolichol phosphate, which is embedded in 

the ER membrane producing a GlcNAc disaccharide. The isoprenoid lipid dolichol serves 

as a carrier of the oligosaccharide. Five GDP-Man residues are subsequently attached to 

the disaccharide. This product is then translocated into the ER, via a poorly understood 

mechanism, where a further four Man and three Glc molecules are attached to form the 

product dolichol-GlcNAc2-Man9-Glc3 (Welti, 2013). Subsequent processing of the 

oligosaccharide occurs in the Golgi apparatus. 

 

1.1.2 The Golgi apparatus 

Once correctly folded, proteins are transported from the ER to the Golgi for protein 

modification, including the modification of glycans. The Golgi is a highly organised 

structure. It is made up of various compartments or cisternae, which include: cis Golgi 

network and the trans Golgi network consisting of ci, medial and trans cisternae. Each of 

the individual compartments in the cisternae contain a distinct set of enzymes to allow 

further modification of proteins in a step wise manner. The Golgi complex is responsible 

for the modification of N-linked glycans of proteins which have been transported from the 

ER. 
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Due to removal of Glc molecules during protein folding in the ER, the glycan structure for 

properly folded glycoproteins entering the Golgi is Man9GlcNac2 in higher eukaryotes 

(Ellgaard and Helenius, 2003). After trafficking of a protein to the Golgi, mannosidase I 

removes multiple mannose sugars from glycans present on that protein. If further 

modification of this glycan does not occur then it is considered to be a high mannose 

oligosaccharide. Further trimming of glycans by mannosidase I and II and additional 

glycosylation by GlcNAc transferase produces a common core region (Trombetta and 

Parodi, 2003). However, additional sugars may be added to the common core region in the 

Golgi yielding a complex oligosaccharide. Glycans can be high-mannose, complex or a 

combination of both, which are known as hybrid glycans. Processing beyond the common 

core region stage of a glycan provides Endoglycosidase H (Endo H) insensitivity (Maley et 

al., 1989). For this reason Endo H can be used as a tool for assessing the glycosylation 

state and thus is useful for identifying the location of a protein in the secretory pathway. 

The insulin receptor is an example of a transmembrane glycoprotein which traffics through 

the secretory pathway to the plasma membrane (Figure 1.1). The monomers of the dimeric 

insulin receptor consist of an extracellular α and β chain harbouring a transmembrane and 

intracellular tyrosine protein kinase domain. The α and β chains are linked via a disulphide 

bond between C647 and C872 (Sparrow et al., 1997). The α and β chains contain 14 and 4 

N-linked oligosaccharides, respectively. The insulin receptor is first synthesised as a single 

polypeptide chain which subsequently undergoes: maturation of the insulin binding 

domain, dimerization, N-linked glycosylation and disulphide bond formation, all of which 

occurs in the ER. The insulin receptor is then trafficked to the trans-Golgi network where 

is cleaved by proprotein convertases, including furin, carboxyterminal to the basic 

sequence RKRR to liberate the mature α and β chains (Robertson et al., 1993). The mature 

receptor is then delivered to the plasma membrane. 
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Figure 1.1.  Schematic of trafficking of newly synthesised insulin receptors from the ER to the 

plasma membrane. 

In the insulin proreceptor the α and β chains are joined via a peptide bond. The α chain harbours the 

extracellular, insulin-binding domain, while the β chain harbours the transmembrane (TM) and 

cytosolic tyrosine (TYR) protein kinase domain. The α chain carries 14 and the β chain four N-linked 

oligosaccharides (indicated by sticks). In the ER the insulin-binding domain matures, disulphide 

bonds are formed and insulin proreceptor dimers are formed before transport to the trans-Golgi 

network (TGN). In the TGN the proreceptor is cleaved by proprotein convertases including furin to 

liberate the mature α and β chains carboxyterminal to the basic amino acid sequence RKRR. Further 

post-translational modifications are produced by a less well characterised lysosomal event (Massague 

et al., 1981). 
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1.2 Endoplasmic reticulum stress 

Because the ER is the first compartment in the secretory pathway its functional capacity is 

the rate limiting step. It is therefore important that proper ER function is maintained. As a 

consequence the disruption of protein folding homeostasis in the ER activates several 

signalling cascades and causes both direct and indirect changes to other cellular pathways.  

 

1.2.1 The unfolded protein response 

In all eukaryotic organisms the ER is the site of transmembrane and secretory protein 

folding (Schroder, 2006). In the ER, homeostasis is defined as maintaining a balance 

between protein folding demand and protein folding capacity (Schroder and Kaufman, 

2005b). If homeostasis is not maintained then the result is ER stress and cellular damage. 

The unfolded protein response (UPR) is an ER stress signalling cascade, ultimately leading 

to the transcription of genes which prevent cellular accumulation of unfolded proteins by 

either degradation (ERAD) or repair and therefore functions to maintain ER homeostasis. 

The UPR restores homeostasis by both increasing folding capacity and reducing folding 

demand. It increases the folding capacity via increasing the expression of molecular 

chaperones and protein foldases (Schroder, 2006). The UPR also increases phospholipid 

production in order to expand the ER allowing its contents to be diluted. The UPR 

attenuates general translation as well as transcription of secretory protein genes to prevent 

further increase of folding demand (Schroder, 2006). The UPR also enhances ER-

associated degradation (ERAD) which involves targeting of unfolded proteins to be 

degraded by the proteasome. 

Non-drug induced activators of the UPR include viral infection, bacterial infection and 

wound healing. Wound healing requires the synthesis of many proteins which traffic 

through the secretory pathway. This increased demand on folding capacity can sometimes 

overwhelm the ER to induce the UPR (Wang et al., 2010). Viral infection can induce the 

UPR because viruses, which do not have an ER, ‘hijack’ the ER of the host cell for the 

synthesis of viral glycoproteins (Zhang and Wang, 2012). The additional folding of viral 

proteins increases the folding demand in the ER and causes ER stress and activation of the 

UPR. Bacterial infection has only recently been implicated in the activation of the UPR 

(Cho et al., 2013, Celli and Tsolis, 2015). It was shown that bacterial proteins can activate 

the UPR causing induction of the innate immune response (Cho et al., 2013). Therefore it 
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is likely that the UPR can signal the innate immune response as a protective mechanism 

against both viral and bacterial infection. 

 There are at least three branches to the UPR (Figure 1.2), in higher eukaryotes, consisting 

of three well-studied ER stress sensing transmembrane proteins; IRE1 (inositol-requiring 

1), PERK (double-stranded RNA-dependent protein kinase (PKR)-like ER kinase), and 

ATF6 (activating transcription factor 6). It is thought that in a non-stressed ER all three 

transmembrane proteins are maintained in an inactive state through the binding of the 

molecular chaperone BiP to the lumenal domains of these proteins. Once unfolded proteins 

accumulate BiP is sequestered from the lumenal domains due to the affinity of BiP to the 

exposed hydrophobic regions of an unfolded protein (Schroder and Kaufman, 2005a, 

Gething, 1999). 

 

1.2.1.1 IRE1  

In the case of the transmembrane endoribonuclease kinase IRE1 the release of BiP from its 

lumenal domain allows IRE1 to either dimerise or oligomerise resulting in its activation 

(Bertolotti et al., 2000). However, more recent studies have suggested that direct binding 

between IRE1 and unfolded proteins may also account for its activation (Promlek et al., 

2011) (Credle, 2005) Once activated IRE1 cleaves and together with a ligase (Jurkin et al., 

2014) they splice (in a spliceosome independent manner) the mRNA encoding the bZIP 

transcription factor XBP-1 in metazoans and Hac1p in yeast. Splicing of XBP-1 mRNA via 

the removal of a 26 base intron introduces an alternative C terminus resulting in a 

transcription factor with increased activity (Ron and Walter, 2007). Active XBP-1 is a 

transcription factor for various UPR target genes encoding proteins involved in ERAD, 

protein folding (protein foldases) and for ER chaperones such as BiP (Figure 1.2). In 

mammals there are two known isoforms of IRE1, IRE1α and IRE1β. IRE1α is ubiquitously 

expressed throughout the body whereas IRE1β is expressed selectively in the digestive 

tract (Wang et al., 1998).  

 

1.2.1.2 PERK 

Dimerisation (Liu et al., 2000) or oligomerisation (Carrara et al., 2015) of PERK causes 

trans-phosphorylation and allows PERK to phosphorylate eukaryotic initiation factor-2 α 
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(eIF2α). PERK to eIF2α signalling is responsible for the UPR mediated inhibition of 

general translation as eIF2α activation blocks assembly of the 43 S preinitiation complex, 

which is responsible for recognition of the cap structure of mRNA (Zhang and Kaufman, 

2008, Harding et al., 2000, Harding et al., 1999). Activated eIF2α also allows the 

translation of the transcription factor ATF4. ATF4 acts as a transcription factor for various 

UPR target genes including those involved in ERAD, metabolism and apoptosis. PERK is 

also capable of inducing an antioxidant response by activating activating transcription 

factor 4 (ATF4) and the nuclear factor-erythroid-derived 2 (NF-E2)-related factor 2 

(NRF2). Both ATF and NRF2 help maintain levels of the redox buffer glutathione via 

transcription of genes encoding proteins responsible for glutathione maintenance (Zhang 

and Kaufman, 2008, Cullinan and Diehl, 2006). NRF2 activates the transcription of various 

antioxidant genes (Zhang, 2006). 

 

 

Figure 1.2. Pathways of the unfolded protein response.  

The three major sensors of ER stress contribute to initiation of the UPR through upregulation of genes 

encoding proteins involved in ERAD, membrane remodelling, antioxidant response, protein folding 

(protein foldases) and for ER chaperones such as BiP. All three sensors are also responsible for 

initiation of inflammation and apoptosis. 
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1.2.1.3 ATF6 

ATF6 is a bZIP domain-containing transcription factor and is part of the ATF transcription 

factor family (Haze et al., 1999). When unfolded proteins are detected ATF6 translocates 

to the Golgi apparatus where it is cleaved by proteases site-1 (S1P) and site-2 (S2P) 

(Schroder and Kaufman, 2005b). A bZIP-containing fragment of ATF6 is then released 

and migrates to the nucleus where it activates transcription of genes encoding molecular 

chaperones and protein foldases. Active ATF6 also activates lipogenesis (Zeng et al., 

2004) which ultimately functions to expand the ER.  

 

1.2.1.4 Activating ER stress and the UPR 

N-linked glycosylation and disulphide bond formation are both posttranslational 

modifications of proteins in the ER which when inhibited cause ER stress and UPR 

signalling (Schroder and Kaufman, 2005b). Tunicamycin is a drug commonly used to 

induce ER stress as it inhibits N-linked glycosylation by blocking the transfer of N-

acetylglucosamine 1-phosphate to dolichol monophosphate (Carrasco and Vazquez, 1984). 

Another drug commonly used to induce ER stress is thapsigargin. Thapsigargin is an 

inhibitor of the ER Ca
2+

-ATPase and results in depletion of Ca
2+

 from the ER (Schonthal et 

al., 1991). As most protein folding in the ER is calcium dependent thapsigargin causes the 

build-up of unfolded proteins and thus ER stress. The AB5 subtilase cytotoxin (SubAB) is 

an infrequently used ER stressor but it is probably the most specific as it cleaves BiP to 

induce ER stress in a specific manner (Paton et al., 2006, Paton et al., 2004). SubAB 

consists of an enzymatic A subunit and a pentameric B subunit. The B subunit of AB5 

toxins mediates uptake into the cell. The A unit of SubAB is a subtilase-like protease with 

an unusually deep active-site cleft, which creates the exquisite substrate specificity for BiP 

which SubAB demonstrates (Paton et al., 2006). 

 

1.2.1.5 Severe ER stress 

The UPR functions to restore protein folding homeostasis to maintain normal cellular 

function. However, if ER stress is too severe for the UPR-induced changes to alleviate the 

stress then apoptotic pathways are activated. Prolonged or severe ER stress results in the 
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activation of proapoptotic and inflammatory signalling pathways. UPR-induced 

inflammatory signalling is discussed later. 

The ER membrane proteins responsible for initiating the UPR have the ability to activate 

both prosurvival and proapoptotic responses to ER stress. These opposing signalling 

outputs are exemplified by IRE1α. IRE1α promotes survival through activation of XBP-1 

and the downstream targets which function to increase ER protein folding capacity as 

discussed previously.  

IRE1α has been shown to promote apoptosis in two ways. Firstly, the RNase domain of 

IRE1α can cleave several miRNAs.  Cleavage of these miRNAs results in the stabilisation, 

and therefore promotes translation, of TXNIP and caspase-2 mRNAs (Lerner et al., 2012, 

Oslowski et al., 2012, Upton et al., 2012). The role of caspase-2 in IRE1α-induced 

apoptosis has however been disputed (Sandow et al., 2014) and unmitigated ER stress may 

induce apoptosis through death receptor 5 (DR5) (Lu et al., 2014).  IRE1α cleaves miR-17 

which promotes translation of TXNIP mRNA, which in turn promotes apoptosis through 

production of IL-1β and activation of caspase-1 (Lerner et al., 2012). Sustained IRE1α 

RNase activation caused rapid decay of miRs -17, -34a, -96, and -125b which normally 

repress translation of caspase-2 mRNA (Upton et al., 2012). Caspase-2 initiates the 

mitochondrial apoptotic pathway to induce cell death via release of proapoptotic proteins 

from the mitochondria such as cytochrome c (Guo et al., 2002). Secondly, IRE1α can 

promote apoptosis through its kinase activity. The kinase domain of IRE1α can activate c-

Jun N-terminal kinases (JNK) through a complex with the E3 ubiquitin ligase TNF 

receptor-associated factor 2 (TRAF2) and the mitogen-activated protein kinase kinase 

kinase (MAPKKK) apoptosis signal-regulating kinase 1 (ASK1) (Nishitoh et al., 1998, 

Nishitoh et al., 2002). Many studies looking at prolonged ER stress-induced JNK 

activation have shown that it is proapoptotic (Zhang et al., 2001, Smith and Deshmukh, 

2007, Chen et al., 2008, Wang et al., 2009, Jung et al., 2012, Teodoro et al., 2012, Huang 

et al., 2014, Jung et al., 2014, Kang et al., 2012, Arshad et al., 2013). Therefore IRE1α can 

promote survival through activating genes which function to increase protein folding 

capacity and maintain ER homeostasis, whilst also having the ability to promote apoptosis 

through two different mechanisms. However, not much is known about the role of JNK 

activation early in the ER stress response. 

PERK and ATF6 also promote survival through transcriptional changes which increase 

protein folding capacity. However, they promote apoptosis through different mechanisms 
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to IRE1α. The PERK and ATF6 pathways signal apoptosis via activation of the 

transcription factor C/EBP homologous protein (CHOP) (Zhang and Kaufman, 2008). The 

importance of CHOP in ER stress induced apoptosis is demonstrated through CHOP 

deficient mice being resistant to apoptosis induced through ER stress (Zinszner et al., 

1998). PERK-mediated phosphorylation of eIF2α activates ATF4 resulting in CHOP 

induction (Harding et al., 2000). Various proteins have been implicated downstream of 

CHOP during CHOP-mediated apoptosis including induction of proapoptotic proteins Bim 

(Puthalakath et al., 2007), Puma (Cazanave et al., 2010), DR5 (Yamaguchi and Wang, 

2004) and Bax (Gotoh et al., 2004) as well as down-regulation of the suppressor of 

apoptosis protein Bcl-2 (McCullough et al., 2001). 

Overall, the regulation of cell survival is an important function of the UPR. The UPR’s 

main role is to restore ER protein folding homeostasis but ER stress which is too severe to 

recover from can induce severe toxicity which if left to proceed may cause necrosis, which 

is defined by uncontrolled and detrimental cell death. Although UPR activation ultimately 

functions to maintain ER homeostasis and promote cell survival, the UPR may also 

function to control death in cells in which ER stress is too severe to remedy. 

 

1.3 Inflammation 

As mentioned briefly, ER stress/UPR activation is believed to activate inflammation, thus 

it is important to describe the background to inflammation and inflammatory signalling 

before discussing ER stress-mediated inflammation. The following section will therefore 

describe inflammatory signalling and will be followed by a section detailing the links 

between the UPR and inflammation.  

Inflammation is a reaction of multicellular organisms, which protects against a range of 

harmful stimuli including; viruses, bacteria, physical damage and harmful chemicals. 

When cells are damaged they activate inflammatory signalling pathways. This causes the 

cell to release cytokines which recruit various cells of the immune system. A degenerating 

cell is capable of initiating inflammation until it is removed by the immune system (Wyss-

Coray and Mucke, 2002). Immune cells can respond to inflammatory signalling molecules 

by releasing further inflammatory signalling molecules to signal additional immune cells to 

the damaged area (Wyss-Coray and Mucke, 2002). 
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Inflammation has been described as a ‘double-edged sword’ (Wyss-Coray and Mucke, 

2002) because  in short-lasting inflammation, inflammatory mechanisms promote healing 

and limit injury (Tansey et al., 2007), whereas prolonged inflammation is detrimental and 

has been implicated as a cause for diseases such as diabetes, PD and Alzheimer’s disease 

(AD) (Wyss-Coray and Mucke, 2002). 

Inflammatory responses differ between diseases and tissues but they all share a common 

spectrum of genes and endogenous mediators including; cytokines, growth factors 

chemokines, matrix metalloproteinases and reactive oxygen species (ROS) (Kaminska, 

2005). All three branches of the UPR can induce proinflammatory transcriptional 

programmes which are mainly mediated through the transcription factors: nuclear factor 

kappa-light-chain-enhancer of activated B cells (NF-κB) and activator protein 1 (AP-1) 

(Garg et al., 2012, Verfaillie et al., 2013, Hotamisligil and Erbay, 2008, Zhang and 

Kaufman, 2008). NF-κB is one of the central mediators of proinflammatory pathways. 

Genes transcribed by NF-κB include many proinflammatory cytokines (Li et al., 2005b, 

Zhang and Kaufman, 2008, Rius et al., 2008, Pahl, 1999). NF-κB is normally held inactive 

within the cytoplasm in a complex with IκBα. Activation of NF-κB involves 

phosphorylation of IκBα at serines 32 and 36 by IκB kinase (IKK), which leads to IκBα 

ubiquitination and proteasomal degradation (DiDonato et al., 1996). IκBα phosphorylation 

and degradation can therefore be used as markers of NF-κB activation and as such IκBα 

degradation is used in this thesis to monitor NF-κB activation. 

The following section will focus on pathways activating AP-1 and the role of inflammatory 

signalling pathways in activation of macrophages. This section will then be followed by a 

section discussing the evidence linking the UPR to these inflammatory signalling 

pathways. 

 

1.3.1 MAPK Signalling pathways activating AP-1 

The AP-1 transcription factor is made up of several dimeric complexes, which consist of 

proteins from three different families of DNA-binding proteins: Jun, Fos and ATF/CREB 

(Hernandez et al., 2008). The Jun family consists of: Jun, JunB, v-Jun and JunD. The Fos 

family consists of: Fra-1, Fra-2, c-Fos, FosB. The ATF/CREB family consists of: ATF1, 

ATF2, ATF3, ATF4, ATF6, Β-ATF, ATFx). Mitogen-activated protein kinase (MAPK) 

signalling pathways are known to activate AP-1. 
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MAPKs are proline-directed Ser/Thr protein kinases which are activated through three-tier 

kinase signalling cascades (Raman et al., 2007). The MAPKs include: the p38 family, 

JNKs 1-3 and extracellular regulated kinases 1 and 2 (ERK1/2). As JNK and p38 

signalling cascades are more significantly implicated in diabetes and PD more detail will 

be provided on these pathways and not ERK1/2. The MAPK signalling pathways p38 and 

JNK are activated during ER stress and are even considered to be part of the UPR (Darling 

and Cook, 2014). The MAPK signalling pathways are associated with, cell growth, cell 

differentiation, cell death and importantly, in the context of this thesis, inflammation 

(Kyriakis and Avruch, 2001). The role of the MAPKs in signalling inflammation will be 

the main focus of the following section. 

 

1.3.1.1 JNK 

There are three JNK genes in the mammalian genome; JNK1 and JNK2 are ubiquitously 

expressed, whereas JNK3 expression is specific to the brain (Derijard et al., 1994, Kyriakis 

et al., 1994). JNK activation has been reported to occur during various stresses including; 

UV exposure, heat shock, ionising radiation and ER stress (Kyriakis et al., 1994). The dual 

phosphorylation of the Thr-Pro-Tyr motif by MKK4 and MKK7 is required for JNK 

activation (Tournier et al., 1997). Phosphorylation of JNK leads to AP-1 activation and the 

subsequent translocation of AP-1 to the nucleus where it initiates the transcription of its 

own inflammatory gene programme (Davis, 2000). JNK can activate AP-1 through 

activation of ATF-2 and c-Jun. AP-1 transcribes proinflammatory genes such as those 

encoding tumour necrosis factor (TNF), GM-CSF, interleukin (IL)-8, and cytokine 

receptors (Angel et al., 2001). 

It is worth noting that JNK regulation is likely to be very complex especially as 

differentially activated alternative splice variants of MKK7 have been identified (Tournier 

et al., 1999). Nevertheless, JNK signalling is an important part of the cells inflammatory 

signalling network with the ability to activate AP-1 in response to various stress 

conditions.  
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1.3.1.1.1 JNK and apoptosis 

It is widely accepted that JNK activation during stress is ultimately proapoptotic. For 

example, apoptosis induced through UV stimulation requires JNK as MEFs lacking both 

JNK1 and JNK2 are resistant to UV-induced apoptosis (Tournier et al., 2000). Apoptosis 

induced by exposure to an excitotoxic glutamate receptor agonist, kainic acid, is inhibited 

in JNK3 knockout mice (Yang et al., 1997). In another example Huang et al. recently 

demonstrated that calcium-mediated JNK and p38 activation led to apoptosis in hepatic 

stellate cells. The use of calcium chelators substantially inhibited JNK and p38 activation, 

whilst the JNK inhibiter SP600125 significantly reduced cell apoptosis (Huang et al., 

2014). 

JNK can also contribute to apoptosis through phosphorylation of the proapoptotic BH3-

only protein Bcl-2 interacting mediator of cell death (BIM) to promote its release from the 

dynein motor complex, freeing it to initiate apoptosis (Lei and Davis, 2003). JNK can also 

promote cell death through increasing expression of death receptors and their ligands. 

However, JNK activation alone is not sufficient to induce apoptosis (Molton et al., 2003) 

suggesting that JNK can promote apoptosis but only when other signalling is activated. ER 

stress is also an initiator of JNK activation and is discussed further (see 1.4.1). Thus JNK 

can promote apoptosis through several mechanisms involving phosphorylation of BIM and 

increased expression of death receptors. 

1.3.1.1.2 JNK prosurvival 

Overall JNK activation is thought to be proapoptotic, however, evidence exists to suggest 

that JNK activation can also have a prosurvival role (Molton et al., 2005). JNK was shown 

to have a prosurvival role with antiapoptotic functions in microglia during 

lipopolysaccharide (LPS)-induced activation (Svensson et al., 2011). Cytokine-mediated 

activation of JNK has been shown to be antiapoptotic in several studies. JNK activation by 

TNF-α increased the expression of the mRNA for the antiapoptotic ubiquitin ligase 

cIAP2/BIRC3 (Lamb et al., 2003). JNK has also been shown to induce survival in T cells 

through stabilisation of Mcl2, downstream of the IL-2 receptor (Hirata et al., 2013). JNK 

can phosphorylate BAD to suppress apoptosis during IL-3 withdrawal demonstrating that 

JNK contributes to cell survival (Yu et al., 2004). 

Chemical induction of JNK has also been shown to promote cell survival. JNK also has a 

prosurvival role in bortezomib-induced toxicity. ER stress was also shown to be activated 
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with bortezomib treatment suggesting that ER stress-induced JNK activation may be 

providing prosurvival signalling in this study (Granato et al., 2013). Furthermore, Ventura 

et al. employed a chemical genetic strategy, using JNK-deficient MEFs which were 

reconstituted with 1-tert-butyl-3-naphthalen-1-ylmethyl-1H219pyrazolo[3,4-d]pyrimidin-

4-ylemine (1NM-PP1)-sensitised alleles of JNK1 and JNK2, to causally demonstrate that 

the two phases of JNK activation during TNF-α treatment  have two different roles in cell 

survival decision making. Although both the early and late phases of JNK activation 

contributed to TNF-α-induced gene expression the early transient phase was prosurvival 

whilst the late and sustained JNK activation led to proapoptotic signalling (Ventura et al., 

2006). 

Therefore JNK has a dual role in that it can both promote and inhibit apoptosis. This dual 

role is clearly demonstrated by the two phases of JNK activation which occur with 

treatment of TNF-α: 1) an early and transient antiapoptotic phase and 2) a late proapoptotic 

phase (Roulston et al., 1998, Ventura et al., 2006). Thus, JNK signalling can be both 

prosurvival and proapoptotic depending on the stress and duration. 

 

1.3.1.2 p38 

Another MAPK other than JNK which activates AP-1 is p38. The p38 family consists of 4 

proteins; p38α, p38β, p38γ and p38σ. Both p38α and β are ubiquitously expressed whereas 

p38γ and σ expression is more tissue specific (Raman et al., 2007). Dual phosphorylation 

of the p38 Thr-Gly-Tyr motif, by MKK3, MKK4 and MKK6, is required for activation of 

p38 (Derijard et al., 1995, Lin et al., 1995, Raingeaud et al., 1996). Similar to JNK, p38 

can also promote apoptosis through phosphorylation of BIM at the same site as JNK (Cai 

et al., 2006). p38 and JNK thus have some similar functions but also have divergent roles. 

A complex regulation of these MAPK is likely to allow appropriate cellular responses to 

wide-ranging stimuli. 

Substrates of p38 include the transcription factors: activating transcription factor 2 (ATF-

2), sin1 associated protein (SAP-1) and Elk-1 (Hardy and Chaudhri, 1997, Whitmarsh and 

Davis, 1996). p38 can activate AP-1 through activation of ATF-2, which in turn can lead to 

increased transcription of other components of the AP-1 complex: Jun and Fos. p38 has 

also been shown to activate AP-1 via direct phosphorylation and activation of c-Jun. 

Activation of AP-1 in this study was not restored by JNK during p38 inhibition, suggesting 
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that AP-1 activation was dependent on p38 (Humar et al., 2007). How p38 and JNK 

activate AP-1 is therefore complex and may depend on type, level and period of stress. 

p38α is crucial to inflammatory cytokine production and signalling (Lee and Young, 1996, 

Lee et al., 1994). p38 is involved in the regulation and increased expression of various 

genes involved in inflammation including; IL-1β, IL-6, IL-8, TNF-α (Kyriakis and Avruch, 

2001, Manthey et al., 1998, Lee et al., 1999b, Baldassare et al., 1999, Saccani et al., 2002). 

Therefore, along with JNK, p38 has an important role in contributing to inflammatory 

signalling through activation of AP-1 and the subsequent expression of several genes 

involved in inflammation. 

 

1.3.2 Macrophage activation 

Inflammatory signalling functions to recruit cells of the immune system. Macrophages are 

a major cell type recruited to sites of inflammation. Macrophage recruitment and activation 

is associated with inflammation. It is possible that ER stress-induced inflammation has the 

capacity to recruit and activate macrophages. This is important in disease progression and 

in the context of PD, microglia (which are the resident macrophages of the nervous 

system), have been shown to be highly activated and this activation may induce damaging 

levels of inflammation. In the context of T2D, macrophage activation is also a potential 

cause of damaging levels of inflammation which may induce cell death and ER stress. 

Monocytes are precursor cells to macrophages. Monocyte development involves 

production of myeloid progenitor cells in the bone marrow which give rise to monoblasts. 

Monoblasts develop into pro-monocytes and finally into monocytes which enter the 

bloodstream. These monocytes can migrate to specific tissues, via the blood stream, to 

replenish tissue-specific macrophages such as macrophages of the liver (Kupffer cells) and 

central nervous system (microglia) (Gordon and Taylor, 2005). Apart from replenishment 

of microglia from monocytes derived from the blood stream, microglia can also increase 

through local proliferation of myeloid progenitor cells in the central nervous system 

(Ajami et al., 2007).  

The main functions of macrophages are the removal of cellular debris generated during 

tissue remodelling and the clearing of cells that have undergone apoptosis (Mosser and 

Edwards, 2008). In these situations macrophages appear ‘unstimulated’ and do not produce 

cytokines (Kono and Rock, 2008). The phagocytic activity only is observed suggesting that 
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most of the macrophage-mediated phagocytosis which occurs is independent of other 

immune cells. However, macrophages can be activated through a number of stimuli into a 

more ‘aggressive’ physiology involving production of proinflammatory cytokines, reactive 

oxygen species (ROS) and nitric oxide (NO). Activation of tissue specific macrophages 

such as microglia in the central nervous system and macrophages in adipose tissue has 

been reported in PD (McGeer et al., 1988, McGeer et al., 2003, Barcia et al., 2004, 

Virgone-Carlotta et al. 2013) and T2D (Lee et al., 1999a, Takahashi et al., 2003, Cancello 

et al., 2005, Di Gregorio et al., 2005) respectively. Thus, changes in macrophage 

physiology may be an important step in the progression of age-related metabolic and 

neurodegenerative diseases. 

One such stimulus which alters macrophage physiology is debris from cells which have 

undergone necrosis. This debris contains many endogenous danger signals which would 

normally be hidden from macrophages as they are normally only present within the cell 

(Zhang and Mosser, 2008). Upon phagocytosis of these danger signals macrophages 

undergo changes in their physiology resulting in increased production of proinflammatory 

mediators including cytokines (Mosser and Edwards, 2008). However, the response of 

macrophages to these danger signals is only one of the several stimuli, which can lead to 

the activation of macrophages. 

Obesity is associated with chronic inflammation (Zeyda and Stulnig, 2007). In obesity the 

accumulation of macrophages has been reported and this leads to increased cytokine 

production and the development of insulin resistance (Lumeng et al., 2007, Zeyda and 

Stulnig, 2007). Adipose tissue-associated macrophages can act as sources of 

proinflammatory cytokines. Macrophage activation during obesity is believed to be partly 

mediated through the debris of necrotic cells, with necrosis of adipocytes being associated 

with obesity (Cinti et al., 2005). This activation of macrophages leads to production of 

TNF and IL-6 which can interfere with adipocyte insulin signalling (Bastard et al., 2006). 

Macrophages can be classically activated and alternatively activated. Classical activation is 

well defined whereas alternative activation encompasses many different mechanisms 

which can stimulate macrophage activation. Many of these mechanisms are newly 

discovered and poorly understood. Classical activation of macrophages occurs via two 

signals. The cytokine IFNγ primes macrophages for activation but alone it is not sufficient 

for full classical activation of macrophages (Nathan, 1991). The final signal required to 

fully activate macrophages involves TNF. Exogenous TNF itself, or an inducer of 
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macrophage TNF production, can induce macrophage activation. The physiologically 

relevant second signal is most likely a molecule, such as LPS, which causes Toll-like 

receptor ligation and the subsequent production of endogenous TNF by the macrophage 

(Mosser, 2003). Activated macrophages migrate to sites of inflammation where they 

degrade pathogens. Activated macrophages have increased ability to kill and degrade 

intracellular organisms through increased production of ROS and NO (Mosser, 2003). In 

the murine system identification of activated macrophage cells is easily measured through 

their increased production of NO (Hibbs, 2002, MacMicking et al., 1997). 

Along with activation of macrophages, cytokines can have an important role in inhibiting 

macrophage activation. Both TGFβ and IL-10 have been shown to have an important role 

in inhibiting macrophage activation and knockout of either of these two cytokines produces 

mice with increased susceptibility to develop inflammatory pathologies (Ho and Moore, 

1994, Reed, 1999). Thus activation of macrophages is tightly controlled between 

expression of various pro- and anti-inflammatory mediators. 

Overall, macrophages play an important role in maintenance of tissues as well as in the 

innate immune response. Activated macrophages can produce toxic molecules and further 

mediators of inflammation. Therefore macrophages are highly involved in inflammation of 

various tissues including adipose tissue and the central nervous system. They have been 

implicated in the progression of many diseases including PD and T2D. 

1.4 The UPR and inflammation 

All three branches of the UPR can contribute to inflammatory signalling (Figure 1.3). 

ATF6 can activate the transcription of acute phase response genes (Zhang et al., 2006). 

IRE1α has been shown to interact with the E3 ubiquitin ligase TRAF2 which in turn 

phosphorylates and activates JNK (Urano et al., 2000). Activated JNK phosphorylates and 

activates the transcription factor AP-1 (Davis, 2000). The IRE1α and TRAF2 interaction 

has also been shown to activate NF-B suggesting a strong role for the UPR in 

inflammatory signalling (Kaneko et al., 2003). NF-κB can also be activated through the 

PERK pathway. Translation arrest mediated by PERK-dependent activation of eIF2α leads 

to activation of NF-κB (Jiang et al., 2003a, Deng et al., 2004, Wu et al., 2002, Wu et al., 

2004). 
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1.4.1 The UPR and JNK 

Various studies have provided evidence for JNK activation during ER stress. It is thought 

that the activation of IRE1α’s kinase domain following ER stress results in the interaction 

with TRAF2 via its C-terminal domain. This interaction promotes the clustering of the N-

terminal effector domain of TRAF2 (Urano et al., 2000). Interaction of TRAF2 with IRE1α 

during ER stress causes JNK activation and this was found to be dependent on the 

MAPKKK ASK1 (Nishitoh et al., 2002, Gotoh and Cooper, 1998). During oxidative stress 

the oligomerisation of ASK1 leads to its activation and thus the TRAF2-IRE1α interaction 

may also promote the oligomerisation of ASK1 (Tobiume et al., 2001). Thr845 

phosphorylation in ASK1 is required for its ability to phosphorylate and activate JNK 

whilst ASK1 autophosphorylation of Thr845 can be a result of ASK1 oligomerisation 

(Tobiume et al., 2002). ASK1 phosphorylates the upstream kinases for JNK; MKK4 and 

MKK7 (Ichijo et al., 1997). ASK1 can also phosphorylate MKK3 and MKK6 which 

activate p38 (Tobiume et al., 2002). In summary, IRE1α-TRAF2 interaction activates 

ASK1 which in turn phosphorylates JNK and p38 (Figure 1.3).  

Most studies investigating ER stress-mediated JNK activation have shown IRE1α 

signalling to be responsible. However, the PERK branch of the UPR may also contribute to 

JNK activation during ER stress.  CHOP expression, which is induced by PERK signalling, 

can promote ER stress-induced release of Ca
2+

 from the ER lumen. It has been reported 

that the ER stress-induced release of Ca
2+

 causes activation of Ca
2+

/calmodulin-dependent 

protein kinase II (CaMKII). Activation of the MKKKs ASK1 and transforming growth 

factor β activator kinase 1 (TAK1) by CaMKII promotes JNK activation (Kashiwase et al., 

2005, Ishitani et al., 2003). Thus JNK can be activated during ER stress via at least two 

different mechanisms (Figure 1.3) which suggests it may be an important target of the 

UPR. 

 

1.4.1.1 ER stress, JNK and apoptosis 

ER stress has been implicated in inducing JNK activation in many studies (see above). In 

many of these studies ER stress-mediated JNK activation was implicated in apoptosis 

(Jung et al., 2014, Zhang et al., 2001, Smith and Deshmukh, 2007, Teodoro et al., 2012, 

Chen et al., 2008, Wang et al., 2009, Jung et al., 2012, Kang et al., 2012, Arshad et al., 

2013, Nishitoh et al., 2002, Gu et al., 2009). However, most of these studies are supported 
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by pharmacological data. For example, ER stress through ER stress mimetic drug, 

tunicamycin, causes JNK activation and apoptosis. The use of resolvin D1, a potent anti-

inflammatory lipid mediator (Serhan, 2010), was reported to attenuate ER stress-mediated 

apoptosis through inhibition of JNK signalling (Jung et al., 2014). However, rescue from 

ER stress-mediated apoptosis was not dependent on alleviation of ER stress. Although ER 

stress-dependent JNK phosphorylation was reported to be inhibited after resolvin D1 

treatment it was not causally established if ER stress-mediated JNK activation was 

responsible for the ER stress-induced apoptosis. 

The bZIP transcription factor c-jun is activated by JNK (Hibi et al., 1993). Along with 

JNK, c-Jun is phosphorylated during ER stress (Zhao et al., 2008). c-Jun expression can 

protect cells against ER stress-induced apoptosis through reduction of caspase 12 cleavage 

(Zhao et al., 2008). In response to ER stress, c-Jun is required for the transcription of 

Adapt78, which inhibits calcineurin (Zhao et al., 2008). Calcineurin is downstream of 

caspase 12 and its inhibition has been shown to partially attenuate thapsigargin-induced 

apoptosis (Mukerjee et al., 2000). How calcineurin contributes to apoptosis is not fully 

established but it has been proposed to, dephosphorylate BAD causing it to dimerize BCL-

2 and BCL-XL, thus promoting the release of cytochrome c (Wang et al., 1999). Therefore 

JNK activation may mediate prosurvival signalling during ER stress through Adapt78 

transcription leading to inhibition of calcineurin (Darling and Cook, 2014). However, this 

proposed model of ER stress-mediated JNK activation and prosurvival signalling is mostly 

based on circumstantial evidence and a causal link between JNK and antiapoptotic 

signalling during ER stress via this mechanism has not been demonstrated. 
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Figure 1.3. Activation of inflammatory signalling pathways by the UPR. 

IRE1, PERK and ATF6 can activate inflammatory signalling pathways. IRE1 activates inflammation 

via interection with TRAF2 leading to either IKK or ASK1 activation to promote expression of 

inmflammatory genes via NF-κB or AP-1 respectively. PERK can activate either NF-κB or AP-1 

through signalling downstream of eIF2α. ATF6 can activate acute phase response genes as well as 

NF-κB via an unknown mechanism. 

 

1.4.2 The UPR and p38 

Early evidence of p38 activation during ER stress came from a study by Hung et al. in 

which they showed that ER stress induced by tunicamycin or brefeldin A caused activation 

of p38 (Hung et al., 2004). Since then further studies have provided evidence that JNK is 

not the only MAPK activated during ER stress and that other MAPKs may also form part 

of the UPR during ER stress.  

Using human gingival fibroblasts to study the role of ER stress in gingival tissue it was 

demonstrated that ER stress caused p38 activation, autophagy and cell death. Use of the 
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p38 inhibitor SB203580 inhibited ER stress-mediated p38 phosphorylation, autophagy and 

cell death (Kim et al., 2010). Another study investigating ER stress and autophagy but in 

fibroblasts cells from Pompe disease patients observed p38 activation. In this study ER 

stress activated p38 and this p38 activation was required for the increased autophagy 

observed with ER stress treatments (Shimada et al., 2011). 

Correlative evidence using compounds which have been shown to, in addition to other 

effects, induce ER stress also suggest a link between ER stress and p38 activation. The 

natural pesticide dihydrorotenone (DHR) is believed to cause PD. DHR can induce ER 

stress and p38 activation (Zhang et al., 2013). However, activation of p38 in DHR 

treatment has so far not been shown to be dependent on ER stress and may be a product of 

another effect of the pesticide. As ER stress can activate p38 in other studies (Hung et al., 

2004, Kim et al., 2010, Shimada et al., 2011) it is possible that ER stress induced by DHR 

causes phosphorylation of p38. Abrin, a toxalbumin obtained from the seeds of Abrus 

precatorius, is a potent ribosome and subsequent protein synthesis inhibitor (Benson et al., 

1975). Activation of ER stress through abrin-mediated inhibition of protein synthesis was 

shown to activate p38 and JNK in Jurkat cells. Abrin treatment eventually led to apoptosis 

which was dependent of p38 but not JNK (Mishra and Karande, 2014). This recent study 

not only contributes to the evidence implicating ER stress in activation of p38 but also 

suggests that ER stress-mediated apoptosis involves p38 signalling. However, although it 

was demonstrated that p38 and JNK were both activated by abrin, it has not been causally 

proven that this p38 and JNK activation is indeed caused by ER stress as abrin may have 

other effects capable of activating JNK and p38 independent of ER stress.  

Interestingly, activation of p38 has itself been shown to induce markers of ER stress such 

as upregulation of BiP and PERK signalling (Ranganathan et al., 2006). It has also been 

demonstrated that p38 can be involved in control of some UPR signalling pathways. For 

example, phosphorylation of CHOP by p38 increases its activity (Wang and Ron, 1996) 

and in HeLa cells apoptosis mediated by CHOP activation was found to be p38-dependent 

(Maytin et al., 2001). ATF6 has also been shown to be regulated by p38 (Thuerauf et al., 

1998). ATF6 can be phosphorylated by and is a substrate for p38 in vitro. In the same 

study it was shown that the transactivation activity of ATF6 was promoted in primary cells 

transfected with ATF6 and p38α, and that sustained p38 activation caused increased 

activity of ATF6 at the BiP promoter. These studies provide evidence for a strong link 

between UPR signalling and p38 signalling and that these two pathways have the ability to 

activate each other. 
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Overall, there is strong evidence that p38 is another MAPK signalling pathway which can 

be activated through ER stress (Figure 1.3). As discussed ER stress activates ASK1-JNK 

through an interaction between IRE1α and TRAF2. ASK1 can activate MKK4/MKK7 and 

MKK3/MKK6, which are the upstream kinases for JNK and p38 respectively (Ichijo et al., 

1997). It is therefore possible that ER stress-mediated ASK1 activation is a potential 

mechanism through which ER stress activates p38 signalling. MAPK signalling has been 

observed during ER stress so frequently that MAPK signalling could be considered part of 

the extremely complex and wide-reaching UPR. 

 

1.4.3 The UPR and NF-B 

All three branches of the UPR can activate NF-κB signalling. The IRE1α branch of the 

UPR activates NF-κB via the phosphorylation and the subsequent degradation of IκBα (Hu 

et al., 2006b, Kaneko et al., 2003) (Figure 1.3). In a similar manner to JNK the IRE1α-

TRAF2 interaction during ER stress can phosphorylate IKK which in turn phosphorylates 

IκBα (Hu et al., 2006b, Urano et al., 2000). Once IκBα is degraded NF-κB is free to 

transcribe the proinflammatory gene programme (Hu et al., 2006b, Zhang and Kaufman, 

2008). 

NF-κB can also be activated through the PERK pathway (Figure 1.3). As described, NF-κB 

is activated by the degradation of IκBα, which allows NF-κB to translocate to the nucleus 

where it can act as a transcription factor for various inflammatory genes. As described 

earlier PERK signalling inhibits translation, which means proteins with a shorter half-life 

will be depleted quicker. IκB has a shorter half-life than NF-κB (the protein it inhibits) so 

PERK signalling can directly activate NF-κB by freeing it from IκB through translational 

arrest (Deng et al., 2004, Wu et al., 2005). ER stress-induced activation of NF-κB should 

therefore allow its translocation into the nucleus. Indeed, ER stress induced by tunicamycin 

or brefeldin A caused translocation of NF-κB (Hung et al., 2004). 

The ATF6 branch of the UPR can also activate NF-κB via a currently unknown mechanism 

during ER stress induced by SubAB (Hotamisligil, 2010, Yamazaki et al., 2009). 

Therefore, all three branches of the UPR can activate NF-κB through 2 distinct and one 

unknown mechanism suggesting an important role for NF-κB in ER stress-mediated 

inflammatory signalling. 

 



24 

 

1.4.4 The UPR, cytokine production and macrophage activation 

As described ER stress can activate various inflammatory signalling pathways. These 

inflammatory signalling pathways ultimately lead to the increased production of 

proinflammatory mediators. Experimental induction of ER stress leads to the increased 

expression of several proinflammatory mediators such as IL-6, IL-8, MCP-1 and TNFα (Li 

et al., 2005b). 

Experimental models of obesity have also demonstrated links between ER stress and 

cytokine production. For example, ER stress induced by free fatty acids caused increased 

ROS and cytokine production in 3T3-L1 adipocytes (Kawasaki et al., 2012). Adult derived 

human adipocyte stem cells exposed to ER stress, induced by thapsigargin, tunicamycin or 

palmitate, displayed increased TNF-α mRNA expression and activation of the NF-κB 

pathway (Mondal et al., 2012). It is therefore likely that ER stress plays an important role 

in inflammation originating from adipocytes. In fact, in many studies reporting 

inflammation and recruitment of macrophages in adipose tissue the inflammation is 

mediated from pathways which are also activated by the UPR (Hotamisligil, 2010). 

Whether or not inflammation in other tissues and disease settings is dependent on ER stress 

has not be extensively investigated. 

Interestingly, conditioned media from cancer cells experiencing ER stress can activate 

macrophages and transmit ER stress (Mahadevan et al., 2011). The authors have termed 

this discovery as ‘transmissible’ ER stress. This study suggests an interesting phenomenon 

in that ER stressed cells may be able to activate macrophages through inducing ER stress 

in macrophages as well as inducing proinflammatory signalling. It is a possibility that 

macrophages activated by cancer cells secrete proteins which causes a high burden on the 

ER protein folding capacity of the macrophage to induce ER stress and that this is the 

mechanism of ‘transmissible’ ER stress. 

Overall, evidence points to ER stress having an important role in transmitting a 

proinflammatory signal to cells of the immune system. ER stress having such a role is not 

entirely surprising given that ER stress occurs during wound healing (Wang et al., 2010), 

bacterial infection (Cho et al., 2013) and viral infection (Zhang and Wang, 2012) all three 

of which are likely to benefit from an immune response and inflammation. 
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1.5 The UPR and diabetes 

1.5.1 Diabetes 

Diabetes mellitus, commonly referred to as diabetes is a group metabolic disorders 

resulting from a defect in insulin secretion, insulin action or both. Type 2 diabetes (T2D) is 

one of these disorders and is different from T1D in that it begins with insulin resistance. 

T2D is a global health issue (Abegunde et al., 2007) as well as being an economic burden. 

In 2012 the cost of diabetes in the U.S. alone was estimated to be $245 billion and is 

expected to rise (American Diabetes, 2013) T2D is a significant risk factor for some forms 

of dementia, such as those observed in AD (Li and Holscher, 2007) and PD (Hu et al., 

2007). 

T2D is a result of both lifestyle and genetics. Several lifestyle factors are known to 

contribute to T2D such as: physical inactivity, excessive consumption of alcohol, having a 

sugar-rich diet, and being overweight (Olokoba et al., 2012). Monozygotic twins have a 

concordance of nearly 100% whilst almost one quarter of those with T2D have a family 

history of the disease (Olokoba et al., 2012). Thus evidence points to a strong genetic role 

in T2D. The high prevalence of T2D amongst certain ethnic groups is also evidence of the 

importance of genetics in development of this disease (Freeman and Cox, 2006).  

It is thought that T2D arises from inheritance of a set of susceptibility genes. Numerous 

genes have been identified through population studies and animal models such as PPARγ, 

KCNJ11, HNF4A, and CAPN10 (Olokoba et al., 2012). Most genes identified are 

associated with β-cell function but some genes are associated with the function of other 

tissues such as the liver and adipose tissue. Disruption of genes coding for proteins 

involved in the insulin signalling pathway has also been identified as being contributory to 

T2D (Sokhi et al., 2015). Defects in one of these genes, INSR (which codes for the insulin 

receptor), results in insulin resistance and T2D (Sesti et al., 2001), (Bodhini et al., 2012). It 

is possible that long lasting ER stress disrupts levels of the insulin receptor to mimic 

insulin resistance observed in individuals with defects in the INSR gene (see Chapter 5). 

Studies have also revealed that polymorphisms of the insulin receptor substrate genes are 

associated with development of T2D (Li et al., 2016). The current model for the 

development of T2D via UPR activation involves disruption of the insulin receptor 

substrate (discussed later) and as such links between disruption of genes and action of the 

UPR can be drawn.  
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There are some noted cases of conditions which give rise to or either contribute to T2D 

such as metabolic syndrome (Syndrome X), Cushing’s syndrome, thyrotoxicosis, cancer, 

acromegaly, and chronic pancreatitis (Freeman and Cox, 2006). Thus T2D can be caused 

by lifestyle, genetics and pre-existing conditions. A rare disorder known as Wolcott-

Rallison syndrome results in neonatal/early-onset diabetes. Wolcott-Rallison syndrome is 

caused by mutations in gene which codes for the ER stress-sensing protein PERK (Julier 

and Nicolino, 2010). It is hypothesised that loss of PERK through these mutations limits 

the ability of β-cells to handle a heavy protein folding load resulting in severe ER stress 

and apoptosis. The role for severe ER stress in β-cells is also supported by the findings that 

mutations in the ER Ca
2+

 channel coding gene WFS1 cause Wolfram syndrome (Inoue et 

al., 1998). Wolfram syndrome is characterised by several disorders including optic 

atrophy, deafness and diabetes (Boutzios et al., 2011). Thus diabetes, both type I and II, 

can be a result of pre-existing conditions, some of which suggest a role for the UPR in the 

development of diabetes. 

 

1.5.1.1 Insulin resistance 

Insulin resistance is a state of weakened cellular response to the hormone insulin. Whilst 

insulin resistance is not recognised as a disease, it can lead to the development of T2D. 

Insulin resistance causes increased secretion of insulin from pancreatic β-cells in an 

attempt to maintain normal blood glucose levels. The resulting increased burden on 

pancreatic β-cells eventually causes these cells to have decreased functionality and as a 

result produce less insulin over time (Spielman et al., 2014). Identifying the early 

molecular events underlying the development of insulin resistance is therefore an 

important step in furthering the understanding and treatment of T2D.  

 

1.5.1.2 The insulin signalling pathway 

Pancreatic β-cells are the main cells responsible for the production of insulin (Marchetti et 

al., 2006). Insulin is a 51 amino acid peptide hormone belonging to the family of insulin-

like hormones along with insulin-like growth factor 1 (IGF-1) and IGF-2 (Spielman et al., 

2014). Insulin is most commonly known for stimulating glucose uptake but it can also 

stimulate cell proliferation and protein synthesis (Shulman, 1999). Insulin also has 
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important roles in prosurvival signalling (Kim et al., 2001) and regulating healthy neuronal 

function (Nistico et al., 2012). 

Insulin binding to the insulin receptor induces the insulin signalling pathway (Figure 1.4). 

Binding of insulin to the insulin receptor causes tyrosine phosphorylation of the insulin 

receptor (White et al., 1988, Tornqvist et al., 1988, Tornqvist and Avruch, 1988) through 

activation of the protein tyrosine kinase domain and subsequent autophosphorylation 

(Kasuga et al., 1982, Wilden et al., 1992, Rhodes and White, 2002). Binding of insulin to 

the insulin receptor leads to the internalisation of the insulin receptor and insulin complex. 

The insulin-insulin receptor complex is then separated in endosomes prior to the 

degradation of insulin whilst the insulin receptor is recycled back to the plasma membrane 

(Foti et al., 2004). Activated insulin receptors induce the tyrosine phosphorylation of the 

insulin receptor substrates (IRS) 1-4, and several Shc proteins (Myers and White, 1996, 

Paz et al., 1996). Those proteins which are phosphorylated by the insulin receptor act as 

anchors for proteins containing Src-homology-2 (SH-2) domains (Cheatham and Kahn, 

1995). The subunits of phosphatidylinositol (PI) 3-kinase are recruited to the cell 

membrane, through their SH-2 domains, by IRS and Shc proteins (Backer et al., 1992). 

Activated PI 3-kinase induces the recruitment to the membrane of phosphoinositide-

dependent kinase (PDK 1) and PDK 2 as well as several protein kinase B (PKB/AKT) 

isoforms (White, 2002). Upon localisation to the membrane, PDKs can activate AKT1-2 

via phosphorylation. Activated AKT1-2 are important signalling proteins for the control of 

various cellular events including; glucose transport, cell growth, survival, proliferation, and 

differentiation. AKT is involved in many signalling pathways by phosphorylating a 

number of nuclear and cytosolic proteins that regulate diverse cellular functions (Ahn, 

2014). For example, AKT can phosphorylate ASK1 at Ser83 to decrease its activity 

resulting in a reduction of JNK activation (Gu et al., 2009). This inhibition of JNK 

activation by AKT reduces sensitivity to stress induced apoptosis (Kim et al., 2001) and is 

just one way in which insulin signalling promotes survival (discussed later).  
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Figure 1.4. The insulin signalling pathway. 

Binding of insulin to the insulin receptor induces the insulin receptor to be phosphorylated at tyrosine 

residues. The insulin receptor substrates (IRS) 1-4, and several Shc proteins are phosphorylated by 

activated insulin receptors. The subunits of phosphatidylinositol (PI) 3-kinase are recruited, through 

there SH-2 domains, by IRS and Shc proteins. Phosphoinositide-dependent kinase (PDK 1) and PDK 

2 and several protein kinase B (PKB/AKT) isoforms are recruited to the membrane after PI 3-kinase 

activation. Upon localisation to the membrane, PDKs can activate AKT1-2 via phosphorylation. 

Phosphorylated AKT phosphorylates and inhibits glycogen synthase kinase 3 (GSK3). When AKT is 

not inhibiting GSK3, when insulin signalling is not occurring, GSK3 is active and inhibits glucose 

uptake and glycogen synthesis. Thus, during insulin signalling glucose uptake and glycogen synthesis 

occurs. 

 

1.5.2 ER stress in obesity and insulin resistance 

ER stress is strongly associated with obesity and insulin resistance in muscle, adipose and 

hepatic tissues. How ER stress affects insulin signalling varies depending on the tissue and 

cell type. However, there is conflicting evidence between studies on the same tissue and 

cell types. Nevertheless, the consensus is that ER stress inhibits normal insulin signalling. 

The main source of ER stress in obesity is thought to originate from free fatty acids 
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(Kawasaki et al., 2012, Mondal et al., 2012, Alhusaini et al., 2010). Cytokines and 

inflammatory signalling may also provide a mechanism for the development of ER stress 

in obesity and T2D. For example, cytokines are reported to induce ER stress in mouse 

insulinoma-derived β-cells (Hasnain et al., 2014). Regardless of the mechanisms ER stress 

has been observed in muscle, adipose and hepatic tissues or in cultured cells originating 

from these tissues. 

 

1.5.2.1 Hepatocytes and hepatic tissue 

ER-stress has been detected in the liver of both obese non-human animals (Ozcan et al., 

2004) and obese humans (Puri et al., 2008, Gregor et al., 2009). Hepatic inhibition of 

IRE1α through overexpression of BAX inhibitor-1 has been shown to protect mice from 

obesity-induced insulin resistance (Bailly-Maitre et al., 2010). Transgenic mice with a 

constitutively active form of GADD34, which causes inhibition of the ER stress induced 

phosphorylation of eIF2α, have reduced gluconeogenic gene expression and consequent 

reduction in hepatic glucose production (Birkenfeld et al., 2011). Tunicamycin-induced ER 

stress caused insulin resistance in Hep G2 cells which was demonstrated through the 

observation that phosphorylated AKT (p-AKT) levels decreased (Achard and Laybutt, 

2012). In the same study it was also reported that there was a decrease in phosphorylated 

AKT with palmitate-induced ER stress. The chaperone tauroursodeoxycholic acid 

(TUDCA), which is reported to decrease ER stress, increased insulin sensitivity in hepatic 

tissue of obese patients (Kars et al., 2010).  Thus there is mounting evidence implicating 

ER stress in hepatic tissue occurring during obesity and insulin resistance. 

 

1.5.2.2 Adipocytes and adipose tissue 

ER stress has been detected in adipose tissue of obese humans (Gregor et al., 2009, Boden 

et al., 2008, Sharma et al., 2008) and mice (Ozcan et al., 2004). Markers of ER stress such 

as BiP and XBP-1s mRNA were reduced after weight loss in humans (Gregor et al., 2009). 

Furthermore, markers of ER stress such as XBP-1 mRNA and PDI expression were shown 

to be at higher levels in adipose tissue of obese patients compared to lean (Boden et al., 

2008). Chaperones which are regulated by ATF6 increase in subcutaneous fat of obese 

patients (Sharma et al., 2008) suggesting activation of UPR, and ATF6 specifically, in 

obese humans.  
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ER stress can be activated in adipocytes through exposure to saturated fatty acids and high 

glucose (Alhusaini et al., 2010). However, other investigators from the laboratory in which 

the data for this thesis was produced do not observe evidence of saturated fatty acid-

induced ER stress in cellular models, but instead report that glucose starvation and hypoxia 

may be the main causes of ER stress in adipocytes (Mihai and Schröder, 2014). Grp78 

heterozygous mice which display an adaptive UPR, defined by increased expression of ER 

chaperones and increased folding capacity, show reduced high fat diet (HFD)-induced 

obesity and attenuated insulin resistance in white adipose tissue (Ye et al., 2010). Further 

evidence from work on murine cell lines has confirmed a role for ER stress in insulin 

signalling. For example, ER stress inhibited insulin signalling in 3T3 adipocytes (Xu et al., 

2010). 

 

1.5.2.3 Myotubes and muscle tissue 

In a study from 2004, researchers found that obesity was associated with ER stress in liver 

and adipose tissue but not muscle tissue (Ozcan et al., 2004). However, a later study by the 

same group showed that relieving ER stress with chemical chaperones was able to improve 

insulin sensitivity in muscle tissue of obese mice, suggesting that ER stress is important in 

regulating insulin signalling in muscles cells (Ozcan et al., 2006). In agreement with this 

palmitate has been shown to cause ER stress in C2C12 myotubes (Hage Hassan et al., 2012, 

Rieusset et al., 2012) as well as human myotubes (Hage Hassan et al., 2012, Peter et al., 

2009). However it was found that ER stress did not mediate the palmitate-induced insulin 

resistance in myotubes (Hage Hassan et al., 2012). Treatment of cultured myotubes with 

the ER stressor tunicamycin has also been shown to reduce insulin signalling via serine 

phosphorylation of IRS1 (Hage Hassan et al., 2012, Rieusset et al., 2012). Finally, 

evidence for a role for ER stress impacting insulin signalling in muscle tissue is 

demonstrated through the finding that TUDCA treatment increased insulin sensitivity in 

muscle tissue of obese patients (Kars et al., 2010). TUDCA has been shown to alleviate ER 

stress (Kars et al., 2010, Rieusset et al., 2012) and thus TUDCA treatment leading to 

increased insulin signalling suggests, but not necessarily demonstrates, the involvement of 

ER stress in muscle tissue of obese patients. 
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1.5.2.4 Other cell types 

In addition to hepatocytes, myotubes and adipocytes other cells affected by obesity and 

insulin resistance have also exhibited ER stress. For example accumulation of cholesterol 

in the ER of macrophages results in increased ordering of the ER membrane. This inhibits 

sarcoplasmic-endoplasmic reticulum calcium ATPase-2b activity resulting in depletion of 

calcium and activation of ER stress due to the calcium dependent nature of disulphide bond 

formation during protein folding (Li et al., 2004a). 

Studies therefore suggest that ER stress plays some part in the development of insulin 

resistance in various tissue types. However, the addition of chemical chaperones and the 

subsequent inhibition of ER stress does not rescue the palmitate-induced insulin resistance 

in mouse and human muscle cells (Hage Hassan et al., 2012, Rieusset et al., 2012). 

Consistent with these data, overexpression of the ER chaperone Grp78 protein does not 

protect muscle cells from palmitate-induced insulin resistance (Rieusset et al., 2012). 

However, it is worth noting that palmitate, although reported to induce ER stress, may be 

causing ER stress-independent insulin resistance and chemical chaperones therefore 

alleviate ER stress but not insulin resistance.  Thus, although studies highlight the role of 

ER stress in insulin resistance, the mechanism through which ER stress, or chemicals 

which induce ER stress cause insulin resistance, is likely to vary depending on ER stress 

induction and tissue or cell type.  

 

1.5.3 How ER stress causes insulin resistance 

Two mechanisms through which ER stress may cause insulin resistance have been 

proposed: a) activation of JNK by IRE1α-TRAF2 signalling resulting in S307 

phosphorylation of IRS1 by JNK, b) induction of tribbles homolog 3 (TRB3) by the PERK 

pathway and the subsequent inhibition of AKT and IRS1 via formation of a complex with 

TRB3.  

 

1.5.3.1 IRS1 

The most common general (not necessarily involving ER stress) mechanism causing 

insulin resistance involves serine phosphorylation of IRS proteins. IRS serine 
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phosphorylation inhibits recruitment of PI 3-kinase to IRS proteins (Qiao et al., 1999, 

White, 2003, Um et al., 2004, Patti and Kahn, 2004, Aguirre et al., 2002, Qiao et al., 2002) 

as well as inhibiting the insulin receptor-mediated tyrosine phosphorylation of IRS proteins 

(Ozcan et al., 2006, Ozcan et al., 2004). Serine phosphorylation of IRSs is thought to 

interfere with the interaction between the insulin receptor and the IRSs through 

modification of IRS phosphotyrosine binding (PTB) domain (Tanti et al., 1994). Serine 

phosphorylation of IRS1 can also lead to its degradation (Shah et al., 2004) and thus may 

be a secondary mechanism through which serine phosphorylation of IRS1 inhibits insulin 

signalling. JNK is one of several protein kinases thought to be responsible for the serine 

phosphorylation of IRS proteins (Aguirre et al., 2000, Gao et al., 2004, Hirosumi et al., 

2002, Bandyopadhyay et al., 2005). Various stresses have been shown to induce JNK-

mediated S307 phosphorylation of IRS1, such as free fatty acid treatment, inflammation 

and ER stress (Nguyen et al., 2005, Hotamisligil et al., 1996, Hotamisligil et al., 1993, 

Peraldi et al., 1996, Uysal et al., 1997, Qi and Pekala, 2000, Hotamisligil and Spiegelman, 

1994). Other protein kinases implicated in serine phosphorylation of IRS include; p70
S6K

 

(Um et al., 2004, Tremblay et al., 2005, Pende et al., 2000), IKK (Gao et al., 2002b), AKT 

(Ozes et al., 2001), PKCζ (Ravichandran et al., 2001, Bourbon et al., 2002, Liu et al., 

2001), PKCθ (Gao et al., 2004, Li et al., 2004b), GSK 3 (Ilouz et al., 2006, Eldar-

Finkelman and Krebs, 1997, Liberman and Eldar-Finkelman, 2005), ERK (Engelman et 

al., 2000, Rui et al., 2001, De Fea and Roth, 1997), mTOR (Ozes et al., 2001, Haruta et al., 

2000) and IRAK (Kim et al., 2005). These other protein kinases have been shown to be 

involved in serine IRS phosphorylation under stress conditions such as free fatty acids and 

inflammation. However, JNK is the main protein kinase thought to lead to the inhibition of 

insulin signalling during ER stress. 

 

1.5.3.2 The IRE1α-TRAF2-JNK model of ER stress-induced insulin resistance 

One model of ER stress-mediated insulin resistance is that activation of JNK by IRE1α-

TRAF2 signalling results in S307 phosphorylation of IRS1 by JNK (Figure 1.5). IRE1α 

can activate JNK by recruiting TRAF2 and ASK1 (Urano et al., 2000). The role of JNK in 

ER stress-mediated insulin resistance is supported by the following observational studies. 

The IRE1α-JNK pathway activation is elevated in obese humans compared to none obese 

humans (Boden et al., 2008). Markers of ER stress such as XBP-1 mRNA and PDI were 

shown to be at higher levels in adipose tissue of obese patients compared to lean. JNK was 
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also activated at higher levels (Boden et al., 2008) demonstrating the importance of IRE1α 

and JNK activation in human obesity. JNK activation and markers of ER stress such as BiP 

and XBP-1s mRNA were reduced after weight loss in humans (Gregor et al., 2009). The 

Gregor et al. study also observed some increased insulin sensitivity in skeletal muscle, 

adipose and hepatic tissue. However, it is worth noting that these patients were not insulin 

resistant suggesting that the JNK and UPR activation in these obese patients, although 

present, was not sufficient to cause detectable insulin resistance. 

Treatment of cultured myotubes with the ER stressor tunicamycin has also been shown to 

activate the IRE1α-JNK pathway and reduce insulin signalling via phosphorylation of 

IRS1 (Hage Hassan et al., 2012, Rieusset et al., 2012). However, IRE1α-JNK activation 

and IRS1 phosphorylation with tunicamycin is only correlative evidence and as such this 

inhibition of insulin signalling may not be dependent on ER-JNK signalling.  

Mechanistic evidence demonstrating a link between JNK and ER stress causing insulin 

resistance has also been published. JNK inhibition, using the JNK inhibitor SP600125, was 

reported to protect cells from ER-stress induced insulin resistance (Ozcan 2004). Activated 

JNK is able to phosphorylate serine residues S307/S312 of IRS1, which inhibits insulin 

receptor-induced tyrosine phosphorylation of IRS1 leading to insulin resistance. Consistent 

with JNK inhibiting IRS1 tyrosine phosphorylation, JNK inhibition rescues IRS1 tyrosine 

phosphorylation (Ozcan et al., 2004). In addition, mutating serine 307 of IRS1 to alanine 

prevents JNK-induced IRS1 serine phosphorylation and insulin resistance (Aguirre et al., 

2000).  

Chemical chaperones which relieve ER stress were shown to rescue insulin resistance in a 

mouse model of T2D (Ozcan et al., 2006). Whether or not chemical chaperone-rescued 

insulin resistance in obese mice is mediated via effects on IRE1α-JNK pathway remains 

unclear. TUDCA treatment increased insulin sensitivity in hepatic and muscle tissue of 

obese patients but it is not known whether this was attributable to a reduction in ER stress 

or other off-target effects of TUDCA (Kars et al., 2010). TUDCA treatment did not 

increase insulin sensitivity in adipose tissue. However, ER stress did not decrease in 

adipose tissue with TUDCA treatment suggesting that TUDCA treatment is not always 

sufficient to alleviate ER stress (Kars et al., 2010). 

In conclusion it has been proposed that: 1) ER stress-induced activation of IRE1α results in 

an IRE1α-TRAF2 interaction, 2) the IRE1α-TRAF2 interaction causes ASK1-dependent 

JNK activation, 3) activated JNK phosphorylates residue S308 of IRS1, 4) S308 
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phosphorylation of IRS1 inhibits IR-mediated tyrosine phosphorylation of IRS1, 5) 

inhibition of IRS1 tyrosine phosphorylation prevents downstream insulin signalling such as 

phosphorylation of AKT. The IRE1α-JNK model of insulin resistance suggests that both 

jnk1
-/-

 jnk2
-/-

 and traf2
-/-

 MEFs should be protected from ER stress-induced insulin 

resistance.  

 

Figure 1.5. Proposed model for the disruption of the insulin signalling pathway through JNK-

IRE1α. 

During ER stress IRE1α is phosphorylated and interacts with TRAF2. IRE1α and TRAF2 interaction 

causes JNK phosphorylation in an ASK1 dependent manner. Phosphorylated JNK induces 

phosphorylation of IRS-1 and 2 at serine residues. The phosphorylation of serine residues on IRS1 and 

2 inhibits interaction with the insulin receptor and prevents tyrosine phosphorylation of IRS1 and 2 

during binding of insulin to the insulin receptor. As a result the downstream insulin signalling does 

not occur; leaving GSK3 to be uninhibited and in turn results in inhibition of glucose uptake and 

glycogen synthesis. 
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1.5.3.3 The PERK-TRB3 model of ER stress-induced insulin resistance 

The second proposed model of ER stress-mediated insulin resistance involves induction of 

TRB3 by the PERK pathway and the subsequent inhibition of AKT and IRS1 via 

formation of a complex with TRB3. Observational evidence linking ER stress and TRB3 to 

insulin resistance comes from studies reporting that ER stress induces expression of TRB3 

(Ohoka et al., 2005, Koh et al., 2013) whilst TRB3 is reported to inhibit insulin signalling 

(Figure 1.5) (Du et al., 2003, Avery et al., 2010, Koh et al., 2006, Koh et al., 2013, Liew et 

al., 2010).  

ER stress is linked to TRB3 expression in two studies. Tunicamycin treatment enhanced 

TRB3 promoter activity which could be inhibited by dominant negative forms of CHOP 

suggesting that there may be a role for PERK in TRB3 activation (Ohoka et al., 2005). 

ATF4 knockdown also inhibited tunicamycin-induced TRB3 induction providing a link 

between ER stress and TRB3 induction involving ATF4-CHOP signalling. ER stress 

increases TRB3 expression in C2C12 and adult mouse skeletal muscle (Koh et al., 2013). 

Thus ER stress is reported to induce expression of TRB3. 

TRB3 has also been shown to inhibit insulin signalling (Figure 1.6). However, the role of 

TRB3 in ER stress-mediated insulin resistance is controversial. TRB3 overexpression in 

several cell lines leads to inhibited AKT and IRS1 phosphorylation (Du et al., 2003, Avery 

et al., 2010, Koh et al., 2006, Koh et al., 2013, Liew et al., 2010). Conversely, two studies 

have shown that TRB3 expression does not cause inhibition of insulin signalling 

(Iynedjian, 2005, Takahashi et al., 2008). Consistent with data that TRB3 does not have a 

role in insulin signalling is that TRB3
-/-

 mice show normal hepatic insulin signalling and 

glucose homeostasis (Okamoto et al., 2007). Therefore, the role of TRB3 in ER stress-

induced insulin resistance is not straight forward.  

TRB3 is thought to directly interact with both AKT and IRS1 because studies have 

reported that TRB3 is co-immuniprecipitated with both of these insulin signalling proteins 

(Du et al., 2003, Koh et al., 2006, Koh et al., 2013, Liew et al., 2010). However, it is worth 

noting that in these studies TRB3 has been overexpressed through viral transduction which 

is estimated to cause overexpression of 700-1000 fold at the mRNA level (Iynedjian, 

2005). Nevertheless, TRB3 interaction with IRS1 inhibits IRS1 tyrosine 612 

phosphorylation (Koh et al., 2013).  
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In conclusion, TRB3 is reported to have a controversial role in regulating insulin 

resistance. However, it may be a mechanism through which ER stress induces insulin 

resistance and is worthy of further study alongside JNK, which has also been shown to 

regulate AKT and IRS1 phosphorylation during ER stress. 

 

Figure 1.6. Proposed model for the disruption of the insulin signalling pathway through PERK-

TRB3. 

During ER stress PERK is phosphorylated and activated. Activated PERK induces the upregulation of 

TRB3. In a mechanism similar to JNK, TRB3 can cause phosphorylation of IRS1 and 2 at serine 

residues resulting in decreased interaction with the insulin receptor. TRB3 can also directly inhibit 

AKT. Both mechanisms prevent GSK3 from being phosphorylated during binding of insulin to the 

insulin receptor. Thus GSK3 is free to inhibit glucose uptake and glycogen synthesis. 
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1.6 The UPR and Parkinson’s disease 

1.6.1 Parkinson’s disease 

ER stress has been implicated in many diseases other than T2D. As well as T2D, ER stress 

has been reported in the age-related disease PD. With similarities to T2D, inflammatory 

signalling and ER stress have also been reported in PD. The second most common age 

related neurodegenerative disease was first described by James Parkinson in 1817 

(Parkinson, 2002). In his monograph entitled ‘Essay on the shaking palsy’ he described the 

main features of the neurodegenerative condition, which would later be named after him; 

Parkinson’s disease. Nearly two centuries later this disease continues to affect an estimated 

1% of people over the age of 65 (Lang and Lozano, 1998, Fahn, 2003). Not all patients 

have the same symptoms but most suffer from rigidity, tremor, postural instability, 

freezing and slowness of voluntary movement (Dauer and Przedborski, 2003).  

PD is characterised by the selective loss of dopaminergic neurons in the substantia nigra 

pars compacta (SNpc) (Warner and Schapira, 2003, Moore et al., 2005). A major 

pathological feature of PD is the formation of protein aggregates termed Lewy bodies in 

the cytosol of neurons (Moore et al., 2005). Lewy bodies are intracytoplasmic filamentous 

inclusions and are made up of numerous proteins including α-synuclein, ubiquitin, 

synphilin, tubulin and parkin (Spillantini et al., 1998, Dauer and Przedborski, 2003, 

Shimura et al., 2000). These protein aggregates have many detrimental effects in neurons 

including the poisoning and inhibition the proteasome, a large multiprotein responsible for 

degrading unwanted proteins (Bence et al., 2001). 

How PD is caused is not known but it seems likely that several factors including genetic 

factors and environmental toxins contribute to the progressive loss of dopaminergic 

neurons in PD. More recent evidence implicates ER stress and the UPR in the pathology of 

PD. The following sections will look at the molecular mechanisms implicated in PD which 

are associated with the ER including: mitochondrial stress, inflammatory signalling, and 

the immune response. 

 

1.6.2 Genetic factors 

Although most forms of PD are sporadic (more than 90% (Tanner, 2003)) genetic forms do 

exist and their discovery has given some insight into the molecular physiology of PD. 
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Several genes have now been identified and the proteins they code for have been 

extensively investigated. Three of these proteins in particular have been linked to ER 

stress: α-synuclein, parkin, and DJ-1. The most well studied of these proteins is α-

synuclein. 

 

1.6.2.1 α-synuclein 

Mutations in the gene for α-synuclein are responsible for dominantly inherited PD 

(Polymeropoulos et al., 1997). The role for α-synuclein is not fully understood but studies 

have shown it to be the major constituent of Lewy bodies (Tanner, 2003). Recent studies 

have implicated α-synuclein in the development of ER stress in PD. Various mechanisms 

have been suggested for α-synuclein-mediated ER stress (Figure 1.7): 1) inhibition of the 

proteasome, 2) inhibition of ER to Golgi transport, 3) entry of α-synuclein into the ER and 

disruption of protein folding. These are mechanisms involving α-synuclein only, other 

mechanisms not involving α-synuclein have also been shown to induce ER stress in PD 

(discussed later). 

