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Abstract 

The plant mediator transcriptional co-activator complex consists of in the region of 

34 protein subunits that collectively link promoter-bound transcription factors with 

the activity of RNA polymerase II. Among them, Mediator subunit 16 (MED16; also 

known as SENSITIVE TO FREEZING6, SFR6) plays a major role in regulating the 

expression of specific genes in response to a variety of stresses including cold, 

drought, UV and pathogen infection. The structure of plant mediator has been 

hypothesised to be similar to that of yeast mediator but has not yet been proven.  

Considering the structure of the yeast mediator complex, in which MED14, MED16 

and MED2 occupy positions in the so-called “tail”, we would predict a close physical 

interaction between MED14, MED2 and MED16 in the plant complex. Therefore, 

this study investigated whether MED2 and MED14 control the same regulons as 

controlled by MED16. Results showed the necessity of these two proteins, like 

MED16, in gene regulation under cold, drought, and UV stresses and revealed a clear 

correlation between reduced levels of tolerance and impaired gene expression under 

cold and UV but not drought.  

To investigate whether particular domains within MED16 might be responsible for 

the activation of specific genes under different stresses, complementation 

experiments were used to test the ability of three different truncated MED16 versions 

to restore cold-, dark- and UV-inducible expression. Some truncated versions were 

able to complement the mutant but the degree of complementation varied amongst 

transgenic lines. 

Experiments were conducted to study the function of KIN10, an interacting protein 

of MED16 that appears to play a role similar to MED16 in regulation of stress genes 

and tolerance. The necessity of KIN10 in the control of a subset of the stress-

inducible genes controlled by MED16 was demonstrated. Co-immunoprecipitation 

experiments revealed that regions within the N-terminal part of MED16 are essential 

for interaction with KIN10.  

Key words: Mediator Complex, SFR6/MED16, MED2. MED14, KIN10, cold, UV, 

dark/starvation, drought/desiccation 
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Chapter 1 
 

Introduction 
 

Crop yields are limited by environmental stresses that prevent them from realising 

their full yield potentials. Environmental stresses can be caused by one or several 

factors primarily the extremes of temperature, drought, salinity and radiation, which 

all have detrimental effects on plant growth and development that affect yield. As 

plants are sessile in nature, they are always challenged with various stresses in their 

immediate environment. Extended exposure to different varying environmental 

stresses results in altered metabolism, growth and development in plants (Claeys and 

Inzé, 2013). In order to tolerate and survive these extreme conditions plants have 

evolved defence mechanisms particularly those involving sensing various stress 

conditions and triggering appropriate biochemical pathways (Lawlor, 2013). The 

sensing of biotic or abiotic stress conditions induces signalling cascades that activate 

ion channels, kinase cascades, and accumulation of hormones such as salicylic acid, 

ethylene, jasmonic acid, and abscisic acid (Verslues et al., 2006). These signals 

ultimately induce expression of specific subsets of defence genes that lead to the 

accomplishment of tolerance and survival (Milla et al., 2003). 

Enhanced stress tolerance in crop plants is vital to cope with changing environmental 

conditions to secure food supplies for the increasing world population (Godfray et 

al., 2010). This is far more challenging with the limited availability of arable lands 

that is further known as land areas with optimum conditions that accounts for only 

10% of total arable lands (Tuteja et al., 2012). Engineering altered expression of 

genes vital under different stress conditions frequently leads to improvements in 
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stress tolerance (Yamaguchi-shinozaki and Shinozaki, 1994, Collins et al., 2008) and 

consequently plant performance. 

Sensitive to Freezing 6 (SFR6) was identified as an essential protein for gaining 

freezing tolerance through cold acclimation and this was demonstrated using the sfr6 

mutant of Arabidopsis, which is unable to acclimate to freezing temperatures 

(McKown et al., 1996, Warren et al., 1996). This study aimed to investigate the role 

and function of SFR6 and its interacting proteins in regulating abiotic stress-

responsive gene expression and tolerance in Arabidopsis. This chapter reviews major 

topics related to the present study covering plant stress, the plant mediator complex 

and Snf1-related protein kinase1 (SnRK1). 

1.1 Plant abiotic stress 

Any factor exerted by the environment that opposes the optimal functioning of 

organisms is known as an abiotic stress. Abiotic stresses like heat, cold, freezing, 

drought, salinity, flooding or ozone damage cellular structures and adversely affect 

processes that play a major role in determining productivity of crop yields and also 

the differential distribution of the plant species across different geographical 

locations (Araus et al., 2002, Verslues et al., 2006). Plants have complex and 

dynamic systems of response to stress stimuli which are much more intricate than 

found in animals despite the absence of an immune system in plants. The vital reason 

for this is that plants do not possess the ability to simply move away from the region 

of stressful stimuli (Jenks and Hasegawa, 2008). 

1.1.1 Low temperature stresses  

Low temperature stress is one major environmental factor that limits the agricultural 

productivity of plants and leads to substantial crop losses. It has a huge impact on the 
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survival and geographical distribution of plants. Plants differ in their tolerance to 

chilling (0–15 0C) and freezing (<0 0C) temperatures (Knight and Knight, 2012).  

Plants from temperate regions are chilling tolerant, although possess varying degrees 

of  tolerance to freezing but can increase their freezing tolerance by being exposed to 

chilling temperatures, a process known as cold acclimation (Levitt, 1980, 

Thomashow, 1999, Struhl, 1998). By contrast, plants of tropical and subtropical 

origins, including many crops such as rice, maize and tomato, are sensitive to 

freezing stress and lack the capacity for cold acclimation. Most molecular studies on 

plant responses to cold stress are focused on the mechanism of cold acclimation 

rather than on chilling tolerance (Katterman, 1990, Mahajan and Tuteja, 2005).  

Numerous physiological, biochemical and molecular changes occur during cold 

acclimation, including up regulation of antioxidative mechanisms, synthesis and 

accumulation of cryo-protectant solutes and proteins, and changes that protect and 

stabilize cellular membranes (Chinnusamy et al., 2007, Thomashow, 1999) . To 

achieve these changes, the transcriptional activation and repression of genes by low 

temperature are of central importance (Thomashow, 1999). The reprogramming of 

gene expression results in the accumulation not only of protective proteins but also of 

hundreds of metabolites, some of which are known to have protective effects 

(Chinnusamy et al., 2007, Fowler and Thomashow, 2002, Thomashow, 2001). 

Chilling stress results from cold temperatures that are enough to produce injury 

without forming ice crystals in plant tissues, whereas freezing stress results in ice 

formation within plant tissues (Thomashow, 1999). Unlike in chilling, freezing 

injuries triggers cell death by cytoplasmic dehydration and ice formation in the cell 

wall. The exposure of plants to temperatures below freezing results in water loss and 

cellular dehydration in addition to the formation of extracellular ice (Thomashow, 
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1999). Therefore, freezing tolerance is correlated with tolerance to dehydration 

which is caused by drought or salinity. Freezing induced dehydration can cause 

various disturbances in membrane structure (Steponkus and Webb, 1992). The 

cellular dehydration induced by freezing is the central cause of the damage, however, 

additional factors can also contribute to freezing damage. The growth of ice crystals 

can cause mechanical damage to cells and tissues and low temperatures can cause 

dehydration, protein denaturation and disruption of macromolecular complexes (Guy 

et al., 1998, Thomashow, 1999). Freeze-induced dehydration can cause different 

forms of membrane lesions, relatively high freezing temperatures (between -2oC and 

-4oC) cause expansion–induced lysis due to osmotic contraction and expansion that 

occurs with freezing and thawing (Steponkus et al., 1993, Uemura and Steponkus, 

1997). Temperatures between -4oC and -10oC cause freeze-induced lamellar-to-

hexagonal II phase transitions, an inter-bilayer event involving the fusion of cellular 

membranes. Temperature beyond -10oC other forms of sever membrane damages 

occur including fracture jump lesions (Thomashow, 1998, Steponkus et al., 1993, 

Uemura and Steponkus, 1997). The production of Reactive Oxygen Species (ROS) is 

one of the responses common to different types of stress that cause damage to 

various macromolecules in cells. Low temperatures can cause excessive production 

of ROS and therefore tolerance to cold also correlates with effective systems for 

elimination of ROS in response to oxidative stress (Hirt and Shinozaki, 2004, Cook 

et al., 2004). 

Despite clear role in protection against the desiccation imposed by freezing, 

nevertheless, recent evidence indicates that some of the molecular changes that occur 

during cold acclimation are also important for chilling tolerance (Dong et al., 2006, 

Gong et al., 2002, Lyons, 2012). In other words, it appears that chilling tolerance is 
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exhibited by temperate plants is not entirely constitutive, and at least part of it is 

developed during exposure to chilling temperatures. 

1.1.2 Drought stress  

Drought is the one of the most unfavourable environmental factors that affects plant 

productivity. The severity of drought is unpredictable as it depends on many factors 

such as occurrence and distribution of rainfall, evaporative demands and moisture 

storing capacity of soil (Wery et al., 1993, Aroca, 2012, Zhu, 2002, Yordanov et al., 

2000). Plants have developed specific acclimation and adaptation mechanisms to 

survive under soil water deficit either by completing the life cycle before severe 

stress or imposing resistance mechanisms (Yordanov et al., 2000). Resistance 

mechanisms include drought avoidance and drought tolerance, the latter of which 

depends on the maintenance of cell turgor by accumulating osmolytes and soluble 

sugars (Umezawa et al., 2004, Thomashow, 1999, Shinozaki et al., 2003). Low 

molecular weight osmolytes including glycinebetaine, proline and other amino acids, 

organic acids and polyols are crucial to sustain cellular functions through 

maintaining an osmotic balance under dehydration conditions (Shinozaki et al., 2003, 

Thomashow, 1999, Umezawa et al., 2004). The avoidance mechanism is achievable 

by the maintenance of high water potential in plant tissue despite soil water deficit. 

This is achieved by improved water uptake under stress, the ability to hold water 

within the plant, reduction of water loss through reductions in leaf area and stomatal 

and cuticular conductance (Mahajan and Tuteja, 2005, Newton et al., 2006, Jarvis, 

1976). Under drought conditions plant growth regulators including auxin, 

gibberrellic acid, abscisic acid, cytokinin and salicylic acid modulate plant stress 

responses and polyamines, citrullines and antioxidants lead to the reduction of the 
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adverse effects caused by water deficit (Farooq et al., 2009). At the molecular level 

several drought responsive transcription factors and genes have been identified such 

as dehydration responsive element binding proteins, aquaporin and dehydrins.  

1.1.3 UV stress  

Living organisms are highly vulnerable to some of the wavelengths in the light 

spectrum, particularly to the 280-320 nm range, and thus greatly affected by the 

depletion of the ozone layer. Damage occurs in the ozone layer leads many harmful 

rays reaching on earth and among them ultraviolet (UV) spectrum has gained 

importance over other spectrum (Hollósy, 2002, Robberecht, 1989). The UV 

spectrum is divided into three major regions UV-C (220-280 nm), UV-B (280-320 

nm) and UV-A (320-400 nm) hence UV-B radiation is the most energetic component 

of sunlight to reach the earth’s surface and various anthropogenic activities lead to 

accelerate the depletion of ozone layer. UV-B radiation is known to be harmful to 

living organisms that damage DNA, proteins, lipids and other cell membranes. DNA 

is one of the most important targets of both UV-B and UV-C irradiation that results 

in multitude of DNA photoproducts (Sancar and Sancar, 1988) which may cause 

mutations during replication (Jiang and Taylor, 1993). DNA-protein cross-links, 

DNA strands break and either deletion or insertion of base pairs can also be induced 

by UV exposure (Smith, 1992). Proteins have a high capacity to absorb UV-B 

radiation due to the presence of aromatic amino acids such as phenylalanine, 

tryptophan, tyrosine and histidine. UV-induced damage to amino acids has been 

observed in free amino acids and in proteins (Khoroshilova et al., 1990) owing to 

photooxidation, transfer of energy from one amino acid to another neighbouring one 

or UV-induced photolysis (Creed, 1984). These photochemical changes results not 
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only the modifications in amino acid residues but also the inactivation of whole 

protein and enzymes (Grossweiner, 1984, Prinsze et al., 1990). Lipids can also be 

photochemically modified by UV absorbance especially phospho and glycolipids, 

which are the main components of plant cell membranes and are destroyed by UV 

radiation in the presence of oxygen (Kramer et al., 1991, Panagopoulos et al., 1990). 

1.1.4 Starvation stress  

Photosynthesis is the only process in plants that converts solar energy to chemical 

energy, and drives the synthesis of sugars from carbon dioxide and water. Sugars 

provide the main respiratory substrate for the generation of primary energy and 

metabolic intermediates that are used for the synthesis of macromolecules. In 

addition, proper functioning of many proteins and lipids is required to bind to sugars 

(Lee, 1992) and carbohydrates are important as physiological signals that repress or 

activate many plant genes that are important in metabolic reactions (Morkunas et al., 

2012).  

Sugar starvation initiates substantial physiological and biochemical changes in order 

to sustain metabolic processes and respiration in plants and therefore it is important 

to study on conditions that leads sugar depletions. The sugar signalling network has 

the ability to regulate gene expression as well as other signalling pathways (Rolland 

et al., 2002, Baena-Gonzalez, 2010, Jang and Sheen, 1994, Koch, 2004, Gibson, 

2005, Gonzali et al., 2006). Many studies related to sugar sensing and signalling in 

plants have shown that glucose, fructose, sucrose and trehalose play roles as 

signalling molecules (Koch, 1996, Müller et al., 1999, Rolland et al., 2006, Cho and 

Yoo, 2011, Morkunas et al., 2012). In addition to the involvement in signalling of 

cell wall invertases, sucrose and glucose transporters (and specific sugar receptors), 
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and hexokinase (an enzyme phosphorylates hexoses) (Sheen et al., 1999, Smeekens, 

2000, Loreti et al., 2001, Harrington and Bush, 2003, Moore et al., 2003, Rolland et 

al., 2002, Rolland et al., 2006, Koch, 2004, Ramon et al., 2008, Smeekens et al., 

2010, Hanson and Smeekens, 2009, Cho et al., 2009), evidence has been provided to 

show the involvement of a variety of protein kinases, including Snf1-related kinases 

(SnRKs) (Rolland et al., 2006, Smeekens et al., 2010) calcium-dependent protein 

kinases (CDPKs), mitogen-activated protein kinases, and protein phosphatases in 

sugar signal transduction (Rolland et al., 2002, Sinha et al., 2002).  

Dark conditions lead to a significant decrease in the efficiency of photosynthesis in 

leaves that synthesise and export carbohydrates, thereby reducing the supply of 

carbohydrates to non-photosynthetic tissues that import carbohydrates for respiration, 

growth, and development (Yu, 1999). Therefore sugar starvation in plants initiates 

changes in substantial physiological and biochemical processes by limiting 

respiration and other essential metabolic processes in plants (Yu, 1999). 

Furthermore, plants under sugar starvation initiate changes in cellular processes to 

recycle cellular constituents and in order to achieve this, dramatically change their 

patterns of gene expression (Yu, 1999, Buchanan‐Wollaston et al., 2005). 

1.1.5 Oxidative stress 

Oxidative stress arises through diverse metabolic routes in plants subjected to 

different abiotic stress conditions (Apel and Hirt, 2004). It occurs particularly under 

extreme temperature conditions, where the production of free radicals or Reactive 

Oxygen Species (ROS) is noticeably increased (Hasanuzzaman et al., 2011a, 

Hasanuzzaman et al., 2011b, Mirza Hasanuzzaman et al., 2013). High levels of ROS 

lead to problematic damage in plants while at low levels, ROS can act as signalling 
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molecules by acting as friend or foe concept. Recent studies have indicated that 

under temperature stress, generation of ROS including singlet oxygen (O2), 

superoxide radical (O2
•–), hydrogen peroxide (H2O2) and hydroxyl radicals (OH•), is 

accelerated, thus inducing oxidative stress (Mittler, 2002, Potters et al., 2007). In 

plant cells, ROS are constantly produced as a result of aerobic metabolism in the 

chloroplast, mitochondria and peroxisomes (Apel and Hirt, 2004, Sharma et al., 

2012), however, the chloroplast is considered as the main source of ROS . Under 

optimal environmental conditions, the antioxidant system in plant cells effectively 

protects them from possible deleterious effects of ROS, however, under stress 

conditions ROS generation is enhanced, thus the cellular antioxidant capacity can be 

overwhelmed and oxidative stress occurs (Hippeli and Elstner, 1996, Noctor and 

Foyer, 1998). Recent studies have shown that ROS could also play a main role in 

mediating important signal transduction events that leading to a central role in stress 

perception and protection (Suzuki and Mittler, 2006). 

Singlet oxygen (O2) is formed in the chloroplast during photoinhibition, a light-

induced reduction of photosynthetic capacity of a plant and PS II electron transfer 

reactions, and this radical directly oxidises proteins, polyunsaturated fatty acids and  

DNA (Karuppanapandian et al., 2011b, Karuppanapandian et al., 2011a). Superoxide 

radicals (O2
●–) are formed in photooxidation reactions and photorespiration, various 

oxidase reactions taking place in chloroplasts, mitochondria and plasma membranes. 

Hydroxyl radicals (OH●) are produced as a consequence of the reaction between 

H2O2 and O2
●–, reactions of H2O2 with Fe2+ and decomposition of O3 in the apoplastic 

space (Moller et al., 2007, Halliwell, 2006). Hydroxyl radicals can potentially react 

with all constituents of cells particularly biomolecules like proteins, lipids, DNA and 

pigments. Hydroxyl radicals are not considered to have any signalling function 
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although the products of their reactions can elicit signalling responses (Moller et al., 

2007, Halliwell, 2006). All the above effects of ROS result in the autocatalytic 

peroxidation of membrane lipids and pigments, modification of membrane 

permeability and its functions (Xu et al., 2006). 

During temperature stress, ROS levels can increase, which can result in significant 

damage to cell structure (Mittler et al., 2004). During heat stress it may disturb the 

homeostatic balance of the cell and promote lipid peroxidation, either by increasing 

the production of reactive oxygen species or by decreasing the O2 radical scavenging 

ability in the cell (Bowler et al., 1992). In extreme cold conditions, which are beyond 

the plant tolerance level, the activities of antioxidant enzymes are reduced and the 

accumulation of ROS occurs in higher amounts. Production of ROS rigorously 

affects electron transfer and biochemical reactions (Suzuki and Mittler, 2006, 

Solanke and Sharma, 2008). Low temperature-induced oxidative stress (Prasad, 

1996) decreases phospholipid content, increases lipid peroxidation and free and 

saturated fatty acid content (Sato et al., 2011), leading to damage to lipids, proteins, 

carbohydrates and DNA (Gill and Tuteja, 2010). Furthermore in extreme cases of  

ROS-induced oxidative stress, alterations in these enzyme activities and other 

biochemical reactions ultimately affects plant physiological processes including 

photosynthesis, respiration, nutrient movement and transpiration, which negatively 

affects plants survival or causes ultimate death (Apel and Hirt, 2004).  

Like environmental stresses, some herbicides have the ability to induce oxidative 

stress (Camp et al., 1994) in plants. The modes of action of herbicides are different 

according to the active compound and they may act by inhibiting cell division, 

photosynthesis, or amino acid production or by mimicking natural auxin hormones, 

which regulate plant growth, causing deformities in new growth (Ashton, 1981, 
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Devine et al., 1992). However, nearly half of the commercially important herbicides 

act by interrupting photosynthetic electron flow (Ashton, 1981, Devine et al., 1992), 

where the specific sites of action of many of these agents have been found to lie 

either at the reducing side of photosystem I (eg: paraquat/methyl viologen) or in the 

quinone acceptor complex in the electron transport chain between the two 

photosystems (eg: diuron/dichlorophenyl dimethyl urea/DCMU). DCMU only blocks 

electron flow from photosystem II, and has no effect on photosystem I or other 

reactions in photosynthesis, such as light absorption or carbon fixation (Lavergne, 

1982).  

 

1.2 Gene expression to combat stresses 

Under adverse or limiting growth conditions, plants respond by activating tolerance 

mechanisms at the molecular, tissue, anatomical, and morphological level. This is by 

adjusting the membrane structure and the cell wall architecture, by altering the cell 

cycle and rate of cell division, and by the regulation of metabolic processes 

(Atkinson and Urwin, 2012). At a molecular level expression of many genes is 

induced or repressed by abiotic stress, involving a precise regulation of extensive 

stress-gene networks (Grativol et al., 2012, Shinozaki and Yamaguchi-Shinozaki, 

2007) in the cells. Products of those genes may function in stress responses and 

tolerance at the cellular level. Proteins involved in biosynthesis of osmoprotectant 

compounds, detoxification enzyme systems, proteases, transporters, and chaperones 

are among the many proteins encoded by such genes and which have roles in direct 

protection against stress. Microarray studies provide a powerful source to identify 

gene expression profiles of plants exposed to abiotic stresses such as cold, drought, 
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high salinity or ABA treatment (Kreps et al., 2002, Seki et al., 2002a, Seki et al., 

2001, Seki et al., 2002b).  

Transcription factors play key roles in gene expression by regulating expression of 

downstream genes as trans-acting factors via specific binding to cis-acting elements 

in the promoters of target genes. Analysis of stress-responsive gene promoters has 

identified many cis- and trans-acting elements involved in the transcriptional 

responses of stress-responsive genes (Furihata et al., 2006, Lindemose et al., 2013). 

Approximately 7% of the Arabidopsis genome is comprised of coding sequences that 

correspond to transcription factors (TFs) (Udvardi et al., 2007).  These TFs are 

divided into seven major TF families, namely basic leucine zipper (bZIP), 

APETALA 2/ethylene-responsive element binding factor (AP2/ERF), 

NAM/ATAF1/CUC2 (NAC), WRKY, MYB, Cys2(C2)His2(H2)-type zinc fingers 

(ZFs), and basic helix-loop-helix (bHLH). At present most of the research studies on 

TFs that regulate abiotic stress responses has mainly focused on single TFs and their 

specific functions. However, many of the protein studies indicated that TFs also 

function as hubs, which involve many interacting proteins, by networking different 

pathways (Lindemose et al., 2013).  

1.2.1 Gene expression in response to cold and drought stresses 

In response to cold the initial signalling includes changes in the membrane and 

cytoskeleton of cells (Örvar et al., 2000), which are accompanied by transiently 

increased levels of intracellular Ca2+ (Knight et al., 1996, Knight et al., 1991) and 

activation of protein kinase cascades, leading to the activation of TFs ultimately 

activating the expression of target genes in response to cold (Knight and Knight, 

2012, Rehem et al., 2011). Shinozaki and Yamaguchi-Shinozaki (2007) reviewed 
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that more than half of drought-inducible genes were also induced by high salinity 

and/or ABA treatments in Arabidopsis. Interestingly, only 10% of the drought-

inducible genes were induced by cold stress, despite the fact that dehydration is 

considered to be a major part of freezing stress. In another study, a cDNA microarray 

was constructed using ~1700 independent rice cDNAs isolated from three cDNA 

libraries prepared from rice exposed to drought, cold, or high salinity stresses 

(Rabbani et al., 2003, Venu et al., 2013). The microarray was used to identify 

putative genes that respond to these stresses in rice; stress-inducibility was confirmed 

using RNA gel-blot analysis. This comparison confirmed that 73 of these genes were 

truly stressed inducible (Rabbani et al., 2003). Around 40% of drought- or high 

salinity-inducible genes were also induced by cold stress. However, the expression of 

>98% of the high salinity and 100% of ABA inducible genes were induced by 

drought stress. All these data suggest that in drought and salt stress signalling they 

use many of the same pathways. The promoters of many cold and dehydration 

responsive genes in Arabidopsis have been shown to contain a DNA regulatory 

element, the CRT (C-repeat)/DRE (dehydration-responsive element) (Baker et al., 

1994), which confers both cold and dehydration responsive gene expression 

(Yamaguchi-shinozaki and Shinozaki, 1994). 

Shinozaki et al. (2003) classified the products of the drought-inducible genes that 

were identified through the microarray analyses in Arabidopsis into two major 

groups; functional proteins and regulatory proteins. The functional proteins 

comprised molecules such as chaperones, late embryogenesis abundant (LEA) 

proteins, osmotin, antifreeze proteins mRNA-binding proteins, key enzymes for 

osmolyte biosynthesis, water channel proteins, sugar and proline transporters, 

detoxification enzymes, and various proteases that are essential in function in abiotic 
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stress tolerance. The regulatory proteins are important in regulation of signal 

transduction and stress-responsive gene expression and included various 

transcription factors, protein kinases, protein phosphatases, enzymes involved in 

phospholipid metabolism, and other signalling molecules such as calmodulin-binding 

protein. The transcription factors could control the expression of stress-inducible 

genes in either a dependent or independent manner in many gene networks in 

Arabidopsis. Rabbani et al. (2003) reported the products of stress inducible genes 

identified in rice can also be classified as functional and regulatory proteins as 

similar to Arabidopsis.  

Various studies have led to the identification cold-regulated plant genes, especially in 

model plant Arabidopsis, known as COR (cold on-regulated), KIN (cold induced), 

LTI (low-temperature induced) or RD (responsive to dehydration) genes 

(Thomashow, 1999). More recently, microarray data have shown that several 

hundreds of genes are up regulated when plants are transferred from warm to cold 

conditions (Fowler and Thomashow, 2002, Kilian et al., 2007, Robinson and Parkin, 

2008). C-Repeat (CRT)-binding factors (CBFs) (Stockinger et al., 1997), also known 

as dehydration responsive element binding protein1 (DREB1s) (Baker et al., 1994, 

Shinozaki and Yamaguchi-Shinozaki, 2000, Thomashow, 1998, Llorente et al., 

2002), are upstream transcription factors that bind to the CRT/DRE (drought-

responsive element) (Tran et al., 2004) promoter cis element and activate the 

expression of these cold-responsive genes (Jaglo-Ottosen et al., 1998, Thomashow, 

1999, Liu et al., 1998).  

Three genes encoding members of the CBF/DREB1 family, CBF1, CBF2 and CBF3 

(or DREB1b, DREB1c, and DREB1a, respectively), are transcriptionally induced 

within 15 min of transferring plants to cold temperatures, followed at ~2 h by 
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expression of the CBF regulon of target genes, which are those genes whose 

promoters contain the CRT/DRE regulatory element (Liu et al., 1998, Shinwari et al., 

1998, Gilmour et al., 1998). Several cis-elements in the CBF2 promoter have been 

found to be involved in the cold induction of CBF2 (Zarka et al., 2003). Inducer of 

CBF Expression1 (ICE1), abHLH (basic helix–loop–helix) protein, is an upstream 

transcription factor that binds to the CBF3 promoter and is required to activate CBF3 

expression upon cold stress (Chinnusamy et al., 2003) and an R2R3-type MYB 

transcription factor, AtMYB15, was found to interact with ICE1 and to play a 

negative role in regulating the expression of CBF genes under cold stress (Agarwal et 

al., 2006). It appears that cold induction of the three CBF genes (Gilmour et al., 

1998, Liu et al., 1998) is controlled by a set of redundant and interacting bHLHs 

(ICE1 and other related bHLHs) and MYB transcription factors. Some of these 

transcription factors cross regulate each other (Chinnusamy et al., 2007). In addition, 

ZAT12 negatively regulates the expression of the CBF genes (Vogel et al., 2005). 

CBF 2 is a negative regulator of CBF1 and CBF3 (Novillo et al., 2004, Novillo et al., 

2007) and in contrast to CBF2, CBF1 and CBF3 are not involve in regulating other 

CBF genes and positively regulate cold acclimation. 

Ectopic expression of the CBFs in Arabidopsis results in constitutive expression of 

downstream cold-inducible genes, even at warm temperatures, and in increased 

freezing tolerance (Jaglo-Ottosen et al., 1998). The CBF regulon includes genes that 

act in concert to improve freezing tolerance. Overexpression of the CBF/DREB1 

transcription factors in transgenic Arabidopsis plants results in the accumulation of 

compatible solutes that have cryoprotective activities, including proline, sugar, and 

raffinose (Cook et al., 2004, Gilmour et al., 2000). Overexpression of the 

CBF/DREB1 proteins in Arabidopsis results in an increase in freezing tolerance at 
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the whole plant level in both non acclimated and cold acclimated plants (Gilmour et 

al., 2000, Jaglo-Ottosen et al., 1998, Kasuga et al., 1999, Liu et al., 1998) and 

enhances the tolerance of plants to dehydration caused by either imposed water 

deficit or exposure to high salinity (Kasuga et al., 1999, Liu et al., 1998). Studies 

indicate that the CBF cold-response pathway is conserved in Brassica napus (Jaglo 

et al., 2001) and that components of the pathway are present in wheat and rye 

(Pellegrineschi et al., 2004), which cold acclimate, as well as in tomato (Chinnusamy 

et al., 2007, Zhang et al., 2004b). Genome sequence analysis in rice identified ten 

CBF/DREB1 homologues and four DREB2 homologues (Shinozaki and Yamaguchi-

Shinozaki, 2007) and overexpression of OsDREB1A in Arabidopsis shown the 

similar responses in gene expression and stress tolerance as in rice (Dubouzet et al., 

2003). Ito et al. (2006) revealed that overexpression of either OsDREB1 or 

AtDREB1 could improve both  drought and chilling tolerance (Ito et al., 2006) in 

rice which suggests that the functionally similar transcription factors in 

dicotyledonous and monocotyledonous plants in abiotic stress tolerance.  

Drought stress responses are regulated via both ABA dependent and independent 

signal transduction pathways. Two cis-acting elements ABRE (ABA-responsive 

element) and DRE (dehydration responsive element)/CRT(C Repeat; described 

above) elements are present in the promoters of many drought-, high salinity-, and 

cold-inducible genes; for instance RD29A (also known as COR78 or LTI78) 

(Yamaguchi-shinozaki and Shinozaki, 1994, Yamaguchi-Shinozaki and Shinozaki, 

2005) and the ABRE element functions in ABA-dependent expression whilst the 

DRE/CRT element acts to effect ABA-independent gene expression (Fig. 1.1).  

The CBF/DREB1 and DREB2 (Yamaguchi-Shinozaki and Shinozaki, 2005) are the 

two transcription factors belonging to the ERF/AP2 family, bind to DRE/CRT 
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elements having, A/GCCGAC as their conserved DNA-binding motif. The 

CRT/DRE is the common transduction path way (Figure 1.1) which activate in both 

cold and drought and rapidly induced by cold stress, the products of which activate 

the expression of target cold stress-inducible genes (Jaglo-Ottosen et al., 1998, 

Kasuga et al., 1999, Liu et al., 1998).  
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In contrast to DREB1, DREB2 genes are induced by dehydration and activate other  

 

 

 

 

Figure1.1: Transcriptional regulatory networks of abiotic stress signals and gene 
expression. (From Shinozaki and Yamaguchi-Shinozaki (2007) 

In the ABA-dependent pathway, ABRE functions as the major ABA-responsive cis-acting 

element. AREB/ABFs are AP2 transcription factors involved in this process that regulate the 

expression of RD29B and RD20A under drought. MYB2 and MYC2 are two important 

transcriptional factors regulate in ABA-inducible expression of the RD22 gene in drought. 

MYC2 is important in JA-inducible gene expression under biotic stress and wounding 

conditions. The NAC transcription factor (RD26) is involved in ABA- and JA-responsive gene 

expression, acting in similar manner to MYC2 TFs. 

In ABA-independent pathway, DRE is mainly involved in the regulation of genes not only by 

drought and salt but also by cold stress as explained above in this section. DREB1/CBFs are 

involved in cold-responsive gene expression whilst DREB2s are important transcription factors 

in dehydration and high salinity stress-responsive gene expression. The other ABA-independent 

pathway is controlled only by drought and salt through the NAC and HD-ZIP transcription 

factors are involved in ERD1 gene expression. 
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genes involved in drought stress tolerance (Liu et al., 1998). Liu et al. (1998) 

reported that overexpression of DREB2 in transgenic plants, unlike overexpression 

of DREB1 (CBF) did not improve stress tolerance, suggesting post translational 

modification of DREB2 proteins must be necessary for their function. Subsequent 

findings revealed that, an active form of DREB2 was able to transactivate the target 

stress inducible genes and improve drought tolerance in Arabidopsis (Sakuma et al., 

2006). Though the DREB2 protein is expressed under normal growth conditions, it 

can be activated by osmotic stress through the post-translational modifications 

(Shinozaki and Yamaguchi-Shinozaki, 2007).  

 The existence of another ABA-independent pathway regulating dehydration 

responses was suggested due to the lack of responsiveness of several drought-

inducible genes to either cold or ABA treatment (Shinozaki and Yamaguchi-

Shinozaki, 2007) (Figure 1.1) These genes were termed ERD genes, and they were 

induced not only by dehydration but also upregulated during natural senescence and 

dark-induced senescence (Nakashima et al., 2007). The ERD1 promoter contains cis-

acting element(s) involved both in ABA-independent stress gene expression as well 

as in senescence-activated gene expression. Simpson et al. (2003) reported that two 

different novel cis acting elements in the ERD1 promoter were identified that 

involved under dehydration stress induction and in dark-induced senescence. Further 

Apel and Hirt (2004) identified the DNA-binding proteins interacting with these cis 

elements as NAC transcription factors. 

The core cis acting element in ABA-dependent drought-inducible gene expression is 

the ABRE (Fig. 1.1) and members of basic leucine zipper (bZIP) transcription 

factors, AREB/ABF, can bind to ABRE element, thereby activating ABA-dependent 

drought-responsive gene expression (Choi et al., 2000, Uno et al., 2000). To regulate 
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the expression of one such gene, RD29B, ABA-mediated phosphorylation of the 

AREB/ABF protein is essential and overexpression of ABF3 or AREB2/ABF4 

resulted ABA hypersensitivity (Kang et al., 2002). Fujita et al. (2005) and Furihata et 

al. (2006) reported that transgenic plants expressing a phosphorylated form of 

AREB1 with multisite mutations demonstrated the induction of many ABA 

responsive genes without exogenous application of ABA. 

The transcription factors MYB2 and MYC2 (RD22BP1) were shown to bind cis-

elements and co-operatively activate expression of RD22, another drought- and 

ABA-responsive gene (Abe et al., 2003, Abe et al., 1997) (Fig. 1.1). Accumulation of 

endogenous ABA is required for both MYB and MYC proteins to be synthesized for 

the up-regulation (Abe et al., 2003, Abe et al., 1997). The Overexpression of MYB2 

and MYC2 resulted in an ABA-hypersensitive phenotype as well as improved 

osmotic stress tolerance in transgenic Arabidoposis plants (Abe et al., 1997). 

Apart from AREB/ABF, MYB2 and MYC2 transcription factors, a NAC TF, RD26, 

was identified, that is transcriptionally induced under drought, high salinity, ABA 

and JA treatments (Fujita et al. (2004). It was observed that ABA-responsive and 

other stress-inducible genes were upregulated in RD26-overexpressing lines and 

repressed in RD26 repressor/mutant lines suggesting that RD26 overexpressors were 

hypersensitive to ABA, and RD26 dominant repressor transgenic were insensitive to 

ABA. Fujita et al. (2004) also reported that common ABA-inducible genes such as 

LEA, RD, ERD, COR, and KIN are not target genes of RD26, whereas many JA-

inducible genes are target genes of RD26. This suggests that the role of RD26 is in 

mediating cross talk between ABA signalling and JA signalling during drought and 

wounding stress responses. 
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1.2.2 Gene expression in response to UV stress 

High levels of UV radiation cause a wide range of morphological and physiological 

effects on plants that affect plant growth and development through the damage that 

occurs in plant cells, DNA and proteins (see section 1.1.3). However low levels of 

UV-B are important to initiate regulatory responses in plants that can be considered 

as photomorphogenic in nature (Jenkins, 2009). Therefore UV-B leads to the 

induction of two distinct signalling pathways, depending on the wavelength, duration 

of exposure and fluence rate that can be categorised as photomorphogenic signalling 

and nonspecific signalling pathways leading to induction of target specific genes and 

downstream responses (Jenkins, 2009, Wade et al., 2001). Signalling and responses 

will be determined by the degree of plant adaptation and acclimation to UV-B and 

interactions with other stimuli; each pathway initiates specific responses, although 

there are some overlaps between pathways. So far, the relative importance of 

different UV-B signalling pathways under natural growing environments has not 

been well-studied, however, there is evidence for the interactions between short and 

long wavelength of UV-B pathways (Shinkle et al., 2004), interactions between 

photomorphogenic UV-B and other light signalling pathways (Wade et al., 2001, 

Ulm and Nagy, 2005), negative regulation of photomorphogenic UV-B signalling by 

defence signalling pathways (Logemann and Hahlbrock, 2002) and interactions 

between UV-B and other environmental stimuli (Caldwell et al., Caldwell et al., 

2007).  

Non specific UV-B signalling pathways are activated by non-physiological and 

highly varying environmental signals that alter the levels of CPDs (cyclobutane 

pyrimidine dimmers), ROS, and wound/defence signalling molecules. Hidema and 
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Kumagai (2006) reported that some plants maintain low level of DNA damage which 

could activate signalling through maintaining low levels of ROS. 

Above ambient levels of UV, plants are subjected to stress and therefore have 

evolved  UV-induced mechanisms of protection and repair such as synthesis and 

accumulation of UV absorbing pigments, mainly anthocyanins (Stapleton and 

Walbot, 1994, Bieza and Lois, 2001, Mazza et al., 2000) and use of UV-A photons to 

repair most of UV-B  induced DNA damage (Britt, 1996). In plants, UV stress elicits 

changes in gene expression by both up regulation and down regulation, especially of 

genes involved in the general phenylpropanoid and flavonoid biosynthesis pathways 

(Jordan et al., 1998). The phenylpropanoid pathway in plants is important for 

biosynthesis of UV-B protecting pigments and genes that encode the enzymes of this 

biosynthesis pathway have been shown to be up regulated at the transcript level 

(Jordan, 1996). In addition to pathogenesis related (PR1) genes, the defensin 

(PDF1.2) genes are also up regulated under UV-B stress. Many genes associated 

with photosynthetic proteins such as D1 protein (psbA) of photosystem II proteins, 

chlorophyll a/b binding proteins (Lhcb) and RuBisco (Jordan, 1996, Mackerness et 

al., 1997) are down regulated, however, this may due to direct damage caused by 

UV-B to these genes and more likely to be specific (Jordan, 1996).  

Some UV-B-activated signalling components and signal transduction pathways have 

been identified (Mackerness et al., 1999, Mackerness and Jordan, 1999, Stratmann, 

2003), however, some are not yet well defined. UV-B stimulates the production of 

Reactive Oxygen Species (ROS) (Dai et al., 1997) and it has been proposed that ROS 

not only acts as a destructive free radical but also as a signalling molecules during 

UV-B responses (Green and Fluhr, 1995, Mackerness et al., 1999) (see section 
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1.1.3). Mackerness et al. (1999) have reported that ROS increases in response to UV-

B and are important in regulation of both up and down regulated genes.  

The up-regulation of genes for both flavonoid biosynthesis and pathogensis-related 

genes under UV-B stress conditions suggest that it could be due to the production of 

ROS by both stress (Lamb and Dixon, 1997, Mackerness et al., 1997, Mackerness, 

2000). The functions of ROS in UV-B induced signalling pathways have been 

studied in Arabidopsis (Mackerness et al., 1999, Mackerness, 2000), however, the 

origin of ROS remains unclear. The increased ROS levels lead to increases in levels 

of salicylic acid (SA), jasmonic acid (JA) and ethylene (Figure 1.2), which are 

important for the acquisition of subsequent tolerance against UV-B exposure and 

pathogen infections through the regulation of gene expression (Mackerness, 2000, 

Reymond and Farmer, 1998). Different sources of ROS during plant pathogen 

infections have been proposed (Wojtaszek, 1997), however, much evidence indicates 

that NADPH oxidase, a plasma membrane bound multi-component enzyme, 

analogous to mammalian phagocyte oxidase, is the most likely source in plants 

(Lamb and Dixon, 1997). Mackerness et al. (2001) reported that UV-B exposure 

leads to the production of superoxide (O2
●–) which directly mediates the up 

regulation of PDF1.2 and H2O2 derived from O2
●– mediates the up regulation of PR-

1 and down regulation of Lhcb.   

The source of O2
●– involved in PR-1 induction is NADPH oxidase while it is 

peroxidise that generates the O2
●– responsible in up-regulation of PDF1.2 (figure 1.2)  
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Figure 1.2: Model for the biochemical origin of ROS and signal transduction in 
UV-B mediated stress in plants. The model is modified from Frohnmeyer and 
Staiger (2003) and Mackerness et al. (2001).  
NOS, nitric oxide synthase; GST: Glutathione S-transferase H2O2, hydrogen peroxide; 

PDF1.2, defencin; PR, pathogenesis-related; Chs, chalcone synthase;                  

 

(Frohnmeyer and Staiger, 2003). The origin of ROS involved in photosynthetic gene 

regulation is totally different to the above two sources (Mackerness et al., 2001). Up 

regulation of CHS (Chalcone synthase) in response to UV-B exposure has been 
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studied and it has been suggested that NO (Nitric oxide) is the signalling component. 

Mackerness et al. (2001) reported that source of NO in response to UV-B is most 

likely to be (Nitric oxide synthase) NOS. Long and Jenkins (1998) and SchÄFer et 

al. (1997) reported that regulation of Chs by UV-B radiation is mediated by calcium- 

and calmodulin-dependent pathway (Figure 1.2) 

1.2.3 Gene expression in response to darkness, nutrient starvation and other 

related stresses 

Depletion of carbon source in living cells induces the expression of genes involved in 

remobilization of alternative sources of energy, metabolites and nutrients and inhibits 

other biosynthetic processes and growth (Baena-Gonzalez et al., 2007, Baena-

Gonzalez and Sheen, 2008, Thimm et al., 2004, Contento et al., 2004, Wang et al., 

2003). However, the application of metabolisable sugars has the opposite effect on 

gene expression (Palenchar et al., 2004, Li et al., 2006, Price et al., 2004, Osuna et 

al., 2007) and these observations are supported by the fact that a similar 

transcriptional pattern is associated with different endogenous sugar levels that result 

from different rates of photosynthesis (Baena-Gonzalez and Sheen, 2008, Bläsing et 

al., 2005).  

Many early studies focused on individual genes that respond upon dark starvation or 

removal of sugar from the culture medium (Koch, 1996, Fujiki et al., 2001). 

However, recent studies using transcriptome profiling have revealed the effect of 

sugar deprivation or extended darkness is not limited to activation of several genes 

but it impacts on more than thousands of gene targets (Baena-Gonzalez et al., 2007, 

Contento et al., 2004, Palenchar et al., 2004, Thimm et al., 2004, Usadel et al., 2008, 

Bläsing et al., 2005, Li et al., 2006, Osuna et al., 2007, Price et al., 2004, Wang et al., 
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2003, Buchanan‐Wollaston et al., 2005). Early sugar responses were studied in 

Arabidopsis by investigating global gene expression changes within 30 minutes of 

adding 15 mM sucrose to seedlings that had been starved for two days (Osuna et al., 

2007). 

This study led to identify a set of 165 early responsive genes with marked 

transcriptional changes in the expression of transcription factors, redox regulators, 

components of the proteasome and trehalose metabolism (Baena-Gonzalez et al., 

2007, Osuna et al., 2007). Many of these genes, including trehalose phosphate 

synthase-like proteins (TPS8, TPS9, TPS10 and TPS11) and an autophagy-related 

gene ATG8e (AUTOPHAGY 8E), which are repressed by sucrose after 30min and 

early on in the light period are rapidly expressed during extended dark (night), 

suggesting that even a small drop in energy (carbon) status is enough to trigger 

changes in gene expression (Usadel et al., 2008). Further 2-4 hour extension of dark 

(night) period can results energy deprivation that leads to similar responses under 

prolonged starvation that affects not only transcription but also translation rate and 

cell proliferation.  

The existence of a set of genes that is similarly induced or repressed by several 

different adverse conditions was revealed by expression profiling in which a wide 

range of stress conditions were used to distinguish between ubiquitous and specific 

stress responses (Baena-Gonzalez et al., 2007, Kilian et al., 2007, Ma and Bohnert, 

2007, Swindell, 2006). In addition, the promoters of genes that were affected 

similarly by a variety of environmental stress conditions have been shown to be 

enriched in several cis-motifs (Geisler et al., 2006, Ma and Bohnert, 2007), however, 

the transcription factors (TFs) that recognize these cis elements particularly their  
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upstream regulators and common signal responsible for convergent regulation of 

these genes are still unknown or have not been investigated (Baena-Gonzalez et al., 

2007). 

 

1.3 SNF1/AMPK/SnRK1 kinase complexes in energy regulation and in stress 

signalling 

Adaptation to stress is acquired through both defence mechanisms and stress 

acclimation as well as through the reprogramming of metabolism and gene 

expression to shunt energy sources from growth-related biosynthetic processes 

(Baena-Gonzalez, 2010, Wang et al., 2003). Under stress conditions resources are 

diverted from reproductive processes to metabolic processes that lead to increased 

stress tolerance, thereby managing energy sources not only at the cellular level but 

also at the whole plant level through manipulating biosynthetic processes. Initial 

stress signalling events determine the ability of plants to coordinate a successful 

response. However, failure to cope with these initial stress responses may lead to 

nutrient deprivation, irreversible senescence and ultimately death of cells (Baena-

Gonzalez, 2010). Protein kinases and phosphatases are key components that 

recognise stress signals and transmit these signals to different cellular compartments 

through specialized signalling pathways (Kulik et al., 2011). SNF1-related kinases 

are known as important elements of transcriptional, metabolic and developmental 

regulation in response to stress which initiated by the different signalling cascades 

that helps to make specific metabolic adjustments through energy balance (Baena-

Gonzalez et al., 2007, Baena-Gonzalez and Sheen, 2008). 
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1.3.1 Major functions of SNF1/AMPK/SnRK1 complexes 

The crucial role of the highly conserved protein kinases across the kingdoms, 

SNF1/AMPK/SnRK1 complex is the integration of information relating to nutrient 

availability and regulation of energy outflow with stress signalling to acquire the 

adaptations necessary to maintain the internal energy equilibrium. In yeast, SNF1 is 

essential for the adaptation to glucose limitations where it allows cells to utilise 

alternative carbon sources such as sucrose or ethanol (Celenza and Carlson, 1984, 

Celenza and Carlson, 1986) i.e to make the transition from a fermentative to an 

oxidative metabolism to produce ATP (Hardie et al., 1998) The importance of SNF1 

in yeast during energy shift has been demonstrated using snf1 mutants that are unable 

to grow without glucose, even in the presence of alternative energy sources such as 

glycerol, saccharose or ethanol (Carlson et al., 1981, Schuller, 2003). 

Mammalian AMPK is involved in regulating the cellular energy level and is 

activated by increased levels of AMP/ATP ratio under conditions such as glucose 

deprivation, hypoxia and oxidative stress (Ghillebert et al., 2011, Polge and Thomas, 

2007). After activation, AMPK causes the upregulation of catabolic pathways 

(energy producing) such as glycolysis and fatty acid oxidation and downregulates 

anabolic processes (energy consuming) such as synthesis of proteins, sterols and 

fatty acids (Hardie, 2004, Hardie, 2007, Steinberg and Kemp, 2009). AMPK also 

play a major role in regulating the energy metabolism in whole body by controlling 

energy intake through integrating hormonal and nutritional signals in the 

hypothalamus (Minokoshi et al., 2008a). The control of food intake takes place by 

altering the activity of AMPK, which is inhibited by glycose, leptin (hormone 

regulate energy balance by inhibiting starvation) and insulin, leading to repress food 

intake. Food intake is stimulated by activating AMPK via the action of a hormone  
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called ghrelin (Andersson et al., 2004, Minokoshi et al., 2008b). AMPK is important 

in glucose homeostasis by inhibiting insulin production via secreting islet β cells (da 

Silva Xavier et al., 2000, da Silva Xavier et al., 2003) when blood glucose level is 

low and causing the absorption of 70% of the glucose available in blood into skeletal 

muscles to maintain constant blood glucose level (DeFronzo et al., 1992). 

Impairment of human AMPK is associated with many disorders such as insulin 

resistance, obesity, cancer, cardiovascular diseases, stroke and dementia (da Silva 

Xavier et al., 2003, Minokoshi et al., 2008a, Steinberg and Kemp, 2009) showing the 

vital impact of this enzyme on survival, growth and development at organismal level.   

Although much information is available on energy regulation and the metabolic 

functions of SNF and AMPK protein kinases in yeast and mammalian cells, less is 

known about the physiological functions of SnRK1 in plants. However, findings 

suggest that SnRK1 is involved in the global regulation of metabolism, similarly to 

SNF and AMPK. In addition to the above role, SnRK1 also regulates plant 

developmental processes during germination, reproduction and senescence and the 

development of resistance under salt stress and response to infections caused by 

different pathogens (Baena-Gonzalez et al., 2007, Halford et al., 2003, Rolland et al., 

2002) (Figure 1.3). 
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Figure 1.3 Summary of the metabolic and transcriptional reulation of SnRK1 in 

plants from Polge and Thomas (2007)  

High cellular sucrose and/or low glucose or a dark period activates SnRK1. Upon activation, 

SnRK1 phosphorylates and inactivates four main plant metabolic enzymes namely nitrate 

reductase (NR), which catalyses the first step of nitrogen assimilation into amino acids, 3-

hydroxymethyl-3-methylglutaryl-CoA reductase (HMGR), sucrose phosphate synthase 

(SPS) which catalyses sucrose biosynthesis and trehalose phosphate synthase 5 (TPS5) a key 

enzyme in the synthesis of trehalose-6-phosphate, a signalling sugar that regulates plant 

metabolism and development. Phosphorylation of SnRK1 activates the transcription of 

sucrose synthase and α –amylase and also indirectly stimulates AGPase activity, the key 

enzyme of starch synthesis. Altered expression of SnRK1 complex influence on early growth 

and development of seeds, pollen growth and development and advanced senescence which 

affects plant developmental processes. SnRK1-regulated stress responses have been recorded 

in salt hypersensitivity, plant pathogen interactions and in nematode resistance. 
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1.3.2 SNF1-related protein kinases are conserved in eukaryotes 

The protein kinase complexes of sucrose non fermenting 1 (SNF1), AMP–activated 

protein kinases (AMPK) and Snf1-related protein kinase1 (SnRK1) are a family of 

highly conserved heterotrimeric serine/threonine kinases in all eukaryotes (Halford 

and Hey, 2009, Hardie, 2007, Polge and Thomas, 2007). Serine/threonine enzymes 

are kinases that phosphorylate the -OH group of serine or threonine amino acids, 

which have similar side chains. The structure of these kinase complexes was first 

studied in yeast (Jiang and Carlson, 1997) and it was found that this complex 

consisted of a α (catalytic) subunits and β and γ regulatory subunits. The structural 

similarities were found in mammalian AMPK complexes, which also exist as a 

heterotrimer (Davies et al., 1994, Mitchelhill et al., 1994). These catalytic and 

regulatory units are essential for protein stability and kinase activity. Isolation of β 

and γ type non-catalytic subunits in Arabidopsis (Bouly et al., 1999) further 

confirmed the existence of these complexes throughout the evolution process. In the 

three kingdoms that yeast, mammals and plants belong to nearly 48% of identity 

across the entire sequence of SNF1-related protein kinases is observed; this value 

increases up to 60-65% in kinase domains (Halford et al., 2000, Polge and Thomas, 

2007). In plants another two types of SNF1 related kinases known SnRK2 and 

SnRK3 have been found but the sequence similarity that they share with SNF1 is less 

compared to that of SnRK1 (Polge and Thomas, 2007). Furthermore, they not appear 

to have a role in energy stress responses. Evolutionary conservation of these protein 

kinases extends to the two non-catalytic β and γ subunits (Polge and Thomas, 2007).  

The other two subfamilies, SnRK2 and SnRK3 are known to as plant specific with 

sequence similarity to yeast and mammalian catalytic subunits however clearly more 

diverged (Kulik et al., 2011).   
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1.3.3 Structure of the SNF1/AMPK/SnRK1 kinase complexes 

The number of different SNF1/AMPK/SnRK1 kinase complexes that can be formed 

in each organism is varies hugely and depends on the number of isoforms that exist 

for each of the catalytic (α) and regulatory (β and γ) sub units, In yeast one catalytic 

subunit (SNF1) is encoded, whilst two α isoforms exist in mammals (AMPKα1 and 

AMPKα2) and three in plants (KIN10, KIN11 and KIN12) (see Figure 1.4) (Polge 

and Thomas, 2007). The SnRK1 subfamily shows similarity to SNF1 and AMPKα 

and it has three catalytic isoforms KIN10, KIN11 and KIN12.  

The catalytic subunit is a highly conserved subunit in SNF1/ AMPK/SnRK1 

complexes across three kingdoms particularly at the kinase domain in the N-terminal 

of the protein (Halford et al., 2003, Carling et al., 1994). To confer the kinase 

activity, phosphorylation by upstream kinases in the threonine residue in the 

activation loop of the kinase domain is required (Hedbacker and Carlson, 2008, 

Polge and Thomas, 2007, Steinberg and Kemp, 2009, Halford and Hey, 2009). Next 

to the kinase domain an auto inhibitory regulatory sequence (AIS) is present and this 

makes additional interactions with γ-subunits (Ghillebert et al., 2011, Jiang and 

Carlson, 1997). the end part of the C terminus of the protein consists of a conserved 

leptomycin-sensitive nuclear export sequence (NES) (Kazgan et al., 2010). 

The classical β-type regulatory subunit was studied in yeast and consists of 

characteristic and distinct two domains, ASC (ASsociation with SNF1 complex) 

(Jiang and Carlson, 1997) and a KIS (kinase-interacting terminus) (Jiang and 

Carlson, 1997) with more variable N-termini (Hedbacker and Carlson, 2008) The 

KIS domain (largely but not completely overlaps with GBD (Glycogen-binding 

domain) (Hudson et al., 2003, Polekhina et al., 2003). Three β-type subunits in yeast 
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have been described as SIP1, SIP2 and GAL83 (Jiang and Carlson, 1997) and later 

two AMPKβ1 and AMPKβ2 were found in mammals (Halford et al., 2000). In 

Arabidopsis three β-type subunits have been studied and these have been categorized 

in to two classes; one has all the characteristics of yeast and mammalian β subunits 

(AKIN β1 and AKINβ2) (Bouly et al., 1999) and the other class is composed of 

structurally atypical subunits (AKINβ3), which it has been suggested are plant 

specific subunits (Gissot et al., 2004). AKINβ3 type proteins are truncated versions 

of β subunits and lack the entire GDB as well as the N-terminal region (Polge and 

Thomas, 2007). However AKINβ3 still complements a yeast mutant lacking all β 

subunits (Gissot et al., 2004) suggesting that some of the basic functions have been 

conserved. 

The ASC domain is found at C-terminus of amino acids (Jiang and Carlson, 1997) 

and arbitrates the interaction with the γ-subunit of yeast SNF1 and plant SnRK1 

(Jiang and Carlson, 1997) and both the α and γ subunits in mammalian AMPK (Iseli 

et al., 2005). However, plants expressing AKINβ3, an atypical plant specific β 

subunit which lacks the entire GDB/KIS domain shows the same interaction with 

both  α and γ subunits as in C-terminal ASC domain does in mammalian AMPK. The 

GDB/KIS domain is located in the middle of the protein and mediates the interaction 

with the regulatory domain of the catalytic α-subunits of yeast SNF1 and plant 

SnRK1, but it is not essential in mammalian AMPK to form a stable heterotrimeric 

complex (Hedbacker and Carlson, 2008). The N-termini of β subunits are important 

for membrane targeting and binding (Hedbacker and Carlson, 2008, Steinberg and 

Kemp, 2009) through controlling subcellular localization of the kinase complexes 

that are sequence specific for nucleo-cytoplasamic translocation (Hedbacker and 

Carlson, 2006) or N-myristoylation (Hedbacker and Carlson, 2008, Steinberg and 
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Kemp, 2009). For example under high glucose conditions all β subunits (Sip1, Sip2 

and Gal83) in yeast cells are in the cytoplasm while under low glucose conditions 

Gal83 is translocated to the nucleus whereas Sip1 relocalises to the vacuole and Sip2 

remains in the cytoplasm (Vincent et al., 2001).  Hedbacker and Carlson (2006) 

showed that the N terminus of Gal83, is necessary and sufficient for the SNF1-

independent regulation of nuclear localization while C terminus of Gal83 is involved 

in the regulation of localization through its interaction with Snf1. Fragoso et al. 

(2009) reported that AKIN10 and AKIN11 are targeted to both the cytoplasm and 

chloroplast, while AKINβ1 is mainly located in the nucleus and AKINβ2 is targeted 

to both nucleus the and chloroplast. It was predicted that interaction of catalytic 

subunits with regulatory subunits might localise the complex in different locations 

within the cell in Arabidopsis (Fragoso et al., 2009). 

The γ subunits are characterized by divergent N-termini and two pairs of 

cyatathionine-beta-synthase (CBS) repeats that known as Bateman domains which 

bind to adenosine derivatives (Hedbacker and Carlson, 2008, Minokoshi et al., 

2008b). The yeast γ subunit is known as SNF4 whereas mammals and plants have 

three γ subunits (AMPKγ1, AMPKγ2 and AMPKγ3) and two γ subunits (AKINγ and 

AMPKβγ) respectively. In plants, in addition, to expressing an atypical γ subunit, 

AKIN βγ-type plant-specific proteins resulting from the fusion between a GBD-

related domain of β subunits and γ type proteins are present(Lumbreras et al., 2001). 

This fused GBD related domain mediates the interaction with proteins unrelated to 

SnRK1complexes (Gissot et al., 2006). This AKINβγ is competent to complement 

the yeast snf4 mutant phenotype (Gissot et al., 2006, Kleinow et al., 2000, Lumbreras 

et al., 2001). However the classical AKINγ is unable to complement the yeast snf4 

mutant phenotype (Bouly et al., 1999, Slocombe et al., 2002).  
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Figure 1.4 Structure of the SNF1/AMPK/SnRK1 kinase complexes. From Polge 

and Thomas (2007) 

The structural composition of SNF1/AMPK/SnRK1 kinase complexes among yeast, 

mammals and plants is shown in the figure. These heterotrimers consist of a catalytic α 

subunit and regulatory β and γ sub units and the number of complexes that can be formed in 

each organism is highly variable and this number is determined by the number of different 

isoforms in each major sub unit. In yeast alternative 3 SNF1 complexes (one α subunit, 3 β 

subunits and one γ sub unit), 12 different AMPK complexes (two α subunits, 3 β subunits 

and 3 γ subunits) in human. In plants this number may greatly varying as it consisted with 

plant specific β subunits and  γ subunits apart from classical two α subunits, 2 β subunits and 

one γ subunit. 
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Considering these facts, plants appear to express plant-specific alternative complexes 

that interact with catalytic subunits to form complexes other than the classical 

heterotrimeric complexes. These may lead to plant-specific functional features such 

as autotrophic and sessile lifestyles and cope with more harsh nutritional and 

environmental stress through stable energy homeostasis. 

