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Abstract  
 
Drought stress can have a major impact upon plant survival and crop productivity. 

Sorghum bicolor is an important cereal crop grown in the arid and semi-arid regions of 

>98 different countries. It is well adapted to the harsh drought-prone environments in 

which it is grown however; relatively few studies have investigated the molecular basis of 

these adaptations. Breeding programs have lead to the identification of ‘stay-green’ 

varieties, so-called due to their ability to maintain green photosynthetic leaf area for 

longer under drought conditions. However, despite extensive breeding efforts to select 

for this trait we have very little understanding of the fundamental biological processes 

that underlie it. 

 

Microarray analysis was used to identify gene expression changes in sorghum following 

heat stress, drought stress and combined heat and drought stress. These microarrays 

were additionally used to compare gene expression in stay-green (drought-tolerant) and 

senescent (drought-sensitive) sorghum lines. Ontological analysis of the genes 

expressed to higher levels in the stay-green lines identified key processes hypothesised 

to be associated with the trait. These include genes associated with proline and betaine 

biosynthesis, glutathione S-transferase (GST) activity and the regulation of stomatal 

aperture and density. Both proline levels and GST activity were found to be higher in the 

stay-green lines thus validating that the changes at the gene expression level result in 

changes at the protein level. Stay-green lines were also shown to have reduced 

transpiration and reduced numbers of stomata.  

 

Two signalling genes, DREB1A and SDIR1 were expressed to higher levels in the stay-

green varieties. Transgenic lines overexpressing these genes were generated in order to 

test their function. Based on the gene expression data, putative mechanisms underlying 

two QTL for the stay-green trait (Stg1 and StgB) were generated. Further validation of 

these genes and processes could not only improve our understanding of drought 

tolerance mechanisms in sorghum, but also facilitate the improvement of future sorghum 

cultivars. 
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CHAPTER 1 

Introduction  

Environmental stress can have a major impact on plant survival and crop productivity. 

Due to their sessile nature plants are unable to avoid adverse conditions. Instead, 

changes to plant physiology and changes at the cellular, molecular and biochemical 

level are imperative to their survival. Some plants are better adapted than others to 

harsh conditions and, for agriculturally important crops; screening for certain beneficial 

physiological traits is common practice in breeding strategies. Such strategies have 

been successful for the generation of well-adapted varieties however; often the selection 

process is slow and the precise biological processes underlying the improved tolerance 

are not known. The identification of the causal genes and processes not only facilitates 

selection for the trait but also serves as a rich source of genes for introduction into other 

species.  

This study aims to investigate the molecular mechanisms of drought stress tolerance in 

the crop Sorghum bicolor and in particular the mechanisms underlying the stay-green 

trait for drought tolerance. This chapter reviews topics relevant to the present study. 

Firstly, the problems associated with drought stress are described along with some 

general information about the crop sorghum. Then, general drought resistance 

mechanisms that are most pertinent to the work are defined. Finally, the stay-green trait 

is described, with a particular focus on the mechanisms shown to cause a stay-green 

phenotype. The chapter concludes with a summary of our current knowledge of the stay-

green trait in sorghum.  
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1.1 Drought stress  
 

Drought stress is the biggest single cause of yield reduction in crop species (Boyer, 

1982). When in plentiful supply, water enters the roots and moves through the plant in 

the transpiration stream before evaporating from leaf stomata. This intake of water is 

vital for plant metabolism, nutrient transport and the maintenance of cell turgor. When 

water loss from the plant exceeds the ability of the roots to take up more water, however, 

these processes are inhibited, resulting in drought stress. Around 45% of the world’s 

agricultural lands are subjected to continuous or frequent drought and this can reduce 

crop yields by up to 70% (Ashraf and Foolad, 2007). Drought stress is aggravated by 

temperature extremes and its affects are likely to worsen given the predicted increase in 

aridity in many areas as a result of global warming. At the same time, global demand for 

food is expected to increase by up to 70% by 2050 (UNWWDR4, 2012). It is therefore of 

vital importance that we investigate the processes by which plants can survive in arid 

environments in order to gain insights into how we can limit the problems of drought 

stress and improve crop yields in the future.   

 

1.2 Sorghum as a study species  
 

Sorghum (Sorghum bicolor [L.]) Moench) is an important C4 grain crop that is grown on 

arid and semi-arid soils of over 98 different countries. Worldwide annual production of 

sorghum grain is about 60 million tonnes, of which ~90% is from developing countries 

that are mostly in Africa and Asia (Sasaki and Antonio, 2009). Consequently, sorghum is 

the 5th most important cereal crop grown worldwide based on yields and is an important 

source of food, feed, fibre and fuel (Kumar et al., 2011; Kholova et al., 2013). Sorghum 

is well adapted to the harsh drought-prone environments in which it resides and is 

considered to be one of the most drought-tolerant crops grown in the US with more than 

80% of hybrids grown under non-irrigated conditions (Sanchez et al., 2002). 

Nevertheless drought stress remains a major cause of sorghum yield reduction, 

particularly at the post-flowering stage, and considerable effort is underway to identify 

and select for new stress-tolerant varieties (Kassahun et al., 2010). Whilst numerous 

studies have investigated the physiological mechanisms underlying drought tolerance in 

sorghum, relatively little is known about the adaptations at the biochemical and 
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molecular level. A better understanding of how sorghum can survive under these 

conditions would considerably improve our understanding of plant drought tolerance 

mechanisms and could help to improve sorghum yields in the future. Such investigations 

will be facilitated by the fact that sorghum has a small recently sequenced genome 

(~730 Mbp) (Paterson et al., 2009) and a diverse germplasm collection 

 

1.3 Drought resistance mechanisms 
 

There are a number of known ways that plants can resist drought stress including 

drought escape, drought avoidance and drought tolerance strategies. As part of a 

drought escape mechanism plants may complete their lifecycle before physiological 

water deficits occur with successful reproduction before the onset of stress. Early 

maturing sorghum genotypes and the adjustment of planting dates to avoid periods of 

low rainfall are strategies commonly used by farmers however; this often results in 

reduced yields, which counteract the effectiveness of this approach (Rosenow et al., 

1983).  

 

A vast number of studies have investigated drought avoidance and drought tolerance 

mechanisms. The majority of these studies have been carried out using the model plant 

Arabidopsis thaliana due to its small and simple genome, which facilitates molecular and 

genetic investigations. Many investigations have focussed on key crops such as rice, 

maize and wheat although; comparatively few studies have been carried out on sorghum, 

despite its obvious agricultural importance. Some of the most well characterized drought 

avoidance and drought mechanisms that are most pertinent to the work in this thesis are 

discussed below.  

 

1.3.1 Drought avoidance 

 

Drought avoidance mechanisms involve maintaining cell turgor either through increasing 

water uptake via the roots or reducing water loss from transpiration and other non-

stomatal pathways.  
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1.3.1.1 Regulation of stomatal numbers 

 

Stomata are pores on the surface of the leaf that control the uptake of CO2 for 

photosynthesis and the efflux of water through transpiration. Stomatal numbers are 

influenced by both endogenous and environmental factors and are regulated by precise 

signalling mechanisms (Casson and Hetherington, 2010). The aberrant expression of 

genes in these pathways results in a disruption to stomatal patterning. For example, 

transgenic Arabidopsis lines overexpressing stomatal density and distribution 1 (SDD1) 

have a 25% reduction in stomatal density (Berger and Altmann, 2000). Similarly, 

Arabidopsis loss-of-function mutations in GT-2 LIKE 1 (GTL1) result in reduced stomatal 

numbers, reduced transpiration and increased survival under water deficit conditions 

(Yoo et al., 2010).  

 

1.3.1.2 Regulation of stomatal aperture  

 

The alteration of stomatal aperture is a well-understood process that has been 

functionally linked to drought tolerance and water use efficiency. The opening and 

closing of the stomatal pore results from the shrinking and swelling of the two 

surrounding guard cells. This is tightly regulated and again requires the integration of 

endogenous and environmental cues (Kim et al., 2010). In response to drought, stomatal 

aperture is reduced in order to minimise water loss and this process is triggered by the 

plant hormone ABA (Kim et al., 2010). ABA stimulates a signalling pathway that leads to 

the activation of the kinase open stomata 1 (OST1), which is a positive regulator of 

stomatal closure (Mustilli et al., 2002). This leads to the production of reactive oxygen 

species (ROS) and cytosolic calcium and the subsequent activation of ion channels such 

as SLAC1 (Geiger et al., 2009) and inhibition of cation channels such as KAT1 by 

phosphorylation (Sato et al., 2009). This results in the efflux of potassium and anions 

from the guard cells and the removal of organic osmolytes. Consequently, there is a 

reduction in guard cell turgor, which causes stomatal closure (Kim et al., 2010). The 

engineering of stomatal closure is an attractive approach to improve water loss under 

water-limited conditions. Numerous examples in the literature exist whereby the mutation 

or overexpression of a gene involved in the above signalling pathway results in guard 

cell closure and reduced water loss. As an example, transgenic plants overexpressing 
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MYB44 resulted in faster ABA-induced stomatal closure and increased drought tolerance. 

This was thought to be as a result of the down-regulation of negative regulators of ABA 

signalling (Jung et al., 2008). 

 

1.3.1.3 Water transport  

 

Water transport across membranes is vital for plant growth and development. This can 

occur via simple diffusion and via aquaporins. Aquaporins are membrane proteins that 

increase the permeability of cell membranes to water and other small molecules such as 

CO2. Over 30 aquaporin isoforms have been identified in plants and these are involved 

in processes such as stomatal opening and closure, organ movement and the plant 

response to drought (Chaumont and Tyerman, 2014). The overexpression of PIP1 from 

Vicia faba in transgenic Arabidopsis resulted in enhanced survival following water 

withdrawal (Cui et al., 2008). In contrast, the overexpression of PIP1b in transgenic 

tobacco plants increased transpirational water loss and had no beneficial effects under 

stress (Aharon et al., 2003). The precise function of aquaporins therefore remains 

elusive and is likely to depend on the particular isoform and the timing and location of 

expression. 

 

1.3.1.4 Root architecture  

 

The possession and maintenance of a large, deep rooting system is of course essential 

for the extraction of soil water. The accumulation of ABA in the roots under drought 

stress restricts the production of the plant hormone ethylene thus preventing ethylene-

induced growth inhibition (Chaves et al., 2003). This enables the maintenance of apical 

root growth under drought conditions. Rooting systems vary depending on the species 

and the genotype and increased root area is associated with increased survival under 

low water conditions (Mahajan and Tuteja, 2005). 
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1.3.2 Drought tolerance 

 

Drought tolerance mechanisms function at the tissue or cellular level to stabilize and 

protect cellular and metabolic integrity. Following the perception of the stress, a signal is 

relayed to the nucleus via signalling networks involving second messengers such as 

reactive oxygen species (ROS), calcium, calcium-associated proteins and kinase 

cascades such as mitogen-activated protein (MAP) kinase cascades. This leads to the 

activation of transcriptional pathways, which in turn lead to changes in the flow of 

metabolites and the induction of genes associated with protection from cellular damage 

(see Figure 1.1) (Mahajan and Tuteja, 2005). The signalling pathways that lead to the 

induction of protective genes are complex and involve both ABA-dependent and ABA-

independent pathways (see Figure 1.2). These are discussed briefly below. 

 

1.3.2.1 Drought signal perception  

 

The first step in the regulation of the drought stress response is the recognition of the 

stress. A change in the osmotic potential across a plasma membrane caused by a 

decrease of turgor pressure may trigger the water stress response. In yeast, the initial 

perception of water deficit is mediated by a two-component signal transducer (Sln1p, 

Ypd1p and Ssk1p) (Posas et al., 1996). The mutant phenotype of sln1 in yeast was 

complemented by the overexpression of AtHK1 from Arabidopsis and activated a 

mitogen activated protein kinase (MAPK) (Urao et al., 1999). Loss of function mutations 

in the AtHK1 gene resulted in sensitivity to drought stress and poor induction of drought-

inducible genes thus together leading to the suggestion that AtHK1 functions as an 

osmosensor in Arabidopsis (Wohlbach et al., 2008). Following stress perception, a 

signalling cascade is triggered which leads to the activation of stress-inducible 

transcription factors. 
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Figure 1.1 - Mechanisms of drought stress tolerance. Following perception of drought 

stress, the signal is transduced leading to the activation of transcription factors and the 

induction of genes that provide protection and ultimately stress tolerance.   
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1.3.2.2 Stress signalling 

1.3.2.2.1  ABA signalling  

 

As described earlier ABA is a plant hormone that is rapidly synthesised in response to 

low water conditions (Qin et al., 2011). ABA stimulates signalling pathways both to 

induce stomatal closure (see 1.3.1.2) and to induce the expression of stress-inducible 

protective genes (Yamaguchi-Shinozaki and Shinozaki, 2006). ABA-inducible genes 

contain multiple cis-elements termed ABREs (ACGTGG/TC) or the combination of an 

ABRE with a coupling element (CE) (Yamaguchi-Shinozaki and Shinozaki, 2006). This 

ACGT element was first identified in the wheat Em gene, which functions mainly in 

seeds during late embryogenesis (Guiltinan et al., 1990). A group of bZIP transcription 

factors termed AREBs/ABFs bind to this element. Amongst these are ABF2/AREB1, 

ABF4/AREB2 and ABF3. These are ABA responsive and require ABA for their activation 

(Uno et al., 2000). The overexpression of ABF3 or ABF4 in transgenic Arabidopsis 

resulted in improved drought tolerance and the expression of ABA-responsive genes 

(Kang et al., 2002). The AREBs/ABFs are activated by phosphorylation by the SnRK 

family of protein kinases (Umezawa et al., 2009). ABA binds to the PYROBACTIN 

RESISTANCE 1/PYR1-like protein/REGULATORY COMPONENTS OF THE ABA 

RECEPTOR (PYR1/PYL/RCAR) family of proteins. This results in the inactivation of 

group A PP2Cs including ABI1/ABI2 (Ma et al., 2009; Park et al., 2009). This inactivation 

of the PP2Cs allows the SnRK family of kinases to remain in their active form and 

phosphorylate and activate the AREB/ABF transcription factors and other factors such 

as ion channels (Umezawa et al., 2009). Once activated, the AREBs/ABFs induce the 

expression of genes containing the ABRE-element in their promoter. In rice and barley, 

homologues of AREB2/ABF4 have been identified, named TRAB1 and HvAB15 

respectively. Expression of these genes was found to be upregulated following drought 

stress (Hobo et al., 1999). In sorghum 92 bZIP transcription factors have been identified 

by a comparative genomics approach. Of the 16 tested six were found to be upregulated 

following osmotic stress induced by PEG treatment suggesting these transcription 

factors may be involved in drought tolerance in sorghum (Wang et al., 2011).  
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1.3.2.2.2 DREB transcription factors  

 

Not all stress-responsive genes are induced by ABA, suggesting the existence of an 

ABA-independent signalling cascade (Yamaguchi-Shinozaki and Shinozaki, 2006). 

DEHYDRATION RESPONSIVE ELEMENT BINDING (DREB) transcription factors bind 

to the dehydration-responsive element (DRE) (G/ACCGAC) in the promoters of many 

stress-inducible genes and induce their expression (Yamaguchishinozaki and Shinozaki, 

1994; Stockinger et al., 1997; Liu et al., 1998). These DREB proteins belong to the ERF 

superfamily and contain an AP2 DNA binding domain (Sakuma et al., 2002). There are 

six DREB1 proteins (DREB1A-F) in Arabidopsis and eight DREB2 proteins (Akhtar et al., 

2012). In Arabidopsis, DREB1A (CBF3), DREB1B (CBF1) and DREB1C (CBF2) are 

induced by cold whereas DREB1D (CBF4) is induced by dehydration (Liu et al., 1998; 

Haake et al., 2002). A gene named inducer of CBF expression 1 (ICE1) encodes a 

MYC-like bHLH protein that regulates the expression of DREB1A but not that of the 

other DREB1 genes (Chinnusamy et al., 2003). DREB2 genes are induced by high 

salinity and drought and are activated by post-translational modification (Liu et al., 1998). 

Constitutive overexpression of DREB1 transcription factors from a range of plant species 

including rice, maize, barley, wheat, apple (Malus baccata), and perennial ryegrass 

(Lolium perenne L.) results in the expression of stress-inducible genes and increased 

stress tolerance (Dubouzet et al., 2003; Ito et al., 2003; Shen et al., 2003; Qin et al., 

2004; Xiong and Fei, 2006; Zhao and Bughrara, 2008; Yang et al., 2011). This indicates 

that similar regulatory systems are conserved in monocots and dicots.  

 

1.3.2.2.3 Other transcription factors  

 

 

Some drought-inducible genes do not contain either the DRE or the ABRE in their 

promoter. For example, promoter analysis of the early response to dehydration 1 (ERD1) 

gene identified two cis-elements, a MYC-like sequence CATGTG and 14-bp rps1 site 

sequence that are important for drought stress induction (Simpson et al., 2003). NAC 

transcription factors such as ANAC019, ANAC055 and ANAC072 are responsible for the 

induction of many stress-inducible genes and were found to be able to induce the 

expression of this ERD1 gene in combination with the ZFHD1 transcription factor (Tran 
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et al., 2004). Other NAC transcription factors that are involved in the drought response 

include RD26, which is induced by both dehydration and ABA and is responsible for the 

upregulation of stress-inducible genes (Fujita et al., 2004). The NAC transcription factor, 

JUB1 was found to increase tolerance to abiotic stress and delay senescence in 

transgenic Arabidopsis (Wu et al., 2012). Additionally, the overexpression of sorghum 

NAC1 in Arabidopsis resulted in increased survival following water withdrawal (Lu et al., 

2013). MYC and MYB transcription factors are also required for the induction of other 

stress-inducible genes and these are synthesised after the accumulation of ABA (Abe et 

al., 2003).  
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Figure 1.2 - Signalling pathways involved in the response to osmotic stress. Both ABA-

independent and ABA-dependent pathways lead to the induction of different families of 

transcription factors. These bind to specific cis-elements in the promoters of stress-

inducible genes. 
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1.3.2.3 Compatible solutes 

 

The above network of signalling pathways leads to the expression of genes that have 

protective properties and help to confer drought tolerance. For example, several genes 

that are involved with the biosynthesis of compatible solutes are upregulated. 

Compatible solutes are low molecular weight, soluble compounds that are non-toxic at 

high cellular concentrations. These include amino acids such as proline, aspartic acid 

and glutamic acid, quaternary amino acids such as betaine and sugars such as 

trehalose. The accumulation of compatible solutes within cells in response to stress 

lowers the osmotic potential thus enabling a favourable water potential gradient for water 

uptake and maintenance of cell turgor. This helps to maintain high relative water content 

and improves root capacity for water uptake thus facilitating drought avoidance (Mahajan 

and Tuteja, 2005).  

 

In addition to osmotic adjustment, compatible solutes are thought to facilitate the 

detoxification of reactive oxygen species and the stabilization of membranes and 

proteins (Mahajan and Tuteja, 2005). Some of the main compatible solutes are 

discussed in more detail below. 

 

1.3.2.3.1 Amines 

 

Glycine betaine accumulates in some crop species including spinach, barley, wheat and 

sorghum in response to water stress (Wood et al., 1996; Ashraf and Foolad, 2007). It is 

abundant mainly in the chloroplast where is plays a role in osmotic adjustment and in the 

protection of the thylakoid membrane. However, there is no evidence for the production 

of glycine betaine in Arabidopsis or rice. Betaine is synthesised via a two-step oxidation: 

choline is converted to betaine aldehyde by choline monooxygenase (CMO) which is 

then converted to glycine betaine via betaine aldehyde dehydrogenase (BADH) (Ashraf 

and Foolad, 2007). Transgenic lines overexpressing such components of the 

biosynthetic pathway showed better survival than wild type in response to stress 

(Hayashi et al., 1997; Sakamoto et al., 1998; Holmstrom et al., 2000).  
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Proline accumulates in a range of plants, including sorghum, in response to stress and 

drought-tolerant varieties have been shown to accumulate proline to higher levels than 

drought-sensitive varieties (Wood et al., 1996; Hsu et al., 2003; Su et al., 2011).  

Transgenic lines overexpressing pyyroline-5-carboxylate synthase (P5CS), which plays 

a key role in proline biosynthesis are more tolerant to drought stress compared to wild 

type (Ashraf and Foolad, 2007).  The increase in solute concentration however is not 

always large enough to impact upon osmotic adjustment suggesting that proline has an 

additional protective role. Indeed, it is thought that proline is also able to stabilize 

membrane and protein structures and scavenge harmful free radicals under stress 

conditions (Ashraf and Foolad, 2007). Proline has additionally been suggested to act in a 

signalling pathway to induce the expression of stress-inducible genes that possess 

proline-responsive elements (PRE) in their promoters (Satoh et al., 2002).  

 

Polyamines including putrescine, spermidine and spermine have also been associated 

with stress tolerance. Transgenic Arabidopsis plants overexpressing genes involved with 

spermidine synthase, which is involved in the biosynthesis of spermidine, were found to 

be more tolerant to a range of stresses including drought (Kasukabe et al., 2004).  

 

1.3.2.3.2 Sugars  

 

Trehalose is amongst the sugars synthesised in response to drought. Trehalose is a 

disaccharide of glucose and is able to stabilize membranes and macromolecules under 

drought conditions. Trehalose is formed from UDP-glucose and glucose-6-phosphate in 

reactions catalysed by trehalose-6-phosphate phosphatase (TPP) and trehalose-6-

phosphate synthetase (TPS) (Penna, 2003). The overexpression of the E. coli trehalose 

biosynthesis genes OTSA and OTSB in transgenic rice resulted in reduced photo-

oxidative damage and increased survival under drought conditions compared to wild 

type. The transgenic lines also exhibited increased photosynthetic capacity at saturating 

light levels under non-stress conditions. The concentration of trehalose within cells 

remained low suggesting that trehalose increases photosynthetic capacity under both 

stress and non-stress conditions but does not function in osmotic adjustment (Garg et al., 

2002). Trehalose therefore also plays an important role in the drought response.  
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1.3.2.4 Detoxifying genes 

 
Drought stress can lead to a disruption to cell membranes and the impairment of the 

electron transport chain in the chloroplast. This can result in the production of reactive 

oxygen species (ROS), which can cause lipid peroxidation, protein and lipid modification 

and ultimately cell death and senescence. ROS accumulation during stress depends on 

the balance between ROS production and ROS scavenging. The ability to reduce the 

damage caused by ROS therefore constitutes an important drought tolerance 

mechanism (Miller et al., 2010). Enzymes that are essential for ROS detoxification 

include: ascorbate peroxidases (APX), glutathione S-transferases (GSTs), superoxide 

dismutases (SOD) and catalases (CAT). These are found in all cellular compartments 

thus demonstrating the requirement for these enzymes for cell survival (Miller et al., 

2010). The altered expression of these genes can positively influence drought tolerance. 

For example, stress-tolerant sorghum varieties have been found to have higher anti-

oxidant enzyme activity (Jagtap et al., 1998). The overexpression of a rice cytosolic APX 

in Arabidopsis also exhibited increased tolerance to salt stress, as indicated by the 

maintenance of chlorophyll content (Lu et al., 2007).  

 

1.3.2.5 Late embryogenesis abundant proteins 

 

High temperature, salinity and drought stress can cause denaturation of enzymes and 

other proteins. LATE EMBRYOGENESIS ABUNDANT PROTEINS (LEAs) are 

hydrophilic globular proteins, which accumulate during seed desiccation and in response 

to stress. As a result of their hydrophilic nature, they act to stabilize enzyme complexes 

and membrane structures and prevent protein denaturation. Constitutive expression of 

HVA1, a group 3 LEA from barley conferred tolerance to soil water deficit in transgenic 

wheat (Sivamani et al., 2000). Similarly, the overexpression of a wheat LEA resulted in 

increased dehydration tolerance in transgenic rice (Cheng et al., 2002). 

 

1.3.2.6 Heat shock proteins 

 

HEAT SHOCK PROTEINS (HSPs) are molecular chaperones that are induced in 

response to stress.  They provide cellular protection by controlling the proper folding and 
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refolding of both structural and functional proteins. The higher expression of many HSPs 

is positively correlated with stress tolerance ((Vierling, 1991). For example, the 

overexpression of HSP17.6A in transgenic Arabidopsis increased survival compared to 

wild type following water withdrawal (Sun et al., 2001).   

 

1.4 Stress and senescence 
 

Photosynthesis is one of the first processes to be affected by drought stress. This can 

either be as a direct effect i.e. as a result of reduced CO2 influx due to stomatal closure 

or a secondary effect due to oxidative stress, which can negatively affect the 

photosynthetic machinery (Chaves, 1991). Leaf senescence is likely to ensue and this 

characterized by the progressive loss of chlorophyll, desiccation, a loss of photosynthetic 

efficiency and eventually leaf abscission. This drought-induced leaf senescence reduces 

further water loss and enables the remobilization of nutrients to youngest leaves (Lim 

and Nam, 2007). This reduction in photosynthesis under drought conditions has the 

knock-on effect of reducing carbon assimilation. For crops, this can have a significant 

impact on grain filling and ultimately can drastically reduce crop yields. The ability of 

crop plants to delay senescence under conditions of low water availability is of vital 

importance for the maintenance of substantial crop yields under adverse conditions 

(Thomas and Howarth, 2000).  

 

In addition to water availability, senescence is influenced by a range of environmental 

signals and also by developmental cues. These signals are integrated by the plant and 

result in changes in hormone levels, levels of reactive oxygen species and changes in 

the expression of senescence-associated genes including transcription factors. Together 

these changes determine the senescence outcome (Figure 1.3). The whole process 

requires meticulous control and is regulated via a series of interlinking signalling 

pathways. There is considerable overlap between the genes involved in stress-induced 

senescence and the genes induced by developmental cues although the programs are 

not identical (Lim and Nam, 2007). Some of the processes known to regulate 

senescence are discussed briefly below.  
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Figure 1.3 - A model for the regulatory pathways involved in leaf senescence. 

Senescence is an intricately controlled process that requires the fine balance between 

different endogenous signals. These signals are influenced by both environmental 

factors and also by developmental factors such as leaf age.   

 

 

1.4.1 Hormonal regulation of senescence  
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The upregulation of genes associated with ABA biosynthesis is an intrinsic feature of 

both drought-induced and developmentally regulated senescence (Lim and Nam, 2007). 

The exogenous application of ABA is known to accelerate senescence of detached 

leaves incubated in the light (Nooden and Obermeyer, 1981). Additionally, a number of 

senescence associated genes (SAGs) are ABA-inducible (Weaver et al., 1998). Whilst 

the precise role of ABA in leaf senescence is not known, it has been suggested that ABA 
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induces the accumulation of H2O2 in senescing rice leaves and that this in turn 

accelerates senescence (Hung and Kao, 2004).  

 

1.4.1.2 Cytokinin 

 

Cytokinins are well known as senescence-delaying plant hormones. The exogenous 

application of cytokinins represses the expression of senescence-associated genes 

(Weaver et al., 1998). Additionally, a gain-of-function mutation in Arabidopsis in which 

the cytokinin receptor gene AHK3 is expressed constitutively, results in a delayed 

senescence phenotype (Kim et al., 2006). Overexpression of a proteolysis-insensitive 

version of ARR2, another gene involved in cytokinin signalling, also resulted in delayed 

senescence (Kim et al., 2012). Senescence is therefore closely associated with cytokinin 

signalling. Furthermore, senescence is delayed in a range of transgenic plants 

overexpressing isopentenyl transferase (IPT), an enzyme that catalyses the rate limiting 

step in cytokinin biosynthesis, under the control of a senescence-associated promoter 

(Gan and Amasino, 1995; Gregersen et al., 2013). Transgenic tobacco plants 

overexpressing IPT under the control of the stress-inducible promoter PSARK exhibited 

delayed drought-induced senescence and were able to maintain leaf water potential 

during drought. This resulted in increased yields under drought stress and was 

associated with increased tolerance to oxidative stress and the enhanced expression of 

stress-induced transcripts such as HSPs and LEAs (Rivero et al., 2007).  

 

1.4.1.3 Auxin 

 

The expression of genes associated with the biosynthesis of the plant hormone auxin 

increases during age-dependent leaf senescence and this is associated with an increase 

in auxin levels (Lim and Nam, 2007). The exogenous application of auxin represses the 

transcription of some senescence-associated genes thus leading to the suggestion that 

auxin is a negative regulator of leaf senescence (Lim and Nam, 2007). This is supported 

by the fact that disruption of ARF2, a repressor of the auxin signalling pathway causes a 

delay in leaf senescence (Ellis et al., 2005).  
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1.4.1.4 Other 

 

Exogenous application of ethylene is able to induce the expression of senescence-

associated genes (Grbic and Bleecker, 1995; Weaver et al., 1998). Furthermore, 

reduced expression of ACC synthase, which encodes the rate-limiting step in ethylene 

biosynthesis, resulted in a delayed senescence phenotype in maize and increased 

drought tolerance (Young et al., 2004). Similarly, a mutant of the ethylene receptor ETR1 

in Arabidopsis exhibited delayed senescence compared to wild type (Grbic and Bleecker, 

1995). As a result, ethylene is thought to play a role in the promotion of senescence.  

 
Brassinosteroids are also implicated in leaf senescence. A mutant of BZR2/BES1, a 

transcription factor that positively regulates brassinosteroid signaling, displayed a 

delayed-senescence phenotype (Yin et al., 2002). 

 

Gibberellins also have a significant impact on leaf senescence. Delayed leaf senescence 

with exogenous application of gibberellins has been reported in many plant species 

including Dioscorea rotundata and Catharanthus roseus (Sarwat et al., 2013). The 

application of endogenous gibberellic acid to Paris polyphylla also slowed down the 

senescence of shoots and the degradation of proteins and chlorophyll (Li et al., 2010).   
 

1.4.2 Role of transcription factors  

 

Transcription factors are important for the regulation of the senescence process. In 

particular, NAC transcription factors are known to play an important role. For example, 

the overexpression of the NAC transcription factor JUB1 in Arabidopsis delays 

senescence and increases tolerance to various abiotic stresses (Wu et al., 2012). 

Conversely, senescence is delayed under drought conditions in Arabidopsis lines with a 

loss-of-function mutation in the NAC protein NTL4 (Lee et al., 2012). Other important 

NAC transcription factors include VND-INTERACTING2 (VNI2). Overexpression of VNI2 

in Arabidopsis delays senescence and is associated with the upregulation of stress-

responsive genes such as COR15A, COR15B and RD29A. The overexpression of 

RD29A or COR15A resulted in a delayed senescence phenotype suggesting that VNI2 

regulates leaf longevity by regulating the expression of these genes (Yang et al., 2011). 
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Another member of the NAC protein family, NAMB-1, was shown to be present in wild 

ancestral wheat but lost in modern cultivated wheat. Reduction in RNA levels of this 

gene using RNAi resulted in senescence being delayed by over three weeks indicating a 

role for this gene in regulating senescence (Uauy et al., 2006). Transgenic wheat 

overexpressing a different NAC transcription factor also exhibited delayed senescence 

and increased grain yields (Zhao et al., 2015).  

 
WRKY transcription factors have also been implicated in the senescence program. For 

example, WRKY53 is induced during leaf senescence and its overexpression in 

Arabidopsis produces an early senescence phenotype suggesting that WRKY53 is a 

positive regulator of leaf senescence (Miao et al., 2004). 

 

1.4.3 Regulation of senescence by reactive oxygen species  

 

Reactive oxygen species (ROS) play a pivotal role in the natural progression of 

senescence and both facilitate the breakdown of cellular components and act as a signal 

to promote the senescence process (Bhattacharjee, 2005). The production of ROS 

causes the induction of senescence-associated genes (Miao et al., 2004) and transgenic 

tobacco plants that have reduced levels of ROS are more drought-tolerant and have a 

delayed senescence phenotype (Rivero et al., 2007). The NAC transcription factor NTL4 

is triggered following drought stress and induces the expression of respiratory burst 

homolog genes (Atrboh) thus resulting in the accumulation of ROS. Loss-of-function ntl4 

mutants exhibit both delayed drought-induced and natural senescence and have 

reduced levels of ROS. This suggests that ROS accumulation is essential for the 

progression of senescence induced by both stress and developmental signals (Lee et al., 

2012).  
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1.5 Stay-green 

1.5.1 Types of stay-green  

 

There are numerous examples in the literature whereby certain plant genotypes or crop 

varieties exhibit delayed senescence and as a result have been termed ‘stay-green’. 

These ‘stay-green’ plants have been classified into five categories. In Type A stay-green 

the initiation of senescence is delayed but then progresses at the normal rate. In Type B 

stay-green, senescence is initiated at the same time but then progresses at a reduced 

rate. In Type C chlorophyll breakdown is impaired but the rest of the senescence-related 

events proceed at a comparative rate to wild type. In Type D the plant dies in the middle 

of senescence and so appears green and in Type E plants accumulate higher levels of 

chlorophyll which takes longer to degrade during senescence (Thomas and Howarth, 

2000).  Types C and D are known as ‘cosmetic’ stay-green because despite their green 

appearance they are no longer photosynthetically active. Types A and B on the other 

hand are functional stay-green and both chlorophyll and photosynthetic efficiency are 

retained (Thomas and Howarth, 2000).   

 

1.5.1.1 Cosmetic stay-green 

 

Cosmetic stay-green arises as a result of alterations in the chlorophyll degradation 

pathway. For example, the senescence induced degradation (sid) mutant in pasture 

grass, Festuca pratensis has permanently green leaves, which is thought to be due to a 

perturbation in a key enzyme in the chlorophyll a catabolic pathway (KingstonSmith et al., 

1997; Thomas et al., 1999). A similar cosmetic stay-green mutant is the sgr mutant in 

rice which is thought to arise due to altered activity of PHEOPHORBIDE a OXYGENASE 

(PAO) an enzyme involved in chlorophyll degradation (Jiang et al., 2007). Other 

cosmetic stay-green examples include the CytG mutant in in soybean (Guiamet et al., 

1991) and the chlorophyll retainer (cl) mutant in pepper (Efrati et al., 2005).  
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1.5.1.2 Functional stay-green 

 

In plants with a functional stay-green phenotype both chlorophyll and photosynthetic 

efficiency are retained for longer. Examples of functional stay-green plants include 

transgenic cotton plants overexpressing an Arabidopsis 14-3-3 protein, GF14λ. The 

transgenic lines maintained higher photosynthetic rates under conditions of low water 

availability. The mechanisms behind this are not known although it was hypothesised 

that GF14λ may influence ABA-induced gene expression (Yan et al., 2004). Similarly, 

constitutive overexpression of a gene encoding the ER-resident molecular chaperone 

BiP in soybean and tobacco results in delayed drought-induced senescence through an 

as yet unknown mechanisms (Valente et al., 2009). Stay-green maize lines with a 

functional stay-green phenotype have also been identified and have been suggested to 

be associated with increased cytokinin content and reduced ABA in the leaves (He et al., 

2005). Two stay-green wheat cultivars, CN12 and CN18, were also found to have 

delayed onset of senescence, which was associated with reduced H2O2 levels (Chen et 

al., 2010).  

 

1.6 The stay-green trait in sorghum  
 

Sorghum is extremely stress-tolerant compared to other crops however; drought stress 

is still a limiting factor on sorghum yield production. In India sorghum is cultivated in two 

distinct seasons: June to October (rainy season) and October to February (post-rainy 

season) (Kholova et al., 2013). Around 5.5 million hectares of sorghum are grown in the 

post-rainy season on residual soil moisture. This is the best environment for food 

production however; the crops face increasing moisture stress as the season progresses 

(Kassahun et al., 2010). Post-flowering stress occurs during the grain filling stage and 

results in premature leaf senescence and the associated reduction in carbon 

assimilation and grain filling. Other symptoms of post-flowering stress include stalk 

lodging and increased infection by charcoal rot, a soil-borne pathogen. Ultimately, this 

culminates in reduced yields (Rosenow et al., 1983; Kassahun et al., 2010). 

 

Drought-tolerant sorghum varieties with a functional stay-green phenotype have been 

identified and selected in the field. These can be classified as either Type A or Type B 
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stay-green. These varieties are able to avoid premature senescence and maintain green 

photosynthetic leaf area for longer under conditions of low soil moisture at the post-

flowering stage (Rosenow et al., 1983) (Figure 1.4). This increases the potential period 

for grain development which has an obvious positive impact on grain yields under 

drought conditions (Borrell et al., 2000) (Figure 1.5). There is little, if any, negative 

impact on yields under well-watered conditions (Borrell et al., 2000). Stay-green in 

additionally associated with resistance to charcoal rot and reduced lodging (Tenkouano 

et al., 1993).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4 - Photograph showing the stay-green trait in sorghum the field in Petancheru, 

India. The photograph was taken at the post-flowing stage with no supplemental 

irrigation. Plants on the right have the stay-green trait (B35) whereas plants on the left 

are senescent varieties (R16) (Kumar et al., 2011).   

 

Several sorghum genotypes exhibit the stay-green trait including B35, SC56 and E36-1 

(Rosenow et al., 1983; Kebede et al., 2001; Haussmann et al., 2002; Sanchez et al., 
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2002). B35 (also known as BTx643) originated from Ethiopia and is the best 

characterized stay-green variety with a number of physiological studies having been 

carried out on this variety or its derivatives (Crasta et al., 1999; Xu et al., 2000; 

Kassahun et al., 2010; Vadez et al., 2011). E36-1 also originated in Ethiopia but is 

unrelated to B35 (Haussmann et al., 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 - Scatter plot showing the relationship between green leaf area at 25 days 

after flowering and grain yield in a set of 160 recombinant inbred lines grown during the 

post-rainy season at Petancheru, India. (Borrell et al., 2014a) 

 

 

1.6.1 Physiological studies 

 

The stay-green trait can be identified in the field by withholding irrigation prior to 

flowering so that moisture stress develops just after flowering and intensifies during grain 

filling. Under these drought conditions, there are clear differences in chlorophyll content 

between stay-green and senescent lines (Xu et al., 2000a). The B35 stay-green variety 

has been shown to reach maturity with 40% green leaf area compared to the senescent 

variety R16 that had 0% at the same time (Kassahun et al., 2010). In the absence of 
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stress there are also differences in chlorophyll content between the B35 stay-green line 

and senescent lines and these differences first become visible at around 50 days after 

sowing (Figure 1.6). Stay-green in the B35 sorghum line therefore involves both delayed 

drought-induced and developmental senescence. The stay-green trait in E36-1 however, 

is only visible under drought-stressed conditions (Thomas and Howarth, 2000).  

 

 

  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 - Chlorophyll content in stay-green and senescent sorghum lines under well-

watered conditions. B35, BT623, Q101 and E36-1 are stay-green lines and 9188, R16, 

RT7000, RT430 and ICSV745 are senescent. Developmental senescence is delayed in 

all stay-green lines apart from E36-1 (Thomas and Ougham, 2014). 
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The biological basis of the stay-green trait remains unclear although a number of studies 

have improved our understanding of stay-green physiology. For example, the relative 

water content in apical leaves of stay-green lines was shown to be about 80% compared 

to 38% in non-stay-green lines under conditions low water availability (Xu et al., 2000a) 

suggesting that stay-green sorghum lines are better able to retain water under drought 

conditions. There are also differences in transpiration efficiency between stay-green and 

senescent lines under both drought-stressed and fully irrigated conditions (Vadez et al., 

2011; Borrell et al., 2014a). Stay-green in sorghum is additionally associated with 

morphological changes. For example, stay-green lines have been shown to have a 

reduced canopy size at flowering due to reduced tillering and reduced size of upper 

leaves. It has been suggested that these changes contribute to reduced water usage 

prior to flowering meaning that more water is available at the post-flowering stage when 

soil moisture stress usually develops. The increased grain yield has been suggested to 

arise at least in part due to reduced pre-flowering water usage (Borrell et al., 2014a). 

There is additionally some limited evidence that stay-green lines have modified root 

architecture which could facilitate water extraction (Borrell et al., 2014a). The stay-green 

trait is therefore hypothesised to arise as an emergent consequence of genes acting 

earlier in development (Borrell et al., 2014a; Borrell et al., 2014b).  
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Figure 1.7 - Photographs showing tillering in stay-green (Stg1) (left) and senescent 

(Tx7000) (right) varieties. Pictures from (Borrell et al., 2014a). 