 

1.6.2.1.1 Inhibition of the proteasome 

α-synuclein contains an non-Aβ component (NAC) region, which is prone to aggregate and 

its propensity to aggregate has been shown to increase with oxidative stress (Ostrerova-

Golts et al., 2000, Dawson and Dawson, 2003). It has been demonstrated that α-synuclein 

aggregates poison the proteasome (Lindersson et al., 2004). It is thought that α-synuclein-

mediated proteasome inhibition leads to neuronal cell death and the findings that 

overexpression of α-synuclein induces neuronal death supports this view (Saha et al., 

2000). Evidence implicating the proteasome, UPR and PD comes from a study by Nishitoh 

and co-workers in which the UPR was activated in neurons by proteasome inhibition via 

expression of proteins with expanded glutamine repeats. This inhibition of the proteasome 

not only caused UPR activation but also caused UPR-induced cell death (Nishitoh et al., 

2002).  

Once the proteasome is compromised via Lewy bodies a build-up of mis and unfolded 

proteins in the ER will occur and this could further contribute to inhibition of the 

proteasome because the proteasome is required during ER stress to degrade unwanted 
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proteins. Not only that, severe ER dysfunction can lead to toxic protein aggregate 

formation due to accumulated unfolded proteins, which can inhibit the proteasome. 

Therefore, proteasome inhibition via ER stress can cause further ER stress (Paschen, 

2003a). It could be possible that both build-up of accumulated proteins in the ER and 

proteasome inhibition lead to the UPR and that both have knock-on effects on each other 

increasing ER stress further. 

 

1.6.2.1.2 Inhibition of ER to Golgi transport 

Along with mammalian cells, accumulation of α-synuclein in yeast cells is also toxic. After 

expression of α-synuclein in yeast cells it was observed that the earliest defect was a block 

in ER-Golgi transport leading to the eventual development of ER stress (Cooper et al., 

2006). The ERAD-mediated degradation of a misfolded carboxypeptidase yscY (CPY) 

protein, CPY*, which requires translocation to the Golgi before degradation was found to 

be inhibited suggesting that ER to Golgi transport was inhibited. There are many Rab 

GTPases, which function at different points of the secretory pathway. However, only the 

Rab GTPase Ypt1p was found to be affected by α-synuclein. Indeed overexpression of 

Ypt1p in yeast and the mammalian homologue Rab1 in primary rat neurons reduced α-

synuclein-induced toxicity. It is therefore possible that α-synuclein inhibits transport of 

ER-Golgi, which in turn causes ER stress and toxicity. 

Another study has also demonstrated that Rab1-mediated ER-Golgi transport is perturbed 

by α-synuclein (Gitler et al., 2008). However, this study went on further to demonstrate 

that vesicles left the ER but did not successfully fuse or dock with the Golgi showing that 

the in vivo trafficking problem is due to a direct effect of α-synuclein on the transport 

machinery. It is therefore not immediately obvious how blockage of transport downstream 

of the ER could lead to ER stress. However, ER stress was not investigated by Gitler et al. 

and inhibition of, downstream of ER, protein trafficking may have unknown knock-on 

effects in the ER. 

 

1.6.2.1.3 Entry of α-synuclein into the ER and disruption of protein folding 

Only three studies have reported that α-synuclein can enter the ER and disrupt protein 

folding machinery to induce ER stress (Colla et al., 2012a, Colla et al., 2012b, Bellucci et 
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al., 2011) and two of these papers originate from the same research group. Nevertheless, 

they suggest a novel mechanism for α-synuclein-mediated ER stress. The Colla et al. 

studies show that α-synuclein and α-synuclein aggregates are associated with 

ER/microsome fractions. The authors conclude that this association is not a consequence of 

simple membrane-binding properties of synucleins as β-synuclein does not associate with 

ER/microsome fractions. The study by Bellucci et al. reports more specifically that α-

synuclein monomers interact with BiP and these were detected in ER fractions. However, 

the authors do not consider that ER/microsomes may contain proteasome. This is an 

important consideration as α-synuclein has been shown to be directed to the proteasome 

(Lindersson et al., 2004, Bennett et al., 1999). These Colla et al. papers also report that 

upon accumulation of α-synuclein in the ER, protein chaperones are inhibited leading to 

ER stress and that overexpression of α-synuclein sensitizes cells to ER stress-induced 

toxicity. However, further studies are yet to confirm this novel mechanism of α-synuclein-

induced ER stress. 

 

Figure 1.7. Mechanisms of α-synuclein-mediated ER stress. 

Various mechanisms have been suggested for α-synuclein-mediated ER stress : 1) α-synuclein and α-

synuclein–containing aggregates block and inhibit the proteasome and thus disturb ERAD  2) α-

synuclein enters the ER and  directly interacts with and disrupts protein folding machinery to inhibit 

protein folding 3) α-synuclein interacts with and inhibits Rab1 resulting in the  inhibition of ER to 

Golgi transport,. 
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1.6.2.1.4 Further evidence implicating α-synuclein in ER stress 

Observational evidence linking α-synuclein with ER stress comes from one study which 

reported that dopaminergic neurons in the brains of PD patients, containing inclusions of 

α-synuclein, also display markers of activation of the PERK branch of the UPR 

(Hoozemans et al., 2007). PERK activation in PD is also supported by mechanistic 

evidence linking ER stress with α-synuclein toxicity. In a rat model of PD (involving 

injection of an recombinant adeno-associated virus (rAAV) expressing human α-synuclein 

into rat SNpc), α-synuclein overexpression led to increased markers of UPR activation 

such as PERK and ATF6 signalling pathways (Gorbatyuk et al., 2012). In the Gorbatyuk et 

al. study the overexpression of BiP down-regulated ER stress markers which in turn 

diminished α-synuclein toxicity and reduced the loss of tyrosine hydroxylase positive cells. 

Tyrosine hydroxylase is used as a marker for dopaminergic cells and as such suggests that 

overexpression of BiP reduces the loss of dopaminergic cells in the above study. A link 

between BiP and α-synuclein has been reported in another study also. BiP was shown to 

bind to α-synuclein in in vitro and in vivo models displaying α-synuclein accumulation 

(Bellucci et al., 2011). In this study α-synuclein monomers were shown to bind BiP in ER 

fractions suggesting that monomeric α-synuclein can enter the ER. Further evidence 

supporting an involvement of the UPR in α-synuclein aggregation comes from a study by 

Smith and co-workers, which showed increased BiP and phospho-eIF2α levels in cells 

overexpressing mutant α-synuclein (Smith et al., 2005).  

PERK activation with α-synuclein has been reported in other studies also. Serine 129 

phosphorylation of α-synuclein causes PERK activation and UPR-mediated cell death in 

neuroblastoma cells (Sugeno et al., 2008) whilst overexpression of WT or mutant α-

synuclein causes UPR activation in yeast (Cooper et al., 2006), via an unknown 

mechanism. However UPR activation in the Cooper et al. study may be a product of 

inhibited ER to Golgi transport. Thus, strong evidence implicates α-synuclein-mediated ER 

stress and UPR activation in the development of PD. 

 

1.6.2.2 Parkin 

Parkin has been implicated in PD ever since a mutation in the parkin gene was discovered 

to be responsible for a form of early onset PD (Kitada et al., 1998). Parkin is an E3 

ubiquitin ligase responsible for targeting polyubiquitin chains to target substrates to be 
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degraded by the proteasome (Imai et al., 2000, Shimura et al., 2000). Interestingly, parkin, 

a protein involved in the majority of autosomal recessive Parkinsonisms (Kitada et al., 

1998), has been shown to be transcriptionally regulated by ATF4, providing further 

evidence that the PERK branch of the UPR may play some role in PD (Bouman et al., 

2011). In this study ER stress induced expression of parkin at both the mRNA and protein 

level. Intriguingly, the downstream target of JNK, c-Jun was also shown to be a 

transcriptional repressor of parkin. As JNK is considered to be part of the UPR signalling 

pathway this suggests a dual role for UPR signalling in that it has the potential to both 

upregulate and decrease the expression of parkin.  

Parkin-associated endothelin receptor–like receptor (Pael-R) is a putative G-protein 

coupled transmembrane protein. It is a substrate for parkin and has been found in Lewy 

bodies (Murakami et al., 2004). Parkin can protect dopaminergic neurons from Pael-R 

toxicity via ubiquitination and thus signalling it to be degraded by the proteasome (Imai 

and Takahashi, 2004). Mutations in PARK2, the gene for parkin, compromise the ability of 

the parkin protein to function as a ubiquitin ligase (Shimura et al., 2000). In a study on 

juvenile onset of PD it was observed that parkin mutations led to the accumulation of 

parkin substrates in the ER of dopaminergic neurons in the SNpc, which in turn led to ER 

stress and cell death (Imai et al., 2001). Increased expression of parkin mediated through 

the UPR seems logical as the UPR functions to remove unfolded proteins for degradation 

(ERAD). Therefore inactive parkin may both directly and indirectly prevent the UPR from 

functioning at an optimal level thus preventing a return to homeostasis in the ER and 

subsequent further stress. 

There is also evidence that parkin has a role in modulating DJ-1 activity (Duplan et al., 

2013). Control of DJ-1 was associated with parkin-mediated upregulation of XBP1. The 

authors conclude that disrupted parkin modulation of DJ-1 may be a mechanistic 

explanation of the occurrence of UPR activation in PD. Overall there is a strong case for 

UPR involvement in the toxicity of parkin-mediated PD. 

 

1.6.2.3 DJ-1 

DJ-1 is a multifunctional protein involved in transcriptional regulation (Ishikawa et al., 

2010), regulation of chaperone function (Shendelman et al., 2004), response to oxidative 

stress (Taira et al., 2004, Li et al., 2005a), and regulation of mitochondria (Li et al., 2005a, 
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Junn et al., 2009). DJ-1 is expressed in almost all cells and tissues (Ariga et al., 2013). 

Mutations in the DJ-1 gene cause loss of function in the DJ-1 protein and these DJ-1 

mutations are linked to autosomal recessive early onset Parkinsonism. siRNA-mediated 

knock down of DJ-1 sensitised neuronal cells to ER stress-induced cell death (Yokota et 

al., 2003). However, these neuronal cells were also sensitised to cell death induced by 

oxidative stress and proteasome inhibition suggesting that DJ-1’s role in cell death may not 

specifically involve the UPR, that being said, both oxidative stress and proteasome 

inhibition can cause UPR activation. If and how DJ-1 modulates ER stress is still to be 

fully established. 

 

1.6.3 Parkinson’s disease mimetic drugs and the UPR 

1.6.3.1 MPP
+
 

People exposed to the neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) 

show very similar symptoms to PD patients (Langston et al., 1983, Langston et al., 1999, 

Tetrud et al., 1989). MPTP is now commonly used in animal models for PD as it can 

induce PD-like pathological features in both mice and rats (Jackson-Lewis and 

Przedborski, 2007, Yazdani et al., 2006). MPTP is converted to 1-methyl-4-

phenylpyridinium (MPP
+
) which is the active metabolite responsible for the cellular 

damage. MPP
+
 inhibits mitochondrial NADH dehydrogenase (complex-1 of the 

mitochondria) (Michel et al., 1990). 

Homocysteine-induced endoplasmic reticulum protein (herp) is a stress response protein 

localised to the membrane of the ER. Herp knockdown renders PC-12 and MN9D cells 

more sensitive to MPP
+
-induced cell death. Herp knockdown-induced cell death involved 

CHOP and depletion of ER calcium ions (Chigurupati et al., 2009). Herp overexpression 

blocked both the MPP
+
-mediated depletion of ER calcium and the MPP

+
-induced 

expression of CHOP suggesting that ER stress can play a strong role in MPP
+
 toxicity. 

1.6.3.2 6-OHDA 

The dopamine derivative 6-hydroxydopamine (6-OHDA) is a neurotoxin often used as a 

PD mimetic drug both in vitro and in vivo (Blum et al., 2001). 6-OHDA causes the 

production of ROS such as hydrogen peroxide and therefore leads to oxidative stress and 

dopaminergic neuronal cell death (Cohen and Heikkila, 1974). 6-OHDA may also cause 
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toxicity through inhibition of the mitochondrial complex I (Tobon-Velasco et al., 2013)  

but a study using cultured neurons showed no reduction in ATP production with 6-OHDA 

toxicity suggesting that the mechanism of 6-OHDA toxicity may include but no necessarily 

require complex I inhibition (Storch et al., 2000, Blum et al., 2001). Interestingly, 

dopamine is also able to oxidise compounds and therefore produce ROS and thus cause 

toxicity in cultured neurons (Michel and Hefti, 1990). Dopamine toxicity may therefore be 

one of the reasons for the specificity of dopaminergic cell loss in PD and may lower the 

threshold for oxidative damage caused by 6-OHDA.  

Importantly 6-OHDA has also been shown to induce ER stress (Ryu et al., 2002). In this 

study PC-12 cells were exposed to 6-OHDA for up to 8 h and it was discovered that 

IRE1, PERK and eIF2α were phosphorylated indicating activation of the UPR. Many ER 

stress regulated genes were also shown to be upregulated after 6-OHDA exposure. Other 

studies have also reported UPR activation with 6-OHDA (Hu et al., 2014, Holtz and 

O'Malley, 2003) However, XBP1 splicing, which is indicative of fully activated IRE1 

has so far not been fully characterised in 6-OHDA treated cells. 

1.6.3.3 Other PD mimetic drugs 

Another drug which causes Parkinsonism is paraquat. Paraquat is structurally similar to 

MPP
+
 and thus is believed to act via a similar mechanism. Paraquat has been used as a 

herbicide giving weight to the environmental toxin hypothesis, which claims exogenous 

toxins are the cause of neurodegeneration in PD (Dauer and Przedborski, 2003). Further 

evidence to support the environmental hypothesis is the fact that the mitochondrial poison 

rotenone, which also causes Parkinsonism, has been used as an insecticide (Moore et al., 

2005). Although paraquat is thought to cause PD through mechanisms similar to MPP
+
, 

such as damage to mitochondrial complex I, it has also been shown to induce ER stress and 

subsequent ER stress-induced dopaminergic cell death (Chinta et al., 2008). It is not fully 

understood how paraquat triggers ER stress but the Chinta et al. study also reported 

inhibition of the proteasome which is known to induce ER stress (Nishitoh et al., 2002). 

1.6.3.4 Summary 

PD mimetic drugs therefore impair respiration and energy metabolism whilst causing 

oxidative stress and the formation of protein aggregates leading to neuronal death. 

Importantly, in the context of this thesis, PD mimetic drugs have also both been shown to 

cause ER stress and activate the UPR (Ryu et al., 2002, Holtz and O'Malley, 2003, Holtz et 
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al., 2006). The PD mimetic drugs paraquat, MPTP and rotenone all cause neuronal death 

and the formation of Lewy body-like protein aggregates (Forno et al., 1988, Manning-Bog 

et al., 2002, McCormack et al., 2002, Betarbet et al., 2000, Sherer et al., 2003b). As protein 

aggregates can cause ER stress these neurotoxins may induce ER stress through this 

mechanism and/or other mechanisms including oxidative stress. 

 

1.6.4 Oxidative stress, ER stress and mitochondrial stress 

It is difficult to discuss PD without mentioning mitochondria. The fact that PD mimetic 

drugs cause PD like symptoms via inhibiting complex I suggest a role for mitochondrial 

dysfunction in PD. Interestingly, some studies have shown that complex I function has 

been compromised in the course of PD suggesting that PD mimetic drugs could be 

inducing neuronal death via similar mechanisms in human PD (Parker et al., 1989, 

Schapira et al., 1990, Krige et al., 1992). Mitochondria are a major source of ROS, which 

is a by-product of the electron transport chain during respiration. Mitochondria can be 

signalled to produce further ROS by the cytokine TNF-α (Fernandez-Checa et al., 1997). 

Mitochondria are therefore of particular research interest in PD due to their potential to 

cause oxidative stress. Oxidative stress is defined by the accumulation of ROS because 

there is either a reduced antioxidant capacity or an increased ROS production (Tansey et 

al., 2007). 

Dopaminergic neurons may be particularly sensitive to ROS as they contain high levels of 

oxidisable content such as dopamine (Tansey et al., 2007). Oxidatively modified α-

synuclein more readily aggregates than the unmodified form so ROS may have some role 

in the formation of Lewy bodies (Giasson et al., 2000). ROS production in dopaminergic 

neurons may be a product of more than one mechanism including; ER stress, mitochondrial 

dysfunction, inflammation and microglial activation. 

In the past mitochondria and ER have been considered to be two distinct organelles and 

have rarely been studied in parallel (Paschen, 2003a). However, views have changed as 

more and more evidence suggests a close physical and biochemical interaction of 

signalling between these two organelles. For example it has been shown that cells are more 

susceptible to initiation of the UPR when mitochondrial function is altered (Arduino et al., 

2009). Both the ER and mitochondria are capable of initiating apoptosis and it seems an 

apoptotic crosstalk is involved. 
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A study by Häcki and co-workers found that ER-stress caused by treatment with the ER 

stressor tunicamycin resulted in the release of cytochrome c from the mitochondria and the 

subsequent activation of caspase 3. Interestingly, over-expression of a Bcl-2 chimera 

which has had its C- terminus exchanged with that of cytochrome b5, and thus causes it to 

be targeted to the ER, was able to block cytochrome c release suggesting that the apoptotic 

cross-talk between mitochondria and the ER is blocked when ER stress is reduced (Hacki 

et al., 2000). Stress causes release of Ca
2+

 from the ER and Ca
2+

 uptake by mitochondria 

(Arduino et al., 2009). As protein folding in ER is calcium dependent calcium depletion 

causes a build-up of unfolded proteins, ER stress and inhibition of secretory and 

transmembrane protein synthesis (Paschen, 2003a, Kuznetsov et al., 1992, Lodish and 

Kong, 1990). Disulphide bond formation during protein folding is an oxidative process and 

produces ROS which can target calcium channels in the membrane of the ER resulting in 

the release of calcium from the ER (Zhang and Kaufman, 2008). It is believed that massive 

uptake of calcium into mitochondria causes neuronal cell death via production of ROS, and 

release of cytochrome c to signal apoptosis (Siesjo and Siesjo, 1996, Murphy et al., 1996). 

Production of ROS from the mitochondria can lead to further calcium release from the ER. 

However, it may also be the case that depletion of ER calcium stores is an initial cause of 

neuronal cell death (Paschen and Doutheil, 1999, Paschen, 2003b). 

Overall mitochondrial dysfunction is strongly linked to PD mainly through the ability of 

mitochondria to produce ROS, yet ER stress may on its own, or in combination with 

mitochondrial stress, lead to the production of directly or indirectly via activation of 

inflammation and microglia (discussed later). 

 

1.6.5 Inflammatory signalling in PD 

There is some debate as to whether the UPR in PD is neuro-protective or if it actually 

contributes to the progress of neuronal death in the condition. Evidence of inflammatory 

signalling mediated by the UPR in dopaminergic neuronal cell death may give weight to 

the neurotoxic role of the UPR in PD. Indeed inflammatory signalling has been detected in 

PD. This next section will discuss the role of inflammation in PD. 

Inflammation has been described as a ‘double-edged sword’ (Wyss-Coray and Mucke, 

2002) and neuroinflammation is no exception. Short-lasting inflammation promotes 

healing and limits injury (Tansey et al., 2007), whilst prolonged neuroinflammation is 
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detrimental and has been implicated as a cause for diseases such as T2D and Alzheimer’s 

disease (AD) (Wyss-Coray and Mucke, 2002). In the case of PD, inflammation is thought 

to be initiated by dopaminergic neurons (though this may not actually be the case) with the 

initial inflammatory trigger or triggers remaining unclear.  

Two epidemiological studies have provided considerable evidence to suggest an important 

role for inflammation in PD (Chen et al., 2003, Chen et al., 2005). One study showed that a 

cohort consisting of chronic users of non-steroidal-anti-inflammatory drugs (NSAIDs) had 

46% less PD incidences than a control cohort (Chen et al., 2003). The same group provided 

further evidence for an anti-inflammatory protective role in PD using a larger cohort who 

frequently used the anti-inflammatory drug- ibuprofen (Chen et al., 2005). Both ibuprofen 

(though non-specifically) and NSAIDs inhibit COX-2, a protein responsible for catalysing 

the production of inflammatory signalling prostaglandins. Hence, a reduction of 

inflammation, possibly via COX-2 inhibition, may protect against the development of PD. 

Post mortem studies have also provided molecular evidence for neuroinflammation 

occurring in PD. The cytokines; IL-1B, TNF-α, and interferon (IFN)-γ were detected in the 

SNpc of PD patients in a study by Hunot and co-workers (Hunot et al., 1999). Interestingly 

dopaminergic neurons in the SNpc have receptors for TNF-α, whilst the level of TNF 

receptor R1 is elevated in PD patients (Boka et al., 1994). It therefore seems likely that 

dopaminergic neurons are particularly sensitive to cytokines such as TNF-α. 

Neuroinflammation in the SNpc and sensitivity to inflammation and inflammatory-

mediated ROS may explain the selective loss of dopaminergic neurons from the SNpc. 

Thus identification of events triggering or progressing inflammation may hold the key to 

understanding and treating PD. 

Although the inflammatory triggers are unclear there is evidence that protein aggregates 

cause neuroinflammation in PD. Protein aggregates containing Pael receptor, which is a 

substrate of Parkin, have been found in patients with a recessive form of PD and 

aggregates have been shown to cause inflammation (Kubota et al., 2006, Su et al., 2008). 

α-synuclein overexpression, which causes the formation of protein aggregates induces 

expression of the inflammatory signalling molecules IL-1β, iNOS, IL-6, COX-2 and TNF-

α (Su et al., 2008). In fact, over-expression of α-synuclein in mice leads to activation of 

microglia (Su et al., 2008). How protein aggregates actually cause inflammatory signalling 

is not currently known, but the answer may involve the UPR (discussed later). Before 
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exploring the evidence linking the UPR and inflammation in PD it is important to describe 

microglia, which are heavily involved in neuroinflammation. 

 

1.6.5.1 Microglia 

Inflammatory signalling, from damaged cells of the central nervous system, initially 

recruits the innate immune response, which includes microglia and astrocytes (Wyss-Coray 

and Mucke, 2002, Mennicken et al., 1999, Eddleston and Mucke, 1993). Microglia are the 

resident macrophages of the central nervous system (Wyss-Coray and Mucke, 2002). 

Resting microglia show little phagocytic activity but once activated the level of 

macrophage-like activity is high (Kreutzberg, 1996, Liu and Hong, 2003). Macrophage-

like microglia have increased cell surface receptors and they also increase the production 

of inflammatory mediators such as ROS and NO, which can directly damage neurons (Liu 

and Hong, 2003). 

Activated microglia have also been shown to release proinflammatory cytokines such as 

TNF-α, IL-1, IL-6, IFNγ and FasL (Touzani et al., 1999, Martin-Villalba et al., 1999, 

Barone et al., 1997, Hanisch, 2002). Microglia-mediated cytokine production may further 

exasperate inflammation through activation of astrocytes. Activated astrocytes can also 

function as sources of neurotoxic and proinflammatory cytokine production (IL-1, IL-6, 

TNF-α) as well as producing ROS and NO (Stoll et al., 1998). Thus a combination of 

proinflammatory mediators, released from microglia, can promote activation of astrocytes 

and vice versa whilst activation of both of these cell types induces release of neuron-

damaging compounds. 

Microglia activation may have even stronger implication in the SN compared to other 

regions of the brain because the SN is particularly rich in microglia to begin with (Kim et 

al., 2000, Lawson et al., 1990). LPS treatment, for example, causes activation of microglia 

and then specific loss of dopaminergic neurons (Gao et al., 2002a). Therefore 

dopaminergic neurons are particularly sensitive to microglia and this may explain how 

neuroinflammation in PD leads to the specific loss of mainly dopaminergic neurons. For 

this reason toxicity inducing activation of inflammatory signalling in cells other than 

dopaminergic neurons may suffice to activate microglia which in turn leads to the damage 

and death of dopaminergic neurons specifically. This possibly adds to the complications in 
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understanding dopaminergic neuronal loss in PD as the initial trigger/s may occur in other 

cell types. 

Neuroinflammation was strongly implicated in PD in 1988 with the discovery that 

activated microglia were present in the SNpc in post mortem tissue from PD patients 

(McGeer et al., 1988). Other studies have confirmed these findings yet the role of 

microglia in PD is still not fully understood. PD models have also provided evidence of 

microglia involvement. MPTP treatment in monkeys leads to microglia activation which in 

fact preceded neuronal degeneration (McGeer et al., 2003, Barcia et al., 2004). In animal 

models the use of 6-OHDA caused microglial activation believed to contribute to the 

neurodegeneration in these models (Virgone-Carlotta et al. 2013). Rotenone treatment 

which causes parkinsonism also activates microglia in a rat model of PD (Sherer et al., 

2003a). 

Activated glial cells produce ROS including; NO, superoxide (O2
-
), hydrogen peroxide 

(H2O2), hydroxyl radicals (OH
−
) and peroxynitrite (ONOO

−
). All of these cause oxidative 

stress to the target cell and are therefore neurotoxic. Glial cells also produce neurotrophic 

factors to encourage the survival of neurons (Tansey et al., 2007). As with most biological 

systems maintaining homeostasis is important but if inflammation continues to persist then 

microglia may actually aid progression of neuronal degeneration by producing, once 

beneficial, proinflammatory molecules to such an extent that they ultimately damage 

neurons and induce further inflammation. 

 

1.6.5.2 UPR and inflammatory signalling in PD 

As previously discussed, the UPR is activated in PD. The UPR is also capable of activating 

inflammatory signalling as shown by the activation of the transcription factor NF-κB and 

the protein kinases JNK, p38 and IKK with ER stress (Urano et al., 2000, Hu et al., 2006b). 

It is possible that activation of the UPR, through a variety of mechanisms, is leading to the 

activation of inflammatory signalling molecules previously detected in PD neurons. In 

support of this idea, PD mimetic drugs 6-OHDA, paraquat, rotenone and MPP
+
 activate the 

UPR-inducible inflammatory signalling molecules NF-κB and JNK (Ghribi et al., 2003, 

Boyd et al., 2007, Klintworth et al., 2007, Ouyang and Shen, 2006). As previously 

mentioned, PD mimetic drugs have been shown to activate UPR signalling. α-synuclein 

and mutations in other proteins implicated in PD lead to both ER stress and inflammation 
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yet the link between these two phenotypes has not been studied or reported. Linking all 

these well studied areas the following events are imaginable: 1) various mechanisms 

activate the UPR in neurons. 2) The UPR activates inflammatory signalling. 3) Neurons 

communicate with and activate microglia. 4) Activated microglia cause inflammation and 

cellular damage. 5) Cycles of cell damage, inflammation and further microglial activation 

lead to neuronal loss and the development of PD (Figure 1.8). 

Further research into the ability of the UPR to initiate inflammatory signalling in 

dopaminergic neurons may provide some insight into this complex disease. It seems likely 

that UPR signalling is central to many pathways, which contribute to the death of 

dopaminergic neurons in PD. If this is true then targeting the UPR may yield the 

development of drugs, which may slow or even stop the neuronal degeneration in PD and 

other neurodegenerative diseases. 

 

Figure 1.8. Hypothesis of how activation of UPR causes inflammation and neuronal cell death in 

PD. 

The following series of events are proposed: 1) various mechanisms activate the UPR in neurons. 2) 

The UPR activates inflammatory signalling. 3) Neurons communicate with and activate microglia. 4) 

Activated microglia cause inflammation and cellular damage. 5) Cycles of cell damage, inflammation 

and further microglial activation lead to neuronal loss and the development of PD 
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1.6.6 Insulin signalling in PD 

Insulin signalling in the brain is accepted as an important part of healthy neuronal activity 

(Nistico et al., 2012). Brain insulin has been proposed to promote neuronal survival during 

nervous system development (Recio-Pinto et al., 1986), induce neuronal protein synthesis 

(Schulingkamp et al., 2000), improve neurite outgrowth (Recio-Pinto et al., 1986, Song et 

al., 2003), increase synaptic activity and memory (Kremerskothen et al., 2002, Benedict et 

al., 2004) as well as increasing neuroprotection (Dudek et al., 1997, Tanaka et al., 1995). It 

is therefore evident that insulin has very important roles in the brain. 

Increasing evidence is linking T2D and problems with insulin signalling in the brains of 

patients with PD. The prevalence of diabetes in patients with PD (8-30%) is in excess of 

the prevalence in non-PD individuals (Chalmanov and Vurbanova, 1987, Pressley et al., 

2003). In a study of 800 patients with PD it was observed that those with diabetes also had 

accelerated progression of motor and cognitive symptoms (Schwab, 1960). In a study of 

Finnish males and females it was identified that both T2D (Hu et al., 2007) and excess 

weight (Hu et al., 2006a) were associated with an increased risk of developing PD. 

However, a more recent study has been unable to observe this link between T2D and PD 

(Palacios et al., 2011). The difference between the two studies may be due to the latter 

study relying of diagnosis of T2D being based on self-reporting. Nevertheless, most studies 

suggest that there is a link between PD and T2D. Treatment of PD may have an effect on 

insulin signalling (Van Woert and Mueller, 1971, Sirtori et al., 1972) and therefore may 

underlie the link between diabetes and PD. However, adults who have been newly 

diagnosed with PD and have therefore had no treatment also have increased insulin 

resistance (Van Woert and Mueller, 1971, Boyd et al., 1971), which suggests that the link 

is not dependent on medications to treat PD. 

Dopaminergic neurons of the SNpc express a high level of insulin receptors (Unger et al., 

1991), yet insulin receptor immunoreactivity is lost in PD (Moroo et al., 1994). 

Interestingly, loss of insulin receptors coincides with loss of tyrosine hydroxylase (Moroo 

et al., 1994). Loss of insulin receptors and insulin signalling should lead to problems with 

glucose utilisation. Indeed abnormal glucose utilisation in the brains of PD patients has 

been observed (Bowen et al., 1995, Hu et al., 2000). It was reported that in the dorsal root 

ganglion (DRG) of obese mice there is lower insulin receptor expression (Grote et al., 

2013). Also, DRG tissue from ob/ob mice was less responsive to insulin (lower AKT 

phosphorylation) suggesting that obesity can affect insulin signalling in the brain through 
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reduced expression of the insulin receptor and may in part explain the links between excess 

weight (Hu et al., 2006a) and T2D (Hu et al., 2007) with PD. 

There is evidence providing a strong link between glucose utilisation and dopamine 

signalling. Raising the blood glucose levels in rats supresses the firing of dopamine-

containing neurons in the SNpc (Saller and Chiodo, 1980). Injecting glucose into rats also 

decreases the dopamine turnover in the striatum (Montefusco et al., 1983). Another study 

proving evidence for glucose affecting dopamine signalling showed that hyperglycaemia 

produced in a rat model of T1D decreases dopamine concentrations (Murzi et al., 1996). 

These studies further contribute to evidence linking PD with metabolic changes.  

The use of PD mimetic drugs has provided further evidence linking perturbed insulin 

signalling in PD with ER stress is that the commonly used PD mimetic drug 6-OHDA, 

which causes ER stress (Ryu et al., 2002) (Figure 4.4.14) reduces insulin signalling in rat 

brain (Morris et al., 2008). A study by Wang et al. involving MPTP exposure in diabetic 

and obese mice also contributes to the PD and insulin resistance link. Dopamine neurons in 

two different mouse models of T2D (ob/ob and db/db) are more vulnerable to MPTP 

(Wang et al., 2014). Insulin resistance in diabetic mice was observed in the midbrain as 

well as the liver. It was also found that α-synuclein expression was increased, and ER 

stress markers were detected, in both the pancreas and midbrain, which was accompanied 

by increased inflammation suggesting a link between insulin signalling and inflammation. 

Indeed, insulin signalling has a role in inhibiting the activity of the inflammatory signalling 

ASK1 protein. AKT can phosphorylate ASK1 at S83 which blocks the apoptotic stimulus-

induced activation of ASK1 (Kim et al., 2001). Therefore, reduced insulin signalling in 

dopaminergic neurons or in nearby neurons may further sensitize neurons to develop 

inflammatory signalling and promote detrimental inflammation.  

The molecular/mechanistic link between diabetes and PD is not known. Both inflammation 

and inhibited insulin signalling are reported to be potential contributors to both of these 

diseases. A recent review article has highlighted the growing evidence suggesting insulin 

signalling and inflammation link neurodegeneration in obesity (Spielman et al., 2014).  As 

discussed ER stress has been implicated strongly in both these diseases as well as being 

involved in insulin signalling and inflammation. It could be possible that prolonged ER 

stress (both mimetic and natural) mimic or even contribute to other mechanisms that have 

been leading to a decrease in pro-survival AKT signalling in PD. Changes in DJ-1 can 

cause ER stress (Yokota et al., 2003), whilst AKT phosphorylation is inhibited in cells 
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overexpressing DJ-1 (Wang et al., 2013). Therefore ER stress is an interesting potential 

phenotype linking these two age-related diseases. 

 

1.7 Aims 

This thesis aims to investigate the link between ER stress and inflammatory signalling in 

the context of both T2D and PD. Firstly, the ability of acutely ER-stressed cells to activate 

inflammatory signalling and how this affects cell fate is reported in the first results chapter 

(Chapter 3). Secondly, it is investigated if this early, acute ER stress activated 

inflammatory signalling can lead to insulin resistance (Chapter 4). Thirdly, how prolonged 

ER stress can lead to insulin resistance through disruption of the secretory pathway is 

explored (Chapter 5). Finally, the role of ER stress in PD through activation of 

inflammation is investigated in the final section of the results chapter (Chapter 6). 
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2 MATERIALS AND METHODS 

2.1 Materials 

The following section lists all materials used for experimentation in this thesis. Solutions 

are prepared in type I laboratory H2O (resistivity 18 MΩ cm, total organic carbon < 1 ppb, 

microorganisms < 1 cfu/ml, particles < 0.05 μm diameter) generated by the NANOpure 

Diamond UV/UF TOC water purification system and sterilized by autoclaving (121°C, 20 

– 30 min). If this is not possible, solutions are prepared in autoclaved type I laboratory H2O 

and then filter sterilized by filtration over a 0.22 µm filter. 

2.1.1 Oligodeoxynucleotides 

Table 2.1 Oligodeoxynucleotides for Homo sapiens genes 

Name Purpose Sequence 

H8197 TRAF2 RT-qPCR for siRNA #3, reverse  AATGGCCTTGATGAAGATGG 

H8280 TRAF2 RT-qPCR for siRNA #1, 

forward  

CTTAGCCAAGGGCTGTGGT 

H8281 TRAF2 RT-qPCR for siRNA #1, reverse  AGGAATGCTCCCTTCTCTCC 

H8282  TRAF2 RT-qPCR for siRNA #2, 

forward  

GTCCGCCTTGGTGAAAAG 

H8283  TRAF2 RT-qPCR for siRNA #2, reverse  TCTCACCCTCTACCGTCTCG 

H8284 TRAF2 RT-qPCR for siRNA #3, 

forward  

ACACCAGCAGGTACGGCTAC 

H8285  GAPDH RT-qPCR, forward  TCACCAGGGCTGCTTTTAAC 

H8286 GAPDH RT-qPCR, reverse  GGCAGAGATGATGACCCTTT 

H8287 ACTA1 RT-qPCR, forward  CTGAGCGTGGCTACTCCTTC 

H8288 ACTA1 RT-qPCR, reverse  GGCATACAGGTCCTTCCTGA 

H8289 XBP1 PCR, forward  GAGTTAAGACAGCGCTTGGG 

H8290 XBP1 PCR, reverse  ACTGGGTCCAAGTTGTCCAG 

H8293 IRE1 RT-qPCR, forward  TGGGACAGCTAGGCTGAGAT 

H8294 IRE1 RT-qPCR, reverse  TGGGCACATCTGTGATCAAT 

H8835 IL-8 RT-qPCR, forward GGACAAGAGCCAGGAAGAAA 

H8836 IL-8 RT-qPCR, reverse AGCTGCAGAAATCAGGAAGG 

H8927 IL-6 RT-qPCR, forward TCTCCACAAGCGCCTTCG 
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H8928 IL-6 RT-qPCR, reverse CTCAGGGCTGAGATGCCG 

H8933 TNF-α RT-qPCR, forward CCTGCCCCAATCCCTTTATT 

H8934 TNF-α RT-qPCR, reverse CCCTAAGCCCCCAATTCTCT 

 

Table 2.2 Oligodeoxynucleotides for Mus musculus genes. 

Name Purpose Sequence 

H799

4 

ACTB real time PCR, forward  AGCCATGTACGTAGCCATCC 

H799

5 

ACTB real time PCR, reverse  CTCTCAGCTGTGGTGGTGAA 

H896

2 

TRB3 real time PCR, forward  TTTGGAACGAGAGCAAGGCA 

H896

3 

TRB3 real time PCR, reverse CCACATGCTGGTGGGTAGG 

H904

4 

INSR real time PCR, forward CTTCTCTTCCGTGTCTATGG 

H904

5 

INSR real time PCR, reverse  GACCATCTCGAAGATAACCA 

H796

1 

XBP1 PCR, forward  GATCCTGACGAGGTTCCAGA 

H796

2 

XBP1 PCR, reverse  ACAGGGTCCAACTTGTCCAG 

H799

4 

ACTB PCR, forward  AGCCATGTACGTAGCCATCC 

H799

5 

ACTB PCR, reverse  CTCTCAGCTGTGGTGGTGAA 

H823

7 

TRAF2 RT-qPCR for siRNA #1, 

forward 

GAACTCATCTGTCTCTCTTCTTC

G 

H823

8 

TRAF2 RT-qPCR for siRNA #1, reverse AGCAGGGGTGGCTAGAGTCC 

H823

9 

TRAF2 RT-qPCR for siRNA #2, 

forward 

CTGCAGAGCACCCTGTAGC 

H824 TRAF2 RT-qPCR for siRNA #2, reverse CCTGCAGGTTCTCAGTCTCC 
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0 

H826

9 

TRAF2 RT-qPCR for siRNA #3, 

forward 

ACTGCTCCTTCTGCCTGACC 

H827

0 

TRAF2 RT-qPCR for siRNA #3, reverse TTCTTTCAAGGTCCCCTTCC 

H827

1 

GAPDH RT-qPCR, forward  TCGTCCCGTAGACAAAATGG 

H827

2 

GAPDH RT-qPCR, reverse  CTCCTGGAAGATGGTGATGG 

H905

4 

cIAP1 (BIRC2) RT-qPCR, forward TAGTGTTCCTGTTCAGCCCG 

H905

5 

cIAP1 (BIRC2) RT-qPCR, reverse  TCCCAACATCTCAAGCCACC 

H905

6 

cIAP2 (BIRC3) RT-qPCR, forward ACGATTTAAAGGTATCGCGCC 

H905

7 

cIAP2 (BIRC3) RT-qPCR, reverse  CTGATACCGCAGCCCACTTC 

H907

6 

XIAP (BIRC4) RT-qPCR, forward  ACGGAGGATGAGTCAAGTCAAA 

H907

7 

XIAP (BIRC4) RT-qPCR, reverse  AAGTGACCAGATGTCCACAAGG 

H908

0 

BRUCE (BIRC6) RT-qPCR, forward CCAGTGTGAGGAGTGGATTGC 

H908

1 

BRUCE (BIRC6) RT-qPCR, reverse CCTCAATGTCCGGATCTAAGCC 

H875

6 

IL-6 RT-qPCR, forward ACAACCACGGCCTTCCCTAC 

H875

7 

IL-6 RT-qPCR, reverse ACAGGTCTGTTGGGAGTGGT 

H875

2 

IL-1β RT-qPCR, forward TGCTGGTGTGTGACGTTCCC 

H875

3 

IL-1β RT-qPCR, reverse GTCCGACAGCACGAGGCTTT 

H887 TNF-α RT-qPCR, forward AGCCGATGGGTTGTACCTTG 
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7 

H887

8 

TNF-α RT-qPCR, reverse ATAGCAAATCGGCTGACGGT 

 

Table 2.3 siRNAs. 

Species Gene # Sequence 

H. sapiens  IRE1α  1 GCGUAAAUUCAGGACCUAUdTdT 

H. sapiens  IRE1α  2 GAUAGUCUCUGCCCAUCAAdTdT 

H. sapiens  IRE1α  3 CAUUGCACGUGAAUUGAUAdTdT 

H. sapiens  TRAF2 1 CACUCAGAGUGGGAGCACAdTdT 

H. sapiens  TRAF2 2 GUCAAGACUUGUGGCAAGUdTdT 

H. sapiens  TRAF2 3 GCCUUCAGGCCCGACGUGAdTdT 

M. musculus  TRAF2 1 GAAUUCCUAUGUGCGGGAUdTdT 

M. musculus  TRAF2 2 GUUAGAGCAUGCAGCAAAUdTdT 

M. musculus  TRAF2 3 CTATGAAGGCCTGTATGAAdTdT 

M. musculus  INSR 1 GAGAUCUCCUGGGAUUCAUdTdT 

M. musculus  INSR 2 CCUUAUCAAGGCCUGUCUAdTdT 

M. musculus  INSR 3 GAAACUCUGCUUGUCUGAAdTdT 

Aequora 

victoria  

eGFP  GCAAGCUGACCCUGAAGUUCAU 

 

2.1.2 Antibodies 

Table 2.4 Antibodies for Western blotting 
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Name Primary / 

secondary 

Host Source Product 

Number 

anti-phospho-JNK 

 

Primary Rabbit Cell Signaling, 

Danvers, MA, 

USA 

4668 

anti-JNK Primary Rabbit Cell Signaling 9258 

anti-phospho-p38 Primary Rabbit Cell Signaling 9215 

anti-p38 Primary Rabbit Cell Signaling 9212 

anti-phospho-S51-eIF2α Primary Rabbit Cell Signaling 9721 

anti-eIF2α Primary Rabbit Santa Cruz 

Biotechnology, 

Santa Cruz, CA, 

USA 

SC-11386 

anti-phospho-T308-AKT Primary Rabbit Cell Signaling 4056 

anti-phospho-S473-AKT Primary Rabbit Cell Signaling 4060 

anti-AKT Primary Rabbit Cell Signaling 4691 

anti-phospho-S21/9-

GSK3α/β 

Primary Rabbit Cell Signaling 9331 

anti-GSK3α/β Primary Rabbit Cell Signaling 5676 

anti-IκBα Primary Rabbit Cell Signaling 9242 

anti-CD200 Primary Rabbit Sigma-Aldrich, 

Gillingham, UK 

HPA031149 

anti-IRS1 Primary Rabbit Cell Signaling 3407 

anti-tyrosine hydroxylase Primary Rabbit Merk Millipore, 

Nottingham, UK 

AB152 

anti-insulin receptor β 

chain  

Primary Rabbit Santa Cruz 

Biotechnology 

sc-711 

anti-IGF-I receptor  Primary Rabbit Cell Signaling 3018 
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anti-rabbit IgG, HRP Secondary Rabbit Cell Signaling 7074 

Goat-anti-mouse Secondary Goat Thermo Fisher 

Scientific, 

Loughborough, 

UK 

31432 

anti-GAPDH Primary Mouse Sigma-Aldrich G8795 

 

2.1.3 Cell lines 

Table 2.5 Mammalian cell lines 

Name Obtained from Reference 

ire1α
-/- 

mouse 

embryonic fibroblast 

(MEF) 

R. J. Kaufman, Sanford 

Burnham Medical 

Research Institute, La 

Jolla, CA, USA 

(Lee et al., 

2002) 

traf2
-/- 

MEF T. Mak University of 

Toronto, Ontario Cancer 

Institute, Toronto, 

Ontario, Canada 

(Yeh et al., 

1997) 

traf2
+/+ 

MEF T. Mak University of 

Toronto, Ontario Cancer 

Institute, Toronto, 

Ontario, Canada 

(Yeh et al., 

1997) 

jnk1
-/-

 jnk2
-/- 

MEF R. Davis University of 

Massachusetts, 

Worchester, MA, USA 

(Tournier et 

al., 2000)  

WT MEF  R. J. Kaufman, Sanford 

Burnham Medical 

Research Institute, La 

Jolla, CA, USA 

(Lee et al., 

2002) 

C2C12. Mouse 

myoblast 

R. Bashir, Durham 

University 

(Blau et al., 

1985) 
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Hep G2. Human 

hepatocyte carcinoma 

A. Benham, Durham 

University 

(Knowles et 

al., 1980) 

3T3-F442A. Murine 

fibroblast 

C. Hutchinson, Durham 

University 

(Green and 

Kehinde, 

1976) 

Fao rat hepatoma Public Health England, 

Salisbury, UK 

(Deschatrette 

and Weiss, 

1974) 

N1E-115. Murine 

neuroblastoma 

P. Chazot, Durham 

University 

(Amano et 

al., 1972) 

CAD (cath. a-

differentiated). 

Murine (B6/D2 F1 

hybrid) 

catecholaminergic 

neuronal tumour  

P. Chazot, Durham 

University 

(Suri et al., 

1993) 

SH-SY5Y. Human 

neuroblastoma  

Public Health England, 

Salisbury, UK 

(Ross et al., 

1983) 

PC-12. Rat adrenal 

phaeochromocytoma 

Public Health England, 

Salisbury, UK  

(Greene and 

Tischler, 

1976) 

HEK 293. Human 

embryonic kidney 

M. Cann, Durham 

University 

(Graham et 

al., 1977) 

Flp-In T-Rex 293 Life Technologies, 

Paisley, UK 

 

 

2.1.4 Cell culture reagents 

Table 2.6 Reagents used for tissue culture 

Name Supplier Product 

number 

Minimal essential medium Sigma Aldrich  M2279 
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Dulbecco’s modified 

Eagle’s medium with 

pyruvate 

Sigma Aldrich   D6546 

Dulbecco’s modified 

Eagle’s medium without 

pyruvate 

Sigma Aldrich D5671 

Roswell Park Memorial 

Institute (RPMI) 1640  

Sigma Aldrich R0883 

DMEM/F-12 Life Technologies Ltd 12634-

010 

Neurobasal medium Life Technologies Ltd 21103-

049 

Coon’s modification of 

Ham’s F12 medium 

Sigma Aldrich F6636 

Fetal bovine serum Biosera, Boussens, France S1830 

200 mM L-Glutamine 

solution 

Sigma Aldrich G7513 

all-trans-retinoic acid Sigma Aldrich R2625 

12-O-tetradecanoyl-

phorbol-13-acetate (TPA) 

Sigma Aldrich P8139 

Nerve growth factor-7S Sigma Aldrich N0513 

B-27 supplement Life Technologies Ltd 17504-

044 

Poly-L-ornithine Sigma Aldrich P4957 

Collagen Sigma Aldrich C8897 

Poly-L-lysine Sigma Aldrich P4707 

Penicillin (10000 

U/ml)/streptomycin(10 

mg/ml) 

Sigma Aldrich P4333 
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Insulin (10 mg/ml) 

recombinant from bovine 

pancreas 

Sigma Aldrich I9278 

6-OHDA Sigma Aldrich H4381 

MPP
+
 iodide Sigma Aldrich D048 

Tunicamycin Merk Millipore, Nottingham, 

UK 

654380 

Thapsigargin Apollo Scientific, Stockport, 

UK 

BIT4520 

Dexamethasone Sigma Aldrich D4902 

3-Isobutyl-1-

methylxanthine (IBMX) 

Sigma Aldrich I5879 

Trypan blue solution 0.4% 

(w/v) in 0.81% sodium 

chloride and 0.06% 

potassium phosphate. 

Sigma Aldrich T8154  

Trypsin  0.25% (w/v) Life Technologies Ltd 25200-

056 

 

2.1.5 Reagents 

Table 2.7 Reagents 

Name Product Number Company 

5x First strand buffer Y02321 Thermo Fisher 

Scientific 

5x green GoTaq Flexi buffer M891A Promega 

Acetic acid (HOAc) A/0360/PB17 Thermo Fisher 

Scientific 

Agarose  MB1200 Melford, Ipswich, 

UK 

Ampicillin BIA0104 Apollo Scientific, 
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Stockport, UK 

β-Mercaptoethanol M-6250 Sigma-Aldrich 

Bovine serum albumin A2153-50G Sigma-Aldrich 

Bromophenol blue 11439 Sigma-Aldrich 

CellMask deep red C10046 Thermo Fisher 

Scientific 

Complete mini protease inhibitors 11836 153 001 Roche 

Deoxyadenosine triphosphate (dATP)  R0141 Thermo Fisher 

Scientific 

Deoxycytidine triphosphate (dCTP)  R0151 Thermo Fisher 

Scientific 

Diethylpyrocarbonate (DEPC) A0300574 Acros Organics, 

Geel, Belgium 

D-Glucose G/0500/61 Thermo Fisher 

Scientific 

Deoxyguanosine triphosphate (dGTP)  R0161 Thermo Fisher 

Scientific 

Dimethyl sulfoxide D5879-100ML Sigma-Aldrich 

Dithiothreitol (DTT)  Y00147 Thermo Fisher 

Scientific 

Thymidine triphosphate (dTTP) R0171 Thermo Fisher 

Scientific 

Ethylenediaminetetraacetic acid 

(EDTA) 

D/0700/53 Thermo Fisher 

Scientific 

Ethidium bromide  E1510-10ML Sigma-Aldrich 

Glycerol G/0650/17 Thermo Fisher 

Scientific 

Glycine BP381-1 Thermo Fisher 

Scientific 

GoTaq Hot Start Polymerase 5 u/µl M5001 Promega 

GoTaq G2 flexi polymerase 5 u/µl M7801 Promega 

Hygromycin B 40052 Merk Millipore 

JC-1 dye (5,5′,6,6′-Tetrachloro-

1,1′,3,3′-tetraethyl-imidacarbocyanine 

T3168 Life technologies 
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iodide) 

LB-Agar LENNOX LBX0202 Formedium, King’s 

Lynn, UK 

LB-Broth LENNOX LBX0102 Formedium 

Methanol M/4000/PC17 Thermo Fisher 

Scientific 

Magnesium chloride   A351H Promega 

N-(1-Naphthyl)ethylenediamine 

dihydrochloride (NEDD) 

 

sc-203148 Santa Cruz 

Biotechnology 

Oligo(dT)15 500 µg/ml C1101 Promega 

PhosSTOP 04906837001 Roche 

Potassium hydroxide pellets P/5600/53 Thermo Fisher 

Scientific 

Propan-2-ol P/7490/17 Thermo Fisher 

Scientific 

RNasin Ribonuclease Inhibitor 20-40 

u/µl 

N22111 Promega 

Sodium carbonate 71451 Sigma-Aldrich 

Sodium chloride S/3120/65 Thermo Fisher 

Scientific 

Sodium deoxycholate D6750 Sigma-Aldrich 

Sodium dodecyl sulphate (SDS) BPE116-500 Thermo Fisher 

Scientific 

Sodium hydroxide S/4920/53 Thermo Fisher 

Scientific 

Sodium nitrite 

 

237213 Sigma-Aldrich 

Sulphanilamide S9251 Sigma-Aldrich 

Superscript III reverse transcriptase 

200 u/µl 

18080044 Thermo Fisher 

Scientific 

SybrGreen S7563 Life Technologies 

Tauroursodeoxycholic acid (TUDCA) 580549 Merk Millipore 

Tetracycline 87130 Sigma-Aldrich 
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Thapsigargin 586005 Merk Millipore 

Tris(hydroxymethyl) methylamine 

(Tris) 

T/3710/60 Thermo Fisher 

Scientific 

Triton X-100 282103-5G Sigma-Aldrich 

Tunicamycin 645380 Merk Millipore 

Tween20 P1379-500 Sigma-Aldrich 

 

2.1.6 Special consumables 

Table 2.8 Special consumables 

Name Product Number Company 

6-well plate, adherent 83.1839 Sarstedt, 

Nümbrecht, 

Germany 

Polyvinylidene difluoride (PVDF) 

Transfer Membrane (0.45μm pore 

size) 

RPN303F GE Healthcare 

CL-X Posure film  34091 Thermo Fisher 

Scientific 

Tissue culture dish 58 cm
2 

Adherent 83.1802 Sarstedt 

Tissue culture flask 175 cm
2
 Adherent  83.1812 Sarstedt 

Tissue culture flask 75 cm
2
 Adherent  83.1811 Sarstedt 

Tissue culture flask 25 cm
2
 Adherent 83.1810 Sarstedt 

Tissue culture flask 175 cm
2
 

Suspension 

83.1812.502 Sarstedt 

Tissue culture flask 75 cm
2
 

Suspension 

83.1811.502 Sarstedt 

Tissue culture flask 25 cm
2
 

Suspension 

83.1810.502 Sarstedt 

Lumox dish 94.6077.333 Sarstedt 

HiTrap Q Sepharose FF 17-5053-01 GE Healthcare 

Amicon Ultra-15 centrifugal filter UFC900308 Merck Millipore 
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2.1.7 Commercially available kits 

Table 2.9 Commercially available kits and products 

Name Product Number Company 

Amersham ECL
TM 

Western blotting 

detecting reagents 

RPN2009 GE Healthcare, 

Buckinghamshire, 

UK 

Criterion TGX
TM 

precast gels 4-20% 567-1094/95 BIORAD, Hemel 

Hemstead, UK 

DC
TM

 Protein assay reagent A 500-0113 BIORAD 

DC
TM

 Protein assay reagent B 500-0114 BIORAD 

DC
TM

 Protein assay reagent S 500-0115 BIORAD 

EZ-RNA kit (solution A and B) K1-0120 Geneflow, 

Lichfield, UK 

GeneRuler 1 kb DNA ladder SM0311 Thermo Fisher 

Scientific 

GeneRuler DNA ladder mix SM0331 Thermo Fisher 

Scientific 

GoTaq qPCR Master Mix A6002 Promega, 

Southampton, UK 

STAR phospho-IRS1 (Ser307 

mouse/Ser312 271 human) ELISA 

17-459 Merck Millipore 

Human inflammatory cytokines 

multi-analyte ELISArray kit 

MEH-004A Qiagen, Hilden, 

Germany 

Mouse inflammatory cytokines multi-

analyte ELISArray kit 

MEM-004A Qiagen  

jetPRIME  114-07 Polyplus 

transfection, 

Illkirch, France 

PageRuler Plus prestained protein 

ladder 

26619 Thermo Fisher 

Scientific 

Pierce ECL Western blotting 

substrate  

32209 Thermo Fisher 

Scientific 

Pierce ECL Plus Western blotting 32132 Thermo Fisher 
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substrate Scientific 

Restore Western blot stripping buffer 21059 Thermo Fisher 

Scientific 

RunBlue SDS precast gels 4-12% 10 

cm x 10 cm 

NXG41212/27 Expedeon, 

Swavesey, UK  

Tetro cDNA synthesis kit BIO-65042 Bioline, London, 

UK 

GenElute High Performance (HP) 

Plasmid Maxiprep 

NA0300 Sigma-Aldrich 

Complete protease inhibitors 11836153001 Roche, Basel, 

Switzerland 

2.1.8 Solutions for protein work 

Table 2.10 Solutions for protein work 

Solution Protocol 

Electrotransfer buffer 4.20 g NaHCO3 

1.59 g Na2CO3 

Add 5 l H2O  

RIPA Buffer 0.5 ml 1 M Tris·HCl pH 8.0 

0.3 ml 5 M NaCl 

0.1 ml Triton X-100 

0.5 ml 10% (w/v) sodium deoxycholate 

0.1 ml 10% (w/v) sodium dodecyl sulphate (SDS) 

Add H2O to 10 ml 

Add protease/phosphatase inhibitor as required. 

10x Semi-Dry Transfer 

Buffer 

73.19 g Glycine 

60.6 g Tris-Base 

Dissolve in ~350 ml H2O 

Add DI H2O to 500 ml  

1x Semi-Dry Transfer 

Buffer 

50 ml 10 x semi-Dry transfer buffer 

25 ml Methanol 

Add DI H2O to 500 ml 
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TBST 24.2 g Tris base 

80g NaCl 

1 ml Tween 20 

Dissolve in ~800 ml  

pH ~ 7.6 

Add H2O to 1 l  

6 x SDS-PAGE sample 

buffer 

3.50 ml 1 M Tris·HCl 

3.78 g glycerol 

1.00 g SDS 

500 μl 10 g/l bromophenol blue 

200 μl β-mercaptoethanol 

Add H2O to 10 ml 

10 x SDS-PAGE running 

buffer 

144.13 g glycine 

 30.03 g Tris 

 10.00 g SDS 

Add H2O to ~ 900 ml, stir until completely dissolved, 

then add H2O to 1 l.  

Stripping solution 1g SDS 

350 µl β-mercaptoethanol 

Dissolve in ~40 ml H2O 

Add H2O to 50 ml 

TBST + 5% (w/v) 

skimmed milk powder 

 

5 g milk powder 

Dissolve in 100 ml TBST 

TBST + 5% (w/v) BSA 

 

0.5 g BSA 

Dissolve in 10 ml TBST 

Griess reagent 15 mg N-(1-Naphthyl)ethylenediamine dihydrochloride 

(NEDD) 

150 mg sulphanilamide 

7.5 ml acetic acid 

22.5 ml H2O 
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2.1.9 Solutions for DNA work 

Table 2.11 Solutions for DNA work. 

Solution Protocol 

2 mM dNTPs 910 μl H2O 

10 μl 100 mM Tris·HCl (pH 8.0) 

20 μl 100 mM dATP 

20 μl 100 mM dCTP 

20 μl 100 mM dGTP 

20 μl 100 mM dTTP 

50x TAE 242 g Tris 

57.1 ml HOAc 

37.2 g Na2EDTA·2H2O 

Dissolve in ~800 ml H2O 

Add H2O to 1 l pH ~ 8.5 

10x TE (pH 8.0) 400 ml 1 M Tris·HCl (pH 8.0) 

80 ml 0.5 M EDTA 

Add H2O to 4 l 

Autoclave 

 

2.1.10 Solutions for RNA work 

Table 2.12 Solutions for RNA work 

Solution Protocol 

DEPC-H2O 1 mL DEPC 

1 l sterile H2O 

Autoclave. 

2 mM dNTPs 910 μl DEPC treated water 

10 μl 100 mM Tris·HCl (pH 8.0) in DEPC treated water. 

20 μl 100 mM dATP 

20 μl 100 mM dCTP 

20 μl 100 mM dGTP 
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20 μl 100 mM dTTP 

 

2.1.11 E. coli strains 

Table 2.13 E. coli strains 

Name Genotype Source 

XL-10 GOLD TetrD(mcrA)183 

D(mcrCB-hsdSMR-

mrr)173 endA1 supE44 

thi-1 recA1 gyrA96 

relA1 lac Hte [F´ proAB 

lacIqZDM15 Tn10 (Tetr) 

Amy Camr] 

Agilent 

Technologies, 

Stockport, 

UK, cat. no. 

200314(Lee 

et al., 2002) 

Competent XL-10 

GOLD 

TetrD(mcrA)183 

D(mcrCB-hsdSMR-

mrr)173 endA1 supE44 

thi-1 recA1 gyrA96 

relA1 lac Hte [F´ proAB 

lacIqZDM15 Tn10 (Tetr) 

Amy Camr]) 

(Yeh et al., 

1997) This 

study 

 

2.1.12 Plasmids 

Table 2.14 Plasmids 

Name Origin/Derivation Source 

pEGFP-N2-hINSR Encodes a fusion of the 

human insulin receptor 

to eGFP 

Addgene, 

Cambridge, MA, 

USA, Addgene 

ID 22286(Lee et 

al., 2002) 

pcDNA5/FRT/TO-

FV2E-INSR 

Generated by cloning 

the 1,430 bp BsiWI-

XmaI fragment of 

Cox and 

Schröder, 

unpublished(Yeh 
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pCLFv2IRE  into 

BsiWI- and XmaI-

digested 

pcDNA5/FRT/TO-

FV2E-C’hIRE1α  

et al., 1997) 

pcDNA5/FRT/TO-

MyrFV2E-INSR 

Generated by cloning 

the 501 bp EcoRI-

XmaI fragment of 

pC4M-FV2E (Arial 

Pharmaceuticals, 

Cambridge, MA, USA) 

into HindIII- and 

XmaI-digested 

pcDNA5/FRT/TO-

FV2E-INSR after 

blunting the 

EcoRI and HindIII 

sites with Klenow 

enzyme. 

Cox and 

Schröder, 

unpublished 

pmaxGFP  Lonza Cologne 

GmbH, Cologne, 

Germany 

 

2.2 Methods 

2.2.1 Mammalian cell culture 

2.2.1.1 Reviving cells 

Cryovials were stored primarily in a liquid nitrogen tank. Backup stocks of all cell lines 

were stored in a -150°C freezer. The growth medium required for the cell line to be revived 

was added to a 75 cm
2
 flask and the flask was placed in a 37°C cell culture incubator to 

warm the medium to 37°C. The cryovial was removed from the liquid nitrogen tank and 

left to gently warm for 1 min before being defrosted by placing into a 37°C water bath. The 

cryovial was left only partly submerged so that the water level was not high enough to 

reach the thread and lid of the vial to prevent contamination. The cryovial was gently 
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swirled in the water bath to increase even thawing of the frozen cell culture. Once the 

majority of the vial contents had thawed the cryovial was sterilised with 70% (v/v) EtOH. 

Using a 2 ml serological pipette, in the tissue culture flow hood, the contents of the 

cryovial was pipetted into the pre-warmed 75 cm
2
 culture flask. The flask was placed in the 

37°C CO2 incubator (RS Biotech, Galaxy R+, Model Number: 170-300 PLUS) overnight 

before the medium was changed and new fresh medium was added. 

2.2.1.2 Cell splitting  

Once cells had reached high confluency the culture was split. Medium was removed from 

the cells before adding enough PBS to easily cover the surface of the tissue culture vessel 

(~0.1 ml/cm
2
), in the case of a 75 cm

2
 flask 10 ml of PBS was used. The tissue culture 

vessel was then gently rocked before removal of the PBS. After the PBS wash step ~0.01 

ml/cm
2 

of trypsin was added to the cells, in the case of a 75 cm
2
 flask 1 ml of trypsin was 

added. Once again the vessel was gently rocked for approximately 5 s, ensuring that the 

trypsin had covered the entire bottom surface of the vessel. The trypsin was then 

immediately removed before moving the tissue culture vessel to the 37°C CO2 incubator 

for approximately 5 min. As confluency and cell line can affect how long trypsinisation 

takes to detach cells, the vessel was regularly checked during the incubation period in case 

it had to be removed early or left longer. Once the majority of the cells had detached fresh 

warm media was added to the vessel. The fresh media was then pipetted several times 

across the growth surface of the vessel to ensure complete detachment of as many cells as 

possible. Once the cells had been resuspended in fresh media this was added to new tissue 

culture flasks accordingly depending on the seeding confluency required. If required cells 

were counted using a cell haemocytometer (see ‘cell counting’). 

2.2.1.3 Cryopreservation 

Cells were grown to >70% confluency. Cells were trypsinised and processed in exactly the 

same way as in the cell splitting protocol (2.2.1.2). After the cells had been trypsinised 

freeze mix containing 90% (v/v) FBS, 10% (v/v) DMSO was added to the cells. The 

volume of freeze mix the cells were suspended in was dependent of flask size and 

confluency with 1 ml of freeze mix required for each new cryovial. A 70% confluent 75 

cm
2
 flask was resuspended in 4 ml of freeze mix. Cryovials were then added to either a Mr 

Frosty (Thermo Fisher Scientific, #5100-0001) or a CoolCell LX (Biocision, San Rafael,  

USA #BCS-405), which both slow freezing in a -80°C freezer to 1°C/min. The container 
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was then put into a -80°C freezer for approximately 24 h after which cryovials were 

transferred to either a liquid nitrogen tank or a -150°C freezer for long term storage. 

2.2.1.4 Culture conditions 

2.2.1.4.1 General culture conditions  

All cells were grown at 37°C in an atmosphere of 95% (v/v) air, 5% (v/v) CO2 and 95% 

humidity. Cells were not left to reach high confluency (>90%) during their maintenance. 

All cells were maintained without the use of antibiotics, except when a new cell line was 

obtained, in these instances new cell lines were maintained in penicillin/streptomycin until 

frozen stocks had been produced. All mammalian cell culture was performed in sterile 

conditions in a sterile tissue culture flow hood using 70% (v/v) EtOH to sterilise all 

equipment entering the tissue culture hood including gloves. All cell lines except PC-12 

cells were grown in cell culture plastics for adherent cells. PC-12 cells were maintained in 

cell culture plastics for suspension cells. 

2.2.1.4.2 Culture of MEF cells 

ire1α
+/+

, traf2
+/+

, traf2
-/-

, jnk1
-/-

 jnk2 
-/-

, jnk1
+/+

 jnk2
+/+

 MEF cell lines were cultured in 

Dulbecco’s Modified Eagle’s Medium with 10% (v/v) foetal bovine serum and 2 mM L-

glutamine added. The medium for ire1α
-/-

 and corresponding WT MEFs was supplemented 

with 110 ng/ml pyruvate (Lee et al., 2002) and with 10% (v/v) foetal bovine serum and 2 

mM L-glutamine added.  

2.2.1.4.3 Culture of HEK293T, C2C12, 3T3-F4421 and N1E-115 cells 

HEK293T, C2C12, 3T3-F4421 and N1E-115 cells were cultured in Dulbecco’s Modified 

Eagle’s Medium with 10% (v/v) foetal bovine serum and 2 mM L-glutamine added.  

2.2.1.4.4 Stably transfected Flp-In T-Rex 293 

Flp-In T-Rex 293 cells stably expressing a fusion of the FV2E drug-inducible dimerisation 

domain (Clackson et al., 1998) with the β chain of the human insulin receptor were 

maintained in Dulbecco’s Modified Eagle’s Medium without, and with 10% (v/v) foetal 

bovine serum and 2 mM L-glutamine added. 24 h after revival, hygromycin and 

blasticidin·HCl were added to the flask to achieve final concentrations of 100 μg/ml and 10 

μg/ml, respectively. 
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Expression of the FV2E insulin receptor chimera was induced for 24 h with 1 μg/ml 

tetracycline, where indicated. The chimera was dimerised by treating cells with 100 nM 

AP20187 for the times indicated in the text. 

2.2.1.4.5 Culture of HepG2 cells 

HepG2 cells were cultured in Modified Eagle’s Medium with 10% (v/v) foetal bovine 

serum and 2 mM L-glutamine added.  

2.2.1.4.6 Culture of CAD cells 

CAD cells were cultured in Dulbecco’s Modified Eagle’s Medium/F12 with 10% (v/v) 

foetal bovine serum and 2 mM L-glutamine added.  

2.2.1.4.7 Culture of BV-2 cells 

BV-2 cells were cultured in DMEM/F12 with 10% (v/v) foetal bovine serum and 2 mM L-

glutamine added. BV-2 cells were maintained in cell culture plastics for adherent cells. 

2.2.1.4.8 Culture of SH-SY5Y cells 

SH-SY5Y cells were cultured in Dulbecco’s Modified Eagle’s Medium/F12 with 10% 

(v/v) foetal bovine serum and 2 mM L-glutamine added.  

2.2.1.4.9 Culture of PC-12 cells 

PC-12 cells were cultured in suspension in RPMI 1640, 2 mM L-glutamine, 10% (v/v) 

horse serum, and 5% FBS. PC-12 cells were maintained in untreated cell culture plastics 

for suspension cells.  

2.2.1.4.10 Culture of Fao rat hepatoma cells 

Fao rat hepatoma cells were cultured in either Coon’s modification of Ham’s F12 or 

RPMI-1640 with 10% (v/v) foetal bovine serum and 2 mM L-glutamine added. Rat Fao 

cells were maintained in cell culture plastics for adherent cells. 
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2.2.1.4.11 Primary cell culture 

2.2.1.4.11.1 Mechanical dissociation of cells 

The Brain dissection from E14-E15 Swiss mouse embryos was kindly carried out by two 

members of Professor Marcus Rattray’s laboratory (Bradford, UK). From this dissection I 

was provided with foetal mouse cortices. 

A Pasteur pipette was smoothed using fire (reduction 1/3 of the pipette diameter) and then 

coated with sterile FBS. Cortices were placed in a 15 ml sterile centrifuge tube to which 5 

ml PBS (Ca
2+

, Mg
2+

 free)/33 mM Glucose (PBS/Glucose) was added. Cells were then 

dissociated by slowly and gently pipetting up and down (30-40 times). PBS/Glucose was 

added to a final volume of 12 ml. The tube was left for 5 min so that the non-dissociated 

elements formed a deposit (pellet). The supernatant was then aliquoted into 2 new 15 ml 

tubes with 6 ml in each. 1 tube was for neurons and the other for glial cells. The tubes were 

centrifuged at 200 g for 5 min at RT. The supernatant was aspirated carefully so that the 

pellet was not disturbed. Pellets were resuspended in 10 ml of glial or neuronal medium. 

The day before culture of cells, culture dishes were coated with poly-ornithine at 15 μg/ml 

and incubated overnight in the tissue culture incubator. Before plating, the poly-ornithine 

was removed and the plates were washed twice with sterile water and then finally with 

sterile PBS. 

For selection and maintenance of primary cortical neurons, the dissociated cells were 

seeded at a density of 1 x 10
6
 cells/ml with 2 ml in each dish of a 6-well plate coated with 

poly-L-ornithine in Neurobasal medium, plus 2 mM L-glutamine and B-27 supplement. 

Media were changed 6 d after seeding. 50% of the media was removed and replaced with 

fresh media leaving a 1:1 ratio of conditioned:fresh media. 

2.2.1.4.11.2 Primary glia culture 

For selection of primary glial cells, the dissociated primary cells were seeded at a density 

of 0.4 x 10
6
 cells /ml with 2 ml in each dish of a 6-well plate. Primary cells were grown in 

DMEM:F12, 2 mM L-glutamine, 33 mM glucose, 13 mM sodium bicarbonate, and 10% 

(v/v) FBS. On d 6 and 10 after seeding, cells were washed in PBS/Glucose and the medium 

changed. During the PBS wash plates were gently knocked against the floor of the tissue 

culture hood to loosen neurons. During the media change only 50% of the conditioned 
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medium was removed and replaced with fresh medium leaving a 1:1 ratio of 

conditioned:fresh media. 

2.2.1.5 Differentiation protocols 

2.2.1.5.1 Differentiation of PC-12 cells 

PC-12 cells were seeded at 2 x 10
3
 cells per cm

2
 on 8-10 μg/cm

2
 collagen-coated plates in 

normal PC-12 culture medium. 24 h after seeding the medium was removed and replaced 

with fresh differentiation media consisting of normal culture media containing 50 ng/ml 7S 

NGF. NGF was made up in normal PC-12 culture medium and stored at -20°C. 

Differentiation medium was replaced every 2 d. Cells were treated and harvested on d 7. 

2.2.1.5.2 Differentiation of C2C12 cells  

C2C12 cells were differentiated in the following way. The media was removed from 60-

70% confluent cultures and replaced with low mitogen medium consisting of DMEM 

containing 4.5 g/l D-glucose, 2% (v/v) horse serum, and 2 mM L-glutamine. Cells were 

incubated in this differentiation medium for a further 7-8 d with media being replaced 

every 2-3 d (Bains et al., 1984). Differentiation was assessed by microscopic inspection of 

cultures, staining of myotubes with rhodamine-labelled phalloidin (Amato et al., 1983) and 

RT-PCR to monitor AHCY, MYL1 and TNNC1 gene expression. 

2.2.1.5.3 Differentiation of 3T3-F442A cells 

Differentiation was induced by allowing 3T3-F442A preadipocytes to grow to confluency. 

2 d post-confluency the medium was removed and fresh growth medium was added with 

the addition of 1 μg/ml insulin, 0.5 mM 1-methyl-3-isobutylxanthine, and 0.25 µM 

dexamethasone. After 3 d the medium was removed and replaced with fresh medium with 

the addition of only 1 µg/ml insulin this time. 2 d after the medium was replaced with 

normal growth medium and the cells were incubated for a further 7 d (Rubin et al., 1978). 

Differentiation was assessed by Oil Red O staining (Hansen et al., 1999). 

2.2.1.5.4 Differentiation of SH-SY5Y cells 

SH-SY5Y cells were differentiated in several ways: 
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1. 10 µM all-trans retinoic acid (RA) for 3 d in normal growth medium, media was 

then removed and replaced with fresh 10 µM  RA containing media for a further 3 

d. RA was made up in DMSO and stored in brown tubes at -20 °C. 

2. Normal growth medium and 20 μM all-trans retinoic acid. Cells were left without 

any media change for 6 d. 

3. 10 µM RA for 3 d in growth medium containing 3% FBS, media removed and 

replaced with fresh 10 µM RA-containing medium for a further 3 d (Lopes et al., 

2010, Cheung et al., 2009). 

4. Growth medium containing 3% FBS and 20 μM all-trans retinoic acid. Cells were 

left without any media change for 6 d. 

5. Cells grown in 10 µM RA for 3 d, media removed and replaced with fresh medium 

containing 80 nM 12-O-tetradecanoyl-phorbol-13-acetate (TPA) for another 3 d 

(Presgraves et al., 2004). 