1.3.4 Regulation of SNF1/AMPK/SnRK1 kinase complexes  

SNF1/AMPK/SnRK1 kinase complexes are known to be regulated by two major 

cascades, phosphorylation and allosteric regulation. However only mammalian 

AMPKs are subjected to allosteric regulation mediated by AMP/ATP ratio, the most 

sensitive indicator of energy status in cells (Hong et al., 2003, Nath et al., 2003, 

Sutherland et al., 2003, Suter et al., 2006, Ghillebert et al., 2011). Phosphorylation , a 

biochemical process is highly conserved for protein kinases, as demonstrated  by 

well characterize cyclin-dependent kinase and mitogen-activated protein kinase 

cascades (Shen et al., 2009). The phosphorylation induces changes in the structural 

confirmation of the protein that move the activation loop and allow access to the 

kinase active site (Shen and Hanley-Bowdoin, 2006). In yeast, SNF1 has been shown 

to be activated by three partially redundant kinases  PAK1, ELM1 and TOS3 

(Hardie, 2007, Hong et al., 2003, Nath et al., 2003, Shen et al., 2009, Sutherland et 

al., 2003). AMPK in mammals is activated by two kinases (Hawley et al., 2003, 

Hawley et al., 2005, Hurley et al., 2005, Woods et al., 2005, Woods et al., 2003a, 

Woods et al., 2003b), of which one, LKB1, is constitutively active (Lizcano et al., 

2004) and the other one CaMKK, is activated by Ca2+ (Hardie, 2007, Steinberg and 

Kemp, 2009, Ghillebert et al., 2011). Either LKB1 or CaMKK could complement the 
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function of mutants lacking PAK1, ELM1 and TOS3 in yeast suggesting that these 

two upstream AMPK kinases are functionally conserved (Hong et al., 2003). 

In Arabidopsis, GRIK1 and GRIK2 (geminivirus Rep interacting kinases) are 

amongst the upstream activating kinases of SnRK1, of which there are homologues 

ranging from one to three in other plant species (Kong and Hanley-Bowdoin, 2002, 

Shen and Hanley-Bowdoin, 2006). GRIK proteins can mainly be found in young 

tissues such as apical meristems, floral buds and immature siliques where cell 

division takes place extensively (Shen and Hanley-Bowdoin, 2006, Shen et al., 

2009). Each of the Arabidopsis GRIK proteins could complement a yeast pak1, elm1 

and tos3 triple mutant, suggesting GRIKs are upstream activators of SnRK1 and 

(Shen et al., 2009) reported that GRIK1 and GRIK2 specifically phosphorylate the 

SnRK1 kinase domain of the α-subunit in in vitro kinase assays. Furthermore they 

revealed that GRIK1 and GRIK2 phosphorylates the conserved Thr residue in the 

SnRK1 activation loop. 

1.3.5 The role of SnRK1 and its catalytic subunits KIN10 and KIN11 in plant 

stress gene regulation in response to energy stress 

Recent work has shown that the evolutionarily conserved Arabidopsis protein 

kinases KIN10 and KIN11 the two isoforms that exists in plant the catalytic α-

subunit control the reprogramming of transcription related to several unrelated stress 

responses such as darkness, sugar and other stress (Baena-Gonzalez et al., 2007, 

Baena-Gonzalez and Sheen, 2008). That is because the expression of large number of 

genes encoding putative TFs and histones and histone deacetylases are highly 

activated or repressed by KIN10 (Baena-Gonzalez et al., 2007, Buchanan‐Wollaston 

et al., 2005, Contento et al., 2004, Thimm et al., 2004). Moreover, KIN10 has an 
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effect on the expression of several hormone-responsive genes, genes involved in 

hormone metabolism as well as many genes that encode other signal transduction 

components including protein kinases, protein phosphatases and calcium modulators 

(Baena-Gonzalez et al., 2007).  

The evolutionarily conserved structure and functional characteristics of SnRK1 

subunits KIN10 and KIN11 have been discussed in detail in the section 1.3.3.   

In comparison to yeast and mammals few components of SnRK1 signalling cascade 

have been studied so far (Baena-Gonzalez, 2010). Under energy deficient stress 

conditions SnRK1, activates an energy-saving program at the cellular level, 

including vast transcriptional reprogramming. This includes the Arabidopsis S-group 

of bZIP TFs, bZIP1, bZIP2/GBF5, bZIP11, bZIP44 and bZIP53 that all are 

downstream effectors which positively affect the expression of a subset of KIN10 

target genes (Baena-Gonzalez et al., 2007, Hanson et al., 2008) (Figure 1.5). S-group 

bZIPs appear to function as heterodimers with the members of the C-group. In 

addition, members of these two groups are differentially expressed in response to 

several stresses, which results a wide range of possible dimer combinations 

(Weltmeier et al., 2009). Therefore the regulation of SnRK1s through the bZIP 

network is more complex (Ehlert et al., 2006, Weltmeier et al., 2009). Evidently the 

S-group bZIP TFs are translationally repressed by sucrose (Rahmani et al., 2009, 

Wiese et al., 2005), providing the support for opposed regulation by energy 

deficiency and abundance.  

Yeast–two-hybrid studies have uncovered other transcriptional regulators that 

interact with SnRK1 and possibly play a role in the SnRK1 signalling cascade 

(Baena-Gonzalez, 2010). A possible interactor of SnRK1 (Baena-Gonzalez, 2010) a 

recently identified plant specific TF, ATAF1, a member of the NAC  family in 
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Arabidopsis which showed that ATAF1 is induced by a wide array of stress 

conditions while plants overexpressing ATAF1 are more tolerant to drought (Wu et 

al., 2009). Lu et al. (2007) reported that SnRK1 acts upstream of the MYBS1 TF to 

induce the α-amylase gene αAmy3 during the early stages of germination to 

guarantee the energy supply to the developing embryos through the degradation of 

starchy endosperm using rice embryos (Lu et al., 2007). The importance of this 

phenomenon is further evident by another study that showed the ability of certain 

rice varieties to tolerate under flooding even during early development stages, which 

might be partly accounted for by its ability to remobilise nutrients from embryos 

(Lee et al., 2009, Lu et al., 2007). Some transcription factors like AZF2 (Arabidopsis 

zinc finger [C2H2 type] protein 2) and ZAT10 are well known to be involved in 

stress responses (Mittler et al., 2006, Sakamoto et al., 2004), however, their direct 

connection to SnRK1 has not been well studied. 

Young-Hee Cho et al. (2012) reported that SnRK1 induced stress responsive gene 

expression through direct association with target gene chromatin and enhance the 

stress tolerance in plants under submerge conditions specifically submergence 

induced ADH1 and PDC1, which are involved in establishing stress tolerance in 

plants. Furthermore they found that this induction was correlated with the direct 

association of SnRK1s with target gene chromatins. Baena-Gonzalez et al. (2007)  

identified seven highly correlated gene expression patterns of KIN10 target genes 

using Arabidopsis ATH1 GeneChips (Palenchar et al., 2004, Buchanan‐Wollaston et 

al., 2005, Thimm et al., 2004) and reported the positive correlation with KIN10 

target genes under various sugar and energy starvation conditions where as strong 

negative correlation with the gene expression profiles obtained from glucose or  
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sucrose treated seedlings and differential CO2 fixing adult leaves in intact plants 

(Palenchar et al., 2004, Price et al., 2004). As previous work reported  (Baena-

Gonzalez et al., 2007) that KIN10 participates in response to an energy-depleting 

hypoxic condition which affected the level DIN6 expression in Arabidopsis, similarly 

Young-Hee Cho et al. (2012), applied the same condition in the presence of rice 

SnRK1, hypoxia-inducible DIN6-LUC reporter and found activity was further 

enhanced in a manner similar to that of KIN10. But the inactive form of OsSnRK1 

suppressed the hypoxia-induced DIN6-LUC activity, confirming the protein kinase 

activity of OsSnRK1 is essential in activating specific stress i.e hypoxia-responsive 

gene expression similar to that in Arabidopsis thereby confirming rice OsSnRK1 

share the sequence and structure similarities with Arabidopsis KIN10.  

As in other organisms SnRK1 kinases in Arabidopsis do not seem to response to 

energy signals (Shen et al., 2009) and this is supported by early findings in spinach  

(Sugden et al., 1999). However sugars, in the form of trehalose-6-phosphate (T6P), 

glucose-6-phosphate (G6P), or other forms, have a repressive effect on activity 

(Figure 1.5) and in addition the specific effect of sugars on the SnRK1 cascade may 

differ among tissues and developmental stages. As an example sucrose has a specific 

effect on the SnRK1 signalling cascade by repressing translation of the S-group bZIP 

TFs. SnRK1 regulation may differ between autotrophic and heterotrophic tissues 

(Baena-Gonzalez, 2010). When evaluating the effects of sugar on SnRK1, the sugar 

concentrations used are most important, and determine whether stress and defence 

responses are triggered (Wingler and Roitsch, 2008). Therefore a particular level of 

sugar supplied in combination with stress may either not be metabolised or not 

trigger the following events the same response as the same amount of sugar supplied 
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under non stresses conditions (Baena-Gonzalez, 2010). Recent studies by Zhang et 

al. (2009) have shown that trehalose-6-phosphate (T6P) potentially inhibits SnRK1 

activity through unidentified regulatory factor (Figure 1.5). 

Figure 1.5: Energy and nutrient sensing in regulation of gene 
expression in response to stress, from Baena-Gonzalez (2010)  

Three different colours used to represent three hypothesised network machineries 

in energy and nutrient sensing. The blue apparatus are hypothesized to constitute a 

network that, upon sensing nutrient and/or energy deficiency, down regulates 

growth-related energy-consuming processes and promotes nutrient remobilization 

and tolerance to stress. The network formed by the orange components is proposed 

to operate in an antagonistic manner to couple nutrient/energy availability with 

growth. Components displaying both colours may function in both networks. 

HXK1C, Hexokinase 1 nuclear complex; Glc, glucose; Tre; trehalose; Suc, 

sucrose; TPS, trehalose-6-phosphate synthase: TPP, trehalose-6-phosphate 

phosphatase; RISC, miRNA-induced silencing complex; TOR, target of 

Rapamycin. Solid lines designate proven connections, whereas dotted lines 

represent hypothetical ones. 
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Rolland et al. (2006) reported that plants are able to sense the presence of sugars 

through various pathways which recognize directly or indirectly the sucrose, glucose, 

fructose or trehalose though most of the fundamental molecular mechanisms are still 

not known. However, Arabidopsis HXK1 (AtHXK1) was identified as a core 

component in plant sugar sensing and signalling (Figure 1.5) with distinct metabolic 

and signalling functions (Cho et al., 2006, Moore et al., 2003). AtHXK1 mediates 

repression by sugars, in the presence of glucose by regulating the photosynthesis-

related CAB (chlorophyll a/b binding proteins) (Chen et al., 2006) of other proteins 

in the nuclear AtHXK1 complex (Cho et al., 2006). Metabolism of glucose through 

HXK1 independent signalling pathway induces, the expression of the defence and 

pathogenesis related PR genes (Xiao et al., 2000). Tobacco plants overexpressing 

HXK1 and HXK2 are more resistant to H2O2 induced programmed cell death (Kim et 

al., 2006) and connection between glucose metabolism and defence was described by 

Wingler and Roitsch (2008). The glycose-6-phosphate (G6P), the product of glucose 

phosphorylation by HXK, represses SnRK1 activity (Figure 1.5) in spinach leaf 

extracts (Toroser et al., 2000).  

Trehalose is a disaccharide that commonly serves as a storage carbohydrate and 

stress protectant (Baena-Gonzalez, 2010). Trehaloses are synthesized in two steps, 

where glucose is converted to trehalose-6-phosphate synthase (TPS) via G6P and 

T6P is converted to trehalose by trehalose-6-phosphate phosphatise (TPP) (Figure 

1.3). Recent research showed that trehaloses accumulate in trace amounts in most 

plants, and are important in metabolism, development and stress responses (Paul et 

al., 2008, Ramon and Rolland, 2007). Arabidopsis overexpressing AtTPS1 are more 

resistant to drought and T6P levels are correlated with improved levels of stress gene 
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expression under many stresses as well as those involving KIN11(Avonce et al., 

2004, Schluepmann et al., 2004).  

Sugars has a major role in regulation of gene expression than other major nutrients 

such as  nitrogen  and many of the sugar regulated genes are strongly affected by 

nitrogen and therefore extensive interaction exists between sugar and nitrogen 

nutrients (Palenchar et al., 2004, Price et al., 2004). It is more likely that energy and 

glucose dependent metabolic sensors such as SNF1/AMPK/SnRK1 are also 

important in nitrogen sensing. The TOR (Targets of Rapamycin) a central protein 

kinase that promotes cell growth and proliferation in response to amino acids and 

insulin (Avruch et al., 2006). Recent studies suggests that the TOR  pathway plays an 

important role in stress adaptation via responding to a wide range of stimuli, 

including amino acids, ATP, mitogens, low oxygen, and phosphatidic acid (Baena-

Gonzalez, 2010). Decreased TOR activity has been correlated with enhanced 

resistance to several types of stress (Reiling and Sabatini, 2006). Arabidopsis TOR 

(AtTOR) is a highly conserved protein, with all of its key domains found in other 

organisms. As in other organisms, AtTOR is also essential for embryogenesis and 

endosperm development and knockout mutants of TOR leads to impaired 

developmental at the globular stage (Menand et al., 2004). Deprost et al. (2007) 

reported that varying degrees of AtTOR overexpression or knockouts demonstrate 

that AtTOR is essential also for postembryonic growth which affects root and shoot 

growth, cell size and seed yield. Arabidopsis VPS34 (AtVPS34) shares a 40% 

identity with yeast and when AtVPS34 fused to the yeast regulatory domain, its C-

terminal catalytic domain is able to complement a yeast Dvps34 mutant (Welters et 

al., 1994). Transgenic plants with reduced AtVPS34 levels are severely impaired in 

growth and development (Welters et al., 1994) and are unable to trigger normal 
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endocytosis and ROS production, resulting in a salt-oversensitive phenotype 

(Leshem et al., 2007). Moreover, VPS34 and other components of the autophagy 

machinery play an essential role in plant defence and are required for tolerance to 

drought and salt stress (Bassham, 2009, Liu et al., 2005).  

1.3.6 Effects of SnRK1 regulation in plants 

KIN11 targets many regulatory factors and signalling pathways (like ABA like 

upstream signals) that ultimately affects growth and development of plants (Baena-

Gonzalez, 2010, Baena-Gonzalez et al., 2007, Lovas et al., 2003, Lu et al., 2007, 

Thelander et al., 2004, Zhang et al., 2001) besides its mere impact on metabolic-

related functions. In potato,  antisense-StubGAL83 (a regulatory β subunit of 

SnRK1)  lines showed not only in delayed in tuberisation, reduction in tuber size and 

an increase in tuber number per plant but increased sensitivity in salt stress (Lovas et 

al., 2003). SnRK1 activity in young rice seedlings showed enhanced tolerance 

against flooding (hypoxia) (Lee et al., 2009) and similarly in Arabidopsis it 

demonstrated the improved tolerance to stress in plants under submergence (Young-

Hee Cho et al., 2012) that expressed rice SnRK1. Apart from several known abiotic 

stress responses, number of studies links direct involvement of SnRK1 in response to 

the biotic stresses. Hao et al. (2003) reported that geminivirus AL2 and L2 proteins 

interact and inactivate SNF1 (in plants it is SnRK1) and demonstrated that 

geminiviruses are capable of manipulating host metabolism for their own benefits 

and showed increased resistant to geminivirus infection in tobacco plants 

overexpressing SnRK1. Gissot et al. (2006) revealed that plant specific AKINβγ 

subunits interact with proteins involved in resistance to nematodes in Arabidopsis. 
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1.4 The SFR6 of Arabidopsis 

1.4.1 Identification of the sfr mutations 

Characterising genes and proteins expressed during cold acclimation was of interest 

during the early 1990s and many research groups were trying to learn how plants 

respond to freezing tolerance through gene regulation (Houde et al., 1992; Neven et 

al., 1993; Nordin et al., 1993; Wilhelm and Thomashow, 1993; Castonguay et al., 

1994; Dunn et al., 1994; Jarillo et al., 1994). Warren et al (1996) were able to screen 

an EMS-mutagenised population of Arabidopsis and isolate mutants that were 

impaired in freezing tolerance by monitoring visible health and re-growth of intact 

plants after freezing. In this screening process they selected 13 mutant lines that 

demonstrated strong phenotypes and they tested these lines to identify whether this 

freezing sensitivity was the result of damage incurred during the cold acclimation 

process. Therefore, the selected 13 lines were cold acclimated and examined for 

chilling injury based on two criteria, visible damage during cold acclimation and 

stunted growth upon a return to normal temperature. Thereby they found five mutant 

lines showed injury during acclimation (chilling injury) but not upon freezing, and 

eliminated those five lines from further consideration. The remaining 8 lines 

confirmed the absence of injury prior to freezing and suggested that they were 

affected specifically in the development of freezing tolerance (Warren et al., 1996). 

To test for dominance, backcrossing was performed and they reported that in each of 

the 7 mutant lines tested (FS68 and FS79 were co-dominant; FS79 was omitted), 

freezing sensitivity was caused by mutation in a single nuclear gene. Then they 

crossed eight mutant lines together in all pair wise combinations and performed 

complementation studies upon freezing. F1 progeny were less freezing-sensitive than  
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either of the parents in each case, confirming that the 8 lines contained mutations in 7 

different genes. F1 progeny from the cross FS68 x FS79 showed freezing sensitivity 

that was similar to either parent and clearly different from wild type, indicating the 

mutations in the FS68 and FS79 lines were allelic. This was further confirmed using 

F2 progeny. As a result of these studies, seven genes that were important for freezing 

tolerance after cold acclimation were identified and named as Sensitive to Freezing 

(SFR1-7) (Warren et al., 1996). 

The visible phenotype of each mutant line used by Warren et al. (1996) is presented 

in Figure1.6. Comparing 7 different lines after acclimation Warren et al. (1996) 

reported that degree of freezing sensitivity varied between mutants, however, all 

lines showed significant damage upon freezing (Figure 1.6). They observed 

significant visual differences in leaves after freezing particularly in sfr1 where only 

young leaves were damaged while all were affected in other mutant lines, though the 

degree of damage varied (Warren et al., 1996). Furthermore, they conducted 

electrolyte leakage assays, a well-known method to quantify freezing-induced 

damage by measuring the effects of damage to the plasmalemma in leaf tissues. They 

observed significantly higher electrolyte leakage in all mutant lines compared to wild 

type controls and this difference was greatest in FS67(sfr4) and FS69 (sfr6). This 

was consistent with whole plant freezing assay as these two lines were the severely 

affected mutants (Figure 1.6). Conversely they found FS61 (sfr2) obtained similar 

level of electrolyte leakage as in wild type although it showed severely affected 

freezing sensitive phenotype (Warren et al., 1996). 
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Figure 1.6: Freezing sensitivity of sfr mutant lines after cold acclimation and 

freezing from Warren et al. (1996) 

Phenotypes of sfr mutant lines are in comparison to wild type (wt). Three plants of 

each line were frozen at -6.0°C for 24 h after cold acclimation (tests) and here are 

shown 9 d after freezing under standard growth conditions. Two plants of each line 

were cold acclimated but not frozen, are shown as controls for any injurious 

following cold acclimation period. 

 

1.4.2 Compositional changes of sfr mutants during freezing 

McKown et al. (1996) analysed these sfr mutant lines further for the expression of 

different cold-inducible proteins, sucrose, glucose, fatty acid composition of lipids 

and the accumulation of anthocyanin in foliar tissues, changes that were expected to 

occur during cold acclimation. They reported that sfr1, sfr2 and sfr5 did not show 

significant differences compared to wild type in any of the parameters tested above. 

sfr1    sfr2   sfr3    sfr4         sfr5-1 sfr6    sfr7   sfr5-2 
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This suggested that these genes have highly specific effects on low temperature-

induced responses. Conversely, the other four mutations (sfr3, sfr4, sfr6, and sfr7) 

showed significantly low levels of anthocyanin accumulation during cold acclimation 

process. sfr4 and sfr7 exhibited disturbed availability of some fatty acids after cold 

acclimation and sfr4 accumulated only low levels of glucose and sucrose during the 

cold acclimation period. The role of sucrose is vital as a cryopotectant (Crowe et al., 

1988, Uemura et al., 2003) and this provide insight reason for the freezing sensitivity 

of sfr4 mutant (Uemura et al., 2003).  

sfr2, sfr4, sfr6 and sfr7 mutants showed the most severe freezing sensitive 

phenotypes (Warren et al., 1996). Comparing the all properties of these mutants 

(McKown et al., 1996) suggested that lack of anthocyanin accumulation is not the 

sole cause but that some commonality between anthocyanin biosynthesis and 

freezing tolerance, either in synthetic or regulatory pathways or both might lead to 

the cause. Further they reported that all of the sfr mutations showed the same boiling-

soluble protein profile as in wild type and suggested that no mutant is completely 

defective in cold-induced gene expression. Lin et al. (1990) reported that limited 

number of cellular proteins is soluble after boiling and several cold-induced proteins 

are included in that category of proteins. Therefore studying the profile of boiling-

soluble proteins in freezing-sensitive mutants provided a convenient approach to 

finding any misregulation of cold regulated gene expression even though it is not 

representative of the entire cold-induced proteome.  

The question of whether cold-inducible gene expression is altered in the sfr mutants 

was returned to at a later date, with direct measurement of cold-inducible transcript 

levels in the mutants (Knight et al. (1999). Expression of three different COR genes 

(KIN1, LTI78 and COR15a) in six sfr mutants (sfr2-sfr7) lines under cold conditions 
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(5oC) showed that all mutants except sfr6 showed similar levels to wild type. Levels 

of these transcripts in the sfr6 mutant were almost undetectable, suggesting that for 

this particular mutant, the mutation was likely to be exerting its effect on freezing 

tolerance via alterations in gene expression during cold acclimation. 

1.4.3 Early evidence on COR gene regulation in sfr6 mutants 

Although COR gene expression was barely detectable in sfr6 mutants after a short 

exposure to cold temperatures, transcripts were detectable after much longer 

exposures although these were still significantly lower than the levels detected in 

wild type plants (Knight et al., 1999); KIN1 expression was detected at very low 

levels after 6h at 4oC and transcript levels increased thereafter, reaching a maximum 

between 24 and 48 h, as in wild type. Furthermore, the studies conducted to test co-

segregation of expression deficiency with freezing sensitivity by Knight et al. (1999) 

confirmed that the COR gene expression deficient phenotype was linked to the sfr6 

mutation.  

COR genes i.e KIN1, LTI78 and COR15a contain CRT/DRE cis-acting elements 

(Baker et al., 1994) in their promoters and are targeted by the CBF1/DREB1B 

transcription factors (Stockinger et al., 1997), which activate cold-inducible gene 

expression (see above section). Like CBF1, CBF2 (DREB1C) and CBF3 (DREB1A) 

(Liu et al., 1998), also bind to the CRT/DRE element and CBF2 and CBF3 genes are 

themselves expressed in response to cold (Gilmour et al., 1998). Knight et al. (1999) 

reported that expression of CBF1, CBF2, and CBF3 transcripts was strongly induced 

after 3 h at 5oC in both wild type and sfr6 mutants to similar levels, suggesting either 

that the CBF signalling pathway was not affected in sfr6 mutants or that SFR6 does 

affect the CBF pathway but does so downstream of CBF transcription. Promoters of 
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CBF1, CBF2 and CBF3 genes lack CRT/DRE elements (Gilmour et al., 1998) 

consistent with the hypothesis that the sfr6 mutation affects the cold-inducible 

expression only of genes containing CRT/DRE elements and controlled by the CBF 

transcription factors (Knight et al., 1999). AtP5CS1 and AtP5CS2 are two genes 

encode for D1-pyrroline-5-carboxylate synthetase (Strizhov et al., 1997), the key 

regulating enzyme in the proline production pathway and known be expressed in 

response to water stress and low temperature (Savouré et al., 1997). AtP5CS2 

(P5CSB) contains a CRT/DRE element in its promoter, whereas the AtP5CS1 

(P5CSA) gene does not contain this element. Therefore cold inducibility of AtP5CS1 

in sfr6 and wild type plants was investigated using RT-PCR. Cold treatment at 5oC 

for 3h showed similar levels of P5CS1 transcripts in both wild type and sfr6 mutants. 

Therefore these gene expression data (both CBF and P5CS1) both supported the 

conclusion that failure to express the COR genes KIN1, LTI78 and COR15a related 

to the presence of CRT/DRE elements in gene promoters (Knight et al., 1999). 

Knight et al. (2009) revealed that unlike in wild type plants (Jaglo-Ottosen et al., 

1998), overexpression of CBF1 and CBF2 did not induce ectopic expression of COR 

genes in sfr6 mutant in the absence of cold (Knight et al., 2009). This result indicated 

that SFR6 acts in the CBF pathways downstream of CBF transcript (Knight et al., 

2009). 

By considering results from their own experiments and analysing the Genevestigator 

database Knight et al. (2009) concluded that SFR6 transcript levels did not alter 

significantly in response to cold.  Whilst it was possible that levels of SFR6 protein 

are controlled by low temperature, it also was equally likely that SFR6 protein is 

present constitutively in the cell. This latter hypothesis was consistent with previous 

findings that SFR6 is required for other processes unrelated to low temperature 
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tolerance, including developmental processes such as flowering (Knight et al., 2008) 

and chlorophyll biosynthesis/degradation (the mutant exhibited a pale leaf colour), 

SFR6 regulate groups of genes other than the CBF regulon (Knight et al., 2009). 

1.4.4 Mapping and cloning SFR6 

Classical mapping identified a region on chromosome 4 that contained the SFR6 

gene, however, this region was close to the centromere and thus lack of 

recombination in this region made it impossible to reduce this mapping interval 

further. Therefore an alternative approach was taken, T-DNA mutant databases were 

searched for mutants in any gene within the defined mapping interval. Four hundred 

and twenty nine T-DNA insertion lines were identified as having the potential to be 

insertions in SFR6. Rather than performing a laborious screen for freezing tolerance 

or cold-inducible gene expression, these lines were subjected to simple screening the 

visible phenotype associated with sfr6; that comprised of larger and paler cotyledons 

(Figure 1.7) and paler true leaves in seedlings (Knight et al., 2009). This extensive 

screening approach led to two insertion lines demonstrating the visible phenotype 

(Knight et al., 2009). These two lines both corresponded to T-DNA insertions in 

At4g04920. DNA sequencing confirmed that original EMS mutation i.e sfr6-1, is a 

point mutation in At4g04920 that changes a nucleotide from “G” to “A”, changing a 

UGG tryptophan encoding codon to UGA premature stop codon thereby resulting a 

truncated protein (Figure 1.8) (Knight et al., 2009). The two insertion lines (T-DNA 

insertion positions are shown in Figure 1.8) were thus conformed as additional 

mutant alleles sfr6-2 and sfr6-3 and shown to exhibit reduced COR gene expression 

and failure to gain freezing tolerance (Knight et al., 2009). 
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The SFR6 coding sequence was deduced by using full-length SFR6 cDNA which 

was synthesised from cold-treated wild type Arabidopsis tissues. The open reading 

frame was then sequenced. The predicted SFR6 protein consists of 1268 amino acids, 

with molecular mass of 137 kDa (Knight et al., 2009). 

As initial bioinformatic comparisons failed to establish a likely function for SFR6 

subcellular localization studies were conducted in order to help elucidate its possible 

mode of action. Transient expression of GFP fused to SFR6 in leek cells using 

particle bombardment showed clear nuclear localisation; a finding confirmed in 

stably transformed plants (Knight 2009). Nuclear localisation of the protein was 

consistent with a function in the control of COR gene expression. It was also 

observed that in the protein was present in the nuclei of unstressed cells, consistent 

with the observation that the sfr6 mutation affects both basal and induced levels of 

COR gene expression ( Knight et al. (1999) and suggesting that SFR6 is 

constitutively active and not only under particular stress conditions. 

The same visible phenotype was evident in all three mutant alleles and examination 

of this visible phenotype in F2 populations of crosses confirmed that sfr6-1, sfr6-2 

and sfr6-3 are allelic. Moreover, analysis of the visible phenotype of progeny from 

crosses between sfr6-2 and sfr6-3 and wild type (Col-0) confirmed both were 

recessive, as previously identified sfr6-1 mutation (Warren et al., 1996). 
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Figure 1.7:  Physical appearance of sfr6 mutants comparing to wild type. From 

Knight et al., (2009) 

Twelve-day old Col-0 (WT) and three sfr6 mutants are shown in the above. sfr6 mutants 

demonstrate paler colouring and larger cotyledons compared to WT. sfr6-1 is the original 

EMS mutant, sfr6-2 is SALK_048091 and sfr6-3 is WiscDsLox504A08. 

 

 

Three mutant alleles are the result of interruptions in the At4g04920 coding 

sequence. The original allele sfr6-1 is a EMS point mutation at 1452 bp (484 amino 

acids) resulting in a premature stop codon. sfr6-2 is an insertion into the 4th intron, 

and sfr6-3 is an insertion into the 8th exon. These three mutations occur in 

approximately the first third of the protein and sfr6-1 and sfr6-3 are very close to 

each other (Figure 1.8). At4g04920 consists of 16 exons with a coding region of 

3807 bp. 

 

 

sfr6-2                 sfr6-3 

WT                     sfr6-1 
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Figure 1.8: Map of At4g04920 (SFRF6) showing the original EMS point 

mutation and two T-DNA insertion sites. From Knight et al., (2009) 

(a) Representation of the SFR6 (At4g04920) genomic coding sequence in which black 

blocks represent exons and thin lines represent introns. The sfr6-1 EMS mutation is caused 

by a premature stop codon in exon 8. The insertion sites of T-DNA causing the mutations in 

sfr6-2 (exon 4) and sfr6-3 in exon 8 are shown. (b) Predicted protein sequence with sites of 

T-DNA insertions (sfr6-2 and sfr6-3) and the premature stop codon (sfr6-1) are indicated. 

 

 

1.4.5 SFR6 encodes a subunit of the Mediator Complex 

SFR6 was discovered as a protein required for acquisition of freezing tolerance 

(Knight et al., 1999, Warren et al., 1996) and later identified as MED16 one of the 

A 

sfr6-1
(Trp484�STOP)

sfr6-2
(SALK_048091)

sfr6-3
(WiscDsLox504A08)

1kbp

     1  MNQQNPEEEVSLVNNSGGGGIIEAPAIVEEKEEEGLQQKQEETIESTDPILVVVEEKLLEKSVDGEKEDDNSSSSNMEIDPVSPATVFCV 
 
    91  KLKQPNSNLLHKMSVPELCRNFSAVAWCGKLNAIACASETCARIPSSKANTPFWIPIHILIPERPTECAVFNVVADSPRDSVQFIEWSPT 
 
   181  SCPRALLIANFHGRITIWTQPTQGSANLVHDATSWQCEHEWRQDIAVVTKWLTGASPYRWLSSKPSSGTNAKSTFEEKFLSQSSESSARW 
                                sfr6-2 
   271  PNFLCVCSVFSSGSVQIHWSQWPSNQGSTAPKWFSTKKGLLGAGPSGIMAADAIITDSGAMHVAGVPIVNPSTIVVWEVTPGPGNGLQAT 
 
   361  PKISTGSRVPPSLSSSSWTGFAPLAAYLFSWQEYLISEIKQGKKPSDQDSSDAISLSCSPVSNFSAYVSPEAAAQSAATTTWGSGVTAVA 
                                          
   451  FDPTRGGSVIAVVIVEGQYMSPYDPDEGPSITGWRVQRWESSVQPVVLHQIFGNPTSNFGGQVPTQTVWVSRVDMSIPPTKDFKNHQVAA 
                                       sfr6-1                                 sfr6-3 
   541  AGPSVDAPKEPDSGDEKANKVVFDPFDLPSDIRTLARIVYSAHGGEIAIAFLRGGVHIFSGPTFSPVENYQINVGSAIAAPAFSPTSCCS 
 
   631  ASVWHDAAKDCAMLKIIRVLPPALPRNQSKVDQSTWERAIAERFWWSLLVGVDWWDAVGCTQSAAEDGIVSLNSVIAVMDADFHSLPSTQ 
 
   721  HRQQYGPNLDRIKCRLLEGTNAQEVRAMVLDMQARLLLDMLGKGIESALVNPSALVFEPWRVDGETITGINPEAMAVDPALVSSIQAYVD 
 
   811  AVLDLASHFITRLRRYASFCRTLASHAASAGTGSNRNNVTSPTQNASSPATPQVGQPTTTTTTTATTNSSGSSHVQAWMQGAIAKISSSN 
 
   901  DGSNSTASPISGSPTFMPISINTGTFPGTPAVRLIGDCHFLHRLCQLLLFCFLQRSSRFPQRNADVSSQKLQTGATSKLEEVNSAKPTPA 
 
   991  LNRIEDAQGFRGAQLGTGVKGIDENSARTTKMGSGNAGQGYTYEEVRVLFHILMDLCKRTSGLAHPLPGSQVGSGNIQVRLHYIDGNYTV 
 
  1081  LPEVVEAALGPHMQNMPRPRGADAAGLLLRELELHPPSEEWHRRNLFGGPGSEPEDMILTDDVSKLSNSLDLPDTNFSGICDGYNRVHSL 
 
  1171  WPRKRRMSERDAAFGSNTSVGLGAYLGIMGSRRDVVTATWKTGLEGVWYKCIRCLRQTSAFASPGATKQPNPNERETWWTSRWVYCCPMC 
 
  1261  GGTWVRVV* 

* 

B 
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tail subunit of plant mediator complex (Bäckström et al., 2007). Protein coding genes 

are transcribed by RNA Polymerase II (Pol II), Activities of RNA polymerases are 

modulated either negatively or positively by transcriptional regulatory 

proteins/cofactors (Conaway and Conaway, 2011) that recognise and bind to 

promoters to initiate the transcription process (Kornberg, 1999, White, 2004, Russell 

and Zomerdijk, 2006). General transcription factors are a small set of evolutionary 

conserved transcriptional regulatory proteins that maintain the hub of transcriptional 

machinery together with Pol II that is vital for transcription of most of the protein 

coding genes (Conaway and Conaway, 2011, Guglielmi et al., 2004). The general 

transcription factors comprise five general initiation factors/ TATA-binding protein 

(TBP), TFIIB, TFIID, TFIIE, TFIIF, and TFIIH; the minimum set of proteins 

compulsory for initiation of transcription by Pol II (Conaway and Conaway, 2011, 

Guglielmi et al., 2004, Carlsten et al., 2013). However in vitro transcription assays 

with RNA polymerase II and the five general transcription factors could not activate 

transcription in a cell-free system, demonstrating that these components were not 

sufficient to recapitulate activation (Kim et al., 1994, Thompson et al., 1993), 

however, transcriptional activity was restored by the addition of a crude cell culture. 

Subsequent studies on the isolation of the complex that was required to restore the 

transcriptional activity were carried out and a protein complex, which was termed 

“the Mediator complex”, was purified from yeast (Saccharomyces cerevisiae) and 

shown to be required for coupling Pol II activity with gene-specific activators (Kim 

et al., 1994). 

 

 



                                                                                                          Chapter 1   

56 

 

1.4.5.1 The yeast Mediator complex 

The Mediator complex is a multi-subunit protein complex that conserved in all 

eukaryotes from yeast to human (Elfving et al., 2011, Boube et al., 2002a). The yeast 

mediator complex was the first to be purified, by Kim et al. (1994) and they reported 

that the complex consisted of 20 protein subunits.  Using genetic screening 

(Thompson et al., 1993) identified four more subunits referred to as Srb8-11 and 

together all these 24 subunits form the yeast mediator complex. Yeast-two-hybrid 

analysis together with co-immuno precipitation studies revealed the presence of an 

additional subunit, MED31 (Soh1), associated with yeast Mediator and bringing the 

total number of subunits identified to 25.  

Subsequently, Mediator was shown to be highly conserved among eukaryotes, 

however, in metazoans additional number of mediator subunits was reported that not 

found in yeast (Bourbon, 2008). Biochemical and morphological studies on yeast 

mediator suggested that 25 subunits has been grouped in to four modules, named as 

the head, middle, tail and kinase modules (Guglielmi et al., 2004, Dotson et al., 

2000). Studies based on electron microscopy and reconstitution experiments led to 

identify different subunits in each mediator module/domain (Guglielmi et al., 2004). 

The first protein interaction map of the yeast head and middle domains was 

suggested using pull-down experiments from (Kang et al., 2001, Lee et al., 1998). 

However it did not include the organization of the tail and kinase domain. The 

detailed interaction map of all four mediator domains (Figure 1.9) was first produced 

by (Guglielmi et al., 2004) using two different two-hybrid approaches combined with 

the pulldown experiments and proteome-wide two-hybrid screens (Ito et al., 2001, 

Uetz et al., 2000) as well as genetic data.  
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Figure 1.9: Topological organization of yeast Mediator from Guglielmi et al. 

(2004) 

This model was developed by considering the direct interactions between mediator subunits 

and the relative size of the subunits investigated by several researchers and the novel work 

done by Guglielmi et al. (2004). 

 

In yeast the head module consists of MED6, MED8, MED11, MED17 (Srb4), 

MED18 (Srb5), MED19 (Rox3), MED20 (Srb2) and MED22 (Srb6). The head 

module can directly bind with Pol II (Davis et al., 2002) and general initiation factors 

thereby stimulate the basal transcription (Takagi et al., 2006, Kang et al., 2001). The 

middle module includes MED1, MED4, MED7, MED9, MED10, MED21 

(Srb7),MED5 (Nut1) and  MED31 (Soh1) (Davis et al., 2002, Guglielmi et al., 

2004). The middle domain shows interactions with chromatin remodelling 
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complexes, elongation complexes, as well as histone deacetylases that are important 

in repression (Zhu et al., 2011). Further it was revealed that histone tail modifications 

may affect Mediator interaction with chromatin via the middle domain (Zhu et al., 

2011).  

Several reports strongly suggested that the tail domain, consisting of MED2, MED3, 

MED14 (Rgr1), MED15 (Gal11) and MED16 (Sin4), is the main target for the 

transcriptional activators (Han et al., 1999, Park et al., 2000). Much research work in 

yeast revealed that tail subunits directly interact with DNA binding regulators and 

thus believed to recruit Mediator to different genes (Lee et al., 1999, Park et al., 

2000, Zhang et al., 2004a). The tail domain is known to be the least conserved 

domain of the Mediator complex, likely reflecting the variation in transcription 

factors among different organisms (Conaway and Conaway, 2011). MED14 is at the 

interface of the middle and tail modules and possibly contributes to the overall 

organization of Mediator (Lee 1999). Med2p, Med3p and Med15p have been termed 

the tail subunit triad in yeast and are linked to the rest of the mediator complex via 

Sin4 (Med16) (Kang et al., 2001, Li et al., 1995). The triad can function 

independently when released from the mediator complex by the deletion of Med16 

but less effectively (Galdieri et al., 2012). 

Mediator was biochemically identified in fungi like S. cerevisiae (Kim et al., 1994, 

Thompson et al., 1993), metazoans including mammals (Fondell et al., 1996, Sato et 

al., 2003, Malik and Roeder, 2000), in insects, Drosophila melanogaster (Park et al., 

2001) and in worms, Caenorhabditis elegans (Kwon et al., 1999). Homologues of 

Mediator complex subunits have been identified in all eukaryotes and the presence of 

the complex in plants was suggested based on these sequence homologies (Autran et 
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al., 2002, Clay and Nelson, 2005, Gonzalez et al., 2007) and later confirmed by 

bioinformatic analysis (Bourbon, 2008).  

1.4.5.2 The plant Mediator complex 

In 2007, thirteen years after the discovery of Mediator complex in S. cerevisiae, the 

plant Mediator complex was successfully purified by Bäckström et al. (2007) in the 

model plant Arabidopsis. Twenty-one Mediator subunits were identified in the 

isolated Arabidopsis Mediator complex that showed homology to Mediator subunit 

proteins from other eukaryotes. However, there were several subunits apparently 

missing from the plant complex compared to yeast mediator, including MED1, 

MED2, MED3, MED5, MED24, MED26, MED27, MED29 and MED30 but later 

found they were not all missing but some of them were not recognised by that work 

including MED2, MED3 and MED5. The detachable kinase module did not co-

purify with the Arabidopsis complex (Bäckström et al. (2007). However homologs to 

MED12, MED13 and CDK8 have been identified in Arabidopsis through sequence 

comparison (Wang and Chen, 2004, Ito et al., 2011, Gillmor et al., 2010) and these 

subunits have now been identified. Wang and Chen (2004) reported that at least 30 

cyclins are known to be present in Arabidopsis and cyclin(s)  interacts with CDK8 

therefore suggesting potential interaction with Mediator in Arabidopsis (Kidd et al., 

2011). 

1.4.5.3 Role of the plant Mediator complex 

The plant Mediator complex has been identified as a key regulator for diverse range 

of functions including plant development (Xu and Li, 2011, Autran et al., 2002, 

Gillmor et al., 2010, Ito et al., 2011, Wang and Chen, 2004, Yang et al., 2014), 

abiotic stress responses (Cerdán and Chory, 2003, Boyce et al., 2003, Knight et al., 
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1999, Hemsley et al., 2014, Elfving et al., 2011), biotic stress responses (Kidd et al., 

2009, Wathugala et al., 2012, Lai et al., 2014) and non-coding RNA production (Kim 

et al., 2011). Prior to the purification of the Arabidopsis Mediator complex, several 

subunits had been identified genetically in studies related to a wide range of 

developmental processes and stress responses. 

PHYTOCHROME and FLOWERING TIME1 (PFT1), was identified as a regulator 

of phytochrome B signalling pathway that promotes flowering in response to 

different levels of light (Cerdán and Chory, 2003). Biochemical purification of the 

Arabidopsis Mediator confirmed that PFT1 is homologous to the MED25 subunit of 

the metazoan Mediator complex (Bäckström et al., 2007). Since then much work has 

been published covering the wide array of functions associated with MED25 in 

plants, including development, hormone signalling, and stress responses. MED25 has 

been shown to play roles in plant defence against various biotic (Kidd et al., 2009), 

and abiotic stresses Elfving et al. (2011) and involvement in plant development by 

controlling the final organ size has been reported (Xu and Li, 2011). It was reported 

recently that MED25 positively regulates JA signalling during biotic stress and 

negative regulation of ABA signalling pathway through the regulation of hormone 

specific transcription factors (Chen et al., 2012a). As similar role in flowering and 

development, MED25 is a negative regulator in drought resistance in Arabidopsis. 

 STRUWWELPETER (SWP) was first identified as a nuclear protein vital in 

controlling the duration of cell proliferation and dwarfism with an abnormal 

architecture such with abnormal vegetative and floral structures (Autran et al., 2002). 

Krichevsky et al. (2009) suggested that MED14 is involved in the regulation of root 

elongation by repressing the root-specific gene Lateral Root Primordium1 via 

histone deacetylation. Later SWP was identified as MED14 (Bäckström et al., 2007) 
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and later shown to be a key regulator of the salicylic acid (SA) and SAR (system 

acquired resistance) signalling pathway (Zhang et al., 2014) and COR gene 

expression (Hemsley et al., 2014).  

Mutations in genes encoding three of the subunits in the kinase module of the 

Mediator complex (MED12, MED13 and CDK8) were reported to be associated 

developmental phenotypes due to altered cell differentiation (Gillmor et al., 2010, Ito 

et al., 2011, Wang and Chen, 2004) and med12 and med13 mutants were affected in 

the transition during the early stage of embryo development from globular to heart 

(Gillmor et al., 2010).  med13 was reported to show a defective response to auxin in 

regulating cell differentiation (Ito et al., 2011) and the cdk8 /hen3 mutant showed 

altered development of floral organs as a result of defective cell differentiation  

(Wang and Chen, 2004). Ding et al. (2008) reported that MED12 promotes the 

epigenetic silencing via recruiting a histone methyltransferase and methylating 

chromatin of target genes.  Moreover, Imura et al. (2012) and Ito et al. (2011) 

reported that the MED12 and MED13 act as regulators in flowering and cotyledon 

organogenesis respectively. Kim et al. (2011) revealed that med17, med18 and 

med20a displayed reduced levels of plant miRNAs and in miRNA promoters in the 

med20a mutant, they observed the low level of RNA Pol II occupancy. This 

suggested that a functional Mediator complex is required for recruitment of RNA Pol 

II to the promoter regions of miRNA genes as well (Kim et al., 2011).  

The MED34 subunit is important in stabilizing DNA structure as a DNA helicase and 

MED35 and MED36 subunits have been associated with mRNA and rRNA 

processing (Kang et al., 2009). The other subunit, MED37 has identified as HEAT 

SHOCK PROTEIN70 (HSP70) encoding family member, a role outside of the 

nucleus and shown to localize to the endoplasmic reticulum (Bäckström et al., 2007, 
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Kidd et al., 2011). The Arabidopsis MED36 shown to encode a fibrillarin which is 

involved in processing rRNA (Kang et al., 2009), particularly during the early 

cleavage steps of the large rRNA precursor as well as appropriate ribosome assembly 

(Tollervey et al., 1993). Mathur et al. (2011) revealed that MED34, MED35, 

MED36, and MED37 homologs demonstrated the higher expression in reproductive 

stage as compared with the vegetative stage. 

Dhawan et al. (2009) reported that MED21 is important in embryo development 

thereby controlling the seed development. Further they reported that MED21 

activated by microbial infections thereby in stress signalling. However Mathur et al. 

(2011) suggested that Med21 might be involved in stress signalling during 

reproductive stages but not in younger vegetative tissues. MED8 is known to regulate 

jasmonic acid dependent defence responses, salicylic acid mediate defence 

demonstrated by the reduced resistance of med8 mutants to leaf infecting 

necrotrophic pathogens and susceptibility to the root infecting hemibiotrophic fungal 

pathogen (Kidd et al., 2009, Thatcher et al., 2009). Recent findings indicated that 

MED18 is vital in multiple plant functions through interaction with a variety of 

transcription factors including ABI4, YY1 and SUF4 to regulate plant responses to 

ABA, infection and flowering time respectively (Lai et al., 2014). 

 It was prior to the purification of the plant mediator complex (Bäckström et al., 

2007), SFR6 was known (as described above) as a protein required for the 

acquisition of freezing tolerance through cold acclimation (Warren et al., 1996, 

Knight et al., 1999) and later it was indeed identified as MED16 a predicted tail 

subunit of the plant mediator complex (Bäckström et al., 2007). Altered low 

temperature signalling in sfr6 leading to freezing sensitivity particularly due to 

impaired regulation of COR gene expression (Knight et al., 2009, Knight et al., 
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1999). Apart from its role in cold-inducible gene expression, SFR6/MED16 is 

important in gene expression in response to drought (Knight et al., 1999), and in the 

control of genes associated with the photoperiodic regulatory pathway by the 

circadian clock (Knight et al., 2008). The regulatory effects of SFR6/MED16 in plant 

defence systems were investigated by Wathugala et al. (2012) and Zhang et al. 

(2012) who found altered expression of pathogen associated genes activated by both 

salicylic acid and jasmonic acid pathways. More recently, MED16/SFR6 was shown 

to play a role in the transcriptional regulation of iron homeostasis of (Yang et al., 

2014, Zhang et al., 2014) and Yang et al. (2014) reported that this regulation occurs 

in association with MED25. 

Together these studies indicate that SFR6/MED16, one subunit of the multi-subunit 

mediator transcriptional co-activator complex, plays roles in the regulation of 

numerous different gene regulons in response to a diverse range of stress and 

developmental conditions. The aim of this thesis was to attempt to understand how 

SFR6/MED16 can confer specific responses to these different conditions (addressed 

in chapter 4) and to investigate the importance of other proteins (mediator subunits; 

chapter 3 and KIN10; chapter 5) in regulating these responses. Moreover to study 

whether impaired gene expression under cold-, drought-, UV- and starvation- 

induced stresses correlate with altered tolerance in all different loss-of-function 

mutant backgrounds that used in this study. 
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Chapter 2 

Materials and Methods 

 

2.1 Plant materials and growth conditions 

2.1.1 Plant materials 

Arabidopsis thaliana (L.) Heynh. (A. thaliana) ecotype Columbia (Col-0) were 

available as lab stocks propagated from seed obtained from Lehle Seeds (Round 

Rock, Texas, USA). Lab stocks of sfr6-1 (Knight et al., 2009, Knight et al., 1999) 

seeds and three lines of sfr6-1 mutant complemented with AtSFR6 genomic DNA 

(sfr6-1+35S::gSFR6) (Wathugala et al., 2011) were used. T-DNA insertion lines in 

Mediator subunits were obtained from the Nottingham Arabidopsis Stock Centre, 

med2-1 (SALK_023845) (Hemsley et al., 2014) and med14-2 (SAIL_373-C07) 

(Hemsley et al., 2014, Zhang et al., 2013) . Akin10-1 (SALK_ 127939).(Fragoso et 

al., 2009) seeds were obtained from Nottingham Arabidopsis Stock Centre and 

kin10-2 (GABI-Kat line 579E09) were donated by Dr. Markus Teige, University of 

Vienna, Department of Biochemistry, Austria) as a gift. 

2.1.2 Seed sterilisation 

2.1.2.1 Ethanol surface sterilisation 

Seeds were sterilised with 70% (v/v) ethanol by shaking on Labnet vortex mixture 

(Labnet international Inc., Woodbridge) in 1.5ml-microtubes for 5-10 min. Then 

seeds were pipetted on to filter paper (Whatman International Ltd, Maidstone, Kent 

UK) and air dried in a laminar flow workstation (M50549, BioQUELL UK Ltd, 

Hampshire) before being sprinkled on to solid agar medium (see section 2.1.3). 
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2.1.2.2 Bleach surface sterilisation 

Seeds obtained from plants dipped in Agrobacterium tumefaciens (see section 2.10.1) 

were first surface sterilised with 70% (v/v) ethanol by shaking on a vortex mixture 

(Lab net VX-100) in 15-50ml falcon tubes for 5-10 min. Then seeds were shaken in a 

solution of 10% (v/v) sodium hypochlorite (NaOCl) and 0.25% (w/v) sodium 

dodecyl sulphate (SDS) for 10 min on a roller mixer (SRT6, Stuart). Thereafter the 

seeds were washed 6 times in sterile water, spread directly on to agar plates (see 

section 2.1.3) and left to dry in a laminar flow cabinet before sowing. 

2.1.3 Plant growth media 

Sterilised A. thaliana seeds were grown on MS medium (Murashing and Skoog) agar 

plates (Murashige and Skoog, 1962), which contained 0.8% (w/v) plant tissue culture 

grade agar (Sigma Aldrich) and either 1x or 0.5x Murishige and Skoog salts 

(Duchefa Biochemie BV, Haarlem, Netherlands) depending on the seed type. The pH 

of the medium was adjusted to 5.8 before autoclaving. All growth media were 

sterilised by autoclaving (BOXER, Laboratory Equipment Ltd.) at 121oC for 20 min 

at 105 Pa. If required, appropriate antibiotics were added to the liquid medium when 

it had cooled to approximately 50oC after autoclaving. For all experiments 9 cm 

diameter disposable petri dishes (VWR Internationals) were used.  

Seeds collected from Agrobacterium dipped plants (see section 2.10.1) were sown on 

full strength MS medium prepared as stated above, supplemented with appropriate 

antibiotics. Seeds collected from Agrobacterium dipped plants expressing vectors 

using Basta (Glufosinate ammonium) as a selectable marker were directly sown on 

soil in a mixture of compost and sand in 1:1 ratio. 
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When soil-grown plants were required, seven-day-old seedlings from agar plates 

were transferred on to re-hydrated peat discs (Jiffy products Internationals, Norway).  

Individual plants were gown on small (38mm in diameter) peat discs for drought 

experiments, crossing and bulking up seeds whilst large (42 mm in diameter) discs 

were used to grow up to 3 plants per disc for Agrobacterium dipping and cold 

acclimation experiments. 

2.1.4 Plant growth conditions 

Arabidopsis seeds sprinkled onto germination medium (MS agar plates) as described 

in section 2.1.3, were cold stratified at 4oC for 2-3 days to synchronize germination. 

Seed plates were later transferred to a Percival growth chamber (CLF PlantClimatics, 

Model CU-36L5D, Germany) at 20±1oC set for long day (16 h light/8 h dark) 

photoperiod with a light level of 150 µE m-2 s-1 approximately. 

Seven-day-old seedlings transferred to peat plugs in trays were covered with cling 

film and moved to a growth room that maintained approximately 20±1oC 

temperature with 16 h light/8 h dark (long day photoperiod) and light level at about 

150-200 µmol m-2 s-1. The cling film was removed after two days. Individual plants 

grown for seed collection were maintained in the Aracon system (Beta Tech, Ghent, 

Belgium) that consisted of a transparent cup-shaped base and tube which separated 

the flowering parts from adjacent plants. Plants were well watered every two days 

and trays were transferred to a seed drying room after plants and pods were turning 

to yellow for further drying prior to seed collection. 

Tobacco plants grown on soil were maintained up to 5-6 weeks until ready for 

infiltration (see section 2.11.2), approximately at 24oC temperature with 16h light/8 h 

dark cycle and light level at approximately 200 µmol m-2 s-1. 
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2.2 Antibiotic, bacterial strains and growth conditions 

2.2.1 Antibiotics 

Antibiotics purchased from Melford Laboratories Ltd (Ipswich, Suffolk, UK) were 

used in this study and concentrations were used as in the following Table 2.1. Stock 

solutions of each antibiotic were sterilised using micro filters (0.22 µm) (Millipore 

Corporation, Bedford, USA) attached to syringes (VWR International Ltd, Magna 

Park, Lutterworth, UK). 

Table 2.1 Concentrations of antibiotics used the study 

Antibiotic Stock concentration 

(mg/ml) 

Working concentration 

(µg/ml) 

Kanamycin 100 for plants:    50 

for bacteria:  100 

Spectinomycin 50 50 

Rifampicin 200 200 

Gentamicin 10 40-10 

Timentin (Ticarcillin and  

Clavulanate) 

200 200 

 

2.2.2 Bacterial growth medium 

Escherichia coli (E. coli) and Agrobacterium tumefaciens were grown on Luria-

Bertani broth (LB; Tryptone 10g/l, NaCl 5g/l and yeast extract 5g/l) (Melford 

Laboratories Ltd, Ipswich, Suffolk, UK) with 15g/l micro agar (Melford Laboratories 

Ltd) or in liquid media of LB as above. All growth media were sterilised by 

autoclaving at 121oC for 20 min at 105 Pa and appropriate antibiotics were added to 

the pre cooled medium at 50oC after autoclaving. 
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2.2.3 Bacterial strains 

E. coli chemically competent cells Mach1TM (transformation efficiency >109 cfu/µg) 

and silver cells (DH5α strain of E. coli,  ≥108 cfu/µg) were purchased from 

Invitrogen (Renfrewshire, UK) and Bioline (London, UK) respectively, and were 

used for entry vector/primary transformations and chemically competent E. coli 

(strain DH5α) made in-house were used in destination vector/secondary 

transformations. Competent Agrobacterium (strain C58C1; (Holsters et al., 1978) 

and GV3101 (Holsters et al., 1980) were made in-house and used for stable and 

transient expression in plants respectively. 

2.2.4 Bacterial growth conditions  

Bacteria were grown overnight either on solid LB or liquid LB media where 

continuous agitation (150-200 rpm) was given in an incubator (NB-205, N-Biotek) 

for liquid cultures. E. coli cultures were incubated at 37oC overnight and 

Agrobacteria at 29oC for 2-3 days. 

 

2.3 Chemicals 

All chemicals and media used in this study were purchased from one of the following 

companies, where not otherwise stated.  

BDH Laboratory supplies Ltd., Lutterworth, Leicestershire, UK. 

Bioline, London, UK. 

Fisher Scientific UK Limited, Loughborough, Leicestershire, UK.  

Melford Laboratories Ltd, Ipswich, Suffolk, UK. 
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MERCK Chemicals Limited, Padge road, Beeston Nottingham, UK. 

Invitrogen, Renfrewshire, UK. 

Sigma-Aldrich Company Ltd., Gillingham, Dorset, UK. 

 

2.4 Synthesis, analysis and quantification of DNA fragments 

2.4.1 PCR amplification 

Polymerase Chain Reaction (PCR) was performed using a 96-well Px2 Thermal 

Cycler (Thermo Electron Corporation) or Px0.5 Thermal Cycler (Thermo Electron 

Corporation). Either genomic DNA or cDNA (complementary DNA) (see section 

2.8.1 or 2.13.3.1) was used as templates in amplifications. 

2.4.1.1 Oligonucleotide primers and reaction mixtures 

Primers were designed to anneal to specific regions within the gene of interest either 

manually or using Primer3 software. Primers were designed to consist of at least 20-

25 base pairs (bp), minimum 40-45 % of guanine (G) and cytosine (C) bases and 

similar melting temperature (Tm) and all primers were purchased from Fisher 

Scientific UK Ltd (Meadow Road,  Leicestershire). The sequences of all the primers 

used in this study are listed in Appendix 2.1 The reaction mixtures were prepared 

using buffers supplied with the relevant enzyme (polymerase) and prepared 

according to the manufacturer’s instructions. 

2.4.1.2 DNA polymerase 

Amplification of targeted fragments for cloning work was performed by using 

Phusion DNA polymerase (Finnzymes, Keilaranta, Finland), which is a proofreading 
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polymerase with exonuclease activity. Biotaq, Biotaq red or MY Taq DNA 

polymerase (Bioline) was used for all other PCR amplification purposes. 

2.4.1.3 PCR conditions 

Optimum annealing temperatures were selected according to the melting temperature 

of the primers used in each amplification; these were generally 50C lower than the 

melting temperature of the primer with the lower melting temperature from each pair. 

The annealing temperature was optimised each time where new DNA templates and 

primer pairs were used. PCR conditions for different DNA polymerases are listed in 

Table 2.2. 

Table 2.2  PCR conditions for different DNA Polymerases 

Cycle and 
step number 

Description Temperature and time No. of 
cycles 

Taq/Bio 
Taq/MyTaq 

Phusion 

1-0 Initial 
denaturation 

95oC - 5 min 98oC - 2 min 1 

2-1 Denaturation 95oC – 30 sec 98oC – 30 sec  
 

35 2-2 Annealing 55-60oC- 
1min/1Kbp 

58oC- 30  sec 

2-3 Extension 72oC – 45 sec 72oC-30 
sec/1Kbp 

3-0 Final extension 72oC – 5 min 72oC – 5 min 1 

4-0 Holding 4oC  4oC   

 

2.4.2 Agarose gel electrophoresis of DNA 

Agarose gel electrophoresis was used to separate DNA fragments according to their 

sizes.  One percent (w/v) gels were prepared using electrophoresis grade agarose in 
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0.5x TBE buffer (see Appendix A1.1) in a microwave oven. After cooling to 

approximately 50°C, ethidium bromide (10mg/ml) or Midori green advance DNA 

stain, a non-toxic fluorescent DNA binding dye (Geneflow, Lichfield, Staffs),) was 

added to a final concentration of 5 µg/ml. The molten gel was poured into the gel 

tank and allowed to set at room temperature using the correct size of gel combs. 