 

 

1.6.2 Stay-green QTL in sorghum 

 

Given the obvious agricultural importance of the stay-green trait in sorghum there has 

been considerable effort to identify quantitative trait loci (QTLs) that underlie it. Such 

QTL mapping has lead to the identification of six main regions in the sorghum genome 

that are associated with the trait. These have been termed Stg1-4 and StgA and StgB 

(Tuinstra et al., 1997; Subudhi et al., 2000; Tao et al., 2000; Xu et al., 2000b; Kebede et 

al., 2001; Haussmann et al., 2002; Sanchez et al., 2002). These QTL have been 

introgressed individually into the high-yielding but senescent R16, S35 and Tx7000 lines 

(Kassahun et al., 2010; Vadez et al., 2011). Each of these introgression lines show 

increased yields under drought conditions compared to their senescent parent thus 

confirming that all six of these regions contribute to the trait (Harris et al., 2007; Borrell et 
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al., 2014b). The influence of the particular QTL however was shown to depend on the 

particular genetic background (Vadez et al., 2011). For example, Stg1 and Stg3 have 

reduced tillers in the S35 background but not in the R16 background (Kassahun et al., 

2010). Stg QTLs 1-4 were additionally found to affect water extraction, transpiration 

efficiency and green leaf area (Vadez et al., 2011). The Stg QTL regions however 

remain large and between them consist of ~2000 genes. The exact causal genes within 

these regions have yet to be identified. The identification of these would be particularly 

useful given that the introgression of whole QTLs involved with stress tolerance often 

brings alongside undesirable agronomic characteristics.  

 

1.7 Summary  
 

Sorghum is an extremely important crop, particularly in developing countries. It is well 

adapted to the hot, dry conditions in which it lives however; despite our extensive 

knowledge of the drought stress response in the model plant Arabidopsis relatively little 

is known about the sorghum response to drought. In particular, the stay-green trait for 

drought tolerance in sorghum is poorly understood. Whilst physiological studies have 

provided some insight into the trait, the precise molecular mechanisms and biological 

processes that underlie it remain to be discovered. A greater insight into this trait would 

be greatly beneficial not only to improve our understanding of drought tolerance 

mechanisms in sorghum, but also to facilitate the improvement of future sorghum 

cultivars by either marker-assisted selection (MAS) or transgenic approaches.  
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1.8 Thesis aims  
 

The aim of this study was to: 

 

• Identify genes and processes associated with the sorghum response to abiotic 

stresses such as drought stress, heat stress and drought and heat stress 

combined (Chapter 3). 

• Identify gene expression differences between stay-green and senescent 

sorghum lines in order to identify genes and biological processes that may 

underlie the trait (Chapter 4). 

• To validate these identified biological processes using biochemical and 

physiological analyses (Chapter 5). 

• To confirm the function of candidate regulatory genes through the production and 

analysis of transgenic plants (Chapter 6). 

• To assess the linkage of the identified candidate genes and processes with the 

known Stg QTL regions (Chapter 7). 

• To identify gene expression differences between a Stg QTL introgression line 

and the senescent parent (Chapter 7). 
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CHAPTER 2 
 

Materials and Methods 
 

2.1 Reagents 

2.1.1 Chemicals 

 

All chemicals and media were supplied by one of the following companies unless 

otherwise stated: 

 

Melford Laboratories Ltd (Ipswich, UK),  

Fisher Scientific UK Ltd (Loughborough, UK), 

Bioline (London, UK), 

Sigma-Aldrich Ltd (Poole, UK). 

 

2.1.2 Enzymes 

 

All DNA and RNA modifying enzymes were purchased from Bioline, Fisher Scientific UK 

Ltd, Applied Biosystems (Forster City, USA), Qiagen (Crawley, UK), Promega 

(Southampton, UK) or New England Biolabs Ltd. (NEB) (Hitchin, UK). 

 

2.1.3 Antibiotics 

 

All antibiotics were purchased from Melford Laboratories Ltd. Antibiotics were filter 

sterilized using a 0.22 µm filter (Millipore Corporation, Bedford, USA) attached to a 

syringe (VWR International Ltd, Lutterworth, UK), prior to addition to liquid media. The 

concentrations used are listed in (Table 2.1). 
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Table 2.1 - Concentrations of antibiotics used for both bacterial and plant culture plates 

 

2.2 Bacterial strains and growth conditions 

2.2.1 Bacterial strains 

 

Escherichia coli (E. coli) strains (DH5α) were obtained from Bioline (London, UK). 

 

Agrobacterium tumefaciens (A. tumefaciens) strain C58C1 (Holsters et al., 1978) was 

used for stable transformation of Arabidopsis and was propagated in house. 

 

2.2.2 Bacterial growth media 

 

E. coli and A. tumefaciens were grown either on solid agar plates consisting of 1.5% 

(w/v) micro agar and 2% (w/v) Luria-Bertani (LB) medium (Sigma-Aldrich) or liquid media 

made from 2% (w/v) LB. All growth media was sterilised prior to use by autoclaving at 

121 °C for 20 min and allowed to cool to 50 °C prior to the addition of appropriate 

antibiotics. 

 

 

 

Antibiotic Stock concentration 

(mg/ml) 

Working 

concentration (µg/ml) 

Stock 

Solvent 

Spectinomycin 50 50 Water 

Kanamycin 100 For bacteria: 100  

For plants: 50 

Water 

Ampicillin 100 100 Water 

Rifampicin 50 100 DMSO 

Geneticin® (G418) 30 30 Water 

Timentin® 200 200 Water 
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2.2.3 Bacterial growth conditions 

 

Bacteria were incubated either at 37 °C (E. coli) or 29 °C (A. tumefaciens). Solid agar 

plates were incubated statically whilst liquid media cultures were shaken at 200 rpm. 

 

2.3 Plant materials and growth conditions 

2.3.1 Seed material    

 

Arabidopsis (A. thaliana) ecotype Columbia (Col-0) seeds were obtained from Lehle 

seeds (Round Rock, Texas, USA). 

 

Sorghum (S. bicolor) seeds of variety R16, E36-1, S35 and B35 were used for the 

majority of experiments and were obtained from Dr Santosh Despande, (ICRISAT, 

Petancheru, India). The Sorghum inbred line Tx430 was used for Sorghum 

transformation and was provided by Professor Ian Godwin (University of Queensland, 

Australia). Stg QTL introgression lines in the R16 or S35 background were also obtained 

from Dr Santosh Despande (See Appendix E.1 for genotype names and numbers of 

each of these lines).  

 

2.3.2 Seed sterilization 

2.3.2.1 Ethanol sterilization 

 

Arabidopsis seeds were sterilized by shaking (Labnet Vortex Mixer, Labnet International 

Inc., Woodbridge, New Jersey, USA) in a 1.5 ml microfuge tube with 70% ethanol (v/v) 

for 5 min. Seeds were then transferred to sterile filter paper (WhatmanTM International 

Ltd, Kent, UK) and air dried in a sterile laminar flow hood before being sprinkled onto 

solid agar medium (see 2.3.3.1). 
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2.3.2.2 Bleach sterilization 

 

Arabidopsis seeds collected from plants dipped in A. tumefaciens solution were first 

surface sterilized with ethanol as described above. They were then shaken in a solution 

containing 10% (v/v) sodium hyperchlorite (NaOCl) and 0.25% (v/v) sodium dodecyl 

sulphate (SDS) for 10 min. The seeds were then washed six times in sterile water (10 

min per wash), spread directly onto agar plates (see 2.3.3.1) and left to dry in a sterile 

laminar flow cabinet. 

 

2.3.3 Growth conditions 

2.3.3.1 Arabidopsis growth conditions 

 

Arabidopsis seeds were grown on solid 1 X MS medium agar plates (Murashige and 

Skoog, 1962). This comprised of 0.8% (w/v) plant tissue culture grade agar (Sigma-

Aldrich) and 1 X Murashige and Skoog salts (Duchefa Biochemie BV, Haarlem, 

Netherlands). All growth media was sterilized by autoclaving at 121 °C for 20 min. The 

pH was adjusted to 5.8 using 0.1 M KOH before autoclaving. If required, appropriate 

antibiotics were added to the liquid medium after autoclaving and cooling to 50 °C. 

 

Plates containing seeds were stratified at 4 °C in the dark for a minimum of 48 hr to 

ensure uniform germination and growth. They were then transferred to a Percival (CU-

36L5D, CLF plant climatics, Emersacker, Germany) at a temperature of 20 °C and 16/8 

h photoperiod with a light intensity of 150 µmol m-2s-1. After 7 days they were transferred 

to hydrated peat plugs (Jiffy Products International, Moerdijk, Norway). Individual 

seedlings were grown on small (41 mm diameter) peat plugs, whilst large peat plugs (44 

mm diameter) were used to grow up to three plants per plug for A. tumefaciens dipping 

(see 2.9.1). Seedlings transferred to peat plugs on trays were covered in cling film, and 

grown at a temperature of 20 °C and 16/8 h photoperiod with a light intensity of 150 

µmol m-2s-1. The film was removed after two days. Peat plugs were watered with 100 

mg/L intercept (Everris International, Ipswich, UK) and Baby Bio (Bayer Garden, 

Cambridge, UK), following the manufacturer’s instructions, until the siliques had 

developed. If seeds needed to be collected from individual plants, the Aracon system 

(Beta tech, Ghent, Belgium) was used to contain each plant. 
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2.3.3.2 Sorghum growth conditions 

 

For the majority of experiments, sorghum seeds were imbibed in water overnight and 

germinated on the surface of soaked peat plugs in a closed plastic container in a growth 

chamber at 28 °C day and 23 °C night, 12 h photoperiod. The lids were removed 

following germination. This occurred 3-4 days after sowing (DAS). If mature plants were 

required, at ~20 DAS the peat plugs were transferred to 6” pots. At 30 DAS plants were 

transferred to 8” pots. New Horizon Organic and Peat Free Compost (William Sinclair 

Horticulture Ltd, Lincoln, UK) was used for potting up.  

 

For sorghum transformation (see 2.9.2.2), the sorghum tissue culture room was 

controlled at 27 °C with a luminescence of approximately 100 µmol m-2s-1 with a 16/8 h 

photoperiod.  

 

2.4 Molecular biology techniques 

2.4.1 DNA extraction 

2.4.1.1 gDNA extraction from Arabidopsis 

 

The method was adapted from (Edwards et al., 1991). Briefly, a single leaf from 2-3 

week old plants was transferred to a microfuge tube and flash frozen in liquid nitrogen. 

The sample was ground in 400 µl of Edwards extraction buffer (Appendix A.1). The tube 

was then spun for 1 min in a microcentrifuge at full speed (15000 g). An aliquot of the 

supernatant (300 µl) was transferred to a fresh tube. The supernatant was then mixed 

with 300 µl of isopropanol and incubated at room temperature. The tube was spun again 

for 5 min and the supernatant was removed and discarded. The pellet was dried using a 

vacuum desiccator (5031 eppendorf UK Ltd, Stevenage, UK) before resuspension in 50 

µl of TE buffer (Appendix A.2).  

 

2.4.1.2 gDNA extraction from sorghum 

 

The method was adapted from (Dellaporta et al., 1983). Samples were ground using 

liquid nitrogen cooled mortar and pestles, and then added to a 1.5 ml microfuge 
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tube.  To extract the gDNA, 750 µl of Dellaporta extraction buffer was added (Appendix 

A.3) and samples were heated at 65 °C for 10 min. To precipitate the DNA, 200 µl of 5 M 

potassium acetate was then added and vortexed before incubating on ice for 20 

min.  Samples were then spun down in a microcentrifuge for 10 min at 13000 g and the 

supernatant pipetted into a fresh microfuge tube.  An equal amount of isopropanol was 

added to the supernatant, mixed and then centrifuged at 12000 g for 10 min. The 

supernatant was removed from the resulting pellet. To wash the DNA, 80% ice-cold 

ethanol was then added to the pellet. It was then centrifuged for 3 min at 12000 g and 

the supernatant was removed. The pellet was left to air dry for 20 min at room 

temperature then slowly rehydrated on ice for 30 min in 50 µl TE (see Appendix A.2). 

 

2.4.1.3 Plasmid DNA extraction from E. coli 

 

Small-scale bacterial plasmid DNA extraction was performed using the Wizard® Plus SV 

Minipreps DNA Purification System (Promega), according to the manufacturer’s 

instructions. Briefly, 5 ml bacterial cultures were centrifuged and the bacterial pellet was 

resuspended and lysed in the presence of alkaline phosphatase. The supernatant was 

separated from the pellet by centrifugation and the plasmid DNA was bound to the 

column supplied. The column was then washed in an ethanol-based buffer and the DNA 

was eluted in nuclease-free water. 

 

Large-scale bacterial plasmid DNA extraction was performed using the Qiagen Plasmid 

Maxi Kit according to the manufacturer’s instructions in an analogous manner to above.  

 

2.4.1.4 Extraction of DNA from an agarose gel 

 

DNA fragments separated by gel electrophoresis (see 2.4.3) were excised from the gel 

using a scalpel blade whilst visualizing on a UV trans-illuminator (Ultra-Violet products 

Ltd., Cambridge, UK). The DNA was then purified using a QIAquick gel extraction kit 

(Qiagen), according to the manufacturer’s instructions. In this method, the agarose gel 

slices were first dissolved in a buffer and the mixture was applied to a column with a 

silica membrane. Nucleic acids adsorbed to the membrane and impurities were washed 

away. The DNA was finally eluted in a low-salt buffer.   
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2.4.2 Polymerase chain reaction (PCR) 

2.4.2.1 DNA polymerases and reaction mixes 

 

For general PCR reactions either BioTaq (Bioline) or BioTaq Red Taq polymerases were 

used. For high fidelity applications, a proof reading Phusion DNA polymerase was used 

(Finnzymes, Keileranta, Finland).  

 

Reaction mixes were made up according the manufacturer’s instructions using the 

buffers and MgCl2 provided.  

 

For amplification of sorghum gDNA 5% DMSO was added to the reaction mixture to 

improve yield and specificity.  

 

2.4.2.2 Oligo nucleotides 

 

Primers were designed to be a minimum of 18 bp in length and to have a GC content of 

40-60 % for optimal annealing. The Oligo Calc: Oligonucleotide Properties Calculator 

(www.basic.northwestern.edu/biotools/oligocalc.html) program was used to check for 

potential hairpin formation. A full list of oligo nucleotides used for PCR can be found in 

Appendix C.1. 

 

2.4.2.3 Cycling conditions 

 

PCR was performed using a 96 well Px2 thermocycler (Thermo Electron Corporation, 

Waltham, Massachusetts, USA). PCR conditions for different enzymes are listed in 

Table 2.2. The annealing temperature for new templates and primer pairs were 

optimized before use. Typically, annealing temperatures were chosen to be 5 °C lower 

than the melting temperature of the lowest from the primer pair. The resulting PCR 

products were analysed using gel electrophoresis (see 2.4.3). 
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Table 2.2 - PCR conditions for different Taq Polymerases 

Cycle steps Time and temperature No. of cycles 

BioTaq Phusion  

Initial denaturation 95 °C; 5 min 98 °C; 30 s 1 

Denaturation 95 °C; 30 s 98 °C; 10 s 
 

25-35 
Annealing 50-60 °C; 30 s 50-60°C; 20 s 

Extension 72 °C; 2 min 72 °C; 30 s 

Final extension 72 °C; 2 min 72 °C; 10 min 1 

 

2.4.3 Gel electrophoresis 

 

DNA was separated by size using agarose gel electrophoresis. Gels were prepared by 

melting 1% (w/v) electrophoresis grade agarose (Sigma) in 0.5 X TBE buffer (see 

Appendix A.4) in a microwave oven. After cooling to ~50 °C, ethidium bromide (10 

mg/ml) was added to a final concentration of 5 µg/ml. The molten gel was poured into a 

gel tank containing a comb and allowed to set.  

 

TBE (0.5 X) was used as a running buffer and 5 X DNA sample-loading buffer (Bioline) 

was added to DNA samples before loading into wells. Gels were run at 35 mA for 

approximately 1 h. Nucleic acid bands were visualized using a UV trans-illuminator  

(Uvitech Limited, Cambridge, UK) at a wavelength of 254 nm. Fragment size was 

determined by comparing to a 1 kb molecular size standard (Bioline Hyperladder 1). 

 

2.4.4 Cloning 

2.4.4.1 Plasmids 

 

All plasmid vectors are presented in Appendix B, including vector maps annotated with 

specific features. 

 

 



 37 

2.4.4.2 Ligation 

 

DNA fragments were ligated into a linearized vector using T4 DNA ligase (Promega) in 

the supplied buffer. A 1:3 molar ratio of linearized vector to insert was used. As a control, 

linearised vector alone was ligated and water was added instead of DNA. Ligation 

reactions were incubated overnight at 16 °C. 

 

2.4.4.3 Phosphatase treatment 

 

Phosphatase treatment was used to prevent re-annealing of a vector once it had been 

cut with a single enzyme (see Appendix B.5). Alkaline phosphatase was used according 

to the manufacturers instructions (Promega). 

2.4.4.4 Gateway cloning 

 

DNA to be cloned was PCR amplified using Phusion Taq Polymerase (see 2.4.2) to give 

a blunt-ended product. This was visualized using gel electrophoresis (see 2.4.3) and 

extracted from the gel (see 2.4.1.4). The fragment was then ligated into p-ENTR/D-

TOPO using the p-ENTR/D-TOPO cloning kit according to the manufacturer’s 

instructions (Life Technologies, Cat. No. K2400-20).  

 

Gateway recombination using the LR Clonase II Enzyme Mix (Life Technologies, Cat. 

No. 11791-020) was used according to the manufacturer’s instructions to create final 

binary vector constructs. One Shot TOP10 Chemically Competent E. coli cells (Life 

Technologies) were then transformed with the resulting plasmids (see 2.4.4.7.1).  

 

Plasmids were checked for the incorporation of the correct insert by restriction digestion 

(see 2.4.4.6) and then sequencing (see 2.4.5). 

 

2.4.4.5 Gibson Assembly 

 

The DNA fragment to be cloned was ordered as a gBlocks® gene fragment (Integrated 

DNA Technologies, Coralville, Iowa, USA). The fragment was cloned into a linearized 
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vector using a Gibson Assembly® Cloning Kit (NEB, Cat. No. E5510S) according to the 

manufacturer’s instructions. Briefly, the linearized vector was incubated in a reaction with 

a DNA fragment containing overlapping ends and the Gibson Assembly Master Mix. A 5’ 

exonuclease in the master mix generated long overhangs. A polymerase then filled in 

the gaps of the annealed single strands and a DNA ligase sealed the nicks. A molar ratio 

of 3:1 of insert to vector was used. Cells were transformed with 2 µl of the reaction (see 

2.4.4.7.1) 

 

2.4.4.6 Restriction digests 

 

Restriction digests were carried out to obtain fragments either for diagnosis or for cloning. 

Digests were carried out using NEB restriction enzymes and buffers and these were 

incubated for a minimum of 2 hr at the temperature recommended by the manufacturer 

(usually 37 °C). For single enzyme digestions, enzymes were added so that they 

comprised a maximum of 1/10th of the total reaction volume. Digests were then run on a 

gel to determine the size of the insert (see 2.4.3). 

 

2.4.4.7 Transformation  

2.4.4.7.1 Transformation of E. coli 

 

Aliquots (25 µl) of either One Shot TOP10 Chemically Competent E. coli cells (Life 

Technologies) or α-select silver cells (Bioline) were transformed with plasmid DNA. DNA 

(2.5 µl) was added to thawed cells on ice and incubated for 20 min. The cells were then 

heat shocked at 42 °C for 30 s before being returned to ice for a further 2 min. SOC 

media (250 µl) (Life Technologies) was added to the cells and they were then incubated 

with shaking at 220 rpm for 1 hr at 37 °C. Cells were then plated onto LB containing the 

appropriate antibiotics (see Table 2.1) and incubated overnight at 37 °C.  
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2.4.4.7.2 Transformation of A. tumefaciens 

2.4.4.7.2.1 Competent cell production 

 

Cultures containing 5 ml of LB supplemented with appropriate antibiotics were 

inoculated with a single Agrobacterium colony (from a fresh LB plate) using a sterile wire 

loop. This was grown overnight at 28 °C in a shaking incubator. The next day, 4 ml of the 

overnight culture was added to 100 ml of LB in a sterile 500 ml flask and this was 

shaken vigorously (250 rpm) at 28 °C until the culture reached an OD600 of 0.5 to 1.0. 

The culture was chilled on ice and the cells were centrifuged at 3500 g for 5 min at 4 °C. 

The supernatant was discarded and the cells were resuspended in 2 ml of ice-cold 20 

mM CaCl2 solution. The cells were then dispensed into 0.1 ml aliquots in 1.5 ml pre-

chilled microfuge tubes. The cells were flash frozen in liquid nitrogen and stored at -

80 °C. 

 

2.4.4.7.2.2 Transformation 

 

Aliquots containing 100 µl of C58C1 A. tumefaciens cells were allowed to thaw on ice. 

To this, 1 µg of plasmid DNA was added and these were incubated on ice for 30 min. 

The cells were then heat-shocked for 5 min at 37 °C before being returned to ice for a 

further 2 min. Liquid LB media (1 ml) was then added to each aliquot and the cells were 

incubated with shaking for 4 hr at 28 °C. The cells were then briefly spun down in a 

microcentrifuge and the cell pellet was resuspended in 100 µl of LB before being spread 

on LB agar containing the appropriate antibiotics for selection (see Table 2.1). Plates 

were incubated at 29 °C for 48 hr to allow colonies to develop.  

 

2.4.5 Sequencing 

2.4.5.1 Sequencing reactions 

 

For sequencing of plasmids containing cloned fragments, DNA was isolated using the 

Miniprep method (see 2.4.1.3). All sequencing reactions were carried out by the DNA 

sequencing laboratory (School of Biological and Biomedical Sciences, Durham 

University).  
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2.4.5.2 Sequence alignments 

 

Analysis of chromatograms was carried out using SnapGene (www.snapgene.com). 

Sequences were aligned using Clustal W (www.ebi.ac.uk/Tools /msa/clustalw2/). 

2.4.6 RNA extraction 

 

The RNeasy Plant Total RNA kit (Qiagen) was used to extract total plant RNA, from 

sorghum leaves and Arabidopsis tissue, according to the manufacturer’s instructions.  

 

For the extraction of RNA to be used for microarray analysis, which requires a higher 

quantity and purity of RNA, the miRNeasy Extraction kit (Qiagen) was used, again 

according to the manufacturer’s instructions. Tissue was ground in liquid nitrogen using 

a pre-cooled mortar and pestle and the tissue was homogenized using a QIAshredder 

column (Qiagen).  In all cases on-column DNase digestion using RNase free DNase 

(Qiagen) was carried out. Concentrations of RNA were determined using the nanodrop 

technique (see 2.4.7.1). The RNA was eluted in RNase free water and stored at -80°C. 

 

2.4.7 Nucleic acid quantification 

2.4.7.1 UV-VIS spectrophotometer 

 

DNA or RNA concentrations were determined by measuring the optical density of 

samples at 260 nm using a ND-1000 UV-Vis spectrophotometer (Nanodrop technologies, 

Delaware, USA). Water or elution buffer was used as a zero reference.  

 

2.4.7.2 Bioanalyzer 

 

The quality and integrity of the RNA to be used for microarray experiments (see 2.5) and 

Fluidigm qPCR (see 2.4.9.2) was determined using the Agilent 2100 bioanalyzer (Palo 

Alto, CA) and the Agilent RNA 6000 Nano Kit. These were used in accordance with the 

manufacturer’s instructions. 
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2.4.8 cDNA synthesis 

 

cDNA was produced from RNA using the Applied Biosystems High Capacity cDNA 

synthesis kit again according to the manufacturer’s instructions. A total volume of 10 µl 

was made up with 1 µg total RNA and nuclease-free water. A master mix was made up 

containing (per reaction): 2 µl 10 x RT buffer, dNTP Mix (100 mM), 1 µl MultiscribeTM 

Reverse Transcriptase and 4.2 µl of nuclease free water. Aliquots of this master mix (10 

µl) were added to each diluted RNA sample to give a total volume of 20 µl.  Controls with 

no RNA and no reverse transcriptase enzyme were all set up in parallel. The samples 

were then transferred to a Px2 thermocycler and run on the following program: 25 °C for 

10 min, 37 °C for 120 min and then 85 °C for 5 s. The resulting cDNA was diluted 1:50 

with nuclease free water before use in qPCR (see 2.4.9.1) and then stored at -20 °C until 

needed.  

 

2.4.9 Gene expression measurements using qPCR 

2.4.9.1 Applied Biosystems system using SYBR green. 

 

The relative transcript level of genes of interest was determined by qPCR using the 

Applied Biosytems 7300 real time PCR machine and Go Taq qPCR master mix 

(Promega). Diluted cDNA (5 µl) (see 2.4.8) was added to 10 µl of SYBR green master 

mix containing (per reaction): 7.5 µl of 2 X GoTaq qPCR master mix, 0.9 µl of each 

forward and reverse primer and 0.7 µl of nuclease free water. The GoTaq qPCR master 

mix contains ROX reference dye to account for optical differences between the wells. 

The diluted cDNA and master mix were added to wells of a 96-well plate (STARLAB UK, 

Milton Keynes, UK). For each sample to be tested, three replicate wells were set up to 

give three technical replicates. At least three biological replicates were also carried out 

for each experiment. Sb03g038910.1 was used as an endogenous control when testing 

Sorghum gene expression because its expression was found to be unchanging in 

microarray analysis following various stress treatments (Johnson et al., 2014). PEX4 

(At5g25760.1) was used as an endogenous control when testing Arabidopsis gene 

expression (Moffat et al., 2012). A full list of qPCR primers can be found in Appendix C.2. 

All qPCR primers were designed using Primer3 (http://primer3.ut.ee) with an amplicon 

size of 75-150 bp. Gene expression levels were analysed using the ΔΔCt method  
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(Applied Biosystems). The algorithm described in the Applied Biosystems user bulletin in 

2007 entitled, ‘Relative Quantitation  (RQ) algorithms, Applied Biosystems Real-Time 

PCR Systems Software’ was used for the statistical analysis of the qPCR data (Moffat et 

al., 2012). Error bars represent RQMIN and RQMAX and constitute the acceptable error 

level for a 95% confidence level according to the Student’s t-test.  

 

2.4.9.2 Fluidigm system using TaqMan probes 

 

qPCR validation of the microarray data was carried out using Fluidigm 96 Dynamic 

arrays (Fluidigm, San Francisco, California, USA). Assays were run in triplicate to give 

three technical replicates. Three biological replicates were also carried out. The setup 

was performed in accordance with the ‘Fluidigm® 96.96 Real-Time PCR Workflow’ 

(PN68000088) (http://fgl.salk.edu/ BioMark/pdf/ 96.96%20Real-

Time%20PCR%20Workflow%20Quick%20 Reference%20rev%20C1.pdf). RNA (1 µg) 

was used as input in a 20 µl reverse transcription reaction. The SuperScript III First-

Strand Synthesis SuperMix Kit (Applied Biosystems) was used for first-strand cDNA 

synthesis and the TaqMan PreAmp Master Mix (ABI PN4391128) was used for pre-

amplification of the cDNA. Custom designed 20 X Custom TaqMan® Gene Expression 

Assays (Applied Biosystems) were used for amplification of the cDNA (see Appendix C.3 

for full list of TaqMan probes). Data was collected using the Fluidigm Real-Time PCR 

analysis Software v3.0.2. TaqMan probes were designed using the Primer Express® 

Software (Life Technologies). The average (mean) raw expression value of the three 

technical replicates was calculated. Relative quantification was then calculated for each 

biological replicate using the Comparative Ct Method (ΔΔCT Method) (Livak and 

Schmittgen, 2001). Sb04g028990.1 was used as an endogenous control because its 

expression was found to be unchanging following various treatments (Johnson et al., 

2014).  

 

2.4.10 Luciferase assay 

 

Relative promoter activity was determined by cloning different promoters upstream of the 

firefly luciferase gene (see 2.4.4 and Appendix B.5 & B.6 for vector map and cloning 

strategy). The resulting constructs were bombarded into sorghum leaf tissue on MS agar 
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plates (see 2.9.2.1). The plates were then sealed and incubated in the Percival for 96 hr 

to allow for expression. The transformed leaves were sprayed with luciferin (5 mM 

potassium luciferin (Melford Laboratories Ltd) in 0.01% (v/v) Triton-X-100). Each plate 

was then imaged for 60 min using a Photek photon-counting camera (Photek, Hastings, 

UK).  

 

2.5 Microarray processing and analysis  

2.5.1 Experimental design 

2.5.1.1 Combined stress  

 

Seeds of Sorghum bicolor R16 variety were imbibed overnight and surface sown on 

soaked peat plugs (see 2.3.3.2). Plants were subjected to control (no treatment), heat, 

drought or combined heat and drought conditions (six plants per treatment). Drought 

stress was applied to the drought and combined stress plants by withholding water after 

12 DAS (see 2.7.1.1). The remaining plants (control and heat shock) were well watered.  

The Fv/Fm of all of the plants was measured daily using a FluorCam (see 2.7.2.2). At the 

point when the Fv/Fm of the drought-stressed plants first started to differ from the well-

watered controls, either a heat shock by incubation in the dark at 50 °C for 3 hr (heat 

and combined treatment) or control treatment at 28 °C (control and drought treatment) 

was initiated. The youngest three leaves were sampled and tissue was pooled for each 

treatment set. All plants were sampled at the same time following the heat treatment. 

Experiments were carried out in triplicate to give three biological replicates. All 

treatments were carried out at the same time for each replicate to reduce circadian 

variation. Samples were stored at -80 °C. 

 

2.5.1.2 Mature sorghum 

 

At 30 days after sowing (DAS) sorghum seedlings were transferred to 8” pots (see 

2.3.3.2). From this point the photosynthetic efficiency of leaf 2 and 4 was monitored 

using a portable photosystem efficiency analyser (PEA) machine (see 2.7.2.2). A sample 

from leaf 10 was taken when the average photosynthetic efficiency of leaves 2 and 4 first 

started to differ between the B35 and R16 varieties, as indicated by a reduced ratio of 
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variable fluorescence (Fv) to maximal fluorescence (Fm) in R16. This occurred at around 

45 DAS. At this stage the plants were at the booting stage and had ten leaves. Leaf 10 

was sampled and the tissue was pooled from six plants of each variety. Plants were 

maintained under well-watered conditions throughout. Experiments were carried out in 

triplicate, with samples taken on different occasions, to give three biological replicates. 

Samples were taken at the same time of day for each biological replicate to reduce 

variation due to circadian/diurnal factors. Tissues samples were harvested into liquid 

nitrogen and stored at -80°C. 

 

2.5.1.3 Young sorghum 

 

Sorghum varieties R16 (senescent), S35 (senescent), B35 (stay-green) and E36 (stay-

green) were grown until 12 DAS (see 2.3.3.2). Drought was imposed by withdrawing 

water at 12 DAS, while control plants were well watered (six plants of each variety per 

treatment). Leaf tissue samples of the youngest three leaves were taken when the 

photosynthetic efficiency of one of the varieties first started to differ from the controls, as 

measured using a FluorCam (see 2.7.2.2).  

 

2.5.2 Preparation of microarrays 

 

All microarray processing was carried out at Unilever. Custom expression microarrays 

(4X44K format) for sorghum were designed and submitted for manufacturing using the 

Agilent Technologies eArray web-based application 

(https://earray.chem.agilent.com/earray/). Briefly, Sbicolor release 79 coding sequences 

were downloaded from the sorghum GDB database (http://www.plantgdb.org/SbGDB/). 

Based upon these 29289 coding sequences, 28585 microarray probes (60 mer 

oligonucleotides) were designed (with a 3’ bias).  In addition, for ten of the longest 

coding sequences, ten tiling probes were also designed. These probes were randomly 

laid out onto the 4X44K microarray design format by eArray, along with default Agilent 

control probes (Agilent Technologies UK Ltd., Wokingham, Berkshire, UK), and ten 

additional replicate probes of 100 randomly selected sorghum coding sequences. 
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2.5.3 cRNA synthesis and labelling 

 

A schematic for the production of cRNA is shown in Figure 2.1. All products were 

obtained from Agilent Technologies UK Ltd and used according to the manufacturer's 

protocol unless stated otherwise. Total RNA was isolated using the miRNeasy Extraction 

Kit (Qiagen). The integrity of the RNA was confirmed with analysis by the Agilent 2100 

bioanalyzer and the Agilent RNA 6000 Nano Kit (see 2.4.7.2). RNA (1µg) was added to 

1.2 µL of T7 promoter primer and 5 µL of a “spike-in” control and made to a total volume 

of 11.5 µL with nuclease free water. The primer and template was denatured at 65 °C for 

10 min. The One-Color Low RNA Input Linear Amplification Kit PLUS was used for the 

synthesis of cDNA as follows: 5 x First Strand Buffer, DTT (to 10mM), dNTP mix (to 0.5 

mM), Moloney murine leukaemia virus (MMLV) reverse transcriptase (1 µL stock to 20 

µL reaction) and RNaseOut (0.5 µL of stock to 20 µL reaction) were added to the 

denatured template. The cRNA was synthesized by incubation at 40 °C for 2 h and then 

denaturation at 65 °C for 15 minutes. Transcription Buffer (X4), DTT (to 7.5mM), NTP 

mix (8 µL stock to 80 µL reaction), PEG (to 4 %), RNaseOUT (0.5 µL to 80 µL), inorganic 

pyrophosphate (0.6 µL to 80 µL reaction), T7 RNA Polymerase (0.8 µL to 80 µL reaction) 

and Cyanine 3-CTP (10mM) (2.4 µL to 80 µL reaction) were added.  The synthesis of 

the cRNA was performed by incubation at 40 °C for 2 h. The labelled cRNA was purified 

using the RNeasy Mini Kit (Qiagen) according to the manufacturer’s protocol and 

quantified using a UV-VIS Spectrophotometer. 
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Figure 2.1 - Schematic depicting the production of cRNA for the microarray experiments 

taken from the Agilent protocol for single colour labelling 

(http://www.chem.agilent.com/library/usermanuals/public/g4140-90041_one-

color_tecan.pdf).  

 
 

2.5.4 Hybridization and washing 

 

The Agilent Hybridization Kit (Cat. No. 5188-5242) was used with the sorghum custom 

oligo Arrays. Labelled total RNA (2 µg) was added to 10 X blocking Agent, 25 X 
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fragmentation buffer and nuclease free water to a total volume of 55 µl. The RNA was 

fragmented by incubation at 60 °C for 30 min. Fragmentation was stopped by the 

addition of 55 µl 2 X GE Hybridization Buffer HI-RPM. The hybridization was performed 

for 17 h at 65 °C with shaking at 10 rpm. Slides were then washed for 1 min in Wash 

Solution 1, 1 min in pre-warmed (37 °C) Wash Solution 2 and then 20 s in acetonitrile. 

Slides were then incubated for 30 s in Agilent Stabilization and Drying Solution. The 

slides were scanned with the Agilent G2565BA Microarray Scanner System.  
 

2.5.5 Feature extraction and analysis 

 

The Agilent G2567AA Feature Extraction Software (v.9.1) was used to extract the data 

and check the quality of the arrays. The extracted data was analysed using GeneSpring 

GX 7.3.1 (Agilent Technologies). Controls, spots of poor quality (not detected) and gene 

probes which were not present in all three replicates in either the control or treatment 

samples were excluded from the analysis. This yielded approximately 21000 probes for 

each control vs. treatment comparison. For the sorghum stay-green experiments, genes 

with an average fold-change of >2 (p<0.05) (Moderated T-test with Benjamini-Hochberg 

correction) were selected for further analysis. For the combined stress analysis, genes 

with a fold-change of >2 in all 3 reps were selected for further analysis. 

 

2.6 Bioinformatics 
 

Singular Enrichment Analysis (SEA) of Gene Ontology (GO) terms was carried out using 

agriGO (http://bioinfo.cau.edu.cn/agriGO/) and redundant GO terms were removed using 

REVIGO (http://revigo.irb.hr/) (medium similarity). Hierarchical clustering of normalized 

gene expression was carried out on conditions and entities using GeneSpring default 

settings. The Sorghum Cyc metabolic pathways database 

(http://pathway.gramene.org/gramene/sorghumcyc.shtml) was used to identify sorghum 

genes involved in particular biosynthetic pathways. Genes within known QTLs for stay-

green were identified using the Comparative Saccharinae Genome Resource (CSGR)-

QTL (http://helos.pgml.uga.edu/qtl/) (Zhang et al., 2013). Known promoter motifs were 

identified using the PlantPAN (http://plantpan.mbc.nctu.edu.tw/seq_analysis.php) and 
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PLACE databases (http://www.dna.affrc.go.jp/PLACE/). Over-represented promoter 

motifs were identified using a web-based tool (http://element.mocklerlab.org). 

 

2.7 Plant physiology 

2.7.1 Stress and hormone treatments 

2.7.1.1 Drought stress  

 

i. For the combined stress microarray experiment (see 2.5.1.1) and GST activity 

measurements in sorghum, (see 2.8.4), drought stress was induced by 

withholding water from 14 DAS. Samples were taken when the Fv/Fm, which 

gives an indication of photosynthetic efficiency, first started to differ between the 

well-watered and drought-stressed plants (see 2.7.2.2). This was usually after 

around three days of stress induction.  

 

ii. For proline quantification (see 2.8.2) and sorghum gene expression analyses, 

seedlings were grown on peat plugs with constant watering up to 14 DAS (see 

2.3.3.2). Drought stress was then induced by subsequent watering with 10% 

polyethylene glycol (PEG [6000]) (w/v) solution. The same volumes of either 

water (control) or PEG were applied to each batch of plants. Samples of leaf 

tissue (the three youngest leaves) were taken immediately prior to stress 

induction and every two days thereafter until eight days following stress induction. 

This method was used to better synchronise the initiation of the osmotic stress.  

 

iii. For Arabidopsis gene expression analyses, seeds were germinated on MS agar 

(see 2.3.3.1) and then, after eight days, transferred to a sterile well of a 6-well 

culture plate (~15 seedlings per well) containing 3 ml of water. The plate was 

kept in the percival overnight to allow the seedlings to recover after the transfer 

to water from agar. The next day, 3 ml of 0.8 M mannitol (to give a 0.4 M final 

concentration) was added to the wells, except to control wells to which 3 ml of 

water was added. Seedling samples were taken at 0 hr, 2 hr, and 5 hr time points.  
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iv. For sorghum gene expression analyses, six sections of sorghum leaf blades 

(approx. 5 cm in length) were cut from seedlings at 14 DAS and placed in 9 cm 

petri dishes containing 25 ml of water. The plates were incubated overnight in a 

growth chamber to equilibrate. The following day, the water was removed from 

the dishes using a syringe and replaced with either water (control) or 0.66 M 

mannitol. Samples were taken at the following time points: 0 hr, 2 hr, 6 hr and 24 

hr.  

 

2.7.1.2 Heat stress 

 

For the combined stress microarray experiment (see 2.5.1.1) heat stress was 

administered by heating whole plants to 50 °C for 3 hr in an incubator in the dark. 

Control plants were incubated at 28 °C for 3 hr in the dark.  

 

2.7.1.3 Salt stress 

 

See the method described in 2.6.1.1 part iv. However in this case, the water was 

replaced with 25 ml 200 mM NaCl and samples were taken at 0 hr, 2 hr, 6 hr and 24 hr 

time points.  

 

2.7.1.4 ABA 

 

See the method described in 2.6.1.1 part iv. In this case, the water was replaced with 10 

ml 100 µM ABA. This high (non-physiological) concentration of ABA was used in order to 

ensure penetration through the thick waxy cuticle of the sorghum leaves. Water 

containing 0.1% ethanol was used as a control.  
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2.7.1.5 Oxidative stress 

 

Methyl viologen (MV) was used to induce oxidative stress. Leaf discs of 0.8 cm diameter 

were cut from sorghum leaves at around 14 DAS. The leaf discs were floated adaxial 

side up in 5 ml water and allowed to equilibrate overnight in the dark. The water was 

then removed and replaced with MV at the following concentrations: 0 µM, 2.5 µM and 5 

µM. Six leaf discs of each variety were used for each concentration tested. 

 

2.7.2 Measurements of photosynthetic activity 

2.7.2.1 Chlorophyll measurements 

 

A chlorophyll assay was carried out as a non-subjective, quantitative measurement of 

bleaching in response to MV treatment (see 2.7.1.5). The leaf discs were blotted dry and 

transferred to a 1.5 ml microfuge tube. Acetone (400 µl) was added to each microfuge 

tube and the tubes were then incubated overnight in the dark at room temperature. 

Samples were then homogenised using a micropestle (pellet pestle motor, New Jersey, 

USA) and vortexed to resuspend the material. Tubes were then centrifuged at 20000 g 

to separate the plant material from the solubilised chlorophyll in the supernatant. The 

supernatant was collected, the pellet re-suspended in another 400 µl of acetone for 

further chlorophyll extraction, vortexed and centrifuged again. The steps were repeated 

until a total of 1.2 ml of acetone had been used to extract the chlorophyll. This pooled 

supernatant was made up to a volume of 1.5 ml with distilled water (resulting in an 

acetone concentration of 80% (v/v). The chlorophyll content was measured at OD 663 

and OD 645 nm using a spectrophotometer. 80% acetone was used as a blank. The 

following equation was used to calculate chlorophyll concentration (Hipkins and Baker, 

1986): 

 

 

 

 

 

 

 

((20 x A645) + (6.02 x A663)) x V 

Leaf area 

Chlorophyll concentration (g/cm2)   = 

V    = Volume of 80% acetone 
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2.7.2.2 Fv/Fm measurements 

 

Damage due to stress can be observed by a reduced ratio of variable fluorescence (Fv) 

to maximal fluorescence (Fm) of plant photosystems (Maxwell and Johnson, 2000; 

Oxborough, 2004). This was measured in seedlings (up to 14 DAS) using a FluorCam 

700mf (Photon Systems instruments, Brno, Czech Republic) on the F0, Fm and Kautsky 

effect setting. Plants were dark adapted for 30 min prior to measurements. Fv/Fm was 

measured in mature plants using a portable Photosystem Efficiency Analyser (PEA) 

machine (Hansatech, Norfolk, UK). 