SH-SY5Y cells were seeded at 5% confluency on 8-10 μg/cm
2
 collagen coated plates in 

normal culture medium. 24 hours after seeding media were removed and replaced with 

fresh differentiation media.  

2.2.1.5.5 Differentiation of CAD cells 

CAD cells were differentiated by seeding the cells at 5% confluency and then left for 24 h 

before removal of media and addition of fresh media without serum; Dulbecco’s Modified 

Eagle’s Medium/F12 with L-glutamine added. Media was changed every 3-4 d. Cells were 

harvested 10 d after first media change. 

2.2.1.6 UV stimulation 

Ultraviolet (UV) treatment was performed at 254 nm 24 J/m
2 

using a Bio-Rad UV cross-

linker. Medium was removed from cells and stored at room temperature. Cells were 

immediately transferred to the UV cross-linker for UV stimulation. After UV treatment the 

growth medium was added back to the cells before they were transferred to the tissue 

culture incubator for 30 min before harvesting of cell lysates. 

2.2.1.7 Transfection of siRNAs 

The INTERFERin siRNA transfection kit was used to perform siRNA transfection 

following the manufacturer’s guidelines. Cells were seeded so that on the day of 

transfection they were between 60-80% confluent. Depending on the number of 
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transfections being performed a master mix of siRNA and serum-free medium was made 

consisting of siRNA to make a final concentration of 1 nM and 200 µl of serum-free 

medium per well of a 6-well tissue culture plate and mixed by pipetting up and down. Then 

10 µl of INTERFERin reagent per well to be transfected was added to the master mix, 

vortexed for 10 s, spun down to collect all of the mix at the bottom of tube before being 

incubated at RT for 10 min. During the 10 min incubation the medium of the cells was 

replaced with fresh medium so that each well had 2 ml of fresh medium. After the 

incubation, an equal volume of transfection master mix was added to each well to be 

transfected. Separate master mixes were made for control plasmids. 4 h after transfection 

the medium was changed. 

2.2.1.8 Transfection of plasmids 

Plasmid transfections were performed using jetPRIME transfection kit in 6-well plates 

following the manufacturer’s protocol. Cells were seeded so that on the day of transfection 

they were between 60-80% confluent. Depending on the number of transfections being 

performed a master mix of plasmid DNA and jetPRIME buffer was made consisting of 3 

µg of plasmid DNA and 200 µl of jetPRIME buffer per well of a 6-well tissue culture. This 

mix was vortexed for 10 s before being spun down briefly to collect all the master mix in 

the bottom of the tube. For every well to be transfected 6 µl of jetPRIME reagent were 

added to the mix, vortexed for 10 s and then spun down briefly before being incubated for 

10 min at room temperature. An equal volume of the master mix was then added to the 

wells to be transfected. Each well contained 2 ml of medium before the addition of the 

transfection mix. Separate master mixes were made for control plasmids. Transfection 

efficiencies were determined by transfection of 2 μg of pmaxGFP and detection of GFP-

expressing cells with a Zeiss ApoTome fluorescence microscope. Transfection efficiencies 

were >80%. 24 h after transfection cells were analysed or time courses initiated, if not 

stated otherwise. 

2.2.1.9 Induction of ER stress 

ER stress was induced with 0.1 to 1 µM thapsigargin, 0.1 to 10 µg/ml tunicamycin, or 1 

µg/ml subtilase cytotoxin AB (SubAB) or catalytically inactive SubAA272B. SubAB and 

SubAA272B were purified as described before (Paton et al., 2004, Talbot et al., 2005).  
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2.2.1.10 Insulin Stimulation 

Insulin stimulation was performed in the following way. Cells were serum starved for 18 h 

by removal of medium, washing once with PBS and addition of fresh warm medium 

lacking FBS. At the end of the 18 h serum starvation period insulin was added to the cells 

with a final concentration of 100 nM insulin, if not stated otherwise. The cells were 

exposed to insulin for 15 min before cells were lysed for RNA and protein extraction. 

When cells were stressed for longer than 18 h they were serum-starved during the last 18 h 

of treatments with ER stressors. When cells were ER-stressed for shorter periods, the ER 

stressors were applied towards the end of the serum starvation, for example for the last 12 

h of serum starvation in case of treatment with ER stressors for 12 h. 

2.2.1.11 Microglia activation assay 

Media from neurons were aspirated into 15 ml centrifuge tubes before being centrifuged. 

Medium was centrifuged at 13,000 g for 10 min at 4°C  to pellet the cell debris. The 

supernatant was added to a fresh 15 ml centrifuge tube whilst the cell debris pellet was 

discarded. The supernatant was then either snap frozen in liquid nitrogen and stored at -

80°C and then thawed or it was directly added used in the desalting process. HiTrap Q 

Sepharose FF columns were flushed with sterile PBS for 5 min at a drip rate of 5 ml/min. 

After flushing, 1.5 ml of sample was injected at 1 ml/min into the desalting column. 2 ml 

of sterile PBS was then ran through the column at 1 ml/min and collected. The column was 

then flushed for a further 5 min with PBS at 5 ml/min before being used again.  

8 ml of PBS sample (originating from 6 ml of neuronal supernatant) from the HiTrap 

desalting step were concentrated to 500 µl using a 3,000 molecular weight cut-off filter by 

centrifugation at 4,000 g for 40 min at 4°C . As the starting volume of the samples was 6 

ml then ~80 µl of the concentrated sample represented 1 ml of the original sample. 

Therefore 160 µl of concentrated desalted sample was added to each well containing glial 

cells meaning that microglia cell were exposed to a concentrated sample representing 2 ml 

of neuron-conditioned medium. Glial cells were incubated for a further 18 h before 

isolation of medium and protein lysates.  
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2.2.2 Molecular Biology 

2.2.2.1 E. coli culture 

2.2.2.1.1 Revival and Growth 

LB broth was added to a 13 ml culture tube working close to the flame of a Bunsen burner. 

Ampicillin was added to sterile LB broth to a final concentration of 100 µg/ml. A single 

colony grown on an agar plate was selected using a sterile toothpick handled with a flame-

sterilised pair of forceps. The toothpick was added to the 13 ml culture tube. The culture 

tube was then left to incubate at 37ºC overnight with shaking at 225 – 250 rpm. For growth 

of larger volumes a fresh saturated overnight culture was diluted 1:100 into an Erlenmeyer 

flask containing fresh LB-broth containing ampicillin. 

2.2.2.1.2 Preparation of chemically competent E. coli 

Preparation of chemically competent cells was performed as previously described (Chung 

and Miller, 1988, Chung et al., 1989).4 ml LB medium containing appropriate antibiotics 

was inoculated with a single colony from a fresh LB plate containing appropriate 

antibiotics. Cultures were grown overnight at 37°C and shaking at ~220 rpm. 1 ml of this 

starter culture was used to inoculate 100 ml LB medium. Cultures were grown to an A600 

of ~0.5 at 37°C and shaking at ~220 rpm. Cultures were then incubated for 20 min on ice. 

All subsequent steps were performed in a cold laboratory. All reagents and materials were 

chilled to 4°C.  

The culture was split into four equal parts by transferring ~25 ml into four prechilled 40 ml 

centrifuge tubes by decanting. These were then centrifuged at 4,000 rpm for 10 min at 4°C. 

The supernatant was discarded. The tubes were inverted on a piece of adsorbent paper to 

remove traces of remaining liquid. 10 ml ice-cold 0.1 M MgCl2 was added to each 40 ml 

centrifuge tube. The cells were completely resuspended by rolling on a roller mixer. It was 

made sure that all visible cell clumps had dissolved before proceeding. Cells were once 

again incubated on ice for 20 min followed by centrifugation at 4,000 rpm for 10 min at 

4°C. Supernatant was poured off and to remove traces of liquid by the tubes were once 

again inverted onto adsorbent paper. Cells were washed 3 times with ice-cold 0.1 M CaCl2. 

In each step cells were resuspended in 10 ml ice-cold 0.1 M CaCl2 per 40 ml tube by 

rolling on a roller mixer. It was ensured that all visible cell clumps had dissolved before 

proceeding. Cells were incubated on ice for 30 min before centrifugation at 4,000 rpm for 
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10 min at 4°C. Once again supernatant was poured off and tubes inverted onto absorbent 

paper. Supernatant was poured off and 375 µl 0.1 M CaCl2 + 15% (v/v) glycerol were 

added to the cell pellet in each centrifuge tube and cells resuspended by gently swirling the 

centrifuge tubes. It was ensured that all visible cell clumps had dissolved before 

proceeding. 50 µl aliquots of cells were dispensed into prechilled 1.5 ml microcentrifuge 

tubes using a prechilled 200 µl large orifice pipette tip. Cells were snap-frozen in liquid 

nitrogen before being stored at -80°C to be used as competent cells. 

2.2.2.1.3 Transformation 

1-5 μl solution containing the plasmid of interest or ligation mixture were added to 50 µl of 

competent cells. Cells were incubated on ice for 30 min. Cells were then heat-shocked for 

42 s at 42°C in a water bath. After heat-shock cells were incubated on ice for 2 min. 1 ml 

LB medium was then added to the cell suspension and the cultures incubated for 1 h at 

37°C with shaking at ~250 rpm. After incubation 100 µl of cell suspension was plated onto 

one LB agar plate containing appropriate antibiotics. Cells were harvested from the 

remaining ~900 µl by centrifugation at 12,000 g and RT for 30 s in a benchtop 

microcentrifuge and the supernatant aspirated. The cell pellet was then resuspended in 

~100 µl LB medium and plated onto one LB agar plate containing 100 µg/ml ampicillin. 

Plates were incubated in a 37ºC incubator for 16 h. 5 µl 1 x TE (pH 8.0) was used as a 

negative control to determine if contamination of materials gives rise to undesired 

colonies. 

2.2.2.1.4 Plasmid miniprep  

Minipreps were performed as previously described (Birnboim and Doly, 1979). 1.5 ml of 

saturated overnight E. coli culture was transferred into a 1.5 ml microcentrifuge tube; the 

remainder of the culture was stored at 4°C. Cells were then collected by centrifugation for 

1 min at 14,000 g, RT. The supernatant was aspirated leaving only the cell pellet. Tubes 

were centrifuged a second time for 1 min at 14,000 g, RT and the supernatant aspirated 

again to fully isolate cells from medium. 100 μl 50 mM D-Glucose, 25 mM Tris·HCl (pH 

8.0), 10 mM EDTA were added to the cell pellet. The cells were resuspended by vortexing 

and pipetting up and down before being incubated for 5 min at RT. Then 200 μl 0.2 N 

NaOH, 1% (w/v) SDS were added following mixing by inverting tubes 4-6 times. The 

mixture was incubated on ice for 5 min before adding 150 μl ice-cold 5 M KOAc (pH 4.8). 

The contents of the tubes were mixed by inverting the tubes 4-6 times before being 

incubated on ice for a further 5 min. The tubes were centrifuged for 3 min at 14000 g at 
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4°C. The clear supernatant produced from centrifugation was carefully transferred to a new 

microcentrifuge tube taking care to not transfer any white precipitate. DNA was 

precipitated by adding 0.8 ml EtOH and mixing by inverting 2-3 times and incubating at 

RT for 2 min. The tubes were centrifuged for 1 min at 14000 g at RT before the 

supernatant was aspirated to leave the DNA pellet. 1 ml of 70% EtOH was then added to 

the DNA pellet and the tube centrifuged for 1 min at 14,000 g, RT. The supernatant was 

aspirated before a final centrifugation step for 10-15 s at 14,000 g, RT. All remaining 

liquid was pipetted out and the pellet left to air dry at RT. Once dry the DNA pellet was 

dissolved in 30 μl 1 x TE (pH 8.0), 0.3 mg/ml RNase A and stored at 4°C. 

2.2.2.1.5 Plasmid Maxiprep 

The GenElute High Performance (HP) Plasmid Maxiprep kit was used following the 

manufacturer’s protocol with no changes being made. 

2.2.2.2 RNA work 

All RNA solutions were prepared with DEPC-treated H2O and stored in RNase free 

vessels, which if were plastic were purchased as RNase free, whilst glass vessels were 

baked at 200 °C to eliminate RNases. 

2.2.2.2.1 RNA isolation 

RNA was extracted with EZ-RNA total RNA isolation kit. RNA isolation was only 

performed on cell grown in 6-well plates. Media was aspirated from cells and discarded. 

Cells were then carefully (as to not disturb cells) washed twice with ice-cold phosphate-

buffered saline. Washed cells were then lysed in 500 µl of EZ-RNA solution A before 

being directly used or stored at -80°C. Samples were processed following the 

manufacturer’s instructions with the exception that the isopropanol-precipitated nucleic 

acid was collected by centrifugation at 15000 x g for 30 min (contrasting from 12000 x g 

for 8 min, recommended in the manufacturer’s protocol) and that the 75% EtOH wash was 

centrifuged at 12000 x g for 30 min (contrasting from 7500 x g for 5 min, recommended in 

the manufacturer’s protocol). After the 75% EtOH wash and drying of the RNA pellet, 25 

µl of DEPC-treated H2O were added to the tube containing the pellet. The pellet was 

dissolved by playing the tube on a dry heat block at 55°C for 10 min. 
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2.2.2.2.2 RNA quantitation 

Once dissolved in DEPC-treated H2O (from the final stage of the RNA isolation protocol), 

the RNA was quantified using either a NanoDrop or SpectraMax spectrophotometer.  

2.2.2.2.3 cDNA synthesis 

RNA was reverse transcribed with oligo-dT primers (Promega) and Superscript III reverse 

transcriptase (Life Technologies). 

RNA was reverse transcribed to cDNA using two different protocols. 

1) cDNA was reverse transcribed from RNA using the First Strand cDNA Synthesis 

Kit (Invitrogen) The following reaction was set up: 

Reaction mix 1: 

1 µl of oligo(dT)15 

11 µl of RNA/DEPC Water (up to 5 µg total RNA). 

1 µl of 100 mM RNA-safe dNTPs  

Reaction mixture 1 was heated to 65°C for 5 min and then cooled on ice to 4°C for 

5 min. Reaction mixture 2 was then added to the cooled reaction mixture 1. 

Reaction mixture 2: 

4 µl 5x First Strand Buffer 

1 µl 0.1 M DTT 

1 µl RNasin  

1 µl of Superscript III reverse transcriptase 

This final reaction mixture was then incubated at 50°C for 50 min followed by 

inactivation at 85°C for 15 min. 

2) cDNA was also reverse transcribed using a Tetro cDNA synthesis kit following the 

manufacturer’s instructions. 



85 

 

2.2.2.3 DNA work 

2.2.2.3.1 XBP1 splicing assay 

Protocols for XBP1 splicing assays have been described previously (Cox et al., 2011). 

After RT-PCR reactions for murine, human and rat XBP1 the whole 50 µl reaction  from 

the following sections were loaded into a well on a 2% (w/v) agarose gel containing 1 

μg/ml ethidium bromide. DNA gel electrophoresis was performed at 100 V for 2 h. Bands 

were quantified using Image J software (Collins, 2007). 

2.2.2.3.1.1 Touchdown RT-PCR for murine XBP1 

The following reaction was set up: 

10 µl 5x Promega GoTaq buffer 

5 µl 2 mM dNTPs 

0.5 µl Mouse forward primer (H7961) at 100 µM 

0.5 µl Mouse reverse primer (H7962) at 100 μM 

0.5 µl Promega GoTaq HotStart polymerase 

3 µl 25 mM MgCl2 

5 µl cDNA reaction  

Sterile H2O added to 50 µl  

 

For mouse XBP1, the following cycling parameters were used: 

Initial denaturation 95.0°C   5 min  

Denaturation 94.0°C  30 s 

x 22 cycles 
Annealing 72.0°C  30 s 

Decrease annealing temperature by 
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1.0°C in each cycle 

Extension 72.0°C  15 s 

Denaturation 94.0°C  30 s  

Annealing 50.0°C  30 s x 35 cycles 

Extension 72.0°C  15 s  

Final extension 72.0°C  7 min  

Hold   4.0°C ∞  

 

2.2.2.3.1.2 RT-PCR for human XBP1 

The following reagents were added together: 

10 µl 5x Promega GoTaq buffer 

5 µl 2 mM dNTPs 

0.5 µl Human forward primer  (H8289) at 100 μM 

0.5 µl Human reverse primer (H8290) at 100 μM 

0.5 µl Promega GoTaq polymerase 

3 µl 25mM MgCl2 

5 µl cDNA reaction  

For human XBP1 the following cycling parameters were used: 

Initial denaturation 94.0°C 2 min  

Denaturation 94.0°C 1 min  

Annealing 59.0°C 1 min x 35 cycles 
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Extension 72.0°C 30 s  

Final extension 72.0°C 5 min  

Hold   4.0°C ∞  

 

2.2.2.3.2 Actin 

2.2.2.3.2.1 RT-PCR for mouse and human actin 

In a sterile, nuclease free PCR tube the following was added: 

5.0 µl 5 x Green GoTaq flexi buffer 

1.5 µl 25 mM MgCl2 

2.5 µl 2 mM dNTPs in 1 mM Tris·HCl, pH 8.0 

2.5 µl 10 µM forward actin primer  (human ACTA1 H8287 and murine ACTB H7994) 

2.5 µl 10 µM reverse actin primer (human ACTA1 H8288 and murine ACTB H7995) 

1.25 µl cDNA from above 

0.25 µl 5 U/µl GoTaq hot start polymerase 

Add H2O to 25 µl. 

The following cycling parameters were used: 

Initial denaturation 98.0°C   2 min  

Denaturation 98.0°C   5 s  

Annealing 55.0°C   5 s x 35 cycles 

Extension 72.0°C 10 s  

Final extension 72.0°C 1 min  
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Hold   4.0°C ∞  

 

2.2.2.3.3 Gel electrophoresis 

The agarose was then melted in a microwave oven at the highest power setting for 1 – 5 

min with swirling every ~30 to 60 s to ensure even mixing and to avoid boiling over of the 

agarose solution. The agarose solution was left to cool down before addition of ethidium 

bromide to 0.5-1 µg/ml to the agarose solution and mixed by swirling. During the cooling 

of the gel the gel casting platform was sealed at both open ends using laboratory tape and 

the comb was inserted. The cooled, melted agarose was then poured into the gel caster, 

making sure that no bubbles are trapped underneath the combs and all bubbles on the 

surface of the agarose are removed before the gel sets. The gel was left to solidify at room 

temperature. After the gel had solidified, the laboratory tape was removed from the open 

ends of the gel caster. The gel casting platform containing the set gel was then placed in 

the electrophoresis tank. 

0.5 µg/ml of ethidium bromide was then added to the remaining 1 x TAE to make the 

electrophoresis buffer. Sufficient electrophoresis buffer was then added the tank to cover 

the gel to a depth of about 1 mm (or just until the tops of the wells are submerged). Using a 

pipette, pre-prepared DNA samples were loaded into wells. An appropriate DNA 

molecular weight ladder was used to cover the range of the PCR products being 

investigated. The gel tank was assembled so that DNA will migrate toward the anode. The 

voltage was then set depending on the size of the gel and time required to run the gel. 

Separation was monitored by observing the migration of the dyes in the loading buffer. 

The DNA was visualized by placing the agarose gel onto a UV light source.  

2.2.2.3.4 RT-qPCR 

RT-qPCRs were run on a Rotorgene 3000 (Qiagen, Crawley, UK). Melt curves were 

monitored after each run to check for the amplification of a single product. Representative 

melt curves are shown in Appendix A. Amplicons were amplified with either a) 0.5 µl 5 

U/µl GoTaq Flexi DNA polymerase, 2 mM MgCl2, 200 μM dNTPs, and 1 µM of each 

primer with a 1:2,500 fold dilution of a SybrGreen stock solution or b) GoTaq qPCR 

Master Mix. 
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Using GoTaq polymerase: 2 min of denaturation at 95°C , then a subsequent 40 cycles of 

denaturation at 95°C  for 30 s, annealing at 58°C  for 30 s, primer extension at 72°C  for 30 

s. 

Using the GoTaq Master mix: 2 min denaturation followed by 40 cycles of 95°C  for 15 s, 

60°C for 15 s, 72°C for 15 s for all primers except ACTB. Whereas denaturation was 

followed by 40 cycles of 95°C  for 15 s, 60°C  for 60 s for ACTB. 

Fluorescence data were acquired during the annealing step for all primers. For ACTB data 

was acquired in the first 30 s of the 60°C step. To confirm amplification of only one PCR 

product the melting curves were recorded and analysed after every PCR run. Amplification 

efficiencies were between 0.6 and 0.8. These were calculated using the comparative 

quantitation analysis in the Rotor Gene Q software. CT values were calculated and 

normalised to GAPDH, ACTA1 or ACTB qPCR data as described by Pfaffl (Pfaffl 2001). 

Results represent the average and standard error of three technical repeats. These results 

were confirmed by at least one other biological replicate. 

The murine GAPDH standard was used for normalising murine ACHY, MYL1 and TNNC. 

The murine ACTB standard was used for normalising murine BIRC6, CIAP1, CIAP2, 

TRAF2, XIAP, INSR, IL-6, TNFα and IL-1β. The GAPDH standard was used for 

normalising human IRE1α, IL-6, TNFα and IL-8. The ACTA1 standard was used for 

normalising human TRAF2. 

2.2.2.4  Protein work 

2.2.2.4.1 Western Blotting 

2.2.2.4.1.1 Protein isolation 

Media was aspirated from cells and discarded. Cells were then carefully (as to not disturb 

cells) washed three times with ice-cold phosphate-buffered saline (PBS). Washed cells 

were then lysed in RIPA buffer containing complete protease inhibitors and phosphatase 

inhibitors as described before (Cox et al., 2011). Protein lysates were centrifuged at 16,000 

g for 10 min to remove cell debris. 
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2.2.2.4.1.2 Protein quantification 

Protein concentrations were assessed using the DC Protein Assay following the 

manufacturer’s instructions. Protein standards were created and added to the 96-well plate 

used for the protein assay. Protein standards were produced as follows: 

BSA dissolved in H2O. Adjusted to 2 mg/ml BSA and mixed well. Then a serial 1:2 

dilution in 1.5 ml microcentrifuge tubes with H2O was made to produce protein standards 

for a standard curve from a range of 2 to 0.0625 mg/ml. Each tube was mixed well by 

vortexing and pipetting up and down after each dilution step. BSA standards were 

subsequently stored at -20°C. 

Following quantification protein samples were all diluted to the same concentration to be 

used in SDS-PAGE.  

2.2.2.4.1.3 SDS-PAGE 

Proteins were separated by SDS-PAGE using criterion precast gels. An electrophoresis unit 

(Bio-Rad, Hercules, CA, USA) was assembled and buffer reservoirs were filled with 1 x 

SDS-PAGE running buffer. 6 x SDS-PAGE sample buffer was added to each protein 

sample so that the sample contained 1 x SDS-PAGE sample buffer. Samples were then 

boiled for 5 min at 100°C or 10 min at 70°C and then centrifuged for ~15 s at 12,000 g at 

RT to collect the whole sample at the bottom of the tube. Using gel loading tips, protein 

samples were loaded onto precast SDS-PAGE gels. Gels were run at a range of voltages 

depending on gel type. Gels were always run until the bromophenol blue dye front had run 

off the bottom of the gel. 

2.2.2.4.1.3.1 Electro-transfer, wet 

The pre-run SDS-PAGE gel was removed from its casing and carefully transferred to a 

plastic container containing electrotransfer buffer at 4ºC and then incubated with gentle 

shaking for 1 h at 4ºC. PVDF membrane and two pieces of filter paper were cut to match 

the size of the gel. Whatman 3 MM filter papers were then soaked in ice-cold transfer 

buffer for 15 min. PVDF membrane was left to soak in methanol for 1 min before being 

transferred to another container containing transfer buffer for 15 min. Filter papers, gel, 

and membrane were placed between fibre pads in a Bio-Rad electrotransfer cassette and 

placed in the Bio-Rad electrotransfer unit with 2.5-3 l electrotransfer buffer. 30 mV was 

applied to the electrotransfer unit and the assembly was incubated overnight with stirring 



91 

 

in the cold After this time, the electrotransfer unit was disassembled and the membrane 

removed. 

2.2.2.4.1.3.2 Electro-transfer, semi dry 

Proteins were transferred from SDS-PAGE gels to PVDF membrane via semi-dry transfer, 

in the following manner: 

The PVDF membrane and eight pieces of filter paper were cut to the same size to match 

the size of the gel. PVDF membrane was left to soak in methanol for 1 min before being 

transferred to another container containing semi-dry transfer buffer for 15 min. The filter 

paper was soaked in semi-dry transfer buffer for 15 min. The pre-run SDS-PAGE gel was 

removed from its casing and carefully transferred to a plastic container containing semi-dry 

transfer buffer, where it was left to soak for 15 min at room temperature. The surface of the 

anode of the semi-dry transfer unit was cleaned before assembly of the gel stack. Firstly, 4 

pre-soaked pieces of filter paper where placed in a neat stack on the semi-dry transfer 

apparatus, a 50ml tube was then rolled over the stack to remove bubbles. Upon this stack 

the membrane was placed and then the gel on top of the membrane. Finally the last 4 

pieces of filter paper were stacked on top of the gel. Bubbles were removed from the entire 

stack by rolling a 50 ml tube gently over the stack. The apparatus was then set to transfer at 

2 mA/cm
2
 for 60-75 min. 

2.2.2.4.1.3.3 Antibody staining 

Membranes were blocked in a plastic tray for 1 h RT or overnight at 4°C with gentle 

shaking in 5% (w/v) skimmed milk powder in TBST. The blocking solution was removed 

and membranes were either washed for 5 min 3 times in TBST with gentle shaking or were 

put directly into 50 or 15 ml centrifuge tubes without washing. Membranes were only 

washed at this stage if incubation with primary antibody was in 5% (w/v) bovine serum 

albumin (BSA) in TBST. Primary antibodies were incubated in centrifuge tubes on a roller 

at 4°C overnight in either 5% (w/v) skimmed milk powder or 5% (w/v) BSA in TBST. 

Blots were then washed for 5 min 3 times in TBST at RT with gentle agitation. Secondary 

antibodies were incubated in 5% (w/v) skimmed milk powder in TBST for 1h at RT in 

centrifuge tubes on a roller mixer. 

The following primary antibodies were incubated in 5% (w/v) BSA in TBST:  

Table 2.15 Primary antibodies incubated in TBST + 5% (w/v) BSA 
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Antibody Name Source Product code Dilution 

anti-JNK Cell Signaling 9258 1 in 1000 

anti-phospho-JNK Cell Signaling 4668 1 in 1000 

anti-p38 Cell Signaling 9212 1 in 1000 

anti-phospho-p38 Cell Signaling 9215 1 in 1000 

anti-AKT  Cell Signaling 4691 1 in 1000 

anti-phospho-S473-

AKT 

Cell Signaling 4060 1 in 1000 

anti-phospho-T308-

AKT 

Cell Signaling 4056 1 in 1000 

anti-GSK3α/β Cell Signaling 5676 1 in 1000 

anti-phospho-S21/9-

GSK3α/β 

Cell Signaling 9331 1 in 1000 

anti-IκBα  Cell Signaling 9242 1 in 1000 

anti-IGF-I receptor Cell Signaling 3018 1 in 1000 

anti-IRS1  Cell Signaling 3407 1 in 100 

 

The following primary antibodies were incubated in 5% (w/v) skimmed milk powder in 

TBST: 

Table 2.16 Primary antibodies incubated in TBST + 5% (w/v) milk. 

Antibody Source Product code Dilution 

anti-insulin receptor β 

chain 

Santa Cruz 

Biotechnology 

sc-711 1 in 200 

anti-GAPDH Sigma-Aldrich G8795 1 in 30000 
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anti-CD200 Sigma-Aldrich HPA031149 1 in 200 

anti-tyrosine 

hydroxylase 

Merk Millipore AB152 1 in 200 

 

Both secondary antibodies were incubated in 5% (w/v) skimmed milk powder in TBST: 

Goat anti-rabbit-IgG (H+L)- horseradish peroxidase (HRP)-conjugated secondary antibody 

(1 in 1000). Goat anti-mouse IgG (H+L)-HRP-conjugated secondary antibody (1 in 

20000). 

2.2.2.4.1.3.4 Detection 

For signal detection Pierce ECL Western Blotting Substrate or Pierce ECL Plus Western 

Blotting Substrate were used. Blots were exposed to CL-X Posure TM film. Exposure 

times were adjusted on the basis of previous exposures to obtain exposures in the linear 

range of the film. Films were developed through a developer (Xograph imaging systems, 

Compact X4, Model: X4A). Signals were quantified using ImageJ (Collins, 2007). 

To reprobe blots for detection of non-phosphorylated proteins, membranes were washed 

twice in TBST for 5 min before they were stripped using either Restore Western Blot 

Stripping Buffer or stripping solution for 20 min with gentle agitation at RT before 

proceeding as if the membrane had just had the proteins transferred onto it. 

2.2.2.4.1.4 Endoglycosidase H (Endo H) and peptide:N-glycosidase F (PNGase F) 

digestion 

8 μg of protein were denatured in 0.5% (w/v) SDS, 40 mM DTT at 100°C for 10 min. 

Samples were then incubated with 1000 U of Endo H in 50 mM sodium citrate, pH 5.5 (at 

25°C) at 37°C for 2 h, if not stated otherwise. For PNGase F digests denatured samples 

were incubated with 1000 U of PNGase F in 50 mM sodium phosphate pH 7.5 (at 25°C), 

1% (v/v) NP-40 at 37°C for 2 h, if not stated otherwise. 

2.2.2.4.2 ELISAs 

2.2.2.4.2.1 Phospho-S307 IRS1 enzyme-linked immunosorbent assay (ELISA). 

S307 phosphorylation of IRS1 was measured using the STAR phospho-IRS1 (Ser307 

mouse/Ser312 271 human) ELISA following the manufacturer’s instructions. S307 
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phosphorylation is expressed in units relative to a phospho-S307 IRS1 standard provided in 

the ELISA kit 

2.2.2.4.2.2 Inflammatory cytokines Multi-Analyte ELISArray 

Cytokine levels were measured using the Human Inflammatory Cytokines Multi-Analyte 

ELISArray Kit for SH-SY5Y or Mouse Inflammatory Cytokines Multi-Analyte ELISArray 

Kit for CAD following the manufacturer’s instructions. Cell lysates were then processed 

and the protein concentrations were measured. Cytokine units were standardized to the 

protein concentration. 

2.2.2.4.3 Nitric oxide assay 

Nitric oxide (NO) was measured spectrophotometrically using Griess reagent as previously 

described (Green et al., 1982). CAD cells were exposed to ER stressors for times indicated 

in the text before the supernatant was removed and snap frozen in liquid nitrogen and then 

transferred to the -80°C freezer for storage. Supernatants from BV-2 cells and primary 

mouse glia were also collected in this manner. Cell lysates were also harvested for protein 

quantitation. Medium was centrifuged at 13,000 g for 10 min at 4 °C to pellet and then 

remove cell debris. Once centrifuged and cell debris removed, supernatant was either snap 

frozen in liquid nitrogen and stored at -80°C and then thawed or it was directly used in 96-

well plates for a nitrite assay. Griess reagent was added to an equal volume of medium 

(100 µl) in 96-well plates. A standard curve ranging between 1-60 nmol/ml of sodium 

nitrite was added to plates and an equal volume of Griess reagent was added to the 

standard curve samples. Once Griess reagent was mixed with medium and the standard 

curve samples then the plate was incubated in the dark at room temperature for 10 min. 

The plate was then read at 540 nm in a Molecular Devices Spectramax Spectrophotometer. 

Protein samples isolated from the same tissue culture wells were quantified as described in 

the methods and then used to standardise nitrite concentrations to protein concentration. 

2.2.3 Microscopy 

2.2.3.1 Fluorescent monitoring of mitochondrial membrane potential with JC-1  

Confocal microscopy of cells treated with JC-1 was used to monitor mitochondrial 

membrane potentials as a marker for ER stress. Cells were grown in Lumox dishes for 24 h 

before being used in experiments. Cells were then treated with 1 µM thapsigargin before 

incubation with 2 µg/ml JC-1 dye at 37°C for 20 min (Reers et al., 1991, Smiley et al., 
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1991). After incubation with JC-1 and thapsigargin cells were washed twice with PBS. 

Fresh medium warmed to 37°C was added to the cells for live cell imaging on a Leica TCS 

SP5 II confocal microscope (Leica Microsystems, Mannheim, Germany). JC-1 

fluorescence was excited at 488 nm with an argon laser set at 22% of its maximum power. 

Green fluorescence between 515-545 nm was collected with a photomultiplier tube and 

orange fluorescence between 590-620 nm 442 with a HyD 5 detector. To determine the 

percentage of dead cells, cells showing fluorescence emission between 515-545 nm only 

were counted as dead, while cells showing punctuate fluorescence emission between 590-

620 nm were counted as alive. 

2.2.3.2 GFP-tagged insulin receptor localisation 

HEK 293 cells were first transfected with GFP-insulin receptor plasmid and then treated 

with tunicamycin or SubAB for 18 h. Following this, cells were stained with 5 µg/ml 

CellMask Deep Red (Life Technologies) for 5 min at RT to visualise the cell membrane. 

Images of GFP-tagged insulin receptors expressed in HEK 293 cells and cell membranes 

were then taken on a Zeiss ApoTome microscope (Carl Zeiss, Cambridge, UK). GFP 

fluorescence was observed using a band pass (BP) 450-490 filter (Carl Zeiss, FITC/GFP, 

filter set 9, cat. no. 488009-000) and a long pass (LP) 515 filter. CellMask Deep red 

fluorescence was observed using a BP546/12 filter (Carl Zeiss, Rhodamine, filter set 15, 

cat. no. 488015-0000) and a LP 590 filter. 

To quantify colocalization of the GFP-tagged insulin receptors and CellMask Deep Red 

signals, individual cells were defined as regions of interest (ROI) in Image J. ROI were 

then background-corrected for the intracellular fluorescence of CellMask Deep Red using 

the Background Subtraction from ROI plug-in. The Pearson correlation coefficient 

between the INSR-GFP and CellMask Deep Red Fluorescence was determined in 

individual cells using the Colocalization Test plug-in and Costes’ image randomization 

(Costes et al., 2004) and a point spread function (PSF) width of 0.453 µm as a quantitative 

measure of colocalization of both fluorescence  signals (Manders et al., 1992). 

2.2.4 Statistical Analysis 

Experimental data are presented as the average and its standard error. Errors were 

propagated using the law of error propagation for random, independent errors (Ku, 1966). 

Two way analysis of variance (ANOVA) with Sidak’s, Tukey’s or Dunnet’s correction for 
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multiple comparisons, and t-tests were performed in GraphPad Prism 6.04 (GraphPad 

Software, La Jolla, CA, USA). 
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3 EARLY JNK ACTIVATION BY THE ER STRESS SENSOR IRE1 

INHIBITS CELL DEATH EARLY IN THE ER STRESS 

RESPONSE 

3.1 Rationale 

It is widely accepted that long-lasting JNK signalling during stress can be proapoptotic 

(Tournier et al., 2000, Yang et al., 1997, Lei and Davis, 2003). However, some studies 

have found JNK signalling to be prosurvival (Svensson et al., 2011, Lamb et al., 2003, Yu 

et al., 2004, Granato et al., 2013). Therefore, JNK signalling can be both prosurvival and 

proapoptotic depending on the stress and duration. An example of this is that two phases of 

JNK activation occur with treatment of TNF-α, 1) an early and transient antiapoptotic 

phase and 2) a late proapoptotic phase (Roulston et al., 1998).  

JNK activation during ER stress is considered to be mostly proapoptotic which is in 

contrast to studies in which other stress situations result in acute JNK-mediated prosurvival 

signalling. Many studies looking at prolonged ER stress-induced JNK activation have 

shown that it is proapoptotic (Zhang et al., 2001, Smith and Deshmukh, 2007, Chen et al., 

2008, Wang et al., 2009, Jung et al., 2012, Teodoro et al., 2012, Huang et al., 2014, Jung et 

al., 2014, Kang et al., 2012, Arshad et al., 2013). However, not much is known about the 

role of JNK activation early in the ER stress response. Data in this chapter were obtained 

to address that issue. This chapter contains figures from a manuscript (see appendix B) 

entitled ‘Early JNK activation by the ER stress sensor IRE1α inhibits cell death early in the 

ER stress response’ with the authors Max Brown, Natalie Strudwick, Monica Suwara, 

Louise K. Sutcliffe, Adina D. Mihai, Jamie N. Watson, and Martin Schröder.  

 

3.2 ER stress transiently activates JNK before XBP1 splicing reaches 

maximal levels 

In order to investigate when early JNK activation occurs during ER stress, 8 h time courses 

were performed with ER stress inducing drugs. The phosphorylation of JNK on T183 and 

Y185 in its T-loop was monitored with antibodies against phosphorylated and total JNK. 

Alternative splicing of JNK 1 and 2 produces 8 proteins, which can be grouped into two 

major molecular weight pools of 46 kDa and 54 kDa (Coffey, 2014). Both the JNK and 
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phospho-JNK antibody detect the JNK proteins in the two molecular weight groups, which 

most commonly results in two major bands detected during Western blotting. The splicing 

of XBP1 was monitored as an indication of ER stress and more specifically activation of 

IRE1.  

 

Figure 3.1. Transient JNK activation precedes activation of XBP1 splicing in MEFs. 

(A) Kinetics of JNK activation and (B) XBP1 splicing in MEFs exposed to 1 M thapsigargin. (C) 

Quantitation of the JNK phosphorylation (white circles, solid line) from panel (A) and XBP1 splicing 

(black circles, dashed line) from panel (B). (D) Kinetics of JNK activation and (E) XBP1 splicing in 

MEFs exposed to 10 g/ml tunicamycin. (F) Quantitation of the JNK phosphorylation (white circles, 

solid line) from panel (D) and XBP1 splicing (black circles, dashed line) from panel (E). All data in 

this figure was obtained by Monika Suwara and Natalie Strudwick. 

 

In MEFs JNK activation occurred from as early as 10 min after treatment with the ER 

stressor thapsigargin and reached maximal levels after 20 min (Figure 3.1 A, data obtained 

by Monica Suwara and Natalie Strudwick). XBP1 splicing was not detected until 20 min 

and did not reach maximal levels until 4 h (Figure 3.1 B-C). Similar kinetics were 

observed when using another ER stress inducing compound, tunicamycin. Tunicamycin, 

which induces ER stress through inhibiting N-linked glycosylation of newly synthesised 

proteins, also caused transient JNK activation as early as 10 min. As with thapsigargin, 
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XBP1 splicing also occurred after JNK activation when cells were exposed to tunicamycin 

(Figure 3.1 D-E). Thapsigargin and tunicamycin induce ER stress in biochemically distinct 

ways and therefore these data suggest that early JNK activation is induced by ER stress 

and is not a consequence of secondary effects of the drugs. ER stress-induced transient 

JNK activation therefore precedes XBP1 splicing in MEFs. It is worth noting that JNK 

phosphorylation was observed at the 0 min time point (Figure 3.1 A and D). JNK 

phosphorylation at this time point should represent basal levels and therefore suggests that 

low levels of JNK phosphorylation occur during the culturing conditions used. Whether 

this basal JNK phosphorylation has any effect on the cells and interpretation of data is 

currently unknown. The JNK pathway is very sensitive to several stresses besides ER 

stress including: heat shock (Murai et al., 2010), oxidative stress (Wang et al., 2003a), and 

changes in pH (Xue and Lucocq, 1997). It is possible that other, unintentional, stresses 

during the handling of cells causes this basal JNK phosphorylation. The handling and 

growth conditions of cells was maintained consistent as much as possible and the 0 min 

time point was taken from the same 6-well plate as the 10, 20, 30, 45 and 60 min time 

point plate and as such any non-ER stress experienced by the 0 min time point should also 

have been experienced by cells at other time points which should, at least in part, control 

for the effect of other stresses. The phospho-JNK data is representative because biological 

repeats have recently confirmed this trend in all cell lines tested (data not shown). JNK 

phosphorylation was also observed at 0 min time points with other cell lines whilst 

activation of JNK higher than the basal levels after short exposures to ER stressors was 

observed in several cell lines suggesting that the general trend is reproducible. 

To investigate if similar XBP1 splicing and JNK phosphorylation kinetics during ER stress 

existed in other cell lines, Hep G2 cells were exposed to thapsigargin. Hep G2 cells are 

derived from human liver and were chosen because ER stress has been reported in the liver 

of obese humans (Puri et al., 2008, Gregor et al., 2009) and non-human animals (Ozcan et 

al., 2004) Treatment of Hep G2 cells with 1 µM thapsigargin led to maximal JNK 

phosphorylation after 30 min (Figure 3.2, data obtained by Monica Suwara and Natalie 

Strudwick). JNK phosphorylation then gradually decreased over the time course to below 

resting levels. XBP1 splicing was at maximal levels at 8 h and in contrast only 7% of XBP1 

was spliced at 30 min which was when JNK is maximally activated. It took another 15 min 

after maximal JNK activation for XBP1 splicing to reach half maximal levels (Figure 3.2 

C). Similar results were also seen with 3T3-F442A adipocytes and C2C12 myotubes (see 

manuscript in appendix B). 
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JNK can be activated by many different stresses. To elucidate if the early transient JNK 

activation is mediated by ER stress, it was investigated if JNK activation was IRE1α- and 

TRAF2-dependent. TRAF2 is involved in ER stress-mediated JNK activation through 

which it interacts with IRE1α and ASK1. Therefore, two small interfering (si)RNAs 

against human TRAF2 were used to knockdown TRAF2 in Hep G2 cells, whilst an siRNA 

against eGFP was used to control against any effects of the transfection procedure. 

Quantitative real time (qRT)-PCR was performed to establish efficiencies of siRNAs 

(Figure 3.3 A). Knock-down was most effective 24 h after transfection with both siRNAs. 

These conditions were therefore used to investigate if JNK activation was TRAF2-

dependent. Western blotting with an antibody against TRAF2 further confirmed knock-

down of TRAF2 by both siRNAs (Figure 3.3 B). Knock-down of TRAF2 decreased and 

delayed activation of JNK (Figure 3.3 B, C). Consistent with this finding is that C2C12, 

3T3-F442A, and MEFs with knocked-down TRAF2 have disrupted early ER stress-

induced JNK activation (see manuscript in appendix B, data obtained by Monica Suwara 

and Natalie Strudwick). In traf2
-/-

 MEFs early JNK activation is markedly reduced and 

does not increase until 4 h of ER stress (Figure 3.4 D-F). Therefore activation of JNK is 

delayed in traf2
-/-

 MEFs. Thapsigargin-induced early JNK activation is therefore dependent 

on TRAF2. 
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Figure 3.2. JNK activation and XBP1 splicing kinetics in response to acute thapsigargin-induced 

ER stress in Hep G2 cells. 

(A) Western blots for phospho-JNK (p-JNK) and total JNK (JNK) of Hep G2 cells exposed to 1 M 

thapsigargin for the indicated times. (B) Detection of XBP1 splicing by reverse transcriptase PCR. 

Hep G2 cells were exposed to 1 M thapsigargin for the indicated times. (C) Quantitation of the JNK 

phosphorylation (white circles, solid line) from panel (A) and XBP1 splicing (black circles, dashed 

line) from panel (B). All data in this figure was obtained by Monika Suwara and Natalie Strudwick. 
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Figure 3.3. Acute JNK activation in Hep G2 cells is TRAF2 dependent. 

(A) siRNA knock-down of human TRAF2 in Hep G2 cells. Relative TRAF2 mRNA abundance (to 

ACTA1) was measured by RT-qPCR 24 or 48 h after transfection of Hep G2 cells with the indicated 

siRNAs (n = 3). (B) Knock-down of TRAF2 expression in Hep G2 cells interferes with ER stress-

induced JNK phosphorylation. Hep G2 cells were treated with 1 M thapsigargin for the times 

indicated before protein extraction for Western blotting with antibodies against p-JNK, total JNK, 

TRAF2, and GAPDH. (C) Quantitation of the JNK phosphorylation signals in the Western blots of 

panel (B).  

 

siRNAs against human IRE1α were used to knock-down IRE1α in Hep G2 cells. RT-qPCR 

was performed to establish efficiencies of siRNAs (Figure 3.5 A). Knock-down was most 

effective 72 h after transfection with both siRNAs. These conditions were therefore used to 
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investigate if JNK activation was IRE1α-dependent. Knock-down of IRE1α with both 

siRNAs resulted in decreased activation of JNK in Hep G2 cells (Figure 3.5 B, C). 

Phosphorylated JNK levels were delayed in the IRE1α knock-down experiment compared 

to data in figures 3.3 and 3.3. Differening JNK activation kinetics may be a product of 

experimental variation such as changes in growth conditions (FBS batch, cell confluency, 

passage number) or the age of cell line stocks. Unfortuanetly, time limitations prevented 

this discrepancy from being understood or remedied. Consistent with this finding is that 

C2C12 and 3T3-F442A cells with knocked-down IRE1α display disrupted early ER stress-

induced JNK activation (see manuscript in appendix B, data obtained by Monica Suwara 

and Natalie Strudwick). In support of observations in Hep G2 cells it was also 

demonstrated that MEF cells without IRE1α have a delayed JNK activation phenotype 

with only minor activation of JNK at early time points (Figure 3.4 A-C). Therefore 

activation of JNK is delayed in ire1α 
-/-

 MEFs. Thapsigargin-induced early JNK activation 

is therefore TRAF2- and IRE1α-dependent. Overall acute ER stress transiently activates 

JNK before maximal XBP1 splicing in several cell lines whilst JNK activation requires 

IRE1α and TRAF2. 
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Figure 3.4. IRE1α and TRAF2 are required for the transient JNK activation in MEFs. 

(A) Kinetics of JNK activation and (B) XBP1 splicing in ire1-/-
 MEFs exposed to 1 µM thapsigargin. 

(C) Quantitation of the JNK phosphorylation (white circles, solid line) from panel (A) and XBP1 

splicing (black circles, dashed line) from panel (B). (D) Kinetics of JNK activation and (E) XBP1 

splicing in traf2
-/-

 MEFs exposed to 1 M thapsigargin. (F) Quantitation of the JNK phosphorylation 

(white circles, solid line) from panel (D) and XBP1 splicing (black circles, dashed line) from panel 

(E). XBP1 splicing assay performed byMonika Suwara. 
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Figure 3.5. Acute JNK activation is IRE1α-dependent in Hep G2 cells. 

(A) Hep G2 cells were transfected with 10 nM of the indicated siRNAs. 48 h and 72 h after 

transfection IRE1 mRNA was quantitated by quantitative reverse transcriptase (qRT)-PCR located 3’ 

to the siRNA annealing sequences with primers H8993 and H8994. Similar knock-down efficiencies 

were obtained with a RT-qPCR located 5’ to the siRNA annealing sequences. (B) siRNA knock-down 

of IRE1 impairs ER stress-dependent activation of JNK in Hep G2 cells. 72 h after transfection with 

the indicated siRNAs Hep G2 cells were stimulated for the indicated times with 1 M thapsigargin. 

Cell lysates were analysed by Western blotting. (C) Quantitation of JNK phosphorylation in Hep G2 

cells treated for the indicated times with 1 M thapsigargin 72 h after transfection with the indicated 

siRNAs (n  = 2). 
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3.3 Early transient JNK activation in ER stressed cells inhibits cell death 

The early transient JNK activation during acute ER stress is interesting because JNK has a 

dual role in that it has been reported to both promote and inhibit apoptosis during stress. 

JNK’s dual role in cell death making decisions is exemplified with TNF-α treatment in 

which early and transient JNK activation is antiapoptotic whilst late JNK activation is 

proapoptotic (Roulston 1998). TNF-α induces early JNK activation, which is required for 

increased expression of mRNA for the antiapoptotic ubiquitin ligase cIAP2/BIRC3 (Lamb 

et al., 2003). These findings were the motivation to investigate the expression of cIAP2 as 

well as other antiapoptotic genes cIAP1, XIAP and BIRC6 in early ER stress-mediated JNK 

activation. WT and jnk1
-/-

 jnk2
-/-

 MEFs were compared to investigate the role of JNK in the 

expression of these antiapoptotic genes. 

 

Figure 3.6. JNK is required for transcriptional induction of antiapoptotic genes early in the ER 

stress response. 

(A) cIAP1 (BIRC2), (B) cIAP2 (BIRC3), (C) XIAP (BIRC4), and (D) BIRC6 (BRUCE, APOLLON) 

steady-state mRNA levels were quantitated by RT-qPCR in WT and jnk1
-/-

 jnk2
-/-

 MEFs exposed to 1 

M thapsigargin for the indicated times (n  = 3). 
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Expression of the mRNAs for cIAP1, XIAP and BIRC6 increased as early as 10 min in WT 

MEFs (Figure 3.6). Expression of the mRNAs for cIAP1, cIAP2, XIAP and BIRC6 

increased in WT MEFs after 45 min of 1 µM thapsigargin treatment. The same was not 

true in jnk1
-/-

 jnk2
-/-

 MEFs, in fact the expression of cIAP1, cIAP2 and BIRC6 actually 

decreased. Although XIAP expression did not decrease in jnk1
-/-

 jnk2
-/-

 MEFs the increased 

expression was more pronounced in WT MEFs. These data suggest that JNK positively 

regulates the expression of several antiapoptotic genes early in the ER stress response. 

 

Figure 3.7.  JNK inhibits loss of mitochondrial membrane potential early in the ER stress 

response. 

(A) WT and jnk1
-/-

 jnk2
-/- 

were treated with 1 M thapsigargin (Tg) for 4 h and stained with JC-1 as 

described in Materials and Methods. Scale bar – 10 μm. (B) Quantitation of the confocal fluorescence 

microscopy data shown in panel A.  n = 3 experiments with at least 200 cells counted per experiment. 
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These data on the expression of antiapoptotic genes prompted investigation of ER stress-

induced cell death between WT and jnk1
-/-

 jnk2
-/-

 MEFs to establish the physiological 

relevance of early JNK-dependent expression of antiapoptotic genes. JC-1 dye was used to 

monitor the depolarization of mitochondrial transmembrane potentials in order to 

characterise the presence of dead cells. Depolarization of mitochondrial transmembrane 

potentials is a distinctive feature early in programmed cell death (Ly et al., 2003). JC-1 dye 

can accumulate in mitochondria in a potential-dependent manner. This accumulation is 

indicated by a fluorescence emission shift from green (~529 nm) to red (~590 nm). 

Mitochondrial depolarization and cell death can therefore be characterised by a decrease in 

the red/green fluorescence intensity ratio. Cell death was more pronounced as early as 45 

min after addition of thapsigargin to jnk1
-/-

 jnk2
-/-

 MEFs compared to WT MEFs (Figure 

3.7). After 4 h ~40% of jnk1
-/-

 jnk2
-/-

 MEFs exhibited mitochondrial depolarization 

compared to roughly half as many in WT MEFs. Therefore, early ER stress-dependent 

JNK activation delays cell death early in the ER stress response. 

 

3.4 Discussion 

These results show that JNK is transiently activated early in the ER stress response (Figure 

3.1 and Figure 3.2) and that JNK activation is dependent of TRAF2 and IRE1α providing 

evidence that early JNK activation is indeed a result of ER stress (Figure 3.3, Figure 3.4 

and Figure 3.5). These results also demonstrate that JNK is required for maximal activation 

of several antiapoptotic genes (Figure 3.6) and that JNK deficient MEFs show a faster 

thapsigargin-induced depolarization of the mitochondrial transmembrane potential (Figure 

3.7). These data therefore suggest that two phases of JNK activation occur during ER 

stress, which is similar to treatment with TNF-α, and that early JNK activation during ER 

stress is prosurvival. This data is consistent with reports showing that traf2
-/-

 MEFs are 

more susceptible to ER stress-induced apoptosis than WT MEFs (Mauro et al., 2006) and 

pharmacological inhibition if JNK2 in U937 cells causes caspase 3 activation and 

apoptosis during ER stress (Raciti et al., 2012). 

These data and other studies show biphasic activation of JNK with opposing effects on cell 

survival during ER stress. Other stresses have also been shown to have similar effects. For 

example TNF-α treatment causes biphasic JNK activation with opposing outputs (Roulston 

1998). Therefore, ER stress-induced JNK activation is another example of the opposing 

functional outcomes of transient versus persistent JNK activation during stress. Stresses, 
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other that ER stress, also cause transient JNK activation (Sluss et al., 1994, Raingeaud et 

al., 1995, Lee et al., 1997). In one study transient activation of JNK was observed with 

various stressors such as cytokines (TNFα and IL-1), LPS, osmotic stress (Raingeaud et al., 

1995). Other reports have also shown that JNK activation is antiapoptotic (Lee et al., 1997, 

Nishina et al., 1997) whilst it is also reported that long lasting JNK activation causes 

apoptosis (Chen et al., 1996, Guo et al., 1998, Sanchez-Perez et al., 1998). 

How JNK activation switches between prosurvival and proapoptotic signalling remains 

poorly understood. It could be possible that the length of time JNK is phosphorylated 

affects its subcellular location and therefore alters the signalling output of JNK. This has 

been proposed for the opposing signalling outputs caused by ERKs for example (Marshall 

1995). However, studies have shown that upon both early transient and prolonged JNK 

activation that JNK does not relocalise. Research from Martin Schröder’s laboratory also 

suggests that JNK does not relocalise during ER stress (see manuscript in appendix B). 

Another possible explanation of the opposing functions reported in JNK activation is that 

NF-κB signalling may alter JNK signalling outcomes. NF-κB suppresses TNF-α-induced 

apoptosis whilst preventing prolonged JNK activation and inhibiting caspases. Prolonged 

JNK activation alone was not sufficient to induce apoptosis with TNF-α but apoptosis was 

reported in the absence of NF-κB activation (Tang et al., 2002). JNK activation in the 

absence of NF-κB has also been shown to be necrotic (Ventura et al., 2004). In agreement 

with these findings NF-κB promotes an antiapoptotic response to TNF-α (Kelliher et al., 

1998, Devin et al., 2000) and this may be in part due to its ability to induce cIAP1, cIAP2, 

and XIAP (Stehlik et al., 1998). JunD is a transcription factor downstream of JNK and 

contributes to the induction of cIAP2 during TNF-α induced stress (Lamb et al., 2003, 

Ventura et al., 2004). Interestingly, NF-κB activation during ER stress is reminiscent of 

JNK activation reported in this chapter, in that it is transient and displays similar kinetics 

(Wu et al., 2002, Jiang et al., 2003b, Deng et al., 2004, Wu et al., 2004). It could therefore 

be possible that the combination of NF-κB and JNK signalling is the cause of prosurvival 

signalling and increased expression of antiapoptotic genes identified by this research. 

Another explanation for the biphasic and opposing JNK activation is that IRE1α 

phosphorylation may regulate JNK activation. IRE1α interacts with TRAF2 to activate 

JNK (Urano et al., 2000). IRE1α has ~10 phosphorylation sites (Itzhak et al., 2014) so it is 

possible that the level of IRE1α phosphorylation alters its affinity for TRAF2 and therefore 

alters its ability to activate JNK. 
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It is possible that the role of JNK in inducing apoptosis is more regulatory. That is to say 

that JNK may only contribute to apoptosis if the apoptotic process is already activated, 

meaning JNK activation without apoptosis being initiated is prosurvival (Liu and Lin, 

2005). There could also be more subtle changes in phosphorylation between different JNK 

isoforms which account for the paradigm of opposing JNK signalling outcomes. For 

example TNF-α activates JNK1, but not JNK2 (Liu et al., 2004). This JNK1 activation is 

required for the TNF-α-induced apoptosis in the absence of NF-κB whilst JNK2 activation 

had no effect. Interestingly, JNK2 activation was reported to interfere with JNK1 

activation. These differences in phosphorylation and roles of different JNKs with stress 

may change as JNK activation is prolonged.  

In conclusion early transient, IRE1α and TRAF2-dependent, JNK activation during ER 

stress promotes survival through induction of antiapoptotic genes. How JNK switches from 

antiapoptotic signalling during early transient stress to proapoptotic signalling after chronic 

stress is still not fully understood but may involve NF-κB signalling. Further investigation 

into JNK activation and regulation during ER stress as well as other stresses is necessary to 

fully understand how apoptosis is regulated by JNK. Understanding how JNK regulates 

apoptosis during stress is important as JNK activation is reported in many stress types and 

in many diseases. 
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4 ACUTE ENDOPLASMIC RETICULUM STRESS SEPARATES 

JNK AND TRB3 ACTIVATION FROM INSULIN RESISTANCE 

4.1 Rationale 

In the previous chapter it was established that ER stress causes early transient JNK 

activation in Hep G2, MEF, C2C12 and 3T3-F422A cells. As discussed in the introduction 

inhibition of insulin signalling occurs in T2D (see 1.5). A role for ER stress in the 

development of T2D has been strongly implicated in several studies. For example, ER 

stress has been detected in the liver (Puri et al., 2008, Gregor et al., 2009) and adipose 

tissue (Gregor et al., 2009, Boden et al., 2008, Sharma et al., 2008) of obese patients. Two 

mechanisms for ER stress-induced insulin resistance are proposed: JNK-mediated and 

TRB3-mediated. 

JNK-mediated insulin resistance 

JNK is reported to be involved in insulin resistance. Activated JNK can phosphorylate 

serine residues S307 and S312 of IRS1, which inhibits IR induced tyrosine 

phosphorylation of IRS1; leading to insulin resistance (Ozcan et al., 2004). Observational 

evidence of a physiological role for IRE1α-JNK signalling in a disease setting is that both 

IRE1α and JNK are activated in obese humans compared to non-obese humans (Boden et 

al., 2008). Ozcan et al. have proposed that IRE1α-JNK signalling can inhibit insulin 

signalling (Ozcan et al., 2004). Hence it was decided that it would be intriguing to 

investigate if the IRE1α-dependent JNK activation during acute ER stress which was 

reported in chapter 3 causes insulin resistance. Insulin resistance may reduce protein 

synthesis: JNK-mediated insulin resistance during acute, early ER stress may be beneficial. 

TRB3-mediated insulin resistance 

ER stress-mediated TRB3 expression is another mechanism through which ER stress has 

been implicated in causing insulin resistance. ER stress increases TRB3 expression in 

C2C12 cells and in adult mouse skeletal muscle (Koh et al., 2013). Overexpression of TRB3 

causes inhibited insulin signalling and is thought to do this through direct interaction with 

the insulin signalling proteins AKT and IRS1 (Du et al., 2003, Avery et al., 2010, Koh et 

al., 2006, Koh et al., 2013, Liew et al., 2010). TRB3-AKT interaction causes insulin 

resistance in HEK 293 cells (Du et al., 2003), muscle cells (Koh et al., 2006, Koh et al., 

2013) and cardiac myocytes (Avery et al., 2010). In conclusion, TRB3 has a controversial 
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role in regulating insulin resistance. However, it may be a mechanism through which ER 

stress induces insulin resistance and is worthy of further study alongside JNK, which has 

also been shown to regulate AKT and IRS1 phosphorylation during ER stress. 

Most studies looking at ER stress-induced inhibition of insulin signalling have investigated 

this in the context of longer lasting ER stress, with ER stress induced from 3 – 36h cells 

(Avery et al., 2010, Hage Hassan et al., 2012, Xu et al., 2010, Zhou et al., 2009, Tang et 

al., 2011, Ozcan et al., 2004). Thus it was investigated in this thesis if earlier transient JNK 

activation identified in Results chapter 1 can inhibit insulin signalling also.  

This chapter contains figures from a manuscript (see appendix C) entitled ‘Acute 

endoplasmic reticulum stress separates JNK and TRB3 activation from insulin resistance’ 

with the authors Max Brown, Samantha Dainty, Natalie Strudwick, Adina D. Mihai, Jamie 

N. Watson, Robina Dendooven, Adrienne W. Paton, James C. Paton, and Martin Schröder. 

 

4.2 ER stress for up to ~8 h does not inhibit insulin-stimulated AKT 

activation 

To begin with it was investigated if ER stress up to 8 h is capable of inhibiting insulin 

signalling in C2C12 cells. Three mechanistically different ER stressors were used, the N-

glycosylation inhibitor tunicamycin (Carrasco and Vazquez, 1984), the SERCA pump 

inhibitor thapsigargin (Carrasco and Vazquez, 1984) and the BiP/GRP78 inactivating 

protease SubAB (Paton et al., 2006). Thapsigargin concentrations were titrated over a 10 

fold concentration range whilst tunicamycin was titrated over a 100 fold concentration 

range. Only one concentration of SubAB was used as it is highly specific in inducing ER 

stress via inactivating BiP by cleaving in its hinge region (Paton et al., 2006) but this 

cytotoxin is also not commercially available and is of limited supply due to it being a gift 

from JC Paton and A Paton. Throughout experiments the catalytically inactive SubAA272B 

was used as a control for ER stress induced by SubAB. The phosphorylation of AKT at 

residues T308 and S473 was measured to monitor activation of insulin signalling. AKT is 

downstream of the insulin receptor and IRSs. Surprisingly, ER stress induced with all three 

ER stressors with a range of concentrations for 1, 2, 4 or 8 h did not inhibit 

phosphorylation of AKT in C2C12 cells induced through stimulation by insulin (Figure 4.1). 

Insulin stimulation of C2C12 cells, in the absence of ER stressors, caused a large increase in 

AKT-phosphorylation and thus provides evidence of activated insulin signalling in this 

experimental set up (Figure 4.1). XBP1 splicing was measured to monitor if ER stress was 
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occurring throughout the time course with all three ER stressors. Indeed ER stress was 

occurring at all the time points investigated as XBP1 splicing was recorded during the 

entire time course (Figure 4.2). 

 

Figure 4.1. Acute ER stress does not inhibit insulin-stimulated AKT T308 or S473 

phosphorylation in C2C12 myotubes. 

C2C12 myotubes were serum-starved for 18 h and treated with the indicated concentrations of 

thapsigargin (Tg), tunicamycin (Tm), or 1 µg/ml SubAB or catalytically inactive SubAA272B during 

the last 1-8 h of serum starvation and then stimulated with 100 nM insulin for 15 min where indicated. 

Cell lysates were analysed by Western blotting. 
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Due to a recent study reporting strong TRB3 induction coinciding with 20-50% inhibition 

of insulin signalling during 4 h of ER stress, induced by thapsigargin or tunicamycin, in 

C2C12 cells (Koh et al., 2013) the induction of TRB3 mRNA was characterised by RT-

qPCR. All three ER stressors greatly increased the expression of TRB3 in C2C12 cells 

(Figure 4.3). In this report the induction of TRB3 by ER stress is therefore not sufficient to 

inhibit insulin signalling. 

 

 

Figure 4.2. Detection of XBP1 splicing by reverse transcriptase PCR. 

PCR products were separated on a 2% (w/v) agarose gel and visualized with ethidium bromide. PCR 

products derived from unspliced (u) and spliced (s) XBP1 mRNA are indicated by arrows. β-Actin 

(ACTB) was used as a loading control. Abbreviations: Tg - 300 nM thapsigargin, Tm - 1 µg/ml 

tunicamycin. 
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Figure 4.3. Induction of TRB3 in C2C12 cells by ER stress. 

C2C12 cells were treated with 300 nM thapsigargin, 1 µg/ml tunicamycin, or 1 µg/ml SubAB or 

SubAA272B for 4 h. TRB3 mRNA levels were determined by RT-qPCR and standardised to ACTB (n  = 

3). 

 

4.3 ER stress does not inhibit insulin-dependent AKT and GSK3α/β 

phosphorylation in the time window of JNK activation 

The observation that ER stress does not cause insulin resistance in C2C12 cells is surprising 

given already published data (Avery et al., 2010, Hage Hassan et al., 2012, Xu et al., 2010, 

Zhou et al., 2009, Tang et al., 2011, Ozcan et al., 2004). As a result, the role of ER stress in 

the development of insulin resistance was investigated other cell types. In chapter 3 it was 

demonstrated that ER stress-mediated JNK activation is early and transient (Chapter 3). 

Therefore it was investigated if ER stress, at the time points of early JNK activation, was 

sufficient to inhibit insulin signalling. 30 min of ER stress is sufficient to activate JNK in 

Hep G2 cells (Figure 3.2). Thus, AKT phosphorylation was monitored in Hep G2 cells 

after 30 min of ER stress induced by thapsigargin, tunicamycin or SubAB (Figure 4.4). 

Similar to data from C2C12 cells stressed for 1-8 h, AKT phosphorylation at S473 was not 

significantly altered by any of the ER stressors in Hep G2 cells stressed for 30 min.  

Maximal JNK activation with thapsigargin-induced ER stress occurs as early as 10 min 

and persists up to 45 min in C2C12 cells (Chapter 3). Consequently, AKT phosphorylation 

was monitored in C2C12 cells after 30 min of ER stress (Figure 4.5). ER stress induced by 

all three ER stressors for the earlier time point of 30 min was also not sufficient to inhibit 

AKT phosphorylation at either S473 or T308 in C2C12 cells. GSK3 is a downstream target 

of AKT and its phosphorylation was therefore characterised to confirm that insulin 

signalling is indeed unaltered during ER stress. GSK3 phosphorylation was monitored at 

S21 in GSKα and S9 in GSKβ. Consistent with the phosphorylation of AKT with insulin 

treatment, GSK3α and β phosphorylation was also greatly increased with exposure to 100 
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nM insulin. In agreement with the unperturbed AKT phosphorylation observed during ER 

stress, insulin-induced GSK phosphorylation was also not affected by 30 min ER stress in 

C2C12 cells.  

 

Figure 4.4. Acute ER stress does not inhibit insulin-dependent AKT activation. 

Serum-starved Hep G2 cells treated with the indicated concentrations of thapsigargin, tunicamycin or 1 

µg/ml SubAB for 30 min before stimulation with 100 nM insulin for 15 min. Cell lysates were 

analysed by Western blotting. 

 

 

Figure 4.5. Acute ER stress does not inhibit insulin-dependent AKT activation in C2C12 cells. 

Serum-starved C2C12 myotubes were treated for 30 min with the indicated concentrations of 

thapsigargin, tunicamycin or 1 µg/ml SubAB before stimulation with 100 nM insulin for 15 min. Cells 

were treated with 1 µg/ml catalytically inactive SubAA272B where indicated. Cell lysates were 

analysed by Western blotting. 
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In 3T3-F422A adipocytes JNK was activated by thapsigargin within 10 min and returned 

to basal levels after 1 h (Chapter 3, see manuscript in appendix B). Both S473 and T308 

phosphorylation of AKT was induced with insulin treatment. However, 30 min of ER 

stress with thapsigargin, tunicamycin or SubAB was unable to inhibit the phosphorylation 

of AKT (Figure 4.6). In agreement, GSK3α/β phosphorylation was also not reduced during 

ER stress treatments. Insulin signalling, as indicated by AKT and GSK phosphorylation, 

was therefore also unaffected by 30 min ER stress in 3T3-F422A cells. Overall, acute ER 

stress in C2C12, Hep G2, and 3T3-F422A cells, although causing JNK activation, does not 

cause insulin resistance. It is surprising that insulin resistance is not induced by ER stress 

in all three cell types given previously reported data (Ozcan et al., 2004). However, C2C12, 

Hep G2, and 3T3-F422A cells were not used in the Ozcan et al. study, so it is possible that 

JNK-mediated insulin resistance is specific to the cell type previously investigated. 

 

Figure 4.6. Acute ER stress does not inhibit insulin-dependent AKT activation in 3T3-F442A 

adipocytes. 

Serum-starved 3T3-F442A adipocytes were treated for 30 min with the indicated concentrations of 

thapsigargin, tunicamycin or 1 µg/ml SubAB before stimulation with 100 nM insulin for 15 min. Cells 

were treated with 1 µg/ml catalytically inactive SubAA272B where indicated. Cell lysates were 

analysed by Western blotting. 

 



118 

 

Fao rat hepatoma cells were used in the original paper reporting that ER stress-induced 

JNK activation leads to inhibition of insulin signalling (Ozcan et al., 2004). To address the 

possibility that ER stress inhibiting insulin signalling may be cell type specific the 

experiments were expanded to include Fao rat hepatoma cells. Fao rat hepatoma cells were 

treated with all three ER stressors for 30 and 60 min (Figure 4.7). As this cell line had not 

been previously used in Dr Martin Schröder’s laboratory ER stress-mediated JNK 

activation was monitored. All three ER stressors were able to activate JNK after 60 min 

whereas only thapsigargin and tunicamycin were able to activate JNK after 30 min of ER 

stress. Because ER stress activated JNK at these time points the phosphorylation of AKT 

and GSK3 was also monitored. Both AKT and GSK3 phosphorylation were unperturbed 

with 1 h of ER stress, even though JNK was highly activated at these data points in Fao rat 

hepatoma cells.  

 

Figure 4.7. Acute ER stress activates JNK, but does not inhibit insulin-dependent AKT activation 

in Fao rat hepatoma cells.  

Serum-starved Fao rat hepatoma cells were treated with the indicated concentrations of thapsigargin, 

tunicamycin or 1 µg/ml SubAB for 30 or 60 min before stimulation with 100 nM insulin for 15 min. 

Cell lysates were analysed by Western blotting. 
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This surprising result prompted further investigation and an extension of the time course of 

ER stress in Fao rat hepatoma cells to ensure ER stress occurred long enough to inhibit 

insulin signalling. Extending ER stress to 2, 3 (the same time points reported in the Ozcan 

et al. study (Ozcan et al., 2004)) or 4 h was still not sufficient to inhibit insulin signalling 

as indicated by AKT phosphorylation (Figure 4.8). In the original paper the Fao rat 

hepatoma cells were grown in Coon’s modification of Ham’s F12 medium which is in 

contrast to the RPMI 1640 medium recommended by the suppliers of the Fao rat hepatoma 

cells used in this study. To address the possibility that different media can have different 

effects on cells Fao rat hepatoma cells were maintained in Coon’s modification of Ham’s 

F12 medium before treating cells with ER stress for 3 h to fully recapitulate the experiment 

by Ozcan et al. (Ozcan et al., 2004). Even after changing the medium, ER stress induced 

by all three ER stressors, using 3 different concentrations for both thapsigargin and 

tunicamycin, was unable to inhibit insulin signalling as monitored by AKT 

phosphorylation. 

 

Figure 4.8. ER stress does not inhibit insulin signalling in Fao rat hepatoma cells. 

Fao rat hepatoma cells were serum starved for 18 h and treated with 0.1 to 1 µM thapsigargin, 0.1 to 

10 µg/ml tunicamycin, 1 µg/ml SubAB or SubAA272B for (A) 2, (B) and (C) 3 h, and (D) 4 h. Cells 

were cultured in RPMI 1640 in panels (A), (B), and (D) and in Coon’s modification of Ham’s F12 

medium in panel (C). 
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Interestingly, thapsigargin consistently increases AKT phosphorylation. This may be a 

side-effect of the mechanism by which thapsigargin induces ER stress. Thapsigargin 

inhibits SERCA pumps resulting in reduced ER calcium stores causing perturbed protein 

folding (Schonthal et al., 1991). As a consequence the cytosolic concentration of Ca
2+

 is 

increased. Calmodulin is a major calcium-binding protein and is activated when the Ca
2+

 

concentration is increased in the cytosol. Calmodulin has been shown to phosphorylate 

AKT and this may in part explain the increased phosphorylation of AKT in thapsigargin 

treated cells (Deb et al., 2004). However, this remains to be investigated and may not be 

the only explanation as calcium signalling is involved in many cellular events meaning 

there are many potential targets for investigation. 

For investigation of insulin resistance all the cell types used were serum starved for 18 h 

prior to treatment with 100 nM insulin for 15 min. Serum starvation was performed to 

investigate and isolate the insulin signalling pathway from other growth factor pathways 

which may be stimulated by growth factors present in serum. To ensure that serum 

starvation does not induce ER stress and subsequent downstream insulin resistance, XBP1 

splicing was monitored in cells cultured in serum versus serum-free medium. Cells were 

either grown in normal culture media or serum starved for 18 h before treatment with 1 µM 

thapsigargin for 1 h. XBP1 splicing was measured to compare the levels of ER stress 

induced in cells grown in serum versus serum-free media (Figure 4.9). XBP1 splicing was 

comparable between cells grown in serum containing media and serum-free media in WT 

MEFS, traf2
-/-

 MEFs, C2C12 cells, Hep G2 cells, and 3T3-F442A cells, ruling out that 

serum starvation induces ER stress to detectable levels whilst suggesting that induction of 

ER stress is blunted by decreased protein synthesis rates in serum-starved cells. 
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Figure 4.9. Serum starvation does not affect activation of XBP1 splicing in MEFs, 3T3-F442A 

cells, C2C12 cells, or Hep G2 cells.  

Cells were serum-starved for 18 h and then treated with 1 µM thapsigargin for 1 h. PCR products were 

separated on a 2% (w/v) agarose gel and visualised with ethidium bromide. PCR products derived 

from unspliced (u) and spliced (s) XBP1 mRNA are indicated by arrows. β-Actin (ACTB) was used as 

a loading control.  