DNA samples were loaded in to wells by mixing with 6x DNA loading buffer (see 

Appendix A1.2) and 0.5x TBE was used as the running buffer. Gels were run at 35 

mA (constant current) until satisfactory resolution of band sizes was attained (usually 

approximately for 1 h). DNA bands were visualised on a UV-trans-illuminator 

(UVitec Limited, Avebury House, Cambridge, UK) at a wavelength of 254 nm. 

Fragment size was approximated by comparing the positions with 1 Kb hyperladder 

(Bioline), a molecular size standard run on the same gel. DNA concentrations were 

roughly estimated by comparing the intensity of UV fluorescence of ethidium 

bromide or Midori green-stained DNA, to bands of a known volume of molecular 

marker. 

2.4.3 Gel Extraction and quantification of DNA  

Following agarose gel electrophoresis (see section 2.4.2), DNA bands were excised 

from the agarose gel using a scalpel blade by visualizing on a UV trans-illuminator 

(at 312 nm) (Ultra-Violet Products Ltd, Cambridge, Cambridgeshire, UK). DNA 

fragments were purified using QIAquick gel extraction kit (Qiagen, Germany) 

according to the manufacturer’s instructions. In this method, the agarose gel slices 

were first dissolved in the QG buffer consists with guanidine thiocynate and pH 

indicator provided (in a volume of three times the gel volume) at 500C for 10 min 

and then mixed with one gel volume of isopropanol. Using QIAquick spin columns 
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DNA was bound to columns by centrifuging (Progen, GenFuge 24D) at 11,000g for 

1 min. Columns were washed with given PE buffer at maximum speed (16,300g) for 

a 1 min. Finally, DNA was eluted in EB buffer (10mM Tris-Cl, pH 8.5). 

DNA concentration was estimated by comparing the intensity of the correctly sized 

band with molecular size markers on a 1% (w/v) agarose gel as described in section 

2.4.2 or directly quantified using a Nanodrop ND-1000 Spectrophotometer 

(NanoDrop Technologies, Wilmington, Delaware, USA). With the Nanodrop the 

concentration was determined by reading the optical density of the sample 

(approximately 1.6µl) at a wavelength of 260nm (according to the Beer-Lambert 

equation Eo = Ei exp(−µad ) ). The buffer used to elute the DNA was used as zero 

reference in each time. 

 

2.5 Cloning techniques 

Details of the vectors used in this study are presented in Appendix A3 including 

sequence and vector diagrams annotated with specific features. 

2.5.1 Primary/entry cloning 

A TOPO cloning kit (Promega) was used to insert freshly extracted DNA fragments 

into the Gateway ™entry vector (pENTR D-TOPO) and the manufacturer’s protocol 

was used to perform the cloning reactions. TOPO® Cloning is a highly efficient, five 

minute, one-step cloning method ("TOPO® Cloning") for the direct insertion of Taq 

 polymerase-amplified PCR products into a plasmid vector. Taq polymerase has a 

non-template-dependent terminal transferase activity that adds a single 

deoxyadenosine (A) to the 3´ ends of PCR products. The linearised vector supplied 

in this kit has single, overhanging 3´ deoxythymidine (T) residues. This allows PCR 
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inserts to ligate efficiently with the vector. Topoisomerase I from Vaccinia virus in 

this kit binds to duplex DNA at specific sites and cleaves the phosphodiester 

backbone after 5′-CCCTT in one strand. The energy from the broken phosphodiester 

backbone is conserved by formation of a covalent bond between the 3′ phosphate of 

the cleaved µbond between the DNA and enzyme can subsequently be attacked by 

the 5′ hydroxyl of the original cleaved strand, reversing the reaction and releasing 

topoisomerase (http://tools.lifetechnologies.com/content/sfs/manuals/). 

The cloning reaction was set up using 0.5:1 to 2:1 molar ratio of PCR product: 

TOPO vector in the salt medium supplied (1.2M NaCl; 0.06M MgCl2) and incubated 

for 5 min at room temperature (22-23oC). Then 2µl of the above reaction mixture 

was added to chemically competent E. coli, which were then incubated for 30 min on 

ice and followed by 30s heat shock at 42oC without shaking. Thereafter, 250µl of 

LB/SOC medium was added to the cells and tubes shaken for 1 h at 37oC while 

shaking at 200rpm. The resultant culture was spread on kanamycin selection plates 

incubated overnight 37oC. The following day selected colonies were analysed for the 

presence of the recombined vector with insert using primers designed for the vector 

and beginning of each insert by colony PCR. Positive colonies from colony PCR 

were used in restriction digestion (see section 2.6) to further confirm the correct size 

of insert and then sequenced (see section 2.7).  

2.5.2 Gateway cloning: cloning to the destination vector  

The Gateway® cloning technology is based on the bacteriophage lambda site-

specific recombination system which facilitates the integration of lambda into the E. 

coli chromosome and the switch between the lytic and lysogenic pathways. Lambda 

recombination occurs between site-specific att achment (att) sites: attB on the E. coli 
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chromosome and attP on the lambda chromosome. The att sites serve as the binding 

site for recombination proteins and upon lambda integration, recombination occurs 

between attB and attP sites to give rise to attL and attR sites.  

(https://www.lifetechnologies.com/us/en/home/life-science/cloning/gateway-

cloning.html/). After identifying the correct DNA clone in the entry vector, a 

gateway LR reaction (lytic reaction; attL x attR  in to attB X attP)  was performed to 

transfer the insert into the destination vector. This was performed using Gateway® 

LR Clonase TM II enzyme mix (Invitrogen) as described in the manufacturer’s 

protocol. The LR reaction mixture consisted of 2 µl of entry clone (50-150ng/ µl), 

1µl of destination vector (150ng/ µl), 1 µl of TE buffer (pH 8.0) (see Appendix A1.3) 

and 1 µl of LR clonase II enzyme. This reaction mix was incubated overnight at 

25oC. Then 0.5µl of proteinase K solution (1 µg/µl) was added to stop the reaction 

followed by incubation at 37oC for 10 min to break down the clonase. Silver 

competent cells (E.coli strain DH5α, Bioline, ≥108 cfu/ µg) were transformed using 

2.5 µl of reaction mixture by incubating for 30 min on ice followed by 30 sec heat 

shock at 42oC without shaking. Afterwards 250 µl of LB/SOC medium was added 

before shaking at 37oC for 1 h at 200rpm. The culture was spread on spectinomycin 

selection plates and incubated overnight at 37oC. The next day selected colonies were 

analysed for the presence of the construct. In this cloning method the destination 

vector was selected according to the desired application. Therefore pB7WG2 for 

stable constitutive overexpression in Arabidopsis and pK7WGF2 (contain GFP) for 

transient expression in tobacco were used (Karimi et al., 2002). 
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2.5.3 DNA ligation 

DNA ligation was performed to form recombinant DNA fragments using dsDNA 

fragments with cohesive (sticky) ends when TOPO cloning failed. T4 DNA ligase 

(Promega) was used to ligate DNA fragments into a linearised vector backbone by 

catalysing the formation of a phosphodiester bond between the 3' hydroxyl and 5' 

phosphate of adjacent DNA residues. 

Required DNA fragments were isolated after restriction digestion using specific 

restriction enzymes (see section 2.6) and the fragment was further purified either 

using DNA purification kit or using phenol/chloroform (see section 2.8.3). Five 

microlitres of each purified DNA product was run on a gel to confirm the correct size 

and stoichiometric quantities were used in a ligation with 1/10 volume of 10X ligase 

buffer (Promega) and 1µl of T4 DNA ligase in 10 µl of final volume. This mixture 

was kept in room temperature for 2 h to ligate and 5 µl (half) of the above ligation 

mixture was transformed either in to  Gateway ™entry vector (pENTR D-TOPO) or 

to E. coli chemically competent cells Mach1TM (see section 2.5.1) depending on the 

original DNA used to obtain the ligated product using standard transformation 

protocol. The resultant transformed cells were grown on selection plates with the 

correct antibiotics and incubated overnight 37oC. The following day selected 

colonies were analysed for the presence of the recombined vector with insert using 

primers designed for the vector and beginning of each insert in colony PCR. Positive 

colonies from colony PCR were used in restriction digestion (see section 2.6) to 

further confirm the correct size of insert and then sequenced (see section 2.7). 
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2.6 Restriction digests 

Restriction enzymes were used to separate fragments of DNA from plasmids to 

prepare PCR products for cohesive termini ligation and for diagnostic purposes. 

Restriction digests were performed according to the manufacturer’s instructions, 

using the recommended buffers supplied with relevant enzyme at 37oC for 2-4h 

except where the enzyme required lower temperatures for optimal activity. Double 

digests were performed using a buffer in which both the enzymes could function at 

their highest efficiency. If both enzymes required different buffers, sequential 

digestion was performed. In all digestions the enzyme volume was 10% of the total 

volume. NEBCutter was the software 

(http://www.tools.neb.com/NEBcutter2/index.php) used to work out the restriction 

sites. 

 

2.7 Sequencing 

Plasmid DNA was isolated and purified using Wizard® Plus SV Minipreps DNA 

purification system (see section 2.8.2.2) or PCR products amplified from plant 

genomic DNA (gDNA) were used for sequencing (see Appendix 2 for primers). All 

sequencing reactions were conducted by the in-house Sequencing Laboratory, School 

of Biological and Biomedical Sciences, Durham University (DBS, Durham 

University). DNA sequence data was analysed using Sequencher DNA sequence 

analysis software (http://www.genecodes.com) Database similarity searches were 

carried out using the BLAST search tool available at the Arabidopsis Information 

Resource database (TAIR; http://http//:www.arabidopsis.org/Blast/index.jspfor  
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nucleotide) to search for homology. DNA sequence data were analysed using the 

BLAST 2 sequencing tool (www.ncbi.nlm.nih.gov/blast/bl2seq) and Vector NTI 

software (Invitrogen). 

 

2.8 Plant and bacterial DNA extraction  

2.8.1 Plant genomic DNA extraction 

Edwards’ DNA extraction (Edwards et al., 1991) method was followed. 

Approximately 5-10 seedlings of 7-day old plants or 1-2 leaves from 3-weeks-old 

plants were collected in 1.5-ml microtubes and flash frozen in liquid nitrogen. The 

tissue was ground with a micro pestle for about 10 sec. Then 400 µl of Edwards’ 

extraction buffer (see Appendix A1.4) was added and tissue ground for another 30 

sec. The micro tubes were briefly vortexed for 5 sec and left at room temperature 

until all preps were ready for the next stage.  The tubes were then spun at 16,300g for 

1 min, and 300 µl of the resulting supernatant was transferred to a new tube. After 

that 300 µl of 100% (v/v) isoproanol was added to the above tube, and gently mixed 

by inversion. The microtubes were left at room temperature for 2 min to allow the 

DNA to precipitate, and then spun at 16,300g for 10 min. The resulting supernatant 

was removed and the pellet was further spun for 1min and the residual supernatant 

was aspirated. The  pellet was left to air-dry for 10 min or dried by spinning 5 min in 

a concentrator (Eppendorf concentrator 5301, VWR International Ltd, Leicestershire, 

England), and finally re-suspended in 50 µl of TE buffer overnight at 4°C (see 

Appendix A1.3). 
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2.8.2 Bacterial plasmid DNA extraction 

A single colony was inoculated (using sterile tip) in to 5 ml of liquid LB with 

relevant antibiotics. The culture was incubated overnight at 37oC with continuous 

shaking and the next day 1.5 ml was spun down at 10,000g for 1 min (Eppendorf 

centrifuge 5415D, VWR International Ltd, Leicestershire, England). The supernatant 

was used for the extraction of plasmid as described below depends on the purpose. 

2.8.2.1 STET mini-prep method 

The STET (Sucrose-Tris-EDTA-Triton) prep is a cost-effective modified alkaline 

lysis method (Maniatis et al., 1982) for isolating plasmid DNA from many samples, 

e.g. when screening bacterial colonies for the presence of construct in a plasmid 

vector having an antibiotic resistance marker. 

The supernatant was discarded and the cell pellet was resuspended in 250µl of pre-

chilled STET buffer (see Appendix A1.5). Then 20 µl of lysozyme (10 mg/ml in 

STET buffer) was added to digest the cell wall and gently mixed by flicking the tube. 

Then the microtube was incubated at 100oC for 1 min on digital dry-block (D1100, 

Labnet International, Inc). Next 270 µl of pre-chilled 5 M LiCl was added, mixed by 

inversion and incubated on ice for 30 min. The microtube was then spun at 4oC ) 

using the Beckman coulter centrifuge (Allegra™ X-22R, VWR international Ltd, 

Leicestershire, England) at 16,000g for 15 min, and the resulting pellet removed with 

a sterile cocktail stick (at this point, plasmid DNA is enriched in the supernatant, and 

the pellet consists mostly of proteins, polysaccharides and genomic DNA). One ml of 

100% (v/v) ethanol (pre-chilled to -20oC) was added to the remaining supernatant to 

precipitate plasmid DNA and incubated at -80oC for 30 min or at -20oC overnight.  
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The microtube was then centrifuged at 16,000g for 10 min at 4oC to pellet the 

plasmid DNA and the supernatant was discarded immediately. The pellet was then 

washed with 80% (v/v) ethanol by gentle inversion prior to another 10 min 16,000g 

centrifugation step at 4oC. Finally, the supernatant was discarded and the DNA pellet 

was left to air-dry for 10 min to volatilise any remaining ethanol) before 

resuspension in 50 µl of buffer TER (see Appendix A1.6). 

2.8.2.2 Column purification Mini prep method 

For salt-sensitive applications such as DNA sequencing high purity, small scale 

bacterial plasmid DNA extraction was performed using the Wizard® Plus SV 

Minipreps DNA purification system (Promega) according to the manufacturer’s 

instructions particularly. In this method, overnight cultures were spun down, 

resuspended and lysed in the presence of alkaline protease. The supernatant was 

separated from the flocculated pellet by centrifugation, and plasmid DNA bound to 

the supplied columns, which were washed in an ethanol-based buffer and eluted in 

EB buffer. 

2.8.2.3 Maxi prep method 

High purity, large scale bacterial plasmid DNA extraction was performed using the 

Qiagen plasmid Maxi Kit (www.qiagen.com) according to the manufacturer’s 

instructions. This method is similar to Wizard mini prep method. 
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2.8.3 Purification of PCR products/ extracted plant DNA 

2.8.3.1 Using purification kit 

PCR products directly after amplification were purified using column based Plant 

DNA Extraction Kits from Roche (http://lifescience.roche.com) or Omega Bio-tek 

extraction kit (https://us.vwr.com) according to the manufacturer’s instructions. 

2.8.3.2. Using phenol/chloroform extraction 

Extracted DNA samples were made up to 100 µl in TE pH 8.0 and mixed with an 

equal volume (100µl) of phenol: chloroform: isoamyl alcohol in a ratio of 25:24:1.  

After vortexing for 30 sec and spinning for 1 min in a bench top at maximum speed 

the clear upper phase was transferred to a clean tube without disturbing the 

interphase. Again one volume (100 µl) of chloroform was added and the same 

procedure repeated and the upper phase transferred to a new tube. Subsequently 1/10 

volume of (10 µl) of 3M sodium acetate pH 5.3 was added, vortexed briefly and 2.5 

volumes (250 µl) of 100% ethanol added.  After briefly vortexing the samples were 

held at -80oC for 30 min and then spun down at 15oC for 30 min at maximum speed. 

The supernatant was discarded and dab dried on a tissue. Next 500 µl of 70% ethanol 

was added without disturbing the pellet and the tube turned gently to make sure that 

it was coated in ethanol to remove salts from sides of the tubes and spun at 15oC for 

10 min at maximum speed. The supernatant was removed and dried the pellet in the 

concentrator (Eppendorf concentrator 5301, VWR Internationals) for 5 min and 

finally resuspended in 25 µl of TE buffer (see Appendix A1.3). 
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2.8.3.3 Use of Exonuclease I and Shrimp/Antarctic Phosphatase (ExoSAP 

method) 

This method was practiced to clean up PCR reactions that had been confirmed as 

producing only a strong single band on a gel. Two enzymes, Exonuclease I (Exo) and 

Shrimp/Antarctic Phosphatase (SAP) were used to remove excess dNTPs and 

primers from the PCR product before use in sequencing. ExoSAP reaction mix was 

prepared using 0.025 µl of Exonuclease I, 0.250 µl of Shrimp/Antarctic Phosphatase 

and 9.725 µl of distilled water to a final volum10µl. Ten µl of above 1x ExoSAP mix 

was added to 15 µl of each PCR sample and incubated at 37oC for 45 min and then 

80oC for 15 min in a PCR thermo-cycler. Samples were stored at -20oC until use. 

 

2.9 Bacterial competent cell production and transformation 

2.9.1 E.coli competent cell production (DH5α) 

Five-ml overnight cultures (including spectinomycin) were set up by inoculating a 

single colony from an E. coli plate. The following day 1 ml from the above culture 

was added to 100 ml LB in a 250-ml flask and grown in a shaker at 37°C for about 

1.5 h. Then OD value was checked and cells were harvested at 4oC by spinning down 

at 3500 g for 5 min when OD was between 0.2 and 0.3. Each step was performed on 

ice and then the supernatant was discarded and cells were resuspended in half 

volume ice cold 100 mM CaCl2 (50 ml). The resuspended solution was left on ice 

for 20 min and cells harvested by spinning at 3500g for 5 min at 40C. Supernatant 

was discarded and resuspended again in 1/10 volume of ice-cold 100 mM CaCl2 (10 

ml) and added 2 ml ice-cold glycerol to give a final concentration of 17% glycerol.  
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Empty eppendorfs were kept on ice to chill and 200 µl of competent cells were 

aliquoted to each tube. Aliquots were immediately frozen in liquid nitrogen and 

stored in -80 0C for further use. 

2.9.2 Transformation of competent E.coli cells 

Twenty-five-µl aliquots of either chemically competent E.coli cells Mach 1(>109 cfu/ 

µg) for high transformation efficiency or DH5α (≥108 cfu/µg) for routine cloning, 

were thawed on ice before transformation.  Ligation mixtures were warmed to 70oC 

for 10min to inactivate the enzyme, and then transferred onto ice for 1 min. Two and 

a half µl of ligation reaction mixture was added to the competent cells and cells were 

incubated on ice for 30 min followed by 1 min heat shock at 42oC in a water bath and 

immediately transferred back onto the ice for 2 min. Then 1 ml of LB/SOC medium 

was added to the reaction tube and shaken gently at 150 rpm at 37oC for 1 h. This 

recovery time allows the cells to initiate replication under optimal conditions. 

Aliquots of each culture were then spread onto LB agar plates containing the 

appropriate antibiotics for selection of the plasmid (see table 2.1 for concentrations). 

Plates were incubated at 37oC overnight to develop colonies, and kept at 4oC for 2-3 

weeks storage. 

2.9.3 Agrobacteria competent cell production 

Agrobacterium tumefaciens strains were streaked onto a fresh LB plate with 

appropriate antibiotic (rifampicin) incubated for 2 days at 28°C. A single colony 

from the above plate was picked and inoculated in a 5-ml overnight culture of LB 

with the same combination of antibiotics as above. Cultures were grown overnight at 

28°C in a shaking incubator. The next day 5 ml of overnight culture were added to 

100 ml of LB in a sterile 500-ml flask and shaken vigorously 250 rpm) at 28°C until 



                                                                                                                       Chapter2 

83 

 

the culture reached an optical density (OD ) 600 of 0.5-1 (takes 4-8h). Cultures were 

chilled on ice and centrifuged at 3000g for 5 min at 4°C to pellet the cells. The 

supernatant was discarded and the cells resuspended in 2 ml of ice cold 20mM CaCl2 

solution. Finally cells were dispensed in 0.1-ml aliquots into pre chilled 1.5-ml 

eppendorf tubes, flash frozen in liquid nitrogen, and stored at -80oC for future use. 

2.9.4 Transformation of competent Agrobacteria with construct 

Agrobacterium strain C58C1 competent cells were used for constitute expression in 

Arabidopsis using floral dipping (see section 2.10.1) method. Frozen aliquots of 100 

µl of strain C58C1 competent cells were placed on ice and allowed to thaw. One µg 

of plasmid DNA was mixed with the cells by inverting gently. The cells were then 

heat shocked at 37oC for 5 min using a water bath. After that 1 ml LB medium was 

added and tubes were shaken at 150 rpm for 2-4 h at 29oC to allow cells to grow. 

Then the content was transferred to an eppendorf tube and spun down for 30 sec to 

pellet the cells and most of the supernatant was removed. The pellet was resuspended 

in about 200 µl of the remaining supernatant. Aliquots were spread on LB agar plates 

containing rifampicin, spectinomycin and gentamicin (see table 2.1 for the 

concentrations) for the selection. Plates were incubated in a 29oC incubator for 2-3 

days for colonies to develop. 

Agrobacterium strain GV3101 (pRM90) competent cells were used for transient 

expression in tobacco and leek and followed the same transformation procedure as 

above. 

2.9.5 Long term storage of bacterial cultures using glycerol stocks 

E.coli and Agrobacterium strains carrying the constructs were streaked onto a fresh 

LB plate with appropriate antibiotics and incubated overnight at 37°C or for 2 days at 
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28°C respectively. A single colony from the above plates was picked and inoculated 

in a 5 ml overnight culture of LB with the same combination of antibiotics as in the 

plate. Cultures were grown overnight at correct temperature as above in a shaking 

incubator. 850 µl of LB cultures were taken into a new 1.5-µl tube and 150 µl of 

100% (v/v) glycerol was added, mixed by pipetting up and down followed by brief 

vortexing. Cultures were kept at -80oC for future use. 

 

2.10 Plant transformation and crossing 

2.10.1 Arabidopsis floral dip method for transformation 

2.10.1.1 Preparation of plants for floral dip 

Seven day old seedlings grown on MS plates were transferred to large hydrated peat 

plugs (42 mm diameter) with 3 plants per plug, and grown in long day growth room 

as described in section 2.1.4. When plants reached the initial flowering stage, bolts 

were clipped to encourage the formation of more floral buds from the axillaries. 

Plants were clipped 2-3 times prior to dipping, which resulted in a large number of 

young floral shoots. The bolted plants were supplemented with fertilizer to maintain 

vigorous growth. The final clipping was done 7 days before transformation, to 

encourage lateral shoots that actively produced flowers. 

2.10.1.2 Preparation of Agrobacteria for floral dip transformation 
 

A single colony of Agrobacterium having a binary vector construct (as described in 

section 2.9.4 with pB7WG2) grown on LB agar plate (with appropriate antibiotics) 

was used to inoculate a 5-ml overnight culture. The next day the above 2 ml of above 

overnight culture were added to 200 ml of LB In a 1-litre flask (with the same 
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antibiotics) and grown for a further 24 h at 29oC. Next day, for the transformation, 

cells were spun down (15 min at 3500g) and re-suspended in 5 % sucrose solution in 

the same volume as original culture. Silwet L-77 surfactant (250 µl per 500 ml) was 

added immediately prior to use for dipping. 

2.10.1.3 Dipping of Arabidopsis plants 

The small volume of resuspension was poured into a beaker and flowers were dipped 

into this suspension for 30-60 seconds. The plants (grown in peat plugs) were then 

placed on their sides on a tray lined with tissues. Finally the tray was covered with 

cling film and returned to the growth room and the following day plants were 

uncovered and the peat plugs returned to a vertical position in a new tray and 

watering continued as before, but ensuring that the Agrobacterium was not washed 

off. 

2.10.1.4 Selection of transformants 

The T1 seeds collected from Agrobacterium dipped plants transformed with a vector 

containing a selectable marker other than Basta resistance (kanamycin), were bleach 

sterilised as described in section 2.1.2.2 before germinating on MS agar plates with 

timentin to inhibit growth of Agrobacterium (see table 2.1 for concentrations) and 

appropriate antibiotics to select for the binary vector. Primary transformants (T1 

plants) surviving on the selection plates with green cotyledons and developing roots 

were transferred to peat plugs to obtain their seeds (T2 generation) and harvested 

separately. 

Seeds from plants carrying Basta resistance constructs as the plant selectable marker 

were sown directly onto soil (see 2.1.3 for the growth conditions) and allowed to 

germinate. After 7-8 days, Basta herbicide (250 mg/l) was sprayed onto the young 
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seedlings until visibly wet and treatment was repeated 3-4 times at three-day 

intervals. The surviving primary transformants were transferred to peat plugs and T2 

seeds were collected from each plant separately. 

2.10.2 Crossing of Arabidopsis plants 

Seven-day-old seedlings of sfr6-1 and other donor plants were transferred to peat 

plugs (one seedling/plug) in trays and moved to a growth room that maintained long 

day photoperiod (see section 2.1.4). sfr6-1 mutant plants were maintained as 

recipient plants in crossing in this research study and other plants such as kin10-1 

and wild type plants overexpressing KIN10 were used as donor plants and also 

maintained under long day photoperiod as described in section 2.1.4. Once sfr6-1 

plants reached the flowering stage, elongated and stout but unopened flower buds 

were selected to continue crossing with pollen taken from donor plants. The green 

colour outer whorl sepals was first removed using sharp-end forceps and then inner 

whorl of white petals was removed. Finally immature stamens of sfr6-1 were 

removed without damaging the pistil. Mature pollen taken from donor plants was 

gently deposited on stigma of the above opened pistil of sfr6-1. Crossed plants were 

labelled and allowed to continue growth until successful siliques turned to yellow 

colour. Those dried seeds were planted on MS plates (see section 2.1.3) and taken 

forward to selection. 

2.10.3 Selection of homozygous segregants using allelic discrimination assay (AD 

assay) 

An allelic discrimination assay was performed using Applied Biosystems 7300 

machine. (Applied Biosystems, Foster city, USA) to identify the sfr6 genotype as the 

sfr6-1 EMS mutant has a single nucleotide polymorphism (SNP). This test detects 
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single nucleotide variants of a nucleic acid sequence. TaqMan SNP probe (Applied 

Biosystems) was used to distinguish homozygous segregants in different crosses 

performed in this study using the allelic discrimination assay. Six ng of genomic 

DNA (see section 2.8.1) at a concentration of 10 ng/µl and 9 µl of master mix that 

consisted of 0.375 µl of Taqman SNP assay (for SFR6), 7.5 µl of 2xAccu Start 

genotyping tough mix ROX and 1.125 µl of nuclease-free water were mixed in a 15-

µl total reaction in optical 96-well reaction plates (semi-skirted with raised rim 

qPCR, Star Lab, USA). Three technical replicates were used for each sample. A 

TaqMan probe for genotyping SFR6 (see Appendix 2 for probe details) was 

purchased from Applied Biosystems. 

 
 
 
Figure 2.1: Model graph supplied by Applied Biosystems 7300 to illustrate the assay used to 

identify homozygous segregants of sfr6 genotype as the sfr6-1 with the single nucleotide 

polymorphism (SNP) characteristic of sfr6-1 using the TaqMan SNP probe. The chart plots 

the detection of Allele X (wild type, circles) and Y (mutant, diamonds) in each sample. 
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Positions of unknown samples on the chart are referenced to known genotypes in order to 

determine whether they are homozygous for either allele or heterozygous. 

 

2.11 Transient expression in plants 

2.11.1 Preparation of Agrobacterium strains expressing GFP constructs 

Constructs were cloned into the entry vector as described in section 2.5.1 and then 

into the gateway destination vector (see section 2.5.2), pK7WGF2 that allows the 

cloning of an in-frame fusion of the gene of interest with an N-terminal GFP tag. 

Agrobacterium strain GV3101 competent cells (prepared as described in section 

2.9.3) were transformed with a destination vector construct to be used in transient 

expression in tobacco or leek. One hundred-microlitre aliquots of transformed 

GV3101 agrobacteria cells (see section 2.9.4 ) were spread on LB agar plates 

containing rifampicin, spectinomycin and gentamicin (see table 2.1 for the 

concentrations) for the selection. Plates were incubated in a 29oC incubator for 2-3 

days for colonies to develop. Colonies were re-streaked in fresh plate (containing 

same antibiotics) and colonies were checked for the presence of the construct. 

2.11.2 Transient expression in Nicotiana benthamiana (tobacco) using 

infiltration 

A single colony selected from the above plates or freshly streaked out plates using 

glycerol stocks was harvested in to a 5-ml overnight bottle consists of the same 

antibiotic combination and grown overnight in a 29oC incubator. Next day a 5-ml 

culture was transferred to a 15-ml falcon tube and spun down for 5 min at 3000g at 

room temperature. The resulting supernatant was discarded and the pellet was 

resuspended in 1 ml of 10 mM MgCl2 solution. The absorbance of the solution was 

measured using 20 µl of the above suspension after mixing with 980 µl of water 
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using a spectophotometer (BOECO S-20, Germany) at 600 nm wave length. Finally, 

the rest of the resuspension (980 µl) was diluted in 10 mM MgCl2 solution to obtain 

correct concentration for infiltration. This dilution was calculated based on optical 

density to be in final solution i.e 0.3 for one construct and 0.6 if two constructs used 

to infiltrate in the experiment. When two constructs were expressed in a single plant, 

equal volumes of each construct having 0.6 O.D (optical density) were mixed to 

obtained final O.D value of 0.3. Tobacco plants were grown for six weeks in a 

growth room (24oC temperature with 16 h light/8 h dark cycle, see section 2.1.4) and 

these plants were used for infiltration. The 5 ml of Agrobacterium resuspension 

described above was applied with pressure through the underside of the tobacco 

leaves using a 5-ml syringe (without a needle) to a single leaf. Suspension was 

entering the leaf through the stomata and that visible area was marked using a pen.  

Then plants were transferred back to the same growth conditions (see section 2.1.4) 

and incubated for 48h. Later, the plant specimens were observed under a Confocal 

microscope (Leica SP5 CLSM FLIM FCCS) as described in section 2.11.5. 

2.11.3 Biolistic transformation of leek tissue (Allium porrum) 

Biolistic transformation (particle/microprojectile bombardment) is a process of 

delivering DNA into plant cells by coated with gold or tungsten particles (Sanford, 

1988)  

2.11.3.1 Preparation of plant materials 

Leek slices (colourless) were taken from the separated inner whorls of the lower part 

of the stem. The 1×1 cm squares were placed  on MS plates as concaved side on top  

in the centre of the plate into a circle (about 3 cm diameter) covering about most of 

the area of the circle. 
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2.11.3.2 Preparation of the gold particles 

Sixty mg of 1.6-µm gold micro-carriers were transferred to an eppendorf tube and 1 

ml of ethanol was added and the contents vortexed for 1 min. The tube was then spun 

in a micro-centrifuge for 10 sec to pellet the gold particles and remove the 

supernatant. Three repeated washes were performed in the same way and after the 

last wash the tube was spun for 1 min. One ml of sterilised double distilled water was 

added and the gold particles completely resuspended by vortexing for 1 min. The 

supernatant and all debris were removed by subsequent spinning for 1 min. Lastly, 

gold particles were completely resuspended in 1 ml of water by vortexing and the top 

of the eppendorf tube sealed with parafilm and stored at 4oC until use. 

2.11.3.3 Preparation of DNA-coated particles 

Large macro-carrier discs were placed into the macro-carrier rings using tweezers 

and flattened. Gold particles were vortexed hard for 1 min. and 50 µl quickly 

transferred into an eppendorf tube and 5µg plasmid DNA added before vortexing 

hard for 30 sec. Then 50 µl 2.5 M CaCl2 was added to each sample and vortexed hard 

for 30 sec. Subsequently, 20 µl of 0.1 M spermidine free base was added and 

vortexed hard for 3 min. The tube was spun at 10,000g to pellet particles and the 

supernatant removed as quickly as possible. After that 250 µl of absolute ethanol was 

added to the particles, vortexed hard to fully resuspend and the supernatant quickly 

removed after spinning down. Then the pellet was completely resuspended again in 

125 µl of ethanol by vortexing. The suspension was then pipetted up and down and 

20 µl aliquots of suspension dispensed onto each macro-carrier disc and allowed to 

dry. 
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2.11.3.4 Delivering gold coated DNA to explants 

Plant bombardment with DNA-coated gold particles was performed using a Bio-Red 

PDS-1000/He particle delivery system. The vacuum applied to the chamber was 25 

mm Hg/in using a vacuum pump. 1100-psi rupture discs were used in the chamber to 

deliver DNA coated gold particles to plant materials (square pieces of leek lower 

epidermis approximately 8mm x 8mm). Bombarded Leeks tissue (on MS plates) was 

incubated for 48 h in the Percival growth chamber. 

2.11.4 Visualisation of GFP florescence 

After 48 h incubation (as described in section 2.11.3.4) tobacco leaf samples or the 

lower epidermal peels of leek explants were placed on glass microscope slides (0.8-

1.0 mm thick, VWR International) and covered with a cover slip (22 x 22 mm, VWR 

International) with drop of water. These specimens were observed on a confocal laser 

scanning microscope (Leica SP CLSM FLIM FCCS) with 40× oil immersion 

objective. The excitation wavelength for GFP visualisation was 488nm (Argon 

laser), with emission measured using a 505 nm long pass filter. All images were 

taken under the same pinhole aperture. 

 

2.12 Stress treatments for gene expression studies 

 

2.12.1 Cold treatment 

Seven-day-old seedlings grown on MS agar plates (see section 2.1.4) were 

transferred to 5oC for 6 h (beginning 2-3 h into the light cycle) in a growth chamber 

(SANYO MLR-351) set for short days 10:14 h light:dark, with a light level of 

approximately 150 µEm-2s-1 while control plates were kept at 20oC in the Percival 
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growth chamber. Whole seedlings were collected after cold treatment and quickly 

frozen in liquid nitrogen. Samples were kept at -80oC prior to RNA extraction. The 

sample processing time between harvesting and freezing was kept to the minimum; 

tissue was frozen within less than 1 minute of tissue harvest. 

2.12.2 UV stress 

Seeds were sown evenly (about 50) on MS agar plates and seven-day-old seedlings 

were irradiated with 5 or 10 kJm-2 of UV-C (254 nm wavelength) (depending on the 

experiment), in a UV cross linker (Uvitec Ltd, Cambridge, UK). During the UV 

treatments, the lids were removed from the petri plates and control plates were also 

exposed to the air for the time taken for the UV exposure. After the treatments, all 

plates were resealed and returned to the Percival growth chamber. Twenty four hours 

after the treatments samples were collected; each sample comprised 15-20 seedlings 

in a microfuge tube and was snap frozen in liquid nitrogen prior to RNA extraction. 

2.12.3 Dark/ starvation stress 

Seven-day-old seedlings grown on 0.5×MS agar plates were covered in two layers of 

Aluminium foil to provide dark conditions whilst keeping control samples without 

foil and all plates were transferred to a Percival growth chamber t at 20±1oC set for 

long days (16:8 h light:dark photoperiod with light level of approximately 150-200 

µE m-2 s-1). After 6 h (beginning 2-3 h into the light cycle) seedlings were harvested 

quickly and frozen in liquid nitrogen. Samples were kept at -80oC prior to RNA 

extraction. 
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2.12.4 Desiccation/drought stress 

Seeds were sown evenly on MS agar plates and seven-day-old seedlings were used 

for the treatment. Drought stress was given in terms of desiccation by opening the 

lids while exposing the seedlings to normal growth conditions in the Percival growth 

chamber at conditions described above. Plates to be treated were open to the above 

conditions for 6 h while keeping the control plates closed under same conditions. 

After 6 h (beginning 2-3 h into the light cycle), 15-20 seedlings were collected in a 

microfuge tube and quickly frozen in liquid nitrogen prior to RNA extraction. 

2.12.5 DCMU (3-(3,4-dichlorophenyl)-1,1-dimethyl urea) treatment 

Seven-day-old seedlings grown on MS agar plates were floated (15-20 seedlings per 

treatment) in 5 ml of sterile water or 20 µM DCMU (3-(3,4-dichlorophenyl)-1,1-

dimethyl urea) contained in transparent six-well culture dishes (SARSTEDT 

Nümbrecht, Germany) for 6 h (beginning 2-3 h into the light cycle) and kept in the in 

the Percival growth chamber at the conditions described above. After 6 h of the 

treatment, seedlings were quickly harvested in a microfuge tube by blotting seedlings 

on tissue paper to remove excess solution. Samples were then quickly snap-frozen in 

liquid nitrogen.  

2.12.6 ABA treatment 

Seven-day-old seedlings grown on MS agar plates were floated (15-20 seedlings per 

treatment) in 5ml of 0.1% ethanol as control and 100 µM ABA (abscisic acid) 

contained in transparent six-well plates for 6 h and kept in the in the Percival growth 

chamber at the conditions described above. After 6 h (beginning 2-3 h into the light 

cycle) of the treatment, seedlings were blotted on tissue paper and quickly placed in a 

microfuge tube. Samples were then quickly frozen in liquid nitrogen.  
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2.13 Extraction, quantification and analysis of RNA 

2.13.1 RNA extraction 

The RNeasy Plant Total RNA Kit (Qiagen), was used to extract RNA from plant 

materials using the given protocol. Plant samples were frozen in liquid nitrogen and 

quickly ground using micropestles by hand for few seconds. Four hundred and fifty 

microliters of pre-chilled RLT lysis buffer (after the addition of 500µl β-

mercaptoethanol to every 50 ml) was added, ground again until a relatively 

homogeneous sample was produced and left on ice whilst processing the other 

samples. RLT buffer contains guanidine thiocyanate that disrupts the cell structure 

and has denaturing properties and β-mercaptoethanol acts as a reducing agent. The 

samples were vortexed and transferred to a pre-heated heat block at 560C for three 

minutes followed by five or more minutes on ice.  After samples had cooled down, 

the lysate was transferred to a QIAshredder spin column (held in a 2-ml collecting 

tube) and spun down for 2 min at 16300g. The flow-through was removed (without 

disturbing the pellet in the bottom of the tube) to a new tube containing 225 µl of 

100% ethanol, mixed by pipetting up and down and transferred to an RNeasy spin 

column. Ethanol promotes selective binding of RNA to the RNeasy membrane. The 

content was spun down at 11600g for 30 sec, allowing RNA to bind to the column, 

the supernatant removed and the column washed again as described above with 

350µl of buffer RW1 (consisting of guanidium salts), and the flow-through 

discarded. DNase digestion was performed with RNase-free DNase (10 µl of DNase 

and 70 µl of RDD buffer per sample) (Qiagen, Hildon, Germany; http:// www. 

qiagen. com) in order to remove genomic DNA from the RNA and incubated for 20 

min, after which the column was washed again with 350 µl of buffer RW1 for 30 sec 
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at 11600g. Two last washes were performed using 500 µl of buffer RPE (which 

contained 80% ethanol) for 30 sec at 11600g followed by a 2-min spin at 16300g. 

Finally, the isolated RNA was eluted from the column in 30µl RNase-free water by 

spinning down at 11600g for 1 min.  

2.13.2 RNA quantification 

The concentration of RNA was determined by measuring the optical density of 

samples at a wavelength of 260nm using a Nanodrop ND-1000 Spectrophotometer 

(NanoDrop Technologies, Wilmington, Delaware, USA). An undiluted sample of 1.6 

µl of RNA was applied onto the pedestal of the machine to make a measurement. 

RNase-free water was used as a zero reference in the measurements. The following 

equation was used to quantify the concentration. 

c = A/(E * b) 

Where c is the nucleic acid concentration in ng/µl, A is the absorbance in AU, E is 

the wavelength-dependent extinction coefficient in ng-cm/µl,and b is the path length 

in cm. The generally accepted extinction coefficients for double stranded DNA, 

single stranded DNA and RNA are 50, 33 and 40 respectively. 

2.13.3 Quantification of transcript levels 

cDNA was synthesised from total RNA and used for gene expression studies using 

quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR), a 

technique used for relative quantification of transcripts levels (see section 2.14). 

2.13.3.1 cDNA synthesis with long RNA templates 

cDNA was also used to amplify specific gene fragments for cloning. In this case, 

following the extraction of RNA (see section 2.13.1) Moloney Murine Leukemia 
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Virus Reverse Transcriptase (M-MLV RT; Promega) was used for cDNA synthesis 

from long messenger RNA templates. Two microgrammes of RNA was diluted in 10 

µl of water and heated at 65oC for 10 min to melt secondary structure within the 

RNA template and immediately cooled rapdily on ice to avoid reforming of the 

secondary structure. Then synthesis of the first strand of cDNA was performed by 

the addition of a master mix (10 µl) consisting of 4µl of M-MLV 5X reaction buffer 

(250mM Tris-HCl pH 8.3, 375mM KCl, 15mM MgCl2 and 50mM DTT), 2µl of 

10mM dNTP, 0.5µl recombinant RNasin® ribonuclease inhibitor, 1µl of M-MLV RT 

and 2.5µl of nuclease-free water.  Then 10µl of the above master mix and 10µl of 

RNA template were mixed and heated at 37oC for 90 min on a heat block. Then 

second-strand synthesis was performed either using Taq polymerase (see section 

2.4.1) to confirm the correct size of DNA on agarose gel (see section 2.4.2) or to 

detect the level of transcripts in qRT-PCR (see section 2.14). 

2.13.3.2 cDNA synthesis for use in qRT-PCR 

A high capacity cDNA synthesis kit (Applied Biosystems, Foster city, USA) was 

used to reverse transcribe cDNA from 2 µg of total RNA (in a total volume of 10 µl), 

combined with 10 µl of reverse transcriptase reaction mixture (2 µl of 10×RT buffer, 

0.8 µl of 25×dNTP mix, 2 µl of 10×RT Random primers, 1 µl of Reverse 

transcriptase and 4.2 µl of nuclease-free water. The samples were run in the thermal 

cycler at 25oC for 10 min (primer annealing) followed by 37oC for 120 min (cDNA 

synthesis) and then 85oC for 5 sec (reaction termination step to inactivate any 

remaining active reverse transcriptase that could inhibit qPCR). The resultant cDNA 

was diluted in nuclease-free water 1:50 prior to use in quantitative realtime (qRT) 

PCR to study gene expression. 
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2.14 Measurement of gene expression using qRT- PCR 

The relative transcript levels of genes of interest were quantified with reference to 

the expression of an endogenous control gene by quantitative real-time PCR (qRT-

PCR) using an Applied Biosystems 7300 machine. Five microlitres of cDNA (1:50 

diluted cDNA as described in section 2.13.3.2) was used with Gotaq® qPCR Master 

mix (Promega) in a 10-µl reaction in optical 96 well reaction plates (semi-skirted 

with raised rim, Star Lab UK Ltd, Milton Keynes, UK). Three technical replicates 

were used for each sample in a single plate and three biological replicates were done 

for each experiment. Relative gene expression was analysed using the ∆∆Ct method 

(Livak and Schmittgen, 2001) and technical variability calculated for each samples 

as stated in the Applied Biosystems user manual, 2007 for singleplex data (external 

control method). 

 
 

2.15 Stress treatments for plant stress tolerance assays 

2.15.1 Freezing tolerance assays 

Seedlings were grown on MS agar plates (as in section 2.1.4) for 7 days, then 

transferred to peat plugs and grown thereafter in the growth room under short day 

conditions (12:12 h light: dark) at 20oC, and 150-200 µEm-2s-1
 light level for four 

weeks. Afterwards plants were transferred to 5oC for cold acclimation for 14 days in 

a growth chamber (SANYO chamber set for short day; 10:14 h light: dark cycle), 

with a light level as described above. The plants used as controls were kept at 20oC 

in short day conditions (12:12 h light: dark, 60 % humidity and at same light level) 

for a further 14 days whilst the other plants were kept under acclimation conditions.  
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Then both acclimated and non-acclimated plants were frozen at -7.5oC for 24 h. 

Plants were returned to the original growth conditions and monitored for 10 days 

after freezing, photographed, and their survival recorded. 

Photosynthetic efficiency of the plants was measured using the Fv/Fm ratio based on 

chlorophyll fluorescence using FluorCam (700MF, Photon Systems Instruments, 

Czech Republic) before acclimation, after acclimation and after the plants had been 

frozen. 

2.15.2. Electrolyte leakage assay 

Plants were grown for seven days on MS agar plates and transferred to soil for 27 

days under short days to promote rosette growth. After this, were transferred to cold 

acclimating conditions: 5°C in 10:14h light: dark cycles, 150-200 µE-1m-2s-1 for 14 

days. Rosette leaves of a comparable size in all mutants and wild-type plants were 

excised and washed in milli-Q water in a clean weigh boat. Leaves were blotted 

gently on tissue paper to remove excess water and a blunt spatula was used to add 

leaves to the bottom of the tubes without damaging leaves. Three replicate tubes 

were prepared for each treatment, with each tube containing three leaves. Test tubes 

were held on ice until all samples had been prepared. After that, one set of tubes was 

retained on ice, while the others were transferred in a completely randomized order 

to a Clifton freezing bath filled with anti-freeze/ heat transfer fluid and cooled by an 

immersion dip cooler (Nickel-Electro) set at -2°C. Tubes were allowed to equilibrate 

for 1 h before the addition to each tube of 2-3 ice chips made with milli-Q water. 

Tubes were plugged with a foam bung and kept at -2°C for a further 2 h. Three tubes 

from each plant type (as three replicates /each treatment) were removed and placed 

on ice and then the temperature was reduced to -4oC in the bath. After 30 min at this 
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temperature another set of tubes was removed and kept in ice. This procedure was 

continued until the last set of tubes was taken out at -12oC. All tubes were placed in a 

test tube rack on ice and thawed overnight in the cold room (5oC) to equilibrate. 

The following day 5 ml of distilled water was added to each tube and tubes shaken 

gently for 3 h at room temperature. The resultant liquid was decanted into a labelled 

set of 6-well plates and electrical conductivity was measured using a hand-held 

conductivity meter (Hannah Instruments). Then the test tubes containing leaves were 

transferred to a -80°C freezer for 1 h, allowing complete release of the remaining 

solutes from the plant tissue. After an hour, the contents in the tubes were allowed to 

thaw on ice for 30 min, after which the previously decanted fluid was returned back 

to each tube and the tubes shaken again for 3h before the conductivity was re-

measured. Percentage of electrolyte leakage was calculated by expressing the 

conductivity before freezing as a percentage of the conductivity after freezing. 

2.15.3 UV tolerance assay 

Seedlings were grown on MS agar plates (see  section 2.1.4) up to seven days and 7 

day-old-seedlings were irradiated with 5 and 10 kJm-2 of UV, in a UV cross linker 

(Uvitec Ltd, Cambridge, UK) with the plate lids off while control plates were 

exposed to air for same duration (as in UV treatments). Immediately after treatments, 

all plates were resealed and returned to the Percival growth chamber (see section 

2.1.4) after being wrapped in foil to inhibit the blue light-mediated repair pathway. 

The number of surviving seedlings with green meristems was recorded 10 days after 

treatments. 
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2.15.4 Drought tolerance assay - Water withdrawal 

Individual seedlings were grown on 38-mm (diameter) peat plugs and grown in short 

day conditions (12:12h light: dark cycles) at 150-200µE-1m-2s-1 at 20°C with constant 

watering (at two-day intervals) up to 25 days post-germination. Water was withheld 

for 14 days (after which approximately 50% of wild type plants showed a wilting 

appearance) and then re-watered. The number of plants surviving and exhibiting re-

growth was assessed after a further 10 days and photographed. 

2.15.5 Starvation tolerance assay  

Seven-day-old seedlings grown on 0.5×MS agar plates were covered in two layers of 

foil for 14 days to provide dark conditions whilst keeping control samples without 

foil. All plates were transferred to a Percival growth chamber (see section 2.1.4). 

After 14 days seedlings were return back under normal conditions in Percival growth 

chamber and 3 days later the number of plants surviving and exhibiting re-growth 

was assessed and photographed. 

 

2.16 Protein Expression Assays in Arabidopsis 

2.16.1 Protein Extraction for quantitative analysis  

Seedlings were grown on MS agar plates (see section 2.1.4) for seven days in the 

Percival growth chamber. About 20-30 seedlings were collected and quickly frozen 

in liquid nitrogen in an eppendorf tubes. Samples were ground using micropestles by 

hand for several seconds and 400 µl of extraction buffer (equivalent to approximately 

2 ml/g fresh weight of tissue, see Appendix A1.7 for general extraction buffer and 2 

mM DTT; 0.5% (w/v) PVPP; 1% (v/v) protease inhibitor cocktail (Sigma); 1% (v/v) 
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NP-40, 1mM sodium molybdate and 1mM NaF were freshly added) and further 

ground the samples. Samples were kept on ice until all the samples had been 

processed and centrifuged at 13,000g for 15 min at 4oC.  The supernatant was 

collected and 200 µl kept in a new tube, before being frozen in liquid nitrogen and 

stored at-20oC until use. The remaining 20-30 µl of supernatant was used for protein 

quantification. 

2.16.2 Protein quantification 

A working solution of Copper tartrate (reagent A) was prepared according to 

instructions provided in the BioRad DC Protein assay (BioRAD, Hercules, CA, 

USA) kit. Standard protein dilution series were made using BSA (Sigma, USA) in 

the range of  0-2 mg/ml and the standard curve was prepared each time the assay was 

performed. Extraction buffer (see section 2.16.1) was used to prepare the standards 

each time. Twenty µl of standards (the rest of the samples were frozen and kept at -

20°C and samples were transferred into clean, dry test tubes and 100 µl of working 

reagent was added to each tube and vortexed. Then 800 µl of Folin (reagent B) was 

added into each tube and left 15-20 min  After that absorbance was measured at 650 

nm using a spectrophotometer (S-20, BOECO, Germany) based on the reaction of 

protein with alkaline copper tartrate solution and folin reagent. Using a standard 

curve, protein concentrations of the samples were calculated. Further dilutions were 

performed to obtain 2mg/ml of each sample to be used in western blotting using 

extraction buffer without freshly added additives. Then the required amount of the 

above samples was mixed with 2X SDS buffer (see Appendix A1.8) and either 

directly used for loading after being heated at 95oC for 5 min in a heat block or 

stored at -20oC until use. 
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2.16.3 SDS gel preparation and electrophoresis 

Ten percent acrylamide resolving/separating gel was prepared using resolving buffer 

(see Appendix A1.9) as described in Appendix A1.10  and 6 ml of the above solution 

was used to make a single gel. One ml of water saturated iso-butanol was poured on 

top of the resolving gel to smoothen the gel surface. Once the gel was settled with 

stacking buffer (see Appendix A1.11), 5% acrylamide stacking gel (see Appendix 

A1.12) was prepared and 1.5 ml of stacking gel was poured on resolving gel and an 

appropriate comb was used. The gel apparatus was filled with 1x SDS running buffer 

(see Appendix A1.13) and predetermined volumes of sample (to obtain a 

concentration of 2mg/ml ) were loaded in to wells after heating at 95oC for 5 min. 

Five µl of standard protein marker (Precision PlusTM Dual colour standard, Sigma ) 

was added in the first lane of the gel. The gel was run at 120V for the first 30 min 

and then adjusted to 180V for another 1 h.  

2.16.4 Staining and membrane transferring 

Following gel electrophoresis, one gel was used to study the quality of the 

preparation of proteins in the samples using Coomassie staining. The gel was 

carefully removed from the glass plates and transferred to a box in which it was 

washed 2-3 times with ultrapure water to remove adhering SDS from the gel. Then 

2ml of Imperial Tm protein stain (blue) was added and left in the shaker for an hour 

(NB-205, N-BIOTEK, Korea). After that the gel was washed with ultrapure water 

several times until all the unbound blue dye had been removed, leaving Coumasssie 

blue-stained proteins. The second gel was used for membrane transfer. 

PVDF (polyvinylidene difluoride) (Immun-Blot® PVDF, BioRad) membrane was cut 

to the same size as the gel and rehydrated in 100% methanol solution for 1-2 min and 
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then transferred to cold transfer buffer (see Appendix A1.14) for 15-20 min. Wet 

blotting apparatus was used for transfer and the gel and membrane loaded between 

two layers of Whatman No.1 filter paper, which were soaked in the same cold 

transfer buffer. The wet blotter was filled with the same cold transfer buffer and run 

at low voltage (30V) overnight in a cold room with gentle stirring of the buffer. 

Alternatively, the membrane transfer was performed for 1h using 20% methanol 

based transfer buffer (see Appendix A1.15) at high voltage (100V) in a cold room. 

After complete transfer the membrane was washed 3 times in TBS-T (see Appendix 

A1.17) with each wash lasting 5 min. 

After this the membrane was kept in 50 ml of 5% milk (w/v) (Marvel, UK.) made in 

TBS-T and shaken (200 rpm) in an incubator for an hour at room temperature to 

block non-specific protein attachment to the membrane, in order to obtain less 

background signal in immunoblotting. 

2.16.5 Immunoblot analysis (Western blotting) 

After blocking, the membrane was washed in TBS-T, with each wash lasting 5 

minutes before proceeding to the primary antibody binding stage after trimming the 

membrane to remove any excess area.  Ten millilitres of 5% powdered milk (w/v) 

suspension made using TBS-T was added to a 50-ml falcon tube and the required 

amount of primary antibody was added according to the dilution factor given by the 

manufacturer (in the range of 2-5 µl). Then the membrane was rolled and inserted 

into the falcon tube and placed on a roller (SRT6, Stuart) in the cold room overnight. 

Again the membrane was washed in TBS-T with each wash last 5 min before 

proceeding to the secondary antibody binding stage using a secondary antibody 

specific for the primary antibodies used. The membrane was transferred to a clean 
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dish containing 10 ml of 5% milk solution with the required amount of secondary 

antibody according to the dilution factor and placed on roller (SRT6, Stuart) for 1-2 h 

at room temperature. Again, the membrane was rinsed three times with TBS-T, each 

wash lasting 5 min and finally two washes with TBS (see Appendix A1.16) for 5 

min. 

2.16.6 Visualising the protein using chemiluminescent detection 

The membrane was incubated with a substrate that luminesces when exposed to the 

reporter on the secondary antibody. Antibody-bound proteins were detected on the 

membrane using a Photon counting camera (Photek, East Sussex, UK). ECL 

(enhanced chemiluminescent) solution 1 (see Appendix A1.18) was made with 

Luminol (3-Aminophthal hydrazide) and coumaric acid and ECL solution 2 (see 

Appendix A1.19) made with hydrogen peroxide were mixed (5 ml of each) and the 

membrane soaked for 3-5 min before detecting the luminescence emitted from the 

membrane. Luminescence was detected either digitally using the Photek camera with 

Photek Image32 software or using CL-X posure TM film (Thermo scientific) with an 

X-ray film processor (Xograph Imaging System, Compact X4), with luminescence 

integrated over a period of between 5 min and 1 h was used to visualise the proteins.  

 2.16.7 Stripping the membrane 

After using the membrane to detect proteins using specific primary and secondary 

antibodies, the same membrane was used to study different proteins using different 

primary and secondary antibody combinations after stripping. Pre-prepared stripping 

solution (see Appendix A1.20) was warmed at 37oC for few minutes and the 

membrane was washed twice; each wash lasting 5 min. The blot was then washed in 

TBS-T (see Appendix A1.17) 3 times, each for 5 min and subsequently transferred to 
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blocking solution, (5% w/v milk) overnight in a cold room before proceeding to the 

primary antibody binding stage. 

 

2.17 Co-immunoprecipitation assays in tobacco 

2.17.1 Infiltration of plants  

Tobacco plants (N. benthamiana) were infiltrated (as described in section 2.11.2) 

with Agrobacterium tumefaciens expressing GFP-tagged proteins and other proteins 

under study. Two days post-infiltration, infiltrated leaves were harvested and stored 

at -20oC until use or protein extraction was performed immediately.  

2.17.2 Protein extraction and pull down 

Frozen leaf samples (2-3 leaves) were ground using a mortar and pestle (kept cold 

using liquid nitrogen) using a small amount of sand (Sigma) until a fine powder was 

produced, which was then transferred to pre-cooled 50-ml falcon tube. Then 10 ml of 

protein extraction buffer (2 ml/g) was added [see Appendix A1.7 and 10 mM DTT; 

0.5% (w/v) PVPP; 1% (v/v) protease inhibitor cocktail (Sigma); 1% (v/v) NP-40 

were freshly added before use] and the whole lysate described above was transferred 

to an Oakridge centrifuge tube (Nalgene Nunc International) on ice. The tube was 

then centrifuged at 4°C at 13000g for 15 min and the supernatant was passed through 

two layers of miracloth (CalBiochem, UK) before passing through a 0.2-µm filter 

sterilisation unit (Corning Incorporated, Corning Germany). Protein determination 

was performed as described in section 2.16.2 with 1:20 diluted samples using 

BioRad DC Protein assay. After this, samples were diluted to 5 mg/ml of protein and 

2 ml transferred to an eppendorf tube. Then 30 µl of GFP-Trap-A beads (50% slurry) 
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(Chromotek, Planneg-Martinsried, Germany) were added to each sample and the 

tubes incubated on a roller mixer for 4 h at 4°C in the cold room. Thereafter, tubes 

were centrifuged at 500 g to pellet beads at 4°C and the supernatant discarded. One 

ml of wash buffer (TBS + 0.5% NP40) was added and inverted several times to rinse 

the beads. The above step was repeated four times and supernatant was removed 

carefully at each time.  Beads were gently pipetted up and down to collect them and 

30 µl of 2x SDS buffer (see Appendix A1.8) containing 10% β-mercaptoethanol (as a 

reducing agent) was added to each sample. Samples were stored at -20oC until use or 

used immediately for western blot analysis as described in section 2.16.2 to 2.16.5 

after spinning the heated samples at 95°C for 5 min. 