 

2.7.3 Excised-leaf water-loss assay 

 

Mature Arabidopsis plants, ~3 weeks old, were transferred from trays to perspex boxes 

and then covered with a lid to maintain high humidity conditions the night before the 

experiment was carried out. The following day, leaves were detached and weighed 

abaxial side up at different time intervals at room temperature. Leaves of a similar size 

and developmental age were selected from at least eight plants of each genotype. The 

experiment was repeated three times to give three biological replicates.  

 

Similarly, sorghum seedlings were maintained in high humidity conditions before the 

experiment by placing the tray of plants into a cellophane bag. Leaf three was excised 

and weighed abaxial side up at room temperature.  

 

2.7.4 Stomatal conductivity measurements 

 

Stomatal conductivity was measured at the University of Lancaster using the Li-Cor® 

system (http://www.licor.com/env/). The LI-6400XT Portable Photosynthesis System was 

used with the 6400-15 Extended Reach 1 cm Chamber (LiCor, Lincoln, Nebraska USA). 

Arabidopsis plants at ~5 weeks old were used and leaves of the same developmental 

stage were measured. Measurements were taken throughout the day and 

measurements of the different genotypes were alternated. The following parameters 

were used: light intensity = 150 µmol m-2s-1, CO2 = 550 µmol, temperature = 22 °C, flow 

rate = 100 µmol/s.  
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2.7.5 Stomatal density measurements 

 

Impressions of the abaxial surface of leaves were made using dental resin (President Jet 

Light Body, Coltène/Whaledent, Burgess Hill, UK). Clear nail varnish was applied to the 

set impression after removal from the leaf, and the varnish impressions were viewed on 

a Zeiss Axioskop inverted microscope with a Retiga 2000R camera. Impressions were 

made of a ~3 x 3 cm area in the middle of leaf 9 at 50 DAS. Arabidopsis impressions 

were taken from leaves at a similar developmental stage of three-week-old plants. 

Stomatal counts were taken from four areas per leaf from eight separate plants, to give a 

total of 32 measurements for each genotype.   

 

2.7.6 Root growth measurements 

 

Arabidopsis seedlings were germinated in a line on vertical, square MS agar plates (see 

2.3.3.1.). In order to account for plate-to-plate variation, the plates were divided into four 

so that each of the four genotypes tested were represented on each plate. Root lengths 

were measured after ten days using ImageJ software.  

 

2.8 Biochemical techniques 

2.8.1 Spermidine quantification 

 

Spermidine levels were quantified using UPLC (Waters Acquity H-Class UPLC® system 

with fluorescence (FLR) and photodiode array (PDA) detectors) (Waters, Wilmslow, UK). 

Sorghum leaf tissue was freeze-dried using a lyophiliser. Dried tissue (0.1 g) was then 

homogenised in cold 5% (w/v) perchloric acid (2.5 ml) and centrifuged at 1000 g for 30 

min at 4 °C. Cadaverine was used as an internal standard and was added to 1.5 ml of 

the supernatant to give a final concentration of 100 µM. To the extract, 1 ml of 2 M 

NaOH was added and then vortexed. Spermidine was derivatized by the addition 10 µl 

of benzoyl chloride. Finally, 2 ml of saturated NaCl solution was added to the extract 

along with 2 ml diethyl ether. The resulting solution was vortexed again and the phases 

separated by centrifugation at 200 g for 20 min at 4 °C. The upper ether phase was 

transferred to a vial and this was dried under a nitrogen stream, before being 
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resuspended in 300 µl methanol. The derivitised compounds were separated on the 

UPLC with a 100 mm x 2 mm C18 column (Waters), and detected at 254 nm.  The 

spermidine concentration in the samples was determined using a standard curve with 

standards of 0, 10, 50 and 100 µM concentrations. 

 

2.8.2 Proline quantification 

 

Proline levels were also quantified using UPLC (Waters Acquity H-Class UPLC® system 

with fluorescence (FLR) and photodiode array (PDA) detectors) (Waters). Leaf tissue 

was ground in liquid nitrogen and lyophilized overnight. Lyophilized tissue (0.04 g) was 

extracted in 1.5 ml of 0.1 N HCl by grinding and then centrifugation at 17000 g for 20 min 

at 4 °C. The extracts were then sequentially derivatised with OPA (o-Phthaldialdehyde) 

reagent and FMOC (Fluorenylmethyloxycarbonyl) (Sigma). OPA reagent consists of 260 

mM N-Isobutyryl-L-cysteine (IBLC) (Sigma) and 170 mM OPA (Sigma) in 1 M potassium 

borate buffer (pH 10.4). The following reactions were set up in a HPLC vial: 10 µl sample, 

10 µl OPA reagent, 20 µl FMOC (5 mM in acetonitrile) and 60 µl of 100% methanol. 

Separations were performed on a Cortecs C18 column, 100 mm x 2.1 mm, 1.6 M µM 

column (Waters) and elution was achieved at 40 °C. Mobile phase A was made up of 20 

mM sodium acetate, pH 6.0. Mobile phase B was made up of acetonitrile: methanol: 

water in a 45:45:10 (v/v/v) ratio. A flow rate of 400 µl/min was used. Automated HPLC 

injection added 3 µl of the sample for analysis and samples were run for 20 min. For 

OPA detection the excitation and emission wavelengths were 340 nm and 455 nm 

respectively. For FMOC detection the excitation and emission wavelengths were 266 nm 

and 305 nm.  

 

2.8.3 Betaine quantification 

 

Betaine extraction and quantification was carried out using UPLC as described in 

(Bessieres et al., 1999). Lyophilized tissue (0.04 g) was ground in 2 ml of sterile water. 

The samples were then centrifuged at 17000 g for 20 min at 4 °C and the supernatants 

were diluted with nine volumes of acetonitrile: methanol: water (45:45:10). A cation 

exchange resin (Amberlite IR-120 Plus) was applied to the column and washed with 10 

ml of water before application of the extract. The column was again washed with 10 ml 
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of water and eluted with 5 ml 4 M NH4OH. The extract was then concentrated by freeze-

drying, before being transferred to a HPLC vial. Columns (2.1 mm x 150 mm) (Ascentis 

silica, Sigma) were packed with silica particles of 2.7 µm diameter. The columns were 

kept at 30 °C. Mobile phase A was made up of acetonitrile. Mobile phase B was made 

up of 10 mM ammonium formate, (pH 3.0): acetonitrile in a 90:10 (v/v) ratio. A gradient 

was applied for 16 min at a flow rate of 400 µl/min from 15% to 25% mobile phase B 

then up to 40% by 20 min before going down to 15% B after 25 min.  UV detection was 

carried out at 192 nm.  

 

2.8.4 Measurements of glutathione S-transferase (GST) activity 

 

GST activity assays with the 1-chloro-2,4-dinitrobenzene (CDNB) substrate were carried 

out as described in Habig et al (1974) with minor modifications. Sorghum tissue was 

ground in three volumes of GST extraction buffer (See Appendix A.5) and then 

centrifuged at 17000 g for 15 min at 4 °C to remove cell debris. Protein samples were 

kept on ice. Assays were set up consisting of 900 µl 0.1 M potassium phosphate buffer 

(pH 6.5), 25 µl 40mM CDNB substrate, 50 µl of 100 mM glutathione (final assay 

concentration 5 mM) and 25 µl of supernatant (enzyme solution). Assays were carried 

out at 30 °C and activity was measured by following the change in absorbance of the 

reaction mixture at 340 nm. Control incubations in which the enzyme solution was 

omitted were also performed. A minimum of five technical replicates was carried out and 

the experiment was repeated three times to give three biological replicates. The amount 

of protein used in each assay was quantified using the Bio-Rad DCTM protein assay (Bio-

Rad, Hercules, California, USA) and a nanodrop (See 2.4.7.1.). 

 

2.9 Plant transformation 

2.9.1 Transformation of A. thaliana 

2.9.1.1 Transformation 

 

The floral dip method of transformation was used for stable transformation of 

Arabidopsis (Clough and Bent, 1998). Wild-type Arabidopsis seeds were grown on MS 

media (see 2.3.3.1) for seven days. Large (44 mm) peat plugs were set up with three 
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seedlings per plug. When the plants began to flower, the bolts were clipped to allow 

multiple secondary stems to develop. The final clipping was carried out seven days 

before transformation, producing an abundance of stems with flowers. Overnight 

cultures containing 5 ml of LB media with A. tumefaciens containing the correct plasmid 

and appropriate antibiotics were set up (see 2.2.2). An aliquot (1 ml) of the 5ml overnight 

culture was then added to a 200 ml overnight culture, again with the appropriate 

antibiotics for selection. The culture was incubated overnight at 28 °C with agitation at 

150 rpm. The A. tumefaciens cells were then pelleted by centrifugation at 3500 g for 20 

min at room temperature. The bacterial pellet was then resuspended in 200 ml of 5% 

sucrose solution (w/v) and 0.05% Silwet L-77 (v/v). The flower stems of each 

Arabidopsis plant were dipped in the sucrose solution before being placed on their side 

in a tray lined with tissue paper. The tray was covered in cling film and returned to the 

growth chamber overnight. The following day the plants were transferred to a fresh tray 

and stood upright.   

 

2.9.1.2 Selection of transformants 

 

Seeds (T1) were collected from the transformed Arabidopsis plants. These seeds were 

bleach sterilized (see 2.3.2.2) before germinating on large MS agar plates containing 

kanamycin and timentin antibiotics (see Table 2.1 for antibiotic concentrations). The 

plates were put in the light for 6-8 hr, wrapped in foil and left in the dark for 48 hr. The 

plates were then kept in constant light until transformed seedlings could be identified by 

the presence of dark green leaves and roots which were able to penetrate the agar 

(usually after 5-6 days) (Harrison et al., 2006). Primary transformants (T1) surviving the 

selection were transferred to peat plugs and grown to maturity under normal conditions 

in the growth room. The seeds from this generation (T2) were harvested separately. All 

investigations compared the transformed Arabidopsis lines to distinct Col-0.  
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2.9.2 Transformation of S. bicolor 

2.9.2.1 Transient transformation 

2.9.2.1.1 Preparation of gold particles 

 

Gold particles were prepared by the addition of 60 µg of 1.6 µm gold particles to 1 ml 

100 % ethanol. The particles were vortexed for 1 min and then pelleted by spinning in a 

micro centrifuge for 10 s. The supernatant was removed and the particles were washed 

in this way a further three times and after the last wash spun for 1 min. MilliQ water (1 

ml) was then added and the particles were resuspended by vortexing for 1 min. The 

particles were spun and the supernatant removed. A final 1 ml of water was added and 

the particles resuspended.   

An aliquot of gold particles (50 µl) was dispensed into a microfuge tube and 5 µg of 

plasmid DNA was added before vortexing. To this, 50 µl 2.5 M CaCl2 was added and 

then vortexed hard for 30 s. Then, 20 µl 0.1 M spermidine free-base was added and 

again vortexed hard for 10 s before being placed in a continuous vortex for 3 min. The 

tube was pulse spun and the supernatant was removed. After this, 250 µl 100% ethanol 

was added to the particles and vortexed. The particles were spun and the supernatant 

removed. Finally, 125 µl of 100% ethanol (v/v) was added to the particles and they were 

vortexed to resuspend the particles. An aliquot of this suspension (20 µl) was dispensed 

onto each of 5 macrocarrier discs within a silver macrocarrier ring. The DNA/gold 

suspension was allowed to dry on the macrocarriers.  

 

2.9.2.1.2 Firing at the plant tissue 

 

Sorghum leaf blades from plants 7-20 days old were cut and placed onto 1 X MS plates 

to cover an area of 16 cm2 in the centre of the plate. The PDS-1000/HeTM system (Bio-

Rad) was used for bombardment and the procedure was carried out according to the 

manufacturer’s instructions. The 1100 psi rupture discs were used and the plates were 

placed on the 3rd shelf. The plates were then sealed with micropore tape (3G) and kept 

in the growth chamber for 96 hr to allow for expression. 
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2.9.2.2 Stable transformation 

 

Stable Sorghum transformation was carried out as described by Liu et al (Liu et al., 

2014) in the lab of Professor Ian Godwin (University of Queensland, Australia).  

 

2.9.2.2.1 Harvesting of Sorghum immature seeds 

 

Immature seeds were collected from healthy Sorghum panicles (Tx430 variety) 12-15 

days after pollination. All work was carried out under a laminar flow hood. The immature 

seeds were sterilized by shaking at 200 rpm for 5 min in 70% ethanol. The seeds were 

rinsed in sterilized water and then soaked in a solution containing 4% (w/v) sodium 

hypochlorite with 3 to 5 drops of Tween20. They were then shaken at 200 rpm for 10 min 

before being rinsed at least five times with sterilized water until the bleach had 

completely washed away. The seeds were then placed into a sterile Petri dish in the 

laminar flow hood and allowed to dry for 20-30 min.  

 

2.9.2.2.2 Preparation of target tissue for particle bombardment 

 

Immature embryos were isolated from the seeds using sterile forceps and a surgical 

blade within the laminar flow hood. Immature embryos that were between 1.1-2.2 mm in 

length were selected. The immature embryos were placed with the scutellum side up on 

callus induction media (CIM) (see Appendix A.6) (maximum 25 immature embryos per 

90 x 15 mm Petri dish). The plates were sealed with parafilm and kept in the dark at 26-

28 °C to allow callus formation. After 9-11 days in the dark, immature embryos that had 

formed compact, globular, white embryogenic callus were selected. Embryos (6-8 per 

plate) were placed onto the centre of a Petri dish filled with osmotic medium (OM) (see 

Appendix A.7) for 2-3 hr before bombardment.  

 

2.9.2.2.3 Preparation of gold particles and bombardment 

 

Gold particles were prepared by the addition of 60 µg of 1.6 µm gold particles to 1 ml 

100% ethanol. The particles were vortexed thoroughly for 5 min and then allowed to 
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stand for 15 min. The particles were then centrifuged at 16000 g for 10 s, the 

supernatant removed and the particles were washed a further three times in sterilized 

water. The particles were finally resuspended in 1 ml of sterilized 50% glycerol.  

 

Plasmid DNA (5 µg) containing a selectable marker and 5 µg of plasmid DNA containing 

the target gene was added to a 50 µl aliquot of gold particles. This was then vortexed for 

1-2 min before the addition of 50 µl of 2.5 M CaCl2 and 20 µl of 0.1 M spermidine. The 

solution was vortexed for 1-2 min before precipitation on ice for 5 min. The particles 

were then pelleted for 10 s at 800 g. The supernatant was removed and the particles 

were resuspended in 35 µl of 100% ethanol by vortexing.  

 

A particle inflow gun (PIG) was used to bombard the callus tissue (Finer et al., 1992). 

The gold particle suspension (50 µl) was applied to the centre of the syringe filter for 

each shot of the PIG and this was screwed into the top of the vacuum chamber. The 

particles were bombarded onto a Petri dish containing the target tissue under a baffle 

see Liu et al. for operating instructions (Liu et al., 2014). The distance from the filter 

holder to the target cells was set at 18.5 cm.  

 

2.9.2.2.4 Post-bombardment recovery and selection 

 

The bombarded immature embryos were kept on OM for 3-4 h in the dark, before 

subculturing onto CIM. They were then allowed to recover on CIM at 27 °C in the dark 

for 3 days. The embryos were then subcultured onto selective regeneration medium 

(Appendix A.8) and subcultured fortnightly until plantlets were 3 cm long. The individual 

plantlets were then subcultured onto selective rooting medium (Appendix A.9) for 3-4 

weeks without additional subculture. 

 

2.9.2.2.5 Potting out plantlets 

 

The lids of Petri dishes were opened to allow plantlets to have exposure to air. Sterilized 

water was added to the Petri dishes daily to cover the selective rooting medium. After 2-

4 days the plantlets were transferred to soil and maintained in a glasshouse with 

temperature control (18-28 °C). 
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CHAPTER	  3	  

Microarray	  analysis	  investigating	  the	  effect	  of	  

drought,	  heat	  and	  combined	  stress	  on	  sorghum	  

gene	  expression	  
 

3.1 Introduction 
 

As discussed in Chapter 1, abiotic stresses are major limiting factors for crop growth and 

yield production. In particular, drought stress and high temperatures can result in drastic 

reductions in crop yields (Boyer, 1982; Wang et al., 2003). These abiotic stresses are, 

however, rarely presented individually and crops are often subjected to multiple stress 

types simultaneously (Mittler, 2006). The combination of drought and heat has been 

shown in sorghum, wheat and other grasses to result in an even greater detrimental 

effect than when each stress is imposed individually (Craufurd et al., 1993; Savin and 

Nicolas, 1996; Machado and Paulsen, 2001). For this reason, it is important to gain an 

understanding of the mechanisms by which crops respond, not only to individual stress, 

but also to their combination. This will be particularly important in the face of climate 

change given the predicted increase in land area affected by these combined stresses in 

the future (Ahuja et al., 2010).  

 

Analysis of changes to transcript levels can be a valuable way to gain insight into the 

genes and processes involved in providing stress tolerance. The transcriptional 

response of a range of species to individual stress types has been studied extensively 

and has identified a multitude of important genes and processes (Kreps et al., 2002; 

Zhang et al., 2005; Qin et al., 2008; Wang et al., 2011). Interestingly, it has been found 

that the combination of drought and heat stress in Arabidopsis and tobacco, results in a 

unique transcriptional response that cannot be simply extrapolated from the effect of 
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each stress imposed individually (Rizhsky et al., 2002; Rizhsky et al., 2004). This 

suggests that plants have a novel response to combined stress.  

 

Sorghum is grown in arid and semi-arid countries and as a result is able to thrive when 

subjected to high temperatures and low water availability. A variety of studies have been 

undertaken to investigate the physiological basis of this tolerance (Xu et al., 2000; 

Sanchez et al., 2002; Srinivas et al., 2009; Borrell et al., 2014) however, until recently, 

molecular characterization has been relatively limited. The transcriptomic response of 

sorghum to osmotic stress, induced by PEG, has been reported (Dugas et al., 2011) 

although, there are no published reports using bona-fide drought-treated samples. No 

transcriptomic analysis of the sorghum response to heat stress or indeed combined heat 

and drought has been reported. Such an analysis would provide a greater understanding 

of the stress response in a crop that is well adapted to hot and arid environments and 

could provide important insights not gained from other species. 

 

This chapter focuses on microarray experiments carried out to investigate the response 

of sorghum to drought stress, heat stress and their combination. 

 

Aims of the research described in this chapter: 

 

• To test the quality and efficiency of custom-designed microarrays (see 3.2.1.2) 

• To investigate gene expression changes following drought, heat and combined 

heat and drought stress in sorghum (see 3.2.1.3) 

• To identify biological processes that are associated with the response to each of 

these stresses and in particular the response to combined stress (see 3.2.1.3) 

• To validate gene expression differences using qPCR (see 3.2.2) 

• To validate identified biological processes using biochemical analyses (see 3.2.3). 

 

 

 

 

 

 



 61 

3.2 Results 
 

The results of this chapter are published in Johnson et al. (2014) 

 

3.2.1 Microarray analysis of sorghum subjected to drought, heat and combined 

drought and heat stress 

3.2.1.1 Sample selection  

 

To investigate gene expression changes, sorghum seedlings were either untreated 

(control) or subjected to drought stress, heat stress or combined drought and heat stress 

(see 2.5.1.1 for detailed method). Briefly, drought was administered by withdrawing 

water from 14 days after sowing (DAS) (drought and combined) whilst the remaining 

(control and heat) plants were well watered throughout. Heat shock was administered 

(heat and combined) at the point at which the Fv/Fm, which gives an indication of 

photosynthetic efficiency, first started to significantly drop in the drought-stressed plants, 

with respect to the well-watered controls. This occurred following four days of water 

withdrawal (Figure 3.1). This ensured that the drought-treated plants were experiencing 

bona fide stress when the combined heat stress was executed. The experiment was 

carried out three times to give three biological replicates and a total of 12 samples. 
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Figure 3.1 - The Fv/Fm (variable fluorescence/maximal fluorescence of Photosystem II) 

of sorghum seedlings that were either well watered (control and heat) or subjected to 

drought stress (drought and combined drought and heat). Drought stress was imposed 

by withdrawing water from 14 DAS. Photosynthetic efficiency was measured daily, using 

a FluorCam, following the initiation of water withdrawal (see Materials and Methods 

section 2.6.2.2).  

 
 

3.2.1.2 Quality control of RNA and hybridised slides 

 

Total RNA was extracted from the tissue and samples were run on a bioanalyzer to 

check the quality and integrity of the RNA. A representative bioanalyzer result is shown 

in Figure 3.2 and high quality RNA was confirmed by the presence of defined peaks of 

ribosomal RNA. The RNA samples were then labelled with Cy3 and hybridized to 

sorghum customized microarray chips containing 28585 gene probes. Initial quality 

control analyses were performed on the scanned arrays and the data was analysed 

using GeneSpring GX 11 software (Agilent Technologies, CA, USA). Principle 
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Component Analysis (PCA) was used to summarize the data set and to identify 

predominant gene expression profiles. The samples showed distinct clustering, with 

samples that had been treated in the same way clustering together (Figure 3.3). There 

was therefore strong consistency across biological replicates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 - Representative electrophoreogram of an RNA sample used for microarray 

analysis.  Each sample was labelled with fluorescent dye and separated on a gel over 

time. The x-axis shows the length of time and the y-axis shows fluorescence. The gel 

image on the right-hand side shows the relative intensity of the different RNA 

constituents. Smaller molecules migrate faster than larger molecules and so appear at 

the left-hand site of the graph. The larger peaks represent the 18S and 25S ribosomal 

subunits (labelled). The smaller peaks (between 35 and 40 s) represent chloroplast RNA. 

Small RNA can be seen as small peaks between 25 s and 30 s. This includes 5S and 

5.8S subunits and tRNAs. Defined peaks indicate the presence of high quality RNA.  
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Figure 3.3 - Principle component analysis (PCA) plot showing the predominant gene 

expression profiles of each sample. The different colours represent the different 

treatments whilst the different shapes represent the three different biological replicates. 

The X-Axis represents 39.97% of the variance, the Y-axis represents 25.69% and the Z-

axis represents 10.06%.  

 

3.2.1.3 Identification of gene expression differences and functional classification of 

genes 

 

The raw data was pre-processed and normalized as described in the materials and 

methods section (see 2.5.5). Spots of poor quality and gene probes that were not 

present in all replicates in at least one out of the four treatments were removed from the 

analysis. This resulted in around 21,000 filtered gene probes. Genes that were 

differentially expressed by >2 fold in all three replicates, when compared to the 

respective control samples were selected for further analysis (see Appendices D.1 – D.7 

for full gene lists). 
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Figure 3.4 - Venn diagrams showing the number of transcripts [A] up-regulated or [B] 

down-regulated by either heat, drought or combined heat and drought treatments in 

sorghum leaf tissue (compared to control non-stressed plants).  Only transcripts with a 

change of >2 fold in all three replicates were included.  
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3.2.1.3.1 Gene expression changes in response to drought 

3.2.1.3.1.1 Water withdrawal 

 

As shown in Figure 3.4, 996 transcripts were found to be upregulated and 224 

downregulated following drought stress, when compared to the unstressed plants. This 

equates to approximately 4% of genes on the chip. Amongst the most highly elevated 

transcripts were those encoding late embryogenesis abundant (LEA) proteins. Other 

highly elevated genes included delta 1-pyrroline-5-carboxylate 2 (P5CS2), which is 

involved in the metabolism of the compatible solute proline and, high affinity K+ 

transporter 1 (HKT1), a sodium ion transmembrane transporter involved in maintaining 

cellular Na+ homeostasis (see Appendix D.1 for full list of genes). Interestingly, 380 

transcripts were found to be upregulated only in response to drought stress i.e. were not 

also upregulated in response to heat, or heat and drought in combination (see Appendix 

D.2). Amongst these transcripts were two genes encoding LEA proteins. This could 

suggest that different LEA genes may have different, unique roles in the stress response 

i.e. some may function solely in the drought response whereas others may play a more 

general role. 

 

In order to explore the biological processes and molecular functions that are enriched 

within these differentially expressed gene sets, gene ontology (GO) analysis was carried 

out. The AgriGO gene ontology tool (http://bioinfo.cau.edu.cn/agriGO/) was used to 

group genes into broad functional categories based on their GO annotations. Singular 

Enrichment Analysis (SEA) was then carried out to identify particular GO categories that 

were enriched within the data set (P<0.05). The REVIGO tool (http://revigo.irb.hr/) was 

then used to condense and visualise these GO terms and the resulting pie charts are 

shown in Figure 3.5. In total, 92 GO categories exhibited significant (p<0.05) enrichment 

amongst the genes upregulated by drought (see Appendix D.8 for the full list of GO 

terms). As would be expected, the analysis showed an enrichment of genes involved in 

‘response to stress’ and in particular ‘response to water deprivation’. Genes associated 

with ‘response to ABA’ were also enriched, which is understandable given the central 

role of ABA in the drought stress response. Other examples of enriched GO categories 

include regulation of photosynthesis, fluid transport and amino acid metabolism. 
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Figure 3.5 - Pie charts showing summarised Gene Ontology (GO) analysis of the genes 

up-regulated by either drought, heat or combined drought and heat stress. [A] shows 

biological process GO terms and [B] shows molecular process GO terms. Only GO 

terms enriched with a p-value of <0.05 were selected and summarized using REVIGO.  
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3.2.1.3.1.2 Water withdrawal vs. PEG treatment 

 

Previous work carried out by (Dugas et al., 2011), using next generation sequencing, 

has identified transcript changes in sorghum (BTx623) subjected to osmotic stress, 

induced by PEG treatment. In order to determine whether there are differences in the 

sorghum response to different types of osmotic stress i.e. PEG treatment compared to 

the gradual water loss imposed here; the differentially expressed transcripts identified in 

both studies were compared. Approximately one third of the drought-induced transcripts 

identified here were in common with those identified by Dugas et al (2011) (Figure 3.6). 

However, 902 and 807 transcripts were unique to either the PEG treatment or the water 

withdrawal treatment respectively. Ontological analysis of the genes unique to the PEG 

treatment showed an enrichment of genes associated with ‘response to reactive oxygen 

species’ (Table 3.1). Interestingly, GO analysis of the genes unique to the gradual water 

withdrawal showed a strong enrichment of genes associated with wax biosynthesis 

(Table 3.2). Different biological processes therefore seem to be associated with the two 

different stress types.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 - Venn diagram showing the number of transcripts differentially expressed in 

response to the gradual drought stress imposed here and in response to the PEG 

treatment imposed by Dugas et. al (2011). Only transcripts with a change of > 2 fold are 

included. 
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Table 3.1 - Gene Ontology (GO) terms enriched (p<0.1) in the differentially expressed 

genes following the sorghum PEG treatment pertained by Dugas et al. (2011) but not in 

the drought treatment imposed here 
GO 

ACCESSION 
GO Term P-value 

% Count in 

Selection 

% Count in 

Total Genome 

GO:0050896 response to stimulus 0.000 39.6 28.1 

GO:0006950 response to stress 0.000 23.7 14.7 

GO:0009642 response to light intensity 0.000 3.0 0.7 

GO:0010035 response to inorganic substance 0.000 5.5 2.2 

GO:0042221 response to chemical stimulus 0.000 19.9 13.1 

GO:0006805 xenobiotic metabolic process 0.001 1.2 0.1 

GO:0009408 response to heat 0.001 3.9 1.3 

GO:0009410 response to xenobiotic stimulus 0.002 1.2 0.1 

GO:0009607 response to biotic stimulus 0.002 10.0 5.5 

GO:0051707 response to other organism 0.004 9.3 5.1 

GO:0009644 response to high light intensity 0.005 2.1 0.5 

GO:0000302 response to reactive oxygen species 0.008 2.8 0.9 

GO:0005576 extracellular region 0.008 6.4 3.1 

GO:0006026 aminoglycan catabolic process 0.023 1.1 0.2 

GO:0009055 electron carrier activity 0.023 7.6 4.2 

GO:0051704 multi-organism process 0.027 10.7 6.6 

GO:0005385 zinc ion transmembrane transporter activity 0.029 0.8 0.1 

GO:0009628 response to abiotic stimulus 0.029 14.2 9.6 

GO:0071577 zinc ion transmembrane transport 0.029 0.8 0.1 

GO:0006030 chitin metabolic process 0.032 1.1 0.2 

GO:0009719 response to endogenous stimulus 0.041 10.9 6.9 

GO:0061134 peptidase regulator activity 0.083 1.7 0.4 

 

Table 3.2 - Gene Ontology (GO terms) enriched (p<0.1) in the differentially expressed 

genes following the drought treatment imposed here but not in the PEG treatment 

imposed in Dugas et al. (2011) 

GO 
ACCESSION 

GO Term P-value 
% Count in 
Selection 

% Count in 
Total Genome 

GO:0010025 wax biosynthetic process 0.065 1.50 0.25 

GO:0032787 monocarboxylic acid metabolic process 0.065 5.26 2.35 

GO:0042221 response to chemical stimulus 0.068 18.80 13.05 

GO:0016740 transferase activity 0.081 25.26 18.90 

GO:0043765 T/G mismatch-specific endonuclease activity 0.081 0.60 0.03 

GO:0003824 catalytic activity 0.084 58.95 51.25 

GO:0050896 response to stimulus 0.084 35.19 28.12 
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3.2.1.3.2 Gene expression changes in response to heat 

 

Following heat stress, 2765 sorghum transcripts were upregulated and 2406 were 

downregulated (~18% of the genes on the chip in total) (Figure 3.4) (see Appendix D.3 

for full list of genes). As would be expected, amongst the transcripts most highly 

upregulated in response to heat were a large number of genes encoding heat shock 

proteins (HSPs) and universal stress proteins (USPs).  Some of these were found to be 

unique to heat stress, with five elevated only in response to this stress type i.e. not 

expressed in response to heat and drought combined, or drought alone (see Appendix 

D.4 for full list of genes unique to the heat stress response). The up-regulation of these 

HSPs was accompanied by the unique up-regulation of two heat shock factors (HSFs), 

which are known to regulate the expression of HSPs (Wang et al., 2003). GO analysis of 

the heat up-regulated genes shows an enrichment of the following categories: response 

to heat, response to high light, response to reactive oxygen intermediates (ROIs) and 

protein folding (see Figure 3.5 and Appendix D.9 for full list of GO categories).  

 

3.2.1.3.3 Gene expression changes in response to combined heat and drought 

 

Following the combined heat and drought stress, 3003 transcripts were upregulated and 

2776 were downregulated (~20% of gene spots in total) compared to the untreated 

control (Figure 3.4) (see Appendix D.5 for full lists of genes). Out of the total 5779 (both 

up and down) gene expression changes, a large proportion (60%) was shared with the 

heat stress response and 13% were shared with the response to drought (Figure 3.4). 

Many of the GO categories enriched following combined stress are in common with 

those enriched following drought or heat alone (Figure 3.5). For example, lipid 

localization, fluid transport, regulation of photosynthesis and protein folding are all 

enriched in the combined stress gene set (Appendix D.10).  

 

Interestingly, a number of genes, 896 and 1147, were found to be significantly up- or 

down-regulated, respectively, only in response to combined heat and drought stress 

(Figure 3.4) (see Appendix D.6 for full gene list). Amongst the elevated transcripts were 

a number of ion transporters, transcription factors and signalling genes. In addition, 

transcripts encoding two HSP and three LEA proteins were upregulated in response to 
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the combined stress treatment only. Functional classification of these differentially 

expressed genes shows an enrichment of, amongst others, genes associated with 

‘response to stress’, ‘response to stimulus’ and also ‘amine metabolism’ (Figure 3.7) 

(Appendix D.11). Interestingly, within the ‘amine metabolism’ category are genes 

associated with polyamine biosynthesis and in particular spermidine synthase 3 

(SPDS3) (Sb10g020570.1) and spermidine synthase 1 (SPDS1) (Sb02g009730.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 - Analysis of genes upregulated only in response to combined heat and 

drought treatment. Ontological analysis showing [A] enriched biological process and [B]  

molecular function GO terms (p<0.05). Ontological terms were summarized using the 

REVIGO tool. 
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3.2.2 qPCR validation of microarray data 

 

In order to validate the robustness of the microarray analysis, qPCR was carried out on 

tissue from an additional biological replicate. qPCR primers were designed to genes that 

were shown in the microarrays to be upregulated by one treatment type only i.e. 

upregulated by either drought, heat or the combined stress. This was to validate the 

specificity of gene expression following these particular treatments. All of the genes 

tested showed similar expression patterns to those indicated by the arrays (Figure 3.8). 

The qPCR therefore validated the results obtained by the microarray analysis, 

confirming the high sensitivity of the high-density microarrays and the robustness of the 

experimental system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 - Relative transcript abundance of genes representative of the gene sets 

identified as being upregulated preferentially by either [A] drought stress, [B] heat stress 

or [C] combined heat and drought stress. Error bars represent RQMIN and RQMAX and 

constitute the acceptable error level for a 95% confidence level according to the 

Student’s t-test.  
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3.2.3 Quantification of spermidine levels 

 

Genes associated with spermidine biosynthesis were found to be upregulated 

specifically in response to the combined heat and drought treatment. Changes at the 

gene expression level do not always correlate with changes at the protein or biochemical 

level. In order to determine whether the identified gene expression changes result in 

changes in actual spermidine levels, amounts of spermidine were quantified using HPLC 

following each treatment type (Figure 3.9). Surprisingly, whilst genes associated with 

spermidine biosynthesis were found to be upregulated following the combined stress 

treatment only, levels of spermidine were actually found to be highest following the heat 

stress treatment.  

 

 

 

Figure 3.9 - Amount of spermidine in leaf tissue following no treatment (control), heat 

treatment, drought treatment and combined heat and drought treatment. See Materials 

and Methods section 2.7.1 for spermidine extraction and quantification procedure. Error 

bars show standard error (SE) of three technical replicates (*p<0.05).  
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3.3 Discussion 

3.3.1 Microarray analysis has identified genes associated with the sorghum 

response to stress 

 

The microarray analysis has identified genes that are differentially expressed in 

response to drought, heat and combined drought and heat conditions in sorghum. In 

response to drought the expression of ~3.5% of the sorghum genes was changed by >2-

fold. Many of the genes identified were in known pathways for drought tolerance. For 

example, a number of genes associated with osmotic adjustment, the maintenance of 

protein and membrane integrity, alteration in photosynthetic machinery and response to 

ABA were all changed in response to drought. The utility of the microarray system for 

identifying stress-responsive transcripts was therefore authenticated by the detection of 

genes previously found to be stress responsive (Seki et al., 2001; Kreps et al., 2002; Qin 

et al., 2008).  

 

Heat shock resulted in >2-fold changes in expression of 15% of the genome. All 

previous studies investigating the plant transcriptional response to multiple stresses 

have similarly found heat to induce the largest number of genes (Prasch and Sonnewald, 

2013; Rasmussen et al., 2013). The large number of gene expression changes is 

perhaps not surprising given the acute, severe nature of the heat shock and is 

comparable to studies in other species (Zhang et al., 2005; Qin et al., 2008). It should be 

noted that heat stress simultaneously induces dehydration stress due to vapour pressure 

changes; therefore, the effect of this stress is not solely due to the change in 

temperature. 

 

Some genes appear to be required for universal stress responses and their expression 

levels were changed in response to all stress types, both single and combined. For 

example, a number of HSPs and glutathione S-transferases were upregulated by all 

three stress types. Many HSPs bind to unfolded or denatured proteins and act as ATP-

independent molecular chaperones to prevent protein aggregation (Sun and MacRae, 

2005). Glutathione S-transferases are involved in the detoxification of substrates such as 

the products of lipid peroxidation (Gill and Tuteja, 2010).  These genes may be involved 
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in providing general stress protection and could be good candidates for conferring 

tolerance to multiple stresses.  

 

Previous studies have shown that different transcripts encoding ROI-detoxifying 

enzymes are induced following different stress types, suggesting that ROI-detoxification 

occurs through different routes in different situations (Rizhsky et al., 2002). Here, it was 

found that different genes encoding HSPs and late embryogenesis abundant proteins 

(LEAs) were upregulated in response to the different stress types. LEAs have protective 

functions during cellular dehydration through hydration buffering, ion trapping, 

antioxidant protection, stabilization of sensitive enzymes and membrane protection 

(Goyal et al., 2005). It is possible that while some LEAs and HSPs have a more general 

role in the stress response, others are more specific and function in the response to one 

stress-type only.  

 

3.3.2 Different types of osmotic stress result in the induction of different sets of 

genes 

 

The number of expression changes identified here in the R16 genotype, in response to 

drought, were similar to previous studies in which the expression of ~ 4% of the sorghum 

genome was changed when the BTx623 genotype was subjected to osmotic stress by 

PEG treatment (Buchanan et al., 2005; Dugas et al., 2011). Out of the total 1190 

drought-induced gene changes 32% were shared with the PEG-induced gene changes 

identified by Dugas et al. (2011) using a next generation sequencing transcriptomic 

approach. The different patterns of gene expression between the two studies may be 

due to the different genotypes used or the different methods of stress induction. Gene 

ontology analysis of the genes only changed by the PEG treatment, showed an 

enrichment of the ‘response to reactive oxygen species’ category. In comparison, gene 

ontology analysis of the genes only changed by the water withdrawal treatment imposed 

here, showed an enrichment of the ‘wax biosynthesis’ category. Large quantities of ROS 

are generated as an early response to stress (Beffagna et al., 2005) therefore reducing 

ROS levels could be seen as a short term solution to drought. The induction of wax 

biosynthesis genes on the other hand could result in increased epiculticuar wax that 

would result in reduced water loss and therefore could be seen as a longer-term strategy 
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for survival. The slightly different treatments i.e. an osmotic shock using PEG compared 

to water withdrawal results in the induction of different response pathways and genes.  

 

3.3.3 The sorghum response to combined heat and drought is not simply a 

merger of the responses to the single stresses 

 

The combined stress response resulted in 5779 gene changes of which a large 

proportion were in common with the heat-regulated gene set (60%) and around 13% 

were shared with the response to drought. Such overlap is understandable: whilst there 

will be unique challenges presented to the plant when stresses are combined, there is 

still the need to attend to fundamental issues arising from each stress individually. Many 

of the GO categories enriched by combined stress share elements of those enriched 

following the other stress types. For example, protein folding is enriched in both the heat 

and combined stress responses and regulation of photosynthesis and water channel 

activity is also enriched in the drought stress response. This is understandable given the 

overlap in gene expression and the fact that similar stresses would require similar 

downstream processes. The fact that more genes were found to be in common with the 

heat stress response is likely to be due the acute nature of the heat shock treatment that 

results in a more synchronised induction of genes.  

 

Interestingly, there is also evidence for specificity in that there are clear sets of genes 

that are only changed in response to the combined stress treatment. This suggests that 

the sorghum response to combined heat and drought is not simply an additive effect. 

This unique response is perhaps to be expected given the partly opposing physiological 

changes that would normally ensue following this stress type. For example, in response 

to drought stress, stomata usually close to reduce water loss by transpiration whereas in 

response to heat stomata tend to open to allow for evaporative cooling (Rizhsky et al., 

2002). These opposing physiological changes may be reflected at the transcriptional 

level in the form of specific sets of differentially expressed genes that are only changed 

in response to the combined stress. Amongst these are a number of signalling 

components such as the mitogen activated protein kinase, MAP20 and the calcium-

dependent protein kinase, CPK16, which may be involved in transducing the combined 

stress signal. In addition, a number of transcription factors are only elevated in response 
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to the combined stress. A gene encoding the NAC transcription factor ATAF1 for 

example, is upregulated, a homolog of which has been found to be induced by drought, 

salinity and wounding in Arabidopsis (Wu et al., 2009). It is possible that this gene has 

evolved an alternative role in the combined stress response in sorghum. 

 

3.3.4 Genes associated with spermidine biosynthesis are upregulated following 

combined stress only 

 

Previous studies investigating combined stress have shown that some metabolites, such 

as sugars, accumulate during stress combination whilst levels of other metabolites such 

as proline decrease (Rizhsky et al., 2002). Here, we found that S-adenosylmethionine 

decarboxylase (SAMDC), spermidine synthase 1 (SPDS1) and spermidine synthase 3 

(SPDS3), which are involved in the biosynthesis of the metabolite spermidine, were 

upregulated exclusively in response to combined heat and drought stress. This suggests 

that spermidine may play a protective role in the combined stress response. Spermidine 

has been implicated in tolerance to multiple stresses including high and low temperature, 

oxidative stress and salinity (Kasukabe et al., 2004; Kusano et al., 2008) and has been 

suggested to play a role in ROI scavenging and membrane protection (Groppa et al., 

2001). Interestingly, one of the uniquely elevated transcription factors identified here, 

WOX1, has been shown to physically interact with SAMDC suggesting a possible way in 

which the activity of this enzyme is regulated by combined stress (Zhang et al., 2011). 