 

4.4 Acute ER stress does not inhibit IRS1 tyrosine phosphorylation 

The proposed mechanism through which JNK inhibits insulin signalling has been 

discussed (Chapter 1). Briefly, JNK is thought to phosphorylate IRS1 at S307 

(corresponding to S312 in human IRS1) and this phosphorylation event prevents the 

tyrosine phosphorylation of IRS1 which is required for downstream insulin signalling, 

including AKT activation. As this thesis has reported JNK activation but not observed 

insulin resistance during ER stress it would be expected that there is also no increase in 

IRS1 S307 or S312 phosphorylation. The phosphorylation of IRS1 at S312 in Hep G2 cells 

by ELISA were monitored and standardised to total IRS1 levels obtained from Western 

blotting. Treatment of Hep G2 cells with 1 µM thapsigargin for 30, 60 or 120 min had no 

effect on IRS1 S312 phosphorylation (Figure 4.10). ER stress at earlier time points of 5, 10 

and 15 min in C2C12 and 3T3 cells also had no effect on IRS1 S307 phosphorylation 

(Figure 4.11, data obtained by Monica Suwara and Natalie Strudwick).  
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Figure 4.10. S312 phosphorylation of IRS1 during acute ER stress. 

Hep G2 cells were treated with 1 µM thapsigargin for the indicated times. Cell lysates were analysed 

by ELISA for phosphorylation of S312 in human IRS1 by using the STAR phospho-IRS1 ELISA 

from Millipore. S312 phosphorylation is expressed in units relative to a phospho-S312 IRS1 standard 

provided in the ELISA kit. Phospho-S312-IRS1 units were standardised to the amount of total IRS1 in 

cell lysates determined by Western blotting (n  = 3). Equal loading of all lanes in the Western blot was 

controlled with the GAPDH loading control.  

 

To confirm that both the ELISA and insulin treatments were indeed working correctly 

C2C12, 3T3 and Hep G2 cells were treated with 100 nM insulin for 15 min and serine 

phosphorylation of IRS1 was monitored. Insulin elevated IRS1 S307 phosphorylation in all 

three cell lines (Figure 4.12, Monica Suwara and Natalie Strudwick), which is consistent 

with other reports (Aguirre et al., 2002, Rui et al., 2001). To confirm the above results that 

JNK activation during ER stress does not alter the phosphorylation of IRS1 at S307 IRS1 

tyrosine phosphorylation was also monitored. In agreement with unaltered S307 

phosphorylation the tyrosine phosphorylation of IRS1 was found to be unchanged in Hep 

G2, C2C12 and 3T3 cells with ER stress (data obtained Monica Suwara and Natalie 

Strudwick, see manuscript in appendix C). 
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Figure 4.11. S307 phosphorylation of IRS1 during acute ER stress. 

(A) 3T3-F442A and (B) C2C12 cells were treated with 1 µM thapsigargin for the indicated times. Cell 

lysates were analysed by ELISA for phosphorylation of S307 in murine IRS1 by using the STAR 

phospho-IRS1 ELISA from Millipore. S307 phosphorylation is expressed in units relative to a 

phospho-S307 IRS1 standard provided in the ELISA kit. Phospho-S307 IRS1 units were standardised 

to the amount of total IRS1 in cell lysates determined by Western blotting (n  = 3). Equal loading of 

all lanes in the Western blot was controlled with the GAPDH loading control. All data in this figure 

was obtained by Monika Suwara and Natalie Strudwick. 

 

 

Figure 4.12. S307/S312 phosphorylation of IRS1 during acute ER stress. 

IRS1 S307/S312 phosphorylation in serum-starved 3T3-F442A, C2C12, and Hep G2 cells treated with 

100 nM insulin for 15 min was determined by ELISA. IRS1 phospho-S307/S312 signals in the ELISA 

were standardised to total protein levels (n  = 3). All data in this figure was obtained by Monika 

Suwara and Natalie Strudwick. 
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4.5 Discussion 

Overall data from this section suggests that ER stress-mediated JNK activation earlier that 

8 h is not sufficient to inhibit insulin signalling. This has been investigated at various 

stages of the insulin signalling pathway from IRS1 S307 and tyrosine phosphorylation to 

AKT and finally GSK phosphorylation. Importantly, recapitulation of previously reported 

experiments did also not show ER stress-mediated JNK activation leading to inhibited 

insulin signalling. It is worth noting that this data has been confirmed in several cell lines 

over detailed time courses and with three mechanistically different ER stressors, two of 

which having 3 different concentrations tested. 

Previously 3 h of 5 µg/ml tunicamycin has been shown to inhibit AKT S473 

phosphorylation whilst inducing S307 IRS1 phosphorylation in Fao rat hepatoma cells 

(Ozcan et al., 2004). 1 h of 300 nM thapsigargin was also shown to induce S307 IRS1 

phosphorylation in the same study but AKT phosphorylation was not investigated with 

thapsigargin treatment. Another study using C2C12 cells reported that 4 h of 1 µg/ml 

tunicamycin inhibited both tyrosine phosphorylation of IRS1 and T308 phosphorylation of 

AKT by ~50% whilst 4 h of 2 µM thapsigargin resulted in a decrease in AKT 

phosphorylation by approximately 25% (Koh et al., 2013). Surprisingly, unlike both of 

these studies, inhibition of insulin signalling during ER stress was observed in experiments 

performed in this chapter, despite activation of both TRB3 and JNK. Even after extending 

the experiments to include several cell lines, more time points and three different ER 

stressors the data in this thesis chapter does not support the hypothesis that ER stress alters 

insulin signalling. 

 

4.5.1 The role of JNK in ER stress-mediated insulin resistance 

Whilst it has been demonstrated that IRE1-JNK signalling can lead to insulin resistance 

(Ozcan et al., 2004) some studies however, have shown that JNK activation is not required 

for defective IRS1 phosphorylation or insulin resistance. Recently, in a mouse model of 

hepatic insulin resistance and ER stress, induced by a high fructose diet, there was no 

increase in JNK activation (Chan et al., 2013). Inhibition of AKT phosphorylation by the 

ER stressor tunicamycin occurred independent of JNK activation in Hep G2 cells (Achard 

and Laybutt, 2012). Despite activation of ER stress and JNK in a study by Jurczak et al, 

mice had increased hepatic insulin sensitivity (Jurczak et al., 2012). ER stress inhibited 
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insulin signalling in 3T3 adipocytes but this occurred without IRE1-JNK signalling (Xu 

et al., 2010). Interestingly, Sharma et al. also showed that JNK is still activated by 

saturated free fatty acids even in the absence of IRE1 (Sharma et al., 2012a) suggesting 

that JNK activation in the free fatty acid model of diabetes does not necessarily require 

IRE1 signalling. Furthermore it was also shown that a reduction in JNK phosphorylation 

is not required for increased insulin sensitivity in rats (Sharma et al., 2012b). 

Correlative evidence suggests that free fatty acids can lead to serine phosphorylation and 

reduction of IRS1 in 3T3-L1 adipocytes (Gao et al., 2004). Although both JNK and IKK 

were shown to be activated with free fatty acid treatment, JNK activation was detected 

after serine phosphorylation of IRS1 suggesting that JNK phosphorylation may not be 

essential for IRS1 serine phosphorylation and insulin resistance in 3T3-L1 adipocytes. 

Supporting this idea is the activation of IKK alongside IRS1 serine phosphorylation and 

prior to JNK phosphorylation. IKK deficiency in mice has previously been shown to 

reduce obesity and diet-induced insulin resistance (Yuan et al., 2001).  

A report using XBP1
-/-

 mice fed a fructose diet showed that ER stress and JNK activation 

occurred without inhibiting insulin signalling suggesting that IRE1α-mediated JNK 

activation can be dissociated from hepatic insulin resistance (Jurczak et al., 2012). In 

agreement with this Jung et al. show separation of JNK activation from insulin signalling. 

The authors report that the transcription factor Krupel-like factor 15 (KLF15) is a mediator 

of ER stress-induced insulin resistance in the liver. KLF15
-/-

 mice exhibit increased hepatic 

ER stress and JNK activation compared to WT mice. However, KLF15
-/-

 mice are 

protected from insulin resistance by both pharmacologically- and high fat diet-induced ER 

stress (Jung et al., 2013). Mice fed either a high fructose or high fat diet develop insulin 

resistance. However, only high fructose fed mice developed ER stress and this was 

independent of increased JNK activation. Interestingly, the high fat diet did promote JNK 

activation but not ER stress (Ren et al., 2012). It is possible that the IRE1α-JNK axis of 

insulin resistance is for some reason defective in KLF15
-/-

 mice so this remains to be 

confirmed.  

Studies have also struggled to provide causal evidence that JNK inhibits insulin signalling. 

For example, two studies have reported that the JNK inhibitor SP600125 (Bennett et al., 

2001) was unable to restore normal insulin sensitivity to cells exposed to prolonged ER 

stress (Xu et al., 2010, Zhou et al., 2009). SP600125, although greatly reducing JNK 

activation, was unable to prevent thapsigargin-induced inhibition of AKT phosphorylation 
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in 3T3-L1 cells (Zhou et al., 2009). Also using 3T3-L1 cells it was shown that SP600125 

did not significantly alleviate ER stress-induced insulin resistance (Xu et al., 2010). It 

should be noted that these two studies performed prolonged exposures to ER stress and as 

such the mechanisms of insulin resistance may differ depending on severity and duration 

of ER stress (discussed further in the following chapter). 

Discrepancies between the data reported in this chapter and already published data could 

be a result of several differences. The level of AKT phosphorylation induced by insulin 

appears to be greater in experiments performed for this thesis. For example 100 nM insulin 

stimulation of C2C12 cells in the Koh et al. paper caused a modest increase in AKT 

phosphorylation of ~30% in one experiment and ~80% in another (Koh et al., 2013). This 

modest increase of ~30% is surprising given the 100 nM insulin concentration used. 100 

nM insulin stimulation of C2C12 reported in this thesis caused a much greater increase in 

AKT phosphorylation. This raises the issue that higher levels of AKT phosphorylation may 

mask any inhibitory effects of ER stress. However, it was demostrated that ER stress was 

still not sufficient to inhibit insulin signalling when lowering insulin stimulation to a 10 

nM concentration, which resulted in ~10% AKT activation (see manuscript in appendix C).  

In the Ozcan et al. paper the conclusions regarding ER stress-mediated inhibition of insulin 

signalling downstream of IRS1 in in vitro studies rely solely on one data point: that is that 

3 h of 5 µg/ml tunicamycin inhibits insulin-stimulated AKT phosphorylation at serine 473 

(Ozcan et al., 2004). These data only show correlation between tunicamycin treatment and 

inhibited AKT phosphorylation and the study therefore lacks in vitro experimental data to 

show causation at the level of insulin signalling downstream of IRS1. Causation is only 

demonstrated at the level of IRS1, in which it was reported that tunicamycin-induced 

serine phosphorylation of IRS1 was not detected in ire1α
-/-

 cells: no other downstream 

markers, such as AKT phosphorylation, were monitored. It is an important issue that there 

is no evidence downstream of IRS1 given that the role of IRS1 serine phosphorylation in 

perturbing normal insulin signalling is controversial: 1) IRS1 serine 307 to alanine knock-

in mice are not protected from developing insulin resistance caused by high fat diet (White, 

2002). 2) In hepatic rat Fao cells, palmitate-induced defects in AKT phosphorylation occur 

before defects in IRS1 phosphorylation (Ruddock et al., 2008). 3) S307 phosphorylation 

has been reported to promote insulin sensitivity (Copps et al., 2010). 

In the Ozcan et al. paper the insulin signalling downstream of IRS1 is only further 

investigated in vivo (Ozcan et al., 2004). Although providing physiological relevance, in 
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vivo experiments are not as, by their nature, controlled and lack the ability to fully isolate 

the insulin signalling pathway experimentally as is possible in in vitro work. It could 

therefore be possible that insulin signalling inhibition reported in in vivo experiments may 

not necessarily be a direct result of ER stress-JNK signalling on insulin signalling. In 

support of this, in vivo experiments showed that inhibition of insulin signalling also 

occurred upstream of IRS1 as insulin receptor tyrosine phosphorylation was perturbed. 

This suggests that insulin signalling inhibition in these in vivo experiments is 

mechanistically different in in vitro experiments and may not involve ER stress-JNK 

signalling. As a result there is no causal evidence that ER stress-mediated JNK activation 

inhibits insulin signalling downstream of IRS1. However, data in this thesis do also 

support the findings by Ozcan et al. and others that ER stress-mediated JNK activation 

occurs, however it does not support the hypothesis that short periods of this JNK activation 

is sufficient to inhibit insulin signalling. Why data in this thesis chapter does not support 

inhibited insulin signalling during ER stress-mediated JNK activation is yet to be 

understood. Differences in levels of JNK phosphorylation and insulin-stimulated activation 

of the insulin receptor may account for the conflicting data. 

 

4.5.2 The role of TRB3 ER stress-mediated insulin resistance 

Previous studies have provided mostly correlative evidence that TRB3 overexpression 

induces insulin resistance (Du et al., 2003, Koh et al., 2006, Koh et al., 2013, Liew et al., 

2010, Takahashi et al., 2008). In contrast to these previous reports, data in this chapter 

suggests that increased TRB3 expression does not necessarily result in inhibition of insulin 

signalling. For example, TRB3 expression was induced 20 fold with ER stress in C2C12 

cells yet TRB3-dependent insulin resistance is not observed (Figure 4.2.4). However, not 

all studies have consistently reported TRB3 expression with inhibited insulin signalling 

during ER stress. For example 3T3-L1 cells infected with a retroviral vector expressing 

TRB3 showed unaltered insulin-stimulated AKT serine phosphorylation (Takahashi et al., 

2008). Also, the insulin-induced activation of AKT and GSK3 was shown to be 

undiminished in TRB3 transduced primary hepatocytes (Iynedjian, 2005). In these studies 

TRB3 has been overexpressed through viral transduction which is estimated to cause 

overexpression of 700-1000 fold at the mRNA level (Iynedjian, 2005). Therefore, 

expression levels of TRB3 in ER-stressed cells are likely to be much lower than in virally 

transduced cells overexpressing TRB3. Thus the expression level of TRB3 may not be high 
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enough to pass the threshold which overexpressing cells do to sufficiently inhibit either 

IRS1 or AKT phosphorylation.  

A further explanation is that TRB3 may be interacting with other proteins during ER stress 

and therefore reducing its interaction with AKT. For example, TRB3 can interact with the 

ER stress-induced proteins ATF4 (Liew et al., 2010, Ord and Ord, 2003) and CHOP 

(Ohoka et al., 2005), which during ER stress may interact with TRB3 thus reducing its 

ability to interact with the insulin signalling proteins AKT and IRS1. Therefore, it is 

possible that reduced interaction with AKT or IRS1 explains the lack of inhibited insulin 

signalling during ER stress-induced TRB3 expression. Further studies are required to fully 

characterise the role of TRB3 during ER stress. 
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5 ENDOPLASMIC RETICULUM STRESS CAUSES INSULIN 

RESISTANCE BY INHIBITING DELIVERY OF NEWLY 

SYNTHESISED INSULIN RECEPTORS TO THE CELL SURFACE 

5.1 Rationale 

Few studies have looked at shorter periods of ER stress, such as <3 h, and these studies 

have not fully investigated the role of ER stress-JNK signalling on insulin signalling 

during these short periods of ER stress (Ozcan et al., 2004). Due to this gap in knowledge 

this chapter investigates if early and transient JNK activation caused by short periods of 

ER stress is sufficient to inhibit insulin signalling. In the previous chapter, it was reported 

that up to 8 h of ER stress was not sufficient to inhibit insulin stimulation-induced: GSK 

phosphorylation, AKT phosphorylation and IRS1 tyrosine phosphorylation. These data 

were observed even when the previously reported mediators of ER stress-induced 

inhibition of insulin signalling, JNK and TRB3, where shown to be highly activated. 

Due to the surprising finding that ER stress of up to 8 h, induced by 3 mechanistically 

different ER stressors, was unable to inhibit insulin signalling in several cell lines it was 

decided to extend the time which cells were exposed to ER stressors. Previous studies have 

shown that ER stress for longer periods of time, 24-36 h, also leads to insulin resistance in 

cultured cells (Avery et al., 2010, Hage Hassan et al., 2012, Xu et al., 2010, Zhou et al., 

2009, Tang et al., 2011). Therefore, it was questioned if prolonged/chronic ER stress was 

able to inhibit insulin signalling in a way in which short acute to ER stress was unable to. 

This chapter contains figures from a manuscript (see appendix D) entitled ‘Endoplasmic 

reticulum stress causes insulin resistance by inhibiting delivery of newly synthesized 

insulin receptors to the cell surface’ with the authors Max Brown, Adina D. Mihai, 

Adrienne W. Paton, James C. Paton, and Martin Schröder. 

 

5.2 Prolonged ER stress causes insulin resistance 

As discussed, the majority of studies reporting ER stress-mediated insulin signalling 

inhibition have examined this in cultured cells experiencing long periods of ER stress 

(Avery et al., 2010, Hage Hassan et al., 2012, Xu et al., 2010, Zhou et al., 2009, Tang et 
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al., 2011). Thus the next step was to investigate if prolonged periods of ER stress, longer 

than the 8 h reported in the previous chapter, were sufficient to inhibit insulin signalling. 

 

 

Figure 5.1. Insulin resistance develops over time in ER-stressed C2C12 myoblasts. 

Serum-starved C2C12 cells were treated with the indicated concentrations of thapsigargin, tunicamycin, 

or 1 µg/ml SubAB or SubAA272B for 12-24 h before stimulation with 100 nM insulin for 15 min. Cell 

lysates were analysed by Western blotting. Quantitation of the pS473-AKT signal relative to AKT is 

shown in shown in Figure 5.2. 
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Figure 5.2. Insulin resistance develops over time in ER-stressed C2C12 myoblasts: quantitation. 

Quantitation of the pS473-AKT signal relative to AKT from Western blots in Figure 5.1. (A) 

thapsigargin- (n = 2), (B) tunicamycin- (n = 2), and (C) SubAB-treated C2C12 cells (n = 3). Bars 

represent standard errors. 

 

 

` 

Using the same wide range of ER stressors and concentrations, as used in the previous 

chapter, cultured C2C12 cells were exposed to 12, 18 and 24 h of ER stress. Also, using the 

same experimental conditions as in the previous chapter, cells were serum starved for 18 h 

and then stimulated with 100 nM insulin for 15 min. Surprisingly, insulin-induced 

phosphorylation of AKT at S473 was inhibited by 12 h of both thapsigargin- and 

tunicamycin-induced ER stress (Figure 5.1). Inhibition of AKT activation was maintained 
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during 18 and 24 h of ER stress with both thapsigargin and tunicamycin exposure (Figure 

5.2 A, B). Unfortunately, only one repeat was performed with thapsisgargin and 

tunicamycin which prevented meaningful statistical testing. SubAB-induced ER stress did 

not inhibit AKT phosphorylation greater than the catalytically inactive SubAA272B at 12 h. 

After 18 h of exposure a non-significant decrease in AKT phosphorylation was observed. 

AKT phosphorylation is significantly reduced after 24 h of SubAB-induced ER stress 

(Figure 5.1 and Figure 5.2 C). As an additional measure of insulin signalling to AKT 

activation the downstream phosphorylation of GSK3 was also monitored during prolonged 

ER stress (Figure 5.1). Insulin-induced GSK3 phosphorylation was also perturbed during 

prolonged ER stress exposure in C2C12 cells. However, inhibition of GSK phosphorylation 

was not as obvious and consistent as perturbation of AKT phosphorylation but this may be 

due in part to the quality of both the antibody and Western blots. It may also be a result of 

secondary effects of ER stressors acting on signalling between AKT-GSK3. Overall, 

prolonged ER stress of 12+ h leads to insulin resistance in C2C12 cells. 

 

Figure 5.3. Insulin resistance develops over time in ER-stressed Hep G2 cells. 

Serum-starved Hep G2 cells were treated with the indicated concentrations of thapsigargin, 

tunicamycin or 1 µg/ml SubAB or catalytically-inactive SubAA272B for 12-36 h before stimulation 

with 100 nM insulin for 15 min. Cell lysates were analysed by Western blotting. Quantitation of the 

pS473-AKT signal relative to AKT is shown in shown in Figure 5.4. 
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Figure 5.4. Insulin resistance develops over time in ER-stressed Hep G2 cells: quantitation. 

Quantitation of the pS473-AKT signal relative to AKT from Western blots in Figure 5.3. (A) 

thapsigargin- (n  = 2), (B) tunicamycin- (n  = 2), and (C) SubAB-treated Hep G2 cells (n  = 3). 

 

To address the question that these findings might be specific to C2C12 cells, insulin 

signalling was investigated in other cell lines exposed to prolonged ER stress. In agreement 

with experiments in C2C12 cells, prolonged exposure of ER stress in Hep G2 cells leads to 

insulin resistance (Figure 5.3 and Figure 5.4). 36 h of ER stress induced by all three ER 

stressors was sufficient to greatly inhibit AKT phosphorylation in Hep G2 cells. It is worth 

noting that Hep G2 cells require longer periods of ER stress for the manifestation of 

perturbed insulin signalling (discussed later). The highest concentration of tunicamycin 

tested was sufficient to cause perturbed insulin signalling as early as 12 h exposure, this 

difference may be explained by either the level of ER stress or the mechanism by which 

tunicamycin elicits ER stress (see discussion). 

A detailed dose-response over a time course of 1-18 h with tunicamycin in 3T3-F442A 

cells was performed to fully characterise when insulin signalling becomes perturbed with 
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ER stress in these cells. Prolonged stress of 12, and to a greater degree, 18 h in 3T3-F442A 

cells inhibits AKT phosphorylation (Figure 5.5). Even the highest concentration of 10 

µg/ml of tunicamycin was not sufficient to inhibit insulin signalling earlier than 12 h, 

which confirms results from the previous chapter that 8 h or less of ER stress has no effect 

on insulin signalling. At the latest time point of 18 h even the very low concentrations of 

0.01 µg/ml tunicamycin caused insulin resistance in 3T3-F422A cells. 

 

Figure 5.5. Insulin resistance develops over time in ER-stressed 3T3-F442A cells. 

(A) Serum-starved 3T3-F442A cells were treated with the indicated concentrations of tunicamycin for 

1-18 h before stimulation with 100 nM insulin for 15 min. (B) The pT308-AKT signal obtained by 

Western blotting was standardised to the total AKT signal to obtain the rel. pT308-AKT values.  

 

5.3 The onset of insulin resistance caused by prolonged ER stress coincides 

with depletion of insulin receptors 

Overall these figures suggest that prolonged ER stress is sufficient to inhibit insulin 

signalling in Hep G2, C2C12 and 3T3-F442A. Studies investigating ER stress and insulin 

signalling rarely monitor the insulin signalling pathway upstream of IRS1- the insulin 

receptor (INSR). The insulin receptor has a half-life at the plasma membrane of 7-13 h 

(Reed and Lane, 1980, Reed et al., 1981a, Reed et al., 1981b, Kasuga et al., 1981, Capeau 
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et al., 1985, Savoie et al., 1986, Grako et al., 1992). Because loss of insulin signalling was 

only observed after at least 12 h of ER stress it was questioned if the onset of insulin 

resistance in ER-stressed cells correlates with depletion of insulin receptors. 

Western blotting using the anti-INSR antibody, which recognises the C-terminus of insulin 

receptor β, in untreated cell lysates reveals multiple bands in different cell lines: five in 

murine cell lines C2C12 and 3T3-F4421, and three in human Hep G2 and HEK 293 cell 

lines. The band migrating at ~95 kDa represents the mature insulin receptor β chain. The 

two bands migrating at ~210 kDa represent the α-β proreceptor and an alternatively 

glycosylated form of the α-β proreceptor (Hwang and Frost, 1999), this was evidenced by 

the appearance of an additional band in tunicamycin treated cells representing the non-

glycosylated form of the α-β proreceptor (Figure 1.1). The two additional bands detected in 

3T3-F442A and C2C12 cells at ~130 kDa may be produced by a less well characterised 

lysosomal event (Massague et al., 1981). 

 

Figure 5.6. Depletion of insulin receptors in ER-stressed cells coincides with development of 

insulin resistance in C2C12 cells. 

C2C12 cells were treated with the indicated ER stressors for 12-24 h before serum starvation and 

stimulation with 100 nM insulin for 15 min. Protein extracts were analysed by Western blotting. 

Quantitation of INSR β-chains is shown in Figure 5.7. 
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Figure 5.7. Depletion of insulin receptors in ER-stressed cells coincides with development of 

insulin resistance in C2C12 cells: quantitation. 

Quantitation of INSR β-chains from Figure 5.6 in (A) thapsigargin-, (B) tunicamycin-, and (C) 

SubAB-treated C2C12 cells (n  = 3). 

 

It was observed that insulin receptor β chain levels are decreased after 12 h of ER stress in 

C2C12 cells (Figure 5.6 and Figure 5.7). The decrease in insulin receptor β chains was 

exaggerated with longer periods of ER stress with the largest decrease seen at 24 h with all 

three ER stressors. This observed insulin receptor β chain decrease with prolonged ER 

stress correlates with the inhibition of insulin signalling in C2C12 cells (Figure 5.1). Thus it 

appears that the onset of insulin resistance in ER-stressed C2C12 cells correlates with 

depletion of insulin receptors. 
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Hep G2 cells differed from C2C12 cells in previous experiments in that 36 h of ER stress 

with all three ER-stressors was required for insulin resistance (Figure 5.3). Correlating 

with these findings, a significant decrease in insulin receptor β chains was not observed 

until 36 h of ER stress with all three ER stressors in Hep G2 cells (Figure 5.8 and Figure 

5.9). The highest concentration of tunicamycin was sufficient to decrease insulin receptor β 

levels after only 12 h and this too correlated with the faster inhibition of AKT 

phosphorylation observed. 

 

Figure 5.8. Depletion of insulin receptors in ER-stressed cells coincides with development of 

insulin resistance in Hep G2 cells. 

Hep G2 cells were treated with the indicated ER stressors for 12-36 h times before serum starvation 

and stimulation with 100 nM insulin for 15 min. Protein extracts were analysed by Western blotting. 

Quantitation of INSR β-chains is shown in Figure 5.9. 

 

Previously, the tunicamycin dose response experiment demonstrated that ≥12 h of 

tunicamycin exposure were required for insulin resistance in 3T3-F442A cells (Figure 5.5). 

Confirming results in both C2C12 and Hep G2 cells, prolonged exposure to tunicamycin 

resulted in a decrease in insulin receptor β chains in 3T3-F442A (Figure 5.10). Even the 

lowest concentration of 0.01 µg/ml tunicamycin was previously sufficient to inhibit AKT 
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phosphorylation. Indeed this low tunicamycin concentration was also sufficient to lower 

insulin receptor β chains at 18 h but not at 12 h, which correlates with AKT 

phosphorylation data. 

The data reported above is consistent with previous studies reporting that tunicamycin 

depletes insulin receptors and/or inhibits trafficking of the insulin receptor to the plasma 

membrane (Lane et al., 1985, Hart et al., 1988). It was proposed that inhibition of N-linked 

glycosylation, through which tunicamycin acts, was the mechanism of insulin receptor 

depletion. Data from this chapter extends these findings and provides evidence that other 

ER stressors, which do not directly inhibit N-linked glycosylation, also cause depletion of 

the insulin receptor. Hence, this data suggests that accumulation of unfolded proteins in the 

ER is the mechanism of insulin receptor depletion during ER stress. 

 

Figure 5.9. Depletion of insulin receptors in ER-stressed cells coincides with development of 

insulin resistance in Hep G2 cells: quantitation. 

Quantitation of INSR β-chains from Figure 5.8 in (A) thapsigargin-, (B) tunicamycin-, and (C) 

SubAB-treated Hep G2 cells (n  = 3).  
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Figure 5.10. Depletion of insulin receptors in ER-stressed cells coincides with development of 

insulin resistance in 3T3-F442A cells. 

3T3-F442A cells were treated with the indicated concentrations of tunicamycin for 1-18 h before 

serum starvation and stimulation with 100 nM insulin for 15 min. (A) Protein extracts were analysed 

by Western blotting. (B) Quantitation of INSR β-chains (n  = 3). 

 

5.4 Inhibition of transcription and translation do not account for reduced 

insulin receptor expression. 

The UPR, which is activated during ER stress, induces several changes to cellular activity 

in an attempt to restore protein folding homeostasis. These changes may explain the 

depletion of the insulin receptor observed in cells exposed to prolonged ER stress: 1) the 

RIDD activity of IRE1α (Hollien and Weissman, 2006, Hollien et al., 2009) may be able to 

degrade insulin receptor mRNA, 2) general transcription may be repressed (Jang et al., 

2010, Ord and Ord, 2003), 3) general translation of mRNA (including insulin receptor 

mRNA) may be inhibited by the phosphorylation of eIF2α by PERK (Harding et al., 2000, 

Harding et al., 1999), 4) the proper folding, maturation or trafficking of the insulin receptor 

may be inhibited during ER stress. 
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As discussed, the UPR can inhibit transcription and translation. As insulin proreceptor 

levels do not decrease over time with ER stress (Figure 5.6, Figure 5.8, and Figure 5.10) it 

is unlikely that either transcriptional or translational inhibition is responsible for depletion 

of the insulin receptor β chains. Nevertheless, it was investigated if the ER stress-mediated 

depletion of insulin receptor β chains is a result of UPR-induced inhibition of transcription 

or translation. RT-qPCR experiments on samples from C2C12 cells exposed to 24 h of 300 

nM thapsigargin, 1 µg/ml tunicamycin or 1 µg/ml SubAB reveal that there was an ~6 fold 

increase in steady state levels of INSR mRNA after prolonged ER stress (Figure 5.11). 

These data confirm that ER stress does not inhibit insulin receptor synthesis at the 

transcriptional level through general transcriptional repression or via the RIDD activity of 

IRE1α. An increase in INSR mRNA is surprising given that it could increase the burden 

further on the ER to maintain proper protein folding. However, it may be explained 

through the beneficial prosurvival signalling mediated through insulin signalling or that the 

INSR mRNA is stored in stress granules (Kedersha and Anderson, 2007). Insulin signalling 

can be an important prosurvival signalling pathway (Conejo and Lorenzo, 2001, Duarte et 

al., 2012, Duarte et al., 2008, Barber et al., 2001), meaning that increasing the mRNA for 

the receptor of this pathway would prioritise its synthesis during stress. For similar reasons 

the INSR mRNA may be stored in stress granules during ER stress-mediated translational 

inhibition (Hofmann et al., 2012) to be later released when protein folding returns to basal 

levels. 

Evidence that translation is ongoing during ER stress was seen by the presence of 

nonglycosylated proreceptors in insulin receptor Western blots with lysates from cells 

exposed to tunicamycin (Figure 5.6, Figure 5.8, and Figure 5.10) Tunicamycin only 

inhibits N-glycosylation, it does not remove pre-existing glycans so the appearance of 

nonglycosylated proreceptors is indicative of continued translation of the insulin receptor 

during prolonged ER stress. It was also shown through experiments performed by other 

laboratory members that translational levels were also not significantly affected, ruling out 

that ER stress inhibits insulin receptor synthesis at the translational level (see manuscript in 

appendix D). Overall, these data show that prolonged ER stress must be causing the 

depletion of the synthesis of insulin receptor downstream of either transcription or 

translation. 



141 

 

 

Figure 5.11. ER stress does not inhibit insulin receptor synthesis at the transcriptional level. 

INSR mRNA levels measured by RT-qPCR in C2C12 cells treated with 300 nM thapsigargin, 1 µg/ml 

tunicamycin, or 1 µg/ml SubAB for 24 h (n  = 3). 

 

5.5 Confirmation that prolonged ER stress depletes the insulin receptor from 

the plasma membrane 

Since transcriptional and translational effects cannot fully explain the decrease in insulin 

receptor levels it was characterised if ER stress was inhibiting the proper folding, 

maturation or transport of the insulin receptor to the cell membrane. Firstly, the ratio of 

proreceptors to mature insulin receptors was compared between ER stressed and untreated 

C2C12 cells through quantification of Western blots (Figure 5.12). While mature β chains 

decrease in ER-stressed cells, - proreceptors increase relative to β chains. It is known 

that proprotein convertases in the trans-Golgi network are responsible for the cleavage of 

the proreceptor into α and β chains (Bravo et al., 1994, Robertson et al., 1993). It therefore 

stands that during prolonged ER stress proreceptors are accumulating in an earlier 

compartment in the secretory pathway such as the cis-Golgi or ER. To confirm this 

conclusion, protein extracts from either unstressed or ER-stressed C2C12 cells were 

digested with endoglycosidase H (Endo H). Endo H cleaves between the two innermost N-

acetylglucosamine units to release high mannose and some hybrid type N-linked 

oligosaccharides from glycoproteins (Maley et al., 1989). Oligosaccharide molecules are 

modified by a series of enzymes as a protein moves through the different compartments of 

the Golgi network. Mannose subunits are removed from oligosaccharides on proteins once 

they reach the Golgi complex by the enzyme Golgi -mannosidase II (Trombetta and 
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Parodi, 2003). The presence of high mannose oligosaccharides is therefore characteristic of 

proteins that have not been processed in the Golgi complex.  

 

Figure 5.12. α-β Proreceptors accumulate in the ER of ER-stressed cells. 

(A) Steady-state INSR levels in untreated C2C12 cells or C2C12 cells treated for 24 h with the indicated 

concentrations of thapsigargin, tunicamycin, 1 µg/ml SubAB, or 1 µg/ml SubAA272B and serum-

starved during the last 18 h of drug treatment before stimulation with 100 nM insulin for 15 min. Cell 

lysates were analysed by Western blotting. (B) Quantitation of the results of insulin-stimulated cells 

from panel A (n  = 2). 

 

On SDS-PAGE gels Endo H digestion caused a shift in the band representing the 

proreceptors (Figure 5.13 A, B). The proreceptors migrated to the same position as fully 

deglycosylated proreceptors observed with PNGase F treatment (Figure 5.13 C), which 

removes all N-linked oligosaccharides regardless of a proteins location in the secretory 

pathway (Altmann et al., 1998). Endo H and PNGase F digested α-β proreceptors also 

migrate to the same position as unglycosylated α-β proreceptors synthesised in 
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tunicamycin treated cells, suggesting that they all represent one form of the α-β 

proreceptor, which lacks all the N-linked oligosaccharides. When digested with Endo H, 

the β chain, however, did not migrate to same position as the fully deglycosylated β chain 

(Figure 5.13 C). Consistent with a previous study this data suggests that the β chain 

contains only one Endo H sensitive and several Endo H resistant oligosaccharides (Hwang 

and Frost, 1999). This confirms that the band migrating at ~95 kDa does indeed represent 

the mature insulin receptor β chain found at the cell membrane. Thus, these data are 

consistent with the conclusion that ER stress causes accumulation of the α-β proreceptors 

early in the secretory pathway. 

 

 

Figure 5.13. Glycosylation state of α-β proreceptors accumulating in the ER of ER-stressed cells. 

(A) Cell lysates from Figure 5.12 digested with Endo H. (B) Quantitation of the results of insulin-

stimulated cells from panel A (n = 2). (C) The mature insulin receptor  chain carries an Endo H-

sensitive N-linked oligosaccharide. Endo H and PNGase F digests of unstressed C2C12 cells were 

Western blotted for the insulin receptor β chain.  

 

To directly establish if the mature insulin receptor is depleted from the cell membrane 

during prolonged ER stress, the localisation of C-terminally GFP-tagged insulin receptors 
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were monitored in HEK 293 cells. It was decided that HEK 293 cells were to be used in 

replacement of Hep G2 cells as HEK 293 cells are: 1) more easily transfected, 2) easier to 

image microscopically as, in contrast to Hep G2 cells, they do not grow in clumps. Firstly, 

as HEK 293 cells have previously not been studied, cells were stressed with 100 ng/ml 

tunicamycin or 1 µg/ml SubAB for 18 h to monitor the steady state levels of the insulin 

receptor (Figure 5.14) 18 h of ER stress was found to be sufficient to greatly decrease the 

level of insulin receptor β chains in HEK 293 cells. Consequently, HEK 293 cells were 

transfected with C-terminally GFP-tagged insulin receptor before being treated with 100 

ng/ml tunicamycin or 1 µg/ml SubAB for 18 h. It was clearly observed, through 

fluorescence microscopy, that after 18 h of ER stress the GFP-tagged insulin receptor 

redistributed from the cell membrane to intracellular compartments (Figure 5.15). This 

could be seen as the GFP fluorescence was localised to the fluorescence of the CellMask 

Deep Red plasma membrane stain in untreated cells, whereas the GFP fluorescence of cells 

exposed to 18 h of either tunicamycin or SubAB was more heavily concentrated to within 

the cell membrane defined by the CellMask Deep Red stain. 

 

Figure 5.14. Depletion of insulin receptors in ER-stressed HEK 293 cells. 

Steady-state INSR levels in untreated HEK 293 cells or HEK 293 cells treated for 18 h with 0.1 µg/ml 

tunicamycin, 1 μg/ml SubAB, or 1 µg/ml SubAA272B.  

 

To quantitatively monitor the localisation of the insulin receptor in unstressed and ER-

stressed cells the Pearson’s correlation coefficient, robs, was determined for the GFP and 

CellMask Deep Red fluorescence. An robs value of 1 suggests complete colocalisation and -

1 no localisation. The average robs value for untreated cells was 0.86 whereas both 

tunicamycin and SubAB treatments caused a reduction in average robs values to 0.26 and 

0.31 respectively (Figure 5.16). The Pearson’s correlation coefficient analysis confirms the 

observation that in cells exposed for 18 h to either tunicamycin or SubAB there is a loss in 

colocalisation of the insulin receptor with the plasma membrane. Data obtained from 
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fluorescence microscopy therefore suggest that the mature insulin receptor is indeed 

depleted from the cell membrane in cells exposed to prolonged ER stress. 

 

Figure 5.15. GFP-tagged INSR distribution is altered after prolonged ER stress. 

(A) Localisation of GFP-tagged INSR in transiently transfected HEK 293 cells. HEK 293 cells were 

treated for 18 h with 1 µg/ml tunicamycin or 1 µg/ml SubAB were indicated.  The scale bar is 10 µm 

long.  

 

Figure 5.16. GFP-tagged INSR distribution is altered after prolonged ER stress: quantitation. 

Average Pearson correlation coefficient robs between the INSR-GFP and CellMask Deep Red 

fluorescence determined from 11 randomly chosen cells (n = 3). The Pearson correlation coefficients 

for the randomised images are -0.13 ± 0.08, -0.13 ± 0.07, and -0.33 ± 0.07 for the untreated, 

tunicamycin-, and SubAB-treated cells, respectively. 

 

To establish that the loss of the insulin receptor alone, without ER stress, was sufficient to 

inhibit insulin signalling the expression of the insulin receptor was silenced using siRNAs. 
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Three siRNAs against murine insulin receptor mRNA were transfected into C2C12 cells 

before protein isolation and Western blotting to monitor AKT phosphorylation and insulin 

receptor protein levels. RT-qPCR was also performed to confirm knock-down of insulin 

receptor mRNA (Figure 5.17). All three siRNAs decreased insulin receptor mRNA steady 

state levels by 50-70%. The decrease in steady state levels was transient and messenger 

levels were highest 72 h after transfection. This is likely a result of the transient nature of 

siRNA mediated knockdown caused by cell division and the dilution of siRNAs below a 

critical threshold necessary to maintain knock-down of the gene (Dykxhoorn et al., 2003). 

Western blotting confirmed that reduced mRNA levels translated to a reduction in the 

protein level of the mature β chain. Knock-down of the insulin receptor was sufficient to 

inhibit insulin-stimulated AKT phosphorylation. AKT phosphorylation was reduced to a 

similar degree as reduced insulin receptor protein levels. Thus, loss of the insulin receptor 

alone is sufficient for inhibition of insulin signalling. 

 

Figure 5.17. siRNA-mediated knock-down of expression of the insulin receptor inhibits insulin-

stimulated phosphorylation of AKT. 

(A). Serum-starved C2C12 cells were stimulated with 100 nM insulin for 15 min 48 h after transfection 

of 50 nM of the indicated siRNAs. (B) Steady-state INSR mRNA levels standardized to ACTB in 

C2C12 cells transfected with 50 nM of the indicated siRNAs for 24, 48, or 72 h (n = 2). 
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5.6 AKT activation by a cytosolic FV2E-insulin receptor chimera is not 

affected by ER stress 

Due to the accumulation of the α-β proreceptors early in the secretory pathway, as well as 

redistribution of the insulin receptor away from the plasma membrane in cells exposed to 

long-lasting ER stress, it was hypothesised that if insulin receptor synthesis bypassed the 

ER during long-lasting ER stress then insulin signalling would not be affected. To test this 

hypothesis an insulin receptor chimera was created in which the signal peptide as well as 

both the extracellular and transmembrane domains were replaced with an N-terminal 

myristoylation signal and an Fv2E domain. The myristoylation signal induces the N-

terminal myristoylation of the protein resulting in it being anchored to intracellular 

membranes (Maurer-Stroh et al., 2002a, Maurer-Stroh et al., 2002b). 

 

Figure 5.18. Expression and functionality of the myristoylated FV2E-insulin receptor chimera. 

(A) Schematic of the myristoylated FV2E-insulin receptor chimera. (B) Expression of the FV2E-insulin 

receptor chimera was induced in Flp-In T-Rex 293 cells stably transfected with pcDNA5/FRT/TO-

MyrFV2E-INSR for 27 h with 1 µg/ml tetracycline, followed by dimerisation with 100 nM AP20187 

for the indicated times.  

 

Flp-In T-Rex 293 cells stably transfected with the insulin receptor chimera were treated 

with tetracycline and AP20187. Binding of AP20187 to the Fv2E domain mediates the 

dimerisation of chimeric proteins containing the Fv2E domain (Figure 5.18 A). 
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Dimerisation of the Fv2E-insulin receptor chimera with AP20187 resulted in increased 

tyrosine phosphorylation of the chimera at the Y1345 residue demonstrating that the 

chimera has tyrosine autophosphorylation activity (Figure 5.18 B). Treatment with 

AP20187 alone did not induce expression of the insulin receptor chimera and neither did it 

induce insulin receptor tyrosine phosphorylation. As an extra control HEK 293 cells not 

stably transfected were exposed to AP20187 and tetracycline and then monitored for 

insulin receptor expression and phosphorylation. As expected these two compounds were 

unable to induce expression of neither the chimeric insulin receptor nor its phosphorylation 

confirming that the tyrosine phosphorylation and expression of the chimeric insulin 

receptor is specific to the stably transfected cells and that the antibodies are detecting the 

correct proteins. In addition to insulin receptor phosphorylation, dimerisation in serum-

starved cells caused an ~2.6 fold increase in AKT T308 phosphorylation. Treatment of 

cells expressing the myristoylated insulin receptor with AP20187 can therefore, at the 

AKT level, mimic insulin signalling mediated through insulin stimulation of the 

endogenous insulin receptor. 

 

Figure 5.19. Bypass of the ER in insulin receptor synthesis abrogates ER stress-induced insulin 

resistance: HEK293 Flip-In T-Rex cells. 

HEK293 Flp-In T-Rex cells stably transfected with pcDNA5/FRT/TO-MyrFV2E-INSR were serum-

starved during the last 18 h of a 24 h treatment with 10 µg/ml tunicamycin (Tm) or 1 µg/ml SubAB 

(Sb). Then, expression of the FV2E-insulin receptor chimera was induced with 1 µg/ml tetracycline for 

24 h, followed by dimerization of the construct with 100 nM AP20187 for 4 h. Western blots of total 

cell lysates are shown. The arrow indicates the β chain of the mature, endogenous insulin receptor.  
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After establishing the applicability of the insulin receptor chimera to study insulin 

signalling in cells not requiring trafficking of the insulin receptor through the secretory 

pathway, the next step was to investigate if cells ER stress-mediated depletion of the 

insulin receptors was dependent on inhibition of transport through the secretory pathway. 

To begin with, 24 h ER stress was induced in Flp-In T-Rex 293 cells stably transfected 

with the myristoylated insulin receptor chimera before cell lysates were Western blotted to 

monitor endogenous and chimeric insulin receptor levels as well as AKT phosphorylation 

(Figure 5.19). As expected prolonged ER stress lowered endogenous insulin receptor 

levels. Interestingly, although possessing the ability to autophosphorylate after 

dimerisation, the exposure of the chimeric insulin receptor in stably transfected Flp-In T-

Rex 293 cells to AP20187 was unable to increase phosphorylation of AKT at S473 (data 

not shown). AKT T308 phosphorylation was instead monitored and this was modestly 

increased with AP20187 treatment. AKT T308 phosphorylation also increased with 

tetracycline suggesting that highly expressing this chimera may sometimes be sufficient to 

cause dimerization and autophosphorylation. Treatment with tunicamycin for 24 h was not 

sufficient to inhibit AKT T308 phosphorylation induced by tetracycline and AP20187. 

SubAB only slightly reduced the AKT T308 phosphorylation induced by a combination of 

AP20187 and tetracycline to the level induced by tetracycline only. The phosphorylation of 

both S473 and T308 was required for activation of AKT suggesting that AKT 

phosphorylation is defective in Flp-In T-Rex 293 cells. Because the same amount of 

protein was used in all Western blotting experiments (except in Endo H and PNGase F 

digests) it was observed that AKT S473 phosphorylation was constitutively high in Flp-In 

T-Rex 293 cells (data not shown) suggesting that signalling via the insulin receptor 

chimera may not have been sufficient to observe changes in AKT S473 phosphorylation 

above an already high background level. 

As AKT phosphorylation in Flp-In T-Rex 293 cells appears to be overactive compared to 

all other cell lines investigated so far, the effect of the myristoylated insulin chimera in 

another cell lines was investigated. C2C12 cells were chosen because: 1) transfection had 

previously been optimised in this cell line, and 2) the insulin receptor depletion and AKT 

phosphorylation have been well characterised in previous experiments. Hence, C2C12 were 

transiently transfected with the plasmid encoding the myristoylated insulin receptor 

chimera before being exposed to long-lasting ER stress induced by thapsigargin, 

tunicamycin or SubAB (Figure 5.20). In C2C12 cells AP20187 treatment increased AKT 

S473 phosphorylation ~3 fold. The AP20187-induced phosphorylation of AKT was 
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uninhibited by 24 h of ER stress and this was the same for all three mechanistically 

different ER stressors. The greater increase of AKT phosphorylation induced by AP20187 

in C2C12 versus Flp-In T-Rex 293 cells supports the idea that AKT phosphorylation was for 

some reason overactive or less responsive in Flp-In T-Rex 293 cells. These data therefore 

support the hypothesis that bypass of the ER in the synthesis of the insulin receptor 

prevents long-lasting ER stress-induced insulin resistance. Overall, these results support 

the conclusion that insulin resistance in ER-stressed cells is a result of inhibited transport 

of newly synthesised insulin receptors through the secretory pathway. 

 

Figure 5.20. Bypass of the ER in insulin receptor synthesis abrogates ER stress-induced insulin 

resistance: C2C12 cells. 

(A) C2C12 cells were transiently transfected with pmaxGFP or pcDNA5/FRT/TO-MyrFV2E-INSR. 24 

h after transfection ER stress was induced for 24 h with 0.1 µM thapsigargin (Tg), 0.1 µg/ml 

tunicamycin, or 1 µg/ml SubAB followed by dimerisation of the receptor with 100 nM AP20187 for 4 

h and preparation of cell lysates for Western blotting. The arrow indicates the β chain of the mature, 

endogenous insulin receptor. (B) Quantitation of the results shown in panel (A) (n = 2). 
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It is worth noting that the myristoylation of the insulin receptor chimera allows its 

localisation to all membranes and as such it may not be entirely located at the cell 

membrane. However, as treatment of AP20187 was able to induce AKT phosphorylation in 

cells expressing the insulin receptor chimera, it would appear that either activation of the 

insulin signalling pathway downstream of insulin is not dependent on localisation to the 

plasma membrane or that the amount of chimera which is bound to plasma membrane is 

sufficient for activation of AKT.  

 

5.7 JNK knock-out MEFs are not protected from ER stress-induced insulin 

resistance 

As discussed in more detail in chapter 4, both JNK and TRB3 have been implicated in 

mediating insulin resistance during ER stress. In chapter 4 it was shown that ER stress up 

to 8 h was not sufficient to inhibit insulin signalling even when JNK was activated. Using 

JNK knock-out MEFs it was investigated if JNK was involved in the inhibition of insulin 

signalling during long-lasting ER stress. WT and jnk1
-/-

 jnk2
-/-

 MEF cells were exposed to 

thapsigargin, tunicamycin or SubAB for 24 h before protein isolation and Western blotting 

(Figure 5.21 and Figure 5.22). AKT phosphorylation levels were comparable between WT 

and jnk1
-/-

 jnk2
-/-

 MEF after long-lasting ER stress induced by all three ER stressors. JNK 

activation was also monitored at 24 h of ER stress in WT and jnk1
-/-

 jnk2
-/-

 MEFs to 

confirm that ER stress was inducing JNK phosphorylation at this time point (Figure 5.23). 

Unsurprisingly, total and phosphorylated JNK was not detected in jnk1
-/-

 jnk2
-/-

 MEFs, 

which confirmed that they were indeed jnk1
-/-

 jnk2
-/-

 MEFs (data not shown). 24 h of ER 

stress activated JNK 2-4 fold in WT MEFs demonstrating that JNK activation at 24 h is not 

involved in ER stress-dependent insulin resistance as jnk1
-/-

 jnk2
-/-

 MEFs also display 

inhibited AKT phosphorylation.  
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Figure 5.21. jnk1
-/-

 jnk2
-/-

 MEFs are not protected from developing insulin resistance when 

exposed to chronic ER stress. 

WT and jnk1
-/-

 jnk2
-/-

 MEFs were treated for 24 h with the indicated concentrations of thapsigargin or 

tunicamycin, 1 µg/ml SubAB, or 1 µg/ml SubAA272B and serum-starved during the last 18 h of drug 

treatment before stimulation with 100 nM insulin for 15 min. Quantitation of AKT S473 

phosphorylation relative to total AKT levels are shown in Figure 5.22. 

 

Figure 5.22. jnk1
-/-

 jnk2
-/-

 MEFs are not protected from developing insulin resistance when 

exposed to chronic ER stress: quantitation.  

Quantitation of AKT S473 phosphorylation relative to total AKT levels in WT and jnk1
-/-

 jnk2
-/- 

MEFs 

exposed to (A) thapsigargin, (B) tunicamycin, and (C) SubAB (n = 2). 
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ER stress-dependent TRB3 activation is reported to mediate insulin resistance. However, 

in chapter 4 it was shown that ER stress up to a maximum of 8 h was not sufficient to 

inhibit insulin signalling even when TRB3 was highly expressed. Thus the activation of 

TRB3 during prolonged ER stress was investigated. Previous figures have shown that use 

of a myristoylated insulin receptor chimera, which bypasses the secretory pathway, 

prevents ER stress-induced insulin resistance in C2C12 cells (Figure 5.19 and Figure 5.20). 

Thus experiments were performed to characterise the expression of TRB3 in C2C12 cells 

using the same time point and ER stressor concentrations. Consistent with other reports the 

data suggest that long-lasting ER stress induces expression of TRB3 (Figure 5.24). TRB3, 

although being highly expressed during 24 h ER stress, was still not sufficient to inhibit 

AKT phosphorylation induced through insulin receptor chimera activation. Thus, elevated 

levels of TRB3 do not inhibit AKT phosphorylation during prolonged ER stress. 

 

Figure 5.23. Prolonged ER stress activates JNK in WT MEFs. 

(A) Activation of JNK in WT MEFs exposed to the indicated concentrations of thapsigargin or 

tunicamycin, 1 µg/ml SubAB, or 1 µg/ml SubAA272B and serum-starved during the last 18 h of drug 

treatment before stimulation with 100 nM insulin for 15 min. (B) Quantitation of the Western blots in 

panel (A) (n = 2). 
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Figure 5.24. TRB3 mRNA levels after prolonged ER stress. 

TRB3 mRNA levels measured by RT-qPCR in C2C12 cells treated with 300 nM thapsigargin, 1 µg/ml 

tunicamycin, or 1 µg/ml SubAB for 24 h (n = 3). 

 

5.8 ER stress depletes insulin receptors in neuron-like cells 

Diabetes is reported to affect neuronal tissue and as such as been implicated in 

neurodegenerative diseases (Wang et al., 2014, Hu et al., 2007). Previously in this chapter 

prolonged ER stress in cells derived from: liver, muscle and adipose tissue has been 

investgated. Research was therefore extended to include cells with a neuronal lineage. 

Differentiated human neuroblastoma SH-SY5Y (Ross et al., 1983) cells exposed to 

thapsigargin, tunicamycin or SubAB for 24 h showed a decrease in insulin receptor β 

chains to a similar extent as non-neuronal cell lines (Figure 5.25 A). Similar results were 

also observed in differentiated murine Cath.-a-differentiated (CAD) (Suri et al., 1993) cell 

line (Figure 5.25 B). 4 h of exposure to any of the three ER stressors used was not long 

enough to deplete insulin receptor levels and confirms the findings that ER stress over 

several half-lives of the insulin receptor protein is required for depletion at the plasma 

membrane. Thus, long-lasting ER stress also depletes insulin receptors in neuronal cell 

lines.  

To confirm that long-lasting ER stress causing insulin resistance via depletion of insulin 

receptors is not specific to immortalised cell lines, mouse primary glial cultures were 

exposed to 24 h of SubAB (Figure 5.25 C). SubAB treatment caused a decrease in insulin 

receptor β chain levels whilst increasing proreceptor levels, suggesting that prolonged ER 

stress depletes insulin receptors at the plasma membrane by inhibiting trafficking of newly 

synthesised insulin receptors through the secretory pathway. During ER stress treatment, 

primary glial cells were serum-starved for 18 h and then stimulated with 100 nM insulin 

for 15 min prior to harvesting lysates to monitor insulin signalling. Insulin stimulation 
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resulted in increased phosphorylation of AKT at S473, demonstrating that primary glial 

cells are insulin sensitive. 24 h of SubAB, which lowered insulin receptor β chains, 

inhibited insulin-mediated phosphorylation of AKT. Thus, prolonged ER stress causes 

insulin resistance in primary glial cells. 

 

 

Figure 5.25. ER stress depletes insulin receptors in neuronal cell lines and primary glia. 

(A-C) Depletion of the β chain of the insulin receptor by ER stress in (A) differentiated SH-SY5Y 

cells exposed to 24 h of 250 nM Tg, 1 µg/ml Tm or 1 µg/ml SubAB, (B) differentiated CAD cells 

exposed to 250 nM Tg, 1 µg/ml Tm or 1 µg/ml SubAB for the indicated times, and (C) primary mouse 

astrocytes exposed to 1 µg/ml SubAB for 24 h. 
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5.9 ER stress depletes IGF-I receptors 

To investigate if the inhibited transport of newly synthesised insulin receptors from the ER 

to the plasma membrane is a general phenomenon affecting the majority of plasma 

membrane proteins during long-lasting ER stress IGF-I receptor levels were also 

monitored. The IGF-I receptor has a half-life of >6 h (Prager et al., 1992). With similarity 

to the insulin receptor, the IGF-I proreceptor is processed into α and β chains by proprotein 

convertases (Duguay et al., 1997). Also similar to the insulin receptor, the mature IGF-1 

receptor β chain levels decreased with 18 h, and to a greater degree 24 h, of ER stress in 

C2C12 cells (Figure 5.26 and Figure 5.27). A decrease in IGF-1 receptor levels was also 

observed in Hep G2 cells with prolonged ER stress (Figure 5.28 and Figure 5.29). 

Consistent with the insulin receptor, the IGF-I receptor levels were not greatly decreased 

with all three ER stressors until 36 h. Hep G2 cells are therefore more resistant to treatment 

with ER stressors. As well as depleting IGF-I receptor β chains, ER stress also led to an 

accumulation of proreceptors (Figure 5.30): suggesting a similar trafficking problem as 

observed with the insulin receptor during ER stress. Overall, IGF-I receptors are also 

depleted after prolonged ER stress. 

Hep G2 cells appear to be more resistant to treatment with ER stressors as evidenced by 

later JNK activation and longer periods of ER stress being required to deplete both insulin 

receptor and IGF-I receptor levels. Several explanations are imaginable: 1) ER stressors 

take longer to enter Hep G2 cells 2) Hep G2 cells are more resistant to perturbations in 

protein folding 3) membrane protein turnover is slower in Hep G2 cells 4) Hep G2 cells 

have a greater protein folding capacity. Regardless of the time taken the insulin resistance 

induced through ER stress consistently correlates with depletion of insulin receptors in 

several cell lines. 
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Figure 5.26. Depletion of IGF-I receptors by ER stress in C2C12 cells. 

C2C12 cells were treated for the indicated times with the indicated concentrations of thapsigargin or 

tunicamycin, 1 µg/ml SubAB, or 1 µg/ml SubAA272B and serum-starved during the last 18 h of drug 

treatment before stimulation with 100 nM insulin for 15 min. Cell lysates were analysed by Western 

blotting. The GAPDH loading control is the same as the one shown in Figure 5.6. Quantitation of the 

Western blots shown in Figure 5.27. 
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Figure 5.27. Depletion of IGF-I receptors by ER stress in C2C12 cells: quantitation. 

(A-C) Quantitation of the Western blots shown in Figure 5.26. Depletion of IGF-I receptors by ER 

stress induced in C2C12 cells with (A) thapsigargin, (B) tunicamycin, and (C) SubAB (n = 2). 

 

 

Figure 5.28. Depletion of IGF-I receptors by ER stress in Hep G2 cells. 

Hep G2 cells were treated for the indicated times with the indicated concentrations of thapsigargin or 

tunicamycin, 1 µg/ml SubAB, or 1 µg/ml SubAA272B and serum-starved during the last 18 h of drug 

treatment before stimulation with 100 nM insulin for 15 min. Cell lysates were analysed by Western 

blotting. The GAPDH loading control is the same as the one shown in Figure 5.8. Quantitation of the 

Western blots shown are in Figure 5.29. 
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Figure 5.29. Depletion of IGF-I receptors by ER stress in Hep G2 cells: quantitation. 

(A-C) Quantitation of the Western blots shown in Figure 5.28. Depletion of IGF-I receptors by ER 

stress induced in Hep G2 cells with (A) thapsigargin, (B) tunicamycin, and (C) SubAB (n = 2). 

 

 

Figure 5.30. Prolonged ER stress causes accumulation of - IGF-I proreceptors in Hep G2 and 

C2C12 cells. 

Quantitation of IGF-I proreceptors relative to IGF-I receptors from Western blots in (A) HepG2 (from 

Figure 5.28) (B) C2C12 cells (from Figure 5.26) (n = 2). 
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5.10 Discussion 

Overall, the data presented in this chapter demonstrate that prolonged/chronic ER stress 

blocks the transport of newly synthesised insulin receptors to the plasma membrane. 

Without delivery of newly synthesised insulin receptors the constitutive turnover of insulin 

receptors in the plasma membrane results in depletion of the insulin receptor at the plasma 

membrane. Thus, long-lasting ER stress can inhibit insulin signalling via depletion of the 

insulin receptor from the cell membrane. Several lines of evidence support this conclusion. 

Only prolonged ER stress, which extended over several half-lives of the insulin receptor, 

resulted in insulin resistance, whereas shorter periods of ER stress do not cause insulin 

resistance. Insulin resistance occurs in parallel with depletion of mature insulin receptor β 

chains. Decreasing insulin receptors through siRNA-mediated knock-down was sufficient 

to cause insulin resistance. Prolonged ER stress causes accumulation of unprocessed 

proreceptors in the ER. It was shown through fluorescent microscopy that GFP-tagged 

insulin receptors are depleted from the cell surface and are redistributed to intracellular 

compartments after long-lasting ER stress. Finally, long-lasting ER stress in cells 

synthesising myristoylated insulin receptors, which bypass the ER, does not cause insulin 

resistance. It could be possible that ER stress is increasing the turn-over of the insulin 

receptor at the membrane and that this increased rate is sufficient to deplete the insulin 

receptor, whilst the insulin chimera may have not been affected by this increased turn over. 

Strong evidence against this is that the insulin proreceptors accumulate in the ER and that 

the fluorescent signal from GFP-labelled insulin receptors was lost from the cell membrane 

and was localised to the inside of the cell during ER stress, suggesting that the insulin 

receptor does indeed accumulate early in the secretory pathway such as the ER and that ER 

stress inhibits the transport of newly synthesised insulin receptors out of the ER and 

through the rest of the secretory pathway. 

Two possible major implications arise from this research: 1) this research highlights the 

possibility that long-lasting ER stress is a potential mediator of insulin resistance in 

diabetes, 2) it could also be possible that the mechanism of insulin resistance established is 

a phenomenon of more pronounced ER stress in cultured cells. If 1 is true then this 

research adds to the mounting studies highlighting ER stress as a potential therapeutic 

target in diabetes. Whether or not more physiologically relevant levels of ER stress for 

long periods of time also result in insulin resistance needs to be established. If either 1 or 2 

is true then this research highlights the importance of carefully considering the effect of 

prolonged ER stress on the depletion of membrane proteins and the subsequent effect on 
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downstream signalling pathways. This is extremely important because conclusions about 

the role of ER stress in other signalling pathways may be flawed if upstream membrane 

signalling proteins are not being considered. 

 

Figure 5.31. ER stress causes insulin resistance by interfering with exit of newly synthesised 

insulin proreceptors from the ER. 

The signal peptide sequence targets ribosomes translating the insulin receptor mRNA to the ER, 

where the newly synthesised polypeptide chain folds into molecules with insulin binding activity. ER 

stress interferes with folding of newly synthesised insulin receptor molecules, preventing its transport 

to the Golgi complex. The Myr-FV2R-insulin receptor chimera is not affected by ER stress because it 

is translated by cytoplasmic ribosomes and folds in the cytosol into active molecules thus bypassing 

the ER. 

 

Although these findings contribute to the mounting evidence implicating ER stress in the 

development of insulin resistance, there is no evidence that UPR signalling pathways, such 

as IRE1α-JNK and PERK-TRB3, are involved. JNK has previously been implicated as a 

mediator of ER stress-dependent insulin resistance (Ozcan et al., 2004). However, this 

chapter reports that insulin resistance still develops in jnk1
-/-

 jnk2
-/-

 cells exposed to long-

lasting ER stress (Figure 5.21) suggesting that JNK activation is not required for prolonged 

ER stress-mediated insulin resistance. These findings are consistent with two other studies 
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which found that the JNK selective inhibitor SP600125, although reducing JNK activation, 

was unable to restore insulin sensitivity in ER-stressed cells (Xu et al., 2010, Zhou et al., 

2009). As JNK activation during ER stress is dependent on TRAF2 (Chapter 3), it is likely 

that traf2
-/-

 MEFs are also not protected from long-lasting ER stress-induced insulin 

resistance but time restraints meant this was not investigated.  

TRB3 has also been implicated as a mediator of insulin resistance caused by ER stress (Du 

et al., 2003). However, data in this thesis suggests that strong induction of TRB3 occurs 

without the development of insulin resistance, which provides evidence that TRB3 is also 

not required for the development of ER stress-dependent insulin resistance.  

It was also demonstrated that not only the insulin receptor but other proteins, which traffic 

through the secretory pathway can be affected during long-lasting ER stress as IGF-I 

receptors were also depleted. Therefore, it could be possible that proteins important for 

vesicular trafficking and sorting are depleted after prolonged ER stress and this may 

contribute to depletion of the insulin receptor from the plasma membrane. Binding of 

insulin to the insulin receptor leads to the internalisation of the insulin receptor before the 

insulin-insulin receptor complex is separated in endosomes and the insulin receptor is 

recycled back to the plasma membrane (Foti et al., 2004). This process of internalisation 

and recycling of the insulin receptor downstream of insulin binding may also be disrupted 

through depletion of proteins which traffic through the secretory pathway. Disruption of 

proper vesicular trafficking and sorting may even inhibit or slow the depletion of the 

insulin receptor during ER stress and explain the increase in the insulin receptor’s half-life 

in tunicamycin treated cells (Reed et al., 1981b). How long-lasting ER stress affects other 

proteins which move through, especially those which function within, the secretory 

pathway needs to be established. 

The depletion of secretory and membrane proteins during prolonged ER stress may explain 

several observations showing that ER stress inhibits various signalling pathways. For 

example TNF-α induces the generation of ROS and this was shown to be inhibited by 

tunicamycin in L929 cells (Xue et al., 2005), however, the TNF receptor may have been 

depleted during the ER stress treatment as it has a short half-life of 1.5-2 h (Watanabe et 

al., 1988, Yoshie et al., 1986). Depletion of TNF receptors in these experiments would 

render cells unable to respond to TNF-α. Another study showing that cholesterol efflux in 

Hep G2 cells is inhibited by ER stress may also suffer from the same oversight (Rohrl et 

al., 2014). ER stress-mediated depletion of the ATP-binding cassette transporter A1 
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(ABCA1), which has a half-life of 1-2 h (Wang and Oram, 2002, Arakawa and Yokoyama, 

2002, Wang et al., 2003b), at the plasma membrane may have contributed to the observed 

inhibition of cholesterol efflux. That being said, it is important to investigate each 

secretory and membrane protein during ER stress individually as tunicamycin, although 

inhibiting delivery of many proteins to the plasma membrane, does not affect the rate of 

delivery of HLA-A and HLA-B (Ploegh et al., 1981). This was also found to be the case 

for interferon secretion, which is not affected by tunicamycin treatment in human 

leukocytes (Fujisawa et al., 1978, Mizrahi et al., 1978). This work therefore highlights the 

need for a case-by-case analysis of every single secretory or membrane protein to 

understand how ER stress affects their secretion or delivery to the cell membrane. 

Acquiring this information is important to avoid misinterpretation of data in studies 

involving ER stress. 

As discussed, many studies have investigated insulin signalling in the context of long-

lasting ER stress (Avery et al., 2010, Hage Hassan et al., 2012, Xu et al., 2010, Zhou et al., 

2009, Tang et al., 2011). However, only two reports to date have described decreased AKT 

phosphorylation with short lasting ER stress. The first of these studies demonstrated that 

Fao rat hepatoma cells had reduced AKT S473 phosphorylation when exposed to 5 µg/ml 

tunicamycin for 3 h (Ozcan et al., 2004). The second study showed that AKT 

phosphorylation is reduced by ~27% in C2C12 myotubes exposed to an undocumented 

concentration of tunicamycin (Koh et al., 2013). 

The depletion of insulin receptors reported in this results chapter may partly explain the 

loss of insulin signalling in various studies investigating prolonged ER stress. For example, 

treatment of C2C12 cells with tunicamycin for 16 h caused insulin resistance (Hage Hassan 

et al., 2012). Insulin resistance was only shown to correlate with JNK activation in this 

study. In another study HL-1 atrial myocytes were exposed to 2 μM thapsigargin for 24 h, 

which caused insulin resistance (Avery et al., 2010). In this study TRB3 was implicated in 

the ER stress-mediated development of insulin resistance as siRNA-mediated knock-down 

of TRB3 relieved insulin resistance. However, knock-down of TRB3 only partially 

relieved ER stress-induced insulin resistance. In these studies the duration of ER stress 

may have been sufficient to deplete insulin receptors through mechanisms reported in this 

thesis. The fact that all of these studies did not consider the effect of ER stress on the 

trafficking of proteins crucial to the signalling pathways being involved highlights the 

importance of the findings reported in this thesis. 
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Trafficking of the insulin receptor through the secretory pathway has been previously well 

characterised (Lane et al., 1985, Hart et al., 1988). However, all of these studies have used 

tunicamycin to investigate how inhibiting N-linked glycosylation specifically affects 

trafficking and processing of the insulin receptor through the secretory pathway. Studies, 

which show that tunicamycin treatment blocks trafficking of newly synthesised insulin 

receptors to the plasma membrane attribute this solely to insulin receptors not being 

glycosylated (Kadle et al., 1984, Ercolani et al., 1984, Ronnett et al., 1984). However, as 

demonstrated in this chapter, two other ER stressors, thapsigargin and SubAB, which 

induce ER stress without directly affecting N-linked glycosylation, also deplete insulin 

receptor levels. Direct inhibition of N-linked glycosylation was also not required for the 

inhibited transport of proreceptors from the ER to the trans-Golgi network. It was also 

evident that both thapsigargin and SubAB do not inhibit the glycosylation of the insulin 

receptor as the glycosylated proreceptor accumulates over time suggesting that translation 

and glycosylation of the insulin receptor is ongoing during ER stress. Thus, ER stress-

mediated depletion of insulin receptors at the plasma membrane is a result of trafficking 

defects through accumulation of misfolded and aggregated proteins. 

It was discovered that tunicamycin caused depletion of insulin receptors earlier than the 

other ER stressors (Figure 5.1 and Figure 5.3). This may be due to the level of ER stress 

induced or the mechanism through which different ER stress mimetics cause ER stress. 

Another explanation is that the pharmacokinetics of tunicamycin such as: uptake rate, 

excretion rates, and steady state levels all contribute to early inhibition of trafficking of the 

insulin receptor. As tunicamycin is inhibiting the N-linked glycosylation of newly 

synthesised insulin receptors directly as well as causing ER stress it is likely that the 

insulin receptors are depleted quickly. Whereas the other ER stressors will take time to 

block trafficking of the insulin receptor as a secondary effect of long-lasting ER stress and 

a blockage in the secretory pathway. 

The level of insulin receptors at the plasma membrane is decreased in obesity (Olefsky and 

Reaven, 1975, Olefsky, 1976), whilst ER stress has been reported in several tissues in both 

obese mice and obese patients (Ozcan et al., 2004, Ozcan et al., 2006, Sreejayan et al., 

2008, Hosogai et al., 2007). Data in this reults chapter suggest that ER stress could cause 

less efficient trafficking of newly synthesised insulin receptors to the cell surface in obesity 

resulting in insulin resistance. Chemical chaperones such as TUDCA and 4-

phenylbutyrate, which relieve ER stress have been shown to restore insulin sensitivity and 

blood glucose in models of diabetes (Ozcan et al., 2006, Ozcan et al., 2008). Relieving ER 
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stress is therefore a potential therapeutic target in diabetes and this may be through 

restoration of proper trafficking of the insulin receptor. Interestingly, diabetes is not the 

only disease associated with decreased insulin receptor levels. Decreased insulin receptor 

levels have been reported in the neurodegenerative diseases PD (Moroo et al., 1994, 

Moloney et al., 2010) and AD. This is of particular interest because both 

neurodegenerative diseases are linked to diabetes whilst ageing, which is a major risk 

factor for these three diseases, has been shown to involve a decrease in insulin receptor 

levels (Bolinder et al., 1983, Frolich et al., 1998). The role of the insulin receptor in ageing 

and neurodegeneration is investigated in more detail in the final discussion (Chapter 7). 

In conclusion, prolonged ER stress leads to insulin resistance through inhibiting the 

transport of newly synthesised insulin receptors through the secretory pathway leading to 

the loss of insulin receptors at the cell membrane. An important question remaining is how 

does this apply to physiological ER stress in diabetes? Regardless of the answer, an 

important finding is that studying insulin signalling after ER stress for longer than 18 hours 

is misleading without considering the trafficking of insulin receptors. This finding also 

demonstrates the danger of studying and interpreting results when analysing signalling 

pathways affected by prolonged ER stress as results may be artefacts of protein loss 

through inhibition of the secretory pathway. For this reason it is important to establish how 

ER stress affects all proteins which traffic through the secretory pathway. This knowledge 

would be of significant importance for the reliable interpretation of experiments involving 

ER stress. 
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6 ER STRESS-INDUCED INFLAMMATORY SIGNALLING IN 

PARKINSON’S DISEASE 

6.1 Rationale 

The early molecular mechanisms in the development of PD are poorly understood. 

Activation of the UPR has been detected in various PD models (see 1.6.1-3). The UPR has 

also been shown to induce inflammatory signalling (see 1.4). Prolonged 

neuroinflammation is detrimental and has been strongly implicated in PD along with 

activation of the UPR (see 1.6.5). However, a link between the UPR and 

neuroinflammation in PD has so far not been studied. Thus, it was investigated if pathways 

activating the inflammatory signalling pathways; AP-1 and NF-κB are switched on during 

ER stress and UPR activation in cultured neuronal cell lines. 

The most widely associated protein with PD is α-synuclein. Recent studies have implicated 

α-synuclein in the development of ER stress in PD (see 1.6.2.1). Various mechanisms have 

been suggested for α-synuclein-mediated ER stress: 1) inhibition of the proteasome, 2) 

inhibition of ER to Golgi transport, 3) entry of α-synuclein into the ER and disruption of 

protein folding. Not only do genetic models of PD suggest an involvement of ER stress and 

the UPR in PD, drugs mimicking PD can also activate the UPR. The PD mimetic drugs 6-

OHDA (Ryu et al., 2002), MPP+ (Chigurupati et al., 2009, Ryu et al., 2002), rotenone 

(Ryu et al., 2002) and paraquat (Chinta et al., 2008) have been shown to induce ER stress. 

Overall there is strong evidence that ER stress can be activated in PD. 

The role of ER stress in PD is not fully understood but it may involve initiation or 

contribution of inflammation. Epidemiological studies (Chen et al., 2003, Chen et al., 

2005), post mortem studies (Hunot et al., 1999) and animal models (Su et al., 2008) have 

provided mounting evidence for a role for neuroinflammation in PD. As discussed, the 

UPR is also capable of activating inflammatory signalling pathways NF-κB, JNK and p38 

(see 1.4). Also, ER stress is strongly implicated in the development of inflammation in 

metabolic diseases (Mondal et al., 2012, Kawasaki et al., 2012, Li and Engelhardt, 2006). 

It could be the case that activation of the UPR, through a variety of mechanisms, is leading 

to the activation of inflammatory signalling molecules previously detected in PD neurons. 