2.17.2.1 Silver staining of SDS gel 

After the electrophoresis was complete the gel was transferred to a box and fixed in 

fixative solution consisting of methanol and acetic acid (see Appendix A1.21) for an 

hour or overnight at room temperature with gentle shaking (175 rpm). The gel was 

then washed in miliQ water for at least 30 min. Overnight washing with several 

changes of water helps to remove all acetic acid from fixing solution and reduce the 

background (resulting in increased sensitivity). Subsequently the gel was transferred 

to a hypo solution with sodium thiosulphate and sodium acetate (see Appendix 

A1.22) and incubated for 30 min at room temperature with gentle shaking (175 rpm) 

followed by three water washes, each lasting for 10 min. After this stage, silver 

staining (see Appendix  A1.23) was performed for 20 min and then the gel was 

washed twice in water, each wash lasting for 1 min. Afterwards the gel was 

transferred to developing solution (see  Appendix A1.24) for between a few seconds 

and 2-3 minutes until the bands could be seen and then the gel was scanned. The gel 
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was transferred back to developing solution to allow further development of bands 

and then scanned. Finally, the gel was transferred to stop solution (see Appendix 

A1.25) for one hour or kept overnight followed by several washes. This was done to 

further identify the bands of interest (according to size) using the mass 

spectrophotometric facility in the department. 
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Chapter 3 

The effects of loss of MED16, MED2 and MED14 mediator subunits 

of Arabidopsis on stress gene regulation and stress tolerance 

 

3.1 Introduction 

The Mediator transcriptional coactivator complex is a large multi-protein complex, 

which was first discovered in yeast (Saccharomyces cerevisiae) and which plays an 

important role in transcription initiation, by connecting sequence-specific 

transcriptional regulators (transcription factors; TFs) to RNA Polymerase II (Pol II ) 

(Kuras and Struhl, 1999, Struhl, 1996, Yudkovsky et al., 2000). The Mediator 

complex in yeast comprises 25 protein subunits, which can be divided into four sub 

domains named the head, middle, tail, and kinase domains (Asturias et al., 1999). 

Later, the mediator complex was identified in Drosophila melanogaster and in 

humans indicating that the mediator complex is conserved amongst eukaryotes. The 

presence of the Mediator complex in plants had been suggested based on sequence 

homology between some plant proteins and known mediator proteins from other 

species (Autran et al., 2002, Boube et al., 2002b), however, the level of homology 

was so low that firm conclusions were never drawn until the complex was 

successfully purified from plants several years ago (Backstrom et al., 2007). The 

plant mediator complex consists of an estimated 34 subunits (Mathur et al., 2011). 

Backstrom et al. (2007) found that homologues for most head and middle subunits of 

yeast Mediator can be found in Arabidopsis but very low homology exists between 

the yeast and Arabidopsis subunits in the tail domain. Bourbon (2008) was able to  
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identify evolutionarily conserved signature sequence motifs (SSMs) across the 

mediator subunit proteins of all eukaryotes, and thereby identified the genes 

encoding plant mediator subunits, despite this low sequence homology. He suggested 

that mediator subunits MED2, MED3 and MED5 are located in the tail domain as 

well the confirmed tail subunits MED14, MED15 and MED16. Further it was 

suggested that the yeast subunits, MED2, MED3 and MED5, correspond to the 

metazoan-specific MED29, MED27 and MED24 and the plant specific subunits 

MED32, MED27 and MED33a/b, that were identified in Arabidopsis (Bourbon, 

2008). A mutation in the MED16 subunit of yeast showed the loss of function of 

other subunits in the tail domain, suggesting that mediator subunits interact with each 

other (Li et al., 1995, Galdieri et al., 2012) and control gene specific transcriptional 

regulation.  

MED16 in plants was first identified as SFR6 (SENSITIVE TO FREEZING-6). The 

Arabidopsis sfr6 loss-of-function mutant was identified on the basis of its failure to 

increase freezing tolerance through the process of cold acclimation (Warren et al., 

1996). Later work revealed that the SFR6/MED16 protein is essential for the 

activation of some cold- and desiccation-inducible gene expression and that the 

freezing sensitivity in sfr6 is due to the failure to fully express cold-regulated genes 

controlled by the CBF/DREB1 (C-repeat binding factor/drought-responsive element 

binding factor 1) transcription factors (Yamaguchi-shinozaki and Shinozaki, 1994, 

Liu et al., 1998) and consequent failure to accumulate the proteins encoded by these 

genes (Boyce et al., 2003, Knight et al., 2009, Knight et al., 1999). In addition to this 

important role, SFR6 also plays a role in protection of plants against UV damage and 

biotrophic bacterial pathogen attack, starvation responses and iron uptake 

(Wathugala et al., 2012, Hemsley et al., 2014, Zhang et al., 2014). Furthermore other 
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two known tail subunits, MED 14 and MED15 have been shown to be important in 

plant immune responses in Arabidopsis (Canet et al., 2012, Zhang et al., 2012, Zhang 

et al., 2013).  

Structural data on the composition of the plant mediator complex is not available. 

However, assuming the structure of plant mediator is similar to yeast mediator 

(Bourbon, 2008), we might predict a close physical interaction between MED14 with 

SFR6/MED16 and might predict that MED2 is part of a tail subunit triad (Zhang et 

al., 2004a) that is attached to the main body of mediator via SFR6/MED16. Hemsley 

et al. (2014) recently found that loss of function of MED2 and MED14 disrupts low 

temperature-induced gene expression in a manner similar to that caused by loss of 

function of SFR6/MED16. Considering all these facts I focussed in this study on 

examining the levels of stress tolerance associated with lack of MED2 and MED14 

subunits in freezing stress compared to lack of SFR6/MED16. Furthermore, I studied 

UV-, starvation- and drought stress-induced gene expression and tolerance of these 

conditions in both mutants to observe whether they were affected similarly to sfr6 

mutants, and to correlate loss of stress-inducible expression with reduced stress 

tolerance. 

The hypothesis of this chapter is: 

SFR6/MED16 shares similar roles with MED2 and MED14 in response to abiotic 

stress and the defect in cold-, UV-, drought- and starvation-induced gene expression 

correlates with reduced tolerance. 

This was studied by using stress gene expression and stress tolerance experiments 

using med2-1 and med14-2 mutants (Hemsley et al., 2014) and comparing these with 

sfr6-1 and wild type. Cold, UV and drought stresses were used to test the responses  
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of med2 and med14 to compare with sfr6-1 as very clear impaired responses were 

previously identified in sfr6-1(Knight et al., 2009, Knight et al., 1999, Warren et al., 

1996). The objective of this chapter to study whether these reductions in gene 

expression under cold-, UV-, drought- and starvation- induced stresses correlate with 

altered stress tolerance.  

 

3.2 Results 

3.2.1 Measurement of low temperature induced damage in med16, med2 and 

med14 mutants 

The sfr6/med16 mutant is well known for its impaired transcriptional responses to 

cold (Knight et al., 2009, Knight et al., 1999), especially expression of the CBF-

controlled COR genes such as KIN2 and GOLS3, (Fowler and Thomashow, 2002, 

Knight et al., 1999, Taji et al., 2002) the promoters of which contain at least one 

copy of the CRT (C-repeat) element (Yamaguchi-shinozaki and Shinozaki, 1994). 

This failure to up regulate these genes normally in response to cold acclimation leads 

to a failure to tolerate freezing temperatures. In yeast MED2 and MED14 subunits 

are predicted to be physically close to MED16 (based on a combination genetic and 

protein interaction data; (Guglielmi et al., 2004) and it is thought that their 

arrangement may be similar in the Arabidopsis Mediator complex. Therefore, the 

hypothesis was made that MED2 and MED14 might share the same role as 

SFR6/MED16 in the response to cold stress. Our lab demonstrated reduced levels of 

KIN2 and GOLS3 expression in med2-1 and med14-2 in response to cold, similar to 

those previously observed in sfr6-1 (Hemsley et al., 2014). Hence, I continued the 
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work from this point to further investigate whether this reduction in the level of cold-

responsive gene expression might correlate with altered levels of freezing tolerance. 

 

3.2.1.1 Freezing sensitivity of med16, med2 and med14 

Warren et al. (1996) identified the sfr6-1/med16 mutant of Arabidopsis on the basis 

of its failure to survive freezing temperatures even after being exposed to cold 

acclimation. This freezing sensitivity correlates with failure to express COR genes 

Knight 1999); genes that have been reported in previous studies to be associated with 

cold acclimation-induced freezing tolerance (Fowler and Thomashow, 2002, Knight 

et al., 1999, Taji et al., 2002).   

 

 

 

 

 

 

 

 

 

Figure 3.1: Level of freezing tolerance in med mutants 

The average of three survival percentages from three separate biological experiments 

(replicates) is shown in the above histogram. The number of plants surviving 7 days after 

treatment at -7.50C was recorded. All error bars shown are standard error (±SE) calculated 

from arcsine transformed values as appropriate for proportional data and indicate the level of 

variation between biological replicate experiments. Non-overlapping error bars indicate 

means are significantly different (P = 0.001). 
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The freezing assay in my study was performed using sfr6, med2 and med14 mutants 

compared to wild type. Five-week-old plants grown under short days (12:12 

light:dark cycle) were cold acclimated for 2-weeks at 5°C before subjecting to 

freezing temperatures (-7.5°C) for 24 h (see Materials and methods section 2.16.2.1). 

Plants were returned to normal growth conditions and monitored for 7 d. Three 

separate biological replicate experiments were conducted on three different occasions 

and each replicate experiment consisted of 12 plants from each plant type arranged 

randomly on the same shelf of the freezing chamber. Plants’ recovery from freezing 

damage was measured by the number of plants surviving/remaining green seven days 

after freezing treatment and data are shown in Figure 3.1. Plants were photographed 

at different stages in the assay and finally plants were scored as having survived if 

green tissues were visible after 7 days, or if the shoot apex was green. 

The survival rate of cold-acclimated Col-0 wild type plants was 100% whereas it was 

observed that loss of function mutants of both MED2 and MED14 (like sfr6) showed 

reduced rates of survival after freezing. However, the med2-1 mutant was least 

severely affected, with nearly 40% survival. The med14-2 mutant showed 22.2% 

survival and the sfr6-1 mutant was the most severely affected mutant, exhibiting 

2.8% survival in this freezing tolerance study (Figure 3.1). Interestingly this 

tolerance result was consistent with the COR gene expression pattern i.e KIN2 and 

GOLS3 as reported in Hemsley et al. (2014), where expression was not severely 

affected in sfr6-1 and least affected in med2-1. Figure 3.2 demonstrates the physical 

appearance of 5-week-old wild type and mutant plants following 2-weeks 

acclimation at 50C, plants frozen at -7.50C for 24h after 2-weeks acclimation and 7-

days after freezing at -7.50C. No physical difference was observed among mutants  
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Figure 3.2:  Sensitivity of med mutants to freezing temperatures  

Results of the second freezing tolerance assay are presented here. The row (a) shows 5-

week-old plants acclimated at 50C for 2 weeks but not frozen. The row (b) shows 5-week-old 

plants acclimated at 50C for 2 weeks and frozen at -7.50C for 24h. The bottom row (c) shows 

the plants 7 days after freezing at -7.50C. 

 

 

Col-0 sfr6-1 med 2-1 med 14-2 
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compared with wild type (Col-0) after 2-weeks acclimation, however, sfr6-1 mutants 

exhibited severe freezing damage after 24h at -7.50C compared with med14-2 mutant 

(Figure 3.1). The med2-1 mutant was the least affected mutant and its physical 

appearance was on a par with Col-0. All the Col-0 plants had survived 7 days after 

freezing in all three replicate experiments conducted and the lowest number of 

surviving plants was always found amongst the sfr6-1 mutant plants. The second 

lowest number of plants remaining green after freezing was observed in med14-2 

(Figure 3.1). 

3.2.1.2 Photosynthetic efficiency of wild type and Mediator subunit plants 

before and after freezing    

In each freezing tolerance assay photosynthetic efficiency was measured for each 

type of plant at key stages of the assay. Fv/Fm (the ratio of variable to maximal 

fluorescence) is used as a reliable indicator of maximum photochemical quantum 

efficiency (Genty et al., 1989, Kitajima and Butler, 1975) in photosynthetic plants. 

Changes in chlorophyll fluorescence emission in photosystem II is a good indicator 

of plant stress under different environmental conditions such as temperature (Jensen 

et al., 1997, Larcher et al., 1998, SchÄFer et al., 1997), light (Heber et al., 2000, 

Demmig and Björkman, 1987, Gauslaa and Solhaug, 2000, Krause, 1988) and water 

availability (Bilger et al., 1989, Jensen and Feige, 1991, Lange et al., 1989, 

Scheidegger et al., 1997, Csintalan et al., 1999, Jensen et al., 1999). This parameter 

was measured in dark-adapted samples (see section 2.16.2.1), calculated from Fo, the 

fluorescence emission when the reaction centres in Photosystem 11 are fully open 

(Mathis and Paillotin, 1981), and Fm, the maximum fluorescence emission when all  
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photosystems are closed following exposure to a source of saturation light (Lazár, 

1999). The difference between maximum fluorescence and minimum fluorescence is 

Fv (Fv=Fm-Fo), or variable fluorescence. Fv/Fm is a normalised ratio calculated by 

dividing variable fluorescence by maximum fluorescence. Therefore Fv/Fm is a ratio 

that represents the maximum potential quantum efficiency of photosystem II if all 

capable reaction centres were open. 

Fv/Fm values either before acclimating or after acclimating did not vary between 

plant types and all plants showed similar values ranging between 0.87-0.90 (See 

Figure 3.3); values typical of healthy plants. Conversely, the Fv/Fm ratio of 3 days 

after freezing treatments was different between plant types and the lowest values 

were exhibited by sfr6-1 and med14-2 mutants, although values were not 

significantly different from each other (p > 0.01). Fv/Fm values in Col-0 and med2-1 

were very similar and did not differ significantly.  

The health of the plants as indicated by chlorophyll florescence measurements was 

recorded at three different stages of the freezing assay to observe the level of damage 

in each plant type and is shown in Figure 3.4. At locations where photosynthetic 

function was optimal the colour is depicted as green on the pseudocolour scale  

whereas plant parts that show a stress response are coloured yellow  and red for 

moderate and highly stressed areas respectively (Mathis and Paillotin, 1981, Lazár, 

1999). 
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Figure 3.3: Photosynthetic efficiency (Fv/Fm) at different stages of the freezing 
tolerance assay 

The histogram shows the average Fv/Fm ratio from three different experiments that were 

specific to different stages in the freezing assay. In each experiment 12 plants/each type were 

used. Blue bars represent the Fv/Fm value in 5-week-old plants before acclimating. Red bars 

show the Fv/Fm value just after 2-weeks of cold acclimation at 50C. Green bars signify the 

ratio between Fv and Fm, 3-d after plants were frozen at -7.50C. Non-overlapping error bars 

indicate means that are significantly different (P < 0.01). 
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Figure 3.4: Sensitivity of med mutants to low temperatures, assessed by 

measuring chlorophyll fluorescence 

A representative picture of each plant type selected from the second freezing tolerance assay 

is presented here. Fv/Fm values are represented on a pseudo colour scale where the highest 

ratios (in the range of 0.8-0.9) are depicted by  orange and red, ratios in the range of 0.6-0.7 

by yellow and green and the lowest ratios by blue. Areas of leaf tissue that are not visible on 

this image (black) are those that produced no signal at all and correspond to dead tissue. The 

top row shows 5-week-old plants before acclimating. The middle row shows plants after 2-

weeks acclimation at 50C. The bottom row shows plants at -7.50C. Plants were imaged at 

same intensity of chlorophyll fluorescence at 754 exposures in each case. 

Fv/Fm               0.1                               0.6                                      0.9 
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It is clear that all four types of plants were non-stressed or moderately stressed before 

acclimating at 5°C; the whole leaf area was visible in green/yellow pseudocolour and 

showed reduction of the area of tissue giving a value in the range of 0.6-0.7 and the 

highest reduction was found in sfr6-1, whilst no such difference between frozen and 

non-frozen plants was observed in Col-0. Lack of any pseudocolour representation of 

the leaf tissue in the image corresponds to death of the tissue, resulting in no signal. 

Three days after freezing treatment, nearly 70% of leaf tissues in Col-0 plants 

appeared on the image as green/yellow/red, explaining the reason for the highest 

percentage of survival after freezing being seen in this genetic background. 

Interestingly no green/yellow/red (higher ratios) leaf area was observed in the images 

of the sfr6-1 mutant but blue/black in the image, an observation made in all three 

biological replicates. In med14-2, in med2-1 plants less green/yellow/red tissues with 

more blue/black tissues were observed compared to Col-0 in the image. 

3.2.1.3 Measuring freezing damage in med16, med2 and med14 mutants by 

assessment of electrolyte leakage levels 

The leakage of electrolytes from frozen tissues has been commonly used to quantify 

freezing injury and it is a sensitive indicator of loss of integrity by the plasmalemma 

(Calkins and Swanson, 1990, Warren et al., 1996). Twenty-seven-day-old soil-grown 

plants were acclimated for 2 weeks and leaf samples were taken to quantify the 

percentage loss of electrolytes after leaves were subjected to temperatures of between 

0 and -12°C (see materials and method 2.15.2). Three separate experiments were 

conducted and in each experiment three leaves were used per replicate tube, with 

three tubes per genotype/temperature. 



                                                                                                                       Chapter 3 

120 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Electrolyte leakage in med mutants compared with wild type 
Arabidopsis responding to freezing temperatures 

 Plants were grown for 27 d before cold acclimating at 5°C for 2 weeks. The graph 

represents data from three different experiments and data point represents the average of data 

from the three biological replicate experiments; each experiment used three leaves of each 

genotype per replicate tube, with three technical replicate tubes per genotype/temperature. 

Values represent the percentage loss of electrolytes after leaves were subjected to 

temperatures of between 0 and -12°C.  

 

Electrolyte leakage assays revealed that three mutants, sfr6-1, med2-1 and med14-2 

were more sensitive to freezing than wild type, particularly at lower freezing 

temperatures (Figure 3.5). The sfr6-1 mutant was confirmed as exhibiting the highest 

sensitivity, showing the highest levels of electrolyte leakage across the whole range 

of temperatures (0 to -120C) tested in this study. The level of sensitivity of med2-1 

and med14-2 mutants at the least severe freezing temperatures (0 to -60C) was on a 

par with Col-0. Interestingly percentage of ion leakage in Col-0 was higher compared 

to med2-1 and med14-2 mutants at -40C temperature. However, all three mutants 



                                                                                                                       Chapter 3 

121 

 

were significantly more sensitive to low freezing temperatures than wild type 

(p<0.01). Natural logarithm transformed percentage of leakage data were analysed 

using a one-way ANOVA at each temperature point and error bars represent SE. 

Data points with non-overlapping error bars are significantly different (p< 0.01). 

In summary, electrolyte leakage results were consistent with previously reported 

COR gene expression (Hemsley et al., 2014), survival rate and maximum potential 

quantum efficiency of photosystem II (Fv/Fm) as well as with the physical 

appearance of the whole plants after freezing. Consequently, all of these data support 

the hypothesis that SFR6/MED16 shares its role in cold acclimation and freezing 

tolerance through activation of COR gene expression with two other predicted 

Mediator tail subunits, MED2 and MED14. 

3.2.2 Response of Mediator subunit mutants to UV stress 

Since 1996, when it was discovered that SFR6 is important in cold acclimation and 

the gain of subsequent freezing tolerance (Warren et al., 1996), it was later revealed 

that SFR6 was vital for full expression of COR genes under both low temperatures 

and drought conditions (Boyce et al., 2003, Knight et al., 1999). Knight et al. (2008) 

reported that sfr6 mutants demonstrate altered functioning of the circadian clock and 

delayed flowering, most likely as a result of mis-regulation of circadian clock-

controlled genes that contain an evening element (EE) in their promoter. These 

observations suggested a wider role for SFR6 as a regulator of gene transcription, 

beyond its effect on the response to low temperature. Wathugala et al. (2012) 

discovered that three genes PR1, EDS5 and CASPASE8, which are highly up-

regulated by UV-C radiation in wild type plants, showed a significantly reduced level 

of expression in three sfr6 mutant alleles. Furthermore they reported that SFR6 is 
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required only for the induction of specific genes in response to UV-C; this was 

deduced by showing that two other UV-C inducible genes OXI1 and TCH3 

(Narusaka et al., 2003) were up-regulated in all sfr6 mutant alleles to levels as high 

as seen in wild type. This finding was in agreement with similar observations 

indicating that SFR6 regulates only specific low temperature-induced gene regulons; 

those controlled via the CRT/DRE cis element (Boyce et al., 2003, Knight et al., 

1999).  Furthermore, Wathugala et al. (2012) reported that the reduced levels of 

expression seen in sfr6 mutants under UV-C correlated with reduced UV-C 

tolerance, with significantly lower rates of survival in sfr6 mutants compared to wild 

type even at low levels of UV-C irradiation. 

Therefore it was decided to test whether med2 and med14 mutants were likely to be 

impaired in the activation of UV-C- responsive gene expression leading to UV stress 

tolerance, as reported for sfr6/med16. 

3.2.2.1 Expression of stress-responsive genes after UV-C exposure 

Seeds were sown on horizontal MS agar plates. Seven-day-old seedlings were 

irradiated with 5 KJm-2 of UV-C, (wavelength 254 nm) by removing the petri plate 

lids and placing in a UV cross-linker set to deliver the designated level of energy. 

Lids were removed from the control plates during the time taken to administer the 

treatments. Immediately after irradiation all plates including control plates were 

resealed with micropore tape and returned to the growth chamber and samples were 

taken 24 h after treatment. (See materials and methods 2.15.1.2). This time point was 

selected as peak expression time point for PR1 according to the published data on 

gene expression assays (Wathugala et al., 2012). Measurements of gene expression 

were performed using qRT-PCR and PR1 (Nawrath et al., 2002) gene expression was 
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 measured and normalised to expression of At4G26410, a gene with stable 

expression levels that are not altered by UV treatments (Genevestigator; 

https://www.genevestigator.com). Relative expression levels were calculated using 

the ∆∆CT method (Livak and Schmittgen, 2001), and the error bars in each 

biological replicate histogram represent RQMIN and RQMAX  and constitute the 

acceptable error level for a 95% confidence level according to Student’s t test. Data 

presented in this experiment and all subsequent gene expression experiments 

reported in this thesis, show separate data for each of the three biological repeat 

experiments and the average of three biological replicate experiments in separate 

histogram. Fold differences in induction of stress–responsive genes often vary 

between repeat experiments (biological replicates) in whole seedlings, however, 

consistent qualitative differences are observed (This issue is explored further in the 

discussion). 
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(a)                                                                        (b) 

(c)                                                                   (d)              

Figure 3.6:  Expression of PR1  in response to 5 kJm-2 UV-C exposure 

PR1 (Pathogenesis Related-1) expression in three med mutants was compared with 

expression in Col-0. Seven-day-old seedlings were exposed to 5 kJm-2 UV-C irradiation 

(UV) or control treatment (C) and seedlings were harvested 24 h after exposure. The first 

three histograms (a, b and c- with red bars) represent the three independent biological 

replicates and the fourth histogram (d, with blue bars) represents the average of the above 

three independent biological replicates. Relative expression represents the fold difference 

value compared with Col-0 control sample (1). Error bars indicate the level of variation 

between technical replicates within one biological replicate experiment. Mean average data 

(in graph d) were analysed using a one-way ANOVA (α=0.05) and pairwise comparisons 

were made using the Tukey method. Means that do not share a letter are significantly 

different (P < 0.001). 
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UV-inducible PR1 expression in three independent biological replicate experiments 

(Figure 3.6 a, b and c) and the average of the above three independent biological 

replicates is presented in Figure 3.6 d. High levels of consistency in PR1 gene 

expression levels were not observed in three med mutants but the lowest PR1 

expression level was detected in sfr6-1 in all three instances. The second lowest 

levels of expression were observed in med14-2 in two instances out of three. med2-1 

was the least affected med mutant at 5 kJm-2 of UV-C and showed similar levels of 

PR1 gene expression to those seen in Col-0 in two out of three experiments 

conducted (Figure 3.6 a and b). The average values of three biological replicates 

(Figure 3.6d) show that Col-0 and med2-1 mutant did not show a significant 

difference (α=0.05) in PR1 expression when compared with one another whereas 

sfr6-1 and med14-2 were significantly different in PR1 expression compared to Col-

0. Furthermore, expression in sfr6-1 was significantly lower to that of med14-2 and 

sfr6-1showed the lowest average relative expression levels (at α=0.05) with 5 kJm-2 

UV-C irradiation. 

As the next step to see whether the med2-1 mutant was completely unaffected in its 

ability to respond to UV-C or just less affected than other two med mutants it was 

decided to study the effect of a higher level of UV-C irradiation on PR1 gene 

expression in the mutants. Therefore seven-day-old seedlings were irradiated with 10 

kJm-2 of UV-C, (wavelength 254 nm) as stated above. In contrast to PR1 gene 

expression at 5 kJm-2 irradiation, reduced and more consistent PR1 expression levels 

were observed in the med2-1 mutant compared with wild type when treated at 10 

kJm-2; the gene expression data from three independent biological replicate 

experiments are presented in Figure 3.7 a, b and c. The average gene expression level 

of the above three independent biological replicates is shown in Figure 3.7 d. 
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    (a)                                                                             (b) 

(c)                                                                           (d)                                                    

Figure 3.7: Expression of PR1  in response to 10 kJm-2 UV-C exposure 

PR1 (Pathogenesis Related-1) gene expression in three med mutants was compared with 

Col-0. Seven-day-old seedlings were exposed to 10 kJm-2 UV-C  irradiation (UV) or control 

treatment (C) and seedling were harvested 24 h after exposure. The first three histograms (a, 

b and c- with red bars) represent the three independent biological replicates and the fourth 

histogram (d, with blue bars) represents the average of the above three independent 

biological replicates. Relative expression represents the fold value compared with Col-0 

control sample. Error bars indicate the level of variation between technical replicates within 

one biological replicate experiment. Mean average data (in graph d) were analysed using a 

one-way ANOVA (α=0.05) and pairwise comparisons were made using the Tukey method. 

Means that do not share a letter are significantly different (P < 0.001). 
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These average data clearly show that PR1 gene expression in med2-1 was 

significantly reduced compared to Col-0. sfr6-1 demonstrated the least expression of 

PR1 , as seen in the previous experiments using 5kJm-2 etc. and no significant 

difference of several hundred folds when compared to med2-1 and Col-0 (Figure 

3.7d).  

Interestingly there was no significant difference between expression levels in med2-1 

and med14-2 at this higher level of (10 kJm-2) of irradiance even though a significant 

difference in PR1 gene expression was seen between the two mutants at 5 kJm-2 

(Figure 3.6 d). Finally all these data show that PR1 gene expression in the med14 

mutant is highly impaired in response to UV-C while the med2 mutant was less 

affected, and data support the hypothesis that MED2 and MED14 share the role of 

MED16/SFR6 in the transcriptional response to UV-C. 

3.2.2.2 Sensitivity of sfr6/med16, med2 and med14 after UV exposure 

Wathugala et al. (2012) reported that seedlings of the sfr6-1 mutant showed severe 

damage after exposure to UV-C irradiation and a great reduction in survival rate 

compared to wild type. Furthermore they suggested that reduced levels of UV-C 

induced gene expression in sfr6 mutants resulted in reduced UV-C tolerance. 

The UV tolerance assay was carried out using 7 day-old-seedlings irradiated with 5 

or 10 kJm-2 of UV-C in a UV cross linker (as used for the gene expression analysis 

described above) with the plate lids off, while control plates were exposed to air  for 

same duration as in UV treatments. Immediately after treatments, all plates were 

resealed and returned to the growth chamber after being wrapped in aluminium foil 

to inhibit blue light repair pathway (see materials and methods 2.16.2.2). The number 

of surviving seedlings with growing apex was recorded 10 days after treatment. 
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At the lower level of UV-C exposure (5 kJm-2) all three med mutants showed a 

reduced survival rate compared to wild type but differences were not significant 

(P>0.05) (Figure 3.8). At the higher level of UV-C exposure (10 kJm-2) all med 

mutants showed a significant reduction of survival compared to Col-0, however, 

amongst med mutants no significant differences could be observed (Figure 3.8). 

Figure 3.9 shows the appearance of untreated med mutant seedlings and Col-0, to 

provide a comparison of how seedling growth and health was affected by UV-C (see 

figure 3.10 and 3.11, which represent the appearance of seedlings after 10 d of 5 

kJm-2 and 10 kJm-2 of UV-C treatments respectively). 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Level of UV-C tolerance in med mutants 

The average of three survival percentages from three separate biological repeat experiments 

(replicates) is shown in the histogram.  The number of plants surviving (remaining green) 7-

days after UV-C treatment at 5 kJm-2 and 10 kJm-2 was used to calculate the percentage 

survival. Error bars show standard error values (±SE) calculated from arcsine transformed 

values as appropriate for proportional data and indicate the level of variation between 

biological replicate experiments. Non-overlapping error bars indicate means that are 

significantly different (P < 0.001). 
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Col-0   sfr6-1 

med2-1  med14-2   

The tolerance data suggest that all med mutants showed reduced level of tolerance of 

UV-C irradiation and damage was more severe after higher levels of UV-C exposure. 

In agreement with the impaired PR1 gene expression observed, med mutants 

demonstrated reduced tolerance compared to Col-0 and in both gene expression and 

tolerance data are more significant at high dosage of UV-C. Therefore these data 

signify that the impaired gene expression in med2 and med14 correlates with reduced 

tolerance under UV-C and demonstrate a role for MED2 and MED14, like MED16 

in the response to UV-C. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9:  Appearance of med mutants in normal growth conditions  

Non treated control plates of the UV tolerance assay are presented here. Seven-day-old 

seedlings were exposed to the air during the time taken for the UV exposure and all plates 

were resealed and returned to the Percival growth chamber at 20±1oC set for long day (16:8 

h light: dark) after wrapped in foil for 24 h. The number of surviving seedlings with green 

meristems was recorded 10 days post treatments and photographed. 
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Figure 3.10:  Sensitivity of med mutants to 5 kJm-2 of UV-C exposure  

Representative pictures of UV tolerance assays are presented here. Seven-day-old seedlings 

were irradiated at 5 kJm-2 and all plates were resealed and returned to the growth chamber at 

20±1oC set for long days (16:8 h light: dark). Plates were wrapped in aluminium foil for 24 h 

before being unwrapped to avoid activation of the blue light repair pathway. The number of 

surviving seedlings with green meristems was recorded 10 d post treatment and 

photographed. 
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Figure 3.11:  Sensitivity of med mutants at 10 kJm-2 of UV-C exposure  

Representative pictures of UV tolerance assays are presented here. Seven-day-old seedlings 

were irradiated at 10 kJm-2 and all plates were resealed and returned to the growth chamber 

at 20±1oC set for long days (16:8 h light: dark). Plates were wrapped in aluminium foil for 

24 h before being unwrapped to inhibit blue light repair pathway. The number of surviving 

seedlings with green meristems was recorded 10 days post treatment and photographed. 
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3.2.3 Response of Mediator subunit mutants to drought stress 

A reduced transcriptional response to drought stress stimuli has been observed 

previously in sfr6 mutants (Knight et al., 1999, Boyce et al., 2003). Osmotic stress 

(mimic by the addition of mannitol) and the application of ABA (levels of which are 

elevated during exposure to drought; (Lang et al., 1994) both elicited a much lower 

level of COR gene expression in sfr6 mutants compared to wild type (Boyce et al., 

2003, Knight et al., 1999).  Similar expression patterns were obtained with three 

genes; KIN1 COR15a and LTI78.  The LTI78, KIN1, and COR15a genes are known 

to be expressed in response to drought signals (Kurkela and Borg-Franck, 1992, 

Mantyla et al., 1995) as well as in cold. Both cold and drought signalling pathways 

leading to expression of these genes use many of the same components (Ishitani et 

al., 1997) and activate the expression of CRT/DRE containing genes (Liu et al., 

1998, Boyce et al., 2003). 

AtP5CS2 (P5CSB) and AtP5CS1 (P5CSA) are two Arabidopsis genes that both 

encode ∆1-pyrroline-5-carboxylate synthetase (Strizhov et al., 1997), the key enzyme 

involved in the synthesis of proline (Savouré et al., 1995), a compatible solute that 

accumulates in response to water stress and to low temperature (Savouré et al., 

1997). AtP5CS2 contains a CRT/DRE motif in its promoter, whereas the AtP5CS1 

gene does not contain this element (Knight et al., 1999). Cold inducibility of 

AtP5CS1 as well as CBF1, CBF2, and CBF3, which also lack CRT/DRE motifs 

(Gilmour et al., 1998) was similar in wild-type and sfr6 mutants (Knight et al., 1999). 

COR genes containing the CRT/DRE motif in their promoter are controlled by CBF 

(DREB1) or DREB2 transcription factors binding to the motif in response to cold or 

drought respectively (Liu et al., 1998, Yamaguchi-shinozaki and Shinozaki, 1994).  
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The above data suggested that gene expression deficiency of sfr6 was limited to 

genes containing CRT/DRE elements in cold and drought. Microarray analysis has 

since confirmed this to be the case for cold (Hemsley et al., 2014). 

DRE/CRT cis-acting elements play a role in ABA- independent gene expression 

under drought stress (Yamaguchi-Shinozaki and Shinozaki, 2005). The other major 

regulatory pathway that controls drought-inducible gene expression is ABA-

dependent and occurs via the ABRE (ABA-responsive element) cis-acting elements 

(Yamaguchi-Shinozaki and Shinozaki, 2005).  

The objective of the experiments described below was to investigate the 

transcriptional responses and tolerance of mediator mutants, med2 and med14 

compared to med16/sfr6 and Col-0 to drought conditions.  

3.2.3.1 Expression of stress-responsive gene under desiccation 

Desiccation/drought-responsive gene expression experiments were carried out using 

7-day-old seedlings grown on MS medium on petri dishes and subjected to water loss 

by opening the lids, thereby exposing the seedlings to loss of humidity. Plates were 

left open in the growth chamber for 6 h during the light cycle with no humidity 

control while keeping the control plates closed in the same chamber (See section 

2.15.1.4). Expression of the desiccation-inducible gene KIN2 was analysed using 

qRT-PCR and normalized to expression of PEX 4 gene, an endogenous control gene 

(Wathugala et al., 2011). Fold values were calculated using the ∆∆CT method, and 

the error bars in each biological replicate represent RQMIN and RQMAX  and constitute 

the acceptable error level for a 95% confidence level according to Student’s t test. 
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 (a)                                                                   (b)  

 (c)                                                                             (d)                                              

Figure 3.12:  Desiccation-induced KIN2 gene expression in med mutants 

KIN2 expression in response to desiccation was measured in three med subunit mutants 

compared with Col-0. Seven-day-old seedlings were exposed to growth conditions in the 

Percival growth chamber by opening the lids for 6 h while keeping the control plates closed 

under same conditions. The first three histograms (a, b and c- with red bars) represent the 

gene expression data of three independent biological replicates. Relative expression 

represents the fold value compared with Col-0 control sample. Error bars indicate the level 

of variation between technical replicates within one biological replicate experiment. The 

fourth chart (blue bars; d) represents the average of the above three independent biological 

replicates. Mean average data (in graph d) were analysed using a one-way ANOVA (α=0.05) 

and pair wise comparisons were made using the Tukey method. Means that do not share a 

letter are significantly different (P < 0.001). 
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Desiccation-induced KIN2 expression was compared between wild type Arabidopsis 

plants and sfr6, med2 and med14 mutants in three independent biological replicate 

experiments (Figure 3.12 a, b and c). A very consistent pattern of KIN2 gene 

expression under drought stress was observed, with med2-1 the least affected med 

mutant in all three instances compared to Col-0 and med14-2 was the second in all 

three instances. The average values of relative expression of KIN2 in three 

independent biological replicates is presented in Figure 3.12 d and the lowest (Figure 

3.12 a, b and c). sfr6-1 showed the lowest KIN2 expression in all three experiments. 

The average data were analysed using a one-way ANOVA (α=0.05) and pairwise 

comparisons were done using the Tukey method. Means that do not share a letter are 

significantly different (P < 0.000). Average gene expression data from three 

individual experiments confirm that KIN2 expression in response to desiccation was 

significantly different in med2-1 and med14-2, however, no significant difference 

could be observed between med14-2 and med16/sfr6-1 (Figure 3.12 d).  Results of 

this study demonstrated that expression of KIN2, a gene induced under desiccating 

conditions as well as in cold conditions showed impaired expression in all med 

mutants tested in this study compared to Col-0 (Figure 3.12). 

3.2.3.2 Drought tolerance of sfr6/med16, med2 and med14 mutants 

After observing consistently reduced desiccation-induced gene expression patterns in 

mediator mutants, the next logical step was to study whether these changes had an 

effect on drought tolerance. Therefore drought tolerance assays were performed 

using sseedlings grown on peat plugs maintained in short day conditions for 25 d 

post-germination. Plants were subjected to water withdrawal for 14 days (after which 

approximately 50% of wild type plants showed a wilting appearance) and then re- 
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watered. The number of plants surviving and exhibiting re-growth was assessed after 

a further 10 days (see materials and methods 2.16.2.3). Average data from three 

separate biological replicate experiments are presented in Figure 3.13.  

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Level of drought tolerance in mediator mutants 

The average of three survival percentages from three separate biological experiments 

(replicates) with 15 plants per experiment is shown in the above of histogram.  Twenty five-

day-old plants were subjected to water withdrawal for 14 days, re-watered and the number of 

plants surviving on the twelfth day after re-watering was recorded. Error bars represent 

standard error (±SE) calculated from arcsine transformed values as appropriate for 

proportional data and indicate the level of variation between biological replicate 

experiments. Non-overlapping error bars represent means that are significantly different 

from one another (P < 0.001). 

 

These data demonstrate reduced tolerance in all three med mutants and it is 

significantly different (P<0.001) compared to Col-0. Average tolerance data suggests 

that there was no significant difference between the tolerance of med2-1 and med14-

2 but tolerance of these two mutants were significantly different compared to sfr6-1  
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(Figure 3.13). Although the general appearance of the most of the plants are good, 

more number of dead plants could be seen in med2-1 and med14-2 compared to wild 

type and all the dead plants in sfr6-1 (Figure 3.14). 

 

 

 

 

Figure 3.14: Sensitivity of med mutants under drought conditions 

A representative picture of each plant type selected from the second drought tolerance assay 

is presented here. Twenty-five-day-old plants grown on peat plugs were subjected to 

withdrawal of water for 14 days (after which approximately 50% of wild type plants showed 

a wilting appearance) and then re-watered. The number of plants surviving and exhibiting re-

growth was assessed after a further 10 days and plants photographed. 

 

Upon critical analysis of data I could draw the same conclusion that reduced gene 

expression under drought stress is correlated with reduced tolerance and three 

mediator subunits play an important role in drought-inducible gene expression but 

interestingly MED2 and MED14 do not appear to have a major role in drought 

tolerance. 

 

Col-0                              sfr6-1                               med2-1                     med14-2 
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3.3 Summary 

Experiments conducted in this chapter were designed to study the transcriptional 

responses of med2 and med14 compared to med16/sfr6 and Col-0 under UV and 

drought conditions as well as their ability to tolerate freezing, UV and drought stress 

conditions.  

Average PR1 gene expression under UV-C induction was tested and results revealed 

that at 5kJm-2of UV-C exposure med2-1 was not badly affected but at 10kJm-2 PR1 

expression of this mutant affected significantly. The med14-2 mutant was 

significantly affected at both levels of UV-C exposure and impaired levels of PR1 

gene expression at 10kJm-2 exposure were similar to the level of sfr6-1 mutant.  

Drought inducible average KIN2 expression in med2-1 and med14-2 were reduced 

significantly compared to Col-0 and expression levels in med14-2 and sfr6-1 were 

not significantly different. 

Freezing tolerance data reported using electrolyte leakage assay and percentage of 

survival under freezing were demonstrated that all three med mutants were severely 

affected compared to Col-0. Among med mutants sfr6-1 was highly sensitive to 

freezing conditions while med2-1 was the least affected mutant. The med14-2 mutant 

demonstrated the moderate sensitivity under freezing conditions among med mutants 

tested under this study.  Tolerance under high dosage (10kJm-2) of UV-C exposure 

was highly reduced in all three med mutants compared to wild type although 

tolerance data at 5kJm-2 not shown similar pattern as in PR1 gene expression data. 

Results of drought tolerance assays revealed that both med2-1 and med14-2 mutants 

demonstrated the reduced tolerance compared to Col-0 but not up to the level of sfr6-

1.   
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Comparing the gene expression and tolerance data shown in this chapter a clear 

relationship emerges between reduced levels of tolerance and impaired gene 

expression under cold and UV but not under drought.. Further these results indicate 

that MED2 and MED14 share the same role as MED16/SFR6 in gene regulation 

under cold, drought, and UV stresses. Moreover the tolerance data presented here 

provide evidence that reduced levels of gene expression in the three mediator subunit 

mutants is correlated with reduced levels of tolerance under each stress condition. 

The degree to which tolerance levels reflect deficiencies in gene expression varied, 

with large changes in drought-inducible COR gene expression in med2 and med14 

mutants having relatively small effects on desiccation tolerance. 
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Chapter 4 

An attempt to identify different domains in SFR6/MED16 that are 

required for transcriptional responses under specific abiotic stresses 

 

4.1 Introduction 

SFR6 was discovered as a protein required for acquisition of freezing tolerance 

(Knight et al., 1999, Warren et al., 1996) and later was identified as MED16, a tail 

subunit of the plant mediator complex (Bäckström et al., 2007). Impaired 

transcriptional responses in sfr6-1 lead to freezing sensitivity due to mis-regulation 

of COR gene expression (Knight et al., 2009, Knight et al., 1999). Apart from being 

required for low temperature tolerance and gene expression, SFR6/MED16 is 

important in drought gene expression (Knight et al., 1999). Further regulatory effects 

of SFR6/MED16 were observed by Wathugala et al. (2012) and Zhang et al. (2012) 

in plant defence systems and they found altered expression of pathogen associated 

genes activated by both salicylic acid and jasmonic acid pathways in sfr6 mutants. 

Recently, altered transcriptional regulation in iron homeostasis was reported in sfr6 

mutants part of the photoperiodic regulatory pathway and controls circadian clock 

gene expressions. Hemsley et al. (2014) reported that SFR6 is important in the 

regulation of dark-inducible genes and that the sfr6-1 mutant is impaired in 

transcriptional regulation of DIN6. These findings supported that the SFR6 protein is 

important in a wide array of stress gene regulation.  

SFR6 is a comparatively large protein and the predicted size is 1268 amino acids in 

length with a molecular mass of 137 kDa (Knight et al., 2009). Therefore the 

hypothesis was proposed that different domains/regions of the SFR6 protein might be  
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responsible for the activation of genes responsible for the plant response to each 

stress such as cold, UV, drought and starvation Alternatively, it may be that the 

entire protein is required for response to all of these conditions. Thus considering the 

broad range of stress- and developmental-related functions the aims I tested in this 

chapter are; 

(a) To identify the domain/ region(s) of SFR6/MED16 that are necessary for its 

targeting to the nucleus, an essential property of a protein that is involved in 

transcription. 

(b) To identify different domain/regions of the SFR6 protein responsible for the 

activation of genes responsible for each stress such as cold, UV, drought and 

starvation by studying which of the SFR6/MED16 (domains can complement 

the functions of SFR6 protein in an sfr6 mutant). 
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4.2 Results 

4.2.1 Generation of different truncations of SFR6/MED16 of Arabidopsis 

Full length AtSFR6 cDNA (3.753 kbp) synthesised from RNA collected from wild 

type Arabidopsis tissue was used as starting material in this study to create different 

truncations of SFR6/MED16. To select the different domains, I studied the SFR6 

sequence of different plant species and particularly the sequence signature motifs 

(SSM) that are conserved between all eukaryotic species studied (Bourbon, 2008). 

Protein motifs of SFR6/MED16 that were predicted to be involved in protein-

protein or protein-DNA interactions were considered and disruptions to the 

structure of the protein (especially α-helices and β-sheets) was avoided in 

generation of truncated versions. After this had been taken into account, truncations 

were designed to represent approximately the first two thirds of the protein, lacking 

the C terminus (SF14,879aa; 96.7kDa) , two truncations representing the middle 

part (SF25,654aa; 71.9kDa and SF24, 532aa; 58.5kDa), one representing the C-

terminal two thirds (SF36, 616aa; 67.7kDa) and a truncation that lacks the figure-

terminal Zinc Finger (ZnF) motif of the protein (SF15, 1001aa; 110.1kDa). The full 

length version of SFR6/MED16 (SF16, 1269aa; 139.6kDa) was also constructed 

(SF16) (Figure 4.1). 

After selecting the positions of the six different truncations (as shown in figure 4.1) 

the coding sequences for these were amplified from full length AtSFR6 cDNA (See 

section 2.4.1). These amplified truncated fragments were purified and then cloned 

into Gateway Entry vector (p-ENTR D-TOPO) (see section 2.5.1) (see Appendix 

A3.1). Correct orientation of the fragments in the entry vector was tested using 

primers specific for the 35S promoter and the beginning of each construct (see 

Appendix A2.1 for primer sequences). For further confirmation that sequences were 
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correct along the full length of each truncated fragment, amplified fragments were 

sequenced using different primers designed for the SFR6 (see section 2.7) coding 

sequence. After confirming the correct sequence of each truncation, each sequence 

was sub-cloned downstream of the CaMV 35S promoter of the Binary Gateway 

destination vector pB7WG2 (Karimi et al., 2002) (see Appendix A3.3) for stable 

overexpression in Arabidopsis (see Appendix A3.5-A3.10) or into the pK7WGF2 

(see Appendix A3.11) vector (Karimi et al., 2002) for transient expression of GFP-

tagged versions of these proteins in tobacco plants (see section 2.5.2). 

 

 

 

 

 

 

 

 

 

Figure 4.1(a): Schematic representation of different truncations of 
SFR6/MED16 created in this study 

Vertical lines on the SFR6/MED16 represent the SSMs (Sequence Signature 

Motifs)(Bourbon, 2008). Positions of the aa represents six different truncations of 

SFR6/MED16 1-1269aa (1269):SF16; 1-1004aa (1004): SF15; 1-879aa (879): SF14; 347-

879aa (532): SF24; 347-1001aa (654): SF25; 653-1296aa (616):SF36 
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          SF1    
  0        20        30        40        50        60 
 MNQQNPEEEVSLVNNSGGGGIIEAPAIVEEKEEEGLQQKQEETIESTDPILVVVEEKLLE 
        
                70        80        90       100 PhosI 110       120 
 KSVDGEKEDDNSSSSNMEIDPVSPATVFCVKLKQPNSNLLHKMSVPELCRNFSAVAWCGK 
                                                
         SSM1                     SSM2    WD40             SSM3 
               130       140       150       160       170       180 
 LNAIACASETCARIPSSKANTPFWIPIHILIPERPTECAVFNVVADSPRDSVQFIEWSPT 
 
                   SSM4                                     SSM5             
               190       200       210       220       230       240 
 SCPRALLIANFHGRITIWTQPTQGSANLVHDATSWQCEHEWRQDIAVVTKWLTGASPYRW 
                                                               CTD 
                                 SSM6 
               250       260       270       280       290       300 
 LSSKPSSGTNAKSTFEEKFLSQSSESSARWPNFLCVCSVFSSGSVQIHWSQWPSNQGSTA 
                           
      SSM7        SSM8         SSM9 SF2 
        PhosII 310       320       330       340       350       360 
 PKWFSTKKGLLGAGPSGIMAADAIITDSGAMHVAGVPIVNPSTIVVWEVTPGPGNGLQAT 
        
                             SSM10 
               370       380       390       400       410       420 
 PKISTGSRVPPSLSSSSWTGFAPLAAYLFSWQEYLISEIKQGKKPSDQDSSDAISLSCSP 
        
               SSM11                             SSM12 
               430       440       450       460       470       480 
 VSNFSAYVSPEAAAQSAATTTWGSGVTAVAFDPTRGGSVIAVVIVEGQYMSPYDPDEGPS 
 
              SSM13 
               490       500       510       520   SF3 530       540 
 ITGWRVQRWESSVQPVVLHQIFGNPTSNFGGQVPTQTVWVSRVDMSIPPTKDFKNHQVAA 
 
                                                          SSM14 
                550       560       570       580       590       600 
         AGPSVDAPKEPDSGDEKANKVVFDPFDLPSDIRTLARIVYSAHGGEIAIAFLRGGVHIFS 
 
                                   SSM15 
        PhosIII 610       620       630       640       650       660 
         GPTFSPVENYQINVGSAIAAPAFSPTSCCSASVWHDAAKDCAMLKIIRVLPPALPRNQSK 
        
  
                           SSM16                       SSM17 
         PhosIV 670       680       690       700       710       720 
         VDQSTWERAIAERFWWSLLVGVDWWDAVGCTQSAAEDGIVSLNSVIAVMDADFHSLPSTQ 
        
                 SSM18                           SSM19 
                730       740       750       760       770       780 
 HRQQYGPNLDRIKCRLLEGTNAQEVRAMVLDMQARLLLDMLGKGIESALVNPSALVFEPW 
        
                                   SSM20 
                790       800       810       820       830       840 
         RVDGETITGINPEAMAVDPALVSSIQAYVDAVLDLASHFITRLRRYASFCRTLASHAASA 
        
 
     SUMO site  850       860       870  SF4  880       890 PhosV 900 
         GTGSNRNNVTSPTQNASSPATPQVGQPTTTTTTTATTNSSGSSHVQAWMQGAIAKISSSN 
        
                           DEFSN  ARM 
                       SSM21          SSM22 
                910       920       930       940       950       960 
         DGSNSTASPISGSPTFMPISINTGTFPGTPAVRLIGDCHFLHRLCQLLLFCFLQRSSRFP 
 
\            
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         SSM23 
         970       980       990      1000      1010      1020   
          QRNADVSSQKLQTGATSKLEEVNSAKPTPALNRIEDAQGFRGAQLGTGVKGIDENSARTT 
 
             SSM24 
           SF5  1030      1040      1050      1060      1070      1080 
          KMGSGNAGQGYTYEEVRVLFHILMDLCKRTSGLAHPLPGSQVGSGNIQVRLHYIDGNYTV 
        
      SSM25 
                1090      1100      1110      1120      1130      1140 
          LPEVVEAALGPHMQNMPRPRGADAAGLLLRELELHPPSEEWHRRNLFGGPGSEPEDMILT 
        
 
                1150      1160      1170      1180      1190      1200 
          DDVSKLSNSLDLPDTNFSGICDGYNRVHSLWPRKRRMSERDAAFGSNTSVGLGAYLGIMG 
        
                           SSM26                          SSM27 
                1210      1220      1230      1240      1250      1260 
          SRRDVVTATWKTGLEGVWYKCIRCLRQTSAFASPGATKQPNPNERETWWTSRWVYCCPMC 
                Znf   
             SF6   
          GGTWVRVV 1268 
 
 
 
     

Figure 4.1(b): Sequence Signature Motifs (SSM), Simple Modular Architecture 
Research Tool domains (SMART) and other special features in SFR6 protein 
sequence. SF1-6 shows the position of the beginning of each SF constructs; PhosI-V 
shows the position of predicted phosphorylating sites; SSM1-27 shows the identified 
SSM domains;  WD40  CTD ARM are specific protein binding sites;  DEFSN shows 
the deffencing domain SUMO site shows the SUMOlating domain in SFR6; Znf  
shows the zinc finger domain in SFR6 

 

4.2.1.1 Generation of GFP-tagged versions of SFR6/MED16 truncated forms  

An in-frame fusion of truncated versions of SFR6/MED16 with N-terminal GFP 

were cloned as described in section 2.5.1 and 2.5.2 in to pK7WGF2 (see appendix 

A3.12-A3.17). Each in pK7WGF2 was tested for correct orientation of the insert in 

the destination vector. This was followed by restriction digestion to confirm the 

correct size was and further confirmed by PCR with specific primers designed to the 

35S promoter and to each insert (see Appendix A2.1 for primer sequences). One 

positive line for each construct was sequenced to confirm the presence of whole 

sequence of the truncated fragment of SFR6/MED16. After that each construct in  
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pK7WGF2 destination vector was transformed in to Agrobacterium tumefaciens 

strain GV3101 and used for tobacco infiltration (see section 2.11.2) or DNA was 

used for direct transformation by biolistic transformation in leek cells (see section 

2.11.3) to study the ability of each truncation of SFR6/MED16 to localise to the 

nucleus that explain and to express each protein of correct predicted size. 

 

4.2.2 Examination of the ability of the truncated fragments of SFR6/MED16 to 

target to the nucleus 

The following experiments were designed to identify the domain of SFR6/MED16 

that is responsible for targeting the protein to the nucleus. Six different fusions of 

SFR6/MED16 truncations with GFP (described in section 4.2.1) were tested for their 

ability to localise to the nucleus. Transient expression of the fusions in tobacco plants 

was carried out using infiltration and biolistic transformation technique was 

performed in leek cells as described in section 4.2.1.1. GFP fluorescence was 

observed using a confocal laser scanning microscope (see section 2.14.5). 

As an exploratory experiment GFP tagged SF- constructs were delivered to leek 

tissue using biolistic transformation.  In this method DNA of each construct is coated 

onto gold particles and delivered via microprojectile bombardment. After 48 h leaf 

tissues were observed under a confocal microscope to visualise GFP fluorescence in 

 cells. GFP- tagged GUS protein (35S::GUS::GFP) was used as a cytosolic control in 

this experiment along with six different SF constructs. Results of two experiments 

revealed that all constructs were targeted to the nucleus (although the levels of 

fluorescence observed differed between the truncations). However, I observed 

damage to the tissues due to the delivery method and poor reproducibility of results 
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in biolistic transformation. Therefore, nuclear targeting experiments were continued 

using transient expression in tobacco plants using infiltration technique.  

Transient expression of GFP tagged proteins in tobacco was conducted in three 

different experiments and all six constructs were observed to be localised to the 

nucleus. Figure 4.2 shows GFP fluorescence in the nucleus for all five truncations 

and full length SFR6 compared with GFP tagged GUS protein (35S::GUS::GFP), the 

cytosolic control for this experiment, which showed mostly cytosolic localisation. 

Although all fusion proteins were localised to the nucleus, the level of expression of 

GFP fluorescence in cells was different for each fusion. Therefore mean fluorescence 

levels (unit as grey values) in the Region of Interests (ROI) within the nucleus and 

cytoplasm was analysed and fluorescence ratio between nucleus (ROI nucleus) and 

cytoplasm (ROI cytoplasm) was compared between fusions. Figure 4.3 represents the 

average ratio of mean fluorescence in the nucleus and cytoplasm (ROI nucleus/ ROI 

cytoplasm) from three different experiments conducted separately. Advanced 

fluorescence Lite of Leica application suite was used to calculate fluorescence 

expressed in nucleus and cytoplasm of the cells. 

The average ratio of fluorescence expression in nucleus and cytoplasm varied 

between different fusions and the highest expression ratio was reported in leaves 

expressing 35S::SF16, encoding the full length SFR6 protein, which has been shown 

previously to be nuclear targeted (Figure 4.2)(Knight et al., 2009). The second 

highest ratio was reported in leaves expressing SF36, which lacks the N terminal one 

third of the SFR6 protein. The other four constructs showed lower average ratios of 

fluorescence expression compared to SF16 and SF36 but higher than the 

35S::GFP::GUS, the cytosolic control used in this experiment. 
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SF36 SF25 SF24 

SF16 SF14 SF15 

35S::GFP::GUS normal cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Sub-cellular localization of SF- constructs tagged with GFP in 

untransformed wild type tobacco 

Six truncations of SFR6/MED16 with N-terminal tagged GFP under control of 35S promoter 

were expressed in tobacco plants using the Agrobacterium infiltration technique. After 48 h 

leaf samples were observed under a confocal microscope and compared with cytosolic 

control of GUS fused to GFP, under the control of the 35S promoter. Images were taken with 

identical parameters to allow comparison between different truncations of SFR6/MED16. 
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Figure 4.3: Average ratio of fluorescence in nucleus and cytoplasm in tobacco 

leaf cells  

Constitutive overexpression of six truncations/full length of SFR6/MED16 tagged with GFP 

was acheived in tobacco plants using infiltration and after 48 h leaf samples were observed 

under confocal microscope. Amount of florescence expressed in nucleus and cytoplasm was 

calculated using Leica Application Suite and fluorescence ratio between nucleus and 

cytoplasm was compared with cytosolic control of GUS attached to GFP under control of 

35S promoter.  

 

This provides evidence that C-terminus of the SFR6 protein is more important 

compared to the N-terminus for directing of proteins to the nucleus. 

Though the average ratio of fluorescence in nucleus and cytoplasm in nuclear 

targeting experiments suggests that C-terminus of the SFR6 is important I searched 

for potential nuclear localisation signals (NLS) within the SFR6 protein using 

NUCPred program (https://www.sbc.su.se/~maccallr/nucpred/). The amino acid 

sequence of GFP tagged full length SFR6 protein was used for analysis. The program 

predicted that the strongest nuclear localisation motif is located towards the end of C-
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terminus of the protein at the location of 1172-1184 aa of SFR6/MED16 (Figure 4.4). 