Given the existing literature relating to the role of spermidine in the plant stress response 

and given that genes involved with spermidine biosynthesis were upregulated, the levels 

of spermidine following each stress type were quantified using HPLC. Surprisingly, 

spermidine levels were found to be higher following heat stress and unchanged following 

the other stresses. This discrepancy could be due to the time delay between gene 

induction and spermidine biosynthesis. A time course following stress treatment would 

be required to determine whether this is the case or not. It Alternatively, given that there 

are a number of genes within the spermidine biosynthesis pathway, perhaps the ones 

that are upregulated following combined stress are simply not sufficient to increase 

spermidine levels. This could be due to substrate levels acting as a limiting factor. 

Putrescine, a different polyamine, is a precursor to spermidine (Kusano et al., 2008) 

therefore in the future it could be interesting to additionally measure levels of this 
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metabolite. Spermidine is metabolised into spermine (Kusano et al., 2008) therefore it 

could be interesting to measure the levels of this polyamine also. There is therefore 

currently not sufficient evidence to suggest a role for spermidine in the combined stress 

response. This does however highlight the need to validate gene expression data with 

either functional analysis of genes using a transgenic approach or with biochemical 

analysis.  

 

3.3.5 Conclusions 

 

Some genes in sorghum are required for universal stress responses whereas others 

play a more specific role. This allows plants to properly respond to the specific 

environmental conditions encountered. We must bear in mind however, that this 

microarray experiment presents only a ‘snapshot’. A time course study would enable 

visualization of the dynamics of the transcriptional response.  

 

The aim of this chapter was two-fold: firstly, to identify stress-induced transcripts in 

sorghum and secondly to test the quality and efficiency of custom-designed microarrays. 

Here it has been shown that these microarrays are useful for the detection of 

differentially expressed genes therefore; these same microarrays could now be used for 

the identification of genes underlying the stay-green trait (see Chapter 4).  
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CHAPTER 4 

Microarray analysis comparing gene 
expression in stay-green and senescent 

sorghum lines. 

4.1 Introduction 
 

An important way in which we can improve our understanding of plant stress tolerance 

mechanisms is through the analysis of beneficial physiological traits. As reviewed in 

Chapter 1, the stay-green trait in sorghum confers drought tolerance at the post-

flowering stage. Sorghum varieties that possess this trait are able to maintain greater 

photosynthetic leaf area for longer under drought conditions. This increases the potential 

period for grain development, which has an obvious positive impact on grain yields 

under stress conditions (Rosenow et al., 1983; Borrell et al., 2000a; Sanchez et al., 

2002). Several sorghum genotypes have been identified that exhibit the stay-green trait 

including B35, SC56 and E36-1 (Rosenow et al., 1983; Kebede et al., 2001; Haussmann 

et al., 2002; Sanchez et al., 2002). Of these, B35 is the best characterized with a 

number of physiological studies being carried out on this variety or its derivatives (Crasta 

et al., 1999; Xu et al., 2000a; Kassahun et al., 2010; Borrell et al., 2014a; Borrell et al., 

2014b).  

 

Previous studies investigating stay-green in sorghum have identified differences in 

chlorophyll content, transpiration efficiency, relative water content (RWC) and nitrogen 

status when comparing stay-green and senescent lines (Crasta et al., 1999; Xu et al., 

2000a; Borrell and Hammer, 2000b; Kassahun et al., 2010; Vadez et al., 2011) Other 

studies have identified differences in tillering and leaf size which could impact upon pre-

flowering water usage (Borrell et al., 2014a; Borrell et al., 2014b). In addition, other 

studies suggest stay-green lines are more drought tolerant at the seedling stage and are 
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better able to tolerate heat stress (Jagtap and Bhargava, 1995; Jagtap et al., 1998; 

Burke et al., 2010). This trait is however, undoubtedly complex and despite these 

advancements the physiological and molecular basis of the stay-green trait remains 

unclear.  

 

One promising avenue by which this problem can be addressed is through the use of 

functional genomics tools.  As described in Chapter 3 transcriptomic analyses, including 

microarrays, are a valuable way in which mechanistic insights into biological phenomena 

can be obtained. For example, the comparison of gene expression in different samples 

can provide insight into the actual biological processes that are perturbed following a 

specific treatment or between different genotypes. In sorghum, a number of 

transcriptomic experiments have lead to the identification of stress-induced transcripts 

(Buchanan et al., 2005; Dugas et al., 2011; Johnson et al., 2014). The release of the 

sorghum genome sequence (Paterson et al., 2009) and the development of a metabolic 

pathways database, SorghumCyc (http://pathway.gramene.org/gramene/ 

sorghumcyc.shtml) have greatly facilitated these studies. Microarray analysis could 

therefore be a powerful approach for elucidating some of the molecular and biochemical 

pathways involved in conferring the stay-green trait in sorghum. 

 

This chapter focuses on microarray experiments carried out to compare gene expression 

between stay-green (drought-tolerant) and senescent (drought-sensitive) lines in an 

attempt to identify biological processes and molecular pathways underlying the stay-

green trait. 

 

Aims of the research described in this chapter: 

 

• To compare gene expression between both stay-green lines (B35, E36) and the 

senescent variety R16 at 45 days after sowing (4.2.1) 

• To validate the gene expression data using qPCR (4.2.1.3) 

• To carry out ontological analysis of this gene expression data and to use this to 

identify important processes and genes underlying the stay-green trait (4.2.1.4 & 

4.2.1.5) 
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• To compare gene expression between both stay-green lines (B35, E36-1) and the 

senescent lines (R16, S35) at 14 days after sowing under both control and drought 

conditions (4.2.2). 
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4.2 Results 
 

Many of the results described in this chapter are published in (Johnson et al., 2015) 

 

4.2.1 Microarray analysis comparing gene expression in stay-green and 

senescent lines at a mature age (45 days after sowing) 

4.2.1.1 Sample selection 

 

B35 and E36-1 varieties were selected as sources of stay-green for the microarray 

analysis based on the fact that the majority of genetic and physiological studies so far 

have been carried out on these lines (Rosenow et al., 1983; Jagtap et al., 1998; Kebede 

et al., 2001; Haussmann et al., 2002; Burke et al., 2010; Vadez et al., 2011). E36-1 is 

thought to be a unique source of stay-green; while some stay-green QTLs map to the 

same loci as in B35, others were only identified from E36-1 (Haussmann, 2002). R16 

was used as a senescent variety. It is high yielding but very senescent and has been 

used as the recurrent parent in a number of mapping studies (Kassahun et al., 2010; 

Vadez et al., 2011). 

 

Tissue samples were taken prior to flowering at around 45 days after sowing under well-

watered conditions. At this developmental stage the flag leaf was just beginning to 

emerge and there were around ten leaves. At this time point there were higher levels of 

chlorophyll fluorescence (Figure 4.1), therefore at least one known element of the trait 

was manifesting at this time point (Thomas and Howarth, 2000). Samples were taken 

prior to flowering because it is thought that the increase in grain yield in the stay-green 

varieties following stress at the post-flowering stage can be attributed to the emergent 

consequence of genes acting at the pre-flowering stage (Borrell et al., 2014a; Borrell et 

al., 2014b). In addition, when testing for stay-green in the field, irrigation is normally 

withheld at this time point i.e. just prior to flowering (Xu et al., 2000; Kassahun et al., 

2010) therefore conceivably any drought tolerance mechanism should be in place and 

can be captured by the microarrays. Tissue was taken under well-watered conditions. 

This is because many previously observed differences in physiology between stay-green 

and senescent lines were identified under non-stressed conditions i.e. differences in 

chlorophyll content and transpiration efficiency (Kassahun et al., 2010; Vadez et al., 
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2011; Borrell et al., 2014a). Samples were harvested on four separate occasions to 

provide four biological replicates (Figure 4.2). 

 

 

 

Figure 4.1 - Measurements of Fv/Fm in stay-green (B35 and E36-1) and senescent (R16) 

sorghum varieties from 35 days after sowing (DAS). Measurements were taken from the 

middle of leaf 2 and 4 of each plant. The average of multiple measurements is shown. 

Error bars represent SE (n=8). This was carried out for each of the four biological 

replicates and the graph above shows a representative result (*p<0.05). 
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Figure 4.2 - Experimental design for microarray analysis carried out on sorghum leaf 

tissue at 45 DAS. Green boxes signify stay-green varieties and orange boxes signify 

senescent varieties. 

 

 

4.2.1.2 Identification of differentially expressed genes 

 

RNA was extracted from the 12 samples and the high quality and integrity of the RNA 

was confirmed using a bioanalyzer (see Figure 3.2 for an example electrophoreogram). 

The RNA samples were then labelled with Cy3 and hybridized to the same sorghum 

customized microarray chips described in Chapter 3. Initial quality control analyses were 

Biological replicate 1 
 
 
Biological replicate 2 
 
 
Biological replicate 3 
 
 
Biological replicate 4 
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performed on the resulting scanned arrays. While the majority of the arrays were of good 

quality, two samples (B35 and E36-1 from biological replicate 1) were excluded from any 

further analysis due to poor quality control values. Despite this, there were still at least 

three biological replicates remaining for each genotype. The extracted data was then 

analysed using GeneSpring GX 11 software (Agilent Technologies, CA, USA). Principle 

Component Analysis (PCA) was again used to summarize the data set and to identify 

predominant gene expression profiles. The samples showed distinct clustering, with 

samples of the same variety clustering together (Figure 4.3). There was therefore strong 

consistency across biological replicates.  

 

 

 

 

 

 

Figure 4.3 - Principle component analysis (PCA) plot showing the predominant gene 

expression profiles of each sample. The different colours represent the different varieties 

whilst the different shapes represent the different biological replicates. The X-Axis 

represents 35.5% of the variance, the Y-axis represents 17.78% and the  Z-axis 

represents 17.7%. 
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The raw data was pre-processed and normalized as described in the Materials and 

Methods section (see 2.5.5). Gene expression levels in each stay-green line (B35 and 

E36-1) was compared to that of the senescent R16 line and differentially expressed 

genes were identified based on an absolute fold change of >2 and a p-value cut-off of 

<0.05 (Moderated T-test with Benjamini-Hochberg correction). As shown in Figure 4.4, 

1038 genes were expressed to higher levels (FC>2, p<0.05) in B35 compared to R16 

and 998 genes were expressed to lower levels. These gene expression changes 

constitute 3.6% and 3.4% of total genes on the chip for the higher expressed and lower 

expressed genes respectively. A similar number of gene expression changes were 

identified when comparing E36-1 with R16 with 1090 genes being expressed to higher 

levels and 1143 genes expressed to lower levels, accounting for ~8% of genes on the 

chip in total (Figure 4.4). Genes that were differentially expressed in both B35 and E36-1 

vs. R16 comparisons totalled 827 while 993 were unique to B35 and 1406 were unique 

to E36-1 (Figure 4.5). See Appendices D.12 - D.17 for full gene lists.  
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Figure 4.4 - Scatter plots showing the distribution of expression of filtered genes in [A] 

the stay-green (B35) line compared to the senescent (R16) line and in [B] the stay-green 

(E36) line compared to the senescent (R16) line. Axes denote normalized gene 

expression and squares represent individual genes. The green lines mark a 2-fold cut-off 

value. Differentially expressed genes are based on a 2-fold cut-off and a p-value<0.05. 

Colour corresponds to normalized gene expression with red representing high relative 

expression and blue representing low relative gene expression. 

Figure – Scatter plots showing the distribution of expression of filtered genes in [A] B35 
vs. R16 and [B] E36 vs. R16. Axes denote normalized gene expression and squares 
represent individual genes. The green lines mark a 2-fold cut-off value. Genes were 
filtered based on presence in all replicates in either of the 2 varieties compared. For the 
B35 vs. R16 comparison this is 20181 genes whereas for the E36 vs. R16 comparison 
this is 20870 genes. Differentially expressed genes are based on a 2-fold cut-off and a P-
value < 0.05 
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Figure 4.5 - Venn diagram showing total numbers of differentially expressed genes in 

both B35 vs. R16 and E36-1 vs. R16 comparisons. Fold change >2 and p<0.05. 

 

 

4.2.1.3 Validation of microarray data using qPCR 

 

In order to validate the robustness of the microarrays, qPCR analysis was carried out on 

an additional three biological replicates using the Fluidigm system for large-scale qPCR 

(see Materials and Methods section 2.4.9.2). Probes were designed to 87 randomly 

chosen genes and gene expression levels were compared between B35 and R16. As a 

result, 80% of the genes tested showed a similar expression pattern in both the qPCR 

and microarray analysis (Figure 4.6). Similar to what has been previously reported, for 

genes with large increases or decreases in magnitude, microarrays underestimated the 

magnitude of the changes (Etienne et al., 2004), implying that qPCR is more accurate 

when fold changes are large. Nevertheless, the qPCR confirmed the results obtained by 

the microarray analysis, confirming the robustness of the experimental system.  
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Figure 4.6 - Scatter plot comparing the fold changes of 87 genes obtained by microarray 

analysis and by qPCR in B35 vs. R16 at 45 DAS. qPCR was carried out using the 

Fluidigm system (see Materials and Methods 2.4.9.2). 

 

 

4.2.1.4 Functional classification of genes 

4.2.1.4.1 B35 vs. R16 

 

In order to explore the biological processes and molecular functions that are enriched 

within these differentially expressed gene sets, gene ontology (GO) analysis was carried 

out. In the same way as described in Chapter 3, the AgriGO gene ontology tool was 

used to group genes into broad functional categories and then Singular Enrichment 

Analysis (SEA) was carried out to identify enriched (p<0.05) GO categories. The 

REVIGO tool (http://revigo.irb.hr/) was then used to condense and visualize these GO 

terms. Pie charts showing the GO terms enriched in the genes expressed at higher 

levels in B35 compared to R16 are shown in Figure 4.7. Tables showing full lists of 

enriched GO terms can be found in Appendix D.18.  
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Figure 4.7 - Pie charts showing significantly enriched GO terms (p<0.05) for the 1038 

genes expressed to higher levels in the stay-green (B35) variety compared to senescent 

(R16) variety (fold change (FC)>2, p<0.05). Significant GO terms were identified using 

AgriGO and then condensed and visualized using the REVIGO tool (see Materials and 

Methods section 2.5.6).     
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Figure – Pie charts showing reduced GO terms for the 916 genes up-regulated in B35 
compared to R16. Significant GO terms were identified using AgriGO and then 
condensed and visualized using the REVIGO tool.    
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GO categories enriched within the genes expressed to higher levels in B35 include 

developmental processes such as ‘post-embryonic morphogenesis’ and ‘anatomical 

structure homeostasis’ (Figure 4.7 and Appendix D.18). Notably, processes that are 

known to be associated with the plant response to low water availability were also 

enriched, including ‘response to osmotic stress’ and ‘water transport’. In order to 

determine whether genes associated with other known stress stimuli were differentially 

expressed, the percentage of genes in the input list that are associated with these stimuli 

was compared to the percentage of genes in the genome that are associated with that 

same stimulus. Interestingly, the ‘response to osmotic stress’ category was found to be 

the only strongly enriched stimulus, with nearly 5% of the genes in the input list 

belonging to this category. The response to wounding category showed slight 

enrichment however there was no enrichment of genes associated with any of the other 

stress stimuli (Figure 4.8).  

 

 

 

Figure 4.8 - Singular enrichment analysis of genes that are expressed to higher levels 

(FC>2, p<0.05) in the stay-green (B35) variety compared to the senescent (R16) variety. 

The bar chart shows the percentage of the genes expressed to higher levels in B35 that 

are associated with different stress stimuli (Input list) compared to the percentage of 

genes in the genome involved with that same stimulus (Background). 
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The 42 genes that were involved specifically in the plant ‘response to osmotic stress’ 

category were identified and their expression levels analysed (Figure 4.9).  This list 

contains a dehydration-responsive element-binding (DREB1A) transcription factor, a 

ubiquitin ligase called salt and drought-induced RING finger 1 (SDIR1) and a CBL-

interacting serine/threonine-protein kinase 1 (CIPK1).  Other up-regulated genes include 

trehalose-6-phosphate synthase (TPS) and delta-1-pyrroline-5-carboxylate-synthase 

(P5CS2), which are known to be important for the biosynthesis of trehalose and proline, 

respectively (Goddijn and van Dun, 1999; Ashraf and Foolad, 2007). The genes that are 

associated with the ‘water transport’ GO category encode different plasma membrane 

intrinsic protein 2B (PIP2B) isoforms. These proteins are known to be aquaporins which 

function as water channels within membranes in a range of plant species (Maurel et al., 

2008). Whilst not all of the enriched processes shown in Figure 4.7 and listed in 

Appendix D.18 will necessarily be causal to the stay-green phenotype, it is possible that 

the higher expression of genes involved with the plant response to osmotic stress in B35 

may be contributing to its ability to maintain green leaf area for longer under drought 

conditions.  
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Figure 4.9 - Heat map showing the 42 genes expressed at higher levels in the stay-

green (B35) variety (FC>2, p<0.05) when compared to the senescent (R16) variety that 

are also associated with the ‘response to osmotic stress’ GO category. Colour denotes 

normalized gene expression. Hierarchical clustering was carried on both samples and 

genes. 
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Additional enriched GO categories included ‘senescence’, ‘lipid localization’ and 

‘response to endogenous stimulus’.  In order to identify which stimuli in particular the 

‘response to endogenous stimulus’ category refers to, a more detailed GO analysis was 

carried out. The percentage of genes in the input list that were associated with different 

hormone stimuli was compared to the percentage of genes in the genome that are 

associated with that same stimulus. As shown in Figure 4.10 there was an enrichment of 

genes associated with the response to auxin, ABA, jasmonic acid, brassinosteroids and 

ethylene when compared to the background genome.  

 

 

Figure 4.10 - Singular enrichment analysis of genes that are expressed at higher levels 

(FC>2, p<0.05) in the stay-green (B35) variety compared to the senescent (R16) variety. 

The bar chart shows the percentage of the genes expressed to higher levels in B35 that 

are associated with different hormone stimuli (Input list) compared to the percentage of 

genes in the genome involved with that same stimulus (Background). 
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4.2.1.4.2 E36-1 vs. R16 

 

The lists of genes that were differentially expressed in E36-1 compared to R16 can be 

found in Appendices D.14 & D.15. The ontological analysis for the E36-1 vs. R16 

comparison can be found in Appendix D.19. Given that B35 is the most well 

characterized stay-green line and has revealed interesting ontological results it was 

decided that the E36-1 line would not be investigated further in order to maximise 

characterization of B35. 

 

4.2.1.5 Analysis of known drought associated processes 

 

As reviewed in Chapter 1 a number of pathways and processes can contribute to plant 

stress tolerance. However, if only a small number of genes associated with a particular 

process are differentially expressed, they might not appear in the ontological analysis 

despite their potentially large impact. For this reason, a more subjective approach was 

additionally employed and the expression of genes involved in processes known to be 

involved in drought tolerance was analysed in both the stay-green and senescent lines.  

 

4.2.1.5.1 Compatible solutes 

 

Compatible solutes are known to accumulate in plants under low water conditions and 

confer protective properties (Wood et al., 1996; Hsu et al., 2003; Ashraf and Foolad, 

2007; Su et al., 2011). Well-studied compatible solutes include the amino acid proline 

and the quaternary amino acid glycine betaine (Ashraf and Foolad, 2007). Others 

include the amino acids aspartic acid and glutamic acid and the sugar trehalose (Goddijn 

and van Dun, 1999; Chen and Jiang, 2010). The SorghumCyc metabolic pathways 

database (http://pathway.gramene.org/gramene/ sorghumcyc.shtml) was used to identify 

all sorghum genes involved in the biosynthesis of these known compatible solutes. The 

expression of these genes was then compared between B35 and R16 (Figure 4.11). 

None of the genes in the aspartic acid or glutamic acid pathways were found to be 

differentially expressed (either up or down) by >2 fold. However, three genes associated 

with the biosynthesis of proline were expressed to higher levels in B35. In addition, nine 

genes that are associated with the biosynthesis of betaine were differentially expressed 
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by >2 fold; three were expressed to higher levels in B35 and five were expressed to 

lower levels. Only one gene associated with trehalose biosynthesis, TPS 

(Sb02g033420.1) was expressed to higher levels in B35.  

 

4.2.1.5.2 Polyamines 

 

Polyamines are thought to provide cellular protection under stress conditions (see 

Chapter 1). Genes associated with the biosynthesis of the polyamine spermidine were 

also found to be upregulated following heat and drought stress suggesting a role for 

spermidine in the drought stress response (see Chapter 3). The expression levels of 

genes involved in polyamine biosynthesis were analysed in both varieties, again using 

the SorghumCyc database. No genes in this pathway were differentially expressed 

between the varieties. 
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Figure 4.11 - Scatter plots showing the distribution of expression of filtered genes 

involved with [A] proline biosynthesis [B] aspartic acid biosynthesis [C] glutamic acid 

biosynthesis [D] betaine biosynthesis and [E] trehalose biosynthesis. Genes were 

identified using SorghumCyc metabolic pathways database. Axes denote normalized 

gene expression (X-axis shows R16 values and Y-axis shows B35 values) and squares 

represent individual genes. The green lines mark a 2-fold cut-off value.  
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4.2.1.5.3 Oxidative stress tolerance 

 

Minimising the harmful effects of reactive oxygen species (ROS) can limit cellular injury 

following drought stress and thus can delay senescence (Jaleel et al., 2009). In order to 

determine whether any ROS detoxification pathways were enhanced in the stay-green 

lines, genes involved in known ROS detoxification pathways were identified and their 

expression levels analysed. Whilst there were no differentially expressed superoxide 

dismutases or catalases, two ascorbate peroxidase genes were expressed to higher 

levels (172 and 118 -fold) in B35. A number of glutathione S-transferases (GSTs) were 

also differentially expressed with 14 genes expressed to higher levels and six expressed 

to lower levels (Figure 4.12). 
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Figure 4.12 - Scatter plots showing the distribution of expression of filtered genes 

associated with the oxidative stress response including [A] glutathione-S-transferases [B] 

superoxide dismutase [C] catalases and [D] ascorbate peroxidases. Genes were 

identified using SorghumCyc metabolic pathways database. Axes denote normalized 

gene expression (X-axis shows R16 values and y-axis shows B35 values) and squares 

represent individual genes. The green lines mark a 2-fold cut-off value.  
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4.2.1.5.4 Regulation of transpiration 

 

The regulation of water loss via transpiration is a key way in which plants can avoid low 

water status. The amount of water transpired depends on both stomatal numbers and 

aperture (Ingram and Bartels, 1996; Sanchez et al., 2002). Given that there are known 

differences in transpiration efficiency between stay-green and senescent lines (Vadez et 

al., 2011), all genes associated with the stomatal movement and development GO 

categories were analysed. Out of 163 genes analysed 17 were differentially expressed 

(Table 4.1). Amongst these was a gene called stomatal density and distribution 1 

(SDD1) and two slow anion channel 1 (SLAC1) homologs. 

 

Table 4.1 - Genes differentially expressed in B35 compared to R16 (>2 fold; p-value 

<0.05) at 45 DAS that are associated with the stomatal movement and development GO 

categories 

 

 

 

SbID 

FC 

(abs) P-value Regulation Annotation 

Sb09g029920.1 3.15 0.0147 up SLAH2 (SLAC1 HOMOLOGUE 2) 

Sb09g029910.1 2.51 0.0028 up SLAH2 (SLAC1 HOMOLOGUE 2) 

Sb08g022520.1 3.71 0.0010 up PLDALPHA1 (PHOSPHOLIPASE D ALPHA 1) 

Sb06g002070.1 7.16 0.0241 up 

ATMRP4 (ARABIDOPSIS THALIANA MULTIDRUG 

RESISTANCE-ASSOCIATED PROTEIN 4) 

Sb03g003280.1 3.22 0.0147 up CKX5 (CYTOKININ OXIDASE 5) 

Sb03g002810.1 9.29 0.0065 up CKX5 (CYTOKININ OXIDASE 5) 

Sb02g020470.1 3.60 0.0017 up SDD1 (STOMATAL DENSITY AND DISTRIBUTION) 

Sb01g033480.2 2.28 0.0049 up 

 Sb01g033480.1 2.29 0.0051 up PLDALPHA1 (PHOSPHOLIPASE D ALPHA 1) 

Sb01g019000.1 8.19 0.0156 up CKX6 (CYTOKININ OXIDASE/DEHYDROGENASE 6) 

Sb10g001960.4 9.00 0.0002 down 

 Sb10g001060.1 2.05 0.0101 down XLG3 (extra-large GTP-binding protein 3) 

Sb07g022530.1 2.60 0.0077 down CKX7 (CYTOKININ OXIDASE 7) 

Sb03g028240.1 3.95 0.0025 down JAR1 (JASMONATE RESISTANT 1) 

Sb03g012785.1 2.80 0.0026 down PHS1 (PROPYZAMIDE-HYPERSENSITIVE 1) 

Sb03g012770.1 3.70 0.0016 down PHS1 (PROPYZAMIDE-HYPERSENSITIVE 1) 

Sb03g011640.1 5.69 0.0097 down MYB61 (MYB DOMAIN PROTEIN 61) 
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4.2.1.5.5 NAC transcription factors 

 

As reviewed in Chapter 1, NAC transcription factors play a role in both drought tolerance 

and senescence processes. For this reason the expression of NAC transcription factors 

was analysed in B35 and R16. All sorghum genes with similarity to the Arabidopsis NAC 

NTL4 (At3g10500.1) were identified using BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 

A total of 96 genes were identified in sorghum as also containing the NAM super family 

domain and of these, six were found to be significantly (p<0.05) differentially expressed 

between the B35 and R16 varieties (Table 4.2). 

 

Table 4.2 - Genes containing the NAM super family domain that were differentially 

expressed in B35 compared to R16 (>2 fold; p<0.05) at 45 DAS. 

 

 

 

4.2.2 Microarray analysis comparing gene expression in stay-green and 

senescent lines at the seedling stage (14 days after sowing) 

 

Some studies have suggested that elements of the stay-green phenotype can be 

assessed at a younger growth stage (Jagtap and Bhargava, 1995; Jagtap et al., 1998; 

Burke et al., 2010) and others have suggested that the drought tolerance of the stay-

green lines at the post-flowering stage arises as a result of genes acting much earlier 

(Borrell et al., 2014a). Given the need to identify genes causal to the phenotype, 

microarray analysis was also carried out on sorghum seedlings (around 14 days after 

sowing).  

 

SbID FC (abs) P-value Regulation Annotation 

Sb10g009670.1 2.18 0.0012 down ANAC008 (Arabidopsis NAC domain containing protein 8) 

Sb07g005610.1 3.03 0.0001 down DNA binding 

Sb02g026510.1 4.27 0.0023 down NAP (NAC-like, activated by AP3/PI); transcription factor 

Sb10g027100.1 39.65 0.0000 down DNA binding 

Sb05g001590.1 2.38 0.0030 up ANAC087 

Sb03g037940.1 2.26 0.0008 up ATAF2 
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4.2.2.1 Sample selection 

 

For this experiment four genotypes were compared; the stay-green lines B35 and E36-1 

and the senescent lines R16 and S35. S35 is a highly senescent sweet sorghum variety 

which has also been used as a recurrent parent in a number of mapping studies (Vadez 

et al., 2011). In order to assess whether any elements of the stay-green phenotype are 

drought inducible, each variety was sampled under both well-watered conditions and 

following a period of water withdrawal.  

 

Twelve seedlings of each of the four varieties were grown until 14 DAS. The plants were 

then split into two groups and randomized, with one group being maintained in a well-

watered state and the other group not receiving any more water (see materials and 

methods 2.5.1.1). The Fv/Fm of all of the seedlings was measured daily following water 

withdrawal. Leaf samples were taken at the point when the Fv/Fm of the drought-treated 

seedlings first started to significantly differ from that of the well-watered controls (Figure 

4.13). This occurred at around three days following water withdrawal. This was to ensure 

that drought stress was actually occurring at the time of sampling. Three biological 

replicates of this experiment were carried out (see Figure 4.14 for experimental design). 
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Figure 4.13 - The Fv/Fm (variable fluorescence/maximal fluorescence of Photosystem II) 

of sorghum seedlings that were either well watered or subjected to drought stress. 

Drought stress was imposed by withdrawing water from 14 DAS. Photosynthetic 

efficiency was measured daily, using a FluorCam, following the initiation of water 

withdrawal (see Materials and Methods section 2.6.2.2). Green lines signify stay-green 

varieties and orange lines signify senescent varieties. 
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Figure 4.14 - Experimental design for microarray analysis carried out at 14 days after 

sowing. Green boxes signify stay-green varieties and orange boxes signify senescent 

varieties. 

 

 

4.2.2.2 Drought-induced gene expression 

 

The extracted RNA was labelled and hybridized to the Agilent custom-designed arrays. 

Genes were filtered based on presence in all three replicates in either the control or 

Biological 
 replicate 1 

 
Biological  
replicate 2 

 
Biological  
replicate 3 
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drought-treated samples resulting in around 20,000 gene probes for each control versus 

drought treatment comparison. 

 

As shown in Figure 4.15, only 546 transcripts were upregulated following drought stress 

in all four varieties. A number of differentially expressed transcripts were found to be 

unique to one particular variety. For example, 947 genes were upregulated and 386 

downregulated by drought stress in S35 only. Genes unique to the drought response of 

the stay-green B35 and E36-1 lines totalled 153 and 137 respectively. All of the 

differentially expressed genes from this experiment can be found in Appendices D.20 – 

D.31. 
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Figure 4.15 - Venn diagrams showing gene expression changes following drought 

stress at 14 DAS in 4 different sorghum varieties (B35, S35, R16 and E36-1). B35 and 

E36-1 are stay-green varieties as indicated by the green box and R16 and S35 are 

senescent varieties as indicated by the orange box. Only transcripts with a change of >2 

fold in each treatment vs. control comparison in all three replicates were included. 
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4.2.2.3 Analysis of known drought-associated processes 

 

A number of processes were identified in mature sorghum tissue as being expressed to 

higher levels in B35 compared to R16 (see 4.2.1.5). To determine whether any of these 

processes were also expressed to higher levels at the seedling stage, the expression of 

these genes was analysed in the younger tissue. As can be seen in Figure 4.16, genes 

associated with proline and betaine biosynthesis were additionally differentially 

expressed at the seedling stage along with genes encoding glutathione S-transferases 

and an ascorbate peroxidase. These processes therefore appear to be constitutively 

more active in B35 throughout its life. 
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Figure 4.16 - Scatter plots showing the distribution of expression of filtered genes 

associated with [A] proline biosynthesis [B] betaine biosynthesis [C] ascorbate 

peroxidase activity and [D] glutathione-S-transferase activity in B35 and R16 varieties at 

14 DAS. Genes were identified using SorghumCyc metabolic pathways database. Axes 

denote normalized gene expression (X-axis shows R16 values and y-axis shows B35 

values) and squares represent individual genes. The green lines mark a 2-fold cut-off 

value. 
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4.3 Discussion 
 

Microarray analysis was used to identify pathways, processes and genes that underlie 

the stay-green trait in sorghum. Some of the genes and processes expressed to higher 

levels in the B35 stay-green line compared to the senescent R16 line are discussed 

below, along with their biological contexts.  

 

4.3.1 Osmotic adjustment 

 

Three transcripts involved with the biosynthesis of proline (two different P5CS2 

transcripts and a glutamate S-semialdehyde dehydrogenase) were expressed to higher 

levels (FC>2) in B35 compared to R16. In addition, nine genes associated with betaine 

biosynthesis were differentially expressed between the varieties along with one gene 

associated with trehalose biosynthesis (trehalose 6-phosphate synthase). Proline, 

betaine and trehalose are organic solutes that are well known to accumulate within plant 

cells under water-limiting conditions. This accumulation lowers cellular water potential 

which ultimately allows plants to maintain cell turgor (Chaves et al., 2003). Proline and 

betaine have a number of additional protective properties including the ability to detoxify 

reactive oxygen species (ROS), protect membrane integrity and stabilize proteins (Wood 

et al., 1996; Hsu et al., 2003; Ashraf and Foolad, 2007; Su et al., 2011).  As a result, 

drought tolerant varieties of a range of species, including sorghum, have been found to 

have higher levels of these solutes and transgenic lines that produce more proline and 

betaine have been found to be more drought-tolerant (Kishor et al., 1995; Hong et al., 

2000) (Sivaramakrishnan, 1988; Hsu et al., 2003; Nayyar and Walia, 2003; Ashraf and 

Foolad, 2007). Stay-green varieties are known to have a higher relative water content 

(RWC) compared to other varieties (Xu et al., 2000b), which could be maintained due to 

higher levels of solutes. Taken together, these results suggest that the accumulation of 

compatible solutes may be contributing towards the drought tolerance of the stay-green 

lines.  
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4.3.2 Oxidative stress response 

 

Genes that are involved in protection against ROS-induced damage were also 

expressed to higher levels in the stay-green line compared to the senescent line. For 

example, glutathione S-transferases (GSTs) represent an abundant class of differentially 

expressed genes (15 in total) along with two ascorbate peroxidases. GSTs are involved 

in the detoxification of substrates, such as peroxidised lipids, following drought stress 

(Jaleel et al., 2009). Drought-tolerant sorghum varieties have been found to have lower 

levels of lipid peroxidation under low water conditions compared to drought-sensitive 

varieties, and to have significantly higher levels of GST activity following salt stress 

(Jagtap and Bhargava, 1995; Jogeswar et al., 2006). Taken together, it is possible that 

the GSTs that are expressed to higher levels in B35 are providing protection against 

ROS and so are contributing to its drought-tolerant phenotype.  

 

4.3.3 Regulation of transpiration 

 

Genes that could be involved in regulating stomatal numbers or aperture were found to 

be differentially expressed between the stay-green and senescent lines. For example, a 

stomatal density and distribution (SDD1) gene that could potentially impact upon 

stomatal numbers was expressed to higher levels in B35, along with two SLAC1 

homologues that may play a role in regulating stomatal aperture (Berger and Altmann, 

2000; Vahisalu et al., 2008). A gene called salt and drought-induced RING finger 1 

(SDIR1) was also expressed to higher levels in B35. When homologs of this gene were 

over-expressed in a range of species, the resulting transgenic plants displayed reduced 

stomatal aperture and exhibited improved drought tolerance compared to wild type 

(Zhang et al., 2007; Zhang et al., 2008; Xia et al., 2012; Tak and Mhatre, 2013). Given 

that the sorghum stay-green lines have been reported to have improved transpiration 

efficiency compared to other lines (Kassahun et al., 2010; Vadez et al., 2011), it is 

possible that the differential expression of these genes, either on their own or in 

combination, could be contributing to differences in water loss and hence drought 

tolerance.  
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4.3.4 Transcription factors 

	  

Transcription factors including DREB1A, RAP2.6 and a number of NAC transcription 

factors were expressed to higher levels in B35 compared to R16. The activation of 

transcription factors can cause a cascade of events resulting in the activation of a 

number of downstream stress-responsive genes. They are therefore thought to be 

excellent targets for the genetic engineering of stress tolerance. DREB transcription 

factors in particular are well known to play a role in the plant response to drought stress 

and a plethora of studies show increased stress tolerance in transgenic lines over-

expressing homologs of this gene (Dubouzet et al., 2003; Qin et al., 2004; Xiong and Fei, 

2006; Zhao and Bughrara, 2008; Yang et al., 2011). Similarly, the differential expression 

of the NAC transcription factors, NTL4 and JUB1, in Arabidopsis transgenic lines results 

in increased stress tolerance and delayed senescence (Lee et al., 2012; Wu et al., 2012). 

It is therefore possible that the differential expression of the transcription factors 

identified here could be contributing to the drought tolerance of the stay-green varieties. 

 

4.3.5 Other 

 

A number of genes associated with the ‘response to endogenous stimulus’ GO category 

were expressed to higher levels in the B35 stay-green line. These genes were found to 

be involved with the response to hormone stimuli including the response to auxin, ABA, 

brassinosteroids, ethylene and jasmonic acid (Figure 4.10). Previous studies have 

suggested that developmental differences between stay-green and senescent varieties 

may contribute towards the stay-green trait. For example, stay-green near-isogenic lines 

(NILs) have been shown to display reduced tillering and reduced size of upper leaves 

when compared to their senescent recurrent parent Tx7000 (Borrell et al., 2014a). It is 

possible that the gene expression differences identified here, that are associated with 

the response to plant hormones, may be contributing to these developmental differences. 

For example, auxin is known to play a role in shoot branching and leaf development 

(Dengler and Kang, 2001; McSteen and Leyser, 2005) therefore the auxin-related gene 

expression changes could have an impact on these processes. As reviewed in Chapter 

1 ABA acts as an endogenous messenger in the plant stress response and is involved 

with regulating stomatal aperture and inducing stress-responsive genes (Fujita et al., 
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2011)  The differences in ABA-related gene expression identified here could therefore 

provide protective properties to the stay-green lines. Plant hormones also play a 

significant role in the senescence process; auxin, jasmonic acid, ABA and ethylene have 

all been shown to influence senescence (Grbic and Bleecker, 1995; Weaver et al., 1998; 

Woo et al., 2001). It is equally possible that the differential expression of genes 

associated with these plant hormones could be contributing to the phenotype. Whilst 

increased cytokinin levels have previously been shown to result in delayed senescence 

and drought tolerance in a range of species (Gan and Amasino, 1995) (see Chapter 1), 

there was no enrichment of genes associated with the ‘response to cytokinin’ GO 

category in the up-regulated gene set. This suggests that differences in cytokinin 

signalling are not responsible for the stay-green phenotype investigated here.  

 

4.3.6 Gene expression changes at the seedling stage 

 

Many of the potentially important biological processes identified at the older growth 

stage (45 DAS) were also identified at the seedling stage suggesting that they are 

constitutively more active throughout the life of the plant. For example, P5CS2 and 

SDIR1 was upregulated at both growth stages along with many of the genes encoding 

glutathione S-transferases and genes involved in betaine biosynthesis. There are, of 

course, gene expression differences that are unique to either growth stage. For example, 

some of the GSTs, the DREB1A and RAP2.6 transcription factors and the potential 

regulator of stomatal density, SDD1, were only upregulated at the older growth stage. 

Other genes encoding GSTs and transcription factors were only upregulated at the 

seedling stage. Whilst it is likely that the key regulators of the trait are acting at the later 

growth stage it is possible that some are acting much earlier and place the plant in a 

better position to face the post-flowering drought stress. This has been previously 

hypothesised by Borrell et al. (2014a) and other studies have shown that the E36-1 stay-

green line is additionally more tolerant to stress at the seedling stage (Jagtap and 

Bhargava, 1995).  

 

In response to drought stress a number of genes were only upregulated in the stay-

green B35 and E36-1 varieties and not in the senescent varieties (Figure 4.15). Amongst 

these genes were two putative peroxidases that may be involved in protection against 
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oxidative stress and three genes encoding heat shock proteins (see Appendices D.24 & 

D.28). It is interesting to note here that in this experiment 1387 genes were changed by 

drought stress in R16 whereas in the earlier combined stress experiment (see Chapter 

3) 1190 genes were changed. Of these gene changes, only 568 genes were differentially 

expressed in both experiments. This may be as a result of the slightly different drought 

treatments received by the two sets of plants. For example, in this experiment the Fv/Fm 

on the plants averaged 0.65 at the time of sampling whereas in the earlier experiment 

the Fv/Fm was 0.71. Other than this the experimental set up was identical for both 

experiments. This highlights the fact that slightly different drought treatments can result 

in large differences at the gene expression level. In fact, this could be responsible for the 

differences in the drought-induced gene expression between the varieties. For example, 

the less well-adapted S35 variety may actually face more extreme drought stress due to 

weaker drought avoidance mechanisms thus resulting in the induction of a larger 

number of drought-tolerance genes (Figure 4.14).  

 

4.3.7 Conclusions 

 

Microarray analysis has identified a number of genes and biological processes that may 

be causal to the stay-green phenotype of the B35 line. However, as discussed in 

Chapter 3, changes at the transcriptomic level do not always correlate with changes at 

the protein/metabolic level. In fact, we cannot assume that translation has even occurred 

and, if it does, the protein may still require post-translational modifications in order to 

function. A more detailed analysis of these identified biological processes is therefore 

required before any firm conclusions can be made as to their role in the trait (see 

Chapter 5). In addition, a functional analysis of the identified signalling genes is required 

to assess whether the sorghum genes can function in the same way as the homologs 

from other species (see Chapter 6).  
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CHAPTER 5 

An in-depth analysis into the biological 
processes underlying the stay-green trait 

5.1 Introduction 
 

The microarray results described in Chapter 4 highlighted a number of potential 

pathways and processes that may underlie the stay-green trait in sorghum. These 

include the biosynthesis of compatible solutes, the detoxification of reactive oxygen 

species (ROS) and the regulation of stomatal aperture/numbers. These processes were 

selected for further study based on what was already known about the stay-green 

phenotype and the known role of these processes in conferring drought tolerance in 

general. However, before we can make any conclusions about their role in conferring the 

stay-green trait, we must first determine whether the identified differences in gene 

expression result in actual differences in metabolism or plant physiology. 