Evidence of ER stress-mediated JNK activation in various cell lines has been provided 

(Results Chapter 3) but so far the effect of ER stress on inflammatory signalling outside of 
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and downstream of JNK has not been investigated. The mediator of transcription of pro-

inflammatory genes AP-1 is activated downstream of JNK activation (Davis, 2000). For 

these reasons it was questioned if the observed ER stress-mediated JNK activation leads to 

pro-inflammatory signalling and if ER stress, in this research group’s experimental system, 

activates other pro-inflammatory signalling pathways. In other studies ER stress has been 

able to activate the transcription factors NF-κB (Kaneko et al., 2003) and AP-1 (Urano et 

al., 2000), which control pro-inflammatory genes. These transcription factors have been 

shown to be activated by JNK, and p38. 

Bringing all these molecular events together the following sequence of events may account 

for the loss of neurons in PD: 1) Disruption protein folding homeostasis through 

mechanisms discussed. 2) Accumulation of unfolded proteins in the ER and activation of 

the UPR. 3) The UPR activates inflammatory signalling pathways which activates and 

recruits microglia. 4) Activated microglia release inflammatory and neurotoxic molecules 

causing further damage to unhealthy neurons, possibly through further ER stress, 

mitochondrial stress and oxidative stress. 5) And finally both microglia and unhealthy 

neurons activate further microglia causing self-propelling cycles of inflammation, neuronal 

damage and neuronal cell death (Figure 1.8). 

In the following section the role of ER stress in mediating inflammatory signalling and 

inflammation in cellular models of PD is investigated. 

 

6.2 ER stress activates inflammatory signalling pathways in neuronal cells 

6.2.1 Activation of inflammatory signalling in N1E-115 cells with ER stressors 

To investigate if ER stress activates JNK as well as other inflammatory signalling 

pathways, murine neuroblastoma N1E-115 (Amano et al., 1972) cells were exposed to ER 

stressors. N1E-115 cells were exposed to thapsigargin at concentrations of 0.3 and 0.5 µM 

for up to 4 h before cells were harvested for protein and RNA extraction. Western blotting 

was performed to monitor the activation of the MAPK signalling pathways JNK and p38 as 

well as the transcription factor NF-κB. Phosphorylation of eIF2α was also investigated 

through Western blotting along with splicing of XBP1 to monitor the kinetics of UPR 

activation in ER-stressed cultures. Both concentrations of thapsigargin resulted in 

increased JNK phosphorylation (Figure 6.1 A). Thapsigargin caused a drastic increase in 

the phosphorylation of the MAPK p38 after 2 and 4 h. The phosphorylation and 
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subsequent degradation of IκBα results in NF-B activation (DiDonato et al., 1996). IκBα 

degradation is therefore indicative of NF-B activation. Thus the level of IκBα protein 

during ER stress was investigated using Western blotting.  IκBα degradation occurred in 

N1E-115 cells after exposure to thapsigargin suggesting that NF-κB signalling is also 

activated by ER stress. Interestingly, JNK activation occurred before p38 in N1E-115 cells 

and may suggest that p38 activation is regulated differently to JNK during ER stress in 

N1E-115 cells. 

 

Figure 6.1. Thapsigargin activates inflammatory signalling pathways in N1E-115 cells. 

Induction of ER stress with 300 or 500 nM Tg in N1E-115 cells. (A) Western blots for phospho-JNK 

(p-JNK), total-JNK (JNK), phospho-p38 (p-p38), total-p38 (p38), phospho-eIF2α (p-eIF2α), total-

eIF2α (eIF2α), IκBα and GAPDH proteins. (B) Detection of XBP1 splicing by RT-PCR.  

 

 

Splicing of XBP1 was measured to monitor activation of the UPR (Figure 6.1 B). A second 

marker of UPR activation was also employed - eIF2α phosphorylation, which occurs with 
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activation of the PERK branch of the UPR, was monitored alongside XBP1 splicing. Both 

markers of UPR activation, XBP1 splicing and phosphorylation of eIF2α, were observed as 

early as 30 min after thapsigargin treatment. Interestingly, JNK and NF-κB activation 

correlated with the markers of UPR activation. However, p38 phosphorylation did not 

occur until after 2 h of thapsigargin treatment, suggesting that different kinetics of 

activation of these inflammatory signalling pathways by the UPR exist in N1E-115 cells.  

 

Figure 6.2. SubAB activates inflammatory signalling pathways in N1E-115 cells. 

N1E-115 cells were exposed to 1 μg/ml SubAB for the 1, 2, 4, 6, and 8 h. (A) Western blots for 

phospho-JNK (p-JNK), total-JNK (JNK), phospho-p38 (p-p38), total-p38 (p38), phospho-eIF2α (p-

eIF2α) , total-eIF2α (eIF2α), IκBα and GAPDH proteins. (B) Detection of XBP1 splicing by RT-PCR.  
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Figure 6.3. Catalytically inactive SubAA272B  does no activate the UPR in N1E-115 cells. 

N1E-115 cells were exposed to 1 μg/ml SubAA272B for the 1, 2, 4, 6, and 8 h before protein and RNA 

isolation. Western blots for phospho-JNK (p-JNK), total-JNK (JNK), phospho-p38 (p-p38), total-p38 

(p38), phospho-eIF2α (p-eIF2α), total-eIF2α (eIF2α), IκBα and GAPDH proteins shown above. 

Detection of XBP1 splicing by RT-PCR. β-Actin (ACTB) was used as a loading control. 

 

A second ER stressor, SubAB, was also used to confirm results from the thapsigargin 

treatments (Figure 6.2). The UPR marker, phospho-eIF2α and spliced XBP1 were not 

observed until 1 and 2 h after addition of SubAB, respectively. Both JNK and p38 were not 

activated until 2 h of exposure to SubAB, which correlates with markers of UPR 

activation. To ensure observations are a direct result of ER stress induced by SubAB rather 

than off-target effects from contaminants produced in the preparation of SubAB cells were 

exposed to the catalytically inactive SubAA272B (Figure 6.3). Treatment of N1E-115 cells 

with SubAA272B up to 4 h was unable to induce XBP1 splicing or phosphorylation of 

eIF2α. Therefore, activation of the inflammatory signalling pathways: JNK, p38 and NF-

κB correlate with UPR activation in N1E-115 cells. As with ER stress induced with 

thapsigargin, SubAB also caused JNK activation prior to p38 (see Discussion). 
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6.2.2 Activation of inflammatory signalling in differentiated SH-SY5Y cells with ER 

stressors  

Several characteristics of the human neuroblastoma SH-SY5Y (Ross et al., 1983) cell line 

make it a useful tool for studying dopaminergic neurons. SH-SY5Y cells have been shown 

to synthesise dopamine, express tyrosine hydroxylase (TH) activity, and express dopamine 

transporter (Xie et al., 2010). TH is used as a marker for a dopaminergic phenotype as TH 

is the first rate limiting enzyme in the synthesis of dopamine. SH-SY5Y cells can also be 

differentiated into a more pronounced dopaminergic phenotype with differentiation 

induced by a combination of retinoic acid (RA) and 12-O-tetradecanoylphorbol-13-acetate 

(TPA) (Presgraves et al., 2004). RA treatment alone has also been shown to increase TH 

expression in SH-SY5Y cells (Lopes et al.), however, other studies using RA alone for SH-

SY5Y cell differentiation have reported that differentiation does not induce expression of 

TH (Cheung et al., 2009, Presgraves et al., 2004). RA-induced differentiation of SH-SY5Y 

cells is the most common protocol used for studying PD in this cell line. TPA acts mainly 

through activating protein kinase C (Fagerstrom et al., 1996). RA induces differentiation 

through binding the RA receptors and the retinoic X receptors effecting the regulation of 

the transcription of neurotrophin receptor genes (Clagett-Dame et al., 2006), the Wnt 

signalling pathway (Uemura et al., 2003) and type II protein kinase A (Encinas et al., 

2000). 

Human neuroblastoma SH-SY5Y cells were differentiated by treating cells with 10 μM RA 

on day 1 and day 3 (Presgraves et al., 2004) After 7 days of differentiation cell lysates 

were harvested and processed for Western blotting. Blotting for TH revealed that 

differentiation with 10 μM RA on day 1 and day 3 was not sufficient to induce expression 

of TH expression in SH-SY5Y (data not shown). Due to the first differentiation protocol 

not being sufficient to induce detectable levels of TH expression at the protein level several 

differentiation protocols were trialled. Human neuroblastoma SH-SY5Y cells were 

differentiated in several ways (see Methods section for full details). After differentiation 

cell lysates were harvested and processed for Western blotting. Blotting for TH revealed 

that none of the differentiation protocols were sufficient to induce expression of TH 

expression in SH-SY5Y (data not shown). 

TPA with RA although being reported to previously (Presgraves et al., 2004), was unable 

to induce expression of TH. Also, TPA is known to have oxidative effects (Datta et al., 

2000). As oxidative effects may mask effects of ER stressors and PD mimetics, which can 
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induce oxidative stress, a differentiation protocol without TPA was chosen for further 

experiments. Using 10 μM RA on day 1 and day 3 for SH-SY5Y differentiation is a 

common protocol for inducing a neuronal phenotype including increased neurite length, 

which is typical of neuron-like cells. Neurites are elongated processes which extend from 

the cell body and serve as precursors of axons and dendrites to allow polarisation of the 

neuron (Clagett-Dame et al., 2006). Neurite length was measured using ImageJ software 

and the average neurite length was calculated. Differentiation with 10 µM all-trans RA on 

day 1 and day 3 caused a pronounced change in morphology to neuron-like cells increasing 

the length of neurons significantly (Figure 6.4 A, B).  

Differentiation is reported to cause activation of MAPK pathways including JNK (Tiwari 

et al., 2012). As previous chapters have characterised the effect of ER stress on the 

activation of JNK in non-neuronal cells it was to decided that JNK activation, using the 

anti-phospho-JNK antibody, should be monitored through the differentiation process of 

SH-SY5Y cells (Figure 6.4 C). JNK phosphorylation did not increase through 

differentiation, which suggests that differentiation was not activating JNK signalling in 

SH-SY5Y cells. Activation of the MAPK p38 was also monitored. Phosphorylation of p38 

also was not increased during differentiation. Differentiation with RA, which leads to 

neurite outgrowth, therefore does not activate stress signalling pathways p38 and JNK. 
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Figure 6.4. Differentiation with retinoic acid induces neuronal phenotype in SH-SY5Y cells. 

(A) Microscopic images of SH-SY5Y cells with and without 10 μM retinoic acid (RA). SHS-SY5Y 

cells were differentiated with RA treatment on days 1 and 3. Images were taken after 7 days of 

differentiation. Scale bar = 50 μm (B) Quantitation of neurite length from images obtained as 

represented in (A). Error bars = SEM (n = 4). (C) Western blots for phospho-JNK (p-JNK), total-JNK 

(JNK), and GAPDH of lysates from SH-SY5Y cells which were differentiated with 10 μM RA for the 

number of days indicated. (–)  no treatment. (*** - p < 0.001).  

 

To investigate if the ER stressor-induced activation of inflammatory signalling pathways in 

N1E-115 is also a feature of differentiated neuron-like cells the effect of ER stress on 

inflammatory signalling was monitored in differentiated human SH-SY5Y cells.  

Differentiated SH-SY5Y cells were exposed to the ER stressor SubAB for up to 4 h before 

extraction of lysates for Western blotting and PCR (Figure 6.5). Both XBP1 splicing and 
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eIF2α phosphorylation were observed 2 h after treatment with 1 µg/ml SubAB suggesting 

that the UPR was activated at this time point. 

 

Figure 6.5. SubAB-induced ER stress activates inflammatory signalling pathways in in vitro 

differentiated human SH-SY5Y cells. 

SH-SY5Y cells were exposed to 1 μg/ml SubAB before lysate collection, Western blotting (A) and 

RT-PCR (B). (A) Induction of ER stress with SubAB activates JNK, p38, and NF-κB in differentiated 

SH-SY5Y cells. SH-SY5Y cells were exposed to 1 μg/ml SubAB before lysate collection and Western 

blotting. (B) SubAB activates XBP1 splicing. Detection of XBP1 splicing by RT-PCR. 

 

Phosphorylation of the MAPK JNK during ER stress was monitored through Western 

blotting and revealed that JNK phosphorylation occurred after 2 h of ER stress treatment 

and therefore correlates with the appearance of markers of UPR activation (Figure 6.6). 

After Western blotting for phosphorylated p38 it was observed that the p38 signalling 

pathway was also activated 2 h after ER stress treatment with SubAB. Thus, activation of 

both JNK and p38 signalling pathways correlated with markers of ER stress. IκBα levels 

dropped after 20 min, before returning to basal levels, and then dropping again at 2 and 4 

h, suggesting that IκBα degradation occurred transiently (Figure 6.6 A). However the late 

degradation of IκBα correlates with activation of ER stress, JNK, and p38. 
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Figure 6.6. Tunicamycin-induced ER stress activates inflammatory signalling pathways in in vitro 

differentiated human SH-SY5Y cells. 

Differentiated SH-SY5Y cells were exposed to 1 or 10 μg/ml Tm for the times indicated. (A) Western 

blots for phospho-JNK (p-JNK), total-JNK (JNK), phospho-p38 (p-p38), total-p38 (p38), phospho-

eIF2α (p-eIF2α), total-eIF2α (eIF2α) and GAPDH of lysates from SH-SY5Y cells. (B) Detection of 

XBP1 splicing by RT-PCR. UV stimulation was used as a positive control.  

 

To address the question that SubAB-mediated JNK and p38 activation in SH-SY5Y cells 

may be specific to SubAB and not a general response to SubAB-induced ER stress SH-

SY5Y cells were exposed to a second ER stressor, tunicamycin. In agreement with SubAB, 

tunicamycin treatment caused activation of inflammatory signalling pathways (Figure 6.6). 

Activation of inflammatory signalling pathways also correlated with UPR activation by 

tunicamycin. Thus, the ER stressors SubAB and tunicamycin cause activation of 

inflammatory signalling pathways in differentiated SH-SY5Y cells. The ability of two 

mechanistically different ER stressors to activate inflammatory signalling suggests that this 

was a result of ER stress and not off-target drug effects. 

 

6.2.3 Activation of inflammatory signalling in differentiated PC-12 cells  
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Rat adrenal phaeochromocytoma PC-12 (Greene and Tischler, 1976) cells were 

differentiated through exposure to nerve growth factor (NGF) as previously described 

(Greene and Tischler, 1976). Differentiation caused an increase in TH expression, which 

increased as early as day 2 of differentiation and was maintained to day 9 (Figure 6.7). 

Undifferentiated PC-12 cells already have a high level of TH expression which was greatly 

increased with differentiation induced by NGF exposure. JNK activation was also 

monitored through Western blotting. Differentiation caused a large increase in the 

activation of JNK, which was observed as early as 2 days of differentiation and reached 

maximal levels after 7 days of differentiation. Phosphorylation of p38 also increased with 

differentiation. Due to strong activation of p38 and JNK with differentiation it was decided 

that PC-12 would not be used for further investigation of inflammatory signalling during 

ER stress. 

 

 

Figure 6.7. NGF induces a neuronal phenotype in PC-12 cells. 

Western blots for tyrosine hydroxylase (TH), phospho-JNK (p-JNK), total-JNK (JNK), phospho-p38 

(p-p38), total-p38 (p38) and GAPDH of lysates from PC-12 cells differentiated with 50 ng/ml NGF-

7S for the number of days indicated. (–)  no treatment. 

 

6.2.4 Activation of inflammatory signalling in differentiated CAD cells with ER 

stressors  

The murine Cath.-a-differentiated (CAD) (Suri et al., 1993) cell line was originally derived 

from TH-positive tumours in transgenic mice carrying the SV40 T antigen oncogene under 

the transcriptional control of the sequences from the rat TH gene (Suri et al., 1993). CAD 
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cells are a useful tool to study PD as they express TH, produce dopamine, express 

neurofilaments (NF) which are intermediate filaments characteristic of neurons (Lazarides, 

1982), and express the integral membrane protein synaptophysin, which is localised to the 

membranes of small vesicles found only in neurons (Navone et al., 1986). CAD cells were 

differentiated through serum starvation. Differentiation markedly increased TH expression 

as detected through Western blotting (Figure 6.8 A). TH was undetectable in 

undifferentiated CAD cells. After 2 days of differentiation the anti-TH antibody detected 

TH expression. Expression increased as the time of differentiation increased. JNK and p38 

activation were monitored during differentiation to establish if differentiation affected 

these MAPK signalling pathways (Figure 6.8 A). Indeed differentiation caused JNK 

activation with phospho-JNK levels being highest by day 10. Differentiation also slightly 

increased p38 activation. Thus differentiation, induced through serum starvation, activates 

the JNK and 38 signalling pathways in CAD cells. However, JNK and p38 activation was 

not as markedly increased through differentiation as was observed in PC-12 cells. 

Neurite length was also monitored in undifferentiated and differentiated CAD cells. CAD 

cells were grown in either serum or serum-free medium for 10 d before images were 

captured using brightfield microscopy (Figure 6.8 B). Neurite length was measured using 

ImageJ software and the average neurite length was calculated. The average neurite length 

greatly increased with differentiation (Figure 6.8 C). The number of processes extending 

from cells did not significantly vary after differentiation (data not shown) and thus 

extension of processes defines the neuronal morphology induced through serum starvation. 

As differentiated SH-SY5Y cells do not express TH, the ability of ER stress to induce 

inflammatory signalling was investigated in dopaminergic CAD cells. Differentiated CAD 

cells were exposed to SubAB for a maximum of 6 h (Figure 6.9). In agreement with 

differentiated SH-SY5Y cells, exposure for up to 2 h of SubAB was required to induce ER 

stress.  eIF2α phosphorylation occurred after 2 h of ER stress whilst XBP1 splicing was not 

observed until after 4 h of SubAB exposure. 
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Figure 6.8. Serum starvation induces a neuronal phenotype in CAD cells. 

(A) Western blots for tyrosine hydroxylase (TH), phospho-JNK (p-JNK), total-JNK (JNK), phospho-

p38 (p-p38), total-p38 (p38) and GAPDH of lysates from CAD cells which were grown in either 

serum or serum-free medium for the indicated number of days. (B) Microscopic images of CAD cells 

grown in serum or serum-free medium for 10 d. Scale bar = 50 μm (C) Quantitation of neurite length 

from images as represented in (B). Error bars = SEM (n = 4). (*** - p < 0.001).  

 

 

Correlating with ER stress activation, both JNK and p38 phosphorylation occurred after 2 

h of SubAB treatment (Figure 6.9 A). p38 phosphorylation increased greatly after 2 h and 

was maintained for at least another 2 h. JNK phosphorylation was also maintained up to 6 
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h. The difference between untreated and the 6 h time point was much more striking in the 

p38 pathway than in the JNK pathway. After 4 h of SubAB exposure IκBα levels decrease 

suggesting that the NF-κB pathway was activated in differentiated CAD cells exposed to 

SubAB. 

 

Figure 6.9. SubAB-induced ER stress activates inflammatory signalling pathways in in vitro 

differentiated CAD cells. 

Induction of ER stress with 1 μg/ml SubAB in differentiated CAD cells. (A) Western blots for 

phospho-JNK (p-JNK), total-JNK (JNK), phospho-p38 (p-p38), total-p38 (p38), phospho-eIF2α (p-

eIF2α) , total-eIF2α (eIF2α) and GAPDH proteins. (B) Detection of XBP1 splicing by RT-PCR.  

 

To confirm the results from SubAB treatment, CAD cells were exposed to 4 h of either 

thapsigargin or tunicamycin (Figure 6.10). Both ER stressors caused XBP1 splicing and 

eIF2α phosphorylation demonstrating that ER stress occurs with 4 h treatment with 

tunicamycin and thapsigargin in differentiated CAD cells. These two treatments were also 

sufficient to induce the phosphorylation of p38 and JNK as well as the degradation of 

IB. Overall, these data suggest that ER stress leads to activation of inflammatory 

signalling in murine and human neuroblastoma cells as well as dopaminergic CAD cells. 
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Figure 6.10. ER stressors activate inflammatory signalling pathways in in vitro differentiated 

CAD cells. 

Exposure to Tg, (250 nM) and Tm, (1 μg/ml) for 4 h activates JNK, p38, and NF-κB in differentiated 

CAD cells. Cell lysates were analysed by (A) Western blotting and (B) and RT-PCR for XBP1 

splicing. 

 

6.3 ER stress causes expression of pro-inflammatory cytokines 

The inflammatory signalling pathways: JNK, p38 and NF-κB are involved in many cell 

signalling events other than inflammation. Activation of these pathways is, consequently, 

not entirely indicative of inflammation. To address this problem, the expression of genes, 

encoding pro-inflammatory proteins, were measured in ER-stressed CAD cells. 

Differentiated CAD cells were exposed to 4 h of thapsigargin or tunicamycin before RNA 

extraction and RT-qPCR. The expression of IL-1β, TNF-α and IL-6, which have all been 

implicated in neuroinflammation in PD, was measured by RT-qPCR (Figure 6.11). There 

was an ~7 fold increase in steady state levels of IL-1β mRNA after 4 h of thapsigargin 

exposure whereas tunicamycin induced an ~3 fold increase in IL-1β mRNA (Figure 6.11 

A). The steady state levels of IL-6 increased ~3 fold after treatment of both thapsigargin 

and tunicamycin (Figure 6.11 B). Both thapsigargin and tunicamycin treatments resulted in 

an increase in the steady state levels of TNF-α mRNA with thapsigargin having a more 

pronounced effect (Figure 6.11 C). Overall, the ER stressors thapsigargin and tunicamycin 
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induce the expression of three pro-inflammatory cytokines: IL-1β, IL-6 and TNF-α in CAD 

cells. 

In order to establish if the expression of genes encoding pro-inflammatory cytokines 

during ER stress is applicable to other neuronal cell lines, differentiated SH-SY5Y cells 

were also investigated. Previously, exposure of 4 h of SubAB to SH-SY5Y cells caused 

activation of inflammatory signalling (Figure 6.5). Hence, differentiated SH-SY5Y cells 

were exposed to 4 h of SubAB before harvesting of RNA.  In SH-SY5Y cells 4 h of 

SubAB exposure resulted in increased levels of IL-6, IL-8 and TNF-α demonstrating that 

ER-stressed SH-SY5Y cells also exhibit increased expression of pro-inflammatory 

cytokine genes (Figure 6.12). 

To investigate whether ER stress-induced inflammatory signalling causes an increase in 

pro-inflammatory cytokine production, which could lead to microglial activation and 

neuroinflammation in PD, neuronal cells were exposed to ER stress and the release 

cytokines was monitored. Using established drug concentrations and time points for 

inducing both ER stress and inflammatory signalling (4 h of 250 nM thapsigargin and 1 

µg/ml tunicamycin), pro-inflammatory cytokine production in differentiated CAD cells 

was monitored using ELISAs.  12 pro-inflammatory cytokines were investigated: TNFα, 

IL1A, IL2, IL1B, IL4, IL6 IL8, IL10, IL12, IL17A, GM-CSF and IFNγ. Only IL-6 was 

detected in CAD cell supernatant (Figure 6.13). Interestingly, IL-6 levels increased in the 

medium of CAD cells exposed to either thapsigargin or tunicamycin with a greater 

increase induced by thapsigargin. IL-6 gene expression was also increased with 

thapsigargin and tunicamycin  with tunicamycin causing a greater induction (Figure 6.11). 

Therefore, it is interesting that the gene expression data did not necessarily translate to the 

secreted protein level. Differences in how these two ER stressors induce ER stress and how 

this may impact on the transport of the newly synthesised IL-6 may account for the 

discrepancy in protein levels detected by ELISA. Nevertheless IL-6 was detected as being 

released into the media by ER stressed CAD cells. 

Neurons undergoing stress can signal to neighbouring cells using various signalling 

molecules other than cytokines. Nitric oxide is a potent mediator of inflammation and can 

be released at high concentrations by macrophages but nitric oxide release can occur from 

other cell types such as neurons. The release of nitric oxide from ER-stressed CAD cells 

was monitored indirectly by measuring nitrite concentrations in medium conditioned by 

ER-stressed CAD cells (Figure 6.14). Nitrite concentration, which is indicative of nitric 
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oxide release, increased in the supernatant of cells exposed to thapsigargin for 4 h, and to 

an even greater extent 24 h. 4 h of tunicamycin also increased nitrite concentrations similar 

to thapsigargin, whereas 24 h of tunicamycin, although increasing nitrite concentration 

more than 4 h, was not as effective as 24 h of thapsigargin at increasing nitrite 

concentrations in the supernatant of CAD cells. 

 

Figure 6.11. ER stress induces expression of IL-1β, IL-6, and TNF-a in CAD cells. 

CAD cells were treated with Tg (250 nM) or Tm (1 μg/ml) for 4 h. IL-1β, IL-6, and TNF-a mRNA 

levels were measured by RT-quantitative PCR (qPCR). Measurements were normalised to ACTB 

mRNA (n = 3).(* - p < 0.05, ** - p < 0.01).  
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Figure 6.12. ER stress induces expression of IL-6, IL-8, and TNF-a in SH-SY5Y cells. 

(A) SH-SY5Y cells were treated with 1 µg/ml SubAB for 4 h.  IL-6, IL-8, and TNF-a mRNA levels 

were measured by RT-quantitative PCR (qPCR). In SH-SY5Y cells the normaliser is GAPDH mRNA 

(n = 3). (* - p < 0.05, ** - p < 0.01). 
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Figure 6.13. ER stress induces release of IL-6 from CAD cells. 

CAD cells were treated with Tg (250 nM) or Tm (1 μg/ml) for 4 h.  IL-6 levels were measured in 

CAD cell supernatant using a mouse cytokine ELISA. Arbitrary IL-6 units from OD readings at 450 

nm were standardised to total protein from cell lysates (n = 3). 

 

 

 

 

Figure 6.14. ER stress induces nitric oxide release.   

CAD cells were treated with Tg (250 nM) or Tm (1 μg/ml) for 4 or 24 h. Nitrite concentration was 

measured in the culture supernatant and standardised to protein concentration (n = 3). (* - p < 0.05, ** 

- p < 0.01).  
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6.4 Media conditioned by ER-stressed neurons activate glial cells 

Data reported above have established that, in dopaminergic CAD cells, ER stress leads to: 

1) activation of inflammatory signalling pathways, 2) increased expression of pro-

inflammatory genes, 3) release of IL-6, 4) nitric oxide release. Therefore, ER stress can 

contribute to pro-inflammatory signalling, however, whether this pro-inflammatory 

signalling is sufficient to amount a response has not been investigated. As discussed in the 

introduction chapter, inflammatory signalling from stressed neurons has been implicated in 

the activation of microglia in patients with PD. Microglia are the resident macrophages of 

the nervous system (Wyss-Coray and Mucke, 2002). Microglia activation is a well-

established phenotype of PD (McGeer et al., 2003, McGeer et al., 1988, Barcia et al., 

2004). Prolonged activation of microglia causes unnecessary death of healthy neurons and 

may cause or contribute to the progressive loss of dopaminergic neurons in PD (Gao et al., 

2002a). Microglia activation involves microglia changing from a ‘silent’ to an ‘aggressive’ 

state following pro-inflammatory signalling. Microglia activation may contribute to 

detrimental neuroinflammation in PD as activated microglia release harmful molecules 

such as pro-inflammatory cytokines, nitric oxide and other ROS (Liu and Hong, 2003). For 

these reasons a microglia activation was developed assay with the intention of 

investigating if ER-stressed dopaminergic CAD cells can activate microglial cell line, BV-

2. The BV-2 microglia cell line is a well-established cell line for the investigation of 

microglia activation and along with CAD cells is a murine cell line. Hence it is appropriate 

to use in a microglia activation assay to test CAD-conditioned medium. 

 

Figure 6.15. Desalting removes Tg and Tm from medium. 

XBP1 splicing assay in BV-2 cells. Desalting columns were used to remove ER stressors from 

DMEM/F12 medium. Desalted or non-desalted supernatant were added to BV-2 cells for 24 h. 

Conditioned medium from non-stressed CAD cells was filtered before being dosed with either Tm or 

Tg at the indicated concentrations. All samples originated from DMEM/F12 medium with or without 

ER stressors except lane 8 which was just PBS. Lanes 2-4 represent fractions from the same original 

sample with lane 1 being the first fraction collected from the desalting process. 



187 

 

 

CAD cells were chosen, in addition to the reasons stated above, because differentiation is 

induced by serum starvation and thus media conditioned by these cells would not contain 

any serum. This is of practical importance as desalted medium has to be concentrated 

before being added to microglia and the high protein concentration of serum makes 

centrifugal concentration problematic. Thus, with serum-containing medium the post-

concentrated sample is enriched for serum-derived proteins, which as well as producing a 

viscous sample difficult to process it may also affect the downstream application. CAD 

cells exposed to thapsigargin or tunicamycin for 4 h: 1) display markers of active 

inflammatory signalling pathways, 2) express genes encoding pro-inflammatory cytokines, 

3) secrete IL-6. Thus ER-stressed CAD cells display a pro-inflammatory phenotype. 

Activation of inflammatory signalling pathways and the subsequent release of pro-

inflammatory mediators is a possible cause of microglial activation and neurodegeneration 

in PD. Hence, to establish if activation ER stressor-mediated inflammatory signalling in 

neuronal cells is sufficient to signal and activate microglia it was investigated if media 

conditioned by ER-stressed CAD cells could activate a microglial cell line.  

 

Figure 6.16. Media conditioned by ER stressed neurons activates microglia. 

BV-2 microglia activation assay. ER stress was induced for either 4 or 24 h with one of three different 

ER stressors: 250 nM Tg, or 1 µg/ml Tm. Media conditioned from ER stressed CAD cells were added 

to BV-2 cells and incubated for 16 h. Nitrite concentration was measured in supernatant from BV-2 

cells and standardised to protein concentration (n = 3). 100 ng/ml lipopolysaccharide (LPS) treatment 

was used as a positive control. (* - p < 0.05, ** - p < 0.01). ‘-‘ indicates BV-2 cells exposed to 

desalted medium conditioned by non-ER stressed CAD cells. 
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Media conditioned by CAD cells exposed to tunicamycin or thapsigargin were desalted on 

HiTrap desalting columns to remove any ER stressors from the medium.  After desalting, 

the conditioned media were added to BV-2 microglia. An XBP1 assay was performed to 

confirm that the desalting procedure had depleted the ER stressors from the conditioned 

media to levels below those which cause ER stress (Figure 6.15). XBP1 splicing occurred 

in BV-2 cells exposed to 250 nM thapsigargin or 1-10 µg/ml tunicamycin showing that 

BV-2 cells respond to these commonly used ER stressors. The desalted media conditioned 

by CAD cells exposed to either 250 nM thapsigargin or 1 µg/ml tunicamycin (conditions 

used in Figure 6.16) did not cause XBP1 splicing in BV-2 cells suggesting that the 

desalting procedure was successful in removing ER stressors from the media. The 

desalting of media conditioned by CAD cells exposed to a high concentration of 10 µg/ml 

tunicamycin was unable to remove all of the ER stressor as BV-2 cells exposed to this 

medium displayed splicing of XBP1. Exposure of CAD cells to 250 nM thapsigargin or 1 

µg/ml tunicamycin for 4 h was chosen for microglial activation assays. 

 

Figure 6.17. ER stress mimetic drugs mildly activate BV-2 cells. 

BV-2 microglia activation assay. BV-2 cells were exposed to 250 nM Tg or 1 µg/ml Tm for either 1 

or 16 h. Nitrite concentration measured in supernatant from BV-2 cells and standardised to protein 

concentration (n = 3). 100 ng/ml lipopolysaccharide (LPS) treatment was used as a positive control. (* 

- p < 0.05, ** - p < 0.01).  

 



189 

 

Activated microglia release NO (Liu and Hong, 2003). Nitrite concentration, which is 

indicative of nitric oxide release, was measured in media conditioned by BV-2 cells to 

monitor BV-2 microglial activation. CAD cells were exposed to either thapsigargin or 

tunicamycin for 4 or 24 h. Media from ER-stressed CAD cells as well as CAD cells 

without any treatment were desalted and then finally added to BV-2 cultures for 16 h 

(Figure 6.16). As a positive control, BV-2 cells were exposed to LPS for 16 h. LPS 

treatment caused an increase in nitrite concentration from ~1.5 (in BV-2 cells exposed to 

untreated CAD conditioned media) to ~8 nmol/mg protein. Media from ER-stressed CAD 

cells was sufficient to induce activation of BV-2 cells. 24 h of ER stress resulted in the 

strongest activation of BV-2 cells, which was similar to levels induced by LPS. 

It could be possible that a small concentration of ER stressor, which is not sufficient to 

induce measurable XBP1 splicing in BV-2 cells, remains in the media after desalting. To 

ascertain if ER stressors carried across from CAD conditioned media to BV-2 cells 

affected the microglial activation assay, BV-2 cells were exposed to 250 nM thapsigargin 

or 1 µg/ml tunicamycin (Figure 6.17). These concentrations of ER stressor are higher than 

any possible concentration carried across through the desalting protocol as demonstrated 

by the lack of XBP1 splicing see in Figure 6.16. The nitrite concentration of the 

supernatant of BV-2 cells exposed to 250 nM thapsigargin or 1 µg/ml tunicamycin for 16 h 

was only moderately increased compared to untreated BV-2 cells. Higher concentrations of 

ER stressor therefore can activate BV-2 microglia. The activation of glial cells by ER 

stress has been observed before (Meares et al., 2014). However, more pronounced 

microglial activation was observed in BV-2 cells exposed to media conditioned by ER-

stressed CAD cells, which had been desalted to remove the ER stressors. Therefore, the 

observed microglial activation is most likely a consequence of release of pro-inflammatory 

factors from ER-stressed CAD cells. 
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Figure 6.18. Media conditioned by ER stressed primary neurons activates primary glia. 

ER stress was induced in primary cortical neurons for 4 h with one of two different ER stressors: 250 

nM Tg, or 1 µg/ml Tm. Media conditioned from ER stressed primary murine cortical neurons were 

desalted before being added to primary murine glia cultures and incubated for 16 h. Nitrite 

concentration was measured in the supernatants from primary cortical neurons and standardised to 

protein concentration (n = 3). (* - p < 0.05, ** - p < 0.01).  

 

To investigate if activation of microglia by ER-stressed neurons occurred in more 

physiologically relevant conditions experiments were expanded to include primary neurons 

and primary glia. The brain dissection from E14-E15 Swiss mouse embryos was carried 

out by members of Professor Marcus Rattray’s group (Bradford University). Mouse 

primary cortical neurons were exposed to 250 nM thapsigargin or 1 µg/ml tunicamycin for 

4 h before media were desalted and added to mouse primary glia cultures (Figure 6.18). 

Basal nitrite concentration from primary glia exposed to conditioned media from untreated 

primary neurons was higher than observed in BV-2 cells. Similar to experiments with CAD 

and BV-2 cells, conditioned media form ER-stressed primary neurons also activated 

primary glia with the thapsigargin treatment having a more pronounced effect than 

tunicamycin. Thus, ER stress-mediated pro-inflammatory signalling from neurons is 

sufficient to activate glia in differentiated cell lines as well as primary cultures. 

 

6.5 The PD mimetic drug 6-OHDA induces ER stress 

The PD mimetic 6-OHDA has previously been shown to cause activation of the UPR (Ryu 

et al., 2002); yet there is little evidence that 6-OHDA activates the IRE1α branch of the 
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UPR. SH-SY5Y cells display markers of ER stress when exposed to 6-OHDA such as 

increased expression of CHOP and BiP, which are not specific to IRE1α activation 

(Yamamuro et al., 2006). Also, XBP1 splicing, a marker for IRE1α activation specifically, 

has so far not been reported in 6-OHDA treated SH-SY5Y cells. 6-OHDA-mediated XBP1 

splicing has been reported in MN9D cells (Holtz and O'Malley, 2003) but 6-OHDA was 

also reported to have no effect on XBP1 splicing in PC-12 cells (Hu et al., 2014). Whether 

6-OHDA causes XBP1 splicing is important to know, in the context of inflammatory 

signalling, as XBP1 splicing is specific to activation of IRE1α, which is implicated in the 

activation of JNK (Nishitoh et al., 2002), p38 (Hung et al., 2004, Ichijo et al., 1997) and 

NF-κB (Hu et al., 2006b). Whether 6-OHDA causes XBP1 splicing in SH-SY5Y cells is 

also important to understand because XBP1 is reported to protect against 6-OHDA in mice 

(Valdes et al., 2014). Differentiated SH-SY5Y cells were exposed to 10 or 100 µM 6-

OHDA for 4 – 48 h before protein and RNA extraction. XBP1 splicing assays revealed that 

4 h of 10 µM 6-OHDA was sufficient to cause very low levels of XBP1 splicing (Figure 

6.19 A). Although levels of XBP1 splicing were very low after 6-OHDA exposure, low 

levels of splicing are likely to be closer to physiologically relevant splicing compared to 

those observed after exposure to ER stress mimetic drugs. XBP1 splicing was maintained 

up to 6 h and then began to decrease by 12 h and was not detectable by 24 and 48 h with 10 

µM 6-OHDA. XBP1 splicing not occurring at later time points may be a result of 6-OHDA 

being a fairly unstable compound (Powell and Heacock, 1973) or that SH-SY5Y cells have 

alleviated the low level of ER stress induced by 6-OHDA. Consistent with these 

explanations, 100 µM 6-OHDA resulted in more prolonged XBP1 splicing. 



192 

 

 

Figure 6.19. 6-OHDA induces ER stress. 

(A)  Differentiated SH-SY5Y cells were exposed to either 10  and 100 µM 6-OHDA for the indicated 

times before harvesting RNA and performing an XBP1 splicing assay PCR. (B) Expression of CHOP 

and (C) BiP mRNAs in differentiated CAD cells exposed to 100 µM 6-OHDA for 2 h (n = 3). The 

RT-qPCR data were normalised to ACTB. (* - p < 0.05, ** - p < 0.01).  

 

XBP1 splicing should result in the increased expression of ER stress response genes BiP 

and CHOP. Hence the expression of BiP and CHOP was monitored after ER stress. 

Differentiated CAD cells were exposed to 100 µM 6-OHDA for 2 h before RNA isolation. 

CHOP and BiP mRNAs were measured using RT-qPCR to monitor activation of the UPR 

(Figure 6.19 B). 6-OHDA treatment resulted in increased expression of both CHOP and 
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BiP mRNAs, suggesting that 6-OHDA causes ER stress and activates the UPR in 

differentiated neuron-like cells. 

 

Figure 6.20. 6-OHDA activates inflammatory signalling pathways. 

Differentiated SH-SY5Y cells were exposd to 100 µM 6-OHDA for the times indicated before 

extraction of protein and western blotting for phospho-JNK (p-JNK), total-JNK (JNK), phospho-p38 

(p-p38), total-p38 (p38). 

 

Next it was investigated if 6-OHDA, alongside activating the UPR, can also activate 

inflammatory signalling pathways. Hence, protein samples from SH-SY5Y cells treated 

with 100 µM 6-OHDA were used to investigate activation of inflammatory signalling 

pathways (Figure 6.20). In agreement with a recent study (Tobon-Velasco et al., 2013), 

both JNK and p38 signalling pathways are activated from 4 h, reaching maximal levels 

after 6 h and activation decreases subsequently to the lowest level at 48 h. Thus, 6-OHDA 

causes inflammatory signalling and activation of the UPR in SH-SY5Y cells. However, 

whether 6-OHDA-mediated inflammatory signalling is dependent on UPR activation is not 

known. Further investigation is therefore required to ascertain to what extent ER stress 

contributes to 6-OHDA-mediated inflammation. 

6.6 Discussion 

This chapter provides evidence that ER stress activates inflammatory signalling pathways, 

JNK, p38 and NF-κB in three different neuronal cell lines: murine neuroblastoma N1E-

115, differentiated human neuroblastoma SH-SY5Y and differentiated murine 
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dopaminergic CAD cells. Activation of inflammatory signalling pathways largely 

correlates with the appearance of markers of ER stress. Three different ER stressors were 

used on CAD and SH-SY5Y cells with similar results and kinetics suggesting that 

inflammatory signalling is a product of ER stress and not secondary effects of the ER 

stressors used. 

Activation of inflammatory signalling pathways should result in the expression of pro-

inflammatory cytokines. Indeed, it has been demonstrated that pro-inflammatory cytokine 

gene expression is increased in ER-stressed neuronal cells. Release of nitric oxide from 

ER-stressed CAD cells is also observed. Nitric oxide is unlikely to contribute to the 

activation of BV-2 microglia as it has a very short half-life (Hakim et al., 1996), and is 

likely to be removed by desalting, suggesting that nitric oxide levels in conditioned media 

added to BV-2 cells in microglia assays is likely to be extremely low. 

ER stress has been reported to cause inflammatory signalling. However, it has never been 

shown that ER stress-mediated release of inflammatory factors is sufficient to activate 

microglia. Evidence is also provided that ER-stressed neuronal cells condition growth 

medium to an extent that they create an environment which activates microglia. The next 

important questions are: 1) What factor or factors released by ER-stressed neurons are 

sufficient to activate microglia? 2) Can these be inhibited? Further experimentation is 

required to ascertain which factor/s is/are causing microglial activation. Mass spectrometry 

may provide a clue as to which inflammatory factors exist in the media conditioned by ER-

stressed neurons. The ELISA data highlights IL-6 as a potential target in CAD neuronal 

cultures. Given that CAD cells release IL-6, several questions arise: 1) Does addition of 

IL-6 to BV-2 cells activate them? 2) Can IL-6 be removed from CAD-conditioned medium 

by an IL-6 antibody and will this prevent the activation of BV-2 cells by medium 

conditioned by ER-stressed CAD cells? 3) Does knock-down of IL-6 in neurons prevent 

activation of BV-2 cells by medium conditioned by ER-stressed CAD cells? However, pro-

inflammatory cytokines may not be the only mediators of inflammation during ER stress. 

Along with microglia, IL-6 can also be secreted by neurons (Gadient and Otten, 1994). The 

role of IL-6 in the nervous system is complicated. IL-6 has a dual role in brain injury but 

importantly it is upregulated whenever neuroinflammation is expected (Erta et al., 2012). 

IL-6 is upregulated in PD (Mogi et al., 1994) but its protective effect in the MPTP model 

of PD implies that it may actually have a neuroprotective role (Bolin et al., 2002, Akaneya 

et al., 1995). However, this neuroprotective role has only been demonstrated in the MPTP 
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model and thus may only be specific to the action of MPTP. Further research is required to 

establish if IL-6 plays an important role in mediating microglial activation induced through 

neuronal ER stress. 

It has previously been shown that 10 ng/ml IFNγ is sufficient to induce NO release by BV-

2 cells (Sheng et al., 2011). In the same study it was shown that a combination of TNFα, 

IL-1β and IFNγ resulted in the highest induction of NO release, whereas a combination of 

IL-1β and TNFα alone did not induce NO release. Therefore, it is likely that activation of 

BV-2 microglia and NO release is dependent on a balance between different cytokines and 

other possible pro-inflammatory mediators. Elucidating the combination of pro-

inflammatory mediators responsible for maximal induction of NO release from BV-2 cells 

may, therefore, require further investigation. It is also a possibility that cytokines which 

were not detected in the ELISA are responsible for contributing to the activation of BV-2 

cells. Concentrations lower than the detection limit of the ELISA may still be sufficient to 

activate microglia especially if in combination with other pro-inflammatory mediators, 

including other cytokines. Classical activation of macrophages involves priming by IFNγ 

and further activation by TNFα (Nathan, 1991). Neither of these two cytokines were 

detected in the ELISA even though expression of the TNFα gene increased with ER stress 

(Figure 6.12). Either these cytokines are sufficient to activate BV-2 cells at levels lower 

than the detection limit of the ELISA or the BV-2 cells are not classically activated and are 

therefore activated through another signal, or more likely, combination of signals which 

may or may not involve IL-6 (Figure 6.21).  

An interesting finding is that the various differentiation protocols for SH-SY5Y cells were 

all unable to induce TH expression. Regardless of this, differentiation was able to induce 

the neuronal phenotype of extended neurite outgrowth and reduced cell division. It has 

previously been published that 10 µM RA (Lopes et al., 2010) and 10 µM RA and TPA 

(Presgraves et al., 2004) can induce TH expression in SH-SY5Y cells. However, 

experiments for this thesis did not find evidence of TH expression in SH-SY5Y cells which 

is in agreement with other reports (Cheung et al., 2009, Presgraves et al., 2004). 

Differentiation with a combination of RA and TPA is reported to induce higher TH 

expression compared to undifferentiated, and RA-differentiated cells (Presgraves et al., 

2004). However, experiments in this thesis were not sufficient to observe detectable 

expression of TH in undifferentiated, RA or RA and TPA differentiated SH-SY5Y cells 

using the anti-TH antibody. The same antibody has been shown to work with both PC-12 
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and CAD cells suggesting that problems in detecting TH in SH-SY5Y cell lysates is not a 

problem with the antibody. 

 

 

Figure 6.21 Model of how neuron-secreted IL-6 may be involved in activation of microglia. 

Switching on of the UPR in neurons (1) leads to activation of inflammatory signalling pathways (2) 

which results in the release of IL-6 and other possible molecules to make up the pool of exogenous 

pro-inflammatory mediators (3). Pro-inflammatory mediators, which may include IL-6, are detected 

by microglia leading to microglia activation (4). Activation of microglia causes release of neuron 

damaging molecules such as NO and ROS (5). These molecules damage neurons and lead to further 

inflammation (6). Solid arrows represent events which are supported by the data. Dashed arrows 

represent events which no data is presented for but are supported by other studies. 

 

Increasing passage number is known to inhibit a cell line’s ability to differentiate and this 

may be a possible explanation for the difference in differentiation phenotype reported by 

different laboratories. For this reason passaging of cells was limited and new frozen stocks 

of cells were used when cells had been passaged more than ten times. However, the frozen 

stocks may already have undergone many passages meaning that freshly thawed cells may 

have had a reduced ability to respond to differentiation. HPA, the source of this lab’s 

frozen stock of SH-SY5Y cells, were unable to provide the passage number of the frozen 

stock of cells. The different histories of cell lines belonging to each research group may 



197 

 

account for more than just differences in differentiation phenotypes but is likely to be a 

more wide reaching problem contributing to variability of data in the published literature. 

PC-12 cells displayed the highest expression of TH both before and after differentiation. 

The murine CAD cell line was prioritised in further experiments as the dopaminergic cell 

line model over PC-12 cells because: differentiation was more cost effective, cells could be 

grown without serum which prevents issues with concentration of supernatant, 

differentiation induces less p38 and JNK activation than in PC-12 cells. A further 

important reason for prioritising CAD cells over other cell lines was that the project plan 

initially involved lentiviral knock-down of ER stress sensing proteins IRE1α, PERK and 

ATF6 to fully establish causation between ER stress and inflammation as well as identify 

which UPR signalling pathways were important. shRNAs were designed against mouse 

genes with the idea that these same lentiviruses could be used against primary mouse cells. 

Lentiviral transduction with GFP was indeed optimised early in the project alongside 

production of a plasmid encoding a GFP-tagged α-synuclein protein suitable for the 

lentiviral transduction system intended for this investigation. Unfortunately, failure (for 

one year) of the only flow hood legally suitable for lentiviral work meant this branch of the 

project could not be completed. Unfortunately, this branch of the project is still necessary 

to establish key questions in ER stress-mediated inflammatory signalling. For example: 1) 

Which branch or branches of the UPR is/are responsible for activation of p38, JNK and 

NF-κB? 2) Which UPR branch/s is/are responsible for increased expression of cytokines? 

3) Is UPR activation responsible for conditioning of media capable of activating microglia? 

In this results chapter it is shown that 6-OHDA can induce the UPR in neuronal cultures 

whilst also activating inflammatory signalling pathways. Interestingly, very low levels of 

XBP1 splicing in SH-SY5Y cells was detected with 6-OHDA exposure. The IRE1α branch 

of the UPR specifically has so far not been shown to be activated by 6-OHDA in SH-

SY5Y cells. Activation of IRE1α may be a possible mechanism through which 6-OHDA 

activates inflammatory signalling pathways. However, XBP1 splicing was very low whilst 

inflammatory signalling markers were strongly activated, which suggest that UPR 

activation is not the only mechanism of inflammatory signalling activation taking place. It 

is necessary to elucidate to what extent, if any, the UPR contributes to activation of 

inflammatory signalling pathways. Hence, this branch of the investigation would also be 

progressed with knock-down of UPR branches to investigate causality.  
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Overall, strong correlative evidence is provided that ER stress activates inflammatory 

signalling pathways: JNK, p38 and NF-κB as well as increasing expression of genes 

encoding pro-inflammatory cytokines in neuron-like cell lines. It also demonstrated that 

medium conditioned by ER-stressed cells is sufficient to activate microglia. Bringing all 

this together it seems likely that ER stress has a role in activating or contributing to 

inflammation. However, further dissection of these signalling pathways is required to 

establish: 1) causation, 2) which branches of the UPR activate inflammatory signalling, 3) 

which inflammatory signalling pathways are responsible for pro-inflammatory gene and 

protein expression 3) which pro-inflammatory mediator/s is/are responsible for microglial 

activation. 
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7 FINAL DISCUSSION 

7.1 The role of ER stress-mediated JNK activation 

7.1.1 Early ER stress-dependent JNK activation is prosurvival 

Evidence is provided in chapter 3 that early stress-mediated JNK activity can be 

prosurvival. Acute ER stress causing transient JNK activation is observed in several cell 

lines. This JNK activation was found to be IRE1α and TRAF2 dependent. Using jnk1
-/-

 

jnk2
-/-

 MEFs it was shown that transient JNK activation during acute ER stress upregulates 

the expression of several antiapoptotic mediators. Not only that, but JNK is required for 

early protection against ER stress-induced apoptosis as jnk1
-/-

 jnk2
-/-

 MEFs were more 

susceptible to ER stress-induced cell death. 

The role of JNK in apoptosis is intriguing because it can be both pro and antiapoptotic 

depending on the stress and even the time of stress. However, how JNK activation switches 

between being prosurvival and proapoptotic is poorly understood. It is very likely that this 

switch involves the activity of at least one other signalling pathway. The NF-κB pathway is 

a likely suspect because it has been previously shown to be involved in TNFα-induced cell 

death alongside JNK activation. In TNFα-induced cell death NF-κB had a prosurvival role 

whilst JNK was proapoptotic and cell death occurred only in the absence of NF-κB 

signalling (Tang 2002). Intriguingly, NF-κB activation during ER stress is reminiscent of 

the JNK activation observed during ER stress in this thesis, in that it is transient and 

displays similar kinetics (Wu et al., 2002; Jiang et al., 2003; Deng et al., 2004; Wu et al., 

2004). Therefore the interaction between NF-κB and JNK may explain the biphasic JNK 

activation and the conflicting roles for JNK in apoptosis. 

It has been suggested that JNK activation may not be sufficient to induce apoptosis and 

may only contribute to apoptosis if it has already been initiated and that JNK activation 

without prior apoptotic signalling is prosurvival (Liu and Lin 2005). The PERK branch of 

the UPR is reported to activate apoptosis whilst calcium release from the ER during ER 

stress is also capable of inducing cell death. It is possible that a combination of these 

signals regulates if ER stress-mediated JNK contributes to apoptosis. Another possible 

explanation is that JNK isoforms are phosphorylated differently to one another allowing 

tight control of the effect of JNK activation as exemplified by JNK1, but not JNK2, being 

required for TNFα-induced apoptosis (Liu 2004). A more specific mechanism for biphasic 
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JNK activation during ER stress may be through control of IRE1 phosphorylation, which 

in turn alters its ability to induce activation of JNK. 

Regardless of the mechanism controlling biphasic JNK activation, data support that early 

JNK activation is prosurvival through upregulation of antiapoptotic genes. Previous 

antiapoptotic genes have been identified as being upregulated through prosurvival JNK 

activity (Lamb et al., 2003) this thesis provides evidence for addition of cIAP1, XIAP and 

BIRC6 in the repertoire of antiapoptotic genes which can be controlled by JNK. The 

mechanism of how JNK induces anti-inflammatory genes is yet to be discovered but it may 

involve JunD. NF-κB cooperates with the transcription factor JunD (Rahmani et al., 2001), 

whilst in TNF-α-stimulated cells, JunD contributes to the transcriptional induction of 

cIAP2 (Lamb et al., 2003). A co-operation between NF-κB and JNK to induce and regulate 

JunD may explain the JNK-dependent induction of antiapoptotic genes early in the ER 

stress response. There are many more anti and proapoptotic genes which have so far not 

been investigated during JNK activation. A larger study to characterise the expression 

profiles of the whole range of genes involved in cell death and survival during stress 

including ER stress may help provide an answer to how JNK can have two distinct roles. 

7.1.2 The role of acute ER stress in the development of insulin resistance 

In chapter 4 strong evidence is provided that ER stress-mediated JNK activation does not 

inhibit insulin signalling, which is in contrast to previously published data (Ozcan et al., 

2004). The data in this thesis is comprehensive in that it includes several cell lines (ruling 

out cell line specific observations), uses three mechanistically different ER stressors (ruling 

out off target drug effects), covers a range of time points from 0.5 to 8 h and monitors 

insulin signalling at three distinct stages in the insulin signalling pathway. 

JNK is thought to inhibit insulin signalling through the serine phosphorylation of IRS1 

which prevents its interaction with, and the subsequent tyrosine phosphorylation by, the 

insulin receptor. Although demonstrating IRE1α- and TRAF2-dependent activation of JNK 

during ER stress, no significant changes in IRS1 serine or tyrosine phosphorylation was 

observed. More thorough investigation of downstream insulin signalling proteins: AKT 

and GSK, also revealed that ER stress-induced JNK activation does not inhibit insulin 

signalling. 

Results in chapter 4 suggest that the role for JNK in inhibiting insulin resistance may not 

be as well established as reported. IRE1α-JNK signalling causing insulin resistance at early 
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time points has not been repeated since the first observation of this mechanism for ER 

stress-mediated insulin resistance. It could be that results from the original study are a 

product of a cell batch specific phenomenon or that experimental conditions have for some 

reason not been fully replicated in this or in other published studies. Another possible 

explanation is that JNK-IRS1 activity is restricted through JNK’s subcellular localisation 

or through differences in interactions with proteins which bridge JNK to its substrates. 

Regulation of kinases can involve changes in subcellular localisation. For example, ERKs 

are reported to have opposing outputs depending on subcellular localisation (Marshall, 

1995). JNK, however does not appear to relocalise after activation during transient or 

persistent stress (Chen et al., 1996, Sanchez-Perez et al., 1998). JNK-interacting proteins 

(JIPs) are reported to interact with specific parts of the JNK signalling pathway and may 

underlie how JNK’s activity is regulated. For example, JIP1 and JIP2 have thought to be 

required for normal glucose homeostasis and this was explained through their ability to 

interact with IRS proteins (Standen et al., 2009). JIPs may be important for bridging JNK 

to IRS1: differences in JIP expression and regulation may explain study to study variation. 

However, the role of JIPs in mediating JNK activity, especially in the context of insulin 

signalling, is not well known. Thus, it still remains to be concluded if ER stress mediated 

JNK activation is responsible for insulin resistance. 

7.2 The effect of ER stress on the trafficking of proteins through the secretory 

pathway 

An important implication arising from this thesis is that prolonged/chronic ER stress, 

induced by three mechanistically different ER stressors, causes a block in the secretory 

pathway. This block may have wide ranging effects. The main potential effect is that all 

proteins, which are processed through or reside in the secretory pathway (a third of all 

proteins (Levine et al., 2005)), are over time going to be depleted. How each protein is 

affected over time will vary depending on several factors such as its half-life and if other 

proteins involved in another proteins regulation have also been affected by the block in the 

secretory pathway. It would therefore be difficult to predict how a secretory protein will be 

affected during long-lasting ER stress. Thus, it will be necessary to investigate each protein 

individually during prolonged ER stress to establish when ER stress causes depletion 

significant enough to affect cellular processes. Establishing how all proteins, which are 

synthesised through the secretory pathway, are affected during prolonged ER stress would 

provide much needed information for the planning experiments and the interpretation of 

data involving ER stress. It is important that future studies investigating how ER stress 
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affects other signalling events in the cell should take into consideration the effect of long-

lasting ER stress on proteins involved in the specific signalling pathway being 

investigated. 

7.2.1 ER stress-mediated depletion of the insulin receptor via inhibited trafficking 

through the secretory pathway 

It was demonstrated in chapter 5 that during prolonged ER stress the insulin receptor is 

depleted from the plasma membrane. What’s more is that data in chapter 5 provide 

evidence that ER stress blocks the transport of newly synthesised insulin receptors from 

the ER to Golgi. This block in transport over several half-lives of the membrane bound 

insulin receptor is sufficient to deplete the insulin receptor at the plasma membrane. 

Importantly this depletion of insulin receptors causes insulin resistance as demonstrated by 

reduced insulin mediated AKT and GSK phosphorylation. Shorter exposures of ER stress 

which do not extend over several half-lives of the insulin receptor are not sufficient to 

cause insulin resistance and the rescue of insulin signalling by an insulin receptor chimera 

which does not traffic through the ER suggests that blockage of the secretory pathway is 

the only mechanism through which ER stress-mediated insulin resistance is observed.  

The UPR is known to inhibit both transcription and translation so it is interesting that both 

transcription and translation of the insulin receptor continued during chronic ER stress. 

Why cells continue to translate the insulin receptor during chronic ER stress is not known. 

A possible explanation is that insulin receptors promote survival through insulin-mediated 

activation of AKT phosphorylation (Kim et al., 2001). If or how synthesis of the insulin 

receptor during ER stress is prioritised over other proteins still needs to be established. 

Accumulation of IGF-1 proreceptors during chronic ER stress suggest that at least 

translation of IGF-1 is maintained. However, IGF-1 activation may also be able to promote 

survival through AKT phosphorylation so its synthesis may also be prioritised during ER. 

The monitoring of other proteins, which traffic through the secretory pathway, during 

chronic ER stress will establish if the continued translation of IGF-1 and the insulin 

receptor is specific to these proteins.  

7.2.1.1 ER stress-mediated depletion of the insulin receptor: implications for type II 

diabetes 

The mechanism for insulin resistance during ER stress reported in this thesis has serious 

implications for understanding of T2D. ER stress is believed to be induced in T2D as is 
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reported in models of T2D (Ozcan et al., 2004, Alhusaini et al., 2010, Kars et al., 2010) 

and in the tissues of obese patients (Puri et al., 2008, Gregor et al., 2009, Boden et al., 

2008, Sharma et al., 2008). How ER stress occurs in diabetes is not fully established but 

increased exposure to free fatty acids and an inflammatory environment have been 

suggested (Alhusaini et al., 2010, Hasnain et al., 2014). Research from other members of 

Martin Schröder’s laboratory also emphasises the role of hypoxia and glucose starvation in 

causing ER stress in adipocytes (Mihai and Schröder, 2014). It could be possible that ER 

stress-mediated depletion of the insulin receptor at the plasma membrane is a cause of, or 

contributory factor to, the development of insulin resistance during ER stress. However, it 

is worth noting that ER stress mimetics, although providing an important tool for 

investigating ER stress, do not accurately replicate physiological ER stress. Thus it is 

important to establish if more physiological ER stress levels over time are also sufficient to 

deplete insulin receptors and cause insulin resistance. Titrating the concentrations of ER 

stressors even further may provide lower and more physiological levels of ER stress. 

SubAB could be prioritised over other ER stressors because it is highly specific and has 

been used at one concentration only (1 µg/ml). Another possible way of achieving 

physiological ER stress may include treatment of palmitate, however, it should be stressed 

that palmitate-induced ER stress is not fully characterised and is controversial (Mihai and 

Schröder, 2014, Achard and Laybutt, 2012). Therefore providing a physiological ER stress 

may prove to be a difficult task, which may become more achievable upon further 

characterisation of the causes of ER stress in obesity and diabetes. 

7.2.1.2 ER stress-mediated depletion of the insulin receptor: implications for 

neurodegeneration 

Interestingly, insulin receptor levels were reduced in the SNpc of PD patients (Moroo et 

al., 1994). Insulin signalling has only recently been accepted as an important part of 

neuronal functioning (Nistico et al., 2012). Disrupted insulin signalling has been suggested 

to play a part in PD (Wang et al., 2014, Spielman et al., 2014, Van Woert and Mueller, 

1971, Moroo et al., 1994, Takahashi et al., 1996, Aviles-Olmos et al., 2013, Santiago and 

Potashkin, 2013, Dandona et al., 2004) and even more so in AD with some researchers 

proposing to name AD type 3 diabetes (Frolich et al., 1998, Spielman et al., 2014, Craft et 

al., 2013). ER stress is a common observation in studies involving neurodegeneration and 

may therefore underlie a common cause of, or at least a contributory factor to, the 

progression of these diseases. Data in this thesis support the conclusion that long-lasting 

ER stress leads to insulin resistance through depletion of the insulin receptor in 
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hepatocytes, myocytes, adipocytes and finally neuronal and primary glial cells (Chapter 5). 

The observation that insulin receptor depletion and insulin resistance also occurs in 

primary glial cells and in two neuronal cell lines demonstrates that long-lasting ER stress-

mediated insulin resistance is a potential mechanism explaining the reported depletion of 

insulin receptors and insulin resistance in PD and other neurodegenerative diseases. 

However, it is worth noting that insulin receptor depletion and insulin resistance may occur 

via another more specific mechanism and that long-lasting ER stress may just mimic this to 

produce the same end result. For this reason it is important to establish if inhibition of ER 

stress in a PD model is sufficient to prevent depletion of insulin receptors and insulin 

resistance. 

7.3 Activation of inflammation during ER stress 

7.3.1 ER stress-mediated activation of inflammatory signalling pathways 

The UPR and inflammation have been linked in many studies with crosstalk between these 

two signalling events being reported. Inflammatory signalling pathways are considered to 

be part of the ever expanding UPR. Data from chapters 3-6 also support the view that the 

UPR can activate JNK, p38 and NF-κB. It has been demostrated that JNK activation during 

ER stress is dependent on IRE1α and TRAF2 (Chapter 3). It would be interesting to 

establish if p38 activation is also dependent on IRE1α and TRAF2 as the IRE1α-TRAF2 

interaction is reported to activate ASK1, which is an upstream kinase of both p38 and JNK. 

However, in some experiments differing phosphorylation kinetics between these two 

MAPKs (Figures 6.1 and 6.2) is apparent, suggesting that the UPR may activate them via 

different mechanisms or that other regulatory proteins account for the different kinetics. 

However, different phosphorylation kinetics between JNK and p38 may also be an artefact 

of N1E-115 cells and not a general signalling event. Overall the AP-1 inflammatory 

signalling pathway, which is regulated by JNK and p38, is activated during ER stress. 

There are two known mechanisms of ER stress-dependent NF-κB activation: PERK-

mediated inhibition of translation leads to the depletion of the NF-κB regulatory protein 

IκBα which has a shorter half-life, and IRE1α-TRAF2 interaction activates IKK which 

subsequently phosphorylates IκBα and targets it for degradation. It is therefore not 

surprising that reduced IκBα levels during ER stress in neuronal cells is reported. The 

different roles of these signalling pathways in mediating inflammation during ER stress is 

currently not known. The next logical step would be to manipulate these pathways 

individually during ER stress with inhibitors and knock-down where appropriate. Knock-
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down of JNK may prove difficult as it would require at least two siRNAs or shRNAs and 

this extra stress may complicate interpretation of results. Inhibitors have been widely used 

for these signalling pathways but caution should be taken as they are not necessarily 

specific. 

7.3.2 ER stress-mediated inflammatory signalling: implications for exogenous 

inflammation 

In chapter 6 data suggest that ER stress upregulates the expression of several pro-

inflammatory cytokine genes. However, an ELISA assay was able to detect the release of 

IL-6 only. These results suggest that only one cytokine- IL-6- is released into the medium 

at a high level. Indeed, IL-6 release does increase during ER stress demonstrating that ER 

stress does have the potential to induce exogenous pro-inflammatory signalling in CAD 

cells. Interestingly, IL-6 was the only cytokine detected by the ELISA in untreated 

samples. Therefore it could be that cytokine levels were too low for detection by ELISA 

and that it is still possible that ER stress induces secretion of other cytokines. Cytokine 

levels being below the detection limit of the ELISA is plausible given that the expression 

levels of TNFα and IL-1β at the mRNA level were increased with ER stress. However, as 

demonstrated by the insulin receptor in Chapter 5, the occurrence of transcription and 

translation does not necessarily mean a protein trafficking through the secretory pathway 

reaches its intended destination.  

The transport of proteins through the secretory pathway is a potentially complex situation 

in that ER stress may function to promote inflammation through increased expression of 

pro-inflammatory cytokines, yet secretion of cytokines may be blocked by the very same 

ER stress. However, it is known that cytokines may be stored in secretory vesicles or 

granules (Moqbel and Coughlin, 2006). Build-up and storage of cytokines prior to and 

during acute ER stress and then there release during chronic ER stress may be a 

mechanism to overcome ER-stress mediated inhibition of ER to Golgi transport. IL-6 is 

reported to accumulate in the Golgi complex before release (Manderson et al., 2007) and 

may be one explanation as to why only IL-6 is released at levels detected by the ELISA 

assay. Another possible mechanism of cytokines avoiding ER stress-mediated inhibition of 

ER-Golgi transport is that, although most cytokines are released through classical 

secretion, there are several cytokines which are released through non-classical secretion 

which avoids the ER and Golgi. One such cytokine is IL-1β which lacks the conventional 

hydrophobic signal sequence required for targeting it to the ER (Rubartelli et al., 1990). 
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Thus, cytokines which are released through non-classical secretion may not be affected by 

blocking ER-Golgi transport. Unfortunately, this is further complicated by the possibility 

that proteins involved in the release of non-classically secreted cytokines such as plasma 

membrane bound transporters, which do traffic through the ER, may be depleted by ER 

stress-dependent inhibition of ER-Golgi transport.  

Although IL-6 only was detected in the supernatant of ER stressed neurons, this 

supernatant was sufficient to activate microglia. Microglial activation by ER stress-

condition medium provides evidence that ER stress induces the release of pro-

inflammatory mediators (Figure 6.21). Unfortunately, due to a lack of time, the mediator or 

mediators of inflammation were not identified. Profiling, via techniques such as mass 

spectrometry, of proteins and other compounds in media conditioned by non-stressed 

versus ER-stressed neuronal cultures may provide potential targets for investigation. Once 

identified these mediators could be depleted from the supernatant to see if microglial 

activation still occurred. At the same time they could be added to medium conditioned by 

non-stressed neurons to establish if they are sufficient to activate microglia. 

It is also worth noting that most of the understanding of cytokine regulation and release 

comes from studies of innate immune cells whereas the mechanisms of trafficking of 

cytokines from other cell types are not yet understood. This may be due to limitation of 

assays to detect the smaller quantities of cytokines produced by non-immune cells 

compared to cell of the immune system. 

7.3.3 Evolution 

As mentioned in the introduction a naturally occurring example of ER stress takes place 

during viral (Zhang and Wang, 2012) and bacterial infection (Cho et al., 2013). Thus the 

inflammatory signalling branches of the UPR may have evolved as an early mechanism 

which contributes to the innate immune response to infection. Wound healing, which also 

induces ER stress (Wang et al., 2010), would also benefit from innate immune response 

and low level inflammation. It could be possible that this conditioning of the ER to induce 

inflammatory signalling upon ER stress induced by infection has an evolutionary 

advantage which outweighs the negative effects of detrimental inflammation observed in 

the age related diseases T2D and PD. If the negative effects of ER-stress induced 

inflammation are mostly manifested in aged humans then they will not be selected against 

through evolutionary pressures. 
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7.4 Does ER stress link T2D and PD? 

A recent review has provided evidence that inflammation and insulin resistance may link 

PD and T2D (Spielman et al., 2014). This thesis provides evidence that prolonged ER 

stress can cause insulin resistance through the blockage of transport of newly synthesised 

insulin receptors through the secretory pathway. Furthermore this mechanism of insulin 

resistance induced by ER stress is not specific to just one cell type and occurs in 

adipocytes, hepatic cells and neuronal cells.  

The development of insulin resistance in PD may arise from decreased expression of the 

insulin receptor at the plasma membrane. Indeed, insulin receptor immunoreactivity is lost 

from neurons of the SNpc in PD (Moroo et al., 1994). Interestingly, some drugs which 

have been used to treat diabetes are being trialled for the treatment of PD. The following 

drugs being used or tested to treat both PD and diabetes also have been shown to reduce 

ER stress: Exendin (Tsunekawa et al., 2007, Kwon et al., 2009), ergot-derived dopamine 

D2 receptor agonists (Kim et al., 2012), pioglitazone (Yoshiuchi et al., 2009), and 

rosiglitazone (Kim et al., 2009). Thus, the effectiveness of these drugs to treat both PD and 

diabetes may be through alleviating ER stress which in turn prevents progression of these 

diseases through various ER-related mechanisms discussed. 

The effect of ER stress on insulin signalling may be applicable to neurodegenerative 

diseases as a whole and more specifically AD. Using a mouse model of AD it was 

observed that insulin receptor levels decreased but that there was an increase in more 

internal and nuclear localisation of the insulin receptor in neuronal cells suggesting that the 

insulin receptor may be accumulating in a compartment such as the ER (Moloney et al., 

2010). Insulin receptor mRNA levels have also been reported to be reduced in Parkinson’s 

brain tissues (Takahashi et al., 1996, Tong et al., 2009). It is therefore possible that ER 

stress is just one mechanism through which insulin resistance occurs in neurodegeneration. 

Age is a common factor which increases the risk of both T2D and PD. Interestingly the 

expression of the insulin receptor has consistently been reported to be decreased with age 

in: gerbils (Park et al., 2009), adipose tissue of humans (Bolinder et al., 1983), and in obese 

Zucker rats (Amessou et al., 2010). However, the latter study also found that the insulin 

receptor expression also decreased at the mRNA level. The study also identified that 

increased endocytosis and degradation of the insulin receptor occurred with time. A 

decrease in insulin receptors in the SN specifically has also been observed with age 

(Frolich et al., 1998). Interestingly, the Frolich et al. study also demonstrated that insulin 
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receptors were reduced in the SN of AD patients compared to healthy age-matched 

controls. Consequently, age may lower the threshold required to inhibit insulin signalling 

through further reduction of the insulin receptor via ER stress. A further contributing factor 

is that ER chaperone levels are reduced with ageing (Nuss et al., 2008). Thus the threshold 

for the development of ER stress is also lowered during ageing. Overall, age being an 

important risk factor for developing T2D as well as PD may be a product of lower insulin 

receptor levels and a decreased capacity to maintain trafficking of proteins through the 

secretory pathway which may further reduce insulin receptor levels. 

As covered in the review by Spielman et al. (Spielman et al., 2014) and this thesis 

inflammation is an important manifestation of PD and T2D. In addition to insulin 

resistance, inflammation can also be induced through ER stress. Thus, ER stress may also 

be the linking stress which is inducing inflammation in these two diseases. It is therefore 

imaginable that ER stress can cause or at least contribute to both inflammation and insulin 

resistance in PD and T2D and may therefore provide the hidden link between these two 

diseases. Further research is required to fully understand the role of ER stress in both these 

diseases.  

Overall insulin resistance in the SNpc may play a crucial role in the development of PD. 

The fact that: 1) insulin receptors are depleted in PD. 2) Age, the biggest risk factor for PD, 

also causes a reduction in insulin receptor number. 3) Insulin signalling is important for a 

normal healthy neuronal environment all adds evidence to this hypothesis. Defective 

insulin signalling has recently been strongly linked between PD and T2D alongside 

inflammation (Spielman et al., 2014). What has not been considered is that ER stress has 

also been linked between these two diseases. Data support the conclusions that ER stress 

can cause both insulin resistance, through depletion of insulin receptors, and inflammatory 

signalling, including activation of microglia, through an unknown mechanism. ER stress 

may therefore be the linking pathway between these two phenotypes (insulin resistance and 

inflammation) and thus ER stress may also link these two diseases (T2D and PD). Further 

research is required to fully establish: 1) if ER stress is responsible for, or at least can 

contribute to, inflammation in both PD and T2D. 2) If long-lasting physiologically relevant 

ER stress is sufficient to inhibit transport of newly synthesised insulin receptors.  