However, I observed all truncated fragments were targeted the nucleus including 

truncations such as SF15, SF14, SF25 and SF24 which lack the above positions of 

the aa in C-terminus of the protein as well as SF16 and SF36 that consists above aa 

positions. This is contradictory to the predicted nuclear localization signal using 

NUCPred program that indicated the nuclear localizing signal is in the C-terminus of 

the protein. The reason might be another factor apart from NLS that helps protein to 

go to the nucleus, possibly these truncated fragments could pass through the nuclear 

membranes through the process of diffusion. However Young-Hee Cho et al. (2012) 

reported that protein approximately 84.5 kD in size localized the nucleus even 

without nuclear export signal. Further they described the impossibility of diffusion of 

such a big protein to the nucleus and proposed the ability of certain proteins to leave 

the cytoplasm and enter the nucleus under certain conditions. 
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   1  MVSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICT    50 
  51  TGKLPVPWPTLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIF   100 
 101  FKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHN   150 
 151  VYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNH   200 
 201  YLSTQSALSKDPNEKRDHMVLLEFVTAAGITLGMDELYKDITSLYKKAGS   250 
 251  AAAPFTMNQQNPEEEVSLVNNSGGGGIIEAPAIVEEKEEEGLQQKQEETI   300 
 301  ESTDPILVVVEEKLLEKSVDGEKEDDNSSSSNMEIDPVSPATVFCVKLKQ   350 
 351  PNSNLLHKMSVPELCRNFSAVAWCGKLNAIACASETCARIPSSKANTPFW   400 
 401  IPIHILIPERPTECAVFNVVADSPRDSVQFIEWSPTSCPRALLIANFHGR   450 
 451  ITIWTQPTQGSANLVHDATSWQCEHEWRQDIAVVTKWLTGASPYRWLSSK   500 
 501  PSSGTNAKSTFEEKFLSQSSESSARWPNFLCVCSVFSSGSVQIHWSQWPS   550 
 551  NQGSTAPKWFSTKKGLLGAGPSGIMAADAIITDSGAMHVAGVPIVNPSTI   600 
 601  VVWEVTPGPGNGLQATPKISTGSRVPPSLSSSSWTGFAPLAAYLFSWQEY   650 
 651  LISEIKQGKKPSDQDSSDAISLSCSPVSNFSAYVSPEAAAQSAATTTWGS   700 
 701  GVTAVAFDPTRGGSVIAVVIVEGQYMSPYDPDEGPSITGWRVQRWESSVQ   750 
 751  PVVLHQIFGNPTSNFGGQVPTQTVWVSRVDMSIPPTKDFKNHQVAAAGPS   800 
 801  VDAPKEPDSGDEKANKVVFDPFDLPSDIRTLARIVYSAHGGEIAIAFLRG   850 
 851  GVHIFSGPTFSPVENYQINVGSAIAAPAFSPTSCCSASVWHDAAKDCAML   900 
 901  KIIRVLPPALPRNQSKVDQSTWERAIAERFWWSLLVGVDWWDAVGCTQSA   950 
 951  AEDGIVSLNSVIAVMDADFHSLPSTQHRQQYGPNLDRIKCRLLEGTNAQE  1000 
1001  VRAMVLDMQARLLLDMLGKGIESALVNPSALVFEPWRVDGETITGINPEA  1050 
1051  MAVDPALVSSIQAYVDAVLDLASHFITRLRRYASFCRTLASHAASAGTGS  1100 
1101  NRNNVTSPTQNASSPATPQVGQPTTTTTTTATTNSSGSSHVQAWMQGAIA  1150 
1151  KISSSNDGSNSTASPISGSPTFMPISINTGTFPGTPAVRLIGDCHFLHRL  1200 
1201  CQLLLFCFLQRSSRFPQRNADVSSQKLQTGATSKLEEVNSAKPTPALNRI  1250 
1251  EDAQGFRGAQLGTGVKGIDENSARTTKMGSGNAGQGYTYEEVRVLFHILM  1300 
1301  DLCKRTSGLAHPLPGSQVGSGNIQVRLHYIDGNYTVLPEVVEAALGPHMQ  1350 
1351  NMPRPRGADAAGLLLRELELHPPSEEWHRRNLFGGPGSEPEDMILTDDVS  1400 
1401  KLSNSLDLPDTNFSGICDGYNRVHSLWPRKRRMSERDAAFGSNTSVGLGA  1450 
1451  YLGIMGSRRDVVTATWKTGLEGVWYKCIRCLRQTSAFASPGATKQPNPNE  1500 
1501  RETWWTSRWVYCCPMCGGTWVRVV                            1524 

 negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive  

(none-nuclear)                                                                         (nuclear) 

Figure 4.4: Nuclear localisation signal analysed using NUCPred program 

Positively and negatively influencing subsequences are coloured according to the above 

colour scale where red colour represents the highest possibility to localise to the nucleus and 

blue colour shows no targeting of the nucleus. Red/orange coloured underline protein 

sequence is the predicted nuclear localizing sequence (NLS) for SFR6 protein tagged with 

GFP. Following positions of the aa represents the six different types of SFR6/MED16 

truncations tagged with GFP. 1-239aa:GFP; 240-256aa;  linkage between GFP and 

truncations between SFR6/MED16(transgene); 257-1524 aa:SF16; 257-1257aa: SF15; 257-

1135aa: SF14; 604-1135aa: SF24; 604-1257aa: SF25; 910-1524aa: SF36. 

 

Before embarking on experiments to examine nuclear localisation of all the truncated 

fragments of SFR6, I analysed the expression SF proteins in plants using transient  
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expression of each -SF protein in tobacco using infiltration (see section 2.11.2) to 

gain evidence that the sequence was in frame and expressed a protein of the correct 

size. After that western blotting was performed to identify whether proteins are 

expressed in plants and I found all of the six GFP-tagged SF proteins were expressed 

in tobacco plants and produced proteins of the expected size for fusions with GFP 

(figure 4.5). 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Level of protein expression of –SF truncated fragments of SFR6  

Total proteins extracted from tobacco leaves infiltrated with Agrobacterium tumefaciens 

expressing SF constructs tagged with GFP were loaded on an SDS gel @ 10mg/ml and 

transferred to PVDF membranes and incubated with α-GFP primary antibodies at 1:5000 

dilution with 10ml of 5% milk (w/v) solution. After incubation of the membrane with α-

rabbit goat secondary antibody proteins were visualised using a chemiluminescent detection 

method. As a loading control an SDS gel with the same samples at the same concentration 

was stained with Coomassie blue to detect proteins and scanned. White coloured arrows 

indicate the correct size of bands in each lane. This experiment was conducted three times 

and same results were reproduced. Lane 1 to 6 represents GFP::SF16 (167kDa), GFP::SF15 

(138 kDa), GFP::SF14 (124.5kDa), GFP::SF36 (95.3 kDa), GFP::SF24 (86 kDa) 

and GFP::SF25 (99.6 kDa) respectively. 
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4.2.3 Generation of stable lines expressing different truncations of 

SFR6/MED16 in Arabidopsis 

After transformation of each construct in to pB7WG2, correct orientation of the 

fragments in the destination vector was tested using primers designed for the 35S 

promoter region of the vector with an internal primer designed for each construct, 

followed by restriction digestion. Thereafter each construct in the pB7WG2 

destination vector was transformed in to Agrobacterium tumefaciens strain C58C1. 

This Agrobacterium strain was used to transform both Col-0 and sfr6 plants using 

floral dip method (Clough and Bent, 1998) (see section 2.10.1).  Successfully 

transformed plants (T1) were selected on soil using the Basta herbicide (see section 

2.10.1.4) as the Basta resistant marker was in the destination vector. Following this 

selection, Basta resistant T1 individual plants were transferred to peat plugs and T1 

plants were tested for the presence of the transgene using genomic DNA and the  

   (a) 

 

 

 

 

(Figure continues to the following page) 
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(b)  

 

 

 

 

 

 

 

 

 

 

    (c)        
     
 

 

 

 

 

 

 

 

 

 

(Figure continues to the following page) 
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(d) 

         

 

 

 

 

 

 

 

 

Figure 4.6: Level of expression of SF- constructs in Col-0 background in T1 

generation 

Expression levels of -SF16, -SF15, -SF14 and -SF36 in different transformed lines in Col-0 

background were compared with Col-0 in histogram a, b, c and d respectively in T1 plants. 

Seven-day-old seedlings grown on MS agar plates were used. GWOF trans (GateWay Open 

Frame) Forward primer designed for the 35S promoter region was used with the reverse 

primer designed for the beginning of each truncation of SFR6/MED16. Expression is shown 

after normalisation to PEX4. Fold values were calculated using the ∆∆CT method, and the 

error bars in each biological replicates represent RQMIN and RQMAX  and constitute the 

acceptable error level for a 95% confidence level according to Student’s t test. Error bars 

indicate the level of variation between technical replicates within one biological replicate 

experiment. symbol in the graph represents the different lines from each construct 

selected for crossing with sfr6-1. 

 

level of expression of each transgene was analysed by qRT-PCR (Figure 4.2). The 

transgene was sequenced from the gDNA of tranformants to confirm the presence of 

correct truncations in plants.  
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Successfully transformed lines expressing each truncation were obtained in Col-0 

background but no successfully transformed lines were obtained in the sfr6-1 

background. The level of transgene expression was measured using primers designed 

to the vector and the beginning of each truncation (see Appendix A2.1 for primer 

sequence). However, in the Col-0 background, only 35S::SF16, 35S::SF15, 

35S::SF14 and 35S::SF36 transformants were obtained (Figure 4.6) and no plants 

expressing 35S::SF25 or 35S::SF24 were recovered (Figure 4.7). As no expression of 

35S::SF25 and 35S::SF24 was observed in the Col-0 background, no further work 

continued in Arabidopsis plants with these two truncated fragments. 

As direct transformation of sfr6-1 with the constructs was not successful, selected 

lines of 35S::SF16, 35S::SF15, 35S::SF14 and 35S::SF36 in Col-0 background were 

crossed with sfr6-1 plants to obtain construct in the sfr6-1 mutant background.  

(a) 

 

 

 

 

 

 

 

 
 
 
 

 
(Figure continues to the following page) 
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(b)       
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Level of expression of SF24 and SF25 constructs in Col-0 

background in T1 generation 

Expression levels of -SF24 and -SF25 in different lines in Col-0 background were compared 

with Col-0 background respectively in histogram a and b in T1 plants. Seven-day-old 

seedlings grown on MS agar plates were used. A forward primer designed for the 35S 

promoter region was used with the reverse primer designed for the beginning of each 

truncation of SFR6/MED16. Expression is shown after normalisation to PEX4. Fold change 

in expression values were calculated using the ∆∆CT method, and the error bars in each 

biological replicates represent RQMIN and RQMAX  and constitute the acceptable error level for 

a 95% confidence level according to Student’s t test. Error bars indicate the level of variation 

between technical replicates within one biological replicate experiment.  

After crossing above expressing lines in wild type background with sfr6-1 plants, F1 

seeds were collected separately and grown up to obtain F1 plants and screened for the 

presence of transgene. Above positive F1 plant lines were continued to obtain F2 

seeds.  Then F2 plants were tested for the presence of the transgene and the 

expression levels of each construct (Figure 4.8). Except line #2.2 of sfr6-
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1+35S::SF15 all other lines were expressing the construct (Figure 4.8 a). Among 

those expressing lines in F2 plants further screened to obtain homozygous lines for 

sfr6-1 mutation using sequencing facility in the department (DBS, Durham 

University). For that using specially designed primers were amplified a region 

around the SNP was amplified which could then be sequenced (See Appendix A2.1 

for primer sequence). Selected homozygous lines of sfr6-1 consisted with each 

construct were used to get F3 seeds to continue complementation experiments under 

each stress condition. 

(a)       
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(Figure continues to the following page) 



                                                                                                                       Chapter 4 

159 

 

         (c) 

 

 

 

 

 

 

 

 

 

Figure 4.8: Level of expression of SF constructs in sfr6-1 background in F2 

generation 

Expression levels of SF14/SF15,SF16 and SF36 in different lines in sfr6-1 background were 

compared with Col-0 and sfr6-1 mutant respectively in histogram a and b in F1 plants. 

Seven-day-old seedlings grown on MS agar plates were used. Forward primer designed for 

the 35S promoter region was used with the reverse primer designed for the beginning of each 

domain of SFR6/MED16. Expression is shown after normalisation to PEX4. Fold values 

were calculated using the ∆∆CT method, and the error bars in each biological replicates 

represent RQMIN and RQMAX  and constitute the acceptable error level for a 95% confidence 

level according to Student’s t test. Error bars indicate the level of variation between technical 

replicates within one biological replicate experiment.  

 

 Five homozygous lines of sfr6-1+35S::SF14 and sfr6-1+35S::SF15 were selected 

using allelic discrimination method (see section 2.10.3) followed by sequencing  for 

complementation experiments while homozygous lines were selected from sfr6-

1+35S::SF36 and sfr6-1+35S::SF16 new transgenic plant lines checking that the 

chromatograms of the sequenced amplicons showed only the mutant version of the 

sequence at the site of the sfr6-1 SNP the EMS mutation. 
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4.2.4 Use of over-expressing SF domains in Col-0 background under cold stress 

conditions 

Beginning of the formation of transgenic plants representing different domains of 

SFR6/MED16, I made all domains expressing in Col-0 through the floral dipping 

method (See section 2.10). The expression levels of each domain over-expressing in 

Col-0 are presented in Figure 4.6 and 4.7. Expression of KIN2 gene under cold stress 

condition was tested using the transgenic lines over-expressing SF16, SF15, SF14 

and SF36 in Col -0 compared to wild type plants treated 6h at 5oC. Results of this 

experiment revealed that any enhanced KIN2 gene expression under cold conditions 

of each domain overexpressing in wild type background (See Appendix A4.1 for 

gene expression results). 

 

4.2.5 Complementation experiments using -SF domains in sfr6 mutant 

background under different abiotic stress conditions  

To study whether different domains/regions of the SFR6 protein are responsible for 

the activation of genes responding to each stress, I conducted complementation 

experiments with homozygous lines of sfr6-1 expressing each truncation (or full 

length SFR6) under cold, starvation and UV stress conditions. Five homozygous (for 

sfr6-1 mutation) lines of sfr6-1+35S::SF14 and sfr6-1+35S::SF15 and four lines of 

sfr6-1+35S::SF36 and  six lines of sfr6-1+35S::SF16 were tested in the F3 

generation. The above lines were compared with wild type and sfr6-1 mutant and 

with three lines of sfr6-1 mutant complemented with AtSFR6 genomic DNA (sfr6-

1+35S::gSFR6) (Wathugala et al., 2011) as the best available control to test stress 

gene complementation experiments.    
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I here first present the results of complementation of stress gene expression 

experiments with sfr6-1+35S::SF14 and sfr6-1+35S::SF15 compared with wild type 

and sfr6-1, three lines of sfr6-1 mutant complemented with AtSFR6 and sfr6-

1+35S::GUS (GUS, as control for the presence of SFR6). The same set of stress gene 

experiments were conducted subsequently with the lines expressing the two other 

constructs i.e sfr6-1+35S::SF36 and sfr6-1+35S::SF16 with same controls as 

described above. This is due to the time difference taken to obtain F3 homozygous 

seeds of each transgenic line. The perfect control for all of these experiments would 

have been sfr6-1+35S::SF16, which is the complementation of full length of AtSFR6 

(cDNA) (see Figure 4.1) which was created in a similar way to three other constructs 

tested in stable plant expression.  

Prior to the start of stress gene expression experiments, the level of SFR6 transcript 

expression was tested in all lines compared to wild type, sfr6-1 mutant and other 

controls mentioned above. Seven-day-old seedlings of F3 transgenic plants including 

all truncated versions of SFR6/MED16 were used to test the level of expression of 

SFR6 with primers designed to recognise the 10th and 11th exon in the cDNA of 

SFR6 (SFR6 mid forward and reverse primers, see Appendix A2.1 for primer 

sequence) designed for the part of the SFR6 gene that was present in all truncations 

Levels of SFR6 expression in all five lines of sfr6-1+35S::SF14 and  sfr6-

1+35S::SF15 were higher (ten fold higher except in one line) than in wild type and 

similar results were obtained for all three lines of sfr6-1 mutant complemented with 

AtSFR6  (sfr6-1+35S::gSFR6) (Figure 4.9). 
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Figure 4.9: Level of expression of SFR6 in selected lines of SF14 and SF15 in 

sfr6-1 background in F3 generation 

Expression levels of SFR6 in different lines of 35S::SF14 (SF14) and 35S::SF15 (SF15) in 

sfr6-1 background were compared with Col-0, sfr6-1, three lines of sfr6-1 mutant 

complemented with AtSFR6 (SFR6 FL) and sfr6-1+35S::GUS (GUS, as control for the 

presence of SFR6). Seven-day-old seedlings grown on MS agar plates were used. Primers 

were designed for the 10th and 11th exon in the cDNA of SFR6/MED16 and expression is 

shown after normalisation to PEX4. Fold values were calculated using the ∆∆CT method, 

and the error bars in each biological replicates represent RQMIN and RQMAX  and constitute 

the acceptable error level for a 95% confidence level according to Student’s t test. Error bars 

indicate the level of variation between technical replicates within one biological replicate 

experiment.  

 

The level of SFR6 expression in sfr6-1 appeared similar to the level in Col-0 (Figure 

4.9); the primers used in this analysis was designed for the middle part of SFR6 gene 

downstream of the point mutation in the sfr6-1 mutant (see Appendix A2.2 for the 

point mutation and Appendix A.2.1 for primer sequence) .The lack of difference in 

SFR6 expression levels between wild type and sfr6-1 was not unexpected as the 

transcript was likely to be produced normally despite the single base change that 
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resulted in the premature stop codon. This primer combination enabled testing of the 

transcript levels of all truncated versions of SFR6 in the sfr6-1 mutant background 

with one set of primers due to the common position of primers in all truncations for 

accurate comparison.  Line #6 and #7 of sfr6-1+35S::SF14 showed lowest expression 

of SFR6 and the other three lines were moderate expressers of SFR6 compared to 

three different lines of controls of  sfr6-1+35S::SFR6. Line #1 of sfr6-1+35S::SF15 

is the lowest expresser and #2 is the highest expresser of SFR6 of sfr6-1+35S::SF15 

while #3, #4 and #5 are moderate expressers of SFR6. The other control, sfr6-

1+35S::GUS was used to show no effect of vector on gene expression and had 

showed similar levels of SFR6 expression compared to wild type and sfr6-1 (Figure 

4.9).  Plant lines exhibiting different levels of SFR6 gene expression were tested for 

stress gene complementation. 

In sfr6-1+35S::SF16 (SF16) and sfr6-1+35S::SF36 (SF36), the presence of the 

transgene specifically (i.e. excluding the contribution of the native SFR6 transcript) 

and expression levels of each construct were tested in the F3 generation (Figure 

4.10). Levels of transgene expression in six lines of sfr6-1+35S::SF16 are presented 

in figure 4.10 (a) and all lines expressed relatively low levels of transgene compared 

to the levels observed in other constructs except B2. Out of four lines of sfr6-

1+35S::SF36 two lines did not express the transgene (B2 and B24) at all and line 

#B7 and #B25 were used for the rest of the gene expression experiments. 
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(a)                                                                            (b) 

Figure 4.10: Level of expression of SF16 and SF36 constructs in sfr6-1 

background in F3 generation 

Expression levels of SF16 and SF36 in different lines of 35S::SF16 (SF16) and 35S::SF3 

(SF36) in sfr6-1 background in F3 are presented in histogram a and b respectively. Seven-

day-old seedlings grown on MS agar plates were used. A forward primer designed for the 

35S promoter region was used with a reverse primer designed for the beginning of each 

truncation of SFR6/MED16. Expression is shown after normalisation to PEX4. Fold values 

were calculated using the ∆∆CT method, and the error bars in each biological replicates 

represent RQMIN and RQMAX  and constitute the acceptable error level for a 95% confidence 

level according to Student’s t test. Error bars indicate the level of variation between technical 

replicates within one biological replicate experiment.  

 

After testing the level of transgene expression in sfr6-1+35S::SF16 (SF16) and sfr6-

1+35S::SF36 (SF36), the level of SFR6 expression (native  and transgene transcript) 

in the same lines was compared to that of Col-0 and sfr6-1 (Figure 4.11). Expression 

levels of SFR6 in all transgenic lines were low compared with the apparent levels of 

transcript indicated using the GW primer (see Appendix A2.1) (figure 4.10). This is 

hard to understand the inconsistence of expressions. It is difficult to conclude that 

these lines are expressing at all. However they may be expressing to a low level that 



                                                                                                                       Chapter 4 

165 

 

is similar to what is seen in the wild type and level of SFR6 expression in #A21, 

#A31 and #B25 is low compared to other three lines. 

 

 

 

 

 

 

 

Figure 4.11 Level of expression of SFR6 in selected lines of SF16 and SF36 in 

sfr6-1 background in F3 generation 

Expression levels of SFR6 in different lines of 35S::SF16 (SF16) and 35S::SF36 (SF36) in 

sfr6-1 background were compared with Col-0 and sfr6-1. Seven-day-old seedlings grown on 

MS agar plates were used. Primers were designed for the 10th and 11th exon in the cDNA of 

SFR6/MED16 and expression is shown after normalisation to PEX4. Fold values were 

calculated using the ∆∆CT method, and the error bars in each biological replicates represent 

RQMIN and RQMAX  and constitute the acceptable error level for a 95% confidence level 

according to Student’s t test. Error bars indicate the level of variation between technical 

replicates within one biological replicate experiment. Red and green dashed lines represent 

the level of SFR6 expression in Col-0 and sfr6-1 respectively. 

 

F3 seeds were used to continue complementation experiments under each stress 

condition. Five homozygous lines of sfr6-1+35S::SF14 and sfr6-1+35S::SF15 were 

selected for complementation experiments while two and four lines were selected 
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from sfr6-1+35S::SF36 and sfr6-1+35S::SF16 respectively from above described 

plant lines (See Appendix A2.4 for the chromatograms of each homozygous lines of 

sfr6-1). All plant lines were sequenced for identification of the region containing the 

EMS point mutation to make sure that no copy of the wild type alleles was present in 

the genomic DNA. Further I did not use the genotyping assay because of the 

complications that could be introduced with an unknown number of copies of the 

transgene that would be recognised as wild type.  

4.2.5.1 Complementation of visible phenotype of SF transgenic lines 

The sfr6-1 shows pale green colour compared to Col-0 during early stages of 

seedlings with bigger cotyledons (Knight et al., 2009). Therefore all lines 

homozygous for the sfr6-1 mutation and that overexpressed SF16, SF15, SF14 and 

SF36 truncations were tested for their ability to complement the visible pale leaf and 

cotyledon phenotype. Fourteen day-old seedlings grown on MS medium from each 

line of –SF truncated versions were studied to determine the level of green colour 

restored in each line. Percentage of green colour restoration was calculated by 

scoring individual seedlings as yellow or green. In sfr6-1+35S::SF14 (SF14) four 

lines out of five remained pale yellow colour and line SF14#7 showed restoration of 

green colour in approximately 60% of the studied seedling population. In sfr6-

1+35S::SF15 (SF15), line #1 showed 90% of green colour restoration while other 

four lines remained approximately 60% of green colour restoration in the studied 

seedling population. Out of two lines of sfr6-1+35S::SF36 (SF36) line #B6 showed 

approximately 90% of green colour restoration while #B25 showed approximately 

45% of green colour restoration in the studied seedling population. In sfr6-

1+35S::SF16 (SF16)  line #B7 showed nearly 90%  of green colour restoration and 

#A21 showed approximately 80% of  green colour restoration. The other two lines of  
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SF16 remained similar colour as in sfr6-1. Four different lines of sfr6-1+35S::SF16 

(SF16) were supposed to be the perfect control of this experiment and expected to be 

fully complemented, yet this is the first indication that in atleast some of the lines 

was not successful. Wathugala et al. (2011) reported the fully restoration of green 

colour in complemented lines of genomic SFR6 (full length) and the difference 

compared to present study is the completed lines created using cDNA of SFR6. 
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(a)

 

(b)  

 

(c)       

 

(d)

 

Figure 4.12 Level of green colour restoration in different lines of -SF 

truncations in sfr6-1 background in F3 generation 

Fourteen-day-old seedlings grown on MS medium from lines homozygous for sfr6-1 

mutation and over-expressing SF16, SF15, SF14 and SF36 truncations were tested for their 

ability to restore the visible green leaf and cotyledon phenotype. The number of seedlings in 

green colour similar to the Col-0 was counted and approximate percentage of green colour 

restoration was calculated by scoring individual seedlings as yellow or green. 
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4.2.5.2 Complementation of flowering time phenotype of SF transgenic lines 

The sfr6-1 mutant shows late flowering (Knight et al., 2008) compared to Col-0 and I 

studied time taken to flower in different lines complemented with truncations of 

SFR6. Five-week-old plants representing different lines of SF constructs were grown 

on soil and compared with Col-0 and sfr6-1 plants (Figure 4.13). In sfr6-

1+35S::SF14 (SF14) line #7 showed complementation of flowering time phenotype 

but the other four lines showed late flowering (Figure 4.13 a). Line #1 in sfr6-

1+35S::SF15 (SF15) showed a similar flowering time phenotype as in Col-0 while 

#2, #3 and #4 showed early flowering compared to sfr6-1 but not a complete 

complementation of flowering time phenotype. Line #4 in sfr6-1+35S::SF15 (SF15) 

showed a similar flowering time phenotype as in sfr6-1 (Figure 4.13 b). Line #A21 in 

sfr6-1+35S::SF16 (SF16) showed complementation of flowering time phenotype 

while #B2 showed flowering time phenotype similar to sfr6-1. Line #A31 and B#7 

showed early flowering compared to sfr6-1 but not up to the level as fully 

complementation (Figure 4.13 c). Out of two lines in sfr6-1+35S::SF36 (SF36) line 

#B6 showed complementation of flowering time phenotype while #B25 showed  

similar flowering time phenotype as in sfr6-1(Figure 4.13 d). Same representative 

plants from Col-0 and sfr6-1 were used to compare the flowering time phenotype of 

different lines of SF transgenic plants as described in figure 4.13. 
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(a)                                                                          (b) 

 

 

 

 

 

    (c)                                                                                   (d) 

 

 

 

 

 

 

Figure 4.13 Restoration of flowering time phenotype in different lines of SF 

truncations in sfr6-1 background in F3 generation 

Five-weeks-old seedlings grown on soil were used to study the ability of lines homozygous 

for the sfr6-1 mutation and overexpressing SF16, SF15, SF14 and SF36 truncations to 

restore the flowering time phenotype of Col-0. Same Col-0 and sfr6-1 plants were used to 

compare different lines of SF transgenic plants. 
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4.2.5.3 Analysis of the ability of SF truncations to complement the cold gene 

expression phenotype 

Experiments were carried out using seven-day-old seedlings grown on MS media on 

petri dishes and treated at 5oC for 6 h in SANYO growth chamber. Control plates 

were kept at 20oC (ambient temperature) (see 2.15.1.1). Expression of the cold-

inducible gene KIN2 was analysed using qRT-PCR. Cold-inducible KIN2 expression 

in sfr6-1+35S::SF14 (SF14) and sfr6-1+35S::SF15 (SF15) was compared with Col-0, 

sfr6-1, sfr6- 1+35S::SFR6 (SFR6 FL) and sfr6-1+35S::GUS (GUS) in three independent 

biological replicate experiments (Figure 4.14 a, b and c). An increased level of KIN2 

gene expression in full length SFR6 complemented lines (sfr6- 1+35S::SFR6/SFR6 FL) 

was observed compared to Col-0 and a consistent level of gene expression in three 

biological replicate experiments was seen.  

(a) 

      (Figure continues to the following page) 
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(b) 

 

 (c)  

 

      (Figure continues to the following page) 
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     (d) 

  

Figure 4.14: Complementation of cold-induced KIN2 expression in SF14 and 

SF15 transgenic lines 

KIN2 expression in seven-day-old seedlings in response to cold treatment was measured in 

sfr6-1+35S::SF14 (SF14) and sfr6-1+35S::SF15 (SF15) transgenic lines compared with Col-

0, sfr6-1, three different lines of sfr6- 1+35S::SFR6 (SFR6 FL) and sfr6-1+35S::GUS 

(GUS). The first three histograms (a, b and c- with red bars) represent the gene expression 

data of three independent biological replicates. Expression is shown after normalisation to 

PEX4 in all graphs. Relative expression in the graphs represents the fold value compared 

with Col-0 control sample and calculated using the ∆∆CT method and the error bars in each 

biological replicate represent RQMIN and RQMAX  and constitute the acceptable error level for 

a 95% confidence level according to Student’s t test The fourth chart (blue bars; d) 

represents the average of the above three independent biological replicates. Mean average 

data (in graph d) were analysed using a one-way ANOVA (α=0.05) and pair wise 

comparisons were made using the Tukey method. Means that do not share a letter are 

significantly different.  KIN2 expression in Col-0 and sfr6-1 represents in red and green 

dotted lines respectively.  

 

Similar patterns of KIN2 gene expression in -SF14 and -SF15 transgenic lines were 

observed in three replicate experiments and many lines showed a comparable level of 
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KIN2 gene expression as seen in sfr6-1 mutant except in  SF14#7 and SF15#1, 

indicating that complementation may have been partially successful in these two 

lines but was not in the others. This change in KIN2 expression is clear in Figure 

4.14 d, which shows the average gene expression data from three biological replicate 

experiments. The level of average KIN2 expression in SF15#1 was not significantly 

different compared to Col-0 and three lines of SFR6 FL (p<0.001) while SF14#7 

showed significantly different levels of KIN2 expression (Figure 4.14d). Interestingly 

SF14#7 and SF15#1 showed the lowest levels of SFR6 expression, as shown in 

figure 4.9. 

Cold gene expression experiments with sfr6-1+35S::SF36 (SF36) and sfr6-1+35S::SF16 

(SF16) were conducted as described above and expression of the cold-inducible gene 

KIN2 was compared with that of Col-0, sfr6-1, sfr6- 1+35S::SFR6 (SFR6 FL) and sfr6-

1+35S::GUS (GUS) in three independent biological replicate experiments (Figure 4.15 

a, b and c). 

               (a) 

 

(Figure continues to the following page) 
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  (b)  

            (c)                                                                                

 

(Figure continues to the following page) 
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            (d)  

 

Figure 4.15: Complementation of cold-induced KIN2 expression in SF36 and 

SF16 transgenic lines 

KIN2 expression in seven-day-old seedlings in response to cold treatment  was measured in 

sfr6-1+35S::SF36 (SF36) and sfr6-1+35S::SF16 (SF16) transgenic lines compared with Col-

0, sfr6-1, three different lines of sfr6- 1+35S::SFR6 (SFR6 FL) and sfr6-1+35S::GUS 

(GUS). The first three histograms (a, b and c- with red bars) represent the gene expression 

data of three independent biological replicates. Expression is shown after normalisation to 

PEX4 in all graphs. Relative expression in the graphs represents the fold value compared 

with Col-0 control sample and calculated using the ∆∆CT method and the error bars in each 

biological replicate represent RQMIN and RQMAX  and constitute the acceptable error level for 

a 95% confidence level according to Student’s t test. The fourth chart (blue bars; d) 

represents the average of the above three independent biological replicates. Mean average 

data (in graph d) were analysed using a one-way ANOVA (α=0.05) and pair wise 

comparisons were made using the Tukey method. Means that do not share a letter are 

significantly different.  KIN2 expression in Col-0 and sfr6-1 represents in red and green 

dotted lines respectively. In X-axis number 20 and 5 represents the ambient and cold 

temperatures respectively. 

 

Greater levels of KIN2 gene expression in full length of SFR6 complemented lines in 

sfr6-1 (sfr6- 1+35S::SFR6/SFR6 FL) were observed compared to Col-0 and levels of 
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gene expression were consistent between three biological replicate experiments. 

These three complemented lines were created using genomic DNA. Full length of 

SFR6 complemented lines created in this project (SF16) was from cDNA. In 

contrast, KIN2 gene expression in these lines was not complemented but the level of 

expression was slightly higher than KIN2 expression in sfr6-1. A similar trend was 

observed in all three biological replicate experiments of all four lines of SF16 

truncated fragments (Figure 4.11 a, b and c). This is very difficult to explain why the 

complementation failed. I could be explained reason is simply that the lines were not 

expressing SFR6 or not to a high enough level or the feature of transgene as it was 

created from cDNA as two possible causes. 

Line #B6 out of two complemented lines of SF36 (sfr6-1+35S::SF36) showed a 

higher level of KIN2 expression compared to #B25 line. However, an average of 

three biological replicates (Figure 4.15d) showed that KIN2 expression in #B6 and 

#B25 was not significantly different (p<0.001) to the expression levels in #L1 and #L6, 

which are the completed lines of full length of genomic SFR6 lines in sfr6-1 (sfr6- 

1+35S::SFR6/SFR6 FL). Further the level of SFR6 and SF36 expression was higher in 

SF36#B6 compared to SF36#B25 (Figure 4.10 and 4.11 respectively. 

4.2.5.4 Analysis of the ability of SF truncations to complement the dark gene 

expression phenotype 

Experiments were carried out using seven-day-old seedlings grown on 0.5x MS 

media on petri dishes and subjected to 6 h dark conditions by wrapping individual 

plates in two layers of aluminium foil, during the light cycle in the Percival growth 

chamber. Control plates remained unwrapped in the chamber under normal light 

conditions (see 2.15.1.3). Expression of the dark-inducible gene DIN6 was analysed 

using qRT-PCR. 
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Dark-inducible DIN6 expression in 1+35S::SF14 (SF14) and sfr6-1+35S::SF15 (SF15) 

was compared with Col-0, sfr6-1, sfr6- 1+35S::SFR6 (SFR6 FL) and sfr6-1+35S::GUS 

(GUS) in three independent biological replicate experiments (Figure 4.16 a, b and c). 

An enhanced level of DIN6 gene expression was demonstrated in full length of SFR6 

complemented lines in sfr6-1 (sfr6- 1+35S::SFR6/SFR6 FL), and these levels were 

similar to the levels of expression in Col-0. 

DIN6 expression in all transgenic lines of SF14 reported consistent transcriptional 

pattern in three replicates and #3 and #7 showed a higher level of DIN6 expression in 

each experiment. However, average gene expression data from three biological 

replicate experiments (Figure 4.16 d) revealed that increased levels of DIN6 

expression in #3 and #7 of SF14 were significantly different to the level of DIN6 

expressed in either Col-0 or three lines of SFR6 FL (p<0.001). The other three lines 

of SF14 showed similar level of DIN6 expression as seen in sfr6-1 mutant. 

Conversely SF14#3, the highest expresser of DIN6, is the highest expresser of SFR6 

while second highest DIN6 expresser (SF14#7) was the lowest expresser of SFR6 

(Figure 4.9). 

(a) 

      (Figure continues to the following page) 
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(b) 

(c)          

                                                                       (Figure continues to the following page) 
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(d)   

                   

Figure 4.16:  Complementation of dark-induced DIN6 expression in SF14 and 

SF15 transgenic lines 

Seven-day-old seedlings of  sfr6-1+35S::SF14 (SF14) and sfr6-1+35S::SF15 (SF15) 

transgenic lines were compared with Col-0, sfr6-1, three different lines of sfr6- 1+35S::SFR6 

(SFR6 FL) and sfr6-1+35S::GUS (GUS) were used for the experiment. Seedlings wrapped 

for 6 h in a double layer of aluminium foil (dark; D) or left unwrapped (Light; L) were used 

to measure dark inducible DIN6 gene expression. The first three histograms (a, b and c- with 

red bars) represent the gene expression data of three independent biological replicates. 

Expression is shown after normalisation to PEX4 in all graphs. Relative expression in the 

graphs represents the fold value compared with Col-0 control sample and calculated using 

the ∆∆CT method and the error bars in each biological replicate represent RQMIN and RQMAX  

and constitute the acceptable error level for a 95% confidence level according to Student’s t 

test. The fourth chart (blue bars; d) represents the average of the above three independent 

biological replicates. Mean average data (in graph d) were analysed using a one-way 

ANOVA (α=0.05) and pair wise comparisons were made using the Tukey method. Means 

that do not share a letter are significantly different. DIN6 expression in Col-0 and sfr6-1 

represents in red and green dotted lines respectively.  
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Compared to SF14 transgenic lines, SF15 showed varying expression levels of DIN6 

under dark conditions among five different lines in three different biological 

replicates. However, average gene expression data from three biological replicate 

experiments revealed that SF15#2 and SF15#3 exhibited the highest levels of DIN6 

expression and that these were significantly similar to the level of DIN6 expressed in 

Col-0 and three lines of SFR6 FL (p<0.001) (Figure 4.16d). Interestingly, SFR6 

expression was lower in SF15#2 than in any of the other SF15 lines.SF15 lines while 

a moderate level of SFR6 expression in SF15#3 was detected (Figure 4.9). Although 

the average trend is increased level of DIN6 gene expression in SF15#1 and SF15#5 

compared with untransformed sfr6-1, the level of expression was significantly 

different compared to Col-0 and three lines of SFR6 FL (p<0.001) while SF15#4 

showed a similar level of DIN6 expression as in sfr6-1 mutant. 

 (a) 

 

(Figure continues to the following page) 
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(b)

 

(c)

 

(Figure continues to the following page) 
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(d) 

 

Figure 4.17: Complementation of dark-induced DIN6 expression in SF36 and 

SF16 transgenic lines 

Seven-day-old seedlings of sfr6-1+35S::SF36 (SF36) and sfr6-1+35S::SF16 (SF16) 

transgenic lines compared with Col-0, sfr6-1, three different lines of sfr6- 1+35S::SFR6 

(SFR6 FL) and sfr6-1+35S::GUS (GUS) were used for the experiment. Seedlings wrapped 

for 6 h in a double layer of aluminium foil (dark; D) or left unwrapped (Light; L) were used 

to measure dark inducible DIN6 gene expression. The first three histograms (a, b and c- with 

red bars) represent the gene expression data of three independent biological 

replicates.Expression is shown after normalisation to PEX4 in all graphs. Relative expression 

in the graphs represents the fold value compared with Col-0 control sample and calculated 

using the ∆∆CT method and the error bars in each biological replicate represent RQMIN and 

RQMAX  and constitute the acceptable error level for a 95% confidence level according to 

Student’s t test The fourth chart (blue bars; d) represents the average of the above three 

independent biological replicates. Mean average data (in graph d) were analysed using a one-

way ANOVA (α=0.05) and pair wise comparisons were made using the Tukey method. 

Means that do not share a letter are significantly different. DIN6 expression in Col-0 and 

sfr6-1 represents in red and green dotted lines respectively.  
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Dark-induced DIN6 gene expression in sfr6-1+35S::SF36 (SF36) and sfr6-1+35S::SF16 

(SF16) was compared with Col-0, sfr6-1, sfr6- 1+35S::SFR6 (SFR6 FL) and sfr6-

1+35S::GUS (GUS) in three independent biological replicate experiments (Figure 4.17 

a, b and c). 

Increased levels of DIN6 gene expression in full length genomic SFR6 

complemented lines in sfr6-1 (sfr6- 1+35S::SFR6/SFR6 FL) was observed in all three 

biological replicate experiments compared to Col-0. These full length genomic SFR6 

complemented lines were compared with four lines of SF16, the cDNA 

complemented lines. DIN6 gene expression in these lines was not complemented but 

level of DIN6 expression was higher in SF16#A21 than in sfr6-1 (Figure 4.17 d). 

Line #B6, one line out of two lines of SF36, showed higher level of DIN6 expression 

compared to the other line and that level of expression was not significantly different to the 

level of DIN6 expression in three lines of full length genomic SFR6 complemented lines 

as well as Col-0 (p<0.129). However, average expression of DIN6 in #B25 was similar to 

the level of expression in sfr6-1. 

 

4.2.5.5 Analysis of the ability of SF truncations to complement of the UV gene 

expression phenotype 

Seven-day-old seedlings grown on MS media on petri dishes were irradiated with 5 

KJm-2 of UV-C, (wavelength 254 nm) as described before. Lids were removed from 

the control plates during the time taken to administer the treatments. Immediately 

after irradiation, all plates with lids on were returned to the growth chamber and 

samples were taken 24 h after treatment (See 2.15.1.2). Expression of the UV-

inducible PR1 gene was measured using RT-PCR. 
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UV-inducible PR1 expression in sfr6-1+35S::SF14 (SF14) and sfr6-1+35S::SF15 (SF15) 

was compared with Col-0, sfr6-1, sfr6- 1+35S::SFR6 (SFR6 FL) and sfr6-1+35S::GUS 

(GUS) in three independent biological replicate experiments (Figure 4.18 a, b and c). 

Though the relative expression levels of PR1 was highly variable between biological 

replicates, increased or similar levels of PR1 gene expression in full length of SFR6 

complemented lines in sfr6-1 (sfr6-1+35S::SFR6/SFR6 FL) were seen compared to 

Col-0 in all three biological replicate experiments. 

An irregular pattern of PR1 gene expression in different lines of SF14 was observed 

in three biological replicate experiments (Figure 4.18 a, b and c) and average gene 

expression data from three biological replicate experiments (Figure 4.18 d) revealed 

that the increased levels of PR1 expression in #4, #5 and #7 of SF14 compared with 

those in sfr6-1 were not significantly different compared to sfr6-1 (p<0.474). 

(a) 

 

(Figure continues to the following page) 
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(b) 

 

(c) 

    

(Figure continues to the following page) 
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(d) 

 

 

Figure 4.18: Complementation of UV-induced PR1 expression in SF14 and SF15 

transgenic lines 

PR1 expression in seven-day-old seedlings in response to 5kJm-2 of UV exposure was 

measured in sfr6-1+35S::SF14 (SF14) and sfr6-1+35S::SF15 (SF15) transgenic lines 

compared with Col-0, sfr6-1, three different lines of sfr6- 1+35S::SFR6 (SFR6 FL) and sfr6-

1+35S::GUS (GUS). The first three histograms (a, b and c- with red bars) represent the gene 

expression data of three independent biological replicates. Expression is shown after 

normalisation to At4g2640 in all graphs. Relative expression in the graphs represents the fold 

value compared with Col-0 control sample and calculated using the ∆∆CT method and the 

error bars in each biological replicate represent RQMIN and RQMAX  and constitute the 

acceptable error level for a 95% confidence level according to Student’s t test The fourth 

chart (blue bars; d) represents the average of the above three independent biological 

replicates. Mean average data (in graph d) were analysed using a one-way ANOVA (α=0.05) 

and pair wise comparisons were made using the Tukey method. Means that do not share a 

letter are significantly different.  PR1 expression in Col-0 and sfr6-1 represents in red and 

green dotted lines respectively.  
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Consistently higher levels of PR1 gene expression in SF15#1 were observed in all 

biological replicates and average gene expression data from three biological replicate 

experiments (Figure 4.18 d) demonstrated that increased levels of PR1 expression in 

SF15#1 were not significantly different to the level of PR1 observed in Col-0 and 

three lines of full length of SFR6 complemented lines in sfr6-1 (SFR6 FL). On the 

other hand, the remaining four lines of SF15 did not show a significant increase in PR1 gene 

expression compared to the sfr6-1 mutant (p<0.474) (Figure 4.18 d). 

UV gene expression experiments with sfr6-1+35S::SF36 (SF36) and sfr6-1+35S::SF16 

(SF16) were conducted as describe above and expression of the UV-inducible gene 

PR1 was compared with Col-0, sfr6-1, sfr6- 1+35S::SFR6 (SFR6 FL) and sfr6-

1+35S::GUS (GUS) in three independent biological replicate experiments (Figure 4.19 

a, b and c). Though the expression  

(a) 

 

 

(Figure continues to the following page) 
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(b) 

 

 

  (c) 

 

(Figure continues to the following page) 
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(d) 

 

Figure 4.19: Complementation of UV-induced PR1 expression in SF36 and SF16 

transgenic lines 

PR1 expression in seven-day-old seedlings in response to 5kJm-2 of UV exposure was 

measured in sfr6-1+35S::SF36 (SF36) and sfr6-1+35S::SF16 (SF16) transgenic lines 

compared with Col-0, sfr6-1, three different lines of sfr6- 1+35S::SFR6 (SFR6 FL) and sfr6-

1+35S::GUS (GUS). The first three histograms (a, b and c- with red bars) represent the gene 

expression data of three independent biological replicates. Expression is shown after 

normalisation to At4g2640 in all graphs. Relative expression in the graphs represents the fold 

value compared with Col-0 control sample and calculated using the ∆∆CT method and 

the error bars in each biological replicate represent RQMIN and RQMAX  and constitute 

the acceptable error level for a 95% confidence level according to Student’s t test The 

fourth chart (blue bars; d) represents the average of the above three independent biological 

replicates. Mean average data (in graph d) were analysed using a one-way ANOVA (α=0.05) 

and pair wise comparisons were made using the Tukey method. Means that do not share a 

letter are significantly different.  PR1 expression in Col-0 and sfr6-1 represents in red and 

green dotted lines respectively.  

 

levels of PR1 were slightly different in different biological experiments, average 

expression data of three lines of SF16 i.e #A21, #A31 and #B7 and #B6 of SF36 
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showed increased levels of PR1 expression compared to sfr6-1. However, levels of 

PR1 expression of the above lines were not highly significantly different either to 

three lines of full length genomic SFR6 complemented lines (SFR6 FL #L1, #L2 and 

#L3) or sfr6-1(Figure 4.19d). 

 

Table 4.1: Summary of the results of complementation experiment of SF 
truncations 

Original 
F2 line 

Rel level 
of 
transgene 
expression  
in F2 

Individual 
line 

Level of 
total SFR6 
expression  
in F3 

Level of 
SF 
transgene 
expression 
in F3 

Visible 
appear
ance 

Flowe-
ring 

Cold 
KIN2 

Dark 
DIN
3 

UV 
PR
1 

4.1 . med SF14 #3 Medium  X X X X X 
4.1  SF14#4 Medium  X X X X PC 
8.4 . high SF14#5 Medium  X X X X PC 
8.4  SF14#6 Low  X X X X X 
8.4  SF14#7 Low  PC Y PC PC PC 
1.1 . low SF15#1 Low  Y Y Y PC Y 
3.2 . high SF15#2 High  PC PC X Y X 
3.2  SF15#3 Medium  PC PC X Y X 
3.2  SF15#4 Medium  PC X X X PC 
3.2  SF15#5 Medium  PC PC X PC PC 
10.12.3 . high SF36#B6 barely 

higher than 
Wt 

Rel. high Y Y Y Y PC 

10.12.3  SF36#B25 No higher 
than Wt 

Rel. high PC X PC PC X 

4.1 
(med) 

. med SF16#A21 No higher 
than Wt 

Rel. low Y Y X PC PC 

4.1 
(med) 

 SF16#A31 No higher 
than Wt 

Rel. low X PC X X PC 

21.1 
(high) 

. med SF16#B2 No higher 
than Wt 

Rel. high X X X X X 

21.1 
(high) 

 SF16#B7 No higher 
than Wt 

Rel. med  Y PC X X PC 

 

Abbreviations used in the table as follows; X= not complemented, PC= partially 

complemented, Y=fully complemented (or closed to fully); Rel. low/high means compared 

with other transgenic but not wild type control used.  Level of SF transgene expression of 

SF14 and SF15 in F3 did not tested as no problem was observed in the level of expressions 

in SFR6 in F3 generation. 
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4.3 Summary 

All experiments conducted in this chapter were designed to study the 

complementation effects of different truncated fragments of SFR6 under cold, dark 

and UV stress conditions. This was to identify whether any part of the SFR6 protein 

(domain/region) had a specific role in activating expression in response to one 

specific signal but not to other stress. Several lines from each truncated fragment of 

SFR6 were tested comparing to Col-0, sfr6-1 and three lines of full length genomic 

SFR6 complemented lines (SFR6 FL #L1, #L2 and #L3). Experiments conducted for 

the identification of the truncated fragments of SFR6/MED16 that targeted the 

nucleus revealed that all six truncated fragments representing different region of 

SFR6 are targeted the nucleus. However, the predicted nuclear localisation signal 

using NUCPred program is located towards the C-terminus of the SFR6 protein. 

Even though all SFR6 truncations are targeted to the nucleus, the average ratio of 

fluorescence in nucleus and cytoplasm in tobacco leaf cells demonstrated that SF16 

(full length of SFR6)  and SF36 exhibited the highest ratio (i.e. were more 

apportioned to the nucleus) whereas the other four truncations showed lower ratios 

compared to above mentioned two truncations.  

Complementation of visual phenotype of SF transgenic lines demonstrated that 

several lines were able to restore green colour phenotype of Col-0 in varying degree. 

SF15#1, SF36#B6 and SF16#B7 lines were able to restore the green colour 

phenotype of Col-0 approximately 90%, SF16#A21 nearly up to 80% and SF14#7 

about 60%. Further all those lines showed restoration of flowering time phenotype i.e 

early flowering as in Col-0 except in #B7 in SF16 though it demonstrated high level 
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of green colour restoration phenotype. Despite these visual indications that the SF16 

construct might give partial complementation, the stress assays below indicated they 

were not complemented at all. 

Complementation of stress gene expression experiments conducted under cold, dark 

and UV stresses demonstrated that some lines in different SF truncated fragments 

showed varying degrees of complementation of stress gene expression compared to 

sfr6-1. SF15#1 demonstrated 100% complementation of cold and UV responsive 

gene expression but not dark responsive gene expression. So that this indicates of the 

necessity of missing part of this protein in these transgenic lines is required for dark 

responses. 

 In SF15 line #1 and #5 showed slightly higher level of dark inducible gene 

expression compared to sfr6-1 but in #2 and #3 showed fully complementation. In 

SF14 truncations all lines showed similar or slightly higher level of cold and dark 

inducible gene expression compared to sfr6-1. However, UV inducible gene 

expression studies showed that three lines (#4, #5 and #7) out of five in SF14 

demonstrated approximately 50% of complementation (partial complementation). In 

SF36 line #B6 demonstrated the fully complementation of cold inducible gene 

expression where #B25 showed partial complementation. Complementation of nearly 

100% of dark inducible and 50% of UV inducible gene expression was observed in 

SF36# B6 but partial complementation of dark and similar level of UV inducible 

gene expression as in sfr6-1 was observed in SF36# B25. Cold and dark inducible  

gene expression in all lines of SF16 was slightly higher than sfr6-1 but no 

complementation effect could be observed in all the lines except #A21 which showed 

partial complementation under dark conditions. However, in UV gene expression 

experiments, nearly 50% of complementation effect in #A21, #A31 and #B7. Even 
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though #A21 of SF16 showed restoration of flowering time phenotype as well as #B7 

of SF16 showed higher level of green colour restoration, none of them able to 

demonstrate stress gene complementation in this study.  
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Chapter 5 

The effects of KIN10, a putative interactor of MED16, on 

transcriptional regulation and stress tolerance in Arabidopsis 

 

5.1 Introduction 

SnRK1 (Sucrose non fermenting1 (Snf1) related protein kinase1) is a member of a 

family of plant protein kinases that resemble yeast Snf1 and animal AMPK kinases 

(Adenosine Monophosphate-activated Protein kinases), enzymes that are important 

in transcriptional, metabolic and developmental regulation in response to energy 

depletion stress (Baena-Gonzalez, 2010, Baena-Gonzalez and Sheen, 2008). 

SNF1/AMPK/SnRK1 are known to be regulated by several upstream kinases through 

phosphorylation of a conserved threonine residue in the T-loop (Hardie, 2007, 

Hedbacker and Carlson, 2008, Shen et al., 2009).  The SnRK1 enzyme consists of 

three subunits; alpha, beta and gamma, which form a heterotrimeric complex. Two 

isoforms of the catalytic alpha subunit exist in plants, KIN10 and KIN11; KIN12 is 

likely to be a pseudogene (Ghillebert et al., 2011). Transcriptional regulation by 

KIN10 in response to darkness, sugar deprivation and other stress is mediated via 

direct targets genes of KIN10 such as genes involved in  major catabolic pathways, 

including cell wall, starch, sucrose, amino acid, lipid, and protein degradation that 

provide alternative sources of energy and metabolites as well as a large number of 

genes encoding putative transcription factors (TFs); histones and histone 

deacetylases are highly activated or repressed by KIN10 (Baena-Gonzalez et al., 

2007, Contento et al., 2004, Thimm et al., 2004, Baena-Gonzalez and Sheen, 2008). 
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KIN10/KIN11 trigger transcriptional activation and repression of more than 1000 

genes under energy stress conditions such as high/low sucrose, low glucose 

concentrations or dark conditions, (which limit photosynthesis), and cause changes in 

the expression (Baena-Gonzalez et al., 2007, Baena-Gonzalez and Sheen, 2008), 

allowing plants to re-establish homeostasis by suppressing energy-consuming 

processes (Baena-Gonzalez et al., 2007). In addition to the well-known roles of 

SnRK1 in phosphorylation and in modulating the activities of enzymes important for 

carbon and nitrogen metabolism (Halford et al., 2003, Hardie et al., 1998, Sugden et 

al., 1999), much research work has reported that activation of KIN10/KIN11 in 

energy stress conditions ultimately affects growth and development of plants by 

targeting many regulatory factors and downstream signalling pathways that are 

normally activated by   ABA (Baena-Gonzalez, 2010, Baena-Gonzalez et al., 2007, 

Lovas et al., 2003, Lu et al., 2007, Thelander et al., 2004, Zhang et al., 2001, Jossier 

et al., 2009, Rodrigues et al., 2013).  

Lee et al. (2009) reported that SnRK1 activity in young rice seedlings caused 

enhanced tolerance of flooding (hypoxia) and Young-Hee Cho et al. (2012) reported 

similar effects in Arabidopsis plants expressing rice SnRK1, with plants showing 

improved tolerance under submergence conditions. Lovas et al. (2003) observed 

increased sensitivity to salt stress in potato plants in which repression of StubGAL83 

(a regulatory β subunit of SnRK1) had been achieved using antisense, as well as 

delayed tuberisation and increased number of tubers per plant. Baena-Gonzalez et al. 

(2007) revealed that KIN10 overexpression caused enhanced starvation tolerance, 

life span extension, altered plant morphology and timing of development in 

Arabidopsis. Furthermore they reported that dark-induced (DIN) genes are affected  
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by KIN10 under different stress conditions and particularly repressed by sugars and 

light and they demonstrated this effect using transgenic plants overexpressing 

KIN10. Moreover, Baena-Gonzalez et al. (2007) reported that DIN1 and DIN6 were 

affected by KIN10 under stress conditions such as,  submergence/flooding conditions 

as well as in the presence of  DCMU (3-(3,4–dichlorophenyl)-1,1-dimethylurea) 

which interrupts the photosynthetic electron transport chain in photosynthesis and 

thus blocks the plants ability to convert light energy to chemical energy in addition to 

effects under starvation conditions. 

A yeast-2-hybrid screen conducted in our laboratory identified KIN10 as a putative 

interactor of full length SFR6/MED16 (Hemsley and Knight, unpublished) and work 

from our laboratory has shown that DIN6 gene expression is impaired in sfr6 mutants 

(Hemsley et al., 2014). In the light of evidence of interactions between KIN10 and 

SFR6/MED16 and the fact that these two proteins affect expression of some of the 

same stress-responsive genes (e.g. the DIN genes), study of the effects of KIN10 on 

transcriptional activation of stress genes is of particular relevance to study of 

SFR6/MED16. Upon considering this situation, this chapter attempts to answer the 

following questions: 

(1) Does KIN10 control the expression of the same set of stress-inducible genes 

as SFR6/MED16 or a subset of these? 

(2) Do KIN10 and SFR6/MED16 act on the same pathway leading to expression 

of stress genes?  

(3) With which part of SFR6/MED16 does KIN10 interact? 
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5.2 Results 

5.2.1 Measurement of stress inducible-transcription in loss of function mutants 

of KIN10 

To test the first hypothesis, whether KIN10 and SFR6 control the expression of same 

set of stress inducible genes, loss of function mutants of KIN10 were employed. All 

experiments described in this chapter were designed for the investigation of whether 

dark-inducible and other stress gene expression was similarly impaired in both sfr6 

and kin10 mutants. The main focus was on the stress conditions cold, UV, and 

drought due to the reason that impaired gene expression in response to these 

conditions has been reported for sfr6/med16 mutants (Boyce et al., 2003, Knight et 

al., 2009, Knight et al., 1999, Wathugala et al., 2012). In addition the transcriptional 

response to conditions including darkness, inhibition of photosynthesis (using 

DCMU) (Baena-Gonzalez et al., 2007) and ABA stimuli, known to require KIN10, 

was tested in sfr6-1 mutants.  

The Akin10 mutant (SALK_127939 line from the SIGnAL T-DNA collection 

(Fragoso et al., 2009)) was used to test the effect of loss of KIN10 on DIN6 

transcription in seven-day-old seedlings subjected to 6 h darkness during the normal 

light period. The effect on DIN6 gene expression was not consistent in repeat 

experiments with the above kin10-1 mutant. This may have been due to a conditional 

aspect of the insertional mutation; the T-DNA insertion in this mutant is in 3’ 

untranslated region of the KIN10, and it is possible KIN10 transcript levels are not 

always reduced under all experimental conditions.  
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Therefore, an alternative T-DNA insertion line was obtained from the Gabi-Kat 

collection (web site http://www\.gabi-kat.de/) (GK line ID 579E09) (the homozygous 

line a kind gift from Markus Teige, University of Vienna, Department of 

Biochemistry, Austria). In this mutant the insertion is in the last exon of the gene. All 

data presented in this chapter are derived using this mutant (kin10-2, GK579E09) 

including data using KIN10 complemented lines and a newly generated sfr6kin10 

double mutant. 

5.2.1.1 Expression of dark inducible genes 

Light is an essential source of energy for plant development and metabolism and it 

affects gene expression by altering metabolic flow in plants (Fujiki et al., 2001, 

Tuteja and Sopory, 2008). Therefore identification of different conditions that 

modify the metabolic status via adopting photosynthetically unfavourable light 

conditions is an important approach to understand transcriptional responses of plants 

considering it as a potential stress condition. 

5.2.1.1.1 Expression of DIN6 in response to dark conditions  

It has been reported previously that transient overexpression of KIN10 in protoplasts 

can elevate the expression of some stress-responsive genes (Baena-Gonzalez et al., 

2007). However, necessity of KIN10 for expression has not been demonstrated, All 

dark stress gene experiments described in this chapter were carried out using seven-

day-old seedlings grown on 0.5X MS media on petri dishes (except where stated 

otherwise) and subjected to 6 h darkness by wrapping individual plates in two layers 

of aluminium foil, during the light cycle in the Percival growth chamber. Control 

plates remained unwrapped in the chamber under normal light conditions (see 

2.12.3). 
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(a)       (b) 

        (c)                                                              (d)  

Figure 5.1: Dark-induced stress gene expression of kin10-2 and Col-0 

DIN6 expression in response to dark conditions was measured in kin10-2 mutants compared 

with Col-0. Seven-day-old seedlings were subjected to 6 h dark conditions by wrapping in 

aluminium foil (dark) or leaving them unwrapped (light). In this figure and all of the gene 

expression figures in this chapter, the first three histograms (a, b and c- with red bars) 

represent the gene expression data from three independent biological replicates. The error 

bars in each biological replicate represent RQMIN and RQMAX  and constitute the acceptable 

error level for a 95% confidence level according to Student’s t test and indicate the level of 

variation between technical replicates within one biological replicate experiment. The fourth 

chart (blue bars; d) represents the average of the above three independent biological 

replicates. Mean average data (in graph d) were analysed using a one-way ANOVA (α=0.05) 

and pair wise comparisons were made using the Tukey method. Means that do not share a 

letter are significantly different. 
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Expression of the dark-inducible gene DIN6 was analysed in this and all experiments 

described subsequently by using qRT-PCR and normalised to expression of PEX4 

gene an endogenous control gene (Wathugala et al. (2011). “Relative expression” in 

these and all subsequent graphs presented in this chapter represents the fold 

difference in expression level compared with the Col-0 control sample and was 

calculated using the ∆∆CT method (Livak and Schmittgen, 2001). Dark-inducible 

DIN6 expression in kin10-2 was compared with wild type Arabidopsis plants in three 

independent biological replicate experiments (Figure 5.1 a, b and c). Reduced levels 

of DIN6 gene expression under dark stress were observed in all three biological 

replicate experiments; however, the degree of reduction in expression was different 

in each instance. Although a reduction in relative expression was seen in all three 

replicates, the average gene expression in dark was not significantly different in 

kin10-2 (Figure 5.1d) compared to wild type (p<0.023).   

5.2.1.1.2 Expression of DIN6 in response to DCMU  

In addition to the dark stimulus, Fujiki et al. (2001) reported that application of the 

herbicide DCMU (3-(3,4–dichlorophenyl)-1,1-dimethylurea) can also induce the 

expression of DIN genes, by interrupting the photosynthetic electron transport chain 

in photosynthesis and thus blocking the plant’s ability to convert light energy to 

chemical energy. As fold increases in DIN6 expression in response to dark to loss of 

KIN10 were variable, I examined the effect of DCMU on DIN6 gene expression to 

ascertain whether this form of stimulus would be more reproducible than darkness.  