 

The research in this chapter therefore focuses on biochemical and physiological 

analyses of the stay-green lines in order to examine whether the gene expression 

changes identified at the transcriptomic level translate into changes at a protein and 

metabolic level. 

 

Aims of the research described in this chapter: 

 

• To quantify levels of the compatible solutes proline and glycine betaine in the 

stay-green and senescent lines (5.2.1). 

• To quantify glutathione S-transferase and ascorbate peroxidase activity in the 

stay-green and senescent lines (5.2.2). 

• To measure stomatal density and distribution in the stay-green and senescent 

lines (5.2.3). 



 116 

5.2 Results 

5.2.1 Osmotic adjustment 

5.2.1.1 Proline 

5.2.1.1.1 Validation of gene expression differences 

 

As described in Chapter 4, three transcripts associated with the biosynthesis of proline 

were expressed to higher levels in B35 compared to R16. These include two different 

delta1-pyrroline-5-carboxylate synthase 2 (P5CS2) transcripts (Sb03g039820.1 and 

Sb03g039820.2) and glutamate S-semialdehyde dehydrogenase (Sb02g025790.1).  

These genes were expressed to higher levels at both the mature stage (45 DAS) and the 

seedling stage (14 DAS) (Table 5.1).  

 

Table 5.1 - Genes that are associated with proline biosynthesis that were expressed to 

higher levels in the stay-green (B35) variety compared to the senescent (R16) variety 

under well-water conditions 

SbID Gene name 

Fold Change 
(Abs) in B35 
vs. R16 at 45 

DAS 

Fold Change 
(Abs) in B35 
vs. R16 at 14 

DAS 

Regulation 

Sb03g039820.1 DELTA1-PYRROLINE-5-CARBOXYLASE-
SYNTHESTASE 2 (P5CS2) 8.74 2.85 Up 

Sb03g039820.2 DELTA1-PYRROLINE-5-CARBOXYLASE-
SYNTHESTASE 2 (P5CS2) 8.55 2.52 Up 

Sb02g025790.1 GLUTAMATE S-SEMIALDEHYDE 
DEHYDROGENASE 2.32 3.35 Up 

 

 

Proline can be synthesised by either the glutamate or ornithine pathways in higher plants 

(Figure 5.1). The glutamate pathway is the major route and in this pathway proline is 

synthesised via the intermediates glutamate λ-semialdehyde and pyrroline 5-carboxylate. 

P5CS catalyses the first two reactions and as such represents the rate-limiting step 

(Kishor et al., 1995). The differential expression of P5CS2 could therefore feasibly have 

an impact upon the amount of free proline.  
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Figure 5.1 – Schematic showing the proline biosynthesis pathway in higher plants. The 

genes that encode the enzymes in purple are expressed to higher levels in the stay-

green B35 line compared to the senescent R16 line. The pathway was adapted from the 

SorghumCyc Metabolic Pathways database (http://pathway.gramene.org/gramene/ 

sorghumcyc.shtml).  

 

Three P5CS genes have been identified in the sorghum genome. In order to confirm that 

only one of these genes is highly expressed in B35, qPCR with probes designed 

specifically for each gene, was carried out and gene expression was compared between 

B35 and R16.  Of the three annotated P5CS genes, P5CS2 (Sb03g039820.1) is the only 

one expressed to higher levels in the B35 line (Figure 5.2). 
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Figure 5.2 - Relative transcript abundance of [A] Sb03g039820.1, [B] Sb09g022290.1 

and [C] Sb09g022310.1 in the senescent (R16) and stay-green (B35) varieties at 45 

DAS. Each of these genes has been annotated as P5CS in the sorghum genome. Error 

bars represent RQMIN and RQMAX and constitute the acceptable error level for a 95% 

confidence level according to Student’s t-test.  

 

 

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 

R16 B35 

R
Q

 
Sb03g039820 

0 

5 

10 

15 

20 

R16 B35 

R
Q

 

  Sb09g022290  
B

0 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 

R16 B35 

R
Q

 

 Sb09g022310 

A

C



 119 

5.2.1.1.2 Biochemical quantification of proline levels 

 

In order to determine whether the observed differences in P5CS2 gene expression result 

in an increase in actual proline levels, total proline content was quantified in B35 and 

R16 under both well-watered and osmotically-stressed conditions using HPLC. Proline 

levels were found to be ~1.8 fold higher in the B35 stay-green line compared to the R16 

senescent line under well-watered conditions and ~1.5-fold higher under osmotically-

stressed conditions. The differences in P5CS gene expression between the varieties 

therefore correlate well with changes in actual proline levels (Figure 5.3). 
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Figure 5.3 - [A] Relative transcript abundance of P5CS2 (Sb03g039820.1) in the stay-

green (B35) and senescent (R16) lines following PEG treatment. Four biological repeats 

of this experiment were carried out and the graph shows a representative result. Error 

bars represent RQMIN and RQMAX and constitute the acceptable error level for a 95% 

confidence level according to Student’s t-test. [B] Amount of proline in the stay-green 

(B35) and senescent (R16) sorghum varieties following PEG treatment at 14 DAS. Four 

biological repeats were carried out and the graph shows the average (*p<0.05 at 8 days). 

Error bars show SE (n=4). 
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5.2.1.2 Glycine betaine 

5.2.1.2.1 Validation of gene expression differences 

 

A total of nine genes associated with betaine biosynthesis were differentially expressed 

between the stay-green B35 and senescent R16 varieties. Out of these, eight were 

significantly (p<0.05) different and are shown in Table 5.2. One of these genes, choline 

monooxygenase (CMO) (Sb10g028700.1), is associated with the biosynthesis of glycine 

betaine, whereas the others are associated with the biosynthesis of β-alanine betaine. 

Choline monooxygenases function in the first step of the glycine betaine biosynthetic 

pathway (Figure 5.4) therefore the high expression of this gene could result in higher 

levels of free glycine betaine (Ashraf and Foolad, 2007).  

 

Table 5.2 - Genes that were differentially expressed between the stay-green (B35) and 

senescent (R16) varieties that are involved with the biosynthesis of betaine.  

 

 

The difference in the expression of choline monooxygenase between B35 and R16 was 

validated using qPCR (Figure 5.5). The qPCR showed similar fold changes to the 

microarray data thus confirming the higher expression of this gene in B35.  

 

 

 

 

SbID Gene name 

Fold Change 
(abs) in B35 
vs. R16 at 50 

DAS Regulation 

Sb07g026610.1 BASIC HELIX-LOOP-HELIX FAMILY PROTEIN 2.60 Down 

Sb02g009120.1 AAO3 (ABSCISSIC ALDEHYDE OXIDASE 3) 6.54 Down 

Sb06g025450.1 UNKNOWN 2.16 Down 

Sb10g028070.1 EXLB2 (EXPANSIN-LIKE B2 PRECURSOR) 14.21 Up 

Sb02g009130.1 AAO1 (ARABIDOPSIS ALDEHYDE OXIDASE 1) 5.26 Down 

Sb10g028700.1 CMO (CHOLINE MONOXYGENASE) 2.77 Up 

Sb02g009120.2 UNKNOWN 6.25 Down 

Sb02g027360.1 EXLB2 (EXPANSIN-LIKE B2 PRECURSOR) 4.89 Up 
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Figure 5.4 - Schematic showing the glycine betaine metabolic pathway in higher plants. 

The pathway was adapted from the SorghumCyc Metabolic Pathways database 

(http://pathway.gramene.org/gramene/ sorghumcyc.shtml).  
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Figure 5.5 - Relative transcript abundance of CMO (Sb10g028700.1) Error bars 

represent RQMIN and RQMAX and constitute the acceptable error level for a 95% 

confidence level according to Student’s t-test. 

 

5.2.1.2.2 Biochemical quantification of glycine betaine levels 

 

To determine whether the differences in the expression of CMO result in differences in 

the levels of glycine betaine, total glycine betaine levels were quantified under both well-

watered and osmotically-stressed conditions using HPLC. Whilst slightly more glycine 

betaine was found in B35 under both conditions, these differences were small and not 

statistically significant. This suggests that the differences in the expression of this CMO 

gene are not sufficient to impact upon the amount of glycine betaine produced (Figure 

5.6)  
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Figure 5.6 -  [A] Relative transcript abundance of CMO (Sb10g028700.1) in the stay-

green (B35) and senescent (R16) lines following PEG treatment. Error bars represent 

RQMIN and RQMAX and constitute the acceptable error level for a 95% confidence level 

according to Student’s t-test. [B] Amount of glycine betaine in the stay-green (B35) and 

senescent (R16) sorghum varieties following PEG treatment at 14 DAS. Three biological 

repeats were carried out and the graph shows the average (p=0.50 at 8 days). Error 

bars show SE (n=3) 
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5.2.2 Oxidative stress response 

5.2.2.1 Ascorbate peroxidases 

 

Two genes associated with ascorbate peroxidase (APX) activity (Sb03g016083.1	   and 

Sb09g028890.1) were expressed to higher levels in B35 at 45 DAS. Amino acid 

sequences of these sorghum genes were compared to sequences in Arabidopsis in 

order to gain an insight into their function. No similarity was found between the sorghum 

genes and known peroxidases in Arabidopsis or indeed other species. Instead the genes 

showed similarity to a protein kinase and an iron-sulphur cluster assembly protein 

respectively, suggesting the genes were incorrectly annotated in the SorghumCyc 

database. To confirm this, the sequences were checked for the presence of the 

peroxidase active site motif (APITLRLAWHSA) and the peroxidase heme-ligand motif 

(DIVVLSGGHTL) (Kunta and Louzada, 2004). Neither of the sequences contained these 

key motifs therefore these genes were not investigated further.   

 

5.2.2.2 Glutathione S-transferases 

5.2.2.2.1 Validation of gene expression differences 

 

A total of 26 genes encoding glutathione S-transferases (GSTs) were differentially 

expressed between the stay-green B35 and senescent R16 varieties (Table 5.3). Some 

of these genes were differentially expressed at only one of the growth stages tested 

whereas others were differentially expressed at both. While some of the identified GSTs 

were expressed to lower levels in B35, the majority are expressed to higher levels. The 

difference in the expression of some of the GSTs at 45 DAS was validated using qPCR. 

The qPCR data showed similar fold changes to the microarrays thus confirming the 

increased expression of these genes in B35 (Figure 5.7).   
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Table 5.3 – Glutathione S-transferase genes that were differentially expressed in the 

stay-green (B35) variety compared to the senescent (R16) variety (FC>2, p<0.05) under 

well-watered conditions 

 

 

 

 

 

SbID Gene name 

Fold Change 
(abs) in B35 
vs. R16 at 50 

DAS 

Fold Change 
(abs) in B35 
vs. R16 at 14 

DAS 
Regulation  

Sb01g000230.1 GSTT1 (GLUTATHIONE S-TRANSFERASE 
THETA 1) 4.8 3.93 Down 

Sb08g006680.1 GSTZ2 3.68 6.82 Down 

Sb01g022070.1 ERD9 (EARLY-RESPONSIVE TO 
DEHYDRATION 9) 28.8  -  Down 

Sb01g022080.1 ERD9 (EARLY-RESPONSIVE TO 
DEHYDRATION 9) 18.62  -  Down 

Sb02g027080.1 GSTU7 (GLUTATHIONE S-TRANSFERASE TAU 
7) 19.37  -  Down 

Sb04g022250.1 GSTF13 3.92  -  Down 

Sb03g045830.1 GSTT7 (GLUTATHIONE S-TRANSFERASE TAU 
7)  -  2.52 Up 

Sb08g007310.1 GSTF13 4.67 3.26 Up 

Sb05g001525.1 GSTU7 (ARABIDOPSIS THALIANA 
GLUTATHIONE S-TRANSFERASE TAU 7)  -  4.42 Up 

Sb03g015070.1 GSTF13 7.38 5.29 Up 

Sb10g022780.1 GSTU25 (GLUTATHIONE S-TRANSFERASE TAU 
25)  -  5.68 Up 

Sb03g031780.1 GSTU18 (GLUTATHIONE S-TRANSFERASE TAU 
18) 20.7 6.62 Up 

Sb01g030790.1 GSTU18 (GLUTATHIONE S-TRANSFERASE TAU 
18) 2.33 8.58 Up 

Sb02g003090.1 GSTU19 (GLUTATHIONE S-TRANSFERASE TAU 
19)  -  8.69 Up 

Sb01g031020.1 GSTU18 (GLUTATHIONE S-TRANSFERASE TAU 
18)  -  11.16 Up 

Sb01g030990.1 GSTU18 (GLUTATHIONE S-TRANSFERASE TAU 
18)  -  32.43 Up 

Sb01g001230.2 UNKNOWN 8.36   -  Up 
Sb01g001230.1 GSTF13 8.68  -  Up 

Sb01g030980.1 GSTU18 (GLUTATHIONE S-TRANSFERASE TAU 
18) 4.03  -  Up 

Sb01g031000.1 GSTU18 (GLUTATHIONE S-TRANSFERASE TAU 
18) 8.98  -  Up 

Sb01g031040.1 ERD9 (EARLY-RESPONSIVE TO 
DEHYDRATION 9) 3.34  -  Up 

Sb03g025210.1 ERD9 (EARLY-RESPONSIVE TO 
DEHYDRATION 9) 2.2  -  Up 

Sb03g031790.1 GSTU18 (GLUTATHIONE S-TRANSFERASE TAU 
18) 4.45  -  Up 

Sb03g045790.1 GSTU8 (GLUTATHIONE S-TRANSFERASE TAU 
8) 10.5  -  Up 

Sb03g045840.1 GSTU8 (GLUTATHIONE S-TRANSFERASE TAU 
8) 2.04  -  Up 

Sb05g026490.1 GSTU18  2.12  -  Up 
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Figure 5.7 - Relative transcript abundance of GSTs in the B35 stay-green sorghum line 

and the R16 senescent sorghum lines at 50 DAS measured using qPCR. [A] 

Sb01g030790.1, [B] Sb01g031000.1, [C] Sb03g031780.1, [D] Sb03g031800.1 and [E] 

Sb03g031790.1 The Fluidigm system was used for qPCR measurements (See Materials 

and Methods) and error bars show standard deviation of three biological replicates.   
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5.2.2.2.2 Quantification of GST activity 

 

In order to determine whether the differences in GST gene expression result in an actual 

increase in enzyme activity, an assay was carried out to test GST activity in the stay-

green and senescent lines. A model substrate, 1-chloro-2,4-dinitrobenzene (CDNB), was 

used according to the method of (Habig et al., 1974). To ensure that the differentially 

expressed GSTs identified here have activity towards CDNB, the amino acid sequences 

of the sorghum GSTs were first compared to those of known GSTs in Arabidopsis. 

Homologs of the sorghum genes in Arabidopsis all show high activity to CDNB thus 

validating the use of this particular assay (Dixon et al., 2009). GST activity was shown to 

be higher in the B35 stay-green line under both well-watered and drought stressed 

conditions (Figure 5.8).  

 

 

Figure 5.8 - GST activity towards the CDNB substrate in the stay-green (B35) and 

senescent (R16) varieties at 14 DAS under both well-watered and drought-stressed 

conditions. Graph shows the average of three biological replicates and error bars show 

SE, n= 3.  
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5.2.2.2.3 MV treatment 

 

GSTs are known to be able to counteract the effects of oxidative stress (Gill and Tuteja, 

2010). If GST activity were constitutively higher in the B35 line, as appears to be the 

case, we would perhaps expect this line to be more tolerant to oxidative stress.  To test 

this, leaf discs of both varieties were incubated with methyl viologen (MV) (paraquat), a 

herbicide known to induce O2
 radical production. Leaf discs of both varieties displayed 

extensive chlorophyll degradation however; discs of the B35 variety retained slightly 

more chlorophyll. This was quantified by measuring total chlorophyll content. Whilst 

differences between the varieties at 1 µM MV were small, differences at 2.5 µM were 

more significant with B35 retaining more chlorophyll (Figure 5.9). This suggests that B35 

is more tolerant to oxidative stress induced by MV. 
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Figure 5.9 - [A] Leaf discs of the stay-green (B35) and senescent (R16) varieties treated 

with different concentrations of methyl viologen (MV). Discs were taken from plants at 14 

DAS. Image shows a representative photograph taken following 48 hr of treatment.  [B] 

Average chlorophyll concentration of leaf discs following 48 hr of MV treatment.  Graph 

shows the average of four biological replicates and error bars show SE. (*p<0.05). 
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5.2.3 Regulation of transpiration 

5.2.3.1 Excised-leaf water-loss assay 

 

As described in Chapter 4, a number of genes that are associated with the regulation of 

stomatal development and stomatal aperture were differentially expressed between the 

stay-green and senescent lines. Stomata regulate water loss from the leaf, therefore if 

these gene expression changes are influencing stomatal behaviour, we would expect to 

see differences in transpiration between the varieties. Differences in transpiration 

efficiency have been previously reported when comparing stay-green introgression lines 

with their senescent parents R16 and S35 at a mature growth stage (Kassahun et al., 

2010; Vadez et al., 2011). To assess whether there are differences in transpiration 

between B35 and R16 at a younger age, an excised leaf water loss assay was carried 

out. After 200 min of leaf detachment the fresh weight loss was 62% and 73% for R16 

and B35 respectively (Figure 5.10). This suggests that the stay-green line B35 is better 

able to retain water.  
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Figure 5.10 - Excised-leaf water-loss assay at 14 DAS. Leaves of the same 

developmental stag es were excised and weighed at various time points after 

detachment. Each data point represents the mean of duplicate measurements. Error 

bars represent SE (n = 8 each). This experiment was carried out four times and the 

graph shows a representative result (*p<0.05). See Materials and Methods section 2.6.3.  

 

5.2.3.2 Stomatal density measurements 

 

Differences in transpiration between genotypes can be due to differences in stomatal 

numbers and/or differences in stomatal aperture. The total numbers of stomata were 

counted in a defined area in leaves of the same developmental age in R16 and B35. All 

external factors, such as light levels and CO2 concentration were kept constant for all 

plants to ensure any differences are due to differences in the varieties, not in the growth 

conditions. B35 was found to have fewer stomata than R16 (Figure 5.11). This suggests 

one way in which B35 is able to reduce water loss is via reduced stomatal numbers.  
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Figure 5.11 – Stomatal numbers of leaves at the same developmental stage taken from 

the stay-green (B35) and senescent (R16) varieties at 50 DAS. Mean values are shown 

with error bars representing the SE (n=32) (p<0.05).  
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5.3 Discussion 

5.3.1 Proline 

 

Genes associated with proline biosynthesis were expressed to higher levels in B35. One 

of these genes, P5CS, encodes an enzyme that acts as the rate-limiting step in the 

pathway (Kishor et al., 1995). Not only was the expression of this gene shown to be ~8-

fold higher in the stay-green line but this higher expression resulted in constitutively 

higher levels of free proline.  Proline is known to accumulate in plants, including 

sorghum, under low water conditions and is known to have a number of protective 

properties including a role in osmotic adjustment, detoxification of reactive oxygen 

species (ROS), protection of membrane integrity, and stabilization of proteins (Wood et 

al., 1996; Hsu et al., 2003; Ashraf and Foolad, 2007; Su et al., 2011). In addition, 

evidence has suggested that proline is able to induce the expression of stress-

responsive genes which possess proline responsive elements (PRE) in their promoters 

(Satoh et al., 2002). As a consequence, the overexpression of P5CS genes and the 

accumulation of proline have been shown to result in drought tolerance in a wide range 

of transgenic species (Kishor et al., 1995; Hong et al., 2000). In addition, proline 

concentrations have also been shown to be generally higher in stress-tolerant genotypes 

of plants, including sorghum (Sivaramakrishnan, 1988; Hsu et al., 2003; Nayyar and 

Walia, 2003; Ashraf and Foolad, 2007). The proline accumulation identified here could 

therefore be an important way in which stay-green lines are able to withstand drought 

stress for longer and therefore maintain their green leaf area. 

 

The maintenance of cell turgor via osmotic adjustment is particularly important during 

cell growth and leaf expansion. Sorghum plants with a better capacity for osmotic 

adjustment have been shown to have a larger leaf area and have better leaf retention 

during grain filling (Tangpremsri et al., 1995).  Stay-green sorghum lines have been 

shown to have higher relative water content (RWC) than senescent lines (Xu et al., 

2000a). It is possible therefore that the high proline accumulation identified here in the 

stay-green variety, is contributing to the maintenance of high relative water content. This 

means that when fresh water availability is reduced at later growth stages, the stay-

green varieties are better adapted to cope. Some evidence has suggested stay-green 

lines have modified root architecture (Borrell et al., 2014). Whilst not investigated 
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specifically in this study, it is also plausible that if P5CS2 is additionally expressed to 

higher levels in the roots, osmotic adjustment could enable better root growth, which 

could facilitate water uptake. Stay-green sorghum plants are able to save water in the 

period prior to flowering (Crasta et al., 1999; Xu et al., 2000). The accumulation of 

compatible solutes such as proline could again be associated with conferring these 

phenotypes.  

 

5.3.2 Betaine 

 

Out of the nine differentially expressed genes that are associated with betaine 

biosynthesis one gene is associated with the biosynthesis of glycine betaine and the rest 

are associated with the biosynthesis of β-alanine betaine. Whilst there is some evidence 

that β-alanine betaine functions in the drought stress response, the majority of previous 

studies have focussed on glycine betaine (Ashraf and Foolad, 2007). Glycine betaine is 

a quaternary amino acid that accumulates in response to stress in a number of plants 

including sugar beet, spinach, barley and wheat (Rhodes and Hanson, 1993). It is 

abundant mainly in the chloroplast where it plays a role in osmotic adjustment and in the 

maintenance of photosynthetic efficiency under both heat and drought stress conditions 

(Jolivet et al., 1982; Holmstrom et al., 2000). Drought tolerant genotypes accumulate 

more glycine betaine than drought sensitive genotypes (Ashraf and Foolad, 2007) and 

transgenic lines overexpressing components of the biosynthetic pathway display delayed 

senescence in response to stress (Hayashi et al., 1997; Sakamoto et al., 1998; 

Holmstrom et al., 2000) .  

 

A gene encoding choline monooxygenase (CMO), the first step in the biosynthesis of 

glycine betaine, was expressed to higher levels in the B35 stay-green line compared to 

the senescent R16 line. However, this does not translate into significant differences in 

actual glycine betaine levels (Figure 5.6). This could be due to a number of reasons. 

Firstly, the amount of the choline substrate may be limited or its transport into the 

chloroplast where it is metabolised may be restricted (McNeil et al., 2000). Alternatively, 

the up-regulation of this gene may simply not be great enough to cause a significant 

increase in the amount of the metabolite. A number of genes have been annotated as 
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encoding a CMO in the sorghum genome; therefore, the one identified here might not 

have a major function.  

 

Previous studies have generated transgenic lines overexpressing CMO genes. These 

transgenic plants accumulated only low levels of the metabolite (~18 µmol/g) despite a 

large induction of the gene. Even though the increase in the level of this metabolite was 

small, the transgenic plants still exhibited increased drought tolerance (Huang et al., 

2000; McNeil et al., 2000). Perhaps similarly here the B35 line could accumulate only 

slightly more glycine betaine than R16 yet this could still be sufficient to contribute 

towards its enhanced drought tolerance. A greater number of biological repeats are 

required to determine whether the small increase in glycine betaine observed in B35 

compared to R16 (Figure 5.6) is significant. 

 

Despite no evidence for significant differences between the stay-green and senescent 

lines, it is clear that the amounts of glycine betaine are increased in both varieties 

following osmotic stress. Not all plants accumulate this metabolite so this result confirms 

previous findings that glycine betaine is accumulated in sorghum in response to stress 

(Wood et al., 1996).  

 

5.3.3 Glutathione S-transferases (GSTs)  

 

A total of 26 genes putatively encoding GSTs were differentially expressed between the 

stay-green and senescent lines. These gene expression differences resulted in higher 

GST activity towards the CDNB substrate in the B35 stay-green line under both well-

watered and drought-stressed conditions.  GSTs are a well-characterized enzyme family 

that are involved in stress tolerance (Marrs, 1996). Abiotic stresses lead to the 

production of ROS, which are highly reactive, and cause damage to proteins, lipids and 

DNA and ultimately results in oxidative stress. GSTs help to counteract this by catalysing 

the transfer of glutathione (GSH) to xenobiotic substrates such as products of lipid 

peroxidation thus enabling their detoxification (Gill and Tuteja, 2010). Interestingly, the 

B35 line was better able to tolerate oxidative stress induced by MV at 2.5 µM; the higher 

GST activity in this line may be contributing to that tolerance. Stress-tolerant varieties of 

plants, including sorghum have increased GST activity (Jogeswar et al., 2006; Galle et 
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al., 2009) and the over-expression of GSTs can result in tolerance to a variety of 

stresses including low temperature, salt stress and dehydration (Yu et al., 2003; Zhao 

and Zhang, 2006; Ji et al., 2010). It is therefore plausible that the higher GST activity 

identified here is contributing towards drought tolerance in the B35 stay-green line. The 

fact that levels are constitutively higher could mean that the plants are already primed 

and ready to face the stress.  

 

Whilst there are differences in GST activity between the lines, this difference is small in 

view of the marked increase in mRNA levels. There are 99 GSTs in total in the sorghum 

genome, many of which could have similar substrate specificity. Only a few of these are 

expressed to higher levels in B35 meaning that total GST activity may not dramatically 

increase. Furthermore, not all GSTs have high activity towards CDNB (Dixon et al., 

2009) so the effect of some of the genes might not be taken into account in the assay. 

Other substrates such as alachlor or ethacrynic acid could be used to circumvent this 

problem in the future (Takesawa et al., 2002)  

 

ROS accumulation aids the breakdown of the cellular machinery during senescence 

(Gregersen et al., 2013). The activation of GSTs could conceivably reduce the effects of 

ROS and slow down this process. In this case, the higher levels of GSTs could be 

responsible for the delayed senescence in sorghum at the post-flowering stage. Indeed 

delayed senescence mutants have increased tolerance to oxidative stress (Woo et al., 

2004). We must bear in mind however that GST expression has only been investigated 

at two growth stages and GST activity has only been measured at one growth stage. 

Measurements at other growth stages are required to better link GST activity with 

physiological function. For example, higher GST activity in B35 at the post-flowering 

stage could be further indicative of a role for these enzymes in delaying physiological 

senescence. Different genes encoding GSTs were found to be differentially expressed at 

the two developmental stages investigated. It will therefore be important to confirm that 

the increase in the expression of these genes results in an increase in GST activity at 

both stages. We must also bear in mind that GSTs are not just involved in the stress 

response. Many are induced by hormone treatments such as salicyclic acid and auxin 

and have been implicated in hormone transport and maintaining homeostasis (Marrs, 

1996). Interestingly, the overexpression of a GST in rice resulted in improved root 
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growth under stress (Takesawa et al., 2002).  A role for these GSTs in regulating 

sorghum development can therefore not be ruled out.  

 

While many of the GSTs identified were expressed to higher levels in B35, some were 

expressed to lower levels. Previous studies have shown that down regulating a GST can 

actually improve adaptation to drought (Chen et al., 2012). The importance of the genes 

expressed to lower levels in B35 must not be overlooked. The only way to truly gauge 

the role of these GSTs would be to characterize each gene individually using a 

transgenic approach.  

 

5.3.4 Regulation of transpiration  

 

As discussed in Chapter 1, stomata are pores in the leaf surface through which plants 

exchange CO2, water vapour and other constituents (Casson and Hetherington, 2010). 

Water loss can be restricted by reducing the aperture of the stomatal pore or by 

decreasing the number of stomata on the epidermis. In Chapter 4, genes that were 

differentially expressed between the stay-green and senescent varieties were found to 

be associated with one of these processes (see Table 4.1). Differences in transpiration 

between stay-green and senescent lines have been previously identified (Vadez et al., 

2011) and this was again confirmed here using a simple assay (Figure 5.10). It would be 

interesting to confirm these differences through more accurate measures of stomatal 

conductance i.e. using an infra-red gas analyser (IRGA) to accurately measure gas 

exchange or by using thermal imaging to visualise whole plant conductance.  

 

SDD1 was expressed to higher levels in B35. The overexpression of SDD1 in maize 

resulted in reduced stomatal numbers with a concomitant increase in drought tolerance 

(Liu et al., 2015). Here, stomatal counts revealed that the B35 stay-green line similarly 

has reduced stomatal numbers compared to the senescent R16. This suggests the B35 

variety is able to reduce water loss via reduced stomatal numbers, possibly through the 

higher expression of SDD1. Differences in stomatal aperture may also be contributing to 

the differences in water loss observed between the varieties (Figure 5.10). It would be 

interesting to measure and compare stomatal apertures between the varieties through 

the use of epidermal peels in the future.  
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A reduced number of stomata/reduced stomatal aperture has a trade-off in that stomata 

also control the uptake of CO2 required for photosynthesis and dry matter accumulation. 

This means that reduced water loss via the stomata can actually negatively impact on 

yields (Chaves et al., 2009). In sorghum, there have been some reports of B35 having 

slightly reduced yields compared to other varieties under well-watered conditions despite 

yields being increased under stressed conditions at the post-flowering stage (Borrell et 

al., 2000). This could be because prior to flowering the reduced stomatal numbers in 

B35 constrain assimilation, yet help with water conservation, meaning that more water is 

available in the dry period at the post-flowering stage. This water conservation could 

help survival and hence boost yields under stress compared to other varieties. We must 

bear in mind however that stomatal counts were carried out at only one developmental 

stage. Stomata form in early leaf development and mature by the time the leaf reaches 

10-60% of the final size (Ticha, 1982). At the time of measuring the leaves were 

reaching maturity so formation of new stomata will have slowed. However, it will still be 

important to measure stomatal density at other growth stages, particularly post-flowering.  

This would enable us to be better correlate stomatal numbers with physiology. For 

example, perhaps there are only fewer stomata in B35 at early growth stages thus 

allowing water conservation. There may not be any differences at the post-flowering 

stage thus enabling the uptake of CO2 for photosynthesis and grain production.   

 

5.3.5 Conclusions 

 

The analysis in this chapter has shown that many of the gene expression differences 

between the stay-green and senescent lines, including those associated with proline 

biosynthesis, GST activity and stomatal activity, do result in changes at the metabolic 

and physiological level. However, an understanding of the precise role of individual 

genes is also required (see Chapter 6).   
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CHAPTER 6 

An in-depth analysis of a transcription factor 
and a signaling gene that may underlie the 

stay-green trait 
 

6.1 Introduction 
 

The microarray results presented in Chapter 4 identified genes encoding transcription 

factors and signalling proteins that are expressed to higher levels in the B35 stay-green 

line compared to the senescent R16 line. However, a functional analysis of these genes 

is required before any conclusions can be drawn as to their role in conferring the stay-

green trait.  Two interesting candidate genes, which were selected for this analysis, are 

described below. 

 

6.1.1 SALT-AND-DROUGHT-INDUCED RING FINGER1 (SDIR1) 

 

SDIR1 was originally identified in an Arabidopsis microarray data set as a stress 

inducible really interesting new gene (RING) finger protein. It was later shown to be a 

functional E3 ligase that is associated with intracellular membranes (Zhang et al., 2007). 

Overexpression of SDIR1 in Arabidopsis was shown to enhance drought tolerance 

whereas sdir1 mutant lines were more sensitive to drought stress. The drought tolerance 

of the overexpression lines was attributed, at least in part, to a reduction in transpiration 

caused by reduced stomatal aperture. The overexpression lines also exhibited other 

ABA-associated phenotypes, such as salt hypersensitivity in germination. SDIR1 is 

therefore thought to be a positive regulator of the ABA-dependent stress-signalling 

pathway (Zhang et al., 2007). Later studies showed that this gene is conserved in rice, 

maize, tobacco and grapevine and the overexpression of these genes similarly 
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enhanced drought tolerance and caused a reduction in stomatal aperture (Zhang et al., 

2008; Gao et al., 2011; Xia et al., 2012; Liu et al., 2013; Tak and Mhatre, 2013).  

 

SDIR1 (Sb01g039740) expression was found to be ~2-fold higher in both the B35 and 

the E36-1 stay-green sorghum lines when compared to the senescent R16 line at both 

growth stages tested. Given current knowledge of SDIR1 in other species, it could be 

hypothesised that the higher expression of SDIR1 in the stay-green lines could be 

contributing to their drought tolerance by reducing the rate of transpiration via reduced 

stomatal aperture. This is supported by the fact that there are known differences in 

transpiration between stay-green and senescent lines (Vadez et al., 2011) (see Chapter 

5). To test this hypothesis, a functional characterization of the sorghum SDIR1 gene is 

required.  

 

6.1.2 DREB1A 

 

Transcription factors can regulate a series of downstream stress-responsive genes and 

are therefore excellent candidate genes for engineering for stress tolerance. As 

reviewed in Chapter 1, DREB transcription factors were identified due to their ability to 

bind the dehydration responsive element (DRE), A/GCCGAC, in the promoters of many 

stress-inducible genes in Arabidopsis and to activate their transcription 

(Yamaguchishinozaki and Shinozaki, 1994; Stockinger et al., 1997; Liu et al., 1998). 

These DREB proteins belong to the ERF superfamily and contain an AP2 DNA binding 

domain (Sakuma et al., 2002). There are six DREB1 proteins (DREB1A-F) in 

Arabidopsis and eight DREB2 proteins (Akhtar et al., 2012). The DREB1 proteins can be 

distinguished by the presence of a consensus nuclear localization signal (NLS) 

sequence and a DSA motif after the AP2 domain (Jaglo et al., 2001). In Arabidopsis, 

DREB1A (CBF3), DREB1B (CBF1) and DREB1C (CBF2) are induced by cold whereas 

DREB1D (CBF4) is induced by dehydration (Liu et al., 1998; Haake et al., 2002). The 

overexpression of these genes in Arabidopsis resulted in increased tolerance to stresses 

including freezing, drought and high salinity, with concomitant increased expression of 

downstream target genes (Liu et al., 1998; Kasuga et al., 1999; Haake et al., 2002). 

DREB1A overexpressing lines also accumulated osmoprotectants such as proline and 
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various sugars (Gilmour et al., 2000). More than 40 targets of these DREB1 genes have 

been identified using microarrays (Maruyama et al., 2004).  

 

DREB transcription factors have been identified in a range of plant species other than 

Arabidopsis suggesting conservation of regulatory systems. The overexpression of 

DREB homologues from rice, maize, barley, wheat, apple (Malus baccata) and perennial 

ryegrass (Lolium perenne L.), resulted in the expression of stress-inducible genes and 

increased stress tolerance in Arabidopsis (Dubouzet et al., 2003; Qin et al., 2004; Xiong 

and Fei, 2006; Zhao and Bughrara, 2008; Yang et al., 2011). DREB homologues have 

also been expressed in rice, brassica and wheat and additionally the transgenic lines 

displayed increased stress tolerance when compared to wild type (Ito et al., 2003; Shen 

et al., 2003; Savitch et al., 2005) These observations suggest the DRE/DREB regulon 

can be used to improve tolerance in a range of species.  

 

The expression of a putative DREB transcription factor (Sb07g025210) (annotated as 

DREB1A) was found to be ~2.5 fold higher in the B35 stay-green sorghum line 

compared to the senescent R16 line (see Chapter 4). Given the well-known role of 

DREB transcription factors in the plant stress response, it is possible that this DREB 

gene may be contributing to the drought tolerance of the B35 sorghum line. Presently, 

no DREB transcription factors in sorghum have been characterized.  

 

This chapter focuses on a characterization of SbSDIR1 and SbDREB1A. 
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Aims of the research presented in this chapter: 
 

• To determine whether SbSDIR1 and SbDREB1A are able to function in the same 

way as homologous genes from other species. This was carried out by: 

 

1. Examining amino acid homology and gene expression profiles in 

response to stress (6.2.1.2, 6.2.1.3, 6.2.2.2 & 6.2.2.3) 

 

2. Creating Arabidopsis transgenic lines overexpressing these genes 

and analysing their phenotype (6.2.1.4, 6.2.1.5 & 6.2.2.4) 

 

3. Creating sorghum transgenic lines overexpressing these genes (6.2.3) 
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6.2 Results 

6.2.1 SDIR1 

6.2.1.1 Validation of microarray data 

 

The gene expression data obtained by microarray analysis (see Chapter 4) was 

validated using real-time qPCR. As shown in Figure 6.1, the expression of SDIR1 was 

found to be ~2-fold higher in the B35 stay-green line compared to the R16 senescent 

line at both 14 DAS and 50 DAS. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 - Relative transcript abundance of SbSDIR1 (Sb01g039740) in the senescent 

(R16) and stay-green (B35) varieties at [A] 14 DAS and [B] 50 DAS. Error bars represent 

RQMIN and RQMAX and constitute the acceptable error level for a 95% confidence level 

according to Student’s t-test.  

 

6.2.1.2 Sequence alignment 

 

The SbGDB database was used to identify the coding sequence of the sorghum SDIR1 

gene (http://www.plantgdb.org/SbGDB/). The amino acid sequence of SbSDIR1 was 

compared to the amino acid sequences of known SDIR1 proteins using Clustal W 

(www.ebi.ac.uk/Tools /msa/clustalw2/) (Figure 6.2). Putative transmembrane domains 
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were detected using the SMART program  (www.smart.embl-heidelberg.de) and were 

conserved in the sorghum amino acid sequence. A RING finger domain required for the 

E3 ligase activity of SDIR1 in Arabidopsis (Zhang et al., 2007) was also conserved in the 

sorghum sequence. SbSDIR1 therefore shows strong homology at the amino acid level 

to SDIR1 from other species and contains all of the domains required for protein function. 
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Figure 6.2 - Alignment of amino acid sequences of SDIR1 homologs from O. sativa 

(Os03g0272300), Z. mays (JN247666), A. thaliana (At3g55530), G. max (Bt096672) and 

V. vinifera (NC_012019.3). The locations of two putative transmembrane domains are 

indicated along with the position of the C3H2C3 RING finger domain. 
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6.2.1.3 Stress-induced expression in sorghum 

 

SbSDIR1 expression was analysed in response to various stress treatments using qPCR 

(Figure 6.3). No changes in gene expression were observed following osmotic stress 

imposed by mannitol. However, the expression of SbSDIR1 was increased by ~5-fold in 

response to osmotic stress imposed by PEG, over a period of 96 hr. This suggests that 

SbSDIR1 is involved with the response to gradual soil drying, as simulated by PEG 

treatment, as opposed to the sharp osmotic shock imposed by mannitol. SbSDIR1 

showed a small increase in expression in response to NaCl (~1.5-fold) after 2 hr. The 

expression of SbSDIR1 was also increased (~1.7-fold) in response to ABA treatment.  

This is similar to findings in Arabidopsis, grapevine and maize (Xia et al., 2012; Tak and 

Mhatre, 2013). SbSDIR1 therefore displays similar gene expression patterns to those in 

other species.  
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Figure 6.3 - Relative transcript abundance of SbSDIR1 (Sb01g039740) in B35 following 

different stress treatments. Sorghum leaves were subjected to [A] mannitol (0.66M), [B] 

PEG (10%), [C] NaCl (200mM) and [D] ABA treatment (100 µM). For treatment details 

see Materials and Methods (2.6.1). Error bars represent RQMIN and RQMAX and constitute 

the acceptable error level for a 95% confidence level according to Student’s t-test.  

 

A homolog of SDIR1 in grapevine was shown to be upregulated in response to heat (Tak 

and Mhatre, 2013). To determine whether the expression of SbSDIR1 is also changed 

by heat shock, expression levels were analysed in the microarray data described in 

Chapter 1. SbSDIR1 was found to be upregulated by ~2.5 fold following a 3 hr heat 

shock at 50 °C (Figure 6.4). 
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Figure 6.4 - Relative transcript abundance of SbSDIR1 (Sb01g039740) in the R16 

variety at 14 DAS following a 3 hr heat shock. Bar chart shows normalised gene 

expression data obtained from the microarray analysis (See Materials and Methods 

2.5.5). Error bars show SE of normalized expression data from three biological replicates. 

 

 

6.2.1.4 Overexpression in Arabidopsis 

6.2.1.4.1 Generation of overexpression lines 

Transgenic Arabidopsis plants overexpressing SbSDIR1 under the control of the 

cauliflower mosaic virus 35S promoter were produced. The full-length SbSDIR1 coding 

sequence was PCR amplified from sorghum cDNA and cloned into the pENTR/D-TOPO 

Gateway entry vector (See Appendix B.1 for vector map). SbSDIR1 was then sub-cloned 

downstream of the CaMV 35S promoter of the binary gateway destination vector 

pK2GW7 (see Appendix B.2 for the vector map of the resulting construct). 