7.5 Conclusion 

In conclusion strong evidence is provided for a role of ER stress in the development of two 

different diseases: T2D and PD. How ER stress contributes to the progression of these two 
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diseases may be similar. For example ER stress blocking trafficking of newly synthesised 

insulin receptors may be a common feature between both diseases. Indeed a reduction in 

insulin receptors levels has been reported in patients with diabetes and with patients with 

PD. Age is also reported to reduce insulin receptor levels and may therefore contribute to, 

over time, reducing the threshold necessary for the manifestation of these two age-related 

diseases. The ability of UPR to stimulate inflammatory signalling and inflammation may 

also contribute to cycles of detrimental inflammation in tissues which are specifically 

affected in these two diseases, SNPC in PD and liver in T2D. Thus, further research into 

ER stress in the context of both PD and T2D is warranted. Further to this, data support the 

conclusion that IRE1α- and TRAF2-dependent activation of JNK during acute ER stress is 

prosurvival; involving upregulation of several antiapoptotic genes. These data add to 

evidence that the UPR can contribute to cell fate decision making. This research further 

highlights the complexity of ER stress-mediated cellular changes whilst emphasising the 

importance of characterising ER stress signalling pathways. 
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Abstract 20 

Accumulation of unfolded proteins in the endoplasmic reticulum (ER) activates a 21 

signalling network termed the unfolded protein response (UPR). In mammalian cells, 22 

UPR signals generated by several ER membrane resident proteins, including the 23 

bifunctional protein kinase endoribonuclease IRE1α, control cell survival and the 24 

decision to execute apoptosis. Processing of the mRNA for the transcription factor 25 

XBP1 by the RNase domain of IRE1α promotes survival of ER stress, while 26 

activation of the mitogen-activated protein kinase JNK by IRE1α late in the ER stress 27 

response promotes apoptosis. Here we show that immediate and transient activation of 28 

JNK by ER stress precedes activation of XBP1. This immediate and transient 29 

activation of JNK is dependent on IRE1α and the adaptor protein TRAF2 and 30 

coincides with JNK-dependent induction of expression of several antiapoptotic genes, 31 

including cIAP1, cIAP2, XIAP, and BIRC6. Cell death, as indicated by a decrease in 32 

mitochondrial transmembrane potentials, is more pronounced in JNK-deficient mouse 33 

embryonic fibroblasts (MEFs) than wild-type MEFs. Hence, JNK-dependent 34 

expression of several antiapoptotic genes contributes to delaying the onset of cell 35 

death in the early response to ER stress. 36 

Introduction 37 

Perturbation of protein folding homeostasis in the endoplasmic reticulum (ER) 38 

activates several signal transduction pathways collectively called the unfolded protein 39 

response (UPR) (Ron and Walter, 2007; Walter and Ron, 2011). In mammalian cells, 40 

the UPR is initiated by several ER membrane resident proteins, including the protein 41 

kinase-endoribonuclease (RNase) IRE1α (Tirasophon et al., 1998; Wang et al., 1998), 42 

the protein kinase PERK (Shi et al., 1998; Harding et al., 1999; Shi et al., 1999), and 43 

several type II transmembrane transcription factors such as ATF6α (Yoshida et al., 44 
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2000) and CREB-H (Zhang et al., 2006). All of these signalling molecules activate 45 

prosurvival, but also proapoptotic responses to ER stress. 46 

These opposing signalling outputs are exemplified by IRE1α. The RNase activity 47 

of IRE1α initiates non-spliceosomal splicing of the mRNA for the transcription factor 48 

XBP1 (Shen et al., 2001; Yoshida et al., 2001; Calfon et al., 2002; Lee et al., 2002), 49 

which in turn induces transcription of genes encoding ER-resident molecular 50 

chaperones (Lee et al., 2003), components of the ER-associated protein degradation 51 

machinery (Yoshida et al., 2003; Oda et al., 2006), and several phospholipid 52 

biosynthetic genes (Lee et al., 2003; Lee et al., 2008) to promote cell survival. The 53 

IRE1α RNase activity also initiates the decay of several mRNAs encoding proteins 54 

targeted to the ER (Hollien and Weissman, 2006; Han et al., 2009; Hollien et al., 55 

2009; Gaddam et al., 2013), which decreases the protein fold load of the stressed ER. 56 

Degradation of DR5 mRNA by IRE1α contributes to establishment of a time window 57 

for adaptation to ER stress (Lu et al., 2014). On the other hand, IRE1α promotes 58 

apoptosis via both its RNase and protein kinase domains. Cleavage of several 59 

miRNAs, including miRNA-17, -34a, -96, and -125b, by the RNase domain of IRE1α 60 

stabilizes and promotes translation of TXNIP and caspase-2 mRNAs (Lerner et al., 61 

2012; Oslowski et al., 2012; Upton et al., 2012). TXNIP promotes apoptosis through 62 

activation of caspase-1 and secretion of interleukin 1β (Lerner et al., 2012). The role 63 

of caspase-2 in ER stress-induced apoptosis has recently been questioned (Lu et al., 64 

2014; Sandow et al., 2014). The kinase domain of IRE1α activates the mitogen-65 

activated protein (MAP) kinase JNK through formation of a complex with the E3 66 

ubiquitin ligase TRAF2 and the MAP kinase kinase kinase (MAPKKK) ASK1 67 

(Nishitoh et al., 2002). Sequestration of TRAF2 by IRE1α may also contribute to 68 

activation of caspase-12 in murine cells (Yoneda et al., 2001). Pharmacologic (Zhang 69 
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et al., 2001; Smith and Deshmukh, 2007; Chen et al., 2008; Wang et al., 2009; Jung 70 

et al., 2012; Teodoro et al., 2012; Huang et al., 2014; Jung et al., 2014) and genetic 71 

(Kang et al., 2012; Arshad et al., 2013) studies have provided evidence that activation 72 

of JNK 12 h or later after induction of ER stress is proapoptotic. 73 

Much less is known about the role of JNK at earlier time points in the ER stress 74 

response. In tumor necrosis factor (TNF)-α-treated cells two phases of JNK activation 75 

can be distinguished (Roulston et al., 1998; Lamb et al., 2003), an early and transient 76 

antiapoptotic and a later phase, that coincides with activation of caspases (Roulston et 77 

al., 1998). In the early phase JNK induces expression of JunD and the antiapoptotic 78 

ubiquitin ligase cIAP2/BIRC3 (Lamb et al., 2003). Furthermore, phosphorylation of 79 

Bad at T201 and subsequent inhibition of interaction of Bad with Bcl-xL underlies the 80 

antiapoptotic role of JNK in interleukin (IL)-3-dependent hematopoietic cells (Yu et 81 

al., 2004), while JNK mediates IL-2-dependent survival of T cells through 82 

phosphorylation of MCL1 (Hirata et al., 2013). This functional dichotomy of transient 83 

and persistent JNK signalling prompted us to investigate whether immediate and 84 

transient activation of JNK occurs in the ER stress response and to characterise the 85 

functional significance of such an immediate and transient phase of JNK activation in 86 

ER-stressed cells. 87 

Results 88 

ER stress transiently activates JNK before XBP1 splicing reaches maximal levels 89 

To investigate how early JNK is activated in the ER stress response we characterised 90 

JNK activation over an 8 h time course by monitoring phosphorylation of JNK in its 91 

T-loop on T183 and Y185 by Western blotting with antibodies against phosphorylated 92 

and total JNK. In MEFs, phosphorylation increased as early as 10 min after addition 93 

of 1 µM thapsigargin (Figure 1, A and C) or 10 µg/ml tunicamycin (Figure 1, D and 94 
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F). JNK phosphorylation returned to basal levels 8 h after addition of thapsigargin or 95 

30 min after addition of tunicamycin to cells. The ability of these two mechanistically 96 

different ER stressors to elicit rapid and transient activation of JNK suggests that this 97 

JNK activation is caused by ER stress invoked by these two chemicals and not a 98 

response to secondary effects of these compounds. To compare the kinetics of JNK 99 

activation to the kinetics of the XBP1 splicing reaction we monitored XBP1 splicing 100 

using RT-PCR. Spliced XBP1 mRNA differs from unspliced XBP1 mRNA by lacking 101 

a 26 nt intron. Hence, the presence of a shorter RT-PCR product on agarose gels is 102 

indicative of activation of the IRE1α RNase activity and processing of XBP1 mRNA. 103 

In thapsigargin-treated MEFs ~45% of XBP1 mRNA was spliced 20 min after 104 

addition of thapsigargin (Figure 1, B and C). XBP1 splicing reached maximal levels 105 

only after several hours of thapsigargin treatment, suggesting that activation of JNK 106 

precedes maximal activation of XBP1. This kinetic relationship was more evident in 107 

tunicamycin-treated MEFs (Figure 1, E and F). In these cells XBP1 splicing increased 108 

only after JNK phosphorylation returned to basal levels. 109 

To investigate whether a similar kinetic relationship between activation of JNK 110 

and XBP1 exists in other cell types, we repeated these experiments with Hep G2 111 

hepatoma cells, 3T3-F442A adipocytes, and C2C12 myotubes. In Hep G2 cells, JNK 112 

phosphorylation peaked 30 min after addition of 1 µM thapsigargin and then returned 113 

to and then below resting levels (Figure 2, A and C). By contrast, 30 min after 114 

addition of thapsigargin only ~7% of XBP1 mRNA were spliced, and after another 15 115 

min XBP1 splicing was approximately half maximal (Figure 2, B and C). XBP1 116 

splicing reached maximal levels only after 6 h of thapsigargin treatment. In 3T3-117 

F442A adipocytes phosphorylation of JNK reached a maximum as early as 10 min 118 

after application of 1 µM thapsigargin and then returned to basal levels (Figures S1 119 
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and S2, A and C). XBP1 splicing, however, was not detectable until 45 min after 120 

addition of thapsigargin, required 4 h to reach maximal levels, and remained at this 121 

level for at least another 4 h (Figure S2, B and C). Thus, transient JNK activation also 122 

precedes activation of XBP1 in Hep G2 cells and 3T3-F442A adipocytes. The same 123 

relationship was observed in C2C12 myotubes. In these cells an increase in JNK 124 

phosphorylation was detected as early as 10 min after induction of ER stress with 1 125 

µM thapsigargin (Figure S3, A and C), while the earliest time point at which an 126 

increase in XBP1 splicing was detected was 20 min (Figure S3, B and C). At the same 127 

time, activation of JNK diminished over time in C2C12 myotubes, while the level of 128 

XBP1 splicing remained at maximal levels (Figure S3). We conclude that transient 129 

activation of JNK preceding induction of XBP1 splicing in response to ER stress is a 130 

phenomenon that can be observed in several murine and human cell types. 131 

Transient JNK activation in ER-stressed cells requires IRE1α and TRAF2 132 

Several different stresses activate JNK (Kyriakis et al., 1994). To examine if the rapid 133 

JNK activation seen upon thapsigargin or tunicamycin treatment is in response to ER 134 

stress and thus mediated via IRE1α and TRAF2, we characterised whether this JNK 135 

activation is IRE1α- and TRAF2-dependent. JNK phosphorylation was induced ~2-3 136 

fold in ire1α-/- and traf2-/- MEFs compared to an ~8 fold increase in JNK 137 

phosphorylation in WT MEFs upon thapsigargin treatment (Figures 1 and 3). JNK 138 

activation was also delayed in both ire1α-/- and traf2-/- MEFs and reached maximal 139 

levels in traf2-/- MEFs only at the time when spliced XBP1 mRNA levels had reached 140 

steady-state levels (Figure 3F). This delayed activation of JNK in ire1α-/- and traf2-/- 141 

MEFs may be explained by stresses other than and possibly secondary to ER stress, 142 

for example oxidative stress (Mauro et al., 2006). To establish if the transient JNK 143 

activation is IRE1α- and TRAF2-dependent in cells other than MEFs we characterised 144 
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whether small interfering (si)-RNA-mediated knockdown of IRE1α or TRAF2 145 

reduces JNK activation by ER stress. Two IRE1α siRNAs (#2 and #3, Supplemental 146 

table 1) reduced IRE1α mRNA levels to ~40% of control eGFP siRNA transfected 147 

cells 72 h post-transfection (Figure S4A) and decreased activation of JNK by 37 ± 7% 148 

2 h and by 61 ± 4% 4 h after induction of ER stress (Figure S4, B and C). Likewise, 149 

two siRNAs against human or murine TRAF2 blunted the ER stress-dependent JNK 150 

activation in Hep G2 cells, 3T3-F442A fibroblasts, and C2C12 myoblasts (Figures S5, 151 

S6, and S8). Furthermore, a dominant negative mutant of TRAF2, TRAF2∆1-86 (Hsu 152 

et al., 1996; Reinhard et al., 1997), which lacks the RING domain (Figure S7A) 153 

inhibited TNF-α-induced JNK activation (Figure S7B) and blunted the rapid and 154 

transient JNK activation in these cells seen upon induction of ER stress with 1 µM 155 

thapsigargin in 3T3-F442A preadipocytes (Figure S7, C and D) and C2C12 myoblasts 156 

(Figure S9). Taken together, these data demonstrate that the rapid and transient JNK 157 

activation upon induction of ER stress is mediated by both IRE1α and TRAF2. 158 

The transient phase of JNK activation in ER stressed cells inhibits cell death 159 

In the early antiapoptotic response to TNF-α JNK is required for expression of the 160 

mRNA for the antiapoptotic ubiquitin ligase cIAP2/BIRC3 (Lamb et al., 2003). This 161 

motivated us to compare the expression of mRNAs for antiapoptotic genes including 162 

cIAP1, cIAP2, XIAP, and BIRC6 at the onset of activation of JNK with 1 µM 163 

thapsigargin (Figure 1A) in WT and jnk1-/- jnk2-/- MEFs. Expression of the mRNAs 164 

for cIAP1, cIAP2, XIAP, and BIRC6 increased in WT cells in the first 45 min of ER 165 

stress. By contrast, cIAP1, cIAP2, and BIRC6 mRNA levels decreased in jnk1-/- jnk2-/- 166 

cells (Figure 4). The increase in XIAP mRNA was more pronounced in WT than in 167 

jnk1-/- jnk2-/- MEFs, suggesting that JNK positively regulates expression of XIAP 168 

mRNA. These data show that expression of several antiapoptotic genes is induced 169 



 8 

early in the ER stress response in a JNK-dependent manner. To investigate the 170 

physiologic relevance of the early JNK-dependent induction of antiapoptotic genes we 171 

characterised the appearance of dead cells within the first 4 h of thapsigargin 172 

treatment by monitoring the depolarization of mitochondrial transmembrane 173 

potentials with the fluorescent dye 5,5’,6,6’-tetrachloro-1,1,3,3’-174 

tetraethylbenzimidazolylcarbocyanine iodide (JC-1) (Reers et al., 1991; Smiley et al., 175 

1991) (Figure 5A). 45 min after addition of 1 µM thapsigargin cell death was more 176 

pronounced in jnk1-/- jnk2-/- MEFs than in WT MEFs (Figure 5B). This increase 177 

susceptibility of jnk1-/- jnk2-/- MEFs to thapsigargin was also observed after 4 h of 178 

exposure to 1 µM thapsigargin (Figure 5B). Hence, JNK-dependent induction of 179 

antiapoptotic genes including cIAP1, cIAP2, XIAP, and BIRC6 delays the onset of cell 180 

death early in the ER stress response. 181 

Discussion 182 

We show that JNK is transiently activated early in the mammalian UPR and that this 183 

immediate JNK activation is antiapoptotic. Transient activation of JNK early in the 184 

UPR by two mechanistically distinct ER stressors, thapsigargin and tunicamycin 185 

(Figures 1-2 and S2-S3), and its dependence on IRE1α and TRAF2 (Figures 3, S4-S6, 186 

and S8) provides evidence that the early JNK activation is in response to ER stress. 187 

Early JNK activation coincides with induction of several antiapoptotic genes (Figures 188 

1 and 4). Maximal expression of the mRNAs for these genes required JNK (Figure 4), 189 

while depolarization of mitochondrial transmembrane potentials occurred faster in 190 

JNK-deficient MEFs than in WT MEFs upon exposure to 1 µM thapsigargin (Figure 191 

5). Our data arguing that early JNK activation protects ER-stressed cells from 192 

executing apoptosis is consistent with reports that show that traf2-/- MEFs are more 193 

susceptible to ER stress than WT MEFs (Mauro et al., 2006) and that siRNA-194 
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mediated knock-down of JNK1 increased caspase-3 cleavage in tunicamycin-treated 195 

neural stem cells (Li et al., 2011). 196 

Mostly pharmacologic data supports that activation of JNK late in the ER stress 197 

response promotes cell death (Zhang et al., 2001; Tan et al., 2006; Smith and 198 

Deshmukh, 2007; Chen et al., 2008; Wang et al., 2009; Jung et al., 2012; Kang et al., 199 

2012; Teodoro et al., 2012; Arshad et al., 2013; Huang et al., 2014; Jung et al., 2014). 200 

Our work suggests that two functionally distinct phases of JNK signalling exist in the 201 

ER stress response - an early, transient prosurvival phase and a late phase that 202 

promotes cell death. Biphasic JNK signalling with opposing effects on cell viability 203 

exists also in other stress responses. Transient activation of JNK in response to several 204 

other stresses is anti-apoptotic (Sluss et al., 1994; Traverse et al., 1994; Raingeaud et 205 

al., 1995; Chen et al., 1996a; Lee et al., 1997; Nishina et al., 1997), while persistent 206 

JNK activation causes cell death (Chen et al., 1996a; Chen et al., 1996b; Guo et al., 207 

1998; Sanchez-Perez et al., 1998). These opposing functional attributes of transient 208 

and persistent JNK activation have also been causally established by using JNK-209 

deficient MEFs reconstituted with 1NM-PP1-sensitised alleles of JNK1 and JNK2 210 

(Ventura et al., 2006). Hence, the antiapoptotic function of transiently activated JNK 211 

in the ER stress response is another example for the paradigm that the duration of 212 

JNK activation controls cell fate. Identification of cIAP1, XIAP, and BIRC6 as genes 213 

whose expression required JNK in the early response to ER stress (Figure 4) has 214 

allowed us to extend the repertoire of antiapoptotic JNK targets. These, and possibly 215 

other, genes may also contribute to how JNK inhibits cell death in other stress 216 

responses. 217 

The existence of a transient, anti-apoptotic phase of JNK activation in the ER 218 

stress response raises at least two questions: 1) What are the molecular mechanisms 219 
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that define the transient phase as anti-apoptotic? 2) What are the mechanisms that 220 

restrict JNK activation early in the ER stress response? While future experiments will 221 

be necessary to answer these questions, possible explanations may be that the duration 222 

of activation affects the subcellular localisation of JNKs, that JNK signalling outputs 223 

are controlled by molecular determinants, or that the JNK signalling pathway 224 

functionally interacts with the NF-κB signalling pathway. 225 

Opposing signalling outputs of extracellular signal-regulated kinases (ERKs) in 226 

PC12 cells have been explained by different subcellular localisations of ERKs 227 

(Marshall, 1995). JNK, however, does not appear to relocalise upon stimulation, 228 

either in response to transient or persistent activation (Chen et al., 1996a; Sanchez-229 

Perez et al., 1998). This is also the case for JNK transiently activated during the ER 230 

stress response (Figure S10). An alternative possibility is that JNK substrates function 231 

as molecular determinants of the biological functions of transient and persistent JNK 232 

activation, respectively. This is, for example, the case for the ERK substrate c-Fos 233 

(Murphy et al., 2002). 234 

In the ER stress response NF-κB activation is transient and displays kinetics in 235 

several cell lines that are reminiscent of the transient JNK activation reported in this 236 

study (Wu et al., 2002; Jiang et al., 2003; Deng et al., 2004; Wu et al., 2004). In 237 

TNF-α signalling JNK functionally interacts with the NF-κB pathway. JNK activation 238 

in the absence of NF-κB is apoptotic (Guo et al., 1998; Tang et al., 2002; Deng et al., 239 

2003; Liu et al., 2004) or necrotic (Ventura et al., 2004), while NF-κB transduces an 240 

anti-apoptotic response to TNF-α (Kelliher et al., 1998; Devin et al., 2000). At the 241 

transcriptional level NF-κB cooperates with JunD (Rahmani et al., 2001), whose 242 

phosphorylation is decreased in jnk1-/- jnk2-/- MEFs (Ventura et al., 2003). NF-κB 243 

induces cIAP1, cIAP2, and XIAP (Stehlik et al., 1998). JunD contributes to the 244 
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transcriptional induction of cIAP2 in TNF-α-stimulated cells (Lamb et al., 2003). 245 

This collaboration between NF-κB and transcription factors controlled by JNK, such 246 

as JunD, may explain the JNK-dependent induction of cIAP1, cIAP2, XIAP, and 247 

BIRC6 (Figure 4), and potentially other anti-apoptotic genes, early in the ER stress 248 

response. 249 

Transient activation of NF-κB in the ER stress response may also contribute to 250 

control of the duration of JNK activation. NF-κB inhibits JNK activation by TNF-α 251 

(De Smaele et al., 2001; Tang et al., 2001; Reuther-Madrid et al., 2002; Tang et al., 252 

2002; Papa et al., 2004) through induction of XIAP (Tang et al., 2001; Tang et al., 253 

2002) and GADD45β (De Smaele et al., 2001; Papa et al., 2004). TNF-α also induces 254 

the dual specificity phosphatase MKP1/DUSP1 (Guo et al., 1998). In murine 255 

keratinocytes cis-platin induced persistent JNK activation but induced MKP1 only 256 

weakly, while transient JNK activation by trans-platin correlated with strong 257 

induction of MKP1 (Sanchez-Perez et al., 1998). Comparison of the ER stress 258 

response elicited by 1,4-DL-dithiothreitol (DTT) and tunicamycin suggests that 259 

transient activation of JNK in the ER stress response coincides with phosphorylation 260 

of MKP1 at S359 and its stabilisation (Li et al., 2011). However, secondary effects or 261 

different pharmacokinetics of these two drugs may also contribute to these 262 

observations. Additional experimentation is required to resolve whether MKP1 263 

controls JNK activation in the ER stress response. 264 

The duration of JNK activation may also be regulated at the level of the ER stress 265 

perceiving protein kinase IRE1α. Activation of JNK by IRE1α requires interaction of 266 

TRAF2 with IRE1α (Urano et al., 2000). This interaction has not been observed in 267 

cells expressing kinase and RNase-defective K599A-IRE1α (Urano et al., 2000). JNK 268 

activation precedes XBP1 splicing (Figures 1, 2, S2, and S3). XBP1 splicing by 269 
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mammalian IRE1α is stimulated by phosphorylation of IRE1α (Prischi et al., 2014). 270 

Hence, overall phosphorylation of IRE1α seems to be an unlikely explanation for the 271 

transiency of JNK activation. It is, however, possible that the specific pattern of 272 

phosphorylation of the ~10 phosphorylation sites in IRE1α (Itzhak et al., 2014) 273 

controls its affinity towards TRAF2 and the activation JNK by IRE1α. 274 

In conclusion, we show that early and transient JNK activation produces 275 

antiapoptotic signals early in the ER stress response. Our work also identifies JNK-276 

dependent expression of cIAP1, cIAP2, XIAP, and BIRC6 as a mechanism through 277 

which JNK exerts its antiapoptotic functions. 278 

Materials and Methods 279 

Antibodies and reagents. Rabbit anti-caspase-3 (cat. no. 9665), rabbit anti-JNK (cat. 280 

no. 9258), rabbit anti-phospho-JNK (cat. no. 4668) antibodies, and human 281 

recombinant TNF-α (cat. no. 8902) were purchased from Cell Signaling Technology 282 

Inc. (Danvers, MA 01923, USA). The mouse anti-GAPDH antibody (cat. no. G8795) 283 

was purchased from Sigma-Aldrich (Gillingham, UK), the rabbit anti-TRAF2 284 

antibody (cat. no. sc-876) from Santa Cruz Biotechnology (Santa Cruz, CA, USA), 285 

and the mouse anti-emerin antibody (cat. no. ab49499) from Abcam (Cambridge, 286 

UK). siRNAs against TRAF2, IRE1α, and eGFP were obtained from Sigma-Aldrich. 287 

siRNA sequences are listed in Supplemental table 1. Tunicamycin was purchased 288 

from Merck Chemicals (Beeston, UK) and thapsigargin from Sigma-Aldrich 289 

(Gillingham, UK). 290 

Plasmids. Plasmids were maintained in Escherichia coli XL10-Gold cells (Agilent 291 

Technologies, Stockport, UK, cat. no. 200314). Standard protocols for plasmid 292 

constructions were used. Plasmid pMT2T-TRAF2∆1-86 was generated by amplifying 293 

a 1,327 bp fragment from pMT2T-HA-TRAF2 (Leonardi et al., 2000) with primers 294 
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H8215 and H8216. The PCR product was cleaved with ClaI and NotI and cloned into 295 

ClaI and NotI-digested pMT2T-HA-TRAF2 to yield pMT2T-TRAF2∆1-86. The 296 

TRAF2 region in pMT2T-TRAF2∆1-86 was confirmed by sequencing. 297 

Cell culture. Wild type (WT), ire1α-/- (Lee et al., 2002), jnk1-/- jnk2-/- (Tournier et al., 298 

2000), and traf2-/- (Yeh et al., 1997) MEFs were provided by R. J. Kaufman (Sanford 299 

Burnham Medical Research Institute, La Jolla, CA, USA), R. Davis (University of 300 

Massachusetts, Worchester, MA, USA), and T. Mak (University of Toronto, Ontario 301 

Cancer Institute, Toronto, Ontario, Canada). 3T3-F442A preadipocytes (Green and 302 

Kehinde, 1976), C2C12 myoblasts (Blau et al., 1985), and Hep G2 cells (Knowles et 303 

al., 1980) were obtained from C. Hutchison (Durham University), R. Bashir (Durham 304 

University), and A. Benham (Durham University), respectively. 305 

All cell lines were grown at 37 °C in an atmosphere of 95% (v/v) air, 5% (v/v) 306 

CO2, and 95% humidity. Hep G2 cells were grown in minimal essential medium 307 

(MEM) (Eagle, 1959) supplemented with 10% (v/v) foetal bovine serum (FBS) and 2 308 

mM L-glutamine. All other cell lines were grown in Dulbecco’s modified Eagle’s 309 

medium (DMEM) containing 4.5 g/l D-glucose (Morton, 1970; Rutzky and Pumper, 310 

1974), 10% (v/v) FBS, and 2 mM L-glutamine. The medium for ire1α-/- and 311 

corresponding WT MEFs was supplemented with 110 mg/l pyruvate (Lee et al., 312 

2002). 313 

To differentiate C2C12 cells 60-70% confluent cultures were shifted into low 314 

mitogen medium consisting of DMEM containing 4.5 g/l D-glucose, 2% (v/v) horse 315 

serum, and 2 mM L-glutamine and incubated for another 7-8 d with replacing the low 316 

mitogen medium every 2-3 d (Bains et al., 1984). Differentiation of C2C12 cells was 317 

assessed by microscopic inspection of cultures, staining of myotubes with rhodamine-318 

labelled phalloidin (Amato et al., 1983), and reverse transcriptase PCR for 319 
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transcription of the genes encoding S-adenosyl-homocysteine hydrolase (AHCY), 320 

myosin light chain 1 (MYL1), and troponin C (TNNC1). To differentiate 3T3-F442A 321 

fibroblasts into adipocytes cells were grown to confluency. 2 d postconfluency the 322 

medium was changed to DMEM containing 4.5 g/l D-glucose, 10% (v/v) FBS, 2 mM 323 

L-glutamine, 1 µg/ml insulin, 0.5 mM 1-methyl-3-isobutylxanthine, 0.25 µM 324 

dexamethasone. After 3 d the medium was changed to DMEM containing 4.5 g/l D-325 

glucose, 10% (v/v) FBS, 2 mM L-glutamine, and 1 µg/ml insulin. After another 2 d 326 

the medium was changed to DMEM containing 4.5 g/l D-glucose, 10% (v/v) FBS and 327 

2 mM L-glutamine. Cells were incubated another 7 d before the start of experiments 328 

(Rubin et al., 1978). Differentiation was assessed by Oil Red O staining (Hansen et 329 

al., 1999). ER stress was induced with 1 µM thapsigargin or 10 µg/ml tunicamycin. 330 

Hep G2 cells were transfected with plasmids using jetPRIME (Polyplus 331 

Transfection, Illkirch, France, cat. no. 114) and with siRNAs using INTERFERin 332 

(Polyplus Transfection, cat. no. 409) transfection reagents. Plasmids and siRNAs were 333 

transfected into all other cell lines by electroporation with a Neon electroporator (Life 334 

Technologies, Paisley, UK) using a 10 µl tip. Manufacturer-optimised electroporation 335 

conditions were used for 3T3-F442A preadipocytes and C2C12 myoblasts. MEFs were 336 

electroporated with one pulse of 1200 V and a pulse width of 30 ms. 10-20 nM of 337 

each siRNA were transfected. Transfection efficiencies were determined by 338 

transfection of 2 µg of pmaxGFP (Lonza Cologne AG, Germany) and detection of 339 

GFP-expressing cells with a Zeiss ApoTome fluorescence microscope. Transfection 340 

efficiencies were >80%. 24 h after transfection cells were analysed or time courses 341 

initiated. 342 

RNA extraction and reverse transcriptase (RT-) PCRs. RNA was extracted with 343 

the EZ-RNA total RNA isolation kit (Geneflow, Fradley, UK, cat. no. K1-0120) and 344 
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reverse transcribed with oligo-dT primers (Promega, Southampton, cat. no. C1101) 345 

and Superscript III reverse transcriptase (Life Technologies, cat. no. 18080044) as 346 

described previously (Cox et al., 2011). Protocols for detection of splicing of murine 347 

and human XBP1 have been described previously (Cox et al., 2011). Band intensities 348 

were quantitated using ImageJ (Collins, 2007) and the percentage of XBP1 splicing 349 

calculated by dividing the signal for spliced XBP1 mRNA by the sums of the signals 350 

for spliced and unspliced XBP1 mRNAs. Quantitative PCRs (qPCRs) were run on a 351 

Rotorgene 3000 (Qiagen, Crawley, UK). Amplicons were amplified with 0.5 µl 5 352 

U/µl GoTaq® Flexi DNA polymerase (Promega, cat. no. M8305), 2 mM MgCl2, 200 353 

µM dNTPs, and 1 µM of each primer and detected with a 1:2,500 fold dilution of a 354 

SybrGreen stock solution (Life Technologies, cat. no. S7563) or the GoTaq qPCR 355 

Master Mix from Promega (cat. no. A6002). Primers for qPCR are listed in 356 

Supplemental table 2. qPCR using GoTaq DNA polymerase were performed as 357 

follows. After denaturation for 2 min at 95°C samples underwent 40 cycles of 358 

denaturation at 95°C for 30 s, primer annealing at 58°C for 30 s, and primer extension 359 

at 72°C for 30 s. After denaturation at 95°C for 2 min qPCRs with the GoTaq qPCR 360 

Master mix were cycled 40 times at 95°C for 15 s, 60°C for 15 s, and 72°C for 15 s 361 

for cIAP1, cIAP2, XIAP, and BRUCE and 40 times at 95°C for 15 s, 60°C for 60 s for 362 

ACTB. Fluorescence data were acquired during the annealing or in case of qPCR 363 

amplification of ACTB with the GoTaq qPCR Master Mix during the first 30 s at 364 

60°C. Amplification of a single PCR product was confirmed by recording the melting 365 

curves after each PCR run. Average amplification efficiencies in the exponential 366 

phase were calculated using the comparative quantitation analysis in the Rotor Gene 367 

Q software and were between 0.6 and 0.7 for all qPCRs. Calculation of CT values and 368 

normalization to GAPDH, ACTA1, or ACTB mRNA levels as described by Pfaffl 369 
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(Pfaffl, 2001) taking the average amplification efficiencies into account. Results 370 

represent the average and standard error of three technical repeats. qPCR results were 371 

confirmed by at least one other biological replicate. qPCRs for murine AHCY, MYL1, 372 

and TNNC were standardised to GAPDH, for murine TRAF2 and TRB3 to ACTB, and 373 

for human and IRE1α and TRAF2 to ACTA1. 374 

Cell lysis and Western blotting. Cells were washed three times with ice-cold 375 

phosphate-buffered saline (PBS, 4.3 mM Na2HPO4, 1.47 mM KH2PO4, 27 mM KCl, 376 

137 mM NaCl, pH 7.4) and lysed in RIPA buffer [50 mM Tris-HCl, pH 8.0, 150 mM 377 

NaCl, 0.5% (w/v) sodium deoxycholate, 0.1% (v/v) Triton X-100, 0.1% (w/v) SDS] 378 

containing Roche complete protease inhibitors (Roche Applied Science, Burgess Hill, 379 

UK, cat. no. 11836153001) as described before (Cox et al., 2011). 380 

For isolation of cytosolic and nuclear fractions cells were washed two times with 381 

ice-cold PBS and gently lysed in 0.32 M sucrose, 10 mM Tris HCl pH 8.0, 3 mM 382 

CaCl2, 2 mM Mg(OAc)2, 0.1 mM EDTA, 0.5% (v/v) NP-40, 1 mM DTT, 0.5 mM 383 

PMSF. Nuclei were collected by centrifugation for 5 min at 2,400 g, 4°C. The nuclear 384 

pellet were resuspended in 0.32 M sucrose, 10 mM Tris HCl pH 8.0, 3 mM CaCl2, 2 385 

mM Mg(OAc)2, 0.1 mM EDTA, 1 mM DTT, 0.5 mM PMSF by flipping the 386 

microcentrifuge tube. The nuclei were collected by centrifugation for 5 min at 2,400 387 

g, 4°C. After aspiration of all of the wash buffer the nuclei were resuspended in 30 µl 388 

low salt buffer [20 mM HEPES (pH 7.9), 1.5 mM MgCl2, 20 mM KCl, 0.2 mM 389 

EDTA, 25% (v/v) glycerol, 0.5 mM DTT, 0.5 mM PMSF] by flipping the 390 

microcentrifuge tube. One volume of high salt buffer [20 mM HEPES (pH 7.9), 1.5 391 

mM MgCl2, 800 mM KCl, 0.2 mM EDTA, 25% glycerol (v/v), 1% NP-40, 0.5 mM 392 

DTT, 0.5 mM PMSF] was added drop wise while continuously mixing the contents of 393 

the microcentrifuge tube by flipping. The tubes were then incubated for 45 min at 4°C 394 
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on an end-over-end rotator. The tubes were centrifuged at 14,000 g for 15 min at 4°C 395 

and the supernatant transferred into a fresh microcentrifuge tube to obtain the nuclear 396 

extract. 397 

Proteins were separated by SDS-PAGE and transferred to polyvinylidene 398 

difluoride (PVDF) membranes (Amersham HyBondTM-P, pore size 0.45 μm, GE 399 

Healthcare, Little Chalfont, UK, cat. no. RPN303F) by semi-dry electrotransfer in 0.1 400 

M Tris, 0.192 M glycine, and 5% (v/v) methanol at 2 mA/cm2 for 60-75 min. 401 

Membranes were then blocked for 1 h in 5% (w/v) skimmed milk powder in TBST 402 

[20 mM Tris-HCl, pH 7.6, 137 mM NaCl, and 0.1% (v/v) Tween-20] for antibodies 403 

against non-phosphorylated proteins and 5% bovine serum albumin (BSA) in TBST 404 

for antibodies against phosphorylated proteins and then incubated overnight at 4°C 405 

with the primary antibody diluted in blocking solution. Blots were washed three times 406 

with TBST and then probed with secondary antibody for 1 hour at room temperature. 407 

The anti-JNK, anti-phospho-JNK, and anti-TRAF2 antibodies were used at a 1:1,000 408 

dilution in TBST + 5% (w/v) BSA and the anti-caspase 3 antibody at a dilution of 409 

1:1,000 in TBST + 5% (w/v) skimmed milk powder and incubated with the 410 

membranes over night at 4°C with gentle agitation. Membranes were then developed 411 

with goat anti-rabbit-IgG (H+L)-horseradish peroxidase (HRP)-conjugated secondary 412 

antibody (Cell Signaling, cat. no. 7074S) at a 1:1,000 dilution in TBST + 5% (w/v) 413 

skimmed milk powder for 1 h at room temperature. The mouse anti-GAPDH antibody 414 

was used at a 1:30,000 dilution in TBST + 5% (w/v) skimmed milk powder over night 415 

at 4°C with gentle agitation and developed with goat anti-mouse IgG (H+L)-HRP-416 

conjugated secondary antibody (Thermo Scientific, cat, no. 31432) at a 1:20,000 417 

dilution in TBST 5% (w/v) skimmed milk powder for 1 h at room temperature. For 418 

signal detection Pierce ECL Western Blotting Substrate (cat. no. 32209) or Pierce 419 
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ECL Plus Western Blotting Substrate (cat. no. 32132) from Thermo Fisher Scientific 420 

(Loughborough, UK) were used. Blots were exposed to CL-X PosureTM film (Thermo 421 

Fisher Scientific, Loughborough, UK, cat. no. 34091). Exposure times were adjusted 422 

on the basis of previous exposures to obtain exposures in the linear range of the film. 423 

Signals were quantified using ImageJ (Collins, 2007). To reprobe blots for detection 424 

of nonphosphorylated proteins, membranes were stripped using Restore Western Blot 425 

Stripping Buffer (Thermo Fisher Scientific, Loughborough, UK, cat. no. 21059) and 426 

blocked with 5% (w/v) skimmed milk powder in TBST. 427 

Fluorescence microscopy. For confocal microscopy cells were grown on lumox 428 

dishes (Sarstedt, Leichester, UK, cat. no. 94.6077.331). After incubation with 1 µM 429 

thapsigargin cells were incubated with 2 µg/ml JC-1 (Life Technologies, cat. no. 430 

T3168) at 37°C for 20 min (Reers et al., 1991; Smiley et al., 1991; Cossarizza et al., 431 

1993; Ankarcrona et al., 1995). The cells were washed twice with PBS before 432 

addition of fresh medium for live cell imaging on a Leica TCS SP5 II confocal 433 

microscope (Leica Microsystems, Mannheim, Germany). JC-1 fluorescence was 434 

excited at 488 nm with an argon laser set at 22% of its maximum power. Green 435 

fluorescence between 515-545 nm was collected with a photomultiplier tube and 436 

orange fluorescence between 590-620 nm with a HyD 5 detector. To determine the 437 

percentage of dead cells, cells showing fluorescence emission between 515-545 nm 438 

only were counted as dead, while cells showing punctuate fluorescence emission 439 

between 590-620 nm were counted as alive. 440 

Error calculations. Experimental data are presented as the average and its standard 441 

error. Errors were propagated using the law of error propagation for random, 442 

independent errors (Ku, 1966). 443 
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Figure Legends 757 

Figure 1. Transient JNK activation precedes activation of XBP1 splicing in MEFs. 758 

(A) Kinetics of JNK activation and (B) XBP1 splicing in MEFs exposed to 1 µM 759 

thapsigargin. (C) Quantitation of the JNK phosphorylation (white circles, solid line) 760 

from panel (A) and XBP1 splicing (black circles, dashed line) from panel (B). (D) 761 
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Kinetics of JNK activation and (E) XBP1 splicing in MEFs exposed to 10 µg/ml 762 

tunicamycin. (F) Quantitation of the JNK phosphorylation (white circles, solid line) 763 

from panel (D) and XBP1 splicing (black circles, dashed line) from panel (E). 764 

Figure 2. Kinetics of JNK activation and of XBP1 splicing in response to acute ER 765 

stress in Hep G2 cells. (A) Western blots for phospho-JNK (p-JNK) and total JNK 766 

(JNK) of Hep G2 cells exposed to 1 µM thapsigargin for the indicated times. (B) 767 

Detection of XBP1 splicing by reverse transcriptase PCR. Hep G2 cells were exposed 768 

to 1 µM thapsigargin for the indicated times. (C) Quantitation of the JNK 769 

phosphorylation (white circles, solid line) from panel (A) and XBP1 splicing (black 770 

circles, dashed line) from panel (B). 771 

Figure 3. IRE1α and TRAF2 are required for the transient JNK activation in MEFs. 772 

(A) Kinetics of JNK activation and (B) XBP1 splicing in ire1α-/- MEFs exposed to 1 773 

µM thapsigargin. (C) Quantitation of the JNK phosphorylation (white circles, solid 774 

line) from panel (A) and XBP1 splicing (black circles, dashed line) from panel (B). 775 

(D) Kinetics of JNK activation and (E) XBP1 splicing in traf2-/- MEFs exposed to 1 776 

µM thapsigargin. (F) Quantitation of the JNK phosphorylation (white circles, solid 777 

line) from panel (D) and XBP1 splicing (black circles, dashed line) from panel (E). 778 

Figure 4. JNK is required for transcriptional induction of antiapoptotic genes early in 779 

the ER stress response. (A) cIAP1 (BIRC2), (B) cIAP2 (BIRC3), (C) XIAP (BIRC4), 780 

and (D) BIRC6 steady-state mRNA levels were quantitated by RT-qPCR in WT and 781 

jnk1-/- jnk2-/- MEFs exposed to 1 µM thapsigargin for the indicated times. 782 

Figure 5. JNK inhibits cell death early in the ER stress response. (A) WT and jnk1-/- 783 

jnk2-/- were treated with 1 µM thapsigargin (Tg) for 4 h and stained with JC-1 as 784 

described in Materials and Methods. Scale bar – 10 µm. (B) Quantitation of the 785 
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confocal fluorescence microscopy data shown in panel A. At least 600 cells were 786 

counted for each sample. 787 



Figure 1,  Brown et al. 

Figure 1. Transient JNK activation precedes activation of XBP1 splicing in MEFs. (A) Kinetics of 
JNK activation and (B) XBP1 splicing in MEFs exposed to 1 µM thapsigargin. (C) Quantitation of 
the JNK phosphorylation (white circles, solid line) from panel (A) and XBP1 splicing (black 
circles, dashed line) from panel (B). (D) Kinetics of JNK activation and (E) XBP1 splicing in 
MEFs exposed to 10 µg/ml tunicamycin. (F) Quantitation of the JNK phosphorylation (white 
circles, solid line) from panel (D) and XBP1 splicing (black circles, dashed line) from panel (E). 
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Figure 2. Kinetics of JNK activation and of XBP1 splicing in response to acute ER stress in Hep 
G2 cells. (A) Western blots for phospho-JNK (p-JNK) and total JNK (JNK) of Hep G2 cells 
exposed to 1 µM thapsigargin for the indicated times. (B) Detection of XBP1 splicing by reverse 
transcriptase PCR. Hep G2 cells were exposed to 1 µM thapsigargin for the indicated times. (C) 
Quantitation of the JNK phosphorylation (white circles, solid line) from panel (A) and XBP1 
splicing (black circles, dashed line) from panel (B). 

Figure 2,  Brown et al. 
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Figure 3. IRE1α and TRAF2 are required for the transient JNK activation in MEFs. (A) Kinetics 
of JNK activation and (B) XBP1 splicing in ire1α-/- MEFs exposed to 1 µM thapsigargin. (C) 
Quantitation of the JNK phosphorylation (white circles, solid line) from panel (A) and XBP1 
splicing (black circles, dashed line) from panel (B). (D) Kinetics of JNK activation and (E) XBP1 
splicing in traf2-/- MEFs exposed to 1 µM thapsigargin. (F) Quantitation of the JNK 
phosphorylation (white circles, solid line) from panel (D) and XBP1 splicing (black circles, dashed 
line) from panel (E). 
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Figure 4, Brown et al. 

Figure 4. JNK is required for transcriptional induction of antiapoptotic genes early in the ER 
stress response. (A) cIAP1 (BIRC2), (B) cIAP2 (BIRC3), (C) XIAP (BIRC4), and (D) BIRC6 
(BRUCE, APOLLON) steady-state mRNA levels were quantitated by RT-qPCR in WT and jnk1-/- 
jnk2-/- MEFs exposed to 1 µM thapsigargin for the indicated times. 
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Figure 5, Brown et al. 

Figure 5. JNK inhibits cell death early in the ER stress response. (A) WT and jnk1-/- jnk2-/- were 
treated with 1 µM thapsigargin (Tg) for 4 h and stained with JC-1 as described in Materials and 
Methods. Scale bar – 10 µm. (B) Quantitation of the confocal fluorescence microscopy data shown 
in panel A. At least 600 cells were counted for each sample. 
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Supplemental tables 1 

Supplemental table 1. siRNAs. 2 

Species Gene # Sequence 

Homo sapiens IRE1α 1 GCGUAAAUUCAGGACCUAUdTdT 

H. sapiens IRE1α 2 GAUAGUCUCUGCCCAUCAAdTdT 

H. sapiens IRE1α 3 CAUUGCACGUGAAUUGAUAdTdT 

H. sapiens TRAF2 1 CACUCAGAGUGGGAGCACAdTdT 

H. sapiens TRAF2 2 GUCAAGACUUGUGGCAAGUdTdT 

H. sapiens TRAF2 3 GCCUUCAGGCCCGACGUGAdTdT 

Mus musculus TRAF2 1 GAAUUCCUAUGUGCGGGAUdTdT 

M. musculus TRAF2 2 GUUAGAGCAUGCAGCAAAUdTdT 

M. musculus TRAF2 3 CTATGAAGGCCTGTATGAAdTdT 

Aequora victora eGFP  GCAAGCUGACCCUGAAGUUCAU 

 3 

  4 



 2 
 

Supplemental table 2. Oligodeoxynucleotides. Restriction sites are underlined. The start 5 

codon for TRAF2∆1-86 is shown in bold. 6 

Name Purpose Sequence 

Oligodeoxynucleotides for H. sapiens genes 

H8197 TRAF2 RT-qPCR for siRNA #3, 

reverse 

AATGGCCTTGATGAAGATGG 

H8215 TRAF2∆1-86 construction, 

forward primer 

TGCATCGATATGAGCAGTTCGGCCTTCCCA 

H8216 TRAF2∆1-86 construction, reverse 

primer 

CGAGCGGCCGCCACTGTGCTGGATATCTGC 

H8280 TRAF2 RT-qPCR for siRNA #1, 

forward 

CTTAGCCAAGGGCTGTGGT 

H8281 TRAF2 RT-qPCR for siRNA #1, 

reverse 

AGGAATGCTCCCTTCTCTCC 

H8282 TRAF2 RT-qPCR for siRNA #2, 

forward 

GTCCGCCTTGGTGAAAAG 

H8283 TRAF2 RT-qPCR for siRNA #2, 

reverse 

TCTCACCCTCTACCGTCTCG 

H8284 TRAF2 RT-qPCR for siRNA #3, 

forward 

ACACCAGCAGGTACGGCTAC 

H8287 ACTA1 RT-qPCR, forward CTGAGCGTGGCTACTCCTTC 

H8288 ACTA1 RT-qPCR, reverse GGCATACAGGTCCTTCCTGA 

H8289 XBP1 PCR, forward GAGTTAAGACAGCGCTTGGG 

H8290 XBP1 PCR, reverse ACTGGGTCCAAGTTGTCCAG 

H8993 IRE1α RT-qPCR, forward TGGGACAGCTAGGCTGAGAT 
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H8994 IRE1α RT-qPCR, reverse TGGGCACATCTGTGATCAAT 

Oligodeoxynucleotides for M. musculus genes 

H7961 XBP1 PCR, forward GATCCTGACGAGGTTCCAGA 

H7962 XBP1 PCR, reverse ACAGGGTCCAACTTGTCCAG 

H7994 ACTB PCR, forward AGCCATGTACGTAGCCATCC 

H7995 ACTB PCR, reverse CTCTCAGCTGTGGTGGTGAA 

H8237 TRAF2 RT-qPCR for siRNA #1, 

forward 

GAACTCATCTGTCTCTCTTCTTCG 

H8238 TRAF2 RT-qPCR for siRNA #1, 

reverse 

AGCAGGGGTGGCTAGAGTCC 

H8239 TRAF2 RT-qPCR for siRNA #2, 

forward 

CTGCAGAGCACCCTGTAGC 

H8240 TRAF2 RT-qPCR for siRNA #2, 

reverse 

CCTGCAGGTTCTCAGTCTCC 

H8269 TRAF2 RT-qPCR for siRNA #3, 

forward 

ACTGCTCCTTCTGCCTGACC 

H8270 TRAF2 RT-qPCR for siRNA #3, 

reverse 

TTCTTTCAAGGTCCCCTTCC 

H8271 GAPDH RT-qPCR, forward TCGTCCCGTAGACAAAATGG 

H8272 GAPDH RT-qPCR, reverse CTCCTGGAAGATGGTGATGG 

H8322 MYL1 3f RT-qPCR, forward TGCTGACCAGATTGCCGACTTCA 

H8323 MYL1 3f RT-qPCR, reverse CCCGGAGGACGTCTCCCACC 

H8326 AHCY RT-qPCR, forward GGTGCTGAGGTGCGGTGGTC 

H8327 AHCY RT-qPCR, reverse GGGTCCGTCCTTGAAGTGCAGC 

H8328 TNNC1 RT-qPCR, forward GCACCAAGGAGCTGGGCAAGG 



 4 
 

H8329 TNNC1 RT-qPCR, reverse TGTGCCACTGCCATCCTCGT 

H9054 cIAP1 (BIRC2) RT-qPCR, 

forward 

TAGTGTTCCTGTTCAGCCCG 

H9055 cIAP1 (BIRC2) RT-qPCR, reverse TCCCAACATCTCAAGCCACC 

H9056 cIAP2 (BIRC3) RT-qPCR, 

forward 

ACGATTTAAAGGTATCGCGCC 

H9057 cIAP2(BIRC3) RT-qPCR, reverse CTGATACCGCAGCCCACTTC 

H9076 XIAP (BIRC4) RT-qPCR, forward ACGGAGGATGAGTCAAGTCAAA 

H9077 XIAP (BIRC4) RT-qPCR, reverse AAGTGACCAGATGTCCACAAGG 

H9080 BRUCE (BIRC6) RT-qPCR, 

forward 

CCAGTGTGAGGAGTGGATTGC 

H9081 BRUCE (BIRC6) RT-qPCR, 

reverse 

CCTCAATGTCCGGATCTAAGCC 

 7 

  8 
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Supplemental figure legends 9 

Figure S1. Characterization of in vitro differentiation of 3T3-F442 adipocytes and C2C12 10 

myotubes. (A) Oil red O staining of lipid droplets in 3T3-F442A cells (i) before and (ii) 12 d 11 

after differentiation. Magnification: 10 x. (B) mRNA levels for the muscle differentiation 12 

markers AHCY encoding S-adenosyl-homocysteine hydrolase, MYL1 encoding myosin light 13 

chain 1, and TNNC1 encoding troponin C in differentiated C2C12 cells. The fold changes in 14 

mRNA abundance relative to undifferentiated cells (day 0) are shown. 15 

Figure S2. Kinetics of JNK activation and of XBP1 splicing in response to acute ER stress in 16 

in vitro differentiated 3T3-F442A adipocytes. (A) Western blots for phospho-JNK (p-JNK) 17 

and total JNK (JNK) and (B) XBP1 splicing in 3T3-F442A cells exposed to 1 µM 18 

thapsigargin for the indicated times. (C) Quantitation of the JNK phosphorylation (white 19 

circles, solid line) from panel (A) and XBP1 splicing (black circles, dashed line) from panel 20 

(B). 21 

Figure S3. Kinetics of JNK activation and of XBP1 splicing in response to acute ER stress in 22 

in vitro differentiated C2C12 myotubes. (A) Western blots for phospho-JNK (p-JNK) and total 23 

JNK (JNK) and (B) XBP1 splicing in C2C12 cells exposed to 1 µM thapsigargin for the 24 

indicated times. (C) Quantitation of the JNK phosphorylation (white circles, solid line) from 25 

panel (A) and XBP1 splicing (black circles, dashed line) from panel (B). 26 

Figure S4. Acute JNK activation is IRE1α-dependent in Hep G2 cells. (A) Hep G2 cells 27 

were transfected with 10 nM of the indicated siRNAs. 48 h and 72 h after transfection IRE1α 28 

mRNA was quantitated by RT-qPCR (B) siRNA knock-down of IRE1α impairs ER stress-29 

dependent activation of JNK in Hep G2 cells. 72 h after transfection with the indicated 30 

siRNAs Hep G2 cells were stimulated for the indicated times with 1 µM thapsigargin. Cell 31 

lysates were analysed by Western blotting. (C) Quantitation of JNK phosphorylation in Hep 32 

G2 cells treated for the indicated times with 1 µM thapsigargin 72 h after transfection with 33 
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the indicated siRNAs. The average and standard error from two independent experiments are 34 

shown. 35 

Figure S5. Acute JNK activation in Hep G2 cells is TRAF2 dependent. (A) siRNA knock-36 

down of human TRAF2 in Hep G2 cells. Relative TRAF2 mRNA abundance (to ACTA1) was 37 

measured by RT-qPCR 24 or 48 h after transfection of Hep G2 cells with the indicated 38 

siRNAs. (B) Knock-down of TRAF2 expression in Hep G2 cells interferes with ER stress-39 

induced JNK phosphorylation. Hep G2 cells were treated with 1 µM thapsigargin for the 40 

times indicated before protein extraction for Western blotting with antibodies against p-JNK, 41 

total JNK, TRAF2, and GAPDH. (C) Quantitation of the JNK phosphorylation signals in the 42 

Western blots of panel (B). 43 

Figure S6. Acute JNK activation is TRAF2-dependent in 3T3-F442A preadipocytes. (A) 44 

JNK phosphorylation and (B) XBP1 splicing in 3T3-F442A preadipocytes transfected with a 45 

siRNA against eGFP. (C) Quantitation of the JNK phosphorylation (white circles, solid line) 46 

from panel (A) and XBP1 splicing (black circles, dashed line) from panel (B). (D) TRAF2 47 

mRNA levels measured by real-time PCR in 3T3-F442A preadipocytes after transfection 48 

with the indicated siRNAs. (E) TRAF2 protein levels relative to GAPDH in 3T3-F442A 49 

preadipocytes transfected with the indicated siRNAs against eGFP or murine TRAF2. Cells 50 

were treated with 20 ng/ml TNF-α for 20 min where indicated. (F) JNK phosphorylation and 51 

(G) XBP1 splicing in 3T3-F442A preadipocytes transfected with murine TRAF2 siRNA #2. 52 

(H) Quantitation of the JNK phosphorylation (white circles, solid line) from panel (F) and 53 

XBP1 splicing (black circles, dashed line) from panel (G). 54 

Figure S7. Dominant negative TRAF2 blocks JNK activation by acute ER stress in 3T3-55 

F442A preadipocytes. (A) Domain structures of WT and dominant-negative TRAF2 56 

(TRAF2∆1-86). (B) Western blots for phospho-JNK, JNK, and TRAF2 in cell lysates 57 

prepared from WT MEFs transiently transfected with 8 µg pMT2T-TRAF2∆1-86 and 58 
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stimulated with 50 ng/ml TNF-α for 20 min. (C) JNK phosphorylation in 3T3-F442A 59 

preadipocytes transfected with pMT2T-TRAF2∆1-86 to express dominant-negative 60 

TRAF2∆1-86. (D) Quantitation of the JNK phosphorylation signals in the Western blots of 61 

panel (C). 62 

Figure S8. Acute JNK activation is TRAF2-dependent in C2C12 myoblasts. (A) JNK 63 

phosphorylation and (B) XBP1 splicing in C2C12 myoblasts transfected with control siRNA 64 

against eGFP. (C) Quantitation of the JNK phosphorylation (white circles, solid line) from 65 

panel (A) and XBP1 splicing (black circles, dashed line) from panel (B). (D) TRAF2 mRNA 66 

levels measured by real-time PCR in C2C12 myoblasts after transfection with the indicated 67 

siRNAs. (E) JNK phosphorylation and (F) XBP1 splicing in C2C12 myoblasts transfected 68 

with murine TRAF2 siRNA #2. (G) Quantitation of the JNK phosphorylation (white circles, 69 

solid line) from panel (E) and XBP1 splicing (black circles, dashed line) from panel (F). 70 

Figure S9. Dominant negative TRAF2 blocks JNK activation by acute ER stress in C2C12 71 

myotubes. (A) JNK phosphorylation in C2C12 myoblasts transfected with pMT2T-TRAF2∆1-72 

86 to express dominant-negative TRAF2∆1-86. (B) Quantitation of the JNK phosphorylation 73 

signals. 74 

Figure S10. Immediately activated JNK localizes to the cytosol during ER stress. Serum-75 

starved Hep G2 cells were treated for 45 min with 1 µM thapsigargin or left untreated before 76 

isolation of the cytosolic and nuclear fractions. The cytosolic (C) and nuclear (N) fractions 77 

were analysed by Western blotting. The asterisk (*) indicates a non-specific band recognised 78 

by the anti-emerin antibody. Emerin was used as a nuclear marker and GAPDH as a 79 

cytoplasmic marker. 80 
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Figure S2. Kinetics of JNK activation and of XBP1 splicing in response to acute ER stress in in 
vitro differentiated 3T3-F442A adipocytes. (A) Western blots for phospho-JNK (p-JNK) and total 
JNK (JNK) and (B) XBP1 splicing in 3T3-F442A cells exposed to 1 µM thapsigargin for the 
indicated times. (C) Quantitation of the JNK phosphorylation (white circles, solid line) from panel 
(A) and XBP1 splicing (black circles, dashed line) from panel (B). 



Figure S3, Brown et al. 

A 0 10 20 30 45 60 120 240 360 480 

p-JNK 

JNK 

Time [min] 

1.0 2.4 2.6 2.6 3.8 3.3 1.9 1.8 1.4 1.4 Rel. p-JNK 

XBP1 

ACTB 

% splicing 2 3 18 50 59 58 70 86 89 89 

B 0 10 20 30 45 60 120 240 360 480 

Time [min] 

u s 

C 

Figure S3. Kinetics of JNK activation and of XBP1 splicing in response to acute ER stress in in vitro 
differentiated C2C12 myotubes. (A) Western blots for phospho-JNK (p-JNK) and total JNK (JNK) and 
(B) XBP1 splicing in C2C12 cells exposed to 1 µM thapsigargin for the indicated times. (C) 
Quantitation of the JNK phosphorylation (white circles, solid line) from panel (A) and XBP1 splicing 
(black circles, dashed line) from panel (B). 
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Figure S4. Acute JNK activation is IRE1α-dependent in Hep G2 cells. (A) Hep G2 cells were 
transfected with 10 nM of the indicated siRNAs. 48 h and 72 h after transfection IRE1α mRNA 
was quantitated by quantitative reverse transcriptase (qRT)-PCR located 3’ to the siRNA annealing 
sequences with primers H8993 and H8994. Similar knock-down efficiencies were obtained with a 
qRT-PCR located 5’ to the siRNA annealing sequences (Fig. S4). (B) siRNA knock-down of IRE1α 
impairs ER stress-dependent activation of JNK in Hep G2 cells. 72 h after transfection with the 
indicated siRNAs Hep G2 cells were stimulated for the indicated times with 1 µM thapsigargin. 
Cell lysates were analyzed by Western blotting. (C) Quantitation of JNK phosphorylation in Hep 
G2 cells treated for the indicated times with 1 µM thapsigargin 72 h after transfection with the 
indicated siRNAs. The average and standard error from two independent experiments are shown. 
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Figure S5. Acute JNK activation in Hep G2 cells is TRAF2 dependent. (A) siRNA knock-down of 
human TRAF2 in Hep G2 cells. Relative TRAF2 mRNA abundance (to ACTA1) was measured by 
RT-qPCR 24 or 48 h after transfection of Hep G2 cells with the indicated siRNAs. (B) Knock-
down of TRAF2 expression in Hep G2 cells interferes with ER stress-induced JNK 
phosphorylation. Hep G2 cells were treated with 1 µM thapsigargin for the times indicated before 
protein extraction for Western blotting with antibodies against p-JNK, total JNK, TRAF2, and 
GAPDH. (C) Quantitation of the JNK phosphorylation signals in the Western blots of panel (B). 
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Figure S6, Brown et al.  

Figure S6. Acute JNK activation is TRAF2-dependent in 3T3-F442A preadipocytes. (A) JNK 
phosphorylation and (B) XBP1 splicing in 3T3-F442A preadipocytes transfected with a siRNA 
against eGFP. (C) Quantitation of the JNK phosphorylation (white circles, solid line) from panel 
(A) and XBP1 splicing (black circles, dashed line) from panel (B). (D) TRAF2 mRNA levels 
measured by real-time PCR in 3T3-F442A preadipocytes after transfection with the indicated 
siRNAs. (E) TRAF2 protein levels relative to GAPDH in 3T3-F442A preadipocytes transfected 
with the indicated siRNAs against eGFP or murine TRAF2. Cell were treated with 20 ng/ml TNF-
α for 20 min where indicated. (F) JNK phosphorylation and (G) XBP1 splicing in 3T3-F442A 
preadipocytes transfected with murine TRAF2 siRNA #2. (H) Quantitation of the JNK 
phosphorylation (white circles, solid line) from panel (F) and XBP1 splicing (black circles, dashed 
line) from panel (G). 
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Figure S7, Brown et al. 

Figure S7. Dominant negative TRAF2 blocks JNK activation by acute ER stress in 3T3-F442A 
preadipocytes. (A) Domain structures of WT and dominant-negative TRAF2 (TRAF2∆1-86). (B) 
Western blots for phospho-JNK, JNK, and TRAF2 in cell lysates prepared from WT MEFs transiently 
transfected with 8 µg pMT2T-TRAF2∆1-86 and stimulated with 50 ng/ml TNF-α for 20 min. (C) JNK 
phosphorylation in 3T3-F442A preadipocytes transfected with pMT2T-TRAF2∆1-86 to express 
dominant-negative TRAF2∆1-86. (D) Quantitation of the JNK phosphorylation signals in the Western 
blots of panel (C). 



Figure S8, Brown et al. 

Figure S8. Acute JNK activation is TRAF2-dependent in C2C12 myoblasts. (A) JNK 
phosphorylation and (B) XBP1 splicing in C2C12 myoblasts transfected with control siRNA against 
eGFP. (C) Quantitation of the JNK phosphorylation (white circles, solid line) from panel (A) and 
XBP1 splicing (black circles, dashed line) from panel (B). (D) TRAF2 mRNA levels measured by 
real-time PCR in C2C12 myoblasts after transfection with the indicated siRNAs. (E) JNK 
phosphorylation and (F) XBP1 splicing in C2C12 myoblasts transfected with murine TRAF2 siRNA 
#2. (G) Quantitation of the JNK phosphorylation (white circles, solid line) from panel (E) and 
XBP1 splicing (black circles, dashed line) from panel (F). 
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Figure S9. Dominant negative TRAF2 blocks JNK activation by acute ER stress in C2C12 myotubes. 
(A) JNK phosphorylation in C2C12 myoblasts transfected with pMT2T-TRAF2∆1-86 to express 
dominant-negative TRAF2∆1-86. (B) Quantitation of the JNK phosphorylation signals. 

Figure S9, Brown et al. 
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Figure S10. Transiently activated JNK localizes to the cytosol during ER stress. Serum-starved Hep 
G2 cells were treated for 45 min with 1 µM thapsigargin or left untreated before isolation of the 
cytosolic and nuclear fractions. The cytosolic (C) and nuclear (N) fractions were analyzed by Western 
blotting. The asterisk (*) indicates a non-specific band recognized by the anti-emerin antibody. 
Emerin was used as a nuclear marker and GAPDH as a cytoplasmic marker.  
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Abstract 21 

Endoplasmic reticulum (ER) stress has been proposed to cause insulin resistance 22 

through two signaling mechanisms, activation of JNK by the ER stress sensor IRE1α 23 

and transcriptional induction of the pseudokinase TRB3 downstream of the ER stress 24 

sensor PERK. Serine 307 phosphorylation of IRS1 by JNK and formation of a 25 

complex between AKT and TRB3 have been implicated in inhibition of insulin action 26 

in ER-stressed cells. In contrast to these studies we find that short periods of ER stress 27 

do not inhibit activation of AKT by insulin in adipocytes, hepatoma cells, myoblasts, 28 

or mouse embryonic fibroblasts, while inducing TRB3 and transiently activating JNK. 29 

Short term ER stress did not inhibit insulin-stimulated phosphorylation of AKT at 30 

S473 or T308, phosphorylation of glycogen synthase kinase 3α/β or IRS1 tyrosine 31 

phosphorylation and did also not induce IRS1 S307 phosphorylation in hepatoma 32 

cells or adipocytes. Elevated IRS1 S307 phosphorylation in ER-stressed myotubes did 33 

not inhibit IRS1 tyrosine phosphorylation by insulin. Prolonged ER stress extending 34 

over several half-lives of the insulin receptor at the plasma membrane, however, 35 

caused profound insulin resistance. Our data suggest that insulin resistance develops 36 

in ER-stressed cells as a consequence of depletion of insulin receptors at the plasma 37 

membrane. 38 

Introduction 39 

Obesity is a major risk factor for development of insulin resistance and type 2 40 

diabetes. Obesity is associated with markers of endoplasmic reticulum (ER) stress in 41 

adipose tissue, hypothalamus, and liver of obese mice (1-4), renal cells of obese 42 

juvenile sheep (5), and in adipose tissue of obese subjects (6, 7). Weight loss reduces 43 

markers of ER stress in adipose tissue and liver (8). The ER is an organelle 44 

responsible for the folding and initial posttranslational modification of nearly all 45 
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secretory and transmembrane proteins, Ca2+ storage, and lipid and sterol synthesis. 46 

Perturbation of any of these functions of the ER activates a signaling network termed 47 

the unfolded protein response (UPR). The UPR attempts to reestablish homeostasis of 48 

the ER through altering several aspects of cellular physiology. The UPR activates 49 

expression of genes encoding ER resident molecular chaperones, protein foldases, and 50 

phospholipid biosynthetic genes to increase the protein folding capacity of the ER and 51 

to dilute its unfolded protein content. Attenuation of general translation, elevation of 52 

ER-associated protein degradation, degradation of mRNAs encoding secretory cargo 53 

by IRE1α (9, 10), and stimulation of autophagy decreases the unfolded protein load of 54 

the ER. The UPR also activates inflammatory signaling pathways which have been 55 

proposed to contribute to the onset of insulin resistance in obesity. 56 

Insulin stimulates glucose uptake, cell proliferation, and protein synthesis (11). 57 

Binding of insulin to the insulin receptor activates the protein tyrosine kinase domain 58 

of the insulin receptor (12-14), leading to tyrosine autophosphorylation of the insulin 59 

receptor (15-17) and tyrosine phosphorylation of insulin receptor substrate (IRS)-1, -60 

2, -3, and -4, and of several Shc proteins (18, 19). Tyrosine phosphorylated IRS and 61 

Shc proteins are anchoring points for proteins containing Src-homology-2 (SH-2) 62 

domains (20), which, for example, can be found in the regulatory subunits of 63 

phosphatidylinositol (PI) 3-kinase (21). Activated PI 3-kinase catalyzes the formation 64 

of PI-3,4-bisphosphate and PI-3,4,5-trisphosphate (22) and recruitment of 65 

phosphoinositide-dependent kinases (PDK) 1 and 2 and several protein kinase B 66 

(PKB/AKT) isoforms to the plasma membrane (22). When co-localized at the plasma 67 

membrane, PDKs phosphorylate and activate AKT1, -2, and -3. Activated AKT 68 

controls many cellular events, including glucose transport, protein and glycogen 69 

synthesis, cell proliferation and survival by phosphorylation of numerous substrates 70 
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(23-26). Insulin stimulates protein synthesis via activation of the protein 71 

serine/threonine kinase mTOR by AKT and PDKs (27, 28). mTOR phosphorylates 72 

the serine-threonine protein kinase p70S6K and an inhibitor of translation initiation, 73 

eIF-4E binding protein (29-31), to stimulate protein synthesis. Activation of RAS 74 

through SHC and IRS1 proteins, RAF, and the mitogen-activated protein kinases 75 

ERK1 and ERK2 also mediates the proliferative and mitogenic effects of insulin (32-76 

36). 77 

A major mechanism underlying insulin resistance is inhibition of the insulin 78 

signaling pathway by serine phosphorylation of IRS proteins, for example S307 in 79 

murine or S312 in human IRS1. IRS serine phosphorylation inhibits recruitment of PI 80 

3-kinase to IRS proteins (37-43), inhibits tyrosine phosphorylation of IRS proteins by 81 

the insulin receptor (1, 2), and promotes degradation of IRS1 (44). Several protein 82 

kinases have been implicated in serine phosphorylation of IRS proteins including 83 

p70S6K (40, 45, 46), IKK (47), and JNK (48-52). JNK increases IRS1 S307 84 

phosphorylation in response to free fatty acids, stress, and inflammation (49, 53-58). 85 

IKK also inhibits insulin signaling in response to free fatty acids and inflammation 86 

(50, 59-61). Inhibition of insulin signaling by p70S6K may represent a negative 87 

feedback loop to fine tune the signaling outputs of the insulin signaling pathway (40) 88 

and contributes to tumor necrosis factor (TNF)-α induced insulin resistance (62). 89 

Other protein kinases such as ERK (63-65), PKCζ (66-68), PKCθ (50, 69), AKT (70), 90 

glycogen synthase kinase (GSK) 3 (71-73), IRAK (74), and mTOR (70, 75) 91 

contribute to insulin resistance through IRS1 serine phosphorylation. 92 

UPR signaling is initiated at three ER transmembrane proteins, the membrane-93 

bound transcription factor ATF6, the protein kinase PERK, and the protein kinase 94 

endoribonuclease IRE1α. All three arms of the UPR contribute to activation of 95 
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inflammatory signaling. ATF6 activates transcription of acute phase response genes 96 

(76), while translational arrest mediated by PERK-dependent phosphorylation of the 97 

eukaryotic translation initiation factor (eIF) 2 α subunit activates NF-κB (77-80) and 98 

expression of the pseudokinase TRB3. Interaction of TRB3 with AKT causes insulin 99 

resistance in HEK293 cells (81), cardiac myocytes (82), and muscle cells (83, 84). Its 100 

interaction with IRS1 was proposed to inhibit IRS1 tyrosine 612 phosphorylation 101 

(84). By contrast, trb3-/- mice display normal hepatic insulin signaling and glucose 102 

homeostasis (85), while strong overexpression of TRB3 in primary hepatocytes did 103 

not affect insulin signaling (86). 104 

IRE1α is thought to be the main player in activation of inflammatory signaling 105 

and development of insulin resistance in ER-stressed cells. Through association with 106 

the E3 ubiquitin ligase TRAF2 IRE1α activates both JNK (87) and IKK (88). 107 

Activation of JNK by IRE1α has been proposed to cause insulin resistance via 108 

S307/S312 phosphorylation of IRS1 by JNK (1). IRE1α is a bifunctional protein 109 

kinase-endoribonuclease (RNase) (89). The IRE1α RNase activity initiates splicing of 110 

XBP1 mRNA encoding a bZIP transcription factor. Spliced XBP1 (XBP1s) is a more 111 

potent transcriptional activator than unspliced XBP1 (XBP1u) for genes encoding ER 112 

resident molecular chaperones, phospholipid biosynthetic enzymes, and proteins 113 

involved in ER-associated protein degradation (90-93). In addition, relaxed specificity 114 

of the RNase activity mediates decay of many mRNAs encoding proteins targeted to 115 

the secretory pathway (9, 10, 94). 116 

Here we report that short-term ER stress lasting for up to ~8-12 h does not inhibit 117 

insulin-stimulated AKT activation in in vitro differentiated 3T3-F442A adipocytes, 118 

C2C12 myotubes, two hepatoma cell lines, and mouse embryonic fibroblasts (MEFs). 119 

Acute ER stress activates JNK and TRB3, but insulin-stimulated T308 and S473 120 
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phosphorylation of AKT as well as insulin-stimulated phosphorylation of GSK3α/β 121 

were unaffected by ER stress over a period of ~8 h. Insulin-stimulated IRS1 tyrosine 122 

phosphorylation was also unaltered in acutely ER-stressed cells and IRS1 S307 123 

phosphorylation did not increase significantly in ER-stressed 3T3-F442A adipocytes 124 

or Hep G2 cells. A ~2 fold increase in IRS1 S307 phosphorylation in in vitro 125 

differentiated myotubes did not correlate with inhibition of insulin-dependent IRS1 126 

tyrosine phosphorylation. Prolongation of ER stress over several half-lives of the 127 

insulin receptor at the plasma membrane, however, caused insulin resistance. 128 

Collectively, our data support activation of JNK and TRB3 by ER stress, but also 129 

argue that insulin resistance develops independent of both JNK and TRB. By contrast, 130 

depletion of insulin receptors may be responsible for the insulin resistance of ER-131 

stressed cells. 132 

Materials and Methods 133 

Antibodies and reagents. Rabbit anti-AKT (cat. no. 4691), rabbit anti-phospho-134 

S473-AKT (cat. no. 4060), rabbit anti-phospho-T308-AKT (cat. no. 4056), rabbit 135 

anti-GSK3α/β (cat. no. 5676), rabbit anti-phospho-S21/9-GSK3α/β (cat. no. 9331), 136 

rabbit anti-JNK (cat. no. 9258), and rabbit anti-phospho-JNK (cat. no. 4668) 137 

antibodies were purchased from Cell Signaling Technology Inc. (Danvers, MA, 138 

USA). The mouse anti-GAPDH antibody (cat. no. G8795) was purchased from 139 

Sigma-Aldrich (Gillingham, UK). Tunicamycin was purchased from Merck 140 

Chemicals (Beeston, UK) and thapsigargin from Sigma-Aldrich (Gillingham, UK). 141 

Cell culture. Wild type (WT) mouse embryonic fibroblasts (MEFs) were provided by 142 

T. Mak (University of Toronto, Ontario Cancer Institute, Toronto, Ontario, Canada). 143 

3T3-F442A preadipocytes (95), C2C12 myoblasts (96), and Hep G2 cells (97) were 144 

obtained from C. Hutchison (Durham University), R. Bashir (Durham University), 145 
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and A. Benham (Durham University), respectively. Fao rat hepatoma cells (98) were 146 

obtained from the Health Protection Agency Culture Collection. 147 

All cell lines were grown at 37 °C in an atmosphere of 95% (v/v) air, 5% (v/v) 148 