To test effects of DCMU on DIN6 expression  in kin10-2, seven-day-old seedlings 

were floated (15-20 seedlings per treatment) on 5 ml of 20 µM DCMU contained in 

transparent six-well plates or 5 ml of sterile water (control) in the Percival growth 
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chamber for 6 h ( see 2.12.5). Expression of DIN6 was analysed using qRT-PCR as 

described above.  

DIN6 expression in kin10-2 was compared with wild type Arabidopsis plants in three 

independent biological replicate experiments (Figure 5.2 a, b and c). A highly 

reduced level of DIN6 gene expression in kin10-2 was observed in one individual 

replicate experiments out of three and in second and third replicate experiments 

higher level of DIN6 expression were observed. Average gene expression data from 

three individual experiments showed that the level of DIN6 expression was reduced 

in kin10-2 but this level of expression was not significantly different from that seen 

in Col-0 (p<0.561) (Figure 5.2 d). Though I expected improvement, DCMU did not 

improve the reproducibility of the response compared to the response under dark 

conditions. 
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(a)                                                                          (b) 

 

(c)                                                                             (d) 

 

 

 

 

 

Figure 5.2: DIN6 expression in response to DCMU  

DIN6 expression in response to DCMU treatment was measured in kin10-2 compared with 

Col-0. Seven-day-old seedlings were floated on 20 µM of DCMU (DCMU) or sterile water 

(C) for 6 h in the Percival growth chamber.The first three histograms (a, b and c- with red 

bars) represent the gene expression data of three independent biological replicates after 

normalisation to PEX4; error bars represent technical variability. The fourth chart (blue bars; 

d) represents the average of the above three independent biological replicates. Mean average 

data (in graph d) were analysed using a one-way ANOVA (α=0.05) and pairwise 

comparisons were made using the Tukey method. Means that do not share a letter are 

significantly different. 
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5.2.1.2 Expression of cold and drought-responsive genes 

Cold- and drought-inducible gene expression is strongly impaired in sfr6 mutants 

(Boyce et al., 2003, Knight et al., 2009, Knight et al., 1999). So the possibility that 

KIN10 also shared in this regulation was tested in the experiments described next. 

5.2.1.2.1 Cold-induced KIN2 expression 

Seven-day-old seedlings grown on 0.5X MS  media on petri dishes in the Percival 

growth chamber were treated at 5oC for 6 h in a SANYO growth chamber while 

control plates were kept at 20oC (ambient temperature; amb) (see 2.12.1). Expression 

of the cold-inducible gene KIN2 was analysed using qRT-PCR as described above 

and normalised to expression of PEX4.  

Cold-inducible KIN2 expression in kin10-2 was compared with wild type 

Arabidopsis plants in three independent biological replicate experiments (Figure 5.3 

a, b and c). Consistent levels of KIN2 gene expression in kin10-2 in response to cold 

were not observed across the three individual replicate experiments. However 

average gene expression data from three individual experiments showed a reduced 

level of KIN2 in the mutant compared with wild type although the expression level 

was not significantly different (p<0.551) (Figure 5.3d). Data were analysed using 

one-way ANOVA (α=0.05) and pairwise comparisons were made using the Tukey 

method.  

 

 

 



                                                                                                                       Chapter 5 

205 

 

(a)                                                                        (b) 

(c)                                                                      (d) 

 

Figure 5.3: Cold-induced KIN2 expression in kin10-2 and Col-0 

KIN2 expression in response to cold was measured in kin10-2 compared with Col-0. Seven-

day-old seedlings grown on 0.5X MS media on petri dishes were treated at 5oC for 6 h (cold) 

while control plates were kept at 20oC (amb).The first three histograms (a, b and c- with red 

bars) represent the gene expression data of three independent biological replicates. 

Expression is shown after normalisation to PEX4 in all graphs. The fourth chart (blue bars; 

d) represents the average of the above three independent biological replicates. Mean average 

data (in graph d) were analysed using a one-way ANOVA (α=0.05) and pairwise 

comparisons were made using the Tukey method. Means that do not share a letter are 

significantly different. 
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5.2.1.2.2 Expression of desiccation-responsive genes 

Water withdrawal experiments were conducted to study desiccation-induced gene 

expression. Seven-day-old seedlings grown on 0.5X MS media on petri dishes were 

subjected to water withdrawal by opening the lids, thereby exposing the seedlings to 

dehydration when returned to the Percival growth chamber. Plates were left open in 

the growth chamber for 6 h during the light cycle with no humidity control while 

keeping the control plates closed under the same conditions (see 2.12.4).  The 

desiccation/drought-inducible genes KIN2, LTI65 and P5CS1 were selected for 

study; KIN2 is a COR gene that contains the CRT/DRE cis-acting element (Baker et 

al., 1994) in their promoters and are thus targets of the CBF1/DREB1B transcription 

factors (Stockinger et al., 1997, Liu et al., 1998). P5CS1 is known to be expressed in 

response to water stress and low temperature and encodes D1-pyrroline-5-

carboxylate synthetase (Strizhov et al., 1997), the rate-limiting enzyme in the proline 

synthesis pathway (Savouré et al., 1995). LTI65 and P5CS1 do not contain a 

CRT/DRE element in its’ promoter. 

Expression of these desiccation/drought-inducible genes was analysed using qRT-

PCR and normalised to expression of PEX 4, an endogenous control gene. Relative 

expression represents the fold value compared with the Col-0 control sample and calculated 

using the ∆∆CT method as described before. Desiccation-inducible KIN2 expression 

in kin10-2 was compared with wild type Arabidopsis plants in three independent 

biological replicate experiments (Figure 5.4 a, b and c). Consistently low levels of 

KIN2 gene expression in kin10-2 compared with wild type were observed in all three 

individual replicate experiments. Average gene expression data from three individual 

experiments shows that the reduction in KIN2 expression in kin10-2 was highly 

significant compared to Col-0 (p<0.001) (Figure 5.4 d). 
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(a)                                                                           (b) 

(b)          (d) 

 

Figure 5.4: Desiccation-induced KIN2 gene expression of kin10-2 and Col-0 

KIN2 expression in response to desiccation stress was measured in kin10-2 compared with 

Col-0. Seven-day-old seedlings grown on 0.5X MS media on petri dishes were subjected to 

water withdrawal by opening the lids for 6 h (desiccation) while control plates kept closed 

(control).The first three histograms (a, b and c- with red bars) represent the gene expression 

data of three independent biological replicates. Expression is shown after normalisation to 

PEX4 in all graphs. The fourth chart (blue bars; d) represents the average of the above three 

independent biological replicates. Mean average data (in graph d) were analysed using a one-

way ANOVA (α=0.05) and pair wise comparisons were made using the Tukey method. 

Means that do not share a letter are significantly different. 

Desiccation/drought-inducible LTI65 expression in kin10-2 was compared with wild 

type Arabidopsis plants in the same RNA samples as above (Figure 5.5 a, b and c). In 
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each instance reduced expression of LIT65 in kin10-2 was observed. Unlike in 

desiccation-induced KIN2 expression, the average gene expression data from three 

individual experiments revealed that the reduction in the level of LTI65 expression in 

kin10-2 was not significant compared to Col-0 (p<0.155) (Figure 5.5d).  

Gene expression data from the third desiccation- inducible gene, P5CS1 showed 

impaired expression in kin10-2 compared to wild type in the three independent 

biological replicate experiments (Figure 5.6 a, b and c). Similar to desiccation-

induced KIN2 expression, the average gene expression of P5CS1 in three individual 

experiments showed that the reduced level of P5CS1 expression in kin10-2 was 

highly significant compared to Col-0 (p<0.001) (Figure 5.6 d). Gene expression data 

were analysed using a one-way ANOVA (α=0.05) and pair wise comparisons were 

made using Tukey method.  
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(a)    (b) 

(c)                                                                          (d)      

 

Figure 5.5: Desiccation-induced LTI65 gene expression in kin10-2 and Col-0 

LTI65 expression in response to desiccation was measured in kin10-2 mutants compared 

with Col-0. Seven-day-old seedlings were grown on 0.5X MS media on petri dishes and 

subjected to water withdrawal by opening the lids for 6h (desiccation) while control plates 

kept closed (control). The first three histograms (a, b and c- with red bars) represent the gene 

expression data of three independent biological replicates. Expression is shown after 

normalisation to PEX4 in all graphs. The fourth chart (blue bars; d) represents the average of 

the above three independent biological replicates. Mean average data (in graph d) were 

analysed using a one-way ANOVA (α=0.05) and pair wise comparisons were made using the 

Tukey method. Means that do not share a letter are significantly different. 
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(a)                                                                       (b) 

(c)                                                                        (d) 

Figure 5.6: Desiccation-induced P5CS1 gene expression in kin10-2 and Col-0 

P5CS1 gene expression in response to desiccation was measured in kin10-2 compared with 

Col-0. Seven-day-old seedlings grown on 0.5X MS media on petri dishes were subjected to 

water withdrawal by opening the lids for 6 h (desiccation) while control plates were kept 

closed (control).The first three histograms (a, b and c- with red bars) represent the gene 

expression data of three independent biological replicates. Expression is shown after 

normalisation to PEX4 in all graphs. The fourth chart (blue bars; d) represents the average of 

the above three independent biological replicates. Mean average data (in graph d) were 

analysed using a one-way ANOVA (α=0.05) and pair wise comparisons were made using the 

Tukey method. Means that do not share a letter are significantly different. 

 

 

 



                                                                                                                       Chapter 5 

211 

 

5.2.1.2.3 Expression of COR genes in response to ABA  

The transcriptional response to ABA is impaired in sfr6 mutants (Boyce et al., 2003, 

Knight et al., 1999) therefore a possible role for KIN10 in the control of gene 

expression in response to ABA was investigated. The above gene shown to be mis-

regulated in kin10-2 mutant in response to desiccation which have ABRE in their 

promoter. Therefore KIN10 might require for ABA mediated gene expression. 

Seven-day-old seedlings were floated (15-20 seedlings per treatment) in 5 ml of 100 

µM  ABA or 0.1% ethanol as control in transparent six-well plates for 6 h in the 

Percival growth chamber (see 2.12.6). Expression of KIN2 and P5CS1 was analysed 

using qRT-PCR and normalised to expression of PEX4. Relative expression represents 

the fold value compared with the Col-0 control sample and calculated as described in the 

first gene expression results. 

KIN2 expression was compared between kin10-2 and wild type Arabidopsis plants in 

two independent biological replicate experiments (Figure 5.7 a and b). ABA-induced 

KIN2 expression in kin10-2 in both instances was similar to that of Col-0 and the 

average difference was not significant (p<0.07) between the two plant types (Figure 

5.7 d). As the results of two replicate experiments were both very consistent and 

showed no difference between wild type and mutant, the experiment was not 

repeated a third time. P5CS1 gene expression was also tested in the same samples 

and a similar level of expression observed in kin10-2 and wild type (Figure 5.8 a and 

b).  Average P5CS1 gene expression (Figure 5.8c) was not significant between the 

two plant types (p<0.10). Data were analysed using a one-way ANOVA (α=0.05) 

and pairwise comparisons were made using the Tukey method.  
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(a)                                                                          (b) 

(c)          

                                                                                                                                                                                   

 

 

 

 

Figure 5.7: KIN2 expression in response to ABA  

KIN2 expression in response to ABA treatment was measured in kin10-2 mutant compared 

with Col-0. Seven-day-old seedlings grown on 0.5X MS agar plates were floated on 100 µM 

of ABA (ABA) or 0.1% ethanol (control) for 6 h in the Percival growth chamber. The first 

two histograms (a and b with red bars) represent the gene expression data of two independent 

biological replicates. Expression is shown after normalisation to PEX4 in all graphs. The 

third chart (blue bars; c) represents the average of the above two independent biological 

replicates. Mean average data (in graph c) were analysed using a one-way ANOVA (α=0.05) 

and pairwise comparisons were made using the Tukey method. Means that do not share a 

letter are significantly different. 
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(a)                                                                           (b) 

(c)  

 

 

 

 

 

Figure 5.8: P5CS1 expression in response to ABA 

P5CS1 expression in response to ABA treatment was measured in kin10-2 compared with 

Col-0. Seven-day-old seedlings grown on 0.5X MS agar plates were floated on 100 µM of 

ABA (ABA) or 0.1% ethanol (control) for 6 h in the Percival growth chamber. The first two 

histograms (a and b with red bars) represent the gene expression data of two independent 

biological replicates. Expression is shown after normalisation to PEX4 in all graphs. The 

third chart (blue bars; c) represents the average of the above two independent biological 

replicates. Mean average data (in graph c) were analysed using a one-way ANOVA (α=0.05) 

and pair wise comparisons were made using the Tukey method. Means that do not share a 

letter are significantly different.  
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5.2.1.3 Expression of UV-C responsive PR1 gene       

A number of genes inducible under UV-C have been shown to require SFR6 for their 

full expression (Wathugala et al., 2012), therefore the possible role of KIN10 in the 

regulation of such genes was tested, Seven-day-old seedlings grown on 0.5X MS 

media on petri dishes were irradiated with 5 kJm-2 of UV-C, (wavelength 254 nm) by 

removing the petri plate lids and placing in a UV cross-linker set to deliver the 

designated level of energy. Lids were removed from the control plates during the 

time taken to administer the treatments. Immediately after irradiation, lids were 

replaced and all plates returned to the growth chamber and samples were taken 24 h 

after treatment (See 2.12.2). This time point was selected as the peak expression time 

point for PR1 (Nawrath et al., 2002). Measurements of gene expression were 

performed using qRT-PCR and PR1 gene expression was measured and normalised 

to expression of At4G26410, a gene with stable expression levels that are not altered 

by UV treatments (Wathugala et al., 2012).  Relative expression represents the fold value 

compared with the Col-0 control sample and calculated using the ∆∆CT method as 

described earlier. 

UV-inducible PR1 expression in kin10-2 was compared with wild type Arabidopsis 

plants in three independent biological replicate experiments (Figure 5.9 a, b and c) 

and data revealed that PR1 gene expression was higher in kin10-2  in all three 

instances compared to wild type plants. However, the average gene expression data 

from three individual experiments showed that the increased level of PR1 expression 

in kin10-2 was not significant compared to Col-0 (p<0.148) (Figure 5.9 d). Data were 

analysed using a one-way ANOVA (α=0.05) and pairwise comparisons were made 

using the Tukey method.                                                                                                                              
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      (a)                                                                      (b) 

(c)                                                                       (d) 

 

Figure 5.9: UV-induced gene expression in kin10-2 and Col-0 

PR1 expression in response to UV exposure was measured in kin10-2 compared with Col-0. 

Seven-day-old seedlings grown on 0.5X MS media on petri dishes and subjected to 5 kJm-2 

of UV-C (UV) while control plates kept open to air (control) during the time of treatments. 

The first three histograms (a, b and c- with red bars) represent the gene expression data of 

three independent biological replicates. Expression is shown after normalisation to 

At4g26410 in all graphs. The fourth chart (blue bars; d) represents the average of the above 

three independent biological replicates. Mean average data (in graph d) were analysed using 

a one-way ANOVA (α=0.05) and pairwise comparisons were made using the Tukey method. 

Means that do not share a letter are significantly different.  
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5.2.2 Complementation of kin10-2 mutant with wild type AtKIN10 

To study the effects of KIN10 on stress gene expression, I used only one kin10 

mutant allele in this study due to unavailability of another reliable kin10 mutant. The 

other mutant allele originally studied, Akin10 (kin10-1), had shown an apparent 

conditional phenotype due to the location of the insertion in the mutant and I 

therefore avoided using it as the second mutant allele in this study. Therefore, to 

confirm linkage of the observed phenotype with the KIN10 locus, I created KIN10 

complemented lines in a kin10-2 mutant background. kin10-2 mutant plants were 

transformed with 35S::HisHA-KIN10 using the floral dip method (see section 

2.10.1). A 35S:: HisHA-KIN10 construct was made by Dr. Piers Hemsley by cloning 

HisHA-KIN10 in to pENTR D-TOPO (see section 2.5.1) and recombining this into 

pK7WG2 using the Gateway® recombination cloning method  (see section 2.5.2). 

T1 plants were screened for the presence of the T-DNA insert in the genomic KIN10 

sequence of kin10-2 and for the presence of the transgene (HisHA-KIN10) (see 

Appendix A2.3) and lines scoring positive for both of these were grown to the T2 

generation. In the T2 generation plants were selected that were homozygous for the 

insertion and scored positively for presence of the transgene. The level of KIN10 

expression was studied in four independent lines that fulfilled these criteria and 

compared to levels of expression in kin10-2 ̀mutant and Col-0. Primers designed for 

the middle of the KIN10 transcript, capable of detecting both native and transgenic 

KIN10 transcript  (see Appendix A2.3) were used to compare the level of KIN10 

expression in kin10-2 putative complemented lines, kin10-2 ̀ mutant and Col-0. The 

four complemented lines expressed KIN10 (Figure 5.10 a) to a higher level than 

observed in Col-0 due the use of the 35S promoter. Primers, including a reverse  
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primer complementary to the 3’UTR of the KIN10 transcript (downstream of the 

predicted insertion site) were used to compare the level of native KIN10 expression 

in same lines (Figure 5.10 b). Only Col-0 showed detectable KIN10 expression, 

(Figure 5.10 b) indicating that all of the putative complemented lines were 

homozygous for the mutation.  

(a)                                                                             (b) 

Figure 5.10: KIN10 expression levels in putative complemented kin10-2 lines  

KIN10 expression in kin10-2+35S::HisHA-KIN10 lines were compared with Col-0 and 

kin10-2. Seven-day-old seedlings grown on 0.5X MS agar plates were used. Figure 5.10 (a) 

represents the level of total KIN10 expression (detecting both native and transgenic) using 

primers designed for the middle part of the KIN10 transcript and primers designed for the 

untranslated 3’ end of the KIN10 shown in Figure 5.10 (b) shows level of native KIN10 

expression in  four complemented lines of kin10-2, kin10-2 ̀mutant and Col-0. Expression is 

shown after normalisation to PEX4.  Relative expression represents the fold value compared 

with Col-0 control sample and calculated using the ∆∆CT method. Error bars indicate the 

level of variation between technical replicates within one biological replicate experiment.  

 

5.2.2.1 Protein expression in KIN10 complemented lines 

Levels of KIN10 transcript expression were confirmed in KIN10 complemented lines 

(Figure 5.10) and KIN10 protein expression in these lines was assayed as described  
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in section 2.16. Immuno-blot analysis (see section 2.16.5) was conducted using 

AKIN10 Rabbit polyclonal (primary antibody). Membranes were observed after 

incubation with a goat anti-rabbit secondary antibody conjugated to HRP to visualize 

the protein using chemiluminescence (see section 2.16.6) method. 

 

 

 

 

Figure 5.11: Level of KIN10 protein expression in complemented lines  

Seven-day-old seedlings (20-25 seedlings) were used to extract protein and 30µl of total 

lysate (2mg/ml) was loaded onto an SDS gel. The membrane was incubated with AKIN10 

rabbit polyclonal primary antibody at 40C overnight followed by 2 h secondary antibody 

binding with goat anti-rabbit HRP, both at 1:2000 dilution in 5% milk solution. Proteins 

were visualized using chemiluminescence and the membrane was observed under a Photon 

Counting camera using Photek Image32 software. 

 

KIN10 protein expression in the four putative complemented lines (kin10-2 + 

35S::HisHA-KIN10) compared with Col-0 and kin10-2 (Figure 5.11). No KIN10 

expression was observed in the kin10-2 knockout line whereas all four 

complemented kin10-2 lines expressed KIN10 to levels that were similar to wild type 

but varied between lines.  Line #2.9 demonstrated the lowest level of expression, 

lower than Col-0 and the highest level of expression was observed in line #4.1.  

     #2.9       #2.10        #4.1         #4.3     Col-0      kin10-2 

        35S::HisHA-KIN10+kin10-2 

                                                               

                                                                                                                                 

   

                                                           

                                              

anti-AKIN10 
(61.1 kDa) 

Coomasssie 
sample loading 
control 
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These data did not correlate closely with KIN10 transcript expression (Figure 5.10), 

however, all four lines of kin10-2 complementations clearly expressed KIN10 

protein, unlike kin10-2 mutants. 

5.2.2.2 Dark-induced gene expression in KIN10 complemented lines 

Experiments were carried out using seven-day-old seedlings grown on 0.5x MS 

media on petri dishes and subjected to 6 h in dark conditions by wrapping individual 

plates in two layers of aluminium foil within the light cycle in the Percival growth 

chamber. Control plates were kept under the same conditions in the Percival by 

exposing to light conditions (see 2.12.3). Expression of the dark-inducible gene 

DIN6 was analysed using qRT-PCR and normalised to expression of PEX4. Relative 

expression represents the fold value compared with Col-0 control sample and calculated 

using the ∆∆CT method as described early in this chapter.  

Dark-inducible DIN6 expression in four confirmed KIN10 complemented lines was 

compared with wild type, and kin10-2 mutants in three independent biological 

replicate experiments (Figure 5.12 a, b and c). Increased levels of DIN6 gene 

expression under dark stress were observed in all four complemented lines compared 

to kin10-2 in three biological replicate experiments and DIN6 expression in 

complemented lines was similar to the level of DIN6 expression in wild type plants. 

The average values of relative expression of DIN6 in three independent biological 

replicates is presented in Figure 5.12 d and data were analysed using a one-way 

ANOVA (α=0.05) and pairwise comparisons were performed using the Tukey 

method. Average gene expression data from three individual experiments confirm 

that DIN6 expression in dark was significantly high in three out of four 
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complemented lines compared to kin10-2 (Figure 5.12 d)  but not significantly 

different compared to wild type (P<0.020).   

Therefore this shows the DIN6 phenotype of kin10-2 mutants could be restored to 

wildtype levels by complementation with the KIN10 gene. This proves the 

phenotype observed in the mutant can actually be attributed to the KIN10 gene. 

(a)                                                                         ( b)                       

       (c)                                                                             (d)                                                                                                                             

 

Figure 5.12:  Dark-induced stress gene expression in kin10-2 complemented 
lines 

DIN6 expression in response to darkness was measured in KIN10 complemented lines 

compared with Col-0 and kin10-2. Seven-day-old seedlings grown on 0.5x MS media on 

petri dishes were subjected to 6 h dark conditions (D) by wrapping in two layers of 

aluminium foil and control plates (L) were kept unwrapped in the growth chamber. The first 

three histograms (a, b and c- with red bars) represent the gene expression data of three 
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independent biological replicates. Error bars indicate the level of variation between technical 

replicates within one biological replicate experiment. The fourth chart (blue bars; d) 

represents the average of the above three independent biological replicates. Mean average 

data (in graph d) were analysed using a one-way ANOVA (α=0.05) and pairwise 

comparisons were made using the Tukey method. Means that do not share a letter are 

significantly different. 

 

5.2.2.3 Desiccation-induced gene expression in KIN10 complemented lines 

Water withdrawal experiments were conducted to study desiccation-induced gene 

expression using seven-day-old seedlings grown on 0.5x MS media on petri dishes 

and subjected to water withdrawal by opening the lids, thereby exposing the 

seedlings to growth conditions in the Percival chamber. Desiccation-treated plates 

were left open in the growth chamber for 6 h during the light cycle with no humidity 

control while keeping the control plates closed under the same conditions (see 

2.12.4). 

Expression of KIN2 in response to desiccation was analysed using qRT-PCR and 

normalised to expression of PEX 4 gene. Relative expression represents the fold value 

compared with Col-0 control sample and calculated using the ∆∆CT method, as 

described earlier. Desiccation-inducible KIN2 expression in four KIN10 complement 

lines was compared with wild type and kin10-2 mutants of Arabidopsis plants in 

three independent biological replicate experiments (Figure 5.13 a, b and c). Higher 

levels of KIN2 gene expression in all four lines of kin10-2+35S::HisHA-KIN10 were 

observed compared to kin10-2 in all three individual replicate experiments and those 

levels were even higher than those seen in Col-0. Even though there was an apparent 

difference in KIN2 expression between Col-0 and kin10-2 it was not significant 

(Figure 5.13 d).  
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(a)                                                                          (b) 

   (c)                                                                               (d) 

 

Figure 5.13: Desiccation-induced KIN2 gene expression in kin10-2 

complemented lines 

KIN2 expression in response to desiccation was measured in KIN10 complemented lines 

compared with Col-0 and kin10-2. Seven-day-old seedlings were grown on 0.5x MS medium 

on petri dishes were subjected to 6 h water withdrawal/desiccation (D) by opening the lids 

and control plates (C) were kept unopened in the growth chamber. The first three histograms 

(a, b and c- with red bars) represent the gene expression data of three independent biological 

replicates. Expression is shown after normalisation to PEX4 in all graphs. The fourth chart 

(blue bars; d) represents the average of the above three independent biological replicates. 

Mean average data (in graph d) were analysed using a one-way ANOVA (α=0.05) and pair 

wise comparisons were made using the Tukey method. Means that do not share a letter are 

significantly different.  
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Similarly, the average gene expression of KIN2 in four complemented lines was not 

highly significant compared to either Col-0 or kin10-2 mutant (p<0.693) (Figure 

5.13d). Data were analysed using a one-way ANOVA (α=0.05) and pairwise 

comparisons were performed using the Tukey method. However the trend was that 

complementation appeared to restore KIN2 expression to wild type levels. 

In summary, these experiments showed that KIN10 was required for full expression 

of genes in response to some stress conditions such as desiccation and dark, but not 

all, of the conditions that require SFR6 particularly under cold and UV stress 

conditions. The experiments also indicated that the effects of loss of KIN10 were not 

as severe as those attributable to loss of SFR6. 

 

5.2.3 Epistatic analysis using a sfr6-1kin10-2  double mutant  

The above experiments established that loss of KIN10 results in middle version of 

some of the same transcriptional defects associated with loss of SFR6. The following 

experiments were designed to test whether one mutation was epistatic to the other, by 

examining whether the effect of combining both mutation in one plant was additive. 

5.2.3 1 Selection of double mutant lines of sfr6-1kin10-2 

To test the second hypothesis proposed in this chapter, that KIN10 and SFR6 act in 

the same pathway leading to stress gene expression, I produced a sfr6-1kin10-2 

double mutant to be used in epistatic analysis. 

The homozygous sfr6-1 mutant was crossed with kin10-2 (the pollen donor) and the 

F1 generation was tested for the presence of the T-DNA insertion in KIN10 (see 

Appendix A2.3 for primers).  Three successful crosses were used to obtain F2 seeds  
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and this generation was tested for the absence of native genomic KIN10 and the 

presence of the T-DNA insertion using the same set of primers described above (i.e. 

confirmation of homozygosity for the insertion). Finally, F3 plant lines fulfilling the 

above requirements were screened to obtain lines homozygous for the sfr6-1 

mutation. Plants were genotyped using a TaqMan allelic discrimination assay to 

identify the SNP associated with sfr6-1 (see Appendix A2.3) using Applied 

Biosystems 7300 machine (see section 2.10.3). 

 

 

 

 

Figure 5.14: Results of allelic discrimination assay of sfr6-1kin10-2 double 

mutant lines 

Genomic DNA was extracted from leaves of three-week-old plants. Three technical 

replicates were used for each sample. Water was used as non-template control (NTC) along 

with two positive controls of Col-0 and sfr6-1 mutant. The graph represents data 

corresponding to the selection of two lines that were identified as homozygous for sfr6-1. 

The allelic discrimination plot clearly indicates the homozygotes for each allele, blue circles 

for allele Y (sfr6), diamond shapes for allele X (wild type) and the heterozygotes (green 

triangles) for the presence of both alleles. 

      homozygous lines                                 

      for sfr6 allele  

   

      homozygous lines    

      for wild type allele   

 

      heterozygous lines  

 

x  NTC     
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Results of the allelic discrimination assay used to select two homozygous lines for 

the sfr6-1 mutation from a single original cross are presented in Figure 5.14. The 

same procedure was followed to select a third homozygous line but using different 

lines originating from a separate original cross. The allelic discrimination plot clearly 

indicated (Figure 5.14) that homozygotes for allele Y (sfr6) in blue circles and 

homozygotes for allele X (wild type) in blue diamond shapes. Further heterozygote 

lines displaying both allele forms are indicated by green coloured triangles. 

5.2.3.2 Dark-inducible gene expression in sfr6-1kin10-2 double mutant lines 

In this experiment I attempted to investigate whether the addition of the kin10-2 

mutation would further diminish the level of dark-inducible gene expression in the 

sfr6-1 background. For this, dark gene expression experiments were carried out using 

seven-day-old seedlings grown on 0.5X MS media on petri dishes and subjected to 6 

h dark conditions by wrapping individual plates in two layers of aluminium foil 

during the light cycle in the Percival chamber. Control plates were kept under the 

same conditions in the chamber by exposing to light (see 2.12.3).  

Expression of DIN6 in response to darkness was analysed using qRT-PCR and 

normalised to expression of PEX 4. Relative expression represents the fold value 

compared with Col-0 control sample and calculated using the ∆∆CT method, and the 

error bars in each biological replicate represent RQMIN and RQMAX  and constitute the 

acceptable error level for a 95% confidence level according to Student’s t test. DIN6 

expression was compared in three lines of sfr6 kin10-2 the double mutant, wild type 

and the two single mutants of Arabidopsis plants in three independent biological 

replicate experiments (Figure 5.15 a, b and c). DIN6 gene expression in sfr6 kin10-2 

double mutants was lower than observed in wild type and this was observed in all  
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(a)                                                                            (b) 

      (c)                                                                               (d) 

Figure 5.15:  Dark-induced stress gene expression in sfr6-1kin10-2 lines 

DIN6 expression in response to darkness was measured in three lines of sfr6kin10-2 

compared with Col-0, sfr6 and kin10-2. Seven-day-old seedlings were grown on 0.5X MS 

medium on petri dishes and subjected to 6 h dark conditions (D) by wrapping in aluminium 

foil. Control plates (L) were kept under the same conditions in the Percival by exposing to 

the light conditions. The first three histograms (a, b and c- with red bars) represent the gene 

expression data of three independent biological replicates. Error bars indicate the level of 

variation between technical replicates within one biological replicate experiment. The fourth 

chart (blue bars; d) represents the average of the above three independent biological 

replicates. Mean average data (in graph d) were analysed using a one-way ANOVA (α=0.05) 

and pair wise comparisons were made using the Tukey method. Means that do not share a 

letter are significantly different. 
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three biological replicate experiments. Average gene expression data from three 

individual experiments showed significant differences between (p<0.001) all three 

lines of sfr6kin10-2 compared with kin10-2 and wild type but no significant 

difference compared with the sfr6-1 mutant (Figure 5.15 d). Data were analysed 

using a one-way ANOVA (α=0.05) and pairwise comparisons were performed using 

the Tukey method. 

5.2.3.3 Desiccation-induced gene expression in sfr6-1kin10-2 double mutant lines 

This experiment was designed to investigate whether addition of the kin10-2 

mutation would increase the effect of the sfr6-1 mutation on desiccation-induced 

gene expression. Experiments were carried out using seven-day-old seedlings grown 

on 0.5X MS medium on petri dishes and subjected to water loss by opening the lids 

thereby exposing the seedlings to growth conditions in the Percival growth chamber. 

Plates were left open in the growth chamber for 6 h during the light cycle with no 

humidity control while keeping the control plates closed under the same conditions 

(see 2.12.4). 

Expression of the drought-inducible KIN2 gene was analysed using qRT-PCR and 

normalised to expression of PEX4 gene. Relative expression was calculated as explained 

above. Desiccation-inducible KIN2 expression in three lines of sfr6-1kin10-2 was 

compared with wild type, sfr6-1 and kin10-2 mutants of Arabidopsis plants in three 

independent biological replicate experiments (Figure 5.16 a, b and c). Greatly 

reduced levels of KIN2 gene expression in three lines of sfr6-1kin10-2 were observed 

in all three individual replicate experiments compared to kin10-2 but levels were 

similar to those observed in sfr6-1. Further average gene expression data from three 

individual experiments was highly significant between (p<0.001) all three lines of  
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(a)                                                                            (b) 

(c)                                                                      (d) 

Figure 5.16: Desiccation-induced KIN2 gene expression in sfr6-1kin10-2  

KIN2 expression in response to desiccation was measured in three lines of sfr6-1kin10-2 

double mutant compared with Col-0, sfr6 and kin10-2. Seven-day-old seedlings were grown 

on 0.5X MS medium on petri dishes were subjected to 6 h water withdrawal/desiccation (D) 

by opening the lids and control plates (C) were kept unopened in the growth chamber. The 

first three histograms (a, b and c- with red bars) represent the gene expression data of three 

independent biological replicates. Expression is shown after normalisation to PEX4 in all 

graphs. The fourth chart (blue bars; d) represents the average of the above three independent 

biological replicates. Mean average data (in graph d) were analysed using a one-way 

ANOVA (α=0.05) and pair wise comparisons were made using the Tukey method. Means 

that do not share a letter are significantly different.  
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sfr6-1kin10-2 compared with kin10-2 and wild type however not significant 

compared with the sfr6-1 mutant (Figure 5.16 d). Data were analysed using a one-

way ANOVA (α=0.05) and pairwise comparisons were performed using the Tukey 

method. 

 

5.2.3.4 Response of sfr6-1kin10-2 double mutants to drought stress 

Level of desiccation/drought-induced gene expression, KIN2 were reduced in all 

three lines of the sfr6-1kin10-2 double mutant, but were not lower than those seen in 

the single sfr6-1 mutant. Reduced levels of desiccation–induced KIN2 gene 

expression are strongly correlated with reduced levels of drought tolerance (reported 

in chapter 3 in section 3.2.31). The purpose of this experiment was to check the 

effect of double mutation is not additive i.e drought tolerance in the double mutant, 

showed a similar pattern to that observed in the single sfr6-1 mutant as seen in KIN2 

gene expression. 

Therefore, a drought tolerance assay was conducted with wild type, single mutants of 

sfr6-1 and kin10-2 and three lines of sfr6-1kin10-2 double mutants. Drought 

tolerance assays were performed using seedlings grown on peat plugs and maintained 

in short days for 25 d post-germination. Plants were subjected to water withdrawal 

for 14 days (after which approximately 50% of wild type plants showed a wilting 

appearance) and then re-watered. The number of plants surviving out of ten plants 

used in each experiment and exhibiting re-growth  with green meristems was 

assessed after a further 10 days (see materials and methods 2.15.4). Average data 

from three separate biological replicate experiments is presented in Figure 5.17. 
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                                                      #A33         #A41          #B10 
   

  Col-0       sfr6-1        kin10-2                      sfr6 kin10-2 

 

 

 

 

 

 

 

 

Figure 5.17: Level of drought tolerance in sfr6-1kin10-2 mutants 

The average of three survival percentages from three separate biological experiments 

(replicates) conducted with ten plants in each experiment is shown in the above 

histogram.Twenty five day-old plants were subjected to water withdrawal for 14 days, re-

watered and the number of plants surviving on the twelfth day after re-watering was 

recorded. Error bars shown represent standard error (±SE) calculated from arcsine 

transformed values as appropriate for proportional data and indicate the level of variation 

between biological replicate experiments. Non-overlapping error bars denote means that are 

significantly different (P < 0.001). 

 

These data demonstrate the reduced tolerance in all three lines of sfr6-1kin10-2 

mutants and it is significantly different (α=0.05) compared to Col-0 and kin10-2 

mutant. Average tolerance data shows no significant difference between the three 

lines of double mutants and to sfr6-1 (Figure 5.17). This is further supported by the 

Figure 5.18, a representative picture taken from the second drought tolerance 

experiment in this study. Perhaps surprisingly, the kin10-2 single mutant showed no 

reduction in desiccation tolerance compared to wild type, despite its reduced levels  
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of desiccation-induced KIN2 expression. It seems most likely that the reduction in 

KIN2 expression observed in kin10-2 was insufficient to exert a significant effect on 

tolerance though kin10-2 shows reduced tolerance compared to wild type. However 

in neither case (expression or tolerance) were the effects of the two mutations in 

response to desiccation additive. 
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Figure 5.18: Sensitivity of sfr6-1kin10-2 double mutants to drought conditions 

Representative pictures of each plant type selected from the second drought tolerance assay 

are presented here. Twenty five-day-old plants grown on peat plugs were subjected to 

withdrawal of water for 14 days (after which approximately 50% of wild type plants showed 

a wilting appearance) and then re-watered. The number of plants surviving and exhibiting re-

growth was assessed after a further 10 days and photographed. 

 

 

 

    kin10-2 Col-0 sfr6-1 

sfr6-1kin10-2#A33 sfr6-1kin10-2#A41 sfr6-1 kin10-2#B10 
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5.2.3.5 Response of sfr6-1kin10-2 double mutant to dark-induced starvation 

stress 

To study whether the reduced level of gene expression under dark conditions 

correlates with reduced level of dark-induced starvation tolerance, experiments were 

conducted using the plant lines described above. Seven-day-old seedlings grown on 

0.5×MS agar plates were covered in two layers of foil for 14 days to provide dark 

conditions whilst keeping control samples unwrapped. All plates were transferred to 

a Percival growth chamber (see section 2.15.5) and after 14 days of dark plates were 

unwrapped and returned back to the same conditions in the Percival. Number of 

plants surviving and exhibiting re-growth was assessed after a 3 days of normal 

light:dark cycle in the Percival growth chamber. Average data from two separate 

biological replicate experiments are presented in Figure 5.19. 

Average data of these experiments demonstrate that reduced level of starvation 

tolerance in all three lines of sfr6-1kin10-2 mutants and it is significantly different 

(α=0.05) compared to Col-0 and kin10-2 mutant. Data showed that there was no 

significant difference between the three lines of double mutants and sfr6-1 (Figure 

5.19). Figure 5.20, a representative picture taken from second starvation tolerance 

experiment in this study showed the appearance of the plants after recovery from 

dark-induced starvation.  As seen in the previous experiments with regard to 

desiccation, there was no evidence that the effects of the two mutations were 

additive. 
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Figure 5.19: Level of dark-induced starvation tolerance in sfr6-1kin10-2 
mutants                   

The average of survival percentages from two separate biological experiments (replicates) 

conducted on 0.5×MS agar plates is shown in the above histogram. Seven-day-old seedlings 

on plates were covered in two layers of foil for 14 days and then plates were unwrapped and 

returned to the Percival growth chamber and the number of plants surviving and exhibiting 

re-growth was recorded after 3 days. Error bars shown represent standard error (±SE) 

calculated from arcsine transformed values as appropriate for proportional data and indicate 

the level of variation between biological replicate experiments. Non-overlapping error bars 

denote means that are significantly different (P < 0.001). 

 

 

 

 

 

 



                                                                                                                       Chapter 5 

235 

 

 

 

 

 

 

 

 

 

 

Figure 5.20: Sensitivity of sfr6-1kin10-2 double mutants under dark-induced 
starvation conditions 

Representative pictures of each plant type selected from the second starvation tolerance 

assay are presented here. Seven-day-old seedlings grown on 0.5×MS agar plates were 

covered in two layers of foil for 14 days to provide dark conditions and kept in Percival 

growth chamber. After 14 days plates were unwrapped and returned back to same conditions 

in the Percival and number of plants surviving and exhibiting re-growth was assessed after a 

further 3 days and photographed. 

 

In summary both gene expression and tolerance data under desiccation-induced 

drought and dark-induced starvation conditions demonstrated that effect of sfr6-1 

and kin10-2 double mutant were not additive, indicating that both genes were likely 

to act on the same pathway. 

sfr6-1kin10-2#A33 sfr6-1kin10-2#A41 sfr6-1 kin10-2#B10 

    kin10-2 Col-0 sfr6-1 
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5.2.4 Overexpression of KIN10 in wild type and sfr6 mutant backgrounds 

5.2.4.1 Selection of KIN10 overexpression lines in Col-0 and sfr6-1 backgrounds 

Use of KIN10 overexpressing lines in wild type and sfr6-1 mutant backgrounds 

formed the basis of the second approach to test my second hypothesis i.e KIN10 and 

SFR6 acts on the same pathway leading to expression of stress genes. The aim of 

these experiments was also to test the order in which KIN10 and SFR6 may act on 

the pathway. Baena-Gonzalez et al. (2007) showed that plants (leaves and mesophyll 

cells) overexpressing KIN10 exhibit higher level of stress gene expression compared 

to wild type, especially dark-induced genes like DIN1 and DIN6, specifically in the 

absence of stress. Therefore it was of interest to study the behaviour of sfr6-1 

mutants overexpressing KIN10 to study whether they would exhibit increased 

expression of stress genes in the absence of stress. Equal increases in stress gene 

expression in response to KIN10 overexpression in both backgrounds would signify 

that SFR6 is not required for this particular function of KIN10. Lack of effect of 

overexpression of KIN10 in sfr6-1 mutants would indicate that SFR6 is essential for 

KIN10 to perform its function.  

Col-0 and sfr6-1 mutant plants were transformed with an  N-terminal fusion of 

KIN10 with His and HA epitope tags (35S::HisHA-KIN10 ), the same vector used to 

create KIN10 complemented lines (see sections 2.5.1 and 2.5.2) under the control of 

the  constitutive 35S promoter, using the floral dip method (see section 2.10.1) and 

kanamycin resistant transformants were selected (see section 2.10.1.4). Putative T1 

transformants were screened for the presence of the transgene (HisHAKIN10) as 

described in section 5.2.2 and 5.2.3 and seeds collected from lines that scored 

positive in Col-0 and sfr6-1 backgrounds. T2 plants were tested for the expression of 

KIN10 using seven-day-old seedlings grown on 0.5X MS medium on petri dishes 
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with primers designed for the fifth and sixth introns of KIN10 transcript (see 

Appendix A2.3 for the primers KIN10-mid-RT F/R) to detect both native and 

transgene KIN10. Results showed that KIN10 expression was elevated in all putative 

transformants with a Col-0 background but that none of sfr6-1 background putative 

transformants expressed elevated levels of KIN10 (Figure 5.21 a and b). Repeated 

attempts were made to assay for the presence of a full length transcript generated 

from the construct but all confirmed that transcripts from the KIN10 transgene were 

either not present in the putative transformants (despite showing basta resistance), or 

were truncated. 

Following failure to transform sfr6-1 plants with 35S::HisHA-KIN10, sfr6-1 mutant 

plants were crossed with two independent wild type 35S:: KIN10 transformants 

created as described above. Col-0 wild type lines #6 and #11 overexpressing HisHA-

KIN10 were used to cross with sfr6-1 mutant plants, as they exhibited the highest 

and lowest levels of KIN10 expression respectively amongst the wild type 

transformants (Figure 5.21a). 
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Figure 5.21: KIN10 expression in wild type and sfr6-1 mutant plants 

transformed with 35S::HisHA-KIN10  

KIN10 expression in T2 generation of Col-0 + 35S::HisHA-KIN10and sfr6-1 + 35S::HisHA-

KIN10+sfr6-1 was compared with expression in untransformed Col-0. Seven-day-old 

seedlings grown on 0.5X MS agar plates were used. Figure 5.21 (a) represents the level of 

KIN10 expression measured using cDNA reverse transcribed by AMV (Avian 

Myeloblastosis Virus) reverse transcriptase in conjunction with an oligo dT primer.  Figure 

5.20 (b) represents the level of KIN10 expression measured using cDNA reverse transcribed 

with M-MLV (Moloney Murine Leukemia Virus) reverse transcriptase with an oligo dT 

primer. Expression is shown after normalisation to PEX4. Relative expression represents the 

fold value compared with Col-0 control sample and calculated using the ∆∆CT method, and 

the error bars in each graph represent RQMIN and RQMAX  and constitute the acceptable error 

level for a 95% confidence level according to Student’s t test. Error bars indicate the level of 

variation between technical replicates within one biological replicate experiment. 
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The F1 generation of the above crosses were tested for the presence of the transgene 

using primers specific to both the tag (forward primer) and to the KIN10 cds (reverse 

primer. See Appendix A2.3 for the primer sequences) and positive lines were 

selected for the production of F2 seeds. F2 seedlings from the selected lines were 

tested to obtain lines homozygous for the sfr6-1 mutation. Plants were genotyped 

using a TaqMan allelic discrimination assay to identify the SNP associated with sfr6-

1 (see appendix A2.1) using Applied Biosystems 7300 machine (see section 2.10.3).  

     

 

 

Figure 5.22: Results of Allelic discrimination assay of F2 segregants from two 

cross between sfr6-1 and Col-0 35S::HisHA-KIN10  

Genomic DNA was extracted from leaves of three-week-old plants. Three technical 

replicates were used for each sample. Water was used for no template control (NTC) along 

with positive and negative (Col wt and sfr6 mutant) controls. The graph shows data from 

segregating lines that were identified as homozygous for the sfr6-1 mutation (red circles), 

homozygous for the wild type allele (dark blue diamonds) or heterozygous (turquoise 

triangles). Also shown are known Col-0 and sfr6-1 homozygous lines for comparison (same 

symbols). 
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Results of the allelic discrimination assay were used to select three lines homozygous 

for the sfr6-1 mutation; two of which were the progeny of a cross with Col-0 

transformant #6 and one the progeny of a cross with #11 (figure 5.21). Three 

segregating lines that were homozygous for the wild type SFR6 allele originating 

from the same two crosses between the line #6 and #11 were also selected.  

5.2.4.2 KIN10 expression levels in 35S::His-HA-KIN10 transformants in Col-0 

and sfr6-1 backgrounds 

Levels of KIN10 expression were tested in lines of 35S::HisHA-KIN10 

overexpressers of both backgrounds using seven-day-old seedlings of F3/T3 

generations. All selected overexpression lines from wild type (Col-0) and sfr6 

background showed a higher level of KIN10 expression compared to Col-0 (Figure 

5.23 a, b and c) untransformed line. Level of KIN10 expression pattern was 

consistent among three biological replicates however highest expressers were the 

lines originated from line #6 overexpressing 35S::HisHA-KIN10  in Col-0 where as 

lowest expressers were the lines from crosses with #11 overexpressing 35S::HisHA-

KIN10  in Col-0 (Figure 5.23a). Relative expression represents the fold value compared 

with Col-0 control sample and calculated using the ∆∆CT method, and the error bars in 

each biological replicate represent RQMIN and RQMAX  and constitute the acceptable 

error significant difference among Col-0, sfr6-1 and six other lines of 35S::HisHA-

KIN10 overexpression in both Col-0 and sfr6-1 (p<0.001) except line #11 of Col-

0+35S::HisHA-KIN10+Col-0 and line #11.2.5 of sfr6-1+35S::HisHA-KIN10 (Figure 

5.23 d). Data were analysed using a one-way ANOVA (α=0.05) and pairwise 

comparisons were done using Tukey method. All overexpression lines in both wild 

type and sfr6 background were overexpressing KIN10 compared to Col-0 (wild type 

untransformed). 
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(a)                                                                         (b) 

(c)                                                                  (d)  

 

Figure 5.23: KIN10 overexpression in Col-0 and sfr6-1 backgrounds  

KIN10 expression levels were compared in Col-0 and sfr6-1 lines overexpressing HisHA-

KIN10 and untransformed lines of the same backgrounds. Seven-day-old seedlings grown on 

0.5X MS agar plates were used to monitor KIN10 expression using primers designed to 

detect both the native KIN10 transcript and the transcript arising from the overexpression 

construct. Expression is shown after normalisation to PEX4. Relative expression represents 

the fold value compared with Col-0 control sample and calculated using the ∆∆CT method, 

and the error bars in each biological replicate represent RQMIN and RQMAX  and constitute the 

acceptable error level for a 95% confidence level according to Student’s t test. Error bars 

indicate the level of variation between technical replicates within one biological replicate 

experiment. The red dashed line represents the level of KIN10 expression in untransformed 

Col-0. 
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5.2.4.3 Protein expression in different KIN10 overexpression lines 

Levels of KIN10 transcript expression were confirmed to be higher in KIN10 

overexpresion lines in sfr6-1 and Col-0 backgrounds compared to untransformed 

wild type (Col-0) (Figure 5.24). KIN10 protein expression in these lines was assayed 

as described in section 2.16. Immuno-blot analysis (see section 2.16.5) was 

conducted using AKIN10 Rabbit polyclonal primary antibody. Membranes were 

observed after incubation with a goat anti-rabbit antibody conjugated to HRP to 

visualise the protein using chemiluminescence (see section 2.16.6) method. 

 

 

 

 

 

 

 

Figure 5.24: Level of KIN10 protein expression in  KIN10 overexpression lines  

Seven-day-old seedlings (20-25 seedlings) were used to extract protein and 30µl of total 

lysate (2mg/ml) were used on SDS gel. Membrane was incubated with AKIN10 Rabbit 

polyclonal primary antibody at 40C overnight followed by 2 h secondary antibody binding 

with Goat anti-Rabbit HRP both were at 1:2000 dilutions in 5% milk solution. Proteins were 

visualized using chemiluminescence and membrane was observed under a Photon Counting 

camera using Photek Image32 software. Samples represents the lanes are as follows; Lane 

1= #6, lane 2= #6.1.5, lane 3= #6.1.6, lane 4= #11, lane 5= #11.2.8 of 35S::HisHA-

KIN10+Col-0  and lane 6= #6.1.19, lane 7= #6.1.34, lane 8= #11.2.5 of 35S::HisHA-

KIN10+sfr6-1, lane 9= Wt, lane 10= kin10-2, lane 11= sfr6-1 

 

 

 

 

 

 

 

anti-AKIN10 

(61.1 kDa) 

Coomassie 
sample loading 
control 

Lane  1       2          3         4        5            6          7           8        WT     kin10-2   sfr6-1 
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Lines overexpressing KIN10 in both wild type and sfr6-1 backgrounds were tested 

for overexpression of KIN10 protein compared to sfr6-1 (Figure 5.24). No KIN10 

expression was observed in the kin10-2 knockout line and weak bands could see in 

both Col-0 and sfr6-1. Strong bands were observed in all other samples compared to 

Col-0. The highest level of KIN10 expression was in #6.1.34 that overexpressing 

KIN10 in sfr6-1 background transformant. Relative levels of KIN10 protein 

expression in these lines are likely to be higher than in the wild type overexpression 

lines. However lanes 5 and 9 show a band that is not the same size as the KIN10 

band in all the other lanes, so these might not be real KIN10 levels. As lane 9 is wild 

type KIN10 (not tagged transgenic KIN10) , it is clear that lane 5 might be similar to 

wild type ( not transgenic KIN10) so not a KIN10 over expresser. 

5.2.4.4 Dark- and cold-inducible gene expression in wild type and sfr6-1 KIN10 

overexpression lines  

Previous published work by Baena-Gonzalez et al. (2007) showed that transient 

overexpression of KIN10 in protoplasts from mesophyll cells caused elevated levels 

of DIN6 and DIN1 expression specifically in the absence of stress. Therefore 

experiments described below were designed to study, the effect of KIN10 stable 

overexpression in seedlings of wild type and in sfr6-1 mutant background to test 

second hypothesis proposed in this chapter, that KIN10 and SFR6 act in the same 

pathway leading to stress gene expression as well as to test whether MED16/SFR6 is 

required for expression mediated by KIN10.  

Equivalent increases in stress gene expression in response to KIN10 overexpression 

in both backgrounds would suggest that SFR6 is not required for this particular 

function of KIN10. Lack of effect of overexpression of KIN10 in sfr6-1 mutants 

would show that SFR6 is essential for KIN10 to perform its function. 
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DIN6 gene expression was measured in untreated seven-day-old seedlings 

overexpressing HisHA.KIN10. Two lines out of five lines of Col-0 overexpressing 

HisHA-KIN10 exhibited significantly higher levels of DIN6 gene expression and two 

lines shown higher levels but not significantly high compared to Col-0 whereas one 

line showed similar level of expression as in Col-0. In contrast to above all three 

sfr6-1 lines overexpressing HisHA-KIN10 showed reduced levels of DIN6 compared 

to Col-0, similar to the levels of expression observed in untransformed sfr6-1. 

Average gene expression data across three independent biological repeat experiments 

showed no significant difference between Col-0, sfr6-1 and the three sfr6-1 KIN10 

overexpressers but significant differences were observed between four out of the five 

wild type overexpressing lines and all three overexpressers in the sfr6-1  background 

(p<0.001) (Figure 5.25 d). Data were analysed using a one-way ANOVA (α=0.05) 

and pairwise comparisons were made using the Tukey method.  

Similar results were obtained when the same samples were tested for expression of 

another dark-responsive gene, BCAT2, (Figure 5.26 a, b and c). Significantly 

increased levels of BCAT2 expression were observed in one line out of five and other 

three lines shown increased levels but not significantly high in wild type 

overexpressing KIN10 compared to untransformed Col-0, however, increases were 

less pronounced than those seen with DIN6 (Figure 5.25). Average gene expression 

data from three individual experiments (Figure 5.26 d) demonstrated that wild type 

overexpresser line #11.2.8 was the highest expresser of BCAT2 and the increase in 

expression level was highly significant compared to Col-0 (p<0.000). Data were 

analysed using a one-way ANOVA (α=0.05) and pairwise comparisons were made 

using the Tukey method.  
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(a)                                                          (b) 

 
(c)                                                                (d)        

 

Figure 5.25: DIN6 gene expression in untreated KIN10 over-expression lines in 
wild type and sfr6-1 backgrounds 

DIN6 expression in response to light was measured in Col-0 and sfr6-1 mutants with and 

without His-HA overexpression. Seven-day-old seedlings grown on 0.5X MS media on petri 

dishes were sampled during the light period. The first three histograms (a, b and c- with red 

bars) represent the gene expression data of three independent biological replicates. Error bars 

indicate the level of variation between technical replicates within one biological replicate 

experiment. The fourth chart (blue bars; d) represents the average of the above three 

independent biological replicates. Mean average data (in graph d) were analysed using a one-

way ANOVA (α=0.05) and pairwise comparisons were made using the Tukey method. 

Means that do not share a letter are significantly different. The red dashed line represents the 

level of DIN6 expression in Col-0. 
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(a)                                                              (b) 

(c)                                                                    (d)            

Figure 5.26: BCAT2 expression in untreated KIN10 over-expression lines in wild 

type and sfr6-1 backgrounds 

BCAT2 expression in response to light was measured in Col-0 and sfr6-1 mutants with and 

without His-HA overexpression. Seven-day-old seedlings grown on 0.5X MS media on petri 

dishes were sampled during the light period. The first three histograms (a, b and c- with red 

bars) represent the gene expression data of three independent biological replicates. Error bars 

indicate the level of variation between technical replicates within one biological replicate 

experiment. The fourth chart (blue bars; d) represents the average of the above three 

independent biological replicates. Mean average data (in graph d) were analysed using a one-

way ANOVA (α=0.05) and pairwise comparisons were made using the Tukey method. 

Means that do not share a letter are significantly different. The red dashed line represents the 

level of BCAT2 expression in Col-0. 
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These data clearly demonstrated that reduced level of BCAT2 gene expression in 

plants overexpressing HisHA-KIN10 in sfr6-1 background compared to wild type 

(Col-0) overexpression lines, which further agrees with the results obtained with 

DIN6 gene expression. 

In addition, same light exposed samples were tested for expression of another dark-

responsive gene, KIN2 using seven-day-old seedlings. KIN2 expression was 

measured in the five wild type background KIN10 overexpression lines and three 

sfr6-1 background overexpressers and compared with Col-0 and sfr6-1 in three 

independent biological replicate experiments (Figure 5.27 a, b and c). 

Four lines out of five wild type background KIN10 overexpressers exhibited higher 

expression of KIN2 compared to Col-0 (line #11.2.8 is not actually shown the 

expression of correct size of protein) whereas none of the three overexpression lines 

in the sfr6-1 background showed increases in KIN2 expression above levels seen in 

untransformed sfr6-1. Although a consistent trend was clearly visible across replicate 

experiments, average data did not show significant differences between Col-0, sfr6-1, 

(p<0.464) the three sfr6-1 KIN10 overexpressers and four of the five wild type 

overexpression lines, although wild type line #6  did show a significant difference 

from the others (Figure 5.23d). Data were analysed using a one-way ANOVA 

(α=0.05) and pairwise comparisons were made using the Tukey method. 
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(a)                                                                          (b)  

 

(C)                                                                          (d)       

 

Figure 5.27: KIN2 gene expression in unstressed KIN10 over-expression lines in 

wild type and sfr6-1 backgrounds 

KIN2 expression in non cold/drought treated but in response to light was measured in 

Col-0 and sfr6-1 mutants with and without His-HA overexpression. Seven-day-old seedlings 

grown on 0.5X MS media on petri dishes were sampled during the light period. The first 

three histograms (a, b and c- with red bars) represent the gene expression data of three 

independent biological replicates. Error bars indicate the level of variation between technical 

replicates within one biological replicate experiment. The fourth chart (blue bars; d) 

represents the average of the above three independent biological replicates. Mean average 

data (in graph d) were analysed using a one-way ANOVA (α=0.05) and pairwise 

comparisons were made using the Tukey method. Means that do not share a letter are 

significantly different. The red dashed line represents the level of KIN2 expression in Col-0.  
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 By analysing DIN6, BCAT2 and KIN2 gene expression data, I could see a consistent 

pattern of gene expression showing that higher level of expression of above three 

genes in wild type plants overexpressing KIN10 and but not the lines of sfr6-1 

overexpressing KIN10.  The effect of DIN6 expresssion in total seedlings of this 

study in is in the agreement with the finding of Baena-Gonzalez et al. (2007) who 

reported that overexpression of KIN10 caused elevated levels of DIN6 expression in 

protoplasts of wild type. Increases in KIN2 expression (Figure 5.27) were large 

compared to increases in DIN6 and BCAT2 in wild type background and the 

impairment in expression of KIN2 in sfr6-1 more pronounced. All these data imply 

that, this effect was not evident in the sfr6-1 background, suggesting the necessity of 

SFR6/MED16 for KIN10 to function in this manner, and indicating that KIN10 may 

act upstream of SFR6/MED16 in the control of stress gene expression. 

 

5.2.5 Phenotypic study of KIN10 overexpression in Col-0 and sfr6-1 

backgrounds  

Baena-Gonzalez et al. (2007) reported that KIN10 overexpression in wild type 

caused altered inflorescence architecture and delayed flowering and onset of 

senescence under very long days (20h light/ 4h dark). Therefore flowering phenotype 

of KIN10 overexpression in wild type as well as in sfr6-1 background was an interest 

to see any altered flowering phenotype in sfr6-1 background. sfr6-1 mutant plants are 

known to be late flowering compared to wild type plants (Knight et al., 2008, Knight 

et al., 1999). 

Seven-day old seedlings were planted on single peat plugs and maintained in long 

day conditions (see section 2.1.4) for 4-weeks. Comparison of the flowering time  
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   (a) 

 

 

 

 

 

 

                 

 

  (b) 

 

 

 

 

 

 

 

 

Figure 5.28: Flowering phenotype of KIN10 overexpressing lines 

Plants were grown individually on peat plugs and maintained under long day conditions (16h 

light/8 h dark) at 20oC. The flowering phenotype of five–week-old plants overexpressing 

KIN10 in wild type and sfr6-1 backgrounds was compared with Col-0, kin10-2 and sfr6-1 

mutants. Same control Col-0 plant is in both photographs and chosen as a representative 

plants of 15 plants observed in this phenotypic study. 