Agrobacterium tumefaciens was transformed with the construct and was used to 

transform Col-0 Arabidopsis plants via the floral dip method (see Materials and methods 

section 2.8.1). Transgenic plants from the T2 generation were used for further analysis. 

Overexpression of SbSDIR1 was confirmed in six independent transgenic lines by real-
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time qPCR. As shown in Figure 6.5 all of the lines tested exhibited increased SbSDIR1 

expression compared to wild-type Col-0.  

 

 

Figure 6.5 - Analysis of SbSDIR1 expression levels in Arabidopsis overexpressing 

35S::SbSDIR1 in the Col-0 background using real-time qPCR. Error bars represent 

RQMIN and RQMAX and constitute the acceptable error level for a 95% confidence level 

according to Student’s t-test.  

 
 

6.2.1.4.2 Measures of transpiration and stomatal conductivity 

 

Physiological assays were carried to determine whether the overexpression of SbSDIR1 

resulted in a similar phenotype to that described by previous studies. An excised-leaf 

water-loss assay was carried out on three independent transgenic lines and wild-type 

Col-0, using the same method employed by Zhang et al. (2007) (see Materials and 

Methods section 2.6.3). As shown in Figure 6.6, the 35S::SbSDIR1 overexpression lines 

lost water more slowly than wild type. The extent of the phenotype correlates with 

SbSDIR1 expression, with the highest expresser (35S::SbSDIR1 4) having  the greatest 
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difference to wild type. The lowest expresser (35S::SbSDIR1 3) (not shown) loses water 

only slightly more slowly than wild type.  

 

 

 

Figure 6.6 - Excised-leaf water-loss assay comparing water loss in wild type (Col-0) and 

35S::SbSDIR1 overexpression lines. Leaves of the same developmental stages were 

excised and weighed at various time points after detachment (See Materials and 

Methods section 2.6.3). Each data point represents the mean of duplicate 

measurements. Error bars represent SE (n = 8). This experiment was carried out four 

times and the graph shows a representative result. 

 

 

The differences in water loss between SDIR1 overexpression lines and wild type in other 

species are thought to be due differences in stomatal aperture (Zhang et al., 2007; 

Zhang et al., 2008; Xia et al., 2012; Liu et al., 2013). If this is the case for the 

35S::SbSDIR1 transgenic lines, we would expect a reduction in stomatal conductivity in 

these lines compared to wild type. This was tested at the University of Lancaster using 

the Li-Cor® system (http://www.licor.com/env/).  As shown in Figure 6.7, stomatal 
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35S:SbSDIR1 4. Conductance was reduced to a lesser extent in 35S::SbSDIR1 1 and 

there was no difference in conductance between the lowest expressing line (35S::SDIR1 

3) and wild type.  

 

 

 

Figure 6.7 - Stomatal conductance of 35S::SbSDIR1 transgenic lines compared to wild 

type (Col-0). Conductance was measured using the Li-Cor® system (see Materials and 

Methods section 2.6.4). Measurements were taken from ~5 week old plants under well-

watered conditions. Leaves of approximately the same developmental stage were used. 

Error bars show SE (n = 3) (p>0.05 for all comparisons).  

 
 

6.2.1.4.3 Stomatal density measurements 

 

Differences in transpirational water loss can arise due to either differences in stomatal 

aperture or due to differences in stomatal numbers. To verify that the differences 

identified here are due to differences in stomatal aperture, stomatal numbers in each of 

the varieties were determined. As shown in Figure 6.8, all of the lines have similar 

numbers of stomata. This suggests that the differences in water loss and stomatal 

conductivity between the 35S:SbSDIR1 overexpression lines and wild type are due to 

differences in stomatal aperture.  

 

0.05 

0.07 

0.09 

0.11 

0.13 

WT 35S::SbSDIR1 4 35S::SbSDIR1 1 35S::SbSDIR1 3 

St
om

at
al

 C
on

du
ca

ta
nc

e 
   

 
(m

m
ol

 m
⁻²

 s
⁻¹

) 



 153 

 

 

Figure 6.8 - Stomatal numbers in 35S::SbSDIR1 transgenic lines compared to wild-type 

Col-0. Leaves were taken from ~5 week old Arabidopsis. See Materials and Methods 

section 2.6.5. Leaves of approximately the same developmental stage were used. Error 

bars show SE (n = 20).  

 

 

6.2.1.4.4 Gene expression analyses 

 

In addition to improving drought tolerance by reducing stomatal aperture, SDIR1 is 

thought to function in the ABA signalling pathway and to influence downstream gene 

expression in Arabidopsis (Zhang et al., 2007).  Overexpression of an SDIR1 homolog in 

tobacco resulted in an increase in the expression of delta 1-pyrroline-5-carboxylate 

synthase1 (P5CS1), which is involved with the biosynthesis of proline (Tak and Mhatre, 

2013). Proline levels were also found to be higher in the maize SDIR1 overexpression 

lines under drought conditions (Xia et al., 2012). Given that the B35 stay-green line has 

higher P5CS expression and higher levels of proline (see chapter 5), it was of interest to 

see whether the overexpression of SbSDIR1 could result in an increase in P5CS 

expression. The expression of P5CS1 in wild-type Arabidopsis and in each of the 

35S::SbSDIR1 lines was quantified using real-time qPCR. As shown in Figure 6.9, there 

was no correlation between SbSDIR1 and P5CS1 expression in Arabidopsis under well-

watered conditions. To assess whether there were differences in gene expression under 
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osmotically-stressed conditions, both wild type and the highest expressing 

35S::SbSDIR4 line were subjected to osmotic stress imposed by mannitol. The 

expression of P5CS1 was again tested. Surprisingly, P5CS1 was expressed to lower 

levels in 35S::SbSDIR4 following drought stress (Figure 6.10).  

 

 

 

Figure 6.9 - Analysis of P5CS1 expression levels in 35S::SbSDIR1 transgenic lines and 

in wild-type (Col-0) using real-time qPCR. Error bars represent RQMIN and RQMAX and 

constitute the acceptable error level for a 95% confidence level according to Student’s t-

test.  
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Figure 6.10 - Analysis of P5CS1 expression levels in the 35S::SbSDIR1 4 transgenic 

line and in wild type (Col-0), following mannitol (0.4 M) treatment, using real-time qPCR. 

See Materials and Methods section 2.6.1.1 for treatment details. Error bars represent 

RQMIN and RQMAX and constitute the acceptable error level for a 95% confidence level 

according to Student’s t-test.  
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analysis. Expression of SbSDIR1 was verified by real-time qPCR in five independent 

transgenic lines (Figure 6.11). 

 

Figure 6.11 - Analysis of SbSDIR1 expression levels due to 35S::SbSDIR1 in the sdir1-

2 mutant background using real-time qPCR. Error bars represent RQMIN and RQMAX and 

constitute the acceptable error level for a 95% confidence level according to Student’s t-

test.  

 
 

6.2.1.5.1 Measures of transpiration  

 

Previous studies showed that the sdir1 mutant line lost water more quickly than wild type 

in an excised-leaf water-loss assay (Zhang et al., 2007). To determine whether SbSDIR1 

is able to complement that phenotype, a similar water loss assay was carried out on the 

lines expressing 35S::SbSDIR1 in the sdir1-2 mutant background. The three transgenic 

lines tested lost water more slowly than wild type (Figure 6.12). However, no phenotype 

was observed for the sdir1-2 mutant. This assay was repeated on three separate 

occasions and similar results were obtained.  
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Figure 6.12 - Excised-leaf water loss assay comparing water loss in wild type (Col-0), 

sdir1-2 and three lines containing 35S::SbSDIR1 in the sdir1-2 mutant background 

(labelled 1, 4 and 13). Leaves of the same developmental stages were excised and 

weighed at various time points after detachment. Each data point represents the mean 

of duplicate measurements. Error bars represent SE (n = 8). This experiment was 

carried out three times and the graph shows a representative result.   

 
 

6.2.1.5.2 Root phenotype analysis 

 

The sdir1-2 mutant line has been shown to have a longer primary root than wild-type and 
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described (Zhang et al., 2007). This root phenotype was complemented by the 

expression of the 35S::SbSDIR1 construct (Figure 6.13).  

 

 

 

Figure 6.13 - Root length measurements in wild type (Col-0), sdir1-2, 35S::SbSDIR1 4 

and 35S::SbSDIR1 in the sdir1-2 mutant background (comp 4). Bar chart showing 

average root lengths. Seedlings were grown on vertical plates containing MS and 

measurements were taken after ten days (see materials and Methods 2.6.5). Each data 

point represents the mean of duplicate measurements. Error bars represent SE (n=35).   
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6.2.2 DREB1A 

6.2.2.1 Validation of microarray data 

 

The gene expression differences obtained by the microarray analysis were validated 

using real-time qPCR. As shown in Figure 6.14, the expression of SbDREB1A was ~4 

fold higher in B35 compared to R16 at 50 DAS, thus validating the microarray data. 

SbDREB1A was not expressed to higher levels at 14 DAS.  

 

 

 

Figure 6.14 - Relative transcript abundance of SbDREB1A (Sb07g025210) in the 

senescent (R16) and stay-green (B35) varieties at 50 DAS. Error bars represent RQMIN 

and RQMAX and constitute the acceptable error level for a 95% confidence level 

according to Student’s t-test.  
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128). When compared to proteins from other species, SbDREB1A shared strongest 

amino acid identity (77%, Total identity score: 244) with DREB1B from maize and 53% 

identity (Total identity score 192) to CBF3 from barley.  The sequence was aligned to 

previously studied DREB homologues from other species using Clustal W 

(www.ebi.ac.uk/Tools/msa/clustalw2/) (Figure 6.15). The amino acid sequence contains 

the conserved putative AP2 DNA-binding domain and a putative activation domain rich 

in acidic amino acid residues at the C-terminal region. The sequence also contains the 

typical DREB1-type nuclear localization signal (NLS) consensus, 

KR/KPAGRT/KKFRETRHP, before the ERF/AP2 domain and a DSA sequence after the 

domain, which were identified in DREB1-type proteins from various species (Jaglo et al., 

2001). The 14th and 19th conserved amino acids in the ERF/AP2 domain have been 

reported to be important in determining the target DNA sequences in Arabidopsis 

(Sakuma et al., 2002), although the 19th is less important (Qin et al., 2004). SbDREB1A 

was shown to have the conserved valine although E19 was replaced by another valine. 

SbDREB1A therefore contains many of the DREB1 conserved regions therefore is likely 

to be a homolog of DREB1. 
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Figure 6.15 - Alignment of amino acid sequences of DREB1 homologs from S. bicolor 

(Sb07g025210), Z. mays (NM_001112181.1), O. sativa (AF300970), H. vulgare 

(AF442489) and A. thaliana (AT5G51990). The conserved AP2 DNA binding domain is 

underlined. Other conserved residues suggested to be important for DREB1 activity are 

highlighted. These include the KR/KPAGRT/KKFRETRHP nuclear localization signal 

and the DSAW and LSWY motifs. 
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6.2.2.3 Stress-induced expression in sorghum 

 

The expression of SbDREB1B was examined in sorghum leaves in response to 

treatment with osmotic stress induced by mannitol and PEG, salt stress and ABA.  

SbDREB1A expression was strongly induced by osmotic stress induced by mannitol 

over 24 hr. It was also induced by osmotic stress induced by PEG and by NaCl 

treatment over 6 hr. SbDREB1A was additionally induced by ~7 fold in response to 24 hr 

ABA treatment. SbDREB1A therefore shows similar expression patterns to Arabidopsis 

DREB1D (CBF4) (Haake et al., 2002).  
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Figure 6.16 - Relative transcript abundance of SbDREB1A (Sb01g039740) in R16 

following different stress treatments. Sorghum leaves were subjected to [A] mannitol 

(0.66M), [B] PEG (10%), [C] ABA (100 µM) and [D] NaCl treatment (200mM). For 

treatment details see Materials and Methods section 2.6.1. Error bars represent RQMIN 

and RQMAX and constitute the acceptable error level for a 95% confidence level 

according to Student’s t-test. 
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The expression of SbDREB1A was examined in response to heat using the microarray 

data described in Chapter 3. SDREB1A was shown to be upregulated by ~100 fold 

following a 3 hr heat shock at 50 °C (Figure 6.17). This upregulation in response to heat 

is similar to findings for Arabidopsis DREB2 genes (Agarwal et al., 2006).  

 

 

 

Figure 6.17 - Relative transcript abundance of SbDREB1A (Sb01g039740) in the R16 

variety at 14 DAS following a 3 hr heat shock. Bar chart shows normalised gene 

expression data obtained from the microarray analysis (See Materials and Methods 

section 2.5.5). Error bars show SE of normalized expression data from three biological 

replicates. 
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Transgenic Arabidopsis overexpressing SbDREB1A under the control of the cauliflower 

mosaic virus 35S promoter were produced, in the same way as described earlier (see 
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gateway destination vector pK2GW7. Agrobacterium tumefaciens was transformed with 

the construct and was used to transform wild-type (Col-0) Arabidopsis plants via the 

floral dip method (see Materials and methods section 2.8.1). Transgenic plants from the 

T2 generation were used for further analysis. Overexpression of SbDREB1A was 

confirmed in ten independent transgenic lines by real-time qPCR. 

 

 

 

Figure 6.18 - Analysis of SbDREB1A expression levels in lines overexpressing the 

35S::SbDREB1A construct in Arabidopsis Col-0 background using real-time qPCR. Error 

bars represent RQMIN and RQMAX and constitute the acceptable error level for a 95% 

confidence level according to Student’s t-test. 
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6.2.2.4.2 Phenotype analysis 

 

The overexpression of DREB1 genes has previously been shown to result in growth 

retardation under normal conditions (Liu et al., 1998; Kasuga et al., 1999; Haake et al., 

2002; Dubouzet et al., 2003; Qin et al., 2004; Savitch et al., 2005; Xiong and Fei, 2006). 

The 35S::SbDREB1A lines however, showed no growth retardation. Instead, they 

showed an unusual developmental phenotype in that excessive numbers of new leaves 

were produced (Figure 6.19).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.19 - Growth phenotype of a transgenic plant overexpressing the 

35S::SbDREB1A construct in the Arabidopsis Col-0 background compared to wild type. 

Pictures were taken following ~6 weeks of growth.  
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6.2.2.4.3 Gene expression analyses 

 

The overexpression of DREB1 genes has previously been shown to result in an increase 

in the expression of downstream genes containing a DRE promoter element (Kasuga et 

al., 1999; Gilmour et al., 2000; Jaglo et al., 2001; Haake et al., 2002). Real-time qPCR 

was carried out test whether the overexpression of SbDREB1A could also induce the 

expression of genes known to contain a DRE element in their promoter in Arabidopsis. 

As shown in Figure 6.20, the expression of KIN2 and LTI78 was either unchanged or 

slightly reduced in the transgenic lines when compared to wild type. DREB2 proteins 

require post-translational modification in response to stress for their activation in plants 

(Liu et al., 1998). To see if this was the case here, the expression of DRE-containing 

genes was analysed in response to osmotic stress induced by mannitol treatment 

(Figure 6.21). The expression of KIN2, LTI78, At1g16850 and COR47 was lower in the 

35S::SbDREB1A transgenic lines compared to wild type. The expression of COR15a 

however, was found to be increased compared to wild type, particularly in the 

35S::SbDREB1A 7 transgenic line. Surprisingly, the expression of P5CS1 was also 

increased in the transgenic lines despite the absence of the DRE in the promoter of this 

gene (Figure 6.21).  
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Figure 6.20 - Analysis of the expression levels of genes containing the DRE element in 

their promoter in lines overexpressing the 35S::SbDREB1A construct in Arabidopsis Col-

0 background using real-time qPCR. [A] Bar chart showing KIN2 expression and [B] 

LTI78 expression. Error bars represent RQMIN and RQMAX and constitute the acceptable 

error level for a 95% confidence level according to Student’s t-test. 
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Figure 6.21 - Analysis of the expression levels of stress-inducible genes, following 

mannitol treatment, in lines overexpressing the 35S::SbDREB1A construct in 

Arabidopsis Col-0 background using real-time qPCR. [A] KIN2, [B] LTI78, [C] At1g16850, 

[D] RD47, [E] COR15a, [F] P5CS1 expression. Error bars represent RQMIN and RQMAX 

and constitute the acceptable error level for a 95% confidence level according to 

Student’s t-test. 
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6.2.3 Overexpression in sorghum 

 

In order to test the function of both SbSDIR1 and SbDREB1A in sorghum, stable 

sorghum transformation was attempted. This was carried out over a period of three 

months in Professor Ian Godwin’s lab at the University of Queensland in Australia. Both 

genes were cloned downstream of the maize ubiquitin promoter of the binary Gateway 

destination vector pIPKb002 (see Appendix B.3 for vector map). Each construct was 

then co-bombarded with a Ubi::NPTII construct into immature sorghum calli (see 

Material and Methods section 2.8.2.2 for full method) (Liu et al., 2014). These calli were 

then cultured on selective regeneration media containing Geneticin® (G418). A total of 17 

lines transformed with the Ubi::SbDREB1A construct and 15 lines transformed with the 

Ubi::SbSDIR1 construct were obtained following selection. To test for the incorporation 

of the constructs, real-time qPCR was carried out to test for either SbSDIR1 or 

SbDREB1A overexpression. Neither of the transgenes were found to be overexpressed. 

The expression of the NPTII selectable marker was then measured in all of the lines. 

None of the lines transformed with the Ubi::SbSDIR1 construct had any NPTII 

expression whilst seven lines transformed with the Ubi::SbDREB1A construct showed 

NPTII expression (Figure 6.22).  
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Figure 6.22 - Analysis of the expression levels of the NPTII selectable marker in the 

sorghum lines transformed with the Ubi::SbDREB1A construct. Error bars represent 

RQMIN and RQMAX and constitute the acceptable error level for a 95% confidence level 

according to Student’s t-test. 
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6.3 Discussion 

6.3.1 SbSDIR1 is a functional homolog of AtSDIR1  

 

SDIR1 encodes a functional E3 ligase that confers drought tolerance in Arabidopsis, at 

least in part, by regulating transpirational water loss (Zhang et al., 2007). Homologues of 

this gene in rice, maize and grapevine have also been shown to encode functional E3 

ligases and to have a role in conferring drought tolerance (Zhang et al., 2008; Xia et al., 

2012; Tak and Mhatre, 2013). Here, the sorghum gene, Sb01g039740, was shown to 

encode a protein with strong homology to SDIR1 from other species and has all of the 

canonical domains required for E3 ubiquitin ligase activity (Figure 6.2). Based on this 

homology, this gene could play a similar role in conferring drought tolerance in sorghum. 

The ubiquitin ligase activity of the protein however was not tested here and it would be 

important to carry out in vitro assays to confirm this.  

 

SbSDIR1 was shown to have similar gene expression profiles to those described for 

other species (Zhang et al., 2007; Gao et al., 2011; Xia et al., 2012; Tak and Mhatre, 

2013). For example, it was found to be upregulated by osmotic stress induced by PEG 

and by salt stress (Figure 6.3). It was also slightly induced by ABA, which is similar to 

findings in grapevine and maize (Xia et al., 2012; Tak and Mhatre, 2013). This indicates 

that the function of SDIR1 has been conserved in sorghum. Interestingly, SbSDIR1 was 

also induced by heat, which is similar to findings in grapevine (Tak and Mhatre, 2013) 

(Figure 6.4). This suggests that SbSDIR1 could have an additional role in conferring 

heat tolerance. SbSDIR1 gene expression profiles were measured in the R16 senescent 

line. It would additionally be interesting to measure gene expression in response to 

these stress treatments in the B35 stay-green line. This would help to determine whether 

SDIR1 expression is upregulated to the same extent in the different varieties.  

 

Arabidopsis transgenic lines overexpressing SbSDIR1 exhibited a reduced water loss 

phenotype and the highest overexpressing lines showed reduced stomatal conductivity 

compared to wild type (Figures 6.6 & 6.7). This reduced water loss phenotype is similar 

to that described for all studied SDIR1 homologs, again suggesting that SDIR1 in 

sorghum is able to function in the same way as SDIR1 from other species. Despite this, 

stomatal conductance is lower only in the highest expressing lines (Figure 6.7). This 
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could be due to the small number of biological replicates used; due to time constraints at 

Lancaster University measurements were taken from only three plants. A greater 

number of replicates are required and could help to tease out any small differences and 

increase the significance of the results.  Additionally, measurements were taken from 

only one leaf. It could be that whilst there are differences in conductivity at the whole 

plant level, measurements on only one leaf are not sufficient to see these differences. 

Whole plant imaging could be used in the future to see if this is the case. Furthermore, 

these measurements were taken under well-watered conditions only. Perhaps any 

differences are accentuated under drought-stress conditions. For example, the stomata 

in the 35S::SbSDIR1 lines may respond more quickly to the stress. This could be 

determined using epidermal peels to measure stomatal responsiveness to for example, 

mannitol or ABA (e.g. see Marchadier and Hetherington, 2014). No differences in 

stomatal numbers were found between the overexpression lines and wild type (Figure 

6.8) thus suggesting that the observed differences in water loss are as a result of 

differences in stomatal aperture. Measuring stomatal apertures in epidermal peels would 

directly test this. As a control, it would also be important in the future to compare the 

transgenic lines to wild-type Col-0 grown under the same selection system.  

 

Loss-of-function sdir1-2 mutant lines complemented with the 35S::SbSDIR1 construct 

showed a similar water loss phenotype to the overexpression lines (Figure 6.12). 

Previous work with the sdir1-2 mutant line showed that it lost water more quickly than 

wild type (Zhang et al., 2007). However, this water-loss phenotype could not be 

replicated here (Figure 6.12). The previously described increase in root length in the 

sdir1-2 mutant line on the other hand could be observed (Figure 6.13). The sdir1-2 

mutant line contains a T-DNA insertion in an intron (Zhang et al., 2007), meaning that 

the wild-type transcript might still be produced due to the T-DNA being spliced out 

alongside the intron. This would explain the unexpected SDIR1 transcript levels in the 

sdir1-2 mutant line (Figure 6.11). Tissue-specific splicing of the intron could have 

resulted in the expected phenotype in the roots but not in the leaves. As a result, it would 

be interesting to repeat this experiment with a different known mutant line, sdir1-1, to 

confirm the water loss phenotype of this mutant.  
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6.3.2 SbSDIR1 could contribute to the stay-green trait in sorghum 

 

Given that SbSDIR1 is up-regulated by ~2 fold in the stay-green B35 line compared to 

the senescent R16 line, it is possible that it could be contributing to the known 

differences in transpiration between the varieties (Vadez et al., 2011) and hence to 

drought tolerance. It is thought that at the pre-flowering stage stay-green plants use less 

water, meaning that more is available when faced with drought stress at the post-

flowering stage (Borrell et al., 2014a). It is possible that SbSDIR1 is contributing towards 

this water conservation. However, whilst SbSDIR1 appears to be able to reduce water 

loss in Arabidopsis, the only way to truly test its function would be to analyse the 

phenotype following its overexpression in sorghum. The sorghum transformation was 

unsuccessful here therefore it would be important to repeat this in the future.  

 

The precise mechanism of SDIR1 action remains unclear. In Arabidopsis, it is thought 

that SDIR1 positively influences ABA signalling, due to the fact that its overexpression 

leads to ABA hypersensitivity and ABA-associated phenotypes. Consequently, it is 

thought that SDIR1 facilitates the degradation of a negative regulator of ABA signalling 

(Zhang et al., 2007). SDIR1 has recently been found to interact with SDIR1-

INTERACTING PROTEIN1 (SDIRIP1), which acts upstream of the bZIP transcription 

factor ABI5 (Zhang et al., 2015). Although, given that 38 other clones were identified as 

interacting with SDIR1 using a yeast-two-hybrid approach (Zhang et al., 2015), it is likely 

that SDIR1 has many other, as yet uncharacterized, interacting partners. To better 

understand the mode of action of SbSDIR1 in sorghum, it would be important to identify 

these downstream targets. One approach could be to identify homologues of these 38 

Arabidopsis proteins in sorghum and then confirm their interaction using in vitro pull-

down assays. 

 

Stress-responsive genes have previously been found to be upregulated in transgenic 

lines overexpressing SDIR1. For example, P5CS1 was upregulated in tobacco and 

proline levels were found to be higher in maize (Xia et al., 2012; Tak and Mhatre, 2013). 

P5CS1 was not found to be upregulated in the Arabidopsis 35S::SbSDIR1 expression 

lines here, although it is still possible that this gene is affected when SbSDIR1 is 

overexpressed in sorghum. Unexpectedly, P5CS1 was actually downregulated in the 

Arabidopsis overexpression lines compared to wild type, which could be an artefact of a 
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monocot gene being expressed in a dicot. The sorghum gene may be acting as a 

dominant negative and hence preventing the function of the wild type gene product. 

Transgenic tobacco lines overexpressing SDIR1 homologs from both maize and 

grapevine have increased levels of superoxide dismutase (SOD) and catalase (CAT) 

expression (Liu et al., 2013; Tak and Mhatre, 2013). Lines overexpressing the grapevine 

homolog additionally have higher levels of expression of a dehydrin (Tak and Mhatre, 

2013). It would therefore be interesting to measure the expression of these stress-

responsive genes in transgenic lines overexpressing the sorghum SDIR1 gene. This 

would provide further insight into the downstream targets of SbSDIR1 and the processes 

it is involved with.  

 

Maize SDIR1 overexpression lines are more tolerant to oxidative stress and have 

reduced ROS levels when exposed to drought. They also have increased expression of 

antioxidants and increased antioxidant activity (Xia et al., 2012). Similarly, transgenic 

tobacco overexpressing SDIR1 from grapevine are better able to tolerate methyl 

viologen (MV) than wild type. It was shown in Chapter 5 that the B35 stay-green line is 

better able to tolerate MV than the R16 senescent line. Taken together, it is possible that 

the higher expression of SbSDIR1 could be contributing to this enhanced oxidative 

stress tolerance via downstream target modification. Given that SbSDIR1 expression is 

also induced in response to heat stress (Figure 6.4), it is perhaps unlikely that it is only 

involved in regulating water loss in response to drought. This gene could therefore play 

an additional role in the oxidative stress response and in this way could also be involved 

in protection from heat stress. To test this, it would be interesting to investigate tolerance 

of SbSDIR1 overexpression lines to oxidative stress.  

 

6.3.3 SbDREB1A shows sequence homology to DREB1 and shows similar 

expression patterns 

 

DREB transcription factors are well known to play a role in the plant stress response 

(Agarwal et al., 2006). Here, the sorghum gene Sb07g025210 (SbDREB1A) was shown 

to encode a protein that shares homology with previously characterized DREB 

transcription factors from other species (Figure 6.15). The amino acid sequence contains 

the conserved AP2 DNA binding domain and two signature motifs, 
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PKKP/RAGRxKFxETRHP and DSA, that are conserved amongst DREB1 genes across 

different species (Jaglo et al., 2001). In addition, the 14th amino acid in the AP2 domain, 

which is thought to be critical for DNA binding is also conserved (Sakuma et al., 2002).  

A glutamic acid at position 19 in the AP2 domain is thought to be important for DNA 

binding (Sakuma et al., 2002). This has been substituted with a valine in the SbDREB1A 

amino acid sequence however, this amino acid is thought to be less important and has 

also been substituted with a valine in other monocot DREB1 proteins (Qin et al., 2004). 

SbDREB1A shared strongest homology with DREB1D (CBF4) from Arabidopsis, which 

is known to play a role in the plant response to drought (Haake et al., 2002). Based on 

this homology, SbDREB1A could function in the same way as known DREB1 

transcription factors from other species. 

 

SbDREB1A was upregulated by osmotic stress induced by mannitol and PEG, NaCl and 

ABA (Figure 6.16). Arabidopsis DREB1A, DREB1B and DREB1C are induced by cold 

and not by drought stress (Liu et al., 1998). DREB1D on the other hand is upregulated 

by drought stress and not by cold (Haake et al., 2002). SbDREB1A therefore not only 

shows the strongest sequence homology to DREB1D but also shows similar patterns of 

expression. Interestingly, SbDREB1A was also induced by heat. This is similar to 

DREB2 genes (Lim et al., 2007) suggesting that SbDREB1A could also play a role in 

thermotolerance.  

 

6.3.4 SbDREB1A induces the expression of some DRE-containing genes in 

Arabidopsis  

 

More than 40 genes containing the DRE element have been identified as targets of 

DREB1 in Arabidopsis (Maruyama et al., 2004). In sorghum, 287 genes containing at 

least one DRE element (A/GCCGAC) 500 bp upstream of the transcription start site 

were expressed to higher levels in the stay-green B35 line when compared to the 

senescent R16 line. Amongst these are SDIR1, a number of GSTs, late embryogenesis 

abundant proteins (LEAs) and stomatal density and distribution 1 (SDD1). It is possible 

that some or all of these genes are downstream targets of the highly expressed 

SbDREB1A.  



 177 

The overexpression of DREB1 genes in Arabidopsis has been shown to increase the 

expression of genes containing a DRE element (G/ACCGAC) in their promoter (Haake 

et al., 2002; Dubouzet et al., 2003; Qin et al., 2004; Xiong and Fei, 2006; Chen et al., 

2007). However, the overexpression of SbDREB1A in Arabidopsis did not result in an 

increase in the expression of the majority of the genes tested. In fact, only COR15a 

showed increased expression (Figure 6.21). There could be a number of explanations 

for this. Firstly, perhaps SbDREB1A is simply not expressed to high enough levels to 

induce all of the genes tested. It was similarly found that when ZmDREB1A was over-

expressed in Arabidopsis, only the highest overexpression lines showed increased 

expression of some of the DRE-containing genes (Qin et al., 2004). Alternatively, 

perhaps SbDREB1A binds preferentially to a slightly different DRE motif. For example, 

HvCBF2, a barley DREB protein, was shown to preferentially bind the GTCGAC 

sequence (Xue, 2003). Similarly, OsDREB1A, a rice DREB1 protein showed preferential 

binding to the GCCGAC sequence compared with ACCGAC (Dubouzet et al., 2003). 

Here, all of the DRE-containing genes tested, except COR15a, contained more 

ACCGAC motifs than GCCGAC motifs (Table 6.1). SbDREB1A could also preferentially 

bind the GCCGAC motif thus explaining why only COR15a was expressed to higher 

levels in the transgenic lines (Figure 6.21). To test this, transactivation assays could be 

carried out. For example, the Ubi::SbDREB1B construct could be co-bombarded into 

sorghum leaves with different promoter motifs fused to a luciferase reporter. The 

luciferase activity as a result of each promoter could then be compared to determine 

preferential binding activity. Microarray analysis comparing the 35S::SbDREB1A lines to 

wild type would also be useful to identify other downstream targets of this gene. 

Promoter analysis of the differentially expressed genes could then be used to identify 

specific binding motifs.   

 

The overexpression of SbDREB1A resulted in the increased expression of P5CS1, 

which does not contain a DRE element (Table 6.1). The overexpression of DREB1A in 

Arabidopsis has also been shown to result in higher P5CS1 expression compared to wild 

type with a concomitant increase in proline levels (Gilmour et al., 2000). As P5CS1 does 

not contain a DRE element in its promoter, this effect is likely to be indirect. This indirect 

increase in gene expression has been previously observed in transgenic Arabidopsis 

overexpressing other DREB1 homologues (Wang et al., 2008).  
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Table 6.1 - Genes analysed in the 35S::SbDREB1A overexpression lines 

 

 

The difference in downstream gene induction identified here compared to that previously 

described for other DREB1 homologues could be due to differences in the SbDREB1A 

amino acid sequence. The PKKP/RAGRxKFxETRHP sequence is required for DREB1B 

to induce the expression of DRE-containing genes in Arabidopsis (Canella et al., 2010). 

SbDREB1A has a K3 to R3 substitution within this sequence, which could affect protein 

activity. Although, this is perhaps unlikely given that other monocot DREB1 genes have 

the same substitution (Figure 6.15). The DSAW sequence is also thought to be 

important for DREB1 activity. In the SbDREB1A sequence W4 is substituted by S4, 

which could be responsible for differences in protein activity. However, a W4 to R4 

substitution did not prevent ZmDREB1A from maize binding to the DRE element (Qin et 

al., 2004). It is possible that other residues, that are yet to be studied, are critical for 

DREB1 function. For example, particularly in the C-terminus, there are multiple residue 

differences between the sorghum sequence and that from other species (Figure 6.15). 

The C-terminus is thought to be important for the activation of transcription meaning that 

SbDREB1A might be able to bind the DRE element but then be unable to activate 

transcription. In this way SbDREB1A could have a dominant negative effect in 

Arabidopsis whereby it’s binding to the DRE element could prevent the endogenous 

genes from activating transcription. Such an effect could account for the apparent 

decrease in the expression of many of the DRE-containing genes tested when compared 

to wild type (Figure 6.21).  

 

Gene name Gene ID DRE (GCCGAC) DRE (ACCGAC) 
KIN 2 At5g15970 - −131 to −126 
LTI78 At5g52310 −131 to −126 −275 to −270 

 −225 to −220 −168 
to −163 

FL05-21-F13 At1g16850 −70 to −65 - 225 to −230 
−133 to −138 

COR 47 At1g20440 −966 to −961 −995 to −990  
−161 to −156 

Cor15a At2g42540 −360 to −355  
−183 to −178 

−417 to −422 

P5CS1 AT2G39800 - - 
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Some DREB proteins, such as DREB2A, are degraded under non-stressed conditions 

meaning that their overexpression in Arabidopsis does not result in any phenotypic 

changes in the transgenic plants (Liu et al., 1998; Qin et al., 2008). Whilst perhaps 

unlikely given that the expression COR15a was increased in the transgenic lines, it is 

possible that SbDREB1A is rapidly degraded resulting in poor downstream gene 

induction. This could be tested using Western blots to detect SbDREB1A protein levels.  

 

The overexpression of SbDREB1A in Arabidopsis gave an unexpected phenotype. 

However, this phenotype could be an artefact due to a monocot gene being 

overexpressed in a dicot i.e. perhaps SbDREB1A needs to be post-translationally 

modified or perhaps a binding partner is required. The only way to truly characterize the 

function of this gene is to overexpress it in sorghum. Whilst stable sorghum 

transformation was unsuccessful here, it will be necessary in the future for a full 

characterization of this gene.  

 

6.3.5 Conclusions 

 

SbSDIR1 and SbDREB1A both show sequence homology and similar expression 

patterns to the respective homologues in Arabidopsis. SbSDIR1 also appears to have a 

similar function to the Arabidopsis SDIR1 gene. However, these genes can still not be 

linked conclusively to the stay-green phenotype. An investigation into their genetic 

linkage to known QTLs for the stay-green trait is required (see Chapter 7).  
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CHAPTER 7 

Analysis of the stay-green QTL lines 
 

7.1 Introduction 
 
 
Quantitative trait loci (QTL) mapping has lead to the identification of regions in the 

sorghum genome that are associated with the stay-green trait (Sanchez et al., 2002). In 

this process, parents that differ in the trait are crossed to form an F1 population, which 

have an intermediate phenotype. The F1 population is then selfed to form a population of 

F2 individuals. Each F2 individual is then selfed for six additional generations, ultimately 

forming recombinant inbred lines (RILs) that are homozygous for a section of parental 

chromosome (Figure 7.1). The RILs are then scored for several genetic markers and for 

the phenotype (for mapping of the stay-green trait, individuals were given a score based 

on a visual rating of the green leaf area under post-flowering drought conditions 

(Sanchez et al., 2002)). In this way the probability that a particular genetic region is 

associated with the trait can be determined (Mauricio, 2001). 
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Figure 7.1 - Schematic depicting the basic strategy behind QTL mapping 

 

 

Different studies, mostly using B35 as a source of stay-green, have lead to the 

identification of different numbers of QTLs for the stay-green phenotype (Table 7.1). Of 

these, initially four QTLs (Stg 1-4) were found to be consistent and are most often cited 

in the literature (Sanchez et al., 2002). Each of these has a different level of contribution 

towards the expression of the trait and Stg2 is thought to be the most important followed 

by Stg1 then Stg3 and lastly Stg4 (Xu et al., 2000; Sanchez et al., 2002). Another two 

QTLs, named StgA and StgB were also found to be consistent across multiple studies 

and show strong expression of the trait in the field (Kebede et al., 2001; Kassahun et al., 

2010). To overcome difficulties in comparing QTL locations across studies, all of the 

QTLs were integrated onto a complete genome map (Mace and Jordan, 2011). The 

relative positions of the six main Stg QTL in the genome are shown in Figure 7.2. Each 
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of these regions have been introgressed from B35, both individually and in combination, 

into the high-yielding but senescent R16 and S35 lines (Vadez et al., 2011). These 

introgression lines show an intermediate phenotype between the stay-green and 

senescent parents and each single QTL introgression line shows increased post-

flowering drought tolerance (Harris et al., 2007; Borrell et al., 2014b). This confirms that 

all six genetic regions are contributing towards the trait. Despite this, these regions 

remain large and between them contain ~2000 genes. The exact genes that are causal 

to the stay-green phenotype within these six regions have yet to be identified.  

 

Table 7.1 - Stg QTL mapping studies  

Reference Stay-green 
source 

Senescent line No. of QTLs 
identified 

(Tuinstra et al., 1997) B35 Tx7078 7 
(Crasta et al., 1999) B35 Tx430 7 

(Xu et al., 2000) B35 Tx7000 4 
(Tao et al., 2000) QL41 QL39 5 

(Subudhi et al., 2000) B35 Tx7000 4 
(Kebede et al., 2001) SC56 Tx7000 9 

(Haussmann et al., 2002) E36-1 IS9830/N13 5-8 
 
 
 
 
One way in which the number of candidate genes within the Stg QTL intervals could be 

reduced is through the analysis of gene expression data. For example, genes that are 

differentially expressed between the B35 and R16 varieties may lie within the QTL 

interval itself and the differences in gene expression may arise as a result of sequence 

differences in key regulatory regions. These genes could therefore directly underlie the 

trait. Alternatively, differentially expressed genes may not lie within the QTL interval itself 

but instead act downstream of a regulatory QTL gene. Candidate genes within the QTLs 

could then be pinpointed through the prediction of upstream regulatory genes.  
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Figure 7.2 - Schematic showing the relative positions of the six main stay-green QTLs. 

Each line represents a different sorghum chromosome with the Stg QTL regions 

highlighted in green. The numbers represent the chromosome number.  

 

 

This chapter focuses on experiments carried out to assess linkage of genes and 

processes with the known Stg QTL regions.  This could help to reduce the number of 

candidate genes in the QTL intervals, which could greatly facilitate trait selection. 

 

The aim of this chapter was to: 

• Identify differentially expressed genes that lie within the stay-green QTL intervals 

(7.2.1) 

• Determine whether any of the genes/processes taken forward for further analysis 

are genetically-linked to the Stg QTLs (7.2.2) 

• Identify gene expression differences that are associated specifically with the 

StgB QTL region (7.2.3) 
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7.2 Results 

7.2.1 Identification of differentially expressed genes that lie within known QTL 

regions 

 

Genes lying within the Stg QTL intervals were identified by two methods. Firstly, Dr. 

Santosh Despande at ICRISAT, Petancheru, India, provided the position of the six main 

Stg QTLs and these co-ordinates were used to extract genes within these regions. 

Secondly, the Comparative Saccharinae Genome Resource (CSGR) (http://helos. 

pgml.uga.edu/qtl/) was used. This database contains genes found within all previously 

identified Stg QTLs both major and minor (see Table 7.1), not just the six shown in 

Figure 7.2 (Zhang et al., 2013). These lists of genes were compared to the list of genes 

that were differentially expressed between the stay-green B35 line and the senescent 

R16 line identified by the microarrays (Appendix D.12 & D.13). Out of the 2036 

differentially expressed genes, 289 overlapped with the genes extracted from the CSGR 

database (see Appendix D.32 & D.33) and 165 overlapped with the genes within the six 

main QTLs (See Appendix D.34). Interestingly, these lists include P5CS2, which lies 

within the Stg1 QTL interval, DREB1A, which lies within a minor QTL on chromosome 7 

and RAP2.6, which lies within a minor QTL on chromosome 4. Other potentially 

interesting genes that are differentially expressed between the varieties and that lie 

within the Stg QTL intervals include: a late embryogenesis abundant protein 

(Sb02g036780.1) within StgB, a senescence-related gene (Sb03g026700.1) and a heat 

shock protein (Sb03g027330.1) within Stg3. These gene expression changes could 

directly underlie the QTLs and could be caused by sequence polymorphisms in key 

regulatory regions. 

 

7.2.2 Linkage of genes to particular QTL regions 

 

Experiments were carried out to determine whether the higher expression of three of the 

genes that were focussed on in previous chapters (P5CS2, SDIR1 and DREB1A) is 

associated with any of the Stg QTLs. 
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7.2.2.1 P5CS2 

 

As discussed in Chapter 5, P5CS2 was differentially expressed between the stay-green 

and senescent varieties and this differential expression is associated with differences in 

the amounts of free proline. P5CS2 was found to lie within the Stg1 QTL interval. 