CO2, and 95% humidity. Fao rat hepatoma cells were grown in Roswell Park 149 

Memorial Institute (RPMI) 1640 medium (99) containing 10% (v/v) fetal bovine 150 

serum (FBS) and 2 mM L-glutamine and where indicated in Coon’s modification of 151 

Ham’s F12 medium (100) containing 10% (v/v) FBS and 2 mM L-glutamine. All 152 

other cell lines were cultured in Dulbecco’s minimal essential medium (DMEM) 153 

containing 4.5 g/l D-glucose (101, 102), 10% (v/v) FBS, and 2 mM L-glutamine. 154 

To differentiate C2C12 cells 60-70% confluent cultures were shifted into low 155 

mitogen medium consisting of DMEM containing 4.5 g/l D-glucose, 2% (v/v) horse 156 

serum, and 2 mM L-glutamine. The cells were then incubated for another 7-8 d with 157 

replacing the low mitogen medium every 2-3 d (103). Differentiation of C2C12 cells 158 

was assessed by microscopic inspection of cultures, staining of myotubes with 159 

rhodamine-labeled phalloidin (104), and reverse transcriptase PCR for transcription of 160 

the genes encoding S-adenosyl-homocysteine hydrolase (AHCY), myosin light chain 1 161 

(MYL1), and troponin C (TNNC1). To differentiate 3T3-F442A fibroblasts into 162 

adipocytes cells were grown to confluency. 2 d postconfluency the medium was 163 

changed to DMEM containing 4.5 g/l D-glucose, 10% (v/v) FBS, 2 mM L-glutamine, 164 

1 μg/ml insulin, 0.5 mM 1-methyl-3-isobutylxanthine (IBMX), and 0.25 μM 165 

dexamethasone. After 3 d the medium was changed to DMEM containing 4.5 g/l D-166 

glucose, 10% (v/v) FBS, 2 mM L-glutamine, and 1 μg/ml insulin. After another 2 d 167 

the medium was changed to DMEM containing 4.5 g/l D-glucose, 10% (v/v) FBS, 168 

and 2 mM L-glutamine. Cells were incubated another 7 d before the start of 169 

experiments (105). Differentiation was assessed by Oil Red O staining (106) and flow 170 
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cytometric analysis of >1·104 cells by Nile Red staining as described before (107, 171 

108). 172 

ER stress was induced with 1 μM thapsigargin, 10 μg/ml tunicamycin, or 1 μg/ml 173 

subtilase cytotoxin AB (SubAB) if not indicated otherwise. As a control cells were 174 

treated with catalytically inactive SubAA272B. SubAB and SubAA272B were purified as 175 

described before (109, 110). To stimulate cells with insulin, cells were serum-starved 176 

for 18 h, followed by addition of fresh serum-free culture medium containing 10 – 177 

100 nM insulin. After 15 min exposure to insulin, cells were harvested for extraction 178 

of RNA and protein as described below. 179 

RNA extraction and reverse transcriptase (RT-) PCRs. RNA was extracted with 180 

the EZ-RNA total RNA isolation kit (Geneflow, Fradley, UK, cat. no. K1-0120) and 181 

reverse transcribed with oligo-dT primers (Promega, Southampton, cat. no. C1101) 182 

and Superscript III reverse transcriptase (Life Technologies, Paisley, UK, cat. no. 183 

18080044) as described previously (111). Protocols for detection of splicing of 184 

murine and human XBP1 have been described previously (111). Band intensities were 185 

quantitated using ImageJ (112) and the percentage of XBP1 splicing calculated by 186 

dividing the signal for spliced XBP1 mRNA by the sums of the signals for spliced and 187 

unspliced XBP1 mRNAs. Quantitative PCRs (qPCRs) were run on a Rotorgene 3000 188 

(Qiagen, Crawley, UK). Amplicons were amplified with 0.5 μl 5 U/μl GoTaq® Flexi 189 

DNA polymerase (Promega, cat. no. M8305), 2 mM MgCl2, 200 μM dNTPs, and 1 190 

μM of each primer and detected with a 1:2,500 fold dilution of a SybrGreen stock 191 

solution (Life Technologies, cat. no. S7563). Primers for qPCRs are listed in Table I. 192 

After denaturation for 2 min at 95°C samples underwent 40 cycles of denaturation at 193 

95°C for 30 s, primer annealing at 58°C for 30 s, and primer extension at 72°C for 30 194 

s. Amplification of a single PCR product was confirmed by recording the melting 195 
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curves after each PCR run. Amplification efficiencies for all qPCRs were ~0.75 ± 196 

0.05. Calculation of CT values and normalization to GAPDH or ACTB mRNA levels 197 

was done using the comparative quantitation function in the Rotorgene software. 198 

Results represent the average and standard error of three technical repeats. qPCR 199 

results were confirmed by at least one other biological replicate. qPCRs for murine 200 

AHCY, MYL1, and TNNC were standardized to GAPDH, for murine TRAF2 and TRB3 201 

to ACTB, and for human TRAF2 to ACTA1. 202 

Cell lysis and Western blotting. Cells were washed three times with ice-cold 203 

phosphate-buffered saline (PBS, 4.3 mM Na2HPO4, 1.47 mM KH2PO4, 27 mM KCl, 204 

137 mM NaCl, pH 7.4) and lysed in RIPA buffer (50 mM Tris-HCl, pH 8.0, 150 mM 205 

NaCl, 0.5% (w/v) sodium deoxycholate, 0.1% (v/v) Triton X-100, 0.1% (w/v) SDS) 206 

containing Roche complete protease inhibitors (Roche Applied Science, Burgess Hill, 207 

UK, cat. no. 11836153001) as described before (111). 208 

Proteins were separated by SDS-PAGE and transferred to polyvinylidene 209 

difluoride (PVDF) membranes (Amersham HyBondTM-P, pore size 0.45 μm, GE 210 

Healthcare, Little Chalfont, UK, cat. no. RPN303F) by semi-dry electrotransfer in 0.1 211 

M Tris, 0.192 M glycine, and 5% (v/v) methanol at 2 mA/cm2 for 60-75 min. 212 

Membranes were blocked for 1 h in 5% (w/v) skimmed milk powder in TBST (20 213 

mM Tris-HCl, pH 7.6, 137 mM NaCl, and 0.1% (v/v) Tween-20) for antibodies 214 

against non-phosphorylated proteins and 5% bovine serum albumin (BSA) in TBST 215 

for antibodies against phosphorylated proteins and incubated overnight at 4°C with 216 

the primary antibody diluted in blocking solution. Blots were washed three times with 217 

TBST and probed with secondary antibody for 1 hour at room temperature. The anti-218 

AKT, anti-phospho-S473-AKT, anti-phospho-T308-AKT, anti-GSK3α/β, anti-219 

phospho-S21/9-GSK3α/β, anti-JNK, and anti-phospho-JNK antibodies were used at a 220 
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1:1,000 dilution in TBST + 5% (w/v) BSA and incubated with the membranes over 221 

night at 4°C with gentle agitation. Membranes were then developed with goat anti-222 

rabbit-IgG (H+L)-horseradish peroxidase (HRP)-conjugated secondary antibody (Cell 223 

Signaling, cat. no. 7074S) at a 1:1,000 dilution in TBST + 5% (w/v) skimmed milk 224 

powder for 1 h at room temperature. The mouse anti-GAPDH antibody was used at a 225 

1:30,000 dilution in TBST + 5% (w/v) skimmed milk powder over night at 4°C with 226 

gentle agitation and developed with goat anti-mouse IgG (H+L)-horseradish 227 

peroxidase (HRP)-conjugated secondary antibody (Thermo Scientific, cat, no. 31432) 228 

at a 1:20,000 dilution in TBST + 5% (w/v) skimmed milk powder for 1 h at room 229 

temperature. For signal detection Pierce ECL Western Blotting Substrate (cat. no. 230 

32209) or Pierce ECL Plus Western Blotting Substrate (cat. no. 32132) from Thermo 231 

Fisher Scientific (Loughborough, UK) were used. Blots were exposed to CL-X 232 

PosureTM film (Thermo Fisher Scientific, Loughborough, UK, cat. no. 34091). 233 

Exposure times were adjusted on the basis of previous exposures to obtain exposures 234 

in the linear range of the film. Signals were quantified using ImageJ (112). To reprobe 235 

blots for detection of nonphosphorylated proteins, membranes were stripped using 236 

Restore Western Blot Stripping Buffer (Thermo Fisher Scientific, Loughborough, 237 

UK, cat. no. 21059) and blocked with 5% (w/v) skimmed milk powder in TBST. 238 

Immunoprecipitation of IRS1. 50% confluent cultures were serum-starved for 18 h 239 

in 100 mm dishes before exposure to thapsigargin, tunicamycin, and insulin as 240 

detailed in the figure legends. Cells were washed three times with ice-cold PBS and 241 

lysed in 500 μl IP buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 242 

0.05% (w/v) SDS) containing 1% (v/v) Nonidet P40 and Roche complete protease 243 

inhibitors. Lysates were centrifuged for 10 min at 12,000 g to precipitate cell debris. 244 

Supernatants containing 1 mg total protein were pre-cleared with 20 μl 25% protein A 245 
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agarose slurry (Santa Cruz Biotechnology, cat. no. sc-2001) for 1 h at 4°C with 246 

overhead rotation and then immunoprecipitated with 4 µg rabbit anti-IRS1 (D23G12) 247 

antibody (New England Biolabs, Hitchin, UK, cat. no. 3407) at 4°C overnight. 248 

Immunoprecipitates were collected by addition of 20 μl 25% protein A agarose for 2 249 

h at 4°C and washed three times with ice-cold IP buffer containing 0.1% (v/v) 250 

Nonidet P40 and once with ice-cold IP buffer. Immunoprecipitated proteins were 251 

solubilized by boiling in 6 x SDS-PAGE sample buffer (350 mM Tris·HCl, pH 6.8, 252 

30% (v/v) glycerol, 10% (w/v) SDS, 0.5 g/l bromophenol blue, 2% (v/v) β-253 

mercaptoethanol) for 5 min, separated on 4-12% Bis-Tris NuPAGE gels (Life 254 

Technologies) and electroblotted onto PVDF membranes as described above. 255 

Membranes were blocked with 5% (w/v) skimmed milk powder for 1 h at room 256 

temperature. Membranes were incubated with mouse anti-phosphotyrosine 4G10® 257 

Platinum (Merck Millipore cat. no. 05-321) at a dilution of 1:1,000 in TBST + 5% 258 

(w/v) BSA or anti-IRS1 antibody diluted 1:1,000 in TBST + 5% (w/v) skimmed milk 259 

powder for 1 h at room temperature. Membranes were washed extensively with TBST 260 

and exposed to horseradish peroxidase-conjugated secondary antibodies against 261 

mouse IgG(H+L) or rabbit IgG(H+L) (Thermo Fisher Scientific, cat. no. 31458) at a 262 

1:20,000 dilution in PBST + 5% (w/v) skimmed milk powder for 1 h at room 263 

temperature. Blots were extensively washed with TBST, developed with ECL Plus 264 

Western blotting detection reagent (GE Healthcare), and exposed to CL-X PosureTM 265 

film (Thermo Fisher Scientific, cat. no. 34091) as directed by the manufacturer. 266 

Phospho-S307 IRS1 enzyme-linked immunosorbent assay (ELISA). Hep G2 cells 267 

were serum-starved for 18 h, treated with 0.1 to 10 μg/ml tunicamycin for 30 min and 268 

stimulated with 100 nM insulin for 15 min. C2C12 or 3T3-F442A cells were treated 269 

with 1 μM thapsigargin for 5 to 15 min before stimulation with 100 nM insulin for 5 270 
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to 15 min. Cells were washed twice with ice-cold PBS and lysed in RIPA buffer 271 

containing Roche protease inhibitors as described above. S307 phosphorylation of 272 

IRS1 was measured using the STAR phospho-IRS1 (Ser307 mouse/Ser312 human) 273 

ELISA (Millipore, Watford, UK, cat. no. 17-459) following the manufacturer’s 274 

instructions. S307 phosphorylation is expressed in units relative to a phospho-S307 275 

IRS1 standard provided in the ELISA kit. phospho-S307 IRS1 units were 276 

standardized to the amount of total IRS1 in cell lysates determined by Western 277 

blotting. 278 

Error calculations. Experimental data are presented as the average and its standard 279 

error. Errors were propagated using the law of error propagation for random, 280 

independent errors (113). 281 

Results 282 

ER stress for up to ~8 h does not inhibit insulin-stimulated AKT activation 283 

Recent reports have suggested that activation of the MAP kinase JNK and of the 284 

pseudokinase TRB3 is responsible for the development of insulin resistance in ER-285 

stressed cells. In the majority of cases, insulin signaling has been examined in 286 

cultured cells experiencing long periods of ER stress (82, 114-117). For example, 287 

3T3-L1 adipocytes exposed to the ER stressors thapsigargin and tunicamycin for 16-288 

18 h developed insulin resistance (115), which was partially reversed by the JNK 289 

inhibitor SP600125. Likewise, exposure of C2C12 myotubes to tunicamycin for 16 h 290 

caused insulin resistance, which correlated with activation of JNK (114). Treatment of 291 

cultured HL-1 atrial myocytes for 24 h with 2 μM thapsigargin caused insulin 292 

resistance, which could be partially relieved by siRNA-mediated knock-down of 293 

TRB3 (82). Two reports, however, described decreased AKT T308 and S473 294 

phosphorylation in Fao rat hepatoma cells and C2C12 myotubes exposed to 295 
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tunicamycin or thapsigargin for only 4 h (1, 84). Characterization of the JNK 296 

activation profile in several cell lines, including 3T3-F442A adipocytes, C2C12 297 

myotubes, Hep G2 cells, and MEFs revealed fast and transient activation of JNK 298 

(Brown et al., submitted for publication). Over an 8 h time course all of above cell 299 

lines displayed activation of JNK 10 – 60 min after application of ER stressors. 300 

Furthermore, JNK activation was transient as evidenced by return of phospho-JNK 301 

levels to resting levels toward the end of the time courses. Given the rapid and 302 

transient activation of JNK by ER stress we became interested in characterizing 303 

whether ER stress-induced insulin resistance can be observed at much earlier time 304 

points than previously reported, and whether this insulin resistance is transient in 305 

nature. 306 

To characterize the kinetics of the onset of insulin resistance in pharmacologically 307 

ER-stressed cells we performed time course experiments on in vitro differentiated 308 

C2C12 myotubes, 3T3-F442A adipocytes, and Hep G2 hepatoma cells. To exclude 309 

potential drug specific effects on insulin signaling we used three different ER 310 

stressors, the SERCA pump inhibitor thapsigargin (118), the N-glycosylation inhibitor 311 

tunicamycin (118), and the protease SubAB, which cleaves and inactivates the ER 312 

resident HSP70 class molecular chaperone BiP/GRP78 (119). We also titrated the 313 

concentrations of thapsigargin and tunicamycin in the culture medium over a 10- or 314 

100-fold concentration range, respectively. We monitored activation of the insulin 315 

signaling pathway by Western blotting for T308 and S473 phosphorylation of AKT 316 

(120) in cells that were serum-starved for 18 h, treated with the ER stressors for the 317 

last 1 – 12 h of serum starvation and then stimulated with 100 nM insulin for 15 min 318 

in the continued presence of the ER stressors. Surprisingly, these experiments 319 

revealed that AKT T308 and S473 phosphorylation were unaffected by any of the 320 
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three ER stressors at any concentration for up to ~8 h in C2C12 cells (Fig. 1A). 321 

Likewise, thapsigargin-, tunicamycin-, or SubAB-induced ER stress for less than 12 h 322 

did not affect insulin-stimulated AKT activation in 3T3-F442A adipocytes or Hep G2 323 

hepatoma cells (Brown et al., submitted for publication). To confirm that treatment of 324 

C2C12 cells with the ER stressors induces ER stress we monitored XBP1 splicing 325 

using RT-PCR. The IRE1α-initiated XBP1 splicing reaction removes a 26 nt intron 326 

from XBP1 mRNA. Therefore, the appearance of a shorter reverse transcriptase (RT)-327 

PCR product on high percentage agarose gels indicates activation of the RNase 328 

activity of IRE1α. Upon exposure of serum-starved C2C12 cells to 300 nM 329 

thapsigargin, 1 μg/ml tunicamycin, or 1 μg/ml SubAB a shorter RT-PCR product 330 

appeared (Fig. 1B), which represents spliced XBP1 mRNA. Furthermore, serum 331 

starvation did not decrease the level of XBP1 splicing in ER-stressed cells (data not 332 

shown), thus ruling out the possibility that induction of ER stress is blunted by 333 

decreased protein synthesis rates in serum-starved cells. 334 

A recent report suggested that tunicamycin- or thapsigargin-induced ER stress 335 

lasting for 4 h in C2C12 myotubes decreases AKT T308 phosphorylation by 20-50%, 336 

while coinciding with induction of TRB3 (84). Because we did not observe any 337 

significant changes in insulin-stimulated AKT T308 or S473 phosphorylation in C2C12 338 

cells exposed to various concentrations of tunicamycin or thapsigargin (Fig. 1A), we 339 

characterized induction of TRB3 mRNA by RT-qPCR. All three ER stressors strongly 340 

induced TRB3 (Fig. 1C). Thus, strong transcriptional induction of TRB3 does not 341 

necessarily affect insulin signaling in ER-stressed C2C12 cells. 342 

ER stress does not inhibit insulin-dependent AKT and GSK3α/β phosphorylation in 343 

the time window of JNK activation 344 
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Early JNK activation in ER-stressed cells is transient. In Hep G2 cells, 345 

phosphorylation, and consequently activation, of JNK in its T-loop on T183 and Y185 346 

was induced 30 min after induction of ER stress, but returned to basal levels as early 347 

as two hours after induction of ER stress (Brown et al., submitted for publication). 348 

JNK activation occurred within 10 min in C2C12 cells, 3T3-F442A cells, or MEFs but 349 

also returned to basal levels within several hours in C2C12 cells and MEFs or in less 350 

than one hour in 3T3-F442A cells (Brown et al., submitted for publication). 351 

Therefore, we decided to characterize whether ER stress inhibits insulin action in cells 352 

exposed to various ER stressors for up to 1 h. Exposure of serum-starved MEFs to 1 353 

μM thapsigargin for 10 or 60 min, followed by stimulation with 100 nM insulin for 15 354 

min, caused a strong increase in AKT S473 phosphorylation that was 355 

indistinguishable from AKT S473 phosphorylation in untreated MEFs (Fig. 2A). 356 

Stimulation with 10 nM insulin for 15 min induced markedly lower levels of AKT 357 

S473 phosphorylation, but again ER stress had no effect on phosphorylation of AKT 358 

at S473 or phosphorylation of GSK3α at S21 and GSK3β at S9 (Fig. 2A), which are 359 

both elevated in response to insulin (121-123). 30 min of thapsigargin-induced ER 360 

stress did also have no effect on T308 or S473 phosphorylation of AKT or 361 

phosphorylation of GSK3α/β in Hep G2 cells (Fig. 2B), C2C12 myotubes (Fig. 2C), or 362 

3T3-F442A adipocytes (Fig. 2D). 363 

Two other ER stressors, tunicamycin and SubAB did also not significantly affect 364 

insulin-induced phosphorylation of AKT or GSK3α/β in any of these three cell lines 365 

(Fig. 2B-D). Inhibition of insulin signaling by ER stress within 4 h was originally 366 

reported in Fao rat hepatoma cells (1). To address the possibility that the effects of ER 367 

stress on insulin signaling are cell type specific, we performed experiments with Fao 368 

rat hepatoma cells. All three ER stressors, thapsigargin, tunicamycin, and SubAB, 369 
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elicited JNK activation between 30 and 60 min after exposure of Fao cells to these 370 

drugs (Fig. 3). However, none of the ER stressors affected insulin-stimulated AKT or 371 

GSK3α/β phosphorylation (Fig. 3). Extension of the duration of ER stress to 2, 3, and 372 

4 h and change of the medium from Coon’s modification of Ham’s F12 medium to 373 

RPMI 1640 to fully reflect the original experimental conditions (1) did also not reveal 374 

any effect of ER stress on AKT S473 phosphorylation (Fig. 4). Therefore, short 375 

periods of ER stress lasting for up to ~8 h, the transient JNK activation, and activation 376 

of TRB3 accompanying these short periods of ER stress do not inhibit insulin-377 

dependent AKT and GSK3α/β phosphorylation. 378 

Acute ER stress does not inhibit IRS1 tyrosine phosphorylation 379 

To address the possibility that the dynamics of AKT and GSK3α/β phosphorylation 380 

render these measures of insulin signaling insensitive to effects of short periods of ER 381 

stress on the insulin signaling pathway, we directly examined the effects of ER stress 382 

on IRS1 tyrosine and S307 phosphorylation in the time window of JNK activation. In 383 

these experiments serum-starved cells were treated with 1 μM thapsigargin for 10, 20, 384 

or 25 min. The cells were stimulated with 100 nM insulin during the final 5 to 15 min 385 

of thapsigargin treatment (Figs. 5A-C). Western blotting of IRS1 immunoprecipitates 386 

showed that IRS1 tyrosine phosphorylation reached steady-state levels as early as 5 387 

min after addition of insulin (Figs. 5B-D). Treatment of cells with 1 μM thapsigargin 388 

before addition of insulin further increased insulin-stimulated IRS1 tyrosine 389 

phosphorylation 1.6 ± 0.2 fold in C2C12 and 1.6 ± 0.4 fold in 3T3-F442A cells (Figs. 390 

5B-C). Treatment of Hep G2 cells with various concentrations of tunicamycin for 30 391 

min before stimulation with 100 nM insulin during the final 15 min of tunicamycin 392 

treatment did also not affect IRS1 tyrosine phosphorylation (Fig. 5D), but activated 393 

JNK (Fig. 5E). Total IRS1 levels appear to increase 5 min after insulin stimulation of 394 
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3T3-F442A and Hep G2 cells in the immunoprecipitates (Figs. 5C-D). Human and 395 

murine IRS1 primary transcripts are too large (67,474 nt and 58,335 nt, respectively) 396 

for this increase to be explained through transcriptional induction, because RNA 397 

polymerase II transcribes ~1,000 – 6,000 bp/min (124, 125). Insulin causes strong 398 

phosphorylation of IRS1 (126). Phosphorylation-induced conformational changes 399 

may increase the immunoreactivity of IRS1, which may lead to more efficient 400 

immunoprecipitation of IRS1 from insulin-stimulated cells. In summary, these data 401 

show that acute ER stress does not affect insulin-stimulated IRS1 tyrosine 402 

phosphorylation. 403 

JNK phosphorylates IRS1 at S307 to inhibit IRS1 tyrosine phosphorylation by the 404 

activated insulin receptor (42, 48). Unaltered IRS1 tyrosine phosphorylation in ER-405 

stressed cells suggested that JNK may not phosphorylate S307 under these conditions. 406 

To test this hypothesis we measured IRS1 S307 phosphorylation by ELISA and 407 

standardized the phospho-S307 IRS1 levels to total IRS1 levels determined by 408 

Western blotting (Fig. 6). These experiments revealed that treatment of 3T3-F442A  409 

cells for up to 15 min (Fig. 6A) and of Hep G2 cells for up to 2 h with 1 μM 410 

thapsigargin (Figs. 6C, D) did not induce IRS1 S307 phosphorylation. By contrast, we 411 

noted a 3.2 ± 0.2 fold increase of IRS1 S307 phosphorylation in C2C12 cells (Fig. 6B), 412 

which did not negatively affect IRS1 tyrosine phosphorylation in response to insulin 413 

(Fig. 5B). To verify that the ELISA can detect changes in IRS1 S307/S312 414 

phosphorylation in all used cell lines, we measured IRS1 S307/S312 phosphorylation 415 

in insulin-stimulated cells. Insulin elevated IRS1 S307/S312 phosphorylation in all 416 

three cell lines (Fig. 6E), which is consistent with previous reports (42, 64). Thus, the 417 

ELISA protocol detects changes in IRS1 S307/S312 phosphorylation. Collectively, 418 

these data argue that ER stress does not inhibit IRS1 tyrosine phosphorylation. 419 
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The onset of insulin resistance caused by prolonged ER stress coincides with 420 

depletion of insulin receptors 421 

Our data argue that ER stress lasting for up to 8 h does not inhibit insulin action in 422 

several cell types. To investigate whether ER stress can cause insulin resistance at all, 423 

we performed extended time courses lasting up to 36 h. In C2C12 cells, insulin 424 

resistance as evidenced by decreased AKT S473 phosphorylation, developed at about 425 

12 h after induction of ER stress (Fig. 7). Similar results were obtained with Hep G2 426 

and 3T3-F442A cells (Brown et al., submitted for publication). The insulin receptor 427 

has a half-life of 7-13 h at the plasma membrane (127-133). Therefore, we asked 428 

whether the onset of insulin resistance coincides with depletion of insulin receptors in 429 

ER-stressed C2C12 cells. The insulin receptor is synthesized as a proreceptor that is 430 

cleaved into mature α and β chains in the trans-Golgi network by several proprotein 431 

convertases (134, 135). Western blotting of cell lysates from C2C12 cells with an 432 

antibody against the β chain revealed several bands (Fig. 8A). These can be attributed 433 

to two alternatively glycosylated forms of the α-β proreceptor at ~210 kDa (136), two 434 

alternatively glycosylated forms of a truncated α-β1 proreceptor produced by a 435 

proteolytic processing event in lysosomes at ~130 kDa (137), and the β chain of ~95 436 

kDa. Quantitation of the blots showed that mature β chains start to deplete after ~12 h 437 

of ER stress (Figs. 8B-D). The severity of the decrease in β chains correlates with the 438 

extent of insulin resistance observed in C2C12 cells (compare Figs. 7 and 8B-D). We 439 

made similar observations in Hep G2 and 3T3-F442A cells (Brown et al., submitted 440 

for publication). Hence, it appears that ER stress may cause insulin resistance by 441 

depleting mature insulin receptors. 442 

Discussion 443 
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Recent research has shown that ER stress is associated with insulin resistance in 444 

obesity (1-7). The mechanism linking ER stress to insulin resistance is thought to be 445 

activation of both JNK and TRB3 by the ER stress sensors IRE1α and PERK (1, 84). 446 

Activated JNK phosphorylates IRS1 at S307, which in turn inhibits IRS1 tyrosine 447 

phosphorylation by the insulin receptor (1), while interaction of TRB3 with IRS1 and 448 

AKT inhibits stimulatory phosphorylation of both proteins (84). Exposure of Fao rat 449 

hepatoma cells to 5 μg/ml tunicamycin for 4 h induced IRS1 S307 and inhibited AKT 450 

S473 phosphorylation (1). An increase in IRS1 S307 phosphorylation was also 451 

detected in Fao cells after induction of ER stress with 300 nM thapsigargin for 1 h (1). 452 

Exposure of C2C12 myotubes for 4 h to 1 μg/ml tunicamycin inhibited IRS1 Y612 and 453 

AKT T308 phosphorylation by ~50%, while exposure to 2 μM thapsigargin for 4 h 454 

resulted in decreases of 20-25% upon stimulation of C2C12 myotubes with 100 nM 455 

insulin (84). In contrast to these studies we find no evidence that short-term (≤ 8 h), 456 

pharmacologically-induced ER stress inhibits insulin-stimulated AKT activation  457 

despite activation of JNK (Fig. 3) and activation of TRB3 (Fig. 1C). 458 

We have confirmed our observations by using five different cell lines, including 459 

MEFs, human Hep G2 and rat Fao hepatoma cells, C2C12 muscle cells, and 3T3-460 

F442A adipocytes. We obtained essentially the same results with three 461 

mechanistically different ER stressors, the N-linked glycosylation inhibitor 462 

tunicamycin (138), the SERCA Ca2+-ATPase inhibitor thapsigargin (139), and 463 

SubAB, a protease that inactivates the ER chaperone BiP (119). Moreover, induction 464 

of short-term ER stress with a range of concentrations of tunicamycin or thapsigargin 465 

did not lead to insulin resistance (Figs. 1-3) under conditions virtually identical to 466 

those used before (1, 84). Short-term ER stress did also not inhibit AKT activation 467 

when MEFs were stimulated with 10 nM instead of 100 nM insulin (Fig. 2A). 468 



 20

Stimulation with 10 nM insulin resulted in ~10% of AKT activation compared to 469 

stimulation with 100 nM insulin, but short-term ER stress did not affect AKT 470 

activation under these conditions (Fig. 2A). Therefore, it is unlikely that too strong 471 

stimulation of the insulin signaling pathway masks inhibitory effects of ER stress in 472 

experiments in which 100 nM insulin were used. Our observation, that short-term (≤ 8 473 

h) ER stress does not inhibit insulin action is supported by an earlier report showing 474 

that induction of ER stress with 2 μg/ml tunicamycin or 150 nM thapsigargin for up to 475 

4 h did not affect repression of glucose-6-phosphatase expression in primary rat 476 

hepatocytes by insulin (140). 477 

Short-term, pharmacologically-induced ER stress was also reported to decrease 478 

IRS1 tyrosine phosphorylation and to increase IRS1 S307 phosphorylation via 479 

activation of JNK (1). We have also not observed any inhibitory effects of 480 

tunicamycin- or thapsigargin-induced ER stress on IRS1 tyrosine phosphorylation at 481 

time points at which ER stress activates JNK (Fig. 5). Consistent with these results we 482 

find no elevation of IRS1 S307 phosphorylation in ER-stressed 3T3-F442A 483 

adipocytes or Hep G2 cells. By contrast, IRS1 S307 phosphorylation was elevated ~3 484 

fold in C2C12 muscle cells (Fig. 6B), which did not affect IRS1 tyrosine 485 

phosphorylation (Fig. 5B) or Akt activation (Fig. 2C). The difference between these 486 

cell lines may be due to larger sarcoplasmic Ca2+-stores in muscle cells, whose release 487 

may activate classical protein kinase C isoforms which then phosphorylate IRS1 at 488 

S307 (141, 142). Phosphorylation of IRS1 at S302 and S307 inhibits interaction of 489 

IRS1 with the insulin receptor in a yeast three hybrid assay (42, 143). Both 490 

phosphorylation events are equally important to disrupt this interaction (143). Intact 491 

insulin-stimulated IRS1 tyrosine phosphorylation in thapsigargin-treated C2C12 492 

muscle cells that display elevated S307 phosphorylation suggests that S302 may be 493 
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ineffectively phosphorylated. Classical PKCs have not been reported to phosphorylate 494 

S302 (142, 144). Thus, it is plausible that thapsigargin-induced Ca2+ release from 495 

sarcoplasmic stores is responsible for the increased S307 phosphorylation via 496 

activation of classical PKCs in C2C12 cells. 497 

Several studies have shown that pharmacologically-induced ER stress causes 498 

insulin resistance in primary cells and cultured cell lines (1, 82, 84, 114-117) and that 499 

the effect of ER stress on insulin signaling can be reversed by chemical chaperones 500 

such as tauroursodeoxycholate (2, 61) or 4-phenylbutyrate (114, 145). In the majority 501 

of these studies cells were exposed for relatively long times to ER stressors before 502 

examining insulin action. For example, Jung et al. report a ~40% decrease in AKT 503 

S473 and T308 phosphorylation in primary hepatocytes exposed to 2 μg/ml 504 

tunicamycin for 20 h. HL-1 murine cardiomyocytes exposed to 2 μM thapsigargin for 505 

24 h displayed decreased insulin-stimulated AKT S473 phosphorylation (82), as did 506 

3T3-L1 adipocytes exposed to 2 μg/ml tunicamycin or 300 nM thapsigargin for 16-18 507 

h (115), or C2C12 myotubes exposed to 0.5 μg/ml tunicamycin for 16 h (114). 508 

Consistent with these reports we also find that prolonged ER stress causes insulin 509 

resistance in C2C12 cells (Fig. 7), Hep G2, and 3T3-F442A cells (Brown et al., 510 

submitted for publication). Thus, ER stress for more than ~12 h seems to be critical 511 

for the development of insulin resistance in ER-stressed cells. Intriguingly, we 512 

observe decreased insulin receptor levels when insulin resistance manifests in ER-513 

stressed cells (Fig. 8). Furthermore, the severity of insulin resistance appears to 514 

correlate with the decrease in insulin receptor levels. Hence, ER stress may cause 515 

insulin resistance by depleting insulin receptors. In support of this hypothesis a 516 

decrease in insulin receptor β chains was reported in ER-stressed in vitro 517 

differentiated 3T3-L1 adipocytes and HEK 293 cells (117). This decrease in insulin 518 
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receptor β chains was attributed to the PERK-mediated translational arrest or 519 

stimulation of autophagy in ER-stressed cells (115, 116). However, restoration of 520 

insulin receptor levels by inhibition of autophagy with 3-methyladenine did not 521 

restore insulin sensitivity (116). In the accompanying paper we provide evidence that 522 

prolonged ER stress causes insulin resistance by inhibiting transport of newly 523 

synthesized insulin proreceptors from the ER to the cell surface (Brown et al., 524 

submitted for publication). 525 

Our results also separate JNK and TRB3 activation by ER stress from insulin 526 

resistance. Separation of JNK activation from insulin resistance was also reported in 527 

fructose-fed liver-specific xbp1-/- and in liver-specific klf15-/- mice (146, 147). 528 

Furthermore, the protein kinase inhibitor SP600125, which inhibits JNK (148), but 529 

also other protein kinases (149), did not restore insulin sensitivity to cells exposed to 530 

prolonged ER stress (115, 116). JNK has been shown to interact with and to 531 

phosphorylate IRS1 at S307 (48), resulting in inhibition of IRS1 tyrosine 532 

phosphorylation by the insulin receptor (42). However, despite activation and 533 

continued cytoplasmic localization of JNK in ER-stressed cells (data not shown) IRS1 534 

S307 phosphorylation in 3T3-F442A or Hep G2 cells was unaltered (Fig. 7). ER 535 

stress causes only relatively weak JNK activation when compared to other stresses 536 

such as UV irradiation (Brown et al., submitted for publication). The extent of JNK 537 

activation does, however, not correlate with inhibition of insulin action, because 538 

several stresses causing very strong JNK activation do not affect insulin action, while 539 

weaker JNK elicitors inhibit insulin-stimulated AKT activation (data not shown). 540 

Several scaffolding proteins are required for the activation of JNK, for example the 541 

JNK-interacting proteins (JIPs) 1-4, and β-arrestin 2 (150, 151). Of these, JIP1 has 542 

been linked to insulin resistance (152, 153). Activation of JNK by IRE1α requires 543 
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TRAF2 (87) and the MAP kinase kinase kinase ASK1 (154, 155). ASK1 is known to 544 

interact with JIP3 and JIP4 (156). Therefore, it is possible that JNK activation via 545 

ASK1 and specific scaffolding proteins, such as JIP3 and JIP4, may not license JNK 546 

for phosphorylation of IRS proteins in ER-stressed cells. 547 

TRB3 mRNA was induced ~20 fold after 4 h of ER stress in C2C12 cells (Fig. 1C). 548 

However, no effects of ER stress on insulin-stimulated AKT S473 and T308 549 

phosphorylation were observed at this time point (Fig. 1A). Overexpression of TRB3 550 

inhibited AKT and IRS1 phosphorylation in several (81, 83, 84, 157, 158), but not all 551 

studies (86, 158). TRB3 also co-immunoprecipitated with AKT and IRS1 when 552 

overexpressed (81, 83, 84, 157). TRB3 expression levels in ER-stressed cells appear 553 

to be lower than in virally transduced cells, for which an overexpression level of 700-554 

1000 fold at the mRNA level has been estimated (86), and thus may not reach the 555 

threshold necessary to inhibit IRS1 tyrosine and AKT phosphorylation. TRB3 also 556 

interacts with ATF4 (157, 159) and CHOP (160), which are both induced in ER-557 

stressed cells (160, 161). These two proteins, and possibly others induced by ER 558 

stress, will compete with AKT for interaction with TRB3, which may explain the lack 559 

of an inhibitory effect of TRB3 on insulin-stimulated AKT activation during ER 560 

stress. Future studies are necessary to characterize the interaction partners of TRB3 561 

during ER stress to more completely understand the role of TRB3 in the ER stress 562 

response. 563 

In conclusion, we show that short-term (≤ 8 h), pharmacologically-induced ER 564 

stress does not affect insulin-stimulated AKT activation, while transiently activating 565 

JNK and inducing TRB3. Prolonged ER stress extending over several half-lives of the 566 

insulin receptor may cause insulin resistance by depleting mature insulin receptors 567 

from the plasma membrane. 568 



 24

Acknowledgements 569 

This work was supported by the European Community’s 7th Framework Programme 570 

(FP7/2007-2013) under grant agreement no. 201608 and Diabetes UK [BDA 571 

09/0003949]. We thank R. Bashir (Durham University), A. Benham (Durham 572 

University), C. Hutchison (Durham University), and T. Mak (University of Toronto) 573 

for providing cell lines. 574 

References 575 
 576 

1. Özcan U, Cao Q, Yilmaz E, Lee A-H, Iwakoshi NN, Ozdelen E, Tuncman G, 577 

Görgün C, Glimcher LH, Hotamisligil GS. 2004. Endoplasmic reticulum stress 578 

links obesity, insulin action, and type 2 diabetes. Science 306:457-461. 579 

2. Özcan U, Yilmaz E, Özcan L, Furuhashi M, Vaillancourt E, Smith RO, 580 

Görgün CZ, Hotamisligil GS. 2006. Chemical chaperones reduce ER stress and 581 

restore glucose homeostasis in a mouse model of type 2 diabetes. Science 582 

313:1137-1140. 583 

3. Sreejayan N, Dong F, Kandadi MR, Yang X, Ren J. 2008. Chromium alleviates 584 

glucose intolerance, insulin resistance, and hepatic ER stress in obese mice. 585 

Obesity (Silver Spring) 16:1331-1337. 586 

4. Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, 587 

Furukawa S, Tochino Y, Komuro R, Matsuda M, Shimomura I. 2007. 588 

Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. 589 

Diabetes 56:901-911. 590 

5. Sharkey D, Fainberg HP, Wilson V, Harvey E, Gardner DS, Symonds ME, 591 

Budge H. 2009. Impact of early onset obesity and hypertension on the unfolded 592 

protein response in renal tissues of juvenile sheep. Hypertension 53:925-931. 593 



 25

6. Boden G, Duan X, Homko C, Molina EJ, Song W, Perez O, Cheung P, Merali 594 

S. 2008. Increase in endoplasmic reticulum (ER) stress related proteins and genes 595 

in adipose tissue of obese, insulin resistant individuals. Diabetes 57:2438-2444. 596 

7. Sharma NK, Das SK, Mondal AK, Hackney OG, Chu WS, Kern PA, Rasouli 597 

N, Spencer HJ, Yao-Borengasser A, Elbein SC. 2008. Endoplasmic reticulum 598 

stress markers are associated with obesity in non-diabetic subjects. J Clin 599 

Endocrinol Metab 93:4532-4541. 600 

8. Gregor MF, Yang L, Fabbrini E, Mohammed BS, Eagon JC, Hotamisligil 601 

GS, Klein S. 2009. Endoplasmic reticulum stress is reduced in tissues of obese 602 

subjects after weight loss. Diabetes 58:693-700. 603 

9. Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS. 2009. Regulated 604 

Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol 605 

186:323-331. 606 

10. Hollien J, Weissman JS. 2006. Decay of endoplasmic reticulum-localized 607 

mRNAs during the unfolded protein response. Science 313:104-107. 608 

11. Shulman GI. 1999. Cellular mechanisms of insulin resistance in humans. Am J 609 

Cardiol 84:3J-10J. 610 

12. Kasuga M, Karlsson FA, Kahn CR. 1982. Insulin stimulates the 611 

phosphorylation of the 95,000-dalton subunit of its own receptor. Science 612 

215:185-187. 613 

13. Wilden PA, Siddle K, Haring E, Backer JM, White MF, Kahn CR. 1992. The 614 

role of insulin receptor kinase domain autophosphorylation in receptor-mediated 615 

activities. Analysis with insulin and anti-receptor antibodies. J Biol Chem 616 

267:13719-13727. 617 



 26

14. Rhodes CJ, White MF. 2002. Molecular insights into insulin action and 618 

secretion. Eur J Clin Invest 32 Suppl 3:3-13. 619 

15. White MF, Shoelson SE, Keutmann H, Kahn CR. 1988. A cascade of tyrosine 620 

autophosphorylation in the beta-subunit activates the phosphotransferase of the 621 

insulin receptor. J Biol Chem 263:2969-2980. 622 

16. Tornqvist HE, Avruch J. 1988. Relationship of site-specific β subunit tyrosine 623 

autophosphorylation to insulin activation of the insulin receptor (tyrosine) protein 624 

kinase activity. J Biol Chem 263:4593-4601. 625 

17. Tornqvist HE, Gunsalus JR, Nemenoff RA, Frackelton AR, Pierce MW, 626 

Avruch J. 1988. Identification of the insulin receptor tyrosine residues 627 

undergoing insulin-stimulated phosphorylation in intact rat hepatoma cells. J Biol 628 

Chem 263:350-359. 629 

18. Myers MG, Jr., White MF. 1996. Insulin signal transduction and the IRS 630 

proteins. Annu Rev Pharmacol Toxicol 36:615-658. 631 

19. Paz K, Voliovitch H, Hadari YR, Roberts CT, Jr., LeRoith D, Zick Y. 1996. 632 

Interaction between the insulin receptor and its downstream effectors. Use of 633 

individually expressed receptor domains for structure/function analysis. J Biol 634 

Chem 271:6998-7003. 635 

20. Cheatham B, Kahn CR. 1995. Insulin action and the insulin signaling network. 636 

Endocr Rev 16:117-142. 637 

21. Backer JM, Myers MG, Jr., Shoelson SE, Chin DJ, Sun XJ, Miralpeix M, Hu 638 

P, Margolis B, Skolnik EY, Schlessinger J, White MF. 1992. 639 

Phosphatidylinositol 3'-kinase is activated by association with IRS-1 during 640 

insulin stimulation. EMBO J 11:3469-3479. 641 



 27

22. White MF. 2002. IRS proteins and the common path to diabetes. Am J Physiol 642 

Endocrinol Metab 283:E413-422. 643 

23. Bandyopadhyay G, Standaert ML, Zhao L, Yu B, Avignon A, Galloway L, 644 

Karnam P, Moscat J, Farese RV. 1997. Activation of protein kinase C (α, β, and 645 

ζ) by insulin in 3T3/L1 cells. Transfection studies suggest a role for PKC-ζ in 646 

glucose transport. J Biol Chem 272:2551-2558. 647 

24. Alessi DR, Cohen P. 1998. Mechanism of activation and function of protein 648 

kinase B. Curr Opin Genet Dev 8:55-62. 649 

25. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, 650 

Arden KC, Blenis J, Greenberg ME. 1999. Akt promotes cell survival by 651 

phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857-868. 652 

26. Yenush L, White MF. 1997. The IRS-signalling system during insulin and 653 

cytokine action. Bioessays 19:491-500. 654 

27. Nave BT, Ouwens M, Withers DJ, Alessi DR, Shepherd PR. 1999. Mammalian 655 

target of rapamycin is a direct target for protein kinase B: Identification of a 656 

convergence point for opposing effects of insulin and amino-acid deficiency on 657 

protein translation. Biochem J 344:427-431. 658 

28. Scott PH, Brunn GJ, Kohn AD, Roth RA, Lawrence JC, Jr. 1998. Evidence of 659 

insulin-stimulated phosphorylation and activation of the mammalian target of 660 

rapamycin mediated by a protein kinase B signaling pathway. Proc Natl Acad Sci 661 

U S A 95:7772-7777. 662 

29. Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM. 1998. RAFT1 663 

phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc 664 

Natl Acad Sci U S A 95:1432-1437. 665 



 28

30. Hara K, Yonezawa K, Kozlowski MT, Sugimoto T, Andrabi K, Weng QP, 666 

Kasuga M, Nishimoto I, Avruch J. 1997. Regulation of eIF-4E BP1 667 

phosphorylation by mTOR. J Biol Chem 272:26457-26463. 668 

31. Isotani S, Hara K, Tokunaga C, Inoue H, Avruch J, Yonezawa K. 1999. 669 

Immunopurified mammalian target of rapamycin phosphorylates and activates p70 670 

S6 kinase α in vitro. J Biol Chem 274:34493-34498. 671 

32. Sartipy P, Loskutoff DJ. 2003. Monocyte chemoattractant protein 1 in obesity 672 

and insulin resistance. Proc Natl Acad Sci U S A 100:7265-7270. 673 

33. Jiang ZY, Lin YW, Clemont A, Feener EP, Hein KD, Igarashi M, Yamauchi 674 

T, White MF, King GL. 1999. Characterization of selective resistance to insulin 675 

signaling in the vasculature of obese Zucker (fa/fa) rats. The Journal of clinical 676 

investigation 104:447-457. 677 

34. Cusi K, Maezono K, Osman A, Pendergrass M, Patti ME, Pratipanawatr T, 678 

DeFronzo RA, Kahn CR, Mandarino LJ. 2000. Insulin resistance differentially 679 

affects the PI 3-kinase- and MAP kinase-mediated signaling in human muscle. 680 

The Journal of clinical investigation 105:311-320. 681 

35. Montagnani M, Golovchenko I, Kim I, Koh GY, Goalstone ML, Mundhekar 682 

AN, Johansen M, Kucik DF, Quon MJ, Draznin B. 2002. Inhibition of 683 

phosphatidylinositol 3-kinase enhances mitogenic actions of insulin in endothelial 684 

cells. J Biol Chem 277:1794-1799. 685 

36. Wang CC, Gurevich I, Draznin B. 2003. Insulin affects vascular smooth muscle 686 

cell phenotype and migration via distinct signaling pathways. Diabetes 52:2562-687 

2569. 688 

37. Qiao LY, Goldberg JL, Russell JC, Sun XJ. 1999. Identification of enhanced 689 

serine kinase activity in insulin resistance. J Biol Chem 274:10625-10632. 690 



 29

38. White MF. 2003. Insulin signaling in health and disease. Science 302:1710-1711. 691 

39. Birnbaum MJ. 2001. Turning down insulin signaling. The Journal of clinical 692 

investigation 108:655-659. 693 

40. Um SH, Frigerio F, Watanabe M, Picard F, Joaquin M, Sticker M, Fumagalli 694 

S, Allegrini PR, Kozma SC, Auwerx J, Thomas G. 2004. Absence of S6K1 695 

protects against age- and diet-induced obesity while enhancing insulin sensitivity. 696 

Nature 431:200-205. 697 

41. Patti M-E, Kahn BB. 2004. Nutrient sensor links obesity with diabetes risk. Nat 698 

Med 10:1049-1050. 699 

42. Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. 2002. 700 

Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with 701 

the insulin receptor and inhibits insulin action. J Biol Chem 277:1531-1537. 702 

43. Qiao LY, Zhande R, Jetton TL, Zhou G, Sun XJ. 2002. In vivo phosphorylation 703 

of insulin receptor substrate 1 at serine 789 by a novel serine kinase in insulin-704 

resistant rodents. J Biol Chem 277:26530-26539. 705 

44. Shah OJ, Wang Z, Hunter T. 2004. Inappropriate activation of the 706 

TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and 707 

cell survival deficiencies. Curr Biol 14:1650-1656. 708 

45. Tremblay F, Krebs M, Dombrowski L, Brehm A, Bernroider E, Roth E, 709 

Nowotny P, Waldhäusl W, Marette A, Roden M. 2005. Overactivation of S6 710 

kinase 1 as a cause of human insulin resistance during increased amino acid 711 

availability. Diabetes 54:2674-2684. 712 

46. Pende M, Kozma SC, Jaquet M, Oorschot V, Burcelin R, Le Marchand-713 

Brustel Y, Klumperman J, Thorens B, Thomas G. 2000. Hypoinsulinaemia, 714 



 30

glucose intolerance and diminished β-cell size in S6K1-deficient mice. Nature 715 

408:994-997. 716 

47. Gao Z, Hwang D, Bataille F, Lefevre M, York D, Quon MJ, Ye J. 2002. Serine 717 

phosphorylation of insulin receptor substrate 1 by inhibitor κB kinase complex. J 718 

Biol Chem 277:48115-48121. 719 

48. Aguirre V, Uchida T, Yenush L, Davis R, White MF. 2000. The c-Jun NH2-720 

terminal kinase promotes insulin resistance during association with insulin 721 

receptor substrate-1 and phosphorylation of Ser307. J Biol Chem 275:9047-9054. 722 

49. Nguyen MTA, Satoh H, Favelyukis S, Babendure JL, Imamura T, Sbodio JI, 723 

Zalevsky J, Dahiyat BI, Chi NW, Olefsky JM. 2005. JNK and tumor necrosis 724 

factor-α mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J 725 

Biol Chem 280:35361-35371. 726 

50. Gao Z, Zhang X, Zuberi A, Hwang D, Quon MJ, Lefevre M, Ye J. 2004. 727 

Inhibition of insulin sensitivity by free fatty acids requires activation of multiple 728 

serine kinases in 3T3-L1 adipocytes. Mol Endocrinol 18:2024-2034. 729 

51. Hirosumi J, Tuncman G, Chang L, Görgün CZ, Uysal KT, Maeda K, Karin 730 

M, Hotamisligil GS. 2002. A central role for JNK in obesity and insulin 731 

resistance. Nature 420:333-336. 732 

52. Bandyopadhyay GK, Yu JG, Ofrecio J, Olefsky JM. 2005. Increased p85/55/50 733 

expression and decreased phosphotidylinositol 3-kinase activity in insulin-resistant 734 

human skeletal muscle. Diabetes 54:2351-2359. 735 

53. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. 736 

1996. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in 737 

TNF-α- and obesity-induced insulin resistance. Science 271:665-668. 738 



 31

54. Hotamisligil GS, Shargill NS, Spiegelman BM. 1993. Adipose expression of 739 

tumor necrosis factor-alpha: Direct role in obesity-linked insulin resistance. 740 

Science 259:87-91. 741 

55. Peraldi P, Hotamisligil GS, Buurman WA, White MF, Spiegelman BM. 1996. 742 

Tumor necrosis factor (TNF)-α inhibits insulin signaling through stimulation of 743 

the p55 TNF receptor and activation of sphingomyelinase. J Biol Chem 744 

271:13018-13022. 745 

56. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. 1997. Protection 746 

from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 747 

389:610-614. 748 

57. Qi C, Pekala PH. 2000. Tumor necrosis factor-α-induced insulin resistance in 749 

adipocytes. Proc Soc Exp Biol Med 223:128-135. 750 

58. Hotamisligil GS, Spiegelman BM. 1994. Tumor necrosis factor α: A key 751 

component of the obesity-diabetes link. Diabetes 43:1271-1278. 752 

59. Gao Z, Zuberi A, Quon MJ, Dong Z, Ye J. 2003. Aspirin inhibits serine 753 

phosphorylation of insulin receptor substrate 1 in tumor necrosis factor-treated 754 

cells through targeting multiple serine kinases. J Biol Chem 278:24944-24950. 755 

60. de Alvaro C, Teruel T, Hernandez R, Lorenzo M. 2004. Tumor necrosis factor 756 

α produces insulin resistance in skeletal muscle by activation of inhibitor κB 757 

kinase in a p38 MAPK-dependent manner. J Biol Chem 279:17070-17078. 758 

61. Jiao P, Ma J, Feng B, Zhang H, Alan Diehl J, Eugene Chin Y, Yan W, Xu H. 759 

2011. FFA-induced adipocyte inflammation and insulin resistance: Involvement of 760 

ER stress and IKKβ pathways. Obesity (Silver Spring) 19:483-491. 761 



 32

62. Zhang J, Gao Z, Yin J, Quon MJ, Ye J. 2008. S6K directly phosphorylates IRS-762 

1 on Ser-270 to promote insulin resistance in response to TNF-α signaling through 763 

IKK2. J Biol Chem 283:35375-35382. 764 

63. Engelman JA, Berg AH, Lewis RY, Lisanti MP, Scherer PE. 2000. Tumor 765 

necrosis factor α-mediated insulin resistance, but not dedifferentiation, is 766 

abrogated by MEK1/2 inhibitors in 3T3-L1 adipocytes. Mol Endocrinol 14:1557-767 

1569. 768 

64. Rui L, Aguirre V, Kim JK, Shulman GI, Lee A, Corbould A, Dunaif A, White 769 

MF. 2001. Insulin/IGF-1 and TNF-α stimulate phosphorylation of IRS-1 at 770 

inhibitory Ser307 via distinct pathways. The Journal of clinical investigation 771 

107:181-189. 772 

65. De Fea K, Roth RA. 1997. Modulation of insulin receptor substrate-1 tyrosine 773 

phosphorylation and function by mitogen-activated protein kinase. J Biol Chem 774 

272:31400-31406. 775 

66. Ravichandran LV, Esposito DL, Chen J, Quon MJ. 2001. Protein kinase C-ζ 776 

phosphorylates insulin receptor substrate-1 and impairs its ability to activate 777 

phosphatidylinositol 3-kinase in response to insulin. J Biol Chem 276:3543-3549. 778 

67. Bourbon NA, Sandirasegarane L, Kester M. 2002. Ceramide-induced inhibition 779 

of Akt is mediated through protein kinase Cζ: Implications for growth arrest. J 780 

Biol Chem 277:3286-3292. 781 

68. Liu Y-F, Paz K, Herschkovitz A, Alt A, Tennenbaum T, Sampson SR, Ohba 782 

M, Kuroki T, LeRoith D, Zick Y. 2001. Insulin stimulates PKCζ-mediated 783 

phosphorylation of insulin receptor substrate-1 (IRS-1). A self-attenuated 784 

mechanism to negatively regulate the function of IRS proteins. J Biol Chem 785 

276:14459-14465. 786 



 33

69. Li Y, Soos TJ, Li X, Wu J, Degennaro M, Sun X, Littman DR, Birnbaum MJ, 787 

Polakiewicz RD. 2004. Protein kinase C θ inhibits insulin signaling by 788 

phosphorylating IRS1 at Ser1101. J Biol Chem 279:45304-45307. 789 

70. Ozes ON, Akca H, Mayo LD, Gustin JA, Maehama T, Dixon JE, Donner DB. 790 

2001. A phosphatidylinositol 3-kinase/Akt/mTOR pathway mediates and PTEN 791 

antagonizes tumor necrosis factor inhibition of insulin signaling through insulin 792 

receptor substrate-1. Proc Natl Acad Sci U S A 98:4640-4645. 793 

71. Eldar-Finkelman H, Krebs EG. 1997. Phosphorylation of insulin receptor 794 

substrate 1 by glycogen synthase kinase 3 impairs insulin action. Proc Natl Acad 795 

Sci U S A 94:9660-9664. 796 

72. Liberman Z, Eldar-Finkelman H. 2005. Serine 332 phosphorylation of insulin 797 

receptor substrate-1 by glycogen synthase kinase-3 attenuates insulin signaling. J 798 

Biol Chem 280:4422-4428. 799 

73. Ilouz R, Kowalsman N, Eisenstein M, Eldar-Finkelman H. 2006. Identification 800 

of novel glycogen synthase kinase-3β substrate-interacting residues suggests a 801 

common mechanism for substrate recognition. J Biol Chem 281:30621-30630. 802 

74. Kim JA, Yeh DC, Ver M, Li Y, Carranza A, Conrads TP, Veenstra TD, 803 

Harrington MA, Quon MJ. 2005. Phosphorylation of Ser24 in the pleckstrin 804 

homology domain of insulin receptor substrate-1 by mouse Pelle-like 805 

kinase/interleukin-1 receptor-associated kinase: cross-talk between inflammatory 806 

signaling and insulin signaling that may contribute to insulin resistance. J Biol 807 

Chem 280:23173-23183. 808 

75. Haruta T, Uno T, Kawahara J, Takano A, Egawa K, Sharma PM, Olefsky 809 

JM, Kobayashi M. 2000. A rapamycin-sensitive pathway down-regulates insulin 810 



 34

signaling via phosphorylation and proteasomal degradation of insulin receptor 811 

substrate-1. Mol Endocrinol 14:783-794. 812 

76. Zhang K, Shen X, Wu J, Sakaki K, Saunders T, Rutkowski DT, Back SH, 813 

Kaufman RJ. 2006. Endoplasmic reticulum stress activates cleavage of CREBH 814 

to induce a systemic inflammatory response. Cell 124:587-599. 815 

77. Jiang HY, Wek SA, McGrath BC, Scheuner D, Kaufman RJ, Cavener DR, 816 

Wek RC. 2003. Phosphorylation of the α subunit of eukaryotic initiation factor 2 817 

is required for activation of NF-κB in response to diverse cellular stresses. Mol 818 

Cell Biol 23:5651-5663. 819 

78. Deng J, Lu PD, Zhang Y, Scheuner D, Kaufman RJ, Sonenberg N, Harding 820 

HP, Ron D. 2004. Translational repression mediates activation of nuclear factor 821 

kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol 24:10161-822 

10168. 823 

79. Wu S, Hu Y, Wang JL, Chatterjee M, Shi Y, Kaufman RJ. 2002. Ultraviolet 824 

light inhibits translation through activation of the unfolded protein response kinase 825 

PERK in the lumen of the endoplasmic reticulum. J Biol Chem 277:18077-18083. 826 

80. Wu S, Tan M, Hu Y, Wang JL, Scheuner D, Kaufman RJ. 2004. Ultraviolet 827 

light activates NFκB through translational inhibition of IκBα synthesis. J Biol 828 

Chem 279:34898-34902. 829 

81. Du K, Herzig S, Kulkarni RN, Montminy M. 2003. TRB3: A tribbles homolog 830 

that inhibits Akt/PKB activation by insulin in liver. Science 300:1574-1577. 831 

82. Avery J, Etzion S, Debosch BJ, Jin X, Lupu TS, Beitinjaneh B, Grand J, 832 

Kovacs A, Sambandam N, Muslin AJ. 2010. TRB3 function in cardiac 833 

endoplasmic reticulum stress. Circ Res 106:1516-1523. 834 



 35

83. Koh HJ, Arnolds DE, Fujii N, Tran TT, Rogers MJ, Jessen N, Li Y, Liew 835 

CW, Ho RC, Hirshman MF, Kulkarni RN, Kahn CR, Goodyear LJ. 2006. 836 

Skeletal muscle-selective knockout of LKB1 increases insulin sensitivity, 837 

improves glucose homeostasis, and decreases TRB3. Mol Cell Biol 26:8217-8227. 838 

84. Koh HJ, Toyoda T, Didesch MM, Lee MY, Sleeman MW, Kulkarni RN, Musi 839 

N, Hirshman MF, Goodyear LJ. 2013. Tribbles 3 mediates endoplasmic 840 

reticulum stress-induced insulin resistance in skeletal muscle. Nat Commun 841 

4:1871. 842 

85. Okamoto H, Latres E, Liu R, Thabet K, Murphy A, Valenzeula D, 843 

Yancopoulos GD, Stitt TN, Glass DJ, Sleeman MW. 2007. Genetic deletion of 844 

Trb3, the mammalian Drosophila tribbles homolog, displays normal hepatic 845 

insulin signaling and glucose homeostasis. Diabetes 56:1350-1356. 846 

86. Iynedjian PB. 2005. Lack of evidence for a role of TRB3/NIPK as an inhibitor of 847 

PKB-mediated insulin signalling in primary hepatocytes. Biochem J 386:113-118. 848 

87. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D. 849 

2000. Coupling of stress in the ER to activation of JNK protein kinases by 850 

transmembrane protein kinase IRE1. Science 287:664-666. 851 

88. Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH. 2006. Autocrine tumor 852 

necrosis factor alpha links endoplasmic reticulum stress to the membrane death 853 

receptor pathway through IRE1α-mediated NF-κB activation and down-regulation 854 

of TRAF2 expression. Mol Cell Biol 26:3071-3084. 855 

89. Sidrauski C, Walter P. 1997. The transmembrane kinase Ire1p is a site-specific 856 

endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 857 

90:1031-1039. 858 



 36

90. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, 859 

Ron D. 2002. IRE1 couples endoplasmic reticulum load to secretory capacity by 860 

processing the XBP-1 mRNA. Nature 415:92-96. 861 

91. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. 2001. XBP1 mRNA is 862 

induced by ATF6 and spliced by IRE1 in response to ER stress to produce a 863 

highly active transcription factor. Cell 107:881-891. 864 

92. Shen X, Ellis RE, Lee K, Liu C-Y, Yang K, Solomon A, Yoshida H, Morimoto 865 

R, Kurnit DM, Mori K, Kaufman RJ. 2001. Complementary signaling pathways 866 

regulate the unfolded protein response and are required for C. elegans 867 

development. Cell 107:893-903. 868 

93. Lee K, Tirasophon W, Shen X, Michalak M, Prywes R, Okada T, Yoshida H, 869 

Mori K, Kaufman RJ. 2002. IRE1-mediated unconventional mRNA splicing and 870 

S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded 871 

protein response. Genes Dev 16:452-466. 872 

94. Gaddam D, Stevens N, Hollien J. 2013. Comparison of mRNA localization and 873 

regulation during endoplasmic reticulum stress in Drosophila cells. Mol Biol Cell 874 

24:14-20. 875 

95. Green H, Kehinde O. 1976. Spontaneous heritable changes leading to increased 876 

adipose conversion in 3T3 cells. Cell 7:105-113. 877 

96. Blau HM, Pavlath GK, Hardeman EC, Chiu CP, Silberstein L, Webster SG, 878 

Miller SC, Webster C. 1985. Plasticity of the differentiated state. Science 879 

230:758-766. 880 

97. Knowles BB, Howe CC, Aden DP. 1980. Human hepatocellular carcinoma cell 881 

lines secrete the major plasma proteins and hepatitis B surface antigen. Science 882 

209:497-499. 883 



 37

98. Deschatrette J, Weiss MC. 1974. Characterization of differentiated and 884 

dedifferentiated clones from a rat hepatoma. Biochimie 56:1603-1611. 885 

99. Moore GE, Gerner RE, Franklin HA. 1967. Culture of normal human 886 

leukocytes. JAMA 199:519-524. 887 

100. Coon HG, Weiss MC. 1969. A quantitative comparison of formation of 888 

spontaneous and virus-produced viable hybrids. Proc Natl Acad Sci U S A 889 

62:852-859. 890 

101. Morton HJ. 1970. A survey of commercially available tissue culture media. 891 

In Vitro 6:89-108. 892 

102. Rutzky LP, Pumper RW. 1974. Supplement to a survey of commercially 893 

available tissue culture media (1970). In Vitro 9:468-469. 894 

103. Bains W, Ponte P, Blau H, Kedes L. 1984. Cardiac actin is the major actin 895 

gene product in skeletal muscle cell differentiation in vitro. Mol Cell Biol 4:1449-896 

1453. 897 

104. Amato PA, Unanue ER, Taylor DL. 1983. Distribution of actin in spreading 898 

macrophages: a comparative study on living and fixed cells. J Cell Biol 96:750-899 

761. 900 

105. Rubin CS, Hirsch A, Fung C, Rosen OM. 1978. Development of hormone 901 

receptors and hormonal responsiveness in vitro. Insulin receptors and insulin 902 

sensitivity in the preadipocyte and adipocyte forms of 3T3-L1 cells. J Biol Chem 903 

253:7570-7578. 904 

106. Hansen JB, Petersen RK, Larsen BM, Bartkova J, Alsner J, Kristiansen 905 

K. 1999. Activation of peroxisome proliferator-activated receptor γ bypasses the 906 

function of the retinoblastoma protein in adipocyte differentiation. J Biol Chem 907 

274:2386-2393. 908 



 38

107. Greenspan P, Fowler SD. 1985. Spectrofluorometric studies of the lipid 909 

probe, nile red. J Lipid Res 26:781-789. 910 

108. Greenspan P, Mayer EP, Fowler SD. 1985. Nile red: A selective fluorescent 911 

stain for intracellular lipid droplets. J Cell Biol 100:965-973. 912 

109. Paton AW, Srimanote P, Talbot UM, Wang H, Paton JC. 2004. A new 913 

family of potent AB5 cytotoxins produced by Shiga toxigenic Escherichia coli. J 914 

Exp Med 200:35-46. 915 

110. Talbot UM, Paton JC, Paton AW. 2005. Protective immunization of mice 916 

with an active-site mutant of subtilase cytotoxin of Shiga toxin-producing 917 

Escherichia coli. Infect Immun 73:4432-4436. 918 

111. Cox DJ, Strudwick N, Ali AA, Paton AW, Paton JC, Schröder M. 2011. 919 

Measuring signaling by the unfolded protein response. Methods Enzymol 920 

491:261-292. 921 

112. Collins TJ. 2007. ImageJ for microscopy. Biotechniques 43:25-30. 922 

113. Ku HH. 1966. Notes on use of propagation of error formulas. J Res Nat 923 

Bureau Standards Sect C - Eng Instrumentat 70:263-273. 924 

114. Hassan RH, Hainault I, Vilquin J-T, Samama C, Lasnier F, Ferré P, 925 

Foufelle F, Hajduch E. 2012. Endoplasmic reticulum stress does not mediate 926 

palmitate-induced insulin resistance in mouse and human muscle cells. 927 

Diabetologia 55:204-214. 928 

115. Xu L, Spinas GA, Niessen M. 2010. ER stress in adipocytes inhibits insulin 929 

signaling, represses lipolysis, and alters the secretion of adipokines without 930 

inhibiting glucose transport. Horm Metab Res 42:643-651. 931 



 39

116. Zhou L, Zhang J, Fang Q, Liu M, Liu X, Jia W, Dong LQ, Liu F. 2009. 932 

Autophagy-mediated insulin receptor down-regulation contributes to endoplasmic 933 

reticulum stress-induced insulin resistance. Mol Pharmacol 76:596-603. 934 

117. Tang X, Shen H, Chen J, Wang X, Zhang Y, Chen LL, Rukachaisirikul 935 

V, Jiang H-l, Shen X. 2011. Activating transcription factor 6 protects insulin 936 

receptor from ER stress-stimulated desensitization via p42/44 ERK pathway. Acta 937 

Pharmacol Sin 32:1138-1147. 938 

118. Back SH, Schröder M, Lee K, Zhang K, Kaufman RJ. 2005. ER stress 939 

signaling by regulated splicing: IRE1/HAC1/XBP1. Methods 35:395-416. 940 

119. Paton AW, Beddoe T, Thorpe CM, Whisstock JC, Wilce MC, Rossjohn J, 941 

Talbot UM, Paton JC. 2006. AB5 subtilase cytotoxin inactivates the endoplasmic 942 

reticulum chaperone BiP. Nature 443:548-552. 943 

120. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, 944 

Hemmings BA. 1996. Mechanism of activation of protein kinase B by insulin and 945 

IGF-1. EMBO J 15:6541-6551. 946 

121. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. 1995. 947 

Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. 948 

Nature 378:785-789. 949 

122. Welsh GI, Proud CG. 1993. Glycogen synthase kinase-3 is rapidly 950 

inactivated in response to insulin and phosphorylates eukaryotic initiation factor 951 

eIF-2B. Biochem J 294:625-629. 952 

123. Cross DAE, Alessi DR, Vandenheede JR, McDowell HE, Hundal HS, 953 

Cohen P. 1994. The inhibition of glycogen synthase kinase-3 by insulin or 954 

insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by 955 

wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of 956 



 40

the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf. 957 

Biochem J 303:21-26. 958 

124. Ucker DS, Yamamoto KR. 1984. Early events in the stimulation of 959 

mammary tumor virus RNA synthesis by glucocorticoids. Novel assays of 960 

transcription rates. J Biol Chem 259:7416-7420. 961 

125. Sehgal PB, Derman E, Molloy GR, Tamm I, Darnell JE. 1976. 5,6-962 

Dichloro-1-β-D-ribofuranosylbenzimidazole inhibits initiation of nuclear 963 

heterogeneous RNA chains in HeLa cells. Science 194:431-433. 964 

126. Fritsche L, Weigert C, Haring HU, Lehmann R. 2008. How insulin 965 

receptor substrate proteins regulate the metabolic capacity of the liver - 966 

Implications for health and disease. Curr Med Chem 15:1316-1329. 967 

127. Reed BC, Lane MD. 1980. Insulin receptor synthesis and turnover in 968 

differentiating 3T3-L1 preadipocytes. Proc Natl Acad Sci U S A 77:285-289. 969 

128. Kasuga M, Kahn CR, Hedo JA, Van Obberghen E, Yamada KM. 1981. 970 

Insulin-induced receptor loss in cultured human lymphocytes is due to accelerated 971 

receptor degradation. Proc Natl Acad Sci U S A 78:6917-6921. 972 

129. Reed BC, Ronnett GV, Clements PR, Lane MD. 1981. Regulation of 973 

insulin receptor metabolism. Differentiation-induced alteration of receptor 974 

synthesis and degradation. J Biol Chem 256:3917-3925. 975 

130. Reed BC, Ronnett GV, Lane MD. 1981. Role of glycosylation and protein 976 

synthesis in insulin receptor metabolism by 3T3-L1 mouse adipocytes. Proc Natl 977 

Acad Sci U S A 78:2908-2912. 978 

131. Capeau J, Lascols O, Flaig-Staedel C, Blivet MJ, Beck JP, Picard J. 1985. 979 

Degradation of insulin receptors by hepatoma cells: Insulin-induced down-980 



 41

regulation results from an increase in the rate of basal receptor degradation. 981 

Biochimie 67:1133-1141. 982 

132. Savoie S, Rindress D, Posner BI, Bergeron JJ. 1986. Tunicamycin 983 

sensitivity of prolactin, insulin and epidermal growth factor receptors in rat liver 984 

plasmalemma. Mol Cell Endocrinol 45:241-246. 985 

133. Grako KA, Olefsky JM, McClain DA. 1992. Tyrosine kinase-defective 986 

insulin receptors undergo decreased endocytosis but do not affect internalization 987 

of normal endogenous insulin receptors. Endocrinology 130:3441-3452. 988 

134. Bravo DA, Gleason JB, Sanchez RI, Roth RA, Fuller RS. 1994. Accurate 989 

and efficient cleavage of the human insulin proreceptor by the human proprotein-990 

processing protease furin. Characterization and kinetic parameters using the 991 

purified, secreted soluble protease expressed by a recombinant baculovirus. J Biol 992 

Chem 269:25830-25837. 993 

135. Robertson BJ, Moehring JM, Moehring TJ. 1993. Defective processing of 994 

the insulin receptor in an endoprotease-deficient Chinese hamster cell strain is 995 

corrected by expression of mouse furin. J Biol Chem 268:24274-24277. 996 

136. Hwang JB, Frost SC. 1999. Effect of alternative glycosylation on insulin 997 

receptor processing. J Biol Chem 274:22813-22820. 998 

137. Massague J, Pilch PF, Czech MP. 1981. A unique proteolytic cleavage site 999 

on the beta subunit of the insulin receptor. J Biol Chem 256:3182-3190. 1000 

138. Tkacz JS, Lampen JO. 1975. Tunicaymcin inhibition of polyisoprenyl N-1001 

acetylglucosaminyl pyrophosphate formation in calf-liver microsomes. Biochem 1002 

Biophys Res Commun 65:248-257. 1003 

139. Thastrup O, Cullen PJ, Drøbak BK, Hanley MR, Dawson AP. 1990. 1004 

Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific 1005 



 42

inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc Natl Acad Sci U S A 1006 

87:2466-2470. 1007 

140. Wang D, Wei YR, Schmoll D, Maclean KN, Pagliassotti MJ. 2006. 1008 

Endoplasmic reticulum stress increases glucose-6-phosphatase and glucose 1009 

cycling in liver cells. Endocrinology 147:350-358. 1010 

141. Corbalán-García S, Gómez-Fernández JC. 2006. Protein kinase C 1011 

regulatory domains: the art of decoding many different signals in membranes. 1012 

Biochim Biophys Acta 1761:633-654. 1013 

142. Nawaratne R, Gray A, Jørgensen CH, Downes CP, Siddle K, Sethi JK. 1014 

2006. Regulation of insulin receptor substrate 1 pleckstrin homology domain by 1015 

protein kinase C: role of serine 24 phosphorylation. Mol Endocrinol 20:1838-1016 

1852. 1017 

143. Werner ED, Lee J, Hansen L, Yuan M, Shoelson SE. 2004. Insulin 1018 

resistance due to phosphorylation of insulin receptor substrate-1 at serine 302. J 1019 

Biol Chem 279:35298-35305. 1020 

144. Copps KD, White MF. 2012. Regulation of insulin sensitivity by 1021 

serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and 1022 

IRS2. Diabetologia 55:2565-2582. 1023 

145. Ozcan U, Ozcan L, Yilmaz E, Düvel K, Sahin M, Manning BD, 1024 

Hotamisligil GS. 2008. Loss of the tuberous sclerosis complex tumor suppressors 1025 

triggers the unfolded protein response to regulate insulin signaling and apoptosis. 1026 

Mol Cell 29:541-551. 1027 

146. Jurczak MJ, Lee AH, Jornayvaz FR, Lee HY, Birkenfeld AL, Guigni BA, 1028 

Kahn M, Samuel VT, Glimcher LH, Shulman GI. 2012. Dissociation of 1029 

inositol requiring enzyme (IRE1α)-mediated JNK activation from hepatic insulin 1030 



 43

resistance in conditional X-box binding protein-1 (XBP1) knockout mice. J Biol 1031 