        Col-0          #6          #6.1.5          #11           #11.2.8      kin10-2   

                                       35S::HisHA-KIN10 +Col-0     

        Col-0          sfr6-1         #6.1.19    #6.1 34    #11.2.5      kin10-2   

                                                35S::HisHA-KIN10  +sfr6-1    
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phenotype of KIN10 overexpressers in Col-0 and sfr6-1 backgrounds was observed 

using 15 plants of each. 

I observed the same altered phenotype in KIN10 overexpressing in wild type 

background (Figure 5.28 a) as reported previously; plants exhibited a short 

inflorescence and delayed flowering compared to Col-0 and kin10-2 evidencing the 

role of KIN10 in determining plant shape and developmental transition timing 

(Baena-Gonzalez et al., 2007). 

These flowering phenotype data may suggest that KIN10 overexpression in sfr6-1 

background failed to cause phenotypic effects seen in Col-0 overexpressers, adding 

to evidence of the necessity of SFR6 for activation of different signalling pathways 

by KIN10. However, given the already severely delayed flowering in sfr6 mutants 

(Knight 2008) it is difficult to conclude for certain that KIN10 overexpression does 

not further delay flowering in this background. 

 

5.2.6 Interaction between KIN10 and truncated fragments of SFR6/MED16 

A yeast-2-hybrid screen in our laboratory identified KIN10 as a putative interactor of 

SFR6/MED16 and confirmed this interaction by Co-immunoprecipitation (Hemsley 

and Knight, unpublished). To test which domains of SFR6/MED16 interact with 

KIN10 the ability of truncated fragments of SFR6/MED16 (created in chapter 4) to 

interact with KIN10 was studied. 

Six SF truncations tagged with GFP created in chapter 4 and the 35S::HisHA-KIN10 

construct (see section 5.2.2) were transformed into Agrobacterium tumefaciens as 

described in section 2.11.2. Tobacco leaves were co-infiltrated with the two cultures 

of Agrobacterium (as described in section 2.11.2). After 48 h incubation leaf samples 

were harvested and protein extraction and quantification was carried out as in section 
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2.17.2 and 2.16.2. Then two SDS gels were prepared using 20 µl of total protein 

lysate (10 mg/ml) and transferred to membranes as described in sections 2.16.3 to 

2.16.4. Two membranes were used in western blotting: one membrane was incubated 

with a 1:2000 dilution of α-His H8 epitope tag primary antibody and the second 

membrane was incubated with α-GFP developed in Rabbit (Rb pAb to GFP, Abcam) 

at 1:5000 dilution. After that secondary antibody binding was carried out with goat 

anti mouse ( IgG HRP conjugate, BioRad) and goat anti Rabbit  (IgG peroxidise 

antibody, Sigma) with α-His and α-GFP membranes respectively at same dilutions  

used for primary antibody binding and membrane bound proteins were visualized 

using chemiluminescent detection method as described in section 2.16.6. 

Detection of GFP-tagged SF proteins and HisHA-tagged KIN10 is presented in 

Figure 5.29. In the total protein extract α-GFP detected proteins of  different sizes as 

predicted for the SF truncations tagged with GFP i.e GFP-SF16 (167 kDa), GFP-

SF15 (138 kDa), GFP-SF14 (124.5 kDa) and GFP-SF36 (95.3 kDa), but a band of 

the correct size could not be detected for GFP-SF25 (99.6 kDa). This was despite the 

fact that other bands were present in the total lysate. This experiment was conducted 

four times and only once I observed the correct size of band for GFP-SF25. The 

membrane incubated with α-His (PierceTM6xHis Epitope tag antibody (His H8); 

Thermo Scientific) detected the HisHA-tagged KIN10. This showed that 

HisHA.KIN10 was successfully expressed in all of the total lysates in which it was 

expected (the first five lanes of the membrane from the left), Comparison with size 

markers confirmed the size of the protein was consistent with the expected size of 

61.2 kDa (Figure 5.29). 
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Figure 5.29: Detection of tagged SFR6 and KIN10 in total lysates 

Total proteins extracted from tobacco leaves infiltrated with SF constructs tagged 

With GFP and with 35S::HisHA-KIN10 were loaded on an SDS gel at a 

concentration of 10 mg/ml and transferred to  PVDF membranes and incubated with 

α-GFP and α-His primary antibodies at 1:5000 and 1:2000 dilutions respectively with 

10 ml of 5 % milk (w/v). After incubation of membranes with relevant secondary 

antibody proteins were visualised using a chemiluminescent detection method. As a 

loading control an SDS gel with the same samples at same the concentration was 

stained with Coomassie blue to detect proteins and scanned. White colour arrows 

indicate the correct size of band in each lane. This experiment was conducted three 

times and similar results were reproduced. 

 

 

The last three samples were used as controls in the pull down assay that followed 

western blotting of the total lysate. The sixth lane was GFP-SF16 (167 kDa) 

infiltrated in the absence of exogenous KIN10, therefore a band  167 kDa could be 

detected with α-GFP but no band with α-His was visible (Figure 5.29). The seventh 

lane was GFP only control with HisHA-KIN10 which showed a band of the correct 

size for GFP and no band with α-GFP corresponding to the size of any of the 
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fragments of SFR6 but band for the size of KIN10 (61.2 kDa) protein with α-His. 

The eighth lane was GFP control with no HisHA-KIN10 and here bands were 

observed neither with α-GFP nor α-His. The SDS gel was run with same set of 

samples and loaded with the same amount (20 µl) of total protein lysate at 10 mg/ml. 

The gel was stained with Coomassie blue to observe and compare quality and 

amount of proteins with the loading control for the western blot (see Figure 5.29). 

This western blotting experiment was conducted three times and the same results 

were reproduced. 

After confirming both proteins were detectable as expected expressed in total protein 

extracts, the same set of samples was used to perform a pull down assay. Two ml of 

diluted samples at a concentration of 10 mg/ml (as described earlier for the SDS gel) 

of protein were mixed with 30 µl of GFP-Trap-A beads (50% slurry; Chromotek) 

and incubated on a roller mixer for 4 hours at 4°C in the cold room. As described in 

section 2.17.2 beads were washed and mixed with 30 µl of 2x SDS buffer and then 

stored at -20oC after heating at 95°C for 5 minutes. Two SDS gels were run using 30 

µl of GFP trap beads (in 2X SDS buffer) after having been heated at 95°C for 5 

minutes (as described in sections from 2.16.3 to 2.16.4.) Then the resultant two 

membranes were used in western blotting with 10 ml of 5% milk (w/v) solution with 

the same primary and secondary binding antibodies at similar dilutions as described 

above under the proteins expression study in total extract. Results of the pull down 

assay are presented in Figure 5.30. 
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Figure 5.30: Detection of tagged SFR6 and KIN10 in Co-IP pulldowns 

experiments  

Two ml of total proteins (10mg/ml) extracted from Tobacco leaves infiltrated with 

SF constructs tagged with GFP and 35S::HisHA-KIN10 were pulled down using 30 

µl of GFP-Trap-A beads and an SDS gel run using 30 µl of GFP trapped beads. 

Proteins were transferred to PVDF membranes and incubated with α-GFP and α-His 

Primary antibodies at 1:5000 and 1:2000 dilutions respectively with 10ml of 5% 

milk (w/v) solution. After incubation of membranes with the relevant secondary 

antibody proteins were visualised using a chemiluminescent detection method. As a 

loading control an SDS gel with the same samples at the same concentration was  

stained with Coomassie blue to detect proteins and scanned. . White colour arrows  

indicate the correct size of band in each lane This pulldown experiment was 

conducted three times and similar results were obtained. 

 

After pull down the GFP tagged full length and truncated SFR6 proteins with GFP-

trap beads, western blot with α-GFP detected GFP-SF16 (167 kDa), GFP-SF15 (138 

kDa), GFP-SF14 (124.5 kDa) and GFP-SF36 (95.3 kDa) but not GFP-SF25 (99.6 

kDa). Neither could a band corresponding to the predicted size of GFP-SF25 be 

detected in the total lysate (Figure 5.29) and out of four replicate experiments only 

once the predicted size of GFP-SF25 band was detected. Bands corresponding to the 
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remaining SF proteins were clearly visible. With α-His antibody KIN10 (61.2 kDa)  

was detected in pulldowns with SF16, SF15 and SF14. No KIN10 was detected in 

the pulldown with SF36 or SF25 (Figure 5.30). 

The negative controls confirmed that the band identified as KIN10 using α-His was 

not present in pulldowns originating from leaves that were transformed with full 

length SF16GFP but not KIN10 (Figure 5.30), demonstrating that full length SFR6 

alone could not bind to α-His. The GFP only control with HisHA-KIN10 showed no 

band with α-GFP. Though a KIN10 band (61.2 kDa) was observed in this lane in the 

total lysate (Figure 5.29), no KIN10 band was detected after pull down, most likely 

due to the lack of SFR6. This confirms that GFP alone could not be pulled down by 

HisHA-KIN10 and that full or partial SFR6 was necessary for pull down to occur. 

The GFP only control without HisHA-KIN10 (lane 8) confirmed that bands detected 

by either α-GFP or α-His were not present, indicating that the bands interpreted as 

being specific to GFP and KIN10 were indeed not non-specific bands. An SDS gel 

was run with the same set of samples and loaded with the same amount of total 

protein lysate at 10 mg/ml. The gel was stained with Coomassie blue to observe and 

compare quality and amount of proteins as a loading control for the western blotting 

(see Figure 5.30). This pull down/CO-IP experiment was conducted three times and 

the same results were produced. These data confirm initial reports from our 

laboratory that full length SFR6 can interact with KIN10. They also provide further 

information as to the regions of the SFR6 protein likely to participate in this 

interaction. The failure of SF36 to interact with KIN10 indicates that the N-terminal 

part of SFR6 is required for the interaction (about 633 amino acids)  and the ability 

of SF14 and SF15 to interact with KIN10 suggests that the C-terminal (about 396 

amino acids) amino acids of SFR6 are not required. 
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5.3 Summary 
 

Results presented in this chapter derived from using the kin10-2 mutant show the 

necessity for KIN10 in the control of a subset of the stress-inducible genes controlled 

by SFR6/MED16, although the effect of loss of KIN10 was less severe than loss of 

SFR6/MED16. The well studied PR1 gene that was severely affected by loss of 

function of SFR6/MED16 under UV stress was not significantly affected by loss of 

function of KIN10. A Similar response in KIN2 expression under cold stress was 

observed where KIN2 expression was severely affected by loss of function of 

SFR6/MED16 (Knight et al., 1999) but no such effect was observed in loss of 

function mutants of KIN10. Similar Observations were made relating to ABA 

induced KIN2 expression where no effect was observed by KIN10. Data obtained 

under dark/starvation and desiccation/drought stress conditions demonstrated a 

correlation between reduced gene expression and reduced tolerance in the 

experiments conducted with sfr6 and kin10 mutants. 

 Epistatic analysis using a double mutant of sfr6 kin10-2 demonstrated that these two 

proteins act on the same pathway leading to stress inducible gene expression, 

particularly under dark and desiccation (drought) stress conditions. Ectopic 

expression of dark- and cold-/drought-inducible genes could be elicited in wild type 

plants by stable overexpression of KIN10, however, this was not observed in 

response to KIN10 overexpression in sfr6-1 backgrounds. These results indicate that 

SFR6 is essential for the activation of stress inducible genes by KIN10. 

Finally, results from co-immunoprecipitation experiments revealed that regions 

within the N-terminal part of SFR6/MED16 are essential for interaction with KIN10 

and that interaction is unlikely to occur via the C-terminus of the protein (about 396   

 amino acids).
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Chapter 6 

 Discussion  

6.1 Background to the study 

Plants are sessile organisms and always being challenged by various stresses 

including both abiotic and biotic conditions. Highly varying abiotic stress conditions 

such as extreme temperature, drought, UV and salinity alter metabolism, growth and 

development of plants and eventually prevent optimum yield potentials of plants 

particularly food crops being attained (Verslues et al., 2006, Araus et al., 2002, 

Boyer, 1982). Studying various tolerance and defence mechanisms that evolve in 

plants to cope with extreme environmental conditions particularly by sensing various 

signalling pathways is an important attempt to develop stress tolerance in crops as 

gene expression plays a vital role in determining tolerance for plants. Understanding 

of all possible stress responses and signalling pathways is the key requirement to 

underpin plants with improved stress tolerance using a transgenic approach. 

Introducing novel genes to the genome of agriculturally important crops or altering 

the expression of existing genes is a key goal in plant molecular biology to obtain 

plants with improved stress tolerance. Loss of function mutants lacking in tolerance 

of a stress are an important tool in uncovering components in a stress response 

(Atkinson and Urwin, 2012, Grativol et al., 2012). 

Plant species display varying degrees of tolerance to freezing but can increase their 

freezing tolerance by being exposed to chilling temperatures, a process known as 

cold acclimation (Struhl, 1998, Thomashow, 1999).  By screening an EMS-

mutagenised population of Arabidopsis Warren et al. (1996) isolated the sfr 

mutations, which result in sensitivity to freezing after cold acclimation and studied 
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mutants homozygous for mutations sfr2 to sfr7 for cold-induced gene expression. 

Later studies revealed that sfr6 mutants (the focus of this thesis) are unable to cold 

acclimate due to an inability to express COR (Cold On Regulated) genes controlled 

by CBF/DREB1 transcription factors in response to low, non-freezing temperatures 

(Knight et al., 2009, Knight et al., 1999). Furthermore COR genes are also inducible 

by dehydration stress and their induction is similarly defective in sfr6 mutants in 

response to these conditions also (Boyce et al., 2003, Knight et al., 1999). Under 

drought stress conditions the DREB2 trans-acting factors, which bind to same 

CRT/DRE motif as the CBF/DREB1 transcription factors (Stockinger et al., 1997; 

Liu et al., 1998) are responsible for effecting expression (Liu et al., 1998, Stockinger 

et al., 1997). 

CBF/DREB1 gene expression itself was shown not to be mis-regulated at the 

transcriptional level in sfr6 mutants (Knight et al., 1999) but SFR6 acts downstream 

of CBF transcription factors to control expression of COR genes through the CRT 

(C-repeat) motif.  In 2009, Knight et al, identified SFR6 as At4g04920, encoding a 

predicted protein of 1268 amino acids in length with molecular mass of 137 kDa. 

SFR6 was identified as MED16 one of the subunits of the Mediator complex 

(Bäckström et al., 2007, Bourbon, 2008); a multi-subunit protein complex that is 

conserved in all eukaryotes and plays an important role in transcription initiation by 

linking sequence-specific transcriptional regulators to RNA Polymerase II (Pol II). 

The Mediator complex is grouped into three main domains head, middle and tail as 

well as an additional detachable kinase domain (Guglielmi et al., 2004) and MED16 

was identified as one of the tail subunits, the tail being the part considered most 

likely to interact with trans-acting factors (Bourbon, 2008, Conaway and Conaway, 

2011). 
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During the past seven years several studies have reported that SFR6/MED16 controls 

other stress gene regulons in addition to those activated by cold and dehydration 

conditions as well as controlling circadian gene expression (Boyce et al., 2003, 

Knight et al., 2009, Knight et al., 2008, Knight et al., 1999, Hemsley et al., 2014). A 

protective role of SFR6/MED16 in plants against UV damage was reported 

(Wathugala et al., 2012), consistent with its role as a positive regulator of UV-

inducible gene expression. Furthermore they showed that in the UV response, SFR6 

acts downstream of transcription factors like ERF5 as similar response under cold 

with consistent with its role as a mediator subunit. Further they reported both 

salicylic-acid (SA) and jasmonic-acid (JA) mediated gene transcription is regulated 

by SFR6/MED16, indicating a role for SFR6 under biotic stress conditions. Zhang et 

al. (2014) and Yang et al. (2014) reported that SFR6 is involved in iron deficiency 

responses and modulation of iron uptake through the control of gene expression 

under iron limited conditions. Furthermore the importance of SFR6 in starvation-

induced stress condition was reported (Hemsley et al., 2014). All these data evidence 

the wide range of stress responses of SFR6/MED16 and therefore the objective of 

this study was to investigate and increase understanding of SFR6/MED16’s multiple 

roles as part of the Mediator complex and in particular how it works with other 

proteins that are part of the complex or that may interact with the complex. 
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6.2 SFR6/MED16 shares some roles with the predicted tail subunits MED2 and 

MED14 in transcriptional regulation and abiotic stress tolerance 

MED16/SFR6 is involved in the regulation of transcriptional responses to a variety 

of different stresses such as cold, drought, UV and pathogen infection.  Though 

MED16 is involved in many types of gene expression, it is not required for all gene 

expression under every stress condition (Hemsley et al., 2014). This was evidenced 

by demonstrating some cold-inducible genes that were expressed even in the absence 

of SFR6/MED16. In addition, it is also true that more than one subunit may be 

required for a particular stress response and necessity of MED5, MED14 and 

MED16 has been reported for the induction of dark-induced gene expression ( 

Hemsley et al. (2014)). By considering the structure of the yeast mediator complex, 

we would predict a close physical interaction between MED14 and MED16 and 

might expect MED2 to exist in close proximity to SFR6/MED16, although it should 

be stressed that the structure of plant mediator has been hypothesised to be similar to 

that of yeast mediator but it has not yet been proven (Bourbon, 2008, Guglielmi et 

al., 2004). 

To investigate whether other tail subunits of the complex participate in controlling 

the same regulons as controlled by MED16/SFR6, two of the less studied plant 

Mediator subunits were chosen for this investigation: MED2 and MED14. Loss of 

function mutants for these two subunits (described in chapter 3) were used to 

examine whether MED2 and MED14, have similar roles to those of MED16. Further 

the tolerance experiments described in chapter 3 were designed to investigate 

whether any alterations in the transcriptional responses that occurred in MED2 and 

MED14 associated with reduced tolerance similar to that of SFR6/MED16 in cold, 

UV and drought stress conditions. 
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Recent work in our laboratory had shown that loss of function of MED2 and MED14 

impairs low temperature-induced expression of a number of COR genes that also 

require SFR6/MED16 (Hemsley et al., 2014). However we do not have any 

microarray data for MED2 and MED14 to evidence that these mutants failed to 

express whole COR genes but do have evidence of qRT-PCR data of several genes. 

My first question was to ascertain whether the transcriptional changes seen in MED2 

and MED14 under low temperature indeed correlate with changes in tolerance. 

Therefore freezing tests were important to study the existence of shared role of the 

above subunits at low temperature. A freezing-sensitive phenotype in med2 and 

med14 mutants would suggest these subunits are likely to control the whole COR 

gene regulon as in SFR6 rather than just a few COR genes. Freezing tolerance data 

indeed correlate with pattern of impaired gene expression in the three mediator 

subunit mutants (see Chapter 3 section 3.2). In freezing tolerance assays I observed a 

significant reduction in three med mutants in their percentage of survival and further 

this confirmed by more quantitative analysis of the freezing damage using percentage 

of electrolyte leakage (Calkins and Swanson, 1990, Warren et al., 1996) in leaf 

tissues. 

Further experiments described in chapter 3 were designed to investigate whether 

MED2 and MED14 play a similar role to that of SFR6/MED16 in the transcriptional 

regulation of genes expressed in response to two other abiotic stresses. Results 

presented in chapter 3 show that loss of function of MED2 and MED14 caused 

reduced transcriptional responses to UV and drought stresses in addition to the 

impaired transcriptional responses to cold stress (Hemsley et al. (2014)). Under UV-

C exposure both gene expression and tolerance data are highly significant at a high 

dosage of UV-C. Reduced PR1 gene expression as well as reduced UV-C tolerance 
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was observed in all three med mutants compared to Col-0 signifying that the 

impaired gene expression in med2 and med14 correlates with reduced tolerance 

under UV-C. 

Reported work related to SFR6/MED16 demonstrated that impaired gene expression 

is strongly correlated with reduced tolerance of the plants to freezing (Knight et al., 

2009, Knight et al., 1999) and UV and pathogen infection (Wathugala et al., 2012, 

Zhang et al., 2013) but no clear evidence was found to show that correlation between 

drought-induced gene expression and tolerance occurs under real drought conditions.  

Therefore in this study I developed a physiologically relevant drought assay that 

mimics the conditions occurring under natural drought, using water withdrawal from 

25 day-old plants to study whether there is a correlation between drought-induced 

gene expression and tolerance in two other mediator mutants as reported under cold 

and UV stress conditions in sfr6-1 mutants. Knight et al. (1999) first reported that 

drought-induced COR gene transcript expression is impaired in sfr6-1 mutants in 

response to mannitol treatments. This mannitol-induced osmotic stress treatment is 

not equivalent to the real drought stimuli that occur in the natural environment and is 

less physiologically relevant (Claeys and Inzé, 2013, Verslues et al., 2006, Lawlor, 

2013). Therefore it was important to develop a method to induce gene expression and 

to quantify damage caused by drought stress as actually exists in natural conditions. 

I examined drought-inducible gene expression in seven day-old seedlings after 

withdrawal of water for 6 h by exposing agar-grown seedlings to air. In this study I 

was able to demonstrate impaired drought gene expression in all three med mutants 

under desiccation/water withdrawal that is physiologically similar to a real drought 

conditions. Similar to cold stress drought tolerance data showed strong correlation 

with desiccation-induced gene expression in mediator mutants. Therefore tolerance 
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of three different stress conditions correlated closely with the pattern of impaired 

gene expression observed under each stress condition. 

Drought tolerance data demonstrated that med2-1 and med14-2 reported a similar 

level of tolerance but it was significantly lower to the percentage survival in sfr6-1. 

However, strong KIN2 gene induction could be seen under desiccation-induced 

drought conditions in med2-1 and med14-2 mutants. A considerable proportion of the 

genes expressed under cold conditions are also expressed under drought stress but 

only 10% of drought-inducible genes are induced by cold stress (Shinozaki and 

Yamaguchi-Shinozaki, 2007). Therefore it is important not to assume that because 

the COR genes require SFR6/MED16, MED14 and MED2 for drought-inducible 

expression, the vast number of other drought-inducible genes will also require SFR6. 

This might suggest not only COR genes like KIN2 we tested here are important in 

drought tolerance but many other genes are important whereas in freezing tolerance 

it is clear that COR genes are very significant and evidenced by strong reduction in 

both cold gene expression and freezing tolerance (Mahajan and Tuteja, 2005, 

Chinnusamy et al., 2007). Further, more significant reduction in drought tolerance in 

sfr6-1 might be due an additional defect only in sfr6-1 perhaps failing in other gene 

expression particularly non CRT/DRE genes responsive to drought conditions. 

Therefore, drought-inducible genes like P5CS1 that are not controlled via the 

CRT/DRE (see section 5.2.1.2.2 described in Chapter 5) might responsible in above 

described extra effect in sfr6. 

In accordance with cold and UV stress, findings indicated that the level of drought-

induced gene expression is strongly correlated with reduced drought tolerance in 

sfr6-1. Therefore these data evidence that the extent of loss of gene expression in 

med2 and med14 is likely to be similar to the effects seen in sfr6-1. Similarly, 
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starvation tolerance experiments conducted in Chapter 5 demonstrated a strong 

correlation between reduced dark gene expression (see section 5.2.3.2) and dark-

induced starvation tolerance (see section 5.2.3.5) in sfr6-1 mutants as well. 

All three med mutants showed reduced tolerance to both dosages of UV-C irradiation 

applied, however, differences between the mutants and wild type were less obvious 

in response to lower doses. Also results indicate that MED2 is less important in the 

response to UV than are MED14 and MED16, a conclusion supported by the relative 

effects of each mutation upon gene expression. The findings of this study extend the 

evidence of the role of three different mediator subunits MED16/SFR6, MED2 and 

MED14 in drought and UV-C induced stress tolerance as well as SFR6/MED16 in 

starvation tolerance by broadening the responses of Mediator tail subunits. 

Although there is a correlation between transcription of the genes tested and 

tolerance, generally the results indicate that in some cases particularly under drought 

MED16/SFR6 is more important than MED2 and MED14. So it is likely that SFR6 

controls more genes (or more different regulons) than the MED2 and MED14 

regulates. 

 

6.2.1 Is there greater overlap between the roles of MED14 and MED16 than 

MED2 and MED16? 

Amongst the three med mutants sfr6-1 was always the most highly affected mutant in 

terms of gene expression, showing significantly low PR1 (see section 3.2.2) and 

KIN2 (see section 3.2.3) gene expression compared to med2-1 and Col-0 under UV 

and drought stress respectively. med2-1 was less affected compared to other two med 

mutants under each stress but showed significant reduction of PR1 at high level of 
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UV-C irradiation and in drought compared to Col-0. Conversely, med14-2, like sfr6, 

always showed a significant reduction in gene expression compared to Col-0. 

However, although I observed a trend of reduced expression indicating sfr6-1 was 

the most affected, followed by med14 and finally med2, these differences were not 

significant in every occurrence across the three med mutants (see section 3.2.2 and 

3.2.3). Reproducibility of the data is very important for the validation of results. 

However, dependence on the P value to determine the significance of results is not 

always accurate (Halsey et al., 2015, Mobley et al., 2013) due wide sample-to-

sample variability as well as variability among different biological replicates. 

Therefore, the P value gives little information about the probable result of a 

replication of an experiment. Statistical power of the test greatly affects the capacity 

to interpret P value and unless statistical power is very high, the P value exhibits 

high variability and does not reliably indicate the strength of evidence to reject null 

hypothesis (Halsey et al., 2015). Further he reported that tests at least with 90% of 

statistical power has great chance to return similar P value in repeat  experiments but 

not less than that. However most scientific studies have less than 80% of statistical 

power often around 50% and 21% in psychological (Maxwell, 2004) and 

neuroscience (Button et al., 2013) respectively. Therefore interpreting results totally 

based on P value is misleading and I considered the trend along with P value to 

report results on transcriptional data in these experiments as well as other results 

reporting in this thesis. 

Averaging of gene expression data from three biological replicates was extremely 

difficult as the relative levels of gene expression varied sometimes thousand folds in 

one replicate compared to the other biological repeat.  For this reason, I have 

focussed on the transcriptional trends in these experiments. When viewed as a  
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collective of results, data from this study and others (Hemsley et al., 2014, Canet et 

al., 2012, Zhang et al., 2013) suggest that med14-2 shares all of its gene expression 

phenotypes with sfr6-1 but that med2-1 does not exhibit every phenotype shown by 

sfr6 mutants. The type of knockout can affect the extent of the deficiency but only 

the real role of the subunits can cause some outputs to be affected by loss of med2 

and not others. 

The type of the knockout is one of the possible reasons to explain the less affected 

phenotype in med2-1 compared to med14-1. med14-1 is an insertion into the last 

exon that might lose the important C-terminal domain (Li et al., 1995) but med2-1 is 

an insert into the promoter and further this supported by the report by Hemsley et al. 

(2014) that MED2 expression is not completely knocked out, so this might be a 

reason that mutant never shows a very strong phenotype. Aside from the issues of the 

severity of sfr6 and med2 mutant phenotypes, there clearly are some roles shared by 

MED2 and SFR6/MED16 and this fact might be explained by the fact that in yeast, 

the triad of tail subunits comprising Med2p, Med3p and Med15p are linked to the 

rest of the Mediator complex via Sin4p (MED16) (Kang et al., 2001, Li et al., 1995). 

If this were the case in plants also, loss of MED16 might be expected to result in loss 

of MED2, and hence an overlap in phenotype (Robinson et al., 2015).  

An overlapping function of SFR6/MED16 with MED14 in defence gene expression 

was reported by Zhang et al. (2013) and particularly significant was the suppression 

of salicylic acid-induced defence responses to a virulent strain of the bacterial 

pathogen Pseudomonas syringae. A physical connection between Sin4p 

(MED16/SFR6) and Rgr1p (MED14) was demonstrated by Li et al. (1995a) where 

deletion of the C-terminus of Rgr1p caused loss of both Sin4p and the triad, 

indicating that Rgr1 anchors the mediator tail domain to the rest of the Mediator 



                                                                                                                       Chapter 6 

268 

 

complex. sfr6-1 mutation demonstrated a more severe phenotype than med14-1 and 

this could be explained again by the type of knockout of sfr6-1 which has no protein 

produced at all but med14-2 might produce a truncated protein. Furthermore if 

med14-1 lacked the C-terminal domain, it might fail to interact with MED16 but still 

it could attach to mediator complex and be able to do something in relation to those 

stress that I studied.  

MED15, one of the proposed subunit of the Mediator tail triad was shown to be 

required for regulating SA-induced defence responses. Salicylic acid (SA) is a key 

component in regulating defence gene expression pathway such as induction of 

pathogenesis-related genes like PR1 in response to biotrophic and hemibiotrophic 

pathogens as well as under UV-C irradiation (Wathugala et al., 2012). In this thesis 

study impaired UV-C gene expression in med2-1 suggests that MED2 is also 

required for SA-induced defence responses, further evidencing that most of the tail 

subunits in the Mediator complex play a role in SA-induced plant defence. 

The different levels of sensitivity of the three med mutants under cold, UV and 

drought suggests that MED2, MED14 and MED16/SFR6 are important in 

transcriptional regulation under different stress conditions involving the control of a 

number of different regulons. This concurs with Kidd et al., (2009) who reported that 

plant mediator controls a range of gene expression responses through multiple 

subunits and association with specific transcription factors. 

 Elfving et al. (2011) evidenced that MED25 is required for the regulation of both 

plant development (flowering time) (Cerdán and Chory, 2003, Ou et al., 2011) and 

pathogen defence (Kidd et al., 2009). The possible association of MED8 with 

specific transcription factors was suggested (Kidd et al., 2009) as it demonstrates a  



                                                                                                                       Chapter 6 

269 

 

similar role to MED25 in both flowering time and pathogen defence. However, the 

current prediction is that MED25 is physically closer to MED16 than to MED8 yet 

despite the fact they probably occupy positions in the complex that are distant from 

one another, they both share in the control of specific responses to biotrophic 

pathogens (Kidd et al., 2009, Wathugala et al., 2012). This might due to different 

transcription factors bind to each subunit but activating the same genes under stress 

conditions. Interestingly, MED25, recently shown to interact with MED16, does not 

share a role with MED16 in controlling cold and starvation-responsive transcription 

(Hemsley et al., 2014). So position and proximity of subunits may not be the most 

important factor in determining which subunits operate to control the same regulons 

(Kidd et al., 2009, Wathugala et al., 2012, Zhang et al., 2013). 

MED2, MED14 and MED16/SFR6 are predicted to be located in the tail part of the 

plant mediator complex, based on the yeast mediator interaction map (Guglielmi et 

al., 2004, Robinson et al., 2015). Findings from this study have shown a similar role 

for MED2 and MED14 as MED16/SFR6. However some mediator subunits like 

MED25 and MED8 are not in close to each other and share their effects at the same 

time MED16 and MED25 predicted to be close to each other but yet not share 

effects.  

Recently it was found that MED25 interacts with MED16 to regulate iron 

homeostasis (Yang et al., 2014), so it is likely that MED25 is a mediator tail subunit 

but it was not known when I started this research work. Therefore MED25 was not 

included in this study as potential tail subunit to further investigate. However the 

many studies related to MED25 revealed that role of MED25 is vital in both biotic 

and abiotic stress conditions. Kidd et al. (2009) reported that MED25 (PFT1) acts as 

key regulator of the jasmonate signalling (JA) pathway and is important to acquire  



                                                                                                                       Chapter 6 

270 

 

resistance against leaf infecting necrotrophic fungal pathogens. Chen et al. (2012b) 

revealed MED25 positively regulates JA signalling while negatively regulating ABA 

signalling pathways, highlighting the existence of an antagonistic interaction 

between JA and ABA signalling. This suggests that MED25 is important in fine 

tuning plant resistance to particular pathogens via regulating ABA signalling apart 

from JA driven pathogen resistance. Moreover Elfving et al. (2011) revealed that 

MED25 is important in drought and salt resistance. All these evidences might be 

consistent with that MED25 being a tail subunit of the mediator complex like MED2 

and MED14 that studied in the present study. 

Some other subunits across the mediator complex are involved in regulating stress 

responses, indicating that several subunits irrespective to the position could involve 

in similar role. The Mediator head subunit MED8 is known to regulate jasmonic 

acid-dependent defence responses; reduced resistance of the med8 mutant to leaf 

infecting necrotrophic pathogens was reported but susceptibility to the root infecting 

hemibiotrophic fungal pathogen (Kidd et al., 2009, Thatcher et al., 2009). MED21, 

part of the middle section of the complex has been identified as important in disease 

resistance against necrotrophic pathogens (Dhawan et al., 2009). MED18 was 

recently discovered as second head subunit in Mediator that is important for disease 

symptoms and pathogen growth in plants infected with necrotrophic fungal 

pathogens but it functions independently of JA signalling (Lai et al., 2014) indicating 

that it is mechanistically distinct from MED25 and MED8 in plant pathogen 

tolerance. 

Considering all of the evidence available so far regarding the role of different 

mediator subunits I could summarise that several subunits across the complex 

representing head, middle and tail domains are important for the tolerance against 
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pathogen infections but only MED16 and MED25 were known to be important in 

abiotic stress tolerance to acquire freezing and drought/salt tolerance respectively. 

However findings of my study indicate that MED2 and MED14 share the same role 

as MED16/SFR6 in gene regulation under cold, drought, and UV stresses. However,  

under dark conditions med2 mutants showed unaffected gene expression compared to 

other two med mutants Hemsley et al. (2014). This further suggests that these 

mediator subunits might share their roles under several but not at all stress 

conditions. 

 

6.3 The role of KIN10 and MED16 in stress-inducible transcription 

6.3.1 KIN10 controls the expression of a subset of stress-inducible genes 

controlled by SFR6/MED16  

In chapter 5 experiments were designed to investigate the effect of KIN10 upon 

transcriptional activation of stress genes. KIN10 was previously identified as a 

putative interactor of SFR6/MED16 (Hemsley and Knight, unpublished) and med16 

and kin10 mutants were observed to share impaired dark- inducible DIN6 expression 

under starvation conditions (Hemsley et al., 2014, Baena-Gonzalez et al., 2007). 

Further investigation of shared transcriptional targets of KIN10 and MED16 might 

support the hypothesis that these two proteins do interact and that this interaction has 

functional significance in abiotic stress responses. 

KIN10 (AKIN10/At3g01090) is one subunit of the SnRK1 kinase enzyme complex, 

which is important in energy sensing particularly under energy depleting conditions 

(Baena-Gonzalez, 2010, Baena-Gonzalez and Sheen, 2008) and this catalytic subunit  
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in Arabidopsis is orthologues of yeast Snf1 and mammalian AMPK act as 

evolutionarily conserved energy gauges by controlling the reprogramming of 

transcription in response to seemingly unrelated darkness, sugar and stress conditions 

(Baena-Gonzalez and Sheen, 2008, Polge and Thomas, 2007, Ghillebert et al., 2011). 

Upon deprivation of sugar and energy, KIN10 targets a remarkably broad array of 

genes that orchestrate transcription networks, promote catabolism and suppress 

anabolism (Baena-Gonzalez et al., 2007, Baena-Gonzalez and Sheen, 2008). 

In yeast, SNF1 was identified to be responsive to several stress conditions such as 

oxidative stress, sodium ion stress, changes in alkaline pH conditions as well as an 

inhibitor of the respiratory chain (Ghillebert et al., 2011, Hong and Carlson, 2007) 

.Young et al. (2003) reported that expression of quarter of the yeast genome (2126 

genes) is modified during the shift of yeast cells from fermentative to an oxidative 

(respiratory) metabolism, where SNF1 kinase play a major role (Hardie et al., 1998) 

by encoding genes mainly involved in transcription, signalling, carbohydrate 

metabolism and respiration (Young et al., 2003). This activation of gene transcription 

occurs via the interaction of SNF1 with different members of the transcriptional 

machinery by direct interaction with RNA polymerase II to modulate its activity, 

(Kuchin et al., 2000), by phosphorylating histone H3, regulating TATA-binding 

proteins (TBP) (Shirra et al., 2005, Lo et al., 2005, Lo et al., 2001) or directly 

phosphorylating GCN5, a histone acetyltransferase that controls transcription of 

multiple yeast genes (Liu et al., 2005b). Kuchin et al. (2000) revealed that Snf1 

interacts with mediator/srb proteins, i.e Sin4 (yeast MED16), srb10 (CDK8) and 

srb11 (CycC) in the Yeast-two-hybrid and co-immunoprecipitate experiments in 

vivo. Recently Ng et al. (2013) demonstrated that in Arabidopsis KIN10 interacts  
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with another mediator subunit, CDK8 (part of the kinase submodule) the same 

subunit in yeast and plants which interacts with kinase, using fluorescence 

complementation assays. This finding indicates the possibility that KIN10 might 

interact with more than one subunit of mediator complex like in yeast. Miller et al. 

(2012) reported that number of Mediator subunits is phosphorylated and SNF1 might 

be the kinase that does this. However above interaction might or might not be a 

phosphorylation event. 

SFR6/MED16 is a tail subunit in the plant Mediator complex and important in 

transcriptional regulation under different stress conditions and recently I discovered 

similar transcriptional responses in MED14 other than earlier known regulons (see 

Chapter 3). Therefore making link that yeast SIN4 interacts with SNF1, MED14 in 

yeast interacts with SNF1 (Young et al., 2009) and showing similar transcriptional 

responses as MED16/SFR6 in plants and by being both tail subunits in the mediator I 

strongly hypothesise the possibility of existing interactions between SFR6 and 

SnRK1. 

As explained earlier there is evidence that KIN10 and SFR6 share role in response to 

starvation (Baena-Gonzalez et al., 2007, Hemsley et al., 2014) but no experiments 

had never been done in two loss of function mutants side by side and no attempt 

made to look closely at other regulons. The effect on DIN6 expression under limited 

conditions of photosynthesis and respiration such as dark, DCMU (a herbicide that 

affects the photosynthetic electron transport chain in photosynthesis) was studied in 

protoplasts (Baena-Gonzalez et al., 2007) and effects of flooding/ submerged were 

studied by (Young-Hee Cho et al., 2012). Therefore I focused to investigate stress 

gene expression in loss of function of mutants of KIN10 under cold, 

desiccation/drought and UV which are well studied stresses in SFR6/MED16. 
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Results of the three biological replicates presented in Chapter 5 (see sections 5.1.1.1 

5.2.1.2) showed that under cold, desiccation/drought and dark kin10-2 showed 

impaired gene expression as in sfr6-1 but to a lesser and varying degree. Even though 

the trend showed impaired cold gene expression in kin10-2, it was not significantly 

reduced compared with Col-0 whereas in sfr6-1 mutants COR gene expression is 

always severely impaired (Boyce et al., 2003, Knight et al., 2009, Knight et al., 

1999). Dark-inducible starvation conditions and dark-inducible gene DIN6 is well-

studied as it is targeted by KIN10 (Baena-Gonzalez et al., 2007, Contento et al., 

2004), however, interestingly, I observed that desiccation/drought-induced KIN2 

expression was severely affected compared to the level of reduction in DIN6 

expression in the mutant under dark conditions (see sections 5.1.1.1 and 5.2.1.2). I 

used two other drought-inducible genes LTI65 and P5CS1 that do not contain 

CRT/DRE elements in their promoter (and therefore are not subject to regulation by 

DREB2) therefore ABRE genes (Yamaguchi-shinozaki and Shinozaki, 1994) and 

found that P5CS1 showed a highly significantly reduced level of expression in kin10-

2 and moderately reduced (but not significantly different) level of LTI65 expression 

in kin10-2 in all three replicate experiments. Whilst different levels of significant 

differences were observed in the expression of different genes it is clear that all of 

the desiccation/drought-induced genes tested were affected by loss of KIN10, an 

observation that has not previously been reported. 

DIN6 gene expression was examined by (Baena-Gonzalez et al., 2007) in 

Arabidopsis protoplasts overexpressing KIN10 and detached leaves of plants 

expressing DIN6-LUC and showed higher induction compared to Col-0 but they did 

not examine the levels of DIN6 expression in a KIN10 mutant background. In this  
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study I used whole plants of a KIN10 loss-of-function mutant but did not observe 

significant differences in DIN6 expression between Col-0 and kin10-2 in average 

data of three biological replicates though the trend of reduced DIN6 expression was 

observed in individual experiment. All experiments were repeated three times to 

reproduce results to obtain better validation but I found average results of three 

biological replicates did not give statistically significant results. In many instances 

the reduced gene expression was clear in each individual experiment though the 

average values were not statistically significant. Due to high sample variability at 

each occurrence dependence on the P value to determine the significance of results is 

not always accurate (Halsey et al., 2015, Mobley et al., 2013) as explained early in 

this chapter. Averaging of gene expression data from three biological replicates was 

extremely difficult as the relative levels of gene expression varied sometimes 

thousand folds in one replicate compared to the other biological repeat. Therefore 

interpreting results totally based on P value is misleading and I considered the trend 

along with P value to report results on transcriptional data in these experiments. I 

used DCMU treatments to study if the level of DIN6 upregulation would be more 

consistent between experiments than darkness due to its direct involvement by 

interrupting the photosynthetic electron transport chain in photosynthesis, However 

in this study I could not observe consistent data with less reproducibility. 

Surprisingly, though UV-C induced PR1 gene expression was up-regulated in kin10-

2 compared to Col-0 no consistent pattern of gene expression was observed in all 

three biological replicates with highly different transcriptional regulation observed in 

control of pathogenesis-related target genes by KIN10. Therefore results indicate that 

PR1 is not a target of KIN10 though PR1 is a target of SFR6. This is one of the 
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 notable deviations of KIN10 target gene that I observed in these experiments which 

was totally contradictory to the behaviour of SFR6/MED16 on pathogenesis-related 

gene expression. 

I used only one kin10 mutant allele in this study as Akin10-1 mutant did not produce 

consistent results in repeat experiments, which might have been due to a conditional 

aspect of the insertional mutation; therefore KIN10 complemented lines were created 

in the kin10-2 mutant background. DIN6 and KIN2 gene expression experiments with 

four complemented lines showed restoration of the wild type gene expression 

phenotype (see section 5.2.2.1 and 5.2.2.2). 

Therefore with the findings of this study I can conclude that KIN10 affects the 

expression of some of the same target genes as in SFR6/MED16 under different 

stress conditions and could see similar transcriptional regulation under some but not 

under all stress conditions. Furthermore, the desiccation/drought gene expression 

phenotype is more prominent compared to well-studied dark gene expression 

phenotype so far in the level of whole plant. Summary of the transcriptional 

responses that MED16/SFR6 and KIN10 regulates under different stress conditions 

is given in the Figure 6.1. 
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Figure 6.1: Summary of the transcriptional responses under different stress 
conditions. This diagram shows different stress conditions studied in this research 
work that require MED16/SFR6 and/or KIN10 in order to elicit changes in gene 
expression and tolerance. Promoter elements are shown where known.  Dotted lines 
between MED16 and KIN10 represents that they might act together under certain 
stress conditions. Yellow colour arrows represent the stress conditions where 

MED16/SFR6 is involved and green colour represent the stress conditions where the 
involvement of KIN10 is known. Question marks in boxes represent the unknown TF as well    
as binding elements under certain stress conditions.
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6.3.2 Involvement of MED16 domains in interaction with KIN10 and evidence 

that KIN10 and MED16/SFR6 act on the same pathway to regulate dark and 

drought gene expression  

Observing similar defects in transcriptional regulation in mutants of both 

SFR6/MED16 and KIN10 together with the fact that some Mediator tail subunits i.e 

Med14 (Rgr1) interact with Snf1 (Young et al., 2009) and Med16 interacts with Snf1 

(Kuchin et al., 2000) in yeast assumption was made that plant Mediator tail subunit 

SFR6/MED16 could interacts with KIN10. The pull down experiments with GFP  

tagged full length and truncated SFR6 proteins suggested that some of the SFR6 

truncations might interact with KIN10. This further agree with the preliminary 

studies carried out using yeast-two-hybrid in the lab found that KIN10 as an 

interactor of SFR6 and that interaction was confirmed by Co-IP (Hemsley and 

Knight unpublished) with full length SFR6. Moreover present study provides further 

information about the regions that are more likely to interact with KIN10. 

 The experiments provided evidence that three of the constructs, including full length 

SFR6, were able to interact with KIN10: SF14, SF15 and SF16 could interact with 

KIN10 showing the necessity of the N-terminal part of SFR6 to make interactions 

with KIN10 whereas SF36 was unable to keep that interaction, likely due to lack of 

633aa from the N-terminus of the protein. Moreover these results make the argument 

that the C-terminus (about 396 amino acids) is not important in making interaction 

with KIN10 although it has Zn figure domain as well as many of plant specific SSM 

regions towards the C-terminus.  

When studying the SFR6-KIN10 interaction the next question that arises is that of 

which type of interaction that SF truncations might have with KIN10. This could 

purely be a physical interaction or result of a phosphorylation event. Considering the 
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SMART (Simple Modular Architecture Research Tool) domains as well as potential 

phosphorylation sites in SFR6 suggests that five phosphorylation sites and two 

protein binding domains located in the SFR6 protein (see Figure 6.1). Out of five 

potential phosphorylation sites, two are located in the domains of 100-110aa and 

300-310 aa that are located between SF1 and SF3 region of the truncations whereas 

the other three are located within the region of SF3-SF4 (600-610aa, 650-670aa and 

890-910 aa). Moreover the predicted SUMO site (ASHAASAGTG) is located in the  

region of 830-850 aa (see Figure 4.1b). Two protein binding domains are located in 

the regions of SSM5 and SSM22. SF15 and SF16 cover all 5 phosphorylation sites, 

the SUMO site as well as two protein binding domains, however, SF14, which 

demonstrated the KIN10 interaction, lacks the 5th phosphorylation site as well as the 

second protein binding domain that is located within the SSM22. With this evidence 

I could suggest that 5th phosphorylation site and protein binding domain in SSM22 

are less important compared other sites. The SF36 truncation that did not produce 

interaction with KIN10 in three consecutive experiments includes the last three 

phosphorylation sites out of five, the SUMO site as well as one of two protein 

binding domains. This result indicates that first two phosphorylation sites and first 

protein binding domain are more important over others as I observed same results for 

the interaction of SF36 with KIN10. However this might not be the sole reason but 

some other special features within the first 525aa region collectively cause the 

impact on having interaction between SF truncations that consists of N-terminus of 

the protein and KIN10. 

Previous reports on transcriptional as well as proteomic work in yeast recorded that 

mediator subunits of MED1, MED2, MED4, MED5, MED6, MED13, MED14 , 

MED15 and MED17 (Chang et al., 2004, Guidi et al., 2004, Hallberg et al., 2004, 
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Liu et al., 2004, Miller et al., 2012, Soufi et al., 2009, Albuquerque et al., 2013, Li et 

al., 2007, Gruhler et al., 2005) are phosphorylated and for some, phosphorylation 

influenced their function (Chang et al., 2004, Guidi et al., 2004, Hallberg et al., 2004, 

Liu et al., 2004, Miller et al., 2012). The majority of these phosphorylated subunits 

are located either in tail or middle subunits in the mediator complex. Therefore, there 

is a good chance for MED16 to be phosphorylated by KIN10 and might cause 

activation of different transcriptional responses. 

Young-Hee Cho et al. (2012) demonstrated not only Arabidopsis SnRK1 (Bitria´n et 

al., 2011) but also rice SnRK1 regulates gene activity and induced the activity of the 

DIN6 promoter and responded to hypoxia in a manner similar to Arabidopsis. And 

they speculate that under submergence conditions, (the main stress they studied) the 

protein kinases associated with target gene chromatin in the protein complexes that 

recruited specific DNA-binding partners i.e transcription factors. Moreover they 

conducted experiments to validate the Protein Kinase (PKs) function in gene 

regulation, by using inactive forms of SnRK1s as ATP binding site-mutated PKs 

(OsSnRK1 and KIN10) and as catalytically inactive PKs (OsSnRK1 and KIN10) in 

which  phosphorylation of all types of SnRK1s was detected but none of the mutant 

kinases was able to activate the DIN6-LUC reporter, suggesting that intact PK 

activities of OsSnRK1 and KIN10 are essential for gene regulation. Therefore as 

DIN6 is one of the target genes of both SFR6 and KIN10 and I might speculate that 

same phosphorylation event might happen. Therefore highly conserved protein 

kinase in plants (SnRK1/KIN10) has high possibility to interact with SFR6 and in 

this study it further confirms that particular domains are more important when 

making interactions between KIN10 and SFR6. 
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Separate set of experiments were carried out to test that KIN10 and MED16/SFR6 

act on the same pathway to regulate dark and drought gene expression using double 

mutant of sfr6-1 and kin10-2 and over-expression lines of KIN10 in both Col-0 and 

sfr6-1 backgrounds. I created three lines of sfr6kin10-2 double mutants and only dark 

and drought gene expression experiments were conducted with double mutant lines 

as these were the two conditions that showed the most notable differences in stress 

gene expression between wild type plants and the kin10-2 single mutant. I observed 

 reduced level of both DIN6 and KIN2 expression in 3 lines of double-loss-of-

function mutants similar to the level of that in sfr6-1 mutant which was the severely 

affected loss-of-function mutant compared to kin10-2. Therefore results of these 

experiments showed that there was no additive effect due to loss of both SFR6 and 

KIN10, indicating these two proteins act on same pathway to regulate stress gene 

expression. Furthermore, drought tolerance and dark-induced starvation tolerance 

results presented in 5.2.3.4 and 5.3.3.4 sections also indicated that double mutants 

were affected similarly to the sfr6-1 single mutant. The reduced level of drought 

tolerance (measured by survival) in sfr6-1 and double mutant lines was not as 

pronounced as the reduction in drought/desiccation-induced KIN2 expression in these 

lines, indicating that many genes might be involved in control of drought tolerance 

other than COR genes. However, the starvation tolerance phenotype seen in the 

mutants was more significant than the dark gene expression phenotype. 

The second strategy that I used to study whether SFR6 and KIN10 and act on same 

pathway to regulate stress genes targeted by both SFR6 and KIN10 was use of 

KIN10 over-expression lines in Col-0 and sfr6-1 backgrounds. Baena-Gonzalez et al. 

(2007) showed that protoplasts of wild type plants over-expressing KIN10 exhibit 

higher levels of stress gene expression compared to wild type (i.e dark induced genes 
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like DIN3 and DIN6) even in the absence of stress. I examined the behaviour of sfr6-

1 mutants which over-expressed KIN10 to study whether they could highly express 

these stress genes even without the stress. If the expression of stress genes were to be 

elevated, as in wild type, it would suggest that SFR6 does not help to perform the 

function of KIN10. If the overexpression of KIN10 has no effect in sfr6-1 mutants, 

this might signify that SFR6 is essential for KIN10 to perform its functions and it  

gives an indication further to the evidence from double loss-of-function mutants 

described above, that SFR6 and KIN10 act together on same pathway leading to 

control of stress gene expression. 

Four out of five wild type lines overexpressing KIN10 showed higher levels of DIN6 

expression in unstressed plants and all five lines gave high level of BCAT2 

expression. Conversely, none of three sfr6 mutant lines overexpressing KIN10 

showed elevated levels of DIN6, BCAT or KIN2 compared to their untransformed 

counterparts in three replicate experiments. Consistent with previously reported 

results on KIN2 expression in single and double mutants of KIN10, here KIN10 

over-expression lines also showed significantly high levels of KIN2 expression in 

untreated plants of wild type lines and highly reduced level of KIN2 in all three lines 

of sfr6-1 mutant lines overexpressing KIN10. Expression levels of all three genes 

tested in these experiments is evidence that there was no effect of overexpressing 

KIN10 in sfr6-1 mutant plants on KIN10 target genes as seen in Col-0 plants, giving 

a clear indication that for KIN10 to activate target genes, SFR6 is a requirement. 

Therefore, I demonstrated that SFR6 is important for the activation of target genes by 

KIN10 and acting both SFR6 and KIN10 in same regulatory pathway to control 

stress genes specially under dark and drought induced stresses. 
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Jossier et al. (2009) reported that plants over-expressing SnRK1/KIN10 exhibited a 

hypersensitive phenotype post-germination when supplemented with ABA but not at 

the seed germination stage. However, they did not report on the level of ABA-

responsive gene expression in the mutant background. In the present study, I tested 

the gene expression response of kin10-2 plants supplemented with ABA but was 

unable to observe differences in the gene expression phenotype compared to Col-0 

(see section 5.2.1.2.3). In addition to DIN6, KIN2 gene expression was tested in 

response to cold, drought/desiccation and ABA and I could see absolutely different 

expression trends in kin10-2 mutants compared to wild type. kin10-2 exhibited 

significantly reduced KIN2 gene expression under drought/desiccation, no apparent 

effect of cold induced KIN2 and no any effect of ABA induced KIN2 expression at 

all. Regulation of KIN10 in ABA responses was reported by Jossier et al. (2009) but 

I could not observe any effects of KIN10 in response to ABA. 

The only plant mediator subunit reported so far that has been shown to interact with 

KIN10 is CDKE1 (CDK8) in Arabidopsis (Ng et al. (2013). CDK8/CDKE1 is a 

subunit in mediator kinase module which was earlier known as being implicated in 

floral organ identity (Wang and Chen, 2004). Gonzalez et al. (2007) revealed 

interaction of CDK8 with Leunig (a transcription co-repressor interacts with 

HISTONE DEACETYLASE19) a regulator of JA-dependent defence responses, as 

well as MED14. Ng et al. (2013) recently demonstrated that CDK8 regulates 

mitochondrial retrograde signalling (arising due to reactive oxygen species in 

mitochondria or plastids and altering/modifying nuclear gene expression) in response 

to H2O2 and cold stress. In their screening they identified Regulator of Alternative 

Oxidase1, a mutant (rao1) as restrograde signalling component and later found it was 

a mutation in the CDK8/CKDE1, one of the mediator subunits. Furthermore, they 
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demonstrated that KIN10 interacts with RAO1 and is transported to the nucleus. 

Furthermore, the gene expression profile studied for rao1 plants under AA 

treatments (Antimycine A– potent inhibitor of the mitochondrial respiration binds to 

the quinol reduction site of cytochrome complex) showed significant overlap with 

expression profile for the KIN10 gene targets and one of those targets was DIN6.  

These data provide evidence that KIN10 interacts the Mediator complex and suggest 

the possibility that, as in yeast, KIN10 and might interact with other different sites in 

the mediator. Linking that MED14 in yeasts interacts with SNF1 (Young et al., 2009) 

to plant that KIN10 might interact with MED14 perhaps referring to the fact that 

KIN10 interact with CDK8 (Ng et al., 2013). Based on the results I reported under 

this section prove that KIN10 and SFR6 act on the same pathway leading to stress gene 

expression. 

6.3.3 The altered visible phenotype observed in Col-0 by KIN10 overexpression 

is affected in the sfr6-1 background 

Baena-Gonzalez et al. (2007) reported their attempt to study long term effects of 

KIN10 at the whole-plant level using transgenic lines overexpressing KIN10 and 

kin10 loss-of –function mutants. Observations were made on root growth of above 

lines and reported that KIN10 over-expression lines displayed some advantages in 

primary root growth and development under low light and limited energy supply 

(Baena-Gonzalez et al., 2007). With exogenous energy supply (sucrose) they 

observed reduced root and shoot growth in KIN10 over-expression lines and 

suggested KIN10 repression of biosynthetic activities in plants. However KIN10 

silenced lines (loss-of–function) exhibited enhanced root and shoot growth by 

utilizing exogenously supplied sucrose. Furthermore, they observed increased 
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accumulation of anthocyanin in Col-0 and kin10 mutants when sucrose levels were 

increased to 3% but not in KIN10 overexpression lines, suggesting that the 

repression effects of KIN10 overexpression (Baena-Gonzalez et al., 2007). 

Furthermore, they reported enhanced starvation tolerance in KIN10 overexpression 

lines through promotion of plant survival whereas wild type seedlings underwent 

rapid senescence particularly under no exogenous glucose supply and light limiting 

conditions where photosynthesis is affected (Baena-Gonzalez et al., 2007). All above 

data evidence that KIN10 plays a wide role in vegetative and reproductive growth 

that is important in developmental transition in plants. 

Interestingly the same study reported changes in KIN10 overexpression lines grown 

in soil, especially discovering a new role of KIN10 in determining plant shape and 

developmental transition in Arabidopsis. KIN10 overexpression lines exhibited 

altered inflorescence architecture and delayed flowering and onset of senescence 

under long day conditions (20 h light/ 4 h dark) (Baena-Gonzalez et al., 2007).  I 

studied the flowering phenotype of KIN10 overexpression lines created during this 

study in both Col-0 and sfr6-1 backgrounds and made similar observations as those 

reported by Baena-Gonzalez et al. (2007) in KIN10 overexpression lines of Col-0 

(see section 5.2.6). In the current study KIN10 overexpression lines in Col-0 

background exhibited significantly short inflorescences and no branching compared 

to Col-0 and kin10-1. The results were consistent with all four lines of KIN10 over-

expressers used in the study and I did not observe any defect in vegetative growth of 

plants. 

The flowering phenotype of KIN10 overexpressers in sfr6-1 was monitored in the 

present study and I observed different phenotypic characteristics compared to wild 

type KIN10 over-expressers. None of the plants representing three lines of KIN10 
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overexpressers in sfr6-1 background exhibited flowering at the same time point (25 

days-old in soil) as seen in Col-0 background. sfr6-1 is a known mutant that exhibits 

delayed flowering (Knight et al., 2008) and I observed  similar characteristic of 

untransformed sfr6-1 in KIN10 overexpressing in sfr6-1 mutant background. Due to 

 that I could not look for the other effects of overexpression such as effects on root 

branching, inflorescence etc. though I designed this experiment to test whether 

KIN10 had any additional effects. The failure to demonstrate at least similar 

flowering effects as observed in KIN10 over-expressing lines in Col-0 suggests that 

lack of SFR6 prevents the role of over-expressing KIN10 providing further evidence 

that the necessity of SFR6 to activate different signalling pathways by KIN10. 

 

6.4 Exploring the function of SFR6/MED16 protein domains 

The Mediator complex was first identified and purified from yeast (Saccharomyces 

cerevisiae) (Kim et al., 1994) which is required for reconstitute the activation of 

RNA polymerase II transcription. Morphological and biochemical studies on yeast 

mediator suggested that complex is consisted with 25 subunits and  grouped in to 

four modules, name as the head, middle, tail and kinase modules (Guglielmi et al., 

2004, Dotson et al., 2000). Studies based on electron microscopy and reconstitution 

experiments led to identify different subunits under each mediator module/domain. 