Differences in the expression of P5CS2 between the varieties could be associated with 

polymorphisms in the upstream promoter region. To test this, 500 bp upstream of the 

start codon was amplified from the stay-green B35 variety and two senescent varieties, 

R16 and Tx7000 using PCR. The sequences were then compared (Figure 7.3). 

Sequence alignment identified three single nucleotide polymorphisms (SNPs) and a 22 

bp deletion within the B35 line when compared with both senescent varieties. Two of the 

identified SNPs lie within known cis-element motifs. For example, a G to C SNP can be 

found in a potential C-box motif (Simpson et al., 2003) and an A to C SNP in a YACT 

motif (Gowik et al., 2004). A potential Myb element within the B35 upstream sequence is 

not present in the senescent R16 and Tx7000 varieties (Grotewold et al., 1994). It is thus 

possible that differences in the promoter sequence of P5CS2 in B35 may be responsible 

for the differences in the expression of this gene. To test whether this is the case, 

constructs containing the luciferase reporter gene driven by either the B35 or R16 

promoter were generated (see Appendix B.4-B.6). Each construct was then bombarded 

into sorghum leaf tissue on a MS plate (see Materials and Methods 2.9.2.1). Luciferase 

expression for each construct was quantified by measuring luminescence using a photon 

counting camera after spraying the leaves with luciferin (see Materials and Methods 

2.4.10). Higher luminescence is indicative of higher luciferase expression and hence 

greater promoter activity. As can be seen in Figure 7.4, the leaves that were bombarded 

with the B35 promoter construct had slightly higher luminescence levels suggesting 

higher luciferase expression. However, this difference is small and not significant.  
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Figure 7.3 - Sequence alignment of -550 to -13 base pairs upstream of P5CS2 in the 

stay-green (B35) and senescent varieties (R16 and Tx7000). The boxes highlight 

polymorphisms between the stay-green and senescent varieties that are within known 

cis-element motifs. 

 

 

B35         TCACGAACAAGCTAATAGAAAAGGGAAAATTCATACAAGTAGCAACACCTTCCATCTTTA 
R16         TCACGAACAAGCTAATAGAAAAGGGAAAATTCATACAAGTAGCAACACCTTCCATCTTTA 
Tx7000      TCACGAACAAGCTAATAGAAAAGGGAAAATTCATACAAGTAGCAACACCTTCCATCTTTA 
            ************************************************************ 
 
B35         TCTCATCCCATTCTAATAACTTGTGGTCGTGTGGCACGTTGGAGCACAGATCAGTCGTTC 
R16         TCTCATCCCATTCTAATAACTTGTGGTCGTGTGGCACGTTGGAGCACAGATCAGTCGTTC 
Tx7000      TCTCATCCCATTCTAATAACTTGTGGTCGTGTGGCACGTTGGAGCACAGATCAGTCGTTC 
            ************************************************************ 
 
B35         ACTCTTGTATGTTTGTGCGAGCCATAGCTAGGTGTTTTGAGACGCGACCTCTGATCGAAT 
R16         ACTCTTGTATGTTTGTGCTAGCCATAGCTAGGTGTTTTGAGACGCGACCTCTGATCGAAT 
Tx7000      ACTCTTGTATGTTTGTGCTAGCCATAGCTAGGTGTTTTGAGACGCGACCTCTGATCGAAT 
            ****************** ***************************************** 
 
 
 
B35         GGGCGCGCAACAGGTCACCACAGAGGACGTCTGGCA----------------------CT 
R16         GGGCGCGCAACAGGTCACCACAGAGGACGTGTGGCACTTTGGCTTGGCTGGGTAGGATCA 
Tx7000      GGGCGCGCAACAGGTCACCACAGAGGACGTGTGGCACTTTGGCTTGGCTGGGTAGGATCA 
            ****************************** *****                      *: 
 
 
 
B35         GCACTCCTGCGAGGCCGCAACACAACCACCTGCCCTATATCTCCTCCGCTCGGAACTGAG 
R16         GAACTCCTGCGAGGCCGCAACACAACCACCTGCCCTATATCTCCTCCGCTCGGAACTGAG 
Tx7000      GAACTCCTGCGAGGCCGCAACACAACCACCTGCCCTATATCTCCTCCGCTCGGAACTGAG 
            *.********************************************************** 
 
B35         GATATTTTGGGCAAAATGCGCTGCCTAATTCCACTTCCACAGGCCACGCCACACGTGGTG 
R16         GATATTTTGGGCAAAATGCGCTGCCTAATTCCACTTCCACAGGCCACGCCACACGTGGTG 
Tx7000      GATATTTTGGGCAAAATGCGCTGCCTAATTCCACTTCCACAGGCCACGCCACACGTGGTG 
            ************************************************************ 
 
B35         CGGCTCGTATCGTATCGTTGTTATCGTCCCTGACCTAGCGGGGCCGCGCTTAGCGGACGC 
R16         CGGCTCGTATCGTATCGTTGTTATCGTCCCTGACCTAGCGGGGCCGCGCTTAGCGGACGC 
Tx7000      CGGCTCGTATCGTATCGTTGTTATCGTCCCTGACCTAGCGGGGCCGCGCTTAGCGGACGC 
            ************************************************************ 
 
B35         TGACGGGCCGTCACGGGCCCTTCTCGCCGCAGACGATCCAGGGGCCAGGCGGCGCACGGG 
R16         TGACGGGCCGTCACGGGCCCTTCTCGCCGCAgACGATCCAGGGGCCAGGCGGCGCACGGG 
Tx7000      TGACGGGCCGTCACGGGCCCTTCTCGCCGCAGACGATCCAGGGGCCAGGCGGCGCACGGG 
            ************************************************************ 
 
B35         GGATCTCGCCACGCCACATATGTGTGGCCCGTGAGGGGGGAAGGGGCGA 
R16         GGATCTCGCCACGCCACATATGTGTGGCCCGTGAGGGGGGAAGGGGCGA 
Tx7000      GGATCTCGCCACGCCACATATGTGTGGCCCGTGAGGGGGGAAGGGGCGA 
            *************************************************!

C"box& Myb&

YACT&

  

 



 187 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4 - Comparison of P5CS promoter activity from R16 and from B35 using a 

luciferase reporter construct. DNA 500 bp upstream of P5CS2 in the stay-green (B35) 

and the senescent (R16) line was amplified and cloned upstream of the firefly luciferase 

reporter gene. Each construct was bombarded onto a square area (16cm2) of sorghum 

leaf tissue (~8 DAS) on 1 X MS plates. Plates were sealed and incubated in the Percival 

for ~96 hrs. Each plate was then sprayed with luciferin and imaged for ~60 min using a 

photon counting camera. The average photon count for each plate was measured and 

the background luminescence subtracted. The graph shows the average of five plates 

for each construct and error bars show SE.  

 

 

P5CS2 can be found within the Stg1 QTL region. It would be therefore be expected that 

if the identified polymorphisms are important for the expression of the trait, senescent 

lines introgressed with the Stg1 QTL from B35 would also contain them. Santosh 

Despande (ICRISAT, Petancheru, India) provided QTL introgression lines containing 

one or more Stg QTLs in the senescent R16 or S35 background (See Appendix E.1 for 

genotype numbers of the introgression lines). However, the putative promoter sequence 

of the Stg1 introgression lines was found to be identical to that of the senescent lines 

(data not shown). This suggests that these polymorphisms do not actually underlie the 

Stg1 QTL. Rather than underlying the QTL itself P5CS2 may act downstream of a QTL 
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gene. To test this, P5CS2 expression was analysed in lines containing different Stg 

QTLs in the senescent R16 or S35 backgrounds. Large-scale real-time qPCR was 

carried out on RNA extracted from leaf tissue taken at 50 DAS. The Fluidigm system 

was used for qPCR (see Materials and Methods section 2.4.9.2). As expected, P5CS2 

was expressed to higher levels in B35. However, whilst its expression was higher in 

nearly all of the QTL lines, it does not show linkage to any one line in particular (Figure 

7.4). Multiple factors may be influencing the expression of this gene and this depends on 

the particular genetic background.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5 - Relative transcript abundance of P5CS2 (Sb03g039820.1) in the senescent 

R16 and S35 lines, the stay-green B35 line and in introgression lines containing one or 

more Stg QTLs from B35 in the R16 or S35 background. Samples were taken from 

leaves at 50 DAS and qPCR was carried out using the Fluidigm system (see Materials 

and Methods section 2.4.9.2). Graph shows the average of three biological replicates 

and error bars show the standard error of the normalized expression values. 
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7.2.2.2 DREB1A 
 
 
As discussed in Chapter 6, DREB1A was expressed to higher levels in the B35 stay-

green line when compared to the senescent R16 line. DREB1A was also found to lie 

within a minor QTL on chromosome 7 (Haussmann et al., 2002). To determine whether 

any DNA sequence polymorphisms are responsible for the differences in the expression 

of this gene, the putative DREB1A promoter and coding sequence were PCR amplified 

from both the stay-green and senescent varieties and sequenced. The sequences were 

found to be identical. This suggests that DREB1A doesn’t underlie the QTLs itself but 

instead could act downstream of another regulatory gene that does. To determine 

whether DREB1A acts downstream of one QTL in particular, gene expression was 

analysed in lines containing one or more QTLs in the senescent R16 or S35 

backgrounds. As expected, DREB1A was expressed to higher levels in B35 compared to 

R16. Interestingly, it was also expressed to higher levels in both of the lines containing 

the Stg1 QTL and not in any of the other introgression lines (Figure 7.5). This suggests 

the Stg1 QTL is responsible for the higher expression of DREB1A in B35.  
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Figure 7.6 - Relative transcript abundance of DREB1A (Sb07g025210) in the senescent 

R16 and S35 lines, the stay-green B35 line and in introgression lines containing one or 

more Stg QTLs from B35 in the R16 or S35 background. Samples were taken from 

leaves at 50 DAS and qPCR was carried out using the Fluidigm system (see Materials 

and Methods section 2.4.9.2). Graph shows the average of three biological replicates 

and error bars show the standard error of the normalized expression values. 

 

 

To explore possible regulators of DREB1A expression that lie within the Stg1 QTL, the 

putative DREB1A promoter was analysed for the presence of known cis-element motifs 

using the PlantPAN (http://plantpan.mbc.nctu.edu.tw/seq_analysis.php) and PLACE 

databases (http://www.dna.affrc.go.jp/PLACE/). A number of known motifs were 

identified (Figure 7.6 & Table 7.2). Within the Stg1 QTL interval there is a gene encoding 

a bZIP transcription factor, which could potentially bind the ABRE element in the 

DREB1A promoter (Nakashima and Yamaguchi-Shinozaki, 2013). In Arabidopsis, 

MYB15 and ICE1 are known to regulate DREB1 expression levels (Lata and Prasad, 

2011). To identify potential homologs of these genes in sorghum, the amino acid 
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sequences were compared to all sorghum sequences using BLAST 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Interestingly, a Myb transcription factor, MYB6 

(Sb03g041360), showed 57% identity to MYB15 at the amino acid level and was found 

to lie within the Stg1 QTL interval. Whilst this gene itself is not differentially expressed by 

over 2-fold, it is possible that sequence polymorphisms could have impacted upon 

protein structure and hence altered the activity of this protein.  This could have a knock-

on effect on DREB1A expression. 

 

 

Table 7.2  - Known cis-element motifs identified in the DREB1A promoter 

 
 
Motif name Description Reference  

Myb-related Binding site of a GA-regulated MYB gene 
from barley 

(Hosoda et al., 2002) 

DRE-related Binding site of barley CBF1 and CBF2 (Xue, 2003) 

ABRE-
related 

Required for etiolation-induced expression 
of ERD1 (early responsive to dehydration) 

in Arabidopsis 

(Simpson et al., 2003) 

GCC-box Ethylene-responsive element (Brown et al., 2003) 

Myc-related MYC recognition site found in the 
promoters of the dehydration-responsive 

gene RD22 and many other genes in 
Arabidopsis 

(Abe et al., 1997) 

Myb-core Binding site for ATMYB1 and ATMYB2, 
both isolated from Arabidopsis. ATMYB2 is 

involved in regulation of genes that are 
responsive to water stress in Arabidopsis 

(Luscher and 
Eisenman, 1990) 

W-box Found in the promoter of the Arabidopsis 
NPR1 gene. A cluster of WRKY binding 

sites act as negative regulatory elements 
for the inducible expression of AtWRKY18 

(Yu et al., 2001) 
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Figure 7.7 - DNA sequence 500 bp upstream of the start codon of DREB1A 

(Sb07g025210). Known cis-element motifs were identified using PlantPAN 

(http://plantpan.mbc.nctu.edu.tw/seq_analysis.php) and PLACE (http://www.dna. 

affrc.go.jp/PLACE/) and are highlighted. 
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7.2.2.3 SDIR1 

 

As discussed in Chapter 6, SDIR1 is expressed to higher levels in the B35 stay-green 

line compared to the R16 senescent line. However, SDIR1 cannot be found within a QTL 

interval suggesting that it acts downstream of another gene within a QTL. To assess 

whether this increased expression of SDIR1 links to any of the QTLs in particular, the 

expression of this gene was also analysed in a range of QTL introgression lines. As 

expected the expression of SDIR1 is higher in B35 compared to R16 however, 

expression is also significantly higher in both of the Stg1 introgression lines and in two of 

the StgB introgression lines (Figure 7.7), suggesting that the increased expression of 

SDIR1 might be associated with these QTLs.  

 

 
 
 
 

 
 

 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 7.8 - Relative transcript abundance of SDIR1 (Sb01g039740) in the senescent 

R16 and S35 lines, the stay-green B35 line and in introgression lines containing one or 

more Stg QTLs from B35 in the R16 or S35 background. Samples were taken from 

leaves at 50 DAS and qPCR was carried out using the Fluidigm system (see Materials 
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and Methods section 2.4.9.2). Graph shows the average of three biological replicates 

and error bars show the standard error of the normalized expression values. 

 

As discussed in Chapter 6, the overexpression of SDIR1 is associated with reduced 

water loss in a range of species (Zhang et al., 2007; Zhang et al., 2008; Xia et al., 2012; 

Tak and Mhatre, 2013) and the overexpression of SbSDIR1 resulted in reduced stomatal 

conductivity in transgenic Arabidopsis (see 6.2.1.4). If SbSDIR1 were involved with the 

regulation of transpiration in sorghum, we would perhaps expect to see reduced water 

loss in the QTL lines that express this gene to higher levels.  To test this, excised-leaf 

water-loss assays were carried out on different QTL lines (see Materials and Methods 

2.6.3). The percentage leaf weight for each line at 40 min following leaf detachment was 

calculated and then normalized to the R16 value.  This was then correlated with 

SbSDIR1 gene expression (Figure 7.8). There was a strong positive correlation between 

SbSDIR1 gene expression and relative leaf weight following leaf detachment. This 

indicates that SbSDIR1 reduces leaf water loss in sorghum as hypothesised in Chapter 

6. Interestingly, both Stg1 lines showed the highest levels of gene expression and the 

lowest levels of water loss out of all of the lines tested (Figure 7.8). This suggests that 

Stg1 is largely responsible for the increased SDIR1 expression in B35 and that this QTL 

could give rise to the stay-green phenotype by influencing transpirational water loss.  
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Figure 7.9 - Scatter plot showing the expression of SDIR1 and the relative leaf weight 

following 40 min of leaf detachment measured in R16, B35 and different QTL 

introgression lines.  All values are relative to the values obtained for R16. Relative gene 

expression values correspond to those shown in Figure 7.8 and were obtained using the 

Fluidigm qPCR system. An excised-leaf water-loss assay was carried out as described 

in the Materials and Methods section 2.6.3. These were carried out on R16, B35 and the 

Stg1 lines on three separate occasions. Ten QTL lines were measured and values 

obtained for Stg1 are indicated.   

 

 

In the same way as described for DREB1A, the putative SDIR1 promoter was analysed 

for the presence of known cis-elements to identify possible regulators of SDIR1 within 

the Stg1 QTL. The promoter contains a number of known elements including two DRE 

elements, an ABRE and both MYB and MYC recognition sites (Figure 7.9 & Table 7.3). 

Within the Stg1 QTL there are two MYB transcription factors that could bind the Myb-

binding sites and a bZIP transcription factor that could bind the ABRE element thus 

suggesting a possible way by which this gene is regulated. 
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Figure 7.10 - DNA sequence 500 bp upstream of the start codon of SDIR1 

(Sb01g039740). Known cis-element    motifs    were    identified    using    PlantPAN 

(http://plantpan.mbc.nctu.edu.tw/seq_analysis.php) and PLACE (http://www.dna.affrc. 

go.jp/PLACE/) and are highlighted. 
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Table 7.3 - Known cis-element motifs identified in the DREB1A promoter 
 
 

Motif name Description Reference 
ABRE-like Required for etiolation-induced 

expression of ERD1 (early responsive to 
dehydration) in Arabidopsis 

(Simpson et al., 
2003) 

DRE/CRT Binding site of CBF transcription factors 
in Arabidopsis 

(Yamaguchishinozaki 
and Shinozaki, 1994) 

Myb core Binding site for ATMYB1 and ATMYB2, 
both isolated from Arabidopsis. ATMYB2 
is involved in regulation of genes that are 
responsive to water stress in Arabidopsis 

(Luscher and 
Eisenman, 1990) 

Myc consensus MYC recognition site found in the 
promoters of the dehydration-responsive 

gene RD22 and many other genes in 
Arabidopsis 

(Abe et al., 1997) 

 
 
 

7.2.3  Microarray analysis comparing gene expression in a senescent line (R16) 

and StgB QTL lines 

 

The research described thus far has focussed on an identification of all processes that 

underlie the stay-green trait i.e. processes that underlie all six QTLs. In order to identify 

genes and processes that underlie a single QTL, microarray analysis comparing gene 

expression in R16 and in lines containing StgB in the R16 background was carried out. 

These lines are identical with the exception of the StgB interval therefore any gene 

expression changes should be directly related to this QTL. The StgB QTL was chosen 

for further study due to the fact that it has received comparatively little attention so far in 

the literature yet StgB introgression lines in the field display a strong stay-green 

phenotype (personal communication with Tom Hash, ICRISAT, Petancheru, India). Two 

StgB introgression lines were provided by Santosh Despande (K359-3 White-1 and 

K369-2-1).  

 

7.2.3.1 Gene expression differences 
 
 
Samples of leaf tissue were taken from the two StgB lines and from R16 at 50 DAS. 

Microarray analysis was carried out in the same way as described previously (see 



 198 

Chapter 3). Gene expression in each StgB line was compared to gene expression in 

R16. Differentially expressed genes that were in common between the two StgB vs. R16 

comparisons were taken forward for further study. As shown in Table 7.4, 113 genes 

were expressed to higher levels in both StgB lines when compared to R16 whereas 69 

genes were expressed to lower levels. Of these, 58 were also expressed to higher levels 

and 29 to lower levels in B35. Two of the upregulated genes and six of the down-

regulated genes were found to be located within the QTL interval itself. 

 

 

Table 7.4 - Genes that were expressed to higher levels (FC>2 in all three biological 

replicates) in both StgB vs. R16 comparisons. Genes that were also expressed to higher 

levels in the B35 stay-green line are highlighted in purple and genes that lie within the 

StgB QTL interval are highlighted in red. 

 

SbID 

Average 
StgB1 

vs. R16 
FC 

Average 
StgB2 

vs. R16 
FC Annotation 

Sb01g002760.1 7.34 6.14 ASA1 (ANTHRANILATE SYNTHASE ALPHA SUBUNIT 1) 
Sb01g004140.1 7.40 9.10 N2, N2dimethylguanosine tRNA methyltransferase family protein 
Sb01g004280.1 3.21 4.16 SMT1 (STEROL METHYLTRANSFERASE 1) 
Sb01g004295.1 3.02 4.01 SMT1 (STEROL METHYLTRANSFERASE 1) 
Sb01g004300.1 3.00 3.90 SMT1 (STEROL METHYLTRANSFERASE 1) 
Sb01g015450.1 10.39 9.61   
Sb01g018470.1 8.68 7.50 Secretory protein, putative 
Sb01g027330.1 44.68 47.82 Peroxidase, putative 
Sb01g031740.1 10.47 7.06 Peroxidase, putative 
Sb01g035990.1 7.82 15.82 Peroxidase, putative 
Sb01g036360.1 9.11 4.79 CYP714A1 
Sb01g045260.1 10.05 8.69 Protein kinase, putative 
Sb01g046160.1 5.16 7.77 BGAL3 (betagalactosidase 3) 
Sb02g019380.1 20.16 18.14 FLA2 (FASCICLINLIKE ARABINOGALACTAN 2) 
Sb02g025240.1 5.86 7.97 Transcription factor 
Sb02g028900.1 8.57 7.91 Sarcosine oxidase family protein 
Sb02g033720.1 8.20 12.42 Protein kinase family protein 
Sb02g033755.1 11.94 13.18 Meprin and TRAF homology domain-containing protein  
Sb02g034940.1 13.97 12.61 Disease resistance protein (NBSLRR class), putative 
Sb02g035050.1 10.75 8.80 Nodulin MtN21 family protein 
Sb02g040480.1 9.76 5.04 ATMYB86 (MYB DOMAIN PROTEIN 86) 
Sb02g042780.1 16.52 20.86 ATPME2 
Sb03g000663.1 5.42 5.17   
Sb03g007960.1 5.20 4.32 Transferase, transferring glycosyl groups 
Sb03g025570.1 9.48 10.57 Basic helix-loop-helix (bHLH) family protein 
Sb03g033160.1 8.82 11.26 MYB37 (MYB DOMAIN PROTEIN 37) 
Sb03g034120.1 19.63 15.01 Unknown protein 
Sb03g034970.1 5.63 4.63 Oxidoreductase 
Sb03g045980.1 167.94 40.01 GLP5 (GERMINLIKE PROTEIN 5) 
Sb04g014800.1 3.07 2.68 Unknown protein 
Sb05g002770.1 3.75 4.07 LACS6 (long-chain acylCoA synthetase 6) 
Sb05g010060.1 4.00 5.07 Nitrate transporter, putative 
Sb05g021320.1 218.63 206.50 Purple acid phosphatase family protein 
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Sb05g026930.1 3.61 4.45 Disease resistance protein (CCNBSLRR class), putative 
Sb05g026940.1 3.28 4.03 RPP13 (RECOGNITION OF PERONOSPORA PARASITICA 13) 
Sb05g026960.1 5.00 4.63   
Sb05g026960.4 4.65 4.35   
Sb05g026965.1 4.51 4.62 Disease resistance protein (CCNBSLRR class), putative 
Sb05g026970.1 3.44 4.12 RPP13 (RECOGNITION OF PERONOSPORA PARASITICA 13) 
Sb05g027450.1 5.98 5.43 Zinc finger (C2H2 type) family protein 
Sb06g009610.1 11.87 9.74 ABA2 (ABA DEFICIENT 2) 
Sb06g014840.1 4.12 4.02   
Sb06g014840.3 4.07 3.91   
Sb06g014865.1 47.54 34.32   
Sb06g025060.1 12.61 9.54 EGL3 (ENHANCER OF GLABRA 3) 
Sb07g000550.1 9.00 16.26 CYP71A25 
Sb07g002370.1 3.64 3.13 UGT72B3 (UDPGLUCOSYL TRANSFERASE 72B3) 
Sb08g016320.1 7.74 21.18 FRS5 (FAR1related sequence 5) 
Sb08g018440.1 7.39 8.22 Anion exchange family protein 
Sb09g000760.2 10.22 10.85   
Sb09g006430.1 6.72 4.65 Unknown protein 
Sb09g025890.1 9.92 13.12 Catalytic/ cation binding / hydrolase 
Sb10g028440.1 12.83 16.24 Lectin protein kinase, putative 
Sb10g029200.1 5.44 4.40 Myb family transcription factor 
Sb10g030710.1 4.33 3.71 ATEXO70F1 (exocyst subunit EXO70 family protein F1) 
Sb01g003890.1 48.68 60.95   
Sb01g004290.1 44.05 54.24 SMT1 (STEROL METHYLTRANSFERASE 1) 
Sb01g016580.1 10.20 9.43 Receptor protein kinase-related 
Sb01g023244.1 5.36 5.60 Lipase, putative 
Sb01g031610.1 13.05 9.47 CYP71B37 
Sb01g037070.1 22.21 21.15 Pentatricopeptide (PPR) repeat-containing protein 
Sb01g037560.1 16.91 15.62 Mitochondrial import inner membrane translocase subunit  
Sb01g037580.1 22.74 24.33 Universal stress protein (USP) family protein 
Sb01g037590.1 10.42 9.61 Unknown protein 
Sb01g039150.1 45.46 44.66   
Sb01g039190.1 25.08 25.03 RHL41 (RESPONSIVE TO HIGH LIGHT 41) 
Sb01g040930.1 12.29 11.72 Hydrolase 
Sb01g044590.1 3.28 4.19 Alcohol dehydrogenase, putative 
Sb02g000920.1 150.21 136.81 Flavin-containing mono-oxygenase family protein  
Sb02g001180.1 37.73 39.76 Unknown protein 
Sb02g006860.1 10.63 10.26 Kelch repeat-containing protein 
Sb02g025200.1 6.20 4.86 Nodulin MtN21 family protein 
Sb02g027540.1 2.84 3.81 FAR1 (FATTY ACID REDUCTASE 1) 
Sb02g027720.1 17.26 22.54 ATP binding / nucleotide binding / phenylalanine tRNA ligase 
Sb02g028580.1 1463.20 1173.75 3betahydroxydelta5steroid dehydrogenase 
Sb02g028860.1 4.24 4.17 Myosin heavy chain-related 
Sb02g030030.1 26.78 20.57 UGT74F2 (UDPGLUCOSYLTRANSFERASE 74F2) 
Sb02g030890.1 23.41 18.87 DNA photolyase 
Sb02g030890.3 21.51 18.62   
Sb02g031570.1 39.61 58.22 Diaminopimelate decarboxylase 
Sb02g031770.1 7.70 8.49 Auxin-responsive protein, putative 
Sb02g031780.1 9.49 10.69 Auxin-responsive protein, putative 
Sb02g032510.1 4.91 3.50 ATPUP5; purine transmembrane transporter 
Sb02g034250.1 11.88 14.06 Targeting protein-related 
Sb02g035460.2 103.12 90.02   
Sb02g035480.1 145.11 144.93 Glycosyl hydrolase family 17 protein 
Sb03g002600.1 4.17 4.83 Glycosyl transferase family 14 protein  
Sb03g006390.1 53.51 64.97 UGT84A2; UDP glycosyl transferase 
Sb03g037720.1 14.62 19.56 ATOSM34 (osmotin 34) 
Sb03g038280.1 12.25 18.24 Lipid transfer protein, putative 
Sb03g042740.1 3.66 2.92 Unknown protein 
Sb03g044040.1 628.50 616.62 Unknown protein 
Sb05g001840.1 3.19 2.86 Harpin-induced protein-related / HIN1related  
Sb05g024100.1 6.32 13.15 Jacalin lectin family protein 



 200 

Sb05g026920.1 5.10 5.07 Disease resistance protein (NBSLRR class), putative 
Sb06g021230.1 12.47 17.73 ATEP3; chitinase 
Sb06g021240.1 25.09 33.77 ATEP3; chitinase 
Sb06g021250.1 4.89 6.88 ATEP3; chitinase 
Sb06g021260.1 5.58 9.32 ATEP3; chitinase 
Sb06g022450.1 15.69 12.63 BGLU46 (BETA GLUCOSIDASE 46) 
Sb07g023200.1 7.66 7.59 PLA2A (PHOSPHOLIPASE A 2A) 
Sb08g023160.1 2.93 4.52 Catalytic 
Sb09g000770.1 26.67 30.87 Nodulin MtN21 family protein 
Sb09g000780.1 5.28 6.04 Nodulin MtN21 family protein 
Sb09g018750.1 5.66 6.50 Catalytic/ cation binding / hydrolase 
Sb10g024290.1 4.47 3.85 LPP2 (LIPID PHOSPHATE PHOSPHATASE 2) 
Sb10g024350.1 22.76 28.11 Oxidoreductase, 2OGFe(II) oxygenase family protein 
Sb10g024680.1 3.73 3.11 Tryptophan synthase-related 
Sb10g025700.1 4.08 4.02 Endomembrane protein 70, putative 
Sb10g028810.1 6.71 5.89 UDP glucoronosyl/UDP glucosyl transferase family protein 
Sb10g030280.1 118.07 109.89   
Sb10g030650.1 84.28 68.44 ATEXO70F1 (exocyst subunit EXO70 family protein F1) 
Sb10g030660.1 6.24 5.82 ATEXO70F1 (exocyst subunit EXO70 family protein F1) 

 

Table 7.5 - Genes that were expressed to lower levels (FC>2 in all three biological 

replicates) in both StgB vs. R16 comparisons. Genes that were also expressed to lower 

levels in the B35 stay-green line are highlighted in purple and genes that lie within the 

StgB QTL interval are highlighted in red. 

SbID 

Average 
StgB1 

vs. R16 
FC 

Average 
StgB2 

vs. R16 
FC Annotation 

Sb01g001893.1 4.44 4.08 Unknown protein 
Sb01g012990.1 4.71 5.25 Ankyrin repeat family protein 
Sb01g016030.1 5.43 4.11 Auxin-responsive protein, putative 
Sb01g029470.1 3.66 4.02 NRT1.1; nitrate transmembrane transporter 
Sb01g037640.1 3.12 3.51 Transcription co-activator 
Sb01g038940.1 16.36 11.33 ESP3 (ENHANCED SILENCING PHENOTYPE 3) 
Sb01g039100.1 18.14 10.50 Unknown protein 
Sb01g044290.1 2.78 3.87 MIPS2 (MYO-INOSITOL-1-PHOSTPATE SYNTHASE 2) 
Sb01g044290.2 2.73 3.80   
Sb01g044290.3 2.95 3.80   
Sb01g047500.1 4.31 7.35 BAM1 (BETA-AMYLASE 1) 
Sb02g001730.1 4.60 9.39   
Sb02g023630.1 13.46 7.63 Armadillo/beta-catenin repeat family protein  
Sb02g028200.1 8.36 5.78 TDT (TONOPLAST DICARBOXYLATE TRANSPORTER) 
Sb02g030060.1 10.44 5.80 UGT74F2 (UDP-GLUCOSYLTRANSFERASE 74F2) 
Sb02g030340.1 4.10 28.98 CBF4 (C- REPEAT-BINDING FACTOR 4) 
Sb02g031720.1 8.14 5.47 Auxin-responsive family protein 
Sb02g040640.1 2.38 2.59 TolB protein-related 
Sb02g042790.1 4.30 5.06 Unknown protein 
Sb03g028640.1 3.86 4.01 CYP72A14 
Sb03g028930.1 9.04 8.43 Pectinesterase family protein 
Sb04g004810.1 3.08 5.71   
Sb04g025270.1 5.95 7.79 J8; heat shock protein binding / unfolded protein binding 
Sb04g031980.1 3.72 6.41 MATE efflux protein-related 
Sb05g008580.1 3.76 2.33   
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Sb05g021310.1 4.40 4.55   
Sb06g017230.1 3.06 2.61 PUB25 (PLANT U-BOX 25) 
Sb06g034010.1 8.33 4.75 VND7 (VASCULAR RELATED NAC-DOMAIN PROTEIN 7) 
Sb08g022660.1 21.14 11.76   
Sb09g000430.1 8.31 8.30 PGIP1 (POLYGALACTURONASE INHIBITING PROTEIN 1) 
Sb09g025510.1 22.07 16.01 O-methyltransferase family 2 protein 
Sb10g008670.1 3.50 3.85 Proton-dependent oligopeptide transport (POT) family protein 
Sb10g024260.1 14.36 18.58 Unknown protein 
Sb10g028410.1 2.47 2.30 Transcription elongation factor-related 
Sb10g029100.1 5.67 5.93 MBD02 (METHYL-CPG-BINDING DOMAIN PROTEIN 02) 
Sb01g000230.1 4.40 3.80 ATGSTT1 (GLUTATHIONE S-TRANSFERASE THETA 1) 
Sb01g000270.1 4.33 4.99 Unknown protein 
Sb01g002730.1 3.71 2.96 Mitochondrial transcription termination factor family protein  
Sb01g039140.1 20.81 13.84   
Sb02g001910.1 7.29 8.79 Unknown protein 
Sb02g006320.1 6.63 4.45 AtSIP2 (Arabidopsis thaliana seed imbibition 2) 
Sb02g026510.1 11.75 4.64 NAP (NAC-like, activated by AP3/PI) 

Sb02g026820.1 4.01 5.74 
ATRBP47C (ARABIDOPSIS THALIANA RNA-BINDING PROTEIN 
47C) 

Sb02g026820.2 4.89 6.43   

Sb02g027080.1 6.00 5.44 
ATGSTU7 (ARABIDOPSIS THALIANA GLUTATHIONE S-
TRANSFERASE TAU 7) 

Sb02g028600.1 7.68 6.38 3-beta-hydroxy-delta5-steroid dehydrogenase 
Sb02g029080.1 3.89 6.35 Glycosyl hydrolase family 17 protein 
Sb02g029950.1 412.99 454.83 EIF3G2 
Sb02g030880.1 19.28 17.85 Pentatricopeptide (PPR) repeat-containing protein 
Sb02g035120.1 61.56 60.08 SYP132 (SYNTAXIN OF PLANTS 132); 
Sb02g035160.1 6.08 4.90 Xyloglucan:xyloglucosyl transferase 
Sb02g035230.1 8.70 6.51 Ankyrin repeat family protein 
Sb02g035330.1 2.90 3.02 Receptor-like protein kinase, putative 

Sb02g035700.1 3.64 3.29 
IPP2 (ISOPENTENYL PYROPHOSPHATE:DIMETHYLALLYL 
PYROPHOSPHATE ISOMERASE 2) 

Sb02g035960.1 5.07 4.03 Unknown protein 
Sb05g008250.1 15.14 25.35 RPM1 (RESISTANCE TO P. SYRINGAE PV MACULICOLA 1) 
Sb05g022920.1 21.02 19.91 Nucleic acid binding 
Sb05g024830.1 3.63 4.04 BPM2 (BTB-POZ AND MATH DOMAIN 2) 
Sb07g028620.1 2.18 2.44 AtSIP1 (Arabidopsis thaliana seed imbibition 1) 
Sb09g000440.1 52.58 52.62 PGIP1 (POLYGALACTURONASE INHIBITING PROTEIN 1) 
Sb09g000450.1 105.69 143.67 PGIP1 (POLYGALACTURONASE INHIBITING PROTEIN 1) 
Sb09g001173.1 18.65 6.85 Unknown protein 
Sb09g002620.1 3.21 3.22 Unknown protein 
Sb10g024390.1 25.06 20.48 ATP-binding region, ATPase-like domain-containing protein-related 
Sb10g025550.1 67.35 57.69 Serine carboxypeptidase S28 family protein 
Sb10g026770.1 7.41 7.81 ATBPM1 (BTB-POZ and MATH domain 1) 
Sb10g027100.1 62.51 61.73 DNA binding 
Sb10g027485.1 17.11 11.21   
Sb10g027830.1 11.16 13.52 Protein kinase family protein 

 
 
 

7.2.3.2 Ontological analysis 
 
 
In order to determine whether any particular processes were enriched within these gene 

lists, gene ontology (GO) analysis was carried out as described previously (see Chapter 
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3).  No biological process GO terms were significantly enriched (p<0.05) amongst either 

the up- or down-regulated gene set when compared to the background genome. 

However, 23 genes expressed to higher levels in the StgB lines were found to be 

associated with the ‘response to stress’ GO category. These include three genes 

encoding peroxidases (Sb01g027330.1, Sb01g031740.1, Sb01g035990.1), a gene 

encoding a universal stress protein (USP) and ABA deficient 2 (ABA2).  

 

7.2.3.3 Promoter motif analysis 
 
 
Promoter motif analysis was carried out to assess whether any of these genes lie 

downstream of a master regulator within the QTL. The lists of both up- and down-

regulated genes were input into a web-based tool that identifies over-represented motifs 

across groups of promoters (http://element.mocklerlab.org). Sequences 500 bp 

upstream of the transcription start site was analysed, as the influence of the motif has 

been shown to decrease the further away from the transcription start site (Geisler et al., 

2006). Only motifs with a p value of less than 1e-04 were considered significant. All over-

represented motifs were then compared to those listed in the PLACE database 

(http://www.dna.affrc.go.jp/PLACE/) to check if they had previously been characterized 

in the literature. The results of the analyses are shown in Tables 7.6 and 7.7 on the 

following pages. Interestingly, there was a significant enrichment of stress-related motifs 

amongst the genes differentially expressed between StgB and R16. For example, the 

ABRE element is over-represented in the upregulated genes and a DRE-related element 

is over-represented amongst the downregulated genes.   

 

 
Table 7.6  - ELEMENT motif analysis of all genes either up- or down-regulated in both 

StgB lines compared to R16. Published promoter elements (see Table 7.7) are 

underlined in blue. 

 
Motif Length Total Count Promoter Count Mean p-value 

 
UP-REGULATED 

4-mer 
ATGC 4 526 108 9.64E-10 

GTAC 4 205 85 1.79E-08 

CGTA 4 268 90 3.25E-08 
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ACGT 4 183 75 1.37E-07 

ATTA 4 671 103 3.98E-07 

TATA 4 477 98 2.23E-06 

TACA 4 475 105 1.14E-05 

5-mer 

CGTAC 5 116 48 3.18E-11 

ACGTA 5 104 46 2.06E-08 

CATGC 5 197 77 7.93E-08 

AGCTA 5 187 62 4.31E-07 

ATGCA 5 226 79 1.01E-06 

ATATA 5 445 83 1.36E-06 

TAATA 5 226 87 2.51E-06 

CCCCC 5 174 41 6.73E-06 

CTAGC 5 159 56 7.58E-06 

ATTAA 5 226 83 7.91E-06 

GTACA 5 121 67 1.47E-05 

6-mer 

CCCCCC 6 95 17 1.22E-12 

AGCTAG 6 105 39 4.29E-11 

ACGTAC 6 58 29 4.91E-10 

CGTACG 6 30 21 2.48E-07 

CTGGCA 6 44 36 1.10E-05 

AATTAA 6 104 54 2.48E-05 

AGTTAA 6 48 36 6.40E-05 

7-mer 

CCCCCCC 7 57 7 6.99E-12 

ACGTACG 7 35 18 8.92E-12 

AGCTAGC 7 58 20 5.65E-09 

CTAGCTA 7 55 19 3.51E-08 

ATGCATG 7 64 28 3.23E-06 

CACGTAC 7 22 16 2.46E-05 

CTACTGA 7 15 14 4.31E-05 

AGTTAAT 7 21 17 4.88E-05 
 DOWN-REGULATED 

4-mer CGGC 4 428 56 5.94E-08 

5-mer 
GGCAA 5 100 44 4.54E-06 

CCGGC 5 134 36 2.02E-05 

AGTGC 5 80 44 3.36E-05 

6-mer 
CGGCAA 6 38 18 7.82E-08 

TCGGCA 6 29 11 4.24E-06 

AGTGCC 6 26 21 4.13E-05 

7-mer 
TCGGCAA 7 22 5 7.06E-12 

CGGCAAA 7 24 5 4.42E-11 

CTTTGCC 7 20 6 1.19E-06 
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GCCGAGA 7 17 6 1.35E-06 

CCGAGAG 7 15 4 3.45E-06 

CTCGGCA 7 15 3 4.88E-06 

AGCTAGC 7 34 17 1.11E-05 

CCGGCGC 7 22 12 3.02E-05 

CGAGAGC 7 16 8 3.72E-05 

CAACAAG 7 18 13 5.14E-05 

8-mer 

TCGGCAAA 8 20 3 9.00E-17 

CTCGGCAA 8 14 2 7.46E-11 

CGGCAAAG 8 15 2 1.16E-10 

CTCTCGGC 8 14 3 4.46E-10 

TCTCGGCA 8 11 3 9.60E-10 

CCGAGAGC 8 11 4 2.68E-08 

AGGAAGGA 8 16 11 4.98E-07 
 
 
 
 
Table 7.7 - Published promoter elements identified from the analysis of the genes 

differentially expressed by >2-fold 

Sequence Description Reference 

UP-REGULATED 

ACGT 

ABRE-like sequence 
Required for etiolation-induced expression of ERD1 (early responsive to 

dehydration) in Arabidopsis 

(Narusaka et al., 
2003; Simpson et 

al., 2003) 

YACT 
Found in the cis-regulatory element of phosphoenolpyruvate carboxylase 

(PPCA1) of the C4 dicot F. trinervia (Gowik et al., 2004) 

GTAC 
CuRE (copper-response element)  

Found in CYC6 and CPX1 genes in Chlamydomonas (Quinn et al., 2000) 

GTTAA 
GT-element 

Critical for GT-1 binding to box II of rbcS (Zhou, 1999) 

CATG 
RY repeat (CATGCAY) or legumin box  

Found in seed-storage protein genes in legume such as soybean 
(Fujiwara and 
Beachy, 1994) 

TATA 
TATA box  

Found in the 5' upstream region of sweet potato sporamin A gene (Grace et al., 2004) 

DOWN-REGULATED 

AAAG Core site required for binding of DOF proteins in maize 
(Yanagisawa and 
Schmidt, 1999) 

CCGAG 
DRE-related 

DRE1 element found in maize RAB17 gene promoter 
(Kizis and Pages, 

2002) 

GGCAAA 
Required for cell cycle regulation of the tobacco ribonucleotide reductase 

small subunit gene 
(Chaboute et al., 

2000) 

CAACA Binding consensus sequence of Arabidopsis transcription factor RAV1 
(Kagaya et al., 

1999) 
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7.3 Discussion 

7.3.1 Genes within the QTL interval are differentially expressed between the B35 

and R16 lines 

 

A number of genes that were differentially expressed between the B35 and R16 lines 

(see Chapter 4) were found to be located within a Stg QTL interval. Some of these 

genes, including P5CS2, a LEA and a HSP are well known to be involved with conferring 

drought tolerance. These gene expression differences are likely to arise due to SNPs in 

regulatory regions such as in the promoter. These genes could therefore directly 

underlie the phenotype and provide good candidates for trait selection. This list is 

however still large and contains 289 genes. In the future, in order to reduce the numbers 

of candidates, it would be interesting to compare these genes to those found to be 

changed in response to drought stress in Chapter 3. Whilst the genes causal to the stay-

green trait are not necessarily drought-inducible, this could provide a way to reduce 

candidate gene numbers. We must bear in mind however, that whilst many of the 

differentially expressed genes that have been previously discussed do not lie within the 

QTL intervals many may act downstream of these genes and therefore could act as 

diagnostic markers for trait selection. Additionally, genes that lie within the QTL interval 

yet are not differentially expressed could still be important for trait expression as SNPs in 

the coding sequence could impact on protein function or post-translational modification.  