Chem 287:2558-2567. 1032 

147. Jung DY, Chalasani U, Pan N, Friedline RH, Prosdocimo DA, Nam M, 1033 

Azuma Y, Maganti R, Yu K, Velagapudi A, O'Sullivan-Murphy B, Sartoretto 1034 

JL, Jain MK, Cooper MP, Urano F, Kim JK, Gray S. 2013. KLF15 is a 1035 

molecular link between endoplasmic reticulum stress and insulin resistance. PLoS 1036 

One 8:e77851. 1037 

148. Bennett BL, Sasaki DT, Murray BW, O'Leary EC, Sakata ST, Xu W, 1038 

Leisten JC, Motiwala A, Pierce S, Satoh Y, Bhagwat SS, Manning AM, 1039 

Anderson DW. 2001. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal 1040 

kinase. Proc Natl Acad Sci U S A 98:13681-13686. 1041 

149. Bain J, McLauchlan H, Elliott M, Cohen P. 2003. The specificities of 1042 

protein kinase inhibitors: an update. Biochem J 371:199-204. 1043 

150. Whitmarsh AJ. 2006. The JIP family of MAPK scaffold proteins. Biochem 1044 

Soc Trans 34:828-832. 1045 

151. Guo C, Whitmarsh AJ. 2008. The beta-arrestin-2 scaffold protein promotes 1046 

c-Jun N-terminal kinase-3 activation by binding to its nonconserved N terminus. J 1047 

Biol Chem 283:15903-15911. 1048 

152. Standen CL, Kennedy NJ, Flavell RA, Davis RJ. 2009. Signal transduction 1049 

cross talk mediated by Jun N-terminal kinase-interacting protein and insulin 1050 

receptor substrate scaffold protein complexes. Mol Cell Biol 29:4831-4840. 1051 

153. Jaeschke A, Czech MP, Davis RJ. 2004. An essential role of the JIP1 1052 

scaffold protein for JNK activation in adipose tissue. Genes Dev 18:1976-1980. 1053 

154. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K, 1054 

Hori S, Kakizuka A, Ichijo H. 2002. ASK1 is essential for endoplasmic 1055 



 44

reticulum stress-induced neuronal cell death triggered by expanded polyglutamine 1056 

repeats. Genes Dev 16:1345-1355. 1057 

155. Nishitoh H, Saitoh M, Mochida Y, Takeda K, Nakano H, Rothe M, 1058 

Miyazono K, Ichijo H. 1998. ASK1 is essential for JNK/SAPK activation by 1059 

TRAF2. Mol Cell 2:389-395. 1060 

156. Kelkar N, Standen CL, Davis RJ. 2005. Role of the JIP4 scaffold protein in 1061 

the regulation of mitogen-activated protein kinase signaling pathways. Mol Cell 1062 

Biol 25:2733-2743. 1063 

157. Liew CW, Bochenski J, Kawamori D, Hu J, Leech CA, Wanic K, Malecki 1064 

M, Warram JH, Qi L, Krolewski AS, Kulkarni RN. 2010. The pseudokinase 1065 

tribbles homolog 3 interacts with ATF4 to negatively regulate insulin exocytosis 1066 

in human and mouse β cells. The Journal of clinical investigation 120:2876-2888. 1067 

158. Takahashi Y, Ohoka N, Hayashi H, Sato R. 2008. TRB3 suppresses 1068 

adipocyte differentiation by negatively regulating PPARγ transcriptional activity. J 1069 

Lipid Res 49:880-892. 1070 

159. Örd D, Örd T. 2003. Mouse NIPK interacts with ATF4 and affects its 1071 

transcriptional activity. Exp Cell Res 286:308-320. 1072 

160. Ohoka N, Yoshii S, Hattori T, Onozaki K, Hayashi H. 2005. TRB3, a novel 1073 

ER stress-inducible gene, is induced via ATF4-CHOP pathway and is involved in 1074 

cell death. EMBO J 24:1243-1255. 1075 

161. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D. 1076 

2000. Regulated translation initiation controls stress-induced gene expression in 1077 

mammalian cells. Mol Cell 6:1099-1108. 1078 

Figure Legends 1079 



 45

Figure 1. Acute ER stress does not inhibit insulin-stimulated AKT T308 or S473 1080 

phosphorylation in C
2
C

12
 myotubes. (A) C

2
C

12
 myotubes were serum-starved for 18 1081 

h and treated with the indicated concentrations of thapsigargin (Tg), tunicamycin 1082 

(Tm), or 1 μg/ml SubAB or catalytically inactive SubA
A272

B during the last 1-8 h of 1083 

serum starvation and then stimulated with 100 nM insulin for 15 min where indicated. 1084 

Cell lysates were analyzed by Western blotting. (B) Detection of XBP1 splicing by 1085 

RT-PCR. PCR products were separated on a 2% (w/v) agarose gel and visualized with 1086 

ethidium bromide. PCR products derived from unspliced (u) and spliced (s) XBP1 1087 

mRNA are indicated by arrows. β-Actin (ACTB) was used as a loading control. 1088 

Abbreviations: Tg - 300 nM thapsigargin, Tm - 1 μg/ml tunicamycin. (C) Induction of 1089 

TRB3 in C2C12 cells by ER stress. C2C12 cells were treated with 300 nM thapsigargin, 1090 

1 μg/ml tunicamycin, or 1 μg/ml SubAB or SubAA272B for 4 h. TRB3 mRNA levels 1091 

were determined by RT-qPCR and standardized to the loading control ACTB. 1092 

Figure 2. Acute ER stress does not inhibit insulin-dependent AKT activation. (A) 1093 

Western blots of serum-starved MEFs treated with 1 μM thapsigargin for the 1094 

indicated times before stimulation with 10 or 100 nM insulin for 15 min are shown. 1095 

(B) Serum-starved Hep G2 hepatoma cells treated with the indicated concentrations of 1096 

thapsigargin, tunicamycin or 1 μg/ml SubAB for 30 or 60 min before stimulation with 1097 

100 nM insulin for 15 min. (C) Serum-starved C2C12 myoblasts and (D) serum-1098 

starved in vitro differentiated 3T3-F442A adipocytes were treated for 30 min with the 1099 

indicated concentrations of thapsigargin, tunicamycin or 1 μg/ml SubAB before 1100 

stimulation with 100 nM insulin for 15 min. (B-D) Cells were also treated with 1 1101 

μg/ml catalytically inactive SubAA272B where indicated. Cell lysates were analyzed 1102 

by Western blotting. 1103 
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Figure 3. Acute ER stress activates JNK, but does not inhibit insulin-dependent 1104 

AKT activation in Fao rat hepatoma cells. Serum-starved Fao rat hepatoma cells 1105 

were treated with the indicated concentrations of thapsigargin, tunicamycin or 1 1106 

μg/ml SubAB for 30 or 60 min before stimulation with 100 nM insulin for 15 min. 1107 

Cell lysates were analyzed by Western blotting. 1108 

Figure 4. ER stress does not inhibit insulin signalling in Fao rat hepatoma cells. 1109 

Fao rat hepatoma cells were serum starved for 18 h and treated with 0.1 to 1 μM 1110 

thapsigargin, 0.1 to 10 μg/ml tunicamycin, 1 μg/ml SubAB or SubAA272B for (A) 2, 1111 

(B) and (C) 3 h, and (D) 4 h. Cells were cultured in RPMI 1640 in panels (A), (B), 1112 

and (D) and in Coon’s modification of Ham’s F12 medium in panel (C). 1113 

Figure 5. Acute ER stress does not affect tyrosine phosphorylation of IRS1. (A) 1114 

Experimental set-up. At the start of the experiment (t = 0) serum-starved cells were 1115 

treated with 1 μM thapsigargin. Cell lysates were prepared in one series of dishes 5, 1116 

10, and 15 min after addition of 100 nM insulin. In a second series of dishes cells 1117 

were treated for 10, 20, or 25 min with 1 μM thapsigargin. 100 nM insulin were added 1118 

for the last 5, 10, or 15 min of thapsigargin treatment. (B) and (C) Analysis of the 1119 

time course described in panel (A) by immunoprecipitation of IRS1 and Western 1120 

blotting with an anti-phosphotyrosine or anti-IRS1 antibody in (B) C2C12 cells and (C) 1121 

3T3-F442A cells. (D-E) Serum-starved Hep G2 cells were treated with the indicated 1122 

concentrations of tunicamycin for 30 min and then stimulated with 100 nM insulin for 1123 

15 min. Cell lysates were analyzed by immunoprecipitation of IRS1 and Western 1124 

blotting with anti-phosphotyrosine and anti-IRS1 antibodies in panel (D) and by 1125 

Western blotting for phospho-JNK and total JNK in panel (E). 1126 

Figure 6. IRS1 S307/S312 phosphorylation during acute ER stress. (A) 3T3-1127 

F442A, (B) C
2
C

12
, and (C-D) Hep G2 cells were treated with 1 μM thapsigargin for 1128 
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the indicated times. Cell lysates were analyzed by ELISA for phosphorylation of S307 1129 

in murine IRS1 and S312 in human IRS1 by using the STAR phospho-IRS1 (Ser307 1130 

mouse/Ser312 human) ELISA from Millipore. S307 phosphorylation is expressed in 1131 

units relative to a phospho-S307 IRS1 standard provided in the ELISA kit. phospho-1132 

S307 IRS1 units were standardized to the amount of total IRS1 in cell lysates 1133 

determined by Western blotting. Equal loading of all lanes in the Western blot was 1134 

controlled with the GAPDH loading control. (E) IRS1 S307/S312 phosphorylation in 1135 

serum-starved 3T3-F442A, C
2
C

12
, and Hep G2 cells treated with 100 nM insulin for 1136 

15 min was determined by ELISA. IRS1 phospho-S307/S312 signals in the ELISA 1137 

were standardised to total protein levels. 1138 

Figure 7. Insulin resistance develops over time in ER-stressed C
2
C

12
 myoblasts. 1139 

Serum-starved C
2
C

12
 cells were treated with the indicated concentrations of (A) 1140 

thapsigargin, (B) tunicamycin, or (C) 1 μg/ml SubAB or SubA
A272

B for 1-24 h before 1141 

stimulation with 100 nM insulin for 15 min. Western blots for pS473-AKT and total 1142 

AKT were analyzed as described in Materials and Methods. 1143 

Figure 8. Depletion of insulin receptors (INSR) in ER-stressed cells coincides 1144 

with development of insulin resistance in C
2
C

12
 cells. (A) C

2
C

12
 cells were treated 1145 

with the indicated ER stressors for 12-24 h before serum starvation and stimulation 1146 

with 100 nM insulin for 15 min. Protein extracts were analyzed by Western blotting. 1147 

Quantitation of insulin receptor β-chains in (B) thapsigargin-, (C) tunicamycin-, and 1148 

(D) SubAB-treated C
2
C

12
 cells. Bars represent standard errors. 1149 
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Tables 1151 

Table I. Oligodeoxynucleotides. Restriction sites are underlined. The start codon for 1152 

TRAF2Δ1-86 is shown in bold. 1153 

Name Purpose Sequence 

Oligodeoxynucleotides for H. sapiens genes 

   

   

H8289 XBP1 PCR, forward GAGTTAAGACAGCGCTTGGG 

H8290 XBP1 PCR, reverse ACTGGGTCCAAGTTGTCCAG 

Oligodeoxynucleotides for M. musculus genes 

H7961 XBP1 PCR, forward GATCCTGACGAGGTTCCAGA 

H7962 XBP1 PCR, reverse ACAGGGTCCAACTTGTCCAG 

H7994 ACTB PCR, forward AGCCATGTACGTAGCCATCC 

H7995 ACTB PCR, reverse CTCTCAGCTGTGGTGGTGAA 

H8962 TRB3 real time PCR, forward TTTGGAACGAGAGCAAGGCA 

H8963 TRB3 real time PCR, reverse CCACATGCTGGTGGGTAGG 

 1154 
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Abstract 21 

Endoplasmic reticulum (ER) stress is associated with obesity and insulin resistance. 22 

Here we show that ER stress causes insulin resistance by interfering with delivery of 23 

newly synthesized insulin receptors to the plasma membrane. Insulin resistance in 24 

ER-stressed adipocytes, myotubes, and hepatoma cells develops only after several 25 

half-lives of the insulin receptor at the plasma membrane, and coincides with 26 

depletion of mature insulin receptors and accumulation of unprocessed proreceptors. 27 

Endoglycosidase H digests revealed that unprocessed proreceptors solely carry high 28 

mannose N-glycans characteristic or ER-localized proteins. GFP-tagged insulin 29 

receptors accumulate in intracellular compartments and deplete at the plasma 30 

membrane in ER-stressed cells. siRNA knock-down of insulin receptor expression by 31 

~50% suffices to inhibit insulin signaling by approximately the same degree. Bypass 32 

of the secretory pathway by a cytosolic fusion of the tyrosine kinase domain to the 33 

drug-inducible FV2E-dimerisation domain eliminated the effects of ER stress on AKT 34 

activation by these insulin receptors. We conclude that ER stress inhibits insulin 35 

signaling by interfering with delivery of newly synthesized insulin receptors to the 36 

plasma membrane. ER stress also depletes the β chain of the mature insulin-like 37 

growth factor I receptor, showing that ER stress affects the abundance of several 38 

plasma membrane proteins. 39 

Introduction 40 

Perturbation of protein folding homeostasis in the endoplasmic reticulum (ER) 41 

activates the unfolded protein response (UPR). Several ER transmembrane proteins 42 

initiate the UPR, including the serine/threonine protein kinase-endoribonuclease 43 

(RNase) IRE1α, the serine/threonine protein kinase PERK, and several type II 44 

transmembrane basic leucine zipper (bZIP) transcription factors including ATF6α, 45 
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ATF6β, BBF2H7, CREB-H, and OASIS [reviewed in (1)]. The RNase domain of 46 

IRE1α initiates removal of a 26 nt intron from XBP1 mRNA resulting in a 47 

translational frame-shift and production of a more potent bZIP transcription factor by 48 

spliced XBP1 mRNA. The IRE1α RNase domain also cleaves many mRNAs 49 

encoding secretory proteins in a process called regulated-IRE1 dependent decay 50 

(RIDD) to ameliorate the unfolded protein burden of the stressed ER (2, 3). 51 

Phosphorylation of the α subunit of the trimeric eukaryotic translation initiation factor 52 

2 (eIF2α) attenuates general translation in ER-stressed cells, but also promotes 53 

translation of mRNA harboring several short upstream open reading frames (uORFs) 54 

in their 5’ untranslated regions (5’-UTRs). An example for an mRNA whose 55 

translation is increased in ER-stressed cells is the mRNA for the bZIP transcription 56 

factor ATF4 (4). ATF6 translocates to the Golgi membrane where its cytosolic bZIP 57 

transcription factor domain is proteolytically released from the Golgi membrane by 58 

S1P and S2P proteases. These signaling events culminate in transcriptional induction 59 

of genes encoding ER resident molecular chaperones and protein foldases, 60 

phospholipid biosynthesis, and ER-associated protein degradation (ERAD). 61 

The UPR also activates inflammatory and apoptotic signaling in response to non-62 

resolvable or chronic ER stress (5). Several of these signaling events have been 63 

implicated in inhibiting insulin signaling. Insulin signaling is initiated by binding of 64 

insulin to the insulin receptor, activation of its tyrosine protein kinase domain, 65 

tyrosine autophosphorylation, and tyrosine phosphorylation of insulin receptor 66 

substrate (IRS) proteins [reviewed in (6)]. Tyrosine-phosphorylated IRS proteins 67 

recruit phosphatidylinositol (PI) 3-kinase (PI3K) to the plasma membrane, followed 68 

by formation of PI-3,4-bis- and PI-3,4,5-trisphosphate and recruitment of 69 

phosphoinositide-dependent kinases (PDKs) and AKT isoforms to the plasma 70 
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membrane. Colocalization of PDKs and AKT to the plasma membrane facilitates 71 

phosphorylation of AKT on T308, and on S473 by mTORC2 (7-9), PAK1 (10), and 72 

ILK (11) leading to activation of AKT. Activated AKT facilitates glucose transport, 73 

protein and glycogen synthesis, and inhibits gluconeogenesis. Activation of mTOR 74 

and p70S6K kinase by AKT stimulates protein synthesis, while activation of RAS, 75 

RAF, and the mitogen-activated protein kinases ERK1 and ERK2 through GRB2 and 76 

IRS proteins mediates the mitogenic effects of insulin. 77 

IRE1α and PERK signaling have been linked to insulin resistance in obesity. ER 78 

stress is present in adipose tissue, the hypothalamus, and the liver of obese mice and 79 

humans (12-15). Interaction of IRE1α with the E3 ubiquitin ligase TRAF2 activates 80 

the mitogen-activated protein (MAP) kinase JNK (16). Activation of JNK by several 81 

stimuli, most notably in response to inflammation, causes insulin resistance through 82 

phosphorylation of insulin receptor substrate (IRS)-1 on serine 307 which inhibits 83 

IRS1 tyrosine phosphorylation by the insulin receptor (17, 18). It was also reported 84 

that IRE1α-dependent activation of JNK in ER-stressed cells causes insulin resistance 85 

via IRS1 serine 307 phosphorylation (12). However, other work has shown that 86 

insulin resistance develops at least partially independent of JNK in ER-stressed cells 87 

(19-21). Furthermore, fructose feeding of liver-specific xbp1-/- mice caused ER stress 88 

and activated JNK, but did not cause insulin resistance (22), arguing that ER stress-89 

dependent JNK activation can be dissociated from insulin resistance. Likewise, klf15-/- 90 

hepatocytes show increased JNK activation and ER stress, but also improved insulin 91 

sensitivity (23). Consistent with these reports, we have observed that short-term, 92 

pharmacologically-induced ER stress leads to transient activation of JNK without 93 

inhibiting the activity of the insulin signaling pathway (Brown et al., submitted for 94 

publication). Thus, the role of JNK in ER-stressed insulin resistance remains unclear. 95 
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A transcriptional cascade downstream of PERK induces expression of the 96 

pseudokinase TRB3 via activation of the transcription factors ATF4 and CHOP (24). 97 

Overexpression of TRB3 inhibits insulin signaling (25-29). TRB3 interacts with AKT 98 

(25-28) and IRS1 (29). A Q84R polymorphism in TRB3, which is associated with 99 

insulin resistance and type 2 diabetes (30, 31), potentiates its interaction with AKT 100 

(28, 30). On a high fat diet trb3-/- mice displayed improved glucose tolerance, and 101 

improved insulin signaling (29). These results were explained in the context of 102 

induction of TRB3 in response to ER stress developing on a high fat diet and 103 

inhibition of IRS1 and AKT phosphorylation by TRB3 (29). Hence, TRB3 may be 104 

another molecular link between ER stress and insulin resistance. 105 

Another mechanism through which ER stress may cause insulin resistance is by 106 

interfering with expression and delivery of insulin receptor molecules to the plasma 107 

membrane. The monomers of the dimeric insulin receptor consist of an extracellular α 108 

and a β chain harboring a transmembrane and intracellular tyrosine protein kinase 109 

domain. Both chains are linked via a disulfide bond between C647 and C872 in the α 110 

and β chains (32, 33) (Fig. 1). The α chain carries 14 and the β chain 4 N-linked 111 

oligosaccharides. The insulin receptor is synthesized as a single polypeptide chain, 112 

which, after maturation of the insulin binding domain, dimerization, N-linked 113 

glycosylation and disulfide formation in the ER, is cleaved by proprotein convertases, 114 

including furin, in the trans-Golgi network carboxyterminal to the basic sequence 115 

RKRR to liberate the mature α and β chains (34, 35). The mature receptor is delivered 116 

to the plasma membrane, where it has a half-life of 7-13 h (36-42). Short-term ER 117 

stress failed to cause insulin resistance, while prolongation of ER stress over several 118 

half-lives of the insulin receptor at the plasma membrane was associated with insulin 119 

resistance (Brown et al., submitted for publication). Here we report that insulin 120 
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resistance in ER-stressed cells is caused by inhibition of transport of newly 121 

synthesized insulin receptors to the plasma membrane. Bypass of the ER in synthesis 122 

of functional, cytosolic insulin receptors prevents insulin resistance in ER-stressed 123 

cells. Consistent with a trafficking block in the secretory pathway as the underlying 124 

cause for insulin resistance in ER-stressed cells we find that ER stress-induced insulin 125 

resistance is independent of JNK and that induction of TRB3 by ER stress does not 126 

inhibit insulin signaling. 127 

Materials and Methods 128 

Antibodies and reagents. Antibodies against phospho-JNK (cat. no. 4668), JNK (cat. 129 

no. 9258), phospho-S473-AKT (cat. no. 4060), phospho-T308-AKT (cat. no. 4056), 130 

and AKT (cat. no. 4691) were purchased from Cell Signaling Technology (Danvers, 131 

MA, USA). The anti-GAPDH antibody (cat. no. G8795) was purchased from Sigma-132 

Aldrich (Gillingham, UK). The anti-insulin receptor β chain antibody (cat. no. sc-133 

711), anti-insulin-like growth factor (IGF)-I receptor antibody (cat. no. 3018), and 134 

normal rabbit IgG (cat. no. sc-2027) were purchased from Santa Cruz Biotechnology 135 

(Santa Cruz, CA, USA). Tunicamycin was purchased from Merck Chemicals 136 

(Beeston, UK), and bovine insulin (cat. no. I0516), bovine serum albumin (BSA, cat. 137 

no. A2153), dexamethasone, 3-isobutyl-1-methylxanthine (IBMX), and thapsigargin 138 

from Sigma-Aldrich (Gillingham, UK). Endoglycosidase H (EndoH) and peptide-N-139 

glycosidase (PNGase) F were obtained from New England Biolabs (Hitchin, UK). 140 

Plasmids. Plasmids were maintained in Escherichia coli XL10-Gold cells (Agilent 141 

Technologies, Stockport, UK, cat. no. 200314). Standard protocols for plasmid 142 

constructions were used (43). Plasmid pmaxGFP was obtained from Lonza Cologne 143 

AG (Cologne, Germany). Plasmid pEGFP-N2-hINSR encodes a fusion of the human 144 

insulin receptor to eGFP (44) and was obtained from Addgene (Cambridge, MA, 145 
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USA, Addgene ID 22286). Plasmid pcDNA5/FRT/TO-FV2E-INSRβ was generated 146 

by cloning the 1,430 bp BsiWI-XmaI fragment of pCLFv2IRE (45) into BsiWI- and 147 

XmaI-digested pcDNA5/FRT/TO-FV2E-C’hIRE1α (Cox and Schröder, unpubl.). 148 

Plasmid pcDNA5/FRT/TO-MyrFV2E-INSRβ was generated by cloning the 501 bp 149 

EcoRI-XmaI fragment of pC4M-FV2E (Arial Pharmaceuticals, Cambridge, MA, USA) 150 

into HindIII- and XmaI-digested pcDNA5/FRT/TO-FV2E-INSRβ after blunting the 151 

EcoRI and HindIII sites with Klenow enzyme. 152 

Cell culture. WT and jnk1-/- jnk2-/- (46) mouse embryonic fibroblasts were obtained 153 

from R. Davis (University of Massachusetts, Worchester, MA, USA). 3T3-F442A 154 

preadipocytes (47), C2C12 myoblasts (48), HEK 293 cells (49-51), and Hep G2 cells 155 

(52) were obtained from C. Hutchison (Durham University), R. Bashir (Durham 156 

University), M. Cann (Durham University), and A. Benham (Durham University). 157 

The Flp-In T-Rex 293 cell line was obtained from Life Technologies (Paisley, UK). 158 

All cell lines were grown in an atmosphere of 95% (v/v) air, 5% (v/v) CO2, and 159 

95% humidity and were cultured in Dulbecco’s minimal essential medium (DMEM) 160 

containing 4.5 g/l D-glucose (53, 54), 10% (v/v) FBS and 2 mM L-glutamine. The 161 

medium for the Flp-In T-Rex 293 cells was supplemented with 100 μg/ml zeocin and 162 

15 μg/ml blasticidin and the medium for Flp-In T-Rex 293 cells stably expressing the 163 

FV2E-insulin receptor chimeras with 100 μg/ml hygromycin B and 15 μg/ml 164 

blasticidin. To differentiate C2C12 cells 60-70% confluent cultures were shifted into 165 

low mitogen medium consisting of DMEM containing 4.5 g/l D-glucose, 2% (v/v) 166 

horse serum, and 2 mM L-glutamine and incubated for another 7-8 d with replacing 167 

the low mitogen medium every 2-3 d (55). Differentiation of C2C12 cells was assessed 168 

by microscopic inspection of cultures, staining of myotubes with phalloidin (56), and 169 

reverse transcriptase (RT)-PCR for transcription of the genes encoding S-adenosyl-170 
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homocysteine hydrolase (AHCY), myosin light chain 1 (MYL1), and troponin C 171 

(TNC1). To differentiate 3T3-F442A fibroblasts into adipocytes cells were grown to 172 

confluency. 2 d postconfluency the medium was changed to DMEM containing 4.5 g/l 173 

D-glucose, 10% (v/v) FBS, 2 mM L-glutamine, 1 μg/ml insulin, 0.5 mM IBMX, 0.25 174 

μM dexamethasone. After 3 d the medium was changed to DMEM containing 4.5 g/l 175 

D-glucose, 10% (v/v) FBS, 2 mM L-glutamine, 1 μg/ml insulin for 2 more days and 176 

then DMEM containing 4.5 g/l D-glucose, 10% (v/v) FBS, 2 mM L-glutamine until 177 

day 12 of differentiation (57). Differentiation was assessed by Oil Red O staining (58) 178 

and flow cytometric analysis of >1·104 cells by Nile Red staining as described before 179 

(59, 60). 180 

ER stress was induced with 0.1 to 1 μM thapsigargin, 0.1 to 10 μg/ml 181 

tunicamycin, or 1 μg/ml subtilase cytotoxin AB (SubAB) or catalytically inactive 182 

SubAA272B. SubAB and SubAA272B were purified as described before (61, 62). To 183 

stimulate cells with insulin cells were starved for serum for 18 h, followed by addition 184 

of fresh serum-free culture medium containing 100 nM insulin. Serum starvation for 185 

18 h does not affect activation of the UPR (Brown et al., submitted for publication). 186 

After 15 min exposure to insulin cells were harvested and lysed for extraction of RNA 187 

and protein as described below. Expression of the FV2E-insulin receptor chimera was 188 

induced for 24 h with 1 μg/ml tetracycline, where indicated. The chimera was 189 

dimerized by treating cells with 100 nM AP20187 for the times indicated in the text. 190 

Plasmids were transfected with jetPRIME (Polyplus Transfection, Illkirch, 191 

France) and siRNAs with INTERFERin (Polyplus Transfection) following the 192 

manufacturer’s instructions. siRNAs are listed in Table I. The stably transfected Flp-193 

In T-Rex 293 cell lines expressing a fusion of the FV2E drug-inducible dimerization 194 

domain (43) to the β chain of the human insulin receptor with and without an N-195 
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terminal myristoylation signal were generated by transfection of the Flp-In T-Rex 293 196 

cell line with pOG44 and pcDNA5/FRT/TO-MyrFV2E-INSRβ. Selection of stably 197 

transfected clones was initiated 24 h after transfection by using 50 μg/ml hygromycin 198 

B. After two days the hygromycin B concentration was increased to 100 μg/ml. 199 

RNA extraction and RT-PCRs. RNA was extracted with the EZ-RNA total RNA 200 

isolation kit (Geneflow, Fradley, UK, cat. no. K1-0120) and reverse transcribed with 201 

oligo-dT primers (Promega, Southampton, UK, cat. no. C1101) and Superscript III 202 

reverse transcriptase (Life Technologies, cat. no. 18080044) as described previously 203 

(63). Quantitative PCRs (qPCRs) were run on a Rotorgene 3000 (Qiagen, Crawley, 204 

UK). Amplicons were amplified with 0.5 μl 5 U/μl GoTaq® Flexi DNA polymerase 205 

(Promega, cat. no. M8305), 2 mM MgCl2, 200 μM dNTPs, and 1 μM of each primer 206 

and detected with a 1:2,500 fold dilution of a SybrGreen stock solution (Life 207 

Technologies, cat. no. S7563). Primers for qPCRs are listed in Table II. After 208 

denaturation for 2 min at 95°C samples underwent 40 cycles of denaturation at 95°C 209 

for 30 s, primer annealing at 58°C for 30 s, and primer extension at 72°C for 30 s. 210 

Amplification of a single PCR product was confirmed by recording the melt curves 211 

after each PCR run. Amplification efficiencies for all qPCRs were ~0.75 ± 0.05. 212 

Calculation of CT values and normalization to ACTB was done using the comparative 213 

quantitation function in the Rotorgene software. Results represent the average and 214 

standard error of two biological repeats and three technical repeats within each 215 

biological repeat. 216 

Cell lysis and Western blotting. Cells were washed three times with ice-cold 217 

phosphate-buffered saline (PBS, 4.3 mM Na2HPO4, 1.47 mM KH2PO4, 27 mM KCl, 218 

137 mM NaCl, pH 7.4) and lysed in RIPA buffer (50 mM Tris-HCl, pH 8.0, 150 mM 219 

NaCl, 0.5% (w/v) sodium deoxycholate, 0.1% (v/v) Triton X-100, 0.1% (w/v) SDS) 220 
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containing Roche complete protease inhibitors (Roche Applied Science, Burgess Hill, 221 

UK, cat. no. 11836153001) as described before (63). Proteins were separated by SDS-222 

PAGE and transferred to polyvinylidene difluoride (PVDF) membranes (Amersham 223 

HyBondTM-P, pore size 0.45 μm, GE Healthcare, cat. no. RPN303F) by semi-dry 224 

electrotransfer in 0.1 M Tris, 0.192 M glycine, and 5% (v/v) methanol at 2 mA/cm2 225 

for 60-75 min. Membranes were blocked for 1 h in 5% (w/v) skimmed milk powder in 226 

TBST [20 mM Tris-HCl, pH 7.6, 137 mM NaCl, and 0.1% (v/v) Tween-20] for 227 

antibodies against non-phosphorylated proteins and 5% (w/v) BSA in TBST for 228 

antibodies against phosphorylated proteins. The anti-AKT, anti-phospho-S473-AKT, 229 

anti-phospho-T308-AKT, anti-JNK, and anti-phospho-JNK antibodies were incubated 230 

with membranes at a 1:1,000 dilution in TBST + 5% (w/v) BSA over night at 4°C 231 

with gentle agitation. Blots were washed three times with TBST and then probed with 232 

goat anti-rabbit-IgG (H+L)-horseradish peroxidase (HRP)-conjugated secondary 233 

antibody (cat. no. 7074S, Cell Signaling Technology) at a 1:1,000 dilution in TBST + 234 

5% (w/v) skimmed milk powder for 1 h at room temperature. The mouse anti-235 

GAPDH antibody was used at a 1:30,000 dilution in TBST + 5% (w/v) skimmed milk 236 

powder over night at 4°C with gentle agitation and was developed with goat anti-237 

mouse IgG (H+L)-horseradish peroxidase (HRP)-conjugated secondary antibody 238 

(Thermo Fisher Scientific, Loughborough, UK, cat. no. 31432) at a 1:20,000 dilution 239 

in TBST + 5% (w/v) skimmed milk powder for 1 h at room temperature. For signal 240 

detection Pierce ECL Western Blotting Substrate (cat. no. 32209) or Pierce ECL Plus 241 

Western Blotting Substrate (cat. no. 32132) from Thermo Fisher Scientific were used. 242 

Blots were exposed to CL-X PosureTM film (Thermo Fisher Scientific, cat. no. 243 

34091). Exposure times were adjusted on the basis of previous exposures to obtain 244 

exposures in the linear range of the film. Signals were quantified using ImageJ (64). 245 
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To reprobe blots for detection of nonphosphorylated proteins, membranes were 246 

stripped using Restore Western Blot Stripping Buffer (Thermo Fisher Scientific, cat. 247 

no. 21059,) and blocked with 5% (w/v) skimmed milk powder in TBST. 248 

Endoglycosidase H (Endo H) and peptide:N-glycosidase F (PNGase F) digests. 8 249 

μg of protein were denatured in 0.5% (w/v) SDS, 40 mM DTT at 100°C for 10 min. 250 

Samples were then incubated with 1000 U of Endo H in 50 mM sodium citrate, pH 251 

5.5 (at 25°C) at 37°C for 2 h. For PNGase F digests denatured samples were 252 

incubated with 1000 U of PNGase F in 50 mM sodium phosphate pH 7.5 (at 25°C), 253 

1% (v/v) NP-40 at 37°C for 2 h. 254 

[35S]-L-methionine/[35S]-L-cysteine pulse labeling experiments. C2C12 myotubes, 255 

3T3-F442A adipocytes, and Hep G2 cells grown to 70-80% confluency were treated 256 

with 100 nM thapsigargin, 0.1 μg/ml tunicamycin for 24 h or left untreated for the 257 

same period of time. To measure total protein synthesis rates by incorporation of 258 

[35S]-L-methionine/[35S]-L-cysteine into newly synthesized protein cells were washed 259 

once with PBS prewarmed to 37°C, and incubated with L-cysteine/L-methionine 260 

starvation medium (DMEM lacking L-cysteine and L-methionine supplemented with 261 

2 mM L-glutamine) for 20 min at 37°C. The starvation medium was aspirated and 262 

replaced with starvation medium containing 50 μCi/ml 70% [35S]-L-methionine, 25% 263 

[35S]-L-cysteine (1000 Ci/mmol, Hartmann Analytic, Braunschweig, Germany, cat. 264 

no. SCIS-103). After 15 min at 37°C cells were washed three times with ice-cold PBS 265 

and then lysed in RIPA buffer as described above. Equal amounts of protein were 266 

separated by SDS-PAGE. Gels were fixed and stained with Coomassie Brilliant Blue 267 

R250 with 20% (w/v) trichloroacetic acid (TCA) containing 0.1% (w/v) Coomassie 268 

Brilliant Blue R250, destained with 10% (v/v) acetic acid, 25% (v/v) methanol and 269 

prepared for fluorography by incubation in PBS containing 0.5 M sodium salicylate 270 
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and 2% (v/v) glycerol for 15 min. After drying gels were exposed to Kodak BioMax 271 

MR film and scanned on a Typhoon 9400 system (GE Healthcare, Little Chalfont, 272 

UK). [35S]-L-methionine/[35S]-L-cysteine incorporation of each lane quantitated by 273 

phosphorimaging was standardized to the Coomassie Brilliant Blue R250 staining of 274 

the lane determined with ImageJ. [35S]-L-methionine/[35S]-L-cysteine incorporation is 275 

expressed relative to untreated cells. 276 

To measure [35S]-L-methionine/[35S]-L-cysteine incorporation rates by TCA 277 

precipitation equal amounts of protein were precipitated with ice-cold 10% (w/v) 278 

TCA on Whatman 3MM papers for 15 min, washed twice with ice-cold 5% (w/v) 279 

TCA and once with ethanol. The filter papers were dried and the precipitated 280 

radioactivity measured by scintillation counting in a Tri-Carb 1600 Liquid 281 

Scintillation Analyzer (Canberra Packard, Pangbourne, UK). 282 

Immunoprecipitation of the insulin receptor. Cells were washed three times with 283 

ice-cold PBS and lysed in 250 µl RIPA buffer containing Roche complete protease 284 

inhibitors. 1 mg protein lysate was pre-cleared with 20 µl 25% (w/v) protein A 285 

agarose beads (Santa Cruz Biotechnology, cat. no. sc-2001)  for 1 h at 4°C and then 286 

immunoprecipitated with 1 µg anti-insulin receptor β chain antibody at 4°C overnight. 287 

Immunoprecipitates were incubated with 20 µl 25% (w/v) protein A agarose beads for 288 

1 h at 4°C and washed three times with ice-cold RIPA buffer containing protease 289 

inhibitors and 0.1% (v/v) Nonidet P40 and once with ice-cold RIPA buffer. 290 

Immunoprecipitated proteins were solubilized by boiling in 350 mM Tris·HCl, pH 291 

6.8, 30% (v/v) glycerol, 10% (w/v) SDS, 0.5 g/l bromophenol blue, 2% (v/v) β-292 

mercaptoethanol for 5 min and separated by SDS-PAGE. Gels were stained with 20% 293 

(w/v) trichloroacetic acid (TCA) containing 0.1% (w/v) Coomassie Brilliant Blue 294 

R250, destained with 10% (v/v) acetic acid, 25% (v/v) methanol and prepared for 295 
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fluorography by incubation in PBS containing 0.5 M sodium salicylate and 2% (v/v) 296 

glycerol for 15 min. After drying the gels were exposed to Kodak BioMax MR film at 297 

-80°C. 298 

Fluorescence microscopy. Images of GFP-tagged insulin receptors expressed in 299 

HEK 293 cells were taken on a Zeiss ApoTome microscope (Carl Zeiss, Cambridge, 300 

UK) 18 h after induction of ER stress with 1 μg/ml tunicamycin or 1 μg/ml SubAB5. 301 

The cell membrane was visualized by staining cells for 5 min at room temperature 302 

with 5 μg/ml CellMask Deep Red (Life Technologies). GFP fluorescence was 303 

observed using a band pass (BP) 450-490 filter (Carl Zeiss, FITC/GFP, filter set 9, 304 

cat. no. 488009-000) and a long pass (LP) 515 filter. CellMask Deep red fluorescence 305 

was observed using a BP546/12 filter (Carl Zeiss, Rhodamine, filter set 15, cat. no. 306 

488015-0000) and a LP 590 filter. To quantify colocalization of the GFP-tagged 307 

insulin receptors and CellMask Deep Red signals, individual cells were defined as 308 

regions of interest (ROI) in Image J, and background-corrected for the intracellular 309 

fluorescence of CellMask Deep Red using the Background Subtraction from ROI 310 

plug-in. The Pearson correlation coefficient between the INSR-GFP and CellMask 311 

Deep Red Fluorescence was determined in individual cells using the Colocalization 312 

Test plug-in and Costes’ image randomization (65) and a point spread function (PSF) 313 

width of 0.453 μm as a quantitative measure of colocalization of both fluorescence 314 

signals (66, 67). 315 

Error calculations. Experimental data are presented as the average and its standard 316 

error. Errors were propagated using the law of error propagation for random, 317 

independent errors (68). 318 

Results 319 
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Prolonged ER stress extending over several half-lives of the insulin receptor at the 320 

plasma membrane causes insulin resistance 321 

Our previous work suggests that short-term ER stress lasting for up to 8 h does not 322 

cause insulin resistance, while insulin resistance caused by prolonged ER stress 323 

correlates with depletion of insulin receptor β chains in C2C12 myotubes (Brown et 324 

al., submitted for publication). Three mechanistically independent ER stressors, the 325 

N-linked glycosylation inhibitor tunicamycin, the SERCA Ca2+ ATPase inhibitor 326 

thapsigargin, and SubAB, which cleaves and inactivates the ER HSP70 class 327 

molecular chaperone BiP/Grp78 in its hinge region (69), failed to elicit insulin 328 

resistance in several different cell lines, including Hep G2 and Fao hepatoma cells, 329 

mouse embryonic fibroblasts, in vitro differentiated 3T3-F442A adipocytes and C2C12 330 

myotubes when applied to these cells for less than ~8 h. To address whether 331 

prolonged ER stress leads to insulin resistance in Hep G2 cells and 3T3-F442A 332 

adipocytes, we monitored insulin-stimulated AKT T308 and S473 phosphorylation in 333 

extended time courses lasting for up to 36 h. These experiments revealed that ER 334 

stress causes insulin resistance after incubation of cells with these drugs lasting for ≥ 335 

12 h (Figs. 2, 3A). Insulin sensitivity, as evidenced by decreased AKT S473 or T308 336 

phosphorylation became gradually worse as time increased. These experiments also 337 

confirmed that ER stress for up to ~8 h does not cause insulin resistance even at the 338 

highest concentrations of tunicamycin or thapsigargin. 339 

The insulin receptor has a half-life at the plasma membrane of 7-13 h (36-42). 340 

Hence, we asked whether the onset of insulin resistance in ER-stressed cells correlates 341 

with loss of mature insulin receptors. Western blotting of cell lysates isolated from 342 

unstressed cells with an anti-β chain antibody revealed three bands in Hep G2 cells 343 

and five bands in 3T3-F442A cells (Figs. 3B, 4A). The two bands migrating at ~210 344 
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kDa in SDS-PAGE gels represent the α-β proreceptor and an alternatively 345 

glycosylated form (70), whereas the band migrating at 95 kDa represents the mature β 346 

chain. The two additional bands seen at ~130 kDa in C2C12 and 3T3-F442A cells arise 347 

from a less well characterized lysosomal event (71). Cell extracts from tunicamycin-348 

treated cells displayed an extra band representing the non-glycosylated α-β 349 

proreceptor (Figs. 3B, 4A). In thapsigargin-treated Hep G2 cells insulin resistance 350 

develops around 36 h (Fig. 2B). Insulin receptor β chains remain largely unchanged 351 

for the first 24 h of thapsigargin treatment, but become severely decreased around 36 352 

h (Fig. 4B). Similar results were obtained with tunicamycin and SubAB, where severe 353 

insulin resistance and insulin receptor β chain depletion manifested 36 h after 354 

application of the drugs (Figs. 2C-D and 4C-D). At the highest tunicamycin 355 

concentration insulin resistance developed before 36 h and also correlated with a 356 

faster depletion of insulin receptor β chains. These results were further confirmed by 357 

using tunicamycin-treated 3T3-F442A adipocytes (Fig. 3). At 1 μg/ml tunicamycin 358 

insulin resistance developed at ~12 h at which time there was also a ~50% decrease in 359 

insulin receptor β chains. More severe insulin resistance developed with 10 μg/ml 360 

tunicamycin, which coincided with a more severe loss of β chains. Furthermore, we 361 

observed the same overall correlation between levels of insulin receptor β chains and 362 

the degree of insulin-stimulated AKT S473 phosphorylation in C2C12 myotubes 363 

(Brown et al., submitted for publication). In summary, these data establish a 364 

correlative relationship between loss of mature insulin receptor β chains and insulin 365 

resistance in ER-stressed cells. 366 

Unprocessed α-β proreceptors accumulate in the ER of ER-stressed cells 367 
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Several mechanisms through which ER stress decreases mature insulin receptors are 368 

imaginable: 1) the RIDD activity of IRE1α (2, 3) may degrade the insulin receptor 369 

mRNA, 2) transcriptional activity may be repressed (72, 73), 3) phosphorylation of 370 

eIF2α by PERK may inhibit translation of the insulin receptor mRNA, and 4) ER 371 

stress may interfere with proper folding, maturation, or trafficking of the insulin 372 

receptor in the secretory pathway. RT-qPCRs showed that steady-state levels of 373 

insulin receptor mRNA increase ~6 fold in ER-stressed C2C12 cells (Fig. 5A), thus 374 

making it unlikely that transcriptional effects or RIDD activity of IRE1α can explain 375 

loss of insulin receptor β chains in ER-stressed cells. To explore whether a 376 

translational arrest can explain the loss of β chains we labeled newly synthesized 377 

proteins by pulsing cells for 15 min with a mix of [35S]-L-methionine and [35S]-L-378 

cysteine and measured incorporation of [35S]-L-methionine/[35S]-L-cysteine into 379 

protein by scintillation counting of TCA precipitates (Fig. 5B, F, I). These 380 

experiments showed that treatment of C2C12 cells and 3T3-F442A cells with 0.1 μM 381 

thapsigargin or 0.1 μg/ml tunicamycin for 24 h did not inhibit general protein 382 

synthesis (Fig. 5B, F). These mild ER stress conditions inhibit insulin-stimulated 383 

AKT S473 phosphorylation and deplete insulin receptor β chains (Figs. 2-4). In Hep 384 

G2 cells these conditions decreased total protein synthesis by ~25% (Fig. 5I). We 385 

confirmed these results by running equal amounts of [35S]-labeled total protein (10 386 

μg) on SDS-PAGE gels, phosphorimaging of the gels and standardizing the 387 

Phosphorimager signals to the intensity of the Coomassie Brilliant Blue R250 staining 388 

of the gels (Figs. 5C-D, G-H, J-K). These experiments gave qualitatively the same 389 

results as the scintillation counting of TCA-precipitates. Overall, these experiments 390 

have identified conditions at which there is no effect of ER stress on translation rates, 391 

but at which ER stress inhibits insulin signaling and decreases insulin receptor β 392 
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chains. Therefore, it is unlikely that a translational arrest can fully explain the 393 

depletion of β chains caused by ER stress. 394 

To directly establish whether ER stress affects translation of the insulin receptor 395 

mRNA we immunoprecipitated insulin receptors with an antibody against the β chain 396 

from differentiated 3T3-F442A adipocytes that were pulse-labeled with [35S]-L-397 

methionine/[35S]-L-cysteine for 15 min, ran the immunoprecipitates on SDS-PAGE 398 

gels and quantified signals by Phosphorimaging (Fig. 5E). These experiments showed 399 

that 0.1 μM thapsigargin did not affect translation of the insulin receptor mRNA. 400 

Further evidence that translation of insulin receptors is ongoing in ER-stressed cells is 401 

provided by the appearance of non-glycosylated proreceptors in tunicamycin-treated 402 

cells (Figs. 3B, 4A, and 6A, C) because tunicamycin does not remove pre-existing N-403 

glycans from glycoproteins. In summary, translational arrest mediated by the UPR 404 

cannot explain the decrease in insulin receptor β chains in cells exposed to low 405 

concentrations of thapsigargin and tunicamycin. Thus another, more generally 406 

applicable, explanation for how ER stress decreases insulin receptor β chains exists. 407 

Since transcriptional and translational effects cannot fully explain loss of mature 408 

insulin receptors in ER-stressed cells, we characterized whether transport of newly 409 

synthesized insulin receptors to the plasma membrane is inhibited by ER stress. 410 

Consistent with this hypothesis is that while mature β chains decrease in ER-stressed 411 

cells, the levels of α-β proreceptors increase relative to the levels of the β chains (Fig. 412 

6A-B and data not shown). Cleavage of the proreceptor into α- and β chains by 413 

proprotein convertases in the trans-Golgi network (34, 35) suggests that α-β 414 

proreceptors accumulate in an early compartment of the secretory pathway such as the 415 

ER or cis-Golgi. To provide additional evidence that proreceptors accumulate in the 416 

ER or cis-Golgi we digested protein extracts from un- and ER-stressed C2C12 cells 417 
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with endoglycosidase H (Endo H). Endo H releases high mannose and some hybrid 418 

type N-linked oligosaccharides from glycoproteins by cleaving between the two N-419 

acetylglucosamine units (74). High mannose oligosaccharides are characteristic of 420 

proteins that have not been processed by enzymes in the Golgi complex. Endo H-421 

digested α-β proreceptors migrated at the same position in SDS-PAGE as fully 422 

deglycosylated proreceptors synthesized in tunicamycin-treated cells (Fig. 6C) or 423 

obtained with PNGase F (74) (Fig. 6E). By contrast, β chains carry one Endo H 424 

sensitive and several Endo H-resistant N-linked oligosaccharides [Figs. 6C, E and 425 

(70)]. Thus, these data are consistent with the conclusion that α-β proreceptors 426 

accumulate in the ER or cis-Golgi of ER-stressed cells. 427 

To directly establish whether insulin receptors deplete at the plasma membrane 428 

and accumulate in intracellular compartments we compared the localization of C-429 

terminally GFP-tagged insulin receptors expressed in HEK 293 cells treated for 18 h 430 

with 100 ng/ml tunicamycin or 1 μg/ml SubAB to untreated HEK 293 cells. HEK 293 431 

cells were chosen for these experiments because they can be easily transfected and, in 432 

contrast to Hep G2 cells, do not grow in clumps. We confirmed that ER stress lasting 433 

for 18 h causes insulin resistance and depletes insulin receptor β chains in HEK 293 434 

cells (Fig. 6F). Fluorescence microscopy revealed that the GFP-tagged insulin 435 

receptor redistributed from the plasma membrane to intracellular compartments in 436 

ER-stressed cells (Fig. 6G). To quantitatively assess localization of the insulin 437 

receptor to the plasma membrane we determined the Pearson’s correlation coefficient, 438 

robs, for the GFP fluorescence and the fluorescence of the CellMask Deep Red plasma 439 

membrane stain (Fig. 6H). This analysis confirmed a decrease in colocalization of the 440 

GFP and CellMask Deep Red fluorescence in both tunicamycin and SubAB-treated 441 
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HEK 293 cells and hence demonstrates that ER stress depletes the population of 442 

insulin receptors at the plasma membrane. 443 

AKT activation by a cytosolic FV2E-insulin receptor chimera is not affected by ER 444 

stress 445 

To demonstrate that loss of insulin receptors suffices to cause insulin resistance we 446 

silenced expression of the insulin receptor gene in C2C12 cells using three small 447 

interfering (si) RNAs and compared insulin-stimulated AKT S473 phosphorylation to 448 

cells transfected with a siRNA against eGFP. All three siRNAs decreased insulin 449 

receptor mRNA steady-state levels by 50-70% and mature β chains to a similar extent 450 

(Figs. 7A-B). Concomitant to the decrease in insulin receptor levels, insulin-451 

stimulated AKT S473 phosphorylation was decreased by 50-80% (Fig. 7B). Thus, an 452 

~50% decrease in insulin receptor levels suffices to decrease insulin-stimulated AKT 453 

S473 phosphorylation. 454 

To establish that inhibition of transport of newly synthesized insulin receptors 455 

from the ER to the plasma membrane is necessary for ER stress to cause insulin 456 

resistance we bypassed the secretory pathway in synthesis of functional insulin 457 

receptors by creating a chimera in which the signal peptide, extracellular and 458 

transmembrane domains of the insulin receptor are replaced by an N-terminal 459 

myristoylation signal and the FV2E domain (Fig. 7C). The myristoylation signal 460 

mediates N-terminal myristoylation of the protein and its anchoring to intracellular 461 

membranes (75, 76). The FV2E domain contains two binding sites for the macrolide 462 

AP20187 and binds AP20187 with subnanomolar affinities (43). Binding of AP20187 463 

to the FV2E domain induces dimerization of the chimeric protein. Dimerization of the 464 

FV2E-insulin receptor chimera with AP20187 in stably transfected Flp-In T-Rex 293 465 

cells caused an increase in phosphorylation of the chimera at tyrosine 1345, showing 466 
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that the chimera possesses tyrosine autophosphorylation activity (Fig. 7D). Addition 467 

of AP20187 to serum-starved cells expressing the myristoylated chimera elevated 468 

AKT T308 phosphorylation ~2.6 fold (Fig. 7E). We transiently transfected the 469 

myristoylated chimera into C2C12 myoblasts to characterize AKT S473 470 

phosphorylation, because AKT S473 phosphorylation was unresponsive to serum 471 

starvation in Flp-In T-Rex 293 cells (data not shown). In C2C12 cells AP20187 472 

stimulated AKT S473 phosphorylation ~3 fold (Fig. 7F). Thus, activation of the 473 

FV2E-insulin receptor chimera recapitulates several events in insulin signaling. 474 

Induction of ER stress with tunicamycin or SubAB for 24 h in Flp-In T-Rex 293 did 475 

not affect AKT activation by the chimera, but depleted β chains of the endogenous 476 

receptor by ~40% (Fig. 7E). In transiently transfected C2C12 cells ER stress induced 477 

for 24 h with thapsigargin, tunicamycin, or SubAB reduced endogenous β chains by 478 

~50% but again did not affect AKT activation by the chimera (Figs. 7F-G). In both 479 

cell lines tunicamycin led to the accumulation of non-glycosylated endogenous 480 

proreceptors (Figs. 7E-F). These data are consistent with the conclusion that insulin 481 

resistance in ER-stressed cells is caused by blocked passage of newly synthesized 482 

insulin receptors through the secretory pathway. 483 

JNK knock-out MEFs are not protected from ER stress-induced insulin resistance 484 

Previous reports have linked UPR signaling to insulin resistance via activation of both 485 

JNK by IRE1α (12, 16) and transcriptional induction of TRB3 downstream of PERK 486 

(24, 25, 29). To re-evaluate the role of JNK in ER stress-dependent insulin resistance 487 

we made use of jnk1-/- jnk2-/- MEFs, which do not show JNK activation after UV 488 

stimulation (46). Induction of ER stress with thapsigargin, tunicamycin, or SubAB for 489 

24 h inhibited insulin-stimulated AKT S473 phosphorylation to the same extent in 490 

jnk1-/- jnk2-/- MEFs as it did in WT MEFs (Figs. 8A-D), while activating JNK 2-4 fold 491 
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(Figs. 8E-F). These data show that ER stress causes insulin resistance independent of 492 

activation of JNK. ER stress conditions that did not affect AKT activation by the 493 

FV2E-insulin receptor chimera induced expression of TRB3 ~6 fold in C2C12 cells 494 

(Fig. 8G). Thus, elevated levels of TRB3 do not inhibit AKT activation in these cells. 495 

ER stress depletes IGF-I receptors 496 

Inhibition of transport of newly synthesized insulin receptors from the ER to the 497 

plasma membrane may be a more general phenomenon of ER stress affecting the 498 

majority of plasma membrane proteins. To provide evidence that ER stress depletes 499 

plasma membrane proteins other than the insulin receptor, we characterized the effect 500 

of ER stress on the IGF-I receptor. The IGF-I receptor has a half life of >6 h (77). 501 

Processing of the IGF-I proreceptor by proprotein convertases into α and β chains is 502 

reminiscent to processing of the insulin receptor (78). ER stress depleted IGF-I 503 

receptor β chains in Hep G2 (Figs. 9A-D) and C2C12 cells (Figs. 9F-H) and also led to 504 

an accumulation of proreceptors (Figs. 9E, I). These effects of ER stress on IGF-I 505 

receptor levels support the conclusion that ER stress not only decreases insulin 506 

receptors in the plasma membrane but also other membrane-bound proteins. 507 

Discussion 508 

Several tissues and organs display ER stress in obesity, including adipose tissue, 509 

hypothalamus, and the liver of obese mice and of obese patients (12-15). ER stress 510 

has been proposed to cause insulin resistance in obesity through activation of UPR 511 

signaling pathways leading to IRS1 S307 phosphorylation by JNK and inhibition of 512 

AKT phosphorylation by the pseudokinase TRB3. However, insulin resistance still 513 

develops in ER-stressed jnk1-/- jnk2-/- MEFs (Fig. 8), showing that JNK activation is 514 

not required for ER stress-induced insulin resistance. In addition, strong 515 

transcriptional induction of TRB3 occurs without the manifestation of insulin 516 
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resistance (Fig. 2 and Brown et al., submitted for publication), which suggests that 517 

TRB3 also is not responsible for causing insulin resistance in ER-stressed cells. Here 518 

we show that pharmacologically-induced ER stress causes insulin resistance by 519 

inhibiting delivery of newly synthesized insulin receptors to the plasma membrane. 520 

Constitutive turnover of insulin receptors in the plasma membrane will deplete plasma 521 

membrane insulin receptor levels as long as delivery of newly synthesized receptors 522 

to the plasma membrane is inhibited. Plasma membrane insulin receptor levels are 523 

decreased in obesity (79, 80), while insulin sensitivity and blood glucose homeostasis 524 

is restored by chemical chaperones, such as tauroursodeoxycholic acid or 4-525 

phenylbutyrate (13, 81). Our work suggests that less efficient trafficking of newly 526 

synthesized insulin receptor molecules to the cell surface due to the presence of ER 527 

stress accounts for the decreased insulin receptor abundance in the plasma membrane 528 

in obesity. These effects of ER stress on insulin receptor levels may extend to other 529 

human diseases associated with ER stress and in which decreases in insulin receptor 530 

levels have been reported, for example Parkinson’s (82) and Alzheimer’s disease (83). 531 

Several lines of evidence support the conclusion that ER stress causes insulin 532 

resistance by inhibiting transport of newly synthesized insulin receptors to the plasma 533 

membrane. Only prolonged ER stress extending over several half-lives of the insulin 534 

receptor at the plasma membrane causes insulin resistance (Figs. 2, 3), while short-535 

term ER stress lasting up to 8 h fails to cause ER stress (Brown et al., submitted for 536 

publication). The onset of insulin resistance coincides with depletion of mature insulin 537 

receptor β chains providing correlative evidence that depletion of insulin receptors is 538 

linked to ER stress-induced insulin resistance. A decrease in insulin receptor levels 539 

suffices to cause insulin resistance, because siRNA-mediated knock-down of insulin 540 

receptor expression by 50-70% decreased insulin-stimulated AKT activation to a 541 
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similar degree (Fig. 7A). In ER-stressed cells unprocessed, Endo H sensitive 542 

proreceptors accumulate in the ER (Figs. 6A, B). Fluorescence microscopy of GFP-543 

tagged insulin receptors in HEK293 cells shows that receptors are depleted from the 544 

plasma membrane (Fig. 6G-H). Finally, bypass of the ER by a functional, 545 

myristoylated FV2E-insulin receptor chimera synthesized on cytosolic ribosomes 546 

renders these insulin receptor chimeras insensitive to ER stress (Figs. 7F-G). Thus, 547 

ER stress-induced insulin resistance is dependent on transit of newly synthesized 548 

insulin receptors through the secretory pathway (Fig. 10). 549 

At the same time, experiments with the myristoylated FV2E-insulin receptor 550 

chimera suggest that ER stress-induced insulin resistance is largely independent of 551 

activation of UPR signaling pathways, especially activation of JNK by IRE1α and 552 

TRB3 by PERK. Indeed, we find that jnk1-/- jnk2-/- MEFs are not protected from ER 553 

stress-induced insulin resistance (Fig. 8A-F). These data are consistent with other 554 

reports showing that the JNK selective inhibitor SP600125 (84) did not restore insulin 555 

sensitivity to ER-stressed cells (19, 20). A ~6-fold increase in TRB3 expression also 556 

did not decrease AKT activation by the FV2E-insulin receptor chimera (Figs. 6F-G, 557 

7G). This observation is consistent with our observation in C2C12 cells, in which a 558 

~20-fold increase in steady-state TRB3 mRNA levels did not affect insulin signaling 559 

(Brown et al., submitted for publication). Thus, ER stress signaling pathways do not 560 

play a major role in the development of insulin resistance during ER stress. 561 

Processing of the insulin receptor in the secretory pathway has been well 562 

characterized (85-87). In these investigations tunicamycin was used to characterize 563 

the effects of inhibition of N-linked glycosylation on processing of the insulin 564 

receptor (39, 40, 88-94). These studies have shown that tunicamycin depletes 125I-565 

insulin binding capacity of cell membranes (40, 90-93, 95), and thus insulin and IGF-I 566 
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receptors, with a half-live of 7-10 h (39, 89), while having no or relatively small 567 

effects on total protein synthesis (39, 89). It was also shown that tunicamycin blocks 568 

trafficking of newly synthesized insulin receptors to the plasma membrane (92-94). 569 

These effects of tunicamycin have been largely attributed to lack of glycosylation of 570 

newly synthesized insulin receptors. Two other ER stressors, thapsigargin and 571 

SubAB, which do not directly affect N-linked glycosylation, also depleted insulin 572 

receptors at the plasma membrane (Fig. 6) and inhibited transport of insulin 573 

proreceptors from the ER to the trans-Golgi network (Fig. 6A-E). This suggests that 574 

accumulation of misfolded and aggregated proteins in the ER underlies the trafficking 575 

defects of the insulin receptor in ER-stressed cells. Indirect effects resulting from 576 

depletion of proteins functioning in vesicular trafficking and sorting may also account 577 

for some of the defects in insulin receptor trafficking, and may, for example, explain 578 

an increased half-life of the insulin receptor at the plasma membrane in tunicamycin-579 

treated cells (39) and transient increases in insulin sensitivity in ER-stressed cells 580 

(Fig. 2B, 3A). 581 

ER stress also depleted IGF-I receptor β chains (Fig. 9) and led to an 582 

accumulation of unprocessed IGF-I proreceptors (Fig. 9E, I), which suggests that 583 

transport of IGF-I proreceptors from the ER to their site of cleavage in the trans-Golgi 584 

network is also inhibited by ER stress. Thus, ER stress can inhibit delivery of 585 

secretory proteins other than the insulin receptor to the plasma membrane. This effect 586 

of ER stress on maturation of secretory and transmembrane proteins may explain 587 

several recent observations without invoking UPR signaling. For example, inhibition 588 

of tumor necrosis factor (TNF)-α-induced reactive oxygen species generation in L929 589 

cells by tunicamycin (96) may be due to depletion of TNF receptors. Likewise, 590 

inhibition of cholesterol efflux in Hep G2 cells by ER stress (97) may be explained in 591 
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part by inhibition of delivery of newly synthesized ATP-binding cassette transporter 592 

A1 (ABCA1) to the plasma membrane. Both proteins have short half-lives at the 593 

plasma membrane of 1.5-2 h (98-102). However, ER stress may affect delivery of 594 

different proteins to the plasma membrane to different degrees. Tunicamycin, the 595 

most commonly used ER stressor, inhibits delivery of many proteins to the cell 596 

surface, but, for example, does not affect the rate of delivery of HLA-A and HLA-B 597 

molecules to the plasma membrane (103) or interferon secretion by human leukocytes 598 

(104, 105). Therefore, a case-by-case evaluation will be necessary to address to which 599 

extent ER stress reduces delivery of individual proteins to the plasma membrane 600 

and/or their secretion. 601 

In conclusion, we show that ER stress causes insulin resistance by inhibiting 602 

transport of newly synthesized insulin receptors to the plasma membrane which leads 603 

to receptor depletion due to constitutive turnover of plasma membrane proteins. This 604 

effect of ER stress may also affect other plasma membrane receptors. 605 
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 947 

Figure Legends 948 

Figure 1. Schematic of trafficking of newly synthesized insulin receptors from the 949 

ER to the plasma membrane. In the insulin proreceptor the α and β chains are 950 

joined via a peptide bond. The α chain harbors the extracellular, insulin-binding 951 

domain, while the β chain harbors the transmembrane (TM) and cytosolic tyrosine 952 
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(TYR) protein kinase domain. The α chain carries 14 and the β chain four N-linked 953 

oligosaccharides (indicated by lines). In the ER the insulin-binding domain matures, 954 

disulfide bonds are formed and insulin proreceptor dimers are formed before transport 955 

to the trans-Golgi network (TGN). In the TGN the proreceptor is cleaved by 956 

proprotein convertases including furin to liberate the mature α and β chains 957 

carboxyterminal to the basic amino acid sequence RKRR. 958 

Figure 2. Insulin resistance develops over time in ER-stressed Hep G2 cells. (A) 959 

Serum-starved Hep G2 cells were treated with the indicated concentrations of 960 

thapsigargin, tunicamycin or 1 μg/ml SubAB or catalytically-inactive SubA
A272

B for 961 

12-36 h before stimulation with 100 nM insulin for 15 min. Cell lysates were 962 

analyzed by Western blotting. (B-D) Quantitation of the results shown in panel (A). 963 

Figure 3. Depletion of insulin receptors in ER-stressed cells coincides with 964 

development of insulin resistance in 3T3-F442A cells. (A) Serum-starved 3T3-965 

F442A cells were treated with the indicated concentrations of tunicamycin for 1-18 h 966 

before stimulation with 100 nM insulin for 15 min. The pT308-AKT signal obtained 967 

by Western blotting was standardized to the total AKT signal to obtain the rel. pT308-968 

Akt values. (B) 3T3-F442A cells were treated with the indicated concentrations of 969 

tunicamycin for 1-18 h before serum starvation and stimulation with 100 nM insulin 970 

for 15 min. Protein extracts were analyzed by Western blotting. (C) Quantitation of 971 

INSR β-chains. Bars represent standard errors. 972 

Figure 4. Depletion of insulin receptors in ER-stressed cells coincides with 973 

development of insulin resistance in Hep G2 cells. (A) Hep G2 cells were treated 974 

with the indicated ER stressors for 12-36 h before serum starvation and stimulation 975 

with 100 nM insulin for 15 min. Protein extracts were analyzed by Western blotting. 976 
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Quantitation of insulin receptor (INSR) β-chains in (B) thapsigargin-, (C) 977 

tunicamycin-, and (D) SubAB-treated Hep G2 cells. 978 

Figure 5. ER stress does not inhibit insulin receptor synthesis at the 979 

transcriptional or translational level. (A) INSR mRNA levels measured by RT-980 

qPCR in C
2
C

12
 cells treated with 300 nM thapsigargin, 1 μg/ml tunicamycin, or 1 981 

μg/ml SubAB for 24 h. Protein synthesis rates in C
2
C

12
 cells (B-D), 3T3 F442A 982 

adipocytes (F-H), and Hep G2 cells (I-K) treated with 0.1 μM thapsigargin or 0.1 983 

μg/ml tunicamycin for 24 h measured by incorporation of [
35

S]-methionine into newly 984 

synthesized proteins. (B, F, I) Trichloroacetic acid (TCA)-precipitable [
35

S] counts 985 

standardized to total protein. (C, G, J) SDS-PAGE analysis of 10 μg [
35

S]-labeled 986 

protein. The autoradiogram is shown to the left, Coomassie Brilliant Blue R250 987 

staining of the gel to the right. (D, H, K) Quantitation of the gels shown in panels (C, 988 

G , J). (E) Immunoprecipitation of the insulin receptor after a 15 min pulse with [
35

S]-989 

methionine. The bands shown represent the α-β proreceptor, the thapsigargin 990 

concentration was 0.1 μM. 991 

Figure 6. α-β Proreceptors accumulate in the ER of ER-stressed cells. (A) Steady-992 

state INSR levels in untreated C
2
C

12 
cells or C

2
C

12
 cells treated for 24 h with the 993 

indicated concentrations of thapsigargin, tunicamycin, 1 μg/ml SubAB, or 1 μg/ml 994 

SubA
A272

B and serum-starved during the last 18 h of drug treatment before 995 

stimulation with 100 nM insulin for 15 min. Cell lysates were analyzed by Western 996 

blotting. (B) Quantitation of the results of insulin-stimulated cells from panel A. (C) 997 

Cell lysates from panel (A) digested with Endo H. (D) Quantitation of the results of 998 

insulin-stimulated cells from panel C. (E) The mature insulin receptor β chain carries 999 

an Endo H-sensitive N-linked oligosaccharide. Endo H and PNGase F digests of 1000 



 42

unstressed C
2
C

12
 cells were Western blotted for the insulin receptor β chain. (F) 1001 

Steady-state INSR levels in untreated HEK 293
 
cells or HEK 293 cells treated for 18 1002 

h with 0.1 μg/ml tunicamycin, 1 μg/ml SubAB, or 1 μg/ml SubA
A272

B. (G) 1003 

Localization of GFP-tagged INSR in transiently transfected HEK293 cells. HEK 293 1004 

were treated for 18 h with 1 μg/ml tunicamycin or 1 μg/ml SubAB were indicated. 1005 

The scale bar is 10 μm long. (H) Average Pearson correlation coefficient r
obs

 between 1006 

the INSR-GFP and CellMask Deep Red fluorescence determined from 11 randomly 1007 

chosen cells. The Pearson correlation coefficients for the randomized images are -0.13 1008 

± 0.08, -0.13 ± 0.07, and -0.33 ± 0.07 for the untreated, tunicamycin-, and SubAB-1009 

treated cells, respectively. 1010 

Figure 7. Bypass of the ER in insulin receptor synthesis abrogates ER stress-1011 

induced insulin resistance. (A) siRNA-mediated knock-down of expression of the 1012 

insulin receptor inhibits insulin-stimulated phosphorylation of AKT. Serum-starved 1013 

C2C12 cells were stimulated with 100 nM insulin for 15 min 48 h after transfection of 1014 

50 nM of the indicated siRNAs. (B) Steady-state INSR mRNA levels in C
2
C

12
 cells 1015 

transfected with 50 nM of the indicated siRNAs for 24, 48, or 72 h. (C) Schematic of 1016 

the myristoylated FV2E-insulin receptor chimera. (D) Expression of the FV2E-insulin 1017 

receptor chimera was induced in Flp-In T-Rex 293 cells stably transfected with 1018 

pcDNA5/FRT/TO-MyrFV2E-INSR for 27 h with 1 mg/ml tetracycline, followed by 1019 

dimerization with 100 nM AP20187 for the indicated times. (E) HEK293 Flip-In T-1020 

Rex cells stably transfected with pcDNA5/FRT/TO-MyrFV2E-INSR were serum-1021 

starved during the last 18 h of a 24 h treatment with 10 mg/ml tunicamycin (Tm) or 1 1022 

mg/ml SubAB (Sb). Then, expression of the FV2E-insulin receptor chimera was 1023 

induced with 1 mg/ml tetracycline for 24 h, followed by dimerization of the construct 1024 

with 100 nM AP20187 for 4 h . Western blots of total cell lysates are shown. The 1025 
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arrow indicates the β chain of the mature, endogenous insulin receptor. (F) C2C12 cells 1026 

were transiently transfected with pmaxGFP or pcDNA5/FRT/TO-MyrFV2E-INSR. 24 1027 

h after transfection ER stress was induced for 24 h with 0.1 μM thapsigargin (Tg), 0.1 1028 

μg/ml tunicamycin, or 1 μg/ml SubAB followed by dimerization of the receptor with 1029 

100 nM AP20187 for 4 h and preparation of cell lysates for Western blotting. (G) 1030 

Quantitation of the results shown in panel (F). 1031 

Figure 8. jnk1
-/-

 jnk2
-/-

 MEFs are not protected from developing insulin resistance 1032 

when exposed to chronic ER stress. (A) WT and jnk1
-/-

 jnk2
-/-

 MEFs were treated for 1033 

24 h with the indicated concentrations of thapsigargin or tunicamycin, 1 μg/ml 1034 

SubAB, or 1 μg/ml SubA
A272

B and serum-starved during the last 18 h of drug 1035 

treatment before stimulation with 100 nM insulin for 15 min.  (B-D) Quantitation of 1036 

AKT S473 phosphorylation relative to total AKT levels in WT and jnk1-/- jnk2-/- MEFs 1037 

exposed to (B) thapsigargin, (C) tunicamycin, and (D) SubAB. (E) Activation of JNK 1038 

in WT MEFs exposed to the indicated concentrations of thapsigargin or tunicamycin, 1039 

1 μg/ml SubAB, or 1 μg/ml SubA
A272

B and serum-starved during the last 18 h of drug 1040 

treatment before stimulation with 100 nM insulin for 15 min. (F) Quantitation of the 1041 

Western blots in panel (E). (G) TRB3 mRNA levels measured by RT-qPCR in C2C12 1042 

cells treated with 300 nM thapsigargin, 1 μg/ml tunicamycin, or 1 μg/ml SubAB for 1043 

24 h. 1044 

Figure 9. Depletion of IGF-I receptors by ER stress. (A) Hep G2 cells were treated 1045 

for the indicated times with the indicated concentrations of thapsigargin or 1046 

tunicamycin, 1 μg/ml SubAB, or 1 μg/ml SubA
A272

B and serum-starved during the 1047 

last 18 h of drug treatment before stimulation with 100 nM insulin for 15 min. Cell 1048 

lysates were analyzed by Western blotting. The GAPDH loading control is the same 1049 
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as the one shown in Figure 2A. (B-E) Quantitation of the Western blots shown in 1050 

panel (A). (F-I) Depletion of IGF-I receptors by ER stress induced in C
2
C

12
 cells with 1051 

(F) thapsigargin, (G) tunicamycin, and (H) SubAB. (I) Accumulation of α-β IGF-I 1052 

proreceptors in C
2
C

12
 cells. 1053 

Figure 10. ER stress causes insulin resistance by interfering with exit of newly 1054 

synthesized insulin proreceptors from the ER. The signal peptide sequence targets 1055 

ribosomes translating the insulin receptor mRNA to the ER, where the newly 1056 

synthesized polypeptide chain folds into molecules with insulin binding activity. ER 1057 

stress interferes with folding of newly synthesized insulin receptor molecules, 1058 

preventing its transport to the Golgi complex. The Myr-FV2E-insulin receptor chimera 1059 

is not affected by ER stress because it is translated by cytoplasmic ribosomes and 1060 

folds in the cytosol into active molecules thus bypassing the ER. 1061 

  1062 
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Tables 1063 

Table I. siRNAs. 1064 

Species Gene # Sequence, sense strand Sequence, antisense 

strand 

Mus 

musculus 

INSR 1 GAGAUCUCCUGGGAUUC

AUdTdT 

AUGAAUCCCAGGAGAUCU

CdTdT 

M. 

musculus 

INSR 2 CCUUAUCAAGGCCUGUC

UAdTdT 

UAGACAGGCCUUGAUAAG

GdTdT 

M. 

musculus 

INSR 3 GAAACUCUGCUUGUCUG

AAdTdT 

UUCAGACAAGCAGAGUUU

CdTdT 

Aequora 

victora 

eGFP  GCAAGCUGACCCUGAAG

UUCAU 

GAACUUCAGGGUCAGCUU

GCCG 

 1065 

  1066 
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Table II. Oligodeoxynucleotides. 1067 

Name Purpose Sequence 

Oligodeoxynucleotides for M. musculus genes 

H7994 ACTB real time PCR, forward AGCCATGTACGTAGCCATCC 

H7995 ACTB real time PCR, reverse CTCTCAGCTGTGGTGGTGAA 

H8962 TRB3 real time PCR, forward TTTGGAACGAGAGCAAGGCA 

H8963 TRB3 real time PCR, reverse CCACATGCTGGTGGGTAGG 

H9044 INSR real time PCR, forward CTTCTCTTCCGTGTCTATGG 

H0945 INSR real time PCR, reverse GACCATCTCGAAGATAACCA 

 1068 
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