The Mediator complex was biochemically identified in several species across 

eukaryotes including yeast, mammals, metazoans, insects and worms (Kim et al., 

1994, Thompson et al., 1993, Fondell et al., 1996, Sato et al., 2003, Malik and 

Roeder, 2000, Park et al., 2001, Kwon et al., 1999). Limited homology of Mediator 

complex have been identified among these eukaryotes and the presence of the 
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complex in plants was suggested based on these sequence homologies (Autran et al., 

2002, Clay and Nelson, 2005, Gonzalez et al., 2007). 

Sequence signature motifs (SSM) were identified by (Bourbon, 2008) based on  

regions previously defined as conserved protein domains from systematic database 

searches and he stated that only a few residues in most SSMs have remained 

unchanged during evolution. Therefore  this divergence is in keeping with the low 

conservation of most MED proteins and defined SSMs were distributed throughout 

the primary sequences of most of the med proteins except in Med15 (Bourbon, 

2008). Many of the SSMs were included within the regions delineated as inter 

subunit interaction domains and some others are involved in functional connections 

with Pol II or general transcription factors (Bourbon, 2008, Myers et al., 1998, 

Robinson et al., 2015). Yeast MED16 consists of 27 SSM regions where seven WD 

repeats are located in the N-terminal half and there is a C-terminal C2-C2 zinc finger 

(ZF) motif (Bourbon, 2008, Robinson et al., 2015). The WD repeats correspond to 

distinguishable domains identified in many functionally distinct proteins (See Figure 

6.1). Moreover, within the region of the last 295 aa in between the middle and the 

conserved zinc finger domain of MED16 is consists of plant specific amino acid 

sequences. Therefore either SSM regions or plant specific region might be 

responsible for particular functions of MED16 i.e TF binding. 

 

6.4.1 Transiently expressed truncated versions of SFR6/MED16 localise to the nucleus  

Six different in-frame fusions of truncated versions of SFR6/MED16 with N-

terminal GFP were tested for their ability to localise to the nucleus in transiently 

expressing in tobacco. GFP fluorescence, which was observed using confocal laser 



                                                                                                                       Chapter 6 

288 

 

scanning microscope, confirmed that all six constructs were localised to the nucleus 

(see section 4.2.2). However, the distribution of the expression of GFP fluorescence 

in cells was different for each fusion when compared with GFP tagged GUS protein  

(35S::GUS::GFP), the cytosolic control for this experiment, which showed mostly 

cytosolic localisation. Therefore to compare different fusions, mean fluorescence 

levels (unit as grey values) in the Region of Interests (ROI) within the nucleus and 

cytoplasm was analysed and fluorescence ratio between nucleus (ROI nucleus) and 

cytoplasm (ROI cytoplasm) was compared between fusions. The highest expression 

ratio was observed in leaves expressing 35S::SF16, encoding the full length SFR6 

protein, which has been shown previously to be nuclear targeted (Knight et al., 

2009). In leaves expressing SF36 reported the second highest ratio, which lacks the 

N terminal third of the SFR6 protein where as the other four constructs showed lower 

average ratios of fluorescence expression compared to SF16 and SF36 but higher 

than the 35S::GFP::GUS, the cytosolic control used in this experiment. This provides 

evidence that C-terminus of the SFR6 protein is much essential compared to the N-

terminus for directing of proteins to the nucleus. 

The potential nuclear localisation signals (NLS) within the SFR6 protein using 

NUCPred program (https://www.sbc.su.se/~maccallr/nucpred/) with the amino acid 

sequence of GFP tagged full length SFR6 protein predicted that the strongest nuclear 

localisation motif is located towards the end of C-terminus of the protein at the 

location of 1172-1184 aa of SFR6/MED16 (see section 4.2.2). However, I observed 

all truncated fragments were targeted the nucleus including truncations such as SF15, 

SF14, SF25 and SF24 which lack of above positions of the a.a. in C-terminus of the 

protein. This finding is contradictory to the predicted nuclear localisation signal 

using NUCPred program that indicated the nuclear localising signal is in the C-



                                                                                                                       Chapter 6 

289 

 

terminus of the protein. Therefore it suggests that some other factor might 

responsible apart from NLS that helps protein to go to the nucleus. Possibly these  

truncated fragments could pass through the nuclear membranes through the process 

of diffusion. However Young-Hee Cho et al. (2012) reported that a protein of 

approximately 84.5 kD in size localised the nucleus even without nuclear import 

signal.  

6.4.2 Role of MED16 domains in defining visible phenotypes; flowering and 

green colour restoration 

Experiments were conducted to study the ability of SF truncations to complement 

some or all of phenotypes such as visible yellow phenotype of sfr6-1 and flowering 

(Knight et al., 2008).  Crossing of sfr6-1 mutants with Col-0 plants that 

overexpressed SF constructs were used to obtain SF constructs to sfr6-1 background 

due to no successful direct transformation of sfr6-1 mutants with SF constructs. The 

reason might be the poor flowering ability of sfr6-1 mutants (Knight et al., 1999) and 

other associated malfunctions of the mutant. 

First, the level of SFR6 transcript expression in F3 lines homozygous for the sfr6-1 

mutation was tested in all transgenic lines compared to wild type, sfr6-1 mutant and 

three lines of sfr6-1 mutant complemented with AtSFR6 and sfr6-1+35S::GUS 

(GUS, as control for the presence of SFR6). Levels of total SFR6 expression (native 

and transgene) in all five lines of sfr6-1expressing either 35S::SF14 or 35S::SF15 

were higher (ten-fold higher except in one line) than in wild type (see section 4.2.4). 

Expression levels of SFR6 in all lines of sfr6-1 expressing either 35S::SF16 or 

35S::SF36 were low compared to the level of transgene expression for other 

constructs. Due to the observed low expression of SFR6 in these lines, the level of 
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the SFR6 transgene (rather than total SFR6) expression in F3 plants was analysed for 

comparison. (As the sfr6-1 mutant differs only by a SNP normal levels of SFR6 

transcript are likely to be observed in mutant plants whereas measurement of the  

transgene specifically will not detect these transcripts). Transgene expression in F3 

appeared higher compared to SFR6 expression in both these constructs but transgene 

expression in six lines of sfr6-1+35S::SF16 was relatively low compared to the levels 

observed for other constructs. It is hard to understand the inconsistency of expression 

in these transformed lines but it seems most probable that there is little or no 

transgene expression in the SF16 lines (see Table 4.1). However, I can conclude that 

one of the two methods of measuring transcript is not working properly. Either the 

SFR6 primers are failing to pick up the transgenic SFR6 or the transgene primers are 

detecting something that is not the real transgene. 

Selected homozygous lines for the sfr6-1 mutation that overexpressed SF16, SF15, 

SF14 and SF36 truncations were tested for their ability to complement the visible 

pale leaf and cotyledon phenotype. This is a prominent phenotypic characteristic of 

sfr6-1 that shows pale green colour compared to Col-0 during early stages of 

seedlings with bigger cotyledons (Knight et al., 2009). Percentage of green colour 

restoration was calculated by scoring individual seedlings as yellow or green. One 

line out of five in sfr6-1+35S::SF14 (SF14) was restored to a green colour partially 

but others remained pale in colour. In sfr6-1+35S::SF15 (SF15), one line is 

completely restored to green colour while the other four lines remained partial 

restoration of green colour (see Table 6.1). 

Out of two lines of sfr6-1+35S::SF36 (SF36), one showed complete restoration of 

green colour while other one showed partial restoration. However in sfr6-

1+35S::SF16 (SF16) only two lines were showed complete restoration of green 
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colour and other two lines were remained similar colour as in sfr6-1. Though I 

intended to create fully complemented control lines of sfr6-1+35S::SF16 (SF16),  

which would be the perfect control for this experiment, it did not succeed. However, 

complete restoration of green colour in lines of genomic SFR6 (full length) was 

reported by Wathugala et al. (2011) and the difference compared to present study is 

the completed lines created using cDNA of SFR6 in a same vector with different 

antibiotic resistance (see Table 4.1). 

Along with green colour  restoration experiments flowering time phenotype of 

different lines of complemented truncations of SFR6 were studied as sfr6-1 mutant 

shows late flowering (Knight et al., 2008) compared to Col-0 (See section 4.2.4.2). In 

sfr6-1+35S::SF14 (SF14) line #7 showed fully complementation of flowering time 

phenotype but the other four lines showed late flowering where this was consistent 

with green colour restoration phenotype. Line #1 in sfr6-1+35S::SF15 (SF15) 

showed  similar flowering time phenotype as in Col-0 while #2, #3 and #4 showed 

partial complementation i.e early flowering compared to sfr6-1 but not a complete 

complementation of flowering time phenotype and these results are in consistent with 

green colour restoration phenotype of this construct. However line #4 in sfr6-

1+35S::SF15 (SF15) showed a similar flowering time phenotype as in sfr6-1 but in 

contrast  it showed partial complementation of visible phenotype. Line #A21 in sfr6-

1+35S::SF16 (SF16) showed complementation of flowering time phenotype as 

similar to green colour restoration but in contrast line#B7 not shown 

complementation of flowering time phenotype though it fully complemented the 

green colour restoration phenotype (see sections 4.2.4.1 and 4.2.4.2). SF16#B2 

remained similar to sfr6-1 mutant in both flowering time and visual appearance. The 
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other line, SF16#A31 showed no complementation of visual appearance at all but 

partial complementation of flowering time phenotype. These varying results of full  

length complemented SFR6 lines lead to difficulty in understanding the differences 

amongst lines, perhaps this might due to the differences in level of SFR6 transgene 

expression in the four independent lines. Line #B6 of sfr6-1+35S::SF36 (SF36) 

showed full complementation of flowering time phenotype as well as visual 

phenotype  but in #B25 partial complementation of visual but not flowering time 

phenotype. 

By considering all data for complementation of flowering time, at least one line from 

each truncation of SFR6 was recorded as full complementating the phenotype (Table 

4.1). But for the visual appearance (green colour restoration) except no any line in 

sfr6-1+35S::SF14 (SF14) but at least one line from other SFR6 truncations showed 

full complementation. This suggests that sequence of the common area of the SFR6 

protein for all the truncations might responsible for the regulation of flowering time 

in Arabidopsis. As no full complementation was observed in any of the lines in 

SF14, in the regulation of visible phenotype, the protein available in missing area of 

SF14 but present in all other three truncations i.e in the area representing the one 

third of the protein in C-terminus which covers SSM21 and SSM22 might 

responsible in Arabidopsis. 

 

6.4.3 Role of MED16 domains in Transcriptional activation under cold, drought, dark 

and UV stress conditions 

Stress gene complementation experiments conducted under cold, dark and UV stresses 

demonstrated that some lines in different SF truncated fragments showed varying degrees of 
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complementation of stress gene expression compared to sfr6-1. Out of the five lines tested 

for cold, dark and UV stresses, none of the SF14 lines showed full complementation of  

respective stress gene expression, although one line (SF14 line #7) showed partial 

complementation of all cold, dark and UV responsive gene expression compared to sfr6-1. 

This is the line showing full complementation of flowering time phenotype and partial 

complementation of visible appearance. Interestingly this line showed a low level of SFR6 

expression in F3. The lack of full complementation of stress gene expression under any of 

the stress conditions tested indicates the necessity of one third of the C-terminus of the 

protein (the section lacking in the SF14 truncation) for stress gene expression. This C-

terminus end consists of the putative nuclear targeting signal, Zn finger domain as well as 

eight SSM regions out of 28 defined by Bourbon (2008). Therefore some or all of these 

unique features of SFR6 might responsible for stress inducible gene expression. 

SF15 is the truncation which lacks zinc figure domain of SFR6 protein. SF15#1 

demonstrated fully complementation of cold and UV responsive gene expression but 

partial complementation of dark-responsive gene expression. SFR6 gene expression 

of the above line was the lowest compared to other four lines. In SF15 line #2 and #3 

showed nearly full complementation of dark inducible DIN6 gene expression but 

neither showed partial complementation of other stress-inducible gene expression. 

Line #5 in SF15 showed partial complementation of dark and UV inducible gene 

expression while #4 of SF15 possessed partial complementation of UV gene 

expression only. 

When the complementation of stress inducible gene expression in SF15 is 

summarised, at least one or maximally two lines showed fully complementation of 

stress inducible gene expression. These lines show varying levels of SFR6 expression 

ranging low to high and no consistent pattern observed (see Table 4.1). Moreover 

this indicates that the SF15 truncation has ability to fully complement stress 
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inducible gene expression though it lacks of Zn finger domain as well as last four 

SSM regions in its structure. 

Out of two lines of SF36 tested, one (#B6) showed full complementation of cold- and 

dark-inducible gene expression but only partial complementation of UV-inducible 

gene expression. Line #B25 showed partial complementation of cold and dark gene 

expression but no UV-inducible gene expression (see Table 4.1). Levels of SFR6 

expression in the F3 generation of #B25 were lower than in #B6 and this might be 

the reason for not observing a complementation effect on stress-inducible gene 

expression in this line. Furthermore #B6 demonstrates full complementation of 

flowering time as well as visible phenotype apart from above stress gene 

complementation thereby shown the importance of this truncation in many of the 

characteristics studied. SF36 is the truncation which lacks one third of the protein 

from the N-terminus as well as nearly 11 SSM regions. However this truncation is 

consists of both zinc finger and nuclear targeting signal. 

Most of the lines that showed the full complementation exhibited a low level of 

SFR6 expression Therefore I would argue that ability of complementation is 

connected to their level of SFR6 expression. The ones that express less might be the 

ones that “work” well. I could suggest that neither very high level nor very low level 

of expression might affect the actual expression of genes that responsible for the 

better functioning of the plants. This could be a valid reason that very high 

expression of transgenes or expression of multiple copies (which can happen with 

basta resistance and floral dip method) can cause expression to be switched off 

(silenced). 

SF16 is the full length of SFR6 protein that would be expected to achieve full 

complementation of sfr6-1. Unfortunately none of the lines showed full 
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complementation of stress inducible gene expression (see Table 6.1). One of the 

main reasons that I could understand is the level of SFR6 gene expression in all these 

lines was not higher than in untransformed Col-0 though they were appeared to 

express considerable levels of transgene in F3 generation. Unlike under the control of 

native promoter, all lines were under the control of 35S promoter that constitutively 

overexpressed each truncation and therefore it should express higher levels of 

transgene than recorded in each transgenic line. This might be a reason that none of 

SF16 lines showed the complementation or too high a level of expression occurred 

with this method (35S) might cause a dominant negative phenotype. 

As it should express the same level at all the time under the control of 35S promoter, 

if the level of transgene expression was not sufficient to complement stress gene 

expression, it would be questionable how they managed to complement flowering 

time and green colour phenotype. Another possible explanation is that the lines 

shown green was not actually due to restoration but it might be wild type plants. 

However, this argument can simply be ignored as no normal KIN2 expression was 

observed in those lines; they exhibited low levels of KIN2 expression typical of the 

mutant. Finally I can suggest that though it is hard to believe, it is theoretically 

possible that a mutated version of the SFR6 transcript is present in these lines and 

this encodes a protein that can help with the green colour (or basically iron uptake) 

and flowering time but not any of the other functions in stress gene expression such 

as cold, dark and UV.   

The other possible reason for not showing complementation effect in SF16 is due to 

a mistake that could have taken place while creating the SF16 construct. However I 

have fully sequenced the construct and performed all possible screening to ensure 

there were no errors but it is a possibility that there were errors that were not picked 
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up by sequencing. However, data evidence that transcript for SFR6 appears to be 

there but this does not do any role therefore it might be a faulty one. 

Contradictory to the above argument I can suggest that, more likely that in these 

particular segregating lines the transgene is not present or it is present but doesn’t 

produce transcript. All transgenic lines were sequenced to confirm they are 

homozygous sfr6 but not heterozygotes so that I could avoid suggesting this 

possibility as a reason for showing the complementation effects. Although I did not 

compare wild type SF16 lines and sfr6 SF16 lines side by side, wild type SF16 lines 

seemed to show very high SFR6 expression (hundred folds) but the sfr6 lines were 

much lower . This supports the idea that something happened wrong in the 

generations in between. The two main things that could go wrong are that the wrong 

segregants were identified in the F3 generation or that the gene was silenced. This 

also suggests that there may be nothing at all wrong with the construct as it expressed 

well in wild type. 

Wathugala et al. (2012) reported that full length lines of genomic SFR6 shown full 

complementation of cold inducible gene expression. The differences between above 

genomic SFR6 complemented lines with SF16 is that SF16 was created with cDNA 

in a basta resistance vector background instead of kanamycin resistant background in 

genomic version. This kanamycin selection might less prone to multiple insertions of 

the transgene than in basta selection. If, as I suggest above, there is a dominant 

negative effect in SF16 transgenic lines due to overexpression of transgene we must 

question why it does not happen with the genomic full length complemented lines 

created by Wathugala et al. (2012). 

Kim et al. (2004) reported the use of protein truncations of MED16 in Drosophila to 

study interactions with protein activators. In the above study MED16 was expressed 
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as three overlapping fragments covering 1-333aa, 175-524aa and 377-818aa and used 

to study their interactions with activator proteins, which were analysed 

systematically by GST pull-down assays. They found that only one of them 

interacted with the activator protein.  Therefore this study is little similar to the study 

that I have attempted and agree that some truncations are able to work but not all. 

Furthermore transcription factors need to be bound to the truncated fragments of 

SFR6 in order to activate stress responsive gene expression. Therefore depending on 

the availability of transcription factor binding sites/domains in the truncations of 

SFR6, the ability of stress gene expression might be changed. One of the mediator 

subunits, MED25, was shown to be interact with many transcription factors (Çevik et 

al., 2012, Blomberg et al., 2012, Ou et al., 2011, Chen et al., 2012b) in control of 

different transcriptional regulons and Çevik et al. (2012) reported about twelve 

different transcription factors that interact with MED25. Therefore there might be a 

possibility that all the transcription factor binding sites are in the same region or 

perhaps in different regions and that might cause the differences of truncations in 

complementation experiments. 

When summarise the data regarding the regions that important in stress gene 

regulation as detailed in Table 4.1. I can state that SF15 is important in all stress-

induced gene expression i.e under cold, dark and UV conditions where as SF36 is 

important in cold and dark-induced gene expression but not under UV-induced stress 

conditions as atleast one line from above two truncations were able to demonstrate 

full complementation of genes responsible under each stress condition. Either SF16 

or SF14 were not able to show full complementation of stress-inducible genes under 

cold, dark or UV stress conditions (Table 4.1). Therefore I can speculate that the 

region covers by SF15 might consist of most of the unique binding sites or it might 
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be necessary for the proteins to fold in a way that it can bind the transcription factors. 

Further this region is consists of 23 SSM regions out of 27 SSM regions as suggested 

by Bourbon (2008). Moreover I can suggest that last four SSM regions might not the 

unique sites for transcription factor binding or protein folding sites that facilitate 

transcription factors to bind.  
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Chapter 7 

Conclusions and Future Work 

 

7.1 Major findings of this research project  

 

Major findings of this study can be summarised as stated below: 

 

1. MED2 and MED14 subunits are required for cold acclimation that leads to 

acquire freezing tolerance in a similar way as seen in SFR6/MED16. 

 

2. SFR6/MED16 shares roles under drought and UV-C in both transcriptional 

regulation as well as abiotic tress tolerance with the predicted tail subunits MED2 

and MED14 in addition to earlier studied cold and starvation induced stress 

conditions. 

3. KIN10 controls the expression of a subset of stress-inducible genes controlled 

by SFR6/MED16, particularly drought- and starvation-induced genes but not under 

all stress conditions. Furthermore, the desiccation/drought gene expression 

phenotype is more dominant compared to well-studied dark gene expression 

phenotype in the level of whole plant. 

4. KIN10 and MED16/SFR6 act on the same pathway to regulate dark and 

drought gene expression. 

5. Transiently expressed six truncated versions of SFR6/MED16 have ability to 

localize the nucleus irrespective to the presence of nuclear localisation signal as predicted by 
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the NUCPred programme but nuclear localisation signal might be locate in the middle part of 

the protein that common to all the truncations.  

6. SFR6 truncation which lack of zinc finger domain i.e SF15 truncation did not result 

in any loss of ability to transcribe genes in response to cold, dark and UV-C induced stress 

gene expression, flowering time as well as visible phenotype. However, no full 

complementation of stress gene expression in SF14 truncations indicates the necessity of one 

third of the C-terminus end of the protein for stress gene expression. 

7. The truncation which lacks one third of the protein from the N-terminus i.e SF36 

truncation tested shown full complementation of cold and dark inducible gene expression but 

partial complementation of UV inducible gene expression. 

8. SFR6/MED16 domains of SF14; lacks one third of the C-terminus end of the 

protein, SF1; lacks zinc finger domain and SF16; full length interacts with KIN10 

indicating the important role of N-terminus end of SFR6 protein in this interactions. 

7.2 Future Work 

1. Further studies on confirmation of interactions between SFR6 

truncations and KIN10  

In this current study only Co-immuno precipitation experiments were conducted to 

identify the domains that interact with KIN10 and yeast two-hybrid experiments or 

any other relevant method need to be carried out to further confirm the interactions 

between SFR6 domains and KIN10. 

2. Microarray analyses are need to identify all the other genes that 

areupregulated under dark and drought conditions  
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Conducting microarray analysis by comparing samples from dark and drought 

treated sfr6-1 and kin10-2 mutants will help to study the extent of sharing roles of 

SFR6 and KIN10 as well as lead to identification of transcription factors that 

involved in drought and dark conditions through SFR6. 

 

3. Further characterization of functions of full length complemented lines 

of SFR6 

It is necessary to reanalyse the level of expression of SFR6 in same lines or other 

existing lines that were not used in the analysis. If any successful lines which express 

good levels of SFR6 can be used in stress gene complementation experiments. 
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Appendix 1 

Media and Solutions 

 

A1.1 10x TBE buffer 

9.3 g EDTA 

55 g Boric acid 

108 g Tris base 

Dissolved in 1 L of distilled water 

A1.2 10 x Blue DNA sample loading buffer 

 0.025 g Xylene cyanol 

0.025 g Bromophenol blue 

1.25 ml 10 % SDS 

1.25 ml Glycerol 

Dissolve in 6.25 ml of distilled water 

A1.3 1xTE buffer 

Add the following to 990 ml distilled water 

400 µl 0.25 M EDTA 

10 ml 1M Tris-HCl (pH 8.0) 

A1.4 Edwards’ extraction buffer 

1 ml 1M Tris-HCl (pH 7.5) 

0.25 ml 0.5 M EDTA (pH 8.0) 

1.5 ml 1 M NaCl 

0.25 ml 10 % SDS 

Add 2.25 ml to make up to 5 ml 

A1.5  STET buffer 

4.0 g Sucrose 

2.5 ml of Triton X-100 

200 µl of 0.25 M EDTA 
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2.5 ml of 1 M Tris-HCl 

50 µl of 20 % Sodium Azide 

Dissolved in 50 ml of water 

A1.6  TER buffer 

Add RNAse A to 1×TE to a concentration of 10 µg/ml 

A1.7  Protein extraction buffer 

150 mM Tris-HCl pH 7.5 

150 mM NaCl 

10% Glycerol 

10 mM EDTA 

1 mM Sodium molybdate 

1 mM NaF 

Freshly add 10 mM DTT; 0.5% (w/v) PVPP; 1% (v/v) protease inhibitor 

cocktail (Sigma); 1% (v/v) NP-40 

A1.8  2x SDS gel loading buffer 

0.125 M Tris-HCl pH 6.8 

4% SDS 

10%  β-Mercaptoethanol 

20% Glycerol 

20 mg Bromophenol blue 

A1.9 Resolving/Separating Buffer 

 1.5 M Tris-HCl pH 8.8 

 0.384% SDS 

A1.10   Resolving/Separating gel (one gel) 

 3.33 ml of 30% Acrylamide 
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 2.6 ml of Resolving buffer 

4.1 ml distilled water 

100 µl 10% Ammonium persulphate (APS) 

10 µl of TEMED  

A1.11  Stacking Buffer 

 0.5 M Tris-HCl pH 6.8 

 0.4%  SDS 

A1.12 Stacking Gel 

0.65 ml of 30% Acrylamide 

 1.25 ml of Stacking buffer 

3  ml distilled water 

25 µl 10% Ammonium persulphate (APS) 

5 µl of TEMED 

A1.13  10x SDS Running buffer 

0.25 M Tris-HCl  

 1.92 M Glycine 

1% SDS 

1 L distilled water 

A1.14  Cold Transfer Buffer (2 L) 

 10 mM NaHCO3 

 3 mM Na2CO3 

 

A1.15  20% Methanol based transfer buffer  (1 L) 

3 g Tris base  

 14.5 g Glycine 
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200 ml Methanol 

0.3 ml Conc. HCL 

1 L distilled water 

A1.16   20x TBS Buffer  pH 6.8  (1L) 

48.4 g  Tris-HCl  

 175.4 g NaCl 

1 L distilled water 

A1.17   TBS-T Buffer 

 1 L of TBS buffer with 1 ml of Tween-20  

A1.18  ECL Solution I (Enhanced Chemiluminescent I) 

1 ml Luminol (3-Aminophthal hydrazide)  

0.44 ml Coumaric acid  

10 ml of 1M Tris-HCl (pH 8.5) 

volume up to 100 ml with distilled water 

A1.19  ECL Solution II (Enhanced Chemiluminescent II) 

 64 µl of 30% H2O2 

10 ml of 1M Tris-HCl (pH 8.5) 

volume up to 100 ml with distilled water and wrapped in Al foil before stored 
at 4oC 

 

 

 

 

A1.20  Stripping Solution 

 15 g Glycine 
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 1 g SDS 

 10 ml Tween-20 

 Adjust pH up to 2.2 and volume up to 1L 

A1.21 Fixative solution 

 40% Methanol 

 10% Acetic acid 

 50% distilled water 

A1.22  Hypo- Solution 

0.5 g Sodium thiosulphate  

17 g Sodium Acetate 

75 ml Methanol 

Volume up to 250 ml in distilled water 

A1.23 Silver Staining Solution 

 0.625 g Silver nitrate in 250 ml of water 

A1.24 Developing Solution 

Dissolve 6.25 g Na2CO3 in 250 ml of distilled water and add 100 µl of 37% 

formaldehyde just before use. 

A1.25 Stop Solution 

 3.65 g EDTA in 250 ml of distilled water 

 

 

 

Appendix 2 

Oligonucleotides (Primers) 
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A2.1 Oligonucleotides used for the study 

Primer Name Primer Sequence (5’ to 3’) Description 

HK1 

 
CACCATGAATCAGCAAAACCC 

Used to create SFR6 truncation with 
beginning of the protein (SF1) 

HK2 CACCATGGAGGTGACCCCTGGCCCTGGA 

Used to create SFR6 truncation 
beginning with SF2 

HK3 CACCATGCTTCCGCGTAACCAATCAAAGG 

Used to create SFR6 truncation 
beginning with SF3 

HK4 CTAGGAGTTTGTCGTAGCAGTAG 

Reverse primer used to create SF14 
truncation 

HK5 CTACCCGGAATCCCTGGGCGTCC 

Reverse primer used to create SF15 
truncation 

HK6 CTATACAACACGGACCCACGTTCC 

Reverse primer used to create SF16 
truncation 

HK1R CTGTAGCCGGACTCACAGG   

Used to amplify SF14, SF15 and SF16 to 
detect transgene in PCR with pB7WG2-F 

HK2R GCAGACTGAGCTGCAGCCTC   

Used to amplify SF24 and  SF25 to 
detect transgene in PCR with pB7WG2-F 

HK3 Rev TGCGGGTGCAGCAATTGC 

Used to amplify SF36 to detect transgene 
in PCR with pB7WG2-F 

HK1 Rev.RT CGATGATTCCTCCACCACCGC 

Used to quantify level of expression of 
SF14, SF15 and SF16 transgenes with 

GWOE trans -F  primer 

HK2 Rev.RT GGTGGCACACGACTGCCTG 

Used to quantify level of expression of 

SF24 and SF25 transgenes with GWOE 
trans -F  primer 

HK3  Rev.RT CATCCCACCAATCAAC 

Used to quantify level of expression of 
SF36 transgenes with GWOE trans -F  
primer 

GWOE trans -F 
GCAGGCTCCGCGGCCGCCCC 
 

Used to quantify level of expression of 
SF transgenes  with above three forward 
primers 
 

pB7WG2- F GAAACCTCCTCGGATTCCAT 
Used to detect transgenes of SF1-6  in 
genomic DNA extracted from plants 

BASTA -F 
 
GAAGTCCAGCTGCCAGAAAC To detect basta resistance marker in 

transgenic lines of  SF1-6  in genomic 
DNA extracted from plants BASTA -R 

 
TCGAGGGGATCTACCATGAG 

HisHA forward CACCATCACCATTACCCATACG To detect tag used in creating the 
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overexpressing lines of KIN10 

Kin10 Rev b GCCCGAAATTACCTCTGGAGCGG 

Used to detect transgene of KIN10 with 
HisHA forward primer 

KIN10 mid F 
 
GAAGATAAAGGGAGGGATATACA 

Used to quantify transcript of KIN10 
from the middle part of the protein 

KIN10 mid R 
 
TCGTTTCATGGGGTCAACT 

KIN10  PCR  F 
(new) CTTACCGACTGTCTTCCAG  

Used to detect wild type KIN10 
transcript 

Kin10 end Rev 
 
TCAGAGGACTCGGAGCTGAGC 

AK10-GABIa   CCAGCATAATAGAGAACGAAGC 
Used to detect of KIN10 

AK10-GABIb 
 
GTCCGGTTTAGTATTCAGAGG 

Used to detect Gabi inset in kin10-2 
mutant background 

O8409 LB 
 
ATATTGACCATCATACTCATTGC 

KIN10-Rt-FOR 
 
TGCAGAGAGTACAAGGTCCTCA 

Used to quantify transcript of KIN10 
from the end of the protein 

KIN10-Rt-Rev 
(new) GATTATTCTTGAAGAGGTCCGG 

LTI65-RT-For 
 
CACGGCGCACCAGTGTATGAATCC 

Used to quantify transcript of LTI65  

LTI65-RT-Rev 
 
GGCTCAATGGGTTTGGTGTGG 

P5CS1 Rt For 
(new) CGTCGTTAAGGTTGGGACAGCAG 

Used to quantify transcript of P5CS1 

P5CS1 Rt Rev 
(new) CCATCCGAGTTTAATTCCGC 

KIN2-F 
 
CAACAGGCGGGAAAGAGTAT 

Used to quantify transcript of KIN2 

KIN2-R 
 
CAACAACAAGTACGATGAGTACGA 

PR1-F 

 
CATCCTGCATATGATGCTCCT 
 

Used to quantify transcript of PR1 

PR1-R 
 
TCGTGGGAATTATGTGAACG 

At4g26410 F 
 
CTCGTTCCCTCCGTGAAAAT 

Used as endogenous control to quantify 
transcript of  PR1 

At4g26410 R 
 
TGAAGAAAGCATTCTCATAGGTCTT 

DIN6 -F 
 
GGCCAAGAGAGTTCGTGTTC 

Used to quantify transcript  of DIN6 

DIN6-R 
 
AGACGTTGATGGGCCAAGTA 

PEX-F 
 
TCATAGCATTGATGGCTCATCCT 

Used as endogenous control to quantify 
transcript of many genes except PR1 in 
this study 

PEX-R ACCCTCTCACATCACCAGATCTTAG 
SFR6- mid F AAGCCCAATCAGTGGTTCAC Used to quantify transcript of SFR6 from 

the middle part of the protein 
SFR6- mid R AGACCGCTGGAGAAAACAGA 

BCAT2 F CGCAAAACTCTGGTTCTACCTC Used to quantify transcript of BCAT2 
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BCAT2 R GATGCAGCTTGTGCGTTGTA 

 

 

Applied Biosystems probe identifier SNP492-SNP1 ( TaqMan probe) was used for 
genotyping for single nucleotide polymorphism (SNP) genotyping assay of sfr6-1  

For primer: CGTATGATCCAGATGAAGGTCCTT 

Rev primer GCAGTACAACAGGTTGAACACTTGA 

Reporter sequence 1 CACGG CTGGAGAGTA (wild type version linked to VIC 
reporter dye) 

Reporter sequence 2  CACAGGCTGAAGAGTA (mutant version with base 
substitution at SNP, linked to reporter dye FAM) 
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A2.2 Map of the primers used for SFR6 sequence (AT4G04920.1) 

 

Cctaaaatcaaaattgcattttttgttcgattttgattttgtggggattttggaattttccccgcact
aagtcgtctcgttaaccccacttaacagtttctcactttgacactttctctctctctcaacgcacagt
gctttctgtcgccttcaatcgcgactttttgtcacacttgccctcttttctccgatttttctataaat
ttaggg 
                        HK1-F 
ttttgtttgctttcgttgacATGAATCAGCAAAACCCAGAAGAAGAAGTTTCTTTGGTTAATAATAGC
GG 
  HK1Rev.RT 
TGGTGGAGGAATCATCGAAGCTCCAGCTATAGTGGAGGAGAAAGAGGAAGAAGGATTACAGCAGAAGC
AGGAAGAGACTATTGAGTCTACCGATCCGATTCTCGTCGTCGTTGAGGAGAAATTGTTAGAGAAATCA
GTAGACGGAGAGAAAGAAGACGATAATAGTAGTAGTAGTAACATGGAGATTGATCCTGTGAGTCCGGC
TACAGTTTTCTGTGTTAAGCTTAAGCAGCCCAATTCCAATTTGCTTCATAAGATGAGTGTTCCTGAAT
TGTGCCGTAACTTCAGgtttgactctctctcccatcggaaaatctttaaatttcatcaattcctgtaa
agttttctccttttctttgtgttagTGCTGTTGCGTGGTGTGGCAAATTGAATGCTATTGCTTGTGCT
TCCGAGACCTGTGCCAGGATTCCAAGgtatggtttttgttacttttctatgtcttgaatgtatgggca
gtgatgaatttctcaattttcatctttctctgttctcatctcttgcagCTCCAAGGCAAATACACCTT
TTTGGATACCAATACATATCTTGATACCTGAGCGCCCTACTGAGTGTGCGGTGTTTAATGTTGTGGCA
Ggtattttgatatcagttaattatttatgaactcggttgatctagtgggtgataaacgattatgatgc
aattttttatatgtagACTCTCCTCGTGATTCTGTCCAATTTATCGAATGGTCTCCCACTTCTTGTCC
TCGTGCGTTACTCATTGCTAATTTTCATGGACGTATAACTATCTGGACGCAGCCTACTCAGgtttgtg
ctcctgatcactgggatttacctttatatttcttctttgtcttctgtgtcaagatgttttatgacacc
ctcagatgattttttttttgtggattggttttgcagGGTTCGGCTAATTTAGTGCACGACGCTACCTC
CTGGCAGTGTGAGCATGAATGGCGTCAGGACATTGCTGTTGTTACAAAGTGGCTGACAGGGGCTTCCC
CAgtatgtaatcttatgttttgcttatttgccattctatcaaatgcacagcatatttgtcccttaatg
agttcgttaaattagtaatggagggcttgcatgtgagagtgggcactgggattactaaatcgtgagta
attgaactggaaatgtctctacgttttggaggaaatgagatggagaaaacacaacgtcctggaaatcc
caactctctgtttgcaaaattactagactcctaaaagatcttccaatttgcgtttcttagatgcattt
ctttaatgatcggcatgaacacataaggaaatgagtaacagatagataataatgccattgcaaagaac
atgttctgaaggacttaatatcatgttgtttctggccacctagtttgctgctctagttttatcctagg
aaatttatcctctatgttttctttttattgataatcagTATAGGTGGTTGTCCTCCAAGCCAAGTTCT
GGTACAAATGCAAAGTCAACTTTCGAGGAGAAATTTCTCTCGCAGAGCTCTGAAAGCTCAGgttttct
tctgcgtgcctcttgtgactcattttttgatgatatattcagaattatgcacttaattttaattatgt
cagttcctttgacatccaaatatatgtgacaagatcaatacaacatgttctgacgttagtgcattttc
ctccactttatgtgacggttctgattctctaccatttgttgcagCTCGGTGGCCCAACTTTCTCTGTG
TATGCTCTGTTTTCTCATCCGGCTCTGTTCAAATTCATTGGTCCCAGTGGCC 
TTCTAACCAGGGAAGCACTGCACCAAAGTGGTTTAGTACAAAGAAAGGTCTTTTAGGTGCAGGGCCAA
GTGGAATTATGGCTGCTGATGCTATTATAACAGACAGTGGTGCCATGCATGTAGCAGGAGTTCCAATT
GTAA 
                             HK2-F 
ACCCTTCAACAATTGTAGTATGGGAGGTGACCCCTGGCCCTGGAAATGGACTCCAGGCGACTCCAAAA
AT 
         HK2 Rev.RT 
CTCTACAGGCAGTCGTGTGCCACCATCCCTTAGTTCTTCTTCTTGGACAGGTTTTGCTCCTTTAGCTG
CGTACTTGTTTAGCTGGCAAGAATACTTAATATCCGAGATAAAGCAAGGGAAGAAGCCCTCAGATCAA
GATTCCAGTGATGCTATATCGCTAAGTTGCTCACCGGTTTCCAATTTTTCTGCTTATGTAAGTCCAGA
GGCTGCAGCTCAGTCTGCAGCAACCACAACATGGGGATCTGGTGTTACCGCTGTTGCTTTTGATCCAA
CTCGTGGTGGTTCAGTGATAGCAGTTGTTATAGTTGAAGgtactgttctcatccttctcggaacctca
tactgtttccatgattgaataaacattttcaggtttacgtttagtttttggtcaatcatttagaaatg
ctcatatattga 
                                  SFR6-int-gtyp-F 
agagctgccagatgagaaaatgctaattttgtttgagtgatgaagcgcaacagcttcaatctattgtt
taaaataaatgctaattgtttgtgtctgcagGGCAGTACATGTCTCCGTATGATCCAGATGAAGGTCC
TTCA 
        point mutation 
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ATCACAGGCTGGAGAGTACAGCGCTGGGAATCAAGTGTTCAACCTGTTGTACTGCATCAGATATTTGG
AAACCCAACTTCAAATTTTGGAGGACAGGTCCCCACGCAAACTGTCTGGGTATCCAGAGTGGATATGA
GCATACCACCTACTAAAGATTTTAAGAATCATCAAGTAGCTGCAGCAGGACCAAGTGTGGATGCACCA
AAGGAGCCTGATTCTGGTGATGAGAAGGCTAACAAGGTTGTATTTGATCCTTTTGATTTGCCAAGTGA
TATTCGGA 
CACTTGCACGGATTGTCTATTCTGCTCATGGTGGTGAAATTGCGATTGCTTTTCTTCGTGGTGGAGTT
CATATCTTTTCTGGTCCAACTTTTTCACCTGTTGAAAACTATCAAATAAATGTTGGATCTGCAATTGC
TGCACCCGCATTTTCACCAACAAGCTGTTGTTCGGCTTCTGTATGGCATGATGCTGCTAAGGACTGCG
CAATGT 
                                  HK3b-F 
TGAAAATCATCCGTGTTCTTCCTCCTGCTCTTCCGCGTAACCAATCAAAGGTTGATCAATCAACATGG
GAGCGGGCGATCGCTGAGAGgtatgtaatctctggtatatattttctagcttgtctgcttgcaaagga
acttatattgtgacttgagatatgaatctgcattctttcttaacagATTCTGGTGGAGTCTTTTGGTC
GGAGTT 
 HK3b Rev.RT 
GATTGGTGGGATGCAGTTGGCTGCACACAGAGTGCTGCAGAGGATGGGATAGgtatactttagtgcta
agtttcttgatttaagtgttatttaatatctgcagttggatttttttgggtctttagttgtggaacaa
ccactggaattagttttgcttagaaatatgacagtttgtattttagtttgggaataagttctagtttt
taaaggctgagtgtcattcaaagaaccttttctctgtttttctattttgcttttatactaaggtttga
atgatagaaactttgaatgatagtggttcaaatattatattgtattgtttgaataatatactgcttaa
agcattggatgatgtatttctttttatgattacagTTTCATTGAACAGCGTGATTGCTGTCATGGATG
CTGATTTTCACT 
                     HK3b-R 
CCCTTCCTTCAACACAGCACAGACAACAATATGGCCCTgtatgtttttactcaacccgaatccaactc
attatctttttcctttttaaatgtctgaactgtttgcgttgcggtaccgtttattatgtctttgcaaa
atatttatatatatatatatatttttttttctggttttataatgtaaagcttctctattccatgagca
tgcaga 
acctattttgtgttgttcttttatcggactataagatagtgtagctttctctaatttaaaaaaagaaa
gaaaaaaggaacaaacttcatctgactttagattatttgagtagccaatatacaatgcatctgattga
ctgattctaagacgctgaacaaaatcttggcagtctattgcccccttgagattcttcgtgtttttttt
gcttttttcctttttggttggttgcgctttttggtaaagaacttgtatttttatggtttacagAACCT
AGATAGGATCAAATGTCGGTTACTTGAAGGAACCAATGCTCAAGAGGTTCGTGCCATGGTTTTAGATA
TGCAAGCAAGGTTGTTGTTGGACATGCTTGGAAAAGGTATTGAATCAGCTCTTGTGAATCCTTCGGCG
TTGGTTTTTGAGCCATGGCGAGTAGATGGGGAGACAATAACAGGCATCAATCCGGAGGCAATGGCTGT
TGATCCTGCTCTTGTTTCCAGTATTCAGgtatcttgatgccttcaaatctgaggataaagttgtaggt
tttctttgatgaaagatgaaaattcaggctcaaaccctgggaacggttcatgcagtgttttcatttaa
agagtagttgctctttgctgatatatcttagtttttacttttaataatcagccaacacatgctgtatt
agatttggttatttagcacagcttaagacattttagatcatattgtgacattgcatattctatcatgg
atctcatatcattgtatatgaaacagaccatatcactatccttttacaagtttggtttcctgttgcag
atttttctgtactctaattccttttccgcttcatttacagGCTTATGTGGATGCTGTTCTTGATCTTG
CTTCTCATTTCATCACACGTTTAAGGCGTTATGCGAGTTTTTGTCGGACTCTTGCAAGCCATGCTGCT
TCTGCTGGAACTGGCAGTAATCGCAACAATGTTACCAGTCCCACACAAAATGCATCATCTCCTGCAAC
ACCTCAGGgtcagtatactattgattttgtcatacctaatttactccagcatgacaacaagggctttg
aatggtacatagcgacaaaaaatttcattcccttgtcattcggtgatgatacgaagcacttgtttggt
cctagatttattgaatatgagatgagtttcttaagtctagatattcttcatctctgtgaactatagcg
tattgtccagctcttttttccacgtagattatgggagatacaactggttatatttgttgttgggcttg
gcatctctcttgtaggggtgcaattgggggatatttcaactcttttatgtacagTTTTTCCTGACAAG
TCACTGTATCTTGCAGTAGGTCAACCTACTACTACTACTA 
        HK4-R 
CTACTACTGCTACGACAAACTCCAGCGGAAGCTCACATGTGCAAGCTTGGATGCAGGGGGCCATAGCG 
 
 
 
AAAATTAGTAGCTCGAATGATGGATCCAACTCTACTGCAAGCCCAATCAGTGGTTCACCTACCTTCAT
GCCAATAAGCATCAATACAGGAACATTTCCAGGAACACCTGCTGTTCGGCTCATTGGGGATTGTCATT
TCCTTCATCGGTTATGCCAGCTGTTGCTCTTCTGTTTTCTCCAGCGGTCTTCACGATTTCCACAGCGA
AATGCTGATGTTAGTTCACAAAAACTTCAAACGGGGGCTACCAGCAAATTGGAAGAAGTCAACTCTGC
TAAACCAACC 
                         HK5-R 
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CCTGCCTTGAACAGGATAGAGGACGCCCAGGGATTCCGGGGTGCCCAGTTGGGTACTGGAGTGAAAGG
GATTGATGAAAATTCTGCTCGTACAACAAAGATGGGTTCTGGGAATGCCGGTCAAGGATATACTTATG 
 
AGGAGgttggcacctatattcctgtgtcctctttattttgatacaattatctgtggaacccttttgtt
gttacctcaagaatagaggcttaggcttaatctggtcaatatgggtaagaataatgggaacccttggt
aggttggggaaaaatatgatagactttgtagattttgaaacgaagaaagcaatgccatctttgatggt
acaataatct 
agaaaatttcttataatgactggatactttctgatcttccagGTGAGAGTTCTTTTCCATATACTAAT
GGATCTCTGCAAGCGAACATCTGGTCTTGCGCATCCCTTACCTGGCTCTCAGGTAGGTAGTGGAAACA
TTCAAGTTCGACTGCATTATATTGATGGAAATTACACTGTGTTACCCGAGGTGGTAGAAGCGGCTCTT
GGACCACATATGCAGgtaatctgtgtttatagtaaagtagtgaaactattttttcaattgttcttgtt
agtgatatttggtcaagtacattatgaaataatatcttgtgatctatattctcataagataatttgtt
gtaaaaactg 
aattaacagAACATGCCTCGCCCAAGAGGAGCTGATGCTGCTGGTCTTCTACTTCGGGAGTTAGAGCT
TCATCCGCCTTCCGAAGAATGGCATAGAAGAAATTTATTTGGTGGTCCCGGGTCAGAGCCTGAGGATA
TGATCTTGACAGACGATGTTTCCAAGCTGAGTAATTCCTTAGATCTGCCTGATACAAACTTTTCCGGA
ATATGTGATGGATACAACAGAGTCCATAGTCTTTGGCCAAGAAAACGCAGGATGTCTGAAAGAGATGC
AGCTTTTGGTTCAAATACTTCTGTGGGTTTGGGTGCATATCTTGGGATCATGGGTTCTCGTAGGGATG
TTGTGACCGCGACATGGAAAACTGGTCTTGAAGGAGTTTGGTACAAGgttggttacgctcatacattt
cccttaacatttctttattgttgtaatgtgataaagaagtaaaaagttcttctgtcacaccttagtaa
catgattgactttcttattgcagTGCATAAGATGCCTAAGGCAGACATCTGCATTTGCTTCACCAGGT
GCCACTAAGCAGCCAAATCCGAATGAACGAGAAACCTGGTGGACAAGTCGTTGGGTTTATTGCTGCCC
CATGTGTGGTGGAACGTG 
    HK6-R 
GGTCCGTGTTGTATAGgcgaacaaatgaacttcccatctactatattggtattggatcgaatagccag
aaaatcagtgattttgaggagcaaagagtgcaaaccaaacacacttctgcaagtttattctgttactt
ctaatccttattcccggactggtgtgatctaacccctgtccaatatggaaatcttgaatggaactggg
agggagacagtgtctgcaaagattcaagacacggtgtagtgaaacaggtcttggtgtatagcgattta
ttagacttatggtctatagagtttacttcttgtggaatgtaaaactctttcaggctgcaacatcattt
tttaaatttctttaaagggctgtaacctttaacttaagtggtgtagtaaagactctagaagtcatggt
ggtgatgatgtaagggcccattggtaaagaccgttatggactttgaccgtagaaattttggttgtaga
gaatttgactataaagattttaagtttaaaaactttggccatgattggtaactaaaaagtaaaaactt
tagaaactgtt 

 
 
Yellow colour highlighted areas denote primers used for DNA amplification and 

green colour highlighted areas denoted the primers used for real-time analysis. 

Arrows indicate the primer orientation. Orange text colour in uppercase represents 

the introns of the SFR6 nucleotide and blue colour text in lower case represents 

exons of SFR6 nucleotide.  

 

 

 

A2.3 Map of the primers used for KIN10 (AT3G01090.2) 

 
actttttcagctcagaaaattttgggacttttttttgctgcattttttggttccgaattttctcctcc
gccttttttaatttttggtaagtttcgatatctctcaattttcttatttcggaaataaaaaaaattct
cgcccttttgcaaatcaatggattgatcttgaaatcgtcatttctgaatcgggtacgagagatccagt
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aatcctctgcgattgaattattattagggttcatattccgaattggggatagtctgaaaattgctatt
ttaagctctcttcttagtgttggttggtttattctggataataaaagggatcctaattctcgctaaat
tctcATGTTCAAACGAGTAGATGAGTTTAATTTAGTTTCTTCAACGATCGATCACAGAATCTTCAAAA
GTgtaaaaattacttgctttttgttcctattactcttttgcagtttgttttgtgtgttgtgtactagt
agatctaatatctctctctctttttttgtagAGAATGGATGGATCAGGCACAGGCAGTAGAAGTGGGG
TAGAATCGATTCTACCAAATTACAAGCTTGGGAGAACTCTTGGTATTGGTTCCTTTGGTAGGGTGAAG
ATAGCTGAGCATGCATTGACAGGACATAAGGTTGCTATCAAGATCCTCAATCGTCGCAAAATCAAGAA
CATGGAGATGGAGGAGAAAGgtacaagttttgttttgtgtatccattccaccttagttgtgacttcac
ggtactcttggaatatataaatatatagcttctttttcgtcttccttcctttgaacttatttggtctt
tgatgcagTGAGGAGAGAGATCAAAATCTTGAGACTATTTATGCATCCTCACATCATCCGTCTCTATG
AGGTTATAGAGACTCCCACAGATATTTATCTTGTCATGGAGTATGTGAACTCTGGTGAGCTATTTGAC
TATATTGTTGAGAAGGGTAGATTGCAGGAGGATGAGGCGAGGAACTTTTTTCAGCAGgtatgttttta
ttttattttatcaacatgtaactttccaagcaaccattcgattttatattatatttgagagttaagaa
ttagctacttggctttgatgtagATAATATCAGGAGTGGAATACTGCCATCGAAACATGGTGGTTCAC
AGAGACCTCAAGCCTGAAAACTTGCTTTTGGACTCTAAATGCAATGTAAAGATTGCTGATTTTGGCCT
GAGCAACATAATGCGAGATGGTCATTTTTTGAAGAC 
                         Kin10 Rev b 
AAGTTGTGGAAGTCCAAATTATGCCGCTCCAGAGgtaagtgcttcagccctcaggtatctgaggaata
ct 
                                                     Kin10 Rev b 
ataattaggcttgtttcaaatgataggttatagtcgagatctataaattgtttcagGTAATTTCGGGC
AAGTTATATGCTGGCCCTGAAGTAGATGTCTGGAGCTGTGGTGTGATACTCTACGCTCTTCTCTGTGG
GACG 
                                           Kin10 mid F 
CTTCCATTTGATGATGAAAACATTCCCAACCTTTTTAAGAAGATAAAGgtacattctattactcctcc
tctttcgtctatttgaactaatgcttgaattttttattttatttttcgtatcacccttcgactgtaac
cttt 
                          Kin10 mid F 
tttttttctcttttcgtcctatagGGAGGGATATACACATTACCTAGCCATTTATCTCCTGGTGCTAG
AG 
                        Kin10 mid R 
ATTTGATCCCCCGGATGCTTGTAGTTGACCCCATGAAACGAGTAACCATCCCTGAGATCCGGCAACAC
CCTTGGTTCCAAGCTCATCTTCCGAGGTATTTAGCTGTTCCTCCTCCAGATACTGTGCAACAGGCAAA
AAAGgtaagcctaacgtatctactcttattttcattagagaaatctctattcccatttttcgataaag
gcgtaaaagcgctgtcttcatttgtagATTGACGAGGAGATTCTCCAAGAAGTTATCAATATGGGATT
TGACAGAAACCACCTCATCGAATCGCTCCGCAACCGAACCCAGAATGATgtatgtgtttcccacccac
ttgttctttt 
 
 
                                                     KIN10 PCR F 
(new)     
gctgtttctttcatttcaaagattaaaaaaaattccatcaaaagatcttaaatactgtattcttaccg
actgtcttccagGGCACTGTGACGTACTATCTGATACTGGACAATCGTTTCCGTGCCTCTAGTGGTTA
TCTCGGGGCTGAGTTTCAAGAGACCATGgttagtcttttttgtccttttcgactttagcaaaagatct
ttgacgtaatgcttcattgtttgatttaatcagGAAGGTACTCCCCGTATGCATCCAGCAGAAAGCGT
TGCTTCACCTGTTAGCCATCGGCTTCCAGGACTGATGGAATATCAAGGAGTTGGCTTGAGATCTCAAT
ACCCTGTTGAGAGAAAATGGGCTCTTGGACTTCAGgttttgatattttctgtatttatggtataaaga
cttcagcttttgatatatatgtgattaatattgtaacaatttgatcgcacagTCTCGGGCTCATCCCC
GTGAAATAATGACGGAAGTCCTGAAAGCCCTGCAAGATTTGAATGTATGTTGGAAGAAGATAGGGCAC
TACAACATGAAGTGCAGATGGGTTCCTAACAGCAGCGCAGATGGTATGCTCAGTAACTCGATGCACGA
TAACAACTACTTTGGAGA 
        AK10-GABIa(AKIN10 F) 
CGAGTCCAGCATAATAGAGAACGAAGCAGCTGTTAAGTCGCCCAATGTTGTCAAGTTTGAAATTCAGg
taaatcctcttctccacttcatgatacatatcggtttcccgtacgacattgtttctgatgtgtgattt
cgagtgaaagaaagctttgtgtattagtgtccatggccatttttgtaactgaattagaactagagtga
atcttc 
atgaatctaactatcaatcaatattttctgggcttgatgacgtttgttattgttgatggtgaaacagT
TG 
                                         KIN10-Rt-For 
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TATAAAACTCGGGACGACAAGTATCTACTGGATTTGCAGAGAGTACAAGGTCCTCAGTTCTTGTTCTT
GG 
       Predicted position of insertion(31550)      KIN10-Rt-Rev 
(new) 
ATCTGTGTGCTGCTTTTCTTGCTCAGCTCCGAGTCCTCTGAatactaaaccggacctcttcaagaata
at 
                      Kin10 end Rev       AK10-GABIb 
ccccacttattcctttttttttttttttcttattcgtctaagaaattatttagaaaacgtaacccttt
ttttcttcttctctttctttctatttctatatgcgtgctctactcaaatacctcttttaacttaaatg
taagactgagcaagagtaaaaaaaagacactttgtacataacttgtagtgcatcatgccaccaagatt
gatttttgtttttgtttactccatatttcttatgattaaaatcaataagttaagggaaagacattttg
acaaaaattgaaggaaagatgtttaaattagtttc 
 

 
Blue and purple colour highlighted areas denote primers used for DNA amplification 

and real-time analysis. Arrows indicate the primer orientation. Orange text colour in 

uppercase represents the introns of the KIN10 nucleotide and blue colour text in 

lower case represents exons of KIN10 nucleotide.  
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A2.4 Chromatograms of homozygous lines of sfr6-1 

 

(a)  Chromatograms for five homozygous lines of transgenic plants of  sfr6-1+35S::SF14 (SF14) : SF14#3, SF14#4, SF14#5, 
SF14#6 and SF14#7 in the above digram represents SF14#1, SF14#2, SF14#3, SF14#4 and SF14#5 respectively in this study. 
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(b) Chromatograms for five homozygous lines of transgenic plants of  sfr6-1+35S::SF15 (SF15) 
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(c) Chromatograms for four homozygous lines of transgenic plants of  sfr6-1+35S::SF36 (SF36) 
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(d) Chromatograms for six homozygous lines of transgenic plants of  sfr6-1+35S::SF16 (SF16) 
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Appendix 3 

Plasmid Vectors 

 

A3.1: Detailed vector diagram of pENTR-D-TOPO entry vector annotated with 

specific features using SnapGene R 2.6.2 
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A3.2: Detailed vector diagram of pK7WG2 stable plant expressing destination 

vector annotated with specific features using SnapGene R 2.6.2 
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A3.3: Detailed vector diagram of pB7WG2 stable plant expressing destination 

vector annotated with specific features using SnapGene R 2.6.2 
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A3.4: Schematic representation of cloning of SF construct to the stable plant 

expression vector pB7WG2 via pENTR-D-TOPO entry vector SnapGene R 2.6.2 
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A3.5: Detailed vector diagram of SF16 construct in pB7WG2 stable plant 

expressing destination vector annotated with specific features using SnapGene 

R 2.6.2 
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A3.6: Detailed vector diagram of SF15 construct in pB7WG2 stable plant 

expressing destination vector annotated with specific features using SnapGene 

R 2.6.2 
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A3.7: Detailed vector diagram of SF14 construct in pB7WG2 stable plant 

expressing destination vector annotated with specific features using SnapGene 

R 2.6.2 
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A3.8: Detailed vector diagram of SF36 construct in pB7WG2 stable plant 

expressing destination vector annotated with specific features using SnapGene 

R 2.6.2 
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A3.9: Detailed vector diagram of SF25 construct in pB7WG2 stable plant 

expressing destination vector annotated with specific features using SnapGene 

R 2.6.2 
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A3.10: Detailed vector diagram of SF24 construct in pB7WG2 stable plant 

expressing destination vector annotated with specific features using SnapGene 

R 2.6.2 
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A3.11 Detailed vector: diagram of pK7WGF2 GFP-expressing destination 

vector annotated with specific features using SnapGene R 2.6.2 
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A3.12: Detailed vector diagram of SF16 construct in pK7WGF2 GFP-

expressing destination vector annotated with specific features using SnapGene 

R 2.6.2 
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A3.13: Detailed vector diagram of SF15 construct in pK7WGF2 GFP-

expressing destination vector annotated with specific features using SnapGene 

R 2.6.2 
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A3.14: Detailed vector diagram of SF14 construct in pK7WGF2 GFP-

expressing destination vector annotated with specific features using SnapGene 

R 2.6.2 
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A3.15: Detailed vector diagram of SF36 construct in pK7WGF2 GFP-

expressing destination vector annotated with specific features using SnapGene 

R 2.6.2 
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A3.16: Detailed vector diagram of SF25 construct in pK7WGF2 GFP-

expressing destination vector annotated with specific features using SnapGene 

R 2.6.2. 
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A3.17: Detailed vector diagram of SF24construct in pK7WGF2 GFP-expressing 

destination vector annotated with specific features using SnapGene R 2.6.2 
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Appendix 4 

Supplementary gene expression data 

 

A4.1: Wild type cold gene expression 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A4.1: Cold-induced KIN2 expression in SF16, SF15, SF14 and SF36  

truncations overexpressing in Col-0 transgenic lines 

KIN2 expression in seven-day-old seedlings in response to cold treatment was measured in 

Col-0+35S::SF16 (SF16), Col-0-1+35S::SF15 (SF15), Col-0+35S::SF14 (SF14) and Col-

0+35S::SF36 (SF36) transgenic lines compared with Col-0. Expression is shown after 

normalisation to PEX4 in all graphs. Fold values were calculated using the ∆∆CT method, 

and the error bars in each biological replicates represent RQMIN and RQMAX  and constitute 

the acceptable error level for a 95% confidence level according to Student’s t test. Error bars 

indicate the level of variation between technical replicates within one biological replicate 

experiment. 

 
 