 

7.3.2 P5CS2 is likely to act downstream of other QTL genes 

 

P5CS2 was found within the Stg1 QTL interval and contained SNPs in the B35 upstream 

promoter region that could be responsible for the differences in the expression of this 

gene. These polymorphisms however, did not have a significant impact on promoter 

activity measured using a luciferase reporter (Figure 7.4). Importantly, this experiment 

was only carried out once with five replicates per construct. This experiment therefore 

requires repetition to increase the significance of the results. Furthermore, reproducibility 

depends on the efficiency of each bombardment event. An additional internal plasmid 

control is therefore additionally required in future experiments to normalize experimental 

variations. For example, a different reporter such as GUS or aequorin driven by a 

constitutive promoter could be co-bombarded along with the luciferase reporter construct.  
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The SNPs in the B35 promoter were not found in the Stg1 introgression line, which 

displays the stay-green phenotype (Vadez et al., 2011), suggesting that they are not 

important for the expression of the trait. It is possible that SNPs in the 5’ or 3’ UTR or in 

the introns, not investigated here, could be responsible for the differences in the gene 

expression and these may be present in the Stg1 introgression lines. Despite this, the 

increase in P5CS2 expression in B35 compared to R16 was not mirrored in the Stg1 

QTL line. This could be for a number of reasons. Firstly, P5CS2 is on the edge of the 

Stg1 QTL so perhaps wasn’t included in the introgression line provided. This would 

explain the absence of the SNPs in the promoter region and would suggest that P5CS2 

does not underlie the QTL. Secondly, multiple factors control gene expression therefore 

perhaps the high expression levels in Stg1 are ‘dampened’ by genes in the R16 genetic 

background. Alternatively, rather than acting within the Stg1 QTL, P5CS2 may instead 

be acting downstream of one or more other QTL genes. All of the QTL lines, apart from 

Stg4 and, Stg3 and StgB combined, have increased expression of P5CS2 compared to 

R16. This suggests multiple genetic regions are influencing the expression of this gene. 

The effect of these regions is likely to depend on the genetic background and on the 

combination of QTLs present (Vadez et al., 2011).  

 

7.3.3 The increased expression of DREB1A and SDIR1 in the B35 stay-green line 
is associated with the Stg1 QTL 

 
 

DREB1A does not underlie a Stg QTL itself however, its high expression in B35 

compared to R16 was found to be exclusively linked to the Stg1 QTL, as evidenced by 

high expression in both of the Stg1 QTL introgression lines tested (Figure 7.5). This 

suggests that DREB1A acts downstream of a gene in the Stg1 QTL. Interestingly, the 

DREB1A promoter was found to contain putative Myb-binding sites and a MYB 

transcription factor, MYB6, was found within the Stg1 QTL interval. This sorghum 

transcription factor shows strong sequence identity (57%) at the amino acid level to 

MYB15 in Arabidopsis. MYB15 is known to be involved in the regulation of DREB1 

expression; transgenic lines overexpressing MYB15 show reduced levels of DREB1 

expression whereas myb15 loss-of-function lines show increased DREB1 expression 

(Agarwal et al., 2006). It is therefore possible that MYB6 in sorghum is regulating 
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DREB1A activity. The expression of sorghum MYB6 is 1.5-fold lower in B35 compared to 

R16. Whilst this fold change is small, it is possible that SNPs in the coding sequence of 

this transcription factor could affect its function i.e. through the introduction of a 

premature stop codon. This would reduce MYB6 activity and so could enable higher 

levels of DREB1A expression in B35. To test this it would be interesting to sequence the 

MYB6 coding region in both B35 and R16 in order to detect the presence or absence of 

SNPs. If SNPs were present, it would be important to determine whether this MYB is 

able to influence DREB expression and, if it can, to compare levels of activation with the 

MYB6 amino acid sequence from R16 and from B35. This could be analysed using 

transient expression assays with luciferase as a reporter for DREB1A expression.  

 

SDIR1 was not found within a stay-green QTL interval despite the known role of this 

gene in conferring drought tolerance (see Chapter 6). However, it is known to be within a 

QTL for the maintenance of green leaf area at maturity (GLAM) (Srinivas et al., 2009). 

Given that in many environments in which sorghum is grown drought stress is inevitable 

at the mature stage (Kassahun et al., 2010; Kholova et al., 2013), it is possible that the 

higher expression of this gene enables these varieties to survive for longer under these 

conditions and hence maintain green leaf area for longer. It would therefore be 

interesting to compare the sequences of the key regulatory regions of this gene in the 

stay-green and senescent lines in order to ascertain whether SNPs in the DNA 

sequence could be responsible for the differences in gene expression between the 

varieties.  

 

SDIR1 could also act downstream of a QTL gene. For example, amongst others the high 

expression of SDIR1 in B35 was also found to be linked to the Stg1 QTL. The putative 

SDIR1 promoter contains two DRE elements (Figure 7.10), which DREB transcription 

factors are known to bind to (Narusaka et al., 2003). Given that DREB1A is also 

exclusively linked to Stg1, perhaps SDIR1 lies downstream so that the increased 

expression of DREB1A leads to the increase in the expression of SDIR1. Other 

transcription factors within the Stg1 interval could also contribute to the increased 

expression of SDIR1. The interaction between DREB1A and SDIR1 could again be 

tested through a transient expression system. For example, a construct containing 

DREB1A driven by a constitutive promoter could be co-bombarded into sorghum leaves 

with a luciferase reporter construct driven by the SDIR1 promoter. Luminescence counts 
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would give an indication of luciferase activity and therefore whether DREB1A is able to 

promote SDIR1 expression. As discussed in Chapter 6 287 genes are expressed to 

higher levels in B35 and contain the DRE element in their promoter. It would be 

interesting to see whether any of these genes are also expressed to higher levels in the 

Stg1 QTL lines because this could indicate that they are also downstream of DREB1A 

and are involved in the same pathway. 

 

7.3.4 StgB QTL microarray analysis 
 
 

The comparison of gene expression between QTL introgression lines and the recurrent 

parent is a valuable way to identify genes associated with the QTL (Holloway and Li, 

2010). By comparing varieties of the same genetic background, that differ solely in the 

QTL region, noise is reduced as in theory only genes associated with that region are 

affected. Here, genes associated with the response to stress were found to be 

expressed to higher levels in the StgB introgression lines. Amongst these was ABA2, 

which is involved in the conversion of xanthoxin to abscisic aldehyde in the ABA 

biosynthetic pathway (Gonzalez-Guzman et al., 2002). As reviewed in Chapter 1, ABA is 

accumulated under drought conditions and is critical for both stomatal closure leading to 

reduced transpirational water loss and for the induction of stress-responsive genes 

(Nakashima and Yamaguchi-Shinozaki, 2013). Transgenic plants overexpressing ABA2 

have elevated ABA levels and exhibited increased tolerance to salinity (Lin et al., 2007). 

Additionally, constitutive expression of NCED1, which is involved with ABA biosynthesis 

in tomato, resulted in increased transpiration efficiency, leaf expansion and root 

hydraulic conductivity under drought conditions (Thompson et al., 2007). The 

constitutively higher expression of ABA2 in the StgB lines could result in constitutively 

higher levels of ABA. This could then be associated with a reduction in transpiration and 

constitutively higher levels of downstream protective genes. The over-representation of 

the ABRE-binding element, which is known to be involved with ABA signaling (Narusaka 

et al., 2003), amongst the genes expressed to higher levels in StgB, is consistent with 

this and suggests these genes may be induced as a consequence of the increased ABA 

concentration. Interestingly, in one study out of all of the introgression lines tested StgB 

had the greatest transpiration efficiency compared to R16 (Kassahun et al., 2010). Even 

here, amongst the introgression lines tested one StgB line showed one of the highest 
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average relative leaf weights (Figure 7.8). This high transpiration efficiency could arise 

as a result of ABA-induced stomatal closure caused by greater ABA2 expression. 

Further supporting this, when sorghum genetic maps are aligned with those from maize, 

StgB lies in a similar position to a maize QTL that influences leaf ABA content (Lebreton 

et al., 1995). To test this theory, it would be interesting to measure and compare ABA 

contents in the StgB lines and in R16. Whilst ABA has been also associated with the 

promotion of senescence (see Chapter 1), this could be counteracted by its protective 

properties under drought conditions.  

 
Another potentially interesting gene expressed to higher levels in the StgB lines (~25 

fold higher) is Sb01g037580.1, which encodes a universal stress protein (USP). 

Universal stress proteins were originally discovered in bacteria and are required for 

defence against superoxide-generating agents (Nachin et al., 2005). USPs are thought 

to be ubiquitous in plants and transgenic tomato lines overexpressing a USP have 

reduced stomatal aperture and increased chlorophyll content when subjected to drought 

stress conditions. The effect of this overexpression is small under control conditions yet 

under drought stress conditions a large number of genes are expressed to higher levels 

in the transgenic lines compared to wild type, many of which are associated with the 

maintenance of the photosynthetic machinery (Loukehaich et al., 2012). It would 

therefore be very interesting to characterize the sorghum USP further i.e. through the 

production of transgenic lines, especially since the higher expression of this gene was 

consistent across both StgB and B35 genotypes (Table 7.4).  

 

A gene encoding CBF4 (DREB1D) was found to be expressed to lower levels in both 

StgB lines and there was an enrichment of a DRE-related element amongst the down-

regulated genes (Tables 7.5 & 7.7). This is surprising given that the overexpression of 

DREB1D transcription factors usually results in drought tolerance (see Chapter 6) and it 

would be important to validate these expression changes using qPCR.  One possible 

explanation for this is that other CBF/DREB independent pathways are active in 

promoting drought tolerance in the StgB line so the plant shuts down this CBF/DREB 

pathway.  

 

As can be seen in Tables 7.4 & 7.5, not all of the genes that were differentially 

expressed between StgB and R16 were also changed in B35. This could be due to slight 
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differences in experimental conditions; plants used for the StgB microarray experiment 

were grown over the autumn/winter whereas those for the initial B35 vs. R16 experiment 

were grown over the summer. Whilst the plants were grown in a temperature-controlled 

greenhouse, it is possible that changes in day length/outside light levels could have 

caused differences in gene expression between experiments. As already mentioned in 

Chapter 4 small changes in experimental conditions can dramatically alter gene 

expression. Alternatively, these differences could be due to the StgB QTL interacting 

differently with the different genetic backgrounds i.e. R16 compared to B35. Perhaps 

there is an additive effect when these genes are in the R16 background thus resulting in 

the differential expression of a greater number of genes.  

 

Only eight of the 182 differentially expressed genes were actually within the StgB QTL 

interval itself. It is possible that polymorphisms in the regulatory regions of these genes 

are responsible for their differential expression. These genes could affect the expression 

of further downstream genes and thus directly underlie the QTL. However, it is also 

possible that polymorphisms in the coding region of other genes within the QTL could 

impact on protein function and hence alter the expression of downstream targets.  

 

7.3.5 Conclusions 

 

Previously, the identification of genes underlying the stay-green trait has been hampered 

by the large regions encompassed by the QTLs. This resulted in difficulties identifying 

candidate genes among the hundreds of genes in the QTL regions.  Here, by combining 

QTL analysis with gene expression analysis, promising results relating to the Stg1 and 

StgB QTL have been obtained.  
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CHAPTER 8  

Discussion 
 

8.1 Implications of the work 
 

Sorghum is an essential crop grown on arid and semi-arid soils of some of the world’s 

poorest countries. It is well adapted to the harsh environments in which it lives however; 

relatively few studies have investigated the molecular basis of these adaptations. The 

research described in this thesis sought to improve our understanding of the 

mechanisms of stress tolerance in this important crop and, in particular, improve our 

understanding of the mechanisms underlying the stay-green trait for drought tolerance. 

This chapter will briefly recap the results of this work and provide suggestions for future 

investigations. 

 

8.2 Identification of stress-induced transcripts 
 

Transcripts that were either up- or down-regulated in response to drought stress, heat 

stress and combined heat and drought stress in sorghum were identified (see Chapter 3). 

Many of these transcripts were involved in similar processes to those already identified 

as important in Arabidopsis, suggesting conservation of mechanisms across species.  

Some genes were changed in response to one stress type only i.e. changed in response 

to the combined stress but not the individual stress types. This suggests that, similar to 

what has previously been found in Arabidopsis and tobacco (Rizhsky et al., 2002; 

Rizhsky et al., 2004), sorghum has a unique response to combined stress. There were 

however, some elements of the combined stress response, which were unique to 

sorghum, such as the upregulation of specific transcription factors and signalling genes. 

A functional characterization of the genes and pathways identified could lead to new 
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targets for the enhancement of plant stress tolerance, which will be particularly important 

in the face of climate change and the increasing prevalence of these abiotic stress types. 

 

8.3 The stay-green trait is likely to be associated with improved 
drought avoidance and drought tolerance mechanisms 

 

Genes that are associated with proline and betaine biosynthesis, glutathione S-

transferase activity and the regulation of stomatal numbers and aperture were expressed 

to higher levels in the B35 stay-green line compared to the senescent R16 line (see 

Chapter 4). Both proline levels and GST activity was found to be higher in B35 

compared to R16 under well-watered and drought-stressed conditions. In addition, B35 

was found to lose water more slowly and have reduced numbers of stomata (see 

Chapter 5). Furthermore, two signalling genes, DREB1A and SDIR1, were expressed to 

higher levels in B35. SbSDIR1 was shown to function in a similar way to SDIR1 in 

Arabidopsis and is likely to play a role in the regulation of stomatal aperture (see 

Chapter 6).  

 

Senescence is delayed in the stay-green lines under drought conditions at the post-

flowering stage (Rosenow et al., 1983). One explanation for this is that the stay-green 

lines have better drought avoidance mechanisms (see Chapter 1) meaning that they 

don’t experience drought stress until a later stage thus are able to stay-green for longer 

(Figure 8.1). The findings presented here suggest that stay-green lines have reduced 

transpiration, at least in part due to reduced stomatal numbers. The increased 

expression of genes such as SDIR1 may also contribute to this by reducing stomatal 

aperture. This is supported by previous findings suggesting stay-green lines have 

increased transpiration efficiency (Vadez et al., 2011; Borrell et al., 2014a). This reduced 

transpiration could enable the conservation of water in the soil prior to flowering meaning 

that more water is available at the post-flowering stage for grain filling. Similar findings 

were reported for stay-green Miscanthus genotypes, whereby the stay-green genotype 

Sin-H6 appeared to have a lower leaf conductance (Clifton-Brown et al., 2002). Stay-

green in pearl millet is also associated with reduced leaf conductance under both 

drought-stressed and well-watered conditions (Kholova et al., 2010). Previous studies 

have suggested that the reduced size of upper leaves and reduced tillering in the stay-
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green lines prior to flowering could also contribute to reduced water usage meaning that 

more water is available in the soil profile during grain filling (Borrell et al., 2014a; Borrell 

et al., 2014b). Improved water extraction due to an improved rooting system could 

additionally contribute to improved drought avoidance (Borrell et al., 2014a). Stay-green 

lines are able to maintain a higher relative water content (RWC) when subject to drought 

stress (Xu et al., 2000a). Based on the results presented here, it is possible that the 

accumulation of proline could contribute to improved osmotic adjustment and hence 

enable the maintenance of cellular water content.  

 

An alternative explanation for the delayed senescence is the stay-green lines face the 

same level of stress, yet are better able to cope with the stress-induced damage i.e. 

have improved drought tolerance (Figure 8.1). The higher GST activity identified here 

could help to provide that protection. Furthermore, perhaps the higher expression of 

DREB1A could lead to the higher expression of other genes with protective properties. 

The B35 line was shown here to be more tolerant to oxidative stress induced by methyl 

viologen (Chapter 5). In addition, previous studies have suggested that the stay-green 

lines are more tolerant to heat stress at the seedling stage (Burke et al., 2010). This 

suggests that the drought tolerance of the stay-green lines is not just a product of 

improved water conservation but could also be due to better cellular protective 

mechanisms. As a result, it is likely that the stay-green trait arises as a result of both 

improved drought tolerance and drought avoidance mechanisms (Figure 8.1).  
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Figure 8.1 - Model showing the mechanisms that could underlie the stay-green trait in 

sorghum. Drought avoidance mechanisms including reduced transpiration and increased 

proline could mean that the stay-green lines don’t experience drought stress until a later 

stage. As suggested by others, increased water extraction and reduced tillering could 

additionally contribute to the conservation of water (Borrell et al., 2014a).  Drought 

tolerance mechanisms including increased proline and GST activity and the activation of 

DREB1A could additionally provide cellular protection. This means that even when the 

plants experience drought stress senescence is delayed.  
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In addition to delayed drought-induced senescence, stay-green lines also exhibit a 

delayed onset and a reduced rate of developmental senescence. This is evidenced in 

this work by the observed differences in chlorophyll content between the varieties 

(Chapter 4) and in the work of others (Xu et al., 2000a). It is possible that the same 

genes/processes that delay the drought-induced senescence also delay the 

developmental senescence. There is considerable cross talk between drought stress 

responses and leaf senescence. Among the 43 transcription factors reportedly induced 

during senescence, 28 are also induced by stress treatment (Lim and Nam, 2007). It 

would be interesting to identify homologs of these genes in sorghum and analyse their 

expression patterns in this microarray data. For example, a gene that is usually induced 

by senescence could be expressed to lower levels in the stay-green line indicating a 

potential role for that gene in conferring the trait.  

 

Reactive oxygen species (ROS) accumulate following drought stress and during 

senescence. Reduced ROS accumulation or improved ROS scavenging could therefore 

delay both developmental and drought-induced senescence. Indeed, suppression of 

ROS production markedly delays leaf senescence and enhances drought tolerance 

(Rivero et al., 2007). The observed increase in GST activity could help to reduce the 

effects of ROS thus may contribute to the delay in both drought-induced and 

developmental senescence. It would be interesting to measure ROS levels in the stay-

green and senescent varieties during senescence to determine whether there are 

additionally differences in ROS production. Alternatively, given that stay-green is such a 

complex trait, different genes/processes may be involved in regulating the delayed 

developmental and stress-induced senescence pathways separately. For example, the 

altered expression of one group of genes could result in the delay in drought-induced 

senescence whereas the altered expression of a different group of genes could cause 

the delay in developmental senescence.  

 

8.4 Analysis of the Stg QTLs 
 

The increased expression of both DREB1A and SDIR1 in B35 compared to R16 was 

found to be associated with the Stg1 QTL (see Chapter 7). A gene showing homology to 

a negative regulator of DREB expression in Arabidopsis (MYB15) was found to lie within 
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the Stg1 QTL interval. As discussed in Chapter 7, a polymorphism in the coding region 

of this gene could impact upon protein function thus enabling higher levels of DREB1A 

expression. In addition SDIR1 was found to have two DRE-elements in its promoter. 

This gives rise to the model shown in Figure 8.2. This model is, of course, highly 

speculative and as detailed in Chapter 7 a number of experiments are required before 

any firm conclusions can be made. Genes encoding late embryogenesis abundant 

proteins, GSTs and SDD1, which are expressed to higher levels in B35, also contain a 

DRE-element 500 bp upstream of the start of transcription. It is possible that these 

genes also lie downstream of DREB1A and are at least partially under the control of the 

Stg1 QTL. If this is the case we would perhaps expect higher GST activity and reduced 

stomatal numbers in the Stg1 lines and in the future it would be interesting to investigate 

this.  

 

Genes that are up- and down-regulated in the StgB QTL lines compared to the 

senescent R16 parent were identified using microarrays. ABA2 was expressed to higher 

levels in B35 (see Chapter 7), homologs of which are involved in ABA biosynthesis 

(Gonzalez-Guzman et al., 2002). One potential mechanism that could underlie the StgB 

QTL is shown below (Figure 8.3). However, as discussed in Chapter 7 this model 

requires validation and there may be other contributory genes/processes.  
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Figure 8.2 - Speculative model for the mechanism underlying the Stg1 QTL. Sequence 

polymorphisms in the MYB6 coding region (which shows homology to MYB15 in 

Arabidopsis) could alter the activity of this protein thus enabling higher expression of 

DREB1A. This could lead to the activation of protective genes including SDIR1 thus 

resulting in reduced transpiration and delayed senescence and drought tolerance (see 

Chapter 7).  
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Figure 8.3 - Speculative model for the mechanism underlying the StgB QTL. Sequence 

polymorphisms in a gene within the QTL interval could affect the protein function of a 

regulator of ABA2 expression. This could lead to increased ABA2 activity, which could 

enable the production of higher levels of ABA. The higher ABA could contribute to 

reduced transpiration and also the activation of protective genes containing an ABRE-

element in their promoter. This could ultimately lead to the delayed senescence and 

drought tolerance phenotype in the StgB introgression lines. 
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8.5 Limitations of the approach taken 
 

The approach taken has been successful insofar as a number of biological processes 

that could be important for trait expression have been identified. However, it is not 

without its limitations. Firstly, the sorghum genome was published relatively recently, in 

2009 (Paterson et al., 2009). This means that the genome has not been extensively 

annotated; many of the gene annotations given have not been verified and genes have 

been incorrectly assigned to GO categories. For example, two genes were found here to 

be incorrectly categorized as peroxidases (see Chapter 5). This meant that the 

sequences of all genes discussed and taken forward for further analysis first had to be 

compared to the Arabidopsis genome to check for sequence homology. Additionally, a 

level of subjectivity was required for the selection of genes and processes for further 

study. Those taken forward were selected based on their known role in conferring 

drought tolerance in other species and their ease of measurement. However, this does 

mean that other genes with a less obvious role may have been over-looked, potentially 

due to poor gene annotation. Similarly, if only a single gene involved with a particular 

process was expressed to higher or lower levels then it wouldn’t have been identified by 

the GO analysis. This means there are likely to be other genes that are contributing to 

the stay-green trait that have not been discussed here.  

 

8.6 Future work 
 

A number of specific future experiments have already been suggested in the relevant 

discussions section within each results chapter. This section will propose further general 

experiments that could further enhance our understanding of the stay-green trait. 

 

8.6.1 Investigations into other candidate genes/processes 

 

Many candidate genes and processes have been identified. However, due to the time 

constraints of the project not all of these could be taken forward for further investigation. 

Other genes that would be interesting to investigate in more detail in the future include 

Sb10g027100.1, which shows homology to the Arabidopsis NAC transcription factor 
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NTL4 and is significantly (p<0.05) down-regulated by ~40 fold in B35 compared to R16 

(see Chapter 4). Given that the Arabidopsis NTL4 mutant exhibits delayed senescence 

and drought tolerance (Lee et al., 2012), it would be very interesting to characterize the 

sorghum gene through the use of transgenic lines and to assess linkage of this gene to 

the Stg QTLs. It would also be interesting to further characterize Sb01g037580.1, which 

encodes a universal stress protein (USP). Homologs of this gene have similarly been 

shown to confer drought tolerance and increased chlorophyll content when 

overexpressed (Loukehaich et al., 2012) and this gene shows linkage to StgB (see 

Chapter 7). Furthermore, a gene associated with trehalose biosynthesis, TPS 

(Sb02g033420.1), was expressed to higher levels in B35 (see Chapter 4). Trehalose 

provides protection to plants under stress conditions (Goddijn and van Dun, 1999). It 

would be valuable to measure and compare trehalose levels in the different varieties to 

determine whether the increase in the expression of this gene is sufficient to increase 

trehalose levels.  Singular enrichment analysis (SEA) of the genes expressed to higher 

levels in B35 identified an enrichment of the ‘water transport’ GO category (see Chapter 

4). The genes within this category encode aquaporins, which are involved in water 

transport. Aquaporin transcripts were found to be upregulated in Arabidopsis and rice 

under drought stress and have been suggested to facilitate water flow towards critical 

cell types. Studies in barley suggest the increased abundance of aquaporin transcripts in 

response to drought promotes residual growth of the leaf in response to stress (Maurel 

et al., 2008). For this reason, it would additionally be interesting to study these genes in 

more detail.  

 

8.6.2 Investigations into the heat stress response 

 

It has been suggested that stay-green sorghum lines also have improved heat tolerance 

compared to other lines (Burke et al., 2010). It would be interesting to investigate the 

basis of this heat tolerance and to assess whether it is associated with one Stg QTL in 

particular. Genes and processes that underlie heat tolerance may overlap with those 

underlying drought tolerance. For example, higher GST activity or increased DREB1A 

expression (Agarwal et al., 2006) could provide protection against both stress types. A 

number of heat shock proteins were expressed to higher levels in B35 and could confer 

protective properties (see Chapter 4). Genes that are heat-inducible may be involved 
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with providing heat tolerance. One way to gain an insight into the heat tolerance of the 

stay-green lines would be to compare the genes that are expressed to higher levels in 

B35 with the list of heat-inducible genes (see Chapter 3) and then to monitor the 

expression of these in the different varieties over time following heat stress. This could 

help to pinpoint genes that are causal to the phenotype. 

 

8.6.3 Investigations into other stay-green lines/QTL introgressions 

 

The majority of the work described has focussed on a comparison between the stay-

green B35 variety and the senescent R16 variety. B35 was selected as a source of stay-

green for this study due to the fact that most of the QTL mapping experiments have used 

this line (Tuinstra et al., 1997; Subudhi et al., 2000; Xu et al., 2000). However, it will 

important to investigate gene expression changes in other stay-green sources. Many of 

the genes taken forward for further investigation, including SDIR1 and DREB1A were 

also expressed to higher levels in the stay-green E36-1 line. E36-1 is thought to be a 

unique source of stay-green; while some stay-green QTLs map to the same loci as in 

B35, others were only identified from E36-1 (Haussmann, 2002). This is reflected in the 

gene expression differences identified here in that 1442 genes were differentially 

expressed only in the E36-1 vs. R16 comparison and not in the B35 vs. R16 comparison 

(see Chapter 4). This suggests E36-1 may have some unique mechanisms of drought 

tolerance and it will be important to investigate these in the future. 

 

There are multiple genetic differences between the B35 and R16 sorghum lines, not all 

of which will necessarily be associated with the stay-green trait. For this reason, the use 

of near isogenic lines (NILs), which differ genetically in one or more Stg QTL only will be 

of key importance for identifying the genes causal to the phenotype. Any gene 

expression differences between a QTL introgression line and the recurrent parent should 

be linked directly to those particular QTL. Through the analysis of upstream regulatory 

regions of the changed genes, causal genes within the QTL itself could be pinpointed. 

For example, the identification of significantly enriched promoter elements amongst the 

differentially expressed genes could lead to the identification of transcription factors 

within the QTL interval that could bind to these motifs. This approach has been 

informative for the StgB line (see Chapter 7) and so it would be interesting to carry out 
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similar analysis on the other QTL lines. To facilitate the identification of causal genes 

within the QTL interval, up- and down-regulated genes could be clustered based on their 

expression levels. Genes that cluster together will have similar expression levels 

therefore are likely to be regulated in the same way. Promoter motif analysis of these 

clusters could then aid the identification of regulatory genes that may lie within the QTL.  

 

8.6.4 Investigations at different developmental stages 

 

In this work gene expression changes at two developmental stages have been 

investigated: 14 DAS and 50 DAS. Many of the genes investigated further such as 

P5CS2 and SDIR1 were changed at both stages. However, there were of course genes 

that were only changed at one developmental time point. Considering the complexity of 

the trait, it is likely that some genes/processes are present throughout the life of the stay-

green plants whereas others are important at one developmental stage only. It would be 

interesting to follow gene expression throughout development up until the post-flowering 

stage to better understand how different patterns of expression might lead to the delayed 

senescence. For example, some additional genes may be differentially expressed only 

at the post-flowering stage and these could also play an important role.  

 

8.6.5 Investigations of stay-green roots 

 

In this study gene expression in the leaves was investigated because the stay-green 

phenotype is most visible in this tissue. However, given that stay-green is an adaptation 

to a lack of soil water and that this signal is detected by the roots, it would also be 

important to investigate changes in root gene expression. There has been limited work 

on roots in sorghum. Some evidence suggests that some Stg QTLs in sorghum overlap 

with QTLs for nodal root angle and it has been suggested that this could enhance water 

uptake in the stay-green lines (Mace et al., 2012; Borrell et al., 2014). It will therefore be 

important to investigate the role of the roots and root signalling in conferring the 

phenotype. 
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8.6.6 Sorghum transformation 

 

The development of a stable sorghum transformation system will be essential for the 

characterization of any candidate genes. The method developed by Liu et al. (2014) and 

carried out at the University of Queensland was not successful in producing transgenic 

lines here, perhaps due to the lethality of the genes tested (see Chapter 6). It will be 

important to develop a sorghum transformation system in Durham to test candidate gene 

function in the future. Alternatively, a monocot such as wheat, which has a well-

developed transformation system, could be transformed with the sorghum genes. 

Compared to Arabidopsis transformation the transferal of a monocot gene into another 

monocot is likely to give a better representation of gene function.  

 

8.6.7 Investigations into protein changes and post-translational modifications  

 

The majority of the work described herein has focussed on gene expression. As 

discussed in Chapter 7, the causal gene within the Stg QTL will not necessarily have 

altered gene expression. Instead the molecular polymorphism causing the physiological 

QTL could be in the coding region, leading to variations in protein stability, enzymatic 

activity or post-translational modification, or possibly even introduce a premature stop 

codon. For this reason, it would additionally be interesting to carry out a proteomics 

study to complement the transcriptomic data. Additionally, a study of changes in 

metabolites would give an indication of changes in enzymatic activity. 

 

8.6.8 Full genome sequencing 

 

Full genome sequencing of the Stg QTL introgression lines and the R16 recurrent parent 

would enable the identification of polymorphisms that could be responsible for the trait. 

This would complement the gene expression data as the identified SNPs could then be 

linked directly to the changes in downstream gene expression. Research into the stay-

green trait in sorghum is ever-evolving and so it will be important to continue to compare 

my gene expression data to any improved mapping data/sequencing data obtained by 

other groups. 
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8.7 Conclusions 
 

In conclusion, this work has identified genes, pathways and processes that are 

associated with stress tolerance in sorghum. In particular, insights into the mechanisms 

underlying the stay-green trait have been obtained. Further investigation into these 

identified processes and into their linkage with the known Stg QTLs will be essential. 

This will both enhance our knowledge of this important crop and facilitate selection for 

the trait in the future.  
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APPENDIX A  

 Solution and media recipes  
 
 

A.1 Edward’s extraction buffer 
 
200 mM Tris-HCL, pH 7.5, 
250 mM NaCl, 
25 mM EDTA, pH 8.0, 
0.5% SDS. 
 
A.2 TE buffer 
 
10 mM Tris, pH 8.0, 
1 mM EDTA. 
 
A.3 Dellaporta extraction buffer 
 
50 mM Tris pH 8, 
10 mM EDTA, pH8 
100 mM NaCl, 
1% SDS, 
10 mM β-Mercaptoethanol, 
 
A.4 TBE running buffer 
 
1.1 M Tris 
900 mM borate  
25 mM EDTA (pH 8.0) 
 
A.5 GST extraction buffer 
 
100 µM Tris-HCl, pH 7.5, 
2 mM EDTA, 
14 mM β-Mercaptoethanol, 
5% PVPP (w/v). 
 
A.6 Callus induction medium (CIM) 
 
MS powder with Gamborg vitamins (Murashige and Skoog, 1962) 
30 g/L sucrose 
8 g/L agar 
1 g/L L-proline,  
1 g/L L-asparagine,  
1 g/L potassium dihydrogen- phosphate (KH2PO4), 
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1 µM CuSO4, 
1 mg/L 2,4-D. 
 
 
A.7 Osmotic medium (OM) 
 
MS powder with Gamborg vitamins (Murashige and Skoog, 1962) 
30 g/L sucrose 
8 g/L agar 
0.2 M D-sorbitol  
0.2 M D-mannitol. 
 
A.8 Regeneration medium 
 
MS medium with 
1 mg/L BAP,  
1 mg/L IAA,  
1 µM CuSO4. 
 
A.9 Rooting medium 
 
MS medium with  
1 mg/L NAA,  
1 mg/L IAA,  
1 mg/L IBA,  
1 µM CuSO4. 
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APPENDIX B  

Vector maps and cloning strategies 
 

 

B.1 pENTR/D-TOPO 

 

Vector map of pENTR/D-TOPO with gene of interest (GOI) incorporated. Not1 and 

Asc1 restriction sites were used to check for the incorporation of the correct insert. 
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B.2 pK2WG7 

 

Vector map of pk2GW7 with GOI incorporated. This plasmid was used for over-

expression in stable transgenic Arabidopsis lines. The plasmid was produced using 

Gateway recombination (see Materials and Methods 2.4.4.4). 
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B.3 pIPKb002 

 

Vector map of the destination vector pIPKb002 with GOI incorporated.  This plasmid 

was used for over-expression in stable Sorghum transgenic lines. SbfI and SpeI were 

used to check for the incorporation of the correct insert. The plasmid was produced 

using Gateway recombination (see Materials and Methods 2.4.4.4). 
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B.4 P5CS promoter::luciferase reporter construct 

 

Vector map showing the P5CS promoter::luciferase reporter construct. This was 

used to compare the activity of the P5CS promoter from the R16 and B35 varieties 

(see Chapter 7). 
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B.5 Cloning strategy for the incorporation of the R16 P5CS promoter upstream 

of the luciferase reporter.  
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Appendix B.6 Cloning strategy for the incorporation of the B35 promoter 

construct upstream of the luciferase promoter.  

 

The R16 P5CSprom::LUC construct  was linearized using BstXI and BsaA1 

restriction sites. A pre-designed gblocks fragment (ordered from Integrated DNA 

Technologies) was then cloned into the vector using Gibson’s assembly (see 

Materials and Methods 2.4.4.5) to give the B35 P5CSprom::LUC construct. 
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APPENDIX C  

 Oligonucleotides 
 

The following files can be found on the enclosed CD-ROM. 

 

C.1 Primers used for PCR and sequencing 

 

C.2 Primers used for qPCR using the Applied BioSystems System 

 

C.3 Taqman primers and probes used for qPCR using the Fluidigm system 
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APPENDIX D  

Gene lists and GO terms 
 
 

The following files can be found on the enclosed CD-ROM. 

 

D.1 Genes differentially expressed in response to drought (>2 fold in all three 

replicates) 

 

D.2 Genes differentially expressed in response to drought only (>2 fold in all 

three replicates)  

 

D.3 -Genes differentially expressed in response to heat (>2 fold in all three 

replicates) 

 

D.4 Genes differentially expressed in response to heat only (>2 fold in all three 

replicates)  

 

D.5 Genes differentially expressed in response to combined heat and drought 

(>2 fold in all three replicates) 

 

D.6 Genes differentially expressed in response to combined heat and drought 

only (>2 fold in all 3 reps)  

 

D.7 Genes differentially expressed in response to all three stress types (>2 fold 

in all three replicates)  

 

D.8 Gene Ontology (GO) terms enriched (p<0.05) in the genes differentially 

expressed in response to drought 

 

D.9 Gene Ontology (GO) terms enriched (p<0.05) in the genes differentially 

expressed in response to heat 

 

D.10 Gene Ontology (GO) terms enriched (p<0.05) in the genes differentially 

expressed in response to combined heat and drought 
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D.11 Gene Ontology (GO) terms enriched (p<0.05) in the genes differentially 

expressed in response to combined heat and drought only 

 

D.12 Genes upregulated (>2 fold; P-value <0.05) in B35 vs. R16 at 50 DAS 

 

D.13 Genes downregulated (>2 fold; P-value <0.05) in B35 vs. R16 at 50 days 

DAS 

 

D.14 Genes upregulated (>2 fold; P-value <0.05) in E36 vs. R16 at 50 DAS 

 

D.15 Genes downregulated (>2 fold; P-value <0.05) in E36 vs. R16 at 50 DAS 

 

D.16 Genes upregulated (>2 fold; P-value <0.05) in B35 vs. R16 AND E36 vs. 

R16 at 50 DAS 

 

D.17 Genes downregulated (>2 fold; P-value <0.05) in B35 vs. R16 AND E36 vs. 

R16 at 50 DAS 

 

D.18 Gene Ontology (GO) terms enriched (p<0.05) in the genes upregulated in 

B35 vs. R16 at 50 DAS 

 

D.19 Gene Ontology (GO) terms enriched (p<0.05) in the genes upregulated in 

E36-1 vs. R16 at 50 DAS 

 

D.20 Genes upregulated (>2 fold in all three replicates) in B35 following 

drought stress at 14 DAS 

 

D.21 Genes downregulated (>2 fold in all three replicates) in B35 following 

drought stress at 14 DAS 

 

D.22 Genes upregulated (>2 fold in all three replicates) in R16 following 

drought stress at 14 DAS 

 

D.23 Genes downregulated (>2 fold in all three replicates) in R16 following 

drought stress at 14 DAS 
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D.24 Genes upregulated (>2 fold in all three replicates) in E36 following 

drought stress at 14 DAS 

 

D.25 Genes downregulated (>2 fold in all three replicates) in E36 following 

drought stress at 14 DAS 

 

D.26 Genes upregulated (>2 fold in all three replicates) in S35 following 

drought stress at 14 DAS 

 

D.27 Genes downregulated (>2 fold in all three replicates) in S35 following 

drought stress at 14 DAS 

 

D.28 Genes upregulated in all three replicates (>2 fold) following drought in 

B35 only  

 

D.29 Genes downregulated in all three reps (>2 fold) following drought in B35 

only  

 

D.30 Genes upregulated in all three replicates (>2 fold) in B35 vs. R16 at 14 

DAS 

 

D.31 Genes downregulated in all three replicates (>2 fold) in B35 vs. R16 at 14 

DAS 

 

D.32 Genes upregulated in B35 vs. R16 (FC>2; P-value<0.05) and in a known 

stay-green QTL (based on CSGR annotation) 

 

D.33 Genes downregulated in B35 vs. R16 (FC>2; P-value<0.05) and in a known 

stay-green QTL (based on CSGR annotation) 

 

D.34 Genes differentially expressed in B35 vs. R16 (FC>2; P-value<0.05) and in 

a known stay-green QTL (based on Stg QTL locations provided by Santosh 

Despande
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APPENDIX E  

Stg QTL introgression lines 
 

 
Genotype Introgression name Number assigned 

StgB K359-3 White-1 1 
StgB K369-2-1 2 
Stg4 K260-2-1 3 
Stg4 k279-1-1 4 
Stg4 K271-1-1 5 

Stg3+StgB K375-1-1 6 
Stg3+StgB K382-1-1 7 
Stg4+StgB K456-1-1 8 

QTL from E36-1 RSG4008 9 
QTL from E36-2 RSG04012 10 

R16 IS18482 11 
B35 IS40606 12 

E36-1 IS30469 13 
StgA S35SG06003 14 
StgA S35SG06005 15 
StgA S35SG06010 16 
StgB S35SG06011b 17 
StgB S35SG07003 18 
Stg1 S35SG06032 19 
Stg1 S35SG06040 20 
Stg2 S35SG06028 21 
Stg2 S35SG06029 22 
Stg3 S35SG06014 23 
Stg3 S35SG06020 24 
S35 IS36556 25 

 
 


